

FPGAs 101

This page intentionally left blank

FPGAs 101
Everything you need to know to get started

Gina R. Smith

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

2010 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or any information storage and retrieval system, without

permission in writing from the publisher. Details on how to seek permission, further information about the

Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance

Center and the Copyright Licensing Agency, can be found at our website, www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher

(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our

understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using

any information, methods, compounds, or experiments described herein. In using such information or methods

they should be mindful of their own safety and the safety of others, including parties for whom they have a

professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability

for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or

from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Smith, Gina R.

FPGAs 101: Everything you need to know to get started / Gina R. Smith.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-85617-706-1 (alk. paper)

1. Field programmable gate arrays. 2. Programmable array logic. 3. VHDL (Computer hardware

description language) 4. Digital electronics. I. Title.

TK7895.G36S6525 2010

621.39’5–dc22

2009041496

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-1-85617-706-1

For information on all Newnes publications,

visit our website, www.elsevierdirect.com

10 11 12 9 8 7 6 5 4 3 2 1

Printed in the United States of America

Contents

About the Author ..ix

Acknowledgments ..xi

About This Book ... xiii

Acronyms... xv

Chapter 1: Getting Started .. 1
1.1 Introduction...1

1.1.1 VHDL ...1
1.2 Reserved Words..2
1.3 Tips for Writing Good Code..3

1.3.1 Tip 1. Use Comments to Convey Information about the Code3
1.3.2 Tip 2. Indent for Clarity and Readability..4
1.3.3 Tip 3. Use Standard Format Convention...4
1.3.4 Tip 4. Include a Header Section..4
1.3.5 Tip 5. Use Brief Descriptive Names ...5

1.4 HDL Text Editors...6
1.4.1 Standalone Text Editor...6
1.4.2 Fee-Based Text Editor..7

1.5 Editor Features..7
1.5.1 Syntax Color Highlighting ...7
1.5.2 Language Templates...8
1.5.3 Row and Column Editor ..8
1.5.4 Comment/Uncomment Selected Text ..9
1.5.5 Indent/Unindent Selected Text...11
1.5.6 Predefined Font Convention ..11

1.6 Signals...12
1.6.1 Signal Data Types ..12
1.6.2 Signal Names..14

1.7 File Structure ..14
1.7.1 Optional Header Section ..14
1.7.2 Library Declaration ..14
1.7.3 Entity Section ...16
1.7.4 Architecture Section ...17

v

1.8 Starter Tips ...19
1.9 Chapter Overview...20

Chapter 2: Simple Designs... 21
2.1 Introduction...21
2.2 Starter Template ...21
2.3 Mathematical Functions ...22
2.4 Logic Gate ..25
2.5 D Flip-Flop ...26
2.6 Latch..29
2.7 Shift Register ..30
2.8 Comparator..32
2.9 Binary Counter..33
2.10 Conversion Functions ...35
2.11 Read File...37
2.12 Write File..40
2.13 Chapter Overview...42

Chapter 3: FPGA Development Phases ... 43
3.1 Introduction...43
3.2 What Is a Field Programmable Gate Array?...43
3.3 I/O Interfaces ..44
3.4 Basic Logic Building Blocks ...45
3.5 Ability to Interconnect ...50
3.6 Programmable Logic Device Options ...51
3.7 FPGA Development Phases ...53
3.8 Chapter Overview...54

Chapter 4: Design... 57
4.1 Introduction...57
4.2 What Is the Design Phase? ..57
4.3 Design Package ..58
4.4 Evaluating the Design Package ...59

4.4.1 Package Analysis..60
4.4.2 Getting Clarification...60
4.4.3 Organization..61

4.5 Predesign Decisions..62
4.5.1 Design Format ..63
4.5.2 FPGA Manufacturer ...65
4.5.3 Development Tools ..66

4.6 Creating Design Options ..67
4.7 Automatic Code Generators...67
4.8 Manual Code Generation ...68

4.8.1 Design Package ..68
4.9 Chapter Overview...81

vi Contents

Chapter 5: Simulation ... 83
5.1 Introduction...83
5.2 What Is Simulation?...84
5.3 Simulation Tools ..85
5.4 Levels of Simulation ..86
5.5 Test Cases ...87
5.6 Stimulus ..89

5.6.1 Interactive Stimulus..89
5.6.2 Graphical Test Bench...90
5.6.3 HDL Testbench ..92
5.6.4 Manual Testbench ..95
5.6.5 Simulation Phase Outputs ..100
5.6.6 Automatic Testbench..102
5.6.7 Capture Data...105

5.7 Simulation Tutorial...117
5.8 Chapter Overview...125

Chapter 6: Synthesis ... 127
6.1 Introduction...127
6.2 What Is Design Synthesis? ..128

6.2.1 Design Check and Resource Association ..130
6.2.2 Optimization ...130
6.2.3 Technology Mapping..131

6.3 Synthesis Phase Tools ..131
6.3.1 Vendors and Features ...132
6.3.2 Synthesis Tool Setup..135

6.4 Synthesis Input ...136
6.5 Synthesis Output Files..137

6.5.1 Netlists ..138
6.5.2 Status Reports ...139
6.5.3 Schematic Views ..139
6.5.4 Technology Schematic View ...139

6.6 Synthesis Tutorial ...140
6.7 Chapter Overview...158

Chapter 7: Implementation .. 161
7.1 Introduction...161
7.2 What Is Implementation? ...161

7.2.1 Translate..162
7.2.2 Map ...163
7.2.3 Place and Route..163
7.2.4 Generate Program File ...164

7.3 Implementation Tools...165
7.4 Implementation Inputs..165
7.5 Implementation Outputs ...166

Contents vii

7.6 Implementation Tutorial...167
7.7 Chapter Overview...189

Chapter 8: Programming ... 191
8.1 Introduction...191
8.2 What Is Programming? ..191
8.3 Tools and Hardware ...193

8.3.1 Joint Test Advisory Group...193
8.3.2 In-System Programming...194
8.3.3 Third Party Programmers...194

8.4 Hardware Configuration...196
8.5 Programming Tutorial ..198
8.6 Chapter Overview...202

References and Sources .. 205
Web Sites...205

Data I/O ...206

Appendix: Testbenches ... 207
A–1 Adder and Subtracter Testbench ..207

A–2 Logic Gates Testbench ...209

A–3 D Flip-Flop Testbench ..210

A–4 DFF with Synchronous Enable Testbench...212

A–5 Latch Design Testbench ...214

A–6 Manual Shift Register Testbench ...216

A–7 Comparator Testbench ..218

A–8 Binary Counter Testbench ..220

A–9 Binary Counter with Synchronous Enable Testbench ...221

A–10 Conversion Testbench ...223

Index .. 225

viii Contents

About the Author

Gina R. Smith is the CEO and founder of Brown-Smith RDL Inc., located in Maryland. She

is a Senior Electrical/Systems Engineer with an Associate’s degree in Applied Science in

Electronic Engineering Technology, a B.S. degree in Electrical Engineering, magna cum

laude, and an M.S. degree in Systems Engineering with honors, from Johns Hopkins

University. Through her company, Gina provides systems engineering and FPGA consulting

services. Her accomplishments include a Technical Merit Award from Northrop Grumman,

for one of her high-voltage designs. She wrote The Art of FPGA Construction, published in

Embedded Systems Design, January 2008. She is a member of the International Council on

Systems Engineering, Women in Defense, and National Defense Industrial Association. She

has numerous years experience as a design and project engineer and technical leader. She

worked in the fields of avionics, chemistry and biology, primary and secondary surveillance

radar systems, information, friend or foe technology, and various other military and defense

systems.

Gina has one daughter, Rebecca C. Smith, and lives in Maryland. She enjoys snow skiing,

NASCAR, hiking, cooking, and fishing.

Gina can be reached via email at gina.smith@bsrdl.com.

ix

This page intentionally left blank

Acknowledgments

I thank my daughter, Rebecca C. Smith, who is always so patient, loving, supportive, and

understanding with me. She is my true source of motivation. I also thank my mother,

Rebecca B. Smith, sisters Julie P. Webb and Sharon C. Smith, and my brother Maurice R.

Smith for all their support and encouragement during this project. I am truly an engineer and

not a writer. Without the support of my daughter and family, this book journey would have

been almost impossible. Many thanks for the technical support I received from Mike Hines,

Livia Castrucci, Christopher Loberg, Lawrence Wilson at Tektronix, Scott Silver at The

Moving Pixel Company, and Brian Jacobsen at Synopsys for getting me a temporary license.

Thanks to Xilinx, Altera, and ModelSim for letting me use their material.

I dedicate this book to my dad, who was my hero and number 1 supporter. He is one of

“heaven’s angels.”1 I love and miss him very much.

1James Wellington Smith, June 4, 1932–July 21, 2007

xi

This page intentionally left blank

About This Book

This book describes the field programmable gate array (FPGA) development process in five

development phases: design, synthesis, simulation, implementation, and programming.

Each phase is presented in an easy-to-read and easy-to-understand format with examples,

helpful tips, and step-by-step tutorials for the synthesis, implementation, simulation, and

programming phases. The reader is provided Web addresses for the tools used in the tutorials.

This book makes it easy for beginners to learn and understand how to create, modify, and

work with FPGA designs. Experienced engineers will find it to be a good reference manual.

A primer and some simple digital designs have been provided for those with no programming

knowledge. It provides some basic information about writing, reading, and understanding

high-level design languages, coding, and other tips. The primer may not be necessary for

all readers, but as my mother always says, “It is better to have it and not need it than need it

and not have it.”

xiii

This page intentionally left blank

Acronyms

ABEL advanced Boolean equation language

AHDL Altera hardware description language

ALM adaptive logic module

B.E.S.T behavior extracting synthesis technology

BGA ball grid array

CAN controller area network

CIC cascaded integrator comb

CLB configurable logic block

CTRL control

DFF D flip-flop

DoD Department of Defense

DRC design rule check

DSP digital signal processor

EDIF electronic digital interchange format

FBGA fine-pitch ball grid array

FFT fast Fourier transform

FIR finite impulse response

FPGA field programmable gate array

FSM finite state machine

GTL gunning transceiver logic

GUI graphical user interface

HDL hardware description language

HSTL high-speed transceiver logic

IEEE Institute of Electrical and Electronics Engineers

IFF information, friend or foe

I/O input/output

IOB I/O block

IOE I/O element

IP intellectual property

ISE Integrated Software Environment

xv

ISP in-system programming

JTAG Joint Test Advisory Group

LDT lightning data transport

LED light emitting diodes

LSB least significant bit

LUT look-up table

LVCMOS low-voltage CMOS

LVDS low-voltage differential signaling

LVTTL low-voltage transistor-transistor logic

MSB most significant bit

NCD native circuit description

NGC native generic compiler

NGD native generic database

OTP one-time programming

PAR place and route

PCI peripheral component interconnect

PROM programmable read only memory

QoR quality of results

RAM random access memory

RTL register transfer level

SPI serial peripheral interface

SRAM Static random access memory

Std standard

TCK test clock

TDI test data in

TDO test data out

TMS test mode select

TQFP thin quad flat pack

TRST test reset

VHDL very high speed integrated circuit hardware description language

XST Xilinx Synthesis Technology

xvi Acronyms

CHAPTER 1

Getting Started

1.1. Introduction

This chapter is a primer that provides beginners with some background information that will

help in understanding the field programmable gate array (FPGA) development process

described in this book. The FPGA process can be confusing and frustrating, making it

more difficult to learn or understand, especially if you do not have at least a basic

understanding of some background concepts. So, it is my hope this primer will fill in some,

if not all, of the gaps. I am a firm believer that we can always learn something new; so for

experienced engineers, I believe this book will be both a good refresher and an opportunity to

learn something new. The chapter also provides some helpful hints and tips that I found

to be useful over the years. I hope they will prove beneficial to you.

Some basic examples are provided to help you better understand hardware description

language (HDL) and the FPGA development process. This primer is not meant to teach

you all the ins and outs of writing HDL code but to help you better understand some

of the terminology as you read the later chapters on the FPGA development process.

In this chapter, you will learn

• HDL coding.

• Tips for writing code.

• HDL editor features.

• HDL file structure.

1.1.1. VHDL

VHDL is a high-level hardware description language used to describe digital circuits that

can be programmed into an FPGA. It is a softwarelike programming language that some

people, myself included, refer to as firmware. It was developed based on a need by the

U.S. Department of Defense (DoD). In 1987, the Institute of Electrical and Electronics

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00001-1 1

Engineers (IEEE) adopted VHDL as a standard, which was released as IEEE Standard (Std)

1076–1987 or VHDL-87. About every five years, the IEEE Standards Committee is supposed

to reconvene to review, enhance, and make other modifications to the language. VHDL is

also available as VHDL-93, VHDL-2000, VHDL-2002, and VHDL-2008.

VHDL is not case sensitive and requires no special formatting, such as spaces, tabs, or

indentations. Each line of code or statement must end with a semicolon, ;. Filename

extensions can be either .vhd or .vhdl.

1.2. Reserved Words

Reserved words are words that are defined by the language. Of the many reserved words, you

will use some more often than others. Some common VHDL reserved words are shown in

Table 1–1. Because VHDL is not case sensitive, reserved words may be in any case.

Table 1–1: VHDL Reserved Words

Reserved word Description

All References what precedes the .all

And Logic AND function

Architecture Secondary design unit

Begin Signifies the start of sequential statements

Bus A signal mode that has multiple drivers or signal bits

Case Creates a multiplexer for a signal

Component Used to define a component

Constant Fixed signal value

Downto Defines range of values

Else Precedes alternate action following the “If-Then” statement

End Signifies the end for many things, like entity, architecture, and If-Then statements

Entity Primary design unit

If Precedes initial conditional

In Input signal port

Inout Bidirection signal port

Is A connective in a variety of statements

Map Maps or connectors actual signal parameters

Not Logic NOT function

Then Used for conditional statements

Type Enumerated type allows user to define data values

Or Logic OR function

Others Shortcut used to define all values in a range

Out Output signal port

Port Used for interface definition

(Continues)

www.newnespress.com

2 Chapter 1

1.3. Tips for Writing Good Code

Over my many years as a digital designer, I had the opportunity to write many lines of code

as well as review, modify, and inherit others’ code. Through these sometimes hard

experiences, I have developed some tips for writing good code. Some of the tips come from

trying to remember code I previously wrote or understanding someone’s code. As you

become more experienced, you will discover tips that make writing, modifying, and

reviewing code much easier.

1.3.1. Tip 1. Use Comments to Convey Information about the Code

Comments are a very important part of coding. You should provide comments as a way

of conveying pertinent information about the line or section of code, see Example 1–1.

Table 1–1: Cont’d

Reserved word Description

Process Group of sequentially executed code

Read Allows an external file to be read

Std_logic Signal type defining a single bit

Std_logic_vector Signal type defining multiple bits

Signal Used to assign an object a signal name and data type

To Used in the middle of some keywords like range and downto

Write Allows you to write to an external file

n Example 1–1. Good and Bad Code Comments

Count <¼ NumberOfBaskets; -- number of baskets ¼ 5

-- count equals number of baskets

-- count <¼ NumberOfBaskets;

Good Comment.

Number of baskets ¼ 5 is a good comment, because it defines the actual value being

assigned to Count. There is no need to search through the code or another file to

find the actual value.

Bad Comment.

In Count equals number of baskets, the comment states the obvious and provides

no additional information. You have no way of knowing the actual value without

further research.

You may find it hard to believe, but I have actually reviewed code that had comments

like count <¼ NumberOfBaskets. The comment was the actual code

commented out. I guess the coder did not really know what commenting meant.
n

www.newnespress.com

Getting Started 3

It is so easy to remember all the ins and outs of your code while you are developing it but not

so easy if you have to revisit the same code several weeks or months later. It can be even

more difficult when you try to understand someone else’s code.

Some would say that each line of code should have a comment. My personal opinion is that

obvious code needs no comments. However, you should never generate code without some

comments.

VHDL comments are preceded by double dashes: --. The double dashes denote the start of a
comment and continue until a carriage return is encountered.

There will be times when you will thank yourself or someone else for providing good comments.

1.3.2. Tip 2. Indent for Clarity and Readability

Indent using spaces or tabs to align groupings of codes. This makes it much easier to read the

code and identify common groups of code. See Example 1–2.

1.3.3. Tip 3. Use Standard Format Convention

Standard format convention means that reserved words and user-defined names are presented

in the same format. Some companies predefine coding conventions for writing code. If this is

not the case, you may decide that all reserved words will be in upper case and user-defined

names in lower case. This makes it easy to immediately identify reserved words from user-

defined signals. See Example 1–3 for some suggested format conventions.

1.3.4. Tip 4. Include a Header Section

The header section is an optional section that you should include prior to your code. This

section may contain information such as the author’s name, date created, filename, a brief

description summarizing the design, and revision history. You are free to include whatever

information you feel will be beneficial. Example 1–4 shows one possible outline for the

header section.

n Example 1–2. Indention

Not Indented Indented

If count ¼ ‘100’ Then

count ¼ ‘1’;

Else

count <¼ count þ ‘1’;

End If;

If count ¼ ‘100’ Then

count ¼ ‘1’;

Else

count <¼ count þ ‘1’;

End If;

n

www.newnespress.com

4 Chapter 1

1.3.5. Tip 5. Use Brief Descriptive Names

Always use brief but descriptive names. Descriptive names make the code easier to read and

understand. A good descriptive name should provide information about a signal’s function,

see Example 1–5.

n Example 1–4. Optional VHDL Header Section

--************************* Header Section *************************

-- Name :

-- Date :

-- Filename :

-- Description :

-- Revision History

-- Date Initials Description

--*********************** End Header Section ***********************
n

n Example 1–5. Descriptive User-Defined Names

You need to name a 40 MHz clock signal.

Descriptive signal name: clock40Mhz or clk40MHz.

At first glance, anyone reading the code will know this signal is a 40 MHz clock.

Nondescriptive signal name: c40Mhz or c40.

At first, second, and third glance, it would be very difficult to know anything about

the signal based on the nondescriptive signal name, unless there were a

comment defining the signal. While comments are very important, they should

not be used as a substitute for good signal names.
n

n Example 1–3. Suggested Format Conventions

Capitalize the first letter; for example, Signal.
Lower case all letters; for example, signal.
Upper case all letters; for example, SIGNAL.
Upper and lower case to separate words; for example, StartCounter.
Underscore to separate words; for example, Start_Counter.

n

www.newnespress.com

Getting Started 5

A lot can be said about being brief with your signal names. One good reason for not having

long signal names is that, the more you type the name, the more you increase the chance

of typos. There is no hard and fast rule as to what is too long, but keep in mind you can use

abbreviations to shorten a name.

Once I inherited a coworker’s code and all the signal names were only a single letter

(i.e., a, b, c, etc.) with no comments to be found in the entire design. It took me a while but

I finally got the code straightened out and that is how this became one of my “tips.”

For that code, the signal names were too brief and not descriptive.

1.4. HDL Text Editors

Having a good editor is really important because it is the tool you use to develop and edit

code. It should be something that you find easy to use, and it should have HDL features,

such as language templates or syntax color highlighting. Many of the FPGA development

tools offered by manufacturers like Xilinx and Altera include a text editor. Standalone

editors are available for free or purchase. I found some really good free editors just by

searching the Internet. My personal preference is a standalone editor. There are many

standalone editors. My advice is to make sure that the standalone editor provides support

for HDL.

1.4.1. Standalone Text Editor

HDL Works offers Scriptum, a free text editor that supports VHDL and Verilog on Windows

and UNIX platforms. I found this editor to be easy to use, with a lot of helpful features.

Some of its features are

• Language templates.

• Syntax coloring.

• Multiline comment and uncomment.

• Column and row select/edit.

• Change of case for selected reserved words.

• Bookmarks.

• Standard search, find, and replace.

HDL Works Scriptum text editor can be downloaded for free at www.translogiccorp.com/

index.html.

www.newnespress.com

6 Chapter 1

1.4.2. Fee-Based Text Editor

Symphony EDA offers both free and fee-based text editors. The editors are a part of its

simulation/debug software package. The fee-based edition offers more features than the free

editor. It has some of the same standard features, which include

• Language templates.

• Syntax coloring.

• Multiline comment and uncomment.

• Column and row select/edit.

Symphony EDA can be found at www.symphonyeda.com.

Downloading and evaluating different editors is an excellent way to try the editor before you

buy it. Who knows, you may find a free editor is sufficient for your needs. I did.

Although not required, I highly suggest selecting an editor that is on the same platform

(Windows or UNIX) as your FPGA development tools. As simple as this sounds, when I first

started with VHDL and FPGA development, some of the tools were Windows based and

others were UNIX. We had to ftp the files between the two systems. It was so confusing and

created such a mess. When the lead engineer left the company, I jumped at the chance to

have all the applications on one platform.

1.5. Editor Features

VHDL code is just a text file, meaning you can use any text editor to create your design.

However, it is best to use a text editor that provides special HDL coding features, such as

syntax color highlighting, language templates, row/column editor, comment/uncomment

selected text, indent/unindent selected text, and predefined keyword font convention.

There are many different editors, offering various features, so evaluate a few to determine the

best fit for you. Following are some of the features often offered and beneficial during

developing and editing code.

1.5.1. Syntax Color Highlighting

This occurs when syntax items are displayed or highlighted in a specific color. Syntax items

can be keywords (sometimes defined as various levels or categories), regular text, comments,

variables, or strings. They can vary from editor to editor. Generally, the syntax color highlight

is set to a default value; however, many editors allow the user to redefine the colors. See

Example 1–6 for a snapshot color highlight, where bold and italics represent specific colors.

www.newnespress.com

Getting Started 7

Syntax highlighting makes it easy to quickly identify specific code elements such as

keywords and comments. While some editors offer more syntax highlight items than others,

I consider it a must-have feature.

1.5.2. Language Templates

The language template presents HDL syntax for specific language functions in a fill-in-the-

blank format. For beginners, code templates can be a lifesaver. For example, if you need

to know how to write an “If-Then-Else” statement but cannot remember or do not know the

syntax, then you may be provided a fill-in-the-blank template similar to the one shown in

Example 1–7.

Now all you have to do is insert your code where indicated by the placeholders on

the template. Templates vary from editor to editor, but they have the same basic concept.

1.5.3. Row and Column Editor

Most people are familiar with row editing; however, column editing is not as familiar.

A row editor is used when multiple rows are selected at one time, see Example 1–8.

Similarly, a column editor allows you to select multiple columns on different rows at

once, see Example 1–9. Column editing is a great feature to use when the data you want

to edit is in the same column but on different rows. For most HDL editors, the alternate,

n Example 1–6. Syntax Color Highlighting

If count ¼ ‘100’ Then

count <¼ count þ ‘1’; -- this is a comment

End If ;

Notice the keywords If , Then, and End If are bold; while the comment -- this is

a comment is italicized.
n

n Example 1–7. Language Template: If-Then-Else

If <insert condition> Then

<insert action(s) >;

Else

<insert alternation action(s)>;

End If;
n

www.newnespress.com

8 Chapter 1

alt, key with the mouse button is used for column editing; however, in Microsoft Word,

it is the control, Ctrl, key with the mouse.

1.5.4. Comment/Uncomment Selected Text

Sometimes it is necessary to comment out multiple lines of code instead of individually

commenting each line. Some editors provide an option to comment/uncomment select lines.

Some editors comment/uncomment only at the beginning of a row. This means that, if the

cursor is put on any part of a row, the comments syntax or double dashes (--) for VHDL, see
Example 1–10, are inserted as the first two characters on that row. When uncommenting,

some editors delete only the comment syntax at the beginning of the row, ignoring any other

comment syntax on the row, see Example 1–11.

n Example 1–8. Row Edit

Select, copy, and paste the second row. The gray area indicates the text selected using

the row editor.

Row edit copy:

If front_door_open ¼ ‘1’ Then -- 1 means front door was opened

alarm_timer <¼ alarm_timer þ ‘1’; -- increment time to sound alarm

End If ;

Row edit paste:

alarm_timer <¼ alarm_timer þ ‘1’; -- increment time to sound alarm

Notice that only the selected row was copied and pasted.
n

n Example 1–9. Column Edit

Use the column edit to select, copy, and paste the two comments. The gray area

shows the selected text.

If front_door_open ¼ ‘1’ Then -- 1 means front door was opened

alarm_timer <¼ alarm_timer þ ‘1’; -- increment time to sound alarm

End If ;

Column edit paste:

-- 1 means front door was opened

-- increment alarm counter

With column editing, I am able to copy and delete selected data without affecting the

surrounding text, but I have little success with pasting.
n

www.newnespress.com

Getting Started 9

n Example 1–10. Comment

Select and comment to the three lines of code. The gray area shows selected text.

If front_door_open ¼ ‘1’ Then -- 1 means front door was opened

alarm_timer <¼ alarm_timer þ ‘1’; -- increment time to sound alarm

End If;

The selected text is now commented.

-- If front_door_open ¼ ‘1’ Then -- 1 means front door was opened

-- alarm_timer <¼ alarm_timer þ ‘1’; -- increment time to sound alarm

-- End If;
n

n Example 1–11. Uncomment Text

Select text to be uncommented. The gray area shows the selected text.

-- If front_door_open ¼ ‘1’ Then -- 1 means front door was opened

-- alarm_timer<¼ alarm_timer þ ‘1’; -- increment time to sound alarm

-- End If;

Selected text is now uncommented.

If front_door_open ¼ ‘1’ Then -- 1 means front door was opened

alarm_timer <¼ alarm_timer þ ‘1’; -- increment time to sound alarm

End If;
n

n Example 1–12. Indent Text

Select and indent the second and third lines. The gray area shows the selected text.

If front_door_open ¼ ‘1’ Then -- 1 means front door was opened

alarm_timer <¼ alarm_timer þ ‘1’; -- increment time to sound alarm

End If;

The second and third lines are indented.

If front_door_open ¼ ‘1’ Then -- 1 means front door was opened

alarm_timer <¼ alarm_timer þ ‘1’; -- increment time to sound alarm

End If;
n

www.newnespress.com

10 Chapter 1

1.5.5. Indent/Unindent Selected Text

Some editors allow you to indent only a portion of the row, while others indent the entire row.

This feature generally works like the comment/uncomment feature. Example 1–12 shows

selected text being indented, and Example 1–13 shows how selected text is unindented.

1.5.6. Predefined Font Convention

The predefined font convention is when the editor converts keywords or selected text to a

specific font style or size, such as all lower or upper case. This feature can be used to

keep your code consistent, because sometimes you may miss applying your font convention

during the development process. Some editors may require you to highlight the text you

want to convert, while others perform it automatically. In Example 1–14, the line(s) or code

are highlighted for the font conversion.

n Example 1–13. Unindent Text

The End If; should be aligned under If. Now select and unindent the last line. The gray

area shows selected text.

If front_door_open ¼ ‘1’ Then -- 1 means front door was opened

alarm_timer <¼ alarm_timer þ ‘1’; -- increment time to sound alarm

End If;

The third line is now properly aligned.

If front_door_open ¼ ‘1’ Then -- 1 means front door was opened

alarm_timer <¼ alarm_timer þ ‘1’; -- increment time to sound alarm

End If;
n

n Example 1–14. Font Convention

Convert keywords to upper case.

if front_door_open ¼ ‘1’ then -- 1 means front door was opened

deactivate_alarm<¼ deactivate_alarmþ ‘1’; -- increment alarm counter

end if;

Upper case keywords converted.

IF front_door_open ¼ ‘1’ THEN -- 1 means front door was opened

deactivate_alarm<¼ deactivate_alarmþ ‘1’; -- increment alarm counter

END IF;
n

www.newnespress.com

Getting Started 11

1.6. Signals

In VHDL, signals represent some kind of data. They are assigned a name and data type.

The basic signal syntax follows:

Signal <signal name>: <data type>;

More advanced signal assignments are possible but not discussed in this book.

You can use signals in mathematical equations, to assign values, to connect other signals, and to

store values in them. They must be assigned unique, nonreserved word names and a data type.

1.6.1. Signal Data Types

The VHDL data are of a specific type such as std_logic, std_logic_vector, bit,
bit_vector, or user defined. Std_logic is read as standard logic and

std_logic_vector as standard logic vector. Bit and bit_vector are read as written.

The user-defined type is when the coder defines the signal type. This is a little more

advanced and can be somewhat confusing when you are first starting out, so it is not covered

in this book. Once you are more comfortable with the language, it will be easier to

understand and implement the more advanced aspects of the language. Plus std_logic and

std_logic_vector are generally the most commonly used data types. Each signal

type has acceptable values. There are nine acceptable values for std_logic and

std_logic_vector, see Table 1–2.

Std_logic signals represent one data bit and std_logic_vector represents several

data bits. The signal assignments for standard logic and standard logic vector data types are

shown in Example 1–15. The number of data bits for a std_logic_vector is defined in

the signal assignment statement.

Table 1–2: Standard Logic Acceptable Values

Value Description

0 Low or logic zero

1 High or logic one

W Weak unknown signal

L Weak low

H Weak high

U Unknown or uninitialized

Z High impedance

X Unknown

- Don’t care

www.newnespress.com

12 Chapter 1

The signal named clock_in has a data type of std_logic. This means clock_in can

have only one of the nine acceptable values, while the signal named up_counter is 5 data bits

wide and each of the bits can be one of the nine acceptable values. The most significant bit

(MSB) is bit 4 and the least significant bit (LSB) is 0. See Example 1–16 for valid signal values.

Bit and bit_vector have two acceptable types, see Table 1–3.

Bit represents one data bit, and bit_vector represents several data bits. Example 1–17

shows signals clock_out being assigned data type bit and down_counter2 bit vector.

The signal named clock_out has a data type of bit. This means clock_out can have

only one of the two acceptable values, while the signal named down_counter2 is 4 bits

wide and each of the bits can be one of the two acceptable values. See Example 1–18 for

valid bit signal values. The MSB is bit 3 and the LSB is 0.

It is okay to use bit and bit_vector; however; they are rarely the deserved data type.

n Example 1–17. Bit Signal Assignment

Signal clock_out : bit;
Signal down_counter2 : bit_vector (3 downto 0);

n

n Example 1–15. Standard Logic and Standard Logic Vector
Signal Assignment

Signal clock_in : std_logic;

Signal up_counter : std_logic_vector (4 downto 0);
n

n Example 1–16. Valid Standard Logic Signal Values

clock_in value is “1”

up_counter value is “1XZ0U”.
n

Table 1–3: Bit Acceptable Values

Value Description

0 Low or logic zero

1 High or logic one

www.newnespress.com

Getting Started 13

1.6.2. Signal Names

Signal names are user defined, but VHDL has some name restrictions, such as those

provided in Table 1–4. In addition to the VHDL restrictions, remember to make your names

descriptive.

1.7. File Structure

The VHDL file structure consists of three sections: the library declaration, entity section, and

architecture section with an optional header section.

1.7.1. Optional Header Section

As stated before, the header section is completely optional but highly suggested. However, I found

the revision history to be beneficial, especially when modifying someone else’s code. When I fix

code problems, the revision history enables me to see if the current problem existed before any

previous code changes. I have mixed feeling about keeping the prereleased code revision history

in the released code. It is a good idea to have the revision history while developing, just in case

someone else inherits the code. However, for the released code, this history may not add any

value, in which case should be removed. It all depends on the specific situation.

1.7.2. Library Declaration

Just like software code, VHDL must be compiled. The place where the compiler stores

the design information and other files to be used for analysis, synthesis, and simulation is

called the library. The library declaration section is where you declare or call out libraries.

By using the library clause you make the library visible and its contents available to the

Table 1–4: VHDL Signal Name Restrictions

Rule Acceptable Not Acceptable

Must start with letter four 4

Cannot be a keyword input_signal input

Don’t use special characters input_data $id

Must not contain spaces InputData Input Data

n Example 1–18. Valid Bit Values

clock_out is “0”

down_counter2 is “0011”
n

www.newnespress.com

14 Chapter 1

design. The use clause, which follows the library clause, states which package from the

library to use. Libraries can be a defined by standards, users, or third parties, like

manufacturers.

IEEE is a commonly used standard library. Some of the packages in IEEE are

Std_logic_1164 and Std_logic_arith, see Table 1–5 for some of the data types and

functions defined by these packages.

User-defined libraries are those created by regular users or designers. Oftentimes design

groups or projects utilize user-defined libraries by storing common constants, data types, and

other commonly used things in a library shared by the group. This can save a lot of time,

because each individual is not spending time creating the same information. The user-defined

library is placed in a common, team-accessible area. Another benefit to groups using a

user-defined library is that it ensures everyone uses the same values, functions, definitions,

and the like. This does not guarantee the values are correct; however, it makes it easier to

correct something wrong in one place rather than in several files.

Third party libraries are supplied by companies like Xilinx and Altera. These libraries contain

such information as timing used for simulation, IP cores and logic gates.

The library syntax is the reserved word Library followed by the library’s name. The “use”

clause syntax specifies the package, its library, and how much of the package is used,

see Example 1–19. A package is a separate VHDL file that defines things like functions,

data types, constants, and procedures.

Table 1–5: IEEE Standard Library Packages, Data Types, and Functions

Package Data Types Functions

Std_logic_1164 std_logic,

std_logic_vector,

std_ulogic,

std_ulogic_vector

AND, NAND, OR, NOR, XNOR, NOT

Std_logic_arith Unsigned, signed þ, -, *, ABS, <, <¼, ¼, >¼, >

n Example 1–19. Library and Use Syntax

Library <library name>;

Use <library name>.<package>.<what portion are you using>;

For example, std_logic is a widely used data type, which is defined in the

std_logic_1164 package. To use this data type, you need to declare the library

where it is defined and state the package using the use clause in the library declaration

(Continues)

www.newnespress.com

Getting Started 15

1.7.3. Entity Section

The entity section is where you define all the inputs and outputs. The syntax for the

entity section is shown in Example 1–21, and Example 1–22 shows a simple

design entity.

Note: Entities can be a little more complex; however, for this primer, the entity is the top

level of the design and represents the inputs and output pins on the FPGA.

n Example 1–21. Entity Syntax

Entity <entity name> Is Port(

<signal name : <signal direction> <data type>);

End <entity name>;
n

n Example 1–20. Library and Use

Library IEEE; -- IEEE library is visible to the design

Use IEEE.std_logic_1164.all; -- The contents in the std_logic

-- package can now be used

-- in the design code
n

section, see Example 1–20. Some additional packages included in the IEEE library

are std_logic_arith, std_logic_unsigned, and std_logic_signed. If you

are using several packages from the same library, the library needs to be stated only

once.

What these two lines say is this: Make the IEEE library visible to the design and

make the entire (i.e., all) std_logic_1164 package available to your design. So

whatever is defined in the std_logic_1164 package can now be used in your code.

You are not required to use all the features in the package and can specify only the

portion you want: however, using the all just makes things easier. So my advice is,

unless you have a good reason for not wanting to include everything, it is a good

idea to stick with all. Now you need not worry about changing the use statement if

your design requires additional features.
n

www.newnespress.com

16 Chapter 1

1.7.4. Architecture Section

The architecture section is where you write the design code, see Example 1–23. The

design code describes the functions by using the software-like programming language VHDL.

Now, you use the defined functions, data types, and so for the package(s) declared or called

out in the library declaration section. Your design receives and passes design data using the

input, bidirectional (inout), and output ports defined in the entity section.

n Example 1–23. Architecture Syntax

Architecture <architecture name> Of <entity name> Is

<Define signals and constants>

Begin

This section is where the design is written. It consists mainly of component

instantiations, synchronous logic, sequential statements, processes, concurrent

statements, and asynchronous logic.

Component instantiation basically makes a direct connection to a library component.

The actual code for the component is predefined in another file. More details about

component instantiation are provided in the testbench section.

Synchronous logic is code that gets updated based on an event, such as the rising or

falling edge of a clock.

Sequential statements are found in processes and executed in the order in which they

appear.

A process is a group of code that is executed sequentially. They are like mini programs

with very specific format, which includes the use of the reserved words process,

begin, and end process, and a sensitivity list, see Example 1–24.
n

n Example 1–22. Entity Code

Entity test_code Is Port(

clk : In std_logic; -- input clock

start_ counter : In std_logic; -- starts counter when door is opened

ready_signal : Inout std_logic; -- indicates alarm status

sound_alarm : Out std_logic); -- alarms buzzer when timer expires

End test_code;
n

www.newnespress.com

Getting Started 17

Now that you have all the pieces, Example 1–26 shows how it looks all put together. Using

this or a similar template is a good way to start each design.

n Example 1–24. Process Syntax

<process name>: Process (sensitivity list)

Begin

<sequential statements>

End Process ;
n

It is good coding practice to perform only one function in a process. The code inside a

process is executed only when any signal in the sensitivity list changes state.

The process name is optional and user defined. Even though it is optional, you should

always name your processes. The name should be short and descriptive enough to

allow you to distinguish one process from another.

One good reason to make the name descriptive is that you may have a design with four

counters, so naming them counter1, counter2, . . ., tells you nothing about the

counters. Let us say one counter counts the number of times the temperature sensor

goes below 32�F, above 95�F, stays at 0�F for longer than 5 minutes and another one

at 60�F for longer than 10 minutes. You may decide to name them count_below32F,
count_above95F, temp_at0F, and temp_at60F.

The sensitivity list is where you list all the signals that you want to cause the code in

the process to be evaluated whenever it changes state. For example, clock or master

reset is often used in a sensitivity list. Whenever the reset or clock changes state, the

code inside the process is executed.

Concurrent statements are outside of processes and executed or updated at any time any

of the signals changes, see Example 1–25.

n Example 1–25. Concurrent Statement

Sum_Temp <¼ count_above95F þ count_below32F;

Sum_Temp changes and is updated any timecount_above95F or count_below32F

changes.

Asynchronous logic is updated or changed independent of events.

