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About This Book

This book describes the field programmable gate array (FPGA) development process in five
development phases: design, synthesis, simulation, implementation, and programming.
Each phase is presented in an easy-to-read and easy-to-understand format with examples,
helpful tips, and step-by-step tutorials for the synthesis, implementation, simulation, and
programming phases. The reader is provided Web addresses for the tools used in the tutorials.
This book makes it easy for beginners to learn and understand how to create, modify, and
work with FPGA designs. Experienced engineers will find it to be a good reference manual.
A primer and some simple digital designs have been provided for those with no programming
knowledge. It provides some basic information about writing, reading, and understanding
high-level design languages, coding, and other tips. The primer may not be necessary for
all readers, but as my mother always says, “It is better to have it and not need it than need it
and not have it.”
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Getting Started

1.1. Introduction

This chapter is a primer that provides beginners with some background information that will
help in understanding the field programmable gate array (FPGA) development process
described in this book. The FPGA process can be confusing and frustrating, making it
more difficult to learn or understand, especially if you do not have at least a basic
understanding of some background concepts. So, it is my hope this primer will fill in some,
if not all, of the gaps. I am a firm believer that we can always learn something new; so for
experienced engineers, I believe this book will be both a good refresher and an opportunity to
learn something new. The chapter also provides some helpful hints and tips that I found

to be useful over the years. I hope they will prove beneficial to you.

Some basic examples are provided to help you better understand hardware description
language (HDL) and the FPGA development process. This primer is not meant to teach
you all the ins and outs of writing HDL code but to help you better understand some
of the terminology as you read the later chapters on the FPGA development process.

In this chapter, you will learn
* HDL coding.

* Tips for writing code.

* HDL editor features.

 HDL file structure.

1.1.1. VHDL

VHDL is a high-level hardware description language used to describe digital circuits that
can be programmed into an FPGA. It is a softwarelike programming language that some
people, myself included, refer to as firmware. It was developed based on a need by the
U.S. Department of Defense (DoD). In 1987, the Institute of Electrical and Electronics

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00001-1 1



2 Chapter 1

Engineers (IEEE) adopted VHDL as a standard, which was released as IEEE Standard (Std)
1076-1987 or VHDL-87. About every five years, the IEEE Standards Committee is supposed

to reconvene to review, enhance, and make other modifications to the language. VHDL is
also available as VHDL-93, VHDL-2000, VHDL-2002, and VHDL-2008.

VHDL is not case sensitive and requires no special formatting, such as spaces, tabs, or
indentations. Each line of code or statement must end with a semicolon, ;. Filename
extensions can be either .vhd or .vhdl.

1.2. Reserved Words

Reserved words are words that are defined by the language. Of the many reserved words, you
will use some more often than others. Some common VHDL reserved words are shown in
Table 1-1. Because VHDL is not case sensitive, reserved words may be in any case.

Table 1-1: VHDL Reserved Words

Reserved word Description
All References what precedes the .all
And Logic AND function
Architecture Secondary design unit
Begin Signifies the start of sequential statements
Bus A signal mode that has multiple drivers or signal bits
Case Creates a multiplexer for a signal
Component Used to define a component
Constant Fixed signal value
Downto Defines range of values
Else Precedes alternate action following the “If-Then” statement
End Signifies the end for many things, like entity, architecture, and If-Then statements
Entity Primary design unit
If Precedes initial conditional
In Input signal port
Inout Bidirection signal port
Is A connective in a variety of statements
Map Maps or connectors actual signal parameters
Not Logic NOT function
Then Used for conditional statements
Type Enumerated type allows user to define data values
Or Logic OR function
Others Shortcut used to define all values in a range
out Output signal port
Port Used for interface definition

(Continues)
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Table 1-1: Cont’d

Reserved word Description
Process Group of sequentially executed code
Read Allows an external file to be read
Std_logic Signal type defining a single bit
Std_logic_vector Signal type defining multiple bits
Signal Used to assign an object a signal name and data type
To Used in the middle of some keywords like range and downto
Write Allows you to write to an external file

1.3. Tips for Writing Good Code

Over my many years as a digital designer, I had the opportunity to write many lines of code
as well as review, modify, and inherit others’ code. Through these sometimes hard
experiences, | have developed some tips for writing good code. Some of the tips come from
trying to remember code I previously wrote or understanding someone’s code. As you
become more experienced, you will discover tips that make writing, modifying, and
reviewing code much easier.

1.3.1. Tip 1. Use Comments to Convey Information about the Code

Comments are a very important part of coding. You should provide comments as a way
of conveying pertinent information about the line or section of code, see Example 1-1.

m Example 1-1. Good and Bad Code Comments

Count <= NumberOfBaskets; —-- number of baskets = 5
—-—- count equals number of baskets
—-—- count <= NumberOfBaskets;
Good Comment.
Number of baskets = 5 is a good comment, because it defines the actual value being
assigned to Count. There is no need to search through the code or another file to
find the actual value.

Bad Comment.

In Count equals number of baskets, the comment states the obvious and provides
no additional information. You have no way of knowing the actual value without
further research.

You may find it hard to believe, but | have actually reviewed code that had comments
like count <= NumberOfBaskets. The comment was the actual code

commented out. | guess the coder did not really know what commenting meant.
L |
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It is so easy to remember all the ins and outs of your code while you are developing it but not
so easy if you have to revisit the same code several weeks or months later. It can be even
more difficult when you try to understand someone else’s code.

Some would say that each line of code should have a comment. My personal opinion is that
obvious code needs no comments. However, you should never generate code without some
comments.

VHDL comments are preceded by double dashes: —-. The double dashes denote the start of a
comment and continue until a carriage return is encountered.

There will be times when you will thank yourself or someone else for providing good comments.
1.3.2. Tip 2. Indent for Clarity and Readability

Indent using spaces or tabs to align groupings of codes. This makes it much easier to read the
code and identify common groups of code. See Example 1-2.

1.3.3. Tip 3. Use Standard Format Convention

Standard format convention means that reserved words and user-defined names are presented
in the same format. Some companies predefine coding conventions for writing code. If this is
not the case, you may decide that all reserved words will be in upper case and user-defined
names in lower case. This makes it easy to immediately identify reserved words from user-
defined signals. See Example 1-3 for some suggested format conventions.

1.3.4. Tip 4. Include a Header Section

The header section is an optional section that you should include prior to your code. This
section may contain information such as the author’s name, date created, filename, a brief
description summarizing the design, and revision history. You are free to include whatever
information you feel will be beneficial. Example 1-4 shows one possible outline for the
header section.

m Example 1-2. Indention

Not Indented Indented

If count = ‘100’ Then If count = ‘100’ Then

count = ‘1’ ; count = ‘1’ ;

Else Else

count <= count + ‘1’ ; count <= count + ‘1’ ;
End If; End If;
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m Example 1-3. Suggested Format Conventions

Capitalize the first letter; for example, Signal.

Lower case all letters; for example, signal.

Upper case all letters; for example, STGNAL.

Upper and lower case to separate words; for example, StartCounter.
Underscore to separate words; for example, Start Counter.

m Example 1-4. Optional VHDL Header Section

R S R R b b b i b e b b b b b b b b i 4 Header Section B b b b b b b b b b b b b b i b b

—— Name

—-—- Date

-— Filename

-— Description

-- Revision History

-- Date Initials Description

RS S R e i b i b b b b g g b i b b End Header Section B e b b b b b b i b b i b b b b b

1.3.5. Tip 5. Use Brief Descriptive Names

Always use brief but descriptive names. Descriptive names make the code easier to read and
understand. A good descriptive name should provide information about a signal’s function,
see Example 1-5.

m Example 1-5. Descriptive User-Defined Names

You need to name a 40 MHz clock signal.
Descriptive signal name: clock40Mhz or c1k40MHz.
At first glance, anyone reading the code will know this signal is a 40 MHz clock.
Nondescriptive signal name: c40Mhz or c40.

At first, second, and third glance, it would be very difficult to know anything about
the signal based on the nondescriptive signal name, unless there were a
comment defining the signal. While comments are very important, they should

not be used as a substitute for good signal names.
|
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A lot can be said about being brief with your signal names. One good reason for not having
long signal names is that, the more you type the name, the more you increase the chance

of typos. There is no hard and fast rule as to what is too long, but keep in mind you can use
abbreviations to shorten a name.

Once I inherited a coworker’s code and all the signal names were only a single letter

(i.e., a, b, c, etc.) with no comments to be found in the entire design. It took me a while but
I finally got the code straightened out and that is how this became one of my “tips.”

For that code, the signal names were too brief and not descriptive.

1.4. HDL Text Editors

Having a good editor is really important because it is the tool you use to develop and edit
code. It should be something that you find easy to use, and it should have HDL features,
such as language templates or syntax color highlighting. Many of the FPGA development
tools offered by manufacturers like Xilinx and Altera include a text editor. Standalone
editors are available for free or purchase. I found some really good free editors just by
searching the Internet. My personal preference is a standalone editor. There are many
standalone editors. My advice is to make sure that the standalone editor provides support
for HDL.

1.4.1. Standalone Text Editor

HDL Works offers Scriptum, a free text editor that supports VHDL and Verilog on Windows
and UNIX platforms. I found this editor to be easy to use, with a lot of helpful features.
Some of its features are

* Language templates.

* Syntax coloring.

*  Multiline comment and uncomment.

*  Column and row select/edit.

* Change of case for selected reserved words.
*  Bookmarks.

» Standard search, find, and replace.

HDL Works Scriptum text editor can be downloaded for free at www.translogiccorp.com/
index.html.
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1.4.2. Fee-Based Text Editor

Symphony EDA offers both free and fee-based text editors. The editors are a part of its
simulation/debug software package. The fee-based edition offers more features than the free
editor. It has some of the same standard features, which include

* Language templates.

* Syntax coloring.

*  Multiline comment and uncomment.

¢ Column and row select/edit.

Symphony EDA can be found at www.symphonyeda.com.

Downloading and evaluating different editors is an excellent way to try the editor before you
buy it. Who knows, you may find a free editor is sufficient for your needs. I did.

Although not required, I highly suggest selecting an editor that is on the same platform
(Windows or UNIX) as your FPGA development tools. As simple as this sounds, when I first
started with VHDL and FPGA development, some of the tools were Windows based and
others were UNIX. We had to ftp the files between the two systems. It was so confusing and
created such a mess. When the lead engineer left the company, I jumped at the chance to
have all the applications on one platform.

1.5. Editor Features

VHDL code is just a text file, meaning you can use any text editor to create your design.
However, it is best to use a text editor that provides special HDL coding features, such as
syntax color highlighting, language templates, row/column editor, comment/uncomment
selected text, indent/unindent selected text, and predefined keyword font convention.

There are many different editors, offering various features, so evaluate a few to determine the
best fit for you. Following are some of the features often offered and beneficial during
developing and editing code.

1.5.1. Syntax Color Highlighting

This occurs when syntax items are displayed or highlighted in a specific color. Syntax items
can be keywords (sometimes defined as various levels or categories), regular text, comments,
variables, or strings. They can vary from editor to editor. Generally, the syntax color highlight
is set to a default value; however, many editors allow the user to redefine the colors. See
Example 1-6 for a snapshot color highlight, where bold and italics represent specific colors.
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m Example 1-6. Syntax Color Highlighting

If count = ‘100" Then
count <= count + ‘1’ ; -- this is a comment
End If ;
Notice the keywords If , Then, and End If are bold; while the comment —-- this is
a comment is italicized.

Syntax highlighting makes it easy to quickly identify specific code elements such as
keywords and comments. While some editors offer more syntax highlight items than others,
I consider it a must-have feature.

1.5.2. Language Templates

The language template presents HDL syntax for specific language functions in a fill-in-the-
blank format. For beginners, code templates can be a lifesaver. For example, if you need

to know how to write an “If-Then-Else” statement but cannot remember or do not know the
syntax, then you may be provided a fill-in-the-blank template similar to the one shown in
Example 1-7.

m Example 1-7. Language Template: 1£-Then-Else

If <insert condition> Then
<insert action(s) >;

Else
<insert alternation action(s)>;
End If;

Now all you have to do is insert your code where indicated by the placeholders on
the template. Templates vary from editor to editor, but they have the same basic concept.

1.5.3. Row and Column Editor

Most people are familiar with row editing; however, column editing is not as familiar.

A row editor is used when multiple rows are selected at one time, see Example 1-8.
Similarly, a column editor allows you to select multiple columns on different rows at
once, see Example 1-9. Column editing is a great feature to use when the data you want
to edit is in the same column but on different rows. For most HDL editors, the alternate,
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m Example 1-8. Row Edit

Select, copy, and paste the second row. The gray area indicates the text selected using
the row editor.

Row edit copy:

If front door open= ‘1’ Then -—- 1 means front door was opened
alarm timer <=alarm timer + ‘1’ ; —-—increment time to soundalarm
End If ;

Row edit paste:
alarm timer <=alarm timer + ‘1’ ; —-— increment time to sound alarm

Notice that only the selected row was copied and pasted.
L |

m Example 1-9. Column Edit

Use the column edit to select, copy, and paste the two comments. The gray area
shows the selected text.

If front door open = ‘1’ Then -— 1 means front door was opened
alarm timer <=alarm timer + ‘1’ ; —--increment time to soundalarm
End If ;

Column edit paste:
-—- 1 means front door was opened
—-- increment alarm counter
With column editing, | am able to copy and delete selected data without affecting the

surrounding text, but | have little success with pasting.
L |

alt, key with the mouse button is used for column editing; however, in Microsoft Word,
it is the control, Ctrl, key with the mouse.

1.5.4. Comment/Uncomment Selected Text

Sometimes it is necessary to comment out multiple lines of code instead of individually
commenting each line. Some editors provide an option to comment/uncomment select lines.
Some editors comment/uncomment only at the beginning of a row. This means that, if the
cursor is put on any part of a row, the comments syntax or double dashes (- -) for VHDL, see
Example 1-10, are inserted as the first two characters on that row. When uncommenting,
some editors delete only the comment syntax at the beginning of the row, ignoring any other
comment syntax on the row, see Example 1-11.
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m Example 1-10. Comment

If front door open = ‘1’ Then
alarm timer <=alarm timer + ‘1’ ;
End If;

The selected text is now commented.
-- If front door open = ‘1’ Then
-—alarm timer <= alarm timer+ ‘1’;
-—End If;

m Example 1-11. Uncomment Text

-- If front door open = ‘1’ Then
--alarm timer <= alarm timer+ ‘l1’;
-- End If;

Selected text is now uncommented.
If front door open = ‘1’ Then

alarm timer <=alarm timer + ‘1’ ;
End If;

m Example 1-12. Indent Text

Select and indent the second and third lines.
If front door open = ‘1’ Then

alarm timer <= alarm timer + ‘1’ ;
End If;

The second and third lines are indented.
If front door open = ‘1’ Then

alarm timer <= alarm timer + ‘1’ ;

End If;

Select and comment to the three lines of code. The gray area shows selected text.

—-— 1 means front door was opened

—-— increment time to sound alarm

-—- 1 means front door was opened

—-— increment time to soundalarm

Select text to be uncommented. The gray area shows the selected text.

—— 1 means front door was opened

—— increment time to sound alarm

-— 1 means front door was opened

-— increment time to sound alarm

The gray area shows the selected text.
-- 1 means front door was opened

-— increment time to sound alarm

-- 1 means front door was opened

—-— increment time to sound alarm
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m Example 1-13. Unindent Text

The End If; should be aligned under If. Now select and unindent the last line. The gray
area shows selected text.

If front door open = ‘1’ Then —-— 1 means front door was opened
alarm timer <=alarm timer + ‘1’ ; —-- increment time to sound alarm
End If;

The third line is now properly aligned.

If front door open = ‘1’ Then -— 1 means front door was opened
alarm timer <=alarm timer + ‘1’ ; -- increment time to sound alarm
End If;
u

1.5.5. Indent/Unindent Selected Text

Some editors allow you to indent only a portion of the row, while others indent the entire row.
This feature generally works like the comment/uncomment feature. Example 1-12 shows
selected text being indented, and Example 1-13 shows how selected text is unindented.

1.5.6. Predefined Font Convention

The predefined font convention is when the editor converts keywords or selected text to a
specific font style or size, such as all lower or upper case. This feature can be used to
keep your code consistent, because sometimes you may miss applying your font convention
during the development process. Some editors may require you to highlight the text you
want to convert, while others perform it automatically. In Example 1-14, the line(s) or code
are highlighted for the font conversion.

m Example 1-14. Font Convention

Convert keywords to upper case.
if front door open = ‘1’ then —-— 1 means front door was opened
deactivate alarm<=deactivate alarm+ ‘1’ ; -- increment alarmcounter

end if;

Upper case keywords converted.

IF front door open = ‘1’ THEN —-— 1 means front door was opened
deactivate alarm<=deactivate alarm+ ‘1’ ; —-- increment alarmcounter
END IF;
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1.6. Signals

In VHDL, signals represent some kind of data. They are assigned a name and data type.
The basic signal syntax follows:

Signal <signal name>: <data type>;
More advanced signal assignments are possible but not discussed in this book.

You can use signals in mathematical equations, to assign values, to connect other signals, and to
store values in them. They must be assigned unique, nonreserved word names and a data type.

1.6.1. Signal Data Types

The VHDL data are of a specific type such as std logic, std logic vector, bit,
bit vector, or user defined. Std logic is read as standard logic and

std logic vector as standard logic vector. Bit and bit vector are read as written.
The user-defined type is when the coder defines the signal type. This is a little more
advanced and can be somewhat confusing when you are first starting out, so it is not covered
in this book. Once you are more comfortable with the language, it will be easier to
understand and implement the more advanced aspects of the language. Plus std logic and
std logic vector are generally the most commonly used data types. Each signal

type has acceptable values. There are nine acceptable values for std_logic and

std logic_ vector, see Table 1-2.

Std_logic signals represent one data bit and std logic vector represents several
data bits. The signal assignments for standard logic and standard logic vector data types are
shown in Example 1-15. The number of data bits for a std logic vector is defined in
the signal assignment statement.

Table 1-2: Standard Logic Acceptable Values

Value Description

Low or logic zero

High or logic one

Weak unknown signal
Weak low
Weak high

Unknown or uninitialized

High impedance

X|Nlc|T||S|-]o

Unknown

- Don’t care
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Example 1-15. Standard Logic and Standard Logic Vector
Signal Assignment

Signal clock in : std logic;
Signal up counter : std logic vector (4 downto 0);
|
Example 1-16. Valid Standard Logic Signal Values
clock in value is “1”
up_ counter value is “1XZ0U”.
|

The signal named clock in has a data type of std logic. This means clock in can
have only one of the nine acceptable values, while the signal named up counter is 5 data bits
wide and each of the bits can be one of the nine acceptable values. The most significant bit
(MSB) is bit 4 and the least significant bit (LSB) is 0. See Example 1-16 for valid signal values.

Bit and bit vector have two acceptable types, see Table 1-3.

Bit represents one data bit, and bit vector represents several data bits. Example 1-17
shows signals clock out being assigned data type bit and down counter?2 bit vector.

The signal named clock out has a data type of bit. This means clock out can have

only one of the two acceptable values, while the signal named down counter?2 is 4 bits
wide and each of the bits can be one of the two acceptable values. See Example 1-18 for

valid bit signal values. The MSB is bit 3 and the LSB is 0.

It is okay to use bit and bit vector; however; they are rarely the deserved data type.

Table 1-3: Bit Acceptable Values

Value Description
0 Low or logic zero
1 High or logic one

Example 1-17. Bit Signal Assignment

Signal clock out : bit;
Signal down counter?2 : bit vector (3 downto 0);
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Example 1-18. Valid Bit Values

clock out is “0”
down counter2 is “0011”

Table 1-4: VHDL Signal Name Restrictions

Rule Acceptable Not Acceptable
Must start with letter four 4
Cannot be a keyword input_signal input
Don’t use special characters input data $id
Must not contain spaces InputData Input Data

1.6.2. Signal Names

Signal names are user defined, but VHDL has some name restrictions, such as those
provided in Table 1-4. In addition to the VHDL restrictions, remember to make your names
descriptive.

1.7. File Structure

The VHDL file structure consists of three sections: the library declaration, entity section, and
architecture section with an optional header section.

1.7.1. Optional Header Section

As stated before, the header section is completely optional but highly suggested. However, I found
the revision history to be beneficial, especially when modifying someone else’s code. When I fix
code problems, the revision history enables me to see if the current problem existed before any
previous code changes. I have mixed feeling about keeping the prereleased code revision history
in the released code. It is a good idea to have the revision history while developing, just in case
someone else inherits the code. However, for the released code, this history may not add any
value, in which case should be removed. It all depends on the specific situation.

1.7.2. Library Declaration

Just like software code, VHDL must be compiled. The place where the compiler stores
the design information and other files to be used for analysis, synthesis, and simulation is
called the library. The library declaration section is where you declare or call out libraries.
By using the library clause you make the library visible and its contents available to the



Getting Started 15

design. The use clause, which follows the library clause, states which package from the
library to use. Libraries can be a defined by standards, users, or third parties, like
manufacturers.

IEEE is a commonly used standard library. Some of the packages in IEEE are
Std logic 1164 and Std logic_ arith, see Table 1-5 for some of the data types and
functions defined by these packages.

User-defined libraries are those created by regular users or designers. Oftentimes design
groups or projects utilize user-defined libraries by storing common constants, data types, and
other commonly used things in a library shared by the group. This can save a lot of time,
because each individual is not spending time creating the same information. The user-defined
library is placed in a common, team-accessible area. Another benefit to groups using a
user-defined library is that it ensures everyone uses the same values, functions, definitions,
and the like. This does not guarantee the values are correct; however, it makes it easier to
correct something wrong in one place rather than in several files.

Third party libraries are supplied by companies like Xilinx and Altera. These libraries contain
such information as timing used for simulation, IP cores and logic gates.

The library syntax is the reserved word Library followed by the library’s name. The “use”
clause syntax specifies the package, its library, and how much of the package is used,

see Example 1-19. A package is a separate VHDL file that defines things like functions,
data types, constants, and procedures.

Table 1-5: IEEE Standard Library Packages, Data Types, and Functions

Package Data Types Functions
Std_logic 1164 std_logic, AND, NAND, OR, NOR, XNOR, NOT
std logic vector,

std ulogic,
std_ulogic vector

Std_logic arith Unsigned, signed +, -, %, ABS, <, <=, =, >=, >

m Example 1-19. Library and Use Syntax

Library <library name>;
Use <library name>.<package>.<what portion are you using>;
For example, std logic is a widely used data type, which is defined in the
std_logic 1164 package. To use this data type, you need to declare the library
where it is defined and state the package using the use clause in the library declaration

(Continues)



16 Chapter 1

section, see Example 1-20. Some additional packages included in the IEEE library
are std logic arith, std logic unsigned, and std logic_signed. Ifyou
are using several packages from the same library, the library needs to be stated only
once.

What these two lines say is this: Make the IEEE library visible to the design and
make the entire (i.e., all) std logic 1164 package available to your design. So
whatever is defined in the std_logic 1164 package can now be used in your code.
You are not required to use all the features in the package and can specify only the
portion you want: however, using the all just makes things easier. So my advice is,
unless you have a good reason for not wanting to include everything, it is a good
idea to stick with a11. Now you need not worry about changing the use statement if
your design requires additional features.

1.7.3. Entity Section

The entity section is where you define all the inputs and outputs. The syntax for the
entity section is shown in Example 1-21, and Example 1-22 shows a simple
design entity.

Note: Entities can be a little more complex; however, for this primer, the entity is the top
level of the design and represents the inputs and output pins on the FPGA.

m Example 1-20. Library and Use

Library IEEE; -—- IEEE library is visible to the design
Use IEEE.std logic 1164.all; -- The contents in the std logic

—-—- package can now be used

-—- 1in the design code

Example 1-21. Entity Syntax

Entity <entity name> Is Port (
<signal name : <signal direction> <data type>);
End <entity name>;
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m Example 1-22. Entity Code

Entity test code Is Port(

clk : In std _logic; -- input clock

start counter :Instd logic; -- starts counter when door is opened
ready signal : Inout std logic; -- indicates alarm status
sound_alarm : Out std_logic); --alarms buzzer when timer expires

End test code;

1.7.4. Architecture Section

The architecture section is where you write the design code, see Example 1-23. The
design code describes the functions by using the software-like programming language VHDL.

Now, you use the defined functions, data types, and so for the package(s) declared or called
out in the library declaration section. Your design receives and passes design data using the
input, bidirectional (inout), and output ports defined in the entity section.

" m Example 1-23. Architecture Syntax

Architecture <architecture name> Of <entity name> Is
<Define signals and constants>
Begin

This section is where the design is written. It consists mainly of component
instantiations, synchronous logic, sequential statements, processes, concurrent
statements, and asynchronous logic.

Component instantiation basically makes a direct connection to a library component.
The actual code for the component is predefined in another file. More details about
component instantiation are provided in the testbench section.

Synchronous logic is code that gets updated based on an event, such as the rising or
falling edge of a clock.

Sequential statements are found in processes and executed in the order in which they
appear.
A process is a group of code that is executed sequentially. They are like mini programs

with very specific format, which includes the use of the reserved words process,
begin, and end process, and a sensitivity list, see Example 1-24.
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m Example 1-24. Process Syntax

<process name>: Process (sensitivity list)
Begin

<sequential statements>
End Process ;

It is good coding practice to perform only one function in a process. The code inside a
process is executed only when any signal in the sensitivity list changes state.

The process name is optional and user defined. Even though it is optional, you should
always name your processes. The name should be short and descriptive enough to
allow you to distinguish one process from another.

One good reason to make the name descriptive is that you may have a design with four
counters, so naming them counterl, counter2, . . ., tells you nothing about the
counters. Let us say one counter counts the number of times the temperature sensor
goes below 32°F, above 95°F, stays at 0°F for longer than 5 minutes and another one

at 60°F for longer than 10 minutes. You may decide to name them count below32F,
count above95F, temp atOF, and temp at6OF.

The sensitivity list is where you list all the signals that you want to cause the code in
the process to be evaluated whenever it changes state. For example, clock or master
reset is often used in a sensitivity list. Whenever the reset or clock changes state, the
code inside the process is executed.

Concurrent statements are outside of processes and executed or updated at any time any
of the signals changes, see Example 1-25.

m Example 1-25. Concurrent Statement

Sum_Temp <= count_above95F + count below32F;
Sum_Temp changes andisupdatedany time count above95F or count below32F

changes.

Asynchronous logic is updated or changed independent of events.

End <architecture name>;

Now that you have all the pieces, Example 1-26 shows how it looks all put together. Using
this or a similar template is a good way to start each design.
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m Example 1-26. VHDL File Structure

S S R i b b e b b b b b b b b Header Section B b i b b b b b e b b b b b i

—-— Name

-— Date

-—- Filename

-- Description

-—- Revision History

-- Date Initials Description

[ S R e b b b b b b b b b g End Header Section A Ak ok ok ok kb ok ok ok b kb ok ok ok ok

Library IEEE;
Use IEEE.std logic 1164.all;

Entity <entity name> Is Port
(<list of ports or design inputs and outputs>) ;
End <entity name>;

Architecture <architecture name> Of <entity name> Is

<in this section define signals and constants>
Signal <signal name> : Data Type;

Begin
<concurrent statements>
<process name>: Process (sensitivity list)
Begin
<sequential statements>

End;

End <architecture name>;

So far the entity defines only the design’s interface; however, your design most likely
requires additional signals. These signals are defined in this section, prior to them being used
and the actual design code. Once this is complete, you can take the signal names and the
available features from the packages and develop code using asynchronous, synchronous,
concurrent, and sequential code.

