
FPGA Implementations
of Neural Networks

Edited by

AMOS R. OMONDI
Flinders University, Adelaide,
SA, Australia

and

JAGATH C. RAJAPAKSE
Nanyang Tecnological University,
Singapore

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 0-387-28485-0 (HB)
ISBN-13 978-0-387-28485-9 (HB)
ISBN-10 0-387-28487-7 (e-book)
ISBN-13 978-0-387-28487-3 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

www.springer.com

© 200 Springer 6

Contents

Preface ix

1
FPGA Neurocomputers 1
Amos R. Omondi, Jagath C. Rajapakse and Mariusz Bajger

1.1. Introduction 1
1.2. Review of neural-network basics 3
1.3. ASIC vs. FPGA neurocomputers 9
1.4. Parallelism in neural networks 12
1.5. Xilinx Virtex-4 FPGA 13
1.6. Arithmetic 15
1.7. Activation-function implementation: unipolar sigmoid 21
1.8. Performance evaluation 32
1.9. Conclusions 34
References 34

2
37

Medhat Moussa and Shawki Areibi and Kristian Nichols
2.1. Introduction 37
2.2. Background 39
2.3. Architecture design and implementation 43
2.4. Experiments using logical-XOR problem 48
2.5. Results and discussion 50
2.6. Conclusions 55
References 56

3
FPNA: Concepts and properties 63
Bernard Girau

3.1. Introduction 63
3.2. Choosing FPGAs 65
3.3. FPNAs, FPNNs 71
3.4. Correctness 86
3.5. Underparameterized convolutions by FPNNs 88
3.6. Conclusions 96
References 97

Arithmetic precision for implementing BP networks on FPGA: A case study

v

vi

4
FPNA: Applications and implementations 103
Bernard Girau

4.1. Summary of Chapter 3 104
4.2. Towards simplified architectures: symmetric boolean functions by

FPNAs 105
4.3. Benchmark applications 109
4.4. Other applications 113
4.5. General FPGA implementation 116
4.6. Synchronous FPNNs 120
4.7. Implementations of synchronous FPNNs 124
4.8. Implementation performances 130
4.9. Conclusions 133
References 134

5
Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E 137
Kolin Paul and Sanjay Rajopadhye

5.1. Introduction 138
5.2. Problem specification 139
5.3. Systolic implementation of matrix-vector multiply 141
5.4. Pipelined back-propagation architecture 142
5.5. Implementation 144
5.6. MMAlpha design environment 147
5.7. Architecture derivation 149
5.8. Hardware generation 155
5.9. Performance evaluation 157
5.10. Related work 159
5.11. Conclusion 160
Appendix 161
References 163

6
FPGA Implementation of Very Large Associative Memories 167
Dan Hammerstrom, Changjian Gao, Shaojuan Zhu, Mike Butts

6.1. Introduction 167
6.2. Associative memory 168
6.3. PC Performance Evaluation 179
6.4. FPGA Implementation 184
6.5. Performance comparisons 190
6.6. Summary and conclusions 192
References 193

7
FPGA Implementations of Neocognitrons 197
Alessandro Noriaki Ide and José Hiroki Saito

7.1. Introduction 197
7.2. Neocognitron 198
7.3. Alternative neocognitron 201
7.4. Reconfigurable computer 205
7.5. Reconfigurable orthogonal memory multiprocessor 206

FPGA Implementations of neural networks

Contents vii

7.6. Alternative neocognitron hardware implementation 209
7.7. Performance analysis 215
7.8. Applications 218
7.9. Conclusions 221
References 222

8
Self Organizing Feature Map for Color Quantization on FPGA 225
Chip-Hong Chang, Menon Shibu and Rui Xiao

8.1. Introduction 225
8.2. Algorithmic adjustment 228
8.3. Architecture 231
8.4. Implementation 235
8.5. Experimental results 239
8.6. Conclusions 242
References 242

9
Implementation of Self-Organizing Feature Maps in Reconfigurable

Hardware
247

Mario Porrmann, Ulf Witkowski, and Ulrich Rückert
9.1. Introduction 247
9.2. Using reconfigurable hardware for neural networks 248
9.3. The dynamically reconfigurable rapid prototyping system

RAPTOR2000 250
9.4. Implementing self-organizing feature maps on RAPTOR2000 252
9.5. Conclusions 267
References 267

10
FPGA Implementation of a Fully and Partially Connected MLP 271

Antonio Canas, Eva M. Ortigosa, Eduardo Ros and Pilar M. Ortigosa
10.1. Introduction 271
10.2. MLP/XMLP and speech recognition 273
10.3. Activation functions and discretization problem 276
10.4. Hardware implementations of MLP 284
10.5. Hardware implementations of XMLP 291
10.6. Conclusions 293
Acknowledgments 294
References 295

11
FPGA Implementation of Non-Linear Predictors 297
Rafael Gadea-Girones and Agustn Ramrez-Agundis

11.1. Introduction 298
11.2. Pipeline and back-propagation algorithm 299
11.3. Synthesis and FPGAs 304
11.4. Implementation on FPGA 313
11.5. Conclusions 319
References 321

viii

12
The REMAP reconfigurable architecture: a retrospective 325
Lars Bengtsson, Arne Linde, Tomas Nordstr-om, Bertil Svensson,
and Mikael Taveniku

12.1. Introduction 326
12.2. Target Application Area 327
12.3. REMAP-β – design and implementation 335
12.4. Neural networks mapped on REMAP-β 346
12.5. REMAP- γ architecture 353
12.6. Discussion 354
12.7. Conclusions 357
Acknowledgments 357
References 357

FPGA Implementations of neural networks

Preface

During the 1980s and early 1990s there was significant work in the design
and implementation of hardware neurocomputers. Nevertheless, most of these
efforts may be judged to have been unsuccessful: at no time have have hard-
ware neurocomputers been in wide use. This lack of success may be largely
attributed to the fact that earlier work was almost entirely aimed at developing
custom neurocomputers, based on ASIC technology, but for such niche ar-
eas this technology was never sufficiently developed or competitive enough to
justify large-scale adoption. On the other hand, gate-arrays of the period men-
tioned were never large enough nor fast enough for serious artificial-neural-
network (ANN) applications. But technology has now improved: the capacity
and performance of current FPGAs are such that they present a much more
realistic alternative. Consequently neurocomputers based on FPGAs are now
a much more practical proposition than they have been in the past. This book
summarizes some work towards this goal and consists of 12 papers that were
selected, after review, from a number of submissions. The book is nominally
divided into three parts: Chapters 1 through 4 deal with foundational issues;
Chapters 5 through 11 deal with a variety of implementations; and Chapter
12 looks at the lessons learned from a large-scale project and also reconsiders
design issues in light of current and future technology.

Chapter 1 reviews the basics of artificial-neural-network theory, discusses
various aspects of the hardware implementation of neural networks (in both
ASIC and FPGA technologies, with a focus on special features of artificial
neural networks), and concludes with a brief note on performance-evaluation.
Special points are the exploitation of the parallelism inherent in neural net-
works and the appropriate implementation of arithmetic functions, especially
the sigmoid function. With respect to the sigmoid function, the chapter in-
cludes a significant contribution.

Certain sequences of arithmetic operations form the core of neural-network
computations, and the second chapter deals with a foundational issue: how
to determine the numerical precision format that allows an optimum tradeoff
between precision and implementation (cost and performance). Standard sin-
gle or double precision floating-point representations minimize quantization

ix

x

errors while requiring significant hardware resources. Less precise fixed-point
representation may require less hardware resources but add quantization errors
that may prevent learning from taking place, especially in regression problems.
Chapter 2 examines this issue and reports on a recent experiment where we im-
plemented a multi-layer perceptron on an FPGA using both fixed and floating
point precision.

A basic problem in all forms of parallel computing is how best to map ap-
plications onto hardware. In the case of FPGAs the difficulty is aggravated
by the relatively rigid interconnection structures of the basic computing cells.
Chapters 3 and 4 consider this problem: an appropriate theoretical and prac-
tical framework to reconcile simple hardware topologies with complex neural
architectures is discussed. The basic concept is that of Field Programmable
Neural Arrays (FPNA) that lead to powerful neural architectures that are easy
to map onto FPGAs, by means of a simplified topology and an original data
exchange scheme. Chapter 3 gives the basic definition and results of the theo-
retical framework. And Chapter 4 shows how FPNAs lead to powerful neural
architectures that are easy to map onto digital hardware. applications and im-
plementations are described, focusing on a class

Chapter 5 presents a systolic architecture for the complete back propagation
algorithm. This is the first such implementation of the back propagation algo-
rithm which completely parallelizes the entire computation of learning phase.
The array has been implemented on an Annapolis FPGA based coprocessor
and it achieves very favorable performance with range of 5 GOPS. The pro-
posed new design targets Virtex boards. A description is given of the process of
automatically deriving these high performance architectures using the systolic
array design tool MMAlpha, facilitates system-specification This makes it
easy to specify the system in a very high level language (Alpha) and also
allows perform design exploration to obtain architectures whose performance
is comparable to that obtained using hand optimized VHDL code.

Associative networks have a number of properties, including a rapid, com-
pute efficient best-match and intrinsic fault tolerance, that make them ideal for
many applications. However, large networks can be slow to emulate because
of their storage and bandwidth requirements. Chapter 6 presents a simple but
effective model of association and then discusses a performance analysis of the
implementation this model on a single high-end PC workstation, a PC cluster,
and FPGA hardware.

Chapter 7 describes the implementation of an artificial neural network in a
reconfigurable parallel computer architecture using FPGA’s, named Reconfig-
urable Orthogonal Memory Multiprocessor (REOMP), which uses p2 memory
modules connected to p reconfigurable processors, in row access mode, and
column access mode. REOMP is considered as an alternative model of the
neural network neocognitron. The chapter consists of a description of the RE-

FPGA Implementations of neural networks

xi

OMP architecture, a the case study of alternative neocognitron mapping, and a
performance performance analysis with systems systems consisting of 1 to 64
processors.

Chapter 8 presents an efficient architecture of Kohonen Self-Organizing
Feature Map (SOFM) based on a new Frequency Adaptive Learning (FAL)
algorithm which efficiently replaces the neighborhood adaptation function of
the conventional SOFM. The proposed SOFM architecture is prototyped on
Xilinx Virtex FPGA using the prototyping environment provided by XESS.
A robust functional verification environment is developed for rapid prototype
development. Various experimental results are given for the quantization of a
512 X 512 pixel color image.

Chapter 9 consists of another discussion of an implementation of SOFMs
in reconfigurable hardware. Based on the universal rapid prototyping system,
RAPTOR2000, a hardware accelerator for self-organizing feature maps has
been developed. Using Xilinx Virtex-E FPGAs, RAPTOR2000 is capable of
emulating hardware implementations with a complexity of more than 15 mil-
lion system gates. RAPTOR2000 is linked to its host – a standard personal
computer or workstation – via the PCI bus. A speed-up of up to 190 is achieved
with five FPGA modules on the RAPTOR2000 system compared to a software
implementation on a state of the art personal computer for typical applications
of SOFMs.

Chapter 10 presents several hardware implementations of a standard Multi-
Layer Perceptron (MLP) and a modified version called eXtended Multi-Layer
Perceptron (XMLP). This extended version is an MLP-like feed-forward net-
work with two-dimensional layers and configurable connection pathways. The
discussion includes a description of hardware implementations have been de-
veloped and tested on an FPGA prototyping board and includes systems spec-
ifications using two different abstraction levels: register transfer level (VHDL)
and a higher algorithmic-like level (Handel-C) as well as the exploitation of
varying degrees of parallelism. The main test bed application is speech recog-
nition.

Chapter 11 describes the implementation of a systolic array for a non-linear
predictor for image and video compression. The implementation is based on a
multilayer perceptron with a hardware-friendly learning algorithm. It is shown
that even with relatively modest FPGA devices, the architecture attains the
speeds necessary for real-time training in video applications and enabling more
typical applications to be added to the image compression processing

The final chapter consists of a retrospective look at the REMAP project,
which was the construction of design, implementation, and use of large-scale
parallel architectures for neural-network applications. The chapter gives an
overview of the computational requirements found in algorithms in general and
motivates the use of regular processor arrays for the efficient execution of such

Preface

xii

algorithms. The architecture, following the SIMD principle (Single Instruc-
tion stream, Multiple Data streams), is described, as well as the mapping of
some important and representative ANN algorithms. Implemented in FPGA,
the system served as an architecture laboratory. Variations of the architecture
are discussed, as well as scalability of fully synchronous SIMD architectures.
The design principles of a VLSI-implemented successor of REMAP-β are de-
scribed, and the paper concludes with a discussion of how the more powerful
FPGA circuits of today could be used in a similar architecture.

AMOS R. OMONDI AND JAGATH C. RAJAPAKSE

FPGA Implementations of neural networks

Chapter 1

FPGA NEUROCOMPUTERS

Amos R. Omondi
School of Informatics and Engineering, Flinders University, Bedford Park, SA 5042, Australia

Amos.Omondi@flinders.edu.au

Jagath C. Rajapakse
School Computer Engineering, Nanyang Technogoical University, Singapore 639798

asrajapakse@ntu.edu.sg

Mariusz Bajger
School of Informatics and Engineering, Flinders University, Bedford Park, SA 5042, Australia

Mariusz.Bajger@flinders.edu.au

Abstract
This introductory chapter reviews the basics of artificial-neural-network the-

ory, discusses various aspects of the hardware implementation of neural net-
works (in both ASIC and FPGA technologies, with a focus on special features
of artificial neural networks), and concludes with a brief note on performance-
evaluation. Special points are the exploitation of the parallelism inherent in
neural networks and the appropriate implementation of arithmetic functions, es-
pecially the sigmoid function. With respect to the sigmoid function, the chapter
includes a significant contribution.

Keywords: FPGAs, neurocomputers, neural-network arithmetic, sigmoid, performance-
evaluation.

1.1 Introduction

In the 1980s and early 1990s, a great deal of research effort (both industrial
and academic) was expended on the design and implementation of hardware
neurocomputers [5, 6, 7, 8]. But, on the whole, most efforts may be judged

1

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 1–36.
© 2006 Springer. Printed in the Netherlands.

2 FPGA Neurocomputers

to have been unsuccessful: at no time have have hardware neurocomputers
been in wide use; indeed, the entire field was largely moribund by the end the
1990s. This lack of success may be largely attributed to the fact that earlier
work was almost entirely based on ASIC technology but was never sufficiently
developed or competetive enough to justify large-scale adoption; gate-arrays
of the period mentioned were never large enough nor fast enough for serious
neural-network applications.1 Nevertheless, the current literature shows that
ASIC neurocomputers appear to be making some sort of a comeback [1, 2, 3];
we shall argue below that these efforts are destined to fail for exactly the same
reasons that earlier ones did. On the other hand, the capacity and performance
of current FPGAs are such that they present a much more realistic alternative.
We shall in what follows give more detailed arguments to support these claims.

The chapter is organized as follows. Section 2 is a review of the fundamen-
tals of neural networks; still, it is expected that most readers of the book will al-
ready be familiar with these. Section 3 briefly contrasts ASIC-neurocomputers
with FPGA-neurocomputers, with the aim of presenting a clear case for the
former; a more significant aspects of this argument will be found in [18]. One
of the most repeated arguments for implementing neural networks in hardware
is the parallelism that the underlying models possess. Section 4 is a short sec-
tion that reviews this. In Section 5 we briefly describe the realization of a
state-of-the art FPGA device. The objective there is to be able to put into a
concrete context certain following discussions and to be able to give grounded
discussions of what can or cannot be achieved with current FPGAs. Section
6 deals with certain aspects of computer arithmetic that are relevant to neural-
network implementations. Much of this is straightforward, and our main aim
is to highlight certain subtle aspects. Section 7 nominally deals with activa-
tion functions, but is actually mostly devoted to the sigmoid function. There
are two main reasons for this choice: first, the chapter contains a significant
contribution to the implementation of elementary or near-elementary activa-
tion functions, the nature of which contribution is not limited to the sigmoid
function; second, the sigmoid function is the most important activation func-
tion for neural networks. In Section 8, we very briefly address an important
issue — performance evaluation. Our goal here is simple and can be stated
quite succintly: as far as performance-evaluation goes, neurocomputer archi-
tecture continues to languish in the “Dark Ages", and this needs to change. A
final section summarises the main points made in chapter and also serves as a
brief introduction to subsequent chapters in the book.

1Unless otherwise indicated, we shall use neural network to mean artificial neural network.

Review of neural-network basics 3

1.2 Review of neural-network basics

The human brain, which consists of approximately 100 billion neurons that
are connected by about 100 trillion connections, forms the most complex object
known in the universe. Brain functions such as sensory information process-
ing and cognition are the results of emergent computations carried out by this
massive neural network. Artificial neural networks are computational models
that are inspired by the principles of computations performed by the biolog-
ical neural networks of the brain. Neural networks possess many attractive
characteristics that may ultimately surpass some of the limitations in classical
computational systems. The processing in the brain is mainly parallel and dis-
tributed: the information are stored in connections, mostly in myeline layers
of axons of neurons, and, hence, distributed over the network and processed in
a large number of neurons in parallel. The brain is adaptive from its birth to its
complete death and learns from exemplars as they arise in the external world.
Neural networks have the ability to learn the rules describing training data and,
from previously learnt information, respond to novel patterns. Neural networks
are fault-tolerant, in the sense that the loss of a few neurons or connections does
not significantly affect their behavior, as the information processing involves
a large number of neurons and connections. Artificial neural networks have
found applications in many domains — for example, signal processing, image
analysis, medical diagnosis systems, and financial forecasting.

The roles of neural networks in the afore-mentioned applications fall
broadly into two classes: pattern recognition and functional approximation.
The fundamental objective of pattern recognition is to provide a meaningful
categorization of input patterns. In functional approximation, given a set of
patterns, the network finds a smooth function that approximates the actual
mapping between the input and output.

A vast majority of neural networks are still implemented on software on
sequential machines. Although this is not necessarily always a severe limita-
tion, there is much to be gained from directly implementing neual networks
in hardware, especially if such implementation exploits the parellelism inher-
ent in the neural networks but without undue costs. In what follows, we shall
describe a few neural network models — multi-layer perceptrons, Kohonen’s
self-organizing feature map, and associative memory networks — whose im-
plementations on FPGA are discussed in the other chapters of the book.

1.2.1 Artificial neuron

An artificial neuron forms the basic unit of artficial neural networks. The
basic elements of an artificial neurons are (1) a set of input nodes, indexed by,
say, 1, 2, ... I , that receives the corresponding input signal or pattern vector,
say x = (x1, x2, . . . xI)T; (2) a set of synaptic connections whose strengths are

4 FPGA Neurocomputers

represented by a set of weights, here denoted by w = (w1, w2, . . . wI)T; and
(3) an activation function Φ that relates the total synaptic input to the output
(activation) of the neuron. The main components of an artificial neuron is
illustrated in Figure 1.

Figure 1: The basic components of an artificial neuron

The total synaptic input, u, to the neuron is given by the inner product of the
input and weight vectors:

u =
I∑

i=1

wixi (1.1)

where we assume that the threshold of the activation is incorporated in the
weight vector. The output activation, y, is given by

y = Φ(u) (1.2)

where Φ denotes the activation function of the neuron. Consequently, the com-
putation of the inner-products is one of the most important arithmetic opera-
tions to be carried out for a hardware implementation of a neural network. This
means not just the individual multiplications and additions, but also the alterna-
tion of successive multiplications and additions — in other words, a sequence
of multiply-add (also commonly known as multiply-accumulate or MAC) op-
erations. We shall see that current FPGA devices are particularly well-suited
to such computations.

The total synaptic input is transformed to the output via the non-linear acti-
vation function. Commonly employed activation functions for neurons are

Review of neural-network basics 5

the threshold activation function (unit step function or hard limiter):

Φ(u) =
{

1.0, when u > 0,
0.0, otherwise.

the ramp activation function:2

Φ(u) = max {0.0, min{1.0, u + 0.5}}

the sigmodal activation function, where the unipolar sigmoid function is

Φ(u) =
a

1 + exp(−bu)

and the bipolar sigmoid is

Φ(u) = a

(
1 − exp(−bu)
1 + exp(−bu)

)
where a and b represent, repectively, real constants the gain or amplitude
and the slope of the transfer function.

The second most important arithmetic operation required for neural networks
is the computation of such activation functions. We shall see below that the
structure of FPGAs limits the ways in which these operations can be carried
out at reasonable cost, but current FPGAs are also equipped to enable high-
speed implementations of these functions if the right choices are made.

A neuron with a threshold activation function is usually referred to as the
discrete perceptron, and with a continuous activation function, usually a sig-
moidal function, such a neuron is referred to as continuous perceptron. The
sigmoidal is the most pervasive and biologically plausible activation function.

Neural networks attain their operating characteristics through learning or
training. During training, the weights (or strengths) of connections are gradu-
ally adjusted in either supervised or unsupervised manner. In supervised learn-
ing, for each training input pattern, the network is presented with the desired
output (or a teacher), whereas in unsupervised learning, for each training input
pattern, the network adjusts the weights without knowing the correct target.
The network self-organizes to classify similar input patterns into clusters in
unsupervised learning. The learning of a continuous perceptron is by adjust-
ment (using a gradient-descent procedure) of the weight vector, through the
minimization of some error function, usually the square-error between the de-
sired output and the output of the neuron. The resultant learning is known as

2In general, the slope of the ramp may be other than unity.

6 FPGA Neurocomputers

as delta learning: the new weight-vector, wnew, after presentation of an input
x and a desired output d is given by

wnew = wold + αδx

where wold refers to the weight vector before the presentation of the input and
the error term, δ, is (d − y)Φ′(u), where y is as defined in Equation 1.2 and
Φ

′
is the first derivative of Φ. The constant α, where 0 < α ≤ 1, denotes the

learning factor. Given a set of training data, Γ = {(xi, di); i = 1, . . . n}, the
complete procedure of training a continuous perceptron is as follows:

begin: /* training a continuous perceptron */
Initialize weights wnew

Repeat
For each pattern (xi, di) do

wold = wnew

wnew = wold + αδxi

until convergence
end

The weights of the perceptron are initialized to random values, and the conver-
gence of the above algorithm is assumed to have been achieved when no more
significant changes occur in the weight vector.

1.2.2 Multi-layer perceptron

The multi-layer perceptron (MLP) is a feedforward neural network consist-
ing of an input layer of nodes, followed by two or more layers of perceptrons,
the last of which is the output layer. The layers between the input layer and
output layer are referred to as hidden layers. MLPs have been applied success-
fully to many complex real-world problems consisting of non-linear decision
boundaries. Three-layer MLPs have been sufficient for most of these applica-
tions. In what follows, we will briefly describe the architecture and learning of
an L-layer MLP.

Let 0-layer and L-layer represent the input and output layers, respectively;
and let wl+1

kj denote the synaptic weight connected to the k-th neuron of the
l + 1 layer from the j-th neuron of the l-th layer. If the number of perceptrons

in the l-th layer is Nl, then we shall let Wl
�
= {wl

kj}NlxNl−1
denote the matrix

of weights connecting to l-th layer. The vector of synaptic inputs to the l-th
layer, ul = (ul

1, u
l
2, . . . u

l
Nl

)T is given by

ul = Wlyl−1,

where yl−1 = (yl−1
1 , yl−1

2 , . . . yl−1
Nl−1

)T denotes the vector of outputs at the l−1
layer. The generalized delta learning-rule for the layer l is, for perceptrons,

Review of neural-network basics 7

given by

Wnew
l = Wold

l + αδ lyT
l−1,

where the vector of error terms, δ T
l = (δl

1, δ
l
2, . . . , δ

l
Nl

) at the l th layer is
given by

δl
j =

{
2Φl

j
′(ul

j)(dj − oj), when l = L,

Φl
j
′(ul

j)
∑Nl+1

k=1 δl+1
k wl+1

kj , otherwise,

where oj and dj denote the network and desired outputs of the j-th output
neuron, respectively; and Φl

j and ul
j denote the activation function and total

synaptic input to the j-th neuron at the l-th layer, respectively. During train-
ing, the activities propagate forward for an input pattern; the error terms of a
particular layer are computed by using the error terms in the next layer and,
hence, move in the backward direction. So, the training of MLP is referred as
error back-propagation algorithm. For the rest of this chapter, we shall gen-
eraly focus on MLP networks with backpropagation, this being, arguably, the
most-implemented type of artificial neural networks.

Figure 2: Architecture of a 3-layer MLP network

8 FPGA Neurocomputers

1.2.3 Self-organizing feature maps

Neurons in the cortex of the human brain are organized into layers of neu-
rons. These neurons not only have bottom-up and top-down connections, but
also have lateral connections. A neuron in a layer excites its closest neigh-
bors via lateral connections but inhibits the distant neighbors. Lateral inter-
actions allow neighbors to partially learn the information learned by a winner
(formally defined below), which gives neighbors responding to similar pat-
terns after learning with the winner. This results in topological ordering of
formed clusters. The self-organizing feature map (SOFM) is a two-layer self-
organizing network which is capable of learning input patterns in a topolog-
ically ordered manner at the output layer. The most significant concept in a
learning SOFM is that of learning within a neighbourhood around a winning
neuron. Therefore not only the weights of the winner but also those of the
neighbors of the winner change.

The winning neuron, m, for an input pattern x is chosen according to the
total synaptic input:

m = arg max
j

wT
j x,

where wj denotes the weight-vector corresponding to the j-th output neuron.
wT

mx determines the neuron with the shortest Euclidean distance between its
weight vector and the input vector when the input patterns are normalized to
unity before training.

Let Nm(t) denote a set of indices corresponding to the neighbourhood size
of the current winner m at the training time or iteration t. The radius of Nm is
decreased as the training progresses; that is, Nm(t1) > Nm(t2) > Nm(t3) . . . ,
where t1 < t2 < t3 The radius Nm(t = 0) can be very large at the
beginning of learning because it is needed for initial global ordering of weights,
but near the end of training, the neighbourhood may involve no neighbouring
neurons other than the winning one. The weights associated with the winner
and its neighbouring neurons are updated by

∆wj = α(j, t) (x − wj) for all j ∈ Nm(t),

where the positive learning factor depends on both the training time and the
size of the neighbourhood. For example, a commonly used neighbourhood
function is the Gaussian function

α(Nm(t), t) = α(t) exp
(
−‖rj − rm‖2

2σ2(t)

)
,

where rm and rj denote the positions of the winning neuron m and of the
winning neighbourhood neurons j, respectively. α(t) is usually reduced at a

ASIC vs. FPGA neurocomputers 9

rate that is inversely proportional to t. The type of training described above
is known as Kohonen’s algorithm (for SOFMs). The weights generated by the
above algorithms are arranged spatially in an ordering that is related to the
features of the trained patterns. Therefore, the algorithm produces topology-
preserving maps. After learning, each input causes a localized response with
positions on the output layer that reflects dominant features of the input.

1.2.4 Associative-memory networks

Associative memory networks are two-layer networks in which weights
are determined in order to store a set of pattern associations, say,
{(s1, t1), (s2, t2), . . . (sk, tk), . . . (sn, tn)}, where input pattern sk is associ-
ated with output pattern tk. These networks not only learn to produce asso-
ciative patterns, but also are able to recall the desired response patterns when
a given pattern is similar to the stored pattern. Therefore they are referred
to as content-addressible memory. For each association vector (sk, tk), if
sk = tk, the network is referred to as auto-associative; otherwise it is hetero-
associative. The networks often provide input-output descriptions of the asso-
ciative memory through a linear transformation (then known as linear associa-
tive memory). The neurons in these networks have linear activation functions.
If the linearity constant is unity, then the output layer activation is given by

y = Wx,

where W denotes the weight matrix connecting the input and output layers.
These networks learn using the Hebb rule; the weight matrix to learn all the
associations is given by the batch learning rule:

W =
n∑

k=1

tksTk .

If the stored patterns are orthogonal to each other, then it can be shown that
the network recalls the stored associations perfectly. Otherwise, the recalled
patterns are distorted by cross-talk between patterns.

1.3 ASIC vs. FPGA neurocomputers

By far, the most often-stated reason for the development of custom (i.e.
ASIC) neurocomputers is that conventional (i.e. sequential) general-purpose
processors do not fully exploit the parallelism inherent in neural-network mod-
els and that highly parallel architectures are required for that. That is true as
far as it goes, which is not very far, since it is mistaken on two counts [18]:
The first is that it confuses the final goal, which is high performance — not
merely parallelism — with artifacts of the basic model. The strong focus on

10 FPGA Neurocomputers

parallelism can be justified only when high performance is attained at a rea-
sonable cost. The second is that such claims ignore the fact that conventional
microprocessors, as well as other types of processors with a substantial user-
base, improve at a much faster rate than (low-use) special-purpose ones, which
implies that the performance (relative to cost or otherwise) of ASIC neurocom-
puters will always lag behind that of mass-produced devices – even on special
applications. As an example of this misdirection of effort, consider the latest
in ASIC neurocomputers, as exemplified by, say, [3]. It is claimed that “with
relatively few neurons, this ANN-dedicated hardware chip [Neuricam Totem]
outperformed the other two implementations [a Pentium-based PC and a Texas
Instruments DSP]”. The actual results as presented and analysed are typical
of the poor benchmarking that afflicts the neural-network area. We shall have
more to say below on that point, but even if one accepts the claims as given,
some remarks can be made immediately. The strongest performance-claim
made in [3], for example, is that the Totem neurochip outperformed, by a fac-
tor of about 3, a PC (with a 400-MHz Pentium II processor, 128 Mbytes of
main memory, and the neural netwoks implemented in Matlab). Two points
are pertinent here:

In late-2001/early 2002, the latest Pentiums had clock rates that were
more than 3 times that of Pentium II above and with much more memory
(cache, main, etc.) as well.

The PC implementation was done on top of a substantial software (base),
instead of a direct low-level implementation, thus raising issues of “best-
effort” with respect to the competitor machines.

A comparison of the NeuriCam Totems and Intel Pentiums, in the years 2002
and 2004 will show the large basic differences have only got larger, primarily
because, with the much large user-base, the Intel (x86) processors continue to
improve rapidly, whereas little is ever heard of about the neurocomputers as
PCs go from one generation to another.

So, where then do FGPAs fit in? It is evident that in general FPGAs can-
not match ASIC processors in performance, and in this regard FPGAs have
always lagged behind conventional microprocessors. Nevertheless, if one
considers FPGA structures as an alternative to software on, say, a general-
purpose processor, then it is possible that FPGAs may be able to deliver better
cost:performance ratios on given applications.3 Moreover, the capacity for
reconfiguration means that may be extended to a range of applications, e.g.
several different types of neural networks. Thus the main advantage of the
FPGA is that it may offer a better cost:performance ratio than either custom

3Note that the issue is cost:performance and not just performance

ASIC vs. FPGA neurocomputers 11

ASIC neurocomputers or state-of-the art general-purpose processors and with
more flexibility than the former. A comparison of the NeuriCam Totem, In-
tel Pentiums, and M FPGAs will also show that improvements that show the
advantages of of the FPGAs, as a consequence of relatively rapid changes in
density and speed.

It is important to note here two critical points in relation to custom (ASIC)
neurocomputers versus the FPGA structures that may be used to implement a
variety of artificial neural networks. The first is that if one aims to realize a cus-
tom neurocomputer that has a signficiant amount of flexibility, then one ends
up with a structure that resembles an FPGA — that is, a small number of differ-
ent types functional units that can be configured in different ways, according to
the neural network to be implemented — but which nonetheless does not have
the same flexibility. (A particular aspect to note here is that the large variety of
neural networks — usually geared towards different applications — gives rise
a requirement for flexibility, in the form of either programmability or recon-
figurability.) The second point is that raw hardware-performance alone does
not constitute the entirety of a typical computing structure: software is also
required; but the development of software for custom neurocomputers will,
because of the limited user-base, always lag behind that of the more widely
used FPGAs. A final drawback of the custom-neurocomputer approach is that
most designs and implementations tend to concentrate on just the high paral-
lelism of the neural networks and generally ignore the implications of Am-
dahl’s Law, which states that ultimately the speed-up will be limited by any
serial or lowly-parallel processing involved. (One rare exception is [8].)4 Thus
non-neural and other serial parts of processing tend to be given short shrift.
Further, even where parallelism can be exploited, most neurocomputer-design
seem to to take little account of the fact that the degrees of useful parallelism
will vary according to particular applications. (If parallelism is the main is-
sue, then all this would suggest that the ideal building block for an appropri-
ate parallel-processor machine is one that is less susceptible to these factors,
and this argues for a relatively large-grain high-performance processor, used in
smaller numbers, that can nevertheless exploit some of the parallelism inherent
in neural networks [18].)

All of the above can be summed up quite succintly: despite all the claims
that have been made and are still being made, to date there has not been a
custom neurocomputer that, on artificial neural-network problems (or, for that
matter, on any other type of problem), has outperformed the best conventional
computer of its time. Moreover, there is little chance of that happening. The

4Although not quite successful as a neurocomputer, this machine managed to survive longer than most
neurocomputers — because the flexibility inherent in its design meant that it could also be useful for non-
neural applications.

12 FPGA Neurocomputers

promise of FPGAs is that they offer, in essence, the ability to realize “semi-
custom” machines for neural networks; and, with continuing developments in
technology, they thus offer the best hope for changing the situation, as far as
possibly outperforming (relative to cost) conventional processors.

1.4 Parallelism in neural networks

Neural networks exhibit several types of parallelism, and a careful examina-
tion of these is required in order to both determine the most suitable hardware
structures as well as the best mappings from the neural-network structures onto
given hardware structures. For example, parallelism can be of the SIMD type
or of the MIMD type, bit-parallel or word-parallel, and so forth [5]. In general,
the only categorical statement that can be made is that, except for networks of a
trivial size, fully parallel implementation in hardware is not feasible — virtual
parallelism is necessary, and this, in turn, implies some sequential processing.
In the context of FPGa, it might appear that reconfiguration is a silver bullet,
but this is not so: the benefits of dynamic reconfigurability must be evaluated
relative to the costs (especially in time) of reconfiguration. Nevertheless, there
is litle doubt that FPGAs are more promising that ASIC neurocomputers. The
specific types of parallelism are as follows.

Training parallelism: Different training sessions can be run in parallel,
e.g. on SIMD or MIMD processors. The level of parallelism at this level
is usually medium (i.e. in the hundreds), and hence can be nearly fully
mapped onto current large FPGAs.

Layer parallelism: In a multilayer network, different layers can be
processed in parallel. Parallelism at this level is typically low (in the
tens), and therefore of limited value, but it can still be exploited through
pipelining.

Node parallelism: This level, which coresponds to individual neurons, is
perhaps the most important level of parallelism, in that if fully exploited,
then parallelism at all of the above higher levels is also fully exploited.
But that may not be possible, since the number of neurons can be as
high as in the millions. Nevertheless, node parallelism matches FPGAs
very well, since a typical FPGA basically consists of a large number of
“cells” that can operate in parallel and, as we shall see below, onto which
neurons can readily be mapped.

Weight parallelism: In the computation of an output

y = Φ

(
n∑

i=1

wixi

)
,

Xilinx Virtex-4 FPGA 13

where xi is an input and wi is a weight, the products xiwi can all be
computed in parallel, and the sum of these products can also be com-
puted with high parallelism (e.g. by using an adder-tree of logarithmic
depth).

Bit-level parallelism: At the implementation level, a wide variety of par-
allelism is available, depending on the design of individual functional
units. For example, bit-serial, serial-parallel, word-parallel, etc.

From the above, three things are evident in the context of an implementation.
First, the parallelism available at the different levels varies enormously. Sec-
ond, different types of parallelism may be traded off against others, depending
on the desired cost:performance ratio (where for an FPGA cost may be mea-
sured in, say, the number of CLBs etc.); for example, the slow speed of a
single functional unit may be balanced by having many such units operating
concurrently. And third, not all types of parallelism are suitable for FPGA
implementation: for example, the required routing-interconnections may be
problematic, or the exploitation of bit-level parallelism may be constrained by
the design of the device, or bit-level parallelism may simply not be appropriate,
and so forth. In the Xilinx Virtex-4, for example, we shall see that it is possible
to carry out many neural-network computations without using much of what is
usually taken as FPGA fabric.5

1.5 Xilinx Virtex-4 FPGA

In this section, we shall briefly give the details an current FPGA device,
the Xilinx Virtex-4, that is typical of state-of-the-art FPGA devices. We shall
below use this device in several running examples, as these are easiest under-
stood in the context of a concrete device. The Virtex-4 is actually a family of
devices with many common features but varying in speed, logic-capacity, etc..
The Virtex-E consists of an array of up to 192-by-116 tiles (in generic FPGA
terms, configurable logic blocks or CLBs), up to 1392 Kb of Distributed-RAM,
upto 9936 Kb of Block-RAM (arranged in 18-Kb blocks), up to 2 PowerPC 405
processors, up to 512 Xtreme DSP slices for arithmetic, input/ouput blocks,
and so forth.6

A tile is made of two DSP48 slices that together consist of eight function-
generators (configured as 4-bit lookup tables capable of realizing any four-
input boolean function), eight flip-flops, two fast carry-chains, 64 bits of
Distributed-RAM, and 64-bits of shift register. There are two types of slices:

5The definition here of FPGA fabric is, of course, subjective, and this reflects a need to deal with changes in
FPGA realization. But the fundamental point remains valid: bit-level parallelism is not ideal for the given
computations and the device in question.
6Not all the stated maxima occur in any one device of the family.

14 FPGA Neurocomputers

SLICEM, which consists of logic, distributed RAM, and shift registers, and
SLICEL, which consists of logic only. Figure 3 shows the basic elements of a
tile.

Figure 3: DSP48 tile of Xilinx Virtex-4

Blocks of the Block-RAM are true dual-ported and recofigurable to various
widths and depths (from 16K× 1 to 512×36); this memory lies outside the
slices. Distributed RAM are located inside the slices and are nominally single-
port but can be configured for dual-port operation. The PowerPC processor
core is of 32-bit Harvard architecture, implemented as a 5-stage pipeline. The

Arithmetic 15

significance of this last unit is in relation to the comment above on the serial
parts of even highly parallel applications — one cannot live by parallelism
alone. The maximum clock rate for all of the units above is 500 MHz.

Arithmetic functions in the Virtex-4 fall into one of two main categories:
arithmetic within a tile and arithmetic within a collection of slices. All the
slices together make up what is called the XtremeDSP [22]. DSP48 slices
are optimized for multipliy, add, and mutiply-add operations. There are 512
DSP48 slices in the largest Virtex-4 device. Each slice has the organization
shown in Figure 3 and consists primarily of an 18-bit×18-bit multiplier, a 48-
bit adder/subtractor, multiplexers, registers, and so forth. Given the importance
of inner-product computations, it is the XtremeDSP that is here most crucial for
neural-network applications. With 512 DSP48 slices operating at a peak rate of
500 MHz, a maximum performance of 256 Giga-MACs (multiply-accumlate
operations) per second is possible. Observe that this is well beyond anything
that has so far been offered by way of a custom neurocomputer.

1.6 Arithmetic

There are several aspects of computer arithmetic that need to be consid-
ered in the design of neurocomputers; these include data representation, inner-
product computation, implementation of activation functions, storage and up-
date of weights, and the nature of learning algorithms. Input/output, although
not an arithmetic problem, is also important to ensure that arithmetic units can
be supplied with inputs (and results sent out) at appropriate rates. Of these,
the most important are the inner-product and the activation functions. Indeed,
the latter is sufficiently significant and of such complexity that we shall devote
to it an entirely separate section. In what follows, we shall discuss the others,
with a special emphasis on inner-products. Activation functions, which here
is restricted to the sigmoid (although the relevant techniques are not) are suf-
ficiently complex that we have relegated them to seperate section: given the
ease with which multiplication and addition can be implemented, unless suffi-
cient care is taken, it is the activation function that will be the limiting factor
in performance.

Data representation: There is not much to be said here, especially since exist-
ing devices restrict the choice; nevertheless, such restrictions are not absolute,
and there is, in any case, room to reflect on alternatives to what may be on
offer. The standard representations are generally based on two’s complement.
We do, however, wish to highlight the role that residue number systems (RNS)
can play.

It is well-known that RNS, because of its carry-free properties, is particu-
larly good for multiplication and addition [23]; and we have noted that inner-
product is particularly important here. So there is a natural fit, it seems. Now,

16 FPGA Neurocomputers

to date RNS have not been particularly successful, primarily because of the
difficulties in converting between RNS representations and conventional ones.
What must be borne in mind, however, is the old adage that computing is about
insight, not numbers; what that means in this context is that the issue of con-
version need come up only if it is absolutely necessary. Consider, for example,
a neural network that is used for classification. The final result for each input is
binary: either a classification is correct or it is not. So, the representation used
in the computations is a side-issue: conversion need not be carried out as long
as an appropriate output can be obtained. (The same remark, of course, applies
to many other problems and not just neural networks.) As for the constraints
of off-the-shelf FPGA devices, two things may be observed: first, FPGA cells
typically perform operations on small slices (say, 4-bit or 8-bit) that are per-
fectly adequate for RNS digit-slice arithmetic; and, second, below the level
of digit-slices, RNS arithmetic will in any case be realized in a conventional
notation.

Figure 4: XtremeDSP chain-configuration for an inner-product

The other issue that is significant for representation is the precision used.
There have now been sufficient studies (e.g. [17]) that have established 16
bits for weights and 8 bits for activation-function inputs as good enough. With

Arithmetic 17

this knowledge, the critical aspect then is when, due to considerations of per-
formance or cost, lower precision must be used. Then a careful process of
numerical analysis is needed.

Figure 5: XtremeDSP tree-configuration for an inner-product

Sum-of-products computations: There are several ways to implement this, de-
pending on the number of datasets. If there is just one dataset, then the opera-
tion is

∑N
i=1 wiXi, where wi is a weight and Xi is an input. (In general, this

is the matrix-vector computation expressed by Equation 1.1.) In such a case,
with a device such as the Xilinx Virtex-4, there are several possible implemen-
tations, of which we now give a few sketches. If N is small enough, then two
direct implementations consist of either a chain (Figure 4) or a tree (Figure 5)
of DSP48 slices. Evidently, the trade-off is one of latency versus effecient use
of device logic: with a tree the use of tile logic is quite uneven and less efficient
than with a chain. If N is large, then an obvious way to proceed is to use a
combination of these two approaches. That is, partition the computation into
several pieces, use a chain for each such piece, and then combine in a tree the
results of these chains, or the other way around. But there are other possible
approaches: for example, instead of using chains, one DSP48 slice could be
used (with a feedback loop) to comute the result of each nominal chain, with
all such results then combined in a chain or a tree. Of course, the latency will
now be much higher.

18 FPGA Neurocomputers

With multiple datasets, any of the above approaches can be used, although
some are better than others — for example, tree structures are more amenable
to pipelining. But there is now an additional issue: how to get data in and
out at the appropriate rates. If the network is sufficiently large, then most of
the inputs to the arithmetic units will be stored outside the device, and the
number of device pins available for input/output becomes a minor issue. In
this case, the organization of input/output is critical. So, in general, one needs
to consider both large datasets as well as multiple data sets. The following
discussions cover both aspects.
Storage and update of weights, input/output: For our purposes, Distributed-
RAM is too small to hold most of the data that is to be processed, and therefore,
in general Block-RAM will be used. Both weights and input values are stored
in a single block and simualtaneously read out (as the RAM is dual-ported).
Of course, for very small networks, it may be practical to use the Distributed-
RAM, especially to store the weights; but we will in general assume networks
of arbitrary size. (A more practical use for Distributed-RAM is the storage of
constants used to implement activation functions.) Note that the disparity (dis-
cussed below) between the rate of inner-product computations and activation-
function computations means that there is more Distributed-RAM available for
this purpose than appears at first glance. For large networks, even the Block-
RAM may not be sufficient, and data has to be periodically loaded into and
retrieved from the FPGA device. Given pin-limitations, careful consideration
must be given to how this is done.

Let us suppose that we have multiple datasets and that each of these is very
large. Then, the matrix-vector product of Equation 1.1, that is,

u = Wy

becomes a matrix-matrix product,

U = WY,

where each column of Y is associated with one input dataset. The most
common method used for matrix-matrix multiplication is the inner-product
method; that is, each element of the output matrix is directly generated as an
inner-product of two vectors of the input matrices. Once the basic method has
been selected, the data must be processed — in particular, for large datasets,
this includes bringing data into, and retrieving data from, the FPGA — exactly
as indicated above. This is, of course, true for other methods as well.

Whether or not the inner-product method, which is a highly sequential
method, is satisfactory depends a great deal on the basic processor microar-
chitecture, and there are at least two alternatives that should always be consid-

Arithmetic 19

ered: the outer-product and the middle-product methods.7 Consider a typical
“naive” sequential implementation of matrix multiplication. The inner-product
method would be encoded as three nested loops, the innermost of which com-
putes the inner-product of a vector of one of the input matrices and a vector of
the other input matrix:

for i:=1 to n do
for j:=1 to n do

for k:=1 to n do
U[i,j]:=U[i,j]+W[i,k]*Y[k,j];

(where we assume that the elements of U [i, j] have all been initialized to zero.)
Let us call this the ijk-method8, based on the ordering of the index-changes.
The only parallelism here is in the multiplication of individual matrix element
and, to a much lesser extent (assuming the tree-method is used instead of the
chain method) in the tree-summation of these products). That is, for n×n ma-
trices, the required n2 inner-products are computed one at a time. The middle-
product method is obtained by interchanging two of the loops so as to yield
the jki-method. Now more parallelism is exposed, since n inner-products can
be computed concurrently; this is the middle-product method. And the outer-
product method is the kij-method. Here all parallelism is now exposed: all n2

inner products can be computed concurrently. Nevertheless, it should be noted
that no one method may be categorically said to be better than another — it all
depends on the architecture, etc.

To put some meat to the bones above, let us consider a concrete example —
the case of 2× 2 matrices. Further, let us assume that the multiply-accumulate
(MAC) operations are carried out within the device but that all data has to be
brought into the device. Then the process with each of the three methods is
shown in Table 1. (The horizontal lines delineate groups of actions that may
take place concurrently; that is within a column, actions separated by a line
must be performed sequentially.)

A somewhat rough way to compare the three methods is measure the ratio,
M : I , of the number of MACs carried out per data value brought into the
array. This measure clearly ranks the three methods in the order one would
expect; also note that by this measure the kij-method is completely efficient
(M : I = 1): every data value brought in is involved in a MAC. Nevertheless,
it is not entirely satisfactory: for example, it shows that the kij-method to be
better than the jki-method by factor, which is smaller that what our intuition

7The reader who is familiar with compiler technology will readily recognise these as vecorization (paral-
lelization) by loop-interchange.
8We have chosen this terminology to make it convenient to also include methods that have not yet been
“named”.

20 FPGA Neurocomputers

would lead us to expect. But if we now take another measure, the ratio of
M : I to the number, S, of MAC-steps (that must be carried out sequentially),
then the diference is apparent.

Lastly, we come to the main reason for our classifcation (by index-ordering)
of the various methods. First, it is evident that any ordering will work just
as well, as far as the production of correct results goes. Second, if the data
values are all of the same precision, then it is sufficient to consider just the
three methods above. Nevertheless, in this case dataflow is also important, and
it easy to establish, for example, that where the jki-method requires (at each
input step) one weight and two inout values, there is an ordering of indices that
requires two weights and one input value. Thus if weights are higher precision,
the latter method may be better.

Inner-Product Middle-Product Outer-Product
Input: W1,1, W1,2, Y1,1, Y2,1 Input: W1,1, Y2,1, Y1,1 Input: W1,1, W2,1, Y1,1, Y1,2

MAC: t1 = t1 + W1,1 ∗ Y1,1 MAC: t1 = t1 + W1,1 ∗ Y1,1 MAC: t1 = t1 + W1,1 ∗ Y1,1

MAC: t1 = t1 + W1,2 ∗ Y2,1 MAC: t2 = t2 + W1,1 ∗ Y1,2 MAC: t2 = t2 + W1,1 ∗ Y1,2

Input: W1,1, W1,2, Y1,2, Y2,2 Input: W1,2, Y2,1, Y2,2 MAC: t3 = t3 + W2,1 ∗ Y1,1

MAC: t4 = t4 + W2,1 ∗ Y1,2

MAC: t2 = t2 + W1,1 ∗ Y1,2 MAC: t1 = t1 + W1,2 ∗ Y2,1 Input: W1,2, W2,2, Y2,1, Y2,2

MAC: t2 = t2 + W1,2 ∗ Y2,2 MAC: t2 = t2 + W1,2 ∗ Y2,2

Input: W2,1, W2,2, Y1,1, Y2,1 Input: W2,1, Y1,1, Y1,2 MAC: t1 = t1 + W1,2 ∗ Y2,1

MAC: t2 = t2 + W1,2 ∗ Y2,2

MAC: t3 = t3 + W2,1 ∗ Y1,1 MAC: t3 = t3 + W2,1 ∗ Y1,1 MAC: t3 = t3 + W1,1 ∗ Y1,1

MAC: t3 = t3 + W2,2 ∗ Y2,1 MAC: t4 = t4 + W2,1 ∗ Y1,2 MAC: t4 = t4 + W2,2 ∗ Y2,2

Input: W2,1, W2,2, Y1,2, Y2,2 Input: W2,2, Y2,1, Y2,2

MAC: t4 = t4 + W2,1 ∗ Y1,2 MAC: t3 = t3 + W2,2 ∗ Y2,1

MAC: t4 = t4 + W2,2 ∗ Y2,2 MAC: t4 = t4 + W2,2 ∗ Y2,2

M : I = 0.5 M : I = 0.667 M : I = 1.0
(M : I)/S = 0.125 (S=8) (M : I)/S = 0.167 (S=4) (M : I)/S = 0.5 (S=2)

Table 1: Matrix multiplication by three standard methods

Learning and other algorithms: The typical learning algorithm is usually
chosen on how quickly it leads to convergence (on, in most cases, a software
platform). For hardware, this is not necessarily the best criteria: algorithms
need to be selected on the basis on how easily they can be implemented in
hardware and what the costs and performance of such implementations are.
Similar considerations should apply to other algorithms as well.

Activation-function implementation: unipolar sigmoid 21

1.7 Activation-function implementation: unipolar
sigmoid

For neural networks, the implementation of these functions is one of the two
most important arithmetic design-issues. Many techniques exist for evaluating
such elementary or nearly-elementary functions: polynomial approximations,
CORDIC algorithms, rational approximations, table-driven methods, and so
forth [4, 11]. For hardware implementation, accuracy, performance and cost
are all important. The latter two mean that many of the better techniques that
have been developed in numerical analysis (and which are easily implemented
in software) are not suitable for hardware implementation. CORDIC is perhaps
the most studied technique for hardware implementation, but it is (relatively)
rarely implemented: its advantage is that the same hardware can be used for
several functions, but the resulting performance is usually rather poor. High-
order polynomial approximations can give low-error implementations, but are
generally not suitable for hardware implementation, because of the number of
arithmetic operations (multiplications and additions) that must be performed
for each value; either much hardware must be used, or performance be com-
promised. And a similar remark applies to pure table-driven methods, unless
the tables are quite small: large tables will be both slow and costly. The prac-
tical implication of these constraints is as indicated above: the best techniques
from standard numerical analysis are of dubious worth.

Given trends in technology, it is apparent that at present the best technique
for hardware function-evaluation is a combination of low-order polynomials
and small look-up tables. This is the case for both ASIC and FPGA technolo-
gies, and especially for the latter, in which current devices are equipped with
substantial amounts of memory, spread through the device, as well as many
arithmetic units (notably mulipliers and adders).9 The combination of low-
order polynomials (primarily linear ones) is not new — the main challenges
has always been one of how to choose the best interpolation points and how to
ensure that look-up tables remain small. Low-order interpolation therefore has
three main advantages. The first is that exactly the same hardware structures
can be used to realize different functions, since only polynomial coefficients
(i.e. the contents of look-up tables) need be changed; such efficient reuse is not
possible with the other techniques mentioned above. The second is that it is
well-matched to current FPGA devices, which come with built-in multipliers,
adders, and memory.

The next subsection outlines the basic of our approach to linear interpola-
tion; the one after that discusses implementation issues; and the final subsec-
tion goes into the details of the underlying theory.

9This is validated by a recent study of FPGA implementations of various techniques [16].

22 FPGA Neurocomputers

1.7.1 Basic concepts

On the basis of the considerations above, we have chosen piecewise linear
interpolation for the approximation of the sigmoid function.

For most functions, interpolation with uniformly-sized intervals (i.e.
uniformly-spaced abscissae) is not ideal; in the case of the sigmoid, it is evident
that, idealy, more intervals should be used as the magnitude of the argument
increases. Nevertheless, for hardware implementation, the need to quickly
map arguments onto the appropriate intervals dictates the use of such inter-
vals. With this choice and linear interpolation, the critical issue then becomes
that of what function-value to associate with each interval. The most common
choice is to arbitrarily select the value at the midpoint of the interval — that
is, if x ∈ [L, U], then f(x) = f(L/2 + U/2) — or to choose a value that
minimizes absolute errors. 10 Neither is particularly good. As we shall show,
even with a fixed number of intervals, the best function-value for an interval is
generally not the midpoint. And, depending on the “curvature” of the function
at hand, relative error may be more critical than absolute error. For example,
for the sigmoid function, f(x) = 1/(1 + e−x), we have a function that is sym-
metric (about the y-axis), but the relative error grows more rapidly on one side
of the axis than the other, and on both sides the growth depends on the interval.
Thus, the effect of a given value of absolute error is not constant or even linear.