End <architecture name>;
n

www.newnespress.com

18 Chapter 1

So far the entity defines only the design’s interface; however, your design most likely

requires additional signals. These signals are defined in this section, prior to them being used

and the actual design code. Once this is complete, you can take the signal names and the

available features from the packages and develop code using asynchronous, synchronous,

concurrent, and sequential code.

1.8. Starter Tips

A lot is involved in developing FPGA designs. Here are some tips to help as you get started.

n Example 1–26. VHDL File Structure

--************************* Header Section ************************

-- Name :

-- Date :

-- Filename :

-- Description :

-- Revision History

-- Date Initials Description

--

--*********************** End Header Section ***********************

Library IEEE;

Use IEEE.std_logic_1164.all;

Entity <entity name> Is Port

(<list of ports or design inputs and outputs>);

End <entity name>;

Architecture <architecture name> Of <entity name> Is

<in this section define signals and constants>

Signal <signal name> : Data Type;

Begin

<concurrent statements>

<process name>: Process (sensitivity list)

Begin

<sequential statements>

End;

End <architecture name>;
n

www.newnespress.com

Getting Started 19

• Utilize field application engineers and salespeople, who can really provide some good help

and guidance. They can provide information on the latest hardware and tool developments,

suggest devices, clarify details about their products and services, provide samples, arrange

demos and software/hardware trials and temporary licenses, and many other things. If they

cannot help you, theywill at least point you in the correct direction. I realize some salespeople

can be pushy, but I have found most of them to be very helpful and not very pushy.

• Evaluation boards are a good way to get experience. The evaluation boards are offered by

manufacturers and third party companies. They come with different FPGA devices,

development software, programming and other cables, power supplies and other resources

like light emitting diodes, LEDs, pushbuttons, switches, and oscillators. Check out the

specific manufacturer’s Web site for specific details on the board and suppliers. Some

companies purchase evaluation boards to try specific devices or features before using them

in designs. So, if you are considering using an FPGA that has an embedded processor, then

it may be a good idea to purchase an evaluation board and try it before using it in a design.

• Take advantage of the many free and trial offers. This will give you a good opportunity

to experiment and discover your likes and dislikes.

1.9. Chapter Overview

Everyone has his or her style and approach to FPGA development. As you work with it, you

will develop your style. So do not worry if you see things differently from everyone else;

the process should be the same. Once you learn the general process you will have no problem

using your knowledge to develop and understand designs and switching between different

development tools and manufacturers.

Key Points to Remember

• Select an editor that you find easy to use and that has features you like. You will be using

your editor a lot to develop and modify code.

• Take the time to include the optional headers section prior to your design code. Use this

section to briefly describe the design and provide revision information.

• Always include “good,” meaningful comments in your code.

• Make your user names brief and descriptive.

Chapter Links

For your convenience, here is a list of links to the editors discussed in this chapter:

HDL Works Scriptum located at www.translogiccorp.com/index.html.

Symphony EDA located at www.symphonyeda.com.

www.newnespress.com

20 Chapter 1

CHAPTER 2

Simple Designs

2.1. Introduction

The purpose of this chapter is to present some simple VHDL design code. These designs can

easily be modified to perform advanced functions or be copied and used as a standalone

design or a part of a larger design. In this section, the design code consists of a combination

of processes, concurrent and sequential statements, and synchronous and asynchronous logic.

When appropriate, the designs have a block diagram, corresponding to the VHDL design

code and some brief comments to help explain the code.

In this chapter, you will learn

• How to create simple VHDL designs.

• How to add more complexity to simple designs.

• VHDL shortcuts.

2.2. Starter Template

For each new design, I like to start with a “starter” HDL template. The starter HDL template

consists of a header section, library declaration section, entity, and architecture syntax

placeholders. Because I always use the IEEE library and the std_logic_1164 package, I

have made line 10 Library IEEE; and line 11 Use.IEEE.std_logic_1164.all;
statements a part of my template instead of syntax placeholders. While many editors provide

a starter HDL template, I present my template as an additional option.

When I first started writing VHDL, I could not remember if the signal name assignments

went before or after the Begin in the architecture section. Therefore, a signal assignment

was included as a placeholder in my template. The template can save you time, because it

keeps you from retyping the same information from program to program. As you write code,

you may decide to make your own template or modify a preexisting template. My starter

HDL template is shown in Listing 2–1. Because the header section has no importance for the

examples in this section, it is shown only in the first example.

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00002-3 21

2.3. Mathematical Functions

Mathematical functions, such as adder, subtractor, multiplier, and divider, are performed

using arithmetic operators; see Table 2–1. The arithmetic operators can be used in concurrent

and/or sequential statements; it depends on the circuit. To keep things simple, this example

uses only a concurrent statement, and a sequential statement is demonstrated in later

examples.

Listing 2–1. VDHL Starter Template

1. --***********************Header Section ****************************

2. -- Name : Rebecca B. Smith

3. -- Date : August 25, 2009

4. -- Filename : Entity Name.vhd

5. -- Description : This starter HDL template provides placeholders and
syntax that can be used

6. -- : to help develop design code. Modify the template to meet your needs.

7. Revision History

8. -- Date Initials Description

9. --***********************End Header Section *************************

10. Library IEEE; -- define library and packages needed for
this design

11. Use IEEE.std_logic_1164.All;
12.

13. Entity <entity name> Is Port(-- define interface signals

14. <signal name> : <direction> <data type>;

15. <signal name> : <direction> <data type>);

16. End <entity name>;

17.

18. Architecture <architecture name> Of <entity name> Is
19. Signal <signal name> : data type; -- define internal signals

if necessary

20.

21. Begin
22. <concurrent statements> -- add concurrent statements if necessary

23. -- statement(s) will update anytime

24. <process name>: Process (sensitivity list) -- add process if
necessary

25. Begin
26. <sequential statements>; -- statement updates when a signal

in sensitivity list changes

27. End Process;
28. End <architecture name>

www.newnespress.com

22 Chapter 2

Figure 2–1 shows a simple two-input adder and subtractor. The design code is shown in

Listing 2–2. If you are writing design code based on a schematic, it is best that the code

and schematic signal names match. This makes writing and debugging the code much

easier.

Lines 10–12. Library Declaration

The addition and subtraction operators are defined in the std_logic_unsigned package,

which is made visible to the design in the library declaration section. You may not know all

the libraries required at the beginning of your design, but you can add them as needed.

Knowing which library to use can be challenging, until you remember which library contains

the function(s) you need. So, at first, you may have to open different libraries to find what

you need.

Table 2–1: Mathematical functions

Symbol
Data Types

Package
Accepts Returns

þ
Addition

std_logic, integer,

std_logic_vector

std_logic_vector std_logic_unsigned

signed, unsigned,

natural, integer

signed, unsigned numeric_std

–

Subtraction

std_logic, integer,

std_logic_vector,

std_logic_vector std_logic_unsigned

signed, unsigned,

natural, integer

signed, unsigned numeric_std

*

Multiplication

std_logic_vector std_logic_vector std_logic_unsigned

signed, unsigned,

natural, integer

signed, unsigned numeric_std

/

Division

signed, unsigned,

natural, integer

signed, unsigned numeric_std

number_1(3:0)

number_2(3:0)
Sum(3:0)

+

Difference(3:0)
–

Figure 2–1: Adder and Subtractor

www.newnespress.com

Simple Designs 23

Lines 14–19. Entity Section

The interface signals for this design are defined as follows.

Two inputs:

Signal Names: number_1 and number_2

Data Type: std_logic_vector

Size: 4 bits

Two outputs:

Signal Names: sum and difference

Listing 2–2. Adder and Subtracter

1. --************************* Header Section **************************

2. -- Name :

3. -- Date :

4. -- Filename :

5. -- Description :

6. -- Revision History

7. -- Date Initials Description

8. --

9. --************************ End Header Section ***********************

10. Library IEEE;

11. Use IEEE.std_logic_1164.All;
12. Use IEEE.std_logic_unsigned.All;
13.

14. Entity MathematicalOperators Is Port (

15. number_1 : In std_logic_vector (3 Downto 0);

16. number_2 : In std_logic_vector (3 Downto 0);

17. sum : Out std_logic_vector (3 Downto 0);

18. difference : Out std_logic_vector (3 Downto 0));

19. End MathematicalOperators;

20.

21. Architecture arch_MathematicalOperators Of MathematicalOperators Is
22.

23. Begin
24. -- the sum and difference are calculated and provided as output for two

4-bit numbers

25. sum <¼ number_1 þ number_2;

26. difference <¼ number_1 - number_2;

27. End arch_MathematicalOperators;

www.newnespress.com

24 Chapter 2

Data Type: std_logic_vector

Size: 4 bits

Line 14 defines the entity’s name as MathematicalOperators. This name was selected

because it provides some detail about the design code’s function. You should develop and use

a naming convention for your entity, architecture, and filename. I found the naming

convention to be useful, especially when working with multiple files. Using a name that gives

an indication of the design code’s function makes it easy to quickly identify files without

having to open them.

Developing a standard naming convention can be tricky, especially when using different

development tools, as they may have different filename restrictions. I have encountered tools

that did not allow spaces in filenames, while another required my entity’s name to be the

same as the filename. So my naming convention for the entity does not include spaces and my

filename is always the same as my entity. While this naming convention was based on older

tool versions and those restrictions may no longer apply, I maintain this naming convention.

The input and output signals are defined as std_logc_vector, meaning they have

multiple bits. The reserved word Downto (as used in this example) or Upto defines the

range of data bits. The number before the keyword downto represents the most significant

bit (MSB) and the number after it represents the least significant bit (LSB). In other words,

number_1(3 downto 0) means number_1 has 4 bits, where the MSB is number_1(3)
and LSB is number_1(0).

Lines 21–27. Architecture Section

This section contains the code that describes the design’s functions. The output signal sum is

assigned the result from adding together number_1 and number_2. While the output

signals sum and difference are concurrent statements (update any time number_1 or

number_2 changes), they could have been sequential (i.e., inside a process and updated

only when a signal from the sensitivity list changes).

2.4. Logic Gate

Logic gate circuits, such as OR, NOR, AND, and NAND, are implemented using the logic

operators. The logic gate circuits shown in Figure 2–2 are represented by the design code

shown in Listing 2–3.

Lines 16–19. Logic Operations

The output signals are assigned the result from performing the logic operation on the right

side of the statement. These signal assignments are concurrent but could have been sequential

statements.

www.newnespress.com

Simple Designs 25

2.5. D Flip-Flop

A simple D flip-flop (DFF) is shown in Figure 2–3. The VHDL design code for the DFF is

shown in Listing 2–4.

number_1(3:0)
number_2(3:0)

or_out(3:0)

nor_out(3:0)

and_out(3:0)

nand_out(3:0)

Figure 2–2: Logic Gates

Listing 2–3. Logic Gates

1. Library IEEE;

2. Use IEEE.std_logic_1164.all;
3.

4. Entity LogicGates Is Port (

5. number_1 : In std_logic_vector (3 Downto 0);

6. number_2 : In std_logic_vector (3 Downto 0);

7. or_out : Out std_logic_vector (3 Downto 0);

8. nor_out : Out std_logic_vector (3 Downto 0);

9. and_out : Out std_logic_vector (3 Downto 0);

10. nand_out : Out std_logic_vector (3 Downto 0));

11. End LogicGates;

12.

13. Architecture arch_LogicGates Of LogicGates Is
14. Begin
15. -- this example illustrate how to implement logic gate code

16. or_out <¼ number_1 Or number_2;

17. nor_out <¼ number_1 Nor number_2;

18. and_out <¼ number_1 And number_2;

19. nand_out <¼ number_1 Nand number_2;

20. End arch_LogicGates;

www.newnespress.com

26 Chapter 2

Lines 17–24. DFF Process

Remember that the code inside a process is executed sequentially and only when a signal in

the sensitivity list (i.e., reset and clk) changes state. The reset signal is asynchronous, so

whenever it goes active or high, the outputs of the D flip-flop immediately (minus normal

internal chip delays) goes low. Under normal operating conditions, when reset is inactive or

low, on the rising edge of the clock, the input data is transferred to the outputs.

clk

d_input
Data

q_not_out

Q
q_out

Q

Figure 2–3: DFF

Listing 2–4. DFF

1. Library IEEE;

2. Use IEEE.std_logic_1164.All;
3.

4. Entity Dff Is Port (

5. reset : In std_logic;

6. clk : In std_logic;

7. d_input : In std_logic;

8. q_out : Out std_logic;

9. q_not_out : Out std_logic);

10. End Dff;

11.

12. Architecture arch_Dff Of Dff Is
13. Begin
14.

15. q_not_out <¼ Not (d_input); –– inverted output of the DFF

16.

17. dff_process: Process (reset, clk)

18. Begin
19. If reset ¼ ‘1’ Then
20. q_out <¼ ‘0’;

21. Elsif rising_edge (clk) Then
22. q_out <¼ d_input; –– after the rising edge the output

gets the value of the input

23. End If;
24. End Process;
25. End arch_Dff;

www.newnespress.com

Simple Designs 27

Line 22. DFF Output

The input data of the DFF is clocked or transferred to the output on the rising edge of the

input clock, clk. This is a sequential operation, which is performed inside the process named

dff_process, line 17.

Line 15. Inverted DFF Output

This is the inverted Q output from the DFF. The invert Q output only changes when Q

changes on the rising edge of the clock.

Note: The reset signal shown on line 19 is used to set the outputs to a known or initial

condition. This signal represents the power-on reset, it is not a part of the DFF, and does not

appear on the symbol.

A synchronous enable can easily be added to this design by making some changes to the entity and

the process in the architecture section. The entity change, shown in Listing 2–5, is the insertion of

line 4. The process changes in the architecture section, shown in Listing 2–6, are lines 7 and 10.

Listing 2–5. Synchronous Enable DFF Entity Changes

1. Entity DffSynEa Is Port (

2. reset : In std_logic;

3. clk : In std_logic;

4. enable : In std_logic;

5. d_input : In std_logic;

6. q_out : Out std_logic;

7. q_not_out : Out std_logic);

8. End DffSynEa;

Listing 2–6. Synchronous Enable Process Changes

1. DffSynEa_process: Process (clk, reset)

2. Begin
3. If reset ¼ ‘1’ Then
4. q_out <¼ ‘0’;

5. q_not_out <¼ ‘1’;

6. Elsif rising_edge (clk) Then
7. If enable ¼ ‘1’ Then -- sync enable statement

8. q_out <¼ d_input; -- after the rising edge the output
gets the value of the input

9. q_not_out <¼ Not (d_input); -- inverted output of the DFF

10. End If;
11. End If;
12. End Process;

www.newnespress.com

28 Chapter 2

Line 4

Add input signal named enable to the entity.

Lines 7 and 10

Add an If -Then condition following rising edge statement in the dff_process; where
enable ¼ 1 indicates active high or enable ¼ 0 indicates active low.

2.6. Latch

Sometimes you need to latch data. You can create latches by using the reserved word When.
This example demonstrates only one of several uses for the reserved word When. The syntax
for When is shown in Example 2–1.

The code for the latch shown in Figure 2–4 is shown in Listing 2–7.

n Example 2–1. When Syntax

<output data signal name> <¼ <input data signal name> When

<latch condition>

Else < output data signal name>;
n

Q data_out
latch_enable

data_in
Data

Enable

Figure 2–4: Latch Symbol

Listing 2–7. Latch Design

1. Library IEEE;

2. Use IEEE.std_logic_1164.All;
3. Entity Latch Is Port (

4. data_in : In std_logic;

5. latch_enable : In std_logic;

6. data_out : Out std_logic);

7. End Latch;

8.

9. Architecture arch_Latch Of Latch Is
10. Signal internal_data_out : std_logic;

www.newnespress.com

Simple Designs 29

Line 10. Internal Signal Created for Output Signal Data Assignment

This latch is created with a concurrent statement; therefore, it does not appear in a process. In

VHDL, entity signals defined as outputs can only be assigned values and cannot be used for

things like conditions or calculations. The reason this is important is because the output

signal data_out needs to be used in the concurrent statement. Since this is not allowed in

VHDL, the problem is solved by creating the internal signal internal_data_out.

Line 14. Latch Data

The internal data_out latch is created by the When statement.

Line 16. Output Signal Assigned Value of Internal Signal

The output signal is then set equal to the internal signal. The internal signals must have the

same data type and size as the output signal.

2.7. Shift Register

Figure 2–5 shows a simple shift register, where a single bit is shifted from the LSB to the

MSB. There are a couple of ways to write the code. Option 1 requires manually writing each

bit shift signal assignment, as shown in Listing 2–8.

Lines 23–28

Each bit is assigned the value of the data bit to its right.

shift_data
shift_data_out(5) shift_data_out(4) shift_data_out(3) shift_data_out(2) shift_data_out(1) shift_data_out(0)

Figure 2–5: Shift Register

11.

12. Begin
13. -- creating a latch signal

14. internal_data_out <¼ data_in When latch_enable ¼ ‘1’
Else internal_data_out;

15.

16. data_out <¼ internal_data_out; -- output signal is
assigned internal signal value

17. End arch_Latch;

www.newnespress.com

30 Chapter 2

Option 1 is okay for smaller shift registers, but it can be time consuming for larger numbers

of bits. Option 2 uses the reserved word downto to represent the individual shifts with fewer

lines of code.

Listing 2–8. Manual Shift Register

1. Library IEEE;

2. Use IEEE.std_logic_1164.All;
3.

4. Entity ShiftRegister Is Port (

5. clk : In std_logic;

6. reset : In std_logic; -- power-on reset

7. shift_data : In std_logic;

8. shifted_data_out : Out std_logic_vector (5 Downto 0));

9. End ShiftRegister;

10.

11. Architecture arch_ShiftRegister Of ShiftRegister Is
12. Signal internal_shifted_data_out : std_logic_vector (5 Downto 0);

13.

14. Begin
15. shifted_data_out <¼ internal_shifted_data_out; -- output signal

is assigned internal signal value

16.

17. left_shift: Process (clk, reset)

18. Begin
19. If reset ¼ ‘1’ Then
20. internal_shifted_data_out <¼ ((Others ¼> ‘0’));

21. Elsif rising_edge (clk) Then
22. -- manually creating a shift register

23. internal_shifted_data_out(0) <¼ shift_data;

24. internal_shifted_data_out(1) <¼ internal_shifted_
data_out(0);

25. internal_shifted_data_out(2) <¼ internal_shifted_
data_out(1);

26. internal_shifted_data_out(3) <¼ internal_shifted_
data_out(2);

27. internal_shifted_data_out(4) <¼ internal_shifted_
data_out(3);

28. internal_shifted_data_out(5) <¼ internal_shifted_
data_out(4);

29. End If;
30. End Process;
31. End arch_ShiftRegister;

www.newnespress.com

Simple Designs 31

Lines 7–8. Shift Register Shortcut

Remember, in the signal assignment, theMSB number is written prior to downtowith the LSB

following. With that in mind, the signal assignments for internal_shift_data_out in

the shift_values process can be rewritten using downto, as shown in Listing 2–9.

The downto signal assignment means that internal_shifted_data_out bit 1 is

assigned the value of internal_shifted_data_out bit 0, internal_shifted_
data_out bit 2 is assigned the value of internal_shifted_data_out bit 1, and
so on. The shift register signal assignment can be written using one signal statement;

however, the operator for that assignment is not discussed in this book.

2.8. Comparator

Relational operators such as greater than, >; greater than or equal to, >¼; less than, <; less

than or equal to, <¼; and equal, ¼ are used for comparisons. These operators accept

std_logic and integer values and return a Boolean (true or false) value. Figure 2–6 shows

a simple example where two numbers are compared.

Line 14. Compare Statement

A concurrent statement using When can be used to determine if a number is smaller than a

second number. Whenever number 1 is smaller than number 2, the output

num1_small_num2 goes high. The design code is shown in Listing 2–10.

Listing 2–9. Simplified Shift Register

1. shift_values: Process (clk, reset)

2. Begin
3. If reset ¼ ‘1’ Then
4. shifted_data_out <¼ ((Others ¼> ‘0’));

5. Elsif rising_edge (clk) Then
6. -- this is the shortcut to creating a shift register

7. internal_shifted_data_out(0) <¼ shift_data;

8. internal_shifted_data_out(5 downto 1) <¼ internal_ shifted_data_out
(4 downto 0);

9. End if;
10. End Process;

number_1(2:0)
number_2(2:0)

num1_smaller_num2
<

Figure 2–6: Compare

www.newnespress.com

32 Chapter 2

2.9. Binary Counter

The counter shown in Figure 2–7 is a 4-bit binary counter that automatically increments on

each rising edge of the input clock, see line 22. The design code for this counter is shown in

Listing 2–11.

A synchronous enable is easily added to this binary counter, as shown in Figure 2–8, with a

change to the entity and the process in the architecture section.

The entity changes shown in Listing 2–12 adds line 4.

Line 4. Enable Input

The enable signal named is added to the entity.

Listing 2–10. Comparator

1. Library IEEE;

2. Use IEEE.std_logic_1164.All;
3.

4. Entity Comparison Is Port (

5. number_1 : In std_logic_vector (2 Downto 0);

6. number_2 : In std_logic_vector (2 Downto 0);

7. num1_smaller_num2 : Out std_logic);

8. End Comparison;

9.

10. Architecture arch_Comparison Of Comparison Is
11.

12. Begin
13. –– an example of a simple comparison; the output goes high when number 1

is smaller than number 2

14. num1_smaller_num2 <¼ ‘1’ When number_1 < number_2 Else ‘0’;

15.

16. End arch_Comparison;

B1

B2

B3

B4

count_out(1)

count_out(2)

count_out(3)

count_out(4)

clk

Figure 2–7: Binary Counter

www.newnespress.com

Simple Designs 33

Listing 2–11. Binary Counter

1. Library IEEE;

2. Use IEEE.std_logic_1164.All;
3. Use IEEE.std_logic_signed.All;
4.

5. Entity BinaryCounter Is Port (

6. clk : In std_logic; –– master input clock

7. reset : In std_logic; –– power-on reset

8. count_out : Out std_logic_vector (3 Downto 0)); –– output
value from counter

9. End BinaryCounter;

10.

11. Architecture arch_BinaryCounter Of BinaryCounter Is
12. Signal internal_count_out : std_logic_vector (3 Downto 0);

13.

14. Begin
15. count_out <¼ internal_count_out; -- internal counter

result being assigned to output signal

16.

17. counter: Process (clk, reset)

18. Begin
19. If reset ¼ ‘1’ Then
20. internal_count_out <¼ (Others ¼> (‘0’)); -- resetting

initial output value of counter

21. Elsif Rising_Edge (clk) Then
22. internal_count_out <¼ internal_count_out þ “0001”;

–– increment counter

23. End If;
24. End Process;
25. End arch_BinaryCounter;

count_out(1)

count_out(2)

count_out(3)

count_out(4)
clk

enable Enable

B1

B2

B3

B4

Figure 2–8: Binary Counter with an Enable

www.newnespress.com

34 Chapter 2

The changes to the counter process in the architecture section, shown in Listing 2–13 adds

lines 7 and 9.

Line 7. Synchronous Enable

Insert enable If-Then condition following the rising edge statement in the synccounter
process.

2.10. Conversion Functions

The conversion functions allow you to convert from one data type to another. The conversion

functions can be concurrent or sequential statements. There are many reasons why you may

need or want to convert data types. You may not like working with a specific data type or the

input data type may be unacceptable for the operation you want to perform. For example, all

the input signals in this section are std_logic or std_logic_vector data types;

however, to perform division using the numeric_std package requires the data type to be

either signed, unsigned, natural, or integer, reference Table 2–2.

Listing 2–13. Process Changes to Binary Counter with Synchronous Enable

1. synccounter: Process (clk, reset)

2. Begin
3. If reset ¼ ‘1’ Then
4. internal_count_out <¼ (Others ¼> (‘0’));

5. Elsif rising_edge (clk) Then
6. -- adding a synchronous enable to the binary counter

7. If enable ¼ ‘1’ Then
8. internal_count_out <¼ internal_count_out þ “0001”;

–– increment counter

9. End If;
10. End If;
11. End Process;

Listing 2–12. Entity Changes to Binary Counter with Synchronous Enable

1. Entity SyncBinaryCounter Is Port (

2. clk : In std_logic; –– master input clock

3. reset : In std_logic; –– power-on reset

4. enable : In std_logic;

5. count_out : Out std_logic_vector (3 Downto 0)); –– output
value from counter

6. End SyncBinaryCounter;

www.newnespress.com

Simple Designs 35

Some conversion functions and their packages are listed in Table 2–2. Using the

conv_integer function in the std_logic_unsigned package on the std_logic
inputs makes it possible to perform the division operation.

Additional Library Packages Added

In Listing 2–14, line 3 adds the std_logic_unsigned package from the IEEE library, so

the conv_integer operation could be used. Line 4 adds the std_logic_arith package

from the IEEE library, so the conv_std_logic_vector operation could be used.

Table 2–2: Conversion functions

Conversion Function Converted Data Type Package

to_integer Signed to integer or unsigned to natural

numeric_stdto_unsigned Natural to unsigned

to_signed Integer to signed

to_stdlogicvector bit_vector or std_ulogic_vector std_logic_1164

to_integer Unsigned to natural or signed to integer numeric_bit

Conv_std_logic_vector Integer to standard logic vector, or

unsigned to standard logic vector, or

signed to std logic vector std_logic_arith

Conv_integer Signed or Std_ulogic to integer

Conv_integer Std_logic_vector to integer std_logic_unsigned

Listing 2–14. Conversion

1. Library IEEE;

2. Use IEEE.std_logic_1164.All;
3. Use IEEE.std_logic_unsigned.All;
4. Use IEEE.std_logic_arith.All;
5.

6. Entity Convert2Integer Is Port (

7. number_1 : In std_logic_vector (3 Downto 0);

8. number_2 : In std_logic_vector (3 Downto 0);

9. quotient : Out std_logic_vector (3 Downto 0));

10. End Convert2Integer;

11.

12. Architecture arch_Convert2Integer Of Convert2Integer Is
13. Signal integer_num1 : integer;

14. Signal integer_num2 : integer;

15. Signal integer_quotient : integer;

16.

www.newnespress.com

36 Chapter 2

2.11. Read File

The read command extracts information from an external file, see Figure 2–9. Such data can be fed

into input signal(s) defined by an entity. Some of the data types that can be read from the external

file using the read command are integers, Boolean, character, time, real, and string. This command

is very useful when verifying the design code and is discussed more in the simulation chapter.

The code in Listing 2–15 reads integer data from an external text file. These data are

converted to standard logic vectors and used as input data to the design component named

readfile. The functions of the readfile are not defined; however, the design file could process

the input data and provide a single output resultant or decision bit.

Lines 4–5. Additional Library and Package Added

The read command is defined in the std.textio package in the std library. This library

and package are made visible and usable to the program in the library declaration section.

Line 31. Defining File to Be Read

Before the data can be read from the file it must be defined using the reserved word file.
This command states that the file provides data, it is opened in the read mode, and the name

of the file is read_data.txt. The syntax for file is

File input: Text Open read_mode Is “Std_Input”;

Where input is data_in and std_input is read_data.txt.

External File Testbench

File Data

Integers
Boolean
Character
Time
Real
String

Use read data

Figure 2–9: Read External File

17. Begin
18. -- standard logic vector numbers are converted to integer before

performing division

19. integer_num1 <¼ Conv_integer (number_1);

20. integer_num2 <¼ Conv_integer (number_2);

21. integer_quotient <¼ integer_num1 / integer_num2;

22. quotient <¼ Conv_std_logic_vector
(integer_quotient,3);

23.

24. End arch_Convert2Integer;

www.newnespress.com

Simple Designs 37

Listing 2–15. Read Command

1. Library IEEE; –– define library and packages needed
for this design

2. Use IEEE.std_logic_1164.All;

3. Use IEEE.std_logic_arith.All;

4. Library std; –– read command located in std_textio library

5. Use std.textio.All; –– needed to use file command

6.

7. Entity testbench Is End testbench;

8.

9. Architecture tb_read Of testbench Is
10.

11. Signal clk : std_logic :¼ ‘0’;

12. Signal reset : std_logic :¼ ‘1’;

13. Signal input_data1 : std_logic :¼ ‘0’;

14. Signal input_data2 : std_logic :¼ ‘0’;

15. Signal input_data3 : std_logic :¼ ‘0’;

16. Signal output_data : std_logic;

17. Signal data_vec : std_logic_vector (2 downto 0);

18.

19. Constant twenty_five_nsec : time :¼ 25 nsec;

20.

21. Component readfile

22. Port(
23. clk : In std_logic;

24. reset : In std_logic;

25. input_data1 : In std_logic;

26. input_data2 : In std_logic;

27. input_data3 : In std_logic;

28. output_data : Out std_logic);

29. End Component;
30.

31. File data_in: Text Open read_mode Is “read_data.txt”; –– define file
that will be read

32.

33. Begin
34.

35. read_component: readfile

36. Port Map(
37. clk ¼> clk,

38. reset ¼> reset,

39. input_data1 ¼> input_data1,

40. input_data2 ¼> input_data2,

41. input_data3 ¼> input_data3,

42. output_data ¼> output_data);

www.newnespress.com

38 Chapter 2

Lines 53–54

Variables are used to define a line and an integer because they are needed to use the

read and readline commands.

Lines 57–65

A While loop is used to read from the external data file.

Line 58

The first thing that must be done to get the data from the file is to read a line. This is done

using the readline command. The syntax is

Readline (file f: Text; L: out Line);

43.

44. reset <¼ ‘0’ after 100.00 nsec; –– set power-on reset inactive

45.

46. create_twenty_Mhz: Process -- create 20MHz simulation clock

47. Begin
48. Wait For twenty_five_nsec;

49. clk <¼ Not clk;

50. End Process;
51.

52. read_file: Process
53. Variable data_line : line;

54. Variable data_integer : integer;

55.

56. Begin
57. While Not endfile(data_in) Loop
58. readline (data_in, data_line);

59. read (data_line, data_integer);

60. data_vec <¼ conv_std_logic_vector(data_integer,3);

61. input_data1 <¼ data_vec(0);

62. input_data2 <¼ data_vec(1);

63. input_data3 <¼ data_vec(2);

64. wait for 25 nsec;

65. End Loop;
66. file_close(data_in);

67. End Process;
68. End tb_read;

www.newnespress.com

Simple Designs 39

where file f: Text is the file name; data_in is defined immediately following reserved

word file on line 31; L: out Line is the variable data_line defined on line 53.

Line 59

Next, the first element on the line is read using the read command. The read command syntax

is

read(L: inout line; Value: <certain data types>);

whereL:inoutline is the variabledata_line defined on line 53.Value can be data types

bit_vector, Boolean, character, integer, real, string, and time. In this case, it is an integer.

Lines 60–63

The data in the external file are integers. Once the data have been read, the integers are

converted to a 3-bit standard logic vector. Each data bit is assigned to specific inputs, which

are used to simulate or verify the design.

It is not always necessary to convert the data; this depends on the data type of the interface

signal(s).

Line 66

The external file is closed when the loop is done.

2.12. Write File

The write command puts data to an external file, see Figure 2–10. Some of the data types

that can be written to the external file using the write command are integer, Boolean,

character, time, real, and string. This command can make verifying a design easier by having

the results written to an external file. Data types that can be written are bit, bit_vector,
Boolean, character, integer, real, string, and time. Data written to the file can be any of the

data types or a combination. An example of the write command is shown in Listing 2–16.

External File Testbench

Simulation Results

Integers
Boolean
Character
Time
Real
String

Write Simulation
Results

Figure 2–10: Write External File

www.newnespress.com

40 Chapter 2

Lines 2–3

The write command is defined in the std.textio package in the std library. This library

and package is made visible and usable to the program in the library declaration section.

Line 13

The file command used to define the external data file is similar to the read command. The

file syntax used for the write command is

Listing 2–16. Write Command

1. Library IEEE; Use IEEE.std_logic_arith.All;

2. Library std;

3. Use std.textio.All;

4.

5. Entity testbench Is End testbench;

6.

7. Architecture tb_write Of testbench Is
8.

9. Signal clk : std_logic :¼ ‘0’;

10.

11. Constant twenty_five_nsec : time :¼ 25 nsec;

12.

13. File data_out: Text Open write_mode Is “write_data.txt”;

14.

15. Begin
16.
17. create_twenty_Mhz: Process
18. Begin
19. Wait For twenty_five_nsec;

20. clk <¼ NOT clk;

21. End Process;
22.

23. write_results: Process (clk)

24. Variable data_line : line;

25.

26. Begin
27. If rising_edge(clk) Then
28. writeline (data_out, data_line);

29. write (data_line, string'(“Hello World.”));

30. End If;
31. End Process;
32. End tb_write;

www.newnespress.com

Simple Designs 41

File output: Text open write_mode Is “std_output”;

where output is data_output and std_output is write_data.text.

My simulator puts the write file in the same directory as my work directory; this is discussed

further in the simulation chapter. Consult the documentation for your simulation to

determine where the file will be located.

Line 24

This is the defined line variable, data_line, to be used with writeline and write
commands.

Line 28

The writeline command is used to write a line to the external file. Syntax for the

writeline is

Writeline(file f: Text; L: inout Line);

where file f: Text” is data_out, defined on line 13, and L: inout Line is

write_data.txt, defined on line 13 and is the file where the data is written.

Line 29

Hello World is written in the write_data.txt.

2.13. Chapter Overview

In this chapter, you were presented with some very simple design code and shown how the

code can easily be modified to perform more advanced functions. As a part of the FPGA

development phases, you will learn how to verify or simulate design code like the ones

presented in this chapter. However, if you are interested in verifying some of the designs

provided in this chapter, the book’s appendix provides testbenches for all design code except

read and write commands, which are testbenches.

Key Simple Design Points

• Start small and gradually build the design. It is much easier and less frustrating if you

build a little and verify instead of trying to build and troubleshoot everything all at once.

• When writing code from a schematic design, make your signal names match.

www.newnespress.com

42 Chapter 2

CHAPTER 3

FPGA Development Phases

3.1. Introduction

The purpose of this chapter is to discuss the basic FPGA architecture and introduce the five

FPGA development phases. It is important to understand something about the hardware

aspect when developing an FPGA design. By hardware, I mean the FPGA device itself.

Many of the older FPGAs allowed only one-time programming (OTP), which means that any

design change required replacing the current device. However, most of today’s FPGAs are

based on static random access memory (SRAM) and can be reprogrammed multiple times.

The development process requires the use of several tools to manipulate the design and

produce an output file that dictates how the actual FPGA device is connected internally. This

chapter presents a couple ways that FPGA manufacturers present their data. However, after

reading this chapter, you should be able to apply this information to any manufacturer.

In this chapter, you will learn

• Basic FPGA architecture.

• Three basic FPGA capabilities.

• Altera and Xilinx FPGA architecture.

• Introduction to the five FPGA development phases.

3.2. What Is a Field Programmable Gate Array?

An FPGA is a device that consists of thousands or even millions of transistors connected

to perform logic functions. They perform functions from simple addition and subtraction

to complex digital filtering and error detection and correction. Aircraft, automobiles, radar,

missiles, and computers are just some of the systems that use FPGAs.

A main benefit to using FPGAs is that design change(s) need not have an impact on the

external hardware. Under certain circumstances, an FPGA design change can affect the

external hardware (i.e., printed wiring board), but for the most part, this is not the case. One

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00003-5 43

situation would be if the device has insufficient resources to support the design changes, then a

new device is required. If the new device is not a direct drop-in replacement—meaning pin-for-

pin compatible (i.e., power and grounds are in the same location)—then the printed wiring

board must be modified. More times than not, your design changes do not affect the hardware,

especially if you have derated or left room in your device for growth. The amount of room for

growth varies, but we talk more about this later in the book. The point I am trying to make is

that FPGAs provide a lot of flexibility and opportunity to make design changes quickly.

Xilinx, Altera, and Quicklogic are just a few companies that manufacture FPGAs. Even

though there are several FPGA manufacturers, they all share the same basic architecture

concept. It consists of three basic capabilities: input/output (I/O) interfaces, basic building

blocks, and interconnections. Figure 3–1 shows a generic FPGA architecture. It shows

some basic building blocks connected to other basic building blocks, which are also

connected to I/O interfaces, where data are passed to external sources. This figure is not

meant to represent any particular device or design; it is provided only as a way of showing

how the three basic capabilities interrelate. In the following sections, you are provided

additional information on each of the capabilities.

3.3. I/O Interfaces

I/O interfaces are the mediums in which data are sent from internal logic to external sources

and from which data are received from external sources. The interface signals can be

unidirectional or bidirectional, single-ended or differential and could follow one of the

different I/O standards. Some I/O standards are

• GTL (gunning transceiver logic).

• HSTL (high-speed transceiver logic).

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O

Combinatorial
Logic

Combinatorial
Logic

Combinatorial
Logic

Combinatorial
Logic

I/O Interfaces

Basic Building Blocks
Interconnections

Figure 3–1: Generic FPGA Architecture

www.newnespress.com

44 Chapter 3

• LVCMOS (low-voltage CMOS).

• LVTTL (low-voltage transistor-transistor logic).

• PCI (peripheral component interconnect).

• LDT (lightning data transport).

• LVDS (low-voltage differential signaling).

The main purpose of the I/O interfaces is to transmit and receive data; however, the portion

designated as an I/O interface may contain additional resources, such as voltage translators,

registers, impedances, and buffers.

The term used for the I/O interface section may vary, depending on the manufacturer;

however, the general function is the same. Consult the specific FPGA manufacturer’s

datasheet or application notes for the complete I/O interface details. As an example,

a brief description of Altera’s and Xilinx’s I/O interface is presented.