1.8. Starter Tips

A lot is involved in developing FPGA designs. Here are some tips to help as you get started.
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Utilize field application engineers and salespeople, who can really provide some good help
and guidance. They can provide information on the latest hardware and tool developments,
suggest devices, clarify details about their products and services, provide samples, arrange
demos and software/hardware trials and temporary licenses, and many other things. If they
cannot help you, they will at least point you in the correct direction. I realize some salespeople
can be pushy, but I have found most of them to be very helpful and not very pushy.

Evaluation boards are a good way to get experience. The evaluation boards are offered by
manufacturers and third party companies. They come with different FPGA devices,
development software, programming and other cables, power supplies and other resources
like light emitting diodes, LEDs, pushbuttons, switches, and oscillators. Check out the
specific manufacturer’s Web site for specific details on the board and suppliers. Some
companies purchase evaluation boards to try specific devices or features before using them
in designs. So, if you are considering using an FPGA that has an embedded processor, then
it may be a good idea to purchase an evaluation board and try it before using it in a design.

Take advantage of the many free and trial offers. This will give you a good opportunity
to experiment and discover your likes and dislikes.

1.9. Chapter Overview

Everyone has his or her style and approach to FPGA development. As you work with it, you
will develop your style. So do not worry if you see things differently from everyone else;
the process should be the same. Once you learn the general process you will have no problem
using your knowledge to develop and understand designs and switching between different
development tools and manufacturers.

Key Points to Remember

Select an editor that you find easy to use and that has features you like. You will be using
your editor a lot to develop and modify code.

Take the time to include the optional headers section prior to your design code. Use this
section to briefly describe the design and provide revision information.

Always include “good,” meaningful comments in your code.

Make your user names brief and descriptive.

Chapter Links

For your convenience, here is a list of links to the editors discussed in this chapter:

HDL Works Scriptum located at www.translogiccorp.com/index.html.

Symphony EDA located at www.symphonyeda.com.
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2.1. Introduction

The purpose of this chapter is to present some simple VHDL design code. These designs can
easily be modified to perform advanced functions or be copied and used as a standalone
design or a part of a larger design. In this section, the design code consists of a combination
of processes, concurrent and sequential statements, and synchronous and asynchronous logic.
When appropriate, the designs have a block diagram, corresponding to the VHDL design
code and some brief comments to help explain the code.

In this chapter, you will learn
* How to create simple VHDL designs.
* How to add more complexity to simple designs.

e VHDL shortcuts.

2.2. Starter Template

For each new design, I like to start with a “starter” HDL template. The starter HDL template
consists of a header section, library declaration section, entity, and architecture syntax
placeholders. Because I always use the IEEE library and the std logic 1164 package, I
have made line 10 Library IEEE; and line 11 Use.IEEE.std logic 1164.all;
statements a part of my template instead of syntax placeholders. While many editors provide
a starter HDL template, I present my template as an additional option.

When I first started writing VHDL, I could not remember if the signal name assignments
went before or after the Begin in the architecture section. Therefore, a signal assignment
was included as a placeholder in my template. The template can save you time, because it
keeps you from retyping the same information from program to program. As you write code,
you may decide to make your own template or modify a preexisting template. My starter
HDL template is shown in Listing 2—1. Because the header section has no importance for the
examples in this section, it is shown only in the first example.

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00002-3 21
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Listing 2-1. VDHL Starter Template

1_ __***********************Header Section PR S S S S S S i S

2. -- Name : Rebecca B. Smith

3. -—- Date : August 25, 2009

4. -- Filename : Entity Name.vhd

5. --Description : This starter HDL template provides placeholders and
syntax that can be used

6. —-— : to help develop design code. Modify the template to meet your needs.

7. Revision History

8. -- Date Initials Description

9‘ __***********************End Header Section B b b b b b i b b b b i b b b i b i g

10. Library IEEE; -- define library and packages needed for
this design

11. Use IEEE.std logic 1164.Al1l;

12.

13. Entity <entity name> Is Port ( --define interface signals

14. <signal name> : <direction> <data type>;

15. <signal name> : <direction> <data type>);

16. End <entity name>;

17.

18. Architecture <architecture name> Of <entity name> Is

19. Signal <signal name> : data type; -—- define internal signals
if necessary

20.

21. Begin

22. <concurrent statements> -—add concurrent statements if necessary

23. -- statement (s) will update anytime

24. <process name>: Process (sensitivity list) -- add process if
necessary

25. Begin

26. <sequential statements>; -- statement updates when a signal

in sensitivity list changes
27. End Process;
28. End <architecture name>

2.3. Mathematical Functions

Mathematical functions, such as adder, subtractor, multiplier, and divider, are performed
using arithmetic operators; see Table 2—1. The arithmetic operators can be used in concurrent
and/or sequential statements; it depends on the circuit. To keep things simple, this example
uses only a concurrent statement, and a sequential statement is demonstrated in later
examples.
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Table 2-1: Mathematical functions

Data Types
Symbol Package
Accepts Returns
std logic, integer, std logic vector std logic unsigned
+ std logic vector
Addition signed, unsigned, signed, unsigned numeric std

natural, integer

std logic, integer, std logic vector std logic_unsigned
_ std logic_vector,

Subtraction signed, unsigned, signed, unsigned numeric std
natural, integer

std logic vector std logic vector std logic unsigned
" _ _ _ _ _ _

Multiplication signed, unsigned, signed, unsigned numeric_std

natural, integer

/ signed, unsigned, signed, unsigned numeric std
Division natural, integer

number_1(3:0)
number_2(3:0) ( +

j : Difference(3:0)

Figure 2-1: Adder and Subtractor

Sum(3:0)

Figure 2—1 shows a simple two-input adder and subtractor. The design code is shown in
Listing 2-2. If you are writing design code based on a schematic, it is best that the code
and schematic signal names match. This makes writing and debugging the code much
easier.

Lines 10—12. Library Declaration

The addition and subtraction operators are defined in the std_logic unsigned package,
which is made visible to the design in the library declaration section. You may not know all
the libraries required at the beginning of your design, but you can add them as needed.
Knowing which library to use can be challenging, until you remember which library contains
the function(s) you need. So, at first, you may have to open different libraries to find what
you need.
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Listing 2-2. Adder and Subtracter

1 . S S R S S i S b b i Header Section LR R S i B b b i i i i

2. —— Name

3. -—- Date

4. -- Filename

5. -- Description

6. -- Revision History

7. -—- Date Initials Description

8. -=

9. S S R R R b b i b b b b b b i g b i b i End Headef Section R R b i b i i b i i b i i

10. Library IEEE;

11. Use IEEE.std logic 1164.All;

12. Use IEEE.std logic unsigned.All;

13.

14. Entity MathematicalOperators Is Port (

15. number 1 : In std logic vector (3 Downto 0);

l6. number 2 : In std logic vector (3 Downto 0);

17. sum : Out std logic vector (3 Downto 0);

18. difference : Out std logic vector (3 Downto 0)) ;

19. End MathematicalOperators;

20.

21. Architecture arch MathematicalOperators Of MathematicalOperators Is

22.

23. Begin

24. -- the sum and difference are calculated and provided as output for two
4-bit numbers

25. sum <= number 1 + number 2;

26. difference <= number 1 - number 2;

27. Endarch MathematicalOperators;

Lines 14—19. Entity Section
The interface signals for this design are defined as follows.
Two inputs:
Signal Names: number 1 and number 2
Data Type: std_logic vector
Size: 4 bits
Two outputs:

Signal Names: sum and difference
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Data Type: std logic vector
Size: 4 bits

Line 14 defines the entity’s name as MathematicalOperators. This name was selected
because it provides some detail about the design code’s function. You should develop and use
a naming convention for your entity, architecture, and filename. I found the naming
convention to be useful, especially when working with multiple files. Using a name that gives
an indication of the design code’s function makes it easy to quickly identify files without
having to open them.

Developing a standard naming convention can be tricky, especially when using different
development tools, as they may have different filename restrictions. I have encountered tools
that did not allow spaces in filenames, while another required my entity’s name to be the
same as the filename. So my naming convention for the entity does not include spaces and my
filename is always the same as my entity. While this naming convention was based on older
tool versions and those restrictions may no longer apply, I maintain this naming convention.

The input and output signals are defined as std logc vector, meaning they have
multiple bits. The reserved word Downto (as used in this example) or Upto defines the
range of data bits. The number before the keyword downto represents the most significant
bit (MSB) and the number after it represents the least significant bit (LSB). In other words,
number 1 (3 downto 0) means number 1 has 4 bits, where the MSB is number 1 (3)
and LSB is number 1(0).

Lines 21—27. Architecture Section

This section contains the code that describes the design’s functions. The output signal sum is
assigned the result from adding together number 1 and number 2. While the output
signals sum and difference are concurrent statements (update any time number 1 or
number 2 changes), they could have been sequential (i.e., inside a process and updated
only when a signal from the sensitivity list changes).

2.4. Logic Gate

Logic gate circuits, such as OR, NOR, AND, and NAND, are implemented using the logic
operators. The logic gate circuits shown in Figure 2-2 are represented by the design code
shown in Listing 2-3.

Lines 16—19. Logic Operations

The output signals are assigned the result from performing the logic operation on the right
side of the statement. These signal assignments are concurrent but could have been sequential
statements.
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number_1(3:0)

£(3:0
number_2(3:0) or_out(3:0)

r\
L/
4[ : nor_out(3:0)
—
4
D,

and_out(3:0)

nand_out(3:0)

Figure 2-2: Logic Gates

Listing 2-3. Logic Gates

1. Library IEEE;

2. Use IEEE.std logic 1164.all;

3.

4. Entity LogicGates Is Port (

5. number 1 : In std logic vector (3 Downto 0)
6. number 2 : Instd logic vector (3 Downto 0);
7. or out : Out std logic vector (3 Downto 0);
8. nor out : Out std logic_vector (3 Downto 0);
9. and_out : Out std logic vector (3 Downto 0O) ;
10. nand out : Out std logic vector (3 Downto 0)) ;
11. End LogicGates;

12.

13. Architecture arch LogicGates Of LogicGates Is

14. Begin

15. —-—- this example illustrate how to implement logic gate code
16. or out <= number 1 Or number 2;

17. nor out <= number 1 Nor number 2;

18. and_out <= number 1 And number 2;

19. nand_out <= number_1 Nand number_ 2;

20. End arch LogicGates;

2.5. D Flip-Flop

A simple D flip-flop (DFF) is shown in Figure 2-3. The VHDL design code for the DFF is
shown in Listing 2—4.
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d_input
#, Data

clk

Q

Q

g_out

g_not_out
—>

Figure 2-3: DFF

O J oy U b W N

o]

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

gets the value of the input
23.
24.
25.

Listing 2-4. DFF

Library IEEE;
Use IEEE.std logic 1164.All;

Entity Dff Is Port (

reset : Instd logic;

clk : Instd logic;

d input : In std logic;

g_out : Out std logic;

g _not out : Out std logic);
End Dff;

Architecture arch Dff Of Dff Is
Begin

g_not out <= Not (d_input);

dff process: Process (reset, clk)

Begin
If reset = ‘1’ Then
g _out <= 10 ;

Elsif rising edge (clk) Then
g_out <=d_input;

End If;
End Process;
End arch Dff;

—-- inverted output of the DFF

—-—after the rising edge the output

Lines 17—24. DFF Process

Remember that the code inside a process is executed sequentially and only when a signal in
the sensitivity list (i.e., reset and clk) changes state. The reset signal is asynchronous, so
whenever it goes active or high, the outputs of the D flip-flop immediately (minus normal

internal chip delays) goes low. Under normal operating conditions, when reset is inactive or
low, on the rising edge of the clock, the input data is transferred to the outputs.
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Line 22. DFF Output

The input data of the DFF is clocked or transferred to the output on the rising edge of the
input clock, c1k. This is a sequential operation, which is performed inside the process named
dff process, line 17.

Line 15. Inverted DFF Output

This is the inverted Q output from the DFF. The invert Q output only changes when Q
changes on the rising edge of the clock.

Note: The reset signal shown on line 19 is used to set the outputs to a known or initial
condition. This signal represents the power-on reset, it is not a part of the DFF, and does not
appear on the symbol.

A synchronous enable can easily be added to this design by making some changes to the entity and
the process in the architecture section. The entity change, shown in Listing 2-5, is the insertion of
line 4. The process changes in the architecture section, shown in Listing 26, are lines 7 and 10.

Listing 2-5. Synchronous Enable DFF Entity Changes

1. Entity DffSynEa Is Port (

2. reset : In std logic;
3. clk : Instd logic;
4. enable : Instd logic;
5. d input : Instd logic;
6. g_out : Out std logic;
7. g not out : Out std logic);
8. End DffSynEa;

Listing 2-6. Synchronous Enable Process Changes

1. DffSynEa process: Process (clk, reset)

2. Begin

3. If reset = ‘1’ Then

4. g _out <= 10";

5. g_not_out <=1l

6. Elsif rising edge (clk) Then

7. If enable = ‘1’ Then —-- sync enable statement

8. g out <= d input; -—after the rising edge the output
gets the Val_ue of the inpuz

9. g not out <=Not (d input); -- inverted output of the DFF

10. End If;

11. End If;

12. End Process;
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Line 4
Add input signal named enable to the entity.
Lines 7 and 10

Add an If -Then condition following rising edge statement in the dff process; where
enable = 1 indicates active high or enable = 0 indicates active low.

2.6. Latch

Sometimes you need to latch data. You can create latches by using the reserved word When.
This example demonstrates only one of several uses for the reserved word When. The syntax
for When is shown in Example 2-1.

The code for the latch shown in Figure 2—4 is shown in Listing 2—7.

Example 2-1. when Syntax

<output data signal name> <= <input data signal name> When
<latch condition>

Else < output data signal name>;

data_in
— Data

latch_enable Enable

data_out

Figure 2-4: Latch Symbol

Listing 2-7. Latch Design

Architecture arch Latch Of Latch Is
0. Signal internal data out : std_logic;

1. Library IEEE;

2. Use IEEE.std logic 1164.All;

3. Entity Latch Is Port (

4. data in : In std logic;
5. latch _enable : In std logic;
6. data out : Out std logic);
7. End Latch;

8.

9.

1
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11.

12. Begin

13. -- creating a latch signal

14. internal data out <= data in When latch enable = ‘1’
Else internalidgtaioat; - -

15.

16. data out <= internal data out; -- output signal is
assigned inzernal signal value B B

17. End arch Latch;

Line 10. Internal Signal Created for Output Signal Data Assignment

This latch is created with a concurrent statement; therefore, it does not appear in a process. In
VHDL, entity signals defined as outputs can only be assigned values and cannot be used for
things like conditions or calculations. The reason this is important is because the output
signal data out needs to be used in the concurrent statement. Since this is not allowed in
VHDL, the problem is solved by creating the internal signal internal data out.

Line 14. Latch Data
The internal data out latch is created by the When statement.
Line 16. Output Signal Assigned Value of Internal Signal

The output signal is then set equal to the internal signal. The internal signals must have the
same data type and size as the output signal.

2.7. Shift Register

Figure 2-5 shows a simple shift register, where a single bit is shifted from the LSB to the
MSB. There are a couple of ways to write the code. Option 1 requires manually writing each
bit shift signal assignment, as shown in Listing 2-8.

Lines 23-28

Each bit is assigned the value of the data bit to its right.

shift_data
*—|shift_data_out (5) [* "|shift_data_out (4)[* |shift_data_out (3)[*|shift_data_out(2)[*|shift_data_out(l) [*[shift_data_out(0)[*—

Figure 2-5: Shift Register
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Listing 2-8. Manual Shift Register

1. Library IEEE;

2. Use IEEE.std logic 1164.All;

3.

4., Entity ShiftRegister Is Port (

5. clk : In std logic;

6. reset : In std logic; -- power-on reset

7. shift data : Instd logic;

8. shifted data out : Out std logic vector (5 Downto 0));

9. End ShiftRegister;

10.

11. Architecture arch sShiftRegister Of ShiftRegister Is

12. Signal internal shifted data out : std logic vector (5 Downto 0);

13.

14. Begin

15. shifted data out <= internal shifted data out; —-- output signal
is assigned i_nter;al signal value B B B

16.

17. left shift: Process (clk, reset)

18. Begin

19. If reset = ‘1’ Then

20. internal shifted data out <= ((Others => 0’ ));

21. Elsif rising edge (clk) Then

22. --manually creating a shift register

23. internal_ shifted data_out (0) <= shift data;

24 . internal shifted data out (1) <= internal shifted
data out (0); h a - a -

25. internal shifted data out(2) <= internal shifted
data out (1) ; B I B B

26. internal shifted data out (3) <= internal shifted
data out(2); B B B B B

27. internal shifted data out (4) <= internal shifted
data out(3); h - a - -

28. internal shifted data out (5) <= internal shifted
data out (4); B a - B a

29. End If;

30. End Process;

31. End arch ShiftRegister;

Option 1 is okay for smaller shift registers, but it can be time consuming for larger numbers
of bits. Option 2 uses the reserved word downto to represent the individual shifts with fewer
lines of code.
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Listing 2-9. Simplified Shift Register

1. shift values: Process (clk, reset)

2. Begin

3. If reset = ‘1’ Then

4., shifted data out <= ((Others => ‘0" ));

5. Elsif rising edge (clk) Then

6. -- this is the shortcut to creating a shift register

7. internal shifted data out (0) <= shift data;

8. internal shifted data out (5 downto 1) <= internal shifted data out
(4 downto 0) ; a - a -

9. End if;

10. End Process;

Lines 7—8. Shift Register Shortcut

Remember, in the signal assignment, the MSB number is written prior to downto with the LSB
following. With that in mind, the signal assignments for internal shift data outin
the shift wvalues process can be rewritten using downto, as shown in Listing 2-9.

The downto signal assignment means that internal shifted data out bit 1is
assigned the value of internal shifted data out bit 0, internal shifted
data out bit 2 is assigned the value of internal shifted data out bit 1, and
so on. The shift register signal assignment can be written using one signal statement;
however, the operator for that assignment is not discussed in this book.

2.8. Comparator

Relational operators such as greater than, >; greater than or equal to, >=; less than, <; less
than or equal to, <=; and equal, = are used for comparisons. These operators accept
std_logic and integer values and return a Boolean (true or false) value. Figure 2—6 shows
a simple example where two numbers are compared.

Line 14. Compare Statement

A concurrent statement using When can be used to determine if a number is smaller than a
second number. Whenever number 1 is smaller than number 2, the output
numl small num2 goes high. The design code is shown in Listing 2-10.

number_1(2:0) /\numl_smaller_numZ
number_2(2:0) (\f/

Figure 2-6: Compare
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Listing 2-10. Comparator

1. Library IEEE;

2. Use IEEE.std logic 1164.All;

3.

4., Entity Comparison Is Port (

5. number 1 : In std logic vector (2 Downto 0) ;

6. number 2 : In std logic vector (2 Downto 0);

7. numl smaller num2 : Out std logic);

8. End Comparison;

9.

10. Architecture arch Comparison Of Comparison Is

11.

12. Begin

13. —— an example of a simple comparison; the output goes high when number 1
is smaller than number 2

14. numl_smaller num2 <= ‘1’ When number_1 < number_2 Else ‘0’ ;

15.

16. End arch Comparison;

2.9. Binary Counter

The counter shown in Figure 2—7 is a 4-bit binary counter that automatically increments on
each rising edge of the input clock, see line 22. The design code for this counter is shown in
Listing 2-11.

A synchronous enable is easily added to this binary counter, as shown in Figure 2—8, with a
change to the entity and the process in the architecture section.

The entity changes shown in Listing 2—12 adds line 4.
Line 4. Enable Input

The enable signal named is added to the entity.

count_out(1)
—  »

B4
count_out(2)
Bf——m
clk
- count_out(3)
BS
count_out(4)
B4—>

Figure 2-7: Binary Counter
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Listing 2-11. Binary Counter

result being assigned to output signal
16.

1. Library IEEE;

2. Use IEEE.std logic 1164.All;

3. Use IEEE.std logic signed.All;

4.

5. Entity BinaryCounter Is Port (

6. clk : In std logic; —-—master input clock

7. reset : In std logic; —— power-on reset

8. count out : Out std logic vector (3 Downto 0)); -— output
value from counter B B

9. End BinaryCounter;

10.

11. Architecture arch BinaryCounter Of BinaryCounter Is

12. Signal internal count out : std_logic vector (3 Downto 0);

13.

14. Begin

15. count out <= internal count out; -- internal counter

17. counter: Process (clk, reset)

18. Begin

19. If reset = ‘1’ Then

20. internal count out <= (Others => ('0")); -- resetting
initial output value of counter

21. Elsif Rising Edge (clk) Then

22. internal count out <= internal count out 4 “0001";

—-— increment Eounte} a a

23. End If;

24. End Process;

25. End arch BinaryCounter;

enable Enable

count_out(1)
— -

count_out(2)

count_out(3)
.

count_out(4)
— =

Figure 2-8: Binary Counter with an Enable
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Listing 2-12. Entity Changes to Binary Counter with Synchronous Enable

1 Entity SyncBinaryCounter Is Port (

2 clk : Instd logic; —-—-master input clock

3. reset : Instd _logic; —— power-on reset

4 enable : Instd logic;

5 count_out : Out std logic vector (3 Downto 0)); —-— output

value from counter
6. End SyncBinaryCounter;

Listing 2-13. Process Changes to Binary Counter with Synchronous Enable

1. synccounter: Process (clk, reset)

2. Begin

3 If reset = ‘1’ Then

4., internal count out <= (Others => ('0"));

5 Elsif rising edge (clk) Then

6 --adding a synchronous enable to the binary counter

7 If enable = ‘1’ Then

8 internal count out <= internal count out + “0001”;
-— increment counter B B

9. End If;

10. End If;

11. End Process;

The changes to the counter process in the architecture section, shown in Listing 2—13 adds
lines 7 and 9.

Line 7. Synchronous Enable

Insert enable If-Then condition following the rising edge statement in the synccounter
process.

2.10. Conversion Functions

The conversion functions allow you to convert from one data type to another. The conversion
functions can be concurrent or sequential statements. There are many reasons why you may
need or want to convert data types. You may not like working with a specific data type or the
input data type may be unacceptable for the operation you want to perform. For example, all
the input signals in this section are std logic or std logic vector data types;
however, to perform division using the numeric_std package requires the data type to be
either signed, unsigned, natural, or integer, reference Table 2-2.
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Table 2-2: Conversion functions

Conversion Function Converted Data Type Package
to_integer Signed to integer or unsigned to natural
to_unsigned Natural to unsigned numeric std
to_signed Integer to signed -
to stdlogicvector bit vector or std ulogic vector std logic 1164
to_integer Unsigned to natural or signed to integer numeric bit
Conv_std logic_vector Integer to standard logic vector, or

unsigned to standard logic vector, or

signed to std logic vector std_logic_arith

Conv_integer Signed or Std_ulogic to integer

Conv_integer Std _logic_vector to integer std logic unsigned

Some conversion functions and their packages are listed in Table 2-2. Using the
conv_integer function in the std logic unsigned package on the std logic
inputs makes it possible to perform the division operation.

Additional Library Packages Added

In Listing 2—14, line 3 adds the std_logic unsigned package from the IEEE library, so
the conv_integer operation could be used. Line 4 adds the std logic arith package
from the IEEE library, so the conv_std logic_ vector operation could be used.

Listing 2-14. Conversion

1. Library IEEE;

2. Use IEEE.std logic 1164.All;

3. Use IEEE.std logic unsigned.All;

4. Use IEEE.std logic_arith.All;

5.

6. Entity Convert2Integer Is Port (

7. number 1 : In std logic vector (3 Downto 0);
8. number 2 : In std logic vector (3 Downto 0);
9. quotient : Out std logic vector (3 Downto 0)) ;
10. End Convert2Integer;

11.

12. Architecture arch Convert2Integer Of Convert2Integer Is
13. Signal integer numl : integer;

14. Signal integer num?2 : integer;

15. Signal integer quotient : integer;

16.
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17. Begin

18. -- standard logic vector numbers are converted to integer before
performing division

19. integer numl <= Conv_integer (number 1);

20. integer num2 <= Conv_integer (number 2);

21. integer quotient <= integer numl / integer num2;

22. quotient <= Conv_std logic vector
(integer quotient, 3); h h B

23.

24 . End arch Convert2Integer;

2.11. Read File

The read command extracts information from an external file, see Figure 2-9. Such data can be fed
into input signal(s) defined by an entity. Some of the data types that can be read from the external
file using the read command are integers, Boolean, character, time, real, and string. This command
is very useful when verifying the design code and is discussed more in the simulation chapter.

The code in Listing 2—15 reads integer data from an external text file. These data are
converted to standard logic vectors and used as input data to the design component named
readfile. The functions of the readfile are not defined; however, the design file could process
the input data and provide a single output resultant or decision bit.

Lines 4—5. Additional Library and Package Added

The read command is defined in the std.textio package in the std library. This library
and package are made visible and usable to the program in the library declaration section.

Line 31. Defining File to Be Read

Before the data can be read from the file it must be defined using the reserved word file.
This command states that the file provides data, it is opened in the read mode, and the name
of the file is read data.txt. The syntax for file is

File input: Text Open read mode Is “Std Input”;
Where input is data in and std input is read data.txt.

External File Testbench

Integers
Boolean
Character File Data
Time
Real

String

- Use read data

Figure 2-9: Read External File
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12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

Library IEEE; —-—-define library and packages needed

for this design

Signal clk

Signal reset
Signal input datal
Signal input data2
Signal input data3
Signal output data
Signal data vec

Component readfile
Port (
clk
reset
input datal
input dataZ2
input data3
output data
End Component;

that will be read

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

Begin

Port Map (
clk
reset
input datal
input data2
input data3
output data

Listing 2-15. Read Command

. Use IEEE.std logic 1164.All;

. Use IEEE.std logic arith.All;
. Library std; —-— read command located in std textio library
. Use std.textio.All; —— needed to use file command

. Entity testbench Is End testbench;
9. Architecture tb read Of testbench Is

10.
11.

: std_logic := ‘0" ;

: std _logic := ‘1" ;
: std_logic := 0" ;
: std logic := 0" ;
: std logic := 0" ;
: std logic;

: std _logic vector (2 downto 0);

Constant twenty five nsec : time := 25 nsec;

: In std logic;

: In std logic;

: In std logic;

: In std logic;

: In std logic;
: Out std _logic);

read component: readfile

=>
=>

Filedata in: Text Open read mode Is “read data.txt”;

clk,

reset,

input datal,
input data2,
input data3,
output data);

—-—define file




Simple Designs

39

43.

44, reset <= ‘0" after 100.00 nsec; —-- set power-on reset inactive
45.

46. create twenty Mhz: Process -- create 20MHz simulation clock
47. Begin

48. Wait For twenty five nsec;

49, clk <= Not clk;

50. End Process;

51.

52. read file: Process

53. Variable data line : line;

54. Variable data_ integer : integer;

55.

56. Begin

57. While Not endfile (data in) Loop

58. readline (data in, data line);

59. read (data line, data_ integer);

60. data_vec <= conv_std _logic_vector (data_integer, 3);
6l. input datal <= data vec(0);

62. input dataZ2 <= data vec(l);

63. input data3 <= data_vec(2);

64. wait for 25 nsec;

65. End Loop;

66. file close(data _in);

67. End Process;

68. End tb read;

Lines 53—54

Variables are used to define a 1ine and an integer because they are needed to use the

read and readline commands.
Lines 57—-65
A While loop is used to read from the external data file.