The general approach we take is as follows. Let I = [L, U] be a real interval
with L < U , and let f : I → R be a function to be approximated (where R
denotes the set of real numbers). Suppose that f̂ : I → R is a linear function
— that is, f̂(x) = c1 + c2x, for some constants c1 and c2 — that approximates
f . Our objective is to investigate the relative-error function

ε(x) = f(x)−f̂(x)
f(x) , x ∈ I, (Err)

and to find c1 and c2 such that ε(x) is small. One way to obtain reasonably
good values for c1, c2 is to impose the

f(L) = f̂(L), f(U) = f̂(U) (C)

and then compute values for c1 and c2. But a much better result can be obtained
using the “improved” condition

|ε(L)| = |ε(U)| = |ε(xstat)|, (IC)

where xstat (stationary point) is the value of x for which ε(x) has a local
extremum. An example of the use of this technique to approximate reciprocals

10Following [12], we use absolute error to refer to the difference between the exact value and its approxi-
mation; that is, it is not the absolute value of that difference.

Activation-function implementation: unipolar sigmoid 23

can be found in [4, 10] for the approximation of divisor reciprocals and square-
root reciprocals. It is worth noting, however, that in [10], ε(x) is taken to be
the absolute-error function. This choice simplifies the application of (IC), but,
given the "curvature" of these functions, it is not as good as the relative-error
function above. We will show, in Section 7.3, that (IC) can be used successfully
for sigmoid function, despite the fact that finding the exact value for xstat

may not be possible. We show that, compared with the results from using the
condition (C), the improved condition (IC) yields a massive 50% reduction in
the magnitude of the relative error. We shall also give the analytical formulae
for the constants c1 and c2. The general technique is easily extended to other
functions and with equal or less ease [13], but we shall here consider only
the sigmoid function, which is probably the most important one for neural
networks.

Figure 6: Hardware organization for piecewise linear interpolation

24 FPGA Neurocomputers

1.7.2 Implementation

It is well-known that use of many interpolation points generally results in
better approximations. That is, subdividing a given interval into several subin-
tervals and keeping to a minimum the error on each of the subintervals im-
proves accuracy of approximation for the given function as a whole. Since for
computer-hardware implementations it is convenient that the number of data
points be a power of two, we will assume that the interval I is divided into 2k

intervals:
[
L, L + ∆

2k

)
,
[
L + ∆

2k , L + 2∆
2k

)
, . . . ,

[
L + 2k−1∆

2k , U
]
, where ∆ =

U − L. Then, given an argument, x, the interval into which it falls can read-
ily be located by using, as an address, the k most significant bits of the binary
representation of x. The basic hardware implementation therefore has the high-
level organization shown in Figure 6. The two memories hold the constants c1

and c2 for each interval.

Figure 7: High-performance hardware organization for function evaluation

Figure 6 is only here to be indicative of a “naive” implementation, although
it is quite realistic for some current FPGAs. For a high-speed implementa-

Activation-function implementation: unipolar sigmoid 25

tion, the actual structure may differ in several ways. Consider for example the
multiplier-adder pair. Taken individually, the adder must be a carry-propagate
adder (CPA); and the multiplier, if it is of high performance will consist of an
array of carry-save adders (CSAs) with a final CPA to assimilate the partial-
sum/partial-carry (PC/PS) output of the CSAs. But the multiplier-CPA may be
replaced with two CSAs, to yield much higher performance. Therefore, in a
high speed implementation the actual structure would have the form shown in
Figure 7.

Nevertheless, for FPGAs, the built-in structure will impose some con-
straints, and the actual implementation will generally be device-dependent. For
example, for a device such as the Xilinx Virtex-4, the design of Figure 6 may
be implemented more or less exactly as given: the DSP48 slice provides the
multiply-add function, and the constants, c1 and c2, are stored in Block-RAM.
They could also be stored in Distributed-RAM, as it is unlikely that there will
be many of them. Several slices would be required to store the constants at the
required precision, but this is not necessarily problematic: observe that each
instance of activation-function computation corresponds to several MACs (bit
slices).

All of the above is fairly straightforward, but there is one point that needs a
particular mention: Equations 1.1 and 1.2 taken together imply that there is an
inevitable disparity between the rate of inner-product (MACs) computations
and activation-function computations. In custom design, this would not cause
particular concern: both the design and the placement of the relevant hard-
ware units can be chosen so as to optimize cost, performance, etc. But with
FPGAs, this luxury does not exist: the mapping of a network to a device, the
routing requirements to get an inner-product value to the correct place for the
activation-function computation, the need to balance the disparate rates ... all
these mean that the best implementation will be anything but straightforward.

1.7.3 Theory

We shall illustrate our results with detailed numerical data obtained for a
fixed number of intervals. All numerical computations, were carried out in
the computer algebra system MAPLE [24] for the interval11 I = [0.5, 1] and
k = 4; that is, I was divided into the 16 intervals:[

1
2
,
17
32

,
9
16

,
19
32

,
5
8
, . . . , 1

]
.

We have used MAPLE to perform many of complex symbolic computations.
Floating-point calculations in MAPLE are carried out in finite precision, with

11Note that evaluation on any other interval can be transformed into evaluation on the interval [0.5, 1].

26 FPGA Neurocomputers

intermediate results rounded to a precision that is specified by MAPLE con-
stant Digits. This constant controls the number of digits that MAPLE uses for
calculations. Thus, generally, the higher the Digits value is, the higher accu-
racy of the obtainable results, with roundoff errors as small as possible. (This
however cannot be fully controlled in case of complex algebraic expressions).
We set Digits value to 20 for numerical computations. Numerical results will
be presented using standard (decimal) scientific notation.

Applying condition (C), in Section 7.1, to the sigmoid function, we get⎧⎨⎩
c1 + c2L = 1

1+e−U

c1 + c2U = 1
1+e−L .

For simplicity, we will use θ to denote the expression

UeL − LeU − Le(L+U) + Ue(L+U).

Then the solution of the above system may be expressed as

c1 = θ
θ+U−L+UeU−LeL

c2 = eU−eL

θ+U−L+UeU−LeL .

and the approximation function f̂(x) = c1 + c2x takes the form

f̂(x) =
θ + x

(
eU − eL

)
θ + U − L + UeU + LeL

, x ∈ I.

The relative error is now

ε(x) =
−LeL − L + UeU + U − e−xθ − xeU

θ + U − L + UeU + LeL

+
−xeU−x + xeL + xe(L−x)

θ + U − L + UeU + LeL
, x ∈ I.

Activation-function implementation: unipolar sigmoid 27

Figure 8: Error in piecewise-linear approximation of the sigmoid

Figure 8 shows the results for the 16-interval case. As the graphs show, the
amplitude of the error attains a maximum in each of the sixteen intervals. To
ensure that it is in fact so on any interval we investigate the derivatives of the
error function.

The first derivative of the error function is

ε′(x) =
θ + eL − eU + x

(
e(U−x) − e(L−x)

)
θ + (U − L) + UeU − LeL

+
e(L−x) − e(U−x) + θe−x

θ + (U − L) + UeU − LeL
, x ∈ I.

A closer look at the formula for the derivative, followed by simple algebraic
computations, reveals that the equation ε(x) = 0 is reducible to the equation

Aex = B + Cx, for some constants A, B, C.

The solution of this equation is the famous Lambert W function, which has
been extensively studied in the literature; and many algorithms are known for
the computation of its values.12 Since the Lambert W function cannot be ana-
lytically expressed in terms of elementary functions, we leave the solution of

12The reader interested in a recent study of the Lambert W function is refereed to [9].

28 FPGA Neurocomputers

our equation in the form

xstat = eLLambertW

⎛⎜⎝−e

(
U− θ+(eU−eL)(U−1)

eU−eL

)⎞⎟⎠
+eULambertW

⎛⎜⎝−e

(
U− θ+(eU−eL)(U−1)

eU−eL

)⎞⎟⎠
where LambertW is the MAPLE notation for the Lambert W function. There is
no straightforward way to extend our results to an arbitrary interval I . So, for
the rest of this section we will focus on the 16-interval case, where, with the
help of MAPLE, we may accurately ensure validity of our findings. It should
nevertheless be noted that since this choice of intervals was quite arbitrary
(within the domain of the investigated function), the generality of our results
are in no way invalidated. Figure 9 shows plots of the first derivative of the
relative-error function on sixteen intervals, confirming that there exists a local
maximum on each interval for this function.

From Figure 9, one can infer that on each interval the stationary point occurs
somewhere near the mid-point of the interval. This is indeed the case, and the
standard Newton-Raphson method requires only a few iterations to yield a rea-
sonably accurate approximation to this stationary value. (To have a full control
over the procedure we decided not to use the MAPLE’s built-in approximation
method for Lambert W function values.) For the 16-interval case, setting the
tolerance to 10−17 and starting at the mid-point of each interval, the required
level of accuracy is attained after only three iterations. For the stationary points
thus found, the magnitude of the maximum error is

εmax = 1.5139953883 × 10−5 (1.3)

which corresponds to 0.3 on the “magnified” graph of Figure 9.
We next apply the improved condition (IC) to this approximation. By (Err),

we have

ε(x) = 1 − c1 − c1e
−x − c2x − c2xe−x (1.4)

hence

ε(L) = 1 − c1 − c1e
−L − c2L − c2Le−L (1.5)

ε(U) = 1 − c1 − c1e
−U − c2U − c2Ue−U . (1.6)

From Equations (1.5) and (1.6) we get an equation that we can solve for c2:

Activation-function implementation: unipolar sigmoid 29

c2 =
c1

(
e−L − e−U

)
U + Ue−U − L − Le−L

(1.7)

Substituting for c2 in Equation (1.4) yields the final formula for the relative
error

ε(x) = 1 − c1 − c1e
−x +

c1

(
e−U − e−L

)
x

U + Ue−U − L − Le−L

+
c1

(
e−U − e−L

)
xe−x

U + Ue−U − L − Le−L
, x ∈ I.

To study the error magnitude we investigate its first derivative for x ∈ I:

ε′(x) = c1
e−xU + e(−x−U)U − e−xL − e(−x−L)L + e−U

U + Ue−U − L − Le−L

+c1
−e−L + e(−x−U) + e(−x−L)

U + Ue−U − L − Le−L

+c1
−xe(−x−U) + xe(−x−L)

U + Ue−U − L − Le−L
.

We may assume without loss of generality that c1 is positive: the graph of
the sigmoid function indicates that this is a valid assumption. For simplicity,
let us assume that c1 = 1 and see how the first derivative behaves on the
sixteen intervals. Figure 10 shows the graphs of the first derivative of the new
error function. From these plots we see that within each interval the derivative
changes sign at a unique stationary point. Finding an exact analytical formula
for the values of these points is not possible, because, as above, the equation
ε(x) = 0, reduces to a Lambert-type of equation. So, once again, we apply
the Newton-Raphson method to get some reasonably accurate estimate values.
Starting the iteration from the mid-point we obtain good approximation after
just a few iterations.

30 FPGA Neurocomputers

Figure 9: Plots of first derivative of sigmoid error-function

Figure 10: Plots of first derivative of improved sigmoid error-function

It is critical to note that although the Newton-Raphson procedure is easily
(and frequently) implemented in hardware [4], in this case a software imple-

Activation-function implementation: unipolar sigmoid 31

mentation is sufficient. The procedure is required only to obtain c1 and c2, and
once these have been obtained off-line and stored in memory, the procedure is
not relevant.

Let by xa denote the approximate value at which the error has a local ex-
tremum. Then, by the the final formula for the relative error, we have

ε(xa) = 1 − c1 − c1e
−xa +

c1

(
e−U − e−L

)
xa

U + Ue−U − L − Le−L

+
c1

(
e−U − e−L

)
xe−xa

U + Ue−U − L − Le−L

Since, by condition (IC), we must have ε(xa) = −ε(L), we end up with one
equation with one variable c1. Solving this equation gives us the required sec-
ond parameter for our approximation function f̂(x) = c1 + c2x. We omit
tedious (but elementary) algebraic calculations, presenting only the final for-
mula

c1 = −2
(
U + Ue−U − L − Le−L

)
/

(
−2U − 2Ue−U + 2L + 2Le−L − e−xaU(1 + U)

+e−xaL(1 + L) + xae
−U − xae

−L + xae
−xa−U

+xae
−xa−L + xae

−xa−L − e−LU

−e−L−UU + Le−U + Le−L−U

)
which, by Equation (1.7) yields the final formula for c2. Finally, we substitute
c1, c2 values into the relative-error formula, expressed by Equation (1.4). (Note
that, xa must be replaced by the corresponding approximate value from the
Newton-Raphson procedure.) We do not present the final analytical formula
for the error as it is quite complex and of little interest by itself. Figure 11
shows the results finally obtained. The magnitude of the maximum relative
error is now

ε(max) = 7.5700342463 × 10−6

which, compared with (1.3) is a reduction of 50.00038%. This concludes the
exposition.

32 FPGA Neurocomputers

Figure 11: Plots of improved sigmoid error-function

1.8 Performance evaluation

Having outlined above the promise of realizing neural networks in hard-
ware, we now come to an especially delicate point — that of actually showing
that “semi-custom” (i.e. FPGA) or custom (i.e. ASIC) neurocomputers can
actually deliver what is promised. In this respect, the neural-network commu-
nity has not especially distinguished itself, which, in turn explains the dearth
of many practical neurocomputers, despite the many years of research, the de-
velopment of countless prototypes, and so forth. (This point can be readily
appreciated by comparing the status of performance-evaluation for nuerocom-
puters with that for conventional computers.) We will not here aim to solve
the underlying problems or even suggest specific concrete solutions — either
being an enormous task that is outside the scope of this work — but it is our
objective to sharply highlight them and to indicate general directions for their
solution.

At the very least there are two issues that must be considered for a proper
evaluation of performance: the metrics used and what benchmarks are used to
obtain the measurements. (Both need to be such that they can, in the main,
be easily agreed on and understood by most users.) The neural-network area
is sorely lacking in both. The most commonly used metrics are connections-
per-second (CPS), which is essentially the rate at which neuron multiply-add
operations are carried out, and connection-updates-per-second (CUPS), which
is essentialy the rate at which updates of weights are carried out. Speedup is

Performance evaluation 33

also sometimes used but is of even less value than CPS and CUPS; and even
worse is to rely on just time-complexity, e.g. [1]. The are three main problems
with these metrics:

MCPS and MCUPS are similar to, and suffer from the same drawbacks
as, MIPS (Millions of Instructions Per Second) and MFLOPS (Mil-
lions of Floating-point Operations Per Second) that were long used for
general-purpose computers and now largely discredited as useful mea-
sures.

MCPS and MCUPS cannot always be meaningfully used with all types
of networks; for example, they are of little worth with radial-basis-
function networks.

A large value of MCPS or MCUPS does not necessarily mean better
performance (i.e. in the sense of a network being faster) when applied
to different algorithms. In other words, interpreting the numbers is not
straightforward.

As is the case for general-purpose computers, there is little doubt that ulti-
mately the best measure of performance is actual execution-time [19].

As an example of the untidy state of affairs that curently exists, consider,
for example [3], which has already been partially discussed above. In that
work, execution-time is one of the main metrics used, which is acceptable as
far as it goes. But things quickly become problematic. First, although some
neural-network applications have been chosen for use as benchmarks, no ba-
sis is given for why and how they been chosen. Second, it is not quite the
case that exactly the same programs are being used for benchmarks: the au-
thors compare a Reactive Tabu Search learning algorithm (on their machine)
against Back-Propagation learning (on two other machines). Third, given the
variety and non-uniform use of various metrics, what the target is is far from
clear: Is it, say, the the proportion of patterns that are correcly classified? If
so, then that should be fixed and measurements than made of the other metrics
(error, execution-time, etc.) and the results then used to compare the different
machines. The same remark applies to, say, fixing error limits and then mea-
suring execution time, or number of iterations/epcohs, or patterns-classified,
and so forth. As it is, the authors allow all parameters to simultaneously vary
in a manner that practically renders meaningless the use of execution-time as
a reasonable metric. Fourth, details of algorithm-implementations on the two
other machines are not given, which begs the question of whether they were the
best possible. Contrast this with the standards of SPEC [20], in which “own-
ers” (usually the manufacturers) of given machines run (under highly regulated
conditions) specific programs, under tight constraints, and then publicly report
the results, thus ensuring best-effort implementations.

34 FPGA Neurocomputers

In summary, the area of performance-evaluation — in particular the choice
performance metrics and selection of benchmarks — is one that needs to be
addressed urgently for neurocomputers. Neurocomputers (whether in ASIC of
FPGA) will not achieve widespread use unless potential users can be convinced
of their worth; given their history so far, it should now be clear that merely
extolling their virtues is insufficient.

1.9 Conclusions

This chapter covers a broad range of topics, many of which are discussed
in more detail in following chapters. In the case of arithmetic, we have high-
lighted inner-product and activation-function computations. We have advanced
the use of piecewise linear interpolation, but the story need not end there: al-
though interpolations of a degree higher than three do do not appear to be ap-
propriate for high-speed hardware implementations, there may be some profit
in the search for second-order ones that are well-suited to FPGAs. Chapter 2
discussed further aspects of arithmetic.

We have discussed the main types of parallelism that are to be found in
neural networks, but little of that discussion has addressed the matter of map-
pings. With very large networks, the mapping from network to FPGA is a
major factor in performance. Chapters 3 and 4 are devoted to a suitable the-
oretical framework for the derivation of such mappings. Chapter 5 also deals
with mappings but is limited to back-propagation in the context of an actual
device; Chapter 6 is similar in that it is limited to associative memories.

Chapters 7 through 11 cover the FPGA-implementation of neural networks
for several specific applications. The last chapter is a retrospective: it discusses
various lessons learned from the realization of a custom neurocomputer and
projects these to current FPGAs.

References

[1] U. Ruckert. 2002. ULSI architectures for artificial neural networks. IEEE
Micro (May–June): 10–19.

[2] J. Buddefeld and K. E. Grosspietsch. 2002. Intelligent-memory architec-
tures for artificial neural networks. IEEE Micro (May–June): 32–40.

[3] G. Danese, F. Leoporati, and S. Ramat. 2002. A parallel neural processor
for real-time applications. IEEE Micro (May–June): 20–31.

[4] A. R. Omondi. Computer Arithmetic Systems: Algorithms, Architecture,
and Implementations. Prentice-Hall, UK, 1994.

[5] T. Nordstrom and B. Svensson. 1991. Using and designing massively par-
allel computers for artificial neural networks. Journal of Parallel and Dis-
tributed Computing, 14:260–285.

35

[6] Y. Hirai. 1993. Hardware implementations of neural networks in Japan.
Neurocomputing, 5:3–16.

[7] N. Sundarajan and P. Satchandran. 1998. Parallel Architectures for Arti-
ficial Neural Networks. IEE Press, California.

[8] D. Hammerstom. 1991. A highly parallel digital architecture for neural
network simulation. In: J.D. Delgado-Frias and W.R. Moore, Eds., VLSI
for Artificial Intelligence and Neural Networks, Plenum Press.

[9] R. M. Corless, G. H. Gonnet, D. E. G. Hare, and D. J. Jeffrey, and D. E.
Knuth. 1996. On the Lambert W Function. Advances in Computational
Mathematics, 12:329–359.

[10] M. Ito, N. Takagi, and S. Yajima. 1997. Efficient initial approximation for
multiplicative division and square-root by a multiplication with operand
modification. IEEE Transactions on Computers, 46(4):95–498.

[11] J. M. Muller. 1997. Elementary Functions: Algorithms and Implementa-
tion. Birkhauser, Boston, USA.

[12] S. M. Pizer and V. L. Wallace. 1983. To Compute Numerically. Little,
Brown, and Co., Boston, USA.

[13] M. Bajger and A. R. Omondi. 2005. Low-cost, high-speed implemen-
tations of square-root, exponential and sigmoidal function-evaluations.
Submitted for publication.

[14] S. Vassiliadis, M. Zhang, and J. G. Delgado-Frias. 2000. Elementary
function generators for neural network emulators. IEEE Transactions on
Neural Networks, 11(6):1438–1449.

[15] K. Basterretxea, J. M. Tarela, and I. del Campo. 2004. Approximation
of sigmoid function and the derivative for hardware implementation of
artificial neurons. IEEE Proceedings — Circuits, Devices, and Systems,
151(1):18–24.

[16] O. Mencer and W. Luk. 2004. Parameterized high throughput function
evaluation for FPGAs. Journal of VLSI Signal Processing, 36:17–25.

[17] J. L. Holt and J. N. Hwang. 1993. Finite-precision error analysis of neural
network hardware implementations. IEEE IEEE Transactions on Com-
puters, 42(3):280–290.

[18] A. R. Omondi. 2000. Neurocomputers: a dead end? International Journal
of Neural Systems, 10(6):475–481.

[19] J. L. Hennessy and D. A. Patterson. 2002. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann.

[20] SPEC. Standard Performance Evaluation Corporation. (www.spec.org)

[21] Xilinx. 2004. Virtex-4 User Guide.

[22] Xilinx. 2004. XtremeDSP Design Considerations: User Guide.

References

36 FPGA Neurocomputers

[23] A. P. Preethy, D. Radhakrishnan, A. R. Omondi. Mar 2001. A high-
performance residue-number-system multiply-accumulate unit. In: 11th
ACM Great Lakes Symposium on VLSI (Purdue, Indiana, USA), pp 145–
149.

[24] Waterloo Maple Inc. Maple 8 Programming Guide, 2002.

Chapter 2

ON THE ARITHMETIC PRECISION FOR
IMPLEMENTING BACK-PROPAGATION
NETWORKS ON FPGA: A CASE STUDY

Medhat Moussa and Shawki Areibi and Kristian Nichols
University of Guelph
School of Engineering
Guelph, Ontario, N1G 2W1, Canada
mmoussa@uoguelph.ca sareibi@uoguelph.ca knichols@uoguelph.ca

Abstract Artificial Neural Networks (ANNs) are inherently parallel architectures which
represent a natural fit for custom implementation on FPGAs. One important im-
plementation issue is to determine the numerical precision format that allows an
optimum tradeoff between precision and implementation areas. Standard single
or double precision floating-point representations minimize quantization errors
while requiring significant hardware resources. Less precise fixed-point repre-
sentation may require less hardware resources but add quantization errors that
may prevent learning from taking place, especially in regression problems. This
chapter examines this issue and reports on a recent experiment where we im-
plemented a Multi-layer perceptron (MLP) on an FPGA using both fixed and
floating point precision. Results show that the fixed-point MLP implementation
was over 12x greater in speed, over 13x smaller in area, and achieves far greater
processing density compared to the floating-point FPGA-based MLP.

Keywords: Reconfigurable Computing, Back-propagation Algorithm, FPGAs, Artificial
Neural Networks

2.1 Introduction

Artificial neural networks (ANNs) have been used in many applications in
science and engineering. The most common architecture consists of multi-
layer perceptrons trained using the error back-propagation algorithm (MLP-
BP) [37]. One of the main problems in training a BP Network is the lack of
a clear methodology to determine the network topology before training starts.
Experimenting with various topologies is difficult due to the long time required

37

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 37–61.
© 2006 Springer. Printed in the Netherlands.

38 Arithmetic precision for BP networks

for each training session especially with large networks. Network topology is
an important factor in the network’s ability to generalize after training is com-
pleted. A larger than needed network may over-fit the training data and result
in poor generalization on testing data, while a smaller than needed network
may not have the computational capacity to approximate the target function.
Furthermore, in applications where online training is required, training time
is often a critical parameter. Thus it is quite desirable to speed up training.
This allows for reasonable experimentation with various network topologies
and ability to use BP networks in online applications.

Since Neural Networks in general are inherently parallel architectures [55],
there have been several earlier attempts to build custom ASIC based boards
that include multiple parallel processing units such as the NI1000. However,
these boards suffered from several limitations such as the ability to run only
specific algorithms and limitations on the size of a network. Recently, much
work has focused on implementing artificial neural networks on reconfigurable
computing platforms. Reconfigurable computing is a means of increasing the
processing density (i.e greater performance per unit of silicon area) above and
beyond that provided by general-purpose computing platforms. Field Program-
mable Gate Arrays (FPGAs) are a medium that can be used for reconfigurable
computing and offer flexibility in design like software but with performance
speeds closer to Application Specific Integrated Circuits (ASICs).

However, there are certain design tradeoffs which must be dealt with in or-
der to implement Neural Networks on FPGAs. One major tradeoff is area vs.
precision. The problem is how to balance between the need for numeric preci-
sion, which is important for network accuracy and speed of convergence, and
the cost of more logic areas (i.e. FPGA resources) associated with increased
precision. Standard precisions floating-point would be the ideal numeric repre-
sentation to use because it offers the greatest amount of precision (i.e. minimal
quantization error) and matches the representation used in simulating Neural
Networks on general purpose microprocessors. However, due to the limited
resources available on an FPGA, standard floating-point may not be as feasible
compared to more area-efficient numeric representations, such as 16 or 32 bit
fixed-point.

This chapter explores this design trade-off by testing an implementation of
an MLP-BP network on an FPGA using both floating-point and fixed-point
representations. The network is trained to learn the XOR problem. The study’s
goal is to provide experimental data regarding what resources are required for
both formats using current FPGA design tools and technologies. This chap-
ter is organized as follows: In Section 2.2, background material on the area
vs precision range trade-off is presented as well as an overview of the back-
propagation algorithm and FPGA architectures. Section 2.3 provides details
about the architecture design used to implement a BP network on FPGA. In

Background 39

section 2.4 the XOR problem is presented. Finally validation of the proposed
implementations, and benchmarked results of floating-point and fixed-point
arithmetic functions implemented on a FPGA are discussed in Section 2.5.

2.2 Background

One way to help achieve the density advantage of reconfigurable comput-
ing over general-purpose computing is to make the most efficient use of the
hardware area available. In terms of an optimal range-precision vs area trade-
off, this can be achieved by determining the minimum allowable precision and
minimum allowable range, where their criterion is to minimize hardware area
usage without sacrificing quality of performance. These two concepts com-
bined can also be referred to as the minimum allowable range-precision.

2.2.1 Range-Precision vs. Area Trade-off

A reduction in precision usually introduces many errors into the system.
Determining the minimum allowable precision is actually a question of de-
termining the maximum amount of uncertainty (i.e. quantization error due to
limited precision) an application can withstand before performance begins to
degrade. It is often dependent upon the algorithm used and the application at
hand.

For MLP using the BP algorithm, Holt and Baker [41] showed using simu-
lations and theoretical analysis that 16-bit fixed-point (1 bit sign, 3 bit left and
12 bit right of the radix point) was the minimum allowable range-precision
for the back-propagation algorithm assuming that both input and output were
normalized between [0,1] and a sigmoid transfer function was used.

Ligon III et al. [45] have also shown the density advantage of fixed-point
over floating-point for older generation Xilinx 4020E FPGAs, by showing that
the space/time requirements for 32-bit fixed-point adders and multipliers were
less than that of their 32-bit floating-point equivalents.

Other efforts focused on developing a complete reconfigurable archi-
tecture for implementing MLP. Eldredge [3] successfully implemented the
back-propagation algorithm using a custom platform he built out of Xilinx
XC3090 FPGAs, called the Run-Time Reconfiguration Artificial Neural Net-
work (RRANN). He showed that the RRANN architecture could learn how
to approximate centroids of fuzzy sets. Heavily influenced by the Eldredge’s
RRANN architecture, Beuchat et al. [13] developed a FPGA platform, called
RENCO–a REconfigurable Network COmputer. As it’s name implies, RENCO
contains four Altera FLEX 10K130 FPGAs that can be reconfigured and mon-
itored over any LAN (i.e. Internet or other) via an on-board 10Base-T inter-
face. RENCO’s intended application was hand-written character recognition.
Ferrucci and Martin [14, 15] built a custom platform, called Adaptive Connec-

40 Arithmetic precision for BP networks

tionist Model Emulator (ACME) which consists of multiple Xilinx XC4010
FPGAs. They validated ACME by successfully carrying out a 3-input, 3-
hidden unit, 1-output network used to learn the 2-input XOR problem. Skr-
bek’s FPGA platform [26], called the ECX card, could also implement Radial
Basis Function (RBF) neural networks, and was validated using pattern recog-
nition applications such as parity problem, digit recognition, inside-outside
test, and sonar signal recognition.

Since the size of an FPGA-based MLP-BP is proportional to the multi-
plier used, it is clear that given an FPGA’s finite resources, a 32-bit signed
(2’s complement) fixed-point representation will allow larger [54] ANNs to
be implemented than could be accommodated when using a 32-bit IEEE (a
32-bit floating point multiplier can be implemented on a Xilinx Virtex-II or
Spartan-3 FPGA using four of the dedicated multiplier blocks and CLB re-
sources) floating-point. However, while 32 fixed-point representation allows
high processor density implementation, the quantization error of 32 floating-
point representation is negligible. Validating an architecure on an FPGA using
32-bit floating point arithmetic might be easier than fixed point arithmetic since
a software version of the architecture can be run on a Personal Computer with
32-bit floating point arithmetic. As such its use is justifiable if the relative loss
in processing density is negligible in comparison.

FPGA architectures and related development tools have become increas-
ingly sophisticated in more recent years, including improvements in the
space/time optimization of arithmetic circuit designs. As such, the objective
of this study is to determine the feasibility of floating-point arithmetic in im-
plementing MLP-BP using today’s FPGA design tools and technologies. Both
floating-point and fixed-point precision are considered for implementation and
are classified as amplitude-based digital numeric representations. Other nu-
meric representations, such as digital frequency-based [42] and analog were
not considered because they promote the use of low precision, which is often
found to be inadequate for minimum allowable range-precision.

2.2.2 Overview of Back-propagation Algorithm

It is helpful before proceeding to discuss architecture design to give a brief
review of MLP and the error Back-propagation algorithm. The general struc-
ture of a Multi-layer perceptron (MLP) neural network is shown in Figure 2.1,
where layers are numbered 0 to M , and neurons are numbered 1 to N .

A MLP using the back-propagation algorithm has five steps of execution:
(1) Initialization

The following parameters must be initialized before training starts: (i)
w

(s)
kj (n) is defined as the synaptic weight that corresponds to the connection

from neuron unit j in the (s − 1)th layer, to k in the sth layer. This weight

Background 41

Figure 2.1. Generic structure of a feedforward ANN

is updated during the nth iteration, where n = 0 for initialization. (ii) η is
defined as the learning rate and is a constant scaling factor used to control
the step size in error correction during each iteration of the back-propagation
algorithm. (iii) θ

(s)
k is defined as the bias of a neuron, which is similar to

synaptic weight in that it corresponds to a connection to neuron unit k in
the sth layer. Statistically, biases can be thought of as noise, which better
randomizes initial conditions, and increases the chances of convergence.

(2) Presentation of Training Examples
Available training data are presented to the network either individually or

as a group (a.k.a. epoch).

(3) Forward Computation
During the forward computation, data from neurons of a lower layer (i.e.

(s − 1)th layer), are propagated forward to neurons in the upper layer (i.e. sth

layer) via a feed-forward connection network. The computation performed by
each neuron (in the hidden layer) is as follows:

H
(s)
k =

Ns−1∑
j=1

w
(s)
kj o

(s−1)
j + θ

(s)
k (2.1)

where j < k and s = 1, . . . , M

H
(s)
k = weighted sum of the kth neuron in the sth layer

w
(s)
kj = synaptic weight sd defined above

o
(s−1)
j = neuron output of the jth neuron in the (s − 1)th layer

42 Arithmetic precision for BP networks

θ
(s)
k = bias of the kth neuron in the sth layer.

On the other hand for the output layer neurons the computation is as follows:

o
(s)
k = f(H(s)

k) (2.2)

where k = 1, . . . , N and s = 1, . . . , M

o
(s)
k = neuron output of the kth neuron in the sth layer

f(H(s)
k) = activation function computed on the weighted sum H

(s)
k

Note that a unipolar sigmoid function is often used as the nonlinear activation
function, such as the following logsig function:

f(x)logsig =
1

1 + exp(−x)
(2.3)

(4) Backward Computation
In this step, the weights and biases are updated. The learning algorithm’s

goal is to minimize the error between the expected (or teacher) value and the
actual output value that was determined in the Forward Computation. The
following steps are performed:

1 Starting with the output layer, and moving back towards the input layer,
calculate the local gradients, as follows:

ε
(s)
k =

{
tk − o

(s)
k s = M∑Ns+1

j=1 ws+1
kj δ

(s+1)
j s = 1, . . . , M − 1

(2.4)

where
ε
(s)
k = error term for the kth neuron in the sth layer; the difference

between the teaching signal tk and the neuron output o
(s)
k

δ
(s+1)
j = local gradient for the jth neuron in the (s + 1)th layer.

δ
(s)
k = ε

(s)
k f ′(H(s)

k) s = 1, . . . , M (2.5)

where f ′(H(s)
k) is the derivative of the activation function.

2 Calculate the weight (and bias) changes for all the weights as follows:

∆w
(s)
kj = ηδ

(s)
k o

(s−1)
j k = 1, . . . , Ns

j = 1, . . . , Ns−1
(2.6)

where ∆w
(s)
kj is the change in synaptic weight (or bias) corresponding to

the gradient of error for connection from neuron unit j in the (s − 1)th

layer, to neuron k in the sth layer.

Architecture design and implementation 43

3 Update all the weights (and biases) as follows:

ws
kj(n + 1) = ∆w

(s)
kj (n) + w

(s)
kj (n) (2.7)

where k = 1, . . . , Ns and j = 1, . . . , Ns−1

ws
kj(n+1) = updated synaptic weight (or bias) to be used in the (n+1)th

iteration of the Forward Computation
∆w

(s)
kj (n) = change in synaptic weight (or bias) calculated in the nth

iteration of the Backward Computation, where n = the current iteration
w

(s)
kj (n) = synaptic weight (or bias) to be used in the nth iteration of the

Forward and Backward Computations, where n = the current iteration.

(5) Iteration
Reiterate the Forward and Backward Computations for each training exam-

ple in the epoch. The trainer can continue to train the MLP using one or more
epochs until some stopping criteria is met. Once training is complete, the MLP
only needs to carry out the Forward Computation when used in applications.

2.2.3 Field Programmable Gate Arrays

FPGAs are a form of programmable logic, which offer flexibility in design
like software, but with performance speeds closer to Application Specific Inte-
grated Circuits (ASICs). With the ability to be reconfigured an endless number
of times after having been manufactured, FPGAs have traditionally been used
as a prototyping tool for hardware designers. However, as growing die capaci-
ties of FPGAs have increased over the years, so has their use in reconfigurable
computing applications too.

The fundamental architecture of Xilinx FPGAs consists of a two-
dimensional array of programmable logic blocks, referred to as Configurable
Logic Blocks (CLBs). Figure 2.2 shows the architecture of a CLB from the
Xilinx Virtex-E family of FPGAs, which contains four logic cells (LCs) and
is organized in two similar slices. Each LC includes a 4-input look-up ta-
ble (LUT), dedicated fast carry-lookahead logic for arithmetic functions, and
a storage element (i.e. a flip-flop). A CLB from the Xilinx Virtex-II family
of FPGAs, on the other hand, contains eight 4-input LUTs, and is over twice
the amount of logic as a Virtex-E CLB. As we will see, the discrepancies in
CLB architecture from one family to another is an important factor to take into
consideration when comparing the spatial requirements (in terms of CLBs) for
circuit designs which have been implemented on different Xilinx FPGAs.

2.3 Architecture design and implementation

There has been a rich history of attempts at implementing ASIC-based ap-
proaches for neural networks - traditionally referred to as neuroprocessors [29]

44 Arithmetic precision for BP networks

Figure 2.2. Virtex-E Configurable Logic Block

or neurochips. FPGA-based implementations, on the other hand, are still a
fairly new approach which has only been in effect since the early 1990s. The
type of neural network used in a FPGA-based implementation, and/or the algo-
rithm used for on-chip learning is a classification feature which often depends
on its intended application. On-chip learning [11] occurs when the learning
algorithm is implemented in hardware, or in this case, on the FPGA. Offline
learning occurs when learning occurs on a general-purpose computing plat-
form before the learned system is implemented in hardware.

2.3.1 Non-RTR Implementation

The digital ANN architecture implemented in this chapter is an example of a
non-RTR (Run-Time Reconfiguration) reconfigurable computing application,
where all stages of the algorithm reside together on the FPGA at once. A finite
state machine was used to ensure proper sequential execution of each step of
the back-propagation algorithm as described in Section 2.2.2, which consists
of the following two states:

1 Forward state (F) - used to emulate the forward pass associated with the
back-propagation algorithm. Only the ANN’s input signals, synapses,
and neurons should be active in this state, in order to calculate the ANN’s
output. All forward pass operations (i.e. Forward Computations as de-
scribed by Equations 2.1, 2.2, and 2.3) should be completed by the time
the Forward State (F) ends.

2 Backward state (B) - used to emulate the backward pass associated with
the back-propagation algorithm. All the circuitry associated with help-
ing the ANN learn (i.e. essentially all the circuitry not active in Forward
State) should be active here. All backward pass operations (i.e. Back-

Architecture design and implementation 45

ward Computations as described by Equations 2.4, 2.5, and 2.6) should
be completed by the time the Backward state ends.

It should be noted that both states of the finite state machine continually alter-
nate, and synaptic weights are updated (as described in Equation 2.7) during
the transition from Backward State to Forward State.

As far as the ANN’s components (eg. neurons, synapses) were concerned,
the finite state machine is generally a means of synchronizing when various
sets of components should be active. The duration of each state depends on
the number of clock cycles required to complete calculations in each state,
the length of the system’s clock period, and the propagation delay associated
with each state(Note that propagation delay is platform dependent, and can
only be determined after the digital VLSI design has been synthesized on a
targeted FPGA. The propagation delay is then determined through a timing
analysis/simulation using the platform’s EDA tools). The architecture of the
active ANN components associated with each state dictates the propagation
delay for that state.

Each of the ANN components implemented in hardware, such as the
synapse and neuron, housed a chip select input signal in their architecture
which is driven by the finite state machine. This chip select feature ensured
that only those components that were associated with a particular state were
enabled or active throughout that state’s duration. With regards to initialization
of the circuit, a reset input signal was used which would fulfill two important
requirements when activated:

Ensure the finite state machine initially starts in “Forward State”.

Initialize the synaptic weights of the ANN, to some default value.

Finally, the BP algorithm calculations, Equations 2.1–2.7, are realized using
a series of arithmetic components, including addition, subtraction, multiplica-
tion, and division. Standardized high-description language (HDL) libraries for
digital hardware implementation can be used in synthesizing all the arithmetic
calculations involved with the back-propagation algorithm, in analogous fash-
ion of how typical math general programming language (GPL) libraries are
used in software implementations of ANNs. The architecture described here
is generic enough to support arithmetic HDL libraries of different amplitude-
based precision, whether it be floating-point or fixed-point.

2.3.2 Arithmetic Library

The architecture was developed using VHDL. Unfortunately, there is cur-
rently no explicit support for fixed- and floating-point arithmetic in VHDL
(according to the IEEE Design Automation Standards Committee [43], an ex-
tension of IEEE Std 1076.3 has been proposed to include support for fixed-

46 Arithmetic precision for BP networks

and floating-point numbers in VHDL, and is to be addressed in a future re-
view of the standard). As a result, two separate arithmetic VHDL libraries
were custom designed for use with the FPGA-based ANN. One of the libraries
supports the IEEE-754 standard for single-precision (i.e. 32-bit) floating-point
arithmetic, and is referred to as uog fp arith, which is an abbreviation for
University of Guelph Floating-Point Arithmetic. The other library supports 16-
bit fixed-point arithmetic, and is referred to as uog fixed arith, which is an
abbreviation for University of Guelph Fixed-Point Arithmetic. These two rep-
resentations were chosen based on previous results from the literature [41] that
showed that 16 bit fixed point representation is the minimum needed to allow
the BP algorithm to converge and the fact that 32 bit floating point precision is
the standard floating point representation. We could have used a custom float-
ing point representation (maybe with less precision) but it is very likely that any
future VHDL floating point implementation will follow this standard represen-
tation. As such we specifically wanted to test the tradeoff with this standard
presentation. This is also important for applications in Hardware/Software co-
design using languages like SystemC and HandleC.

Fixed-point representation is signed 2’s complement binary representation,
which is made rational with a virtual decimal point. The virtual radix point
location used in uog fixed arith is SIII.FFFFFFFFFFFF , where

S = sign bit

I = integer bit, as implied by location of binary point

F = fraction bit, as implied by location of binary point

The range for a 16-bit fixed-point representation of this configuration is [-8.0,
8.0), with a quantization error of 2.44140625E-4. Description of the various
arithmetic VHDL design alternatives considered for use in the uog fp arith
and uog fixed arith libraries are summarized in Table 2.1. All HDL de-
signs with the word std in their name signify that one of the IEEE stan-
dardized VHDL arithmetic libraries was used to create them. For example,
uog std multiplier was easily created using the following VHDL syntax:
z <= x ∗ y;
where x and y are the input signals, and z the output signal of the circuit.
Such a high level of abstract design is often associated with behavioral VHDL
designs, where ease of design comes at the sacrifice of letting the FPGA’s syn-
thesis tools dictate the fine-grain architecture of the circuit.

On the other hand, an engineer can explicitly define the fine-grain architec-
ture of a circuit by means of structural VHDL and schematic-based designs, as
was done for uog ripple carry adder, uog c l adder (please refer to Fig-
ure 2.4 for detailed implementation) and uog sch adder respectively. How-

Architecture design and implementation 47

Table 2.1. Summary of alternative designs considered for use in custom arithmetic VHDL
libraries

HDL Design Description

uog fp add∗ IEEE 32-bit single precision floating-point pipelined parallel adder
uog ripple carry adder 16-bit fixed-point (bit-serial) ripple-carry adder

uog c l addr 16-bit fixed-point (parallel) carry lookahead adder
uog std adder 16-bit fixed-point parallel adder created using standard

VHDL arithmetic libraries
uog core adder 16-bit fixed-point parallel adder created using Xilinx LogiCORE

Adder Subtracter v5.0
uog sch adder 16-bit fixed-point parallel adder created using Xilinx

ADD16 schematic-based design
uog pipe adder 16-bit fixed-point pipelined parallel adder created using Xilinx

LogiCORE Adder Subtractor v5.0

uog fp sub∗ IEEE 32-bit single precision floating-point pipelined parallel
subtracter

uog par subtracter 16-bit fixed-point carry lookahead (parallel) subtracter, based
on uog std adder VHDL entity

uog std subtracter 16-bit fixed-point parallel subtracter created with standard
VHDL arithmetic libraries

uog core subtracter 16-bit fixed-point parallel subtracter created using Xilinx
LogiCORE Adder Subtracter v5.0

uog fp mult∗ IEEE 32-bit single precision floating-point pipelined parallel
multiplier

uog booth multiplier 16-bit fixed-point shift-add multiplier based on Booth’s
algorithm (with carry lookahead adder)

uog std multiplier 16-bit fixed-point parallel multiplier created using standard
VHDL arithmetic libraries

uog core bs mult 16-bit fixed-point bit-serial (non-pipelined) multiplier created using
Xilinx
LogicCORE Multiplier v4.0

uog pipe serial mult 16-bit fixed-point bit-serial (pipelined) multiplier created using
Xilinx LogiCORE Multiplier v4.0

uog core par multiplier 16-bit fixed-point parallel (non-pipelined) multiplier created using
Xilinx LogiCORE Multiplier v4.0

uog pipe par mult 16-bit fixed-point parallel (pipelined) multiplier created using
Xilinx LogiCORE Multiplier v4.0

active func sigmoid Logsig (i.e. sigmoid) function with IEEE 32-bit single precision
floating-point

uog logsig rom 16-bit fixed-point parallel logsig (i.e. sigmoid) function created
using Xilinx LogiCORE Single Port Block Memory v4.0

* Based on VHDL source code dontated by Steven Derrien (sderrien@irisa.fr) from Institut de Recherche en
Informatique et syst«emes al«eatoires (IRISA) in France. In turn, Steven Derrien had originally created this through
the adaptation of VHDL source code found at http://flex.ee.uec.ac.jp/ yamaoka/vhdl/index.html.

48 Arithmetic precision for BP networks

ever, having complete control over the architecture’s fine-grain design comes
at the cost of additional design overhead for the engineer.

Many of the candidate arithmetic HDL designs described in Table 2.1 were
created by the Xilinx CORE Generator System. This EDA tool helps an
engineer parameterize ready-made Xilinx intellectual property (ip) designs
(i.e. LogiCOREs), which are optimized for Xilinx FPGAs. For example,
uog core adder was created using the Xilinx proprietary LogiCORE for an
adder design.

Approximation of the logsig function in both floating-point and fixed-point
precision, were implemented in hardware using separate lookup-table archi-
tectures. In particular, active func sigmoid was a modular HDL design,
which encapsulated all the floating-point arithmetic units necessary to carry
out calculation of logsig function. According to Equation 2.3, this would
require the use of a multiplier, adder, divider, and exponential function. As
a result, active func sigmoid was realized in VHDL using uog fp mult,
uog fp add, a custom floating-point divider called uog fp div, and a table-
driven floating-point exponential function created by Bui et al [44]. While this
is not the most efficient implementation of the logsig, it allows implementing
other transfer functions with min efforts (like Tan Hyperbolic) since it shares
the basic functions with the Sigmoid. It is very common in training BP net-
works to test different transfer functions.

The uog logsig rom HDL design utilized a Xilinx LogiCORE to imple-
ment single port block memory. A lookup-table of 8192 entries was created
with this memory, which was used to approximate the logsig function in fixed-
point precision.

In order to maximize the processing density of the digital VLSI ANN de-
sign proposed in Section 2.3.1, only the most area-optimized arithmetic HDL
designs offered in Table 2.1 should become part of the uog fp arith and
uog fixed arith VHDL libraries. However, the space-area requirements of
any VHDL design will vary from one FPGA architecture to the next. There-
fore, all the HDL arithmetic designs found in Table 2.1 have to be implemented
on the same FPGA as was targeted for implementation of the digital VLSI
ANN design, in order to determine the most area-efficient arithmetic candi-
dates.

2.4 Experiments using logical-XOR problem

The logical-XOR problem is a classic toy problem used to benchmark the
learning ability of an ANN. It is a simple example of a non-linearly separable
problem.

The minimum ANN topology (a topology includes the number of neurons,
number of layers, and the layer interconnections (i.e. synapses)) required to

Experiments using logical-XOR problem 49

Table 2.2. Truth table for logical-XOR function

Inputs Output
x0 x1 y

0 0 0
0 1 1
1 0 1
1 1 0

solve a non-linearly separable problem consisting of at least one hidden layer.
An overview of the ANNs topology used in this particular application, which
consists of only one hidden layer, is shown in Figure 2.3.

Figure 2.3. Topology of ANN used to solve logical-XOR problem

For each ANN implementation, a set of thirty training sessions were per-
formed individually. Each training session lasted for a length of 5000 epoch,
and used a learning rate of 0.3. Each of the training sessions in the set used
slightly different initial conditions, in which all weights and biases were ran-
domly generated with a mean of 0, and a standard deviation of ±0.3. Once
generated, every BP implementation was tested using the same set of thirty
training sessions. This way, the logical-XOR problem discussed acts as a com-
mon testing platform, used to benchmark the performance of all BP implemen-
tations.

Xilinx Foundation ISE 4.1i EDA tools were used to synthesize, and map
(i.e. place and route) two variations of the FPGA-based ANN designs – one

50 Arithmetic precision for BP networks

using uog fp arith library, and one using uog fixed arith library. All
experiments and simulations were carried out on a PC workstation running
Windows NT (SP6) operating system, with 1 GB of memory and Intel PIII
733MHz CPU.

These circuit designs were tested and validated in simulation only, using
ModelTech’s ModelSim SE v5.5. Functional simulations were conducted to
test the syntactical and semantical correctness of HDL designs, under ideal
FPGA conditions (i.e. where no propagation delay exists). Timing simulations
were carried out to validate the HDL design under non-ideal FPGA conditions,
where propagation delays associated with the implementation as targeted on a
particular FPGA are taken into consideration.

Specific to VHDL designs, timing simulations are realized using an IEEE
standard called VITAL (VHDL Initiative Toward ASIC Libraries). VITAL li-
braries contain information used for modeling accurate timing of a particular
FPGA at the gate level, as determined a priori by the respective FPGA man-
ufacturer. These VITAL libraries are then used by HDL simulators, such as
ModelSim SE, to validate designs during timing simulations.

A software implementation of a back-propagation algorithm was created
using MS Visual C++ v6.0 IDE. The software simulator was set up to solve the
logical-XOR problems using the topology shown in Figure 2.3. The purpose
for creating this software simulator was to generate expected results for testing
and validating FPGA-based BP. To speed up development and testing, two
other software utilities were created to automate numeric format conversions–
one for converting real decimal to/from IEEE-754 single precision floating-
point hexadecimal format, and one for converting real decimal to/from 16-bit
fixed-point binary format.

2.5 Results and discussion

We implemented the previous HDL designs on Xilinx FPGAs. The resulting
space-time requirements for each arithmetic HDL design are summarized in
Table 2.3. In order to maximize the neuron density of the FPGA-based MLP,
the area of the various arithmetic HDL designs that a neuron is comprised of
should be minimized. As a result, the focus here is to determine the most
area-optimized arithmetic HDL designs for use in the implementations.

2.5.1 Comparison of Digital Arithmetic Hardware

Comparison of the different adder results, shown in Table 2.3, reveals that
the three carry lookahead adders (i.e. uog std adder, uog core adder, and
uog sch adder) require the least amount of area and are the fastest among all
non-pipelined adders. Note that the sophistication of today’s EDA tools have

Results and discussion 51

allowed the VHDL-based designs for carry lookahead adders to achieve the
same fine-grain efficiency of their equivalent schematic-based designs.

Since a carry lookahead adder is essentially a ripple-carry adder with addi-
tional logic as seen in Figure 2.4, it isn’t immediately clear why a carry looka-
head adder is shown here to use less area compared to a ripple-carry adder

Figure 2.4. Carry Lookahead Adder

when implemented on a Xilinx Virtex-E FPGA. The carry lookahead design
can be obtained [35] by a transformation of the ripple carry design in which
the carry logic over fixed groups of bits of the adder is reduced to two-level
logic. The carry lookahead adder would consist of (for example a 4-bit carry
lookahead adder) four partial full adders (PFA) each consisting of two EXOR
gates and an AND gate. The ripple carry logic (AND gate and OR gate for
each bit) will be substituted with the Carry lookahead logic. Since the Virtex-
II FPGA has built in (fast arithmetic functions) of look-ahead carry chains,
the number of CLBS utilized by the carry lookahead adder will be equivalent
or smaller than that of the ripple adder (i.e the extra logic used by the Carry
Lookahead is free! since it is custom built within the FPGA). In addition, the
Virtex-E CLBs dedicated fast lookahead logic enhances the performance of the

52 Arithmetic precision for BP networks

adder. As a result, it’s best to use HDL adder designs which take advantage of
the Virtex-E’s fast carry lookahead logic.

The Virtex-E’s fast carry-lookahead logic is again utilized to pro-
duce the best area-optimized subtracters (i.e. uog std subtracter and
uog core subtracter), as well as, the best area-optimized multiplier (i.e.
uog booth multiplier).

Only the most area-optimized arithmetic HDL designs discussed here were
used in the construction of custom arithmetic HDL libraries, as listed in Ta-
ble 2.4. In the case where there was more than one choice of best area-
optimized arithmetic HDL design to choose from, behavioral VHDL designs
were preferred because they promote high-level abstract designs and porta-
bility. For example, such was the case in selecting a fixed-point adder and
subtracter for the uog fixed arith library.

Table 2.4 also reveals how much more area-optimized the individual fixed-
point arithmetic HDL designs in uog fixed arith were compared to the
floating-point arithmetic HDL designs in uog fp arith. Since a floating-
point adder is essentially a fixed-point adder plus additional logic, not to men-
tion the fact that floating-point uses more precision than fixed-point arithmetic,
it’s no surprise to find that the 16-bit fixed-point adder is much smaller than the
32-bit floating-point adder. Similar in nature is the case for subtracter and mul-
tiplier comparisons shown in Table 2.4.

The comparison of area-optimized logsig arithmetic HDL designs reveals
that the 32-bit floating-point version is over 250 times bigger than the 16-bit
fixed-point version. Aside from the difference in amount of precision used, the
significant size difference between logsig implementations is due to the fact
that floating-point implementation encapsulates a table-lookup architecture in
addition to other area-expensive arithmetic units, while the fixed-point version
only encapsulates a table-lookup via memory.

Uog fp arith and uog fixed arith have been clearly defined with only
the best area-optimized components, as shown in Table 2.4. This will help
to ensure that 32-bit floating-point and 16-bit fixed-point FPGA-based MLP
implementations achieve a processing density advantage over the software-
based MLP simulations. As was shown here, the larger area requirements of
floating-point precision in FPGA-based ANNs makes it not nearly as feasible
as fixed-point precision.

2.5.2 Comparison of ANN Implementations

Table 2.5 summarizes logical-XOR benchmark results for each of the fol-
lowing implementations with identical topology:

32-bit floating-point FPGA-based MLP, which utilizes uog fp arith
library.

Results and discussion 53

Table 2.3. Space/Time Req’ts of alternative designs considered for use in custom arithmetic

HDL Design Area
(CLB)s

Max.
Clock
Rate
(MHz)

Pipe-
lining
Used?

Clock
cycles
per calc.