Altera calls its I/O interfaces I/O elements (IOEs). They provide the basic internal to external

interface function, support various differential and single-ended I/Os, and provide

programmable pull-up resistors and I/O delays. The IOE structure for Cyclone IIW is

shown in Figure 3–2.

At Xilinx, the I/O interfaces are called I/O blocks (IOBs). The IOBs consist of registers,

internal voltage translators, and other specialized resources. A simplified IOB diagram is

shown in Figure 3–3.

As you can see, the Altera and Xilinx I/O interface sections use different terminology

and have difference structures, but their basic function is the same, which is to

pass I/O data between the device and external source(s). For complete I/O interface

details, refer to the datasheet or application notes provided by the FPGA’s

manufacturer.

3.4. Basic Logic Building Blocks

The basic logic building blocks are preconfigured logic or resources used to build your

design. What this means is that the FPGA starts with some basic logic, which is

interconnected in various ways to perform the functions defined by the design. Altera’s

basic building blocks are called the adaptive logic module (ALM). The ALM consists of

combinational logic, registers, and adders, see Figure 3–4. The combinational logic has

eight inputs and a lookup table, LUT.

Xilinx’s basic building blocks are called configurable logic blocks (CLBs). Each CLB

contains slices, see Figure 3–5; and each slice has lookup tables (LUTs).

www.newnespress.com

FPGA Development Phases 45

Each FPGA manufacturer defines the basic logic building block structure and the amount

available. Because FPGAs are used in a variety of applications and systems, there is no

“one device for all applications.” FPGAs used in an aircraft might not be expected to perform

the same types of functions or experience the same operating conditions as those in an

automobile or personal computer.

There are many different types of FPGAs suitable for almost every kind of application.

Selecting the right FPGA is made easier because they are divided into categories, often

referred to as families or series. An FPGA family or series may have members or subfamily

members. You can think of a family as a group of FPGAs with common characteristics

that have members with distinctive features. The members share the basic family

characteristics but have features that are distinctive from other family members, which

may include the amount of memory, available resources, or number of I/O.

Output Register

OE Register

Input Register

Logic Array

OE

Output

Input (1)

Figure 3–2: Cyclone II IOE Structure (This figure was reprinted with written permission from
Altera Corporation. Altera is a trademark and service mark of Altera Corporation in the

United States and other countries. Altera products are the intellectual property of
Altera Corporation and are protected by copyright laws and one or more U.S. and

foreign patents and patent applications.)

www.newnespress.com

46 Chapter 3

T2

TCE

T1

T

D Q

CE

CK
SR Rev

SR Rev

DDR
MUX

TFF1

TFF2
D Q

CE

CK

D Q

CE

CK
SR Rev

DDR
MUX

OFF1

OFF2
D Q

CE

CK
SR Rev

O1

OTCLK1

OTCLK2

OCE

O2

D Q

CE

CK
SR Rev

SR Rev

Programmable
Delay

IFF1

IFF2
D Q

CE

CK

O1

ICLK1

ICLK2

ICE

IO2

SR

REV

O1

IO1
O1

Programmable
Delay

ESDPull-Up

Pull-
Down

ESD

LVCMOS,
LVTTL, PCI

Single-ended
Standard using VR EF

Differential
Standards

VREF
Pin

I/O Pin
from
Adjacent
IOB

Vcco

Keeper
Latch

I/O
Pin

Input Path

Output Path

Three-state Path

Programmable
Output
Driver

Figure 3–3: Simplified IOB Diagram (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx. January 21, 2009.)

www.newnespress.com

FPGA Development Phases 47

Some FPGAs are characterized as having high volume, low cost, high temperature, or an

embedded processor and are available in various sizes, packages, and speeds. Many

manufacturers make device selection easier by grouping FPGAs according to their

application (automotive, space, medical, etc.).

When you think about it, FPGA families are similar to a lot of our families, in that they have

common characteristics, such as same last name and parents, but all the children are different

in size, shape, personality, and unique in the way they work, act and think.

Manufacturers may categorize their devices differently, but do not let that throw you.

Knowing some general things, like the intended system or application, should at least get to

the right family or grouping. Before you buy, make sure you know what you are getting. Here

is a brief overview of how Altera and Xilinx present their FPGA families and family

members.

Adder

Adder

regout(0)

combout(0)

regout(1)

combout(1)

Register

Register

1

2

3

4

5

6

7

8

Combinational
Logic

ALM Inputs

Figure 3–4: Adaptive Logic Module (ALM) Block Diagram1 (This figure was reprinted with
written permission from Altera Corporation. Altera is a trademark and service mark of Altera
Corporation in the United States and other countries. Altera products are the intellectual
property of Altera Corporation and are protected by copyright laws and one or more

U.S. and foreign patents and patent applications.)

www.newnespress.com

48 Chapter 3

Altera refers to its FPGAs in series. These series are

StratixW

• High end and high density.

• On-chip transceivers.

ArriaW

• Midrange.

• Transceiver based.

CycloneW

• Low cost.

• Low power consumption.

Switch
Matrix

SHIFTOUT
SHIFTIN

SLICE
XOY0

SLICE
X1Y1

SLICE
X1Y0

SLICE
XOY1

COUT

CIN

COUT

CLB

CIN

Interconnect
To Neighbors

Left-Hand SLICEM
(Logic or Distributed RAM

Or Shift Register)

Right-Hand SLICEL
(Logic Only)

Figure 3–5: Arrangement of Slices within the CLB (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx. June 25, 2008.)

www.newnespress.com

FPGA Development Phases 49

Figure 3–6 shows the family members for these series.

Xilinx offers numerous FPGA families. Some of their families include Extended SpartanW-3A,

Spartan-3E, Spartan 6, Virtex
W

, Virtex-E, Virtex-Pro, Virtex 5, and Virtex 6. These families are

divided into members based on the amount of available resources. For example, Spartan-3E is

a high-volume FPGA that has five family members, see Table 3–1. Note: The number

following S in the member’s name represents 1 for every 1000 system gates. This makes it easy

to identify the number of systems gates just by looking at the part number.

I realize this can be a little confusing at first, but the more you work with it, the easier it

becomes. Remember, the datasheets and application notes can be your best friend.

3.5. Ability to Interconnect

Interconnection involves connecting the basic building blocks to perform design-specific

functions as well as connecting the internal logic to I/O interfaces, see Figure 3–7.

Interconnection is performed automatically by the implementation tool, discussed in a later

chapter. However, some tools allow the user to manually interconnect or route internal

resources or logic. I recommend this only for advanced users.

Arria® Series

Arria® II Arria®

Arria® II GX Arria® GX

Cyclone® Series

Cyclone® III Cyclone® II Cyclone®

Stratix® Series

Stratix® IV Stratix® III Stratix® II Stratix® I

Stratix® IV E

Stratix® IV
GX

Stratix® III E

Stratix® III L

Stratix® II GX

Stratix® II

Stratix® IV
GT

Stratix® I GX

Stratix® I

Altera®

Figure 3–6: Altera Series Tree

Table 3–1: Spartan-3E family members data summary

Device System

Gates

Total

CLBs

Total

Slices

Max User

I/O

Max Differential I/O

Pairs

XC3S100E 100K 240 960 108 40

XC3S250E 250K 612 2,448 172 68

XC3S500E 500K 1164 4,656 232 92

XC3S1200E 1200K 2168 8,672 304 124

XC3S1600E 1600K 3688 14,752 376 156

www.newnespress.com

50 Chapter 3

3.6. Programmable Logic Device Options

While this book focuses on basic FPGA design and features, they can be utilized in

many different applications and perform advanced functions and calculations not discussed in

this book. Some functions that were typically performed by a digital signal processor (DSP)

are now being done by an FPGA, such as filtering and other signal processing.

So, with that being said, I feel it is worth mentioning some other options available

to designers.

The design approach used in this book is to manually write all the design code; however,

this may not always be practical or provide the best result for the FPGA’s design. What

this means is that manually writing and verifying something like a finite impulse response

(FIR) or fast Fourier transform (FFT) is time consuming. So, to make things a little easier,

many FPGA manufacturers offer a variety of what are called intellectual property (IP) cores

or functions. These IP cores or functions allow the designer to select and customize

specific desired functions. The designer is generally presented with a graphical user

interface (GUI), where information such as output format (VHDL, Verilog, etc.),

target device (family, series, etc.), and the like are provided. The customized function

A B

IO Pin IO Pin

Figure 3–7: Interconnection

www.newnespress.com

FPGA Development Phases 51

provided by the tool can now be used in the design. Some of the advantages of using an

IP core or function are

• Faster code development time.

• Reduced design risk, less likelihood of errors.

• Better and faster compiling.

• Better results for the design.

Some IP cores or functions are free, while others may be fee based. These IP cores or

functions are manufacturer dependent.

Altera’s IPs, called MegafunctionsW, are designed for only their company’s FPGAs.

Figure 3–8 shows an example of Altera’s IP Megafunction wizard. Here, the user selects

the desired function and provides other information, such as the target family device

and output format. The DSP option has been expanded to show the different available

options.

DSP
Megafunction

Options

Select Family

Output Format

Figure 3–8: Altera IP Megafunction Wizard (This figure was reprinted with written permission
from Altera Corporation.)

www.newnespress.com

52 Chapter 3

Xilinx’s IPs are called IP cores. Some are offered Xilinx’s free with their development tool,

while others have to be purchased. Some of the IP cores offered with the company’s ISE

SoftwareW development tool include

• Cascaded integrator comb, CIC, filter.

• FIR filter.

• FFT.

• Sine/cosine lookup table.

Here are some IP cores that must be purchased:

• Convolutional encoder.

• Reed-Solomon encoder.

• Reed-Solomon decoder.

• Controller area network (CAN).

Figure 3–9 shows an example of the GUI used to customize Xilinx’s IP core. Additional

information about the function, such as design output format (VHDL, Verilog), netlist

format, or create a wrapper file, is added by selecting the part, generation, or advanced tabs

located at the top of the screen.

3.7. FPGA Development Phases

Regardless of the design complexity, the FPGA development process is basically the same.

For beginners or anyone who is trying to learn how to develop FPGA designs, the entire

process can seem complex and confusing. What I found to be most confusing and hard to

keep straight was all the terms, processes, and tools necessary to produce a design. When

I first started with FPGAs, we used Synplicity’s SynplifyW for synthesis—talk about a

mouthful. It seemed to take me forever to remember which was the company’s name

(Synplicity, now Synopsys), which was the tool’s name (Synplify), and which was the

process (synthesis).

I believe, when you are faced with trying to learn or perform complex tasks, things can

be made easier when the tasks are divided into smaller pieces and tackled one at a time.

This book takes the FPGA development process and divides it into five phases, which are

discussed in the following chapters. The five FPGA development phases are design,

synthesis, simulation, implementation, and programming, see Figure 3–10. A chapter is

devoted to each development phase. Each chapter discusses the development phase’s

www.newnespress.com

FPGA Development Phases 53

inputs and outputs, tools, helpful Internet links, tips, and examples where appropriate.

A tutorial is provided for the synthesis, simulation, implementation, and programming

phases. The next chapter discusses the first FPGA development phase, which is design.

3.8. Chapter Overview

Over the years, FPGAs have come a long way. They can perform a wide range of operations

from simple to complex. Initially, the development process seems complex and confusing,

so it has been divided into smaller, less intimidating phases. Each of these phases can be as

complex as the next, but learning the basic is a great way to start. Plus, after you have the

basic, it is easy to expand your skills and knowledge.

Key Points to Remember

• The three basic FPGA architecture elements are I/O interfaces, basic building blocks,

and interconnections.

Design Format, Netlist Information...

Target Part Information

Create Netlist Wrapper...

Figure 3–9: Xilinx’s IP Core GUI (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx

ISE WebPackä software version 10.1.)

www.newnespress.com

54 Chapter 3

• Each manufacturer may present the basic FPGA architecture differently, but the concept

is basically the same.

• Use the datasheets and application notes, because they provide helpful information,

such as device resources and architecture structure, resource definitions and allocations,

and design help.

• Do not try to tackle complex tasks all at once, reduce them into smaller, more

manageable steps; before you know it, you have reached your goals.

Chapter Links

For your convenience, here is a list of links for more information on the IP cores and

functions.

Xilinx’s IP cores information can be found at www.xilinx.com/ipcenter/index.htm.

Altera’s IP information can be found at www.altera.com/products/ip/getting-started/

ipm-evaluate-download.html.

Synthesis Implementation Programming

HDL, Schematic, or
Combination

Edit Design

Edit Design

Efficient &
Condensed Logic

Functional Simulation

Gate-Level Simulation

Register Transfer Level Simulation

Edit Design

Program FileDesign

Simulation

Figure 3–10: FPGA Development Phases

www.newnespress.com

FPGA Development Phases 55

This page intentionally left blank

CHAPTER 4

Design

4.1. Introduction

FPGA development has been divided into five phases. The first development phase

necessary to create the file that will be used to program an FPGA is design. This chapter

discusses the types of material and other information that you may receive to create a design.

The design package is information provided to a designer, and it can vary from design to

design and company to company. With that in mind, this chapter presents some basic

information that will help you understand the material, what information you need to get

started, and how to develop a design from that information. The FPGA design may be as

simple as converting a schematic to HDL or making modifications to an existing HDL

design or more in depth, such as creating a totally “new” design. Regardless of the level

of effect, I believe the approach presented in this chapter can partially or completely be

applied to all types of designs. The final design from this phase is manipulated to produce the

file that will program an FPGA. It is for that reason I consider this to be a critical phase.

This chapter defines a systematic approach that will help you work through and understand

the design phase.

In this chapter you will learn

• How to evaluate the design package.

• Decisions to make prior to creating the design.

• How to create a design.

4.2. What Is the Design Phase?

The design phase involves more than just creating a design. Many decisions must be made,

and the design material must be understood. The “design package” is the input and the

FPGA design is the output. After receiving the design package, the best way to start is to

evaluate the design package and make some predesign decisions before writing the firmware,

see Figure 4–1. The design code or code is also referred to as firmware. While HDL is

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00004-7 57

softwarelike code, it is called firmware because it describes hardware and generally is written

by hardware engineers. The definition of firmware can vary from person to person; some

refer to languages such as C or Cþþ as firmware. For that reason, it is always a good idea to

clarify the meaning. The design package contains the requirements that define the FGPA’s

features and functions. In other words, the requirements state what the design must do but

not how to do it. During this phase, the design is created by writing firmware, through

schematic capture, or a combination of the two. In this book, VHDL code is the design

format. Success or failure of the design largely depends on:

• The quality of the design input(s):

• A good design package is essential to creating the correct design.

• You need to understand what needs to be designed and have the ability to create it.

• Making key decisions:

• Selecting the FPGA for your specific application.

• Development tools:

• A good text editor has features to help make the HDL design entry and modifications

easier.

• A graphical editor is needed to create and modify schematic capture designs.

4.3. Design Package

The design package is the result of predesign activities, generally performed by someone like

a systems engineer, technical lead, or project engineer. These activities usually include:

• Creation of design architecture.

• Partitioning the design into sections.

• The goal to minimize interfaces between sections and group together common functions.

Evaluate
Design Package

Design Package

Predesign
Decisions

Device, Format & Tools

Design
Package

Create
Design

Design
DesignStep 1A

Step 1

Step 2

(Input)

(Output)

Figure 4–1: Design Phase Steps

www.newnespress.com

58 Chapter 4

• Designation of one or more designers.

• Larger or complex designs may require several designers.

• Assign design sections to different designers, based on skill level or availability.

• Creation of design requirements.

• Requirement specification defining what the design should do.

• Creation of Timing and other diagrams.

• Diagrams provided as requirements or just as supporting documents.

The package should contain all the relevant design information, like requirements

specification and timing diagrams. There should be enough information for a design to be

created. It is never a good idea for the coder to create his or her own requirements.

This leaves the door wide open for costly mistakes. Anything that is misinterpreted gets

carried over into the design requirements, which become a part of the design. The design may

be tested against the requirements and possibly delivered. This kind of mistake may not

be detected until customer acceptance or, worse, after the design has been delivered,

which can be very expensive and embarrassing. So my advice is this: If you are the coder,

do not write your own requirements. The longer a mistake or error is carried into the

development process, the more expensive it is to correct. Always remember, “Pay me now

or pay me later; and if you pay me later, it will cost you more.”

Design packages vary from project to project and company to company but should

contain enough information to allow the designer or coder to create a final design. Some

design packages have good documentation while others have vague or inconsistent

information. I can hear my old coworkers laughing now, saying, “What design package

or requirements?” We were often victims of “no formal requirements,” “make it like the old,”

or “something verbal.” I know a lot about bad design packages. Whether the design package

is good or bad you should always evaluate its contents prior to starting the design. See

Figure 4–2 for an example of a design package.

4.4. Evaluating the Design Package

Once you receive your design package, the urge is to immediately start creating the design.

But wait, do not let your emotions take over. Some steps should be taken before you actually

start the design. Taking this extra time in the beginning often reduces frustration and

mistakes. It may feel like you are wasting time, but believe me it will be time well spent

and oftentimes will result in faster progress. For some tips for evaluating your design

package, see Figure 4–3.

www.newnespress.com

Design 59

4.4.1. Package Analysis

Read and understand all the documents provided in the design package. Be sure to have

a clear understanding of what you are to design. Undoubtedly, as you read through the

material, there will be questions and things that need to be clarified, so write down all your

questions and get answers from the appropriate person(s). Question anything that seems

to be contradictory or unclear.

4.4.2. Getting Clarification

In an ideal world, your design package will be crystal clear, have no contradictions, have

everything in order, and be complete in every way. But, realistically, there may be some

inconsistencies, pertinent information missing, outdated data, or just a variety of things that

cause you to have questions. Whatever the case may be, do not be afraid to ask questions;

and if you have doubt about what was presented, make no assumptions on the intent, because

mistakes cost not only money but time. For answers, go directly to the source that gave

you the material. Do not go to a coworker or friend for answers, because he or she may

unintentionally give you incorrect information.

A word to the wise, make no assumptions or corrections without first trying to get

clarification. What may appear to be a mistake or error may have a valid reason, and getting

clarification can save you from having to redo work.

Requirement
Specification

Timing Diagram

S1

S4 S2

S3

State Machine Diagram Schematic

D Q

Q

Figure 4–2: Design Package

Do Not Assume
Ask Questions

Clarification

Document Changes
Keep Good Notes

Organize

Read &
Understand Documents

Analyze

Figure 4–3: Design Package Evaluation Steps

www.newnespress.com

60 Chapter 4

For example, suppose you have a timing diagram that shows a 50 MHz or 20 nsec clock but

the timing shows 50 MHz and 2 nsec, see Figure 4–4. There is no way of knowing which

is correct, so do not assume. Instead, go back to the “source,” not a coworker or friend, to get

clarification and to clear up the inconsistencies.

I had a supervisor correct some of my work because he did not understand what was

going on, only to discover that I was correct. After discovering what had occurred, the

work had to be redone. This created confusion and wasted time and money, which could

have been avoided if the supervisor had taken a little time to understand before acting on

his assumptions or misunderstandings.

Additionally, if an acronym is provided without its definition, always verify the correct

meaning, because, as you know, engineering has many acronyms and some have different

meanings to different people.

While I caution you against making assumptions, the fact is that sometimes it may be

necessary to make assumptions in order to make progress. If this is the case, then be sure

to keep good records and document all assumptions.

4.4.3. Organization

Regardless of the number of documents in the design package, you should establish a

system for storing the documents. The system should allow anyone to easily identify and

retrieve the latest document revision. Because these documents are used to develop the

design, it is very important to always make sure you work from the latest and most accurate

information.

Ideally, the design package remains constant for the entire duration of the project; however,

realistically, there is a good chance there will be a change that affects your design. So, if you

don’t already know you will soon find out that sometimes the only thing that remains the

same is the “rate of change,” so be prepared; because change may be necessary and may

happen during any part of the development phases.

Sometimes design changes are informal, made during a meeting or verbally, and may not

always get incorporated in the design package. If this is the case, make sure that your design

package system allows you to create a paper trail or revision history for all changes,

2 nsec

50 MHz Clock

Figure 4–4: Inconsistent Documentation

www.newnespress.com

Design 61

especially undocumented ones. At a minimum, I suggest that you document who requested

the change, details about the change, and the date, similar to what is shown in Example 4–1.

This provides a good record of all the design changes. Additionally, it provides traceability or

a written record for yourself or, if necessary, a successor. Paper trails provide valuable

information when things go wrong.

Now that you have completed your design package assessment, a few decisions must be

made. These decisions are necessary because they affect various aspects of FPGA

development.

4.5. Predesign Decisions

What is the design format? Who is the FPGA manufacturer? What tools should be used?

These are some of the decisions that should be made prior to creating the design. However,

if the design does not require manufacturer-dependent resources, such as memory, then you

can wait until synthesis before deciding on the manufacturer and part number. Some options

for each decision are shown in Figure 4–6. The design package may define one or some

predesign decisions. For example, the requirements may state to modify a VHDL design to

perform more functionality and put the new design in a larger FPGA package from the same

manufacturer. In this case, the design format and manufacturer have been decided by the

requirements; however, there are tool decisions that have to be made.

2 nsec

50 MHz Clock

Original provided by lead designer

20 nsec

50 MHz Clock

On 1-28-09 lead designer confirmed 50 MHz is correct, changed from 2 nsec to 20 nsec

Figure 4–5: Corrected Timing Diagram

n Example 4–1. Documenting a Requirement Change

The original timing diagram shows a 50 MHz clock frequency with a conflicting

2 nsec time period. After verifying that 50 MHz is correct, 2 nsec is changed to

20 nsec, as shown in Figure 4–5, until the design package can be updated.

n

www.newnespress.com

62 Chapter 4

On the other hand, making one decision can automatically determine the selection for another

option. For example, selecting schematic capture allows you the freedom to select any

manufacturer that accepts that design format. However, the tool is determined by the selected

manufacturer. So selecting Altera for a schematic capture design means the Quartus IIW

design entry tool set is automatically selected.

While one decision can determine another, not all decisions must be made in the first

development phase. Some decision can be made later. The design format must be selected in

the first or design phase, since this is necessary to create the design. If the design is

manufacturer independent, then the manufacturer and part number decisions can wait

until synthesis. However, the manufacturer must be known in the design phase for

manufacturer-dependent designs. Synthesis is the first phase in which the manufacturer and

part number are needed for independent designs. This information is needed to set up the

synthesis tool, so the correct output is generated for the implementation phase. Table 4–1

shows that the design format is selected in the design phase; the manufacturer is selected in

design phase for manufacturer-dependent designs, otherwise it is selected during synthesis.

The tools are generally selected during the specific phase unless they are predetermined by

some other factors or a previous decision.

4.5.1. Design Format

Prior to creating the design, you must select the design’s format. Will it be schematic capture,

HDL, or a combination of the two? Sometimes, this decision has been made by your design

package, as shown in Example 4–2.

Decision: Design Format

Options:
HDLs
Schematic
Combination

Decision: Tools

Options:
Standalone
Complete

Decision: Manufacturer

Options:
Xilinx
Altera
Quicklogic

Figure 4–6: Design Decisions

Table 4–1: Decision/Development Phase Relationship

Decision Design Format Manufacturer Tools

Design phase X X* X*

Synthesis phase — X X

Implementation phase — — X

Programming phase — — X

*Required for manufacturer-dependent designs.

www.newnespress.com

Design 63

However, if you are starting a new design, then you may have the options to select one of the

different design format options. As with anything there are advantages and disadvantages to

each design format. For schematic capture,

Advantages:

• The design is drawn as a schematic.

• It is relatively easier to create, read, and understand.

Disadvantages:

• Logic symbols are proprietary, making the design manufacturer dependent.

• The entire design entry must be repeated for different manufacturers.

• Predefined logic symbols make the design less flexible.

• The options on development tools are limited.

For HDL,

Advantages:

• It has more design and manufacturer selection flexibility.

• To switch between different manufacturers, only manufacturer-specific resources,

such as memory, or IP cores/functions have to be changed.

• Manufacturer-independent designs provide more development tool options.

n Example 4–2. Predesign Decisions

You are required to convert a schematic capture design to VHDL. However, you can

select the manufacturer and development tools. You may decide to use Xilinx as

the manufacturer, and your company may have standalone tools like SynplifyW for

synthesis and ModelSimW for simulation. For implementation, you are required to

use the manufacturer’s tool. So, you are provided the design format but are free to

select the manufacturer and tools, see Figure 4–7.

n

Design Format
VHDL

Manufacturer
Xilinx

Tools
Complete

Your Choice Your ChoiceProvided

Figure 4–7: Example of Predesign Decisions

www.newnespress.com

64 Chapter 4

Disadvantages:

• The design may be more difficult to read and understand.

• Manufacturer-dependent designs provide fewer development tool options.

4.5.2. FPGA Manufacturer

You may or may not have the option to select the actual FPGA. Sometimes, the manufacturer

has been preselected, because of a company preference for a specific manufacturer, findings

from a trade study, cost of the device, or a variety of reasons. Whether you have this

option or not, knowing the FPGA’s manufacturer is necessary for manufacturer-dependent

designs. HDL designs that require no manufacturer-specific resources, such as memory, IP

cores/functions allow you to create and simulate (verify) without knowing the manufacturer.

However, for design entry, the manufacturer is needed for schematic capture and

manufacturer-dependent HDL designs. Additionally, the manufacturer’s part number is

needed for the synthesis and place-and-route phases.

A little foresight is needed when selecting the actual device part number. This requires having

an idea of how much resource your design requires. This can be difficult when you first

start, but as you get more experience, you will be better able to determine which device best

fits your needs. A good way to help you learn how to select devices is to randomly select a

device, synthesize the design, and review the resources required in the output report. Now, you

can see the resources required to perform the functions defined by your design. With this

information you can use a datasheet to select a more appropriately sized device. Reading the

synthesis report is a good way to understand what happens to the design as it get synthesized.

Later in the book, you will learn more about synthesizing and its benefits.

Here are factors to consider when selecting the device:

Design application:

• Avionics

• Military

• Automotive

• Medical, and so forth.

Environmental conditions:

• Military.

• Industrial.

• Commercial.

www.newnespress.com

Design 65

Temperature range:

• Commercial, 0�C to 85�C.

• Industrial, –40�C to 100�C.

• Military, –55�C to 125�C.

Design size:

• Board allocated space.

• Package.

• Ball grid array, flat pack, and so on.

4.5.3. Development Tools

Each FPGA development phase utilizes specific tools, and they are discussed in the

respective chapters. The design phase development tool depends mainly on the output format,

but additional factors, such as cost, design sharing, and the need for it to be complete or

standalone, can affect tool selection. For example, if your design format is schematic capture,

then the design entry tool must be one that supports schematic capture and not a text editor.

On the other hand, it may be easier to use complete development tools over standalone ones.

• Design format. For HDL, any text editor will work. See Section 1.5, “Editor Features,”

in Chapter 1, for tips on selecting a text editor. However, for schematic capture, you must

use the tools supplied by the selected manufacturer.

• Cost. The fees for development tools can be very expensive, especially if they have

yearly maintenance or licensing fees. Sometimes companies standardize the development

tools, so you have no choice. But, if this is not the case, then I suggest having a clear

understanding of your needs—try to get a temporary copy (i.e., try it before you buy it)

and try to negotiate fees.

• Design sharing. For large designs that require multiple designers, your project may use tools

that make it easy to divide the design among multiple people. So if this design has multiple

coders, then you need a good set of tools to manage and control the design and its revisions.

• Complete or standalone. Some manufacturers offer complete development tools. When

I say complete development tool, I mean that the tool provides design entry, synthesis,

implementation, and simulation. For example, Xilinx’s Integrated Software Environment

(tm) (ISE) and Altera’s Quantus II are complete development tools. Standalone tools

perform a single function, such as synthesis, implementation, or simulation. For example,

Synopsys’s Synplify is used for design synthesis and Mentor Graphics’s ModelSim

simulator is used for design verification, which means neither of these tools can perform

www.newnespress.com

66 Chapter 4

the functions of the other. While it is true that some standalone tools, like ModelSim,

provide a text editor that can be used to modify or create HDL code, the features and

capabilities generally are not as good as standalone or dedicated text editors. I do not

suggest using that type of editor for design entry.

Many pros and cons are involved in selecting complete development or standalone tools,

see Tables 4–2 and 4–3.

As you can see, there are pros and cons to either solution. You have to determine which

makes more sense for you and your application.

4.6. Creating Design Options

Now you are ready to create your design. FPGA designs can resemble a schematic, be written

as HDL code, softwarelike language, or a mixture. Development options for schematic

capture designs are limited. The symbols used to create the schematic are proprietary for the

specific manufacturer, and development tools are available only from the specific

manufacturer. Some HDL designs are manufacturer independent and can come in several

formats. Two HDL development options are available: The design can be created using an

automatic code generator or written manually. Each option is discussed in the following

sections, but this book uses the manual option.

4.7. Automatic Code Generators

Automatic code generators provide an easy way to develop an HDL design without actually

writing code. Such automatic code generators are a little different from the IP cores or functions

discussed earlier. IP cores and functions produce code for only specific function(s), while the

Table 4–2: Complete tools, pros and cons

Pros Cons

Single development tool Can perform synthesis and implementation
for only specific manufacturers

Manufacturer understands device better; therefore,
development tool may be better and provide more accurate
device data

Manufacturer is an expert on the device,
not necessarily on the development tool

Single tool may be cheaper Some development features may not be as
good as a standalone tool

Table 4–3: Standalone tools, pros and cons

Pros Cons

Supports multiple manufacturers Must learn and use multiple development tools

Expert in specific tool area Multiple cost or licensing fees

May have more or advanced features Separate tools may be more expensive

www.newnespress.com

Design 67

automatic code generator produces an entire design or major portions of the design. Automatic

code generators work in different ways, depending on the software. Some software packages

convert from one design format to another or convert a graphical model to HDL. For example, an

ABEL design can be converted to VHDL. Several code generator tools create a templatelike

skeleton VHDL testbench, the file used to verify the design (testbenches are discussed in a later

chapter). For example, Doulos generates a testbench using a Perl script when provided with an

entity or architecture. Automatic code generators are growing in popularity. Personally, I like

to write the code. You will get a mixed bag of results from different automatic code generators.

I am not sure that you will get all the comments you need or the format convention you want.

While a lot of the work can be done by the auto code generator, you may still have to manually

add code, comments, or formatting. I am not on the auto code generator bandwagon yet because

I believe it never hurts to have the skills to develop firmware manually. As my mother always

says “it is better to have it and not need it than to need it and not have it.”

4.8. Manual Code Generation

VHDL, Verilog, and ABEL are some of the languages that can be used for FPGA design.

Even though there are several language options, this book discusses the manual way to

develop an FPGA design using VHDL. Manual code generation can be more time consuming

than using an automatic code generator, but the designer has more control over the design.

For those with little or no experience with HDL or programming, this chapter provides some

helpful tips to consider as you review or create code. Regardless of the language you select,

the FPGA development process is the same.

At this point you have a good understanding of the design requirements and what you are to

design, assumptions have been documented, a manufacturer has been selected (and maybe

the actual device part number), and you have your design entry tools. This is the point in the

design phase where you use your design entry tool to create the design. I believe the best way

to explain how to create a design is by example.

The design example is based on an information, friend or foe (IFF), system. IFF technology

allows aircraft to be identified as a friend. The system consists of two major components:

the interrogator, which requests information, and the transponder, which replies. Simply

stated, the interrogator requests specific identification information from an aircraft by

transmitting a series of pulses to the transponder. These pulses correspond to specific modes,

which are decoded by the transponder and answered by transmitting a series of reply pulses.

The entire system is complex, so for this example, the design is divided into a very small

piece and the details are provided in a design package.

4.8.1. Design Package

From the requirements specification, you have determined that your assignment is to

develop VHDL firmware that will receive two pulses and determine if the pulses have valid

www.newnespress.com

68 Chapter 4

pulse width and spacing. Pulse spacing corresponds to two modes, Mode 2 and Mode 3A.

The modes are decoded for valid pulses only, (i.e., with correct spacing). To ensure

consistency among all the firmware, signal names and font conventions have been provided

in the design package.

Font Conventions

• Capitalize the first letter of all reserved words.

• Lower case user-defined signals and nonreserved words with underscores, for easier

readability.

Inputs

The P1 and P3 pulse width is 0.8 msec þ 0.1 msec, see Figure 4–8.

VHDL signal name is input_pulse.

Reset ¼ active high

VHDL signal name is reset.

Master Clock ¼ 20 MHz

VHDL signal name is clock20Mhz.

Outputs

There are four output signals, defined as follows:

The narrow pulse signal is created when P1 or P3’s pulse width is less than 0.7 msec.

VHDL signal name is narrow_pulse.

The Wide Pulse signal is created when P1 or P3’s pulse width is greater than 0.9 msec.

VHDL signal name is wide_pulse.

Mode 2 decode is created when pulse spacing between valid P1 and P3 is 5 msec � 0.1 msec,
see Figure 4–9.

0.8 ± 1 µsec

P1/P3

Figure 4–8: P1 and P3 Pulse Width

www.newnespress.com

Design 69

VHDL signal name is mode2.

Mode 3A decode is created when pulse spacing between valid P1 and P3 is 8 msec �
0.1 msec, see Figure 4–10.

VHDL signal name is mode3A.

Evaluate

After reviewing your package everything seems clear, and there are no questions at

this time.

Predesign Decisions

Design format was preselected as VHDL and my text editor is HDL Works’ Scriptum 8.3

revision 1.

The manufacturer is Xilinx, no specific part number has been selected at this time.

For synthesis, Xilinx Synthesis TechnologyW (XST) synthesizer will be used. This is a

part of Integrated Software Environment (ISE) WebpackW, which is a complete

development tool. Also available is an evaluation copy of Synplify, so I decide to try

both synthesis tools to see which gives better results. Although ISE SimulatorW is a part

of Xilinx’s complete development tool, the standalone simulator ModelSim will be used

for simulation. Implementation is performed using Xilinx’s ISE complete development tool.

The programmer will be decided during the implementation phase. This is acceptable,

because information about the programmer is not needed until the end of implementation,

when it is time to generate the programming file.

P1 P3

5 ± 0.1 µsec

Figure 4–9: Mode 2 Timing

8 ± 0.1 µsec

P1 P3

Figure 4–10: Mode 3A Timing

www.newnespress.com

70 Chapter 4

Design

Before starting the design, take a few moments to visualize how you will write the firmware.

Will you use If-Then-Else statements, write a state machine, or what? To help me write

the firmware, I created a state machine diagram, see Figure 4–11. Do not be afraid to create

additional diagrams or other design aids to help you create the design.

Each coder has his or her design style; and as you gain more experience and learn different

techniques, you will develop your own style. This design could have been written several

ways; however, it reflects how I visualize the design, see Listing 4–1. The VHDL design

consists of four main parts: an optional heading, library declaration, entity section, and

architecture section.

Waiting P1

ModeDecode

P3PulseWidthCheck WaitingP3

Received P1 Rising Edge

P1PulseWidthCheck

Invalid Pulse

Valid P1 Pulse

Mode Decoded

Invalid Pulse

Valid P3 Pulse

Invalid Mode

Received P3 Rising Edge

Figure 4–11: State Machine Diagram

www.newnespress.com

Design 71

Listing 4–1. Design Code

1. ––************************** Header Section ***************************

2. –– Name : Rebecca C. Smith

3. –– Date : August 25, 2009

4. –– Filename : mode2n3.vhd

5. –– Description : This code performs pulse width and spacing checking.

6. –– : For Pulse Width Checking:

7. –– : Narrow pulse signal is sent for pulse widths less
than .7 µsec or

8. –– : Wide pulse signal is sent for pulse widths greater
than .9 µsec.

9. –– :

10. –– : For Pulse Spacing (for valid P1 & P3 pulse widths
only):

11. –– : Mode 2 decode signal is sent for 5 µsec þ/- .1 µsec
spacing

12. –– : Mode 3A decode signal is sent for 8 µsec þ/- .1 µsec
spacing.

13. ––

14. –– Revision History

15. –– Date Initials Description

16. ––

17. ––************************* End Header Section *************************

18. ––

19. Library IEEE; –– define library and packages needed for this design

20. Use IEEE.std_logic_1164.All;
21.

22. Entity mode2n3 Is Port (

23. clock20Mhz : In std_logic; –– Master input clock

24. reset : In std_logic; –– Power-on reset

25. input_pulse : In std_logic; –– Input for P1 & P3

26. narrow_pulse : Out std_logic; –– Indicates input pulse P1 or P3 is
too narrow

27. wide_pulse : Out std_logic; –– Indicates input pulse P1 or P3 is
too wide

28. invalid_mode : Out std_logic; –– Invalid P1 to P3 pulse spacing

29. valid_pulse : Out std_logic; –– Indicates input pulse is valid

30. mode2 : Out std_logic; –– Valid Mode2 decoded

31. mode3A : Out std_logic); –– Valid Mode3 decoded

32. End mode2n3;

33.

34. Architecture arch_mode2n3 Of mode2n3 Is
35.

36. Signal int_narrow_pulse : std_logic;

37. Signal int_wide_pulse : std_logic;

www.newnespress.com

72 Chapter 4

38. Signal int_invalid_mode : std_logic;

39. Signal int_valid_pulse : std_logic;

40. Signal int_mode2 : std_logic;

41. Signal int_mode3A : std_logic;

42. Signal risingedge : std_logic; –– Indicates the rising
edge of P1 or P3

43. Signal fallingedge : std_logic; –– Indicates the falling
edge of P1 or P3

44. Signal sync_pulse : std_logic; –– Converts async signal
to sync

45.

46. Signal pulsewidth_counter : integer;

47. Signal pulse_spacing : integer;

48. –– used “type” to define state machine states

49. Type pulse_states Is (waitingP1, p1pulsewidth_check, waitingP3,
p3pulsewidth_check, decode_mode);

50.