Line 58

The first thing that must be done to get the data from the file is to read a line. This is done

using the readline command. The syntax is

Readline (file f: Text; L: out Line);
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where file £: Text is the file name; data in is defined immediately following reserved
word file on line 31; L: out Line is the variable data line defined on line 53.
Line 59

Next, the first element on the line is read using the read command. The read command syntax
is

read( L: inout line; Value: <certain data types>);

where L: inout lineisthe variable data 1line defined online 53. Value canbe data types
bit vector, Boolean, character, integer, real, string, and time. In this case, it is an integer.
Lines 60—63

The data in the external file are integers. Once the data have been read, the integers are
converted to a 3-bit standard logic vector. Each data bit is assigned to specific inputs, which
are used to simulate or verify the design.

It is not always necessary to convert the data; this depends on the data type of the interface
signal(s).

Line 66

The external file is closed when the loop is done.

2.12. Write File

The write command puts data to an external file, see Figure 2—-10. Some of the data types
that can be written to the external file using the write command are integer, Boolean,

character, time, real, and string. This command can make verifying a design easier by having
the results written to an external file. Data types that can be written are bit, bit vector,
Boolean, character, integer, real, string, and time. Data written to the file can be any of the
data types or a combination. An example of the write command is shown in Listing 2-16.

External File Testbench

Integers
Boolean
Character _ Simulation Results | Write Simulation
Time - Results

Real
String

Figure 2-10: Write External File
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Listing 2-16. Write Command
1. Library IEEE; Use IEEE.std logic arith.All;
2. Library std;
3. Use std.textio.All;
4.
5. Entity testbench Is End testbench;
6.
7. Architecture tb write Of testbench Is
8.
9. Signal clk : std_logic := 0" ;
10.
11. Constant twenty five nsec : time := 25 nsec;
12.
13. File data out: Text Open write mode Is “write data.txt”;
14.
15. Begin
16.
17. create twenty Mhz: Process
18. Begin
19. Wait For twenty five nsec;
20. clk <=NOT clk;
21 End Process;
22.
23. write results: Process (clk)
24 Variable data line : line;
25.
26. Begin
27 If rising edge(clk) Then
28 writeline (data out, data line);
29. write (data line, string' (“Hello World.”));
30. End If;
31. End Process;
32. End tb write;
Lines 2—3

The write command is defined in the std.textio package in the std library. This library

and package is made visible and usable to the program in the library declaration section.

Line 13

The file command used to define the external data file is similar to the read command. The

file syntax used for the write command is
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File output: Text open write mode Is “std output”;
where output is data output and std output is write data.text.

My simulator puts the write file in the same directory as my work directory; this is discussed
further in the simulation chapter. Consult the documentation for your simulation to
determine where the file will be located.

Line 24

This is the defined line variable, data line, to be used with writeline and write
commands.

Line 28

The writeline command is used to write a line to the external file. Syntax for the
writeline is

Writeline (file f: Text; L: inout Line);

where file f: Text”is data out, defined on line 13, and L: inout Line is
write data.txt, defined on line 13 and is the file where the data is written.
Line 29

Hello World is written in the write data.txt.

2.13. Chapter Overview

In this chapter, you were presented with some very simple design code and shown how the
code can easily be modified to perform more advanced functions. As a part of the FPGA
development phases, you will learn how to verify or simulate design code like the ones
presented in this chapter. However, if you are interested in verifying some of the designs
provided in this chapter, the book’s appendix provides testbenches for all design code except
read and write commands, which are testbenches.

Key Simple Design Points

*  Start small and gradually build the design. It is much easier and less frustrating if you
build a little and verify instead of trying to build and troubleshoot everything all at once.

*  When writing code from a schematic design, make your signal names match.
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3.1. Introduction

The purpose of this chapter is to discuss the basic FPGA architecture and introduce the five
FPGA development phases. It is important to understand something about the hardware
aspect when developing an FPGA design. By hardware, I mean the FPGA device itself.
Many of the older FPGAs allowed only one-time programming (OTP), which means that any
design change required replacing the current device. However, most of today’s FPGAs are
based on static random access memory (SRAM) and can be reprogrammed multiple times.
The development process requires the use of several tools to manipulate the design and
produce an output file that dictates how the actual FPGA device is connected internally. This
chapter presents a couple ways that FPGA manufacturers present their data. However, after
reading this chapter, you should be able to apply this information to any manufacturer.

In this chapter, you will learn

* Basic FPGA architecture.

*  Three basic FPGA capabilities.

* Altera and Xilinx FPGA architecture.

* Introduction to the five FPGA development phases.

3.2. What Is a Field Programmable Gate Array?

An FPGA is a device that consists of thousands or even millions of transistors connected
to perform logic functions. They perform functions from simple addition and subtraction
to complex digital filtering and error detection and correction. Aircraft, automobiles, radar,
missiles, and computers are just some of the systems that use FPGAs.

A main benefit to using FPGAs is that design change(s) need not have an impact on the
external hardware. Under certain circumstances, an FPGA design change can affect the
external hardware (i.e., printed wiring board), but for the most part, this is not the case. One

© 2010 Elsevier Inc. All rights reserved.
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situation would be if the device has insufficient resources to support the design changes, then a
new device is required. If the new device is not a direct drop-in replacement—meaning pin-for-
pin compatible (i.e., power and grounds are in the same location)—then the printed wiring
board must be modified. More times than not, your design changes do not affect the hardware,
especially if you have derated or left room in your device for growth. The amount of room for
growth varies, but we talk more about this later in the book. The point I am trying to make is
that FPGAs provide a lot of flexibility and opportunity to make design changes quickly.

Xilinx, Altera, and Quicklogic are just a few companies that manufacture FPGAs. Even
though there are several FPGA manufacturers, they all share the same basic architecture
concept. It consists of three basic capabilities: input/output (I/O) interfaces, basic building
blocks, and interconnections. Figure 3—1 shows a generic FPGA architecture. It shows
some basic building blocks connected to other basic building blocks, which are also
connected to I/O interfaces, where data are passed to external sources. This figure is not
meant to represent any particular device or design; it is provided only as a way of showing
how the three basic capabilities interrelate. In the following sections, you are provided
additional information on each of the capabilities.

3.3. 1/O Interfaces

I/O interfaces are the mediums in which data are sent from internal logic to external sources
and from which data are received from external sources. The interface signals can be
unidirectional or bidirectional, single-ended or differential and could follow one of the
different I/O standards. Some I/O standards are

* GTL (gunning transceiver logic).

e HSTL (high-speed transceiver logic).

1/O Interface

Pmmmmym———— Y

Combinatorial Combinatorial o

Logic Logic

Basic Building Blocks__ |7 ... } | J—l |< -------------------------- ! Interconnections

5 ) [0 ) ) )

Figure 3-1: Generic FPGA Architecture
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*  LVCMOS (low-voltage CMOS).

* LVTTL (low-voltage transistor-transistor logic).
*  PCI (peripheral component interconnect).

* LDT (lightning data transport).

* LVDS (low-voltage differential signaling).

The main purpose of the I/O interfaces is to transmit and receive data; however, the portion
designated as an I/O interface may contain additional resources, such as voltage translators,
registers, impedances, and buffers.

The term used for the I/O interface section may vary, depending on the manufacturer;
however, the general function is the same. Consult the specific FPGA manufacturer’s
datasheet or application notes for the complete I/O interface details. As an example,
a brief description of Altera’s and Xilinx’s I/O interface is presented.

Altera calls its I/O interfaces I/O elements (I0Es). They provide the basic internal to external
interface function, support various differential and single-ended 1/Os, and provide
programmable pull-up resistors and I/O delays. The IOE structure for Cyclone II® is
shown in Figure 3-2.

At Xilinx, the I/O interfaces are called /O blocks (I0Bs). The IOBs consist of registers,
internal voltage translators, and other specialized resources. A simplified IOB diagram is
shown in Figure 3-3.

As you can see, the Altera and Xilinx I/O interface sections use different terminology
and have difference structures, but their basic function is the same, which is to

pass I/O data between the device and external source(s). For complete I/O interface
details, refer to the datasheet or application notes provided by the FPGA’s
manufacturer.

3.4. Basic Logic Building Blocks

The basic logic building blocks are preconfigured logic or resources used to build your
design. What this means is that the FPGA starts with some basic logic, which is
interconnected in various ways to perform the functions defined by the design. Altera’s
basic building blocks are called the adaptive logic module (ALM). The ALM consists of
combinational logic, registers, and adders, see Figure 3—4. The combinational logic has
eight inputs and a lookup table, LUT.

Xilinx’s basic building blocks are called configurable logic blocks (CLBs). Each CLB
contains slices, see Figure 3-5; and each slice has lookup tables (LUTs).
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Logic Array

OE Register

OE

Output Register

outpu g

A

Input (1)
Input Register

Figure 3-2: Cyclone Il IOE Structure (This figure was reprinted with written permission from
Altera Corporation. Altera is a trademark and service mark of Altera Corporation in the
United States and other countries. Altera products are the intellectual property of
Altera Corporation and are protected by copyright laws and one or more U.S. and
foreign patents and patent applications.)

Each FPGA manufacturer defines the basic logic building block structure and the amount
available. Because FPGAs are used in a variety of applications and systems, there is no
“one device for all applications.” FPGAs used in an aircraft might not be expected to perform
the same types of functions or experience the same operating conditions as those in an
automobile or personal computer.

There are many different types of FPGAs suitable for almost every kind of application.
Selecting the right FPGA is made easier because they are divided into categories, often
referred to as families or series. An FPGA family or series may have members or subfamily
members. You can think of a family as a group of FPGAs with common characteristics
that have members with distinctive features. The members share the basic family
characteristics but have features that are distinctive from other family members, which
may include the amount of memory, available resources, or number of 1/O.
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Figure 3-3: Simplified IOB Diagram (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx. January 21, 2009.)
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Figure 3-4: Adaptive Logic Module (ALM) Block Diagram1 (This figure was reprinted with
written permission from Altera Corporation. Altera is a trademark and service mark of Altera
Corporation in the United States and other countries. Altera products are the intellectual
property of Altera Corporation and are protected by copyright laws and one or more
U.S. and foreign patents and patent applications.)

Some FPGAs are characterized as having high volume, low cost, high temperature, or an
embedded processor and are available in various sizes, packages, and speeds. Many
manufacturers make device selection easier by grouping FPGAs according to their
application (automotive, space, medical, etc.).

When you think about it, FPGA families are similar to a lot of our families, in that they have
common characteristics, such as same last name and parents, but all the children are different
in size, shape, personality, and unique in the way they work, act and think.

Manufacturers may categorize their devices differently, but do not let that throw you.
Knowing some general things, like the intended system or application, should at least get to
the right family or grouping. Before you buy, make sure you know what you are getting. Here
is a brief overview of how Altera and Xilinx present their FPGA families and family
members.
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Figure 3-5: Arrangement of Slices within the CLB (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx. June 25, 2008.)

Altera refers to its FPGAs in series. These series are
Stratix®
* High end and high density.
*  On-chip transceivers.
Arria®
* Midrange.
* Transceiver based.
Cyclone®
* Low cost.

* Low power consumption.
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Altera®
Stratix® Series Arria® Series Cyclone® Series
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Figure 3-6: Altera Series Tree

Figure 3-6 shows the family members for these series.

Xilinx offers numerous FPGA families. Some of their families include Extended Spartan®-3A,
Spartan-3E, Spartan 6, Virtex®, Virtex-E, Virtex-Pro, Virtex 5, and Virtex 6. These families are
divided into members based on the amount of available resources. For example, Spartan-3E is
a high-volume FPGA that has five family members, see Table 3—1. Note: The number
following S in the member’s name represents 1 for every 1000 system gates. This makes it easy
to identify the number of systems gates just by looking at the part number.

I realize this can be a little confusing at first, but the more you work with it, the easier it
becomes. Remember, the datasheets and application notes can be your best friend.

3.5. Ability to Interconnect

Interconnection involves connecting the basic building blocks to perform design-specific
functions as well as connecting the internal logic to I/O interfaces, see Figure 3-7.
Interconnection is performed automatically by the implementation tool, discussed in a later
chapter. However, some tools allow the user to manually interconnect or route internal
resources or logic. I recommend this only for advanced users.

Table 3-1: Spartan-3E family members data summary

Device System Total Total Max User Max Differential 1/0O
Gates CLBs Slices 1/0 Pairs
XC3S100E 100K 240 960 108 40
XC3S250E 250K 612 2,448 172 68
XC3S500E 500K 1164 4,656 232 92
XC3S1200E 1200K 2168 8,672 304 124
XC3S1600E 1600K 3688 14,752 376 156
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Figure 3-7: Interconnection

3.6. Programmable Logic Device Options

While this book focuses on basic FPGA design and features, they can be utilized in

many different applications and perform advanced functions and calculations not discussed in
this book. Some functions that were typically performed by a digital signal processor (DSP)
are now being done by an FPGA, such as filtering and other signal processing.

So, with that being said, I feel it is worth mentioning some other options available

to designers.

The design approach used in this book is to manually write all the design code; however,
this may not always be practical or provide the best result for the FPGA’s design. What
this means is that manually writing and verifying something like a finite impulse response
(FIR) or fast Fourier transform (FFT) is time consuming. So, to make things a little easier,
many FPGA manufacturers offer a variety of what are called intellectual property (IP) cores
or functions. These IP cores or functions allow the designer to select and customize
specific desired functions. The designer is generally presented with a graphical user
interface (GUI), where information such as output format (VHDL, Verilog, etc.),

target device (family, series, etc.), and the like are provided. The customized function
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provided by the tool can now be used in the design. Some of the advantages of using an
IP core or function are

* Faster code development time.

* Reduced design risk, less likelihood of errors.
* Better and faster compiling.

* Better results for the design.

Some IP cores or functions are free, while others may be fee based. These IP cores or
functions are manufacturer dependent.

Altera’s IPs, called Megafunctions®, are designed for only their company’s FPGAs.
Figure 3-8 shows an example of Altera’s IP Megafunction wizard. Here, the user selects
the desired function and provides other information, such as the target family device
and output format. The DSP option has been expanded to show the different available
options.

Select Family
MegaWizard Plug-In Manager [page 2a]

ik mrsgalurnction woubd yuu ke o custumios? Which device famiy will you be m_ﬂ

sing?
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DSP le] Viterbiva.1 C:AChapter 3
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Figure 3-8: Altera IP Megafunction Wizard (This figure was reprinted with written permission
from Altera Corporation.)
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Xilinx’s IPs are called IP cores. Some are offered Xilinx’s free with their development tool,
while others have to be purchased. Some of the IP cores offered with the company’s ISE
Software® development tool include

* Cascaded integrator comb, CIC, filter.
* FIR filter.

* FFT.

*  Sine/cosine lookup table.

Here are some IP cores that must be purchased:

*  Convolutional encoder.
* Reed-Solomon encoder.
* Reed-Solomon decoder.
*  Controller area network (CAN).

Figure 3-9 shows an example of the GUI used to customize Xilinx’s IP core. Additional
information about the function, such as design output format (VHDL, Verilog), netlist
format, or create a wrapper file, is added by selecting the part, generation, or advanced tabs
located at the top of the screen.

3.7. FPGA Development Phases

Regardless of the design complexity, the FPGA development process is basically the same.
For beginners or anyone who is trying to learn how to develop FPGA designs, the entire
process can seem complex and confusing. What I found to be most confusing and hard to
keep straight was all the terms, processes, and tools necessary to produce a design. When
I first started with FPGAs, we used Synplicity’s Synplify® for synthesis—talk about a
mouthful. It seemed to take me forever to remember which was the company’s name
(Synplicity, now Synopsys), which was the tool’s name (Synplify), and which was the
process (synthesis).

I believe, when you are faced with trying to learn or perform complex tasks, things can
be made easier when the tasks are divided into smaller pieces and tackled one at a time.
This book takes the FPGA development process and divides it into five phases, which are
discussed in the following chapters. The five FPGA development phases are design,
synthesis, simulation, implementation, and programming, see Figure 3—10. A chapter is
devoted to each development phase. Each chapter discusses the development phase’s
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Figure 3-9: Xilinx’s IP Core GUI (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in Xilinx
ISE WebPack™ software version 10.1.)

inputs and outputs, tools, helpful Internet links, tips, and examples where appropriate.
A tutorial is provided for the synthesis, simulation, implementation, and programming
phases. The next chapter discusses the first FPGA development phase, which is design.

3.8. Chapter Overview

Over the years, FPGAs have come a long way. They can perform a wide range of operations
from simple to complex. Initially, the development process seems complex and confusing,
so it has been divided into smaller, less intimidating phases. Each of these phases can be as
complex as the next, but learning the basic is a great way to start. Plus, after you have the
basic, it is easy to expand your skills and knowledge.

Key Points to Remember

*  The three basic FPGA architecture elements are I/O interfaces, basic building blocks,
and interconnections.
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Figure 3-10: FPGA Development Phases

* Each manufacturer may present the basic FPGA architecture differently, but the concept

is basically the same.

* Use the datasheets and application notes, because they provide helpful information,
such as device resources and architecture structure, resource definitions and allocations,

and design help.

* Do not try to tackle complex tasks all at once, reduce them into smaller, more
manageable steps; before you know it, you have reached your goals.

Chapter Links

For your convenience, here is a list of links for more information on the IP cores and

functions.

Xilinx’s IP cores information can be found at www .xilinx.com/ipcenter/index.htm.

Altera’s IP information can be found at www.altera.com/products/ip/getting-started/

ipm-evaluate-download.html.
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Design

4.1. Introduction

FPGA development has been divided into five phases. The first development phase
necessary to create the file that will be used to program an FPGA is design. This chapter
discusses the types of material and other information that you may receive to create a design.
The design package is information provided to a designer, and it can vary from design to
design and company to company. With that in mind, this chapter presents some basic
information that will help you understand the material, what information you need to get
started, and how to develop a design from that information. The FPGA design may be as
simple as converting a schematic to HDL or making modifications to an existing HDL
design or more in depth, such as creating a totally “new” design. Regardless of the level
of effect, I believe the approach presented in this chapter can partially or completely be
applied to all types of designs. The final design from this phase is manipulated to produce the
file that will program an FPGA. It is for that reason I consider this to be a critical phase.
This chapter defines a systematic approach that will help you work through and understand
the design phase.

In this chapter you will learn
* How to evaluate the design package.
*  Decisions to make prior to creating the design.

* How to create a design.

4.2. What Is the Design Phase?

The design phase involves more than just creating a design. Many decisions must be made,
and the design material must be understood. The “design package” is the input and the
FPGA design is the output. After receiving the design package, the best way to start is to
evaluate the design package and make some predesign decisions before writing the firmware,
see Figure 4—1. The design code or code is also referred to as firmware. While HDL is

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00004-7 57
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Step 1
Design St
p2
Package Evaluate | -
; Design Package
(Input) Design Package
Design
Step 1A Create Dosign g
Design (Output)
Pl’ed.e.3|gn Device, Format & Tools>
Decisions |

Figure 4-1: Design Phase Steps

softwarelike code, it is called firmware because it describes hardware and generally is written
by hardware engineers. The definition of firmware can vary from person to person; some
refer to languages such as C or C++ as firmware. For that reason, it is always a good idea to
clarify the meaning. The design package contains the requirements that define the FGPA’s
features and functions. In other words, the requirements state what the design must do but
not how to do it. During this phase, the design is created by writing firmware, through
schematic capture, or a combination of the two. In this book, VHDL code is the design
format. Success or failure of the design largely depends on:

*  The quality of the design input(s):

* A good design package is essential to creating the correct design.

* You need to understand what needs to be designed and have the ability to create it.
* Making key decisions:

* Selecting the FPGA for your specific application.
*  Development tools:

* A good text editor has features to help make the HDL design entry and modifications
easier.
* A graphical editor is needed to create and modify schematic capture designs.

4.3. Design Package

The design package is the result of predesign activities, generally performed by someone like
a systems engineer, technical lead, or project engineer. These activities usually include:

*  Creation of design architecture.
* Partitioning the design into sections.

* The goal to minimize interfaces between sections and group together common functions.
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* Designation of one or more designers.
* Larger or complex designs may require several designers.
* Assign design sections to different designers, based on skill level or availability.
*  Creation of design requirements.
* Requirement specification defining what the design should do.
*  Creation of Timing and other diagrams.
* Diagrams provided as requirements or just as supporting documents.

The package should contain all the relevant design information, like requirements
specification and timing diagrams. There should be enough information for a design to be
created. It is never a good idea for the coder to create his or her own requirements.

This leaves the door wide open for costly mistakes. Anything that is misinterpreted gets
carried over into the design requirements, which become a part of the design. The design may
be tested against the requirements and possibly delivered. This kind of mistake may not
be detected until customer acceptance or, worse, after the design has been delivered,
which can be very expensive and embarrassing. So my advice is this: If you are the coder,
do not write your own requirements. The longer a mistake or error is carried into the
development process, the more expensive it is to correct. Always remember, “Pay me now
or pay me later; and if you pay me later, it will cost you more.”

Design packages vary from project to project and company to company but should

contain enough information to allow the designer or coder to create a final design. Some
design packages have good documentation while others have vague or inconsistent
information. I can hear my old coworkers laughing now, saying, “What design package

or requirements?” We were often victims of “no formal requirements,” “make it like the old,”
or “something verbal.” I know a lot about bad design packages. Whether the design package
is good or bad you should always evaluate its contents prior to starting the design. See
Figure 4-2 for an example of a design package.

4.4. Evaluating the Design Package

Once you receive your design package, the urge is to immediately start creating the design.
But wait, do not let your emotions take over. Some steps should be taken before you actually
start the design. Taking this extra time in the beginning often reduces frustration and
mistakes. It may feel like you are wasting time, but believe me it will be time well spent
and oftentimes will result in faster progress. For some tips for evaluating your design
package, see Figure 4-3.
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Figure 4-2: Design Package

Timing Diagram
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Analyze Clarification Organize

Read & Do Not Assume Document Changes
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Figure 4-3: Design Package Evaluation Steps

4.4.1. Package Analysis

Read and understand all the documents provided in the design package. Be sure to have

a clear understanding of what you are to design. Undoubtedly, as you read through the
material, there will be questions and things that need to be clarified, so write down all your
questions and get answers from the appropriate person(s). Question anything that seems

to be contradictory or unclear.

4.4.2. Getting Clarification

In an ideal world, your design package will be crystal clear, have no contradictions, have
everything in order, and be complete in every way. But, realistically, there may be some
inconsistencies, pertinent information missing, outdated data, or just a variety of things that
cause you to have questions. Whatever the case may be, do not be afraid to ask questions;
and if you have doubt about what was presented, make no assumptions on the intent, because
mistakes cost not only money but time. For answers, go directly to the source that gave
you the material. Do not go to a coworker or friend for answers, because he or she may
unintentionally give you incorrect information.

A word to the wise, make no assumptions or corrections without first trying to get
clarification. What may appear to be a mistake or error may have a valid reason, and getting
clarification can save you from having to redo work.
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50 MHz Clock

| 2nsec |
r—————

Figure 4-4: Inconsistent Documentation

For example, suppose you have a timing diagram that shows a 50 MHz or 20 nsec clock but
the timing shows 50 MHz and 2 nsec, see Figure 4—4. There is no way of knowing which
is correct, so do not assume. Instead, go back to the “source,” not a coworker or friend, to get
clarification and to clear up the inconsistencies.

I had a supervisor correct some of my work because he did not understand what was
going on, only to discover that I was correct. After discovering what had occurred, the
work had to be redone. This created confusion and wasted time and money, which could
have been avoided if the supervisor had taken a little time to understand before acting on
his assumptions or misunderstandings.

Additionally, if an acronym is provided without its definition, always verify the correct
meaning, because, as you know, engineering has many acronyms and some have different
meanings to different people.

While I caution you against making assumptions, the fact is that sometimes it may be
necessary to make assumptions in order to make progress. If this is the case, then be sure
to keep good records and document all assumptions.

4.4.3. Organization

Regardless of the number of documents in the design package, you should establish a
system for storing the documents. The system should allow anyone to easily identify and
retrieve the latest document revision. Because these documents are used to develop the
design, it is very important to always make sure you work from the latest and most accurate
information.

Ideally, the design package remains constant for the entire duration of the project; however,
realistically, there is a good chance there will be a change that affects your design. So, if you
don’t already know you will soon find out that sometimes the only thing that remains the
same is the “rate of change,” so be prepared; because change may be necessary and may
happen during any part of the development phases.

Sometimes design changes are informal, made during a meeting or verbally, and may not
always get incorporated in the design package. If this is the case, make sure that your design
package system allows you to create a paper trail or revision history for all changes,
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m Example 4-1. Documenting a Requirement Change

The original timing diagram shows a 50 MHz clock frequency with a conflicting
2 nsec time period. After verifying that 50 MHz is correct, 2 nsec is changed to
20 nsec, as shown in Figure 4-5, until the design package can be updated.

Original provided by lead designer

50 MHz Clock

|, 2nsec
-

On 1-28-09 lead designer confirmed 50 MHz is correct, changed from 2 nsec to 20 nsec

50 MHz Clock

20 nsec

Figure 4-5: Corrected Timing Diagram

especially undocumented ones. At a minimum, I suggest that you document who requested
the change, details about the change, and the date, similar to what is shown in Example 4-1.
This provides a good record of all the design changes. Additionally, it provides traceability or
a written record for yourself or, if necessary, a successor. Paper trails provide valuable
information when things go wrong.

Now that you have completed your design package assessment, a few decisions must be
made. These decisions are necessary because they affect various aspects of FPGA
development.

4.5. Predesign Decisions

What is the design format? Who is the FPGA manufacturer? What tools should be used?
These are some of the decisions that should be made prior to creating the design. However,
if the design does not require manufacturer-dependent resources, such as memory, then you
can wait until synthesis before deciding on the manufacturer and part number. Some options
for each decision are shown in Figure 4-6. The design package may define one or some
predesign decisions. For example, the requirements may state to modify a VHDL design to
perform more functionality and put the new design in a larger FPGA package from the same
manufacturer. In this case, the design format and manufacturer have been decided by the
requirements; however, there are tool decisions that have to be made.
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Decision: Design Format Decision: Manufacturer Decision: Tools
Options: Options: Options:
HDLs Xilinx Standalone
Schematic Altera Complete
Combination Quicklogic

Figure 4-6: Design Decisions

On the other hand, making one decision can automatically determine the selection for another
option. For example, selecting schematic capture allows you the freedom to select any
manufacturer that accepts that design format. However, the tool is determined by the selected
manufacturer. So selecting Altera for a schematic capture design means the Quartus I1®
design entry tool set is automatically selected.

While one decision can determine another, not all decisions must be made in the first
development phase. Some decision can be made later. The design format must be selected in
the first or design phase, since this is necessary to create the design. If the design is
manufacturer independent, then the manufacturer and part number decisions can wait

until synthesis. However, the manufacturer must be known in the design phase for
manufacturer-dependent designs. Synthesis is the first phase in which the manufacturer and
part number are needed for independent designs. This information is needed to set up the
synthesis tool, so the correct output is generated for the implementation phase. Table 4—1
shows that the design format is selected in the design phase; the manufacturer is selected in
design phase for manufacturer-dependent designs, otherwise it is selected during synthesis.
The tools are generally selected during the specific phase unless they are predetermined by
some other factors or a previous decision.

4.5.1. Design Format

Prior to creating the design, you must select the design’s format. Will it be schematic capture,
HDL, or a combination of the two? Sometimes, this decision has been made by your design
package, as shown in Example 4-2.

Table 4-1: Decision/Development Phase Relationship

Decision Design Format Manufacturer Tools
Design phase X X* X*
Synthesis phase — X X
Implementation phase — — X
Programming phase — — X

*Required for manufacturer-dependent designs.
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m Example 4-2. Predesign Decisions

You are required to convert a schematic capture design to VHDL. However, you can
select the manufacturer and development tools. You may decide to use Xilinx as
the manufacturer, and your company may have standalone tools like Synplify® for
synthesis and ModelSim® for simulation. For implementation, you are required to
use the manufacturer’s tool. So, you are provided the design format but are free to
select the manufacturer and tools, see Figure 4-7.