Min. Total
Time per calc.
(ns)

uog fp add 174 19.783 1-stage 2 101.096 (for
first calc.)

uog ripple carry adder 12 67.600 No 16 236.688
uog c l addr 12 34.134 No 1 29.296
uog std adder 4.5 66.387 No 1 15.063
uog core adder 4.5 65.863 No 1 15.183
uog sch adder 4.5 72.119 No 1 13.866
uog pipe adder 96 58.624 15-stage 16 272.928

uog fp sub 174 19.783 1-stage 2 101.096
uog par subtracter 8.5 54.704 No 1 18.280
uog std subtracter 4.5 56.281 No 1 17.768
uog core subtracter 4.5 60.983 No 1 16.398

uog fp mult 183.5 18.069 1-stage 2 110.686 (for
first calc.)

uog booth multiplier 28 50.992 No 34 668.474
uog std multiplier 72 32.831 No 1 30.459
uog core bs mult 34 72.254 No 20 276.800
uog pipe serial mult 39 66.397 ?-stage 21 316.281 (for

first calc.)
uog core par multiplier 80 33.913 No 1 29.487
uog pipe par mult 87.5 73.970 ?-stage 2 27.038 (for first

calc.)

active func sigmoid∗ 3013 1.980 No 56 29282.634
uog logsig rom 12 31.594 No 1 31.652

*Target platform used here was Xilinx Virtex-II FPGA (xc2v8000-5bf957)
Please note the following:

1 All fixed-point HDL designs use signed 2’s complement arithmetic

2 Unless otherwise mentioned, all arithmetic functions were synthesized and implemented (i.e. place
and route) under the following setup:

Target Platform: Xilinx Virtex-E FPGA (xcv2000e–6bg560)

Development Tool: Xilinx Foundation ISE 4.1i (SP2)

Synthesis Tool: FPGA Express VHDL

Optimization Goal: Area (Low Effort)

3 Max. Clock Rate is determined usig the Xilinx Timing Analyzer on Post-
Place and Route Static Timing of HDL design. Max.ClockRate =
min{(Min.CombinationalPathDelay)−1, [(Min.InputArrivalT imeBeforeClk) +
Max.OutputRequiredT imeBeforeClk)]−1}

VHDL libraries

54 Arithmetic precision for BP networks

Table 2.4.

Arithmetic uog fixed arith uog fp arith Area Optimization
Function HDL Design HDL Design (CLB/CLB)

Adder uog std adder uog fp add 38.66x smaller
Subtracter uog std subtracter uog fp sub 38.66x smaller
Multiplier uog booth multiplier uog fp mult 6.55x smaller
Logsig Function uog logsig rom activ func sigmoid 251.08x smaller

16-bit fixed-point FPGA-based MLP, which utilizes uog fixed arith
library.

software-based MLP simulations using C++.

Due to the relative difference in size of arithmetic components used, the fixed-
point FPGA-based MLP is over 13 times smaller than the floating-point FPGA-
based MLP. It can only be assumed that the area requirements for the software-
based MLP implemented on an Intel PIII CPU (i.e. general-purpose computing
platform) is infinitely big in comparison to the FPGA-based MLPs.

Of concern was the fact that timing simulations via ModelSim SE v5.5 re-
quired two weeks for floating-point and six days for fixed-point runs just to
complete one training session in each. In general, any VLSI design which is
not area-optimized may impede the design and test productivity.

The fact that all three MLP-BP implementations converged at all is enough
to validate the successful design of each. Note that a MLP is not always guar-
anteed to converge since it may get trapped in local minima.

What’s interesting about the convergence percentages given in Table 2.5 is
that they’re the same for the software-based and 32-bit FPGA-based MLPs, but
not for the 16-bit FPGA-based MLPs. The software-based MLP and FPGA-
based MLP that used uog fp arith achieved the same convergence percent-
ages because they both use 32-bit floating-point calculations, and will follow
identical paths of gradient descent when given the same initial MLP parame-
ters. Due to the quantization errors found in 16-bit fixed-point calculations,
its respective FPGA-based MLP will follow down a slightly different path of
gradient descent when exposed to the same initial MLP parameters as the other
two implementations.

In the context of MLP applications, reconfigurable computing looks to in-
crease the neuron density above and beyond that of general-purpose comput-
ing. Due to the fact that three neurons exist in the MLP topology used to
solve the logical-XOR problem, and based on the benchmarked speeds of back-
propagation iteration for each particular MLP implementation, the processing
density can be calculated for each. For MLP applications, processing density is
realized as the number of weight updates per unit of space-time. As shown in

Area comparison of uog fp arith vs. uog fixed arith

55

Table 2.5.

XOR ANN Precision Total % of Con- Max.
Architecture Area vergence Clock

(CLBs, in thirty Rate
[Slices])∗ trials∗∗ (MHz)

Xilinx Virtex-E 16-bit 1239 100% 10
xcv2000e FPGA fixed-pt [2478]
Xilinx Virtex-II 32-bit 8334.75 73.3% 1.25
xc2v8000 FPGA floating-pt [33339]
Intel Pentium 32-bit NA 73.3% 733
III CPU floating-pt

Total Clock Backprop Weight Processing
Cycles per Iteration Updates Density
Backprop Period per Sec (per Slice)
Iteration (µs) (WUPS)

Xilinx Virtex-E 478 47.8 62762 25.33
xcv2000e FPGA
Xilinx Virtex-II 464 580 5172 0.1551
xc2v8000 FPGA
Intel Pentium N/A 2045.15∗∗∗ 1466.89 NA
III CPU

* Note Virtex-II CLB is over twice the size of Virtex-E CLB. Virtex-II CLB consists of 4 slices,
whereas Virtex-E CLB consists of 2 slices.

** Convergence is defined here as less than 10% error in the ANN’s output, after it has been trained.

*** This is an average based on time taken to complete 200,000,000 iterations of the backpropagation
algorithm for the software-based ANN. Microsoft Platform SDK multimedia timers were used,
which had a resolution of 1ms.

Table 2.5, the relative processing density of the 16-bit fixed-point implemen-
tation is significantly higher than that of the 32-bit floating-point one. This
reveals how a combination of minimum allowable range-precision and greater
degree of area-optimization results in a direct impact on the processing density
in implementation.

In addition to infinitely large area requirements, the software-based MLP
was shown to be over 40x slower in comparison to the 16-bit fixed-point
FPGA-based implementation. Therefore, it can only be assumed that the rela-
tive processing density of the software-based MLP is infinitely small in com-
parison to the other two implementations.

2.6 Conclusions

In general, we have shown that the choice of range-precision and arithmetic
hardware architecture used in reconfigurable computing applications has a di-
rect impact on the processing density achieved. A minimal allowable range-

Summary of logical-XOR ANN benchmarks on various platforms

Conclusions

56 Arithmetic precision for BP networks

precision of 16-bit fixed-point continues to provide the most optimal range-
precision vs. area trade-off for MLP-BP implemented on today’s FPGAs.

The classic logical-XOR problem was used as a common benchmark for
comparing the performance of a software-based MLP, and two FPGA-based
MLPs – one with 16-bit fixed-point precision, and the other with 32-bit
floating-point precision. Despite the limited range-precision, the MLP with
area-optimized fixed-point arithmetic managed to maintain the same quality
of performance (i.e. in terms of the MLPs ability to learn) as demonstrated
with floating-point arithmetic. Results showed that the fixed-point MLP-BP
implementation was over 12x greater in speed, over 13x smaller in area, and
achieved far greater processing density compared to the floating-point FPGA-
based MLP-BP. Also, the processing density achieved by the FPGA-based
MLP-BP with 16-bit fixed-point precision compared to the software-based
MLP-BP best demonstrates the processing density advantage of reconfigurable
computing over general-purpose computing for this particular application. As
a result, floating-point precision is not as feasible as fixed-point in this type of
application.

One disadvantage of using 16-bit fixed-pt, is that its limited range poses
risk of saturation. Saturation adds error to a system, the extent of which is
application dependent. The logical-XOR example demonstrated in this chap-
ter still managed to achieve convergence, despite the saturation error caused
by 16-bit fixed-pt with range [-8.0,8.0). Another important lesson to learn
from this study is that the area savings of using 16-bit fixed-point rather than
floating-point precision in a FPGA-based ANN help minimize simulation du-
rations when validating HDL designs. The current performance rate of digital
HDL simulators, like ModelSim SE 5.5, is an ongoing concern. Not only does
the duration of timing simulations increase proportionally with the size of the
circuit being simulated, but the magnitude of duration is in the order of ’days’
and even ’weeks’ for large VLSI HDL designs.

References

[1] Xin Yao. Evolutionary Artificial Neural Networks, In: Encylopedia of
Computer Science and Technology, A. Kent and J. G. Williams, Eds.,
Vol. 33, Marcel Dekker Inc., New York, NY 10016, pp. 137-170, 1995

[2] K. Balakrishnan and V. Honavar, Evolutionary Design of Neural Archi-
tectures – A Preliminary Taxonomy and Guide to Literature, Tech. Report
no. CS TR95-01, Artificial Intelligence Research Group, Iowa State Uni-
versity, pp. January, 1995.

[3] J. G. Eldredge, FPGA Density Enhancement of a Neural Network
Through Run-Time Reconfiguration, Department of Electrical and Com-
puter Engineering, Brigham Young University, pp. May, 1994.

57

[4] J. G. Eldridge and B. L. Hutchings, Density Enhancement of a Neural
Network using FPGAs and Run-Time Reconfiguration, In: IEEE Work-
shop on FPGAs for Custom Computing Machines, pp. 180-188, 1994.

[5] J. G. Eldridge and B. L. Hutchings, RRANN: A Hardware Implemen-
tation of the Backpropagation Algorithm Using Reconfigurable FPGAs,
In: Proceedings, IEEE International Conference on Neural Networks, Or-
lando, FL, 1994.

[6] J. D. Hadley and B. L. Hutchings. Design Methodologies for Partially
Reconfigured Systems, In: Proceedings, IEEE Workshop on FPGAs for
Custom Computing Machines, pp. 78-84, 1995.

[7] Hugo de Garis and Michael Korkin . The CAM-BRAIN MACHINE
(CBM) An FPGA Based Hardware Tool which Evolves a 1000 Neuron
Net Circuit Module in Seconds and Updates a 75 Million Neuron Arti-
ficial Brain for Real Time Robot Control, Neurocomputing journal, Vol.
42, Issue 1-4, 2002.

[8] Amanda J. C. Sharkey, (Ed.). Combining Artificial Neural Nets – Ensem-
ble and Modular Multi-Net Systems, Perspectives in Neural Computing,
Springer-Verlag London Publishing, 1999.

[9] Eric Ronco and Peter Gawthrop. Modular Neural Networks: a state of
the art, Tech. Report, no. CSC-95026, Center for System and Control,
University of Glasgow, Glasgow, UK, May 12, 1999.

[10] Hugo de Garis and Felix Gers and Michael Korkin. CoDi-1Bit: A Sim-
plified Cellular Automata Based Neuron Model, Artificial Evolution Con-
ference (AE97), Nimes, France, 1997

[11] Andres Perez-Uribe. Structure-Adaptable Digital Neural Networks,
Ph.D. Thesis, Logic Systems Laboratory, Computer Science Department,
Swiss Federal Institute of Technology-Lausanne, 1999.

[12] H. F. Restrepo and R. Hoffman and A. Perez-Uribe and C. Teuscher and
E. Sanchez . A Networked FPGA-Based Hardware Implementation of
a Neural Network Application. In: Proceedings of the IEEE Symposium
on Field Programmable Custom Computing Machines (FCCM’00), pp.
337-338, 2000.

[13] J.-L. Beuchat and J.-O. Haenni and E. Sanchez. Hardware Reconfig-
urable Neural Networks, 5th Reconfigurable Architectures Workshop
(RAW’98), Orlando, Florida, USA, pp. March 30, 1998.

[14] Aaron Ferrucci. ACME: A Field-Programmable Gate Array Implementa-
tion of a Self-Adapting and Scalable Connectionist Network, University
of California, Santa Cruz, January, 1994.

References

58 Arithmetic precision for BP networks

[15] Marcelo H. Martin. A Reconfigurable Hardware Accelerator for Back-
Propagation Connectionist Classifiers, University of California, Santa
Cruz, 1994.

[16] Tomas Nordstrom. Highly Parallel Computers for Artificial Neural Net-
works, Ph.D. Thesis,Division of Computer Science and Engineering,
Lulea University of Technology, Sweden, 1995.

[17] T. Nordstrom and E. W. Davis and B. Svensson. Issues and Applica-
tions Driving Research in Non-Conforming Massively Parallel Proces-
sors, book. In: Proceedings of the New Frontiers, a Workshop of Future
Direction of Massively Parallel Processing, 1992

[18] T. Nordstrom and B. Svensson. Using and Designing Massively Parallel
Computers for Artificial Neural Networks, Journal of Parallel and Dis-
tributed Computing, Vol. 14, 1992.

[19] B. Svensson and T. Nordstrom and K. Nilsson and P.-A. Wiberg. Towards
Modular, Massively Parallel Neural Computers, In: Connectionism in a
Broad Perspective: Selected Papers from the Swedish Conference on Con-
nectionism - 1992, L. F. Niklasson and M. B. Boden, Eds., Ellis Harwood,
pp. 213-226, 1994.

[20] Arne Linde and Tomas Nordstrom and Mikael Taveniku. Using FP-
GAs to implement a reconfigurable highly parallel computer. In: Field-
Programmable Gate Arrays: Architectures and Tools for Rapid Prototyp-
ing, Springer-Verlag, Berlin, 1992.

[21] T. Nordstrom. On-line Localized Learning Systems Part 1 - Model De-
scription, Research Report, Division of Computer Science and Engineer-
ing, Lulea University of Technology, Sweden, 1995.

[22] Tomas Nordstrom. On-line Localized Learning Systems Part II - Parallel
Computer Implementation, Research Report, no. TULEA 1995:02, Divi-
sion of Computer Science and Engineering, Lulea University of Technol-
ogy, Sweden, 1995.

[23] Tomas Nordstrom. Sparse distributed memory simulation on REMAP3,
Research Report, no. TULEA 1991:16, Division of Computer Science
and Engineering, Lulea University of Technology, Sweden, 1991.

[24] T. Nordstrom. Designing Parallel Computers for Self Organizing Maps,
In: Proceedings of the 4th Swedish Workshop on Computer System Archi-
tecture (DSA-92), Linkoping, Sweden, January 13-15, 1992.

[25] B. Svensson and T. Nordstrom. Execution of neural network algorithms
on an array of bit-serial processors. In: Proceedings, 10th International
Conference on Pattern Recognition, Computer Architectures for Vision
and Pattern Recognition, Vol. II, pp. 501-505, 1990.

59

[26] M. Skrbek. Fast Neural Network Implementation. In: Neural Network
World, Elsevier, Vol. 9, no. No. 5, pp. 375-391, 1999.

[27] Introducing the XC6200 FPGA Architecture: The First FPGA Archi-
tecture Optimized for Coprocessing in Embedded System Applications,
Xcell, Xilinx Inc., No. 18 : Third Quarter, pp. 22-23, 1995, url =
http://www.xilinx.com/apps/6200.htm.

[28] Xilinx. XC6200 Field Programmable Gate Arrays, Data Sheet, Version
1.7, 1996.

[29] Mikael Taveniku and Arne Linde. A reconfigurable SIMD computer for
artificial neural networks, Licentiate Thesis, Department of Computer
Engineering, Chalmers University of Technology, Goteborg, Sweden,
1995.

[30] Gate Count Capacity Metrics for FPGAs, Application Note, no.
XAPP 059 - Version 1.1, Xilinx, Inc., Feb. 1, 1997, URL =
http://www.xilinx.com/xapp/xapp059.pdf.

[31] FLEX 10K Embedded Programmable Logic Device Family,
Data Sheet, Version 4.1, Altera, Inc., March, 2001, URL =
http://www.altera.com/literature/ds/dsf10k.pdf

[32] XC3000 Series Field Programmable Gate Arrays, Product De-
scription, Version 3.1, Xilinx, Inc., November 9, 1998, URL =
http://www.xilinx.com/partinfo/3000.pdf

[33] XC4000XLA/XV Field Programmable Gate Arrays, Product Specifica-
tion, no. DS015 - Version 1.3, Xilinx, Inc., October 18, 1999, URL =
http://www.xilinx.com/partinfo/ds015.pdf

[34] Andres Perez-Uribe and Eduardo Sanchez. Speeding-Up Adaptive
Heuristic Critic Learning with FPGA-Based Unsupervised Clustering,
In: Proceedings of the IEEE International Conference on Evolutionary
Computation ICEC’97, pp. 685-689, 1997.

[35] M. Morris Mano and Charles R. Kime. Logic And Computer Design Fun-
damentals, Prentice Hall Inc., New Jersey, USA, 2000.

[36] Andre Dehon. The Density Advantage of Configurable Computing, IEEE
Computer, vol. 33, no. 5, pp. 41–49, 2000.

[37] David E Rumelhart and James L McClelland and PDP Research Group.
Parallel Distrubuted Processing: Explorations in the Microstructure of
Cognition, vol. Volume 1: Foundations, MIT Press, Cambridge, Massa-
chusetts, 1986.

[38] Simon Haykin, Neural Networks: A Comprehensive Foundation,
Prentice-Hall, Englewood Cliffs, New Jersey, 1999.

References

60 Arithmetic precision for BP networks

[39] Stephen D. Brown and Robert J. Francis and Jonathan Rose and Zvonko
G. Vranesic, Field-Programmable Gate Arrays, Kluwer Academic Pub-
lishers, USA, 1992

[40] Virtex-E 1.8 V Field Programmable Gate Arrays, Perliminary Product
Specification, no. DS022-2 (v2.3), Xilinx, Inc., November 9, 2001, URL
= http://www.xilinx.com/partinfo/ds022-2.pdf

[41] Jordan L Holt and Thomas E Baker. Backpropagation simulations using
limited precision calculations. In: Proceedings, International Joint Con-
ference on Neural Networks (IJCNN-91), vol. 2, Seattle, WA, USA, pp.
121 - 126, 1991.

[42] Hikawa Hiroomi. Frequency-Based Multilayer Neural Network with On-
chip Learning and Enhanced Neuron Characterisitcs. IEEE Transactions
on Neural Networks, vol. 10, no. 3, pp. 545-553, May, 1999.

[43] Peter J. Ashenden. VHDL Standards. IEEE Design & Test of Computers,
vol. 18, no. 6, pp. 122-123, September–October, 2001.

[44] Hung Tien Bui and Bashar Khalaf and Sofi„ene Tahar. Table-Driven
Floating-Point Exponential Function, Technical Report, Concordia Uni-
versity, Department of Computer Engineering, October, 1998, URL =
http://www.ece.concordia.ca/ tahar/pub/FPE-TR98.ps

[45] W.B. Ligon III and S. McMillan and G. Monn and K. Schoonover and
F. Stivers and K.D. Underwood. A Re-evaluation of the Practicality of
Floating Point Operations on FPGAs. In: Proceedings, IEEE Symposium
on FPGAs for Custom Computing Machines, pp. 206–215, 1998.

[46] Pete Hardee. System C: a realistic SoC debug strategy, EETimes, 2001.

[47] G.M. Amdahl. Validity of the single-processor approach to achieving
large scale computing capabilities, In: AFIPS Conference Proceedings,
vol. 30, AFIPS Press, Reston, Va., pp. 483–485, 1967.

[48] Stephen Chappell and Chris Sullivan, Celoxica Ltd. Oxford UK. Handel-
C for co-processing & co-design of Field Programmable System on Chip
FPSoC, 2002, url = www.celoxica.com/technical-library/

[49] Synopsys, Inc. Describing Synthesizable RTL in SystemC v1.1, Synop-
sys, Inc., January, 2002.

[50] Martyn Edwards. Software Acceleration Using Coprocessors: Is it Worth
the Effort?, In: Proceedings, 5th International Workshop on Hard-
ware/Software Co-design Codes/CASHE’97, Braunschneig, Germany,
pp. 135–139, March 24-26, 1997.

[51] Giovanni De Micheli and Rajesh K. Gupta. Hardware/Software Co-
design. Proceedings of the IEEE, vol. 85, no. 3, pp. 349-365, March,
1997.

61

[52] John Sanguinetti and David Pursley. High-Level Modeling and Hardware
Implementation with General- Purpose Languages and High-level Syn-
thesis, White Paper, Forte Design Systems, 2002.

[53] Don Davis. Architectural Synthesis: Unleasing the Power of FPGA
System-Level Design. Xcell Journal, Xilinx Inc., no. 44, vol. 2, pp. 30-34,
pp. Winter, 2002.

[54] Xilinx, XAPP467 Using Embedded Multipliers in Spartan-3 FPGAs, Xil-
inx Application Note, May 13, 2003, http://www.xilinx.com.

[55] Nestor Inc. Neural Network Chips, http://www.nestor.com.

References

Chapter 3

FPNA: CONCEPTS AND PROPERTIES

Bernard Girau
LORIA INRIA-Lorraine
Nancy France

girau@loria.fr

Abstract Neural networks are usually considered as naturally parallel computing mod-
els. But the number of operators and the complex connection graph of standard
neural models can not be handled by digital hardware devices. Though pro-
grammable digital hardware now stand as a real opportunity for flexible hard-
ware implementations of neural networks, many area and topology problems
arise when standard neural models are implemented onto programmable circuits
such as FPGAs, so that the fast FPGA technology improvements can not be fully
exploited. The theoretical and practical framework first introduced in [21] rec-
onciles simple hardware topologies with complex neural architectures, thanks
to some configurable hardware principles applied to neural computation: Field
Programmable Neural Arrays (FPNA) lead to powerful neural architectures that
are easy to map onto FPGAs, by means of a simplified topology and an origi-
nal data exchange scheme. This two-chapter study gathers the different results
that have been published about the FPNA concept, as well as some unpublished
ones. This first part focuses on definitions and theoretical aspects. Starting from
a general two-level definition of FPNAs, all proposed computation schemes are
together described and compared. Their correctness and partial equivalence is
justified. The computational power of FPNA-based neural networks is charac-
terized through the concept of underparameterized convolutions.

Keywords: neural networks, fine-grain parallelism, digital hardware, FPGA

3.1 Introduction

Various fast implementations of neural networks have been developed, be-
cause of the huge amount of computations required by neural network appli-

63

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 63–101.
© 2006 Springer. Printed in the Netherlands.

64 FPNA: Concepts and properties

cations, especially during the learning phase.1 A broad introduction to parallel
neural computing may be found in [50]. Several kinds of parallel devices have
been used for these fast implementations, such as massively parallel comput-
ers, neuro-computers, analog or digital ASICs (application specific integrated
circuits). Programmable digital circuits (such as FPGAs, field programmable
gate arrays) mix the efficiency and parallelism grain of hardware devices with
the flexibility of software implementations, so that they appear as particularly
well-adapted to the usual needs of neural implementations (see [26]).

However, the 2D-topology of FPGAs is not able to handle the connection
complexity of standard neural models. What is more, FPGAs still implement
a limited number of logic gates, whereas neural computations require area-
greedy operators (multipliers, activation functions). Usual solutions handle
sequentialized computations with an FPGA used as a small neuroprocessor,
or they implement very small low-precision neural networks without on-chip
learning. Connectivity problems are not solved even by the use of several re-
configurable FPGAs with a bit-serial arithmetic, or by the use of small-area op-
erators (stochastic bit-stream or frequency-based). Subsection 3.2.3 precisely
describes the specific problems raised by neural network implementations on
FPGAs.

In [29], we propose an implementation method for multilayer perceptrons
of any size on a single FPGA, with on-chip learning and adaptable precision.
This work takes advantage of an area-saving on-line arithmetic that is well-
adapted to neural computations. It also uses an original parallelization of the
internal computations of each neuron. Yet, this implementation method barely
exploits the massive fine-grain parallelism that is inherent to neural network
architectures.

In [21] and following publications, I have defined and studied a set of neural
models called FPNAs (Field Programmable Neural Arrays). These models
share a computation method whose local data processing is more complex than
in the standard neural computation scheme. It makes it possible to handle sim-
plified neural network topologies, though such neural networks may be func-
tionally equivalent to standard neural models (multilayer perceptron, Hopfield
network, etc). Therefore, FPNAs lead to the definition of large and efficient
neural networks that are adapted to hardware topological constraints. They
reconcile the high connection density of neural architectures with the need of
a limited interconnection scheme in hardware implementations.

1A neural network has got some learnable parameters. The learning phase consists in determining parameter
values such that the neural network computes a function that performs an expected task (e.g. classification
of a set of patterns). When the parameters have been determined, the neural network is ready to be applied
to unknown patterns. This is the generalization phase.

Choosing FPGAs 65

FPNAs are based on an FPGA-like approach: a set of resources with freely
configurable interactions. These resources are defined to perform computa-
tions of standard neurons, but they behave in an autonomous way. As a conse-
quence, numerous virtual connections are achieved thanks to the application of
a simple protocol to the resources of a sparse neural network. A standard but
topologically complex neural network may be replaced by a simplified neural
network that uses this new neural computation concept.

The aim of this two-chapter study is to gather the different results, published
or unpublished, about the FPNA concept ([21, 20, 27, 25, 24, 22, 23, 28]), so
as to give an exhaustive overview of this hardware-oriented neural paradigm.
This first chapter focuses on definitions and theoretical aspects. Section 3.2
first proposes a brief survey of the use of parallel devices for neural implemen-
tations. Then it describes the specific advantages and problems of the use of
programmable hardware for such implementations. Section 3.3 starts from a
general two-level definition of FPNAs. Then it describes and compares all pro-
posed computation schemes for FPNA-based neural networks. Their correct-
ness and partial equivalence is justified in section 3.4. Section 3.5 characterizes
the computational power of FPNA-based neural networks through the concept
of underparameterized convolutions. Chapter 4 focuses on implementations
and applications.

3.2 Choosing FPGAs

This section shows how FPGAs stand as appropriate hardware devices for
neural implementations:

§3.2.1 is a rapid survey of existing devices for parallel implementations
of neural networks

§3.2.2 describes some specific advantages of the use of FPGAs to imple-
ment neural applications

§3.2.3 points out the main issues of such implementations on FPGAs

§3.2.4 is a short survey of existing solutions, from the simplest to the
most well-built

3.2.1 Parallel implementations of neural networks

Fast implementations of neural network applications are useful because of
the very high number of required arithmetic operations. Such implementations
might use massively parallel computers as well as digital or analog hardware
designs. This subsection rapidly discusses the use of the various possible par-
allel devices.

66 FPNA: Concepts and properties

3.2.1.1 General purpose parallel computers. Fine-grain parallel im-
plementations on massively parallel computers (either SIMD, as in [72, 64], or
MIMD, as in [42, 55, 51, 7]) suffer from the connectivity of standard neural
models that results in costly information exchanges ([63, 51, 7, 62]). Coarse-
grain parallel implementations are mainly applied to neural learning, so that
their efficiency suffers from the sequentiality of standard learning algorithms
such as stochastic gradient descent (see [53, 55, 14]). Furthermore, massively
parallel computers are expensive resources and they cannot be used in em-
bedded applications. Such solutions are usually preferable for huge neural
structures and complex neural computations or learning methods ([45, 30, 7,
62]).

3.2.1.2 Dedicated parallel computers. Neuro-computers are parallel
systems dedicated to neural computing. They are based on computing de-
vices such as DSPs (digital signal processors) as in [39, 49, 46, 62], or neuro-
processors ([3, 68, 62]). Their use suffers from their cost and their development
time: they rapidly become out-of-date, compared to the most recent sequential
processors. Most well-known neurocomputers are described in [50, 62].

3.2.1.3 Analog ASICs. Many analog hardware implementations have
been realized. They are very fast, dense and low-power, but they introduce
specific problems (see [41]), such as precision, data storage, robustness. On-
chip learning is difficult ([9]). It is an expensive and not flexible solution, as
any ASIC (even if some design methods tend to be flexible, [48]). And their
very long development is very tricky for users who are not analog technology
experts.

3.2.1.4 Digital ASICs. Many digital integrated circuits have also been
designed for neural networks. Compared to analog chips, they provide more
accuracy, they are more robust, and they can handle any standard neural com-
putation. Yet their design requires a strong effort to obtain working chips and
it is very expensive when only a few chips are needed (standard drawbacks of
ASICs). They usually implement limited parts of neural networks, so as to be
included in neuro- computer systems ([69, 13]). Sometimes they implement
a whole specific neural network, nevertheless the architecture of this neural
network is not directly mapped onto the chip (e.g. [38]).

3.2.1.5 The FPGA solution. To summarize the above survey, hard-
ware implementations are more likely to fit the parallelism grain of neural
computations, and both digital and analog ASICs may efficiently implement
regular structures, but they require important development times. This major
drawback may be avoided with the help of programmable integrated circuits

Choosing FPGAs 67

analog
ASIC

digital
ASIC

FPGA
processor

based
parallel

computer
speed +++ ++ + – +
area +++ ++ + – – –
cost – – – – ++ ++ – –
design time – – – – ++ +++ +
reliability – – + ++ ++ ++

– –: very unfavourable, –: unfavourable,
+: favourable, ++: very favourable, +++: highly favourable

Table 3.1. Appropriate/inappropriate devices for neural network implementations

such as FPGAs: since the appearance of programmable hardware devices, al-
gorithms may be implemented on very fast integrated circuits with software-
like design principles, whereas usual VLSI designs lead to very high perfor-
mances at the price of very long production times (up to 6 months).

FPGAs, such as Xilinx FPGA ([70]), are based on a matrix of configurable
logic blocks (CLBs). Each CLB contains several logic cells that are able to im-
plement small logical functions (4 or 5 inputs) with a few elementary memory
devices (flip-flops or latches) and some multiplexors. CLBs can be connected
thanks to a configurable routing structure. In Xilinx FPGAs, CLBs can be ef-
ficiently connected to neighbouring CLBs as well as CLBs in the same row or
column. The configurable communication structure can connect external CLBs
to input/output blocks (IOBs) that drive the input/output pads of the chip.

An FPGA approach simply adapts to the handled application, whereas a
usual VLSI implementation requires costly rebuildings of the whole circuit
when changing some characteristics. A design on FPGAs requires the de-
scription of several operating blocks. Then the control and the communication
schemes are added to the description, and an automatic “compiling” tool maps
the described circuit onto the chip. Therefore configurable hardware appears as
well-adapted to obtain efficient and flexible neural network implementations.

Table 3.1 roughly summarizes the main advantages and drawbacks of the
most common solutions (regardless of the implemented computations, neural
or not). Each solution is roughly estimated with respect to each implementation
aspect.

3.2.2 Neural networks on FPGAs: specific assets

As stated above, FPGAs offer a cheap, easy and flexible choice for hard-
ware implementations. They also have several specific advantages for neural
implementations:

68 FPNA: Concepts and properties

Reprogrammable FPGAs permit prototyping: in most applications, sev-
eral neural architectures must be tested so as to find the most efficient
one. This may be directly performed with the hardware efficiency of an
FPGA-based implementation, without any additional cost. Moreover a
good architecture that has been designed and implemented may be re-
placed later by a better one without having to design a new chip.

On-chip learning is often considered as difficult and useless. Indeed it
is used very seldom. But on-chip learning usually results in a loss of
efficiency in a hardware implementation, since it requires some specific
operators, a higher precision, . . . etc. Therefore off-chip learning is
naturally chosen when no dynamic learning is necessary. In a recon-
figurable FPGA, on-chip learning may be performed prior to a specific
optimized implementation of the learned neural network on the same
chip.

FPGAs may be used for embedded applications, when the robustness
and the simplicity of neural computations is most needed, even for low-
scale productions.

FPGA-based implementations may be mapped onto new improved FP-
GAs, which is a major advantage, considering that FPGA speeds and
areas approximately double each year. Even large neural networks may
soon be implemented on single FPGAs, provided that the implementa-
tion method is scalable enough. The FPNA concept is a major advance
to ensure the scalability of direct hardware mappings of neural networks
(the neural architecture itself is mapped by the compiler onto the FPGA).

3.2.3 Implementation issues

Neural network implementations on FPGAs have to deal with the usual is-
sues of digital hardware implementations of neural network applications. But
these issues become more acute because of the specific constraints of FPGAs:
it is particularly obvious when it is a matter of area consumption. Even if
the software-like use of FPGAs is simple, the user should not forget that the
compiler has to deal with these strong constraints.

3.2.3.1 Topology-related issues.

Hardware devices have 2-D topologies, that do not easily fit the regu-
lar but complex connection graph of most standard neural models (e.g.
multilayer ones). Furthermore, in the case of FPGAs, the user must deal
with an already specified connection frame, even if it is programmable.
Routing problems may not be solved by means of a shrewd use of the
different metal layers.

Choosing FPGAs 69

Neurons have a large number of parallel input links in most neural mod-
els, whereas hardware implementations of operators can handle only a
limited fan-in. In the case of FPGAs, part of the available CLBs may
be used just to increase the routing capacities, which results in a loss of
computation resources.

3.2.3.2 Area-related issues.

Multipliers and elementary function operators (e.g. the sigmoidal acti-
vation function tanh) are area-greedy. This problem strongly depends on
the required precision. Though neural networks do not usually require
very precise computations, the required precision varies with the appli-
cation ([2]). Moreover, learning is not as tolerant as generalization ([34,
58, 47, 48]), so that on-chip learning does not only introduce algorithmic
needs, but also makes low-precision implementations impossible.

Weight storage can not be included in the FPGA for large neural net-
works. When efficient implementations are obtained, a careful manage-
ment of the memory accesses must be taken into account.

Neural network applications have a notable drawback: there is an imbal-
ance between the overall computation time and the implementation area
of the different operators involved in neural computing. In most standard
neural models, the main part of the computation time is due to matrix-
vector products that require multipliers and adders. But other area-
greedy operators, such as activation functions, must be implemented.
The area of an FPGA is strictly bounded. A significant part of the avail-
able area is required to implement these other operators, so that only a
reduced part of the whole FPGA is available to implement almost 100 %
of the overall computation time of the neural application.

3.2.4 Existing solutions

The easiest way to bypass these issues is to consider very small neural net-
works (as in [8, 54, 57, 44]). More generally, standard solutions include:

Implementation of the generalization phase only ([4, 8, 60, 10, 37, 66]).

Implementation of a small neuro-processor on the FPGA, and sequential
(and therefore slower) use of this computing device ([10, 37, 15]).

Implementation of a small neuro-processor on each one of several FP-
GAs with data communications ([11, 54–1, 33]) that raise bandwidth
problems and that need to minimize the number of required I/O pads,
which is difficult when densely connected neural architectures are han-
dled.

70 FPNA: Concepts and properties

Simplified computations, discretized activation function, very low pre-
cision ([8, 10, 31]). Such solutions only adapt to specific applications
with very weak precision requirements.

More advanced methods have been considered:

3.2.4.1 Area-saving solutions.

Optimized implementation of the activation function (e.g. cordic-like
algorithm in [2], or piecewise polynomial approximation controled by
look-up tables in [29]), or fast multipliers ([60]). Such solutions may be
combined with other advanced method. Their choice depends on some
application characteristics, such as required precision, or required on-
chip learning.

Bit-serial arithmetic (standard: [11], or optimized: [66]) or on-line serial
arithmetic ([29]). The choice of the best arithmetic for digital hardware
implementations of neural networks is discussed in [61], but the speci-
ficity of FPGAs is not taken into account, and on-line arithmetic is not
considered. Any serial arithmetic requires more clock cycles, and should
be used with pipelined operators.

Pulse-based arithmetic (bit-stream neurons in [4, 59, 43, 67, 40, 56], or
some frequency-based solution in [32, 44]). It provides tiny operators,
so that an average-sized neural network can be fully implemented on a
single FPGA, but the routing constraints of FPGAs still do not permit
large neural networks to be implemented. What is more, such solutions
need to be applied to the development of the neural application from the
beginning (arithmetical operations are not equivalent to standard ones).

3.2.4.2 Solutions to reduce CLB idleness.

Run-time reconfiguration of the FPGA ([11, 6]). Such methods still
clash with significant dynamic reconfiguration times.

Pipelined architecture (e.g. orthogonal systolic array, [17]). Strong con-
straints are put on the kind of neural architectures to which such methods
apply.

Sub-neural parallelism level and computation overlappings ([29]): this
work makes it possible to implement multilayer perceptrons of any size
on a single FPGA, with on-chip learning and adaptable precision, but it
offers a limited parallelism level (this solution is a compromise between
a neuro-processor and a direct parallel mapping of neural operators).

FPNAs, FPNNs 71

3.2.4.3 Topologically hardware-friendly solutions.

Partition of the neural graph into equivalent subgraphs, so that a repeated
use of such a simple subgraph covers the whole graph ([31]).

Neural computation paradigm tolerant of constrained topologies: it cor-
responds to the FPNA concept that is described in this paper.

3.2.4.4 Adapted frameworks of neural computation. As shown
above, many neural implementations on FPGAs handle simplified neural com-
putations. Furthermore, many efficient implementation methods (on ASICs,
neuro-computers, . . . etc) have to limit themselves to few well-fitted neural
architectures. An upstream work is preferable: neural computation paradigms
may be defined to counterbalance the main implementation problems, and the
use of such paradigms naturally leads to neural models that are more toler-
ant of hardware constraints, without any additional limitation. Since the main
implementation issues are linked to area-greedy operators and complex topolo-
gies, two kinds of (complementary) hardware-adapted neural computation par-
adigms may appear: area-saving neural computation frameworks on one hand,
and paradigms that may handle simplified topologies on the other hand. The
bit-stream technology mentioned above has led to an example of area-saving
neural paradigm, while the definition of the FPNA framework makes it possi-
ble to simplify the architectures of standard neural models without significant
loss of approximation capability.

Next section introduces the FPNA concept, before §3.3.5 explains how it
makes it possible to overcome most implementation issues mentioned above.

3.3 FPNAs, FPNNs

This section describes the FPNA/FPNN concept. These models appear as
parameterized task graphs that are specialized so as to perform neural computa-
tions, but they differ from standard neural models that are graphs of non-linear
regressors.

The description below directly illustrates the links of the FPNA concept with
both implementation choices and standard neural theory.

The distinction between FPNAs and FPNNs is mainly linked to implemen-
tation properties. An FPNA is a given set of neural resources that are organized
according to specific neighbourhood relations. An FPNN is a way to use this
set of resources: it only requires local configuration choices. Therefore, the
implementations of two different FPNNs exactly require the same mapping on
FPGA, as long as they are based on the same FPNA.

This section is organized as follows:

72 FPNA: Concepts and properties

§3.3.1 briefly describes where this concept comes from, then it defines
an FPNA as a set of computing resources which architecture is fully
specified, but in which local computations still need to be parameterized

§3.3.2 describes the parameterization step that is required to get to a
functional neural model, called FPNN,

§3.3.3 describes the basic computation algorithm that has been defined
for FPNNs, and that sequentially handles a list of tasks (node-level com-
putation); an example is described in detail and it illustrates the main
properties of FPNN computation, such as how virtual connections are
obtained as composite links, §
3.3.4 describes a parallel version of the above algorithm, in order to show
that it only requires local computations; this computation algorithm is
the basis of a direct parallel mapping onto FPGAs in 4.5; an example is
described in detail and it illustrates how virtual connections generate a
functional equivalence between an FPNN and a standard neural network
with a completely different architecture,

§1.3.5 gets back to the discussion of §3.2.3 and it explains how most
neural implementation issues may be overcome by the use of FPNA ar-
chitectures combined with the virtual connections that are created by
FPNN computation.

3.3.1 FPNAs

3.3.1.1 From FPGAs to FPNAs. The first aim of the FPNA concept is
to develop neural structures that are easy to map directly onto digital hardware,
thanks to a simplified and flexible topology. The structure of an FPNA is based
on FPGA principles: complex functions realized by means of a set of simple
programmable resources. The nature and the relations of these FPNA resources
are derived from the mathematical processing FPNAs have to perform.

To summarize, in a standard neural model, each neuron computes a function
applied to a weighted sum of its inputs: if 	xi is the input vector of neuron i,
and 	wi is its weight vector, it computes fi(wi.	xi). See [18, 19] for a unified
theoretical approach of the computation of standard neural networks. The in-
put vector 	xi may contain neural network inputs as well as outputs of other
neurons, depending of the connection graph of the neural network. In such
a standard model, each link is a connection between the output of a neuron
and an input of another neuron. Therefore the number of inputs of each neu-
ron is its fan-in in the connection graph. On the contrary, neural resources
become autonomous in an FPNA: their dependencies are freely set, and the
resulting processing is more complex than in standard neural models. As in

FPNAs, FPNNs 73

FPGAs, FPNA configuration handles both resource interconnections and re-
source functionalities.

3.3.1.2 FPNA resources. An FPNA is a programmable set of neural
resources that are defined to compute partial convolutions for non-linear re-
gression (see section 3.5), as standard multilayer neural networks do. Two
kinds of autonomous FPNA resources naturally appear: activators that apply
standard neural functions to a set of input values on one hand, and links that
behave as independent affine operators on the other hand.

These resources might be handled in different ways. The easiest scheme
would allocate any link to any activator, with the help of an underlying pro-
grammable interconnection network. This would lead to massively pruned
standard neural networks, or to multiple weight sharing connections. Topo-
logical problems would still appear (such as high fan-ins), and weight sharing
would lead to few different 	wi weight vectors. Therefore, another principle
has been chosen for FPNAs: any link may be connected to any local resource.
The aim of locality is to reduce topological problems, whereas connected links
result in more various weight vectors.

More precisely, the links connect the nodes of a directed graph, each node
contains one activator. The specificity of FPNAs is that the relations between
any local resources of each node may be freely set. A link may be connected or
not to the local activator and to other local links. Direct connections between
affine links appear, so that the FPNA computes numerous composite affine
transforms. These compositions create numerous virtual neural connections,
so that different convolution terms may be obtained with a reduced number of
connection weights.

3.3.1.3 Definition of FPNAs. The following definition specifies the
structure of an FPNA (directed graph), as well as the functional nature of each
individual neural resource.

An FPNA is defined by means of:

A directed graph (N , E), where N is an ordered finite set of nodes, and
E is a set of directed edges without loop. E may be seen as a subset of
N 2.

For each node n, the set of the direct predecessors (resp. succes-
sors) of n is defined by Pred(n) = {p ∈ N | (p, n) ∈ E} (resp.
Succ(n) = {s ∈ N | (n, s) ∈ E}). The set of the input nodes is
Ni = {n ∈ N | Pred(n) = ∅}.

A set of affine operators α(p,n) for each (p, n) in E .

74 FPNA: Concepts and properties

A set of activators (in, fn), for each n in N − Ni: in is an iteration
operator (a function from IR2 to IR), and fn is an activation function
(from IR to IR).

To simplify, (p, n) and (n) now stand for the corresponding links and activa-
tors.

3.3.1.4 Interpretation. Resources are associated with the nodes,
whereas locality is defined by the edges. For each node n ∈ N , there is
one activator and as many communication links as this node has got predeces-
sors. Each link is associated with an affine operator. An activator is defined
by (in, fn), since it will handle any neuron computation as in a sequential pro-
gram. Indeed, any standard neuron computation may be performed by means
of a loop that updates a variable with respect to the neuron inputs, and a final
computation that maps this variable to the neuron output. The iteration func-
tion in stands for the updating function inside the loop. The neuron output is
finally computed with fn. See [21] for the definition of (in, fn) so as to obtain
most standard neurons, e.g.:

A d-input sigmoidal neuron of a multilayer perceptron computes

σ

⎛⎝θ +
d∑

j=1

wjxj

⎞⎠ (3.1)

where σ is a sigmoid function (bounded, monotonous), θ is a threshold
value.

A d-input radial basis function of a RBF network computes

γ

⎛⎝
√√√√ d∑

j=1

(wj(xj − tj))2

⎞⎠
where γ is a gaussian function and 	t is a translation vector.

A d-input wavelet neuron of a wavelet network ([71, 5]) computes

d∏
j=1

ψ(wj(xj − tj))

where ψ is a wavelet function (localized in both space and frequency
domains).

When the FPNA graph and the different operators have been defined, a
general implementation can be given: each resource corresponds to a basic

FPNAs, FPNNs 75

block, and these blocks are organized according to the graph. This imple-
mentation may be used by any FPNN derived from this FPNA. Some of these
FPNNs compute very complex functions (equivalent to standard neural net-
works), though the FPNA graph is made simple (reduced number of edges,
limited node fan-ins and fan-outs, so that the FPNA is easily mapped by the
compiler onto the hardware device).

3.3.2 FPNNs

An FPNN (field programmed neural network) is a configured FPNA: an
FPNA whose resources have been connected in a specific way (furthermore,
some parameters must be given to specify the computation of each resource).

In other words, the underlying FPNA of an FPNN is a topologically fully
specified architecture of neural resources, whereas this FPNN is a given way
to specify how these resources will interact to define a functional behaviour.

3.3.2.1 Definition of FPNNs. An FPNA configuration requires local
connections (from link to link, link to activator or activator to link) as well
as precisions about the iterative process performed by each activator (initial
value, number of iterations). Therefore an FPNN is specified by:

an FPNA (available neural resources),

for each node n in N −Ni,

– a real value θn (initial value of the variable updated by iteration
function in)

– a positive integer an (number of iterations before an activator ap-
plies its activation function)

– for each p in Pred(n), two real value Wn(p) and Tn(p) (coeffi-
cients of affine operator α(p,n)(x) = Wn(p)x + Tn(p)),

– for each p in Pred(n), a binary value rn(p) (set to 1 iff link (p, n)
and activator (n) are connected),

– for each s in Succ(n), a binary value Sn(s) (set to 1 iff activator
(n) and link (n, s) are connected),

– for each p in Pred(n) and each s in Succ(n), a binary value
Rn(p, s) (set to 1 iff links (p, n) and (n, s) are connected),

for each input node n in Ni,

– a positive integer cn (number of inputs sent to this node),

– for each s in Succ(n), a binary value Sn(s) (see above).

76 FPNA: Concepts and properties

3.3.2.2 Computing in an FPNN. Several computation methods have
been defined for the FPNNs in [21]. Their common principles may be de-
scribed as follows:

All resources behave independently.

A resource receives values. For each value,

– the resource applies its local operator(s),

– the result is sent to all neighbouring resources to which the re-
source is locally connected (an activator waits for an values before
sending any result to its neighbours).

The main differences with the standard neural computation are:

A resource may or may not be connected to a neighbouring resource.
These local connections are set by the rn(p), Sn(s) and Rn(p, s) values.

A link may directly send values to other communication links.

A resource (even a link) may handle several values during a single FPNN
computation process.

A sequential version of the most general FPNN computing method is first
described below. This method clearly illustrates the above principles. More-
over, it stands as a reference computation scheme when establishing theoretical
properties.

Then a parallel version is described. This computation scheme is aimed at
being directly implemented onto FPGAs.

3.3.3 Sequential computation

This computation method handles a list of tasks L that are processed ac-
cording to a FIFO scheduling. Each task [(p, n), x] corresponds to a value x
sent on a link (p, n). Task handling corresponds to the various steps that must
be performed at node-level to deal with such an input:

Input nodes just have to send global input values to their connected
neighbours.

An incoming value is first processed in an affine way.

Then it is directly forwarded to neighbouring nodes when direct connec-
tions exist between links.

It is also processed by the local activator when a connection exists be-
tween the incoming link and this activator. The latter generates an output

FPNAs, FPNNs 77

when it has received enough inputs. This output is sent to all connected
neighbours.

The algorithm is as follows:

Initialization:

Inputs

For each input node n in Ni, cn values
(
x

(i)
n

)
i=1..cn

are

given (outer inputs of the FPNN), and the corresponding tasks
[(n, s), x(i)

n] are put in L for all s in Succ(n) such that Sn(s) = 1.
The order of task creation corresponds to a lexicographical order
(n, i, s) (according to the order in N).

Variables

For each node n ∈ N −Ni, two local variables are used: cn is the
number of values received by the local activator, whereas xn is the
value that is updated by the iteration function in. Initially cn = 0
and xn = θn.

Sequential processing:

While L is not empty

Let [(p, n), x] be the first element in L.

1 suppress this element in L
2 x′ = Wn(p)x + Tn(p)
3 for all s ∈ Succ(n) such that Rn(p, s) = 1, create [(n, s), x′]

in L according to the order of successors s in N
4 if rn(p) = 1

– increment cn and update xn: xn = in(xn, x′)
– if cn = an

(a) y = fn(xn)
(b) reset local variables (cn = 0, xn = θn)
(c) for all s ∈ Succ(n) such that Sn(s) = 1, create

[(n, s), y] in L according to the order of successors s
in N

If rn(p) = 1, activator (n) is said to be receiving the value of task
[(p, n), x].

78 FPNA: Concepts and properties

3.3.3.1 Example. The following simple example is not functionally
useful: there is no clear global output. Yet it illustrates some specific charac-
teristics of FPNN computing:

a value that is processed by a link is not always received by the corre-
sponding activator

some links and some local connections may be useless, if no value is
sent through them,

some activators may receive values without sending outputs

Above all it illustrates the major aspect of FPNN computing: some values
processed by links are directly sent to other links, so that virtual links are cre-
ated.

These characteristics are outlined just after the detailed description of this
example.

Let Φ be the FPNA defined by:

N = (n1, n2, n3, n4, n5)

E = {(n1, n3), (n2, n3), (n2, n4), (n3, n4), (n3, n5), (n4, n5), (n5, n3)}
in3 = in4 = in5 = ((x, x′) �→ x + x′)

fn3 = fn4 = (x �→ tanh(x)) and fn5 = (x �→ x)

Figure 3.1 shows the activators, the links and the configured local connections
of an FPNN φ derived from Φ. This FPNN is more precisely defined by:

θ3 = 2.1, θ4 = −1.9, θ5 = 0

a3 = 3, a4 = 2, a5 = 2

∀ (ni, nj) ∈ E W(ni,nj) = i ∗ j T(ni,nj) = i + j

rn3(n1) = 0, rn3(n2) = 1, rn3(n5) = 1,

rn4(n2) = rn4(n3) = 1, rn5(n3) = rn5(n4) = 1

Sn1(n3) = 1, Sn2(n3) = Sn2(n4) = 1,

Sn3(n4) = Sn5(n3) = 0, Sn3(n5) = Sn4(n5) = 1

Rn3(n1, n4) = 1, Rn3(n1, n5) = 0, Rn3(n2, n4) = Rn3(n2, n5) = 0,

Rn4(n2, n5) = Rn4(n3, n5) = 0, Rn5(n3, n3) = Rn5(n4, n5) = 0

c1 = 2, c2 = 1

The sequential computation method applies to φ as follows:

FPNAs, FPNNs 79

Figure 3.1. FPNN φ (resources and local connections)

Initialization: Some FPNN inputs are chosen: x
(1)
n1 = 1.5, x

(2)
n1 = −0.8,

x
(1)
n2 = 1.1. The first tasks are [(n1, n3), 1.5], [(n1, n3),−0.8],

[(n2, n3), 1.1] and [(n2, n4), 1.1].
Finally, cn3 = cn4 = cn5 = 0, xn3 = θ3 = 2.1, xn4 = θ4 = −1.9 and
xn5 = θ5 = 0.

Sequential processing:

1 Task [(n1, n3), 1.5] is first processed:
x′ = 1.5 Wn3(n1) + Tn3(n1) = 8.5, task [(n3, n4), 8.5] is cre-
ated since Rn3(n1, n4) = 1, and the value 8.5 is not received by
activator (n3) since rn3(n1) = 0.

2 Task [(n1, n3),−0.8] is processed in the same way:
task [(n3, n4), 1.6] is created.

3 Task [(n2, n3), 1.1] is processed: x′ = 11.6 is received by activator
(n3), cn3 = 1 (therefore cn3 < an3), xn3 = 13.7.

4 Task [(n2, n4), 1.1] is processed: x′ = 14.8 is received by activator
(n4), cn4 = 1, xn4 = 12.9.

5 Task [(n3, n4), 8.5] is processed: x′ = 109 is received by activator
(n4), cn4 = 2, xn4 = 121.9. Now cn4 = an4 : reset (cn4 = 0,
xn4 = −1.9), y = tanh(109) 	 1, task [(n4, n5), 1] is created.

6 Task [(n3, n4), 1.6] is processed: x′ = 26.2, cn4 = 1, xn4 = 24.3.

7 Task [(n4, n5), 1] is processed: x′ = 29, cn5 = 1, xn5 = 29.

80 FPNA: Concepts and properties

As mentioned above, this simple example is not functionally useful: one
would expect φ to map input values to some output values (for example com-
puted by n5). Yet it illustrates the specific characteristics of FPNN computing
that have been mentioned: the values processed by the links towards n3 are not
always received by activator (n3), link (n5, n3) is not used, activators (n3) and
(n5) receive values without sending outputs, . . . etc.

Most of all this example illustrates the creation of virtual links thanks to
direct connections between links. In this simple example there is a direct
connection from (n1, n3) towards (n3, n4), so that a virtual link (n1, n4) is
created. Its virtual affine coefficients are Wn4(n1) = Wn4(n3)Wn3(n1) and
Tn4(n1) = Wn4(n3)Tn3(n1) + Tn4(n3). Of course far more complex virtual
links are required to obtain significant topology simplifications (see section
4.3).

3.3.4 Asynchronous parallel computation

The asynchronous parallel computation scheme illustrates best the resource
autonomy. It is based on an asynchronous local handling of requests: there is
no global list of requests. A request req[�1, �2, x] is created when a value x
is exchanged by two connected resources �1 and �2. Therefore, this parallel
computation is performed at resource-level instead of node-level. The same
local computations are performed as in the above sequential algorithm, except
that resources behave independantly, and this behaviour depends on the type
of resource (link or activator).

The corresponding algorithm is as follows:

Initialization:

For each input node n in Ni, cn values
(
x

(i)
n

)
i=1..cn

are given

(FPNN inputs), and the corresponding requests

req[(n), (n, s), x(i)
n] are created for all s in Succ(n) such that

Sn(s) = 1.