51. Signal current_state : pulse_states;

52.

53. Begin
54. –– begin assigning internal signals to corresponding output signals

55. narrow_pulse <¼ int_narrow_pulse;

56. wide_pulse <¼ int_wide_pulse;

57. mode2 <¼ int_mode2;

58. mode3A <¼ int_mode3A;

59. invalid_mode <¼ int_invalid_mode;

60. valid_pulse <¼ int_valid_pulse;

61. –– end assigning internal signals to corresponding output signals

62.

63. –– rising edge detection

64. risingedge <¼ ‘1’ When sync_pulse ¼ ‘0’ And input_pulse ¼ ‘1’
Else ‘0’;

65.

66. –– falling edge detection

67. fallingedge <¼ ‘1’ When sync_pulse ¼ ‘1’ And input_pulse ¼ ‘0’
Else ‘0’;

68.

69. cur_state: Process (current_state, clock20Mhz, reset)

70. Begin
71. If reset ¼ ‘1’ Then –– assigning power-on or initial states values

72. pulsewidth_counter <¼ 0;

73. pulse_spacing <¼ 0;

74. int_narrow_pulse <¼ ‘0’;

75. int_wide_pulse <¼ ‘0’;

76. int_invalid_mode <¼ ‘0’;

77. int_valid_pulse <¼ ‘0’;

www.newnespress.com

Design 73

78. int_mode2 <¼ ‘0’;

79. int_mode3a <¼ ‘0’;

80. current_state <¼ waitingP1;

81. Elsif rising_edge (clock20Mhz) Then
82.

83. Case current_state Is
84. When waitingP1 ¼> –– initial state waiting to receive

first pulse P1

85. pulsewidth_counter <¼ 0; –– all signals are assigned
inactive state values

86. pulse_spacing <¼ 0;

87. int_narrow_pulse <¼ ‘0’;

88. int_wide_pulse <¼ ‘0’;

89. int_invalid_mode <¼ ‘0’;

90. int_valid_pulse <¼ ‘0’;

91. int_mode2 <¼ ‘0’;

92. int_mode3a <¼ ‘0’;

93. If risingedge ¼ ‘1’ Then –– Received P1 rising edge

94. pulsewidth_counter <¼ pulsewidth_counter þ 1;
–– start pulse width counter

95. pulse_spacing <¼ pulse_spacing þ 1;
–– start P1-P3 pulse

spacing counter

96. int_narrow_pulse <¼ ‘0’;

97. int_wide_pulse <¼ ‘0’;

98. int_invalid_mode <¼ ‘0’;

99. int_valid_pulse <¼ ‘0’;

100. int_mode2 <¼ ‘0’;

101. int_mode3a <¼ ‘0’;

102. current_state <¼ p1pulsewidth_check;
–– move to next state & wait for P1

falling edge

103. Else
104. current_state <¼ waitingp1;

105. End If;
106.

107. When p1pulsewidth_check ¼>

108. If pulsewidth_counter ¼ 19 Then –– P1 is wide

109. pulsewidth_counter <¼ pulsewidth_counter;

110. pulse_spacing <¼ pulse_spacing;

111. int_narrow_pulse <¼ ‘0’;

112. int_wide_pulse <¼ ‘1’; –– Send out wide pulse signal

113. int_invalid_mode <¼ ‘0’;

114. int_valid_pulse <¼ ‘0’;

115. int_mode2 <¼ ‘0’;

116. int_mode3a <¼ ‘0’;

www.newnespress.com

74 Chapter 4

117. current_state <¼ waitingP1; –– Return to initial
state and wait for P1

118. Elsif fallingedge ¼ ‘1’ Then –– Received P1 falling
edge

119. If pulsewidth_counter <¼ 13 Then –– Pulse is narrow,
stop counters

120. pulsewidth_counter <¼ pulsewidth_counter;

121. pulse_spacing <¼ pulse_spacing;

122. int_narrow_pulse <¼ ‘1’; –– Narrow pulse signal
is active

123. int_wide_pulse <¼ ‘0’;

124. int_invalid_mode <¼ ‘0’;

125. int_valid_pulse <¼ ‘0’;

126. int_mode2 <¼ ‘0’;

127. int_mode3a <¼ ‘0’;

128. current_state <¼ waitingp1; –– Return to initial
state and wait for P1

129. Elsif pulsewidth_counter >¼ 14 And pulsewidth_counter <¼ 18
Then –– valid pulse

130. pulsewidth_counter <¼ pulsewidth_counter;

131. pulse_spacing <¼ pulse_spacing þ 1;

132. int_narrow_pulse <¼ ‘0’;

133. int_wide_pulse <¼ ‘0’;

134. int_invalid_mode <¼ ‘0’;

135. int_valid_pulse <¼ ‘1’; –– P1 is good, activate
valid pulse signal

136. int_mode2 <¼ ‘0’;

137. int_mode3a <¼ ‘0’;

138. current_state <¼ waitingp3;

139. End If;
140. Else –– no falling edge or wide pulse, continue counting

141. pulsewidth_counter <¼ pulsewidth_counter þ 1;

142. pulse_spacing <¼ pulse_spacing þ 1;

143. int_narrow_pulse <¼ int_narrow_pulse;

144. int_wide_pulse <¼ int_wide_pulse;

145. int_invalid_mode <¼ ‘0’;

146. int_valid_pulse <¼ int_valid_pulse;

147. int_mode2 <¼ ‘0’;

148. int_mode3a <¼ ‘0’;

149. current_state <¼ p1pulsewidth_check;

150. End If;
151.

152. When waitingP3 ¼>

153. pulsewidth_counter <¼ 0;

154. pulse_spacing <¼ pulse_spacing þ 1; –– continuing counting
P1-P3 pulse spacing

www.newnespress.com

Design 75

155. int_narrow_pulse <¼ ‘0’;

156. int_wide_pulse <¼ ‘0’;

157. int_invalid_mode <¼ ‘0’;

158. int_valid_pulse <¼ ‘0’;

159. int_mode2 <¼ ‘0’;

160. int_mode3a <¼ ‘0’;

161. If pulse_spacing ¼ 163 Then –– P1-P3 spacing too wide for
Mode2 or Mode3

162. pulsewidth_counter <¼ 0;

163. pulse_spacing <¼ 0; –– stop counting

164. int_narrow_pulse <¼ ‘0’;

165. int_wide_pulse <¼ ‘0’;

166. int_invalid_mode <¼ ‘1’;

167. int_valid_pulse <¼ ‘0’;

168. int_mode2 <¼ ‘0’;

169. int_mode3a <¼ ‘0’;

170. current_state <¼ waitingp1; –– wait for
interrogation

171. Elsif risingedge ¼ ‘1’ Then –– Received rising
edge of P3

172. If pulse_spacing <¼ 97 Or (pulse_spacing >¼ 104 And
pulse_spacing <¼ 156) Then

173. –– P1-P3 outside Mode2 or Mode3 range

174. pulsewidth_counter <¼ 0;

175. pulse_spacing <¼ 0; –– stop counting

176. int_narrow_pulse <¼ ‘0’;

177. int_wide_pulse <¼ ‘0’;

178. int_invalid_mode <¼ ‘1’;

179. int_valid_pulse <¼ ‘0’;

180. int_mode2 <¼ ‘0’;

181. int_mode3a <¼ ‘0’;

182. current_state <¼ waitingp1; –– wait for
interrogation

183. Else
184. pulsewidth_counter <¼ pulsewidth_counter þ 1;

–– start pulse width counter

185. pulse_spacing <¼ pulse_spacing;
–– stop pulse

spacing counter

186. int_narrow_pulse <¼ ‘0’;

187. int_wide_pulse <¼ ‘0’;

188. int_invalid_mode <¼ ‘0’;

189. int_valid_pulse <¼ ‘0’;

190. int_mode2 <¼ ‘0’;

191. int_mode3a <¼ ‘0’;

192. current_state <¼ p3pulsewidth_check;

193. End If;

www.newnespress.com

76 Chapter 4

194. Else
195. current_state <¼ waitingP3;

196. End If;
197.

198. When p3pulsewidth_check ¼>

199. If pulsewidth_counter ¼ 19 Then –– wide pulse

200. pulsewidth_counter <¼ pulsewidth_counter;

201. pulse_spacing <¼ pulse_spacing;

202. int_narrow_pulse <¼ ‘0’;

203. int_wide_pulse <¼ ‘1’; –– P3 is wide send out
wide pulse signal

204. int_invalid_mode <¼ ‘0’;

205. int_valid_pulse <¼ ‘0’;

206. int_mode2 <¼ ‘0’;

207. int_mode3a <¼ ‘0’;

208. current_state <¼ waitingP1; –– Return to waiting
for rising edge of P1

209. Elsif fallingedge ¼ ‘1’ Then –– detecting P3 falling
edge

210. If pulsewidth_counter <¼ 13 Then –– narrow pulse

211. pulsewidth_counter <¼ pulsewidth_counter;

212. pulse_spacing <¼ pulse_spacing;

213. int_narrow_pulse <¼ ‘1’; –– send out narrow
pulse signal

214. int_wide_pulse <¼ ‘0’;

215. int_invalid_mode <¼ ‘0’;

216. int_valid_pulse <¼ ‘0’;

217. int_mode2 <¼ ‘0’;

218. int_mode3a <¼ ‘0’;

219. current_state <¼ waitingp1; –– Return to waiting
for risingedgeofP1

220. Elsif pulsewidth_counter >¼ 14 And pulsewidth_counter <¼ 18
Then –– valid pulse

221. pulsewidth_counter <¼ pulsewidth_counter;

222. pulse_spacing <¼ pulse_spacing;

223. int_narrow_pulse <¼ ‘0’;

224. int_wide_pulse <¼ ‘0’;

225. int_invalid_mode <¼ ‘0’;

226. int_valid_pulse <¼ ‘1’; –– P3 is good, activate
valid pulse signal

227. int_mode2 <¼ ‘0’;

228. int_mode3a <¼ ‘0’;

229. current_state <¼ decode_mode;

230. End If;
231. Else –– no fallinge edge

232. pulsewidth_counter <¼ pulsewidth_counter þ 1;
–– continue pulse width counting

www.newnespress.com

Design 77

233. pulse_spacing <¼ pulse_spacing;

234. int_narrow_pulse <¼ int_narrow_pulse;

235. int_wide_pulse <¼ int_wide_pulse;

236. int_invalid_mode <¼ int_invalid_mode;

237. int_valid_pulse <¼ int_valid_pulse;

238. int_mode2 <¼ ‘0’;

239. int_mode3a <¼ ‘0’;

240. current_state <¼ p3pulsewidth_check;

241. End If;
242.

243. When decode_mode ¼>

244. If (pulse_spacing >¼ 98 And pulse_spacing <¼ 102) Then –– pulse
spacing between 4.9 and 5.1 us

245. pulsewidth_counter <¼ pulsewidth_counter;

246. pulse_spacing <¼ pulse_spacing;

247. int_narrow_pulse <¼ int_narrow_pulse;

248. int_wide_pulse <¼ int_wide_pulse;

249. int_invalid_mode <¼ int_invalid_mode;

250. int_valid_pulse <¼ int_valid_pulse;

251. int_mode2 <¼ ‘1’;

252. int_mode3a <¼ ‘0’;

253. current_state <¼ waitingP1;

254. Elsif (pulse_spacing >¼ 158 And pulse_spacing <¼ 162)Then
–– pulse spacing between 7.9 and 8.2 us

255. pulsewidth_counter <¼ pulsewidth_counter;

256. pulse_spacing <¼ pulse_spacing;

257. int_narrow_pulse <¼ int_narrow_pulse;

258. int_wide_pulse <¼ int_wide_pulse;

259. int_invalid_mode <¼ int_invalid_mode;

260. int_valid_pulse <¼ int_valid_pulse;

261. int_mode2 <¼ ‘0’;

262. int_mode3a <¼ ‘1’;

263. current_state <¼ waitingP1;

264. Else
265. pulsewidth_counter <¼ pulsewidth_counter;

266. pulse_spacing <¼ pulse_spacing;

267. int_narrow_pulse <¼ int_narrow_pulse;

268. int_wide_pulse <¼ int_wide_pulse;

269. int_invalid_mode <¼ int_invalid_mode;

270. int_valid_pulse <¼ int_valid_pulse;

271. int_mode2 <¼ ‘0’;

272. int_mode3A <¼ ‘0’;

273. current_state <¼ waitingp1;

274. End If
275.

www.newnespress.com

78 Chapter 4

Part 1, Lines 1–17. Optional Heading Section

The original coder’s name, original date, a brief description, and a revision history provide

useful information for the reader.

Part 2, Lines 19–20. Library Declaration

Only the standard logic 1164 library is needed for this design. Its contents are made visible so

they can be used in the design.

Part 3, Lines 22–32. Entity Section

Each input and output stated in the design package is listed and defined as standard logic.

Part 4, Lines 34–299. Architecture Section

The main design code is in the architecture section, which consists of processes, concurrent

statements, and signal assignments.

276. When Others ¼> –– if unknown state the signal will take on
these values

277. pulsewidth_counter <¼ 0;

278. pulse_spacing <¼ 0;

279. int_narrow_pulse <¼ ‘0’;

280. int_wide_pulse <¼ ‘0’;

281. int_invalid_mode <¼ ‘0’;

282. int_valid_pulse <¼ ‘0’;

283. int_mode2 <¼ ‘0’;

284. int_mode3A <¼ ‘0’;

285. current_state <¼ waitingp1;

286. End Case;
287. End If;
288. End Process;
289.

290. edge_detect: Process (reset, clock20Mhz)

291. ––This process syncs input pulse to master clock. This signal is used for
edge detection.

292. Begin
293. If reset ¼ ‘1’ Then
294. sync_pulse <¼ ‘0’;

295. Elsif rising_edge(clock20Mhz) Then
296. sync_pulse <¼ input_pulse; –– input sync to master

clock

297. End If;
298. End Process;
299. End arch_mode2n3;

www.newnespress.com

Design 79

There are two processes, which are found on lines 69–288 Cur_state process. This

contains a case statement that is used to measure pulse width and pulse spacing and

determine the mode.

Lines 290–298, Edge_detect process, are used to create a delayed copy of the input

pulse for edge detection.

Lines 36–51, internal signal definitions, define internal signals used in the design.

Lines 46–47, counter signals defined, define the signals used for the pulse width and spacing

counters.

Line 49, defining data type, creates a data type called pulse_states that can take on five

values: waitingp1, p1pulsewidth_check, waitingp3, p3pulsewidth_check,
and decode_mode.

In line 51, signal set to user-defined type, signal current_state is assigned

pulse_states as the data type, which has five possible states.

In lines 55–60, output signals assigned internal signal data, concurrent statements are used to

assign the values of the internal signals to the corresponding output signal.

The concurrent statement in lines 63–67, edge detection, created the rising edge detection

that is needed.

Now that the VHDL design has been created there are two options as you move forward in

the development process.

Option 1. Simulation

Simulation allows you to verify that the design meets requirements. No timing information is

known, but design and logic errors can be found and corrected.

Option 2. Synthesis

Synthesis is the process that reduces the design and connects FPGA resources to perform

the desired functions. While this process is required, it provides no way to determine if

the firmware is performing the required functions. An optional simulation file can be

provided; however, if error(s) are detected, it is difficult to determine if they are a result

of the synthesis process or the design code.

Personally, I like to perform simulation next. This allows me to verify my design and make

modifications as necessary. So, in the following chapter, the design is simulated.

www.newnespress.com

80 Chapter 4

4.9. Chapter Overview

The approach presented in this chapter should help you get started regardless of how much or

little detail is provided in your design package. Remember, this is a very important phase,

mistakes made in this stage get carried over into the other phases. The longer a mistake goes

undetected, the more expensive it is to correct. Take time to produce your design; it will save

you time and many headaches in the end.

Key Design Phase Tips

• Make sure that you evaluate your design package and get clarification when necessary.

• Develop a system to keep your documents organized.

• Remember, the longer errors or mistakes are undetected and carried further into the

development phases, the more expensive and time consuming they are to correct.

Chapter Links

HDL Works Scriptum: www.translogiccorp.com/index.html.

Doulos’s code generator: www.doulos.com/knowhow/perl/testbench_creation.

www.newnespress.com

Design 81

This page intentionally left blank

CHAPTER 5

Simulation

5.1. Introduction

This chapter discusses the simulation phase of the FPGA development process. In my

opinion, it is the most exciting and fun part of the FPGA development phases. At this point,

you have a design that needs to be verified. The design could be one created in this book, one

you or someone else created, a netlist created as a result from the synthesis or implementation

phases (discussed later in this book), or some modifications to an existing design. Regardless

of the type of design, the purpose of simulation is to verify that the design performs the

required functions. Typically, simulation can be performed in three places in the

development process: on the output from design, synthesis, and implementation phases. Most

often, simulation is performed only on the design and not on the netlist or file produced by

synthesis or implementation phases.

Design verification can also be performed using lab equipment, such as logic analyzers;

however, this can be a more time-consuming and a less effective way, especially for new

designs. Lab verification is less flexible, in that errors can damage the hardware. Generally,

the setup to re-simulate a design months later is easier and faster than obtaining and re-setting

up lab equipment. Although simulation is not the only method to verify a FPGA design, I

believe it to be the most feasible.

Even though simulation is not required, it should never be completely omitted from the

FPGA development phase, especially for new designs. It may seem unnecessary to simulate

small, simple changes, but those are the ones that can cause you the biggest problems. You

can learn a lot about the design through simulation and have some fun in the process.

In this chapter, you will learn

• What tools are used for simulation.

• How to verify a VHDL design by writing testbenches.

• The options for collecting lab data for design verification.

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00005-9 83

5.2. What Is Simulation?

Simulation is the process of applying stimulus or inputs that mimic actual data to the design

and observing the output. It is used to verify that the design performs the expected and

required functions.

Inputs to the simulation phase can be the design phase output, synthesis netlist, and

implementation netlist. Any one or all of these inputs can be used to perform simulation. The

output can be a listing, where the data are represented as binary, hex, or the like; graphically

as a waveform; or the final results (such as pass/fail indicator), see Figure 5–1. Output from

simulation is unique in that it does not feed into another development phase. However, the

output is very important, because it provides the medium that allows the tester or verifier to

see how the design performs.

This phase is as important as the design phase, and as a general rule, the amount of time spent

simulating should be about twice the design time. Ideally, the firmware should not be tested

by the person who wrote the code. The original coder should do minimal testing, but

comprehensive testing should be done by a code tester. The same reasoning why the original

coder should not write his or her requirements apply to this situation. In addition to that

reasoning, oftentimes the coder does not try as hard to find errors in his or her firmware as a

Simulation

Clk
0 1 0
1 1 0
0 0 1
1 0 1
0 0 0
1 0 0

Listing

Graphical

Pass/Fail

Resultant File

Design

Synthesis

Implementation

Development Phases

Placed & Routed Netlist

Original Design

Synthesized Netlist

Outputs

Reset Input1

Figure 5–1: Simulation Phase Inputs and Outputs

www.newnespress.com

84 Chapter 5

third party. So the original coder may overlook or miss errors, such as design flaws that

would be found by someone else. Once the design is complete, you must now verify that it

performs as required. One way this is done is by performing a simulation on the design.

5.3. Simulation Tools

The tools needed in the simulation phase are an editor or editors and a simulator. The editor

is used to create the inputs that will be applied to the design. As you simulate, it may be

necessary to modify or change the firmware; therefore, you need an editor to modify the code

created during the design phase. These editors may or may not be the same, depending on the

format of each design. If you decide to create an HDL testbench (discussed later in this

chapter), then a text editor is needed. However, if you are creating the inputs as a waveform,

then you need a graphical editor. HDL code is generally supported by most, if not all,

simulators; however, waveform test inputs may not be, so consult the documentation for your

simulator. There are pros and cons for using HDL versus graphical editors for testing; many

of these are the same as discussed in the design phase. Basically, HDL provides more

flexibility, while waveforms are less flexible and not supported by all simulators.

The term simulator has been mentioned several times but not really explained. It is a tool that

compiles or connects the test inputs to the design. Running the simulator feeds the input test

data into the design, causing the outputs to change based on the input data, see Figure 5–2.

The output data can be presented in several formats, such as a waveform, text file, or data

formats (i.e., binary, hex, and so forth). There are many standalone simulators, such as

Mentor Graphic’s ModelSimW, which is my preference. Simulators can be very expensive, so

I suggest doing a Web search. You should be able to find some free or trial offers for

simulators that may meet your needs. Some manufacturers, like Xilinx and Altera, offer their

own simulator brand with their complete package development tools. In addition to their

Design

Test Inputs

Compile

Run

Figure 5–2: Design and Test Input Compile Flow

www.newnespress.com

Simulation 85

fee-based complete package development tools; they offer a free Web version of their design

tools.

Here are some free Web downloads development tools with simulators:

Manufacturer: Xilinx

Development tool: ISE Webpackä, includes ModelSim XE III 6.4b and the “light” version of the ISE

Simulator (ISim)

Download address: www.xilinx.com/tools/designtools.htm

Note: The download may require a user name and login, which are free.

Manufacturer: Altera

Development tool: QuartusW II, Web Edition, offers ModelSim, Altera Starter Edition

Download address: www.altera.com, then go to “Products” ! “Design Software”

Note: The Quartus II, Web Edition, does not require a license.

The free tools offer fewer features and support fewer devices or operating systems than

their fee-based counterparts, but these differences may not be an issue for you. Because

some companies now offer free Web-based development tool packages, it is easy for

anyone to download and learn a new skill or enhance his or her skills outside of work or

even do home projects. This is a luxury that was not available when I started working

with FPGAs.

5.4. Levels of Simulation

There are three levels of simulation, see Figure 5–3: the register transfer level (RTL), gate

level, and functional level. Each level of simulation verifies different aspects of the design.

RTL performs simulation on the design phase code. Doing this prior to synthesizing allows

you to troubleshoot the design for logic and syntax errors. The RTL simulation contains no

timing information.

Functional simulation is performed on the netlist or the code generated by the synthesis tool.

Oftentimes, it is necessary to direct the synthesis tool to generate the functional simulation

netlist. Consult your synthesis tool’s user’s manual to determine if the netlist is generated

automatically or is a selected option. The synthesized netlist allows you to verify that the

synthesis process did not change the design. If you are going to perform a functional

simulation, then a new netlist must be created each time the design is synthesized. The

synthesis tool predicts and inserts some timing information, these are not the final timing

delays. This simulation is more realistic than the RTL, but not as accurate when it comes to

timing as the gate-level simulation.

www.newnespress.com

86 Chapter 5

Gate-level simulation is performed on the code or netlist generated by the implementation tool.

It may be necessary to direct the implementation tool to generate the gate-level simulation

netlist. Consult your implementation tool’s user’s manual to determine if the netlist is created

automatically or is a selected option. This simulation contains actual timing information and is

the most realistic representation of the FPGA design. Now, the actual internal chip delays are

known and incorporated into the netlist that represents the design. Because the actual timing of

signals is known, timing problems can be detected during this simulation.

The ModelSim XE III 6.4b simulator included in Xilinx’s ISE Webpack is used for the

simulations in this chapter, unless otherwise indicated.

5.5. Test Cases

Test cases should be written prior to creating your testbench or graphical stimulus. Table 5–1

shows some test cases for the design. Test cases are written such that they verify that the design

meets the requirements. No hard and fast rule states that you should have a specific number of

test cases, but as a guide, there should be enough cases to verify the design. I have found that,

more times than not, the smallest area you omit will come back to haunt you. So, try to make

your test cases as complete as possible. However, for some designs, it may not be possible to test

every possible situation, but do the best you can to ensure at least all the critical areas are covered.

The test cases created for the design code in this book are shown in Table 5–1. These test cases

will be used to verify the design. The requirements state that the input pulses and modes must

Output

Design Recompile after design edit

RTL

Synthesis
Functional

Implementation Recompile after design edit

Gate Level

Recompile after design edit

Simulation

Edit design to correct logic errors, change design & ...

RTL

Functional

Edit design to correct synthesis & other errors, change logic & ...

Gate Level

Edit design to correct timing & other errors, change logic & ...

Resynthesize

Reimplement

Figure 5–3: Simulation Levels

www.newnespress.com

Simulation 87

meet a specific range for decoding to occur. Therefore, test cases are created to check P1 and

P3 pulse widths that are below, at minimum, at normal, at maximum, and above the required

range. Modes 2 and 3 pulse spacing is checked at minimum, normal, maximum, and above

the required range. The code that checks the P1 and P3 pulse widths is the same code but

copied in two places. One could make the argument that, since the code is the same, it should

detect pulses the same and it is sufficient to check the range only on either P1 or P3. I agree

this would be a valid argument to a certain extent, if the code had been written such that the

P1 and P3 pulse-width checking were performed by the same code, not a copy, in two places,

then I probably would not test both cases. However, since the code is copied, things can go

wrong with copying the code in two places, such as forgetting to change a signal’s name that

applies to one pulse and not the other. This type of error can be hard to find, because the

name is valid but not used in the correct place. And, of course, the code would check the

correct section leaving this error to cause problems another day. So, I think it is a good idea

to check both.

Table 5–1: Design Test Cases.

Test

Case

Mode 3 Pulse

Spacing

Mode 2 Pulse

Spacing

P3 Pulse

Width

P1 Pulse

Width

Expected

Output

1 N/A N/A No pulse Narrow No decode

2 N/A Normal Narrow Minimum No decode

3 N/A Normal Minimum Normal Mode

2 decoded

4 N/A Minimum Normal Maximum Mode

2 decoded

5 N/A — Don’t care Wide No decode

6 N/A Maximum Maximum Normal Mode

2 decoded

7 N/A Normal Wide Normal No decode

8 N/A Narrow Normal Normal No decode

9 N/A Wide Normal Normal No decode

10 Narrow N/A Normal Normal No decode

11 Minimum N/A Normal Normal Mode 3

decoded

12 Normal N/A Normal Normal Mode 3

decoded

13 Maximum N/A Normal Normal Mode 3

decoded

14 Wide N/A Normal Normal No decode

Note: Narrow is defined as any value less than the minimum, and wide is any value greater than the maximum.

www.newnespress.com

88 Chapter 5

5.6. Stimulus

The input applied to the design is called the stimulus. It mimics the input data signals

which are applied to the design by the simulator tool. Stimulus used in your simulation

provides an easy way to observe the design’s behavior within and outside your design’s range

without damaging the hardware. Stimulus can be provided by interactively typing it in

real time, a graphical testbench, or an HDL testbench. There are advantages and

disadvantages to each method. You can decide which is right for you.

5.6.1. Interactive Stimulus

Real-time input is typed on the command or transcript line of the simulator. The input data

are not saved in a separate file. This means some informationmust be typed in between different

simulation runs. All information is lost when the simulator is closed. This type of stimulus is

not feasible for designs with a lot of inputs and, in my opinion, not feasible in most cases.

Fresh out of college, I was assigned to write a design in Advanced Boolean Equation Language

(ABEL). I was not very familiar with either ABEL or programmable devices. The engineer taught

me to test the codemanually. This meant that, at least once a day, I had to retype all the input data.

Thiswas during the timewhen notmany engineers had personal computers in their office, so Iwas

working in a computer lab. This was a very time-consuming, painstaking exercise. In hindsight, I

realize the engineer was not being mean but really did not know any better himself.

The force command is used in ModelSim to interactively set signal values, see the syntax

shown in Example 5–1.

n Example 5–1. Force Syntax

force [-freeze | -drive | -deposit] [-cancel <time>] [-repeat <time>]

<object_name> <value> [<time>] [, <value> <time> . . .]

where
- freeze

Keeps the signal at a specific value until it is forced again or until it is unforced

with a noforce command.

- drive

A driver is attached to the signal and drives the specified value until the signal is

forced again or until it is unforced with a noforce command.

- deposit

Sets the signal to a specific value. This value stays the same until there is a

subsequent driver transaction, until the signal is forced again, or until it is

unforced with a noforce command.

(Continues)

www.newnespress.com

Simulation 89

Use ModelSim’s command line to type in the following four commands:

force clock20Mhz 0 25, 1 50 -repeat 50

noforce clock20Mhz

force reset 1 0, 0 125

noforce reset

force input_pulse 0 0, 1 175, 0 975, 1 5175, 0 5975

noforce input_pulse

run 7µsec

This creates a 20 MHz clock, sets and clears reset, creates P1 andP3with 800 nsec pulsewidth, P1

to P3 pulse spacing of 5 msec, and the simulation runs for 7 msec., see Figure 5–4. Because the
stimulus is not saved, these commands have to be entered each time the design is recompiled.

5.6.2. Graphical Test Bench

A graphical testbench uses waveforms to describe the behavior of the input signals. Like

waveform designs, graphical testbenches are not as flexible and generally not portable to

other simulation tools. In general, waveform editors are easier; however, you give up

flexibility. Altera’s Quartus II 8.1, Web Edition, is used to create the input stimulus

shown in Figure 5–5, which represents the input signals

Clock20Mhz ¼ 20MHz

Reset ¼ 75 nsec

P1 pulsewidth ¼ 850.00 nsec

P3 pulsewidth ¼ 870.00 nsec

P1 to P3 pulse spacing ¼ 5.2µsec

After applying the graphical stimulus to the design, P1 and P3 are detected and considered valid

pulses. Since this satisfies the mode decode condition, a Mode 2 is decoded, see Figure 5–6.

- <time>

Defines the time when the value is applied. The time is relative to the current

simulation time unless an absolute time is stated by preceding the value with the @

character. Thedefault resolutionunits are used if no timeunit is specified. The change

occurs in the current simulationdelta cyclewhen the force commandhas a zerodelay.
n

www.newnespress.com

90 Chapter 5

Interactive
Commands

Figure 5–4: Interactive Stimulus Using ModelSim

Clock20Mhz

P3P1

reset

Figure 5–5: Input Graphical Stimulus

www.newnespress.com

Simulation 91

5.6.3. HDL Testbench

An HDL testbench is an HDL file that describes the input. It looks similar to an HDL

design and shares some of the same advantages. For example, it is easy to switch

between different manufacturers and more flexible than graphical or interactive

stimulus formats.

Testbenches can be written as

• Manual. The output results must be viewed manually to determine if they

are correct.

• Automatic. Outputs are evaluated by the code and the final results are provided. Final

results can be something like a pass/fail indicator on the screen or data written to an

external file.

Each of these testbench options is examined in this section. A VHDL testbench has a design

structure similar to the design code, it has the same sections as a regular VHDL design.

A testbench starter template has been provided, see Listing 5–1.

Mode2 Decode

Valid Pulse Detected

Figure 5–6: Output Results from Graphical Stimulus

www.newnespress.com

92 Chapter 5

Listing 5–1. VHDL Testbench Starter Template

1. ––************************* Header Section **************************

2. –– Name : Rebecca C. Smith

3. –– Date : January 28, 2009

4. –– Filename : tb_EntityName.vhd

5. –– Description : This starter HDL template provides placeholders and
syntax that can be used

6. –– : to help develop VHDL testbenches. Modify the template
to meet your needs.

7. –– Revision History

8. –– Date Initials Description

9. –– *********************** End Header Section ************************

10. Library IEEE; –– define library and packages needed for
this design

11. Use IEEE.std_logic_1164.All;
12.

13. Entity <entity name> Is End <entity name>;

14.

15. Architecture <architecture name> Of <entity name> Is
16. Component <component's name> Port (
17. Signal <signal name> : direction <data type>; –– signal names in

component's entity section

18. End Component <entity name>;
19.

20. Signal <signal's name> : <data type>;

21. Constant <constant's name> : <data type>;

22.

23. Begin
24.

25. User's defined component name: <Component's name>

26. Port Map (

27. Component1 signal name ¼> user defined signal name,

28. Component2 signal name ¼> user defined signal name);

29.

30. -- At this point you could have a combination of code to describe signal
behaviors such as processes and signal assignments. This will be
demonstrated by example.

31. <process name>: Process (sensitivity list) –– add process if
necessary

32.

33. Begin
34. <sequential statements>;

35. End Process;
36. End <architecture name>;

www.newnespress.com

Simulation 93

Lines 1–9. Optional Heading

Lines 10–11. Library Section

The library section has the same meaning as in the design code.

Line 13. Entity Section

The entity section is a single line and has no signal names, as in the design code. As with

the design code, it is a good idea to develop a naming convention for your testbenches.

I discovered that naming all my testbench entities testbench made it easy for me to

quickly locate the testbench in my simulation tool. This came about because once my design

had over 30 files with at least 10 different testbenches. It was a nightmare trying to locate

the correct testbench because of the way the simulator listed the files. So I learned that, if I name

all testbench entities testbench it is easy for me to find a specific testbench. All I have to do

is select the entity named testbench then the specific architecture. This makes my life a lot easier.

Lines 15–36. Architecture Section

The architecture can be a little confusing. It is the same general concept as the design phase’s

architecture section, which describes the design; however, this one defines the input signals

or stimulus. My architecture’s name is defined such that it gives an indication to what it is

verifying.

Consider the testbench as a breadboard with a socket being used to test a chip, see

Figure 5–7. Here is a simple scenario for testing the chip excluding power suppliers: Insert

the chip into the socket, set up the data generator to provide input data, connect the data

generator to the circuit using probes, and connect a logic analyzer to view the circuit’s

response. This is very similar to what is going on in the architecture. In the architecture

section, the design can be thought of as a component; it is instantiated (put in the socket) in

the testbench design; the input stimulus and testbench design are connected using internally

defined signals; and the output is viewed using the simulation tool.

Design

Testbench
Testbench
Instantiation

Simulator Output
Graphical, File, Etc.

Data Generator Logic AnalyzerChip in Socket

Simulation Terms

Laboratory Terms

Figure 5–7: Simulation Phase Terms Equated to Lab Terms

www.newnespress.com

94 Chapter 5

Much like our lab setup, we can test different chip designs using the same setup for

equivalent pinouts, just by removing one and inserting another. While the same is true for

the testbench, if you have another variation of the design, the same testbench can be used just

by replacing which design is instantiated.

Running the testbench is like turning on the data generator, because the inputs are then

applied to the design and can be observed as waveforms, data listing (i.e., binary, hex, etc.),

or results written to a file or your monitor.

5.6.4. Manual Testbench

The results from a manual testbench must be manually reviewed to determine if they are

correct.

Design verifications performed this way can be slow; however, it is my option that beginners

learn more from manual testbenches. While painstaking as this can be, I always found it

exciting because I can explore the various features of my simulator and observe internal signal

functions or other aspects of the design that may otherwise be overlooked with an automatic

testbench. By using manual testbenches, I have found many design errors by being able to view

internal signals that may have been overlooked. Personally, I like looking at the waveforms and

internal signals, especially if I am working with someone else’s code. The testbench shown in

Listing 5–2 is used to verify that the design meets the requirements specified in the design

package. Notice that the testbench has the same four sections as the design, with the

information in the entity and architecture being slightly different from the design.

Lines 1–17. Optional Heading Section

The same general information is contained in this section, with the description describing the

test stimulus.

Lines 19–20. Library Declaration Section

Only the std_logic_1164 package from the IEEE library is needed for this testbench, so

it is made visible and usable in the library section.

Line 22. Entity Section

For the testbench, input and output signals are not called out in this section. Only this single

line is required.

Lines 24–173. Architecture Section

Lines 26–35. Component Declaration

The mode2n3 design is defined as a component.

www.newnespress.com

Simulation 95

Listing 5–2. Manual Testbench

1. –– ********************* Header Section *****************************

2. –– Name : James W. Smith

3. –– Date : June 4, 2009

4. –– Filename : tb_mode2n3.vhd

5. –– Description : This testbench determines if the input pulses
meets the Mode 2 or 3A

6. –– : pulse width and spacing requirements by:

7. –– : 1. verifying pulse widths are .7µsec to .9µsec
inclusive

8. –– : 2. Mode 2 P1 to P3 pulse spacing is 4.9µsec to
5.1µsec inclusive

9. –– : 3. Mode 3A P1 to P3 pulse spacing is 7.9µsec to
7.1µsec inclusive

10. –– :

11. –– : Results must be manually verified.

12. –– : Run simulation for 500.00µsec

13. –-

14. –– Revision History

15. –– Date Initials Description

16. ––

17. ––**************** End Header Section ***********************

18.

19. Library IEEE; –– define library and packages
needed for this design

20. Use IEEE.std_logic_1164.All;
21.

22. Entity testbench Is End testbench;

23.

24. Architecture tb_mode2n3 Of testbench Is
25.

26. Component mode2n3 Port (

27. clock20Mhz : In std_logic;

28. reset : In std_logic;

29. input_pulse : In std_logic;

30. narrow_pulse : Out std_logic;

31. wide_pulse : Out std_logic;

32. invalid_mode : Out std_logic;

33. mode2 : Out std_logic;

34. mode3A : Out std_logic);

35. End Component mode2n3;

36.

37. Signal clock20Mhz : std_logic :¼ ‘0’;

38. Signal reset : std_logic :¼ ‘1’;

39. Signal input_pulse : std_logic :¼ ‘0’;

www.newnespress.com

96 Chapter 5

40. Signal narrow_pulse : std_logic;

41. Signal wide_pulse : std_logic;

42. Signal invalid_mode : std_logic;

43. Signal mode2 : std_logic;

44. Signal mode3A : std_logic;

45.

46. Constant twenty_five_nsec : time :¼ 25 nsec;

47.

48. Begin
49.

50. mode2n3_component: mode2n3

51. Port Map(
52. clock20Mhz ¼> clock20Mhz,

53. reset ¼> reset,

54. input_pulse ¼> input_pulse,

55. narrow_pulse ¼> narrow_pulse,

56. wide_pulse ¼> wide_pulse,

57. invalid_mode ¼> invalid_mode,

58. mode2 ¼> mode2,

59. mode3A ¼> mode3A);

60.