Provided Your Choice Your Choice
Design Format _ | Manufacturer _ Tools
VHDL o Xilinx "| Complete

Figure 4-7: Example of Predesign Decisions

However, if you are starting a new design, then you may have the options to select one of the
different design format options. As with anything there are advantages and disadvantages to
each design format. For schematic capture,

Advantages:
* The design is drawn as a schematic.
* It is relatively easier to create, read, and understand.
Disadvantages:
* Logic symbols are proprietary, making the design manufacturer dependent.
* The entire design entry must be repeated for different manufacturers.
* Predefined logic symbols make the design less flexible.
e The options on development tools are limited.
For HDL,
Advantages:
* It has more design and manufacturer selection flexibility.

* To switch between different manufacturers, only manufacturer-specific resources,
such as memory, or IP cores/functions have to be changed.

* Manufacturer-independent designs provide more development tool options.
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Disadvantages:
* The design may be more difficult to read and understand.

* Manufacturer-dependent designs provide fewer development tool options.

4.5.2. FPGA Manufacturer

You may or may not have the option to select the actual FPGA. Sometimes, the manufacturer
has been preselected, because of a company preference for a specific manufacturer, findings
from a trade study, cost of the device, or a variety of reasons. Whether you have this
option or not, knowing the FPGA’s manufacturer is necessary for manufacturer-dependent
designs. HDL designs that require no manufacturer-specific resources, such as memory, IP
cores/functions allow you to create and simulate (verify) without knowing the manufacturer.
However, for design entry, the manufacturer is needed for schematic capture and
manufacturer-dependent HDL designs. Additionally, the manufacturer’s part number is
needed for the synthesis and place-and-route phases.

A little foresight is needed when selecting the actual device part number. This requires having
an idea of how much resource your design requires. This can be difficult when you first
start, but as you get more experience, you will be better able to determine which device best
fits your needs. A good way to help you learn how to select devices is to randomly select a
device, synthesize the design, and review the resources required in the output report. Now, you
can see the resources required to perform the functions defined by your design. With this
information you can use a datasheet to select a more appropriately sized device. Reading the
synthesis report is a good way to understand what happens to the design as it get synthesized.
Later in the book, you will learn more about synthesizing and its benefits.

Here are factors to consider when selecting the device:
Design application:

* Avionics

* Military

* Automotive

* Medical, and so forth.
Environmental conditions:

* Military.

* Industrial.

*  Commercial.
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Temperature range:
e  Commercial, 0°C to 85°C.
* Industrial, -40°C to 100°C.
e Military, -55°C to 125°C.
Design size:
* Board allocated space.
* Package.

* Ball grid array, flat pack, and so on.

4.5.3. Development Tools

Each FPGA development phase utilizes specific tools, and they are discussed in the
respective chapters. The design phase development tool depends mainly on the output format,
but additional factors, such as cost, design sharing, and the need for it to be complete or
standalone, can affect tool selection. For example, if your design format is schematic capture,
then the design entry tool must be one that supports schematic capture and not a text editor.
On the other hand, it may be easier to use complete development tools over standalone ones.

*  Design format. For HDL, any text editor will work. See Section 1.5, “Editor Features,”
in Chapter 1, for tips on selecting a text editor. However, for schematic capture, you must
use the tools supplied by the selected manufacturer.

* Cost. The fees for development tools can be very expensive, especially if they have
yearly maintenance or licensing fees. Sometimes companies standardize the development
tools, so you have no choice. But, if this is not the case, then I suggest having a clear
understanding of your needs—try to get a temporary copy (i.e., try it before you buy it)
and try to negotiate fees.

*  Design sharing. For large designs that require multiple designers, your project may use tools
that make it easy to divide the design among multiple people. So if this design has multiple
coders, then you need a good set of tools to manage and control the design and its revisions.

* Complete or standalone. Some manufacturers offer complete development tools. When
1 say complete development tool, I mean that the tool provides design entry, synthesis,
implementation, and simulation. For example, Xilinx’s Integrated Software Environment
(tm) (ISE) and Altera’s Quantus II are complete development tools. Standalone tools
perform a single function, such as synthesis, implementation, or simulation. For example,
Synopsys’s Synplify is used for design synthesis and Mentor Graphics’s ModelSim
simulator is used for design verification, which means neither of these tools can perform
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Table 4-2: Complete tools, pros and cons

Pros Cons
Single development tool Can perform synthesis and implementation
for only specific manufacturers
Manufacturer understands device better; therefore, Manufacturer is an expert on the device,
development tool may be better and provide more accurate not necessarily on the development tool

device data

Single tool may be cheaper Some development features may not be as
good as a standalone tool

Table 4-3: Standalone tools, pros and cons

Pros Cons
Supports multiple manufacturers Must learn and use multiple development tools
Expert in specific tool area Multiple cost or licensing fees
May have more or advanced features Separate tools may be more expensive

the functions of the other. While it is true that some standalone tools, like ModelSim,
provide a text editor that can be used to modify or create HDL code, the features and
capabilities generally are not as good as standalone or dedicated text editors. I do not
suggest using that type of editor for design entry.

Many pros and cons are involved in selecting complete development or standalone tools,
see Tables 4-2 and 4-3.

As you can see, there are pros and cons to either solution. You have to determine which
makes more sense for you and your application.

4.6. Creating Design Options

Now you are ready to create your design. FPGA designs can resemble a schematic, be written
as HDL code, softwarelike language, or a mixture. Development options for schematic
capture designs are limited. The symbols used to create the schematic are proprietary for the
specific manufacturer, and development tools are available only from the specific
manufacturer. Some HDL designs are manufacturer independent and can come in several
formats. Two HDL development options are available: The design can be created using an
automatic code generator or written manually. Each option is discussed in the following
sections, but this book uses the manual option.

4.7. Automatic Code Generators

Automatic code generators provide an easy way to develop an HDL design without actually
writing code. Such automatic code generators are a little different from the IP cores or functions
discussed earlier. IP cores and functions produce code for only specific function(s), while the
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automatic code generator produces an entire design or major portions of the design. Automatic
code generators work in different ways, depending on the software. Some software packages
convert from one design format to another or convert a graphical model to HDL. For example, an
ABEL design can be converted to VHDL. Several code generator tools create a templatelike
skeleton VHDL testbench, the file used to verify the design (testbenches are discussed in a later
chapter). For example, Doulos generates a testbench using a Perl script when provided with an
entity or architecture. Automatic code generators are growing in popularity. Personally, I like
to write the code. You will get a mixed bag of results from different automatic code generators.
I am not sure that you will get all the comments you need or the format convention you want.
While a lot of the work can be done by the auto code generator, you may still have to manually
add code, comments, or formatting. I am not on the auto code generator bandwagon yet because
I believe it never hurts to have the skills to develop firmware manually. As my mother always
says “it is better to have it and not need it than to need it and not have it.”

4.8. Manual Code Generation

VHDL, Verilog, and ABEL are some of the languages that can be used for FPGA design.
Even though there are several language options, this book discusses the manual way to
develop an FPGA design using VHDL. Manual code generation can be more time consuming
than using an automatic code generator, but the designer has more control over the design.
For those with little or no experience with HDL or programming, this chapter provides some
helpful tips to consider as you review or create code. Regardless of the language you select,
the FPGA development process is the same.

At this point you have a good understanding of the design requirements and what you are to
design, assumptions have been documented, a manufacturer has been selected (and maybe
the actual device part number), and you have your design entry tools. This is the point in the
design phase where you use your design entry tool to create the design. I believe the best way
to explain how to create a design is by example.

The design example is based on an information, friend or foe (IFF), system. IFF technology
allows aircraft to be identified as a friend. The system consists of two major components:
the interrogator, which requests information, and the transponder, which replies. Simply
stated, the interrogator requests specific identification information from an aircraft by
transmitting a series of pulses to the transponder. These pulses correspond to specific modes,
which are decoded by the transponder and answered by transmitting a series of reply pulses.
The entire system is complex, so for this example, the design is divided into a very small
piece and the details are provided in a design package.

4.8.1. Design Package

From the requirements specification, you have determined that your assignment is to
develop VHDL firmware that will receive two pulses and determine if the pulses have valid
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pulse width and spacing. Pulse spacing corresponds to two modes, Mode 2 and Mode 3A.
The modes are decoded for valid pulses only, (i.e., with correct spacing). To ensure
consistency among all the firmware, signal names and font conventions have been provided
in the design package.

Font Conventions

* Capitalize the first letter of all reserved words.

* Lower case user-defined signals and nonreserved words with underscores, for easier
readability.

Inputs

The P1 and P3 pulse width is 0.8 psec + 0.1 psec, see Figure 4-8.
VHDL signal name is input pulse.

Reset = active high
VHDL signal name is reset.

Master Clock = 20 MHz
VHDL signal name is clock20Mhz.

Outputs

There are four output signals, defined as follows:

The narrow pulse signal is created when P1 or P3’s pulse width is less than 0.7 psec.
VHDL signal name is narrow pulse.

The Wide Pulse signal is created when P1 or P3’s pulse width is greater than 0.9 psec.
VHDL signal name is wide pulse.

Mode 2 decode is created when pulse spacing between valid P1 and P3 is 5 psec + 0.1 psec,
see Figure 4-9.

P1/P3

| 0.8+1pusec |

Figure 4-8: P1 and P3 Pulse Width
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P1 P3

5+0.1 usec

Figure 4-9: Mode 2 Timing

P1 P3

8+ 0.1 usec L

[

]

Figure 4-10: Mode 3A Timing

VHDL signal name is mode?2.

Mode 3A decode is created when pulse spacing between valid P1 and P3 is 8 psec £+
0.1 psec, see Figure 4-10.

VHDL signal name is mode3A.

Evaluate

After reviewing your package everything seems clear, and there are no questions at
this time.

Predesign Decisions

Design format was preselected as VHDL and my text editor is HDL Works’ Scriptum 8.3
revision 1.

The manufacturer is Xilinx, no specific part number has been selected at this time.

For synthesis, Xilinx Synthesis Technology® (XST) synthesizer will be used. This is a

part of Integrated Software Environment (ISE) Webpack®, which is a complete
development tool. Also available is an evaluation copy of Synplify, so I decide to try

both synthesis tools to see which gives better results. Although ISE Simulator® is a part

of Xilinx’s complete development tool, the standalone simulator ModelSim will be used
for simulation. Implementation is performed using Xilinx’s ISE complete development tool.
The programmer will be decided during the implementation phase. This is acceptable,
because information about the programmer is not needed until the end of implementation,
when it is time to generate the programming file.
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Design

Before starting the design, take a few moments to visualize how you will write the firmware.
Will you use If-Then-Else statements, write a state machine, or what? To help me write
the firmware, I created a state machine diagram, see Figure 4-11. Do not be afraid to create
additional diagrams or other design aids to help you create the design.

Each coder has his or her design style; and as you gain more experience and learn different
techniques, you will develop your own style. This design could have been written several
ways; however, it reflects how I visualize the design, see Listing 4—1. The VHDL design
consists of four main parts: an optional heading, library declaration, entity section, and
architecture section.

Received P1 Rising Edge

Mode Decoded Invalid Pulse

P1PulseWidthCheck|

ModeDecode
Valid P1 Pulse

Invalid Pulse Invalid Mode

Valid P3 Pulse

P3PulseWidthCheck

Received P3 Rising Edge

Figure 4-11: State Machine Diagram
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Listing 4-1. Design Code

1 . S S S R S S S i Header Section LR S B i B i i b g

2. —- Name Rebecca C. Smith

3. —-—Date August 25, 2009

4. —- Filename modeZn3.vhd

5. ——-Description This code performs pulse width and spacing checking.

6. —— : For Pulse Width Checking:

7. - : Narrow pulse signal is sent for pulse widths less
than .7 usec or

8. —— Wide pulse signal is sent for pulse widths greater
than .9 usec.

9. -—-

10. —— For Pulse Spacing (for valid P1 & P3 pulse widths
only) :

11. —— Mode 2 decode signal is sent for 5 usec +/- .1 usec
spacing

12. —— Mode 3A decode signal is sent for 8 usec +/- .1 usec
spacing.

13. ——

14. —-— Revision History

15. —-— Date Initials Description

16. ——

17 . __*************************EndHeaderSection R R i b e b b b b i b b i b b b b b b i

18. ——

19. Library IEEE; —-—define library and packages needed for this design
20. Use IEEE.std logic 1164.All1;

21.

22. Entity mode2n3 Is Port (
23. clock20Mhz :

In std logic; —— Master input clock

24. reset In std logic; —— Power-on reset

25. input pulse In std logic; Input for P1 & P3

26. narrow pulse Out std logic; Indicates input pulse P1 or P3 is

B B too narrow

27. wide pulse Out std logic; Indicates input pulse P1 or P3 is
a a too wide

28. invalid mode Out std logic; Invalid P1 to P3 pulse spacing

29. valid pulse Out std logic; Indicates input pulse is valid

30. mode2 Out std logic; Valid ModeZ2 decoded

31. mode3A Out std logic); Valid Mode3 decoded

32. End mode2n3;

33.

34. Architecture arch mode2n3 Of mode2n3 Is

35.

36. Signal int narrow pulse std logic;

37. Signal int wide pulse std logic;
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38.
39.
40.
41.
42.

43.

44 .

45.
46.
47.
48.
49.

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

65.
66.
67.

68.
69.
70.
71.
2.
73.
74.
75.
76.
77.

Signal int invalid mode std_logic;
Signal int_valid pulse std_logic;
Signal int mode2 std logic;
Signal int mode3A std logic;
Signal risingedge std logic; -=
Signal fallingedge std logic; -
Signal sync pulse std logic; -
Signal pulsewidth counter integer;

Signal pulse spacing integer;

—-—-used “type” to define state machine states

Indicates the rising
edge of P1 or P3
Indicates the falling
edge of P1 or P3
Converts async signal
to sync

Type pulse states Is (waitingPl, plpulsewidth check, waitingP3,

p3pulsewidth check, decode mode) ;
Signal current state pulse states;

Begin

—-—begin assigning internal signals to corresponding output signals

narrow_pulse <= int_narrow_pulse;

wide pulse <= int wide pulse;

mode?2 <= int mode2;

mode3A <= int mode3A;
invalid_mode <= int_invalid_mode;
valid pulse <= int valid pulse;

——end assigning internal

—-— rising edge detection
risingedge <= ‘1’ When sync pulse =

Else ‘0’ ;

—— falling edge detection

fallingedge <= ‘1’ When sync_pulse

Else ‘0’ ;

cur_ state: Process (current state, clock20Mhz,

Begin
If reset = ‘1’ Then —-— assigning power-on or
pulsewidth_counter <= 0;
pulse spacing <=0;
int narrow pulse <= 10" ;
int wide pulse <= 10" ;
int_invalid mode <= 10 ;
int_valid pulse <= 10" ;

signals to corresponding output signals

‘0’ And input pulse =

Il
.

o
2

‘1" And input pulse

reset)

initial states values
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8.
79.
80.
81.
82.
83.
84.

85.

86.
87.
88.
89.
90.
91.
92.
93.
94.

95.

96.
97.
98.
99.

100.
101.
102.

103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.

int mode2
int_mode3a
current state

<: \OI ;
<: \OI ;
<= waitingPl;

Elsif rising edge (clock20Mhz) Then

Case current state Is
When waitingPl =>

pulsewidth counter <=

pulse spacing

int narrow pulse

int wide pulse

int invalid mode

int valid pulse

int mode2

int mode3a

If risingedge = ‘1’ Then
pulsewidth counter

pulse spacing

int narrow pulse
int wide pulse
int invalid mode
int valid pulse
int mode2

int mode3a
current state

Else
current state
End If;

When plpulsewidth check =>
If pulsewidth counter =
pulsewidth counter
pulse spacing
int narrow pulse
int wide pulse
int invalid mode
int valid pulse
int mode2
int mode3a

initial state waiting to receive
first pulse P1

0; -— all signals are assigned
inactive state values

<= 0;

<= 10" ;

<= 10 ;

<= 10" ;

<= ‘0" ;

<= ‘0 ;

<=0 ;

Received P1 rising edge
<= pulsewidth counter + 1;
- start pulse width counter

<= pulse spacing + 1;
—= start;ﬂ—PBpulse
spacing counter

<= ‘0 ;
<= 10 ;

<= 10 ;
<= 10 ;

<=0 ;

<= 10 ;

<= plpulsewidth check;
—-— move to next state & wait for P1
falling edge

<= waitingpl;

19 Then
<= pulsewidth counter;

—-— P11 is wide

<= pulse spacing;

=10 ;
<=1‘1"; —— Send out wide pulse signal
<= 10
<=0 ;
<= 10" ;
<=0 ;
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117.

118.

119.

120.
121.
122.

123.
124.
125.
126.
127.
128.

129.

130.
131.
132.
133.
134.
135.

136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
l46.
147.
148.
149.
150.
151.
152.
153.
154.

current state
Elsif fallingedge = ‘1’
If pulsewidth counter

pulsewidth counter
pulse spacing
int narrow_pulse

int wide pulse
int invalid mode
int valid pulse
int mode2

int mode3a
current state

Elsif pulsewidth counter >= 14 And pulsewidth counter <= 18

Then -- valid pulse
pulsewidth counter
pulse spacing
int narrow pulse
int wide pulse
int invalid mode
int valid pulse

int mode2

int mode3a

current state
End If;

Else
pulsewidth counter
pulse spacing
int narrow pulse
int wide pulse
int invalid mode
int valid pulse
int mode2
int mode3a
current state

End If;

When waitingP3 =>
pulsewidth counter
pulse spacing

—-- no falling edge or wide pulse, continue counting

<= pulse spacing + 1;

—-— Return to 1initial
state and wait for Pl

<= waitingPl;

Then —— Received P1 falling
edge
<= 13 Then —— Pulse is narrow,

Stop counters
<= pulsewidth counter;
<= pulse spacing;

<= '1"; —— Narrow pulse signal
is active

<: \OI ,.

<: \OI ,.

<: \OI ;

<: \OI ,.

<: \OI ,.

—-— Return to initial
state and wait for PI

<= waitingpl;

<= pulsewidth counter;
<=pulse spacing + 1;

<: \OI ,.

<: \OI ,.

<= ‘0" ;

<=1‘1'; -— P1 isgood, activate
valid pulse signal

<: \OI ;

<: \OI ;

<= waitingp3;

<= pulsewidth counter + 1;
<= pulse spacing + 1;

<= int_narrow_pulse;

<= int_wide_pulse;

<= 10" ;
<= int valid pulse;
<: \OI ;
<: \OI ,.

<= plpulsewidth check;

<=0;
—— continuing counting
P1-P3 pulse spacing
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155. int narrow pulse <= 10" ;
156. int wide pulse <= 105
157. int_invalid_mode <= 10 ;
158. int valid pulse <= 10" ;
159. int mode2 <= 10";
160. int mode3a <= 10" ;
161. If pulse spacing =163 Then —— P1-P3 spacing too wide for

B ModeZ2 or Mode3
l62. pulsewidth counter <=0;
163. pulse spacing <=0; —-— stop counting
164. int narrow_pulse <= 10" ;
165. int_wide_pulse <= 10" ;
166. int_invalid_mode <=1l
167. int valid pulse <= 10" ;
168. int mode2 <= 10" ;
169. int mode3a <= ‘0’ ;
170. current state <= waitingpl; -— wait for

a interrogation
171. Elsif risingedge = ‘1’ Then —— Received rising
edge of P3
172. If pulse spacing <= 97 Or (pulse spacing >= 104 And
pulse_spa?:ing <= 156) Then B
173. ——- P1-P3 outside ModeZ2 or Mode3 range
174. pulsewidth counter <=0;
175. pulse spacing <=0; —-— stop counting
176. int _narrow_pulse <= 10" ;
177. int wide pulse <= 10" ;
178. int invalid mode <= 11’ ;
179. int valid pulse <= 10" ;
180. int mode2 <= 10" ;
181. int mode3a <= 10" ;
182. current state <= waitingpl; -— wait for
- interrogation
183. Else
184. pulsewidth counter <= pulsewidth counter + 1;
B —-— start pulse_width counter
185. pulse spacing <= pulse spacing;
B —-— stop pTJlse
spacing counter

186. int narrow pulse =10
187. int wide pulse <= 107
188. int invalid mode <= 10";
189. int_valid pulse <=0 ;
190. int mode2 <= 10" ;
191. int_mode3a <= 10" ;
192. current state <= p3pulsewidth check;
193. End If;
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194.
195.
196.
197.
198.
199.
200.
201.
202.
203.

204.
205.
206.
207.
208.

209.

210.
211.
212.
213.

214.
215.
216.
217.
218.
219.

220.

221.
222.
223.
224.
225.
226.

227.
228.
229.
230.
231.
232.

Else
current state
End If;

<= waitingP3;

When p3pulsewidth check =>
If pulsewidth counter = 19 Then -—- wide pulse

pulsewidth counter
pulse spacing

int narrow pulse
int wide pulse

int invalid mode
int valid pulse
int mode2

int mode3a
current state

Elsif fallingedge = ‘1’ Then

<= pulsewidth counter;

<= pulse spacing;

<= ‘0" ;

<= ‘1'; —— P3 is wide send out
wide pulse signal

<= 10 ;

<= 10 ;

<=0 ;

<= ‘0 ;

<= waitingPl; —— Return to waiting

for rising edge of P1
——detecting P3 falling
edge

If pulsewidth counter <= 13 Then —-— narrow pulse

pulsewidth counter

pulse spacing
int narrow pulse

int wide pulse
int invalid mode
int valid pulse
int mode2

int mode3a
current state

<= pulsewidth counter;

<= pulse spacing;

<= ‘1", —-— send out narrow
pulse signal

<=0 ;
<= 10 ;
<=0 ;
<= 10 ;
<= 10
<= waitingpl; -- Return to waiting

forrisingedge of P1

Elsif pulsewidth counter >= 14 And pulsewidth counter <= 18
Then -—-valid pulse

pulsewidth counter

pulse spacing
int narrow pulse
int wide pulse
int invalid mode
int valid pulse

int mode2

int mode3a

current state
End If;

<= pulsewidth counter;
<= pulse spacing;

<= ‘0" ;

<= 10 ;

<= 10 ;

<= ‘1’ ; -- P3 is good, activate
valid pulse signal

<=0 ;

<: \OI ;

<= decode _mode;

Else ——no fallinge edge

pulsewidth counter

<= pulsewidth counter + 1;
—— continue pulse width counting
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233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244,

245.
246.
247.
248.
249.
250.
251.
252.
253.
254.

255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.

pulse spacing
int _narrow_pulse
int wide pulse
int invalid mode
int valid pulse
int mode2
int mode3a
current state
End If;

When decode mode =>

<= pulse spacing;

<= int narrow pulse;
<= int_wide_pulse;

<= int invalid mode;
<= int valid pulse;
<= 10" ;

<= 10 ;

<= p3pulsewidth check;

If (pulse spacing>= 98 And pulse spacing <= 102) Then
spacing between 4.9 and 5.1 us

pulsewidth counter
pulse spacing

int narrow_pulse
int wide pulse

int invalid mode
int valid pulse
int mode2

int mode3a

current state

<= pulsewidth counter;
<= pulse spacing;

<= int narrow pulse;
<= int_wide_pulse;

<= int_invalid_mode;
<= int valid pulse;
<=1l ;

<=0 ;

<= waitingPl;

—-—pulse

Elsif (pulse spacing >= 158 And pulse spacing <= 162) Then
—— pulse spacing between 7.9 and 8.2 us

pulsewidth counter
pulse spacing
int narrow pulse
int wide pulse
int invalid mode
int valid pulse
int mode2
int _mode3a
current state

Else
pulsewidth counter
pulse spacing
int narrow pulse
int wide pulse
int invalid mode
int valid pulse
int mode2
int mode3A
current state

End If

<= pulsewidth counter;
<= pulse spacing;

<= int_narrow_pulse;
<= int_wide_pulse;

<= int invalid mode;
<= int valid pulse;
<=0 ;

<= 1'1l";

<= waitingPl;

<= pulsewidth counter;
<= pulse spacing;

<= int narrow pulse;
<= int_wide_pulse;

<= int_invalid_mode;
<= int valid pulse;
<= 10"

<=0

<= waitingpl;




Design 79

276. When Others => —— 1f unknown state the signal will take on
these values

2717. pulsewidth counter <=0;

278. pulse spacing <=0;

279. int narrow pulse <= 10" ;

280. int wide pulse <= 10" ;

281. int_invalid_mode <= 10 ;

282. int valid pulse <=0 ;

283. int mode2 <= 10 ;

284. int mode3A <= 10" ;

285. current state <= waitingpl;

286. End Case;

287. End If;

288. End Process;

289.

290. edge_detect: Process (reset, clock20Mhz)

291. --This process syncs input pulse to master clock. This signal is used for
edge detection.

292. Begin

293. If reset = ‘1’ Then

294. sync_pulse <= ‘0" ;

295. Elsif rising edge(clock20Mhz) Then

296. sync_pulse <= input pulse; —— input sync to master

a - clock
297. End If;

298. End Process;
299. End arch mode2n3;

Part 1, Lines 1—17. Optional Heading Section

The original coder’s name, original date, a brief description, and a revision history provide
useful information for the reader.

Part 2, Lines 19—20. Library Declaration

Only the standard logic 1164 library is needed for this design. Its contents are made visible so
they can be used in the design.

Part 3, Lines 22—32. Entity Section
Each input and output stated in the design package is listed and defined as standard logic.
Part 4, Lines 34—299. Architecture Section

The main design code is in the architecture section, which consists of processes, concurrent
statements, and signal assignments.
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There are two processes, which are found on lines 69—288 Cur state process. This
contains a case statement that is used to measure pulse width and pulse spacing and
determine the mode.

Lines 290-298, Edge detect process, are used to create a delayed copy of the input
pulse for edge detection.

Lines 36-51, internal signal definitions, define internal signals used in the design.

Lines 46-47, counter signals defined, define the signals used for the pulse width and spacing
counters.

Line 49, defining data type, creates a data type called pulse states that can take on five
values: waitingpl, plpulsewidth check, waitingp3, p3pulsewidth check,
and decode mode.

In line 51, signal set to user-defined type, signal current state is assigned
pulse states as the data type, which has five possible states.

In lines 55-60, output signals assigned internal signal data, concurrent statements are used to
assign the values of the internal signals to the corresponding output signal.

The concurrent statement in lines 63—-67, edge detection, created the rising edge detection
that is needed.

Now that the VHDL design has been created there are two options as you move forward in
the development process.

Option 1. Simulation

Simulation allows you to verify that the design meets requirements. No timing information is
known, but design and logic errors can be found and corrected.

Option 2. Synthesis

Synthesis is the process that reduces the design and connects FPGA resources to perform
the desired functions. While this process is required, it provides no way to determine if
the firmware is performing the required functions. An optional simulation file can be
provided; however, if error(s) are detected, it is difficult to determine if they are a result
of the synthesis process or the design code.

Personally, I like to perform simulation next. This allows me to verify my design and make
modifications as necessary. So, in the following chapter, the design is simulated.
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4.9. Chapter Overview

The approach presented in this chapter should help you get started regardless of how much or
little detail is provided in your design package. Remember, this is a very important phase,
mistakes made in this stage get carried over into the other phases. The longer a mistake goes
undetected, the more expensive it is to correct. Take time to produce your design; it will save
you time and many headaches in the end.

Key Design Phase Tips

* Make sure that you evaluate your design package and get clarification when necessary.
* Develop a system to keep your documents organized.

* Remember, the longer errors or mistakes are undetected and carried further into the
development phases, the more expensive and time consuming they are to correct.

Chapter Links
HDL Works Scriptum: www.translogiccorp.com/index.html.