Each node n in N − Ni has got a local counter cn and a local
variable xn, initially set as cn = 0 and xn = θn.

Parallel processing:

All resources work concurrently. Each one of them sequentially handles
all requests it receives. Resource �2 chooses a request req[�1, �2, x]
among the unprocessed requests that have already been received (with a
fair choice policy). This request is processed by �2 as follows:

1 an acknowledgement is sent to �1

2 if �2 is activator (n)

FPNAs, FPNNs 81

cn and xn are updated: cn = cn + 1, xn = in(xn, x)
if cn = an (the local activator computes its output)

– for all s in Succ(n) such that Sn(s) = 1,
create req[(n), (n, s), fn(xn)]

– wait for all acknowledgements
– reset : cn = 0 xn = θn

else (resource �2 is link (p, n))

compute x′ = Wn(p)x + Tn(p)
for all s ∈ Succ(n) such that Rn(p, s) = 1,
create req[(p, n), (n, s), x′]
if rn(p) = 1 then create req[(p, n), (n, n), x′]
wait for all acknowledgements

A general implementation architecture has been directly derived from this
parallel computation (see section 4.5).

3.3.4.1 Example. The following example is a detailed description of
a whole parallel computation process. It illustrates how requests are handled
at a resource-level that is purely local and that does not require any global
scheduling. Most of all it shows that the FPNN computation paradigm permits
a given set of neural resources to behave as a standard neural network with a
very different architecture (here a multilayer perceptron).

Let Ψ be the FPNA defined by:

N = (nx, ny, n1, n2, n3, n4)

E = {(nx, n1), (ny, n4), (n1, n2), (n2, n1), (n1, n4), (n4, n1), (n4, n3)

, (n3, n4), (n2, n3)}
in1 = in2 = in3 = in4 = ((x, x′) �→ x + x′)

fn1 = fn2 = fn3 = fn4 = (x �→ tanh(x))

Figure 3.2 shows the activators, the links and the configured local connec-
tions of a Ψ-derived FPNN ψ. The binary parameters of ψ are equal to 0,
except:

for input nodes nx and ny: Snx(n1), Sny(n2),

for node n1: rn1(nx), rn1(n4), Sn1(n4), Rn1(nx, n2), Rn1(n2, n4),
Rn1(n4, n2),

for node n2: rn2(n1), Sn2(n1), Rn2(n1, n3),

82 FPNA: Concepts and properties

Figure 3.2. FPNN ψ (resources and local connections)

for node n3: rn3(n2), rn3(n4), Sn3(n4),

for node n4: rn4(n1), rn4(n3), Rn4(ny, n1), Rn4(ny, n3).

Moreover: a1 = 2, a2 = 2, a3 = 3, a4 = 3, and cnx = cny = 1.
The asynchronous parallel computation method may apply to ψ in differ-

ent ways that depend on the scheduling policy of each neural resource. Figure
3.3 sketches the nine steps of a possible parallel computation. Processing re-
sources are grey filled. Processed requests are easily identified thanks to the
configured connection (dark grey thick arrows) between their sender and their
receiver. The number of created requests becomes apparent with the corre-
sponding configured connections (light grey thick arrows). The main aspects
of this parallel processing are:

Initialization: FPNN inputs are assigned to input nodes: x
(1)
nx = x, x

(1)
ny = y.

The initial set of requests is
{req[(nx), (nx, n1), x], req[(ny), (ny, n4), y]}.

Moreover ∀ i ∈ {1, 2, 3, 4} cni = 0 and xni = θi.

Parallel processing progress:

1 Resources (nx, n1) and (ny, n4) may work concurrently, so that
both initial requests are simultaneously processed:

Request req[(nx), (nx, n1), x] is processed: an acknowledge-
ment is sent to (nx), request

req[(nx, n1), (n1, n2), α(nx,n1)(x)]
is created since Rn1(nx, n2) = 1, and α(nx,n1)(x) is also sent
to activator (n1) since rn1(nx) = 1, i.e.

FPNAs, FPNNs 83

resource that processes a request

connection from the sender of the processed request

connection(s) towards the resources to which data are sent (created requests)

Figure 3.3. A parallel computation of FPNN ψ

req[(nx, n1), (n1), α(nx,n1)(x)] is created.
Request req[(ny), (ny, n4), y] is processed: an acknowledge-
ment is sent to (ny), requests

req[(ny, n4), (n4, n1), α(ny ,n4)(y)]
and req[(ny, n4), (n4, n3), α(ny ,n4)(y)]

are created since Rn4(ny, n1) = Rn4(ny, n3) = 1.

2 Resources (n1), (n1, n2), (n4, n1) and (n4, n3) work concurrently
to process all available requests. Links proceed as above. Activator
(n1) processes req[(nx, n1), (n1), α(nx,n1)(x)] as follows:

An acknowledgement is sent to (nx, n1). Local updates are:
cn1 = 1, xn1 = θ1 + α(nx,n1)(x). No request is created, since
cn1 < an1 .

3 Resources (n1), (n2), (n2, n3) and (n3) work concurrently. Link
(n2, n3) and activators (n2) and (n3) proceed as above, whereas:

84 FPNA: Concepts and properties

req[(n4, n1), (n1), α(n4,n1)(α(ny ,n4)(y))] is processed: an ac-
knowledgement is sent to (n4, n1). Local updates are: cn1 =
2, xn1 = θ1 + α(nx,n1)(x) + α(n4,n1)(α(ny ,n4)(y)). Now
cn1 = an1 , so that req[(n1), (n1, n4), tanh(xn1)] is created
since Sn1(n4) = 1. Then cn1 = 0 and xn1 = θ1.

req[(n4, n1), (n1, n2), α(n4,n1)(α(ny ,n4)(y))] is another available
request, but resource (n1, n2) still waits for the acknowledgement
of the two requests that it created at step 2.

4 Resource (n1, n2) is now able to process its waiting request. Re-
sources (n1, n4) and (n3) also work concurrently.

. . .

8. Activator (n4) chooses a request among the two ones it has re-
ceived.

9. Activator (n4) processes the last request, so that cn4 = an4 . There-
fore (n4) computes its output, but no request is created, since all
Sn4(.) binary values are ’0’. This output is

tanh
(
θ4 + α(n1,n4)(tanh(θ1 + α(nx,n1)(x) + α(n4,n1)(α(ny ,n4)(y))))

+ α(n1,n4)(α(n2,n1)(tanh(θ2 + α(n1,n2)(α(nx,n1)(x))
+ α(n1,n2)(α(n4,n1)(α(ny ,n4)(y))))))

+ α(n3,n4)(tanh(θ3 + α(n2,n3)(α(n1,n2)(α(nx,n1)(x)))
+ α(n2,n3)(α(n1,n2)(α(n4,n1)(α(ny ,n4)(y))))

+ α(n4,n3)(α(ny ,n4)(y))))
)

The above result is exactly the same as with the MLP in Figure 3.4, provided
that:

all coefficients Tn(p) are equal to 0,

the compositions of link weights (virtual synaptic weights) are equal
to the weights of Figure 3.4, which implies for example that w2,2 =
Wn2(n1)Wn1(n4)Wn4(ny)

and w3,2 = (Wn3(n2)Wn2(n1)Wn1(n4) + Wn3(n4)) Wn4(ny).

As mentioned above, this example shows that the FPNA computation par-
adigm permits a given set of neural resources to behave as a standard neural
network with a very different architecture. Nevertheless, this FPNN is not use-
ful: the architecture of Figure 3.2 does not simplify the MLP architecture of
Figure 3.4. Indeed, this MLP is so simple that it is neither possible nor nec-
essary to expect any architecture simplification. Some examples of significant
simplifications of larger neural networks are described in 4.3.

FPNAs, FPNNs 85

Figure 3.4. A multilayer perceptron

3.3.5 Implementation issues: FPNA answer

As explained in §3.2.4, the FPNA paradigm is a hardware-adapted frame-
work of neural computation, instead of an implementation method that either
handles simplified neural computations or uses shrewd ways to counterbalance
some of the problems mentioned in §3.2.3.

In many cases, designing an FPNA consists in choosing a standard neural
architecture that fits the application, then in determining an FPNA that both
fits the implementation device and can be configured2 so as to be function-
ally equivalent 3 to the chosen neural network. Therefore, the implementation
problems are not solved by some limits put on either neural architectures or
neural computations: the original FPNA computing scheme creates a bridge
between complex neural networks and available hardware devices. Since this
bridge is based on a general computation paradigm, it may adapt to many im-
plementation choices (arithmetic, pipeline, etc). Finally, the obtained FPNA
is directly mapped onto the hardware device thanks to a completely modular
implementation: configurable predefined blocks are given for each neural re-
source, and they are assembled according to the hardware-friendly architecture
of the FPNA.

This approach answers to the various challenges of neural implementations
on FPGAs (or more generally on digital hardware) as follows:

3.3.5.1 2D topologies and fan-in. The FPNA computation scheme
counterbalances a simplified neural network topology by an increased local
complexity of the interactions between neural resources. This complexity may

2Section 4.3 shows that a good FPNA configuration is not searched blindly: an FPNA design and configu-
ration is built from several basic layouts of neural resources.
3The function type (regression) is equivalent. Then a learning algorithm is used to adapt the FPNA weights
to the application. See Chapter 4 for FPNA learning algorithms.

86 FPNA: Concepts and properties

be tuned so as to make the simplified topology fit the hardware: a compro-
mise must be found, since FPNA learning becomes more difficult when the
complexity of the local configured connections increases (see Chapter 4.

3.3.5.2 Area-greedy operators. FPNAs use the same operators as
standard neural networks, but a simplified topology is related to a reduced
number of such operators, so that area and interconnection problems are si-
multaneously solved.

3.3.5.3 Weight storage and time/area imbalance. The FPNA compu-
tation paradigm creates numerous virtual connections despite a reduced num-
ber of links. Therefore, topology simplifications mostly result in less links, i.e.
less weights and multipliers. Moreover each weight is simultaneously used in
different ways to create the virtual connections, so that FPNA computations
result in a reduced share of the overall computation time for the input-weight
multiplications.

3.4 Correctness

The aim of this section is to mention the various properties that have been
established about FPNN computations so as to justify their correctness.

3.4.1 Feedforward FPNNs

A FPNN is feedforward if the local configured connections between re-
sources do not infer any cyclical dependency. Therefore an FPNN may be
feedforward even if its underlying FPNA uses a cyclical graph. Two formal de-
finitions express this. The fisrt one defines the dependency graph of an FPNN:
the nodes are the neural resources (links and activators) and the edges corre-
spond to the configured local connections.

Definition 1 Let φ =
{N , E , (θn, in, fn, Wn, Tn, an, Rn, rn, Sn)n∈N

}
be

an FPNN. Its dependency graph GD(φ) = (N ′, E ′) is defined by:

N ′ = E ∪ {(n) | n ∈ N}
E ′ = {((p, n), (n, s)) | Rn(p, s) = 1} ∪ {((p, n), (n)) | rn(p) = 1}

∪ {((n), (n, s)) | Sn(s) = 1}
Indeed, the computation scheme of an FPNN follows the oriented edges of

its dependency graph. Therefore:

Definition 2 Let φ be an FPNN. It is feedforward iff GD(φ) does not in-
clude any cycle.

Correctness 87

3.4.1.1 Correctness of the asynchronous sequential computation.
The above computation algorithms (sequential and parallel) appear as quite
difefrent, and they are based on local processings. The first question is whether
they define a global behaviour for the whole FPNN. This correctness problem
may be expressed as follows: do the asynchronous sequential and parallel com-
putations halt ?

A first simple result answers this question as far as the asynchronous se-
quential computation is concerned:

Theorem 3.1 If φ is a feedforward FPNN, then its asynchronous sequential
computation halts.

The proof is straightforward, since the task generation process is locally finite,
and follows the oriented edges of GD(φ). See [21] for more details.

3.4.1.2 Deadlock in the asynchronous parallel computation. The
case of the asynchronous parallel computation is a bit more complicated. It
is linked with, but not equivalent to, the notion of deadlock. Though this no-
tion is rather standard when studying distributed communication protocols, it
must be first defined for the above parallel algorithm. The following definition
describes a deadlock situation as a “cycle” of waiting requests.

Definition 3 A FPNN is said to be in deadlock conditions during its asyn-
chronous parallel computation if there exist resources �0, . . . , �p such that
each �i is processing a request, and if this processing may not halt un-
less �i+1 terminates the request processing it is performing (considering that
�p+1 = �0).

Then a rather simple result ensures that the asynchronous parallel computa-
tion applies to feedforward FPNNs without deadlock.

Theorem 3.2 If φ is a feedforward FPNN, then it may not be in deadlock
conditions during its asynchronous parallel computation.

The proof is easy. It is based on an equivalence between deadlock condi-
tions and the existence of a cycle in a subgraph of GD(φ) (graph inferred by
simultaneously processed requests). See [21] for more details.

3.4.1.3 Conditions of parallel non-termination. The main result is
the relation between deadlock conditions and non-termination. It ensures that
deadlock is the only possible cause of non-termination.

Theorem 3.3 If φ is an FPNN whose asynchronous sequential computation
halts, then its asynchronous parallel computation does not halt if and only if it
is in deadlock conditions.

88 FPNA: Concepts and properties

sufficient condition: obvious (see definition 3)
necessary condition (proof outline, see [21] for full details):
1. The set of requests may be partially ordered.
2. The number of requests is finite (there exists an injection towards the set

of sequential tasks).
3. There is a request whose processing does not halt.
4. A deadlock cycle may be built in the set of direct and indirect successors

of a non-terminating request.

A straightforward consequence is that both asynchronous sequential and
parallel computations of a feedforward FPNN halt. Moreover the study of [21]
shows how simple conditions ensure that all defined computation methods are
equivalent and deterministic (see Chapter 4).

3.4.2 Recurrent FPNNs: synchronized computations

The above computation schemes can not satisfactorily handle recurrent
FPNNs. Nevertheles only slight changes are required. In a synchronized FPNN
computation, synchronisation barriers are used in order to separate the strict
sending of neural output values from the simple direct value transmissions be-
tween connected links. It provides a correct recurrent computation, provided
that there is no loop in the direct connections between the links.

At a given moment, the requests are processed as above, except for any
value sent by an activator. Such a request is put in a waiting list, without being
processed. When a new synchronization barrier is raised, all waiting requests
are set active, so that their processing may start.

Similar correctness results are available (Theorem 3.2 may be extended to
recurrent FPNNs under some obvious conditions).

3.5 Underparameterized convolutions by FPNNs

The aim of this section is to study the computational power of FPNNs.
As shown in [21], it is always possible to define an FPNN that exactly com-

putes the same function as any standard neural network. But this FPNN may be
as complex as the desired neural network. Therefore, it should be known which
functions may be computed by hardware-friendly FPNNs. This question leads
to the idea of underparameterized convolutions.

This section is organized as follows:

§3.5.1 is a necessary reminder of some links between neural computation
and convolution,

§3.5.2 briefly explains how FPNN computation leads to underparame-
terized convolutions,

Underparameterized convolutions by FPNNs 89

§3.5.3 gives two opposite examples to show that this underparameteri-
zation may be fully overcome in some cases, whereas it is a strict theo-
retical limit in some other cases; the special case of grid-based layered
FPNNs is studied, since underparameterization may be put in equations
in this case,

§3.5.4 briefly explains that the influence of underparameterization on
FPNN practical utility deserves an experimental study (that is provided
in sections §4.3 and §4.4),

§3.5.5 describes how the above study of the underparameterization con-
volution that is performed by FPNNs leads to a theoretically justified
method for FPNN weight initialization.

3.5.1 Partial convolutions by neural networks

Feedforward neural models are often justified by their approximation capa-
bilities as non-linear regression tools, since [16, 36, 35]. This regression is per-
formed by means of discrete frequential convolutions based on neuron transfer
functions. Such convolutions clearly appear in several works that study mod-
els with localized neural functions: for example [52] for RBF networks (radial
basis function), or [71] for wavelet networks (which directly derive from the
reversibility of convolution with wavelets). Convolution is more hidden for the
most standard feedforward neural model, called multilayer perceptrons (MLP).
Each neuron in a layer of a MLP applies a sigmoidal transfer function σ to a
weighted sum of the outputs of all neurons in the previous layer:

In [16], the universal approximation property is built with two main ar-
guments:

1 Let Ψ(x) = σ
(

x
δ + α

)− σ
(

x
δ − α

)
, where (δ, α) ∈ IR2. A func-

tion f may be approximated by the reverse transform of a discrete
frequential convolution function, in which a vectorial form of Ψ
convolutes Fourier transform f̃ . This convolution function must be
estimated at several convolution points, so as to build the reverse
transform. And each estimation uses multiple convolution terms
that are computed at each point of a fine-grain covering of a com-
pact frequency domain.

2 The hidden weights give a set of points that cover this frequency
domain, whereas the output weights are set by means of the values
of f̃ at each of these points.

The second argument directly derives from the multilayer architecture
and its ability to map a fine n-dimensional mesh onto the frequency do-

90 FPNA: Concepts and properties

main. It explains why the work lies in the proof that a reversible trans-
form may be built on a sigmoidal function.

The convolution is still more hidden in [36], which is often taken as the
basic reference for MLP universal approximation. The property is a con-
sequence of the Stone-Weierstrass Theorem (sigmoid properties make it
possible to go without some of its hypotheses). Yet it may be noted that
this standard theorem refers to a covering by low-diameter balls. And the
strong hypotheses of Stone-Weierstrass Theorem are bypassed thanks to
the approximation of trigonometric polynomials by sigmoids. Therefore
discrete frequential convolutions re-emerge.

To simplify, an expected function in a space domain is obtained thanks to
a reverse transform of its frequential form. Neuron transfer functions create a
base of localized functions in a compact frequency domain. Convolutions are
performed to get the projection. Let 	w and 	t be the multiplying parameters and
the additive parameters of a hidden neuron (in a MLP, 	w is the weight vector,
whereas 	t is reduced to the threshold). Then 	w may be seen as a frequency
vector involved in one discrete frequential convolution, whereas 	t expresses
the corresponding convolution point (indirectly, since the convoluting function
depends on the neural network input vector). The output weight that applies to
this neuron depends on both 	t and the frequential value of f at 	w.

Concrete neural applications only require a limited precision approximation,
so that only few convolution terms are used (several ones instead of vd for each
convolution point, where d is the input space dimension and v is inversely
proportional to the expected precision).

3.5.2 Underparameterized partial convolutions

FPNNs are also defined to compute such partial convolutions for non- lin-
ear regression, though their architecture is simplified with respect to standard
neural models. The FPNN definition permits to connect any link to any local
resource. Locality permits simplified topologies, whereas connected links re-
sult in more various frequency vectors: direct connections between affine links
appear, so that the FPNN may compute numerous composite affine transforms
(virtual neural connections). Therefore different convolution terms may be ob-
tained with a reduced number of connection weights (underparameterization).

Though various, the weights of the virtual connections are not independent
of each other. The complex induced dependencies are studied in [21]. They
imply that the computational power of an FPNN with k neural resources and
K virtual connections is lying between the computational power of a standard
neural network with k neural operators and the computational power of a stan-
dard neural network with k + K neural operators. Next subsection illustrates
this intermediate situation through two opposite results: a first example shows

Underparameterized convolutions by FPNNs 91

that there are FPNNs for which the computational power takes advantage of
all virtual connections, whereas Theorem 3.4 shows that there are FPNNs that
are strictly less powerful than the corresponding standard neural model with
k + K operators.

3.5.3 Underparameterized exact computing

3.5.3.1 Towards hardware-targetted simplified topologies: example.
FPNNs make it possible to obtain complex neural network behaviours with
simple 2D topologies. Such FPNNs have been studied for the standard parity
problem (see Chapter 4): the d-dimensional parity problem consists in classi-
fying vectors of {0, 1}d as odd or even, according to the number of non zero
values among the d coordinates.

This problem may be solved by d-input multilayer perceptron (MLP) or
shortcut perceptron. The search for optimal two-hidden layer shortcut per-
ceptrons in [65] has solved the d-dimensional parity problem with only√

d(2 + o(1)) neurons4. This neural network uses d(
√

d + 1 + o(1)) weights.
For all d, an FPNN with the same number of neurons (activators), but only
15
2

√
d + o(

√
d) weights exactly performs the same computation (see Chapter

4).

3.5.3.2 Grid-based layered FPNNs : weight dependencies. A FPNA
graph may use full-duplex links with a grid topology. Let λn be the index of
the row of node n. A layered FPNN derived from such an FPNA is an FPNN
where:

rn(p) = 1 iff λp ≤ λn

Rn(p, s) = 1 iff λp ≤ λn and λn = λs

Sn(s) = 1 iff λn < λs

Figure 3.5 shows the local structure of such a grid-based layered FPNN.
The virtual connections of a layered FPNN are such that consecutive rows

are virtually fully connected as in a multilayer perceptron. But there are strong
dependencies between the weights of different virtual connections.

Property 1 Let n1, . . . , nd be the nodes of a single row. Let pi be the pre-
decessor of ni in the previous row (λpi = λni − 1). Let yni (resp. ypi) be the
output computed by the neuron of node ni (resp. pi).

4For some functions f and g, f = o(g) means that f(x)
g(x)

x → +∞−→ 0

92 FPNA: Concepts and properties

Figure 3.5. Node of a grid-based layered FPNN

Computing virtual connection weights shows that if 1 ≤ i < j < k ≤ d
then:

∂yni

∂ypk

=
Wnk

(pk)
Wnj (pj)

k−1∏
k=j

Wnk
(nk+1)

(
∂yni

∂ypj

)
Therefore, if all the FPNN weights are fixed, then for all i, 1 ≤ i < d and
for all real values yp1 , . . . , ypi , the function (ypi+1 , . . . , ypd

) �→ (yn1 , . . . , yni)
defines an arc from IRd−i into IRi.

This result is an example of the strong dependencies that may exist between
the different points where an FPNN virtually estimates the terms of a partial
convolution (each yni is a convolution term computed at (yp1 , . . . , ypd

)). Sec-
tion 4.3 shows in what way these dependencies influence FPNNs, and how
this unfavourable result has led to the definition of a specific way to set FPNN
weights.

3.5.3.3 Shortcut FPNNs. Standard neural models may be used as FP-
NAs (so that each neuron and its input and output connections become freely
connectable). And any standard neural network can be exactly simulated by
an FPNN based on the FPNA form of this neural network. For example, one
can use the multilayer topology of a one hidden-layer MLP to build an FPNA,
and then set a derived FPNN that computes the same function as the original
MLP. To obtain this, there must be no direct configured connection between
two different links, that is Rn(p, s) = 0. If some Rn(p, s) values are set to 1,
virtual shortcut connections are obtained between the input and output neural
layers. Such FPNNs may then be called one-hidden layer shortcut FPNNs.
Examples can be given in which these FPNNs can solve specific tasks that no
one-hidden layer MLP can solve with the same number of neurons. No con-
clusive result has been obtained when comparing a one-hidden layer shortcut

Underparameterized convolutions by FPNNs 93

FPNN with a one-hidden layer MLP having more hidden neurons. The only
general result addresses the issue of the respective computational powers of
such FPNNs and of real one- hidden layer shortcut perceptrons (MLP plus
shortcut connections).

Exact learning of a set of Np patterns in general position in IRdi is studied
in [12] for standard one-hidden layer MLPs. An intermediate theorem of this
study can be first extended to one-hidden layer shortcut perceptrons:

Property 2 Let F be a vectorial function which maps neural network
weights onto the values computed by the do output neurons when all input
patterns are presented.

Let Nh =
do(Np − di)

di + do
. If there are Nh hidden neurons in a one-hidden

layer shortcut perceptron, then there is a vector of neural weights at which F
is a local diffeomorphism.

This property can not be reached by any one-hidden layer shortcut FPNN with
the same hidden layer size:

Theorem 3.4 Let the above function F be computed by a one-hidden layer
shortcut FPNN, with Nh hidden nodes. Sard’s Theorem proves that F can not
be locally surjective, since its input space dimension (number of weights) is
lower than its output space dimension Npdo.

In an FPNN, the weights of the virtual shortcut connections depend on the
weights between its consecutive layers. This underparameterization phenom-
enon results in a computation power weaker than the one of the simulated
shortcut perceptron. This unfavourable result is softened by the weak influ-
ence of exact learning capabilities in concrete neural applications.

3.5.4 Underparameterized approximate computing

Usual neural network applications only use approximation capabilities.
Therefore, the most useful question is whether hardware-friendly FPNNs are
able to approximately compute the same function as standard neural networks
that are too large for direct hardware implementation. This problem is studied
in [21] through the determination of hardware-friendly FPNNs such that their
virtual connections are the connections of standard neural networks used in
several applications. The parameters of these FPNNs are then learned so as to
achieve the application task, and the results are compared to the ones of the
initial standard neural networks.

Standard neural benchmarks have been tested with different FPNNs. These
experiments attest that FPNNs may learn classifications as well as standard
models (gradient descent learning algorithm), although they use an almost 2D

94 FPNA: Concepts and properties

underlying topology and 4 to 10 times less resources than the equivalent stan-
dard neural networks.

Chapter 4 will describe such experiments (for example based on the diabetes
classification problem). It will also show how the hardware-friendly architec-
ture of the obtained FPNNs leads to efficient FPGA-based implementations
that the equivalent standard neural models do not permit.

3.5.5 Weight initialization

As mentioned in §3.5.1, too many weights and neurons would be necessary
for a neural network to perform full discrete convolutions. Choosing a good
scattering of weight vectors seems quite natural, when approximation must be
performed with a limited number of neurons. But such a good scattering is a
basic property of the independent weights of standard neural models. There-
fore evolved weight initialization methods focus on the adequacy of neural
network parameters and input patterns (usual solutions listed in [5]). Additive
parameters are essential in such methods (biases, translation vectors, . . . etc),
particularly when localized transfer functions are used (these parameters are
scattered in a convex hull defined by expected inputs). FPNA constraints do
not concern additive parameters, but only multiplying ones.

FPNN virtual weights can not be individually set. Weight dependencies
described in §3.5.3 might lead to bad classification applications. To obtain
low precision approximations, FPNN should first be able to approximate the
low-band components of expected functions5. Convolution terms reduce to a
satisfactory covering of a reduced frequency domain. This approach does not
depend on the input patterns. It simultaneously considers all weight vectors,
so that it better adapts to FPNNs.

This subsection shows how weight vector scattering can be controlled, and
what influence it has on concrete applications. The first question is to know
whether FPNNs are able to obtain well scattered virtual convolution terms.

3.5.5.1 Convolution point scattering for FPNNs. In order to estimate
the scattering of the convolution terms that correspond to the virtual connec-
tions of an FPNN, the frequency domain is partitioned into as many distinct
zones as there are convolution terms, with a Voronoi partition based on the
euclidean distance. Scattering may be measured by the maximum zone diam-
eter (other criteria have been studied with similar conclusions).

The special case of a grid-based layered FPNN (see §3.5.3) is studied with
this criterion. It corresponds to d convolution points in a d-dimensional space.

5Low-frequency components in a frequential decomposition give the main frame of a signal.

Underparameterized convolutions by FPNNs 95

The ratio of the number of virtual connections to the number of links used by
such FPNNs is d

3
6.

An optimal scattering may be estimated as the expected mean value of the
chosen criterion when using a random drawing of d points uniformly distrib-
uted in the frequency domain: it corresponds to the independent weights of a
standard neural network. A similar random drawing of FPNN weights leads
to a bad scattering. As mentioned in §3.5.3, virtual weight dependencies in
FPNNs are mostly linked to multiplications of Wn(p) parameters. A random
variable w is computed so that its distribution function is as stable as possible
when multiplication is applied. Let v1 and v2 be two uniformly distributed
random variables. Then w is defined as

h

(
1
2

+
1
5

√
−2 ln(v1) cos(2πv2)

)
where h(x) = x+1

2−x . The probability density of w is

ρ(x)dx =
∫ x+dx

x

[
N (

1
2
,
1
5
)
]

(h−1(u))[h−1]′(u)du

	 15
(1 + x)2

√
2π

e
− 1

2

(
15(x−1)
2(x+1)

)2

dx

so that

The fulfilled relation xρ(x) = 1
xρ(1

x) implies that the expected mean
value of w keeps unchanged by random variable multiplication.

The use of the normal random variable ensures that the standard devia-
tion of a product of w variables keeps reduced.

The FPNN weights are then set with a random drawing of w, to which an affine
transform is applied to fit the desired range. Figure 3.6 shows the ratio of the
criterion mean value in the optimal case to the mean value that is observed for
FPNN virtual convolutions.

3.5.5.2 Scattering and learning. The above w-based method has been
used for random initialization of FPNN weights. It mostly improve conver-
gence times, as illustrated in §4.3.1.

On the other hand, one can wonder whether the learning process increases
virtual weight dependencies or not: the gradient computation in an FPNN de-
pends on a much larger equivalent neural structure that widely uses weight

6d2 connections between two fully connected layers of d neurons, about 3d links in a grid-based layered
FPNA architecture.

96 FPNA: Concepts and properties

Figure 3.6. Convolution point scattering of grid-based layered FPNNs

sharing, so that the dependencies between the partial differentials appear even
stronger (dependencies are back-propagated through the layers). And yet
§4.3.1 shows how scattering improves during learning. This improvement is
even greater with a w-based initialization method.

3.6 Conclusions

Connectionist models, such as neural networks, are the first models of paral-
lel computing. This approach of neural computation has been penalized by its
unfitness for the characteristics of usual parallel devices. Neural network hard-
ware implementations have to reconcile simple hardware topologies with often
complex neural architectures. Field Programmable Neural Arrays have been
defined for that. Their computation scheme creates numerous virtual neural
connections by means of a limited set of links, whatever the device, the arith-
metic, and the neural structure. The FPNA computation paradigm thus makes
it possible to define neural models which performance is similar to standard
neural models despite simplified architectures.

The FPNA framework is a neural computation paradigm that has been de-
fined in order to fit direct digital hardware implementations. It has given rise
to a complete theoretical model for topologically constrained neural computa-
tion. In this Chapter, FPNAs and FPNNs have been formally defined. Their
computation has been described and justified. Their main limitation has been
identified as an underparameterization of the frequency vectors that are used

97

in approximate convolutions. Possible unfavourable theoretical consequences
have been pointed out. They indicate that FPNA weights deserve a specific ap-
proach. Applications take advantage of adequate FPNA weight distributions,
especially in terms of convergence time. Such applications, as well as some of
their implementations, are presented in Chapter 4.

References

[1] D. Abramson, K. Smith, P. Logothetis, and D. Duke. FPGA based imple-
mentation of a hopfield neural network for solving constraint satisfaction
problems. In Proc. EuroMicro, 1998.

[2] D. Anguita, S. Bencetti, A. De Gloria, G. Parodi, D. Ricci, and S. Ridella.
FPGA implementation of high precision feedforward networks. In Proc.
MicroNeuro, pages 240–243, 1997.

[3] N. Avellana, A. Strey, R. Holgado, A. Fern„andez, R. Capillas, and
E. Valderrama. Design of a low-cost and high-speed neurocomputer sys-
tem. In Proc. MicroNeuro, pages 221–226, 1996.

[4] S.L. Bade and B.L. Hutchings. FPGA-based stochastic neural networks
- implementation. In Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, pages 189–198, 1994.

[5] R. Baron and B. Girau. Parameterized normalization : application to
wavelet networks. In Proc. IJCNN, volume 2, pages 1433–1437. IEEE,
1998.

[6] J.-L. Beuchat. Conception d’un neuroprocesseur reconfigurable pro-
posant des algorithmes d’apprentissage et d’«elagage: une premi„ere «etude.
In Proc. NSI Neurosciences et Sciences de l’Ing«enieur, 1998.

[7] Y. Boniface. A parallel simulator to build distributed neural algorithms.
In International Joint Conference on Neural Networks - IJCNN’01, Wash-
ington, USA, 2001.

[8] N.M. Botros and M. Abdul-Aziz. Hardware implementation of an artifi-
cial neural network. In Proc. ICNN, volume 3, pages 1252–1257, 1993.

[9] Y.K. Choi, K.H. Ahn, and S.-Y. Lee. Effects of multiplier output offsets
on on-chip learning for analog neuro-chips. Neural Processing Letters,
4:1–8, 1996.

[10] V.F. Cimpu. Hardware FPGA implementation of a neural network. In
Proc. Int. Conf. Technical Informatics, volume 2, pages 57–68, 1996.

[11] J.G. Eldredge and B.L. Hutchings. RRANN: a hardware implementation
of the backpropagation algorithm using reconfigurable FPGAs. In Pro-
ceedings of the IEEE World Conference on Computational Intelligence,
1994.

References

98 FPNA: Concepts and properties

[12] A. Elisseeff and H. Paugam-Moisy. Size of multilayer networks for exact
learning: analytic approach. Technical Report 96-16, LIP-ENSL, 1996.

[13] W. Eppler, T. Fisher, H. Gemmeke, T. Becher, and G. Kock. High speed
neural network chip on PCI-board. In Proc. MicroNeuro, pages 9–17,
1997.

[14] S.K. Foo, P. Saratchandran, and N. Sundararajan. Parallel implemen-
tation of backpropagation neural networks on a heterogeneous array of
transputers. IEEE Trans. on Systems, Man, and Cybernetics–Part B: Cy-
bernetics, 27(1):118–126, 1997.

[15] D. Franco and L. Carro. FPGA architecture comparison for non-
conventional signal processing. In Proc. IJCNN, 2000.

[16] K.-I. Funahashi. On the approximate realization of continuous mappings
by neural networks. Neural Networks, 2:183–192, 1989.

[17] R. Gadea, J. Cerda, F. Ballester, and A. Mocholi. Artificial neural net-
work implementation on a single FPGA of a pipelined on-line backprop-
agation. In Proc. ISSS, pages 225–230, 2000.

[18] C. G«egout, B. Girau, and F. Rossi. A general feedforward neural network
model. Technical report NC-TR-95-041, NeuroCOLT, Royal Holloway,
University of London, 1995.

[19] C. G«egout, B. Girau, and F. Rossi. Generic back-propagation in arbi-
trary feedforward neural networks. In Artificial Neural Nets and Genetic
Algorithms – Proc. of ICANNGA, pages 168–171. Springer-Verlag, 1995.

[20] B. Girau. Dependencies of composite connections in Field Programmable
Neural Arrays. Research report NC-TR-99-047, NeuroCOLT, Royal Hol-
loway, University of London, 1999.

[21] B. Girau. Du parall«elisme des mod„eles connexionnistes „a leur implanta-
tion parall„ele. PhD thesis n◦ 99ENSL0116, ENS Lyon, 1999.

[22] B. Girau. Building a 2D-compatible multilayer neural network. In Proc.
IJCNN. IEEE, 2000.

[23] B. Girau. Conciliating connectionism and parallel digital hardware. Par-
allel and Distributed Computing Practices, special issue on Unconven-
tional parallel architectures, 3(2):291–307, 2000.

[24] B. Girau. Digital hardware implementation of 2D compatible neural net-
works. In Proc. IJCNN. IEEE, 2000.

[25] B. Girau. FPNA: interaction between FPGA and neural computation. Int.
Journal on Neural Systems, 10(3):243–259, 2000.

[26] B. Girau. Neural networks on FPGAs: a survey. In Proc. Neural Compu-
tation, 2000.

99

[27] B. Girau. Simplified neural architectures for symmetric boolean func-
tions. In Proc. ESANN European Symposium on Artificial Neural Net-
works, pages 383–388, 2000.

[28] B. Girau. On-chip learning of FPGA-inspired neural nets. In Proc.
IJCNN. IEEE, 2001.

[29] B. Girau and A. Tisserand. MLP computing and learning on FPGA using
on-line arithmetic. Int. Journal on System Research and Information Sci-
ence, special issue on Parallel and Distributed Systems for Neural Com-
puting, 9(2-4), 2000.

[30] C. Grassmann and J.K. Anlauf. Fast digital simulation of spiking neural
networks and neuromorphic integration with spikelab. International
Journal of Neural Systems, 9(5):473–478, 1999.

[31] M. Gschwind, V. Salapura, and O. Maisch berger. A generic building
block for Hopfield neural networks with on-chip learning. In Proc. IS-
CAS, 1996.

[32] H. Hikawa. Frequency-based multilayer neural network with on-chip
learning and enhanced neuron characteristics. IEEE Trans. on Neural
Networks, 10(3):545–553, 1999.

[33] R. Hoffmann, H.F. Restrepo, A. Perez-Uribe, C. Teuscher, and
E. Sanchez. Implémentation d’un réseau de neurones sur un réseau de
fpga. In Proc. Sympa’6, 2000.

[34] P.W. Hollis, J.S. Harper, and J.J. Paulos. The effects of precision con-
straints in a backpropagation learning algorithm. Neural Computation,
2:363–373, 1990.

[35] K. Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural Networks, 4:251–257, 1991.

[36] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2:359–366, 1989.

[37] N. Izeboudjen, A. Farah, S. Titri, and H. Boumeridja. Digital implemen-
tation of artificial neural networks: From VHDL description to FPGA
implementation. In Proc. IWANN, 1999.

[38] A. Johannet, L. Personnaz, G. Dreyfus, J.D. Gascuel, and M. Weinfeld.
Specification and implementation of a digital Hopfield-type associative
memory with on-chip training. IEEE Trans. on Neural Networks, 3, 1992.

[39] J. Kennedy and J. Austin. A parallel architecture for binary neural net-
works. In Proc. MicroNeuro, pages 225–231, 1997.

[40] K. Kollmann, K. Riemschneider, and H.C. Zeidler. On-chip backpropa-
gation training using parallel stochastic bit streams. In Proc. MicroNeuro,
pages 149–156, 1996.

References

100 FPNA: Concepts and properties

[41] A. Kramer. Array-based analog computation: principles, advantages and
limitations. In Proc. MicroNeuro, pages 68–79, 1996.

[42] V. Kumar, S. Shekhar, and M.B. Amin. A scalable parallel formulation of
the back-propagation algorithm for hypercubes and related architectures.
IEEE Transactions on Parallel and Distributed Systems, 5(10):1073–
1090, October 1994.

[43] P. Lysaght, J. Stockwood, J. Law, and D. Girma. Artificial neural network
implementation on a fine-grained FPGA. In Proc. FPL, pages 421–432,
1994.

[44] Y. Maeda and T. Tada. FPGA implementation of a pulse density neural
network using simultaneous perturbation. In Proc. IJCNN, 2000.

[45] S. McLoone and G.W. Irwin. Fast parallel off-line training of multilayer
perceptrons. IEEE Trans. on Neural Networks, 8(3):646–653, 1997.

[46] I. Milosavlevich, B. Flower, and M. Jabri. PANNE: a parallel computing
engine for connectionist simulation. In Proc. MicroNeuro, pages 363–
368, 1996.

[47] P.D. Moerland and E. Fiesler. Hardware-friendly learning algorithms for
neural networks: an overview. In Proc. MicroNeuro, 1996.

[48] A. Montalvo, R. Gyurcsik, and J. Paulos. Towards a general-purpose ana-
log VLSI neural network with on-chip learning. IEEE Trans. on Neural
Networks, 8(2):413–423, 1997.

[49] U.A. M-uller, A. Gunzinger, and W. Guggenb-uhl. Fast neural net sim-
ulation with a DSP processor array. IEEE Trans. on Neural Networks,
6(1):203–213, 1995.

[50] T. Nordstr-om and B. Svensson. Using and designing massively parallel
computers for artificial neural networks. Journal of Parallel and Distrib-
uted Computing, 14(3):260–285, 1992.

[51] R. -Ostermark. A flexible multicomputer algorithm for artificial neural
networks. Neural Networks, 9(1):169–178, 1996.

[52] J. Park and I.W. Sandberg. Universal approximation using radial-basis-
function networks. Neural Computation, 3:246–257, 1991.

[53] H. Paugam-Moisy. Optimal speedup conditions for a parallel back-
propagation algorithm. In CONPAR, pages 719–724, 1992.

[54] A. P«erez-Uribe and E. Sanchez. FPGA implementation of an adaptable-
size neural network. In Proc. ICANN. Springer-Verlag, 1996.

[55] A. P«etrowski. Choosing among several parallel implementations of the
backpropagation algorithm. In Proc. ICNN, pages 1981–1986, 1994.

[56] M. Rossmann, A. B-uhlmeier, G. Manteuffel, and K. Goser. short- and
long-term dynamics in a stochastic pulse stream neuron implemented in
FPGA. In Proc. ICANN, LNCS, 1997.

101

[57] M. Rossmann, T. Jost, A. Goser, K. B-uhlmeier, and G. Manteuffel. Ex-
ponential hebbian on-line lerarning implemented in FPGAs. In Proc.
ICANN, 1996.

[58] S. Sakaue, T. Kohda, H. Yamamoto, S. Maruno, and Shimeki Y. Re-
duction of required precision bits for back-propagation applied to pattern
recognition. IEEE Trans. on Neural Networks, 4(2):270–275, 1993.

[59] V. Salapura. Neural networks using bit-stream arithmetic: a space effi-
cient implementation. In Proc. IEEE Int. Conf. on Circuits and Systems,
1994.

[60] V. Salapura, M. Gschwind, and O. Maisch berger. A fast FPGA imple-
mentation of a general purpose neuron. In Proc. FPL, 1994.

[61] K.M. Sammut and S.R. Jones. Arithmetic unit design for neural acceler-
ators: cost performance issues. IEEE Trans. on Computers, 44(10), 1995.

[62] M. Schaefer, T. Schoenauer, C. Wolff, G. Hartmann, H. Klar, and
U. Ruckert. Simulation of spiking neural networks - architectures and
implementations. Neurocomputing, (48):647–679, 2002.

[63] S. Shams and J.-L. Gaudiot. Parallel implementations of neural networks.
Int. J. on Artificial Intelligence, 2(4):557–581, 1993.

[64] S. Shams and J.-L. Gaudiot. Implementing regularly structured neural
networks on the DREAM machine. IEEE Trans. on Neural Networks,
6(2):407–421, 1995.

[65] K. Siu, V. Roychowdhury, and T. Kailath. Depth-size tradeoffs for neural
computation. IEEE Trans. on Computers, 40(12):1402–1412, 1991.

[66] T. Szabo, L. Antoni, G. Horvath, and B. Feher. A full-parallel digital
implementation for pre-trained NNs. In Proc. IJCNN, 2000.

[67] M. van Daalen, P. Jeavons, and J. Shawe-Taylor. A stochastic neural
architecture that exploits dynamically reconfigurable FPGAs. In Proc.
of IEEE Workshop on FPGAs for Custom Computing Machines, pages
202–211, 1993.

[68] M. Viredaz, C. Lehmann, F. Blayo, and P. Ienne. MANTRA: a multi-
model neural network computer. In VLSI for Neural Networks and Arti-
ficial Intelligence, pages 93–102. Plenum Press, 1994.

[69] J. Wawrzynek, K. Asanovi«c, and N. Morgan. The design of a neuro-
microprocessor. IEEE Trans. on Neural Networks, 4(3):394–399, 1993.

[70] Xilinx, editor. The Programmable Logic Data Book. Xilinx, 2002.
[71] Q. Zhang and A. Benveniste. Wavelet networks. IEEE Trans. on Neural

Networks, 3(6):889–898, Nov. 1992.
[72] X. Zhang, M. McKenna, J.J. Mesirov, and D.L. Waltz. The backpropaga-

tion algorithm on grid and hypercube architectures. Parallel Computing,
14:317–327, 1990.

References

Chapter 4

FPNA: APPLICATIONS AND
IMPLEMENTATIONS

Bernard Girau
LORIA INRIA-Lorraine
Nancy France

girau@loria.fr

Abstract Neural networks are usually considered as naturally parallel computing mod-
els. But the number of operators and the complex connection graph of standard
neural models can not be handled by digital hardware devices. The Field Pro-
grammable Neural Arrays framework introduced in Chapter 3 reconciles sim-
ple hardware topologies with complex neural architectures, thanks to some con-
figurable hardware principles applied to neural computation. This two-chapter
study gathers the different results that have been published about the FPNA con-
cept, as well as some unpublished ones. This second part shows how FPNAs
lead to powerful neural architectures that are easy to map onto digital hard-
ware: applications and implementations are described, focusing on a class of
synchronous FPNA-derived neural networks, for which on-chip learning is also
available.

Keywords: neural networks, fine-grain parallelism, digital hardware, FPGA

Introduction

The very fine-grain parallelism of neural networks uses many information
exchanges. Therefore it better fits hardware implementations. Configurable
hardware devices such as FPGAs (Field Programmable Gate Arrays) offer a
compromise between the hardware efficiency of digital ASICs and the flex-
ibility of a simple software-like handling. Yet the FPGA implementation of
standard neural models raises specific problems, mostly related to area-greedy
operators and complex topologies. Field Programmable Neural Arrays have
been defined in [13] such that they lead to complex neural processings based
on simplified interconnection graphs. They are based on an FPGA-like ap-
proach ([15]): a set of resources whose interactions are freely configurable.

103

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 103–136.
© 2006 Springer. Printed in the Netherlands.

104 FPNA: Applications and implementations

Several different neural networks may be configured from a given FPNA. They
are called Field Programmed Neural Networks (FPNN). FPNA resources are
defined to perform computations of standard neurons, but they behave in an
autonomous way. As a consequence, numerous virtual synaptic connections
may be created thanks to the application of a multicast data exchange protocol
to the resources of a sparse neural network. This new neural computation con-
cept makes it possible to replace a standard but topologically complex neural
architecture by a simplified one.

After a survey of parallel implementations of neural networks (particularly
on FPGAs), Chapter 3 has focused on the definitions, computations and theo-
retical properties of FPNNs. Reading §3.3.1, §3.3.2 and §3.3.4 is required to
handle FPNA/FPNN notations and to understand FPNN computation. Never-
theless, section 4.1 shortly recalls the main aspects of Chapter 3. This sec-
ond chapter now describes how FPNNs may be used and implemented. Then
it focuses on a class of FPNNs that result in simple implementations with
on-chip learning, as well as efficient pipelined implementations. Section 4.2
shows how FPNNs may exactly perform the same computation as much more
complex standard neural networks applied to boolean function computation,
whereas sections 4.3 and 4.4 illustrate how they may approximately perform
the same computation as much more complex standard neural networks applied
to more concrete applications (benchmark problems as well as real applica-
tions). Their general implementation method is described in section 4.5. Then
section 4.6 defines and studies the case of simplifiable FPNNs: both computa-
tion and learning of these synchronous FPNNs are described with a few equa-
tions. Their specific implementations (with on-chip learning or pipeline) are
outlined in section 4.7. All implementation performances are finally discussed
in section 4.8.

4.1 Summary of Chapter 3

Section 3.2 explains why FPGAs appear as a both flexible and rather ef-
ficient device for neural applications. Implementation issues should not be
neglected though. Defining hardware-adapted frameworks of neural computa-
tion directly provides neural networks that are easy to map onto such devices
without a significant loss of computational power. The FPNA concept is such a
hardware-adapted neural computation paradigm. It mainly leads to topological
simplifications of standard neural architectures.

A neural network may be seen as a graph of interconnected neural resources
(neurons and weighting links). In a standard model, the number of inputs
of each neuron is its fan-in in the connection graph. On the contrary, neural
resources (links and activators) become autonomous in an FPNA: their depen-
dencies are freely set.

Towards simplified architectures:symmetric boolean functions by FPNAs 105

Activators apply standard neural functions to a set of input values on one
hand, and links behave as independent affine operators on the other hand. The
FPNA concept permits to connect any link to any local resource (each node of
the FPNA graph corresponds to an activator with incoming and outgoing links).
Direct connections between affine links appear, so that the FPNA computes
numerous composite affine transforms. These compositions create numerous
virtual neural connections.

The activator of a node n performs any neuron computation by means of
a loop that updates a variable with respect to the neuron inputs (in denotes
the updating function), and a final computation (function fn) that maps this
variable to the neuron output. A link between two nodes p and n performs an
affine transform Wn(p)x + Tn(p).

An FPNA is only an unconfigured set of such resources. An FPNN is an
FPNA whose resources have been connected in a specific way. The main
configuration parameters are binary values: rn(p) = 1 to connect link (p, n)
and activator (n), Sn(s) = 1 to connect activator (n) and link (n, s), and
Rn(p, s) = 1 to connect links (p, n) and (n, s): such direct connections be-
tween links create virtual composite links.

During an FPNN computation, all resources (activators as well as links)
behave independently. When a resource receives a value, it applies its local
operator(s), and then it sends the result to all neighbouring resources to which
it is locally connected.

Section 3.4 has shown that FPNN computation is coherent and well-defined,
whereas section 3.5 has estimated the computational power of FPNNs. It is
linked to complex dependency relations between the weights of the virtual con-
nections that are created by direct local connections between links. A dedicated
weight initialization method has been derived so as to minimize the influence
of these complex dependencies.

4.2 Towards simplified architectures:
symmetric boolean functions by FPNAs

This section shows how FPNAs may be used so as to replace standard neural
networks with simpler 2D-compatible architectures that exactly perform the
same computations. Nevertheless, this way of using FPNAs is limited to few
well-identified applications. The case of symmetric boolean functions is dis-
cussed here.

This section is organized as follows:

§4.2.1 describes the initial work of [24] to find an optimal multilayer
neural network with shortcut links to compute symmetric boolean func-
tions,

106 FPNA: Applications and implementations

§4.2.2 shows how the FPNA concept makes it possible to get rid of all
shortcut links in the above multilayer network (other links and activators
being the same as in the original optimal multilayer neural network,

§4.2.3 finally shows how an FPNN that uses an underlying 2D structure
may be defined to exactly perform the same computation as the origi-
nal optimal multilayer neural network; this FPNN is both easy to map
onto an FPGA and optimal in terms of number of links (the number of
activators being unchanged).

4.2.1 An optimal standard neural network

The neural computation of symmetric boolean functions has been a widely
discussed problem. The quasi-optimal results of [24] answer a question that
was posed as early as in [19]: what is the minimum neural architecture to
compute symmetric boolean functions.

A boolean function f : {0, 1}d → {0, 1} is symmetric if f(x1, . . . , xd) =
f(xσ(1), . . . , xσ(d)) for any permutation σ of {1, . . . , d}. An example is the
d-dimensional parity problem: it consists in classifying vectors of {0, 1}d as
odd or even, according to the number of non zero values among the d coordi-
nates. This problem may be solved by d-input multilayer perceptrons (MLP)
or shortcut perceptrons. A MLP consists of several ordered layers of sigmoidal
neurons. Two consecutive layers are fully connected. A layer which is not the
input layer nor the output layer is said to be hidden. A shortcut perceptron also
consists of several ordered layers of sigmoidal neurons. But a neuron in a layer
may receive the output of any neuron in any previous layer.

The search for optimal two-hidden layer shortcut perceptrons in [24] has
solved the d-dimensional parity problem with only

√
d(2 + o(1)) neurons1,

thanks to an iterated use of a method introduced in [20]. The shortcut links and
the second hidden layer are essential in this work, though there is no shortcut
link towards the output neuron. This neural network uses d(2

√
d + 1 + o(1))

weights. The results of [24] apply to any symmetric boolean function. Fig-
ure 4.1(a) shows the topology of the optimal shortcut network of [24] for
the 15-dimensional parity problem. In such a neural network, the first hid-

den layer may contain
⌈√

d
⌉

neurons2 such that the i-th neuron of this layer

computes yi,1 = σ

⎛⎝ d∑
j=1

xj + Θi

⎞⎠, where σ(x) =
{

0 if x < 0
1 if x ≥ 0 . The sec-

1For a function f , f(d) = o(1) means that f(d)
d → +∞−→ 0

2�x� denotes floor, and �x	 denotes ceiling

Towards simplified architectures:symmetric boolean functions by FPNAs 107

ond hidden layer contains at most

⌈
d+1

√d�
⌉

: its i-th neuron computes yi,2 =

σ

⎛⎜⎝�√d�∑
j=1

wi,j,2yj,1 + (−1)i
d∑

j=1

xj

⎞⎟⎠. Then y = σ

⎛⎝ √
d∑

j=1

wi,j,3yj,2 + Θ

⎞⎠ is

computed by the only output neuron.

4.2.2 FPNAs to remove shortcut links

The construction in [24] implies that for any (i, j), (−1)i and wi,j,2 have
opposite signs. This property may be used so that all shortcut links (between
the input and the second hidden layer) are virtually replaced by some direct
connections between incoming and outgoing links in the first hidden layer of
an FPNA. This FPNA has got d

√
d(1+o(1)) weights, instead of d

√
d(2+o(1))

weights in [24].
More precisely, the architecture of the FPNA is the same as the shortcut

perceptron of [24], without all shortcut links. The weights of the links between
both hidden layers are as in [24]. When configured as an FPNN, each neuron
is fully connected to all incoming and outgoing links (∀ (p, n) rn(p) = 1 and
∀ (n, s) Sn(s) = 1). If n is the i-th node of the first hidden layer, and if s is
the i-th node of the second hidden layer, then for any p ∈ Pred(n), there is a
direct connection between (p, n) and (n, s) (i.e. Rn(p, s) = 1). If n is the i-th
node of the first hidden layer, then for any p ∈ Pred(n), Wn(p) = − 1

wi,i,2
and

Tn(p) = 0. If n is the i-th node of the first hidden layer, then θn = − Θi
wi,i,2

.
Figure 4.1(b) sketches the architecture of such an FPNN for a 15-dimensional
symmetric boolean function.

4.2.3 Towards a simplified 2D architecture

Even without shortcut links, the underlying FPNA of Figure 4.1(b) still does
not have a hardware-friendly architecture. A more drastic simplification of the
architecture is expected. The full connection between consecutive layers may
be virtually replaced by the use of sparse inter-layer and intra-layer FPNA
links.