61. create_twenty_Mhz: Process
62. Begin
63. Wait For twenty_five_nsec;

64. clock20Mhz <¼ Not clock20Mhz;

65. End Process;
66.

67. reset <¼ ‘0’ After 145.00 nsec;

68.

69. input_pulse <¼
70. –– Test Case 1 P1 pulse width (pw) ¼ narrow & no P3

71. ‘1’ After 200.00 nsec, –– P1, Test Pulse 1

72. ‘0’ After 850.00 nsec, –– 650nsec narrow pulse width

73.

74. –– Test Case 2 P1 PW ¼ min.; P3 PW ¼ narrow & M2 normal spacing

75. ‘1’ After 5.00 µsec, –– P1, Test Pulse 2

76. ‘0’ After 5.70 µsec, –– 700nsec min pulse width

77.

78. ‘1’ After 10.00 µsec, –– P3, Test Pulse 3

79. ‘0’ After 10.65 µsec, –– 650nsec pulse width

80.

81. –– Test Case 3 P1 PW normal; P3 PW min & M2 normal spacing

82. ‘1’ After 35.00 µsec, –– P1, Test Pulse 4

83. ‘0’ After 35.80 µsec, –– 800nsec max pulse width

84.

www.newnespress.com

Simulation 97

85. ‘1’ After 40.00 µsec, –– P3, Test Pulse 5

86. ‘0’ After 40.70 µsec, –– 700nsec wide pulse width

87.

88. –– Test Case 4 P1 PW ¼ max, P3 PW ¼ normal & M2 min spacing

89. ‘1’ After 60.00 µsec, –– P1, Test Pulse 6

90. ‘0’ After 60.90 µsec, –– 900nsec pulse width

91.

92. ‘1’ After 64.90 µsec, –– P3, Test Pulse 7

93. ‘0’ After 65.70 µsec, –– 800nsec pulse width

94.

95. –– Test Case 5 P1 PW ¼ wide; no P3

96. ‘1’ After 90.00 µsec, –– P1, Test Pulse 8

97. ‘0’ After 90.95 µsec, –– 950nsec pulse width

98.

99. –– Test Case 6 P1 PW ¼ normal; P3 PW ¼ max & M2 max spacing

100. –– Mode 2 5.1µsec P1 - P3 spacing

101. ‘1’ After 110.10 µsec, –– P1, Test Pulse 9

102. ‘0’ After 110.90 µsec, –– 800nsec pulse width

103.

104. ‘1’ After 115.20 µsec, –– P3, Test Pulse 10

105. ‘0’ After 116.10 µsec, –– 900nsec pulse width

106.

107. –– Test Case 7 P1 PW ¼ normal & P3 PW ¼ wide & M2 normal spacing

108. ‘1’ After 136.00 µsec, –– P1, Test Pulse 11

109. ‘0’ After 136.80 µsec, –– 800nsec pulse width

110.

111. ‘1’ After 141.0 µsec, –– P3, Test Pulse 12

112. ‘0’ After 141.95 µsec, –– 950nsec pulse width

113.

114. –– Test Case 8 P1 PW ¼ normal; P3 PW ¼ normal & M2 narrow spacing

115. ‘1’ After 160.00 µsec, –– P1, Test Pulse 13

116. ‘0’ After 160.80 µsec, –– 800nsec pulse width

117.

118. ‘1’ After 164.80 µsec, –– P3, Test Pulse 14

119. ‘0’ After 165.60 µsec, –– 800nsec pulse width

120.

121. –– Test Case 9 P1 PW ¼ normal; P3 PW ¼ normal & M2 wide spacing

122. ‘1’ After 180.00 µsec, –– P1, Test Pulse 15

123. ‘0’ After 180.80 µsec, –– 800nsec pulse width

124.

125. ‘1’ After 185.20 µsec, –– P3, Test Pulse 16

126. ‘0’ After 186.00 µsec, –– 800nsec pulse width

127.

128. ———

129.

130. –– Test Case 10 P1 PW ¼ normal; P3 PW ¼ normal & M3 narrow spacing

www.newnespress.com

98 Chapter 5

131. ‘1’ After 300.00 µsec, –– P1, Test Pulse 17

132. ‘0’ After 300.80 µsec, –– 800nsec pulse width

133.

134. ‘1’ After 307.80 µsec, –– P3, Test Pulse 18

135. ‘0’ After 308.60 µsec, –– 800nsec pulse width

136.

137. –– Test Case 11 P1 PW ¼ normal; P3 PW ¼ normal & M3 min spacing

138. ‘1’ After 320.00 µsec, –– P1, Test Pulse 19

139. ‘0’ After 320.80 µsec, –– 800nsec pulse width

140.

141. ‘1’ After 327.90 µsec, –– P3, Test Pulse 20

142. ‘0’ After 328.70 µsec, –– 800nsec pulse width

143.

144. –– Test Case 12 P1 PW ¼ normal; P3 PW ¼ normal & M3 normal spacing

145. ‘1’ After 340.00 µsec, –– P1, Test Pulse 21

146. ‘0’ After 340.80 µsec, –– 800nsec pulse width

147.

148. ‘1’ After 348.00 µsec, –– P3, Test Pulse 22

149. ‘0’ After 348.80 µsec, –– 800nsec pulse width

150.

151. –– Test Case 13 P1 PW ¼ normal; P3 PW ¼ normal & M3 max spacing

152. ‘1’ After 360.00 µsec, –– P1, Test Pulse 23

153. ‘0’ After 360.80 µsec, –– 800nsec pulse width

154.

155. ‘1’ After 368.10 µsec, –– P3, Test Pulse 24

156. ‘0’ After 368.90 µsec, –– 800nsec pulse width

157.

158. –– Test Case 14 P1 PW ¼ normal; P3 PW ¼ normal & M3 wide spacing

159. ‘1’ After 380.00 µsec, –– P1, Test Pulse 25

160. ‘0’ After 380.80 µsec, –– 800nsec pulse width

161.

162. ‘1’ After 388.20 µsec, –– P3, Test Pulse 26

163. ‘0’ After 389.00 µsec, –– testing at 8.2µsec spacing

164.

165. -- Out of range area between Modes 2 & 3 pulse spacing 5.8µsec & 7.8µsec;
pulse spacing ¼ 6µsec

166.

167. ‘1’ After 480.00 µsec, –– normal P1, Test Pulse 27

168. ‘0’ After 480.80 µsec,

169.

170. ‘1’ After 486.00 µsec, –– normal P3, Test Pulse 28

171. ‘0’ After 486.80 µsec;

172.

173. End tb_mode2n3;

www.newnespress.com

Simulation 99

Note: Lines 37–171 are referring to Listing 5–2.

Lines 37–44. Defining Internal Signals

All the internal signals used in this testbench are defined in this section. For the power-on

reset signal on the board it is used to set inputs to a known state, the initial conditions must be

set for simulation. The initial conditions for the input signals are indicated by appending

:¼‘X’;, where X is any valid signal level (i.e., 1, 0, Z, etc.) to the signal definition. The initial

condition for clock20Mhz and input_pulse is low or ‘0’ and reset is set high or ‘1’.

Line 46. Defining Half Clock Period

This constant is used to create the 20 MHz clock.

Lines 50–59. Instantiating the Design

These lines instantiate the ‘mode2n3’ design. Internal signals are used to connect the design’s

IO. To keep things simple, I like to make my connecting signal’s name the same as those on

the component. However, it is acceptable to make them different.

Lines 61–65. Creating a 20 MHz Clock

There are several ways to create a repetitive signal like the clock. I like to use a process that

toggles the signal every half cycle.

Line 38. Reset Signal

This is the power-on reset signal, which is initially set active or high. Keeping reset
active, the outputs do not respond to changes in the input, see Figure 5–8. To create this

scenario, line 67, which sets reset inactive, was commented out.

Line 67. Inactive reset

This line, read as reset, goes low after 145 nsec. Now the outputs respond to the input

stimulus, see Figure 5–9. Reset is active only once in this design; however, it could be

reactivated at any time during the simulation.

Lines 69–171. Input_pulse signal

The P1 and P3 are received through input_pulse signal. The test cases start on line 71.

Using the predefined test cases, the various pulse widths and spacings are described.

5.6.5. Simulation Phase Outputs

The output is shown as a waveform for this testbench. The full simulation waveform

that results from applying the input stimulus defined in the testbench is shown in

Figure 5–10. The full simulation view is difficult to read, so the expanded view of test case 1,

test case 4, and test case 14 are presented in this section.

www.newnespress.com

100 Chapter 5

Lines 70–72. Test Case 1

P1 pulse goes high at 200.00 nsec, then low at 850.00 nsec. This produces a 650 nsec pulse.

The minimum pulse width for a mode decode is 0.7 sec; therefore, a narrow pulse width goes

active on the falling edge of P1 and no P3 is sent, see Figure 5–11.

Lines 88–93. Test Case 4

P1 is a 900 sec pulse width, rising edge at 60.00 sec and falling edge at 60.9 sec. P3 is

800 nsec pulse width, rising edge at 64.9 sec and falling edge at 65.70 sec. The rising edge

timing between P1 and P3 is 4.9 sec, the minimum spacing for Mode 2, see Figure 5–12.

Lines 158–163. Test Case 14

P1 and P3 have normal pulse widths and the rising edge timing between P1 and P3 is 8.2 sec,

which is wide or outside the maximum pulse spacing for Mode 3A, see Figure 5–13.

Reset stuck high

Input Pulses

No Output Replies

Figure 5–8: Continuously Active Reset (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Simulation 101

5.6.6. Automatic Testbench

An automatic testbench can make design verification easier. However, if your automatic

testbench is not complete or correct, the results can be misleading, in that you may be

searching for errors in the design when in reality they are in the testbench. With an automatic

testbench, you are not required to manually view or verify the output. This type of testbench

is designed to evaluate the output results and provide the final results.

However, just like anything else, you have to make sure that this testbench is reporting

accurate information. Otherwise, the results can be wrong. The manual testbench has been

modified to write the test results to an external file. The output file should contain whatever

information is necessary to verify that the design meets the requirements. For the automatic

testbench shown in Listing 5–3, I decided I wanted to see if the design was able to detect

wide, narrow, or valid pulse widths and P1 or P3 pulse spacing. Someone else may decide it

is acceptable to write only when a valid mode is decoded and assume the other input pulses

did not create a mode decode. Using the read and write commands in testbenches can

make verification a lot easier.

Output Responds

Reset Inactive

Figure 5–9: Reset Activated and Deactivated (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

102 Chapter 5

Changes are made to the manual testbench to make it automatic.

Lines 1–21. Optional Heading Section

The description is updated to include the name of the file where the simulation results will be

written.

Lines 23–26. Library Declaration

The write command used to write to the output file, which is located in the

std.textio package in the std library. Therefore, this library is called out and made

visible to the code.

Line 28. Entity

This is the same as in the manual testbench.

Lines 30–246. Architecture Section

To distinguish between the manual and automatic architecture, the name auto is appended

to the end of the architecture’s name. This section is basically the same as the manual

Input
Signals

Output
Signals

Internal
Signals

Figure 5–10: Full Simulation View (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Simulation 103

testbench, with the addition of defining the file where the output will be written and the

condition in which data are written to the file.

Line 58. Defining the Output File

This defines the file results_file.txt, where the output results will be written.

Lines 89–138. Writing the Output Data Process

This process uses the output signals narrow_pulse, wide_pulse, invalid_mode,
mode2, mode3A, and valid_pulse to determine the status of the input signal. A message

indicating the status is written to the output file. For example, if the input signal is narrow or

outside the required pulse width range, a message similar to Test pulse X is narrow is

written to the output file. X represents the number of the test pulse. For each test case, there is

a comment stating the test pulse number for P1 or P3. By examining the output file, I can

determine if the design is able to detect narrow, wide, or valid pulse widths and pulse

spacings.

Narrow P1

Figure 5–11: Test Case 1, Simulated Output (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

104 Chapter 5

Automatic Testbench Output Results

After applying the stimulus to the automatic testbench, the output is written in

results_file.txt, see Example 5–2. This file is written in the same directory as my

simulation work directory created by the simulator.

5.6.7. Capture Data

At times, trying to troubleshoot a fielded design problem or manually create a test stimulus

is not feasible. If you find yourself in this situation, then utilizing test equipment can be a good

option. Tektronix offers a series of data capture and acquisition equipment with offline viewers

that can be used on your PC. Using Tektronix’s logic analyzer, real-time data can be captured,

stored, and exported as a text file. The captured data can be read into a testbench for simulation

and imported, viewed, and modified (if necessary) using TLAW Application, the PC interface

offline viewer. Setups created using TLA Application can be exported to a logic analyzer.

Similar data patterns created using PG3A Series Digital Pattern Generator can be exported,

viewed, and modified (if necessary) using the offline PC viewer PGAppDotNet. Such data

Mode 2 Decode

Valid P3Valid P1

Figure 5–12: Test Case 4, Simulated Output (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Simulation 105

n Example 5–2. Output Results

Test pulse 1 is narrow

Test pulse 2 is valid

Test pulse 3 is narrow

Test pulse 4 is valid

Test pulse 5 is valid

P1 or test pulse 4 to P3 or test pulse 5 spacing is a Mode2

Test pulse 6 is valid

Test pulse 7 is valid

P1 or test pulse 6 to P3 or test pulse 7 spacing is a Mode2

Test pulse 8 is wide

Test pulse 9 is valid

Test pulse 10 is valid

P1 or test pulse 9 to P3 or test pulse 10 spacing is a Mode2

Test pulse 11 is valid

Test pulse 12 is wide

Test pulse 13 is valid

P1 or test pulse 13 to P3 or test pulse 14 spacing is an invalid mode

Test pulse 15 is valid

P1 or test pulse 15 to P3 or test pulse 16 spacing is an invalid mode

Test pulse 17 is valid

P1 or test pulse 17 to P3 or test pulse 18 spacing is an invalid mode

Test pulse 19 is valid

Test pulse 20 is valid

P1 or test pulse 19 to P3 or test pulse 20 spacing is a Mode3A

Test pulse 21 is valid

Test pulse 22 is valid

P1 or test pulse 21 to P3 or test pulse 22 spacing is a Mode3A

Test pulse 23 is valid

Test pulse 24 is valid

P1 or test pulse 23 to P3 or test pulse 24 spacing is a Mode3A

Test pulse 25 is valid

P1 or test pulse 25 to P3 or test pulse 26 spacing is an invalid mode

Test pulse 27 is valid

P1 or test pulse 27 to P3 or test pulse 28 spacing is an invalid mode
n

www.newnespress.com

106 Chapter 5

can be read into a testbench for simulation. Setups created using PGAppDotNet can be

exported to the pattern generator.

The offline viewers are great options, especially when you share lab equipment. By using the

offline viewers, you can reduce bench time by capturing data and working with it at your desk.

I really like working in the lab and at times prefer it over being at my desk. However, many

times, I had to utilize the offline interface due to sharing equipment. Not having total access to

capture data meant I had to make the most of my resource, which included the PC offline

interface. I was able to set up or make changes to my equipment setup and utilize saved data at

my desk. My lab time was spent capturing data I could utilize offline. The offline viewers give

you the same look and feel as being in the lab, but you are actually at your desk.

An example of a waveform using TLA Application is shown in Figure 5–14. Signals on the

waveform can be shown as binary, hex, octal, decimal, singed decimal, or symbolic. They

can be viewed in groups or as individual signals. Many features and options are available

when using TLA Application. I suggest downloading the free PC interface by going to www

.tek.com and searching for TLA Application.

Invalid P3

Figure 5–13: Test Case 14, Simulated Output (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Simulation 107

Listing 5–3. Automatic Testbench

1. ––************************* Header Section ***************************

2. –– Name : James W. Smith

3. –– Date : August 25, 2009

4. –– Filename : tb_mode2n3_auto.vhd

5. –– Description : This testbench determines if the input pulses meets the
Mode 2 or 3A

6. –– : pulse width and spacing requirements by:

7. –– : 1. Verifying pulse widths are .7µsec to .9 µsec inclusive

8. –– : 2. Mode 2 P1 to P3 pulse spacing is 4.9µsec to 5.1µsec
inclusive

9. –– : 3. Mode 3A P1 to P3 pulse spacing is 7.9µsec to 7.1µsec
inclusive

10. –– :

11. –– : Simulation results will be written to “results_file.
txt”.

12. –– : Results file indicates if:

13. –– : Input pulse width is narrow, wide or valid

14. –– : P1 to P3 pulse spacing for M2 or M3A is valid or invalid

15. ––

16. –– : Run simulation for 500.00µsec

17. ––

18. –– Revision History

19. –– Date Initials Description

20. ––

21. ––************************** End Header Section **********************

22. ––

23. Library IEEE; –– define library and packages needed for this
design

24. Use IEEE.std_logic_1164.All;
25. Library Std;
26. Use std.textio.All;
27.

28. Entity testbench Is End testbench;

29.

30. Architecture tb_mode2n3_auto Of testbench Is
31.

32. Component mode2n3 Port (

33. clock20Mhz : In std_logic;

34. reset : In std_logic;

35. input_pulse : In std_logic;

36. narrow_pulse : Out std_logic;

37. wide_pulse : Out std_logic;

38. invalid_mode : Out std_logic;

39. valid_pulse : Out std_logic;

www.newnespress.com

108 Chapter 5

40. mode2 : Out std_logic;

41. mode3A : Out std_logic);

42. End Component mode2n3;

43.

44. Signal clock20Mhz : std_logic :¼ ‘0’;

45. Signal reset : std_logic :¼ ‘1’;

46. Signal input_pulse : std_logic :¼ ‘0’;

47. Signal narrow_pulse : std_logic;

48. Signal wide_pulse : std_logic;

49. Signal invalid_mode : std_logic;

50. Signal valid_pulse : std_logic;

51. Signal mode2 : std_logic;

52. Signal mode3A : std_logic;

53.

54. Signal pulse_number : integer;

55.

56. Constant twenty_five_nsec : time :¼ 25 nsec;

57.

58. File data_out: Text Open write_mode Is “results_file.txt”;

59.

60. Begin
61.

62. mode2n3_component: mode2n3

63. Port Map(
64. clock20Mhz ¼> clock20Mhz,

65. reset ¼> reset,

66. input_pulse ¼> input_pulse,

67. narrow_pulse ¼> narrow_pulse,

68. wide_pulse ¼> wide_pulse,

69. invalid_mode ¼> invalid_mode,

70. valid_pulse ¼> valid_pulse,

71. mode2 ¼> mode2,

72. mode3A ¼> mode3A);

73.

74. create_twenty_Mhz: Process
75. Begin
76. Wait For twenty_five_nsec;

77. clock20Mhz <¼ Not clock20Mhz;

78. End Process;
79.

80. count_test: Process (reset, input_pulse)

81. Begin
82. If reset ¼ ‘1’ Then
83. pulse_number <¼ 0;

84. Elsif rising_edge (input_pulse) Then
85. pulse_number <¼ pulse_number þ 1;

www.newnespress.com

Simulation 109

86. End If;
87. End Process;
88.

89. write_results: Process (clock20Mhz)

90. Variable data_line : line;

91.

92. Begin
93. If rising_edge(clock20Mhz) Then
94. If narrow_pulse ¼ ‘1’ Then
95. writeline (data_out, data_line);

96. write (data_line, string'(“Test pulse ”));

97. write (data_line, pulse_number);

98. write (data_line, string'(“ is narrow”));

99. writeline (data_out, data_line);

100. Elsif wide_pulse ¼ ‘1’ Then
101. writeline (data_out, data_line);

102. write (data_line, string'(“Test pulse ”));

103. write (data_line, pulse_number);

104. write (data_line, string'(“ is wide”));

105. writeline (data_out, data_line);

106. Elsif invalid_mode ¼ ‘1’ Then
107. writeline (data_out, data_line);

108. write (data_line, string'(“P1 or test pulse”));

109. write (data_line, pulse_number - 1);

110. write (data_line, string'(“to P3 or test pulse”));

111. write (data_line, pulse_number);

112. write (data_line, string'(“spacing is an invalid mode”));

113. writeline (data_out, data_line);

114. Elsif mode2 ¼ ‘1’ Then
115. writeline (data_out, data_line);

116. write (data_line, string'(“P1 or test pulse”));

117. write (data_line, pulse_number - 1);

118. write (data_line, string'(“ to P3 or test pulse ”));

119. write (data_line, pulse_number);

120. write (data_line, string'(“spacing is a Mode2”));

121. writeline (data_out, data_line);

122. Elsif mode3A ¼ ‘1’ Then
123. writeline (data_out, data_line);

124. write (data_line, string'(“P1 or test pulse ”));

125. write (data_line, pulse_number - 1);

126. write (data_line, string'(“to P3 or test pulse”));

127. write (data_line, pulse_number);

128. write (data_line, string'(“spacing is a Mode3A”));

129. writeline (data_out, data_line);

130. Elsif valid_pulse ¼ ‘1’ Then
131. writeline (data_out, data_line);

www.newnespress.com

110 Chapter 5

132. write (data_line, string'(“Test pulse ”));

133. write (data_line, pulse_number);

134. write (data_line, string'(“ is valid”));

135. writeline (data_out, data_line);

136. End If;
137. End If;
138. End Process;
139.

140. reset <¼ ‘0’ After 145.00 nsec;

141.

142. input_pulse <¼
143. –– Test Case 1 P1 pulse width (pw) ¼ narrow & no P3

144. ‘1’ After 200.00 nsec, –– P1, Test Pulse 1

145. ‘0’ After 850.00 nsec, –– 650nsec narrow pulse width

146.

147. –– Test Case 2 P1 PW ¼ min.; P3 PW ¼ narrow & M2 normal spacing

148. ‘1’ After 5.00 µsec, –– P1, Test Pulse 2

149. ‘0’ After 5.70 µsec, –– 700nsec min pulse width

150.

151. ‘1’ After 10.00 µsec, –– P3, Test Pulse 3

152. ‘0’ After 10.65 µsec, –– 650nsec pulse width

153.

154. –– Test Case 3 P1 PW normal; P3 PW min & M2 normal spacing

155. ‘1’ After 35.00 µsec, –– P1, Test Pulse 4

156. ‘0’ After 35.80 µsec, –– 800nsec max pulse width

157.

158. ‘1’ After 40.00 µsec, –– P3, Test Pulse 5

159. ‘0’ After 40.70 µsec, –– 700nsec wide pulse width

160.

161. –– Test Case 4 P1 PW ¼ max, P3 PW ¼ normal & M2 min spacing

162. ‘1’ After 60.00 µsec, –– P1, Test Pulse 6

163. ‘0’ After 60.90 µsec, –– 900nsec pulse width

164.

165. ‘1’ After 64.90 µsec, –– P3, Test Pulse 7

166. ‘0’ After 65.70 µsec, –– 800nsec pulse width

167.

168. –– Test Case 5 P1 PW ¼ wide; no P3

169. ‘1’ After 90.00 µsec, –– P1, Test Pulse 8

170. ‘0’ After 90.95 µsec, –– 950nsec pulse width

171.

172. –– Test Case 6 P1 PW ¼ normal; P3 PW ¼ max & M2 max spacing

173. –– Mode 2 5.1µsec P1 - P3 spacing

174. ‘1’ After 110.10 µsec, –– P1, Test Pulse 9

175. ‘0’ After 110.90 µsec, –– 800nsec pulse with

176.

177. ‘1’ After 115.20 µsec, –– P3, Test Pulse 10

www.newnespress.com

Simulation 111

178. ‘0’ After 116.10 µsec, –– 900nsec pulse width

179.

180. –– Test Case 7 P1 PW¼ normal & P3 PW¼ wide & M2 normal spacing

181. ‘1’ After 136.00 µsec, –– P1, Test Pulse 11

182. ‘0’ After 136.80 µsec, –– 800nsec pulse width

183.

184. ‘1’ After 141.0 µsec, –– P3, Test Pulse 12

185. ‘0’ After 141.95 µsec, –– 950µsec pulse width

186.

187. –– TestCase8 P1 PW¼ normal; P3 PW¼ normal& M2narrowspacing

188. ‘1’ After 160.00 µsec, –– P1, Test Pulse 13

189. ‘0’ After 160.80 µsec, –– 800nsec pulse width

190.

191. ‘1’ After 164.80 µsec, –– P3, Test Pulse 14

192. ‘0’ After 165.60 µsec, –– 800µsec pulse width

193.

194. –– Test Case 9 P1 PW ¼ normal; P3 PW ¼ normal & M2 wide spacing

195. ‘1’ After 180.00 µsec, –– P1, Test Pulse 15

196. ‘0’ After 180.80 µsec, –– 800nsec pulse width

197.

198. ‘1’ After 185.20 µsec, –– P3, Test Pulse 16

199. ‘0’ After 186.00 µsec, –– 800µsec pulse width

200.

201. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

202.

203. –– TestCase10P1PW¼normal;P3PW¼normal&M3narrowspacing

204. ‘1’ After 300.00 µsec, –– P1, Test Pulse 17

205. ‘0’ After 300.80 µsec, –– 800nsec pulse width

206.

207. ‘1’ After 307.80 µsec, –– P3, Test Pulse 18

208. ‘0’ After 308.60 µsec, –– 800µsec pulse width

209.

210. –– Test Case 11 P1 PW ¼ normal; P3 PW ¼ normal & M3 min spacing

211. ‘1’ After 320.00 µsec, –– P1, Test Pulse 19

212. ‘0’ After 320.80 µsec, –– 800nsec pulse width

213.

214. ‘1’ After 327.90 µsec, –– P3, Test Pulse 20

215. ‘0’ After 328.70 µsec, –– 800µsec pulse width

216.

217. –– TestCase12P1PW¼normal;P3PW¼normal&M3normalspacing

218. ‘1’ After 340.00 µsec, –– P1, Test Pulse 21

219. ‘0’ After 340.80 µsec, –– 800nsec pulse width

220.

221. ‘1’ After 348.00 µsec, –– P3, Test Pulse 22

222. ‘0’ After 348.80 µsec, –– 800µsec pulse width

223.

www.newnespress.com

112 Chapter 5

If your simulator can read the waveform output from the analyzer, you can directly import it

into your simulation. However, my simulator cannot read the waveform output format, which

is not a problem, because the data easily can be viewed as either a waveform or listing.

So selecting the Listing option icon on the offline viewer, the waveform is now shown

as data points, see Figure 5–15. This file can be saved as text and read into my testbench.

Some or all the data shown in the listing can be exported into a text file. The offline interface

allows you to customize the exported text file. Some of the export data options are

• Space, tab, comma, or semicolon field delimiter.

• Enhanced column headers.

• Including or omitting column heading information.

• Including unit characters.

• Radix.

The 8 bits of A3 is exported to a text file. Because the text file is very large, only a very small

portion is shown in Example 5–3. I removed the heading information and unit characters,

224. –– Test Case 13 P1 PW ¼ normal; P3 PW ¼ normal & M3 max spacing

225. ‘1’ After 360.00 µsec, –– P1, Test Pulse 23

226. ‘0’ After 360.80 µsec, –– 800nsec pulse width

227.

228. ‘1’ After 368.10 µsec, –– P3, Test Pulse 24

229. ‘0’ After 368.90 µsec, –– 800µsec pulse width

230.

231. –– Test Case 14 P1 PW¼ normal; P3 PW¼ normal & M3 wide spacing

232. ‘1’ After 380.00 µsec, –– P1, Test Pulse 25

233. ‘0’ After 380.80 µsec, –– 800nsec pulse width

234.

235. ‘1’ After 388.20 µsec, –– P3, Test Pulse 26

236. ‘0’ After 389.00 µsec, –– testing at 8.2µsec spacing

237.

238. -- Out of range area between Modes 2 & 3 pulse spacing 5.8µsec & 7.8µsec;
pulse spacing ¼ 6µ

239.

240. ‘1’ After 480.00 µsec, –– normal P1, Test Pulse 27

241. ‘0’ After 480.80 µsec,

242.

243. ‘1’ After 486.00 µsec, –– normal P3, Test Pulse 28

244. ‘0’ After 486.80 µsec;

245.

246. End tb_mode2n3_auto;

www.newnespress.com

Simulation 113

Input Data
Waveform

Listing IconWaveform Icon

Figure 5–14: TLA Application Waveform (Screen shot taken from TLA Application Software V5.1
SP1 Offline Viewer courtesy of Tektronix, Inc.)

n Example 5–3. Exported Listing Data

Heading from Listing

A3

0

1

2

3

4 Channel A3 Counter Data

5

6

7

8

n

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

114 Chapter 5

www.newnespress.com

which make reading the file easier, but left the heading A3 for illustration purposes. The data

were exported as decimal, because this is an acceptable input for the read command;

however, it will be converted to std_logic_vector in the testbench. Channel A3 is a

counter; this data will be read into the testbench and used as the stimulus for the clock, reset,

and input pulse signal. This approach was selected because it demonstrates some additional

things you can do when reading in data.

The testbench has been modified to read these data, but only the command that defines the

file and the process that reads the file are shown, see Listing 5–4.

Using the text file data, the testbench gives the results shown in Figure 5–16.

Line 1. Defining Read File

The external file that contains the input data is defined as TLA_Data.txt. This command

is inserted in the architecture section prior to the initial Begin statement.

Input Data Listing

Figure 5–15: Application Listing Data (Screen shot taken from TLA Application Software V5.1
SP1 Offline Viewer courtesy of Tektronix, Inc.)

www.newnespress.com

Simulation 115

Listing 5–4. Modified Testbench Section

1. File data_in: Text Open read_mode Is “TLA_Data.txt”; –– defines the
file to be read

2.

3. read_file: Process
4.

5. Variable data_line : line;

6. Variable data_integer : integer;

7.

8. Begin
9.

10. While Not endfile(data_in) Loop
11. readline (data_in, data_line);

12.

13. read (data_line, data_integer);

14. data_vec <¼ conv_std_logic_vector(data_integer,8);

15. clock20Mhz <¼ data_vec(0);

16. reset <¼ Not data_vec(7); –– inverted data bit 7 for reset signal

17. input_pulse <¼ data_vec(6);

18. Wait For 25 nsec;

19. End Loop;
20. file_close(data_in); –– closes the file once the loop has completed

21. End Process;

Input
Signals

Output
Signals

Internal
Signals

Wide Pulse P3P1

Figure 5–16: TLA Application Data Output Waveform (Material based on or adapted from
figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008

used in Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Lines 3–21. Read External File Process

This process reads the data from the external data file and is inserted in the architecture

following the initial Begin statement.

Lines 11–14. Assigning Data to Input Signals

First a line is read from TLA_Data.txt. Since each line has only one number, the readline

contains one number. This number is converted to an 8-bit standard logic vector and assigned

to data_vec. Only bits 0, 7, and 6 of data_vec are used.

Line 15. Assigning Clock’s Input

Data_vec bit 0 is connected to clock20Mhz.

Line 16

Data_vec bit 7 is inverted and connected to reset.

Line 17

Data_vec bit 6 is connected to input_pulse.

5.7. Simulation Tutorial

This tutorial demonstrates how to set up and run a simulation using ModelSim XE III 6.4b,

included in Xilinx ISE WebPackä. After completing this tutorial, it will be easy to apply

the same process to other VHDL designs and testbenches. The same basic concepts apply

when performing simulation on other simulators.

Simulation Assumptions

• Preinstalled ModelSim XE III 6.4b.

• Design code filename Mode2n3.vhd is located at C:\Chapter 5 Simulation
\Design Code.

• Testbench filename tb_mode2n3.vhd is located at C:\Chapter 5 Simulation
\Testbenches.

Invoke ModelSim

Select Start ! All Programs ! ModelSim XE III 6.4b ! ModelSim or the icon on

your desktop. Note: The path may be different depending on the operating system.

Create a New Project

Select File ! New ! Project.

Name the project setup, see Figure 5–17. Type Modes for the project name.

www.newnespress.com

Simulation 117

Browse to C:/Chapter 5 Simulation.

Keep default library name Work. The complier automatically creates the default work library

for the design code. This is where the compiled code is placed.

Select the Reference Library Mappings option under Copy Settings From. Note:
Either option will work, I prefer just to map to the original. I learned the hard way that

making copies can cause problems.

Select OK.

Add Files to the Project

The next pop-up window Add items to the Project (Figure 5–18) allows you to create a

new file, create a simulation, create a new folder, or add an existing file. The design code and

testbench already are written, so we are going to add those files to the project.

Double click on Add Existing File.

Add Design Code to the Project

Select Browse and navigate to design code located at C:\Chapter 5 Simulation
\Design Code (Figure 5–19). Note: Make sure Reference from current location
is selected.

Select Mode2n3.vhd.

Select Open.

Select OK.

Type Project Name

Project Location Path

Do Not Change

Select This Option

Figure 5–17: Create a Project (Material based on or adapted from figures and text owned by
Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE WebPackä

software version 10.1.)

www.newnespress.com

118 Chapter 5

Add Testbench Code to the Project

Double click on Add Existing File in the Add items to project window when it

reappears.

Select Browse and navigate to testbench code located at C:\Chapter 5
Simulation\Testbenches (Figure 5–20). Note: Make sure Reference from
current location is selected.

Select tb_mode2n3.vhd.

Select Open.

Select OK.

Note: Multiple files can be selected and added at the same time if they are located in same

directory. Just hold down the control (ctrl) key before you select Open.

Design File

Selected

Figure 5–19: Adding Design Code to the Project (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Select This Option

Figure 5–18: Add Item to the Project (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Simulation 119

Select Close when the Add Existing File pop-up window reappears, since all files

have been added.

The Workspace window shows the filenames of the code in the project, type, the order in

which they will be compiled, and the last time the file was modified (Figure 5–21).

Compile Files

Files in the project can be compiled all at once or one at a time.

Option 1: Compile Selected File

This option compiles the selected file(s) highlighted in the Workspace window.

Select mode2n3.vhd.

Select Compile ! Compile Selected.

Design
&

Testbench

Compile
All Order

Figure 5–21: Project Files (Material based on or adapted from figures and text owned by Xilinx,
Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE WebPackä software

version 10.1.)

Testbench File

Selected

Figure 5–20: Adding Testbench Code to the Project (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

120 Chapter 5

Option 2: Compile All Files

This option compiles all the files in the Workspace window at once according to the order

number.

Select Compile ! Compile All.

First, the design code mode2n3.vhd is complied, since it has order #0, then the testbench

tb_mode2n3.vhd. With this option it is not necessary to highlight files.

Feel free to try both ways.

Compiler Error

I created an error by removing the semicolon (;) from line 27 in the testbench code,

shown in Figure 5–22. The transcript window shows total number files compiled and total

number of successful and failed files.

No Semicolon

Testbench

Figure 5–22: Failed Simulator File Compile (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE

WebPackä software version 10.1.)

www.newnespress.com

Simulation 121

Select Compile ! Compile Report to view details about error, see Figure 5–23.

After reviewing the report, go to the file to make the correction. Since this is minor, I make

the correction using the ModelSim editor.

Double click on tb_mode2n3.vhd to open the viewing area window to the right. Add a

semicolon (;) to line 27.

Save File Corrections

Select File ! Save.

Recompile using either option 1 or option 2.

Now the file contains no error, and the transcript window shows the files were successfully

complied, see Figure 5–24.

Simulate

Now that the design and testbench have been successfully compiled, it is time to start the

simulation. Select Simulate ! Start Simulation (Figure 5–25).

Error
Details

Figure 5–23: Simulator Compile Error Details (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Compile Status

Figure 5–24: Successful Compile Status in Transcript Window (Material based on or adapted
from figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008

used in Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

122 Chapter 5

In the pop-up window, click on the þ next to work then testbench to select

tb_mode2n3. Note: If other files had testbench as their entity’s name, their

architecture’s name would have also appeared. All my testbenches have the entity name

of testbench. The reason I do this is because I will have several testbenches for one

design. By having all their entities named testbench, they appear under the one entity, making

it is easier for me to find the specific testbench. My architecture’s name is descriptive to

what the code is verifying.

Select Resolution to nsec.

Select OK.

The transcript window will let you know when the design has been loaded. Now you are

ready for the waveform and signals.

Select View ! wave.

Select all the signals shown in the Objects window. Make sure testbench is highlighted

in the Workspace window (Figure 5–26), then right mouse click on the Objects window.

Select Add to Wave ! Selected Signals; this adds the signals you selected to the

wave window.

Testbench File

Figure 5–25: Select Testbench (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Simulation 123

Click in the transcript window to move the cursor.

Type in run 10µsec.

Select Enter. The simulation output will be displayed in the waveform window, see

Figure 5–27.

View Output Listing

To see the output as a listing, do the following.

Select View ! List to open the List window.

Select all the signals shown in the Objects window.

Make sure testbench is highlighted in the Workspace window, then right mouse click in

the Objects window.

Select
Testbench

Objects
Window

Waveform Signals
Waveform
Window

Figure 5–26: Load Simulator (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

124 Chapter 5

Select Add to List ! Selected Signals. This will add the signals you selected to the

wave window.

This tutorial has shown you how to perform a simulation using ModelSim III XE 6.4b.

Remember, other simulators work differently, but the output for the same design should be

the same. Now that you have some of the basics of how to perform a simulation, take some

time to explore the many other features available using ModelSim III XE 6.4b or your

simulator.

5.8. Chapter Overview

I find simulation to be the most enjoyable and exciting of the FPGA development

phases—so many options are available for simulating an FPGA design. Depending on the

situation, one option may be more beneficial than another. The next chapter covers

synthesis. However, if you performed synthesis prior to simulation (and I hope you plan

on simulating), then your simulation phase may include both RTL and functional

simulations. If this is the case, then remember, for each design modification, a new

Design
Signals

Figure 5–27: Waveform Output (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Simulation 125

postsynthesis netlist for simulation must be created and used for the most accurate

functional simulation. Here are some things to remember about simulation as you

continue to develop your FPGA design.