Doulos’s code generator: www.doulos.com/knowhow/perl/testbench_creation.
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Simulation

5.1. Introduction

This chapter discusses the simulation phase of the FPGA development process. In my
opinion, it is the most exciting and fun part of the FPGA development phases. At this point,
you have a design that needs to be verified. The design could be one created in this book, one
you or someone else created, a netlist created as a result from the synthesis or implementation
phases (discussed later in this book), or some modifications to an existing design. Regardless
of the type of design, the purpose of simulation is to verify that the design performs the
required functions. Typically, simulation can be performed in three places in the
development process: on the output from design, synthesis, and implementation phases. Most
often, simulation is performed only on the design and not on the netlist or file produced by
synthesis or implementation phases.

Design verification can also be performed using lab equipment, such as logic analyzers;
however, this can be a more time-consuming and a less effective way, especially for new
designs. Lab verification is less flexible, in that errors can damage the hardware. Generally,
the setup to re-simulate a design months later is easier and faster than obtaining and re-setting
up lab equipment. Although simulation is not the only method to verify a FPGA design, I
believe it to be the most feasible.

Even though simulation is not required, it should never be completely omitted from the
FPGA development phase, especially for new designs. It may seem unnecessary to simulate
small, simple changes, but those are the ones that can cause you the biggest problems. You
can learn a lot about the design through simulation and have some fun in the process.

In this chapter, you will learn
*  What tools are used for simulation.
* How to verify a VHDL design by writing testbenches.

* The options for collecting lab data for design verification.

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00005-9 83
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5.2. What Is Simulation?

Simulation is the process of applying stimulus or inputs that mimic actual data to the design
and observing the output. It is used to verify that the design performs the expected and
required functions.

Inputs to the simulation phase can be the design phase output, synthesis netlist, and
implementation netlist. Any one or all of these inputs can be used to perform simulation. The
output can be a listing, where the data are represented as binary, hex, or the like; graphically
as a waveform; or the final results (such as pass/fail indicator), see Figure 5—1. Output from
simulation is unique in that it does not feed into another development phase. However, the
output is very important, because it provides the medium that allows the tester or verifier to
see how the design performs.

This phase is as important as the design phase, and as a general rule, the amount of time spent
simulating should be about twice the design time. Ideally, the firmware should not be tested
by the person who wrote the code. The original coder should do minimal testing, but
comprehensive testing should be done by a code tester. The same reasoning why the original
coder should not write his or her requirements apply to this situation. In addition to that
reasoning, oftentimes the coder does not try as hard to find errors in his or her firmware as a

~—_

Outputs

Development Phases | Listing i
| | | Clk  Reset Inputt |
1 1 0 1 0 |
! N ! ! 71 o |
! ) I Original Design 9 9 ! !
| Design | > l 0 0 0 !
| | | 1 0 0 |
! J | ! !
| I I |
i i | Graphical |
i N | L !
' ! Synthesized Netlist > Simulati : o :
: Synthesis ; > imulation i > |
i i | |
! a I |
| | l !
! : : Resultant File :
| !
! _ I Placed & Routed Netlist ! !
! Implementation ! » : Pass/Fail :
| |
| | l !
| I | |

Figure 5-1: Simulation Phase Inputs and Outputs
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third party. So the original coder may overlook or miss errors, such as design flaws that
would be found by someone else. Once the design is complete, you must now verify that it
performs as required. One way this is done is by performing a simulation on the design.

5.3. Simulation Tools

The tools needed in the simulation phase are an editor or editors and a simulator. The editor
is used to create the inputs that will be applied to the design. As you simulate, it may be
necessary to modify or change the firmware; therefore, you need an editor to modify the code
created during the design phase. These editors may or may not be the same, depending on the
format of each design. If you decide to create an HDL testbench (discussed later in this
chapter), then a text editor is needed. However, if you are creating the inputs as a waveform,
then you need a graphical editor. HDL code is generally supported by most, if not all,
simulators; however, waveform test inputs may not be, so consult the documentation for your
simulator. There are pros and cons for using HDL versus graphical editors for testing; many
of these are the same as discussed in the design phase. Basically, HDL provides more
flexibility, while waveforms are less flexible and not supported by all simulators.

The term simulator has been mentioned several times but not really explained. It is a tool that
compiles or connects the test inputs to the design. Running the simulator feeds the input test
data into the design, causing the outputs to change based on the input data, see Figure 5-2.
The output data can be presented in several formats, such as a waveform, text file, or data
formats (i.e., binary, hex, and so forth). There are many standalone simulators, such as
Mentor Graphic’s ModelSim®, which is my preference. Simulators can be very expensive, so
I suggest doing a Web search. You should be able to find some free or trial offers for
simulators that may meet your needs. Some manufacturers, like Xilinx and Altera, offer their
own simulator brand with their complete package development tools. In addition to their

Test Inputs

|
L Compile

Figure 5-2: Design and Test Input Compile Flow
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fee-based complete package development tools; they offer a free Web version of their design
tools.

Here are some free Web downloads development tools with simulators:

Manufacturer: Xilinx

Development tool: ISE Webpack™, includes ModelSim XE Il 6.4b and the “light” version of the ISE
Simulator (ISim)

Download address: www.xilinx.com/tools/designtools.htm

Note: The download may require a user name and login, which are free.

Manufacturer: Altera
Development tool: Quartus® Il, Web Edition, offers ModelSim, Altera Starter Edition
Download address: www.altera.com, then go to “Products” — “Design Software”

Note: The Quartus II, Web Edition, does not require a license.

The free tools offer fewer features and support fewer devices or operating systems than
their fee-based counterparts, but these differences may not be an issue for you. Because
some companies now offer free Web-based development tool packages, it is easy for
anyone to download and learn a new skill or enhance his or her skills outside of work or
even do home projects. This is a luxury that was not available when I started working
with FPGAs.

5.4. Levels of Simulation

There are three levels of simulation, see Figure 5-3: the register transfer level (RTL), gate
level, and functional level. Each level of simulation verifies different aspects of the design.

RTL performs simulation on the design phase code. Doing this prior to synthesizing allows
you to troubleshoot the design for logic and syntax errors. The RTL simulation contains no
timing information.

Functional simulation is performed on the netlist or the code generated by the synthesis tool.
Oftentimes, it is necessary to direct the synthesis tool to generate the functional simulation
netlist. Consult your synthesis tool’s user’s manual to determine if the netlist is generated
automatically or is a selected option. The synthesized netlist allows you to verify that the
synthesis process did not change the design. If you are going to perform a functional
simulation, then a new netlist must be created each time the design is synthesized. The
synthesis tool predicts and inserts some timing information, these are not the final timing
delays. This simulation is more realistic than the RTL, but not as accurate when it comes to
timing as the gate-level simulation.
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Edit design to correct timing & other errors, change logic & ...
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Figure 5-3: Simulation Levels

Gate-level simulation is performed on the code or netlist generated by the implementation tool.
It may be necessary to direct the implementation tool to generate the gate-level simulation
netlist. Consult your implementation tool’s user’s manual to determine if the netlist is created
automatically or is a selected option. This simulation contains actual timing information and is
the most realistic representation of the FPGA design. Now, the actual internal chip delays are
known and incorporated into the netlist that represents the design. Because the actual timing of
signals is known, timing problems can be detected during this simulation.

The ModelSim XE III 6.4b simulator included in Xilinx’s ISE Webpack is used for the
simulations in this chapter, unless otherwise indicated.

5.5. Test Cases

Test cases should be written prior to creating your testbench or graphical stimulus. Table 5-1

shows some test cases for the design. Test cases are written such that they verify that the design
meets the requirements. No hard and fast rule states that you should have a specific number of
test cases, but as a guide, there should be enough cases to verify the design. I have found that,
more times than not, the smallest area you omit will come back to haunt you. So, try to make

your test cases as complete as possible. However, for some designs, it may not be possible to test
every possible situation, but do the best you can to ensure at least all the critical areas are covered.

The test cases created for the design code in this book are shown in Table 5—1. These test cases
will be used to verify the design. The requirements state that the input pulses and modes must
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Table 5-1: Design Test Cases.

Test Mode 3 Pulse Mode 2 Pulse P3 Pulse P1 Pulse Expected
Case Spacing Spacing Width Width Output
N/A N/A No pulse Narrow No decode
N/A Normal Narrow Minimum No decode
N/A Normal Minimum Normal Mode
2 decoded
4 N/A Minimum Normal Maximum Mode
2 decoded
5 N/A — Don’t care Wide No decode
N/A Maximum Maximum Normal Mode
2 decoded
7 N/A Normal Wide Normal No decode
N/A Narrow Normal Normal No decode
9 N/A Wide Normal Normal No decode
10 Narrow N/A Normal Normal No decode
11 Minimum N/A Normal Normal Mode 3
decoded
12 Normal N/A Normal Normal Mode 3
decoded
13 Maximum N/A Normal Normal Mode 3
decoded
14 Wide N/A Normal Normal No decode

Note: Narrow is defined as any value less than the minimum, and wide is any value greater than the maximum.

meet a specific range for decoding to occur. Therefore, test cases are created to check P1 and
P3 pulse widths that are below, at minimum, at normal, at maximum, and above the required
range. Modes 2 and 3 pulse spacing is checked at minimum, normal, maximum, and above
the required range. The code that checks the P1 and P3 pulse widths is the same code but
copied in two places. One could make the argument that, since the code is the same, it should
detect pulses the same and it is sufficient to check the range only on either P1 or P3. I agree
this would be a valid argument to a certain extent, if the code had been written such that the
P1 and P3 pulse-width checking were performed by the same code, not a copy, in two places,
then I probably would not test both cases. However, since the code is copied, things can go
wrong with copying the code in two places, such as forgetting to change a signal’s name that
applies to one pulse and not the other. This type of error can be hard to find, because the
name is valid but not used in the correct place. And, of course, the code would check the
correct section leaving this error to cause problems another day. So, I think it is a good idea
to check both.
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5.6. Stimulus

The input applied to the design is called the stimulus. It mimics the input data signals
which are applied to the design by the simulator tool. Stimulus used in your simulation
provides an easy way to observe the design’s behavior within and outside your design’s range
without damaging the hardware. Stimulus can be provided by interactively typing it in

real time, a graphical testbench, or an HDL testbench. There are advantages and
disadvantages to each method. You can decide which is right for you.

5.6.1. Interactive Stimulus

Real-time input is typed on the command or transcript line of the simulator. The input data
are not saved in a separate file. This means some information must be typed in between different
simulation runs. All information is lost when the simulator is closed. This type of stimulus is
not feasible for designs with a lot of inputs and, in my opinion, not feasible in most cases.

Fresh out of college, I was assigned to write a design in Advanced Boolean Equation Language
(ABEL). I was not very familiar with either ABEL or programmable devices. The engineer taught
me to test the code manually. This meant that, at least once a day, I had to retype all the input data.
This was during the time when not many engineers had personal computers in their office, so I was
working in a computer lab. This was a very time-consuming, painstaking exercise. In hindsight, I
realize the engineer was not being mean but really did not know any better himself.

The force command is used in ModelSim to interactively set signal values, see the syntax
shown in Example 5-1.

m Example 5-1. Force Syntax

force[ -freeze | —drive | —deposit] [ —cancel <time>] [ -repeat <time>]
<object name> <value>[ <time>] [, <value> <time> ..]
where
- freeze

Keeps the signal at a specific value until it is forced again or until it is unforced
with a noforce command.

- drive
A driver is attached to the signal and drives the specified value until the signal is
forced again or until it is unforced with a noforce command.

- deposit
Sets the signal to a specific value. This value stays the same until there is a
subsequent driver transaction, until the signal is forced again, or until it is

unforced with a noforce command.

(Continues)
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- <time>
Defines the time when the value is applied. The time is relative to the current
simulation time unless an absolute time is stated by preceding the value with the @
character. The default resolution units are used if no time unit is specified. The change

occurs in the current simulation delta cycle when the force command has a zero delay.
L ]

Use ModelSim’s command line to type in the following four commands:
force clock20Mhz 0 25, 1 50 —-repeat 50

noforce clock20Mhz

force reset 1 0, 0125

noforce reset

force input pulse 00, 1175, 0975, 1 5175, 0 5975
noforce input pulse

run 7usec

This creates a 20 MHz clock, sets and clears reset, creates P1 and P3 with 800 nsec pulse width, P1
to P3 pulse spacing of 5 psec, and the simulation runs for 7 psec., see Figure 5—4. Because the
stimulus is not saved, these commands have to be entered each time the design is recompiled.

5.6.2. Graphical Test Bench

A graphical testbench uses waveforms to describe the behavior of the input signals. Like
waveform designs, graphical testbenches are not as flexible and generally not portable to
other simulation tools. In general, waveform editors are easier; however, you give up
flexibility. Altera’s Quartus II 8.1, Web Edition, is used to create the input stimulus
shown in Figure 5-5, which represents the input signals

Clock20Mhz = 20MHz

Reset = 75 nsec

Pl pulsewidth = 850.00 nsec

P3 pulsewidth = 870.00 nsec

P1 to P3 pulse spacing = 5.2usec

After applying the graphical stimulus to the design, P1 and P3 are detected and considered valid
pulses. Since this satisfies the mode decode condition, a Mode 2 is decoded, see Figure 5-6.
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Figure 5-6: Output Results from Graphical Stimulus

5.6.3. HDL Testbench

An HDL testbench is an HDL file that describes the input. It looks similar to an HDL
design and shares some of the same advantages. For example, it is easy to switch
between different manufacturers and more flexible than graphical or interactive
stimulus formats.

Testbenches can be written as

*  Manual. The output results must be viewed manually to determine if they
are correct.

* Automatic. Outputs are evaluated by the code and the final results are provided. Final
results can be something like a pass/fail indicator on the screen or data written to an
external file.

Each of these testbench options is examined in this section. A VHDL testbench has a design
structure similar to the design code, it has the same sections as a regular VHDL design.
A testbench starter template has been provided, see Listing 5-1.
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Listing 5-1. VHDL Testbench Starter Template

1_ S S R R i e e i i b b i g b b Header Section LR R e e i i S e b i i i b b b S i b i i S
2. —— Name : Rebecca C. Smith
3. —- Date : January 28, 2009
4. —— Filename : tb EntityName.vhd
5. ——-Description : This starter HDL template provides placeholders and
syntax that can be used
6. -— : to help develop VHDL testbenches. Modify the template
to meet your needs.
—-— Revision History
—-— Date Initials Description
9. P S R R I b i b b i b b b b b End Header Section LR i i i i b b i S i b i
10. Library IEEE; —-— define library and packages needed for

this design
11. Use IEEE.std logic 1164.All;

12.

13. Entity <entity name> Is End <entity name>;

14.

15. Architecture <architecture name> Of <entity name> Is

16. Component <component's name> Port (

17. Signal <signal name> : direction <data type>; —-— signal names in

component's entity section
18. End Component <entity name>;

19.

20. Signal <signal's name> : <data type>;

21. Constant <constant's name> : <data type>;

22.

23. Begin

24.

25. User's defined component name: <Component's name>
26. Port Map (

27. Componentl signal name => user defined signal name,
28. Component?2 signal name => user defined signal name) ;
29.

30. -- At this point you could have a combination of code to describe signal

behaviors such as processes and signal assignments. This will be
demonstrated by example.

31. <process name>: Process (sensitivity 1list) ——- add process if
necessary

32.

33. Begin

34. <sequential statements>;

35. End Process;

36. End <architecture name>;
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Lines 1-9. Optional Heading

Lines 10—11. Library Section
The library section has the same meaning as in the design code.
Line 13. Entity Section

The entity section is a single line and has no signal names, as in the design code. As with

the design code, it is a good idea to develop a naming convention for your testbenches.

I discovered that naming all my testbench entities festhench made it easy for me to

quickly locate the testbench in my simulation tool. This came about because once my design
had over 30 files with at least 10 different testbenches. It was a nightmare trying to locate

the correct testbench because of the way the simulator listed the files. So I learned that, if  name
all testbench entities testbench it is easy for me to find a specific testbench. All I have to do

is select the entity named testbench then the specific architecture. This makes my life a lot easier.

Lines 15—36. Architecture Section

The architecture can be a little confusing. It is the same general concept as the design phase’s
architecture section, which describes the design; however, this one defines the input signals
or stimulus. My architecture’s name is defined such that it gives an indication to what it is
verifying.

Consider the testbench as a breadboard with a socket being used to test a chip, see

Figure 5-7. Here is a simple scenario for testing the chip excluding power suppliers: Insert
the chip into the socket, set up the data generator to provide input data, connect the data
generator to the circuit using probes, and connect a logic analyzer to view the circuit’s
response. This is very similar to what is going on in the architecture. In the architecture
section, the design can be thought of as a component; it is instantiated (put in the socket) in
the testbench design; the input stimulus and testbench design are connected using internally
defined signals; and the output is viewed using the simulation tool.

Simulation Terms Testbench Simulator Output
Testbench Instantiation Graphical, File, Etc.

| |
| |
| |
I :
I \
: Design I
| |

|
I \
I \
| |

Laboratory Terms e 4 L __ |
p Data Generator Chip in Socket Logic Analyzer

Figure 5-7: Simulation Phase Terms Equated to Lab Terms
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Much like our lab setup, we can test different chip designs using the same setup for
equivalent pinouts, just by removing one and inserting another. While the same is true for
the testbench, if you have another variation of the design, the same testbench can be used just
by replacing which design is instantiated.

Running the testbench is like turning on the data generator, because the inputs are then
applied to the design and can be observed as waveforms, data listing (i.e., binary, hex, etc.),
or results written to a file or your monitor.

5.6.4. Manual Testbench

The results from a manual testbench must be manually reviewed to determine if they are
correct.

Design verifications performed this way can be slow; however, it is my option that beginners
learn more from manual testbenches. While painstaking as this can be, I always found it
exciting because I can explore the various features of my simulator and observe internal signal
functions or other aspects of the design that may otherwise be overlooked with an automatic
testbench. By using manual testbenches, I have found many design errors by being able to view
internal signals that may have been overlooked. Personally, I like looking at the waveforms and
internal signals, especially if I am working with someone else’s code. The testbench shown in
Listing 5-2 is used to verify that the design meets the requirements specified in the design
package. Notice that the testbench has the same four sections as the design, with the
information in the entity and architecture being slightly different from the design.

Lines 1—17. Optional Heading Section

The same general information is contained in this section, with the description describing the
test stimulus.

Lines 19—20. Library Declaration Section

Only the std_logic 1164 package from the IEEE library is needed for this testbench, so
it is made visible and usable in the library section.

Line 22. Entity Section

For the testbench, input and output signals are not called out in this section. Only this single
line is required.

Lines 24—173. Architecture Section

Lines 26—35. Component Declaration

The mode2n3 design is defined as a component.
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Listing 5-2. Manual Testbench

—— KA AR A AAAAAAAAA AKX, * Togder SeCtI1on FHAAAA XA AL LA LA A Kk kkkhhhd ok kh okt &

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

needed for this design
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

—— Name
—— Date
—— Filename

—— Description
meets the Mode 2 or 3A

inclusive

5.1usec inclusive

7.1psec inclusive

—— Revision History
—— Date

: James W. Smith

: June 4, 2009

: tb modeZn3.vhd

: This testbench determines if the input pulses

: pulse width and spacing requirements by:
: 1. verifying pulse widths are . 7usec to .9usec

: 2. Mode 2 P1 to P3 pulse spacing is 4.9usec to

: 3. Mode 3A P1 to P3 pulse spacing is 7.9usec to

: Results must be manually verified.
: Run simulation for 500.00usec

Initials Description

P S R R i i End Header SeCthH LR b i i i b b b b b b i i

Library IEEE;

—-— define library and packages

Use IEEE.std logic 1164.All;

Entity testbench Is End testbench;

Architecture tb mode2n3 Of testbench Is

Component mode2n3 Port (
clock20Mhz
reset
input pulse
narrow_pulse
wide pulse
invalid mode
mode?2
mode3A
End Component mode2n3;

Signal clock20Mhz
Signal reset
Signal input pulse

: In std logic;

: In std logic;

: Instd logic;

: Out std logic;
: Out std logic;
: Out std logic;
: Out std logic;
: Out std logic);

\OI ;
: std _logic := 1" ;
: std logic := 0" ;

: std _logic :




Simulation

97

40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
2.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

Signal narrow pulse : std logic;

Signal wide pulse : std logic;

Signal invalid mode : std logic;

Signal mode2 : std _logic;

Signal mode3A : std _logic;
Constant twenty five nsec : time := 25 nsec;
Begin

mode2n3 component: mode2n3

Port Map (
clock20Mhz => clock20Mhz,
reset => reset,
input pulse => input pulse,
narrow_pulse => narrow_pulse,
wide pulse => wide pulse,
invalid mode => invalid mode,
mode2 => mode2,
mode3A => mode3A) ;

create twenty Mhz: Process
Begin
Wait For twenty five nsec;
clock20Mhz <= Not clock20Mhz;
End Process;

reset <= ‘0" After 145.00 nsec;
input pulse <=
—— Test Case 1 P1 pulse width (pw) = narrow & no P3
‘1’ After 200.00 nsec, —-— P1, Test Pulse 1
‘0" After 850.00 nsec, —— 650nsec narrow pulse width

—— Test Case 2 P1 PW=min.; P3 PW= narrow & M2 normal spacing

‘1’ After 5.00 usec, -— P1, Test Pulse 2

‘0" After 5.70 usec, —— 700nsec min pulse width
‘1’ After 10.00 psec, -— P3, Test Pulse 3

‘0! After 10.65 psec, —— 650nsec pulse width

—— Test Case 3 P1 PWnormal; P3 PWmin & M2 normal spacing
‘1" After 35.00 usec, -— P1, Test Pulse 4
‘0" After 35.80 usec, —-— 800nsec max pulse width
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85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
11l6.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.

‘1" After 40.00 usec, —-— P3, Test Pulse 5
‘0" After 40.70 psec, —— 700nsec wide pulse width

—— Test Case 4 P1 PW= max, P3 PW= normal & M2min spacing

‘1’ After 60.00 usec, -— P1, Test Pulse 6
‘0" After 60.90 usec, —- 900nsec pulse width
‘1’ After 64.90 psec, -— P3, Test Pulse 7
‘0" After 65.70 psec, —— 800nsec pulse width

—-— Test Case 5 P1 PW= wide,; no P3
‘1" After 90.00 psec, -— P1, Test Pulse 8
‘0" After 90.95 psec, —— 950nsec pulse width

—— Test Case 6 P1 PW= normal; P3 PW= max & M2 max spacing
—-— Mode 2 5.1usec P1 - P3 spacing

‘1’ After 110.10 psec, -— P1, Test Pulse 9

‘0" After 110.90 psec, —-- 800nsec pulse width
‘1" After 115.20 psec, -— P3, Test Pulse 10
‘0! After 116.10 usec, —-- 900nsec pulse width

—— Test Case 7 P1 PW= normal & P3 PW= wide & M2 normal spacing

‘1’ After 136.00 psec, -— P1, Test Pulse 11
‘0" After 136.80 psec, —— 800nsec pulse width
‘1’ After 141.0 psec, —-— P3, Test Pulse 12
‘0! After 141.95 psec, —-- 950nsec pulse width

—— Test Case 8 P1 PW= normal; P3 PW= normal & M2 narrow spacing

‘1" After 160.00 psec, -— P1, Test Pulse 13
‘0! After 160.80 usec, —-- 800nsec pulse width
‘1’ After 164.80 psec, —-— P3, Test Pulse 14
‘0" After 165.60 psec, —— 800nsec pulse width

—— Test Case 9 P1 PW = normal; P3 PW= normal & M2 wide spacing

‘1’ After 180.00 psec, —-— P1, Test Pulse 15
‘0" After 180.80 psec, —-- 800nsec pulse width
‘1’ After 185.20 pusec, —-— P3, Test Pulse 16
‘0" After 186.00 psec, —— 800nsec pulse width

129.
130.

—— Test Case 10 P1 PW= normal; P3 PW= normal & M3 narrow spacing
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131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
1l46.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.

‘1" After 300.00 usec,
‘0’ After 300.80 psec,

‘1’ After 307.80 psec,
‘0" After 308.60 usec,

—— Test Case 11 P1 PW = normal; P3 PW = normal & M3min spacing

‘1" After 320.00 psec,
‘0" After 320.80 psec,

‘1’ After 327.90 usec,
‘0" After 328.70 usec,

—— Test Case 12 P1 PW= normal; P3 PW= normal & M3 normal spacing

‘1’ After 340.00 psec,
‘0" After 340.80 usec,

‘1’ After 348.00 psec,
‘0" After 348.80 psec,

—— Test Case 13 P1 PW= normal; P3 PW= normal & M3 max spacing

‘1’ After 360.00 psec,
‘0" After 360.80 psec,

‘1" After 368.10 psec,
‘0" After 368.90 psec,

—— Test Case 14 P1 PW= normal; P3 PW= normal & M3 wide spacing

‘1’ After 380.00 psec,
‘0" After 380.80 psec,

‘1’ After 388.20 usec,
‘0" After 389.00 usec,

—-- Out of range area between Modes 2 & 3 pulse spacing 5.8usec & 7.8usec;

pulse spacing = é6usec

166.
167.
168.
169.
170.
171.
172.
173.

‘1’ After 480.00 psec,
‘0" After 480.80 psec,

‘1’ After 486.00 usec,
‘0" After 486.80 usec;

End tb mode2n3;

—-— P1, Test Pulse 17
—- 800nsec pulse width

-— P3, Test Pulse 18
—-— 800nsec pulse width

—-— P1, Test Pulse 19
—— 800nsec pulse width

—-— P3, Test Pulse 20
—- 800nsec pulse width

-— P1, Test Pulse 21
—— 800nsec pulse width
—— P3, Test Pulse 22
—— 800nsec pulse width
-— P1, Test Pulse 23
—- 800nsec pulse width
—-— P3, Test Pulse 24
—— 800nsec pulse width
—-— P1, Test Pulse 25

—— 800nsec pulse width

—-— P3, Test Pulse 26
—— testing at 8.2usec spacing

—-—normal P1, Test Pulse 27

—-—normal P3, Test Pulse 28
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Note: Lines 37-171 are referring to Listing 5-2.
Lines 37—44. Defining Internal Signals

All the internal signals used in this testbench are defined in this section. For the power-on
reset signal on the board it is used to set inputs to a known state, the initial conditions must be
set for simulation. The initial conditions for the input signals are indicated by appending
:='X" ;, where X is any valid signal level (i.e., 1, 0, Z, etc.) to the signal definition. The initial
condition for clock20Mhz and input pulseislowor ‘0’ and resetissethighor ‘1’ .

Line 46. Defining Half Clock Period
This constant is used to create the 20 MHz clock.
Lines 50—59. Instantiating the Design

These lines instantiate the ‘mode2n3’ design. Internal signals are used to connect the design’s
I0. To keep things simple, I like to make my connecting signal’s name the same as those on
the component. However, it is acceptable to make them different.

Lines 61—65. Creating a 20 MHz Clock

There are several ways to create a repetitive signal like the clock. I like to use a process that
toggles the signal every half cycle.

Line 38. Reset Signal

This is the power-on reset signal, which is initially set active or high. Keeping reset
active, the outputs do not respond to changes in the input, see Figure 5-8. To create this
scenario, line 67, which sets reset inactive, was commented out.

Line 67. Inactive reset

This line, read as reset, goes low after 145 nsec. Now the outputs respond to the input
stimulus, see Figure 5-9. Reset is active only once in this design; however, it could be
reactivated at any time during the simulation.

Lines 69—171. Input pulse signal

The P1 and P3 are received through input pulse signal. The test cases start on line 71.
Using the predefined test cases, the various pulse widths and spacings are described.