The construction of an FPNN in §4.2.2 does not depend on the symmetric
boolean function. On the contrary, the determination of a hardware-friendly
FPNN for symmetric boolean functions takes advantage of several function-
dependent weight similarities in [24]. Such successful determinations have
been performed for various symmetric boolean functions and input dimen-
sions: it appears that for any d and for any symmetric boolean function f ,
an FPNN with the same number of neurons as in [24], but with only O(

√
d)

108 FPNA: Applications and implementations

Figure 4.1. Neural architectures for the parity problem (d = 15)

weights3 computes f exactly as in [24]. The parity problem may be taken as
an example: in [24], the weight of the link between the i-th neuron of the first
hidden layer and the j-th neuron of the second hidden layer only depends on
(−1)j when i �= 1. This property may be used so as to build a hardware-
friendly FPNN as follows.

Activators are globally unchanged. Therefore, the number of nodes in
each hidden layer is the same as the number of neurons in [24].

The inputs of the boolean function are gathered in groups so that the
connectivity from input nodes is simplified. Therefore the number of
input nodes is the number of nodes in the first hidden layer. Each input

node sends up to
⌈√

d
⌉

inputs.

3i.e. at most proportional to
√

d, indeed 15
2

√
d + o(

√
d) here

Benchmark applications 109

Links between consecutive layers are simplified so that a grid- structure
appears. Therefore the main inter-layer links are: for any i, one link
from the i-th input node to the i-th node of the first hidden layer, and
one link from the i-th node of the first hidden layer to the i-th node of
the second hidden layer, and one link from the i-th node of the second
hidden layer to the output node.

Moreover, a few inter-layer links are added to ensure that the special
handling of the first node of the first hidden layer in [24] is reproduced.
Therefore, for any j > 1, there is a link between the first node of the first
hidden layer and the (2j − 1)-th node of the second hidden layer.

Links inside each layer are chosen in a standard way that corresponds to
the grid-based layered FPNNs of §3.5.3. Therefore the intra-layer links
are: in both hidden layers, for any i, one link from the i-th node to the
(i + 1)-th node, another one to the (i − 1)-th node.

The Sn(s), rn(p) and Rn(p, s) parameters are set so as to ensure a vir-
tual full connection scheme between consecutive layers. Moreover the
Rn(p, s) parameters are set so that any virtual shortcut link involves the
first node of the first hidden layer. See [13] for more details and for the
weight determination.

This FPNN (for any number d of inputs) is easy to map onto a 2D hardware
topology, whereas the equivalent shortcut perceptron in [24] rapidly becomes
too complex to be directly implemented when d increases. Figure 4.1(c) shows
the architecture of the FPNN for the 15-dimensional parity problem.

Moreover, the above FPNNs satisfy several conditions that ensure a com-
putation time proportional to the number of weights as in standard multilayer
models (synchronous FPNNs, see following sections). Therefore, a O(

√
d)

computation time is achieved thanks to the topological simplifications of the
underlying FPNAs. Since the arguments of [24] still hold for an FPNN, it
shows that the FPNNs defined above are optimal in terms of number of neu-
rons, and therefore also optimal in terms of number of weights as well as in
terms of computation time (since it is proportional to the number of neurons).

4.3 Benchmark applications

In the previous section, FPNNs are applied to a problem of little practical in-
terest. This section and the next one describe their application to more concrete
problems.

This section focuses on benchmark problems. It shows a general way of
using FPNAs to replace standard neural networks with simpler 2D-compatible
architectures that approximately perform the same computations. More spe-
cific applications are discussed in the next section.

110 FPNA: Applications and implementations

FPNNs have been applied to various benchmark neural applications. In this
section, their application to the Proben 1 benchmarking project of [22], and to
Breiman’s waves of [6] are described in §4.3.1 and §4.3.2 respectively. The
benchmarking rules of [22] have been respected4.

4.3.1 FPNNs applied to Proben 1 benchmark problems

4.3.1.1 Proben 1: description. The Proben 1 project includes many
different problems to be solved by neural networks in order to compare dif-
ferent neural models or learning algorithms. FPNNs have been applied to all
real vector classification problems of the Proben 1 project.. For each of these
problems, an optimal shortcut perceptron has been determined in [22]. The
computational power of such a neural network depends on the number of lay-
ers and on the number of neurons in each layer.

FPNNs have been applied in the following way. A FPNN is defined in or-
der to compute the same kind of global function as the standard architecture
of the optimal shortcut perceptron found in [22]. This FPNN derives from
an FPNA with as many activators as in the optimal shortcut perceptron. The
FPNA topology must be hardware-friendly. The FPNN parameters are initial-
ized and learned so as to solve the classification problem. The aim is to obtain
a classification rate equivalent to the one of the optimal shortcut perceptron,
but with a far simpler architecture permitted by the FPNA concept.

The results of the different tests are given in [13]. Several initialization
methods (see [12]) and gradient-based learning algorithms have been tested:
their choice has an influence on the learning time (number of learning itera-
tions), but the final performance is not significantly modified. The classifica-
tion performances of the defined FPNNs are similar to the optimal classifica-
tion rates obtained in [22]. The corresponding FPNAs are easy to map onto
configurable hardware with the help of the implementation architectures de-
scribed in section 4.5. They use 5 to 7 times less neural resources than the
equivalent optimal shortcut perceptrons.

The diabetes2 problem of the Proben 1 project may be taken as an exam-
ple. Vectors of IR8 must be classified into two classes (diabetes diagnosis with
respect to quantified medical parameters). The optimal shortcut perceptron
found in [22] uses two hidden layers of 16 and 8 sigmoidal neurons. All possi-
ble shortcut connections are used. Its average performance is 74.08 % correctly

4Evaluation of neural models is still a difficult problem, because an universal set of benchmark applications
is lacking. Several ones have been proposed. The work of [22] is an interesting one since it offers various
kinds of problems, it clearly defines the benchmarking rules that its users have to follow to make fair
comparisons, and it proposes a first reference work based on the search of optimal shortcut multilayer
perceptrons for each problem.

Benchmark applications 111

Figure 4.2. Optimal shortcut perceptron for the diabetes2 problem (layers fully connected to
all previous layers)

classified patterns (average on different runs of the learning process). A syn-
chronous FPNN with 5 times less links reaches 73.37 % correctly classified
patterns.

4.3.1.2 FPNN determination. The optimal shortcut perceptron for the
diabetes2 problem is shown in Figure 4.2. The synchronous FPNN which has
been determined so as to compute the same kind of global function is shown
in Figure 4.3. It also uses 16+8+2 activators, since the same number of non-
linear operators is required so as to compute the same kind of global function.
The number of links is greatly reduced with respect to the shortcut perceptron.
This reduction is made possible by the fact that the FPNA concept shares the
78 links among the various combinations of successive affine operators. Each
combination corresponds to one of the 384 connections of the shortcut percep-
tron. Two kinds of links are used: “lateral” links connecting the activators of
each layer with a bidirectional ring, and layer-to-layer links connecting each
activator to one activator in the next layer. Then the local connections of the
links are configured so as to broadcast the activator outputs as in a standard
multilayer architecture: virtual links correspond to both fully connected layers
and shortcut links.

4.3.1.3 Weight initialization. Both uniform random and w-based ran-
dom initializations of low-band weight vectors have been used for all FPNNs
(see §3.5.5). Final performances do not significantly depend on the initial-

112 FPNA: Applications and implementations

Figure 4.3. Equivalent FPNN architecture

ization method, even if the w-based method proves slightly better on average.
But the convergence times (early stopping method) are greatly reduced for well
scattered initializations: uniform random initializations require 55 % to 85 %
more learning iterations than w-based ones.

Despite a back-propagation process that might increase weight dependen-
cies as mentioned in §3.5.5, it appears that virtual weight scattering improves
during learning. This phenomenon is strengthened when a w-based initializa-
tion is used: the average lessening of the partition maximum diameter crite-
rion is 2.9 % with uniform random initializations (3.4 % for the best FPNNs),
4.75 % with w-based ones (5.6 % for the best FPNNs).

4.3.2 A FPNN that replaces a wavelet network: Breiman’s
waveforms

Wavelet networks ([26]) are far from being as famous as MLPs. Never-
theless, they have also proved efficient for approximation and classification
problems. They use a standard multilayer architecture as MLPs, but their com-
putation is less robust with respect to weight variations. This is an interesting
feature to study the practical influence of weight dependencies.

As an example, wavelet networks have been successfully applied to the
problem of Breiman’s waveforms ([6]) in [3], with one hidden layer of 5 neu-
rons. This problem deals with the classification of three kinds of waveforms.
Signals to be classified are 21-dimensional real vectors. Therefore 120 synap-
tic connections have been used in wavelet networks. A FPNN with 21 input
nodes, 5 hidden nodes and 3 output nodes may use 38 links to virtually create

Other applications 113

Figure 4.4. 21-5-3 FPNN (virtual multilayer architecture)

these 120 connections (see Figure 4.4). Activators (in, fn) have been chosen
such that they compute wavelet functions. The classification rates are the same
as in [3] for the best learning runs. Nevertheless a greater variance is observed
again, so that the average rate is 80 % correctly classified patterns instead of
84 %.

4.4 Other applications

FPNNs have been applied in less standard cases. Three examples are given
here:

an example of recurrent FPNN that performs Hopfield computations to
illustrate the case of recurrent FPNNs,

a first example of real application, which size problems illustrate some
limits of the FPNA concept,

a second example of real application, where FPNA topological simplifi-
cations are used on an embedded system.

A FPNN that replaces a Hopfield network Hopfield networks may be re-
placed by grid-based FPNNs. In such FPNNs, each node of the grid is associ-
ated with an input node, and its binary parameters configure its local connec-
tions to perform a multiple broadcast: the virtual connection graph is a clique.
Figure 4.5 shows such an FPNN and details of its local resource interconnec-
tions.

Such FPNNs have been tested in [13] to replace Hopfield networks as as-
sociative memories for 7pt character recognition. They have proved efficient,
though less stable than actual Hopfield networks: the diameter of their attrac-
tion basins is about one third smaller than with Hopfield networks.

FPNN to replace very large MLPs: FPNA limits A huge MLP with 240
inputs, 50 to 100 neurons in the hidden layer, and 39 outputs is used in [7] for

114 FPNA: Applications and implementations

Other applications 115

Figure 4.6. FPNA for speech recognition

multi-band speech recognition. An FPNN version has been studied to reduce
the number of parameters (and therefore the very long learning time), as well
as to move towards real-time hardware implementations.

A first 2D-compatible FPNN structure has been proposed that uses the same
topology simplification principles as in Figure 4.4 : the underlying multilayer
FPNA contains one hidden layer of 78 activators, each of these nodes having
incoming links from 3 input nodes, as well as intra-layer incoming links, and
the output layer contains 39 activators, each of these nodes having incoming
links from 2 hidden nodes, as well as intra-layer incoming links. It uses 548
links to virtually create the 21762 connections of the MLP. This FPNN illus-
trates some limits of the FPNA paradigm: its topological simplifications are
too drastic for this FPNN to learn the speech recognition task as well as the
MLP.

To overcome these very poor performances, a more complex FPNN has been
proposed. It is based on the idea of having 8 outgoing links from each node
towards the next layer (instead of only one). Figure 4.6 partially shows the
underlying FPNA. It uses 1976 links. Though powerful enough, its topology
is still far too complex to permit direct parallel mappings onto FPGAs.

FPNN for embedded vigilance detection Another FPNA application is cur-
rently developed. It is based on [4], where a 23-10-9 MLP classifies physio-
logical signals to discriminate vigilance states in humans. A simple multilayer
FPNN that also uses the same topology simplification principles as in Figure
4.4 reaches the same performance, with only 67 links that virtually create the
320 connections of the MLP. A very low-power real-time implementation on a
Xilinx Virtex XCV1000E FPGA is under development.

116 FPNA: Applications and implementations

Previous sections have discussed the application of FPNNs to different prob-
lems, they have focused on the topological simplifications, and they have stud-
ied the obtained performances with respect to standard neural models. Next
sections focus on implementation methods. A general one is first described in
Section 4.5. It may be used for any FPNN computation. Nevertheless, more
efficient solutions exist, but they only apply to specific FPNNs, called synchro-
nous. This kind of FPNN is defined and studied in section 4.6, whereas Section
4.7 describes their specific implementation methods: a pipelined version and
an implementation with on-chip learning.

Several implementation results (mostly areas) are given in sections 4.5 and
4.7. Nevertheless, technical details have to be found in Section 4.8.

4.5 General FPGA implementation

This Section describes a very general implementation method that is directly
derived from the asynchronous parallel computation scheme (see §3.3.2). It is
organized as follows:

§4.5.1 explains that this implementation only requires to define basic
building blocks since a modular assembling is made possible thanks to
FPNA properties,

§4.5.2 describes the first building block: the implementation of a link,

§4.5.3 describes the second building block: the implementation of an
activator.

4.5.1 Modular implementation of FPNNs

An FPNN implementation only requires configurable predefined blocks that
are simply assembled as in the underlying FPNA architecture (direct parallel
mapping of the neural architecture onto the FPGA). Its simplified topology
make it possible for the compiling tool to perform well.

The resources (links and activators) of the FPNA are implemented: each
resource corresponds to a predefined block that performs both resource com-
putations and asynchronous protocol handling, and all blocks are assembled
according to the FPNA graph. This implementation may be used by any FPNN
derived from this FPNA: some elements just have to be correctly configured in-
side each block, such as multiplexers, registers, etc. Such FPNNs may compute
complex functions as in Section 4.3, though their FPNA architecture is made
simple (reduced number of edges, limited fan-ins and fan-outs). Therefore,
this implementation method is flexible, straightforward and compatible with
hardware constraints. Moreover this implementation shows how time may be
inherent to FPNN computations.

General FPGA implementation 117

Figure 4.7. Architecture of link (p, n)

118 FPNA: Applications and implementations

Next subsections describe the implementation of the asynchronous parallel
computation by means of two predefined blocks: link and activator resources.

4.5.1.1 Recurrent FPNN.

4.5.2 Links

Figure 4.7 shows a possible implementation of a link (p, n). All asynchro-
nous reset signals for flip-flops are active high.

SELECT :

This block receives all request signals that may be sent by the predeces-
sors of link (p, n) according to the FPNA topology. It also receives a
signal free that is set high when link (p, n) handles no request.

Signal start is an output that is set high during one clock cycle when
a request processing begins. Signal acq is an acknowledgement signal
that is routed towards the resource that sent the current request. Signal
sel(1..lp) codes the number of the selected request signal. It controls
the input mux and the acknowledgement dmux.

The architecture of a SELECT block for 4 predecessors is shown on Fig-
ure 4.8. The PRIO block is a simple truth table-based component that
implements a rotating priority policy.

MULT ADD :

This block receives the value stored in register X (value of the selected
request). It also receives Wn(p) and Tn(p), and it computes the affine
transform Wn(p)X + Tn(p) of the link.

It outputs signal ready that is set high when signal y(1..nb) contains
the output value of link (p, n) (affine transform of X).

free :

When register X stores the selected input value, a set of flip- flops stores
the request signals that will have to be sent to the successors of link
(p, n). These flip-flops are reset when the corresponding acknowledge-
ments have been received. Signal free is reset when all expected ac-
knowledgements have been received. Yet the effective output request
signals remain low as long as ready is not active.

The chronogram of Figure 4.9 gives a possible example of successive re-
quests processed by a link (p, n), with 4 preceding resources and 4 successors,
and with rn(p) = 1, Rn(p, s0) = Rn(p, s2) = 1 and Rn(p, s1) = Rn(p, s3) =
0. Block MULT ADD is assumed to compute its result within 4 clock cycles: it
corresponds to the use of a semiparallel multiplier (each operand is split in 2,

General FPGA implementation 119

req

clk

r0
r1
r2
r3

reset

ok

q
e
d

q
e
d

r

r

q
e
d

r
q

e
d

r

r
q

d

r3
r2
r1
r0

d1
d0 s1

PRIO
s0

0

1

sel(1..0)

Figure 4.8. Request selection (4 predecessors)

acq succ0
acq succ1

acq succ3
acq succ2

sel(0)
sel(1)

acq

req pred0
req pred1
req pred2
req pred3

acq pred0
acq pred1
acq pred2
acq pred3

req succ0
req succ1
req succ2
req succ3

start

free

ready

clk

Figure 4.9. Chronogram: asynchronous parallel computation of a link

so that such a multiplier performs 4 products of b
2 -bit operands sequentially

computed by a a b
2 -bit parallel multiplier, and then correctly added to obtain

the product of b-bit values).
When all successors are free (i.e. are able to send immediate acknowl-

edgements), a request processing requires 5 clock cycles, which means that
the protocol involved in FPNN computation only costs one clock cycle. The
blocks required to handle this protocol only use 5.5 CLBs on a Xilinx Virtex-E
FPGA5, whereas the affine transform requires at least 50 CLBs for a 16-bit
precision (even with an area-saving semiparallel multiplier) Implementation
performances will be discussed in Section 4.8.

4.5.3 Activators

4.5.3.1 Feedforward FPNN. The main changes with respect to a link
are limited to arithmetic operators (see Figure 4.10), so that in and fn are com-

5In such an FPGA, each CLB contains 4 configurable logic cells.

120 FPNA: Applications and implementations

puted instead of the affine transform of a communication link. Operators ITER
and OUTPUT are used instead of MULT ADD. These blocks perform the iterated
computation of the activator output (see §3.3.2). ITER is the in function that
is applied to the input and to the internal variable so as to update the latter.
OUTPUT is the fn function that is applied to the final state of the internal vari-
able so as to obtain the activator output. The computation of OUTPUT only
occurs when an values have been processed by ITER.

A linear feedback shift register is required for this arity handling, so that the
FPNN asynchronous protocol requires 6 CLBs for an activator (if in ≤ 15)
instead of 5.5 for a link. Once again, the cost of the FPNN asynchronous
protocol is negligible with respect to the arithmetic operators required by the
activator itself.

§3.4.2 explains that synchronization barriers must be introduced to handle
recurrent FPNNs: activator-generated requests are put in a waiting buffer until
the next synchronization barrier.

Nevertheless, the theoretical study in [13] shows that an activator in a de-
terministic recurrent FPNN sends at most one value after each synchronization
barrier, so that no request buffering is needed. Therefore, the general paral-
lel implementation of recurrent FPNNs is very close to the one of feedforward
FPNNs, except that a simple additional synchronization signal is received. This
signal clocks a flip-flop with signal ready as input and ready sync as output.
Then ready and ready sync replaces signal ready in the control of the
output request signals. No other change is required.

4.6 Synchronous FPNNs

This Section focuses on a specific class of FPNNs, for which both descrip-
tion and computation can be greatly simplified, so that an implementation with
on-chip learning as well as an optimized pipelined implementation may be de-
scribed (see Section 4.7). It is organized as follows:

§4.6.1 gives the definition of synchronous FPNNs,

§4.6.2 describes the main property of these FPNNs and it explains that
such FPNNs perform computations that appear similar to usual neural
computations,

these computation simplifications lead to a backpropagated method
to compute the gradient of synchronous FPNNs, so that their back-
propagation-based learning is described in §4.6.3.

4.6.1 Definition of synchronous FPNNs

A synchronous FPNN is an FPNN in which any resource may simultane-
ously process all its received values. In such an FPNN, any resource can “wait”

Synchronous FPNNs 121

Figure 4.10. General architecture for an activator resource

122 FPNA: Applications and implementations

for all its input values before it begins to process them, without modifying the
computation of the whole FPNN.

The study of [13] defines three (rather tricky) conditions for an FPNN to
be considered as synchronous. Nevertheless, these conditions are satisfied by
a set of easily identified FPNNs, for which all activators use simple additions
to update their variable state and for which all links apply linear functions.
Therefore, only this set of synchronous FPNNs will be considered from now
on. This set includes the FPNNs defined such that their activators perform the
computations of standard sigmoidal neurons.

More formally, a simple definition (close to standard feedforward neural
networks) may be given for synchronous FPNNs. Following the FPNA/FPNN
definition given in Chapter 3, a FPNN must fulfill the following conditions to
be synchronous:

All iteration functions in are associative and commutative.

Whatever computation method is chosen, the activator in node n exactly
receives an values. In the asynchronous parallel computation method,
it means that for all n, there are exactly an requests req[(p, n), (n), x]
where p ∈ Pred(n). Therefore an activator always sends an output
(except if an = 0) and it does not receive any value after having sent this
output. This condition is fulfilled if the following recursive property is
satisfied:

∀n an =
∑

p∈Pred(n)

d(p,n)rn(p)

where d(p,n) = χIN�
+
(ap)Sp(n) +

∑
q∈Pred(p)

d(q,p)Rp(q, n)

Links must be linear operators x �→ Wn(p)x (for each (p, n) in E),
instead of affine ones.

4.6.2 Equivalent and simplified computations

In [13], synchronous FPNNs have been introduced when studying the deter-
minism of both sequential and parallel computation schemes for feedforward
and recurrent FPNNs. The main result6 is:

Theorem 4.1 Feedforward synchronous FPNNs are deterministic: all neu-
rons compute the same outputs with both sequential and parallel computations,
and these outputs do not depend on any graph ordering nor request scheduling
policy.

6Indeed, the last condition (linearity of links) is not required here.

Synchronous FPNNs 123

This is the fundamental property of synchronous FPNNs: the above conditions
ensure that the order in which input requests are sent to any activator does not
have any influence on its computed output.

These equivalent results may be then expressed in a very simplified way.
For each input node n in Ni, a value xn is given (outer inputs of the FPNN).
Then, activators (n) and links (n, s) compute:

y(n) = fn

⎛⎝ ∑
rn(p)=1

y(p,n) + θn

⎞⎠

y(n,s) = Ws(n)

⎛⎝ ∑
Rn(p,s)=1

y(p,n) + Sn(s)y(n)

⎞⎠
Similar results are available for recurrent synchronous FPNNs.

4.6.3 Learning of synchronous FPNNs

Both learning and generalization phases of synchronous FPNNs may be ef-
ficiently implemented on configurable hardware. This key feature shows that
this kind of neural models is particularly able to take advantage of the charac-
teristics of reconfigurable computing systems: prototyping may be efficiently
performed, and then the system may be reconfigured so as to implement the
learned FPNN with an outstanding generalization speed (see section 4.3).

The learning phase of many standard neural networks (such as MLPs) is
often performed thanks to what is called the back-propagation learning algo-
rithm, where an error function Err estimates the distance between the neural
network output and the expected output that corresponds to the given training
pattern. A positive real value ε is given as learning rate. Each parameter p is

updated as follows: p ⇐ p − ε
∂Err

∂p
.

The generalized back-propagation algorithm of [10] may be applied to syn-
chronous FPNNs (see [13]). It shows that the gradient of a synchronous FPNN
may be computed by means of simple formulae. Moreover, these computa-
tions are performed by the resources with local data (provided by the neigh-
bouring resources). It provides a simple hardware implementation that is based
on assembled predefined blocks (Section 4.5). The simplified architectures of
FPNAs ensure that this assembling is straightforward and hardware-friendly.

A node in a synchronous FPNN is an output node if its local activa-
tor computes an output value without sending it to any other resource (i.e.
Sn(s) = 0 for all s ∈ Succ(n)). Let Err be the quadratic distance
Err = 1

2

∑
n output node(y(n) − en)2, where en is the corresponding expected

output. The following notations are also introduced:

124 FPNA: Applications and implementations

∂Err(p,n) is the differential of Err with respect to the output of link
(p, n)

∂Err(n) is the differential of Err with respect to the output of activator
(n)

Then the gradient of Err with respect to the FPNN learnable parameters
Wn(p) and θn is computed thanks to the following formulae, that are simi-
lar to a standard back-propagation process in a multilayer neural network.

Three formulae express the back-propagation of differentials.

If n is an output node: ∂Err(n) = y(n) − en.

Else: ∂Err(n) =
∑

Sn(s)=1

Ws(n)∂Err(n,s)

∂Err(p,n) = rn(p) f ′
n

⎛⎝ ∑
rn(p)=1

y(p,n) + θn

⎞⎠ ∂Err(n)

+
∑

Rn(p,s)=1

Ws(n)∂Err(n,s)

Then the gradient values are locally computed.

Differential w.r.t. θn:

∂Err

∂θn
= f ′

n

⎛⎝ ∑
rn(p)=1

y(p,n) + θn

⎞⎠ ∂Err(n)

Differential w.r.t. Ws(n):

∂Err

∂Ws(n)
=

⎛⎝ ∑
Rn(p,s)=1

y(p,n) + Sn(s)yn

⎞⎠ ∂Err(n,s)

4.7 Implementations of synchronous FPNNs

The computational simplifications of synchronous FPNNs provide two spe-
cific implementation methods: on-chip learning is possible, and a fast pipeline
implementation may be used (without learning). The general topological sim-
plifications that are made possible by FPNAs are still available, so that these
implementation methods still consist of an easy modular hardware mapping of
basic building blocks.

Implementations of synchronous FPNNs 125

4.7.1 On-chip learning

The above computations are local, so that each proposed implementation
block corresponds to one neural resource in the FPNA. These basic blocks
successively handle:

the computation of the resource output

the computations required in the back-propagation process

– an activator (n) back-propagates

∂Err(n) f ′
n

⎛⎝ ∑
rn(p)=1

y(p,n) + θn

⎞⎠
towards its connected predecessors

– a link (n, s) back-propagates Ws(n)∂Err(n,s)

the computations required to update the local learnable parameters.

4.7.1.1 Links. Figure 4.11 shows a possible implementation of a link
with on-chip learning. All flip-flops use asynchronous reset signals that are
active high. The clock and reset signal connections are not shown in order to
lighten this figure. The reset signal is active before each new iteration of the
learning algorithm. There are six main sub-blocks:

MULT is a multiplier. It is shared by the different computation steps.
Signal end is active when the multiplier result is available on bus out.

ACC F accumulates the received values. Since the FPNA concept may
handle neural architectures with reduced fan-ins, there is no need to use
additional bits to store accumulation results. These results (stored in
ACC F) remain unchanged when back-propagation is performed (when
signal forward is idle).

SEL FWD receives a request signal when any connected predecessor
sends a value to the link. This block selects a request signal, so that
ACC F accumulates the corresponding value. When all expected values
have been received, SEL FWD, signal en m is set active, so that MULT
multiplies the local weight Wn(p) by the accumulated value in ACC F.
When the multiplication result is available, request signals are sent to
all connected successors (links or activators). Figure 4.13 shows such a
SEL FWD block, supposing that the resource fan-in is equal to 4 (as in a
grid-based layered FPNA).

126 FPNA: Applications and implementations

Figure 4.11. Link architecture (learning)

Implementations of synchronous FPNNs 127

ACC B and SEL BCK are similar to the above ACC F and SEL FWD. They
are used for back-propagated computations.

ACC W stores the local weight Wn(p). When signal update is active, val-
ues stored in ACC F and ACC B are multiplied. The result is accumulated
in ACC W: the local weight is updated.

Various implementation choices are proposed for the accumulators and the
multipliers in [13, 14]. With 16-bits7 values (fixed point, 11 fractionary bits),
2-complement accumulators, and a semi-parallel multiplier (four 8×8 multi-
plications sequentially handled), this link implementation uses less than 120
CLBs on a Xilinx Virtex-E FPGA. Accumulations require one clock cycle,
multiplications require 5 clock cycles (including reset), at 50 MHz.

4.7.1.2 Activators. The main changes with respect to a link are related
to the computation of fn and f ′

n. When sigmoid function fn(x) = tanh(x) is
used, then f ′

n(x) = 1 − (fn(x))2. It leads to the architecture of figure 4.12,
with an additional part that computes a piecewise polynomial approximation8

of tanh: a table stores the polynomial coefficients (address given by the most
significant bits stored in ACC F), a counter (CNT) gives the degree of the ex-
pected coefficient, an adder (ADD) and MULT compute the approximation with
a H-orner scheme.

With the above implementation choices, less than 145 CLBs of a Xil-
inx Virtex-E FPGA are required. The tanh function approximation lasts 11
clock cycles (a piecewise degree-2 polynomial approximation is sufficient to
obtain the expected precision, provided that the coefficients are 20-bit values
and MULT is a 16×20 semi-parallel multiplier).

4.7.2 Pipelined implementation

A pipeline implementation is proposed in [13] for any synchronous FPNN.
It uses on-line operators (see [16] for the adequation of on-line arithmetic 9 to
neural computations). In such an implementation, building blocks are (again)
assembled according to the FPNA underlying structure. Thanks to simplified

7The required precisions are precisely studied in [13]. 16 bits are sufficient for most tested synchronous
FPNNs. It confirms the studies of [17] despite the major differences between standard neural networks and
FPNNs.
8Preferred to a cordic-like algorithm: such a method better applies to a sigmoid function such as tan−1

than tanh (see [1]), but computing tan−1 derivative requires a division, whereas computing tanh deriva-
tive only requires a multiplier that is already mandatory to handle back-propagated values. Moreover, this
multiplier is sufficient in the forward phase for the polynomial approximation
9An on-line arithmetic is a bit-serial arithmetic that processes any operation or elementary function with the
most significant digits first, thanks to the use of a redundant number representation system that avoids carry
propagation within additions.

128 FPNA: Applications and implementations

Figure 4.12. Activator architecture (learning)

Implementations of synchronous FPNNs 129

clk
reset

r3

r2

r1

r0

e
d q

r

q
e
d

r

q
e

r
q

d

d
r

0

1

3

2

q
e
d

r

reqs

en a

en m

res m

forward

Figure 4.13. Blocks SEL FWD and SEL BCK

clk
reset

shift reg.

shift reg.
(delay#P red(p))

y
ctl out

weight reg.x1

x#P red(p)

(delay1)

ctl in

Figure 4.14. Link (pipelined synchronous FPNN)

130 FPNA: Applications and implementations

computations (§4.6.2), these building blocks do not require any protocol han-
dling. They handle data and computation in a serial way. Thanks to the use
of on-line arithmetic, both activators and links handle data in the same way.
Activators use elementary functions (sin, cos, tan, tanh, exp, log, arctan, . . .).
The evaluation of these elementary functions can be performed using polyno-
mial or rational approximations, shift and add algorithms or table-based algo-
rithms. Those algorithms are presented in [21]. In this work, we have chosen
the evaluation of the tanh function using polynomial approximations with a
H-orner scheme10. See [16, 13] for more details about on-line operators and
delay handling.

Figure 4.14 sketches a “link” building block. It uses 37 CLBs (170 for an
activator) of a Xilinx Virtex-E FPGA for a 16-bit precision. It may be clocked
at 100 MHz.

4.8 Implementation performances

This section discusses the implementation performances (area and speed)
of the various implementation methods that have been described in sections
4.5 and 4.7 through several examples taken from sections 4.3 and 4.4. §4.8.1
focuses on a typical synchronous FPNN, whereas §4.8.2 deals with the less
common case of non- synchronous FPNNs. Finally §4.8.3 (cautiously) com-
pares the obtained implementation performances with other works.

Our implementations are based on a Celoxica RC1000PP board with a Xil-
inx Virtex XCV1000E-BG560 FPGA. Xilinx FPGAs have been chosen be-
cause the fine grain parallelism of neural computations requires many elemen-
tary memory devices, and such FPGAs offer a high memory/logic ratio. We use
the Virtex-E FPGA family to illustrate FPNN implementation performances,
indicating the smallest one that is sufficient to implement each FPNN. Each
CLB in these FPGAs corresponds to 4 configurable logic cells.

It must be pointed out that current FPGAs already outperform the capacity
of the Virtex XCV1000E: such an FPGA contains 27648 logic cells, to be com-
pared with the 73008 ones of the largest Virtex-E, as well as with the 125136
logic cells of the largest current Virtex-II Pro. Such improvements make the
scalability of the FPNA concept even more useful: larger neural networks may
be implemented without routing bottlenecks, or spared CLBs may be used for
other computations required by the application.

We currently use Xilinx ISE 4.2 as synthesis tool. The mapping of each
building block is asked to optimize the implementation area. Modular mapping
is priviledged for large FPNNs. Speeds are given according to both FPGA

10Again preferred to a cordic-like algorithm, that would require an iterated process unfitted for a pipeline
implementation

Implementation performances 131

synthesis indications and memory bandwidth limits in our board. It should
be pointed out that these performances have not been optimized by experts of
FPGA implementation, and that they might be also improved by a combined
use of area-saving neural operators (for example bit-stream neurons may be
used in conjunction with the pipeline implementation of FPNNs).

4.8.1 Application to the FPNN of Figure 4.3

Several implementations are available for this FPNN.

The implementation of the learning phase of this FPNN requires 13250
CLBs (16-bit precision, based on parallel 8 × 8 multipliers and a piece-
wise polynomial approximation of tanh). It may use a single Xilinx Vir-
tex XCV3200E (largest Virtex-E), or two Xilinx Virtex XCV1600E-
BG560. In this case the small fan-ins of the FPNA resources make it pos-
sible to exchange all required signals with the 404 available I/O ports of
the FPGAs: at most 168 ports are required for each FPGA. The shortcut
perceptron of Figure 4.2 could not be directly mapped onto any number
of FPGAs: these FPGAs would have to exchange too many signals, be-
sides the topology and fan-in problems inside each FPGA. One learning
iteration of the FPNN lasts 378 clock cycles, so that a 14 FPNN-MCUPS
speed is reached: 14.106 links are updated by the learning process per
second. It corresponds to 70 MCUPS (70.106 connections updated per
second) with the optimal shortcut perceptron which outputs the same
function as the FPNN.

For the generalization phase, the asynchronous implementation of sub-
sections 4.5.2 and 4.5.3 uses 7500 CLBs (a Xilinx XCV1600E is neces-
sary). A 24 FPNN-MCPS speed is reached: 24.106 neural resources are
processed per second. It corresponds to 120 MCPS with the equivalent
optimal shortcut perceptron.

An optimized pipeline implementation of the generalization phase of this
FPNN requires only one Xilinx XCV1000E (3820 CLBs). A 250 FPNN-
MCPS speed is reached, with a sufficient 11-bit precision (according to
preliminary tests). It corresponds to 1.25 GCPS (giga connections per
second) with the equivalent optimal shortcut perceptron.

Similar performances have been obtained for other Proben 1 applications
(see [13]).

132 FPNA: Applications and implementations

4.8.2 “Wavelet” and “Hopfield” FPNNs

The above optimized pipeline implementation is not available for these non-
synchronous FPNNs, so that they require an implementation based on the
blocks of 4.5.2 and 4.5.311.

A 13 FPNN-MCPS speed is reached for the “wavelet” FPNN of Figure 4.4
(equivalent to 42 MCPS for the corresponding wavelet network). It requires
3150 CLBs of a single XCV600E FPGA. No other hardware implementation
of wavelet networks has been found (most efficient implementations are based
on matrix–vector products that do not appear in such neural models). This
FPNN implementation may be compared with the 5 MCPS of a sequential
implementation of wavelet networks on a Intel PIII processor (800 MHz). The
combined use of both FPNA paradigm and FPGA devices thus multiplies the
speed–power ratio by approximately 80.

A 90 FPNN-MCPS speed is reached for the “Hopfield” FPNN of §4.5. It
corresponds to 940 MCPS for the corresponding Hopfield network. Therefore
this FPGA-based implementation reaches the same speed as the digital ASIC
of [18], though such a comparison must be very carefully made (different im-
plemented models, different design choices, precisions, . . . etc), as explained
below.

4.8.3 Performance analysis

The above speeds must be compared with the different neural network im-
plementations discussed in Section 3.2. Nevertheless, it is difficult to make a
fair comparison between the performances of the various FPGA-based meth-
ods: they implement different neural architectures, with different implemen-
tation choices (precision, on-chip learning, etc), the FPGA types vary, and a
part of the performance differences may be attributed to FPGA technology im-
provements.

Without on-chip learning, the speeds for the implementation of standard
multilayer architectures range from a few MCPS per FPGA (2 MCPS in [9], 4
MCPS in [5]) to a few tens MCPS (18 MCPS in [16], 22 MCPS in [2]). With
on-chip learning, speeds range from 0.1 MCUPS in [9] to 8 MCUPS in [16].

Despite these heterogeneous previous results, it appears that the above
FPNNs outperform the few previous FPGA-based implementations, with or
without on-chip learning. The performances for the various FPNNs of [13] are
more similar to the ones of complex neuro-computers: 5 MCUPS to 1 GCUPS
and 10 MCPS to 5 GCPS (neuro-computers CNAPS, RAP, etc). But only one
or a few FPGAs are required for FPNN implementations.

11Handling recurrent FPNNs just implies a few additional control signals.

Conclusions 133

Indeed, great implementation speeds are not the main advantage of the
FPNA/FPNN concept: above all, this new neural framework defines neural
networks that are easy to map onto some configurable hardware by means of
a hardware-friendly assembling of predefined blocks, whereas such a straight-
forward parallel implementation is impossible for equivalent standard neural
networks.12 As soon as a neural solution fits a chosen hardware device thanks
to the FPNA paradigm, effort is put on the optimization of implementation
choices (arithmetic, precision, etc) so as to reach outstanding performances.

FPNAs make it possible for current and future neural implementations to
take advantage of the rapid FPGA technology improvements, whereas the pre-
vious advanced methods are limited by large neural architectures that do not
fit hardware topologies.13 Moreover the FPNA paradigm may be used in con-
junction with such advanced area-saving methods.

4.9 Conclusions

FPNAs have been defined to reconcile simple hardware topologies with of-
ten complex neural architectures, thanks to a computation scheme that creates
numerous virtual neural connections by means of a reduced set of links, what-
ever the device, the arithmetic, and the neural structure. This FPNA computa-
tion paradigm thus leads to define neural models whose computational power
is similar to usual neural networks despite simplified architectures that are well
suited for hardware implementations.

FPNAs and FPNNs are both a new theoretical framework for neural com-
putation and an efficient tool to adapt most standard neural networks to digital
hardware. The implementation of FPNA-derived neural networks on FPGAs
has proved far more efficient than previous FPGA-based implementations of
standard neural models. Moreover, the main advantage of the FPNA concept
is to define neural networks that are easily mapped onto any configurable dig-
ital hardware device by means of a simple assembling of predefined blocks.
This assembling is permitted by hardware-compatible FPNA architectures (the
neural architecture may be directly taken as the modular design that is handled
by the compiler that maps the neural computations onto the FPGA), whereas
such immediate parallel implementations are impossible for equivalent stan-
dard neural networks.

The main limitation of the topology simplifications appears in FPNN learn-
ing: a too drastic reduction of the number of neural resources may result in a
significant loss of computational power despite numerous distinct virtual con-

12The shortcut perceptron of Figure 4.2 cannot be directly mapped onto FPGAs, even with the help of the
advanced methods of [1], [23], [9], [2], [25], or [27].
13A bit-stream based method leads to very small implementation areas, but the limits of the FPGA connec-
tivity are already reached for a rather small FPGA in [2].

134 FPNA: Applications and implementations

nection weights. Therefore topology simplifications stop when FPNN learn-
ing fails in retrieving the classification performance of the standard neural
model that is functionally equivalent. Application of FPNNs to standard neural
benchmarks has shown that topology may be sufficiently simplified before this
limitation appears. Nevertheless, this limitation may appear for some complex
real-world applications.

FPNAs still deserve further developments, such as pipeline implementations
in conjunction with the bit-stream technology, additional learning algorithms,
or dynamic learning of FPNN architectures. They are to be included in a neural
network compiler onto FPGAs that is developped in our team (it handles im-
plementation choices and it generates vhdl code for standard neural networks
according to the user description).

FPNAs appear as an asset for FPGAs : these cheap, flexible and rapidly
improving digital circuits may take advantage of the FPNA concept to stand as
promising solutions for hardware neural implementations, despite their perfor-
mances below ASIC speeds. Nevertheless, it is still difficult to see how FPNAs
will interfere with new trends in FPGA development : mixed DSP-processor-
FPGA approach of new powerful FPGAs, or routing problems in huge FPGAs
([8]).

References

[1] D. Anguita, S. Bencetti, A. De Gloria, G. Parodi, D. Ricci, and S. Ridella.
FPGA implementation of high precision feedforward networks. In Proc.
MicroNeuro, pages 240–243, 1997.

[2] S.L. Bade and B.L. Hutchings. FPGA-based stochastic neural networks
- implementation. In Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, pages 189–198, 1994.

[3] R. Baron and B. GIRau. Parameterized normalization : application to
wavelet networks. In Proc. IJCNN, volume 2, pages 1433–1437. IEEE,
1998.

[4] K. Ben Khalifa, M.H. Bedoui, L. Bougrain, R. Raychev, M. Dogui, and
F. Alexandre. Analyse et classification des «etats de vigilance par r«eseaux
de neurones. Technical Report RR-4714, INRIA, 2003.

[5] N.M. Botros and M. Abdul-Aziz. Hardware implementation of an artifi-
cial neural network. In Proc. ICNN, volume 3, pages 1252–1257, 1993.

[6] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification
and regression trees. 0-534-98054-6. Wadsworth Inc, Belmont Califor-
nia, 1984.

[7] C. Cerisara and D. Fohr. Multi-band automatic speech recognition. Com-
puter Speech and Language, 15(2):151–174, 2001.

135

[8] F. de Dinechin. The price of routing in fpgas. Journal of Universal
Computer Science, 6(2):227–239, 2000.

[9] J.G. Eldredge and B.L. Hutchings. RRANN: a hardware implementation
of the backpropagation algorithm using reconfigurable FPGAs. In Pro-
ceedings of the IEEE World Conference on Computational Intelligence,
1994.

[10] C. G«egout, B. GIRau, and F. Rossi. Generic back-propagation in arbi-
trary feedforward neural networks. In Artificial Neural Nets and Genetic
Algorithms – Proc. of ICANNGA, pages 168–171. Springer-Verlag, 1995.

[11] C. G«egout and F. Rossi. Geometrical initialization, parameterization and
control of multilayer perceptron: application to function approximation.
In Proc. WCCI, 1994.

[12] B. GIRau. Dependencies of composite connections in Field Program-
mable Neural Arrays. Research report NC-TR-99-047, NeuroCOLT,
Royal Holloway, University of London, 1999.

[13] B. GIRau. Du parall«elisme des mod„eles connexionnistes „a leur implan-
tation parall„ele. PhD thesis n◦ 99ENSL0116, ENS Lyon, 1999.

[14] B. GIRau. Digital hardware implementation of 2D compatible neural
networks. In Proc. IJCNN. IEEE, 2000.

[15] B. GIRau. FPNA: interaction between FPGA and neural computation.
Int. Journal on Neural Systems, 10(3):243–259, 2000.

[16] B. GIRau and A. Tisserand. MLP computing and learning on FPGA
using on-line arithmetic. Int. Journal on System Research and Informa-
tion Science, special issue on Parallel and Distributed Systems for Neural
Computing, 9(2-4), 2000.

[17] J.L. Holt and J.-N. Hwang. Finite precision error analysis of neural
network hardware implementations. IEEE Transactions on Computers,
42(3):281–290, March 1993.

[18] A. Johannet, L. Personnaz, G. Dreyfus, J.D. Gascuel, and M. Weinfeld.
Specification and implementation of a digital Hopfield-type associative
memory with on-chip training. IEEE Trans. on Neural Networks, 3, 1992.

[19] W. Kautz. The realization of symmetric switching functions with linear-
input logical elements. IRE Trans. Electron. Comput., EC-10, 1961.

[20] R. Minnick. Linear-input logic. IEEE Trans. Electron. Comput., EC-10,
1961.

[21] J.M. Muller. Elementary Functions, Algorithms and Implementation.
Birkhauser, Boston, 1997.

[22] L. Prechelt. Proben1 - a set of neural network benchmark problems and
benchmarking rules. Technical Report 21/94, Fakult-at f-ur Informatik,
Universit-at Karlsruhe, 1994.

References

136 FPNA: Applications and implementations

[23] V. Salapura, M. Gschwind, and O. Maisch berger. A fast FPGA imple-
mentation of a general purpose neuron. In Proc. FPL, 1994.

[24] K. Siu, V. Roychowdhury, and T. Kailath. Depth-size tradeoffs for neural
computation. IEEE Trans. on Computers, 40(12):1402–1412, 1991.

[25] M. van Daalen, P. Jeavons, and J. Shawe-Taylor. A stochastic neural
architecture that exploits dynamically reconfigurable FPGAs. In Proc.
of IEEE Workshop on FPGAs for Custom Computing Machines, pages
202–211, 1993.

[26] Q. Zhang and A. Benveniste. Wavelet networks. IEEE Trans. on Neural
Networks, 3(6):889–898, Nov. 1992.

[27] J. Zhao, J. Shawe-Taylor, and M. van Daalen. Learning in stochastic bit
stream neural networks. Neural Networks, 9(6):991–998, 1996.

Chapter 5

BACK-PROPAGATION ALGORITHM
ACHIEVING 5 GOPS ON THE VIRTEX-E

Kolin Paul
Department of Computer Science & Engineering
Indian Institute of Technology, Delhi
New Delhi, INDIA

kolin@cse.iitd.ac.in

Sanjay Rajopadhye
Department of Computer Science
Colorado State University
Fort Collins, Colorado,USA

svr@CS.colostate.edu

Abstract
Back propagation is a well known technique used in the implementation

of artificial neural networks. The algorithm can be described essentially as a
sequence of matrix vector multiplications and outer product operations inter-
spersed with the application of a point wise non linear function. The algorithm
is compute intensive and lends itself to a high degree of parallelism. These
features motivate a systolic design of hardware to implement the Back Prop-
agation algorithm. We present in this chapter a new systolic architecture for
the complete back propagation algorithm. For a neural network with N input
neurons, P hidden layer neurons and M output neurons, the proposed architec-
ture with P processors, has a running time of (2N + 2M + P + max(M, P))
for each training set vector. This is the first such implementation of the back
propagation algorithm which completely parallelizes the entire computation of
learning phase. The array has been implemented on an Annapolis FPGA based
coprocessor and it achieves very favorable performance with range of 5 GOPS.
The proposed new design targets Virtex boards.

We also describe the process of automatically deriving these high perfor-
mance architectures using systolic array design tool MMAlpha. This allows
us to specify our system in a very high level language (Alpha) and perform

137

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 137–165.
© 2006 Springer. Printed in the Netherlands.

138 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

design exploration to obtain architectures whose performance is comparable to
that obtained using hand optimized VHDL code.

5.1 Introduction

The design of application specific parallel architectures has become very
important in many important areas that demand high performance. Field Pro-
grammable Gate Arrays (FPGAs) have become a viable alternative to full cus-
tom VLSI design in this domain. Although they offer lower performance than
full custom chips, the faster development cycle make them an attractive op-
tion. Current FPGA devices offer over a million programmable gates which
can, with careful design, achieve operational frequencies in excess of 100MHz.
When we program a well designed highly parallel architecture, on this new
breed of FPGAs , (re-programmable) performance of the order of GFLOPs
become accessible to the designer at a relatively low cost. Walke et al. have
presented a design [1] in the area of adaptive beam forming where they esti-
mate a 20 GFLOPS rate of sustained computation.

In this paper, we present a new implementation of an application that is also
computationally intensive. Back propagation (BP) is one of the most widely
used learning algorithms for multilayer neural networks [2]. The BP algorithm
is computationally intensive and often requires a lot of training time on serial
machines [3]. As a result, considerable interest has been focused on parallel
implementations and efficient mappings of this algorithm on parallel architec-
tures. Many hardware implementations for neural net algorithms (either for
the forward or for the complete BP learning) have been proposed [4]. Many
of these designs are “paper designs" and a lot of the them suffer from ineffi-
cient use of hardware resources. One common hardware structure for neural
nets is the linear systolic array model. This structure, consisting of neighbor-
connected string of identical processing elements, each operating in lockstep,
is accepted as an attractive solution for the rapid execution of the matrix vector
and outer product computation at the core of the learning as well as the recall
phase.

Our architecture, which is highly pipelined, implements the complete BP
algorithm and achieves over 5 GOPS of sustained performance. Our design
exploits the inherent parallelism present in the BP algorithm. The implemen-
tation is based on a systolic design. The architecture has been designed for
maximal parallelism and exploits pipelining to achieve a high frequency of
operation. The architecture exhibits fine grained parallelism and is a natural
candidate for implementation on an FPGA. Our design has been implemented
on a PCI board which has the FPGA and can thus be considered as a coproces-
sor to the host computer.

Problem specification 139

This design has the best processor utilization and also the fastest reported
implementation on a FPGA both in terms of the frequency of operation of the
circuits as well as the number of clock cycles required. We emphasize that
this architecture achieves in excess of 5 GOPS of sustained computation on
a single Virtex E 1000 FPGA. The implementation of this high performance
architectecture on an FPGA indicates that with careful design, we can get very
high rates of sustained computation in applications that are computationally
intensive.

This contribution has two parts. We discuss the implementation of our BP
architecture in the first part. In the second part we show how to derive this im-
plementation automatically using the synthesis tool MMAlpha [5] where our
focus was to compare the potential performance lost in the automatic deriva-
tion to the ease in the design process. We start with equations defining the
algorithm at a very high level and derive synthesizable VHDL. We also desire
that this automatically generated hardware program be as efficient as possible.
Towards this end, we compared its performance with the handwritten manually
optimized version.

The rest of the paper is organized in the following manner. Section 5.2 de-
scribes the back propagation algorithm and explains the problem definition. In
Section 5.3, we discuss the key ideas behind our proposed parallelization while
in Section 5.4, we outline the design aspects of the architecture. In Section 5.5,
we provide a detailed description of the architecture and its implementation on
the target FPGA. This concludes the first part of the contribution. Section 5.6
introduces the MMAlpha synthesis tool. In section 5.7 we discuss some of
the key transformations used. It also describes the scheduling and processor al-
location process while Section 5.8 gives a high level overview of the hardware
generation in the MMAlpha system. Section 5.9 describes the performance
and experimental results of the implementation on the FPGA and gives the
comparison between the two approaches. In Section 5.10, we review other
FPGA based implementations of the back propagation algorithm. Section 5.11
discusses the key contribution proposed in the paper and concludes it by pro-
viding the directions for future work.

5.2 Problem specification

We now describe the back propagation algorithm for a neural network with
one hidden layer. In the forward phase of Figure 5.2.1, the hidden layer weight
matrix Wh is multiplied by the input vector X = (x1, x2, . . . , xN)T to calcu-
late the hidden layer output where wh,ij is the weight connecting input unit j
to unit i in the hidden layer. A non linear function f is applied to the elements
of this after correction with the input bias θ yielding yh,j which is the output
from hidden layer. This is used to calculate the output of the network, yo,k by a

140 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

Input

Output

Hidden Layer Fo
rw

ar
d

B
A

C
K

PR
O

P

III

IV

 V

VI

II

 I

Figure 5.2.1: The Backpropagation Algorithm

Section BPNEquations OurNotation EqNo

I yh,j = f(
∑Ni

i=1 wh,jixi − θ)
Y1 = W1X
Y2 = f(Y1)

A
B

II yo,k = f(
∑Nh

j=1 wo,kjyh,j − θ)
Y3 = W2Y2
Y4 = f(Y3)

C
D

III δo,k = yo,k(1 − yo,k)(dk − yo,k)
Y5 = Y4(1 − Y4)∗

(D − Y4)
E

IV δh,j = yh,j(1 − yh,j)
∑No

k=1 δo,kwo,kj
Y6 = W T

2 Y5
Y7 = Y2(1 − Y2)Y6

F
G

V
∆wo,kj = ηδo,kyh,j

w′
o,kj = wo,kj + ∆wo,kj

∆W2 = Y5 ⊗ Y2
W ′

2 = W2 + ∆W2

I
J

V I
∆wh,ji = ηδh,jxi

w′
h,ji = wh,ji + ∆wh,ji

∆W1 = Y7 ⊗ X
W ′

1 = W1 + ∆W1

K
L

(5.1)

Table 5.1. Equations for The Back Propagation Algorithm. Capitals denote either the
matrix of the values of the weights or vectors representing the inputs and outputs. The
outer product of two vectors is denoted by ⊗

similar process using a different weight matrix Wo. The expected output is dk

and it is used to update the weights. A vector δo is computed from yo and d (by
element wise operation) and the update to the Wo matrix is simply the outer
product of δo and yh scaled by a learning parameter η. Similarly a vector δhk is
computed by the element wise operation on yh and the matrix vector product of
W T

o and δo. The update to the Wh matrix is also computed as η times the outer
product of δh and X . The flow of computation is illustrated in Figure 5.2.1
where the roman numerals refer to the rows on Table 1. In our discussion, we
ignore the learning parameter and input bias to avoid clutter. Moreover, they
are scaling factors and may be trivially incorporated in the implementation.

The BP algorithm may be succinctly specified as a sequence of three
Matrix Vector Multiplications or MVMs (Equations A, C and F)) and

Systolic implementation of matrix-vector multiply 141

two outer product evaluations (Equations I and K). These main op-
erations are interlaced with the application of point functions (Equa-
tions B,D, E & G). We may thus formulate our problem as follows:

determine an efficient hardware implementation of the computa-
tion defined by Equations A - L.

Clearly any such efficient implementation is crucially dependent on the im-
plementation of the MVM. Our architecture was derived by focusing on this
module and by exploiting the special relationship between two dependent
MVM’s— one applied to the output of the first.

5.3 Systolic implementation of matrix-vector multiply

We will now outline the systolic implementation of Matrix Vector Multiply
in some detail, carefully noting the two choices for the allocation strategy. The
MVM can be conveniently written as

yi =
∑

j

wijxj where 1 ≤ i ≤ M and 1 ≤ j ≤ N (5.2)

It is well known that the systolic implementation of this MVM can be achieved
with M processors in N + M clock cycles [6]. The accumulation of the sum-
mation can take place in either the vertical or the horizontal direction depend-
ing on the method we use to feed in the inputs xj’s.