Key Simulation Phase Tips

• Simulation is not required but should always be performed, especially on new designs.

• Testbenches are a great reusable way to apply design stimulus.

• Write test cases to help develop testbench stimulus.

• Simulation allows a design to be verified under various test conditions and limits without

damaging the hardware.

Chapter Links

For your convenience here are some links to a couple of complete development tools.

Xilinx ISE WebPack: www.xilinx.com/tools/designtools.htm.

Altera’s Quartus II, Web Edition: www.altera.com.

More information on the offline logic analyzer or pattern generator, Tektronix: www.tek

.com.

The Moving Pixel Company: www.movingpixel.com/main.pl?home.html.

www.newnespress.com

126 Chapter 5

CHAPTER 6

Synthesis

6.1. Introduction

Synthesis is the point in FGPA development where a high-level design is broken down into a

mid-level netlist that is now associated with logic and internal FPGA resources. The design can

be the one presented in this book or one you or someone else created or modified. It can be

in several different formats—HDL, schematic capture, or a mixture—and may have been

verified through simulation. In spite of whoever created or modified the design and the format,

simulated or not, the design must be synthesized before it can be programmed into an FPGA.

Although, in this book, synthesis is performed following simulation, it could be performed

immediately following the design phase. Once the design is complete it must somehow get

broken down to a format that describes and connects the same functions in terms of FPGA

resources. How do we make this happen? The answer is that the design must go through a

two-step process: first synthesis and then implementation. These steps take the high-level

design and break it down to a format that eventually gets programmed into an FPGA.

This chapter discusses the design synthesis phase or process. Synthesis is the first place in

which the HDL design is associated with the internal logic. The input to the synthesis phase

is the design, and the output consists of a design netlist that feeds into the implementation

tool and an option for a functional simulation netlist, see Figure 6–1. Additional outputs

include a report file and schematic views, which provide pertinent information about the

synthesized design. These files are discussed later in this chapter. Unlike the simulation

phase, which is optional but highly suggested, synthesis is mandatory; and synthesis must

be performed before implementation.

For some designs, the synthesis process can be performed with much ease; however, for other

designs, the process can be complex and long. Our ultimate goal is to create a netlist that

connects the FPGA’s resources to perform the same functions as defined by the high- level

design. The first step to accomplish this is the synthesis phase. As we continue down the

FPGA development path, we get closer to having a design that can be programmed into a

device. While synthesis may not be as exciting as simulation (at least in my opinion),

it is required and can be time consuming.

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00006-0 127

In this chapter, you will learn

• The design synthesis process.

• Synthesis tools and manufacturers.

• Synthesized output files.

• How to perform synthesis, through a tutorial.

6.2. What Is Design Synthesis?

The FPGA device consists of logic blocks or cells that are configured to perform the functions

defined by the high-level design. So far, all we have is a high-level design but nothing that

associates it with the internal FPGA resources. Design synthesis or synthesis is the process that

takes the high-level design associates it with FPGA resource and reduces logic to make the

design more efficient. It can best be described as a three-step process that converts a high-level

design to a mid-level design netlist, see Figure 6–2. The reason I say mid-level design netlist is

because it cannot be used to program an FPGA, but it is just one development stage from being

ready to burn into a chip. Synthesis is the first step in the development process in which the

design is associated with the FPGA’s internal logic technology. In other words, the output

netlist is a little more realistic because the device’s part number is defined and available

resources are known and used to create the netlist that has some timing information.

The three basic synthesis operations (Figure 6–3) are syntax check and element association,

optimization, and technology mapping. Generic synthesis operation terms are used to

distinguish one step from another. Each synthesis tool may call the steps something different,

Functional Netlist Simulation
(Optional)

Implementation
Design Netlist

Synthesis Data

Design
Phase HDL, Schematic,

Mixed

Report &
Schematic Views

(Pertinent User Information)

Synthesis

Figure 6–1: Synthesis Phase Inputs and Outputs

www.newnespress.com

128 Chapter 6

VHDL

Program File

FPGA

High-Level Design Code

Mid-Level Synthesis Netlist

Low-Level Implementation File

Design Netlist

Figure 6–2: Mid-Level Synthesis Netlist

Design Netlist

Design

Design Check & Resource Association

• Syntax Check
• Synthesis Check
• Associate Design to Logic Cells/Blocks

Optimization

• Reduce Logic
• Eliminate Redundant Logic
• Make Design Smaller & Faster

Technology Mapping

• Connect Design to Logic
• Predict & Add Timing Estimates
• Create Output Reports & Netlists

Figure 6–3: Synthesis Process Flow

www.newnespress.com

Synthesis 129

but they perform the same basic functions. Third party tools generate an output netlist that

can be imported into an implementation tool and simulator.

6.2.1. Design Check and Resource Association

First, the design is checked for syntax and synthesis errors. Nonsynthesizable command

errors do not cause synthesis errors. For example, the after command, which was used

in the testbench, creates a delay and is used by the simulator. It is not synthesizable and is

ignored by the synthesis tool. Missing or misplaced semicolons or misspelled keywords will

cause the synthesis tool to generate an error, see Example 6–1.

Once the design is error free, it is converted into structural elements. This means that logic

elements are inserted as replacements for things like an addition sign (þ), subtraction sign

(–), or for inferred flip-flops, gates, registers, and the like.

6.2.2. Optimization

At this point, the design is represented by interconnecting the internal FPGA resources to

mimic the functions defined by the high-level design. In this state, the design is just put

together without concern for redundant logic, timing constraints (if provided), clock speed,

and other design considerations. Now that the design is put together, algorithms are used to

optimize the design. This means that the design is really examined for things like redundant

logic, clock speed, and timing constraints. Redundant logic is removed to make the design

smaller. Algorithms are used to evaluate multiple paths to ensure the fastest timing is

achieved. The shortest routing distance does not necessarily mean the fastest time. Because

of the resource layout and how those resources are used, the shortest distance may not

produce the fastest time. Therefore, it may be necessary to have a longer route to meet

timing requirements, because the shorter route may require more resources, resulting in

longer time. As shown in Figure 6–4, option 2 is a longer distance, however, option 1 has

more resource delays; therefore, option 2 is the faster route.

n Example 6–1. Syntax Error

The first signal definition causes the synthesis tool to generate a syntax error

message:

Signal pulse : std_logic –- missing semicolon (;) following

std_logic, error message generated

Signal pulse : std_logic; –- no error message generated
n

www.newnespress.com

130 Chapter 6

6.2.3. Technology Mapping

Now that the design has been optimized, it is mapped to the technology associated with

the targeted FPGA. Information such as the FPGA part number, speed and manufacturer is

provided when setting up the synthesis tool. Examples of some technology view symbols are

shown in Figure 6–5. Synthesis tools use advanced techniques to make predictions about how

the design will be place and routed in the target device. These advanced techniques produce

synthesis timing estimates that are near the actual postimplementation timing. However, the

real timing is unknown until after the design has been placed and routed.

6.3. Synthesis Phase Tools

The tools needed for the synthesis phase are a synthesis tool, or synthesizer, and an editor

to modify the original design if necessary. Because an HDL text editor is included with

many synthesis tools, you could use this for HDL editing. My personal preference is my

original text editor, but for small changes, such as correcting synthesis or syntax errors,

I generally use the synthesis editor. If you decided to switch between the two editors, make

sure that the changes have been applied to both copies of the design. Synthesis tools are

available as standalone or part of a complete package. Some of the advantages and

disadvantages to standalone tools versus complete package tools are listed in Tables 6–1

and 6–2.

EndStart Delay 1

Option 2

Option 1
Delay 2 Delay 3

Figure 6–4: Faster Routing Path

XORCY

LUT4_0001

l3
l2
l1
l0

O

Dl

Cl

S

MUXCY

0

O

1

Ll

Cl
O

Figure 6–5: Technology View Symbols (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

Synthesis 131

As a result of the continuous evolution of FPGA gate count from hundreds, to thousands, to

millions of gates and increasing functionality, the synthesis tools have evolved aswell. New,more

advanced FPGA features led to newer, more advanced tools. In the past, there were few

choices for synthesis tools, and many companies offered only one synthesis tool. Now, more

companies offer a selection of synthesis tools, each providing slightly more or different

features.

6.3.1. Vendors and Features

Today, many more options for synthesis tools are available than years ago. Not only do

many manufacturers make the tools, it is becoming common for standalone manufacturers to

offer different levels or features in their synthesis tools.

Table 6–1: Complete Package Synthesis Tool Advantages and Disadvantages

Advantages

Single tool Need to know only one tool

Faster process Eliminates time to switch between third party tool(s)

Cost Single tool may be cheaper than multiple tools

Expert on device Manufacturer understands device better than a third party

Device data are more accurate

Disadvantages

Manufacturer dependent Can’t use synthesize netlist with other manufacturers

Synthesis netlist Synthesis netlist may not be as good as a third party’s

May not utilize internal resources either

Supports only one manufacturer Must obtain another tool for other manufacturers

Not area of expertise Expert on device not necessarily on synthesis development

Table 6–2: Standalone Synthesis Tool Advantages and Disadvantages

Advantages

Manufacturer

independent

Supports multiple manufacturers

Easy to switch vendors

Output netlist available in different manufacturer formats

Area of expertise Synthesize netlist generally better than manufacturer’s

May provide better synthesized netlist

Disadvantages

Multiple tools Separate tools for synthesis and implementation

Cost May be more expensive than complete tool

Not expert on device Manufacturer understands more about device than a third party

Estimated device timing data may not be as good as manufacturer’s

www.newnespress.com

132 Chapter 6

This section provides information on complete package and standalone synthesis tools and

some of their features. Synthesis is performed as a part of Altera’s Quartus IIW and

Xilinx ISEW complete development packages. Many manufacturers make claims to have

the best, world’s first, or some other claim about their synthesis tools. My opinion is that,

depending on your design, some tools perform better than others, but you have to decide

for yourself. Some commonality among most synthesis tools includes

• Allow user to perform syntax check only.

• Create RTL view.

• Create technology view.

• Generate synthesized netlist.

• Generate functional simulation netlist.

Quartus IIW offers users two synthesis options “Analysis and Elaboration” and “Analysis

and Synthesis.” Where analysis and elaboration is just a presynthesis step that

• Performs syntax and semantic error checks.

• Does not perform logic synthesis or technology mapping.

The complete synthesis process is performed by the analysis and synthesis option that

• Checks for syntax and semantic errors.

• Minimizes design logic.

• Performs technology mapping.

ISE Design Suite by

• Xilinx Synthesis Technology (XST)

• Incorporates next-generation physical synthesis optimizations by using techniques such

as register balancing, global optimization, timing-driven synthesis, and logic

optimization.

• Provides reduced runtime and design preservation.

• Reduces power use by using power-aware optimization.

• Provides integrated RTL and Technology. Viewers to view the RTL netlist.

Keep in mind that Quartus II supports only Altera’s FPGA devices and ISE supports only

Xilinx. On the other hand, standalone packages, such as the ones offered by Mentor Graphics

and Synopsys, are vendor independent.

www.newnespress.com

Synthesis 133

Mentor Graphics offers LeonardoSpectrumW, Precision RTLW, Precision PhysicalW, and

Precision RTL PlusW synthesis tools. The Precision tool sets offer a progressive line of features.

LeonardoSpectrum offers

• F.A.S.T. optimization. Proprietary algorithm with high quality of results (QoR).

• Incremental synthesis. Reduces compile time for multiple or large designs.

• Partitioning. Makes it easy to divide or partition designs.

Precision RTL offers basic features such as

• Advanced Optimization Algorithms.

• Maximum use of FPGA resources.

• RTL and Technology Viewers.

• Interactive Static Timing Analysis.

• DSP and RAM Inference Optimization.

• Gated Clock Conversions.

• Register Retiming.

Precision RTL Plus offers the same features as Precision RTL and

• Physically Aware Synthesis.

• Optimizes based on preimplementation estimates and considerations such as delays,

potential placement, routing, and other device-related design rules.

• Incremental Design Flows.

• Can recompile and synthesize portions of the design.

• Resource Manager.

• Interface that allows the designer to analyze and manipulate the mapping of the

FPGA’s resources to optimize performance or area.

Synopsys offers Synplify Pro and Premier.

Synplify Pro uses

• Behavior extracting synthesis technology (B.E.S.T.) optimizer for

• Proprietary algorithms.

• HDL Analyst.

www.newnespress.com

134 Chapter 6

• Creates an RTL block diagram.

• Graphical state machine viewer.

• Automatic RAM and DSP inference.

• Incremental Design.

• Automatic Retiming.

• Improves timing performance and balances delays by moving registers within

combinatorial logic.

• FSM Compiler and Explorer.

• Optimizes finite state machines based on constraints

Synplify Premier provides some of the same features as Synplify Pro but also some extras

• A simulator–like debug environment.

• DesignWare compatible library.

• Easy ASIC code migration.

• SynCore IP wizard.

• Automatically generates technology-independent RTL for memories and first-in/

first-outs.

6.3.2. Synthesis Tool Setup

Before performing synthesis, there is a little tool setup. Until this point in the development

phase, the FPGA’s part number was unnecessary; however, the synthesis process needs

information about the part, such as speed and available internal resources, to synthesize the

design. The FPGA is identified by selecting the family, device number, package, and speed.

Any of those selections is easy to change and resynthesize the design using the new

information. Using a third party tool also makes it easy to switch between different

manufacturers. Basic tool setup consists of creating a project that contains all the information

about the design, see Figure 6–6. Some general information provided during the project setup

includes

• Device information (i.e., family, device number, package, and speed), which may be

found on the device package.

• Input design.

• User-defined constraint file(s).

www.newnespress.com

Synthesis 135

6.4. Synthesis Input

The input to the synthesis development phase is the design, VHDL code in our case.

In addition to the design file are the user-defined constraints or limitations. The constraints

may contain such things as timing or Vendor attributes.

Acceptable design formats vary between synthesis tools, so make sure prior to creating your

design or selecting your tool that the formats are compatible.

Altera’s Quartus II accepts

• AHDL (Altera Hardware Description Language).

• VHDL.

• Verilog.

• System Verilog.

• Schematic capture.

• EDIF input files; Quartus II supports both .edif and .edn file extensions.

• Verilog Quartus mapping files; this is a node-level netlist in ASCII text format, generally

created by an EDA synthesis tool, like Synopsys Synplify.

Manufacturer’s Name
Device Family

Device Type

Package

Speed

Temperature

J9876
5M

Constraints

Input Design

Device Information

Design Netlist

Functional Netlist

Synthesis Setup

Timing

HDL

Constraints File

Design File

FPGA

Pin 1

AB2C50A

VQ122BHX0825

Figure 6–6: Basic Synthesis Setup Information

www.newnespress.com

136 Chapter 6

Xilinx’s Synthesis Technology accepts VHDL and Verilog.

Mentor Graphics’s LeonardoSpectrumW accepts a mixture of VHDL, Verilog. and EDIF.

Precision RTL, Precision Physical, and Precision RTL Plus Synthesis accepts Supports

System Verilog, Verilog, VHDL, EDIF, or a combination of these.

Synopsys’s Synplify Pro accepts VHDL, Verilog, and a mixture of VHDL and Verilog. So if

your synthesis tool is Synplify, your design format cannot be schematic capture or AHDL,

which is compatible with Altera’s development tools, see Figure 6–7. For most cases,

especially if you use mainstream tools and HDL, there is no problem with compatibility.

However, just as a sanity check, it is a good idea, when you first start, to make sure that no

compatibility issues exist.

6.5. Synthesis Output Files

The synthesis process generates many different types of files. Some will be used during the

FPGA development process and others will have no meaning to you, see Figure 6–8.

The synthesis process has done a lot of work to break down the high-level design to a lower

level. At the completion of the synthesis phase the original design is closer to a format that

will be used to program an FPGA.

Netlists, status reports and schematic views are some of the outputs generated by the

synthesis tool that will help you during the development process.

• Netlists: a design netlist, which is the synthesized design, and an optional functional

netlist, used to perform functional simulation.

• Status reports that states internal resources utilization, critical timing path(s), and other

pertinent information.

• Schematic views: RTL and technology.

Not
 C

om
pa

tib
le

Compatible

AHDL
Design

Xilinx’s Synthesis Tool

Altera’s Synthesis Tool

AHDL Is Specific to Altera’s Tools

Figure 6–7: Design Format and Synthesis Tool Compatibility

www.newnespress.com

Synthesis 137

6.5.1. Netlists

The design netlist is what the original design looks like after it has been synthesized

(i.e., optimized, connected using internal FPGA logic). It is not necessary for the complete

development tools to output the design netlist, since synthesis and implementation are

combined in one tool. Third party tools produce this netlist, so it can be used as the input to

the manufacturers’ implementation tool. Consult the implementation tool to determine

which file extension(s) are acceptable. Most implementation tools accept the generic EDIF

format and their manufacturer-specific format. Even though the design is represented by

this netlist, it cannot be used for simulation. Most synthesis tools provide an option to have

a functional simulation netlist or file generated. Generally, the functional simulation file is

not generated automatically. I suggest generating this file and performing the functional

simulation, especially if time permits. The functional simulation allows you to verify that

the synthesis process did not change the design. You should be able to use the RTL

testbench to verify the netlist; and since this netlist represents the original design, you

should expect the same results. In the RTL simulation, results were instant because no

timing delays were used, but the synthesis tool introduces timing delays, which may be

viewable during your simulation.

The functional netlist is complied in the simulator instead of the original design and verified

using a testbench. If the netlist requires additional libraries like the unisim library, it must

be added to the simulator’s library. The design should perform the same way, proving the

Xilinx
Place and Route

Synthesis Outputs

Altera’s
Place and Route

Simulator

EDIF

Functional Netlist

Netlists

Status Report

EDIF

Resource
Utilization

Schematic Views

RTL

Technology
Postsynthesized

Preoptimized

Figure 6–8: Synthesis Outputs

www.newnespress.com

138 Chapter 6

synthesis process has not changed the design. If this isn’t the case, then it will be necessary to

utilize different synthesis tool features and files to determine the problem(s).

6.5.2. Status Reports

Now that the design is interconnected and utilizes internal resources, we can now know how

much of the internal resources are used, clock and other timing information, critical paths,

warnings, errors, and we can even see the design represented as a schematic. These status

report files are output from the synthesis tool and are not used as input to other development

phases. Their main goal is to provide the user with helpful information about the design and

allow him or her to identify real and potential problems, such as the design not meeting

timing and other constraints. Depending on the design complexity, you may review one or all

of the output files. Each synthesis tool provides information in different ways, so consult the

user’s manual to determine what files contain this information.

6.5.3. Schematic Views

The synthesis tool generates two schematic views: RTL and technology. The RTL

schematic view shows the preoptimized design in terms of generic symbols, such as adders,

multipliers, counters, AND gates, and OR gates. This view is manufacturer independent.

One of the main benefits of this view is that some design issues may be detected by viewing

the RTL schematic and corrected early in the development process. You can think of this

view as being raw, in that it is not associated with a manufacture, because nothing has

been done to reduce the logic. It has just been translated from the high-level design.

6.5.4. Technology Schematic View

After the design has been synthesized, it can be viewed as a schematic, which is

represented by the technology schematic view. This view shows gates and elements as

they will look in the selected manufacturers’ device. Now, the design looks more like it will

when it is put into the FPGA. You should review this schematic to make sure that the

synthesis process has not removed logic you wanted in the design. If this happens, it may

be necessary to rewrite some code or use constraints to keep the logic.

The output files provide a good first look at resource utilization and timing, so design

modifications can be made prior to implementation. Because of the many aspects of

performing synthesis, I think it would really help to show an example of how synthesis is

performed. In the next section, a synthesis tutorial is provided using Xilinx’s XST synthesis

tools. Xilinx’s Webpack ISE 10.1W, which provides synthesis, implementation, and a

simulator, has been downloaded for the tutorial. The best part is it is free. I suggest that, if you

have no development tools, this would be a good one to download and try. The Webpack ISE

www.newnespress.com

Synthesis 139

is available for both Windows and Linux and can be found at www.xilinx.com/tools/webpack

.htm. A free user account is required, so you have to create a user name and password before

getting access.

6.6. Synthesis Tutorial

Xilinx’s XST synthesis tool is a part of its ISE and Webpack ISE complete development

packages. Whereas ISE is a fee-based tool that supports more devices and offers more

features, the Webpack is free, with limited features but sufficient for this tutorial. Keep in

mind that your synthesis tool may require a different setup and the terminology may be

slightly different, but in the end, a third party tool provides a synthesized netlist that will be

used in the implementation development phase and an option to output a functional

simulation netlist. It is unnecessary for the manufacturers to provide the synthesized netlist,

and this may not be provided.

Launch Synthesis Tool

Select Start ! All Programs ! Xilinx ISE Design Suite 10.1 ! ISE !
Project Navigator or click on the desktop icon. Note: Depending on your operating

system, your Start path may be slightly different.

Create New Project

Select File ! New Project. A “New Project” wizard is provided to step you through

creating a project. The project name, location, and top-level source type are defined as

Project name: Mode2n3_project

Project location: C:\Chapter6_Synthesis\Mode2n3_project

Top-level source type: HDL

Note: See Figure 6–9 for selections in the project wizard.

Select Next.

Now it is time to tell the synthesis tool which FPGA device will be used, the format of your

design format, and your selected simulation tools.

Device Properties

Select General Purpose.

Not all families are available for each product category, each family offers different devices,

and not all devices have the same packages or speed, so depending on your selection, the

pull-down menu options will vary.

www.newnespress.com

140 Chapter 6

Select Family ! Spartan3.

Select Device ! XC3S50.

Select Package ! VQ100.

Select Speed ! –5.

Select Top-Level Source Type ! HDL.

Select Synthesis Tool ! XST (VHDL/Verilog).

Note: At one time, some manufacturers offered third party synthesis tools to allow you to

compare synthesized netlists. If this were the case, then the Synthesis Tool pull-

down menu would provide options. No other synthesizers are provided as an option.

See Figure 6–10 for selections in the project wizard.

Select Simulator ! Modelsim XE VHDL.

Select Preferred Language ! VHDL.

Keep default for the rest of the selections.

Select Next.

Top-level source type: HDL
Note: tool appends HDL file name to path

Top-level source type Op�ons
HDL
Schema�c
EDIF
NGC/NGO (Xilinx specific format)

Project Name: Mode2n3_project

Project Loca�on: C:\Chapter6
Synthesis
Note: tool appends HDL file name to path

Figure 6–9: Create New Project (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

Synthesis 141

Create New Source

The next screen, Create New Source, shown in Figure 6–11, allows for a new source file

to be created; but since a design file is already created, no new file will be created.

Select Next.

Add Existing Source File

Now the design file will be added to the project, see Figure 6–12.

Select Add Source and navigate to the location of the source file.

Deselect Copy to Project. I found out the hard way that it is best to keep only one design

code copy.

Select Next.

Project Summary

The next screen is a summary of the project information entered in the previous screens,

see Figure 6–13. Look over the information for completeness and correctness. Select Back
if changes are needed. Otherwise select Finish.

Select Finish.

Note: Op�on pull-down selec�on
changes based on the selected
product category because not all
families offer the same device,
package, or speed.

Product Category Op�ons:
- All
- General Purpose
- Automo�ve
- Military/Hi-Reliability
- Radia�on Hardened

Figure 6–10: Device Properties (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

142 Chapter 6

Figure 6–11: Create New Source File (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

Navigate to source file.

Figure 6–12: Add Existing Design File (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright Xilinx © 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

Source File Status

This last screen allows you to view the status of the project source file(s).

Select Association ! All. See Figure 6–14 for all the Association options.

Now that you have completed the wizard, you get the project window shown in Figure 6–15.

This view has Sources, Processes, and a transcript section as well as a viewing
area, where reports, source code, and other project information are displayed.

Sources Section

The sources section shows the project name, source file, and device part number.

Select Sources for: ! Implementation. Double clicking on the source code opens

the file in the viewing window, see Figure 6–16.

Figure 6–13: Project Summary (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

144 Chapter 6

None

Implementation

Simulation

All

Figure 6–14: Source File Status (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

Viewing

Transcript

Processes

Sources

Figure 6–15: Project Main View (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

Synthesis 145

Transcript Window

The transcript window shows the status and provides other information about the processes.

It contains several tabs that show information related to the named tab.

Processes Section

The processes section is where synthesis and implementation are performed; constraint,

design summary, source and bit stream files are created; and you program the FPGA, but the

one we are interested in for this chapter is the Synthesis -XST.

Expanding Synthesis XST in Process Window

Click on the þ next to the Synthesis - XST. It shows the reports and schematic views

generated by the synthesis tool, which are viewable by double clicking on the name. “Check

syntax” (only checks the design’s syntax) and “generate postsynthesis simulation modeling/

netlist processing” are also performed here, see Figure 6–17.

Source Code in viewing areaSource Code Filename

Figure 6–16: Viewing Source Code (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE

WebPack� software version 10.1.)

www.newnespress.com

146 Chapter 6

Synthesize Design

Select Synthesis - XST and right click to see the synthesis options, see Figure 6–18.

Select Run.

Note: As the synthesis is running, the transcript provides status information; see Figure 6–19

for a sample. Errors detected during synthesis are displayed with error message(s) in

• The transcript window, see Figure 6–20.

• The process window with an X next to the Synthesis - XST, see Figure 6–21.

• The synthesis report file, see Figure 6–22.

• The design summary file, see Figure 6–23.

If the synthesis is successful (i.e., no errors are detected), then the transcript window will

look similar to Figure 6–24 and the process and design summary like Figure 6–25.

Figure 6–17: XST Expanded View (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

Synthesis 147

Figure 6–18: Start Synthesis (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

Figure 6–19: Synthesis Status in Transcript Window (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

Figure 6–20: Synthesis Error Shown in Transcript Window (Material based on or adapted from
figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008

used in Xilinx ISE WebPack� software version 10.1.)

Figure 6–21: Synthesis Error Shown in Processes Window (Material based on or adapted from
figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008

used in Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

Synthesis 149

Now that the synthesis process is complete, the report and schematic views are available.

A lot of information is available in the synthesis report, so I copied some information

from the utilization summary.

Just for comparison the design was resynthesized using

Family: Spartan2

Device: XC2S15

Package: CS144

Speed: –5

Table 6–3 shows the synthesis comparison between the two devices.

The biggest differences between the two devices are the percent utilization of the internal

resources and max frequency. Spartan 3 uses 20% of available slices while Spartan 2 uses

Figure 6–22: Synthesis Report File Shows Errors (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

150 Chapter 6

84%, and Spartan 3 has a maximum frequency of 112.3 MHz while Spartan 2 is 62.956 MHz.

Because the Spartan 3 is a larger FPGA with more resources, its percentage of used slices is

much less than Spartan 2. Both devices use about the same number of internal resources,

which should be expected, since the design is the same.

It is important to derate how many internal resources are used. So I would think twice

about using the Spartan 2 because 84% is a pretty high number for utilization. Some

companies have a standard for derating the internal resources. Most of the time 60–70% is a

good range. I generally like 50%, especially for new designs, where there is a good

possibility that the design will grow. Utilizing a lot of your resources makes it difficult for

the tool to synthesize and implement the design. Always leave yourself some growing

room. Additionally, it is always a good idea to derate input/output pins to accommodate

potential growth.

5 Errors

Figure 6–23: Design Summary File with Errors (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

Synthesis 151

Figure 6–24: Successful Synthesis Shown in Transcript Window (Material based on or adapted
from figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008

used in Xilinx ISE WebPack� software version 10.1.)

No Errors

Figure 6–25: Successful Synthesis Process and Design Summary Windows (Material based on
or adapted from figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright ©

Xilinx 1995–2008 used in Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

152 Chapter 6

RTL View

The RTL schematic view shows how the design looks as it was converted to logic elements.

Double click on RTL Schematic to see full view (Figure 6–26). The expanded view is

shown in Figure 6–27.

Technology View

Double click on View Technology Schematic. This shows the internal technology, such
as lookup tables connected to create the design. See a full view in Figure 6–28 and an

expanded view in Figure 6–29.

Now that the design has been successfully synthesized, the optional functional simulation

netlist can be created.

Create Optional Functional Simulation Netlist

This section creates the functional simulation netlist used to verify that the design was not changed

as a result of the synthesis process. If the netlist is successfully created, checkmarks appear next to

Generate Post-Synthesis Simulation Model and Post-Synthesis
SimulationModelReport. The path and filename for the netlist is provided in the report file.

Select Generate Post-Synthesis Simulation Model. Then right mouse click to

show the options, see Figure 6–30.

Selecting properties will show additional options, see Figure 6–31, but for this tutorial,

the default values are good enough.

Select Run.

Table 6–3: Spartan 3 versus Spartan 2 Utilization Comparison

Device Family Spartan 3 Spartan 2

Part number 3s50vq100-5 2s15cs144-5

Number of slices 161 out of 768; 20% 162 out of 192; 84%

Number of slice flip-flops 74 out of 1536; 4% 74 out of 384; 19%

Number of 4 input LUTs 305 out of 1536; 19% 308 out of 384; 80%

Number of I/Os 9 9

Number of bonded IOBs 9 out of 63; 14% 9 out of 86; 10%

Number of GCLKs 1 out of 8; 12% 1 out of 4; 25%

Minimum period 8.904 nsec (Max Freq ¼
112.307 MHz)

15.884 nsec (Max Freq ¼
62.956 MHz)

Minimum input arrival time

before clock

7.629 nsec 13.479 nsec

Maximum output required time

after clock

6.306 nsec 8.329 nsec

Maximum combinational path delay No path found No path found

www.newnespress.com

Synthesis 153

The netlist is in VHDL format but looks very different from the high-level design. The input and

output ports are the same as in the design code, making it possible to use the same testbench. The

netlist is a large file (about 5595 lines), so only samples of certain sections in the design are

shown in Example 6–2. Note: format convention is different from the original design code.

Lines 1–5 is the library declaration.

Lines 7–19 is the entity section.

Line 21 starts the architecture section, only a small portion is shown.

Lines 22–25, shows some of the signal definitions.

Line 27 is the Begin statement for the architecture section.

Lines 28–41 shows some of the component instantiations.

Figure 6–26: Full RTL Schematic View (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

154 Chapter 6

Figure 6–27: Zoomed in RTL Schematic View (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

Figure 6–28: Full Technology Schematic View (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

Synthesis 155

n Example 6–2. Functional Netlist

1. library IEEE;

2. use IEEE.STD_LOGIC_1164.ALL;
3. library UNISIM;

4. use UNISIM.VCOMPONENTS.ALL;

5. use UNISIM.VPKG.ALL;

6.

7. entity mode2n3 is

8. port (

9. reset : in STD_LOGIC :¼ ‘X’;

10. valid_pulse : out STD_LOGIC;

11. mode3A : out STD_LOGIC;

12. wide_pulse : out STD_LOGIC;

13. input_pulse : in STD_LOGIC :¼ ‘X’;

14. mode2 : out STD_LOGIC;

15. clock20Mhz : in STD_LOGIC :¼ ‘X’;

16. narrow_pulse : out STD_LOGIC;

17. invalid_mode : out STD_LOGIC

18.);

19. end mode2n3;
20.
21. architecture Structure of mode2n3 is

22. signal Madd_pulse_spacing_share0000_cy_10_rt_2 : STD_LOGIC;

23. signal Madd_pulse_spacing_share0000_cy_11_rt_4 : STD_LOGIC;

24. signal Madd_pulse_spacing_share0000_cy_12_rt_6 : STD_LOGIC;

25. signal Madd_pulse_spacing_share0000_cy_13_rt_8 : STD_LOGIC;
26.
27. begin

28. sync_pulse : FDC

29. port map (

30. C ¼> clock20Mhz_BUFGP_364,
31. CLR ¼> reset_IBUF_647,
32. D ¼> input_pulse_IBUF_415,
33. Q ¼> sync_pulse_649
34.);
35. pulse_spacing_0 : FDC

36. port map (

37. C ¼> clock20Mhz_BUFGP_364,
38. CLR ¼> reset_IBUF_647,
39. D ¼> pulse_spacing_mux0003(31),
40. Q ¼> pulse_spacing(0)
41.);

n

www.newnespress.com

Figure 6–29: Expanded Technology Schematic View (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

Create Functional
Simulation Netlist Options

Figure 6–30: Postsynthesis Options (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

6.7. Chapter Overview

The synthesis process takes the high-level design and breaks it down to a mid-level netlist.

The design is getting closer to the file that will be used to program the FPGA. The part

number and manufacturer must be known, so the synthesis tool can start associating the

design with the part’s internal resources. Several output files and schematic views provide

additional information about the design’s current state. Schematic views show what

logic connections are necessary to create the design. The postsynthesis simulation

netlist contains some predicted timing; real timing is applied during implementation.

This file can be used with the original testbench to verify that the synthesis did not

change the design. After successfully completing synthesis, implementation is

performed.

Figure 6–31: Functional Netlist Options (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPack� software version 10.1.)

www.newnespress.com

158 Chapter 6

Key Points to Remember

• Synthesis is required and must be performed prior to implementation.

• Third party synthesis tools output a synthesized netlist for the implementation tool.

• Synthesis automatically feeds into implementation when using a manufacturer’s

complete package tool.

• Functional simulation should be performed, if time permits.

• The RTL and technology views show what logic makes up the design.

Chapter Link

Xilinx’s Webpack ISE 10.1: www.xilinx.com/tools/webpack.htm.

www.newnespress.com

Synthesis 159

This page intentionally left blank

CHAPTER 7

Implementation

7.1. Introduction

Implementation, also referred to as place and route (PAR), is the phase in FPGA

development where the design has been synthesized and an RTL simulation performed

(at least I hope), and maybe a functional simulation. The design is no longer at a high level

but is a mid-level netlist format created by the synthesis process. This is the development

process that produces a bit stream file. Implementation can be very time intensive, because so

many elements must be considered, decisions made, and potential issues to resolved.

Some designs are implemented with ease, while others can take days to complete. In my

opinion, the implementation tool has the hardest job of all the development process tools.

So many options and features are available, that can be used to resolve issues or provide a

better placement or design layout. Ultimately, the bit stream file created in this phase is used

to program the FPGA. In the previous phases, interface signals or board layout were not

considered; however, considering these types of things during implementation can make

board layout and interface much easier. By using specific implementation options, signals

can be assisted to specific pins locations to make board layout easier. The synthesized

netlist is the minimum input to the implementation phase; and the output is a bit stream or

programming file, an optional gate-level simulation netlist, and a timing file, see Figure 7–1.

In this chapter, you will learn about

• Implementation process.

• Tools and setup.

• Constraint files.

• How to perform an implementation through a tutorial.

7.2. What Is Implementation?

Implementation is the process that maps the synthesized netlist to the specific or target FPGA’s

resources and interconnects them to the FPGA’s internal logic and I/O resources. During this

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00007-2 161

process, the physical design layout is determined. This is the final development process that

manipulates the design before it is programmed into a device. Each manufacturer performs

implementation differently, but the concept is basically the same. The process described in this

section is like the one performed by Xilinx’s implementation tool. The implementation process

takes four steps to convert the mid-level netlist to a final programming file—translate, map,

place and route, and generate programming file, see Figure 7–2.

7.2.1. Translate

The translation process takes the input netlist and merges it with the design constraints (if

provided) to create a native generic database (NGD) output file, see Figure 7–3. Acceptable

netlist formats depend on the implementation tool, a common one is EDIF, and the

manufacturer’s specific format (e.g., Xilinx’s is NGC). The synthesized input netlist is

automatically fed into the translation process when using a complete package development

tool. However, the implementation tool must be directed to the location of the synthesized

netlist created by a third party synthesis tool. The NGD netlist describes the logical design in

terms of Xilinx’s primitives. If an error is detected during translation, the tool stops.

The errormust be corrected and the implementation processmust be restarted from the beginning.

Translate Map Place & Route Generate Program File
Netlist

Implementation

Programming File

Figure 7–2: Implementation Steps

Merge Netlist &
Constraints

Translate

.NGC .NGD

Figure 7–3: Translation Process

Implementation

Programmer

Simulator

Synthesized Netlist

Programming File

Gate-Level Netlist

Figure 7–1: Implementation Phase Inputs and Outputs

www.newnespress.com

162 Chapter 7

Once translation is complete, the NGD output netlist is automatically fed into the mapping

process. In addition to the NGD file, an optional post-translation simulation file can be

generated. This file is used to verify that the translation process has not changed the

design. A post-translation simulation file may not be offered by all implementation tools,

so consult your implementation’s user’s manual. This is an incremental simulation and not

the gate-level simulation.

7.2.2. Map

Mapping takes the NGD netlist, which is a logical design, and maps it to the target FPGA,

see Figure 7–4. First, a logical design rule check (DRC) is performed on the NGD netlist.

Then, the logic is mapped to the target FPGA’s logic cells, I/O cells, and other internal

resources. Errors encountered during the mapping process cause the implementation tool to

stop. All errors must be corrected, and the implementation process must be restarted from the

beginning. The output from the mapping process is a native circuit description (NCD) file.

NCD is the physical representation of the design that is mapped to the target FPGA’s internal

resources or components. The NCD is the file that feeds into the place-and-route stage.

In addition to the NCD output file, an optional post-mapping simulation file can be generated.

This file is used to verify that the translation process has not changed the design. The post-mapping

simulation file may not be offered by all implementation tools, so consult your implementation’s

user’s manual. This is an incremental simulation and not the gate-level simulation.

7.2.3. Place and Route

The place-and-route process takes the NCD file from the mapping process and interconnects

the design (places and routes it), see Figure 7–5. After the place-and-route process is

complete it outputs an NCD file, which is used to create the bit stream file that is used to

program the FPGA. The optional gate-level simulation and timing file can be generated to

perform simulation. This gate-level simulation is more meaningful than post-translation

and post-mapping simulation, because gate-level simulation files provide actual gate delays

based on routing and placement. I would perform the post-translation and post-mapping

simulations only for troubleshooting purposes. For example, if a functional simulation was

successful but the gate-level one was not, the incremental simulation can help narrow down

where the problem first occurred.