5.6.5. Simulation Phase Outputs

The output is shown as a waveform for this testbench. The full simulation waveform

that results from applying the input stimulus defined in the testbench is shown in

Figure 5-10. The full simulation view is difficult to read, so the expanded view of test case 1,
test case 4, and test case 14 are presented in this section.
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Figure 5-8: Continuously Active Reset (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Lines 70—72. Test Case 1

P1 pulse goes high at 200.00 nsec, then low at 850.00 nsec. This produces a 650 nsec pulse.
The minimum pulse width for a mode decode is 0.7 sec; therefore, a narrow pulse width goes
active on the falling edge of P1 and no P3 is sent, see Figure 5-11.

Lines 88—93. Test Case 4

P1 is a 900 sec pulse width, rising edge at 60.00 sec and falling edge at 60.9 sec. P3 is
800 nsec pulse width, rising edge at 64.9 sec and falling edge at 65.70 sec. The rising edge
timing between P1 and P3 is 4.9 sec, the minimum spacing for Mode 2, see Figure 5-12.

Lines 158—163. Test Case 14

P1 and P3 have normal pulse widths and the rising edge timing between P1 and P3 is 8.2 sec,
which is wide or outside the maximum pulse spacing for Mode 3A, see Figure 5-13.
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Figure 5-9: Reset Activated and Deactivated (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

5.6.6. Automatic Testbench

An automatic testbench can make design verification easier. However, if your automatic
testbench is not complete or correct, the results can be misleading, in that you may be
searching for errors in the design when in reality they are in the testbench. With an automatic
testbench, you are not required to manually view or verify the output. This type of testbench
is designed to evaluate the output results and provide the final results.

However, just like anything else, you have to make sure that this testbench is reporting
accurate information. Otherwise, the results can be wrong. The manual testbench has been
modified to write the test results to an external file. The output file should contain whatever
information is necessary to verify that the design meets the requirements. For the automatic
testbench shown in Listing 5-3, I decided I wanted to see if the design was able to detect
wide, narrow, or valid pulse widths and P1 or P3 pulse spacing. Someone else may decide it
is acceptable to write only when a valid mode is decoded and assume the other input pulses
did not create a mode decode. Using the read and write commands in testbenches can
make verification a lot easier.
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Figure 5-10: Full Simulation View (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Changes are made to the manual testbench to make it automatic.
Lines 1-21. Optional Heading Section

The description is updated to include the name of the file where the simulation results will be
written.

Lines 23—26. Library Declaration

The write command used to write to the output file, which is located in the
std.textio package in the std library. Therefore, this library is called out and made
visible to the code.

Line 28. Entity
This is the same as in the manual testbench.
Lines 30—246. Architecture Section

To distinguish between the manual and automatic architecture, the name auto is appended
to the end of the architecture’s name. This section is basically the same as the manual
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Figure 5-11: Test Case 1, Simulated Output (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

testbench, with the addition of defining the file where the output will be written and the
condition in which data are written to the file.

Line 58. Defining the Output File
This defines the file results file.txt, where the output results will be written.
Lines 89—138. Writing the Output Data Process

This process uses the output signals narrow _pulse, wide pulse, invalid mode,
mode2, mode3A, and valid pulse to determine the status of the input signal. A message
indicating the status is written to the output file. For example, if the input signal is narrow or
outside the required pulse width range, a message similar to Test pulse X is narrow is
written to the output file. X represents the number of the test pulse. For each test case, there is
a comment stating the test pulse number for P1 or P3. By examining the output file, I can
determine if the design is able to detect narrow, wide, or valid pulse widths and pulse
spacings.
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Figure 5-12: Test Case 4, Simulated Output (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Automatic Testbench Output Results

After applying the stimulus to the automatic testbench, the output is written in
results file.txt, see Example 5-2. This file is written in the same directory as my
simulation work directory created by the simulator.

5.6.7. Capture Data

At times, trying to troubleshoot a fielded design problem or manually create a test stimulus

is not feasible. If you find yourself in this situation, then utilizing test equipment can be a good
option. Tektronix offers a series of data capture and acquisition equipment with offline viewers
that can be used on your PC. Using Tektronix’s logic analyzer, real-time data can be captured,
stored, and exported as a text file. The captured data can be read into a testbench for simulation
and imported, viewed, and modified (if necessary) using TLA® Application, the PC interface
offline viewer. Setups created using TLA Application can be exported to a logic analyzer.

Similar data patterns created using PG3A Series Digital Pattern Generator can be exported,
viewed, and modified (if necessary) using the offline PC viewer PGAppDotNet. Such data
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Test pulse 1 is

Test pulse 2 is
Test pulse 3 is
Test pulse 4 is

Test pulse 5 is

Test pulse 10 is
Pl or test pulse
Test pulse 11 is
Test pulse 12 is
Test pulse 13 is
Pl or test pulse
Test pulse 15 is
Pl or test pulse
Test pulse 17 is
Pl or test pulse
Test pulse 19 is
Test pulse 20 is
Pl or test pulse
Test pulse 21 is
Test pulse 22 is
Pl or test pulse
Test pulse 23 is
Test pulse 24 is
Pl or test pulse
Test pulse 25 is
Pl or test pulse
Test pulse 27 is
Pl or test pulse

narrow
valid
narrow
valid

valid

Test pulse 6 is valid
Test pulse 7 is valid

Test pulse 8 is wide
Test pulse 9 is valid

valid

m Example 5-2. Output Results

Pl or test pulse 4 to P3 or test pulse 5 spacing is a Mode?2

Pl or test pulse 6 to P3 or test pulse 7 spacing is a Mode?2

9 to P3 or test pulse 10 spacing is a Mode?2

valid
wide
valid

13 to P3 or
valid

15 to P3 or
valid

17 to P3 or
valid
valid

19 to P3 or
valid
valid

21 to P3 or
valid
valid

23 to P3 or
valid

25 to P3 or
valid

27 to P3 or

test pulse

test pulse

test pulse

test pulse

test pulse

test pulse

test pulse

test pulse

14

16

18

20

22

24

26

28

spacing is

spacing is

spacing is

spacing is

spacing is

spacing is

spacing is

spacing is

an invalid mode

an invalid mode

an invalid mode

a Mode3A

a Mode3A

a Mode3A

an invalid mode

an invalid mode
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Figure 5-13: Test Case 14, Simulated Output (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

can be read into a testbench for simulation. Setups created using PGAppDotNet can be
exported to the pattern generator.

The offline viewers are great options, especially when you share lab equipment. By using the
offline viewers, you can reduce bench time by capturing data and working with it at your desk.
I really like working in the lab and at times prefer it over being at my desk. However, many
times, I had to utilize the offline interface due to sharing equipment. Not having total access to
capture data meant I had to make the most of my resource, which included the PC offline
interface. I was able to set up or make changes to my equipment setup and utilize saved data at
my desk. My lab time was spent capturing data I could utilize offline. The offline viewers give
you the same look and feel as being in the lab, but you are actually at your desk.

An example of a waveform using TLA Application is shown in Figure 5-14. Signals on the
waveform can be shown as binary, hex, octal, decimal, singed decimal, or symbolic. They
can be viewed in groups or as individual signals. Many features and options are available
when using TLA Application. I suggest downloading the free PC interface by going to www
.tek.com and searching for TLA Application.



108 Chapter 5

Listing 5-3. Automatic Testbench

o W N

[e))

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

design
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

— A A A A KKK A A A A A AAAAAAAA XA K [ogder SE@CTEION F A A A AKX XA XA LA LA & & & &k ok kokkohot ot

—— Name
—-— Date
—— Filename

——Description
Mode 2 or 3A

inclusive

inclusive

: James W. Smith

: August 25, 2009

: tb mode2Zn3 auto.vhd

: This testbench determines if the input pulses meets the

: pulse width and spacing requirements by:
: 1. Verifyingpulsewidths are .7usecto .9usec inclusive

: 2. Mode 2 P1 to P3 pulse spacing is 4.9usec to 5.1usec

: 3. Mode 3A P1 to P3 pulse spacing is 7.9usec to 7.1lusec

: Simulation results will be written to “results file.
: Results file indicates if:
: Input pulse width is narrow, wide or valid

: P1 to P3 pulse spacing for M2 or M3A is valid or invalid

: Run simulation for 500.00usec

—-— Revision History

—— Date

Initials Description

— A A A A KA AR AR A A XA XA A A A AKX [N Header Section FHIFX Xk kkhhhhtrtttrtrrtrrst

Library IEEE;

—-- define library and packages needed for this

Use IEEE.std logic 1164.All;

Library Std;

Use std.textio.All;

Entity testbench Is End testbench;

Architecture tb mode2n3 auto Of testbench Is

Component mode2n3 Port (

clock20Mhz
reset

input pulse
narrow_pulse
wide pulse
invalid mode
valid pulse

: In std logic;
: Instd logic;
: Instd logic;
: Out std logic;
: Out std logic;
: Out std logic;
: Out std logic;
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40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.

mode?2 : Out std logic;
mode3A : Out std logic)
End Component mode2n3;

Signal clock20Mhz : std_logic := ‘0" ;
Signal reset : std _logic := ‘1’ ;
Signal input pulse : std_logic := ‘0" ;
Signal narrow pulse : std _logic;
Signal wide pulse : std logic;
Signal invalid mode : std logic;
Signal valid pulse : std _logic;
Signal mode2 : std_logic;
Signal mode3A : std_logic;
Signal pulse number : integer;
Constant twenty five nsec : time := 25nsec;

File data out: Text Open write mode Is “results file.txt”;
Begin

mode2n3 component: mode2n3

Port Map (
clock20Mhz => clock20Mhz,
reset => reset,
input pulse => input pulse,
narrow_ pulse => narrow_pulse,
wide pulse => wide pulse,
invalid mode => invalid mode,
valid pulse => valid pulse,
mode?2 => mode?2,
mode3A => mode3A) ;

create twenty Mhz: Process
Begin
Wait For twenty five nsec;
clock20Mhz <= Not clock20Mhz;
End Process;

count test: Process (reset, input pulse)
Begin
If reset = ‘1’ Then
pulse number <= 0;
Elsif rising edge (input pulse) Then
pulse number <= pulse number + 1;
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86. End If;
87. End Process;
88.

89. write results: Process (clock20Mhz)
90. Variable data line : line;

91.

92. Begin

93. If rising edge(clock20Mhz) Then

%4. If narrow pulse = ‘1’ Then

95. writeline (data out, data line);

96. write (data line, string' (“Test pulse ”));

97. write (data_ line, pulse number) ;

98. write (data line, string' (™ is narrow”));

99. writeline (data out, data line);

100. Elsif wide pulse = ‘1’ Then

101. writeline (data out, data line);

102. write (data line, string' (“Test pulse ”));

103. write (data line, pulse number) ;

104. write (data line, string' (™ is wide”));

105. writeline (data out, data line);

106. Elsif invalid mode = ‘1’ Then

107. writeline (data out, data line);

108. write (data line, string' (“P1l or test pulse”));
109. write (data line, pulse number - 1);

110. write (data line, string' (“to P3 or test pulse”));
111. write (data line, pulse number) ;

112. write (data line, string' (“spacing is an invalid mode”));
113. writeline (data out, data line);

114. Elsif mode2 = ‘1’ Then

115. writeline (data out, data line);

116. write (data line, string' (“P1l or test pulse”));
117. write (data line, pulse number - 1);

118. write (data line, string' (™ to P3 or test pulse ”));
119. write (data line, pulse number) ;

120. write (data line, string' (“spacing is a Mode2”));
121. writeline (data out, data line);

122. Elsif mode3A = ‘1’ Then

123. writeline (data out, data line);

124. write (data line, string' (“Pl or test pulse ”));
125. write (data line, pulse number - 1);

126. write (data line, string' (“to P3 or test pulse”));
127. write (data line, pulse number) ;

128. write (data line, string' (“spacing is a Mode3A”));
129. writeline (data out, data line);

130. Elsif valid pulse = ‘1’ Then

131. writeline (data out, data line);
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132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
1l46.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
l64.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.

write (data line, string' (“Test pulse ”));
write (data line, pulse number) ;
write (data line, string' (™ is valid”));
writeline (data out, data line);
End If;
End If;
End Process;

reset <= ‘0" After 145.00 nsec;

input pulse <=
—— Test Case 1 P1 pulse width (pw) = narrow & no P3
‘1’ After 200.00 nsec, -— P1, Test Pulse 1

‘0" After 850.00 nsec, —— 650nsec narrow pulse width

—— Test Case 2 P1 PW=min.; P3 PW= narrow & M2 normal spacing

‘1" After 5.00 psec, -— P1, Test Pulse 2

‘0" After 5.70 psec, —— 700nsec min pulse width
‘1’ After 10.00 psec, -— P3, Test Pulse 3

‘0" After 10.65 usec, —-— 650nsec pulse width

—— Test Case 3 P1 PW normal; P3 PWmin & M2 normal spacing

‘1" After 35.00 psec, -— P1, Test Pulse 4

‘0" After 35.80 psec, —— 800nsec max pulse width
‘1’ After 40.00 usec, -—- P3, Test Pulse 5

‘0" After 40.70 psec, —— 700nsec wide pulse width

—— Test Case 4 P1 PW = max, P3 PW= normal & M2min spacing

‘1" After 60.00 psec, —-— P1, Test Pulse 6
‘0" After 60.90 usec, —-- 900nsec pulse width
‘1’ After 64.90 psec, —— P3, Test Pulse 7
‘0! After 65.70 psec, —— 800nsec pulse width

—-— Test Case 5 P1 PW = wide,; no P3
‘1’ After 90.00 psec, —-— P1, Test Pulse 8
‘0" After 90.95 psec, —-— 950nsec pulse width

—— Test Case 6 P1 PW= normal; P3 PW= max & M2 max spacing
—— Mode 2 5.1usec P1 - P3 spacing

‘1’ After 110.10 usec, -— P1, Test Pulse 9

‘0" After 110.90 usec, —- 800nsec pulse with

‘1" After 115.20 psec, —-— P3, Test Pulse 10
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178. ‘0" After 116.10 usec, —-— 900nsec pulse width

179.

180. —— Test Case 7 P1 PW= normal & P3 PW= wide & M2 normal spacing
181. ‘1’ After 136.00 psec, -— P1, Test Pulse 11

182. ‘0" After 136.80 usec, —— 800nsec pulse width

183.

184. ‘1" After 141.0 usec, —— P3, Test Pulse 12

185. ‘0" After 141.95 psec, —-— 950usec pulse width

186.

187. —— Test Case 8 P1 PW=normal; P3 PW= normal & M2 narrow spacing
188. ‘1" After 160.00 usec, -— P1, Test Pulse 13

189. ‘0" After 160.80 usec, —- 800nsec pulse width

190.

191. ‘1’ After 164.80 psec, —-— P3, Test Pulse 14

192. ‘0" After 165.60 psec, —-— 800usec pulse width

193.

194. ——Test Case 9 P1 PW= normal; P3 PW= normal & M2 wide spacing
195. ‘1" After 180.00 usec, —-— P1, Test Pulse 15

196. ‘0" After 180.80 usec, —— 800nsec pulse width

197.

198. ‘1" After 185.20 usec, —-— P3, Test Pulse 16

199. ‘0" After 186.00 usec, —-— 800usec pulse width

200.

201 e e e e e m e m e —

202.

203. ——Test Case 10 P1 PW=normal; P3 PW=normal & M3 narrowspacing
204. ‘1" After 300.00 usec, -— P1, Test Pulse 17

205. ‘0" After 300.80 usec, —— 800nsec pulse width

206.

207. ‘1’ After 307.80 psec, -— P3, Test Pulse 18

208. ‘0’ After 308.60 psec, —-— 800usec pulse width

209.

210. ——Test Case 11 P1 PW= normal,; P3 PW= normal & M3min spacing
211. ‘1" After 320.00 usec, —-— P1, Test Pulse 19

212. ‘0" After 320.80 usec, —- 800nsec pulse width

213.

214. ‘1" After 327.90 usec, —-— P3, Test Pulse 20

215. ‘0" After 328.70 usec, —-— 800usec pulse width

216.

217. ——TestCase 12 P1 PW=normal; P3 PW=normal & M3normal spacing
218. ‘1’ After 340.00 psec, -— P1, Test Pulse 21

219. ‘0’ After 340.80 psec, —-— 800nsec pulse width

220.

221. ‘1" After 348.00 usec, —-— P3, Test Pulse 22

222. ‘0" After 348.80 usec, —— 800usec pulse width

223.
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224. ——Test Case 13 P1 PW= normal; P3 PW= normal & M3 max spacing

225. ‘1" After 360.00 usec, —-— P1, Test Pulse 23

226. ‘0" After 360.80 usec, —— 800nsec pulse width

227.

228. ‘1’ After 368.10 usec, —-— P3, Test Pulse 24

229. ‘0" After 368.90 usec, —-— 800usec pulse width

230.

231. —— Test Case 14 P1 PW=normal; P3 PW=normal & M3 wide spacing

232. ‘1" After 380.00 psec, —-— P1, Test Pulse 25

233. ‘0" After 380.80 psec, —— 800nsec pulse width

234.

235. ‘1" After 388.20 usec, —— P3, Test Pulse 26

236. ‘0" After 389.00 usec, —— testing at 8.2usec spacing

237.

238. —--0ut of range area between Modes 2 & 3 pulse spacing 5.8usec & 7.8usec;
pulse spacing = 6u

239.

240. ‘1’ After 480.00 psec, —-—normal P1, Test Pulse 27

241. ‘0’ After 480.80 psec,

242.

243. ‘1’ After 486.00 usec, ——normal P3, Test Pulse 28

244, ‘0" After 486.80 usec;

245.

246. End tb mode2n3 auto;

If your simulator can read the waveform output from the analyzer, you can directly import it

into your simulation. However, my simulator cannot read the waveform output format, which
is not a problem, because the data easily can be viewed as either a waveform or listing.

So selecting the Listing option icon on the offline viewer, the waveform is now shown
as data points, see Figure 5-15. This file can be saved as text and read into my testbench.

Some or all the data shown in the listing can be exported into a text file. The offline interface

allows you to customize the exported text file. Some of the export data options are

Space, tab, comma, or semicolon field delimiter.
Enhanced column headers.

Including or omitting column heading information.
Including unit characters.

Radix.

The 8 bits of A3 is exported to a text file. Because the text file is very large, only a very small

portion is shown in Example 5-3. I removed the heading information and unit characters,
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Waveform Icon Listing Icon

2 TLA [off-line] - [Waveform 1]

B Fle B Vew Dt System Took Window Heb - 5%
ddse OEBEE % A Esetw - Blirgger - ™ weveform Shlsting | [ Status |lde D - ek
L0 240 X b o viee wartagrtt I oactnty 0F vake | =) g TeDi on v| & D Semch v

& - [lowscet v | cusor 2= e

Wavelom

Input Data <
Waveform

Add Meauurement (Drag and Drop) Meanuremernts o

B Pericd 1 T Enable | Name Source Gate Value " Accurmilste

Enable Al Disable AN Delete A8 Recale

For Help, press F1 Thkrrani

Figure 5-14: TLA Application Waveform (Screen shot taken from TLA Application Software V5.1
SP1 Offline Viewer courtesy of Tektronix, Inc.)

m Example 5-3. Exported Listing Data

Heading from Listing
s
0 )
1
2
3
4 Channel A3 Counter Data
5
6
7
8 )
L |
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Figure 5-15: Application Listing Data (Screen shot taken from TLA Application Software V5.1
SP1 Offline Viewer courtesy of Tektronix, Inc.)

which make reading the file easier, but left the heading A3 for illustration purposes. The data
were exported as decimal, because this is an acceptable input for the read command;
however, it will be converted to std logic vector in the testbench. Channel A3 is a
counter; this data will be read into the testbench and used as the stimulus for the clock, reset,
and input pulse signal. This approach was selected because it demonstrates some additional
things you can do when reading in data.

The testbench has been modified to read these data, but only the command that defines the
file and the process that reads the file are shown, see Listing 5-4.

Using the text file data, the testbench gives the results shown in Figure 5-16.
Line 1. Defining Read File

The external file that contains the input data is defined as TLA Data.txt. This command
is inserted in the architecture section prior to the initial Begin statement.



Listing 5-4. Modified Testbench Section

1. File data in: Text Open read mode Is “TLA Data.txt”; —-— defines the
file to be read

2.

3. read file: Process

4.

5. Variable data line : line;

6. Variable data integer : integer;

7

8. Begin

9.

10. While Not endfile(data in) Loop

11. readline (data_in, data line);

12.

13. read (data line, data integer);

14. data_vec <= conv_std_logic_vector (data_integer,8);

15. clock20Mhz <= data vec(0);

16. reset <= Not data vec(7); —-—- inverted data bit 7 for reset signal

17. input pulse <= data vec(6);

18. Wait For 25 nsec;

19. End Loop;

20. file close(data in); —— closes the file once the loop has completed

21. End Process;
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Figure 5-16: TLA Application Data Output Waveform (Material based on or adapted from
figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008
used in Xilinx ISE WebPack™ software version 10.1.)
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Lines 3—21. Read External File Process

This process reads the data from the external data file and is inserted in the architecture
following the initial Begin statement.

Lines 11—14. Assigning Data to Input Signals

First a line is read from TLA Data.txt. Since each line has only one number, the readline
contains one number. This number is converted to an 8-bit standard logic vector and assigned
to data_vec. Only bits 0, 7, and 6 of data vec are used.

Line 15. Assigning Clock’s Input

Data wvec bit 0 is connected to clock20Mhz.

Line 16

Data vec bit 7 is inverted and connected to reset.

Line 17

Data_ vec bit 6 is connected to input pulse.

5.7. Simulation Tutorial

This tutorial demonstrates how to set up and run a simulation using ModelSim XE III 6.4b,
included in Xilinx ISE WebPack™. After completing this tutorial, it will be easy to apply
the same process to other VHDL designs and testbenches. The same basic concepts apply
when performing simulation on other simulators.

Simulation Assumptions
* Preinstalled ModelSim XE III 6.4b.

* Design code filename Mode2n3.vhd is located at C:\ Chapter 5 Simulation
\ Design Code.

*  Testbench filename tb mode2n3.vhd is located at C:\ Chapter 5 Simulation
\ Testbenches.

Invoke ModelSim

Select Start — All Programs — ModelSim XE III 6.4b — ModelSim or the icon on
your desktop. Note: The path may be different depending on the operating system.

Create a New Project
Select File — New — Project.

Name the project setup, see Figure 5-17. Type Modes for the project name.
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. ‘ﬁ Create Project

Type Project Name

g Project Name
1o deﬂ

C:/Chaprer 5 Simulation Browsse. ..

Defaulk Library Name

Project Location Path \ Project Location

Do Not Change

work

Copy Settings From

ech_xe_starter/modelsim.ini Browse... / | Select This Option
Copy Library Mappings ™ Reference Library Mappings

Figure 5-17: Create a Project (Material based on or adapted from figures and text owned by
Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in Xilinx ISE WebPack™
software version 10.1.)

Browse to C: /Chapter 5 Simulation.

Keep default library name Work. The complier automatically creates the default work library
for the design code. This is where the compiled code is placed.

Select the Reference Library Mappings option under Copy Settings From. Note:
Either option will work, I prefer just to map to the original. I learned the hard way that
making copies can cause problems.

Select OK.
Add Files to the Project

The next pop-up window Add items to the Project (Figure 5-18) allows you to create a
new file, create a simulation, create a new folder, or add an existing file. The design code and
testbench already are written, so we are going to add those files to the project.

Double click on Add Existing File.
Add Design Code to the Project

Select Browse and navigate to design code located at C:\ Chapter 5 Simulation
\ Design Code (Figure 5-19). Note: Make sure Reference from current location
is selected.

Select Mode2n3.vhd.
Select Open.

Select OK.
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[¥] Add items to the Project

Click on the icon to add items of that type:

— - / | Select This Option

Create New File Add Existing File
— =

Create Simulation Create New Folder

_ Close |

Figure 5-18: Add Item to the Project (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

7 Add file to Project
File Name

[C:/Chapter § Simulation/Design Code/mode2n3.  Browss...

Design File

Add file as type Folder
Selected |default A Top Lewel |
@ Reference From current location ™ Copy ko project directory

oK | C_ancel!

Figure 5-19: Adding Design Code to the Project (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Add Testbench Code to the Project

Double click on Add Existing File in the Add items to project window when it
reappears.

Select Browse and navigate to testbench code located at C:\ Chapter 5
Simulation\ Testbenches (Figure 5-20). Note: Make sure Reference from
current location is selected.

Select tb mode2n3.vhd.
Select Open.
Select OK.

Note: Multiple files can be selected and added at the same time if they are located in same
directory. Just hold down the control (ctrl) key before you select Open.
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Testbench File %] Add file to Project
File Name
{C: /Chapter 5 Simulation/Testbenches/th_modeZ Browse...|

Add file as bype Folder
Selected default hd [Top Level 4
* Reference from ouerent lncation " Copy to project direchory

_ok_| Cancel |

Figure 5-20: Adding Testbench Code to the Project (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Compile
All Order
Design -——e e
& :"'Na:ne .Type {Order -M.I'_Irit'l.!
Testbench | -8 vhd : T T
th_mode2n3.vhd ¥HOL 1 05/31/09 11:25:48 AM
-Il"_:‘il'-‘rolect | mhbrary I ur

Figure 5-21: Project Files (Material based on or adapted from figures and text owned by Xilinx,
Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in Xilinx ISE WebPack™ software
version 10.1.)

Select Close when the Add Existing File pop-up window reappears, since all files
have been added.

The Workspace window shows the filenames of the code in the project, type, the order in
which they will be compiled, and the last time the file was modified (Figure 5-21).

Compile Files

Files in the project can be compiled all at once or one at a time.

Option 1: Compile Selected File

This option compiles the selected file(s) highlighted in the Workspace window.
Select mode2n3.vhd.

Select Compile — Compile Selected.
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Option 2: Compile All Files

This option compiles all the files in the Workspace window at once according to the order
number.

Select Compile — Compile All.

First, the design code mode2n3.vhd is complied, since it has order #0, then the testbench
tb _mode2n3.vhd. With this option it is not necessary to highlight files.

Feel free to try both ways.
Compiler Error

I created an error by removing the semicolon (;) from line 27 in the testbench code,
shown in Figure 5-22. The transcript window shows total number files compiled and total
number of successful and failed files.

1 ModelSim XE [IlfStarter 6.4b

Ha Edl Wew Compds Selste add 1

BEY -~ B A

ol 3, 3Dk || Tl O 5B % 5
|4 = B womdRlE @ B0 G 8 s ne /
i H e B H o Chapter 5 Simaiation Testhen st _mode?ns. b / e
Type order  [Mo: Liné Z
WOl © oz 2 —— Name il
: tl 3 Disle
4 -— Filenams
5 -—~ Description
11
12 -
14 an History
13 Initials Descraiptacon
15
17 emAAAAAAAARAAARAANA % P
18
13 Likrary TEEE; dafine library and packages naadaed for th
20 Use IEBEE. std_logic_1164.A11;
<L ] .| 21
B2 o | & . 22 Entity testbench Iz End testbench; .
W s | i Fles - : No Semicolon
24 Architecture tb modeZn3d OF testhench Is
z5 Component modeZn3 Ba
1 e 217 clockZimhz : I =
VSIH 4> = 4] : e i
1 7 reanserpe R i e
|
[1’lond:mdes Mow: Ons Delia: 0 [:!n fresthench | Shovarg All Conkais .