In the first implementation, we propose to feed in the xj’s to the first proces-
sor in the array. In the case, the accumulation is in the horizontal direction as
shown in the space-time (processor-time) diagram given below (Figure 5.3.1).
The direction of accumulation is along the horizontal direction as shown in the
diagram. The values of yi’s are accumulated in each processor. We note that
each xj is input to the next processor in a serial manner following one cycle
delay. The accumulation takes place in the register in the processor. The out-
put y1 appears in processor 1 after n clock cycles and the output ym appears in
processor m after n + m− 1 clock pulses. The rows of the matrix W circulate
within each processor (processor k having the kth row).

The other way to perform this MVM is to feed in xj to the jth processor.
This means that we feed in the data in parallel but not at the same time step—
the xj’s have to fed in at the appropriate time step. Each xj is fed into the jth

processor at time step j − 1. This is illustrated in Figure 5.3.1, where each
processor accesses a distinct column of W. The partial result is propagated to
the next processor. The outputs yi’s are available in the last processor with y1

appearing at time instant tn and the last value ym at time instant tn+m−1.
We have two different ways of performing the MVM, just by changing the

way data is fed into the systolic array. In the first case, the data was fed in a
serial fashion to the first processor, and the outputs were available in parallel at
all the processors in a shifted manner. In the second case, we fed in the input

142 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

Y1

3Y

X1X2X3XnX

Ym

X1 XnXx

1

m

P
ro

c
e
ss

o
r Accumulation2

Time

Accumulation

P
ro

p
a

g
a

ti
o

n

(a) Original Computation (b) After Space Time Mapping
Method One

Y2 Ym

X1

X2

Xm

Y1

X1

Xm

x

W
Accum

ulation

(a) Original Computation

1

m

2
Processor

Time

A
cc

u
m

u
la

ti
o

n

(b) After Space Time Mapping

Method Two

Figure 5.3.1: Two Systolic Implementations for MVM illustrating two alloca-
tions of computation processors

data in a “delayed" parallel method and we obtained the output in a serial way
from the last processor. In isolation, each architecture has a drawback —in the
first one, the outputs are in all the processors (one value in each processor)
and are available at diffrent time instants. This would necessitate additional
circuitry to “flush out" the outputs. Similarly, the second architecture has a
similar problem with its inputs—it needs special circuitry and additional time
to feed in the inputs before the computation can start.

5.4 Pipelined back-propagation architecture

The above property of the MVM that the allocation function is not unique is
the basis for our new design. We use the fact that the output pattern for the first
allocation function is identical to the input pattern of the second one. Hence
there is no need for additional circuitry and no wasted cycles if one needs to
perform back to back MVMs. The design is optimal with respect to processor
utilization as well as time. In this section we describe the architecture in detail.
We assume that X is an N -vector, W1 is a P × N matrix and W2 is a M × P
matrix. This corresponds to N input neurons, P hidden layer neurons and M
output neurons. We will use the two different allocation functions to implement

Pipelined back-propagation architecture 143

the back to back MVMs. In general, to obtain the product

yi =
∑

j

wijxj where 1 ≤ i ≤ P and 1 ≤ j ≤ N (5.3)

using either of the two allocation functions, we need (N +P −1) clock cycles.
Therefore, if we have two consecutive MVMs where the matrices are P × N
and M × P , we need (N + P − 1) and (M + P − 1) clock pulses to have
the the result. This thus amounts to a total time of (M + N + 2P − 2).
What we propose to do is to use the first allocation strategy to perform the
first MVM. In this case, the xj’s will be input serially to the first processor
and the outputs will start arriving after time N at the individual processors.
We note that at time instant N + 1, the first processor is free and remains so
for the next P cycles. Similarly, the second processor becomes free after the
N + 1 clock pulse and remains free thereafter. Clearly, the point function
can be applied to the output y1 and this then becomes the input to the next
MVM. We choose to schedule our second MVM taking advantage of the fact
that the second allocation strategy allows the input to be sent to each processor
but at a different instant of time as explained in Figure 5.3.1. The output of
the first stage remains in one of the registers and the processor switches mode
to perform the second MVM. We note that we have taken advantage of the
two different allocation strategies to ensure that the processors are not idle at
any time. Using our scheme, consecutive MVMs can be performed in N +
M +P −1 time steps—a significant improvement over the “standard" way of
implementing consecutive MVMs that has been used in all previous hardware
implementations. The outer products are also evaluated using this strategy with
only a special artifact to configure the processors to perform only the multiply
and not accumulate in any direction. Each product in the register becomes a
term in the weight matrices.

Given this high level description for the basis of the proposed hardware,
we now outline the complete design of “one-step” of the entire process. We
emphasize that the choice of two different allocation functions have allowed
us this innovative design which cuts down on the total execution time by about
40% and also has almost 100 percent processor utilization—two key areas in
efficient systolic array designs. If P = N = M , the standard implementation
would entail an execution time of (5 ∗ 2N) clock cycles, while our approach
takes (5N + N) clock cycles to process each training instance (which is why
we claim a 40% reduction in execution time). We describe the design with
reference to the Figure 5.4.1 above. In the diagram, the rhombus with the solid
lines represents the first allocation strategy while the one with dashed contours
represents the second allocation strategy. The diagram shows one step in the
complete algorithm viz., the operation of the circuit for one training vector
which is one iteration of Equations A-L. For each input vector in the “learning

144 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

Non Linear

Pointwise

Function

Non Linear

Pointwise

Function

MVM3

Mode 1

MVM1 MVM2

Mode 2 Mode 4 Mode 5Mode 3

Outer 1 Outer 2

Inp
ut

 Tr
ain

ing

Ve
cto

rs

Equations A,B Equations C,D Equations E,F,G Equations H,I Equations K,L

N NM>P?M:P M M

Processor

Time

Figure 5.4.1: Schematic of Proposed Hardware (Computation Model)

phase”, there are 5 modes in which each of the processors of the systolic array
operate. These five modes correspond to the 3 MVMs and the 2 outer product
evaluations. In the diagram we have indicated which of the defining equations
are evaluated in each mode. After a vector has been processed, the updated
weights remain in the registers inside the processor. This one-step is called
the “macro step” in our design and the operation of the processors in the 5
different modes is refereed to as the five “mini-steps”. Thus, at every macro
step one vector is processed and requires an input of one training vector and the
expected output for this vector. The entire architecture thus has an output only
at the end of the training phase when the final values of the weight matrices are
read back.

5.5 Implementation

We elaborate on the proposed architecture and its implementation on the
target FPGA. Our implementation targets the AMS Starfire board [7] which
is used as a coprocessor with the host computer. In Figure 5.5, we show a
simplified schematic of the board. [8]. It has a single Xilinx XCV1000 VirtexE
FPGA [9]. The host downloads the configuration data and the input data to the
board via the PCI bus.

We now describe the processor configuration in greater detail with reference
to Figure 5.5.2 which shows the details of the architecture on the FPGA. All
the data that the coprocessor needs are read in from the board local memory
(Right and Left Mem of Figure 5.5). The individual processors are initially
supplied with small random weights. The LMSE and ITERATION registers

Implementation 145

PE 1

Left

Right

MEM

LEFT

MEZZ

0 1
MEM

Crossbar

Mem

PCI
Controller

SRAM

Local Address/Data 32 Bits
33 MHz

Clk

II/O

C
A

R
D

MEM MEM
1

Crossbar

0

MEZZ
RIGHT

Figure 5.5.1: Simplified Diagram of the Starfire board

Mode 1: Rloc= Rloc + FIFO1 * R_IN ; R_Out = R_IN

Mode 2: ROUT= R_IN + FIFO2 * RLoc ; RLoc=RLoc

Mode 3: Rloc= Rloc + FIFO2 * R_IN ; R_Out = R_IN

Mode 4: FIFO1= FIFO1 + RLoc * R_IN ; R_Out = R_IN

Mode 5: FIFO1= FIFO1 + RLoc * R_IN ; R_Out = R_IN

FIFO1

FIFO2

R_IN
RLoc

ROut

LMSE

ITERATION

COUNTER + 1

PROCESSOR
PROCESSOR

CONTINUE

DONE

MODE

Expected_Value

Data_in

LMSE

>

>

CONTINUE

lmse

PROCESSOR ARRAY

CONTROLLER
CONTROL

Figure 5.5.2: Details of Proposed Hardware

are control registers which determine the termination condition. The LMSE
contains the (user defined) lowest permissible mean square error and the IT-
ERATION contains the total number of training set vectors. The first processor
reads in each training vector and the associated expected output. After either

146 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

the least mean square error is lower than LMSE or the number of training set
vectors are exhausted, the processor downloads the final weight vectors to the
local memory and issues the ‘done’ signal to the host. The host then reads out
the final weight values. The entire operation is thus compute bound. In each
macro step, only the first processor reads in a sequence of 2N vectors in only
one of the five phases of “one-step" of the computation. The system has an
output only once at the end of the entire training phase.

In Figure 5.4.1 we show the space time diagram of the computation of
one step in the entire computation. The one step of the computation takes in
a n-size vector and does a MVM. This takes n clock ticks on a p processor
systolic array. We have a point wise function applied to the output of each
processor and this is then fed as input to the processor to perform the next
MVM. This second MVM continues for m or p cycles whichever is greater as
indicated in the diagram. The outputs from the last processor are fed into the
first processor after this time interval so that the third MVM can begin. In the
final two modes, the processors actually evaluate the products and update the
shift registers containing the weight values.

The operation of the processor in the five modes is described in Figure 5.5.2.
We have shown the operations during each of the five modes of operation. We
have abstracted away the portions of the circuit inside the processor which re-
main inactive during a particular mode and only show the relevant sections
which are enabled. The mode signal controls this enabling/disabling of com-
ponents inside the processors. For example, in mode 1 , the first shift register
bank which contains the row of W1 matrix, is enabled and the other similar
bank being disabled are omitted from the diagram. Also in this mode, each
processor at the end of the accumulation phase needs to evaluate the non linear
function f on the final value before switching modes. We have implemented
this function as a table lookup. In this mode, at any given time, one and only
one of the processors will be accessing the LUT. Hence the LUT is designed
as a shared resource between the individual processors of the array. We also
have one additional processor following the “last” processor. This processor is
active only in mode 2 and evaluates equation 14. This enables us to decrease
the length of the critical path and improve the frequency of operation of the
entire circuit. This is a design choice that we have made noting that the control
becomes simpler if we use some of the registers to make an additional proces-
sor instead of incorporating the functionality in the last processor. The result
of the multiply at each time step is added to the content of the appropriate shift
register output to reflect the updated value of the weight matrices. We note
in the figure, that except for mode 1, the multiply-accumulator unit in each
processor in all other modes takes its input either from the shift registers or
an internal register. The register, in general, contains the value computed in

MMAlpha design environment 147

a previous mode. Thus in four out of five “mini steps” of each “macro step”,
there is no IO involved.

We decided to see if it was possible to derive a similar architecture automat-
ically starting with the equations describing the computation. There are a lot
of systems which take a high level description of the system in C/Matlab and
derive synthesizable RTL level descriptions [10, 11]. However, most of these
systems require that we write the description making the parallelism explicit.
The motivation for trying to see if we could get a high performance VHDL
description of the network automatically starting from the equations was to re-
duce the implementation time of the designing and coding in VHDL. We shall
walk through, in detail, the automatic derivation of this architecture using our
codesign research prototype “MMAlpha".

5.6 MMAlpha design environment

We used the systolic design prototype tool MMAlpha to systematically
derive the RTL description of the proposed implementation. In this section we
describe briefly the characteristics of this design environment. We also give a
top level overview of the design procedure.

5.6.1 The Alpha Language

We use Alpha [5] as the language to write our algorithm. The Alpha lan-
guage was conceived in 1989 by Christophe Mauras as part of his PhD thesis.
The MMAlpha system was initially developed at IRISA, and since 1995, its
further development is being done at IRISA in collaboration with BYU [12]
and CSU [13].

Alpha is a single assignment, equational (functional), and inherently par-
allel language, based on the formalism of systems of recurrence equations.
Algorithms may be represented at a very high level in Alpha , similar to how
one might specify them mathematically. The basic advantage of writing the
algorithm in this functional language is that it allows us the ability to reason
about the system. The Alpha language is restrictive in the class of algorithms
it can easily represent (although the language is Turing complete), but is useful
for programming algorithms which have a high degree of regularity and par-
allelism such as those frequently occurring in linear algebra and digital signal
processing applications.

Computational entities in Alpha are called systems [5], which are parallel
functions relating the system outputs to system inputs. The Alpha system
declaration specifies the types and domains of system inputs and outputs. The
definition of the system function is given as a set of affine recurrence equations
involving input, outpu t, and local variables.

148 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

One of Alpha’s strengths is the fact that an Alpha program can be trans-
formed by a series of rewriting rules into equivalent Alpha programs suitable
for:

implementation as a regular array circuit, or

execution on a sequential or parallel computer.

This capability is provided by the MMAlpha system. Alpha program trans-
formations have been independently proved to preserve the semantics of the
original program, and thus derived programs are correct by construction (as-
suming the specification was correct). Alpha also allows the analyzability
needed to help choose what transformations to perform.
The MMAlpha System
The “transformation engine" interface for manipulating Alpha programs is
written in C and Mathematica. The user interface is in Mathematica which
provides an interpreted language with high level built in functions for symbolic
computations. MMAlpha uses these facilities for transforming Alpha pro-
grams.

The internal representation of any Alpha program is stored as an Abstract
Syntax Tree (AST). All computations and manipulations are performed on this
internal representation. Typical commands include viewing an Alpha pro-
gram, checking its correctness, generating C code to execute the program, etc.

Specific C functions are used for two purposes: various parsers and un-
parsers, and computations on polyhedra. All the C functions are accessed via
Mathematica and extensively use the polyhedral library [14] which is the com-
putational kernel of the MMAlpha system.

The design flow with MMAlpha is illustrated in Figure 5.6.1. A compu-
tation intensive part of a program (usually a loop) is rewritten in Alpha and
is then transformed using MMAlpha into an implementation which consists
of three programs:

The hardware part (in VHDL) which represents the implementation of
the loop on the FPGA.

The software part which replaces the loop in the original program.

The hardware/software interface part which handles the communication
of data betweeen the host and the FPGA.

MMAlpha is not a push button system, but requires the user to be “in the
loop" as an “expert" who can take the initial specification of the program and
apply the required transformations (intelligently) so that we get the three pro-
grams as mentioned above. We shall go through a detailed walkthrough of the
entire process in the derivation of synthesizable RTL from the Alpha speci-
fication of “one step" of the computation of the back propagation network to

Architecture derivation 149

C

Alpha
Uniformization

Scheduling & Mapping

HDL Derivation

M
M

A
lp

ha

VHDL

Hardware

FPGA

C or Matlab

Software

P
C

I

...
for j= 1 .. n

end for;

C or Matlab

Hard/Soft

HOST

Figure 5.6.1: MMAlpha Design Flow

illustrate this. The entire Alpha code for one step of the back propagation
algorithm is shown in Figure 5.6.2. We see that the code is very similar to the
equations of the BP algorithm. It has some (redundant) copies of some input
and output variables which were introduced to in the design process to facilate
the complete derivation of hardware with minimal amount of tweaking of the
generated RTL. The three “reduce" statements refer to the 3 MVMs while the
last two lines refer to the outer products. In Alpha the order of the equations
is immaterial.

We shall in the subsequent sections describe the derivation of RTL descrip-
tion.

5.7 Architecture derivation

We describe in this section a few of the transformations that we used in
deriving the architecture. In the process, we also show the result of applying
each of these transformations on the initial program of Figure 5.6.2. The
progressive transformation of this code to a hardware description by careful
and controlled application of these transformations is illustrated in this section.

150 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

--==--
--
-------------- Back Propagation Neural Nets
--
--==--
-- N Number of Input Neurons
-- P Number of hidden layer neurons
-- M Number of Output Neurons
system Neural : {N,P,M |2≤M,N,P}
-- these are inputs to the system
(x, xcopy : {n | 1 ≤ n ≤ N} of real;
Z4copy1, Z4copy2 : {m | 1≤m≤M} of real;
W1: {p,n | 1≤p≤P; 1≤n≤N} of real;
W2, W2copy: {m,p | 1≤m≤M; 1≤p≤P} of real;
expZ : {m | 1≤m≤M} of real)
returns (Z4 : {m | 1≤m≤M} of real;
-- these are the outputs
DeltaW1: {p,n | 1≤p≤P; 1≤n≤N} of real;
DeltaW2: {m,p | 1≤m≤M; 1≤p≤P} of real);
var
-- output (and related vectors) of the hidden
layer
Y1, Y2, Y3, Y4 : {p | 1≤p≤P } of real;
-- and the output layer
Z1, Z2, Z3, Z4comp : {m | 1≤m≤M} of real;

let
Y1 = reduce (+ , (p,n→p) , W1 * x.(p,n→n));
Y3 = reduce(+, (m,p→p), W2copy *
Z4copy1.(m,p→m));
Z1 = reduce(+, (m,p→m), W2 * Y2.(m,p→p));
Y2 = f(Y1);
Y4 = Y3 * Y2 * (1.(p→) - Y2);
Z2 = f(Z1);
Z3 = expZ - Z2;
Z4comp = Z3 * Z2 * (1.(m→) - Z2);
Z4 = Z4comp;
DeltaW1[p,n] = Y4[p] * xcopy[n];
DeltaW2[m,p] = Z4copy2[m] * Y2[p];
tel;

Figure 5.6.2: Alpha Code

The entire script consisting of the sequence of transformations necessary to
generate the entire architecture including the host code, the code for the inter-
face as well as the target application is presented in the Appendix.
Analyze
The MMAlpha system stores the input Alpha program in the form of an
AST. This AST stored in Mathematica, is amenable to the myriad of trans-
formations available within the development environment. One of the tools
that this system provides enables us to perform a static analysis of the pro-
gram stored in the AST. The routine checks the validity of the declaration of
domains of Alpha systems and variables and also performs other checks to
enable us to detect dead code and unused variables, estimate certain quantities
like number of calculations in a a loop nest as a function of loop bounds etc.
This is very useful for the developer as it provides him with an early indication
of the syntactic correctness of his program. It also provides initial estimates of
the computation and the I/O requirements.
Normalize
This is a transformation that “normalizes" any Alpha program into a prede-
fined syntactic form which fixes the nesting order of the Alpha constructs.
Due to the mathematical properties of polyhedra and affine functions [15], the
domain of any Alpha expression is a finite union of integral polyhedra and is
detremined automatically by a library for manipulating polyhedra [14]. Due to
these closure properties, every expression can be simplified into a unique nor-
mal form, called the case-restrict-dependency form. It consists of an (optional)

Architecture derivation 151

outer case, each of whose branches is a (possibly restricted) simple expres-
sion. A simple expression is a variable or constants composed with a single
dependency function or pointwise operators applied to such expressions. This
transformation consists of about 35 rewrite rules which among other things
change the nesting order of incorrectly nested operations, flatten nested cases
and combine restriction and affine functions whenever possible. This transfor-
mation is generally used as a followup to other transformations.
Serialization
In this transformation, we replace the reduction operations by a sequence of
binary operations because the hardware elements have bounded “fan in". The
MVM represents an accumulation. The summation can be evaluated in con-
stant time on a CRCW-PRAM which supports unbounded fan in. However
for any real scenario, we have a binary operator and hence the summation is
performed in linear time. We note in passing that although the fastest way to
add is using a logarithmic adder but that would be an overkill as we need linear
time to feed in the input. In our example, we have three MVMs corresponding
to the following three reductions.
We serialize them by invoking the “serializeReduce" transformation with the

Y1 = reduce (+ , (p,n→p) , W1 ∗ x.(p,n→n));
Y3 = reduce (+ , (m,p→p) , W2copy ∗ Z4copy1.(m,p→m));
Z1 = reduce (+ , (m,p→m) , W2 ∗ Y2.(m,p→p));

Figure 5.7.1: Reductions

appropriate direction for the serialization. The resulting code for the first re-

serializeReduce[6, 1, 2, "YY1.(p,n→p,n-1)"];
serializeReduce[6, 3, 2, "YY3.(m,p→m-1,p)"];
serializeReduce[6, 5, 2, "ZZ1.(m,p→m,p-1)"];

Figure 5.7.2: SerializeReduce

duction is shown in Figure 5.7.3.

YY1acc[p,n] =
case

{ | n=1} : 0[] + W1 * x[1];
{ | 2<=n} : YY1acc[p,n-1] + W1 * x[n];

esac;

Figure 5.7.3: Serialized Code for the Reduction

Alignment
We align the computation. We do this keeping in mind the space time dia-
gram that we want. This is a particular case of a general transformation called
Change of Basis(COB).
Change of Basis

152 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

This is similar to the reindexing of loop variables and other loop transforma-
tions done in vectorizing and parallelizing compilers. Given a valid program
and a change of basis variable, a new provably equivalent program is derived.
We use this transformation to align our computation. If we refer to our space
diagram, the computation of Y2 occurs after Y1 has been evaluated. Hence
we do a cob on the equation for Y2 to align the variable Y2 at N + 2. The
command changeofBasis ["Y2.(p→p,N+2)","p","n"] aligns the com-
putation at N + 2.

The following is the complete of sequence of calls to “changeOfBasis" that
performs the required alignment as illustrated in the spacetime diagram (Fig-
ure 5.4.1). It may be noted that our current implementation doesnot allow us

changeOfBasis["Y1.(p→p,N+1)", "p", "n"];
changeOfBasis["Y2.(p→p,N+2)", "p", "n"];
changeOfBasis["ZZ1acc.(m,p→p,N+2+m)", "p", "n"];
changeOfBasis["Z1.(m→P+1,N+2+m)", "p", "n"];
changeOfBasis["Z2.(m→P+1,N+2+m)", "p", "n"];
changeOfBasis["Z3.(m→P+1,N+2+m)", "p", "n"];
changeOfBasis["Z4comp.(m→P+1,N+2+m)", "p", "n"];
changeOfBasis["YY3acc.(m,p→p,N+M+m+2)", "p", "n"];
changeOfBasis["Y3.(p→p,N+2M+3)", "p", "n"];
changeOfBasis["Y4.(p→p,N+2M+4)", "p", "n"];
addlocal["DeltaW1Loc = DeltaW1"];
addlocal["DeltaW2Loc = DeltaW2"];
normalize[];
changeOfBasis["DeltaW1Loc.(p,n→p,n+N+2M+4)"];
changeOfBasis["DeltaW2Loc.(m,p→p,m+2N+2M+4)", "p", "n"];

Figure 5.7.4: The transformations for performing all Change of Bases

to perform a cob on Input and Output variables of a System (since this would
change the semantics of the Alpha program). Hence we add a local variable
to perform the change of bases. The resulting code after this set of transforma-
tions is shown in Figure 5.7.5. Pipelining
This is a very important transformation that allows us to build highly pipelined
designs. This also involves making judicious choices about feeding the appro-
priate data at the correct time. This is a transformation that is widely used in
systolic synthesis. It is also called localization or uniformization. It consists
basically of replacing a broadcast by the pipeline of this value through all the
computations that require it. In our example, we need to pipeline the input
“X". The direction of feeding in the input in one way to perform the MVM
demanded that we send one at a time to the first processor. This is performed
by making a call to “pipeall" with the appropriate dependence function which
indicates the direction of the pipeline. Clearly, in the equation for Y Y 1acc
we want the x to be piped across the processors. The command pipeall
["YY1acc", "x.(p,n→ n)","Xpipe.(p,n→p+1,n)"] does this. In this
expression, the first argument is the variable whose equation is to be modified,
the second argument is the expression to be pipelined and the last expression

Architecture derivation 153

system Neural :{N,P,M | 2≤N; 2≤P; 2≤M}
(x : {n | 1≤n≤N} of real;
xcopy : {n | 1≤n≤N} of real;
Z4copy1 : {m | 1≤m≤M} of real;
Z4copy2 : {m | 1≤m≤M} of real;
W1 : {p,n | 1≤p≤P; 1≤n≤N} of real;
W2 : {m,p | 1≤m≤M; 1≤p≤P} of real;
W2copy : {m,p | 1≤m≤M; 1≤p≤P} of real;
expZ : {m | 1≤m≤M} of real)
returns (Z4 : {m | 1≤m≤M} of real;
DeltaW1 : {p,n | 1≤p≤P; 1≤n≤N} of real;
DeltaW2 : {m,p | 1≤m≤M; 1≤p≤P} of real);
var
DeltaW2Loc : {p,n | 1≤p≤P;
2N+2M+5≤n≤2N+3M+4} of real;
DeltaW1Loc : {p,n | 1≤p≤P;
N+2M+5≤n≤2N+2M+4} of real;
ZZ1acc : {p,n | 1≤p≤P; N+3≤n≤N+M+2} of
real;
YY3acc : {p,n | 1≤p≤P; N+M+3≤n≤N+2M+2} of
real;
YY1acc : {p,n | 1≤p≤P; 1≤n≤N} of real;
Y1 : {p,n | 1≤p≤P; n=N+1} of real;
Y2 : {p,n | 1≤p≤P; n=N+2} of real;
Y3 : {p,n | 1≤p≤P; n=N+2M+3} of real;
Y4 : {p,n | 1≤p≤P; n=N+2M+4} of real;
Z1 : {p,n | p=P+1; N+3≤n≤N+M+2} of real;
Z2 : {p,n | p=P+1; N+3≤n≤N+M+2} of real;
Z3 : {p,n | p=P+1; N+3≤n≤N+M+2} of real;
Z4comp : {p,n | p=P+1; N+3≤n≤N+M+2} of real;
let
DeltaW2[m,p] = DeltaW2Loc[p,m+2N+2M+4];
DeltaW1[p,n] = DeltaW1Loc[p,n+N+2M+4];

ZZ1acc[p,n] =
case
{ | p=1} : 0[] + W2[n-N-2,p] * Y2[p,N+2];
{ | 2<=p} : ZZ1acc[p-1,n] + W2[n-N-2,p] *
Y2[p,N+2];
esac;
YY3acc[p,n] =
case
{ | n=N+M+3} : 0[] + W2copy[n-N-M-2,p] *
Z4copy1[n-N-M-2];
{ | N+M+4<=n} : YY3acc[p,n-1] +
W2copy[n-N-M-2,p] * Z4copy1[n-N-M-2];
esac;
YY1acc[p,n] =
case
{ | n=1} : 0[] + W1 * x[n];
{ | 2<=n} : YY1acc[p,n-1] + W1 * x[n];
esac;
Y1[p,n] = YY1acc[p,n-1];
Y3[p,n] = YY3acc[p,n-1];
Z1[p,n] = ZZ1acc[p-1,n];
Y2[p,n] = f(Y1[p,n-1]);
Y4[p,n] = Y3[p,n-1] * Y2[p,N+2] * (1[] -
Y2[p,N+2]);
Z2[p,n] = f(Z1[p,n]);
Z3[p,n] = expZ[n-N-2] - Z2[p,n];
Z4comp[p,n] = Z3[p,n] * Z2[p,n] * (1[] -
Z2[p,n]);
Z4[m] = Z4comp[P+1,m+N+2];
DeltaW1Loc[p,n] = Y4[p,N+2M+4] *
xcopy[n-N-2M-4];
DeltaW2Loc[p,n] = Z4copy2[n-2N-2M-4] *
Y2[p,N+2];
tel;

Figure 5.7.5: Code after Change of Bases

Xpipe[p,n] =
case

{ | p=1} : x[n];
{ | 2<=p} : Xpipe[p-1,n];

esac;
YY1acc[p,n] =

case
{ | n=1} : 0[] + W1 * Xpipe;
{ | 2<=n} : YY1acc[p,n-1] + W1 * Xpipe;

esac;

Figure 5.7.6: Pipelined Code

gives the direction of the pipeline as well as the name of the new variable in-
troduced. The resulting code is shown in Figure 5.7.6 The sequence of calls
to perform the pipelining of the other variables isshown in Figure 5.7.7 . The

pipeall["YY1acc", "x.(p,n->n)", "Xpipe.(p,n->p+1,n)"];
pipeall["YY3acc", "Z4copy1.(p,n->n-N-M-2)", "Z4pipe1.(p,n->p+1,n)"];
pipeall["DeltaW1Loc", "Y4.(p,n->p,N+2M+4)", "Y4pipe.(p,n->p,n+1)"];

Figure 5.7.7: Transformations for all Pipelines

Alpha specification following a sequence of these semantic preserving trans-
formations is shown below.

154 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

system Neural :{N,P,M | 2≤N; 2≤P; 2≤M}
(x : {n | 1≤n≤N} of real;
xcopy : {n | 1≤n≤N} of real;
Z4copy1 : {m | 1≤m≤M} of real;
Z4copy2 : {m | 1≤m≤M} of real;
W1 : {p,n | 1≤p≤P; 1≤n≤N} of real;
W2 : {m,p | 1≤m≤M; 1≤p≤P} of real;
W2copy : {m,p | 1≤m≤M; 1≤p≤P} of real;
expZ : {m | 1≤m≤M} of real)
returns (Z4 : {m | 1≤m≤M} of real;
DeltaW1 : {p,n | 1≤p≤P; 1≤n≤N} of real;
DeltaW2 : {m,p | 1≤m≤M; 1≤p≤P} of real);
var
Y2pipe : {p,n | 1≤p≤P; N+2≤n} of real;
Y4pipe : {p,n | 1≤p≤P; N+2M+5≤n≤2N+2M+4} of
real;
Z4pipe1 : {p,n | 1≤p≤P; N+M+3≤n≤N+2M+2} of
real;
Xpipe : {p,n | 1≤p≤P; 1≤n≤N} of real;
DeltaW2Loc : {p,n | 1≤p≤P;
2N+2M+5≤n≤2N+3M+4} of real;
DeltaW1Loc : {p,n | 1≤p≤P;
N+2M+5≤n≤2N+2M+4} of real;
ZZ1acc : {p,n | 1≤p≤P; N+3≤n≤N+M+2} of
real;
YY3acc : {p,n | 1≤p≤P; N+M+3≤n≤N+2M+2} of
real;
YY1acc : {p,n | 1≤p≤P; 1≤n≤N} of real;
Y1 : {p,n | 1≤p≤P; n=N+1} of real;
Y2 : {p,n | 1≤p≤P; n=N+2} of real;
Y3 : {p,n | 1≤p≤P; n=N+2M+3} of real;
Y4 : {p,n | 1≤p≤P; n=N+2M+4} of real;
Z1 : {p,n | p=P+1; N+3≤n≤N+M+2} of real;
Z2 : {p,n | p=P+1; N+3≤n≤N+M+2} of real;
Z3 : {p,n | p=P+1; N+3≤n≤N+M+2} of real;
Z4comp : {p,n | p=P+1; N+3≤n≤N+M+2} of real;
let
Y2pipe[p,n] =
case
{ | n=N+2} : Y2[p,n];
{ | N+3<=n} : Y2pipe[p,n-1];
esac;

Y4pipe[p,n] =
case
{ | n=N+2M+5} : Y4[p,n-1];
{ | N+2M+6<=n} : Y4pipe[p,n-1];
esac;
Z4pipe1[p,n] =
case
{ | p=1} : Z4copy1[n-N-M-2];
{ | 2<=p} : Z4pipe1[p-1,n];
esac;
Xpipe[p,n] =
case
{ | p=1} : x[n];
{ | 2<=p} : Xpipe[p-1,n];
esac;
DeltaW2[m,p] = DeltaW2Loc[p,m+2N+2M+4];
DeltaW1[p,n] = DeltaW1Loc[p,n+N+2M+4];
ZZ1acc[p,n] =
case
{ | p=1} : 0[] + W2[p+n-N-3,1] * Y2pipe;
{ | 2<=p} : ZZ1acc[p-1,n] + W2[n-N-2,p] *
Y2pipe;
esac;
YY3acc[p,n] =
case
{ | n=N+M+3} : 0[] + W2copy[1,p] * Z4pipe1;
{ | N+M+4<=n} : YY3acc[p,n-1] +
W2copy[n-N-M-2,p] * Z4pipe1;
esac;
YY1acc[p,n] =
case
{ | n=1} : 0[] + W1 * Xpipe;
{ | 2<=n} : YY1acc[p,n-1] + W1 * Xpipe;
esac;
Y1[p,n] = YY1acc[p,n-1];
Y3[p,n] = YY3acc[p,n-1];
Z1[p,n] = ZZ1acc[p-1,n];
Y2[p,n] = f(Y1[p,n-1]);
Y4[p,n] = Y3[p,n-1] * Y2pipe * (1[] - Y2pipe);
Z2[p,n] = f(Z1[p,n]);
Z3[p,n] = expZ[p+n-N-P-3] - Z2[p,n];
Z4comp[p,n] = Z3[p,n] * Z2[p,n] * (1[] -
Z2[p,n]);
Z4[m] = Z4comp[P+1,m+N+2];
DeltaW1Loc[p,n] = Y4pipe * xcopy[n-N-2M-4];
DeltaW2Loc[p,n] = Z4copy2[n-2N-2M-4] * Y2pipe;
tel;

Figure 5.7.8: Before Scheduling Alpha Code

Scheduling and processor allocation
An Alpha program does not convey any sequential ordering: an execution

order is semantically valid provided it respects the data dependencies of the
program. The goal of scheduling is to find a timing function for each variable
which maps each point in the variable’s index space to a positive integer repre-
senting a virtual execution time [16, 17]. This mapping should respect causal-
ity. The scheduling problem in the general case is undecidable. The MMAl-
pha system, therefore tries to find timing functions within the restricted class
of affine schedules, for which necessary and sufficient conditions exist. Extra
flexibility is accorded by allowing different affine schedules for each variable.

Hardware generation 155

The technique used for scheduling is to formulate the causality constraints as
linear integer programming program (LP) and to solve it using a software tool
(like PIP [18]).

For the example of the neural nets, we required that the one step of the
computation be completed in 2N + 2M + max(P, M) time (Figure 5.4.1).
The scheduler in MMAlpha was able to compute this schedule. Also in
the general case, where N, M and P are not equal, the scheduler was able to
compute the optimum schedule (lowest processor idle time being the criterion
for optimality). We do a reindexing of the first dimension to represent the time
and the second processor. The resulting Alpha code is shown in Figure 5.7.9.
In the next section, we describe the generation of the RTL description of the
architecture.

5.8 Hardware generation

One of the motivating factors in this research was to derive the RTL de-
scription of the high performance architecture implementing the back propa-
gation algorithm. We have described the sequence of transformations which
transformed the initial specification (Figure 5.6.2) into a form where an ex-
ecution time and processor allocation has been assigned for each expression
(Figure 5.7.9).

Control Signal Generation
To realize a systolic array in hardware, control signals are necessary to

instruct each Processing Element (PE) of the array when to perform what
computation. MMAlpha allows us to automatically generate the control
flow information so that the right computations are done by the right PEs at
the right time steps.

Alpha0 Format
After the program has been uniformized and scheduled, MMAlpha translates
it to the Alpha0 format. After the program has been scheduled, the next
important step is the generation and pipelining of the control signal. Therefore
control signals are generated and multiplexors added to each processors. The
controls signal is then pipelined automatically by the system. The resulting
Alpha0 program contains the precise information that appears on the lifetime
of each signal and on the input date of each data.
Alphard Format
Alphard is a subset of the Alpha language and is used to describe regular
circuits with local interconnections and their control and is hierarchical. At
the lowest level we have cells consisting of combinatorial circuits, registers,
multiplexors, etc. A cell may also contain other cells. We also have controllers

156 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

system Neural :{N,P,M | 2≤N; 2≤P; 2≤M}
(x : {n | 1≤n≤N} of real;
xcopy : {n | 1≤n≤N} of real;
Z4copy1 : {m | 1≤m≤M} of real;
Z4copy2 : {m | 1≤m≤M} of real;
W1 : {p,n | 1≤p≤P; 1≤n≤N} of real;
W2 : {m,p | 1≤m≤M; 1≤p≤P} of real;
W2copy : {m,p | 1≤m≤M; 1≤p≤P} of real;
expZ : {m | 1≤m≤M} of real)
returns (Z4 : {m | 1≤m≤M} of real;
DeltaW1 : {p,n | 1≤p≤P; 1≤n≤N} of real;
DeltaW2 : {m,p | 1≤m≤M; 1≤p≤P} of real);
var
Y2pipe : {t,p | p+2≤t≤p+P+1; N+2≤p} of
real;
Y4pipe : {t,p | p+3≤t≤p+P+2;
N+2M+5≤p≤2N+2M+4} of real;
Z4pipe1 : {t,p | p≤t≤p+P-1; N+M+3≤p≤N+2M+2}
of real;
Xpipe : {t,p | p≤t≤p+P-1; 1≤p≤N} of real;
DeltaW2Loc : {t,p | p+3≤t≤p+P+2;
2N+2M+5≤p≤2N+3M+4} of real;
DeltaW1Loc : {t,p | p+4≤t≤p+P+3;
N+2M+5≤p≤2N+2M+4} of real;
ZZ1acc : {t,p | p+3≤t≤p+P+2; N+3≤p≤N+M+2}
of real;
YY3acc : {t,p | p+1≤t≤p+P; N+M+3≤p≤N+2M+2}
of real;
YY1acc : {t,p | p+1≤t≤p+P; 1≤p≤N} of real;
Y1 : {t,p | N+2≤t≤N+P+1; p=N+1} of real;
Y2 : {t,p | N+3≤t≤N+P+2; p=N+2} of real;
Y3 : {t,p | N+2M+4≤t≤N+P+2M+3; p=N+2M+3} of
real;
Y4 : {t,p | N+2M+7≤t≤N+P+2M+6; p=N+2M+4} of
real;
Z1 : {t,p | t=p+P+3; N+3≤p≤N+M+2} of real;
Z2 : {t,p | t=p+P+4; N+3≤p≤N+M+2} of real;
Z3 : {t,p | t=p+P+5; N+3≤p≤N+M+2} of real;
Z4comp : {t,p | t=p+P+6; N+3≤p≤N+M+2} of
real;
let
Y2pipe[t,p] =
case
{ | p=N+2} : Y2[t-1,p];
{ | N+3<=p} : Y2pipe[t-1,p-1];
esac;
Y4pipe[t,p] =
case
{ | p=N+2M+5} : Y4[t-1,p-1];
{ | N+2M+6<=p} : Y4pipe[t-1,p-1];
esac;

Z4pipe1[t,p] =
case
{ | t=p} : Z4copy1[p-N-M-2];
{ | p+1<=t} : Z4pipe1[t-1,p];
esac;
Xpipe[t,p] =
case
{ | t=p} : x[p];
{ | p+1<=t} : Xpipe[t-1,p];
esac;
DeltaW2[m,p] =
DeltaW2Loc[m+p+2N+2M+6,m+2N+2M+4];
DeltaW1[p,n] = DeltaW1Loc[p+n+N+2M+7,n+N+2M+4];
ZZ1acc[t,p] =
case
{ | t=p+3} : 0[] + W2[t-N-5,1] *
Y2pipe[t-1,p];
{ | p+4<=t} : ZZ1acc[t-1,p] + W2[p-N-2,t-p-2]
* Y2pipe[t-1,p];
esac;
YY3acc[t,p] =
case
{ | p=N+M+3} : 0[] + W2copy[1,t-p] *
Z4pipe1[t-1,p];
{ | N+M+4<=p} : YY3acc[t-1,p-1] +
W2copy[p-N-M-2,t-p] * Z4pipe1[t-1,p];
esac;
YY1acc[t,p] =
case
{ | p=1} : 0[] + W1[t-p,p] * Xpipe[t-1,p];
{ | 2<=p} : YY1acc[t-1,p-1] + W1[t-p,p] *
Xpipe[t-1,p];
esac;
Y1[t,p] = YY1acc[t-1,p-1];
Y3[t,p] = YY3acc[t-1,p-1];
Z1[t,p] = ZZ1acc[t-1,p];
Y2[t,p] = f(Y1[t-1,p-1]);
Y4[t,p] = Y3[t-3,p-1] * Y2pipe[t-1,p] * (1[] -
Y2pipe[t-1,p]);
Z2[t,p] = f(Z1[t-1,p]);
Z3[t,p] = expZ[t-N-P-7] - Z2[t-1,p];
Z4comp[t,p] = Z3[t-1,p] * Z2[t-2,p] * (1[] -
Z2[t-2,p]);
Z4[m] = Z4comp[m+N+P+8,m+N+2];
DeltaW1Loc[t,p] = Y4pipe[t-1,p] *
xcopy[p-N-2M-4];
DeltaW2Loc[t,p] = Z4copy2[p-2N-2M-4] *
Y2pipe[t-1,p];
tel;

Figure 5.7.9: Scheduled Alpha Code

responsible for initialization. At this point we have a description of a circuit
that has no “spatial dimensions". It represents a single processing element
which may be instantiated at multiple spatial locations.

The next level of the hierarchy is the module which specifies how the differ-
ent cells are assembled regularly in one or more dimensions. This is achieved
by instantiating previously declared cells. In addition, controllers are instan-
tiated only once, with no spatial replication. The separation of temporal and

Performance evaluation 157

spatial aspects is also reflected in the fact that the equations describing the be-
havior of cells have only one local index variable (time) and in the equations
for modules, the dependencies have only spatial components indicating pure
(delayless) interconnections.

The architectural description given by Alphard provides

structuring, as complex designs must be hierarchical;

genericity to allow component reuse and

allows regularity to be described, in order to reuse hardware descriptions
and simplify the design process.

Synthesizable VHDL
The translation produces synthesizable VHDL (compliant with IEEE-1076
standard [19] when the size parameters have been fixed. The hardware transla-
tor is implemented using a syntax generated meta translator which allows fast
retargeting of generator depending on the type of synthesis tools used.
Interface Generation
The MMAlpha system supports the automatic generation of interfaces be-
tween the host program and the application running on the FPGA. The under-
lying interface of the system consists of a bus and a FIFO that interconnects
the bus with the application. The bus and the FIFO comprises the hardware
interface. The FIFO allows the data to be buffered when an interruption occurs
on the bus. On top of the hardware interface, is built an application interface
whose role is to rearrange as necessary, the data between the hardware interface
and the application.

As described in the previous discussion on the hand derived code, we down-
load the application data into the on board memories. This requires us to con-
nect the FIFO to the onboard memories instead of the bus. This part of the
interface is dependent to a certain degree on the hardware board being used—
nevertheless MMAlpha generates generic code that can be easily customized
for the different boards. The data to be downloaded to the memory is the same
reordered data that is automatically generated by the system.

5.9 Performance evaluation

In this section, we discuss the performance of our architecture for the back-
propagation neural network. In the first part of this paper we described the
design—the VHDL specification for the entire system was written and syn-
thesized for the target application directed for implementation on the Starfire
Board. Subsequently we derived a VHDL description (automatically) of the ar-
chitecture from a very high level specification using the MMAlpha research
tool. This gave us two circuits implemented on hardware and we present in
this section, their comparative performance figures.

158 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

The learning phase of the algorithm is the most time consuming one. We
see that under the conditions where (N = P = M), the processors are never
idle (except the special one which operates only in one of the 5 micro steps).
In the “recall" phase, the weights as obtained from the learning phase remain
unchanged. Then the system is allowed to run only in modes 1 and 2. The
target application for which we designed this system has 20 input neurons, 32
hidden layer neurons (one hidden layer) and one output layer neuron. The
back propagation network was coded in VHDL and the circuit mapped to the
XCV1000 package available on the Starfire board. The results of the place and
route tool of Xilinx Foundation 2.1i is shown in Table 5.2.

The circuit operates at 35 MHz on an FPGA with a speed grade of -4. No

Table 5.2. Results for Hand Written VHDL

Number of External GCLKIOBs : 1 out of 4 25%
Number of External IOBs : 98 out of 404 24%
Number of Slices : 3933 out of 12288 32%
Number of GCLKs : 1 out of 4 25%

register retiming was performed and we are working on that to further push up
the frequency of operation. The critical path delay in this circuit was 24ns.

We could fit up to 70 processors on the XCV1000. Each processor does 2
fixed point operations. Hence the throughput of the circuits is 2∗70∗35MHz
or about 5 Giga Operations per second.

In the case of the automatically derived code, the following table gives the
results of the place and route tool. The circuit operates at 30MHz which

Table 5.3. Results for Automatically generated VHDL

Number of External GCLKIOBs : 1 out of 4 25%
Number of External IOBs : 122 out of 404 30%
Number of Slices : 4915 out of 12288 39%
Number of GCLKs : 1 out of 4 25%

is about 14% slower than the hand coded one. Clearly, in comparison with
the hand optimized design, the automatic implementation does take up more
resources (7% more on the target FPGA). But this is to be expected and the
gain is in the shortened design time. The entire design and coding cycle for the
automatic derivation is a couple of days whereas the hand coded design took

Related work 159

a couple of months to be implemented. Also we can generate C code to test
functional correctness of the design after every stage of transformations.

Clearly, the number of neurons in the hidden layer determines the number
of processors that the neural network needs in this design. This then becomes
the major limitation of a FPGA based design because the number of processors
that can fit is limited by the size of the FPGA. For the target application that
we had chosen, it was not a problem. However we envision that more complex
examples would need a larger number of processors and even the larger FPGA’s
may not be able to meet the requirement. We are working on a solution to
this problem whereby we use partitioning techniques [20, 21] to partition the
processor space using different methods. The underlying idea is to partition
the processor array in such a way that a single physical processor sequentially
emulates several virtual processors.

5.10 Related work

As mentioned in the previous sections, the focus of our research was not
to come up with a new algorithm for the back propagation algorithm. Rather
we intended to derive an efficient implementation of the algorithm targeted to-
wards FPGAs. Research in the area of neural networks have been ongoing for
over two decades now and hence a wealth of knowledge is available. In our
study we found that the following related closely to implementations targeted
towards hardware in general and FPGAs in particular. Burr [22] has a bibliog-
raphy of digital neural structures. Zhang and Pal also have recently compiled a
great reference of neural networks and their efficient implementations in sys-
tolic arrays [23]. Also this reference is a recent one (2002) and reviews a host
of implementations of neural networks. Zhu and Sutton report a survey on
FPGA implementations of neural networks in the last decade [24]. Kung and
Hwang [25, 26] describe a scheme for designing special purpose systolic ring
architectures to simulate neural nets. The computation that they parallelize is
essentially the forward phase of the algorithm. They use the fact that neural al-
gorithms can be rewritten as iterative Their implementation needs bidirectional
communication links. It also doesn’t avoid idle cycles between processors.
Their architecture takes advantage of the fact that neural algorithms can be
rewritten in the form of iterative matrix operations. They apply standard tech-
niques to map iterative matrix operations onto systolic architectures. Kung et
al [27] have reported results of implementing the back propagation on CMU
Warp. The Warp exploited coarse grained parallelism in the problem by map-
ping either partitions or copies of the network onto its 10 systolic processors.
Ferrucci describes a multiple chip implementation [28]. In this the author de-
scribes in fine detail of how he has implemented the basic building blocks
like multipliers, adders etc of a systolic implementation of neural networks

160 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

in FPGA. This work concentrates more on extracting performance out of the
FPGA architecture in terms of efficient low level implementations of the ele-
ments that are used to build the neurons. The design also is reported to work at
10MHz. Elredge and Hutchings report a novel way of improving the hardware
density of FPGAs using Runtime Reconfiguration(RTR) [29]. They divide the
back propagation algorithm into three sequentially executed stages and con-
figure the FPGA to execute only one stage at a time. They report significant
deterioration in performance but justify the use of RTR to get density enhance-
ment. Bade and Hutchings [30] report an implementation of stochastic neural
networks based on FPGAs—their proof of concept circuit is implemented on
a very small FPGA (100 CLBs). Their solution proposes the use of bit ser-
ial stochastic techniques for implementing multiplications. Their implemen-
tations achieve very high densities for stochastic neural networks. Zhang has
reported an efficient implementation of the BP algorithm on the connection
machine [31]. This implements only the forward phase of the network. The
authors describe how to implement a “multiply-accumulate-rotate" iteration
for a fully connected network using the 2D connections of CM-2.

Botros et al. [32], have presented a system for feed forward recall phase.
Each node is implemented with two XC3042 FPGAs and a 1KX8 EPROM.
Training is done offline on a PC. The whole system operated at 4MHz. Linde
et al [33] have described REMAP which is an experimental project of building
an entire computer for neural computation using only FPGAs. The suggested
architecture incorporates highly parallel, communicating processing modules,
each constructed as a linear SIMD (Single Instruction stream, Multiple Data
stream) array, internally connected using a ring topology, but also supporting
broadcast and reduction operations.This gives high performance, up to 40-50
MHz. The full scale prototype is reported to work at 10 MHz. Gadea et al. [34],
report an implementation of a pipelined on-line back propagation network on
a single XCV400 package. Also they have reported a maximum operating
frequency of only 10MHz.

5.11 Conclusion

Our contribution in this paper is two fold. We have described a new systolic
design for implementing the back propagation learning algorithm which lends
itself to efficient parallelization. Our algorithm is the fastest systolic design
reported as yet since it avoids the inter phase idle time from which all previous
designs suffer. Secondly, we have implemented the proposed algorithm on
an FPGA. Here too, we believe that we have a higher operating frequency as
compared with other implementations. Although, this is an implementation
issue and depends on the target boards, available memory and the FPGA itself,
our operating frequency of about 35 MHz is based on the the XCV1000 FPGA

161

which is not the most recent technology. We expect to have a faster circuit on
the Virtex II FPGA. Our design is completely scalable and can accommodate a
large number of processors (limited only by the size of the FPGA). The design
is also scalable in the number of hidden layers. The design has been targeted
for the Virtex based boards and good results have been obtained.

The main focus of this research endeavor has been two fold—one to desisgn
a high performance circuit for the BP algorithm and second to use automatic
synthesis of such a high performance architecture for FPGA. We implemented
a new design and then used the tool to generate the RTL automatically. We
have presented performance figures for both these designs. The automatically
generated hardware description obviously makes greater demands on hardware
resources but that is to be expected. We have been working on hardware opti-
mizations that can be implemented in our tool so as to close the gap.

Appendix
The complete script which transforms the Alpha specification to synthesizable

VHDL.

load["NN.a"]; analyze[]; ashow[]
serializeReduce[{6, 1, 2}, "YY1.(p,n->p,n-1)"];
serializeReduce[{6, 3, 2}, "YY3.(m,p->m-1,p)"];
serializeReduce[{6, 5, 2}, "ZZ1.(m,p->m,p-1)"];
simplifySystem[]; ashow[]
cut["ZZ1", "{m,p | p=0}", "ZZ10", "ZZ1acc"];
cut["YY1", "{p,n | n=0}", "YY10", "YY1acc"];
cut["YY3", "{m,p | m=0}", "YY30", "YY3acc"];
Print["Simplifying, please wait"]
simplifySystem[];
substituteInDef[ZZ1acc, ZZ10];
substituteInDef[YY1acc, YY10];
substituteInDef[YY3acc, YY30];
removeAllUnusedVars[];
Print["I’m normalizing, please wait ..."]
normalize[]; simplifySystem[]; ashow[]
asave["NN-serial.a"]

load["NN-serial.a"];
changeOfBasis["Y1.(p->p,N+1)", {"p", "n"}];
changeOfBasis["Y2.(p->p,N+2)", {"p", "n"}];
changeOfBasis["ZZ1acc.(m,p->p,N+2+m)", {"p", "n"}];
changeOfBasis["Z1.(m->P+1,N+2+m)", {"p", "n"}];
changeOfBasis["Z2.(m->P+1,N+2+m)", {"p", "n"}];
changeOfBasis["Z3.(m->P+1,N+2+m)", {"p", "n"}];
changeOfBasis["Z4comp.(m->P+1,N+2+m)", {"p", "n"}];
changeOfBasis["YY3acc.(m,p->p,N+M+m+2)", {"p", "n"}];
changeOfBasis["Y3.(p->p,N+2M+3)", {"p", "n"}];

Appendix

162 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

changeOfBasis["Y4.(p->p,N+2M+4)", {"p", "n"}];
addlocal["DeltaW1Loc = DeltaW1"];
addlocal["DeltaW2Loc = DeltaW2"];
normalize[];
changeOfBasis["DeltaW1Loc.(p,n->p,n+N+2M+4)"];
changeOfBasis["DeltaW2Loc.(m,p->p,m+2N+2M+4)", {"p", "n"}];
Print["and now ..."]
normalize[]; simplifySystem[]; ashow[]
asave["NN-aligned.a"]
Print["Now we need to go into NN-aligned.a and uniformize some depencences --
which are actually uniform-in-context by hand, and save the result in
NN-aligned-hand.a"]
Print["Actually, this has already been done"]
InputString["So hit return to continue > "];

load["NN-aligned-hand.a"];
pipeall["YY1acc", "x.(p,n->n)", "Xpipe.(p,n->p+1,n)"];
pipeall["YY3acc", "Z4copy1.(p,n->n-N-M-2)", "Z4pipe1.(p,n->p+1,n)"];
pipeall["DeltaW1Loc", "Y4.(p,n->p,N+2M+4)", "Y4pipe.(p,n->p,n+1)"];
addlocal["temp", "Y2.(p,n->p,N+2)"];
cut["temp", "{p,n|n>=N+2}", "Temp", "junk"];
simplifySystem[]; removeAllUnusedVars[];
pipeall["Temp", "Y2.(p,n->p,N+2)", "Y2pipe.(p,n->p,n+1)"];
substituteInDef[DeltaW2Loc, Temp];
substituteInDef[Y4, Temp];
substituteInDef[ZZ1acc, Temp];
simplifySystem[]; removeAllUnusedVars[];
convexizeAll[]; ashow[]
asave["NN-local1.a"];
Print["Apparently, convexizeAll does not work as well as we hope, so you have
to do this by hand"]
InputString["So hit return to continue > "];

load["NN-local1-hand.a"];
schedule[scheduleType -> sameLinearPart]
appSched[]; asave["NN-scheduled-app.a"];
load["NN-local1-hand.a"];
applySchedule[]; asave["NN-scheduled-apply.a"];
load["NN-scheduled-apply.a"];
toAlpha0v2[];
simplifySystem[alphaFormat -> Alpha0];
reuseCommonExpr[];
simplifySystem[alphaFormat -> Alpha0];
addAllParameterDomain[];
convexizeAll[];
simplifySystem[alphaFormat -> Alpha0];
alpha0ToAlphard[]; asaveLib["NN_Hard"]
load["NN_Hard"];
analyze[];uniformQ[];
fixParameter["N", 20];

163

fixParameter["P", 32];
fixParameter["M", 10];
$library = Drop[$library, -1];
$library = $library /. (real -> integer);
a2v[]

References

References

[1] R L Walke, R W M Smith, and G Lightbody. 2000. “20 GFLOPS
QR processor on a Xilinx Virtex E FPGA,” in SPIE, Advanced Signal
Processing Algorithms, Architectures, and Implementations X.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. “Learning In-
ternal Representations by Error Propagation,” Nature, vol. 323, pp. 533–
536.