Mapped to
Resources

Map

.NGD .NCD

Figure 7–4: Mapping Process

www.newnespress.com

Implementation 163

7.2.4. Generate Program File

The final implementation step is to generate the programming file. The NCD output file from

the place-and-route step is used to create the FPGA’s programming file or bit stream,

Figure 7–6. It could reside on a nonvolatile device, like a PROM, or within the FPGA device.

This file can be automatically downloaded to the FPGA at power-up or when commanded by

an external device, like a microprocessor. The process of loading the bit stream into the

FPGA is called configuration. The datasheet, user’s guide, or application notes define the

configuration and programming options. Data loads can be a combination of serial, see

Figure 7–7, or parallel, with the FPGA acting as the master, see Figure 7–8 (controlling

Place &
Interconnect

Place & Route

.NCD .NCD

Figure 7–5: Place-and-Route Process

Bit Stream

Generate
Program File

.NCD .Bit

Figure 7–6: Generate Programming File

Data

Clock

DataIN

Clock

Microcontoller FPGA

Figure 7–7: Serial Slave Configuration

Data[7:0]

Select

Clock

RD/WR

8

Busy

MicrocontollerFPGA

D[7:0]

Sel

Clk

RD/WR

RY/BY

Figure 7–8: Parallel Master Configuration

www.newnespress.com

164 Chapter 7

external device), or slave (being controlled by external device). They can be programmed one

at a time or daisy-chained to program multiple loads, see Figure 7–9. The FPGA has

configuration pins that are used during the configuration process. The manufacturer provides

the specific operating details of these pins in its documentation (i.e., datasheet, application

note, user’s guide). The implementation tool provides various options for creating the bit

stream. The bit-stream data can be compressed or uncompressed. Compressed bit-stream data

are of a fixed size and the manufacturer provides this information. Oftentimes, security

options are available to prevent unauthorized downloading of the bit stream. Once the bit

stream is ready, the next step is to program the device that will hold this file.

7.3. Implementation Tools

The tools needed are an implementation tool and a design editor. The implementation tool

performs the design implementation or PAR, and the editor is needed for design modification.

The implementation tool is offered by the FPGA’s manufacturer and generally not a third-party

company. These tools use proprietary algorithms to process the synthesized netlist and produce

the final programming file. The general setup is pretty simple, even when using a synthesized

netlist, from a third-party tool. The synthesized netlist is automatically fed into the

implementation process for complete package development tools. On the other hand, the tool

must be directed to the synthesized netlist for a third party’s netlist. Even though the setup

seems easy, working with the tool to get the program file that meets your needs can be

challenging. A lot of information about the target FPGA, such as part number, speed, and

package, has to be provided to the synthesis tool and is contained in the output synthesized

netlist. Because of all the work done by the synthesis process, it seems like implementation

should be easy. This is not the case. Putting the design into the FPGA and interconnecting can

be the most challenging and time-consuming part of the development process.

7.4. Implementation Inputs

The minimum input to the implementation phase is the synthesized netlist from the synthesizer

with an optional user-defined constraint file. When using a third party synthesizer, the netlist

must be in a format that is readable by the manufacturer’s implementation tool. So, consult

your user’s manual to make sure the formats are compatible. However, if you are using a

DataOUT DataOUT

Clock

Microcontoller

DataIN DataOUTDataIN DataOUTDataIN

Clock

FPGA 1

Clock

FPGA 2

Clock

FPGA 3

Figure 7–9: Serial Daisy Chain Configuration

www.newnespress.com

Implementation 165

complete package development tool, then the tool automatically creates the correct format

and feeds it into the implementation process. The user-defined constraint files contain such

information as timing, pin assignments, and internal placement for logic.

User-defined constraints put restrictions on the implementation tool and should be used

with caution. Constraints make the tool work harder, because it must consider the

restrictions that it must follow and still do its job. Implementing a design that utilizes most of

the device’s resources can greatly increase implementation time and may even cause the

process to fail. I am not saying that constraints are bad and should not be used, because they

can be necessary. I am just saying to consider all the factors when determining when and

what should be constrained. If at all possible, try to keep the device utilization below a

reasonable percent. As stated before, high resource utilization increases implementation time

and makes it difficult if not impossible for the design to be placed and routed. What is

reasonable? I leave it to you to determine a reasonable percent, but consider the room

needed for potential growth and spare pins. Some companies predefine how to derate the

resources. I like 50%, but that is not always possible, so this number changes from design

to design.

Over the years, preassigning pins to an FPGA has been my most used constraint. Assigning

pins are most beneficial when they are based on the placement of the components that will

interface with the FPGA. The board designer will thank you or you will thank yourself,

because this can make board routing so much easier and faster. Many other factors may

be considered when determining if the tool or you should assign pins. If you do not care,

then I would say first let the tool decide, you always have the option to redefine later.

In fact, even if you do care, you can let the tool make the initial pin assignment, review

the list, and make changes as necessary. This reduces the restrictions put on the tool, and

you still get what you want. Because each situation is different, you should consider the pros

and cons and then make your decision.

7.5. Implementation Outputs

Outputs from implementation are the bit stream file and an optional simulation netlist.

Implementation also creates a lot of files and directories, some you will care about and others

you will not. Some information that you may find important is

• Pin assignments.

• Timing information.

• Number of unrouted signals.

• Errors and warnings.

• Utilized resources.

www.newnespress.com

166 Chapter 7

Xilinx’s ISE generates a report file for each of the implementation stages and several other

different files within each stage:

• Translate

Translate report.

Floor plan design.

Post-translation simulation model.

• Map

Mapping report.

Post-mapping static timing.

Post-mapping floor plan design.

Post-mapping simulation model.

• Place and route

Place-and-route report.

Clock region report.

Asynchronous delay report.

Pad report.

Examples of these files are provided in the tutorial section. For simple designs, you may need

only the report that contains the pin assignments. However, for complex designs, where

the tool is having difficulty meeting the timing or placing the design, it will be necessary

to view some of the other files and use the advanced implementation tool’s features.

Now that we have gone through what it takes to get the design through place and route, this is

a good time to provide a tutorial.

7.6. Implementation Tutorial

This tutorial continues to use Xilinx’s Webpack ISE 10.1 for the FPGA development.

Most if not all complete implementation tools can process the design from synthesis all the way

through to generating the programming file without stopping, if no errors are encountered.

Implementation Assumptions

• Preinstalled Xilinx’s Webpack ISE 10.1.

• ISE synthesized netlist.

www.newnespress.com

Implementation 167

• Basic knowledge of the Webpack ISE.

• Continuous processing from synthesis and Webpack is open.

Expand Implementation Options

Click on the þ beside Implement Design to reveal the three implementation steps,

see Figure 7–10. Notice that Synthesis - XST has a checkmark, indicating the process

was successful.

There are two implementation options: Option 1 performs all three processes in one step,

option 2 performs each process individually. Regardless of which option is selected,

the same information is provided. If an error occurs during any part of the process, the tool

stops, the error(s) must be corrected before continuing, and the entire process must be

repeated. Steps for both options are demonstrated in this tutorial. Select one option or try

both.

Option 1. Implement All

Select and right click on Implement Design. This shows all processing options,

see Figure 7–11.

Select Run or Rerun. This performs entire implementation process (i.e., translation,

mapping, and placing and routing) at once.

Note: Selecting Rerun All performs both the synthesis and implementation processes.

Option 2. Individual Implementation

The individual processes are performed one at a time.

Implementation Steps

Synthesis Successful

Figure 7–10: Implementation Steps (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

168 Chapter 7

Translate Design

Translation is the first of the implementation processes. The input to this process is a

synthesized netlist and user-defined constraint file(s). Native generic complier (NGC) is the

synthesized netlist format. Since the development tool for this tutorial performs both synthesis

and implementation, the netlist is picked up by the tool automatically. At this point, no

user-defined constraints have been established. Constraints are not always known or defined

in the beginning and can be added later, which is the case for this tutorial. The output is a

native generic database or NGD file, which is automatically fed into the mapping process.

Click on the þ beside Translate Design. This shows that a translate report, floorplan

design, and post-translate simulation model file are created and made available after the

translate step. Each of these options can be run individually or all at once, as in this case, see

Figure 7–12.

Run Translation

Select and right mouse click on Translate. Select Run.

Translate Report

Once the design has been translated successfully, a checkmark appears beside Translate.

Double click on TranslationReport to see the report in the viewing area, see Figure 7–13.

As the design is being translated, the transcript window shows the status, see Figure 7–14.

Floorplan Design

Floor planning is an advanced feature that can allow you to physically locate logic in the FPGA.

This feature is not discussed in this book. However, it will be used to for pin assignment.

Implement entire design in one step.

Figure 7–11: Implement All (Material based on or adapted from figures and text owned by
Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Implementation 169

Generate Post-translate Simulation Model

This produces a simulation netlist or file that allows you to verify that the translation step did

not change the design. The post-translate simulation output file may not be an option for all

implementation tools, so consult your implementation’s user’s manual. Run the Generate
Post-Translate Simulation Model option to create the simulation file. This file is

for simulation purposes only and cannot be synthesized.

Translate Only

Figure 7–12: Perform Translate Implementation (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Synthesized Netlist

Translation Output File

Figure 7–13: Translation Report (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

170 Chapter 7

Select and right mouse click on Generate Post-Translate Simulation Model.
This reveals its options, see Figure 7–15.

Select Run.

Once this process is complete, open the report to see the processing information and path to

the simulation netlist. For this tutorial, the post-translation simulation is not performed.

Click on the þ next to Generate Post-Translate Simulation Model.

Double click on Post-Translate Simulation Model Report. The report opens in

the viewing area, see Figure 7–16.

Now that the translation has successfully been performed, the design will be mapped.

Translation Status

Figure 7–14: Translation Transcript Status (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Figure 7–15: Generate Post-Translate Simulation Model (Material based on or adapted from
figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used

in Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Implementation 171

Map Design

The translation output file NGD file is automatically fed into the mapping process. It is used

to map the design to the internal FPGA logic.

Select and right mouse click on Map. To view the mapping options, see Figure 7–17.

Select Run.

The mapping process has been successfully completed, which is indicated by the checkmark that

appears next to Map in the process window and the Transcript window, see Figure 7–18.

Generate Post-Map Simulation Model

Like the translation process, you have an option to generate a simulation netlist. The purpose

of the post-mapping simulation file is to verify that the mapping process has not changed

the design. This file is good only for simulation and cannot be used for synthesis. This

tutorial shows you how to create the netlist but does not perform this simulation. Personally,

I would perform this simulation only for troubleshooting reasons. If problems are found in

the gate-level simulation and not in the post-synthesis or functional simulation, then I use this

Simulation File

Figure 7–16: Post-translation Report (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

172 Chapter 7

or a post-translate simulation file to determine exactly which process changed the design.

For now, this is omitted.

Select and right mouse click on Generate Post-Map Simulation Model. Select Run.
The post-mapping simulation netlist is created.

View Post-Mapping Report

Click on the þ next to Generate Post-Map Simulation Model.

Select and right mouse click on Post-Map Simulation Model Report and open file.

The report opens in the viewing area, as shown in Figure 7–19, where the path and filename

of the simulation netlist is provided.

Place and Route Design

The next implementation step is place and route.

Select and right mouse click on Place & Route. This shows the place and route options,

see Figure 7–20.

Select Run.

Figure 7–17: Perform Map Implementation (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Implementation 173

A checkmark beside Place & Route indicate the process was successful, see Figure 7–21.

All the place-and-route reports are now available. There are several reports, but for the most

part, unless you are having problems or need to work with other aspects of the tool for

constraints or other things, you probably will not even bother opening the other files.

The place-and-route and pad reports are generally the ones of interest.

Double click on Place & Route Report. This opens the report file in the viewing area,

see Figure 7–22. It could have been opened using a standard text editor. The file has the

design’s name with .par extension, so this file is mode2n3.par. The report provides

details about the place-and-route process, such as device utilization, status of placement,

and routing. Place and route could have been performed by typing something like par -w -
intstyle ise -ol std -t 1 mode2n3_map.ncd mode2n3.ncd mode2n3.pcf
on the command line.

The default options were selected for the various levels; however, these options may have to

be adjusted for designs that are difficult to place and route. The device utilization is the area

of most interest, because it defines how much of the internal resources have been used.

Higher utilization makes it more difficult for the implementation tool to work. This summary

gives you a good indication whether the part is sufficient or you need to go up a size or two.

So, view this area to make sure there is room for growth inside the FPGA.

Mapping Status

Successful

Figure 7–18: Successful Mapping Implementation (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

174 Chapter 7

Post-Mapping Simulation File

Figure 7–19: Post-map Simulation Netlist (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Figure 7–20: Place-and-Route Implementation (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Figure 7–21: Successful Placing and Routing (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Effect Levels

Utilization
Summary

Figure 7–22: Place-and-Route Report (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

View Pin Assignments

Double click on Pad Report. The pad reports opens in the viewing area; however, it could have
been opened using a text editor, since it is a text file. It contains the filename for the input and

output files, part information, and I/O signals information, see Figure 7–23. Each pin on the

FPGA package is listed in this file. Information such as pin name, pin number, usage, direction,

I/O standard, bank inwhich it is located, drive current slew rate, and so forth are provided. Initially,

the implementation tool was allowed to run without constraints, so the I/O pin assignments were

decided by the tool. Table 7–1 shows the I/O pin assignments for the mode2n3.vhd design.

Create Constraints

We can make changes in the I/O pin assignments through the constraint file. The tool

automatically created a constraint file, since one was not previously provided, Figure 7–24.

The implementation tool assigned reset to pin 86 and input_pulse to pin 92. Let us say

the board layout has the interfaces for reset and input_pulse signals located on the

other side of the board. These signals can be reassigned to more appropriate pins, based on

the board layout, see Figure 7–25.

Input & Output Filenames

Figure 7–23: Pad Report (Material based on or adapted from figures and text owned by Xilinx,
Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE WebPackä

software version 10.1.)

www.newnespress.com

Implementation 177

Table 7–1: Pin Assignments

Pin Name Pin Number Direction

narrow_pulse P5 Output

valid_pulse P9 Output

mode2 P14 Output

wide_pulse P85 Output

reset P86 Input

invalid_mode P88 Output

clock20Mhz P89 Input

mode3a P91 Output

input_pulse P92 Input

reset

input_pulse

Figure 7–24: Constraint Files (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

178 Chapter 7

Change Reset and Input_pulse Pin Assignments

To change the pin assignments for the reset and input_pulse signals, use the

floorplanner. This option is found in the Processes window.

Select and right mouse click on Floorplan Area/IO/Logic-Post-Synthesis in the

Processes window. This shows the options, see Figure 7–26.

Select Run. The Floorplan window opens, see Figure 7–27.

Select Package View. This makes the package view active. Holding the cursor over the

pins, reveal their types, such as power, ground, clock, etc.

Select Tools ! Allow Mode. If in Select Mode, you will not be able to assign pins.

Drag and Drop Pin Assignment

Select the cell block to the left of input_pulse and drag it to P37, see Figure 7–28.

The pin area will become shaded, indicating a signal is located at that pin. Notice that the tool

completed the bank information. Additionally, the tool will not allow you to assign a

signal to a restricted pin, such as power or ground.

Select and Type Pin Assignment

Select the Loc cell column for reset. This places cursor in a cell for typing, see Figure 7–29.

Type in P63, to indicate the pin location for reset.

Pin 63 is now shaded and no other signal can be placed in this location unless this pin

assignment has been removed.

ResetInput_Pulse

Pin 1

Watch Dog

In
pu

t S
ig

na
l

Figure 7–25: Board Layout

www.newnespress.com

Implementation 179

The constraint file could have been created prior to placing and routing, and sometimes

this is necessary. The previous two ways show how easy it is to reassign pins by either

drag and drop or selecting and typing. If a user constraint file has not been created and

applied to the implementation tool, then the tool automatically creates one, as in this tutorial.

Sometimes, it is best to let the tool make the first decision, then reassign as necessary.

Save and Close the Floorplanner

Notice that Implement Design in the Processes window has a question mark (?), as its
status, meaning implementation has to be repeated, see Figure 7–30.

Select and right mouse click on Implementation Design. Select Run.

After Implement Design has been successfully completed, we can view the pin changes

in the constraint file.

Figure 7–26: Signal Pin Reassignment (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

180 Chapter 7

Select and right mouse click on mode2n3.ucf on the Sources tab in the Sources
window.

Select Open. The constraint file opens in the viewing area, see Figure 7–31.

Select the Timing Constraint tab in the Sources window. Since this design has only

one constraint file, Constraint Files is set to mode2n3.ucf. If there were additional

constraint files, they would be viewable and selectable by using the pull-down arrow.

Select Show Constraints from Specified File. This option selection matters only if

more than one constraint file is associated with the design.

Select Port. The new pin assignments are shown in the viewing area, see Figure 7–32.

The pin assignments can be viewed here but not modified.

Notice that the other pins do not show the pin assignments from the pad report. This

means that these pins could be reassigned during another place-and-route. This is prevented

Figure 7–27: Floorplan Window (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Implementation 181

input_pulse

Select
this box

Bank 5

Figure 7–28: Drag and Drop Pin Assignment (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Reset

Select

Figure 7–29: Typed Pin Assignment (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Figure 7–30: Reimplementation (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Figure 7–31: View Constraint File (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Implementation 183

by locking or constraining the pins in a specific location. Using either method, assign

(i.e., drag and drop or select and type) the remaining pins to the locations stated in the pad

report or some desired location. Then, view the pin assignments in the constraint editor,

see Figure 7–33, and the locked pin report, see Figure 7–34.

Pin assignment is only one of many types of constraints that can be added using the

floorplanner. The tool can be directed to place specific signals in certain banks. Banks are

basically groupings of logic. If you do not want to constrain a signal to a pin, you have the

option to constrain it to a bank. An entire book could be written on the different things

that can be done during implementation. This chapter has given you a good headstart.

Create Gate-Level Simulation Netlist

Double click on Post-Place & Route Simulation Model Report. This will run
Generate Place & Route Simulation Model, create the gate-level simulation file,

and open the report in the viewing area, see Figure 7–35.

Time Constraint Tab

Select

Additional Constraint File

Figure 7–32: Pin Assignment (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

184 Chapter 7

Implementation has successfully been completed, as indicated by the checkmark beside

Implement.

Gate-Level Simulation

Two gate-level files are used for simulation: One is the netlist with file extension .vhd and

the other contains timing information with file extension .sdf. These two files can be

used to perform gate-level simulation and verify that the implementation process did not

change the design. The same testbench used for RTL and functional simulation can also be

used for gate-level simulation. The sdf will have to be added to your simulation project,

so consult your simulator’s user’s manual.

Create a Programming File

The final step in implementation is to create the programming or bit-stream file. This file

is used to program the FPGA. It may reside in a nonvolatile device or on the FPGA.

Constrained Pin Assignments

Figure 7–33: Constrained Design Signals (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Implementation 185

The datasheet for this device states that an external nonvolatile device should be used to hold

the configuration data. Seven modes are supported but slave serial is selected.

Select and right mouse click on Generate Programming File. This reveals the several

options, see Figure 7–36.

Select Properties. In the pop-up window are several categories, each with different

options that can be selected, see Figure 7–37. Keep the default selections.

Select OK.

Double click on Programming File Generation Report. This will create the

programming file and open the report in the viewing area, see Figure 7–38. The programming

file or bit stream has been successfully created and is named mode2n3.bit.

This concludes implementation. The bit-stream file for this design is available and ready to

be programmed into a PROM.

Figure 7–34: Locked Pin Report (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

186 Chapter 7

Simulation
Files

Figure 7–35: Gate-Level Simulation File (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Figure 7–36: Generate Programming File Options (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

Implementation 187

Bit Stream File

Figure 7–38: Generate Bit Stream (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Additional Options Available

Figure 7–37: Programming File Additional Options (Material based on or adapted from figures
and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

www.newnespress.com

188 Chapter 7

7.7. Chapter Overview

Implementation can be a long and complex process. It takes the mid-level netlist and converts

it to a file that can be used to program the FPGA. When using a complete package

development tool, the synthesized netlist is automatically fed into the implementation phase,

while it is necessary to direct the tool to this netlist if it was created by a third party tool.

For complex designs, the implementation tools have many options than can be used to

overcome place-and-route obstacles. Consult the datasheet, user’s guide, or other

manufacturer’s materials to find the acceptable configuration options for your FPGA.

Implementation Phase Tips

• Remember to lock pin assignments; otherwise they are subject to change.

• Create constraints only when necessary.

• Implementation processes can be performed continuously, if no errors are encountered.

• Use additional tool options to help resolve implementation problems.

Chapter Links

For your convenience, here is a list of links to some free complete development tools:

Xilinx ISE WebPack: www.xilinx.com/tools/designtools.htm.

Altera Quartus II, Web Edition: www.altera.com.

www.newnespress.com

Implementation 189

This page intentionally left blank

CHAPTER 8

Programming

8.1. Introduction

Programming is the final FPGA development phase and the introduction of hardware.

The firmware has been synthesized, simulated (I hope), implemented, and a programming

or bit stream file created. This file contains the design’s functions and the interconnection

information that is used to configure the FPGA. It is now time to take the bit stream and

put it into a nonvolatile or volatile memory device. Manufacturers and third party vendors

offer programming software, download cables, and programmers that are used to program the

specific device. In my opinion, this phase is not as intense; however, it is sometimes very

challenging but just as much fun as simulation, because hardware is involved.

In this chapter, you will learn

• Programming options.

• Hardware considerations.

• Programmers options.

• How to program, through a tutorial.

8.2. What Is Programming?

In general, programming involves transferring the bit stream into a nonvolatile or volatile

memory device and configuring or programming the FPGA. However, some FPGAs have

internal memory and can hold the configuration without an external memory device. Input to

the programming phase is a bit-stream or programming file and the output is a programmed

device, see Figure 8–1.

Configuration can involve one or a series of daisy-chained or connected FPGAs. Nonvolatile

devices, such as PROMs, may be located on the same board as the targeted FPGA (see

Figure 8–2) or on another board (see Figure 8–3). The configuration may involve transferring

serial or parallel data to the FPGA. The FPGA may be operating in either master (controlling

© 2010 Elsevier Inc. All rights reserved.
Doi:10.1016/B978-1-85617-706-1.00008-4 191

configuration) or slave (not controlling configuration) mode. A configuration guide or similar

material provided by the manufacturer specifies the details on the supported configuration

and modes. The memory device must have enough memory to hold the design with room for

growth. Uncompressed bit-stream size is defined by the manufacturer in the configuration

guide or datasheet. For example, Xilinx’s configuration guide states that the XC3S50A/AN

uncompressed size is 437,312 configuration bits. A two-step process is used to configure the

FPGA with the bit-stream file when using an external memory device. In step 1, the bit-stream

file is transferred to the memory device; and in step 2, the memory device configures the FPGA.

A word to the wise, for parallel data transfers, make sure you know which bit is transmitted first

(i.e.,MSBor LSB). Once, I wasworkingwith a group that assumed thewrong bit order. The error

occurred because the designer assumed the bit order was consistent with his past experience.

Unfortunately, this was not the situation, and the bit order was reversed. It took a lot of hours of

troubleshooting the board, readingmany application notes and othermaterial, before discovering

the error. The worst part was that the board layout would not work for this assumption. So the

only corrective action was to have someone write a software program to reverse the bit order.

Programming FPGA
Bit Stream Configuration

Figure 8–1: Programming Interfaces. Note: Multiple pins are represented by thick pin lines.

Lines

Configuration
PROM

FPGA

Circuit Board

Figure 8–2: Nonvolatile and FPGA on the Same Board. Note: Multiple pins are represented
by thick pin lines.

Configuration Lines

Circuit Board 2Circuit Board 1

FPGA
PROM

Figure 8–3: Nonvolatile and FPGA on Different Boards. Note: Multiple pins are represented
by thick pin lines.

www.newnespress.com

192 Chapter 8

Each time a change was made, the bit order had to be reversed prior to reprogramming, at least

until the next revision of the board. In this case, the assumption cost money and time.

8.3. Tools and Hardware

The tools needed for programming depend on the selected memory device. If a

microprocessor holds the bit-stream file, then it is merged with the software build. The

processor configures the FPGA on power-up or at a specific time. For nonvolatile memory

devices, such as PROMs, programming options include a joint test advisory group (JTAG),

in-system programming (ISP), and third-party programmers.

8.3.1. Joint Test Advisory Group

IEEE 1149.1, Standard Test Access Port and Boundary Scan Architecture, commonly referred

to as JTAG, is access pins or ports on a JTAG-compatible device that provide visibility inside

the device. A lot of times the terms JTAG and boundary scan are used interchangeably. Tools

needed for JTAG are JTAG software and a software host, and the hardware is a JTAG cable.

The host is where the software is located, like a personal computer. The JTAG cable may be a

USB connection to the computer with a JTAG connector on the other end. JTAG software is

the interface used to transfer the bit stream from the host to the programmable device. The

programmable device is connected to a JTAG mating connector, where the JTAG connector

is connected. These tools are available from the manufacturer or a third party vendor.

As FGPA packages move away from leaded through-hole parts to surface mount packages

(i.e., leadless), it becomes more difficult to use standard manufacturing testing equipment,

like the bed of nails to verify populated boards. This was especially difficult on boards with

ball grid arrays (BGAs); and this greatly reduced the testability, which lowered the percent

of testable area coverage. Therefore, JTAG was developed as a testing and debugging

mechanism. It is used to detect manufacturing faults on populated boards. However, over

time, it was realized that JTAG ports could be used for programming. Many devices support

JTAG, which is indicated on the FPGA’s datasheet. The pins are defined and labeled as

• TDI (test data in).

• TDO (test data out).

• TCK (test clock).

• TMS (test mode select).

• Optional TRST (test reset).

Oftentimes, these pins can be used for I/O after configuration. Personally, I never liked reusing

them, but you may have a different opinion. A JTAG programming scenario involves

transferring the bit stream from a host through the JTAG cable to a header, test pins, or a

www.newnespress.com

Programming 193

connector on a board that connects to the JTAG-compatible nonvolatile memory device, see

Figure 8–4. The JTAG device configures the slave mode FPGA on power-up. JTAG also

supports daisy-chain configurations. Generally, a GUI is provided to guide you through the

program process. FPGA manufacturers generally offer JTAG programming tools, cables, and

any necessary supplies. Often, they also provide a list of third party vendors or distributors

where you can purchase JTAG materials. JTAG can be a great way to quickly incorporate

design changes. I found this way to work well with demo boards, prototypes, and breadboards.

8.3.2. In-System Programming

In ISP, the device does not have to be removed from the system or board to be programmed.

Sometimes, the device can be programmed while the system is still operating. The datasheet

specifies whether the device supports ISP. The tool needed for ISP is software on a host,

and the hardware is a download cable. Programming can be done by connecting test pins to

automated test equipment (ATE) or a board connector. Some of the supported protocols

are the IEEE Standard for Boundary-Scan-Based In-System Configuration of Programmable

Devices (IEEE 1532), JTAG, and a serial peripheral interface (SPI).

An ISP programming scenario follows like this: Use the download cable from the host to

connect to a board’s test pins, header, or connector; then download the bit stream in either the

ISP-capable nonvolatile memory device or the FPGA, see Figure 8–5. If the FPGA has

volatile memory it must be reprogrammed whenever power is cycled (on ! off ! on). There

are many good reasons to use this option if available. If the FPGA is located in an area that is

hard to reach or the device is difficult to remove but access to its programming connector is

easy, then ISP is the best programming option. Then, you need only to connect to the easy-

access connector for ISP programming.

8.3.3. Third Party Programmers

There are a variety of hardware and software programming options available from third-party

manufacturers. They may consist of a GUI software package that can be loaded onto a host, a

programming base that connects to the computer, and some socket adaptors or an all-in-one

Configuration Lines

PROM FPGA

TDI

TDO

TCK

TMS

TDI

TDO

TCK

TMS

JTAG Cable
Test Pins

Host

Figure 8–4: JTAG Setup. Note: Multiple pins are represented by thick pin lines.

www.newnespress.com

194 Chapter 8

programmer. The programming base is what holds the socket adaptor for programming.

A socket adaptor is where the programmable device is placed to get programmed. Each

socket adaptor is designed to hold a specific package style. For example, you cannot put a

676 fine-pitch ball grid array (FBGA) into the socket for a 100-pin thin quad flat pack

(TQFP).

Companies like Data I/O offer manual and automated programmers. Manual programmers

require the user to manually program (hit the Program button) for each batch of devices. It

does not automatically program one batch after the other. Manual programmers are ideal for

low-volume programming. If you have one or just a few devices, then a manual programmer

should be sufficient. The programmer can program one or more devices at a time, depending on

the size of the adaptor. Programmers come with sockets to fit specific packages; and other ones

can be purchased if your package is not supported. Manual programmers come as all-in-one

or complete programming packages, while others require you to purchase software that loads

onto a computer or host, a programming base, base-computer cable, and sockets. This

programming option is best used for programmable devices that are in sockets (generally,

boards like prototypes and breadboards), because typically sockets are not allowed on

production boards.

Automated programmers are best for production or medium- to high-volume programming.

They can program faster and more devices than manually. Automated programmers vary in

size and supported packages, and some are designed to easily integrate into production

systems. Production programmers are designed for an automated environment, meaning they

generally have advanced features not found on the ones best for low volume. For example,

they may have the ability to perform pick-and-place functions or simultaneously program

multiple devices using different bit-sream files.

Manufacturers offer programming tools for their devices, and third party companies offer a

wider variety of programmers and other supplies that support many different manufacturers.

Additional information about Data I/O can be found at www.data-io.com/index.asp.

Download Cable

Host

Test
Pins

ISP
DEVICE

System

Figure 8–5: ISP Setup

www.newnespress.com

Programming 195

8.4. Hardware Configuration

As a part of programming, the FPGA can act as either the master or the slave for configuration.

The configuration pins on the FPGA are set to specific values (high or low) to indicate whether

it is the master or the slave. The configuration guide or datasheet defines the configuration pin

settings. For example, Table 8–1 shows the configuration pins’ settings for Spartan 3 modes.

It is always a good idea to make programming pins accessible via test points, test pads, or

connectors, see Figure 8–6. This can make troubleshooting and programming easier. Even

though some FPGA manufacturers offer internal logic analyzer features (not discussed in this

book), it is good to keep troubleshooting and debugging in mind when designing a board.

When BGAs were fairly new in FPGA packaging, it became common practice for my

digital codesigners to sacrifice the area under the FPGA to expose all the balls. At this

time, internal debugging tools were new and not many companies offered them, this

made troubleshooting very difficult. I learned a lot about the dos and don’ts when it came

to board design and troubleshooting consideration.

Since this is my first real opportunity to talk about hardware and board design, I am going to

give you some good general tips I learned along the way. Although board design is not a

Table 8–1: Configuration Pins

Mode M2 M1 M0

Master serial 0 0 0

Slave serial 1 1 1

Master parallel 0 1 1

Serial parallel 1 1 0

JTAG 1 0 1

FPGA

TP1

TP11

TP2

Test
Connector

TP3

TP6

TP5

TP1

TP7

TP4

TP10

TP9

TP8

Figure 8–6: Test Pads and Connector for Troubleshooting

www.newnespress.com

196 Chapter 8

development stage, it is very important and really cannot be left out of the process,

especially when you consider that the FPGA is hardware and most likely will be verified

in a lab and need some troubleshooting.

Tip 1. When daisy-chaining devices, make sure to add the ability to jump out or remove any

of the devices, if necessary. Sometimes, a device may cause problems, and having the

ability to remove it from the chain helps in isolating the problem.

Tip 2. It is always a good idea to design in some debugging and troubleshooting mechanisms,

such as test points, pads, or connectors. Most likely, a logic analyzer will become

your best friend for verifying, troubleshooting, or just working with the design.

Consider using test connectors that mate with lab equipment hardware. This makes

your life so much easier. One of my favorites is a Mictor connector that mates directly

with Tektronix’s logic analyzer. This made life so much easier than having flying leads

soldered to the board. Plus, with surface mount packages, probing is very difficult and,

in some cases, impossible. The test connector can always be removed from production

boards. As shown in the simulation phase, lab data can be read into a testbench using a

connector, like a Mictor, which makes capturing the data a lot easier.

Tip 3. Many FPGAs require several different voltages (such as supply or signal), so be sure

to consult the datasheet for the acceptable ranges and the appropriate supply capacitors.

Tip 4. Sometimes, it is desirable to select a specific FPGA package based on the ability

to upgrade to a larger size (more internal resources) in the same package without

respinning or re-laying out the board. If this is the case, then make sure the two

devices are pin-for-pin compatible. The power and grounds may be in different locations.

So, if the plan is to start with one specific FPGA size with the goal of being able to

replace it with a larger size without having to redo the board, at a minimum, make

sure both selections are pin compatible and have the same voltage requirements.

Tip 5. If you have unused input pins, make sure to read the user’s guide, application notes,

or other appropriate material to determine if it is necessary to connect them to a

known state. This can be as simple as making a selection in the implementation tool.

Although this is simple, it does require some action on your part. Once, I was asked

to help troubleshoot a programmable logic device design created by a subcontractor

that was causing a lot of random problems and delaying other critical project activities.

I discovered that the designer had not properly terminated the unused inputs. All that was

needed to fix this problem was selecting an option in the implementation tool that tied

the unused inputs to a known state. As simple as it seems, if you do not know what to

look for, this could stop you from getting a design working properly.

The bit-stream or programming file created for the mode2n3 design is ready to be transferred

into a nonvolatile device or the FPGA. Now let us get ready to download it to hardware.

www.newnespress.com

Programming 197

8.5. Programming Tutorial

In this tutorial, Xilinx’s Webpack ISE 10.1 is used to transfer the mode2n3 bit-stream

file directly into the FPGA via JTAG programming. The FPGA configuration and lab

verification are not covered by this tutorial.

Programming Assumptions

• Bit stream file available.

• FPGA is connected to the JTAG connector.

• JTAG cable.

• JTAG cable is connected to PC from demo board.

• Basic knowledge of the Webpack ISE.

Configure Device

Select and right mouse click on Configure Target Device. This shows the options for

the configure target device process, see Figure 8–7.

Select Run. Because no project file has been established, the pop-up window in Figure 8–8

appears. This will allow you to create a project.

Select OK.

Figure 8–7: Configure Device (Material based on or adapted from figures and text owned by
Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE WebPackä

software version 10.1.)

www.newnespress.com

198 Chapter 8

Make sure Configure devices using Boundary Scan (JTAG) is selected,

see Figure 8–9.

Select Finished.

Add Programmable Device to JTAG Chain

Right click in the open area to add the programmable device. This shows the different JTAG

options available, see Figure 8–10.

Select Add Xilinx Device.

Figure 8–8: Create Configuration Project (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

Select this option

Figure 8–9: JTAG Setup (Material based on or adapted from figures and text owned by Xilinx,
Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE WebPackä

software version 10.1.)

www.newnespress.com

Programming 199

Adding Bit-Stream File

The bit-stream file created by the implementation phase is now added to the project so it can

be transferred to the programmable device, see Figure 8–11.

Select mode2n3.bit.

Select Open.

The window shows the FPGA device added to the JTAG chain and the bit stream that will be

used for programming, see Figure 8–12. Since the JTAG cable is connected, the device is

automatically detected. If there were more devices in the chain, they would be shown as well.

Right click or select the symbol of the Xilinx device. The Processes window shows your

programming options, see Figure 8–13.

Add Device

Figure 8–10: JTAG Options (Material based on or adapted from figures and text owned
by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE

WebPackä software version 10.1.)

200 Chapter 8

www.newnespress.com

Figure 8–11: Bit Stream Added to Project (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

FPGA & Bit Stream File

Figure 8–12: JTAG Chain (Material based on or adapted from figures and text owned by Xilinx,
Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE WebPackä

software version 10.1.)

Right click on the FPGA icon.

Select Program.

Once the device has been successfully programmed, a successful programming message will

appear:

Program Succeeded

Now the FPGA is programmed and ready to be tested. You can use a logic analyzer to

verify the design. An automatic testbench can be written to read the lab data, compare them

with the simulated data, and write the results to a file or computer monitor. Many options

are available for programming an FPGA, the JTAG method used in this tutorial is just one.

8.6. Chapter Overview

The programming phase is exciting because you are starting to work with hardware. All

the hard work put into developing simulating, synthesizing, and implementing the design

brings you to the point where the design can be viewed in a real-world lab environment.

JTAG
Process Options

Figure 8–13: Programming Options (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in

Xilinx ISE WebPackä software version 10.1.)

202 Chapter 8

www.newnespress.com

Good stuff. It is nice to see the simulation, but everything really comes together when you

are working in lab.

One book cannot cover all the things that can be done or go wrong while developing an

FPGA. However, this book provides some of them, with a good foundation to help you get

started and information on where to look for help or guidance. So, if your next step is to

create a new design, modify, troubleshoot, or just understand it, you are now prepared to

overcome whatever you may encounter. Over time and with each design experience, your

skills and knowledge will increase, because each design has the potential to present you with

unique and sometimes exciting challenges.

Key Programming Phase Tips

• Add test connectors, pins, and pads to the board to help with verification and

troubleshooting.

• For parallel configuration, do not assume the order of data bit transfer (MSB, LSB).

• Select a memory device with sufficient room for growth.

• Make good use of configuration guides and other materials provided by the

manufacturer.

Chapter Links

Data I/O: www.data-io.com/index.asp.

www.newnespress.com

Programming 203

This page intentionally left blank

References and Sources

Synplify with HDL Analyst User Guide, Release 5.1, with HDL Analyst W, VHDL, and

Verilog Synthesis for FPGAs and CPLDs, available from

Synplicity, Inc.