Figure 5-22: Failed Simulator File Compile (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in Xilinx ISE
WebPack™ software version 10.1.)
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'}T,]' ...hesltb_mode2n3.vhd -- Unsuccessful Compile

vcom -work work -2002 -explicit {C:/Chapter 5 5imulation/Testbenches/tb_modeZn3i.vhd}
Nodel Technology ModelS3im XE III vcom 6.3c Compiler 2007.09 Sep 12 2007

== Loading package standard

-- Loading package std logic_ ll64

-- Complling entity testbench

Error
Details

Close

Figure 5-23: Simulator Compile Error Details (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Select Compile — Compile Report to view details about error, see Figure 5-23.
After reviewing the report, go to the file to make the correction. Since this is minor, I make
the correction using the ModelSim editor.

Double click on tb_mode2n3.vhd to open the viewing area window to the right. Add a
semicolon (;) to line 27.

Save File Corrections
Select File — Save.
Recompile using either option 1 or option 2.

Now the file contains no error, and the transcript window shows the files were successfully
complied, see Figure 5-24.

Simulate

Now that the design and testbench have been successfully compiled, it is time to start the
simulation. Select Simulate — Start Simulation (Figure 5-25).

Transcript —

# Loading project Modes :I
# Compil mode2n

# Ci tb_modezn3 successful,

Compile Status #2 cai‘npi!es, 0 Failed with no errars.

ModelSim =

| F-4 Transcript |

Project : Modes |<No Design Loaded > [

£
K4

Figure 5-24: Successful Compile Status in Transcript Window (Material based on or adapted
from figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008
used in Xilinx ISE WebPack™ software version 10.1.)
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'5=J' Start Simulation

Design ] VHDL ] Weriog ] Libraries ] SDF ] Others ] 4|3
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Testbench File \ ++E] modeZnd Entity C:fChapter 5 Simulation/Design |
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Design Unit{(s) Resolution
work. tes thench{th_modezZn3i) ns vi
Optimization
CK | Cancel

Figure 5-25: Select Testbench (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

In the pop-up window, click on the + next to work then testbench to select
tb_mode2n3. Note: If other files had testbench as their entity’s name, their
architecture’s name would have also appeared. All my testbenches have the entity name

of testbench. The reason I do this is because I will have several testbenches for one
design. By having all their entities named testbench, they appear under the one entity, making
it is easier for me to find the specific testbench. My architecture’s name is descriptive to
what the code is verifying.

Select Resolution to nsec.
Select OK.

The transcript window will let you know when the design has been loaded. Now you are
ready for the waveform and signals.

Select View — wave.

Select all the signals shown in the Objects window. Make sure testbench is highlighted
in the Workspace window (Figure 5-26), then right mouse click on the Objects window.

Select Add to Wave — Selected Signals; this adds the signals you selected to the
wave window.
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Figure 5-26: Load Simulator (Material based on or adapted from figures and text owned

by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in

Xilinx ISE WebPack™ software version 10.1.)

Click in the transcript window to move the cursor.

Type in run 10usec.

Select Enter. The simulation output will be displayed in the waveform window, see

Figure 5-27.

View Output Listing

To see the output as a listing, do the following.

Select View — List to open the List window.

Select all the signals shown in the Objects window.

Make sure testbench is highlighted in the Workspace window, then right mouse click in
the Objects window.
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Figure 5-27: Waveform Output (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Select Add to List — Selected Signals. This will add the signals you selected to the
wave window.

This tutorial has shown you how to perform a simulation using ModelSim III XE 6.4b.
Remember, other simulators work differently, but the output for the same design should be
the same. Now that you have some of the basics of how to perform a simulation, take some
time to explore the many other features available using ModelSim III XE 6.4b or your
simulator.

5.8. Chapter Overview

I find simulation to be the most enjoyable and exciting of the FPGA development
phases—so many options are available for simulating an FPGA design. Depending on the
situation, one option may be more beneficial than another. The next chapter covers
synthesis. However, if you performed synthesis prior to simulation (and I hope you plan
on simulating), then your simulation phase may include both RTL and functional
simulations. If this is the case, then remember, for each design modification, a new
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postsynthesis netlist for simulation must be created and used for the most accurate
functional simulation. Here are some things to remember about simulation as you
continue to develop your FPGA design.

Key Simulation Phase Tips

* Simulation is not required but should always be performed, especially on new designs.
* Testbenches are a great reusable way to apply design stimulus.
*  Write test cases to help develop testbench stimulus.

e Simulation allows a design to be verified under various test conditions and limits without
damaging the hardware.

Chapter Links

For your convenience here are some links to a couple of complete development tools.
Xilinx ISE WebPack: www .xilinx.com/tools/designtools.htm.

Altera’s Quartus II, Web Edition: www.altera.com.

More information on the offline logic analyzer or pattern generator, Tektronix: www.tek
.com.

The Moving Pixel Company: www.movingpixel.com/main.pl?home.html.



Synthesis

6.1. Introduction

Synthesis is the point in FGPA development where a high-level design is broken down into a
mid-level netlist that is now associated with logic and internal FPGA resources. The design can
be the one presented in this book or one you or someone else created or modified. It can be

in several different formats—HDL, schematic capture, or a mixture—and may have been
verified through simulation. In spite of whoever created or modified the design and the format,
simulated or not, the design must be synthesized before it can be programmed into an FPGA.

Although, in this book, synthesis is performed following simulation, it could be performed
immediately following the design phase. Once the design is complete it must somehow get
broken down to a format that describes and connects the same functions in terms of FPGA
resources. How do we make this happen? The answer is that the design must go through a
two-step process: first synthesis and then implementation. These steps take the high-level
design and break it down to a format that eventually gets programmed into an FPGA.

This chapter discusses the design synthesis phase or process. Synthesis is the first place in
which the HDL design is associated with the internal logic. The input to the synthesis phase
is the design, and the output consists of a design netlist that feeds into the implementation
tool and an option for a functional simulation netlist, see Figure 6-1. Additional outputs
include a report file and schematic views, which provide pertinent information about the
synthesized design. These files are discussed later in this chapter. Unlike the simulation
phase, which is optional but highly suggested, synthesis is mandatory; and synthesis must
be performed before implementation.

For some designs, the synthesis process can be performed with much ease; however, for other
designs, the process can be complex and long. Our ultimate goal is to create a netlist that
connects the FPGA’s resources to perform the same functions as defined by the high- level
design. The first step to accomplish this is the synthesis phase. As we continue down the
FPGA development path, we get closer to having a design that can be programmed into a
device. While synthesis may not be as exciting as simulation (at least in my opinion),

it is required and can be time consuming.

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00006-0 127
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Functional Netlist Simulation
' (Optional)
Design Desi i
. ) gn Netlist
Phase HDL, '\S/I‘i:::énat'c’ > Synthesis »  Implementation

Synthesis Data

> Report &
Schematic Views
(Pertinent User Information)

Figure 6-1: Synthesis Phase Inputs and Outputs

In this chapter, you will learn

* The design synthesis process.

*  Synthesis tools and manufacturers.
*  Synthesized output files.

* How to perform synthesis, through a tutorial.

6.2. What Is Design Synthesis?

The FPGA device consists of logic blocks or cells that are configured to perform the functions
defined by the high-level design. So far, all we have is a high-level design but nothing that
associates it with the internal FPGA resources. Design synthesis or synthesis is the process that
takes the high-level design associates it with FPGA resource and reduces logic to make the
design more efficient. It can best be described as a three-step process that converts a high-level
design to a mid-level design netlist, see Figure 6-2. The reason I say mid-level design netlist is
because it cannot be used to program an FPGA, but it is just one development stage from being
ready to burn into a chip. Synthesis is the first step in the development process in which the
design is associated with the FPGA’s internal logic technology. In other words, the output
netlist is a little more realistic because the device’s part number is defined and available
resources are known and used to create the netlist that has some timing information.

The three basic synthesis operations (Figure 6-3) are syntax check and element association,
optimization, and technology mapping. Generic synthesis operation terms are used to
distinguish one step from another. Each synthesis tool may call the steps something different,
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Figure 6-2: Mid-Level Synthesis Netlist
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e Connect Design to Logic Design Netlist
e Predict & Add Timing Estimates >
o Create Output Reports & Netlists

Figure 6-3: Synthesis Process Flow
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but they perform the same basic functions. Third party tools generate an output netlist that
can be imported into an implementation tool and simulator.

6.2.1. Design Check and Resource Association

First, the design is checked for syntax and synthesis errors. Nonsynthesizable command
errors do not cause synthesis errors. For example, the after command, which was used
in the testbench, creates a delay and is used by the simulator. It is not synthesizable and is
ignored by the synthesis tool. Missing or misplaced semicolons or misspelled keywords will
cause the synthesis tool to generate an error, see Example 6—1.

Once the design is error free, it is converted into structural elements. This means that logic
elements are inserted as replacements for things like an addition sign (+), subtraction sign
(), or for inferred flip-flops, gates, registers, and the like.

6.2.2. Optimization

At this point, the design is represented by interconnecting the internal FPGA resources to
mimic the functions defined by the high-level design. In this state, the design is just put
together without concern for redundant logic, timing constraints (if provided), clock speed,
and other design considerations. Now that the design is put together, algorithms are used to
optimize the design. This means that the design is really examined for things like redundant
logic, clock speed, and timing constraints. Redundant logic is removed to make the design
smaller. Algorithms are used to evaluate multiple paths to ensure the fastest timing is
achieved. The shortest routing distance does not necessarily mean the fastest time. Because
of the resource layout and how those resources are used, the shortest distance may not
produce the fastest time. Therefore, it may be necessary to have a longer route to meet
timing requirements, because the shorter route may require more resources, resulting in
longer time. As shown in Figure 64, option 2 is a longer distance, however, option 1 has
more resource delays; therefore, option 2 is the faster route.

m Example 6-1. Syntax Error

The first signal definition causes the synthesis tool to generate a syntax error
message:

Signal pulse : std logic —-missing semicolon (;) following
std logic, error message generated

Signal pulse : std_logic; —— no error message generated
L |
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End

Option 1 m /_\ m
Start Delay 1 Delay 2 Delay 3
N N N

Figure 6-4: Faster Routing Path

6.2.3. Technology Mapping

Now that the design has been optimized, it is mapped to the technology associated with
the targeted FPGA. Information such as the FPGA part number, speed and manufacturer is
provided when setting up the synthesis tool. Examples of some technology view symbols are
shown in Figure 6-5. Synthesis tools use advanced techniques to make predictions about how
the design will be place and routed in the target device. These advanced techniques produce
synthesis timing estimates that are near the actual postimplementation timing. However, the
real timing is unknown until after the design has been placed and routed.

6.3. Synthesis Phase Tools

The tools needed for the synthesis phase are a synthesis tool, or synthesizer, and an editor
to modify the original design if necessary. Because an HDL text editor is included with
many synthesis tools, you could use this for HDL editing. My personal preference is my
original text editor, but for small changes, such as correcting synthesis or syntax errors,

I generally use the synthesis editor. If you decided to switch between the two editors, make
sure that the changes have been applied to both copies of the design. Synthesis tools are
available as standalone or part of a complete package. Some of the advantages and
disadvantages to standalone tools versus complete package tools are listed in Tables 6—1
and 6-2.

LUT4_0001
DI_T5
— 13 LI
—II2 MUXCY | o o
— 1 o— _¢ |, Cl D
0 S XORCY

Figure 6-5: Technology View Symbols (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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Table 6-1: Complete Package Synthesis Tool Advantages and Disadvantages

Advantages

Single tool

Need to know only one tool

Faster process

Eliminates time to switch between third party tool(s)

Cost

Single tool may be cheaper than multiple tools

Expert on device

Manufacturer understands device better than a third party
Device data are more accurate

Disadvantages

Manufacturer dependent

Can’t use synthesize netlist with other manufacturers

Synthesis netlist

Synthesis netlist may not be as good as a third party’s
May not utilize internal resources either

Supports only one manufacturer

Must obtain another tool for other manufacturers

Not area of expertise

Expert on device not necessarily on synthesis development

Table 6-2: Standalone Synthesis Tool Advantages and Disadvantages

Advantages
Manufacturer Supports multiple manufacturers
independent Easy to switch vendors

Output netlist available in different manufacturer formats

Area of expertise Synthesize netlist generally better than manufacturer’s
May provide better synthesized netlist

Disadvantages

Multiple tools Separate tools for synthesis and implementation
Cost May be more expensive than complete tool
Not expert on device Manufacturer understands more about device than a third party

Estimated device timing data may not be as good as manufacturer’s

As a result of the continuous evolution of FPGA gate count from hundreds, to thousands, to

millions of gates and increasing functionality, the synthesis tools have evolved as well. New, more

advanced FPGA features led to newer, more advanced tools. In the past, there were few
choices for synthesis tools, and many companies offered only one synthesis tool. Now, more
companies offer a selection of synthesis tools, each providing slightly more or different

features.

6.3.1. Vendors and Features

Today, many more options for synthesis tools are available than years ago. Not only do

many manufacturers make the tools, it is becoming common for standalone manufacturers to

offer different levels or features in their synthesis tools.
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This section provides information on complete package and standalone synthesis tools and
some of their features. Synthesis is performed as a part of Altera’s Quartus II® and
Xilinx ISE® complete development packages. Many manufacturers make claims to have
the best, world’s first, or some other claim about their synthesis tools. My opinion is that,
depending on your design, some tools perform better than others, but you have to decide
for yourself. Some commonality among most synthesis tools includes

* Allow user to perform syntax check only.
*  Create RTL view.

*  Create technology view.

* Generate synthesized netlist.

*  Generate functional simulation netlist.

Quartus II® offers users two synthesis options “Analysis and Elaboration” and “Analysis
and Synthesis.” Where analysis and elaboration is just a presynthesis step that

* Performs syntax and semantic error checks.
* Does not perform logic synthesis or technology mapping.
The complete synthesis process is performed by the analysis and synthesis option that
* Checks for syntax and semantic errors.
* Minimizes design logic.
* Performs technology mapping.
ISE Design Suite by
*  Xilinx Synthesis Technology (XST)

* Incorporates next-generation physical synthesis optimizations by using techniques such
as register balancing, global optimization, timing-driven synthesis, and logic
optimization.

* Provides reduced runtime and design preservation.
* Reduces power use by using power-aware optimization.
* Provides integrated RTL and Technology. Viewers to view the RTL netlist.

Keep in mind that Quartus II supports only Altera’s FPGA devices and ISE supports only
Xilinx. On the other hand, standalone packages, such as the ones offered by Mentor Graphics
and Synopsys, are vendor independent.
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Mentor Graphics offers LeonardoSpectrum®, Precision RTL®, Precision Physical®, and
Precision RTL Plus® synthesis tools. The Precision tool sets offer a progressive line of features.

LeonardoSpectrum offers

F.A.S.T. optimization. Proprietary algorithm with high quality of results (QoR).
Incremental synthesis. Reduces compile time for multiple or large designs.
Partitioning. Makes it easy to divide or partition designs.

Precision RTL offers basic features such as

Advanced Optimization Algorithms.

¢ Maximum use of FPGA resources.

RTL and Technology Viewers.

Interactive Static Timing Analysis.

DSP and RAM Inference Optimization.

Gated Clock Conversions.

Register Retiming.

Precision RTL Plus offers the same features as Precision RTL and
Physically Aware Synthesis.

* Optimizes based on preimplementation estimates and considerations such as delays,
potential placement, routing, and other device-related design rules.

Incremental Design Flows.
* Can recompile and synthesize portions of the design.
Resource Manager.

* Interface that allows the designer to analyze and manipulate the mapping of the
FPGA'’s resources to optimize performance or area.

Synopsys offers Synplify Pro and Premier.

Synplify Pro uses
Behavior extracting synthesis technology (B.E.S.T.) optimizer for
* Proprietary algorithms.

*  HDL Analyst.
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* Creates an RTL block diagram.
* Graphical state machine viewer.
* Automatic RAM and DSP inference.
* Incremental Design.
* Automatic Retiming.

* Improves timing performance and balances delays by moving registers within
combinatorial logic.
*  FSM Compiler and Explorer.

* Optimizes finite state machines based on constraints
Synplify Premier provides some of the same features as Synplify Pro but also some extras
* A simulator—like debug environment.
*  DesignWare compatible library.
* Easy ASIC code migration.
*  SynCore IP wizard.

* Automatically generates technology-independent RTL for memories and first-in/
first-outs.

6.3.2. Synthesis Tool Setup

Before performing synthesis, there is a little tool setup. Until this point in the development
phase, the FPGA’s part number was unnecessary; however, the synthesis process needs
information about the part, such as speed and available internal resources, to synthesize the
design. The FPGA is identified by selecting the family, device number, package, and speed.
Any of those selections is easy to change and resynthesize the design using the new
information. Using a third party tool also makes it easy to switch between different
manufacturers. Basic tool setup consists of creating a project that contains all the information
about the design, see Figure 6-6. Some general information provided during the project setup
includes

* Device information (i.e., family, device number, package, and speed), which may be
found on the device package.

* Input design.

*  User-defined constraint file(s).
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Design File

HDL
I

Synthesis Setup

Y

Input Design

. ) Design Netlist
Constraints File

Timing » Constraints
Functional Netlist

FPGA

» Device Information

Manufacturer's Name
Device Family
Device Type —»-| AB2C50A

Package ———»| VQ122BHX0825
J9876
Speed —— | 5M

Temperature of

Pin1——»| @®

Figure 6-6: Basic Synthesis Setup Information

6.4. Synthesis Input

The input to the synthesis development phase is the design, VHDL code in our case.
In addition to the design file are the user-defined constraints or limitations. The constraints
may contain such things as timing or Vendor attributes.

Acceptable design formats vary between synthesis tools, so make sure prior to creating your
design or selecting your tool that the formats are compatible.

Altera’s Quartus II accepts

* AHDL (Altera Hardware Description Language).

* VHDL.

¢ Verilog.

e System Verilog.

*  Schematic capture.

* EDIF input files; Quartus II supports both .edif and .edn file extensions.

*  Verilog Quartus mapping files; this is a node-level netlist in ASCII text format, generally
created by an EDA synthesis tool, like Synopsys Synplify.



Synthesis 137

Xilinx’s Synthesis Tool
N
rz$ / AHDL Is Specific to Altera’s Tools
K
&7
o/
%
AHDL
Design o)
/%Q’/b/ Altera’s Synthesis Tool

Figure 6-7: Design Format and Synthesis Tool Compatibility

Xilinx’s Synthesis Technology accepts VHDL and Verilog.
Mentor Graphics’s LeonardoSpectrum® accepts a mixture of VHDL, Verilog. and EDIF.

Precision RTL, Precision Physical, and Precision RTL Plus Synthesis accepts Supports
System Verilog, Verilog, VHDL, EDIF, or a combination of these.

Synopsys’s Synplify Pro accepts VHDL, Verilog, and a mixture of VHDL and Verilog. So if
your synthesis tool is Synplify, your design format cannot be schematic capture or AHDL,
which is compatible with Altera’s development tools, see Figure 6—7. For most cases,
especially if you use mainstream tools and HDL, there is no problem with compatibility.
However, just as a sanity check, it is a good idea, when you first start, to make sure that no
compatibility issues exist.

6.5. Synthesis Output Files

The synthesis process generates many different types of files. Some will be used during the
FPGA development process and others will have no meaning to you, see Figure 6-8.

The synthesis process has done a lot of work to break down the high-level design to a lower
level. At the completion of the synthesis phase the original design is closer to a format that
will be used to program an FPGA.

Netlists, status reports and schematic views are some of the outputs generated by the
synthesis tool that will help you during the development process.

* Netlists: a design netlist, which is the synthesized design, and an optional functional
netlist, used to perform functional simulation.

* Status reports that states internal resources utilization, critical timing path(s), and other
pertinent information.

*  Schematic views: RTL and technology.
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Synthesis Outputs

EDIF Xilinx
i— g Place and Route
|
EDIF )
Netlists |-—— - ——— —— > Altera’s

Place and Route

Functional Netlist

Simulator
Status Report > Resource
Utilization
Preoptimized
> RTL
Schematic Views
Postsynthesized
»  Technology

Figure 6-8: Synthesis Outputs
6.5.1. Netlists

The design netlist is what the original design looks like after it has been synthesized
(i.e., optimized, connected using internal FPGA logic). It is not necessary for the complete
development tools to output the design netlist, since synthesis and implementation are
combined in one tool. Third party tools produce this netlist, so it can be used as the input to
the manufacturers’ implementation tool. Consult the implementation tool to determine
which file extension(s) are acceptable. Most implementation tools accept the generic EDIF
format and their manufacturer-specific format. Even though the design is represented by
this netlist, it cannot be used for simulation. Most synthesis tools provide an option to have
a functional simulation netlist or file generated. Generally, the functional simulation file is
not generated automatically. I suggest generating this file and performing the functional
simulation, especially if time permits. The functional simulation allows you to verify that
the synthesis process did not change the design. You should be able to use the RTL
testbench to verify the netlist; and since this netlist represents the original design, you
should expect the same results. In the RTL simulation, results were instant because no
timing delays were used, but the synthesis tool introduces timing delays, which may be
viewable during your simulation.

The functional netlist is complied in the simulator instead of the original design and verified
using a testbench. If the netlist requires additional libraries like the unisim library, it must
be added to the simulator’s library. The design should perform the same way, proving the
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synthesis process has not changed the design. If this isn’t the case, then it will be necessary to
utilize different synthesis tool features and files to determine the problem(s).

6.5.2. Status Reports

Now that the design is interconnected and utilizes internal resources, we can now know how
much of the internal resources are used, clock and other timing information, critical paths,
warnings, errors, and we can even see the design represented as a schematic. These status
report files are output from the synthesis tool and are not used as input to other development
phases. Their main goal is to provide the user with helpful information about the design and
allow him or her to identify real and potential problems, such as the design not meeting
timing and other constraints. Depending on the design complexity, you may review one or all
of the output files. Each synthesis tool provides information in different ways, so consult the
user’s manual to determine what files contain this information.

6.5.3. Schematic Views

The synthesis tool generates two schematic views: RTL and technology. The RTL
schematic view shows the preoptimized design in terms of generic symbols, such as adders,
multipliers, counters, AND gates, and OR gates. This view is manufacturer independent.
One of the main benefits of this view is that some design issues may be detected by viewing
the RTL schematic and corrected early in the development process. You can think of this
view as being raw, in that it is not associated with a manufacture, because nothing has
been done to reduce the logic. It has just been translated from the high-level design.

6.5.4. Technology Schematic View

After the design has been synthesized, it can be viewed as a schematic, which is
represented by the technology schematic view. This view shows gates and elements as
they will look in the selected manufacturers’ device. Now, the design looks more like it will
when it is put into the FPGA. You should review this schematic to make sure that the
synthesis process has not removed logic you wanted in the design. If this happens, it may
be necessary to rewrite some code or use constraints to keep the logic.

The output files provide a good first look at resource utilization and timing, so design
modifications can be made prior to implementation. Because of the many aspects of
performing synthesis, I think it would really help to show an example of how synthesis is
performed. In the next section, a synthesis tutorial is provided using Xilinx’s XST synthesis
tools. Xilinx’s Webpack ISE 10.1®, which provides synthesis, implementation, and a
simulator, has been downloaded for the tutorial. The best part is it is free. | suggest that, if you
have no development tools, this would be a good one to download and try. The Webpack ISE
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is available for both Windows and Linux and can be found at www.xilinx.com/tools/webpack
.htm. A free user account is required, so you have to create a user name and password before
getting access.

6.6. Synthesis Tutorial

Xilinx’s XST synthesis tool is a part of its ISE and Webpack ISE complete development
packages. Whereas ISE is a fee-based tool that supports more devices and offers more
features, the Webpack is free, with limited features but sufficient for this tutorial. Keep in
mind that your synthesis tool may require a different setup and the terminology may be
slightly different, but in the end, a third party tool provides a synthesized netlist that will be
used in the implementation development phase and an option to output a functional
simulation netlist. It is unnecessary for the manufacturers to provide the synthesized netlist,
and this may not be provided.

Launch Synthesis Tool

Select Start — All Programs — Xilinx ISE Design Suite 10.1 — ISE —
Project Navigator or click on the desktop icon. Note: Depending on your operating
system, your Start path may be slightly different.

Create New Project

Select File — New Project. A “New Project” wizard is provided to step you through
creating a project. The project name, location, and top-level source type are defined as

Project name: Mode2n3 project
Project location: C:\Chapter6 Synthesis\Mode2n3 project
Top-level source type: HDL

Note: See Figure 6-9 for selections in the project wizard.

Select Next.

Now it is time to tell the synthesis tool which FPGA device will be used, the format of your
design format, and your selected simulation tools.

Device Properties
Select General Purpose.

Not all families are available for each product category, each family offers different devices,
and not all devices have the same packages or speed, so depending on your selection, the
pull-down menu options will vary.
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S New Project Wizard - Create New Project

Ertes a name and location for the project

Project Name: Mode2n3_project

Project Location: C: \Chapter6
Synthesis
Note: tool appends HDL file name to path

HOL

Project name: Project location

Mode2n3_project C:\Chaptert_Synthesis\Mode2n3_project
Select the lype of lop-evel towce lor the propect

Topevel source type:

Top-level source type: HDL
Note: tool appends HDL file name to path

Top-level source type Options
HDL

Schematic

EDIF

NGC/NGO (Xilinx specific format)

Figure 6-9: Create New Project (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Select Family — Spartan3.
Select Device — XC3S50.
Select Package — VQ100.

Select Speed — -5.

Select Top-Level Source Type — HDL.

Select Synthesis Tool — XST (VHDL/Verilog).

Note: At one time, some manufacturers offered third party synthesis tools to allow you to
compare synthesized netlists. If this were the case, then the Synthesis Tool pull-
down menu would provide options. No other synthesizers are provided as an option.

See Figure 6-10 for selections in the project wizard.
Select Simulator — Modelsim XE VHDL.
Select Preferred Language — VHDL.

Keep default for the rest of the selections.

Select Next.
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Product Category Options:
- All
- General Purpose
R R RRREEEE——————— - Automotive
New Project Wizard - Device Properties / - Military/Hi-Reliability
Select the device and design fow for the progect - Radiation Hardened
Propedy Neme Yahuo
Froduct Category General Puposs
Famiy Spartan3 L
Device w3550 w
Package Vo100 v
Speed s B
TopLevel Souce Tyvoe HDL
Synihesis Tool #ST [VHDLMVeritog) = N ~ | Note: Option pull-down selection
Simudator ModslzimE VHDL ]
t changes based on the selected
Frelened Language | VHDL ey |
product category because not all
Enable Enhanced Design Summary [7] families offer the same device,
ETMM"M” ) = package, or speed.
Display Inciemental Messages O
o= ) ) (o)

Figure 6-10: Device Properties (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Create New Source

The next screen, Create New Source, shown in Figure 6-11, allows for a new source file
to be created; but since a design file is already created, no new file will be created.

Select Next.

Add Existing Source File

Now the design file will be added to the project, see Figure 6—12.
Select Add Source and navigate to the location of the source file.

Deselect Copy to Project. I found out the hard way that it is best to keep only one design
code copy.

Select Next.
Project Summary

The next screen is a summary of the project information entered in the previous screens,
see Figure 6-13. Look over the information for completeness and correctness. Select Back
if changes are needed. Otherwise select Finish.

Select Finish.
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Create a new source

— =

1 Remove

Creating a new source to add to the project is optional. Only one new source can be created with the New Project Wizard.
Additional sources can be created and added to the project by using the "Project->New Source' command.

Existing sources can be added on the next page.

[ <Bak |[ New> | [ cance |

Figure 6-11: Create New Source File (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

MNaw Projact Wizard - Add Existing Sources

Navigate to source file.