[3] Y. L. Cun and et al., 1989. “Backpropagation applied to Handwritten Zip
Code Generation,” Neural Computation, vol. 1, no. 4, pp. 541–551.

[4] N. Sundarajan and P. Saratchandran.1998. Parallel Architectures for Arti-
ficial Neural Networks. IEEE Computer Society Press, California, USA,
ISBN 0-8186-8399-6.

[5] “The Alpha Homepage,” Information available at http://www.irisa.fr/
cosi/ALPHA.

[6] D. Lavenier, P. Quinton, and S. Rajopadhye. 1999. Digital Signal
Processing for Multimedia Systems, ch. 23. Parhi and Nishitani edi-
tor, Marcel Dekker, New York.

[7] Annapolis Micro Systems Inc. STARFIRE Reference Manual, available
at www.annapolis.com.

[8] Annapolis Micro Systems Inc. at http://www.annapmicro.com.

[9] “Xilinx Inc. 2.5V Field Programmable Gate Arrays:Preliminary Product
Description,” October 1999. www.xilinx.com.

[10] “Celoxica Inc,” Information available at http://www.celoxica.com.

[11] “Accel Inc,” Information available at http://www.accelchip.com.

[12] “The Alpha Homepage at Brigham Young University,” Information avail-
able at http://www.ee.byu.edu:8080/~wilde/Alpha.

164 Back-Propagation Algorithm Achieving 5 GOPS on the Virtex-E

[13] “The Alpha Homepage at Colorado State University,” Information avail-
able at http://www.cs.colostate.edu/~kolin/Alpha.

[14] “The polyhedral library,” Information available at http://icps.u-
strasbg.fr/PolyLib/.

[15] C. Mauras. 1989. Alpha: un langage équationnel pour la conception et la
programmation d’arctitectures parallèles synchrones . PhD thesis, Thèse,
Université de Rennes 1, IFSIC .

[16] P. Feautrier. 1992. “Some efficient solutions to the affine scheduling prob-
lem: I. one-dimensional time,” International Journal of Parallel Pro-
gramming, vol. 21, no. 5, pp. 313–348.

[17] P. Feautrier. 1992. “Some efficient solutions to the affine scheduling prob-
lem: part ii multidimensional time,” International Journal of Parallel
Programming, vol. 21, no. 6, pp. 389–420.

[18] “PIP/PipLib 1.2.1 ‘fusion’,” Information available at
http://www.prism.uvsq.fr/~cedb/bastools/piplib.html.

[19] “IEEE Standard VHDL Language Reference Manual,” 1994. ANSI/IEEE
Std 1076-1993.

[20] S Derrien and S Rajopadhye. 1991. “Loop Tiling for Reconfigurable Ac-
celerators,” in International Workshop on Field Programmable Logic and
Applications (FPL’91).

[21] S Derrien and S Sur Kolay and S Rajopadhye. 2000. “Optimal partition-
ing for FPGA Based Arrays Implementation,” in IEEE PARELEC’0.

[22] J. Burr. 1991. Digital Neural Network Implementations – Concepts, Ap-
plications and Implementations, Vol III. Englewood Cliffs, New Jersey:
Prentice Hall.

[23] D. Zhang and S. K. Pal. 2002. Neural Networks and Systolic Array De-
sign. World Scientific Company.

[24] Jihan Zhu and Peter Sutton. 2003. “FPGA Implementation of Neural Net-
works - A Survey of a Decade of Progress,” in 13th International Con-
ference on Field-Programmable Logic and Applications (FPL 2003), Lis-
bon, Portugal., pp. 1062–1066, Springer-Verlag.

[25] S Y Kung. 1988. “Parallel Achitectures for Artificial Neural Networks,”
in International Conference on Systolic Arrays, pp. 163–174.

165References

[26] S Y Kung and J N Hwang. August 1989. “A Unified Systolic Architecture
for Artificial Neural Networks,” Journal of Parallel Distributed Comput-
ing, vol. 6, pp. 358–387.

[27] H T Kung. 1988. “How We got 17 million connections per second,” in
International Conference on Neural Networks, vol. 2, pp. 143–150.

[28] A T Ferrucci. 1994. A Field Programmable Gate Array Implementation
of self adapting and Scalable Connectionist Network. PhD thesis, Master
Thesis, University of California, Santa Cruz, California.

[29]
ment of a Neural Network using FPGAs and Runtime Reconfiguration,”
in IEEE Workshop on FPGAs for Custom Computing Machines, pp. 180–
188, IEEE.

[30] Stephen L Bade and Brad L April 1994. “FPGA-Based
Stochaistic Neural Networks,” in IEEE Workshop on FPGAs for Custom
Computing Machines,, pp. 189–198, IEEE.

[31]
propagation Algorithm on the Connection Machine,” Advances in Neural
Information Processing Systems, vol. 2, pp. 801–809.

[32] N. M. Botros and M Abdul-Aziz. December 1994. “Hardware Implemen-
tation of an Artificial Neural Network using Field Programmable Arrays,”
IEEE Transactions on Industrial Electronics, vol. 41, pp. 665–667.

[33] A Linde, T Nordstrom, and M Taveniku, “Using FPGAs to implement
a Reconfigurable Highly Parallel Computer” 1992. in Selected papers
from: Second International Workshop on Field Programmable Logic and
Applications (FPL’92), pp. 199–210, Springer-Verlag.

[34] Rafael Gadea, Franciso Ballester, Antonio Mocholí, and Joaquín Cerdá.
2000. “Artificial Neural Network Implementation on a Single FPGA of
a Pipelined On-Line Backpropagation,” in Proceedings of the 13th Inter-
national Symposium on System Synthesis, IEEE.

James G Elridge and Stephen L Bade. April 1994. “Density Enhance-

Hutchings.

X. Zhang and et al. 1990. “An Efficient Implementation of the Back-

Chapter 6

FPGA IMPLEMENTATION OF VERY LARGE
ASSOCIATIVE MEMORIES

Application to Automatic Speech Recognition

Dan Hammerstrom, Changjian Gao, Shaojuan Zhu, Mike Butts*
OGI School of Science and Engineering, Oregon Health and Science University, *Cadence
Design Systems

Abstract Associative networks have a number of properties, including a rapid, compute
efficient best-match and intrinsic fault tolerance, that make them ideal for many
applications. However, large networks can be slow to emulate because of their
storage and bandwidth requirements. In this chapter we present a simple but
effective model of association and then discuss a performance analysis we have
done in implementing this model on a single high-end PC workstation, a PC
cluster, and FPGA hardware.

Keywords: Association networks, FPGA acceleration, Inner product operations, Memory
bandwidth, Benchmarks

6.1 Introduction

The goal of the work described here was to assess the implementation
options for very large associative networks. Association models have been
around for many years, but lately there has been a renaissance in research into
these models, since they have characteristics that make them a promising solu-
tion to a number of important problems.

The term Intelligent Signal Processing (ISP) is used to describe algorithms
and techniques that involve the creation, efficient representation, and effective
utilization of complex models of semantic and syntactic relationships. In other
words, ISP augments and enhances existing Digital Signal Processing (DSP)
by incorporating contextual and higher level knowledge of the application do-
main into the data transformation process. It is these complex, “higher-order”

167

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 167–195.
© 2006 Springer. Printed in the Netherlands.

168 FPGA Implementation of Very Large Associative Memories

relationships that are so difficult for us to communicate to existing computers
and, subsequently, for them to utilize efficiently when processing signal data.

Associative networks are neural network structures that approximate the
general association areas seen in many biological neural circuits. In addition
to having a strong grounding in computational neurobiology, they also show
promise as an approach to ISP. This is particularly true when used in multiple
module configurations where connectivity, learning, and other parameters are
varied between modules, leading to complex data representations and system
functionality.

This chapter is divided into 4 major sections and a Summary and Conclu-
sions section. Section 6.2 describes the basic association memory computa-
tional model used for our analysis as well as examples of its use in real ap-
plications. Section 6.3 presents a performance analysis of a single PC and PC
cluster in executing this model. These systems represent the best alternatives
to the FPGA solution proposed here and constitute a standard performance
benchmark for the model. Section 6.4 presents an analysis of the FPGA imple-
mentation, using a memory intensive FPGA board. And, Section 6.5 compares
the FPGA analysis to the PC performance results.

6.2 Associative memory

In this section we show the basic computational model that was imple-
mented. Subsection 6.2.1 provides some historical background, while sub-
section 6.2.2 presents the basic model. A theoretical model is briefly presented
in 6.2.3, and two example applications in subsection 6.2.4.

In traditional computing, data are stored in memory according to a direct
addressing scheme. This approach requires that the computation engine be able
to provide the addresses for the data being accessed. For some applications,
such as the storage of large numerical arrays, creating the necessary address is
not difficult, though a fair amount of effort is still involved. However, in some
applications the address is unknown, or some part of a particular set of data
is known and the remaining data in the set are sought. To accomplish this, a
different kind of memory function, content addressing, is used.

The most common kind of content addressing is exact match, where part of
the data is known and is matched exactly to the contents of a location. There
are a number of applications for exact match association, from addressing in
cache memory to routing tables. There have been a number of parallel, exact
match, association engines [4] created over the years. Also, there are fairly
efficient algorithms for exact match association such as hash coding.

However, if the data we have are close but not exact to data stored in the
memory, a best match content addressable memory would be useful. This
memory would find the content that had the “closest” match according to some

Associative memory 169

metric. And it turns out that in many kinds of ISP this is exactly what we want
to do, that is, given noisy, corrupt input, we want to find the original content
that is the “most likely” in some sense.

An exact match can be determined fairly easily, but a best match is a little
more complicated. Unlike using hash based addressing for exact match asso-
ciation, there is no short cut1 to finding the best match. For arbitrary searches
it requires that every item in memory be examined. This is one reason why
best match associative memory is not used extensively. However, by using dis-
tributed data representation, efficient best match associative processing can be
realized. Best-match association also seems to be something that is commonly
performed by neural circuitry.

Best-match association finds the “closest” match according to some met-
ric distance defined over the data space. A simple and often used metric is
Hamming distance, however more complex vector metrics can also be used.
In some applications, for example, the distance between two vectors may have
more to do with the meaning assigned to the words represented by the vectors
than the number of letters different or the distance the letters are from each
other.

A common example of best match processing is Vector Quantization, where
the metric can be a Euclidean distance in a high dimensional vector space. We
can be even more sophisticated and let our metric be based on probability esti-
mates. Then under certain conditions our best match system returns the match
that was the most likely to have been the source of the data being presented,
based on data and error probabilities.

There is always the brute force approach which allocates a simple proces-
sor per record (or per a small number of records), all computing the match in
parallel with a competitive “run-off” to see who has the best score. Though in-
efficient, this implementation of best-match guarantees the best results and can
easily be used to generate optimal performance criteria, but it is too compute
intensive for most real applications.

6.2.1 Previous Work

We cannot do justice to the rich history of associative processing in this
chapter, but it is important to mention some of the key developments. It is not
even clear who started using these techniques first, though Donald Hebb [10]
used the term “association” in conjunction with arrays of neurons. Perhaps the

Stein-

1One of the best algorithms is the KD tree of [18]. Bumptrees for efficient function, constraint, and classifi-
cation learning. Advances in Neural Information Processing Systems 3, Denver, Colorado, Morgan Kauff-
mann., but even these have significant limitations in many applications, for example, such as dynamically
learning new data during execution.

first visible development was the Lernmatrix of Karl Steinbuch [23].

170 FPGA Implementation of Very Large Associative Memories

buch’s model, and similar early models by Willshaw and his group [7] and
Kohonen [14], were based primarily on linear association. In linear associa-
tion, the connection weight matrix is formed by summing the outer products
(of the input vector with its output vector). Recall is done via a simple matrix
/ vector multiplication. If a training vector is input, the output vector associ-
ated with it will be output. If a noisy version of a training vector is input, the
output will be a combination of the various training vectors that are present in
the noisy input vector. The components of the associated output vectors will
be proportional to the degree to which the training vectors are represented in
the noisy input, with the most prominent (usually the training vector before the
noise was added) input vector being the most prominent in the output. To be
effective, the trained vectors need to be linearly independent.

In the 80s a number of important, non-linear, variations of the linear asso-
ciator were developed. Perhaps the most influential models were developed
by Palm [20], Willshaw [24], and Hopfield [12]. The Hopfield model was
based on the physics of spin glasses and consequently had an appealing the-
oretical basis. In addition, the model required asynchronous operation. For
additional models the interested reader is referred to the work of Amari [1],
Hecht-Nielsen [11], Anderson [2, 3], and Lansner [15].

6.2.2 Sparse Association Networks with k-WTA Output

6.2.2.1 The Palm Model. A simple, but effective association algo-
rithm was developed by G. Palm and his associates [20, 21]. A key aspect of
this model is a very sparse data representation and k-WTA (K Winners Take
All) output filtering. The k-WTA operation increases the effectiveness of the
memory and also eliminates the need for the training vectors to be linearly
independent.

Although non-binary Palm models are possible, for the sake of this discus-
sion we will assume that all input and output vectors are binary as is the weight
matrix. In the Palm model there are certain vectors that are used to train the
network. Each vector has a sparse representation, which is enforced by limit-
ing the number of 1s in each vector to a fixed value, k. This limited activation
enforces a certain distribution of the data representations, where each node
may participate in the representation of a number of different stored elements.
Sparse, distributed representations are efficient, because of the combinatoric
effects of very large vector spaces. And they are massively parallel because
large numbers of processing nodes operate concurrently to compute the out-
put. Distributed representations also enhance fault tolerance.

The algorithm uses here stores mappings of specific input representations
xi to specific output representations yi, such that xi → yi. The network is
constructed with an input-output training set (xi, yi), where F (xi) = yi. The

Associative memory 171

mapping F is approximative, or interpolative, in the sense that F (xi + ε) =
yi + δ, where xi + ε is an input pattern that is close to input xµ being stored
in the network, and |δ| � |ε| with δ → 0 , where δand ε represent noise
vectors. This definition also requires a metric over both the input and output
spaces.

In Palm’s model, the input, X , and output, Y , vectors are binary valued (0
or 1) and have equal dimensions, n, since we are using a feedback network
(output to input) to implement auto-association. There is also a binary valued
n by n matrix, W , that contains the weights. Output computation is a two-
step process, first an intermediate sum is computed for each node (there are n
nodes) by thresholding

sj =
∑

i

wjixi

where wji is the weight from input i to node j. The node outputs are then
computed

ŷj = f(sj − θj)

The function, f(x), is a step function (“hard max”), it is 1 if x > 0 and 0 if
x ≤ 0, leading to a threshold function whose output ŷj is 1 or 0 depending on
the value of the node’s threshold, θj . The setting of the threshold is discussed
below. In Palm’s basic model, there is one global threshold, but more complex
network models relax that assumption.

Programming these networks involves creating the appropriate weight ma-
trix, W , which is developed from “training” vectors. In the case of auto-
association these represent the association targets. In the Hopfield energy spin
model case, for example, these are energy minima. There are m training pat-
terns

S = {(Xµ, Y µ)|µ = 1, · · · , m}
In auto-associative memories the output is fed back to the input so that X =

Y . The weights are set according to a “clipped” Hebbian rule. That is, a
weight matrix is computed by taking the outer product of each training vector
with itself, and then doing a bit-wise OR of each training vector’s matrix

w̄ij =
M⋃

µ=1

(xµ
i · (yµ

j)T)

An important characteristic is that only a constant number of nodes are ac-
tive for any vector. The number of active nodes, k, is fixed and it is a relatively
small number compared to the dimensions of the vector itself – Palm suggests
k = O(log(n)) . This is also true for network output, where a global threshold
value, θ, is adjusted to insure that only knodes are above threshold. Although
reducing theoretical capacity somewhat, small values of k lead to very sparsely

172 FPGA Implementation of Very Large Associative Memories

activated networks and connectivity. It also creates a more effective computing
structure, since the k−Winners Take All (k-WTA) operation acts as a filter that
tends to eliminate competing representations.

Although a Palm network is similar to a Hopfield network in function and
structure, the key differences of clipped Hebbian weight update and k-WTA ac-
tivation rule make a big difference in the capability of the network. In theoret-
ical studies of these networks, researchers have developed asymptotic bounds
for arbitrarily scalable nets. Palm has shown, for example, that in order to have
maximum memory capacity, the number of 1s and 0s in the weight matrix
should be balanced, that is p1 = p0 = 0.5, where p1 is the probability that a
bit is 1 and p0 the probability that a bit is 0. The memory capacity per synapse
then is − ln p0 ≤ ln 2. In order for this relationship to hold, the training vectors
need to be sparsely coded with at most log2(n) bits set to 1, then the optimal
capacity of ln 2 = 0.69 bits per synapse is reached.

6.2.2.2 Other Model Variations. Palm networks are robust and scale
reasonably well. However, there are still some limitations:

1 The model as currently defined does not allow for incremental, dynamic
learning.

2 Even though the vectors themselves are sparsely activated, as more in-
formation is added to the network, the weight matrix approaches 50%
non-zero entries, which is not very sparse. For a 1M network, that is
500Gb with each node having a fan-in (convergence) of 500K connec-
tions. Cortical pyramidal cells typically have a convergence of roughly
10K.

3 Time is not factored into the model, so that temporal data is not cleanly
integrated into the association process.

4 The network requires that input data be mapped into a sparse represen-
tation, likewise output data must be mapped back to the original repre-
sentation.

Concerning the last item, algorithms are available [8] for creating sparse rep-
resentations (“sparsification”). Our experience has shown that for many ap-
plications getting a sparse representation is straightforward. Once a sparse
representation is determined, it has not been difficult to map from an external
representation into the sparse representation and back again. This is important,
since much of power of these nets is due to the sparse, distributed representa-
tion of the data.

The Palm model is simple and easy to work with and it is a good start
for looking at the various performance issues concerning hardware imple-
mentation of such models. However, it is likely that real applications will

Associative memory 173

use more complex models. One model that we are also working with is the
Bayesian Confidence Propagation Neural Network (BCPNN) developed by
Anders Lansner and his group [15, 16] at the Royal Institute of Technology
in Stockholm, Sweden. BCPNN addresses several of these issues and demon-
strates a number of useful behaviors. For example, in addition to capturing
high order Bayesian statistics, they also demonstrate the Palimpsest property,
where older information is forgotten first as the network approaches full capac-
ity. Another key characteristic of BCPNN networks is its ability to do “second
match,” where, when the network is allowed to habituate to its first output, it
will then return the next best match, etc.

Lansner has likened a single node in the BCPNN as comparable to a cortical
minicolumn and the Winner-Take-All group as a cortical hypercolumn. The
model has its origin in neuroscience and the study of cortical circuits. One
disadvantage of the model is the need for fairly high precision for the weight
update computations. Both the Palm and BCPNN models can be reformulated
as pulse or spiking based models. Pulse models have certain implementation
advantages and handle the temporal dimension more efficiently [17].

It is also likely that real systems will use collections of models with differ-
ent learning capabilities, thresholding systems, and connectivity. Examples of
such models can be found in O’Reilly [19].

6.2.2.3 Simulation. We have developed an association memory simu-
lation environment, Csim (Connectionist SIMulator). Csim is object oriented
and is written in C++. It uses objects that represent clusters, or “vectors” of
model nodes. It can operate in a parallel processing mode and uses the Mes-
sage Passing Interface (MPI) to do interprocess communication over multiple
processors. We have a small set of association network models operating on
the simulator. Because the simulator has a simple command line interface, and
because C++ and MPI are standards, it operates under Windows 2K, Linux,
and SGI Unix. We use the simulator on our Beowulf cluster (8 1GHz Pen-
tium IIIs) and on NASA’s SGI supercomputers at the Ames Research Center
in Mountain View, California [25].

6.2.3 An Information Theoretic Model of Association

A communication channel is a useful way to conceptualize the operation of
a simple, auto-association network. For example, in speech recognition when
we say a word, we have a specific word in mind. We then encode that word into
a form (speech) that is transmitted over a noisy channel (sound waves in air)
to the computer, which then decodes the received wave back into the original
word. The channel, Figure 6.1, is our mouth, tongue, vocal chords, the physical
environment, as well as the computer’s microphone and signal processing.

174 FPGA Implementation of Very Large Associative Memories

Figure 6.1. The “Decoder” Model of Association

This channel is noisy because there is significant variation in the way the
word is encoded – people say the same things differently from one instant to
the next, then add to that speaker variations, ambient noise in the environment,
etc. The decoding process uses digital signal processing algorithms at the front
end and complex “intelligent signal processing” algorithms, such as Hidden
Markov Models, that model higher order dependencies at the high-end.

6.2.3.1 A Single Channel. An auto-associative memory can be mod-
eled as the decoder in a simple communication channel, Figure 6.2. An input
generates a message y that is encoded by the transmitter as x. The message is
then sent over a noisy channel and x′ is received. The decoder decodes x′ into,
y′, what is believed to be the most likely y to have been sent.

Messages are generated with probability p(y). The received message, x′, is
the transmitted message with errors. This message is sent to the decoder. The
decoder has, via many examples, learned the probabilities p(y) and p(x’|y).
The decoder uses these data to determine the most likely y given that it received
x′ (based on what knowledge it has)2

p(y|x′) =
p(x′|y)p(y)

p(x′)
=

p(x′|y)p(y)∑
x p(x′|x)p(x)

Message xi is transmitted, message x′ is received, for simplicity assume
that all vectors are N bits in length, so the Noisy Channel only inserts sub-
stitution errors. The Hamming Distance between two bit vectors, xi and xj ,

2Note, the probability p(x’|y) reflects the channel error probabilities.

Associative memory 175

Figure 6.2. Communication Channel - The Decoder Is An Auto-Associative Memory

is HD(xi, xj). Assume that the Noisy Channel is binary symmetric with the
probability of a single bit error being ε, and the probability that a bit is trans-
mitted intact is (1-ε). The error probabilities are independent and identically
distributed and ε < 0.5. Under these circumstances it can be shown that the
Palm memory approximates a Bayesian inference, that is, the Palm associative
memory will generally recall the most likely original message, xi, from a noisy
received message x′.

Our primary objective, therefore, is to develop an associative memory that
performs such probabilistic inference in real-time over very large data sets with
sophisticated metrics. We believe that a large capacity version of this memory,
implemented in an inexpensive chip, has significant commercial value.

6.2.3.2 Scaling. Association networks have much promise as a com-
ponent in building systems that perform ISP. There are a number of problems
that need to be solved before distributed representation, best match associative
memories can enjoy widespread usage. Perhaps the most serious concerns scal-
ing to very large networks. Even though the vectors used by the Palm memory
are sparse, as you add training vectors to the memory, the Weight matrix be-
comes decidedly non-sparse. Palm has shown that maximum capacity occurs
when there are an equal number of 1s and 0s. This is 50% connectivity. This
is not very biological and it does not scale. This level of connectivity causes
significant implementation problems as we scale to relatively large networks.

If you randomly delete connections from a Palm network, performance de-
grades gradually to a point where the network suddenly fails completely. There

176 FPGA Implementation of Very Large Associative Memories

is no sudden appearance of emergent functionality, yet cortex has roughly
0.0001% connectivity. Clearly we’re doing something wrong.

The associative networks in the cortex seem to be fairly localized. Just as in
silicon, connections are expensive to biology, they take space and metabolism,
increase the probability of error, and they require genetic material to specify
connectivity, [6], Cortex: Statistics and Geometry of Neuronal Connectivity
[6].

"metric" (high density connections to physically local unit, based on ac-
tual two-dimensional layout) and

"ametric" (low density point to point connections to densely connected
groups throughout the array)

Braitenberg [5] used
√

n hypercolumns each with
√

n neurons. BCPNN
uses 1-WTA per hypercolumn. Although beyond the scope of this chapter,
it is possible to create a multiple channel model of associative memory that
models the hierarchical structure seen in primate neocortex. Here the memory
is modelled as parallel channels that have unique inputs with some overlap.
Likewise, each channel uses inputs from other parallel channels to provide
information in its own decoding process. Although not required for the current
models, reproducing more biological connectivity patterns will be required in
the long run.

6.2.4 Example Applications

To see how best match association memories can be used, we briefly de-
scribe two applications we are working on at OGI, the first is for a sensor
fusion system for the US Air Force, and the second, a robotic control system
for NASA.

6.2.4.1 Enhanced Visual System for Pilot Assist. With Max-Viz,
Inc., Portland, OR, we are developing an Enhanced Vision Systems (EVS) for
aircraft [13]. This system is designed to aid the pilot during approach and
landing in extremely low visibility environments. The system will have visual
sensors that operate at different frequencies and have different absorption spec-
tra in natural phenomena such as fog. The EVS takes these various images and
fuses them in a Bayesian most-likely manner into a single visual image that is
projected on a Head-Up Display (HUD) in front of the pilot.

Computing a Bayesian most likely fused image at the necessary resolution
and video rates is extremely computationally intensive. So we are developing
a system that approximates Bayesian accuracy with far less computation by
using an association engine.

Associative memory 177

Figure 6.3. EVS Association Application

In this system basic visual-like image pre-processing is used on each image
to find key elements of the background, generally the edges of the runway.
Since these features tend to be consistent across all images from the various
sensors, the feature vectors are just added together, then thresholding is per-
formed to reduce the number of features, creating a sparse representation of
the strongest features. This cumulative feature vector is then input to an as-
sociative memory that returns the features of a stored image. These features
are then used to do a hash (exact match association) to a database that contains
the real visual image that is then projected onto the HUD. An overview of the
processing steps for each video frame is shown in Figure 6.3.

6.2.4.2 Reinforcement Based Learning for Robot Vision. We are de-
veloping a robotics control system for NASA3 that uses biologically inspired
models for bottom-up/top-down sensorimotor control with sparse representa-
tions. In this research we plan to demonstrate a system that performs a simple
cognitive task, which is learned by the system via reinforcement, in much the
same way a monkey would learn the task. The selected task is block copy
where the animal copies a model of a block layout in one work area into an-
other work area using a set of predefined blocks in a resource area. An example
is shown in Figure 6.4. This task is known to illustrate important properties of
the primate brain in terms of:

Visual processing and representation, and visual short term memory;

3“Biological computing for robot navigation and control,” NASA, March 1, 2001, Three years, $1,393K.
PI: Marwan Jabri, Co-PIs: Chris Assad, Dan Hammerstrom, Misha Pavel, Terrence Sejnowski, and Olivier
Coenen.

178 FPGA Implementation of Very Large Associative Memories

Sequencing and planning, and the requirements of short-term microplans
and longer term plans;

Memory based processing, in particular, top-down information process-
ing; and

Spatial Representations.

Data on human and monkey experiments on various block copying tasks are
available. However to build a machine that performs such a task using a bi-
ologically based model, one has to think how a monkey is trained to perform
such a task. We know that monkeys learn complex sequences by maintaining
their attention and their rewards as they are proceeding. To build a machine to
learn to perform such a task, we need to define the set of sub-skills that the ma-
chine must have the minimum hardware capabilities for such learning to take
place.

Figure 6.4. Active Vision Block Copying Task

Our approach is to take preliminary information on the systems in the pri-
mate brain that neuroscientists believe are used in solving this task and start
with highly simplified versions, but with all the required brain areas rep-
resented. The architecture of our current system is shown in Figure 6.5.
Although complex, each subcomponent is basically an associative memory,
though different modules have slightly different learning rules and connectiv-
ity patterns.

PC Performance Evaluation 179

6.3 PC Performance Evaluation

In this section we present results and analysis from the implementation of
the basic Palm model on a PC Workstation, single processor, and a multi-
processor PC cluster. As we move to larger, more complex cognitive systems
built from diverse association modules, the ability to execute these large mod-
els in close to real time, which would be required by most applications, be-
comes a problem even for high end PC Workstations. The primary purpose of
this chapter is to study the use of an FGPA based emulation system for asso-
ciation networks. However, as part of any specialized hardware design, it is
important to assess the cost performance of this hardware in comparison with
high performance, commercial off-the-shelf hardware.

Figure 6.5. Architecture of Block Copy System

Thanks to Moore’s law, the performance-price of commercial hardware has
made amazing improvements over the last 10 years. It is possible to have the
same performance in a desktop machine or notebook that was only available
in super computers 15 years ago. Consequently, any application that is a can-
didate for special purpose hardware implementation must first be measured on
general-purpose hardware, since in many cases specialized hardware will not
provide a sufficient performance improvement to justify the cost of the extra
hardware.

The Palm algorithm has two basic operations:

1 A matrix vector multiply of a very sparse binary vector by a very large,
and, for the time being, not so sparse binary matrix.

180 FPGA Implementation of Very Large Associative Memories

2 A k-WTA function on the non-sparse, non-binary vector that is the prod-
uct of the matrix vector multiply, the output being another very sparse
binary vector.

In our experience the matrix-vector multiply is the most time consuming and
the most memory intensive. For the real applications we are contemplating,
the input and output vectors contain 10s to 100s of thousands of elements.
What is clear is that we need to use large, commercial memory to get the
necessary capacity, density, bandwidth, and latency, which implies state of
the art SDRAM. Since the matrices we use are very large and not sparse4,
consequently the entire matrix cannot be stored in any reasonably sized cache.
For the inner product operation every element fetched by the cache is only
used once. Since, the entire matrix must be traversed for one operation, the
cache provides no performance benefit. So the matrix-vector multiply requires
a long, continuous stream of data from memory with the memory bandwidth
being the major factor in determining system performance. So in this situation
a data caches does not contribute much performance. This is also true for the
clock speed of the processor, which is mostly just waiting for data.

6.3.1 Single PC

For the single, high-end, PC experiments described here we used a DELL
Dimension 8100 with the following hardware and software:

CPU: Pentium 4 1.8GHz

Chipset: Intel R© 850

Memory: 1024MB RDRAM

System Bus: 400MHz

Microsoft Windows 2000 Professional

Microsoft Visual C++ 6.0

Intel VTune Performance Analyzer 6.1

Using the Csim version of the Palm algorithm, we ran several experiments
measuring average memory bandwidth and nodes updated per second. The
algorithm that Csim implemented is not necessarily optimal. In this algorithm,
both for the sparse and full representations, the weight matrix is stored by row.
One row was read at a time and an inner product performed with the input

4A sparse matrix generally has fewer elements and a matrix with very large dimensions may still fit entirely
into the cache.

PC Performance Evaluation 181

(test) vector, which, incidentally, is stored as a set of indices. This algorithm
was implemented in the same way by both the Csim and FPGA versions.

Another approach to the matrix vector inner product with very sparse data
structures is to store the weight matrix by columns and then only read the
columns that correspond to a non-zero element in the input vector. We are
studying how best to do this in the FPGA implementation, which will be pre-
sented in future papers. In Figure 6.6, the x-axis is the vector size, and the
y-axis is the inner-product memory bandwidth (MBytes/sec). The diamond-
dotted curve is for the sparse weight matrix representation (where only the
indices of the non-zero elements are stored) with the compiler set to maxi-
mum speed optimization. The square-dotted curve is for the full binary weight
matrix (one bit per weight, 8 weights per byte, etc.) with the compiler set to
maximum speed. Note both representations are of the same matrix, this is true
in Figure 6.7 as well.

Figure 6.6. he relationship between the number of network nodes (vector size in nodes) and

In Figure 6.7 we can see that as the vector size increases (the number of
training vector numbers used is 0.69 of the vector size, n, and the number of
active nodes, k, is approximately log2(vector size)), the inner-product memory
bandwidth is reduced. For the sparse-matrix representation, the bandwidth
goes to 140MB/sec when the vector size, n, is about 32K. For the full-matrix
representation, the bandwidth decreases to 100MB/sec when the vector size is

the single PC inner-product memory bandwidth

182 FPGA Implementation of Very Large Associative Memories

about 32K. As the vector size increases, L1 cache misses increase, the average
memory access time increases, and the bandwidth decreases.

Figure 6.7. Vector size versus node update rate

Incidentally, with the current algorithm it is not necessary for the hardware
to read the entire weight matrix. If you assume that each test vector index
is in a different word, which is a worst case assumption, for each test vector,
we will only need to read
kn/32� words of weight matrix data, where for
these experiments k=log2(n). The FPGA implementation does this explicitly,
the PC does it by virtue of the cache only fetching the block that contains a
element corresponding to a test vector index.

6.3.2 PC Cluster

One common approach to enhancing the performance of the basic PC plat-
form is to use a parallel PC configuration, generally referred to as a PC cluster
[22]. A common cluster configuration is to use Linux based PCs in what is
referred to as a “Beowulf cluster,” where a number of PCs are connected to a
common broadband network. Software is available that allows these PCs to
share tasks and communicate data and results.

In addition to systems support there are programming environments for sup-
porting parallel programs for such clusters, the most commonly used is MPI
(the Message Passing Interface) [9]. Csim has a parallel execution option that
is based on MPI. In this subsection, we present the results of executing Csim

PC Performance Evaluation 183

on a small Beowulf cluster, where a single association network is spread across
the processors as shown in Figure 6.8.

The purpose of this experiment was to understand the overhead required to
execute a single association network across multiple processors. However, real
implementations will probably use multiple association networks, with each
module assigned to a processing node (whether it be a PC or an FPGA).

There are two components to the Palm algorithm that require different ap-
proaches to parallelization. The first is the matrix-vector multiplication. Here
the weight matrix is equally divided into p groups of r rows each (n = p× r) ,
each processor is assigned a group of r rows. The entire input vector is broad-
casted to all processors so that they can perform a matrix-vector inner-product
on those rows of the weight matrix that are assigned that processor.

The second part of the algorithm involves the k-WTA. Each processor com-
putes a k-WTA on the r node portion of the output vector that it has (those
k nodes allocated to it). These (p − 1) k−element vectors are then sent to
processor 0 (the root process), which performs another k-WTA over the total
p×r elements. Since k is usually much smaller than the vector dimension, this
approach is reasonably efficient and guarantees that the final k-WTA is correct.
Also, the k-WTA is only performed after all the inner products are complete,
which is generally the larger time component.

Figure 6.8. Weight Distribution (4 processor cluster)

The cluster gets its performance by dividing the computation into p equal
parts that can be computed concurrently. This also increases the effective mem-
ory bandwidth by p. Ideally the speed up would be p. Unfortunately, there is
no free lunch, since there is some extra overhead that parallelism creates. In
our simulator this overhead has two components: 1) the broadcast of the input
vector to all the processes, and 2) The broadcast of the k local winners to the
root processor and the computation of the final k-WTA.

184 FPGA Implementation of Very Large Associative Memories

The important question then is, what is the relationship between speed up
and the number of processors, p? For these experiments, we used a small PC
cluster environment with 8 DELL Dimension L1000R computers. Each node
was an Intel P3 1.0GHz CPU, 512MB PC133 memory. The OS is RedHat
Linux 7.1. The compiler is G++ 2.96.

A summary of the results is shown in Table 6.1. The number of training
vectors, m, was approximately 0.69 the vector size, n. The number of active
nodes, k, was log2(n). The nodes per second per PC is smaller than for the
8100 which is most likely due to the reduced memory bandwidth of the P3
based Dimension L1000R.

The most important result is that for the larger network, going to more par-
allelism does not add significant overhead. For the 64K node network, only
about 8% of the performance is lost in going from 2 PCs to 8 PCs, i.e., we are
only 8% short of a linear performance improvement of 4x.

Table 6.1. IPC cluster (8 processors) simulation results

Number Vector Knodes Normalize node rate
of PCs Size, n per second by 2 PC Number

2 4096 410 1.00
4 4096 683 0.83
8 4096 1024 0.63
2 8192 390 1.00
4 8192 745 0.95
8 8192 1170 0.75
2 16384 356 1.00
4 16384 683 0.96
8 16384 1170 0.82
2 32768 312 1.00
4 32768 607 0.97
8 32768 1130 0.91
2 65536 289 1.00
4 65536 560 0.97
8 65536 1057 0.92

6.4 FPGA Implementation

In this section we first present the architecture of a memory intensive FPGA
board implementation and then second, an analysis of the performance of that
board on our association memory implementation.

FPGAs are a remarkable technology, allowing a rapid, soft reconfiguration
of on chip hardware to customize the hardware to a wide range of applications.
As Moore’s law continues, FPGAs gain in density and speed at the same rate

FPGA Implementation 185

as state of the art microprocessors. And although FPGAs pay a price in speed
and density for their flexibility, for certain applications with a sufficient num-
ber of parallel operations they can offer better performance-price and power
dissipation than state of the art microprocessors or DSPs.

Because of this ability to leverage parallelism, FPGAs have been used exten-
sively in image processing applications and are beginning to be used in neural
network applications, where incremental learning by on-line weight modifica-
tion can be implemented concurrently and with any precision. Most of these
benefits assume that the network fits entirely on a single FPGA and that on
chip RAM, typically on the order of a few megabits of SRAM, is used to store
the weights and other parameters. As discussed earlier in this Chapter, we
believe that the network models required for many applications will be quite
large, easily outstripping the capacity of the on-chip memory in a state of the
art FPGA. This raises an important question about whether the FPGA is still
a useful platform for the emulation of such networks. One possibility is to
store the network parameters in a state of the art memory connected directly
to the FPGA instead of inside the FPGA, but does this provide a sufficient
performance-price advantage? In this subsection we study this question for
our model.

These programs do have a fair amount of opportunity for parallel computa-
tion, especially where only a few bits of precision are required. If most of the
model state is stored in external DRAM, the memory bandwidth is the primary
contributor to systems performance, since, for our algorithms, even a modest
sized FPGA can keep up with the memory access rate for even very fast state
of the art SDRAM. We believe that an FPGA connected directly to state of the
art DRAM in this manner is a useful platform for a large range of image and
pattern classification problems.

6.4.1 The Relogix Accelerator Board

The Relogix Mini-Mirax Memory-Intensive Reconfigurable Accelerator
Card is a stand-alone card containing one FPGA+SDRAM pair. Each accel-
erator has 1.6 GByte/s of dedicated memory bandwidth available for memory-
intensive applications. Each accelerator card is accessed by application soft-
ware running on the Unix host via an IDE/FireWire bridge. The objective of
this board is to take advantage of inexpensive SDRAM PC memory, FPGAs
and high speed interfaces to maximize performance-price in a reconfigurable
accelerator. The Mini-Mirax is organized as an incremental brick, so that many
Minis can be connected together in a single system. The basic board layout is
shown in Figure 6.9.

The PQ208 pinout accepts any size Spartan-IIE chip. Spartan-IIE,
XC2S50E-100, 150, 200 or 300 FPGAs may be installed at assembly. They

186 FPGA Implementation of Very Large Associative Memories

all have the same pinout, 142 general-purpose I/Os, and four global clock in-
puts, and differ in only the amount of logic and memory. By using smaller
FPGAs, we can stay in a QFP (Quad Flat Pack) for the early boards, since
it reduces costs. And because our algorithms make such extensive use of the
SDRAM, there is a point of diminishing returns as one goes to larger FPGAs.

Figure 6.9. he basic FPGA card

Connected to each FPGA is a single DIMM socket, which supports a 10ns
DDR (Double Data Rate) 64-bit pathway (two words are delivered in every
10ns clock) into the FPGA. With today’s memory technology this allows up to
512MB (soon to be 1GB) of memory to be directly connected to each FPGA.
Finally there is an IDE to FireWire chip that creates the external FireWire
interface for the board. An external header uses 20 uncommitted FPGA I/Os
that can be connected to other Mini cards or external devices such as sensors.
A JTAG daisy chain header connects the FPGA to a Xilinx interface cable for
programming by Xilinx software. Many Minis can be used in one JTAG loop.
One or more Mini cards are installed in one or more FireWire/IDE enclosures,
which provide an IDE to FireWire bridge, power and cooling, and a connection
to a Linux, OS-X or Solaris host.

We are developing a set of IP that will be a more highly abstracted interface
to the DRAM controller, the IDE controller and the header pins. The DRAM
and IDE controllers are also IP that sits inside the FPGA. The user develops
their own IP for the FPGA in Verilog or VHDL and then connects it to the
Mini-Mirax “Operating System” IP and loads that into the FPGA. In addition,
there is software on the PC Host that communicates with this “OS,” in starting
the user subsystem as well as providing debug services.

The primary reason for building this board is that we want to be able to
place state of the art SDRAM, in the form of a DIMM, immediately next to

FPGA Implementation 187

a state of the art, FPGA. The goal is to leverage the maximum bandwidth of
the largest commercially available memory. At the writing of this Chapter we
are not aware of any commercial FPGA boards that provide as much directly
accessible SDRAM to each FPGA.

The system will obviously be most cost-effective with larger numbers of
parallel, low-precision operations, a configuration where typically there will
be more computation per bit fetched from the SDRAM. The board will track
the latest memory density (commercial SDRAM) and bandwidth, following
Moore’s law at the same rate as a general purpose microprocessor.

We do not yet have a functioning board, so we cannot provide exact per-
formance measurements. In the next subsection we present an analysis of the
expected performance of the Mini-Mirax board on the same association algo-
rithm used throughout this paper.

6.4.2 Performance Analysis of Simulation on FPGA

A block diagram of the FPGA Palm implementation is shown in Figure 6.10.
This implementation is quite similar to that of the PC, in the sense that the
weight values are stored in the external SDRAM with the inner-product and k-
WTA performed by the FPGA. Because the board implementation is simple and
there are no complex entities such as multi-level caches, the results presented
here should be a reasonably accurate representation of the performance we
expect from the actual board. Also, we have implemented pieces of the Palm
model and run them on other commercially available FPGA boards.

6.4.2.1 FPGA Functional Block Description. There are a number
of assumptions that were made about the Palm implementation on the Mirax
board:

A single FPGA / SDRAM board is used for analysis, even though the
Mini-Mirax system supports multiple FPGA configurations. Likewise,
it is likely that the communication overhead for connecting multiple
boards, as a percentage of the total computation time, will be much
smaller than with multiple PCs in a cluster.

Only a full binary weight matrix implementation is assumed where each
bit is a binary weight. One 64-bit word at a time is fetched from the
SDRAM. Only words that have at least one test vector index pointing
into them are fetched.

The input test vectors are sparsely encoded and the time transfer of data
to and from the PC host is ignored. Each vector is assumed to have
single bit precision and consists of a list of indices of the weight bits in

188 FPGA Implementation of Very Large Associative Memories

Figure 6.10. FPGA functional block diagram

FPGA Implementation 189

the matrix row. When a test vector is processed, this list of indices is
brought from the PC into the FPGA.

The inner-product produces a vector of sums. This vector is generally
not sparse. The bits required to represent each sum is
log2 k� bits, and
there are k sums. The k-WTA is computed dynamically, that is, after
each inner-product element is generated it is compared to the existing
k largest sums, which, along with their indices, are stored in SRAM
in the FPGA. The new index is then either inserted or discarded. This
approach eliminates the need to move the sums off chip and then back
again to form the k-WTA.

The final output vector is sparse and its indices are written to the PC
host, thus completing the computation of a single vector. The time to
move the final result is also ignored.

There are a number of additional optimizations that are possible which
we have ignored here in favor of keeping the PC and FPGA implemen-
tation as close as possible. Future work will examine the effect of such
optimizations for both platforms more closely.

Inner-product operation: The input vector Vin,i (represented by its ac-
tive nodes’ indices) is transferred to the IDE Interface. The fetching of the
weight matrix rows begins, with the weight matrix row addresses being gener-
ated by the Address Translator. The SDRAM transfers the data requested by
the FPGA a single 64-bit word at a time through the SDRAM Memory Bus In-
terface. There are a number of ways a binary inner product can be performed.
But a simple look up and count is all that is required. Because of the sparse
representation of the test vector, many words will not have a matching index,
and those that do will generally only have one or two matches.

k-WTA operation: After executing the inner-product for each output vector
sum, the FPGA, which keeps a list of the k largest sums, checks to see if the
resulting element is larger than the smallest of the current k largest sums, this
requires a single comparison. If the new element is larger, then it needs to be
inserted into the list of k largest in the proper, sorted, position.

6.4.2.2 Performance analysis. Inner Product Computation in the
FPGA: Analysis indicates that, because of the very sparse input vectors, this
simple inner-product can easily be computed at a rate that matches the rate
at which the weight matrix words are streaming into memory. So the inner-
product time is determined exclusively by the memory bandwidth. For sequen-
tial access the DDR memory interface in the Xilinx Sparten IIE approaches a
1.6GB/sec. bandwidth. However, for non-sequential, random access, the time
is approximately about 6x slower or about 60ns to access two 64-bit words.

190 FPGA Implementation of Very Large Associative Memories

For the full matrix representation, there are n rows, but only k words are read
per row and these are read in a non-sequential, random access mode:

Full Inner Product Memory Access Time (sec) = (nk) 3x10−8

The number of active nodes, k, is much smaller than the number of rows,
n. So on average about k words will be read, since the odds of more than one
index falling into the same word is quite low.

k-WTA: For each insertion into the sorted list of k sums, we will assume
an average of k/2 comparisons are performed. Initially there will be many
insertions, however, near the end of the inner product operation there will be
few insertions, since the probability of any sum being in the k largest decreases.
A pessimistic assumption is that for each item being sorted, the probability of
an insertion is 1/2. Since there are n items examined and if we can do one
comparison per 100 MHz clock (10ns), the time for k-WTA is:

Time for k-WTA (sec) = (nk/4) 10−8

Table 2 shows the execution times for the inner product and k-WTA op-
erations. We can see that the inner product memory access time dominates.
Overlapping the k-WTA operation with the inner product saves some time, but
not much.

Table 6.2. Memory Access Time (Inner Product Time) and k-WTA time per Network Size

Vector Full Access k-WTA
Size, n Time(usec) Time(usec)
1024 307.2 25.6
2048 675.8 56.3
4096 1474.6 122.9
8192 3194.9 266.2
16384 6881.3 573.4

6.5 Performance comparisons

Figure 6.11 shows the node update rate for the P4 and the P3 cluster. The
x-axis is the node size. The y-axis is the node update rate (Knodes/sec). The
square-dotted curve is the cluster implementation. The diamond-dotted curve
is the simulation result from the P4 for full-matrix vector.

Because the computers in the PC cluster are much slower than the P4, and
PC133 memory in the PC cluster is much slower than the Rambus memory in
P4, the entire PC cluster implementation did not do significantly better than
the P4 implementation. This is an interesting result since the cluster machines
are only one generation older than the P4 system.

191

Figure 6.12 shows the expected node update rate comparisons for the P4
and a single FPGA board (one FPGA/DIMM pair). The x-axis is the vec-
tor size (number of nodes per vector), n. The y-axis is the node update rate
(Knodes/sec). The square-dotted curve is the FPGA implementation. The
diamond-dotted curve is the simulation result from the P4 for the full-matrix
vector. From Figure 6.12, we can see the FPGA implementation has a perfor-
mance advantage over the P4 implementation, which increases as the network
size increases.

Figure 6.11. shows the node update rate, node outputs computed per second, for the P4 and
the P3 cluster vs. the vector dimension.

In Figure 6.13, we show the node update rate for the P4 and the FPGA
normalized by each implementation’s memory bandwidth. Though it is possi-
ble for FPGA based solutions to approximate the memory bandwidth of larger
PC workstations, there will be cost as well as power dissipation issues. Con-
sequently, many real applications of computational neurobiological solutions
may require less expensive, lower power consuming implementations. We
have seen that memory bandwidth is the key factor in such systems, showing
the results relative to each system’s memory bandwidth gives a sense of the
computational power of the system. The assumed bandwidth for each system
was 3.2GB/sec for the P4 and 1.6GB/sec for the FPGA respectively.

Performance comparisons

192 FPGA Implementation of Very Large Associative Memories

Figure 6.12. Node update rate, node outputs computed per second, for P4 and FPGA vs. the
vector dimension, n

6.6 Summary and conclusions

In this chapter we presented a fairly simple computational model that
performs best-match association using distributed representations. We then
showed the results of implementing this basic algorithm on three different plat-
forms, a stand-alone high-end PC, an 8-node PC cluster, and an FPGA board
that integrates state of the art SDRAM together with state of the art FPGA
technology.

Although still preliminary, we believe that the results given here indicate
that an FPGA acceleration card based on the tight integration of an FPGA chip
and commercial SDRAM creates an effective association network hardware
emulation system with a competitive performance-price. Although we have
not yet extended our results to include an analysis of multiple FPGA systems,
we believe that such systems will have larger incremental performance than
PC clusters built from commercial boxes.
Acknowledgements

This work was supported in part by the Research Institute for Advanced
Computer Science under Cooperative Agreement NCC 2-1006 between the
Universities Space Research Association and NASA Ames Research Center,
the Office of Naval Research, Contract N00014-00-1-0257, and by NASA
Contracts NCC 2-1253 and NCC-2-1218. And part of this work is sponsored in
part by AFRL/SNHC, Hanscom AFB, MA, Contract No. F19628-02-C-0080.

193

Figure 6.13. Node update rate by memory bandwidth for P4 and FPGA

References

[1] Amari S., 1997. The neural Theory of Association and Concept Forma-
tion, Biol. cyber. 26, pp. 175-185

[2] Anderson J. A. and others,1999. Radar Signal Categorization Using a
Neural Network, Proceedings of the IEEE, 1990, August.

[3] Anderson J. A., 1995. Introduction to Neural Networks, MIT Press, Cam-
bridge, MA.

[4] Batcher K. E., 1977. The Multi-dimensional access in STARAN, IEEE
Transactions on Computers, Special Issue on Parallel Processing, pp.
174-177

[5] . Braitenberg V. , 2001. Brain Size and Number of Neurons: An Exercise
in Synthetic Neuroanatomy, Journal of Computational Neuroscience, 10,
pp. 71-77

[6] Braitenberg V. and A. Schuz, 1998. Cortex: Statistics and Geometry of
Neuronal Connectivity, Springer-Verlag.

[7] Buckingham J. T. and D. J. Willshaw, 1992. Performance characteristics
of the associative net, Network, 3, pp. 407-414

[8] Field D. J., 1999. What is the goal of sensory coding? Unsupervised
Learning, MIT Press, pp. 101-143.

References

194 FPGA Implementation of Very Large Associative Memories

[9] , Gropp W. E. Lusk et al., 1999. Using MPI Portable Parallel Program-
ming with the Message Passing Interface, MIT Press, Cambridge, MA.

[10] Hebb D. O., 1999. The Organization of Behavior, Wiley, New York.

[11] Hecht-Nielsen R. Tutorial: Cortronic Neural Networks, 1999, Interna-
tional Joint Conference on Neural Networks, Washington, DC.

[12] Hopfield J., 1982. Neural networks and physical systems with emergent
collective computational abilities, Proc. Natl. Acad. Sci. USA 79.

[13] Kerr J. R. C. H. Luk et al., 2003. Advanced integrated enhanced vision
systems, SPIE.

[14] Kohonen T., 1984. Self-Organization and Associative Memory,
SpringerVerlag, Heidelberg

[15] Lansner A. and A. Holst, 1996. A Higher Order Bayesian Neural Net-
work with Spiking Units, Int. J. Neural Systems, 7(2), pp. 115-128.

[16] Lansner A. and others, 1997. Detailed Simulation of Large Scale Neural
Networks. Computational Neuroscience: Trends in Research 1997,
Plenum Press, J. M. Bower. Boston, MA, pp. 931-935.

[17] Maass W. and C. M. Bishop, Pulsed Neural Networks, MIT Press, 1999,
address=Cambridge MA

[18] Omohundro S. M., 1990. Bumptrees for efficient function, constraint,
and classification learning, Advances in Neural Information Processing
Systems, 3, Denver, Colorado, Morgan Kauffmann.

[19] O’Reilly R. and Y. Munakata, 2000. Computational Explorations in Cog-
nitive Neuroscience - Understanding the Mind by Simulating the Brain,
MIT Press., Cambridge, MA

[20] , Palm G., 1980. On Associative Memory, Biological Cybernetics , 36,
pp. 19-31

[21] Palm G. F. Schwenker et al., 1997. Neural Associative Memories. Asso-
ciative Processing and Processors, IEEE Computer Society, pp. 284-306,
Los Alamitos, CA.

[22] Reschke C. T. Sterling et al. A Design Study of Alternative Network
Topologies for the Beowulf Parallel Workstation, High Performance and
Distributed Computing, 1996

[23] Steinbuch K., 1967. Die Lernmatrix., Kybernetik, 1.

195

[24] Willshaw D. and B. Graham, 1995. Improving Recall From An Associa-
tive Memory, Biological Cybernetics , 72, pp. 337-346.

[25] Zhu S. and D. Hammerstrom, 2002. Simulation of Associative Neural
Networks, ICONIP, Singapore.