610 Caribbean Drive

Sunnyvale, California 94089

(408) 548–6000

(408) 548–0050 fax

www.synplicity.com

Essential VHDL: RTK\L Synthesis Done Right, by Sundar Rajan. Copyright # 1997,

by Sundar Rajan and Gennis Piazza. All rights reserved. Printed in the USA.

Secondary Surveillance Radar, by Michael C. Stevens, chief scientist, Aviation Systems

Division, Cossor Electronics Ltd. (Boston and London: Artech House).

Web Sites

• Xilinx (www.xilinx.com). Xilinx is a well-known leader in FPGA technology. Its Web

site provides tons of information that contributed to almost every chapter in the book.

You will find information such as FPGA datasheets, application notes, development

tools, demo board, and so much more at the site. You can also download the Xilinx free

complete development tool, which includes a Xilinx version of the Mentor Graphic’s

ModelSim simulation tool. Because of the Internet information and free development

tool, the tutorials in Chapters 5, 6, and 7 were made possible. I highly recommend

downloading the free tool. It is a great way to get started. You will find a wealth of

information on this site. It is a great place to look when considering your FPGA options.

• Altera (www.altera.com). Altera’s MaxplusII was my first experience using FPGA tools,

and its AHDL was my first introduction to HDL. So it is only natural for me to

205

include Altera in my book. While Quartus II has basically replaced Maxplus II,

downloading the Web version and playing around with its features was a lot of fun.

Chapter 5 shows some simulation screen shots from the Quartus II development tool.

In my opinion, this tool is as easy to use as MaxPlus II. I suggest downloading the free

version and giving it a try. You will find some of the same standard information such

as datasheets, applications, demo boards, and other product information on the site.

This is also a great place to look when considering your FPGA options.

• Tektronix and the Moving Pixel Company (www.tek.com and www.movingpixel.com/

main.pl?home.html). Tektronix and the Moving Pixel Company Web sites provided

information on my favorite logic analyzer and the PC–logic analyzer interface. These sites

were most helpful for getting the information and software downloads used in Chapter 5.

This information was used to show how easy it is to use data taken with a logic analyzer and

import it into your PC for design troubleshooting or verification. I think the PC interface is

fun to play with. Go to the site and download the tool. I think you will enjoy it, too.

• Mentor Graphics (www.model.com). Mentor Graphics offers various tools suited for

almost any design. The site provided the information used to show the different

development tool features discussed in Chapter 6.

• Synopsys (www.synplicity.com). Synopsys makes Synplify, probably the most popular

synthesis tool. It offers a variety of product information on the Web site. You will find

some of this information about Synopsys’s tools in Chapter 6.

• HDL Works (www.hdlworks.com). HDL Works Scriptum located at www

.translogiccorp.com/index.html. The HDL Works site offers a lot of products.

After comparison shopping, I decided to go with its free HDL editor. It offered a

lot of features I like and need as I develop code and the price was good. The primer

in Chapter 1 discusses some of the information found on HDL’s text editor. This is

another great source to get a good tool to help you in developing FPGAs.

Data I/O

• Data I/O (www.data-io.com/index.asp). Data I/O offers a wide range of programming

equipment. On its site, you will find more than enough information to help you select the

programmer that is best for your application. This site helps provide information on the

programming options discussed in Chapter 8.

• Doulos’s code generator (www.doulos.com/knowhow/perl/testbench_creation) and

Symphony EDA (www.symphonyeda.com). Doulos’s Web site offers free code

generator tools in addition to other products. However, I thought that, since automatic

code generators are becoming more popular, it is worth discussing. So, in Chapter 4,

you will find information about Doulos’s auto code generator.

www.newnespress.com

206 References and Sources

APPENDIX

Testbenches

A–1. Adder and Subtractor Testbench

Use this testbench to verify the adder and subtractor design in Chapter 2. An example of the

simulated output is shown in Figure A–1.

Run the simulation for 200.00 nsec.

Library IEEE;
Use IEEE.std_logic_1164.All;
Use IEEE.std_logic_unsigned.All;

Entity testbench Is End testbench;

Architecture tb_MathematicalOperators Of testbench Is

Signal number_1 : std_logic_vector(3 Downto 0) :¼ “0100”;
–– setting initial value
Signal number_2 : std_logic_vector(3 Downto 0) :¼ “0010”;
–– setting initial value
Signal sum : std_logic_vector(3 Downto 0);
Signal difference : std_logic_vector(3 Downto 0);

Component MathematicalOperators Port (
number_1 : In std_logic_vector(3 Downto 0);
number_2 : In std_logic_vector(3 Downto 0);
sum : Out std_logic_vector (3 Downto 0);
difference : Out std_logic_vector (3 Downto 0));

End Component;

207

Begin

mathfunctions: MathematicalOperators
Port Map (
number_1 ¼> number_1,
number_2 ¼> number_2,
sum ¼> sum,
difference ¼> difference);

–– assigning values to the input signals
number_1 <¼ “0010” After 50.00 nsec,

“0111” After 100.00 nsec,
“0110” After 150.00 nsec;

number_2 <¼ “0101” After 75.00 nsec,
“0001” After 125.00 nsec;

END tb_MathematicalOperators;

First
Number

Second
Number

Difference

Sum

Figure A–1: Adder and Subtractor Simulation Outputs (Material based on or adapted from
figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008

used in Xilinx ISE WebPack™ software version 10.1.)

www.newnespress.com

208 Appendix

A–2. Logic Gates Testbench

Use this testbench to verify the logic gates design in Chapter 2. An example of the simulated

output is shown in Figure A–2.

Run simulation for 300.00 nsec.

Library IEEE;
Use IEEE.std_logic_1164.All;
Use IEEE.std_logic_unsigned.All;

Entity testbench IS END testbench;

Architecture tb_LogicGates Of testbench Is

Signal number_1 : std_logic_vector (3 Downto 0) :¼“0001”;
Signal number_2 : std_logic_vector (3 Downto 0) :¼“0101”;
Signal or_out : std_logic_vector (3 Downto 0);
Signal nor_out : std_logic_vector (3 Downto 0);
Signal and_out : std_logic_vector (3 Downto 0);
Signal nand_out : std_logic_vector (3 Downto 0);

Inputs and Outputs
Shown as Binary
Numbers

Input

Output

Figure A–2: Logic Gates Simulation Outputs (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE

WebPack™ software version 10.1.)

www.newnespress.com

Testbenches 209

Component LogicGates Port (
number_1 : In std_logic_vector (3 Downto 0); –– setting
initial value
number_2 : In std_logic_vector (3 Downto 0) –– setting
initial value
or_out : Out std_logic_vector (3 Downto 0);
nor_out : Out std_logic_vector (3 Downto 0);
and_out : Out std_logic_vector (3 Downto 0);
nand_out : Out std_logic_vector (3 Downto 0));

End Component LogicGates;

Begin

LogicGates1: LogicGates
Port Map (
number_1 ¼> number_1,
number_2 ¼> number_2,
or_out ¼> or_out,
nor_out ¼> nor_out,
and_out ¼> and_out,
nand_out ¼> nand_out);

– assigning values to the input signals
number_1 <¼ “1110” After 50.00 nsec,

“0101” After 150.00 nsec,
“1010” After 250.00 nsec;

number_2 <¼ “0010” After 50.00 nsec,
“1001” After 150.00 nsec,
“1110” After 250.00 nsec;

END tb_LogicGates;

A–3. D Flip-Flop Testbench

Use this testbench to verify the D flip-flop design in Chapter 2. An example of the simulated

output is shown in Figure A–3.

www.newnespress.com

210 Appendix

Run the simulation for 300.00 nsec.

Library IEEE;
Use IEEE.std_logic_1164.All;
Use IEEE.std_logic_unsigned.All;

Entity testbench Is End testbench;

Architecture tb_Dff Of testbench Is

Signal reset : std_logic :¼ ‘1’; –– setting initial state value
Signal clk : std_logic :¼ ‘0’; –– setting initial state value
Signal d_input : std_logic :¼ ‘1’; –– setting initial state value
Signal q_out : std_logic;
Signal q_not_out: std_logic;

Constant twenty_five_nsec : time :¼ 25 nsec;

Output Disabled Output Enabled

Reset Active
Reset Inactive

Figure A–3: D Flip-Flop Simulation Outputs (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE

WebPack™ software version 10.1.)

www.newnespress.com

Testbenches 211

Component Dff Port (
reset : In std_logic;
clk : In std_logic;
d_input : In std_logic;
q_out : Out std_logic;
q_not_out : Out std_logic);

End Component Dff;

Begin

dff1: dff
Port Map (
reset ¼> reset,
clk ¼> clk,
d_input ¼> d_input,
q_out ¼> q_out,
q_not_out ¼> q_not_out);

create_twenty_Mhz: Process
Begin
Wait For twenty_five_nsec;
clk <¼ NOT clk;
End Process;

–– assigning values to input signals
reset <¼ ‘0’ After 35.00 nsec;

d_input <¼ ‘0’ After 40.00 nsec,
‘1’ After 150.00 nsec,
‘0’ After 200.00 nsec,
‘1’ After 215.00 nsec;

END tb_dff;

A–4. DFF with Synchronous Enable Testbench

Use this testbench to verify the D flip-flop with synchronous enable design in Chapter 2. An

example of the simulated output is shown in Figure A–4.

www.newnespress.com

212 Appendix

Run the simulation for 300.00 nsec.

Library IEEE;
Use IEEE.std_logic_1164.All;
Use IEEE.std_logic_unsigned.All;

Entity testbench Is End testbench;

Architecture tb_DffSynEa Of testbench Is

Signal reset : std_logic :¼ ‘1’; –– setting initial value
Signal clk : std_logic :¼ ‘0’; –– setting initial value
Signal enable : std_logic:¼ ‘0’; –– setting initial value
Signal d_input : std_logic :¼ ‘1’; –– setting initial value
Signal q_out : std_logic;
Signal q_not_out : std_logic;

Constant twenty_five_nsec: time :¼ 25 nsec;

Component DffSynEa Port (
reset : In std_logic;
clk : In std_logic;

Enable Active

Output changes on clock edge

Figure A–4: D Flip-Flop with Synchronous Enable Simulation Outputs (Material based on or
adapted from figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx

1995–2008 used in Xilinx ISE WebPack™ software version 10.1.)

www.newnespress.com

Testbenches 213

enable : In std_logic;
d_input : In std_logic;
q_out : Out std_logic;
q_not_out : Out std_logic);

End Component DffSynEa;

Begin

DffSynEa1: DffSynEa
Port Map (
reset ¼> reset,
clk ¼> clk,
enable ¼> enable,
d_input ¼> d_input,
q_out ¼> q_out,
q_not_out ¼> q_not_out);

create_twenty_Mhz: Process
Begin
Wait For twenty_five_nsec;
clk<¼ Not clk;

End Process;

–– assigning values to input signals

reset <¼ ‘0’ After 35.00 nsec;

enable <¼ ‘1’ After 100.00 nsec;

d_input <¼ ‘0’ After 40.00 nsec,
‘1’ After 70.00 nsec,
‘1’ After 145.00 nsec,
‘0’ After 245.00 nsec;

End tb_DffSynEa;

A–5. Latch Design Testbench

Use this testbench to verify the latch design in Chapter 2. An example of the simulated output

is shown in Figure A–5.

www.newnespress.com

214 Appendix

Run the simulation for 200.00 nsec.

Library IEEE;
Use IEEE.std_logic_1164.All;
Use IEEE.std_logic_unsigned.All;

Entity testbench Is End testbench;

Architecture tb_Latch Of testbench Is

Signal data_in : std_logic :¼ ‘1’; –– setting initial value
Signal latch_enable : std_logic :¼ ‘1’; –– setting initial value
Signal data_out : std_logic;

Latched Output

Figure A–5: Latch Simulation Outputs (Material based on or adapted from figures and text
owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE

WebPack™ software version 10.1.)

www.newnespress.com

Testbenches 215

Component Latch Port (
data_in : In std_logic;
latch_enable : In std_logic;
data_out : Out std_logic);

End Component Latch;

Begin

Latch1: Latch
Port Map (
data_in ¼> data_in,
latch_enable ¼> latch_enable,
data_out ¼> data_out);

–– assigning values to input signals
latch_enable <¼ ‘0’ After 50.00 nsec,

‘1’ After 100.00 nsec,
‘0’ After 150.00 nsec;

data_in <¼ ‘0’ After 25.00 nsec,
‘1’ After 80.00 nsec,
‘0’ After 120.00 nsec,
‘1’ After 180.00 nsec;

End tb_Latch;

A–6. Manual Shift Register Testbench

Use this testbench to verify the manual shift register design in Chapter 2. An example of the

simulated output is shown in Figure A–6. This testbench can also be used for the simplified

shift register design.

www.newnespress.com

216 Appendix

Run the simulation for 600.00 nsec.

Library IEEE;
Use IEEE.std_logic_1164.All;
Use IEEE.std_logic_arith.All;
Use IEEE.std_logic_unsigned.All;

Entity testbench Is End testbench;

Architecture tb_ShiftRegister Of testbench Is
Signal clk : std_logic :¼ ‘0’; –– setting initial value
Signal reset : std_logic :¼ ‘1’; –– setting initial value
Signal shift_data : std_logic :¼ ‘0’; –– setting initial value
Signal shifted_data_out: std_logic_vector (5 Downto 0);

Component ShiftRegister
Port (

clk : In std_logic;
reset : In std_logic;
shift_data : In std_logic;
shifted_data_out : Out std_logic_vector (5 Downto 0));

End Component ShiftRegister;

Shift Register Data

Input Data = High Input Data = Low

Figure A–6: Shift Register Simulation Outputs (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE

WebPack™ software version 10.1.)

www.newnespress.com

Testbenches 217

Constanttwenty_five_nsec: time :¼ 25 nsec;

Begin

U1: ShiftRegister
Port Map (
clk ¼> clk,
reset ¼> reset,
shift_data ¼> shift_data,
shifted_data_out ¼> shifted_data_out);

create_twenty_Mhz: Process
Begin
Wait For twenty_five_nsec;
clk <¼ Not clk;

End Process;

–– assigning values to input signals
reset <¼ ‘0’ After 100.00 nsec;

shift_data <¼ ‘1’ After 50.00 nsec,
‘0’ After 400.00 nsec;

End tb_ShiftRegister;

A–7. Comparator Testbench

Use this testbench to verify the comparator design in Chapter 2. An example of the simulated

output is shown in Figure A–7.

Run the simulation for 100.00 nsec.

Library IEEE;
Use IEEE.std_logic_1164.All;
Use IEEE.std_logic_arith.All;
Use IEEE.std_logic_unsigned.All;

Entity testbench Is End testbench;

Architecture tb_Comparison Of testbench Is

Component Comparison Port (
number_1 : In std_logic_vector (2 Downto 0);
number_2 : In std_logic_vector (2 Downto 0);
num1_smaller_num2 : Out std_logic);

End Component Comparison;

www.newnespress.com

218 Appendix

Signal number_1 : std_logic_vector(2 Downto 0) :¼ “000”;
–– setting initial value
Signal number_2 : std_logic_vector(2 Downto 0) :¼ “100”;
–– setting initial value
Signal num1_smaller_num2 : std_logic :¼ ‘0’;

Begin
u2: Comparison
Port Map (

number_1 ¼> number_1,
number_2 ¼> number_2,
num1_smaller_num2 ¼> num1_smaller_num2);

–– assigning values to input signals
number_1 <¼ “100” After 40.00 nsec,

“111” After 60.00 nsec,
“010” After 80.00 nsec;

number_2 <¼ “101” After 70.00 nsec;

End tb_Comparison;

Number_2 greater than
Number_1

Number_2 Less than or Equal Number_1

Figure A–7: Comparator Simulation Outputs (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE

WebPack™ software version 10.1.)

www.newnespress.com

Testbenches 219

A–8. Binary Counter Testbench

Use this testbench to verify the binary counter design in Chapter 2. An example of the

simulated outputs is shown in Figure A–8.

Run the simulation for 900.00 nsec.

Library IEEE;
Use IEEE.std_logic_1164.All;
Use IEEE.std_logic_unsigned.All;

Entity testbench IS End testbench;

Architecture tb_BinaryCounter Of testbench Is

Signal clk : std_logic :¼‘0’;
Signal reset : std_logic :¼ ‘1’;
Signal count_out : std_logic_vector (3 Downto 0):¼ “0000”;

–– setting initial state value

Individual
Counter
Bits

Reset Inactive

Counter Active

Figure A–8: Binary Counter Simulation Outputs (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE

WebPack™ software version 10.1.)

www.newnespress.com

220 Appendix

Constant twenty_five_nsec: time :¼ 25 nsec;

Component BinaryCounter Port (
clk : In std_logic;
reset : In std_logic;
count_out : Out std_logic_vector (3 Downto 0));

End Component BinaryCounter;

Begin

U1: BinaryCounter
Port Map(

clk ¼> clk,
reset ¼> reset,
count_out ¼> count_out);

create_twenty_Mhz: Process
Begin
Wait For twenty_five_nsec;

clk <¼ Not clk;
End Process;

–– assigning value to input signal
reset <¼ ‘0’ After 250.00 nsec;

End tb_BinaryCounter;

A–9. Binary Counter with Synchronous Enable Testbench

Use this testbench to verify the binary counter with synchronous enable design in Chapter 2.

An example of the simulated outputs is shown in Figure A–9.

Run the simulation for 900.00 nsec.

Library IEEE;
Use IEEE.std_logic_1164.All;
Use IEEE.std_logic_arith.All;
Use IEEE.std_logic_unsigned.All;

Entity testbench IS End testbench;

Architecture tb_SyncBinaryCounter Of testbench Is

www.newnespress.com

Testbenches 221

Signal clk : std_logic :¼ ‘0’;
Signal reset : std_logic :¼ ‘1’;
Signal enable : std_logic :¼ ‘1’;
Signal count_out : std_logic_vector (3 Downto 0):¼ “0000”;

–– setting initial value

Constanttwenty_five_nsec: time :¼ 25 nsec;

Component SyncBinaryCounter Is Port (
clk : In std_logic;
reset : In std_logic;
enable : In std_logic;
count_out : Out std_logic_vector (3 Downto 0)); –– output

value from counter
End Component SyncBinaryCounter;

Individual
Counter
Bits

Enable Active Enable Inactive

Figure A–9: Binary Counter with Synchronous Enable Simulation Outputs (Material based on or
adapted from figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx

1995–2008 used in Xilinx ISE WebPack™ software version 10.1.)

www.newnespress.com

222 Appendix

Begin

U1: SyncBinaryCounter
Port Map (

clk ¼> clk,
reset ¼> reset,
enable ¼> enable,
count_out ¼> count_out);

create_twenty_Mhz: Process
Begin
Wait For twenty_five_nsec;

clk <¼ Not clk;
End Process;

––assigning values to input signals
reset <¼ ‘0’ After 50.00 nsec;

enable <¼ ‘0’ After 550.00 nsec,
‘1’ After 750.00 nsec;

End tb_SyncBinaryCounter;

A–10. Conversion Testbench

Use this testbench to verify the conversion design in Chapter 2. An example of the simulated

outputs is shown in Figure A–10.

Run the simulation for 40.00 nsec.

Library IEEE;
Use IEEE.std_logic_1164.All;
Use IEEE.std_logic_arith.All;
Use IEEE.std_logic_unsigned.All;

Entity testbench Is End testbench;

Architecture tb_Convert2Integer Of testbench Is

Signal number_1 : std_logic_vector(2 Downto 0) :¼
“000”; –– setting initial value
Signal number_2 : std_logic_vector(2 Downto 0) :¼
“010”; –– setting initial value
Signal quotient : std_logic_vector(2 Downto 0);

www.newnespress.com

Testbenches 223

Component Convert2Integer Port (
number_1 : In std_logic_vector (2 Downto 0);
number_2 : In std_logic_vector (2 Downto 0);
quotient : Out std_logic_vector (2 Downto 0));

End Component;

Begin

u3: Convert2Integer Port Map(
number_1 ¼> number_1,
number_2 ¼> number_2,
quotient ¼> quotient);

–– assigning values to input signal
number_1 <¼ “100” After 10.00 nsec,

“100” After 20.00 nsec,
“110” After 30.00 nsec;

End tb_Convert2Integer;

Binary I/O

Unsigned I/O

Figure A–10: Conversion Simulation Outputs (Material based on or adapted from figures and
text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx 1995–2008 used in Xilinx ISE

WebPack™ software version 10.1.)

www.newnespress.com

224 Appendix

Index

Page numbers followed by “f” indicate figures, “t” indicate tables, and “b” indicate boxes and formulas.

A

Adaptive logic module (ALM), 45

Adder function, 22

Adder testbench, 207–208

ALM (adaptive logic module), 45

Altera

simulators, 85–86

web links, 205

Altera FPGA architecture

adaptive logic module (ALM),

45

I/O interfaces, 45

IPs, 53

series, 49–50

web links, 56

Altera Quartus II

synthesis input accepted,

136–137

tool features, 132–135

Altera Quartus II Web Edition

licensing requirements, 86

web links, 126, 189

Architecture section, 17–19

Architecture syntax example, 17

Arithmetic operators, 22

Arria (Altera), 49

Automatic testbench, 92, 102–105

B

Basic logic building blocks, 45–50

Binary counter, 33–35

Binary counter testbench, 220–221

Binary counter with synchronous

enable, 33–35

Binary counter with synchronous

enable testbench, 221–223

Bit signal assignment, 13

Board design, 196–197

Boundary scan, 193

C

Code, tips for writing good, 3–6

Code comments, 3–4

Code generation, manual, 72b
Code generators, automatic, 67–68

Coders, responsibility for testing,

84–85

Column editors, 8–9.

See also Editors

Comment text, 3–4, 9–10

Comparator, 32

Comparator testbench, 218–219

Compare statement, 32

Component instantiation, 17

Concurrent statements, 18

Configurable logic blocks (CLBs),

46

Configuration, 164–165

Configuration pins, 196

Constraints, user-defined, 166

Conversion, 35–36

Conversion testbench, 223–224

Costs of development tools, 66

Counters, binary, 33–35

Cyclone (Altera), 50

D

D flip-flop (DFF)

inverted output, 28

output, 28

process, 27

simple VHDL design code,

26–29

D flip-flop (DFF) testbench,

210–212

D flip-flop (DFF) with synchronous

enable, 28

D flip-flop (DFF) with synchronous

enable testbench, 212–214

Data capture and acquisition

equipment, 105

Data I/O, 195, 203, 206

Descriptive names, 5–6

Design check, synthesis phase, 130

Design code, 57–58

Design format

conversion software, 67–68

selecting the, 63–65

Design languages, 68

Design netlist, 138

Design package

clarifying the, 60–61

defined, 57–58

evaluating the, 59–62, 70

example, 68–80

organization, 61–62

overview, 58–59

predesign decisions,

62–67, 70

Design package documents

revisions to, 61–62

storing the, 61

Design phase

code generation, manual,

68–80, 72b
code generators, automatic,

67–68

code testing, 86

creating design options, 67

design phase example, 71–78

225

Design phase (Continued)
development tools, selecting,

66–67

example, 68

introduction, 57

key points, 81

time requirements, 84–85.

See also VHDL design code,

simple

Design rule check (DRC), 163

Design sharing

selecting tools for, 66

Design synthesis. See Synthesis

Design verification options, 83

Development tools

complete, 66

factors affecting selection of,

66–67

standalone, 66

web links, 126

Divider function, 22

Doulos, 67–68, 81, 206

DRC (design rule check), 163

E

Editors

column and row, 8–9

comment/uncomment selected

text, 9–10

indent/unindent selected text,

29

predefined font convention,

69

simulation tools, 85

syntax color highlighting, 7–8

synthesis phase tools, 131.

See also Text editors

Entity section, 16

Evaluation boards, 20

F

Filenames, naming conventions, 25

Firmware, 57–58

Font convention

design phase example, 69

predefined, 11

Force syntax example, 89

FPGA (field programmable gate

array)

benefits of using, 43–44

defined, 43–44

manufacturers, 44

web sites, 205–206

FPGA architecture

basic logic building blocks,

45–50

generic, 44f
interconnections, 51

I/O interfaces, 44–45

key points, 55–56

programmable logic device

options, 51–53

FPGA development phases

design, introduction to, 57

implementation, introduction

to, 161

introduction, 53–54

programming, introduction to,

191

simulation, introduction to, 83

synthesis, introduction to,

127–128.

See also individual phases
FPGA development process

introduction, 1–2

key points, 20

language selection, effect on,

68

overview, 20

starters tips, 19–20

FPGA families, 46–48

FPGA manufacturer, selecting the,

65–66

FPGA series, 46–48

Functional netlist, 138–139,

154–158

Functional simulation, 86

G

Gate level simulation, 86, 87

Generate program file,

implementation process,

164–165

Graphical testbench, 90–91

H

Hardware configuration,

programming phase, 196–197

HDL template, “starter” 21

HDL testbench

editor, 85

simulation phase, 92–95

HDL text editors, 6–7

HDL Works, 6, 206

Header section, 4, 14

I

IEEE standard library, 15

Implementation

defined, 161–165

inputs, 165–166

introduction to, 161

outputs, 166–167

overview, 189

phase tips, 189

tutorial, 167–188

Implementation process

error correction, 162–163

generate program file,

164–165

map, 163

place-and-route, 163

post-translation simulation

file, 162–163

translate, 162–163

Implementation tools, 165

user-defined constraints, 166

Indent text, 11

Indention, 4

Input/output (I/O) interfaces,

44–45

Input/output (I/O) standards, 44–45

In-system programming (ISP), 194

Intellectual property (IP) cores/

functions, 52–53, 67–68

Interactive stimulus, 89–90

Interconnections, FPGA

architecture, 51

IP cores (Xilinx), 53

J

Joint test advisory group (JTAG),

193–194

L

Language template, 8

Latch, 29–30

Latch design testbench, 214–216

Leonardo Spectrum (Mentor

Graphics), 134, 137

www.newnespress.com

226 Index

Libraries

third-party, 15

user-defined, 15

Library declaration, 14–15

Library syntax, 15

Logic gate

simple VHDL design code, 25

testbench, 209–210

Logic operations, 25

Logic signals, standard, 12

Logic vector signals, standard, 12

M

Manual shift register testbench,

216–218

Manual testbench, 92

simulation phase, 95–100

Mapping, implementation process,

163

Mathematical functions, 22–25

Megafunctions (Altera), 53
Mentor Graphics

ModelSim, 85–86

synthesis tools, 133, 137

web links, 206

ModelSim (Mentor Graphics),

85–86

ModelSim XE III, 06.4b (Xilinx),

87

Moving Pixel Company,

126, 206

Multiplier function, 22

N

Naming conventions, 5–6, 25

Native circuit description (NCD)

file, 163

Native generic database (NGD)

output netlist, 162–163

Netlist

design, 138

functional, 138–139,

154–158

mid-level, 128, 129f
synthesis, 86, 129f, 138–139,

162–163, 165–166

in translation process,

162–163

Netlist formats, acceptable,

162–163

O

Offline viewers, 105

Operators

arithmetic, 22

relational, 32

Optimization, synthesis phase, 130

P

Parallel master configuration, 164f
PGA Series Digital Pattern

Generator, 105–107

PGAppDotNet, 105–107

Pin assignments, 166

Place and route (PAR).

See Implementation

Place-and-route process, 163

Post-translation simulation file,

162–163

Precision Physical (Mentor

Graphics), 134, 137

Precision RTL (Mentor Graphics),

134

Precision RTL Plus (Mentor

Graphics), 134, 137

Predesign decisions

design package, 70

example, 70

Premier (Synopsys), 134

Process, 17

Process flow, 129f
Process syntax example, 18

Programmable logic device

options, 51–53

Programmers

automated, 195

manual, 195

third party, 194–195

Programming

hardware configuration,

196–197

introduction to, 191

key tips, 203

overview, 191–193, 202–203

parallel data transfers,

192–193

troubleshooting and

debugging, 196, 197

tutorial, 198–202

Programming base, 194–195

Programming pin accessibility, 196

Programming tools, 193–195

in-system programming (ISP),

194

joint test advisory group

(JTAG), 193–194

nonvolatile memory and, 193

for third party programmers,

194–195

R

Read file, 37–40

Register transfer level (RTL)

simulation, 86

Relational operators, 32

Reserved words, 2

Revision history, 14

Row editors, 8–9

S

Schematic views, RTL and

technology, 139

Scriptum, 6, 20, 81

Sensitive list, 18

Sequential statements, 17

Serial daisy chain configuration,

165f
Serial slave configuration, 164f
Shift register, 30–32

Shift register shortcut, 32

Signal data assignment, 30

Signal data types, 12–13

Signal names, 14

Signals, 12–14

Simulation

defined, 84–85

inputs and outputs, 84

introduction, 83

key points, 126

levels of, 86–87

test cases, 87–88

time requirements, 84–85

tutorial, 117–125

Simulation phase outputs,

100–101

Simulation tools, 85–86

Simulator, defined, 85–86

Socket adaptor, 194–195

Standard format convention, 4

Standard logic signals, 12

Standard logic vector signals, 12

www.newnespress.com

Index 227

Starter template

simple VHDL design code, 21

Status report

synthesis output files, 139

Stimulus

automatic testbench, 102–105

capture data, 105–117

defined, 89

graphical testbench, 90–91

HDL testbench, 92–95

interactive, 89–90

manual testbench, 95–100

simulation phase outputs,

100–101

Stratix (Altera), 49

Subtractor function, 22

Subtractor testbench, 207–208

Symphony EDA, 7, 20

Synchronous logic, 17

Synopsys, 133, 134, 137, 206

Synplify Pro (Synopsys), 134, 137

Syntax color highlighting, 7–8

Syntax error example, 130

Synthesis

defined, 127

introduction to, 127–128

key points, 159

overview, 158–159

timing, 127

tutorial, 139–157

Synthesis editors, 131

Synthesis errors, 130

Synthesis input, 127, 136–137

Synthesis netlist, 86, 129f,
138–139, 162–163, 165–166

Synthesis operations, basic

design check and resource

association, 130

optimization, 130

process flow, 129f
syntax error example, 130

technology mapping, 131

Synthesis output files, 137–140

file extensions, 138

netlists, 138–139, 165–166

RTL schematic view, 139

status report, 139

technology schematic view,

139–140

Synthesis Technology (Xilinx), 137

Synthesis tool code testing, 86

Synthesis tools, 131–135

complete package,

advantages/

disadvantages, 132t
standalone, advantages/

disadvantages, 132t
tool setup, 135

in translation process,

162–163

vendors and features, 132–135

T

Technology mapping, synthesis

phase, 131

Technology schematic view,

139–140

Technology view symbols, 131f
Tektronix

data capture and acquisition

equipment, 105

TLA Application, 105

web links, 126, 206

Test equipment, for data capture

and acquisition, 105

Testbenches

adder and subtractor, 207–208

automatic, 92, 102–105

automatic code generation for,

67–68

binary counter, 220–221

binary counter with

synchronous enable,

221–223

comparator, 218–219

conversion, 223–224

DFF (D flip-flop), 210–212

DFF with synchronous enable,

212–214

HDL, 92–95

latch design, 214–216

logic gates, 209–210

manual, 92, 95–100

manual shift register,

216–218

Text editors

fee-based, 7

HDL, 6–7, 85

for simulation, 85

special features to consider,

7–11

standalone, 6. See also Editors

TLA Application, 105

Translate, implementation process,

162–163

U

Uncomment text, 9–10

Unindent text, 11

Use syntax, 15

V

Vendors, 132–135

VHDL

file structure, 14–19

HDL text editors, 6–7

overview, 1–2

reserved words, 2

signals, 12–14

VHDL design code, simple

binary counter, 33–35

comparator, 32

conversion functions, 35–36

D flip-flop, 26–29

introduction, 21

key points, 42

latch, 29–30

logic gate, 25

mathematical functions, 22–25

read file, 37–40

shift register, 30–32

starter template, 21

write file, 40. See also Design

phase

VHDL testbench starter template,

93b

W

Waveform test inputs, 85

Write file, 40

X

Xilinx

simulators, 85–86

synthesis tools, 132–135,

137, 159

www.newnespress.com

228 Index

synthesis tutorial using,

140–157

web links, 205

Xilinx FPGA architecture

configurable logic blocks

(CLBs), 46

families, 50

I/O interfaces, 45

IPs, 53

web links, 56

Xilinx ISE WebPack

ModelSim XE III, 6.4b, 87

web links, 126, 189

Xilinx WebPack ISE, 10.1

implementation tutorial using,

167–188

programming tutorial using,

198–202

synthesis tutorial using,

139–140

web links, 159

www.newnespress.com

Index 229

This page intentionally left blank

	FPGAs 101
	Copyright Page
	Contents
	About the Author
	Acknowledgments
	About This Book
	Acronyms
	Chapter 1: Getting Started
	1.1. Introduction
	1.1.1. VHDL

	1.2. Reserved Words
	1.3. Tips for Writing Good Code
	1.3.1. Tip 1. Use Comments to Convey Information about the Code
	1.3.2. Tip 2. Indent for Clarity and Readability
	1.3.3. Tip 3. Use Standard Format Convention
	1.3.4. Tip 4. Include a Header Section
	1.3.5. Tip 5. Use Brief Descriptive Names

	1.4. HDL Text Editors
	1.4.1. Standalone Text Editor
	1.4.2. Fee-Based Text Editor

	1.5. Editor Features
	1.5.1. Syntax Color Highlighting
	1.5.2. Language Templates
	1.5.3. Row and Column Editor
	1.5.4. Comment/Uncomment Selected Text
	1.5.5. Indent/Unindent Selected Text
	1.5.6. Predefined Font Convention

	1.6. Signals
	1.6.1. Signal Data Types
	1.6.2. Signal Names

	1.7. File Structure
	1.7.1. Optional Header Section
	1.7.2. Library Declaration
	1.7.3. Entity Section
	1.7.4. Architecture Section

	1.8. Starter Tips
	1.9. Chapter Overview

	Chapter 2: Simple Designs
	2.1. Introduction
	2.2. Starter Template
	2.3. Mathematical Functions
	2.4. Logic Gate
	2.5. D Flip-Flop
	2.6. Latch
	2.7. Shift Register
	2.8. Comparator
	2.9. Binary Counter
	2.10. Conversion Functions
	2.11. Read File
	2.12. Write File
	2.13. Chapter Overview

	Chapter 3: FPGA Development Phases
	3.1. Introduction
	3.2. What Is a Field Programmable Gate Array?
	3.3. I/O Interfaces
	3.4. Basic Logic Building Blocks
	3.5. Ability to Interconnect
	3.6. Programmable Logic Device Options
	3.7. FPGA Development Phases
	3.8. Chapter Overview

	Chapter 4: Design
	4.1. Introduction
	4.2. What Is the Design Phase?
	4.3. Design Package
	4.4. Evaluating the Design Package
	4.4.1. Package Analysis
	4.4.2. Getting Clarification
	4.4.3. Organization

	4.5. Predesign Decisions
	4.5.1. Design Format
	4.5.2. FPGA Manufacturer
	4.5.3. Development Tools

	4.6. Creating Design Options
	4.7. Automatic Code Generators
	4.8. Manual Code Generation
	4.8.1. Design Package

	4.9. Chapter Overview

	Chapter 5: Simulation
	5.1. Introduction
	5.2. What Is Simulation?
	5.3. Simulation Tools
	5.4. Levels of Simulation
	5.5. Test Cases
	5.6. Stimulus
	5.6.1. Interactive Stimulus
	5.6.2. Graphical Test Bench
	5.6.3. HDL Testbench
	5.6.4. Manual Testbench
	5.6.5. Simulation Phase Outputs
	5.6.6. Automatic Testbench
	5.6.7. Capture Data

	5.7. Simulation Tutorial
	5.8. Chapter Overview

	Chapter 6: Synthesis
	6.1. Introduction
	6.2. What Is Design Synthesis?
	6.2.1. Design Check and Resource Association
	6.2.2. Optimization
	6.2.3. Technology Mapping

	6.3. Synthesis Phase Tools
	6.3.1. Vendors and Features
	6.3.2. Synthesis Tool Setup

	6.4. Synthesis Input
	6.5. Synthesis Output Files
	6.5.1. Netlists
	6.5.2. Status Reports
	6.5.3. Schematic Views
	6.5.4. Technology Schematic View

	6.6. Synthesis Tutorial
	6.7. Chapter Overview

	Chapter 7: Implementation
	7.1. Introduction
	7.2. What Is Implementation?
	7.2.1. Translate
	7.2.2. Map
	7.2.3. Place and Route
	7.2.4. Generate Program File

	7.3. Implementation Tools
	7.4. Implementation Inputs
	7.5. Implementation Outputs
	7.6. Implementation Tutorial
	7.7. Chapter Overview

	Chapter 8: Programming
	8.1. Introduction
	8.2. What Is Programming?
	8.3. Tools and Hardware
	8.3.1. Joint Test Advisory Group
	8.3.2. In-System Programming
	8.3.3. Third Party Programmers

	8.4. Hardware Configuration
	8.5. Programming Tutorial
	8.6. Chapter Overview

	References and Sources
	Web Sites
	Data I/O

	Appendix: Testbenches
	A-1. Adder and Subtractor Testbench
	A-2. Logic Gates Testbench
	A-3. D Flip-Flop Testbench
	A-4. DFF with Synchronous Enable Testbench
	A-5. Latch Design Testbench
	A-6. Manual Shift Register Testbench
	A-7. Comparator Testbench
	A-8. Binary Counter Testbench
	A-9. Binary Counter with Synchronous Enable Testbench
	A-10. Conversion Testbench

	Index