Add ensting sousces

Source File Copy to Projec | AddSowze |~
) -l - [ Reme )

Adding esdcting sources ic optional. Additioral cowces can ba added after the peoject is created using the "Project->Add
Source'" or "Project->Add Copy of Source” commands.

oo ) e ] [ ]

Figure 6-12: Add Existing Design File (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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E New Project Wizard - Project Summary

Project Mavigator will create a nevs project with the following specifications:

Project:
Project Nawe: Mode2n3_project
Project Path: C:\Chapterf Synthesis‘lodeZnd_project
Top Level Source Type: HDL

B

Device:
Device Family: Spartan3
Device: xc3s50
Package: w100
Speed: -5

Synthesis Tool: XST (VHDL/Verilog)
Simulator: Modelsim-XE VHDL E
Preferred Language: VHDL

Enhanced Design Summary: enabled
Megsage Filtering: disabled Vi

[ < Back ][ Finish ][ Cancel ]

Figure 6-13: Project Summary (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
Source File Status
This last screen allows you to view the status of the project source file(s).

Select Association — All. See Figure 6-14 for all the Association options.

Now that you have completed the wizard, you get the project window shown in Figure 6-15.
This view has Sources, Processes, and a transcript section as well as a viewing
area, where reports, source code, and other project information are displayed.

Sources Section
The sources section shows the project name, source file, and device part number.

Select Sources for: — Implementation. Double clicking on the source code opens
the file in the viewing window, see Figure 6-16.
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£ Adding Source Files... E

The following allows you to see the status of the source files being added to the project, and
allowes you to specify the Design View association for sources which are successhully added to

the project.
Design Unit Association None
2n3. .
[')ru:me d - L / Implementation
'ng| mode2n3 arch_mode2n3 (Al v ) )
Simulation
All

Ok Cancel

Il

I

Hep |

Figure 6-14: Source File Status (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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Figure 6-15: Project Main View (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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Source Code Filename Source Code in viewing area
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Figure 6-16: Viewing Source Code (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in Xilinx ISE
WebPack™ software version 10.1.)

Transcript Window

The transcript window shows the status and provides other information about the processes.
It contains several tabs that show information related to the named tab.

Processes Section

The processes section is where synthesis and implementation are performed; constraint,
design summary, source and bit stream files are created; and you program the FPGA, but the
one we are interested in for this chapter is the Synthesis -XST.

Expanding Synthesis XST in Process Window

Click on the + next to the Synthesis - XST. It shows the reports and schematic views
generated by the synthesis tool, which are viewable by double clicking on the name. “Check
syntax” (only checks the design’s syntax) and “generate postsynthesis simulation modeling/
netlist processing” are also performed here, see Figure 6-17.
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Synthesize Design

Select Synthesis - XST and right click to see the synthesis options, see Figure 6—18.

Select Run.

Note: As the synthesis is running, the transcript provides status information; see Figure 6—19
for a sample. Errors detected during synthesis are displayed with error message(s) in

The transcript window, see Figure 6-20.
The process window with an X next to the Synthesis - XST, see Figure 6-21.
The synthesis report file, see Figure 6-22.

The design summary file, see Figure 6-23.

If the synthesis is successful (i.e., no errors are detected), then the transcript window will
look similar to Figure 6-24 and the process and design summary like Figure 6-25.

Processes E3]

Processes for: mode2n3 - arch_mode2n3
[ AddEsisting Source
[ Create New Source
= 5 View Design Summary
® Y Design Utiities
Y  User Constraints
& ¢Q Synthesize - XST
[E] View Synthesis Report
View RTL Schematic
View Technology Schematic
) Check Syntax
#- ) Generate Post-Synthesis Simulation Model
#-#) Implement Design
# ) Generate Programming File
® ) Configure Target Device

2{ Processes ‘

Figure 6-17: XST Expanded View (Material based on or adapted from figures and text owned

by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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@0 G e Past-Synl Open Without Updating
€2  Implement Design Design Goals & Strategies. ..
€2 Generate Programming i Gt Properties...
#- ) Configure Target Device

Bf' Processes l

Figure 6-18: Start Synthesis (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Readlng design: modezZn3.pr) ~
* HDL Compilation *
Compiling vhdl file "C:/Chapter6_Synthesis/Design Code/mode2n3.vhd" in Library work.
Encicy <modeZn3d> compiled.
Entity <modeZn3> (Architecture <arch modeZn3i>) compiled.
* Design Hierarchy Analysis *
Analyzing hierarchy for entity <modezn3> in library <work> (architecture <arch_modezn3>).
n HDL Analysis ¥
Analyzing Encicy <modezn3> in library <work> (Architecture <arch_modezZni>).
Entity <modeZn3> analyzed. Unit <modeZn3> generated.
* HDL Synthesis 4
Perrforming bidirectional port resolutlion...
Synthesizing Unit <modeZnd>.
Related source file is "C:/Chapter6_Synthesis/Design_Code/modeZn3.vhd"”.
Found rinite state machine (rﬁﬂ_u} Ior signal <CUIIEIIC_SEBCE}.

| €

< i | : :
(6] Comole | @Enors | §\Warings | {0 Telhel | g FindinFies |

Figure 6-19: Synthesis Status in Transcript Window (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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Transcript

Reading design: modeZnd.prj

HDL Compilation b

Entity <modeZni>

5 ERROR: HDLParsers
) ERROR: HDLParsers

>

s

& ERROR: HDLParsers:
@ ERROR: HDLParsers:

& ERROR : HDLParsers:

compiled.

53]

Compiling vhdl file "C:/Chapter G_Ssmthesis!Desiqn_Cudm’mdeZnS.vhct" in Library work.

164 - "C:/Chaprerés Synthesis/Design Code/modeZn3.vhd” Line 37. parse error, unexpected SIGNAL, expe

13312 - "LM_W&RMMMM" Line 57.
1209 - "C:/Chapterf Synthesis/Desi. Code de2nl . vh Line 57.
:3312 - "C:/Chapteré Synthesis/Design Code/modeZn3.vhd" Line 58.
1209 - "Ci/Chapveré Synthesis/Desion Code/modeznd.wvhd" Line 58.

Total memory usage is 124052 kilobytes

Number of errors 5 { 0 filtered)
Number of varnings : (s I § 0 filtered)
Nunber of infos 0({ O filtered)

Process "Synthesis" failed

i I o
[f] Console | @ Enors | g\ Wamings | (@ eisher | 3 FindinFies |

Undefined symbol 'int_narrow_pulse'
int_narrow_pulse: Undefined svmbul
Undefined symbol 'int_wide_pulse'.
int_wide pulse: Undefined symbol ()

|»

Figure 6-20: Synthesis Error Shown in Transcript Window (Material based on or adapted from
figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008
used in Xilinx ISE WebPack™ software version 10.1.)

Processes (x]

Processes for: mode2n3 - arch_mode2n3
[ Add Existing Source
™ Create New Source
View Design Summary
® Y Design Utilities
® %  UserConstraints
& ()°Symhesize XST
- [E)@ View Synthesis Report
Ea View RTL Schematic
: View Technology Schematic
P2 Check Syntax
@) Generate Post-Synthesis Simulation Model
#-F) Implement Desian
Ei ?) Generate Programming File
# f) Configure Target Device

Z{ Processes |

Figure 6-21: Synthesis Error Shown in Processes Window (Material based on or adapted from
figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008
used in Xilinx ISE WebPack™ software version 10.1.)
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Figure 6-22: Synthesis Report File Shows Errors (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Now that the synthesis process is complete, the report and schematic views are available.
A lot of information is available in the synthesis report, so I copied some information
from the utilization summary.

Just for comparison the design was resynthesized using

Family: Spartan?2

Device: XC2S515

Package: CS144

Speed: -5

Table 6-3 shows the synthesis comparison between the two devices.

The biggest differences between the two devices are the percent utilization of the internal
resources and max frequency. Spartan 3 uses 20% of available slices while Spartan 2 uses
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Figure 6-23: Design Summary File with Errors (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

84%, and Spartan 3 has a maximum frequency of 112.3 MHz while Spartan 2 is 62.956 MHz.
Because the Spartan 3 is a larger FPGA with more resources, its percentage of used slices is
much less than Spartan 2. Both devices use about the same number of internal resources,
which should be expected, since the design is the same.

It is important to derate how many internal resources are used. So I would think twice
about using the Spartan 2 because 84% is a pretty high number for utilization. Some
companies have a standard for derating the internal resources. Most of the time 60-70% is a
good range. I generally like 50%, especially for new designs, where there is a good
possibility that the design will grow. Utilizing a lot of your resources makes it difficult for
the tool to synthesize and implement the design. Always leave yourself some growing
room. Additionally, it is always a good idea to derate input/output pins to accommodate
potential growth.
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Figure 6-24: Successful Synthesis Shown in Transcript Window (Material based on or adapted
from figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008
used in Xilinx ISE WebPack™ software version 10.1.)
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Figure 6-25: Successful Synthesis Process and Design Summary Windows (Material based on
or adapted from figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright ©
Xilinx 1995-2008 used in Xilinx ISE WebPack™ software version 10.1.)
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Table 6-3: Spartan 3 versus Spartan 2 Utilization Comparison

Device Family Spartan 3 Spartan 2
Part number 3s50vq100-5 2515cs144-5
Number of slices 161 out of 768; 20% 162 out of 192; 84%
Number of slice flip-flops 74 out of 1536; 4% 74 out of 384; 19%
Number of 4 input LUTs 305 out of 1536; 19% 308 out of 384; 80%
Number of 1/Os 9 9
Number of bonded IOBs 9 out of 63; 14% 9 out of 86; 10%
Number of GCLKs 1 out of 8; 12% 1 out of 4; 25%
Minimum period 8.904 nsec (Max Freq = 15.884 nsec (Max Freq =
112.307 MHz) 62.956 MHz)
Minimum input arrival time 7.629 nsec 13.479 nsec
before clock
Maximum output required time 6.306 nsec 8.329 nsec
after clock
Maximum combinational path delay No path found No path found
RTL View

The RTL schematic view shows how the design looks as it was converted to logic elements.
Double click on RTL Schematic to see full view (Figure 6-26). The expanded view is
shown in Figure 6-27.

Technology View

Double click on View Technology Schematic. This shows the internal technology, such
as lookup tables connected to create the design. See a full view in Figure 6-28 and an
expanded view in Figure 6-29.

Now that the design has been successfully synthesized, the optional functional simulation
netlist can be created.

Create Optional Functional Simulation Netlist

This section creates the functional simulation netlist used to verify that the design was not changed
as a result of the synthesis process. If the netlist is successfully created, checkmarks appear next to
Generate Post-Synthesis Simulation Model and Post-Synthesis

SimulationModel Report. The path and filename for the netlist is provided in the report file.

Select Generate Post-Synthesis Simulation Model. Then right mouse click to
show the options, see Figure 6-30.

Selecting properties will show additional options, see Figure 6-31, but for this tutorial,
the default values are good enough.
Select Run.



154 Chapter 6

Figure 6-26: Full RTL Schematic View (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

The netlist is in VHDL format but looks very different from the high-level design. The input and
output ports are the same as in the design code, making it possible to use the same testbench. The
netlist is a large file (about 5595 lines), so only samples of certain sections in the design are
shown in Example 6-2. Note: format convention is different from the original design code.

Lines 1-5 is the library declaration.

Lines 7-19 is the entity section.

Line 21 starts the architecture section, only a small portion is shown.
Lines 22-25, shows some of the signal definitions.

Line 27 is the Begin statement for the architecture section.

Lines 28—41 shows some of the component instantiations.
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Figure 6-27: Zoomed in RTL Schematic View (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Figure 6-28: Full Technology Schematic View (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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. library IEEE;
. use IEEE.STD LOGIC 1164.ALL;
. library UNISIM;
. use UNISIM.VCOMPONENTS.ALL;
. use UNISIM.VPKG.ALL;

. entity mode2n3 is
. port (

m Example 6-2. Functional Netlist

reset : in STD_LOGIC := ‘X' ;

wide pulse :
input pulse : in STD LOGIC := ‘X' ;
mode2 : out STD LOGIC;

clock20Mhz :
narrow_pulse : out STD LOGIC;

valid pulse : out STD LOGIC;
mode3A : out STD LOGIC;

out STD LOGIC;

in STD_LOGIC := X' ;

invalid mode : out STD LOGIC

) ;

end mode2n3;

N
(@)

signal Madd pulse spacing share0000 cy 11 rt 4 :
signal Madd pulse spacing share0000 cy 12 rt 6 :
signal Madd pulse spacing share0000 cy 13 rt 8 :

begin

architecture Structure of mode2n3 is
signal Madd pulse spacing share0000 cy 10 rt 2 :

sync_pulse : FDC

port map (

w
(@)

w
w

) ;

C => clock20Mhz BUFGP 364,
CLR => reset IBUF 647,

D => input pulse IBUF 415,
Q => sync_pulse 649

pulse spacing 0 : FDC

port map (

w w
oo

)5

C => clock20Mhz BUFGP 364,

CLR => reset IBUF 647,

D => pulse spacing mux0003(31),
Q => pulse spacing(0)

STD LOGIC;
STD LOGIC;
STD_LOGIC;
STD_LOGIC;



Figure 6-29: Expanded Technology Schematic View (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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Figure 6-30: Postsynthesis Options (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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E Process Properties - Simulation Model Properties
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Figure 6-31: Functional Netlist Options (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

6.7. Chapter Overview

The synthesis process takes the high-level design and breaks it down to a mid-level netlist.
The design is getting closer to the file that will be used to program the FPGA. The part
number and manufacturer must be known, so the synthesis tool can start associating the
design with the part’s internal resources. Several output files and schematic views provide
additional information about the design’s current state. Schematic views show what
logic connections are necessary to create the design. The postsynthesis simulation

netlist contains some predicted timing; real timing is applied during implementation.
This file can be used with the original testbench to verify that the synthesis did not
change the design. After successfully completing synthesis, implementation is
performed.
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Key Points to Remember

Synthesis is required and must be performed prior to implementation.
Third party synthesis tools output a synthesized netlist for the implementation tool.

Synthesis automatically feeds into implementation when using a manufacturer’s
complete package tool.

Functional simulation should be performed, if time permits.

The RTL and technology views show what logic makes up the design.

Chapter Link

Xilinx’s Webpack ISE 10.1: www.xilinx.com/tools/webpack.htm.
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Implementation

7.1. Introduction

Implementation, also referred to as place and route (PAR), is the phase in FPGA
development where the design has been synthesized and an RTL simulation performed

(at least I hope), and maybe a functional simulation. The design is no longer at a high level
but is a mid-level netlist format created by the synthesis process. This is the development
process that produces a bit stream file. Implementation can be very time intensive, because so
many elements must be considered, decisions made, and potential issues to resolved.

Some designs are implemented with ease, while others can take days to complete. In my
opinion, the implementation tool has the hardest job of all the development process tools.
So many options and features are available, that can be used to resolve issues or provide a
better placement or design layout. Ultimately, the bit stream file created in this phase is used
to program the FPGA. In the previous phases, interface signals or board layout were not
considered; however, considering these types of things during implementation can make
board layout and interface much easier. By using specific implementation options, signals
can be assisted to specific pins locations to make board layout easier. The synthesized
netlist is the minimum input to the implementation phase; and the output is a bit stream or
programming file, an optional gate-level simulation netlist, and a timing file, see Figure 7—1.

In this chapter, you will learn about
*  Implementation process.

* Tools and setup.

*  Constraint files.

*  How to perform an implementation through a tutorial.

7.2. What Is Implementation?

Implementation is the process that maps the synthesized netlist to the specific or target FPGA’s
resources and interconnects them to the FPGA’s internal logic and 1/O resources. During this

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00007-2 161



162 Chapter 7

Programming File
»| Programmer

Synthesized Netlist

Implementation

-
>

Figure 7-1: Implementation Phase Inputs and Outputs

process, the physical design layout is determined. This is the final development process that
manipulates the design before it is programmed into a device. Each manufacturer performs
implementation differently, but the concept is basically the same. The process described in this
section is like the one performed by Xilinx’s implementation tool. The implementation process
takes four steps to convert the mid-level netlist to a final programming file—translate, map,
place and route, and generate programming file, see Figure 7-2.

Implementation

|
I
| . )
Netlist | . | | Programming File
| Translate Map Place & Route Generate Program F|IeI i >
| I
|

Figure 7-2: Implementation Steps

7.2.1. Translate

The translation process takes the input netlist and merges it with the design constraints (if
provided) to create a native generic database (NGD) output file, see Figure 7-3. Acceptable
netlist formats depend on the implementation tool, a common one is EDIF, and the
manufacturer’s specific format (e.g., Xilinx’s is NGC). The synthesized input netlist is
automatically fed into the translation process when using a complete package development
tool. However, the implementation tool must be directed to the location of the synthesized
netlist created by a third party synthesis tool. The NGD netlist describes the logical design in
terms of Xilinx’s primitives. If an error is detected during translation, the tool stops.

The error must be corrected and the implementation process must be restarted from the beginning.

Translate

.NGC Merge Netlist & .NGD

Constraints

Figure 7-3: Translation Process
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Once translation is complete, the NGD output netlist is automatically fed into the mapping
process. In addition to the NGD file, an optional post-translation simulation file can be
generated. This file is used to verify that the translation process has not changed the
design. A post-translation simulation file may not be offered by all implementation tools,
so consult your implementation’s user’s manual. This is an incremental simulation and not
the gate-level simulation.

7.2.2. Map

Mapping takes the NGD netlist, which is a logical design, and maps it to the target FPGA,
see Figure 7—4. First, a logical design rule check (DRC) is performed on the NGD netlist.
Then, the logic is mapped to the target FPGA’s logic cells, I/O cells, and other internal
resources. Errors encountered during the mapping process cause the implementation tool to
stop. All errors must be corrected, and the implementation process must be restarted from the
beginning. The output from the mapping process is a native circuit description (NCD) file.
NCD is the physical representation of the design that is mapped to the target FPGA’s internal
resources or components. The NCD is the file that feeds into the place-and-route stage.

In addition to the NCD output file, an optional post-mapping simulation file can be generated.
This file is used to verify that the translation process has not changed the design. The post-mapping
simulation file may not be offered by all implementation tools, so consult your implementation’s
user’s manual. This is an incremental simulation and not the gate-level simulation.

7.2.3. Place and Route

The place-and-route process takes the NCD file from the mapping process and interconnects
the design (places and routes it), see Figure 7-5. After the place-and-route process is
complete it outputs an NCD file, which is used to create the bit stream file that is used to
program the FPGA. The optional gate-level simulation and timing file can be generated to
perform simulation. This gate-level simulation is more meaningful than post-translation
and post-mapping simulation, because gate-level simulation files provide actual gate delays
based on routing and placement. I would perform the post-translation and post-mapping
simulations only for troubleshooting purposes. For example, if a functional simulation was
successful but the gate-level one was not, the incremental simulation can help narrow down
where the problem first occurred.

Map

.NGD Mapped to .NCD

Resources

Figure 7-4: Mapping Process
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Place & Route

.NCD Place & .NCD

Interconnect

Figure 7-5: Place-and-Route Process
7.2.4. Generate Program File

The final implementation step is to generate the programming file. The NCD output file from
the place-and-route step is used to create the FPGA’s programming file or bit stream,
Figure 7-6. It could reside on a nonvolatile device, like a PROM, or within the FPGA device.
This file can be automatically downloaded to the FPGA at power-up or when commanded by
an external device, like a microprocessor. The process of loading the bit stream into the
FPGA is called configuration. The datasheet, user’s guide, or application notes define the
configuration and programming options. Data loads can be a combination of serial, see
Figure 7-7, or parallel, with the FPGA acting as the master, see Figure 7-8 (controlling

Generate
Program File

Bit Stream

Figure 7-6: Generate Programming File

Microcontoller FPGA
Data p| Datay
Clock » Clock

Figure 7-7: Serial Slave Configuration

FPGA Microcontoller

Data[7:0] |«@——~——| D[7:0]
Select |- Sel
Clock » Clk

RD/WR |- RD/WR
Busy » RY/BY

Figure 7-8: Parallel Master Configuration
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Microcontoller FPGA 1 FPGA 2 FPGA 3

Data gyt —pw| Datayy Data gyt —p|Datay Data gyt —pm{Datayy Data gyt

Clock T» Clock T» Clock T» Clock

Figure 7-9: Serial Daisy Chain Configuration

\

external device), or slave (being controlled by external device). They can be programmed one
at a time or daisy-chained to program multiple loads, see Figure 7-9. The FPGA has
configuration pins that are used during the configuration process. The manufacturer provides
the specific operating details of these pins in its documentation (i.e., datasheet, application
note, user’s guide). The implementation tool provides various options for creating the bit
stream. The bit-stream data can be compressed or uncompressed. Compressed bit-stream data
are of a fixed size and the manufacturer provides this information. Oftentimes, security
options are available to prevent unauthorized downloading of the bit stream. Once the bit
stream 1is ready, the next step is to program the device that will hold this file.

7.3. Implementation Tools

The tools needed are an implementation tool and a design editor. The implementation tool
performs the design implementation or PAR, and the editor is needed for design modification.
The implementation tool is offered by the FPGA’s manufacturer and generally not a third-party
company. These tools use proprietary algorithms to process the synthesized netlist and produce
the final programming file. The general setup is pretty simple, even when using a synthesized
netlist, from a third-party tool. The synthesized netlist is automatically fed into the
implementation process for complete package development tools. On the other hand, the tool
must be directed to the synthesized netlist for a third party’s netlist. Even though the setup
seems easy, working with the tool to get the program file that meets your needs can be
challenging. A lot of information about the target FPGA, such as part number, speed, and
package, has to be provided to the synthesis tool and is contained in the output synthesized
netlist. Because of all the work done by the synthesis process, it seems like implementation
should be easy. This is not the case. Putting the design into the FPGA and interconnecting can
be the most challenging and time-consuming part of the development process.

7.4. Implementation Inputs

The minimum input to the implementation phase is the synthesized netlist from the synthesizer
with an optional user-defined constraint file. When using a third party synthesizer, the netlist
must be in a format that is readable by the manufacturer’s implementation tool. So, consult
your user’s manual to make sure the formats are compatible. However, if you are using a
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complete package development tool, then the tool automatically creates the correct format
and feeds it into the implementation process. The user-defined constraint files contain such
information as timing, pin assignments, and internal placement for logic.

User-defined constraints put restrictions on the implementation tool and should be used
with caution. Constraints make the tool work harder, because it must consider the
restrictions that it must follow and still do its job. Implementing a design that utilizes most of
the device’s resources can greatly increase implementation time and may even cause the
process to fail. I am not saying that constraints are bad and should not be used, because they
can be necessary. I am just saying to consider all the factors when determining when and
what should be constrained. If at all possible, try to keep the device utilization below a
reasonable percent. As stated before, high resource utilization increases implementation time
and makes it difficult if not impossible for the design to be placed and routed. What is
reasonable? I leave it to you to determine a reasonable percent, but consider the room
needed for potential growth and spare pins. Some companies predefine how to derate the
resources. I like 50%, but that is not always possible, so this number changes from design
to design.

Over the years, preassigning pins to an FPGA has been my most used constraint. Assigning
pins are most beneficial when they are based on the placement of the components that will
interface with the FPGA. The board designer will thank you or you will thank yourself,
because this can make board routing so much easier and faster. Many other factors may

be considered when determining if the tool or you should assign pins. If you do not care,
then I would say first let the tool decide, you always have the option to redefine later.

In fact, even if you do care, you can let the tool make the initial pin assignment, review
the list, and make changes as necessary. This reduces the restrictions put on the tool, and
you still get what you want. Because each situation is different, you should consider the pros
and cons and then make your decision.

7.5. Implementation Outputs

Outputs from implementation are the bit stream file and an optional simulation netlist.
Implementation also creates a lot of files and directories, some you will care about and others
you will not. Some information that you may find important is

* Pin assignments.

*  Timing information.

*  Number of unrouted signals.
e Errors and warnings.

e Utilized resources.
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Xilinx’s ISE generates a report file for each of the implementation stages and several other
different files within each stage:

Translate

Translate report.

Floor plan design.
Post-translation simulation model.
Map

Mapping report.

Post-mapping static timing.
Post-mapping floor plan design.
Post-mapping simulation model.
Place and route

Place-and-route report.

Clock region report.
Asynchronous delay report.

Pad report.

Examples of these files are provided in the tutorial section. For simple designs, you may need

only the report that contains the pin assignments. However, for complex designs, where

the tool is having difficulty meeting the timing or placing the design, it will be necessary

to view some of the other files and use the advanced implementation tool’s features.

Now that we have gone through what it takes to get the design through place and route, this is
a good time to provide a tutorial.

7.6. Implementation Tutorial

This tutorial continues to use Xilinx’s Webpack ISE 10.1 for the FPGA development.

Most if not all complete implementation tools can process the design from synthesis all the way
through to generating the programming file without stopping, if no errors are encountered.

Implementation Assumptions

Preinstalled Xilinx’s Webpack ISE 10.1.

ISE synthesized netlist.
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* Basic knowledge of the Webpack ISE.

* Continuous processing from synthesis and Webpack is open.

Expand Implementation Options

Click on the + beside Implement Design to reveal the three implementation steps,
see Figure 7-10. Notice that Synthesis — XST has a checkmark, indicating the process
was successful.

There are two implementation options: Option 1 performs all three processes in one step,
option 2 performs each process individually. Regardless of which option is selected,

the same information is provided. If an error occurs during any part of the process, the tool
stops, the error(s) must be corrected before continuing, and the entire process must be
repeated. Steps for both options are demonstrated in this tutorial. Select one option or try
both.

Option 1. Implement All

Select and right click on Implement Design. This shows all processing options,
see Figure 7-11.

Select Run or Rerun. This performs entire implementation process (i.e., translation,
mapping, and placing and routing) at once.

Note: Selecting Rerun A1l performs both the synthesis and implementation processes.
Option 2. Individual Implementation

The individual processes are performed one at a time.

Processes '
Processes for: mode2n3 - arch_mode2nd
™ AddEwsting Sowrce
O Crese New Sounce
Wiews Design Summary
. + ¥ Design Ulithes
Synthesis Successful | T\ | . ; Uber Corraits
* £ JD)Simthesize - KST
= €3 Implement Design
+ F2 Translate
Implementation Steps { H8) Map
# F) Placek Route
# 0) Generate Programmng File
+ ) Configue Target Device
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Figure 7-10: Implementation Steps (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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Figure 7-11: Implement All (Material based on or adapted from figures and text owned by
Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Translate Design

Translation is the first of the implementation processes. The input to this process is a
synthesized netlist and user-defined constraint file(s). Native generic complier (NGC) is the
synthesized netlist format. Since the development tool for this tutorial performs both synthesis
and implementation, the netlist is picked up by the tool automatically. At this point, no
user-defined constraints have been established. Constraints are not always known or defined
in the beginning and can be added later, which is the case for this tutorial. The output is a
native generic database or NGD file, which is automatically fed into the mapping process.

Click on the + beside Translate Design. This shows that a translate report, floorplan
design, and post-translate simulation model file are created and made available after the
translate step. Each of these options can be run individually or all at once, as in this case, see
Figure 7-12.

Run Translation

Select and right mouse click on Translate. Select Run.

Translate Report

Once the design has been translated successfully, a checkmark appears beside Translate.

Double click on Translation Report to see the report in the viewing area, see Figure 7—13.
As the design is being translated, the transcript window shows the status, see Figure 7-14.

Floorplan Design

Floor planning is an advanced feature that can allow you to physically locate logic in the FPGA.
This feature is not discussed in this book. However, it will be used to for pin assignment.
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Figure 7-12: Perform Translate Implementation (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)
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Figure 7-13: Translation Report (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995-2008 used in
Xilinx ISE WebPack™ software version 10.1.)

Generate Post-translate Simulation Model

This produces a simulation netlist or file that allows you to verify that the translation step did
not change the design. The post-translate simulation output file may not be an option for all
implementation tools, so consult your implementation’s user’s manual. Run the Generate
Post-Translate Simulation Model option to create the simulation file. This file is
for simulation purposes only and cannot be synthesized.
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