References

Chapter 7

FPGA IMPLEMENTATIONS OF
NEOCOGNITRONS

Alessandro Noriaki Ide
Universidade Federal de São Carlos
Departamento de Computação
Rodovia Washington Luis (SP-310), Km 235, 13565-905, São Carlos, SP, Brasil

noriaki@dc.ufscar.br

José Hiroki Saito
Universidade Federal de São Carlos
Departamento de Computação
Rodovia Washington Luis (SP-310), Km 235, 13565-905, São Carlos, SP, Brasil

saito@dc.ufscar.br

Abstract In this chapter it is described the implementation of an artificial neural network
in a reconfigurable parallel computer architecture using FPGA’s, named Recon-
figurable Orthogonal Memory Multiprocessor (REOMP), which uses p2 mem-
ory modules connected to p reconfigurable processors, in row access mode, and
column access mode. It is described an alternative model of the neural net-
work Neocognitron; the REOMP architecture, and the case study of alternative
Neocognitron mapping; the performance analysis considering the computer sys-
tems varying the number of processors from 1 to 64; the applications; and the
conclusions.

7.1 Introduction

This chapter describes the FPGA (Field Programmable Gate Array) imple-
mentations of neural networks, using reconfigurable parallel computer archi-
tecture. In spite of FPGA’s have been used to rapid prototyping of several kinds
of circuits, it is of our special interest the reconfigurable implementation of
neural networks. There are several classes of artificial neural networks, which
we would like to implement in different time, in analogy to several brain func-
tions which are activated separately, and sequentially. We discuss a reconfig-

197

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 197–224.
© 2006 Springer. Printed in the Netherlands.

198 FPGA Implementations of Neocognitrons

urable architecture using FPGA’s which combines the conventional computer
with a reconfigurable one, using a software that can recognize and separate
the reconfiguration thread to be executed at the reconfigurable computer. This
thread activates the reconfiguration of the arithmetic/logic data flow unit, and
its control unit.

In the case of neural network implementation, an Orthogonal Memory Mul-
tiprocessor (OMP) [15][19], is also of interest. OMP is a multiprocessor where
the memory is organized in several modules connected to row access, and col-
umn access. Each memory module may be accessed by row and by column,
so that when rows are activated, all rows may be accessed, each one by an
exclusive processor. Similarly, when columns are activated, all columns may
be accessed, each one by an exclusive processor. This kind of memory or-
ganization allows a conflict free and efficient memory access in the case of
feed-forward neural network implementation.

It is described the reconfiguration of an alternative of the biological vision
based neural network, Neocognitron, proposed by Fukushima [6] [7] [9] [8].
Neocognitron is a feed-forward neural network, organized in a sequence of
Simple-cell (S-cell) layers, and Complex-cell (C-cell) layers. Each S-cell layer
is composed by a number of S-cell planes, each one composed of a matrix
of neurons, responsible by the feature extraction using convolution over the
preceding C-cell layer. Each C-cell layer is composed by a number of C-cell
planes, that is responsible by a shape tolerance using average operation over a
region of the preceding S-cell plane. The C-cell layer is also responsible by the
reduction of the number of neuron cells at the succeeding layers, until the last
layer, which corresponds to the output layer, where each class of recognized
object is represented by an unique neuron, which corresponds to the grand
mother cell, or "Gnostic" cell, in the human brain model.

In this chapter it is presented an overview of reconfigurable architectures
using FPGA’s, and the hardware implementation of an alternative to the neural
network Neocognitron, using a reconfigurable architecture, named Reconfig-
urable Orthogonal Multiprocessor (REOMP) [16]. Finally it is presented the
results of the reconfiguration, the performance analysis of the resulted parallel
computer architecture, its applications, and conclusions.

7.2 Neocognitron

Neocognitron is a massively parallel neural network, composed by several
layers of neuron cells, proposed by Fukushima, inspired on the Hubel and
Wiesel [14] researches in biological vision. The lowest stage of the network is
the input layer U0. Each of the succeeding i-th stages has a layer USi consisting
of S-cells, followed by a layer UCi of C-cells. Each layer of S-cells or C-
cells is composed by a number of two-dimensional arrays of cells, called cell-

Neocognitron 199

planes. Each S-cell-plane is able to recognize all the same features present
at the preceding C-cell-planes, at different positions, because all the S-cells,
composing a cell-plane, have the same weight of input connections, limited to
a small region corresponding to its receptive field. C-cells are responsible by
the distorted features correction, since they process the average of their input
connections. Then the C-cell-planes are reduced, since the 8-neighbors of a
cell have close values after average. After the succeeding stages the output
layer is reduced to a set of planes of only one C-cell. This cell corresponds
to the gnostic cell found at the infero-temporal cortex of the brain. Algorithm
1 is used to the computation of the activation of S-cells, and the Algorithm 2
corresponds to the computation of the activation of the C-cells.

Algorithm 1: Computation of the activation of a cell-plane of S-cells

Procedure ComputeLayer US (l)
begin

for k=1 to Kl do
begin

for n=1 to N do
begin

for K=1 to Kl−1 do
begin

for all v ∈ Sv do
begin

e(n, k) := e(n, k) + a(v, k, K).uCl−1
(n + v, k)

h(n, k) := h(n, k + c(v).(uCl−1
(k, n + v))2

end;
V(n,k):=sqrt(h(n,k));
uSl

(n, k) := (θ/(1 − θ).ϕ((1 + e(n, k))/
(1 + θ.b(k).V (n, k)) − 1

end;
end;

end;
end;

200 FPGA Implementations of Neocognitrons

Figure 7.1 shows the interconnection environment to the activation of a
S-cell. To obtain the S-cell value, uSl

(n, k), it is first computed the weighted
sum, e(n, k) and h(n, k), of all inputs coming from all Kl−1 C-cell-planes of
the preceding layer. Here, n is the index of a cell position at the cell-plane,
and k is index of the cell-plane at the layer. The value a(v, k, K) and c(v) are
the connection weights, respectively, where v corresponds to the connection
area, which surrounds the position n, of the preceding layer C-cell, and K
corresponds to the index of the preceding layer cell-plane. The e(n, k) is the
computation of the excitation input weighted sum, and h(n, k) is the compu-
tation of the inhibition input weighted sum. If the V (n, k) = sqrt(h(n, k))
is considered as the inhibition cell value, b(k), its input connection weight,
and θ the threshold value of the neuron, the uSl

(n, k) value is obtained by the
Equation 6.1:

uSl
(n, k) = (θ/(1 − θ).ϕ((1 + e(n, k))/(1 + θ.b(k).V (n, k)) − 1 (7.1)

Figure 7.1.

To obtain the C-cell value, uCl
(n, k), it is first computed the weighted sum

of all inputs corresponding to the previously obtained uSl
(n, k), in a given

Interconnection environment to the activation of a S-cell

Alternative neocognitron 201

connection area Sv. It is used the connection weight d(v). where v corresponds
to the connection area of the preceding S-cell layer. Then, a function ψ(x) =
ϕ(x)/(1 + ϕ(x)), that limits C-cell output to the range [0,1) is computed.

Algorithm 2: Computation of activation of a cell-plane of C-cells

Procedure ComputeLayer UC(l)
begin

for k = 1 to Kl do
begin

for n = 1 to N do
begin

for all v ∈ Sv do
begin

uCl
(n, k) := uCl

(n, k) + d(v).uSl
(n + v, k);

uCl
(n, k) := ψ(uCl

(n, k))
end;

end;
end;

end;

Figure 7.2 shows a six-stage Neocognitron structure of S-cells and C-cells.
All k cell planes from first stage take the input values from the input layer. The
first stage is related to the edge extraction. After the parallel processing of the k
cell planes at the first stage, all results are used by all cell planes of the second
stage, which is related to the line extraction. The third stage may be processed
after the line extraction by the S-cell layer to the bend point extractions. The
C-cells of the line extraction stage and the bend point extraction stage are used
by the fourth stage to the complex features extraction. The fifth stage joins the
complex features of the preceding stage and the sixth stage, which includes the
output layer, corresponds to the gnostic cells, found at infero-temporal cortex
of the brain.

In order to improve the Neocognitron learning phase it was implemented an
Alternative Neocognitron, described as follows.

7.3 Alternative neocognitron

The following description is related to an Alternative Neocognitron [2] [1],
which differs from the original one on the learning procedure. The Alternative
Neocognitron, which is able to manipulate characteristics including surface
characteristics, beyond the line segments, is shown at Figure 7.3 . At a first

202 FPGA Implementations of Neocognitrons

U0

US1
UC1 US2

US3

UC3

UC2

US4 UC4

US5

UC5

US6

UC6

57X57
input layer

57x57x16 57x57x16

57x57x16

57x57x8

21x21x1
6

21x21x8

21x21xKS4

13x13xKC4

13x13xKS5

7x7xKC5

3x3xKS6

1x1xKC6

edge extraction

line extraction

bend extraction

complex features
extraction

output layer
(gnostic unit)

FIRST
STAGE

Figure 7.2. Neocognitron structure with six stages of S-cell layer (USi) and C-cell layer (UCi

glance, the proposed network is very similar to the original Neocognitron, and
in fact the network structure is the same except that the input to the fourth
stage are the bend points, from the UC3 layer, and the reduced input layer.
The difference is present at the network training phase, and at the recognition
phase. The network training uses Algorithm 3. Since one S-cell-plane is able
to recognize the same feature at all positions, all S-cells of the same cell-plane
have the same input connection weights. So, the training of a cell-plane is
reduced to the detection of a new feature, and to the extension of the feature
to all positions. This is the same as the seed planting over the cell-plane, so
it is used a special plane denoted seed-selection-plane, as the last cell-plane
of the layer, during the training phase. So, in a moment of the training phase,
there are Kl cell-planes at the layer, corresponding to the known features, and a
seed-selection-plane (SSP). After a new feature detection, by the winner-take-
all approach, the input connection weights of the winner, which is the seed cell,
is reinforced, and the seed planting occurs to all over the cell-plane. Though,
a new cell-plane of a new feature is added to the layer and so the number of

)

Alternative neocognitron 203

cell-planes at the layer increments by one. The training proceeds with a new
SSP, until all new features are detected, using different input patterns.

U0

US1
UC1 US2

US3

UC3

US4 UC4

US5

UC5

US6

UC6

21X21
reduced

input layer

57x57x16 57x57x16

57x57x16

57x57x8

21x21x16

21x21xKS4

13x13xKC4

13x13xKS5

7x7xKC5

3x3xKS6

1x1xKC6

edge
extraction

line extraction

bend extraction

complex features
extraction

output layer
(gnostic unit)

57X57
input layer

Figure 7.3. Alternative Neocognitron structure: the U0 layer values are reused, after the bend
extraction, composing a reduced input layer

The described algorithm is used at the original Neocognitron, to the training
of the layer US4 , US5 and US6 , since the layer US1 , US2 and US3 have fixed
input weights. The Alternative Neocognitron uses a little different approach,
since it uses again the input layer, as the input to the layer US4 . This is because
it is interested on the features like surface textures present at the input pattern,
that is not considered in the original Neocognitron. So the bend points, indi-
cates the position of the input pattern, where the corresponding surface texture
is interested to be trained. By this way, a composition of features including
textures and lines segments are considered during the training of the following
fifth and output stages. Another difference of the Alternative Neocognitron
is that although we use the input layer, the first three stages, and the last three
stages, during the training phase, at the recognition phase we use only the input
layer and the last three stages, so that the network computation would be faster
than the original Neocognitron computation. The Alternative Neocognitron is

204 FPGA Implementations of Neocognitrons

able to be used in patterns, where some line segments are present, and detected
by the first three layers, but a complex blending of lines and textures may be
present. This is the case of a human face pattern. It may be observed that the
threshold associated to the individual neurons during the training phase con-
trols the number of new features extracted. Considering all the modifications
in the original Neocognitron structure, the following sections will give a brief
description of the main characteristics found in reconfigurable computers and
the proposal of a OMP architecture, adequate to the neural networks mapping.

Algorithm 3: Network Training

Procedure Training layer US(l)
begin

repeat
ComputeLayer US(l)

selected := false
repeat

if US (next winner)> 0 then
begin

winner : = next winner;
selected : = true;
for k = 1 to Kl do

begin
if US (winner, k) > 0 then
selected := false
end

until (selected = true or next winner = ϕ) ;
if selected then
begin

for k = 1 to Kl−1 do
begin

for all v ∈ US do
begin

a(v, k, K) := a(v, k, K)+q.c(v).uCl−1
(winner+v, k);;

b(k) := b(k) + q. sqrt(h(winner,k));
Kl := Kl + 1

end;
until not(selected)

end

Reconfigurable computer 205

7.4 Reconfigurable computer

In this section, it is described an approach to the Alternative Neocognitron
hardware implementation, that can be also applied to other neural networks. A
reconfigurable computer provides the solution to the hardware implementation
of neural networks using the current technology of FPGA’s. This approach
assumes that not all the neural networks functions are active all the time, so
that only the active functions are configured in the computer during a snapshot
of operation.

The reconfigurable computer has a reconfigurable unit, and a fixed unit. It
uses the components as FPGA’s to implement a special function in the recon-
figurable unit. A FPGA is an array of processing elements whose function and
interconnection can be programmed after fabrication. Most traditional FPGA’s
use small lookup tables to serve as programmable elements. The lookup tables
are wired together with a programmable interconnection, which accounts for
most of the area in each FPGA cell. Several commercial devices use four in-
put lookup tables (4-LUT’s) for the programmable elements. The commercial
architectures have several special purpose features, as carry chains for adders,
memory nodes, shared bus lines.

The configurable unit is efficient if it implements the processing elements
spatially distributed to exploit the streaming of the datapath [5], as in the neural
network. Obviously, some functional systems of the neural networks are al-
ways active, that can be implemented at the fixed unit of the computer.

A reconfigurable computer partitions computations between two main
groups: (1) reconfigurable units, or fabric; and (2) fixed units. The reconfig-
urable units exploits the reconfigurable computations, which is efficient when
the main computation is executed in a pipelined data path fashion. The fixed
units exploit system computations that controls the reconfigurable units. The
reconfigurable units are reconfigured to implement a customized circuit for
a particular computation, which in a general purpose computer is cost pro-
hibitive, to be implemented in hardware, because of its reduced use. The
compiler embeds computations in a single static configuration rather than an
instruction sequence, reducing instruction bandwidth and control overhead.
Function units are sized properly, and the system can realize all statically de-
tectable parallelism, because the circuit is customized for the computation at
hand [16].

A reconfigurable unit can outperform a fixed unit processing in cases that:
(a) operate on bit widths different from the processor’s basic word size, (b)
have data dependencies that enable multiple function units operate in parallel,
(c) contain a series of operations that can combine into a specialized opera-
tion, (d) enable pipelining, (e) enable constant propagation to reduce operation
complexity, or (f) reuse the input values several times [10].

206 FPGA Implementations of Neocognitrons

Reconfigurable units give the computational data path more flexibility.
However, their utility and applicability depend on the interaction between re-
configurable and fixed computations, the interface between the units, and the
way a configuration loads.

It is possible to divide reconfigurable computations into two categories: (1)
stream-based functions which corresponds to the processing of large, regular
data input streams, producing a large data output stream, and having little con-
trol interaction with the rest of the computation; and (2) custom instructions
which are characterized with a few inputs, producing a few outputs, executed
intermittently, and having tight control interactions with the other processes.
Stream-based functions are suitable for a system where the reconfigurable
unit is not directly coupled to the processor, whereas custom instructions are
usually beneficial only when the reconfigurable unit is closely coupled to the
processor [10].

Some examples of reconfigurable architectures implemented using FPGA’s
are: DISC [22], MATRIX [4] [18], GARP [13] [3], CHIMAERA [12],
PIPERENCH [11] [10] and MorphoSys [20] [21] [17]. Next section will de-
scribe the proposed reconfigurable computer, REOMP.

7.5 Reconfigurable orthogonal memory multiprocessor

The proposed Reconfigurable Orthogonal Memory Multiprocessor - RE-
OMP, is a computer composed by: (1) a Control Unit that is connected to the
Host Processor and the Reconfigurable Processors; (2) Reconfigurable Proces-
sors (RP’s); and the Memory modules organized in two access modes, row and
column.

M00 M01
M02 M03

M10 M11 M12 M13

M20
M21 M22 M23

M30 M31 M32
M33

RP0

RP1

RP2

RP3

ROW 0

ROW1

ROW2

ROW3

C
O

LU
M

N
0

C
O

LU
M

N
1

C
O

LU
M

N
2

C
O

LU
M

N
3

Control
Unit

Host
Processor

Figure 7.4. REOMP Architecture

Reconfigurable orthogonal memory multiprocessor 207

The overall system is an Orthogonal Multi-Processor, OMP, which is char-
acterized by the parallel processing units, each one accessing their memory
modules in two ways, column, and row. Each row, and each column, is at-
tributed to one exclusive processor. The row access and column access are per-
formed exclusively, without time-sharing of the buses by the multiple proces-
sors, eliminating the memory access conflicts.

The reconfigurable processors (RP’s) access the orthogonal memory mod-
ules, to provide the input data to the weighted sum operations of the neural
network. REOMP presents an interesting solution to the data exchange after
one layer processing of a neural network like Neocognitron. REOMP is an
orthogonal multiprocessor, with p reconfigurable processors working synchro-
nized, all of them connected to the orthogonal memory. Figure 7.4 shows
a REOMP diagram, with four reconfigurable processors, and sixteen memory
modules. A control unit is used to interface REOMP with the host processor. If
each reconfigurable processor processes stream-based functions data, and each
processor must be synchronized with each other, the control unit provides the
corresponding control templates to each processor, synchronously. It seems
a microprogramming control, except that there is not any conventional level
instruction to be executed. Each processing task corresponds to a special op-
timized microprogram, which is loaded at the Control Unit, and executed to
control all the RP’s. After the processing of a task, another microprogram is
loaded, and the RP’s are also reconfigured to the new task.

7.5.1 Reconfigurable Processor

The Reconfigurable Processor structure, Figure 7.5, is composed by (a)
fixed units, such as memory address register (MAR), memory buffer register
(MBR), set of general registers; and (b) a reconfigurable dataflow unit, imple-
mented in FPGA’s, which enables the implementation of special reconfigura-
tions.

In the fixed unit data are loaded/stored from/to memory like in a modern
computer. The general registers are efficient when the same data are used
several times. So, it is necessary to load data from memory once, and then
reuse them from the registers. It becomes the computation faster and more
efficient, as a register-register processor.

The reconfigurable unit is composed by an array of arithmetic/logic units
(ALU’s). The number of ALU’s can vary from application to application,
using reconfiguration. The reconfigurable processors are fully controlled by
control signals, which are responsible by the control of all the arithmetic/logic
computations, load and store, and branch conditions (the data passes through
an ALU, its computation is done, and a flag signal is sent to the control unit.

208 FPGA Implementations of Neocognitrons

Figure 7.5. Reconfigurable Processor Structure

7.5.2 Control Unit

The control unit is similar to a microprogramming control, Figure 7.6. It is
composed basically by: a template memory, template counter (TC), a template
register, and a timing unit. The dataflow is controlled by a set of templates,
stored at the template memory, which is modified according to the application.
The timing unit synchronizes the template application to the dataflow at RP’s.
The template counter is responsible to address the next template, at the tem-
plate memory. However, in some cases the program must branch to another
template, and in this case a multiplex (mTC) is selected to branch address-
ing, which is indicated by the current template. This synchronization enables
the architecture to execute several different computations in sequence, parallel
and pipeline, outperforming the conventional computer, in special computation
applications.

Each template cycle is divided into four sub-cycles. In the first sub-cycle,
the control unit loads the template register with the next template; in the second

ALU1

data
memory

M
A
R

MBR

mMUX

bar A

bar B

bMUX

eMBR--

eMAR

bar C

bar R

control
unit

general
registers

re
co

nf
ig

ur
ab

le
da

ta
flo

w

latch latch

ALU2

latch latch

.

bar D

ALUn

latch latch

Alternative neocognitron hardware implementation 209

template
memory

TC

template

+1

control signals

timming unit /
sequence control

reconfigurable
dataflow flags

mTC

se
qu

en
ce

 c
on

tr
ol

br
an

ch
 a

dd
re

ss

Figure 7.6. Control Unit Structure

one, the data is loaded from the general registers into the ALU latches; in the
third one, MAR is loaded, and the ALU’s operations are executed; and in the
last one, data is loaded from memory to MBR, and are loaded the general
registers. It is noticed that the number of sub-cycles does not depend on the
number of pipeline stages. So, all operations in the RP’s dataflow will spend
four sub-cycles, independently of the number of pipeline stages or parallel
computations. The increase in the number of ALU’s means an increase in the
number of template bits.

7.6 Alternative neocognitron hardware implementation

By the analysis of the Alternative Neocognitron described at previous sec-
tions it is extracted a set of concurrent computation modules. Five modules E,
H, S, C, and ψ, correspond to the Neocognitron computing algorithm.

E-module computes to all N positions of the S-cell-plane, the weighted
sum of the input uCl−1

(n + v, K), with the weight a(v, k, K), within the con-
nection region Sv, which results in a partial value of e(n, k) , corresponding
to the preceding plane. Each E-module issue repeats the processing N times
to compute all positions of the E-matrix. Its result is added to the E-matrix
which will accumulate the weighted sum of all cell-planes, after K issues of
the E-module function.

210 FPGA Implementations of Neocognitrons

H-module is similar to the E-module but the weight values are c(v) and the
input values are squared before weighted sum. It results in the H matrix, which
will contain the weighted sum of all preceding layer cell-planes, after K issues
of the H-module function.

S-module computes uSl
(n, k), to all N positions of the cell-plane, using the

results of the previously described E-module and H-module functions.
C-module corresponds to the computation of the uCl

(n, k), to all N cells.
It computes the weighted sum of uSl

(n + v, k) , by d(v).
ψ-module computes the ψ(x), which limits C-cell output to the range [0,1).
Figure 7.7 shows a two-stage dataflow of the proposed architecture, to the

Alternative Neocognitron implementation. This structure may be used to com-
pute the E-module of the Alternative Neocognitron. Figure 7.8 shows the
template which controls the E-module. It is a 37-bit template with 12 fields;
and two of these twelve fields are responsible by the reconfigurable dataflow
control. Tab. 7.1 shows a resumed description of the template fields.

Table 7.1. Description of the E-module control fields

field description
cond branch condition

00: no branch;
01: conditional branch;
10: unconditional branch;

branch next microinstruction address
mem memory read/write control

0: read;
1: write;

eMAR load MAR control
0: load;
1: not load;

eMBR load MBR control
0: load;
1: not load;

mMUX multiplex data from memory or ALU
0: memory;
1: ALU;

barA, barB load data into latch A and B
f1/f2 00: A/C

01: B/D
10: A+B / C+D;
11: A-B / C-D;

As follows, it is showed the resumed algorithm to process the E-Module. In
this case it was considered a 57x57 input matrix, a 3x3 connection area, and a
circular buffer to store the uSl

(n + v, k) values. It is divided into five steps:

Alternative neocognitron hardware implementation 211

data
memory

M
A
R

MBR

mMUX

bar A

bar B

w
c

a0-a8
c0-c8

r
wp
end
ac

1
-1

6
56
-56
57
-57

bMUX

eMBR--

eMAR

bar C

bar R

0

3

58
-58

sv

general registers

bar D

7

7

8
8

8

8
88

8

A B

C D

*

+

8

8 12

8

8

8

12

control unit
flag

Figure 7.7. Reconfiguration of a RP to the E-module hardware implementation

microinstruction-E

37-bits

cond branch mem eMAR eMBR mMUX bMUX barA barB barC barR f1 f2

2 7 1 1 1 1 1 5 5 5 5 2 1

Figure 7.8. E-module template

load the weights a(v, k, K) from memory to the general registers;

load the uCl
(n + v, k) values from memory to the general registers, ac-

cording to the connection area size; (it fills the full circular buffer)

212 FPGA Implementations of Neocognitrons

load some uCl
(n+v, k) values and replace part of the data in the circular

buffer;

arithmetic processing; and

loop test.

The first step is related to the weights a(v, k, K) loading into the general
registers (a0-a8). In this case MAR is loaded with the first weight address and
the address pointer is incremented; then it is waited for the memory reading;
after that, the read value is loaded at the MBR; and finally the first weight is
loaded in the general register a0. This operation is repeated to all the nine
weights (a0-a8).

After the weights are loaded to the general registers, the same operation is
repeated to load the connection area C-cell values from memory to the registers
uc0-uc8. But before this, it is necessary to start a counter (cont) and a circular
buffer pointer (wp). The counter restarts every time a full column is processed;
and wp is restarted when the last position of the circular buffer is occupied.

The circular buffer is implemented via template. For each processed point
of the E-matrix, three new values are loaded into the circular buffer. So that,
from the nine values, six of them keep unaltered. The substitution control is
showed in Figure 7.9, and it proceeds as follows:

replace
replace
replace

uc3
uc4
uc5
uc6
uc7
uc8

wp = 0

replace
replace
replace

uc0
uc1
uc2

uc6
uc7
uc8

wp = 3

replace
replace
replace

uc3
uc4
uc5

wp = 6

uc0
uc1
uc2

Figure 7.9. Circular Buffer Control

if wp=0, replace the uc0-uc2 values;

if wp=3, replace the uc2-uc5 values; and

if wp=6, replace the uc5-uc8 values.

Once both the weights and the connection area C-cell values are loaded,
the E-matrix processing is started. The data is processed and stored into the
memory. In order to finalize the algorithm, there are a set of loop test and
updates to control the E-matrix processing.

Alternative neocognitron hardware implementation 213

Figure 7.10, Figure 7.11, and Figure 7.12, show the reconfigurable
dataflow for the H-module, S-module, and C-module, respectively. It is noted
that the E, H and C-modules are similar; and the S-module is the biggest one,
therefore it uses less general registers. Figure 7.13 corresponds to the calcula-
tion of the ψ function of the C-module output.

data
memory

M
A
R

MBR

mMUX

A bar

B bar

w
uc

c0-c8
uc0-uc8

r
wp
fim
ac

1
-1

6
56
-56
57
-57

bMUX

eMBR--

eMAR

C bar

R bar

0

3

58
-58

sv

general registers

D bar

7

7

8
8

8

8
88

8

l0 l1

l2 l3

SQR

*

f1 --

f2 --

control unit
flag

4 8

l4 l5

f3 --

8

12

12

8

8

124

+/-

Figure 7.10.

Tab. 7.2 shows the hardware resources used in the implementation of the Al-
ternative Neocognitron using the Altera’s Quartus II tool. The first line shows
the amount of templates necessary to control each module; the second line
shows the number of pipeline stages; the third line shows the template size;
the fourth line shows the number of logic elements (term used to define the

H-module reconfiguration

214 FPGA Implementations of Neocognitrons

data
memory

M
A
R

MBR

mMUX

bar A

bar B

we
wh

cont
fim

bMUX

eMBR--

eMAR

bar C

bar R

r

general registers

bar D

7

7

8
8

8

8
88

8

l0 l1

l2 l3

SQRT

*

f1 --

f2 --

4

l5 l6

+f4 --

8

5

8

l4

-

l7 l8

/

l9 l10

Fi

f5 --

f6 --

8
8

4

84

88

88

8

8

8 8

f3 --

control unit
flag

Figure 7.11. S-module reconfiguration

Performance analysis 215

data
memory

M
A
R

MBR

mMUX

bar A

bar B

w
us

d0-d8
uc0-uc8

r
wp
end
ac

1
-1

6
56
-56
57
-57

bMUX

eMBR--

eMAR

bar C

bar R

0

3

58
-58

sv

general registers

bar D

7

7

8
8

8

8
88

8

A B

C D

*

+

8

8 12

8

8

8

12

control unit
flag

Figure 7.12.

sic logicb uilding blocks of Altera’s programmable logic devices (PLD)) used
to implement each reconfigurable dataflow unit; the fifth row shows the total
number of input and output pins; and the last two rows show the configuration
time and the processing time, respectively.

7.7 Performance analysis

As an example, the mapping of the Alternative Neocognitron to the pro-
posed architecture may be resumed, as follows. The modules E, H, S, C, and
ψ, are processed at the RP’s, and the other functions at the host processor.

In a general version of REOMP we propose the use of the orthogonal mem-
ory, as follows. When the processors are writing their results in the orthogonal
memory, preparing to the next phase of orthogonal access, they write simul-
taneously, the same data to all accessible memory modules. After that, the

C-module reconfiguration

ba

216 FPGA Implementations of Neocognitrons

data
memory

M
A
R

MBR

mMUX

bar A

bar B

w
us

end
1

bMUX

eMBR--

eMAR

bar C

bar R

sv

general registers

bar D

7

7

8
8

8

8
88

8

l0 l1

l2 l3

Fi

+/-

f1 --

f2 --

8 8

l5

/f3 --

8

8

8

88

8

control unit
flag

8

Figure 7.13.

processors wait for the next orthogonal access, which occurs automatically, af-
ter the last processor finishes the processing. At the next orthogonal access,
the access mode is changed, to row or column, depending on the last access.
When the mode is changed, all the processors have the preceding processing
results of all the processors, because of the simultaneous writing of the same
data to all accessible modules, in the preceding access.

Figure 7.14 shows a typical data spreading operation using the REOMP
memory modules. At the left side we can see the diagonal memory modules
which correspond to local memory of the processors, with their respective data.

Ψ-module reconfiguration

Performance analysis 217

Table 7.2. Hardware resources used in the reconfigurable datapath implementation

Resources E H S C

Templates 90 92 16 90/12

Pipeline-stages 2 3 5 2/3

Template Size 37 44 32 37/31

Logic Elements 168 326 426 168/264

I/O Pins 37 43 57 37/37

Configuration Time(µs) 168 326 426 168/264

Processing Time (ms) 2.02 2.08 1.03 2.02/0.78

D0

D1

D2

Dp

D0

D1

D2

Dp

D0

D1

D2

Dp

D0

D1

D2

Dp

D0

D1

D2

Dp

 Contents of data in the
diagonal memory modules

Parallel write operation
 to all line modules

Figure 7.14.

With a row access, the processors connected to the exclusive rows spreads the
data to all row modules, simultaneously. At the right side, we see the result of
parallel data spreading operation, with all columns containing the same data,
distributed in several memory modules. During the following column access,
all processors may access their own column memory modules, which contain
the spread data.

The computation of all described Alternative Neocognitron modules results
in cell plane values. In a layer there are several cell planes, so that each RP is
responsible by the computation of a number of them, using the same previously
processed, and spread data of the orthogonal memory.

A performance analysis of the REOMP architecture is done considering a
typical implementation of the alternative Neocognitron, with an input matrix
of size 57x57, a connection area of size 3x3, and a number of 64 cell planes.
Tab. 7.3 shows the number of processors (p), varying in a range of 1 to 64
reconfigurable processors; the number of cell planes (NCP) computed by each

A typical parallel data spreading at the REOMP memory modules

218 FPGA Implementations of Neocognitrons

processor; the reconfiguration time (RT); the orthogonal memory size (OMS);
the spread time (ST); the total processing time(Proc.Time) ; and the speed-up.

Table 7.3. Performance Analysis

p NCP RT(µs) OMS ST(ms) Proc.Time(ms) Speed-up

1 64 86.5 220932 0 509 1

2 32 43.2 116964 14.5 (5.4%) 269 1.89

4 16 21.6 64980 21.8 (14.6%) 149 3.41

8 8 10.8 38988 25.4 (28.5%) 89.1 5.71

16 4 5.4 25992 27.2 (46.1%) 59.1 8.61

32 2 2.7 19494 28.2 (63.9%) 44.1 11.5

64 1 1.3 16245 28.6 (78.2%) 36.6 13.9

The distribution of the cell planes is done homogeneously to each reconfig-
urable processor. When p=1 all the 64 cell planes are processed at one RP;
otherwise, when the number of processors is 64, each RP processes one cell
plane, reducing the reconfiguration time. On the other hand, when the num-
ber of processors (p) increases, the number of orthogonal memory modules
increases as p2 and consequently, the spread time also increases. From 16
processors the spread time occupies 46.1% of the total processing time; and
with 64 processors, it is 78.2%. These percentages are obtained with the di-
vision of the ST by the Proc.Time. It compromises the speed-up which varies
from 1 to 13.9. Figure 7.17 shows the speed-up when the number of processors
varies from 1 to 64.

7.8 Applications

The Neocognitron model has been originally developed to handwritten char-
acters recognition and classification. It is based on the manipulation of lines,
edges and bend points. One of the applications of the Alternative Neocog-
nitron model is on the solution of biometric problems to individuals classifi-
cation and recognition. Figure 7.18 shows some face images used as input
patterns to the Alternative Neocognitron in human face recognition, and the
Figure 7.19 shows the results after the edge processing, line segment process-
ing, and the bend point processing. Figure 7.20a shows a fingerprint original
image, and Figure 7.20b its enhanced image, used to the minutia detection
application. Figure 7.21 shows the 8 minutiae categories been considered
by the fingerprint recognition application of the Alternative Neocognitron, and
Figure 7.22 illustrates the minutiae position in a fingerprint sample. The Alter-

Applications 219

0 10 20 30 40 50 60 70 80 90

1

2

4

8

16

32

64

N
u

m
b

er
 o

f
P

ro
ce

ss
o

rs

Number of Cell Planes

Reconfiguration Time

Figure 7.15. Comparison between the number of cell-planes and the reconfiguration time
when the number of processors increases

1 2 4 8 16 32 64

0

10

20

30

40

50

60

Number of Processors

Orthogonal Memory Size

Spread Time

Total Processing Time

Figure 7.16. Comparison between the orthogonal memory size, spread time and the total
processing time when the number of processors increases

native Neocognitron was fully implemented in simulation and it presented an
acceptable recognition rate (86%), and rejection rate (14%), using 10 different
individuals, in the face recognition, and a number of 10 test patterns [2]. In the
fingerprint application, where the Alternative Neocognitron was applied sev-

220 FPGA Implementations of Neocognitrons

Figure 7.17. Speed-up x Number of processors

eral times over the full fingerprint image, the correct recognition rate was 96%,
the error rate was 1%, and the rejection rate was 3%, using 479 test patterns
[1].

Figure 7.18.

Figure 7.19. Bend points obtained by the first three stages of the Alternative Neocognitron, to
the face images of the Figure

Face images used to the Alternative Neocognitron face recognition

7.18, in the respective sequence

Conclusions 221

Figure 7.22.

7.9 Conclusions

This work describes an FPGA implementation of an Alternative Neocogni-
tron, which is a neural network inspired on the biological brain. The proposed
neural network was simulated and it was verified that its performance is sim-
ilar to the original Neocognitron, manipulating other types of input images,
than handwritten character recognition. It was also described the proposal
of its hardware implementation in a reconfigurable computer. Although the
neural networks corresponds to the human brain functions, the proposed

An example of the minutiae position in a fingerprint

222 FPGA Implementations of Neocognitrons

chitecture is completely different from the brain internal structure based on
the neural cells. The proposed RP’s are based on FPGA’s, which are pro-
grammed with configuration data generated by an environment of hardware
description language, VHDL, and are reconfigured to execute the algorithms
by a microprogramming-like control unit. By the analysis of the orthogonal
memory performance, it is possible to conclude about the use of orthogonal
memory with reconfigurable components. A REOMP architecture is efficient
for a lot of scientific applications but the memory access principle disable the
column, and row, data access mix. It reduces the flexibility to those algorithms
that do not necessity an orthogonal access. Fortunately, a neural network has a
lot of concurrent operations in the neuron processing, which facilitates its map-
ping in a orthogonal architecture. Another problem in the REOMP architecture
laid in the number of memory modules, which grows according to the number
of processors (p) in a p2 rate. This is tolerable until a few number of proces-
sors. The results obtained showed that until 8 processors a REOMP architec-
ture is interesting; after that the data spread in the orthogonal memory became
to be critic. The algorithms are processed in the RP’s which are connected
to the orthogonal memory modules. As the brain alternates their functions,
it is proposed a neural network hardware implementation which uses a small
number of FPGA’s simultaneously, each one processing a specific algorithm.
If the processing is finished, all the RP’s and the Control Unit of the REOMP
architecture is reconfigured to another algorithm. As the brain, some algo-
rithms or functions are constantly in operation, and others may be alternated.
Several reconfigurable architectures have been proposed, to support demand-
driven instruction set modification, most of them using partial reconfiguration,
paging instruction modules in and out of an FPGA as demanded by the exe-
cuting program. In the case, the functions constantly in operation may be at
the host processor, and the alternated functions in RP’s. The proposed architec-
ture comports hardware implementation of the algorithms, which simulates the
brain functions, occupying physically restricted space. Future works are con-
cerned in the REOMP implementation in a System-on-Chip (SoC) approach
provided this new technology enables the use of modular design concept.

References

[1] Arantes, M., Ide, A. N., and Saito, J. H. A System for Fingerprint
Minutiae Classification and Recognition. volume 5, pages 2474–2478.
Proceedings of the 9th International Conference on Neural Information
Processing - ICONIP’2002. Singapura, 2002.

[2] Bianchini, A. R. Arquitetura de Redes Neurais para o Reconhecimento
Facial Baseado no Neocognitron. Master’s thesis, Universidade Federal
de São Carlos.

ar

223

[3] T. J. Callahan, J. R. Hauser, and J. Wawrzyneck. The Garp Architecture
and C Compiler. volume 33, pages 62–69. IEEE Computer Society, Com-
puter: Innovative Technology for Computer Professionals, April 2002.

[4] A. Dehon. Reconfigurable Architecture for General Purpose Computing.
PhD thesis, Massachussets Institute of Technology (MIT), 1996.

[5] A. Dehon. The Density Advantage of Configurable Computing. vol-
ume 33. IEEE Computer, 2000.

[6] K. Fukushima. Neural-Network Model for a Mechanism of Pattern
Recognition Unaffected by Shift in Position - Neocognitron. volume 62-
A. Transactions of the IECE, 1979. Japan.

[7] K. Fukushima and S. Miyake. Neocognitron: A New Algorithm for Pat-
tern Recognition Tolerant of Deformations and Shift in Position. vol-
ume 15, pages 455–469. Pattern Recognition, 1982.

[8] K. Fukushima and M. Tanigawa. Use of Different Thresholds in Learning
and Recognition. volume 11, pages 1–17. Neurocomputing, 1996.

[9] K. Fukushima and N. Wake. Improved Neocognitron with Bend-D de-
tecting Cells. Proceedings of the IEEE - International Joint Conference
on Neural Networks, 1992. Baltimore, Maryland.

[10] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R.
Taylor. Piperench: A Reconfigurable Architecture and Compiler. vol-
ume 33, pages 70–77, Issue 4. IEEE Computer, April 2000.

[11] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor,
and R. Laufer. Piperench: A Coprocessor for Streaming Multimedia Ac-
celeration. pages 28–39. Proceedings of the 26th. Annual International
Symposium on Computer Architecture (ISCA’99), 1999.

[12] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. The Chimaera Recon-
figurable Functional Unit. pages 87–96. Proceedings of the IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM’97),
April 1997.

[13] J. R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Recon-
figurable Coprocessor. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines - FCCM ’97, April 1997.
USA.

[14] D. H. Hubel and T. N. Wiesel. Receptive Fields and Functional Architec-
ture of Monkey Striate Cortex. volume 165, pages 215–243. J. Physiol-
ogy, 1968.

[15] K. Hwang, P. Tseng, and D. Kim. An Orthogonal Multiprocessor for
Parallel Scientific Computations. volume 38, Issue 1, pages 47–61. IEEE
Transactions On Computers, January, 1989.

References

224 FPGA Implementations of Neocognitrons

[16] A. N. Ide and J. H. Saito. A Reconfigurable Computer REOMP. vol-
ume 13, pages 62–69. Proceedings of the 13th Symposium on Computer
Architecture and High Performance Computing - SBAC-PAD’2001, Sep-
tember 2001. Pirenópolis.

[17] G. Lu. Modeling, Implementation and Scalability of the MorphoSys Dy-
namically Reconfigurable Computing Architecture. PhD thesis, Electrical
and Computer Engineering Department, University of California, 2000.
Irvine.

[18] E. A. Mirsky. Coarse-Grain Reconfigurable Computing. PhD thesis,
Massachussetts Institute of Technology, June 1996.

[19] J. H. Saito. A Vector Orthogonal Multiprocessor NEOMP and Its Use
in Neural Network Mapping. volume 11. Proceedings of the SBAC-
PAD’99 - 11th Symposium on Computer Architecture and High Perfor-
mance Computing, 1999. Natal, RN, Brazil.

[20] H. Singh. Reconfigurable Architectures for Multimedia and Parallel Ap-
plication Domains. PhD thesis, Electrical and Computer Engineering
Department, University of California, 2000. Irvine.

[21] H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. M. C. Filho.
Morphosys: An Integrated Reconfigurable System for Data-Parallel and
Computation-Intensive Applications. volume 49, pages 465–481. IEEE
Transactions on Computers, May 2000.

[22] M. J. Wirthlin and B. I. Hutchings. A Dynamic Instruction Set Computer.
Proceedings of the IEEE Symposium on FPGA’s for Custom Computing
Machines, April 1995.

Chapter 8

SELF ORGANIZING FEATURE MAP FOR
COLOR QUANTIZATION ON FPGA

Chip-Hong Chang, Menon Shibu and Rui Xiao
Centre for High Performance Embedded Systems,
Nanyang Technological University

Abstract This chapter presents an efficient architecture of Kohonen Self-Organizing Fea-
ture Map (SOFM) based on a new Frequency Adaptive Learning (FAL) algo-
rithm which efficiently replaces the neighborhood adaptation function of the
conventional SOFM. For scalability, a broadcast architecture is adopted with
homogenous synapses composed of shift register, counter, accumulator and a
special SORTING UNIT. The SORTING UNIT speeds up the search for neu-
rons with minimal attributes. Dead neurons are reinitialized at preset intervals
to improve their adaptation. The proposed SOFM architecture is prototyped on
Xilinx Virtex FPGA using the prototyping environment provided by XESS. A
robust functional verification environment is developed for rapid prototype de-
velopment. Rapid prototyping using FPGAs allows us to develop networks of
different sizes and compare the performance. Experimental results show that
it uses 12k slices and the maximum frequency of operation is 35.8MHz for a
64-neuron network. A 512 X 512 pixel color image can be quantized in about
1.003s at 35MHz clock rate without the use of subsampling. The Peak Signal to
Noise Ratio (PSNR) of the quantized images is used as a measure of the quality
of the algorithm and the hardware implementation.

Keywords: Artificial Neural Networks, FPGA, Self Organizing Feature Maps, Color Quan-
tization

8.1 Introduction

The color of a given pixel on the video display is determined by the amount
of color provided by each of the respective R, G and B electron guns. Each
of the three basic colors of a 24-bit RGB formatted digitized color image
can contribute to one of the 256 shades of that color. This relatively large
number of possible color combinations produces a true-to-life color image on

225

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 225–245.
© 2006 Springer. Printed in the Netherlands.

226 Self Organizing Feature Map for Color Quantization on FPGA

the video display. However, problems arise when superior image quality is
of a secondary concern than the scarce valuable memory in applications like
transparency displays, animation and displaying continuous tone color images
on monitors that lack full color frame buffers. The image size becomes more
important a concern for portable applications, where the available memory
for storage of the image is less. This calls for a compression scheme which
achieves a good compression performance, while maintaining the best possible
image quality.

One of the most common compression methods for color images involves
their coding using Vector Quantization (VQ). Color Quantization (CQ) [1–7]
is a subset of VQ that provides color reduction by selecting a small number
of code words (colors) from a universal set of available colors to represent a
high color resolution image with minimum perceptual distortion. Reduction
of the image colors is an important factor for compression of a color image.
A global compression scheme utilizes the DCT transforms and a low pass
filter to preprocess the image before being quantized [8]. Since human
vision has considerably less spatial acuity for chrominance than luminance
[9], in addition to the standard lossy compression aiming at removing the
unperceivable high frequency components, further compression is achieved
with Color Quantization (CQ) [5, 7, 9].

CQ can be considered as a two-step process involving “color palette design”
and “quantizer mapping” [5]. The color palette design is to find a reduced
set of pixel values called the codebook, which is most representative of the
original image. Let the set of all pixels of the image be I . The color value
of I is represented by I = (r, g, b), where r, g and b are the associated pixel
color values. Thus, the color palette design is to partition the input colors into
M disjoint sets, Cs, (0 ≤ s ≤ M), where M is the number of colors in the
quantized image, which is usually limited by the hardware. For every color
set Cs, there is a representative color qs, which constitutes the color palette.
Thus, the main issue in colormap design is to select the best possible set of
representative colors qs for the images, and partition the colors into M color
sets, Cs. Quantizer mapping, on the other hand, involves the mapping of each
pixel of the image to an entry in the codebook to produce the highest possible
quality image. Quantizer mapping, thus involves the association of each pixel
of the image with a color from qs to yield the highest quality image. By
optimizing the color palette design to choose a codebook using a finer scale on
vectors occurring more frequently, the loss of precision due to the quantization
scheme is minimized.

A number of approaches have been suggested for the design of CQ includ-
ing the LBG algorithm [10], popularity algorithm [11], variance-minimization
CQ algorithm [12] and the Octree algorithm [13]. However, the approach that
has the most potential in terms of the compression ratio, computational com-

Introduction 227

plexity and perceptual distortion is found to be the one using Neural Network
(NN) algorithms [14, 29, 16, 17]. The frequently used clustering techniques
for color quantization are the Kohonen Self-Organizing Feature Map (SOFM)
[18], Fuzzy C-means [19], C-means [20] and K-means [21]. The use of NN
for CQ has a number of significant advantages. First, algorithms based on NN
lend themselves to highly parallel digital implementation and offer the poten-
tial for real time processing. Second, the large body of training techniques for
NN can be adapted to yield new and better algorithm for codebook design.
Finally most NN training algorithms are adaptive, thus NN based CQ design
algorithms can be used to build adaptive vector quantizers. One class of NN
structures, called self-organizing or competitive learning networks [29, 22,
23], appears to be particularly suited for image clustering, and a number of
relevant studies have been reported [24], [25, 26]. In comparison with other
neural networks, and especially with supervised learning, it is known that
competitive learning is highly suited to discovering a feature set and to create
new classes automatically [27]. Basically, there are two different models of
self-organizing neural networks originally proposed by Willshaw and Von
Der Malsburg [28] and Kohonen [29], respectively. The model developed
by Willshaw et al. is specialized to the types of mappings where the input
dimension is the same as the output dimension. However, Kohonen SOFM is
more general in the sense that it is capable of generating mappings from high
dimensional signal spaces to lower dimensional topological structure.

Kohonen Self Organizing Feature Map (SOFM) [30–36], wherein a
sequence of inputs is presented to a network of neurons that self-organize to
quantize the input space as optimally as possible has been reported to have
achieved phenomenal success in image color quantization [3–5, 8, 31, 35, 15].
When used in color quantization, its advantages are manifested in the inherent
massively parallel computing structure and the ability to adapt to the input
data through unsupervised learning.

The Kohonen SOFM adopts a massively parallel computing structure.
This inherent parallelism arises out of the independent processing ability of
individual neurons and is of immense benefit when a VLSI implementation
of the network is considered. This structure is also ideally suited for building
a scalable architecture. Another feature of the Kohonen SOFM that makes
it attractive is that it is essentially an on-line algorithm where codebook
updating is done while the training vectors are being processed, thus needing
very minimal memory to store the data. These features along with another
important characteristic of Kohonen SOFM, namely graceful degradation
makes it the algorithm of choice for most hardware implementation of feature
mapped networks.

The traditional Von Neumann based architecture of the general-purpose
computers and high speed digital signal processors have been optimized to

228 Self Organizing Feature Map for Color Quantization on FPGA

process arbitrary code and in such application, the performance will be short
of the required speed by direct mapping of the algorithm of interest onto
programmable codes running on a generic computing architecture. Software
implementations of neural network algorithms suffer from the inherent
weakness of being inefficient and hence time-consuming. Kohonen SOFM
especially is a highly parallel algorithm which needs large CPU times for
training large data sets to the network [37]. Thus a need for specialized
hardware systems dedicated to SOFM computations and which maximize the
utilization of resources for exploiting the inherent parallelism in the algorithm
is called for. Moreover, in portable applications, where the time taken for
compression is critical, a specialized hardware for speeding up the process of
quantization is justified.

Re-configurable devices such as FPGAs offer a low cost middle ground
between the efficiency of VLSI ASIC implementations and the flexibility of a
software solution. An FPGA approach allows fast time-to-market, customiz-
ability and just-in-time production. Moreover, since different compression
rates can be obtained with different network sizes, FPGAs are a suitable way to
study the comparative features of the different networks. An implementation
on an FPGA also gives us the option of run time programmability in portable
applications to obtain different compression ratios.

In this chapter we propose a novel hardware implementation of the Kohonen
SOFM using Frequency Adaptive Learning (FAL) algorithm with frequency
reinitialization at set intervals. In such a scheme, the learning rate is localized
to each individual neuron and is dependent on the number of times the neuron
has won instead of the length of training. This change in the fundamental
learning equation improves the utilization of trained neurons in the mapping
process and eliminates the dead neuron problems due to poor initialization.
As a result, neighborhood updating can be ignored without severely affecting
the adaptation rate.

8.2 Algorithmic adjustment

In VLSI implementation of the Kohonen SOFM, each neuron is typically
implemented as a processing element. The more complex the neuron structure
is, the lesser is the number of neurons that can be accommodated within
reasonable area constraints. Given the need for a decent number of neurons
in any application, a direct implementation of the Kohonen algorithm is
implausible as it requires an impractical number of multipliers and I/O
pins per neuron [31, 32, 34]. This section discusses the modified Kohonen
algorithm and the novelties that we have implemented.

Algorithmic adjustment 229

8.2.1 Conventional algorithmic simplification

Most present digital implementations of the Kohonen network rely on
modifications to the original algorithm to simplify the hardware architecture
[31, 32]. Past researches have focused on how to optimally implement the
Kohonen SOFM on a digital platform without overtly affecting the effective-
ness of the algorithm [3]. The general trend has been towards simplifying those
stages of the Kohonen algorithm that involve digitally impractical calculations.
The most common modifications involve the use of Manhattan distance for
Euclidean distance [31, 34] and the use of simplified learning rate functions,
both of which cut down on the usage of digital multipliers. Typical algorithm
tailored for hardware implementation is presented here:

1 The neurons are initialized with random weights.

2 The topological distance between the neuron weight, W = {Wr, Wg,
Wb} and the input pixel, X = {Xr, Xg, Xb} is calculated. Manhattan
distance is used instead of the Euclidean distance to avoid the computa-
tionally intensive square root and squaring functions.

3 The neuron with the least topological distance is deemed the winning
neuron. The weights of the winning neuron are updated based on some
learning rule.

Ww(t + 1) = Ww(t) + α(t)(X(t) − Ww(t)) (8.1)

where α(t) is the learning rate function, Ww(t) and X(t) are respec-
tively, the weight of the winning neuron and the input pixel presented at
time t. For hardware simplicity, unit learning rate [31] or learning rate
decreasing as integer multiples of 1

2 [32] have been adopted.

4 The neighborhood neurons of the winning neuron are determined and
their weights are updated according to a similar learning rule:

Wn(t + 1) = Wn(t) + β(t)(X(t) − Wn(t)) (8.2)

where β(t) is the learning rate function of the neighborhood, which
reduces with their topological distances from the winning neuron. As
β(t) < α(t)∀t, a good neighborhood learning rate function is difficult to
accommodate in hardware without significantly degrading its area and
time performances. On the other hand, ignoring neighborhood learning
leads to slow rate of adaptation.

8.2.2 Frequency Adaptive Learning Algorithm

In the conventional SOFM algorithm, the learning rate α(t) is set high ini-
tially. As more input pixels are presented to the network, the learning rates α(t)

230 Self Organizing Feature Map for Color Quantization on FPGA

and β(t) are gradually reduced according to a linear or exponential function.
This approach can however lead to the problem of over utilization of some
and under utilization of other neurons in the pixel mapping process owing to
the localization of responses. The resulting visual artifacts are more severe in
hardware than software due to the limited number of neurons imposed by the
size constraints. The situation is alleviated by randomizing the input presen-
tation [5]. Again, the hardware cost required for the input randomization has
often been overlooked.

We propose an implementation based on a novel Frequency Adaptive Learn-
ing algorithm (FAL) [30]. This method requires each neuron to track the num-
ber of times it has been updated with a winning frequency counter. The learn-
ing rate of the winner is then a direct function of the frequency count. At
predefined intervals in the training process, the “dead” neurons (as denoted by
neurons with zero frequency count) are reinitialized with the weights of the
“saturated” neuron (with maximum frequency count). To implement FAL, a
localized learning rate function α(F) is proposed as follows:

α(F) = K10·log(F) (8.3)

where K is a constant value ranging from 0 to 1, and F is the local frequency
count normalized according to the network and image sizes. Figure 8.1 com-
pares the proposed learning rate function with some popular learning functions
[5, 35]. It is noticed that the proposed learning rates strive to drag the winning
neuron towards the input cluster as quickly as possible within its first 10 to 50
updates, thereafter the neuron is allowed to fine tune gradually in its later wins.
For other learning rate functions, the neurons are almost frozen after 50 times
of winning.

Figure 8.1. Comparisons of Different Learning Rates

For ease of hardware implementation, learning rates as a function of the sum
and difference of power-of-two terms were chosen. Instead of using the origi-
nal continuous, complex learning rate function of (3), several discrete rates are

Architecture 231

selected for different ranges of normalized winning frequencies, F , as shown
in Table 8.1. The lower limits for the normalized frequency ranges are chosen
such that various learning rates can be multiplexed with simple selector logics
formed by the bits of the frequency counter. When the normalized frequency is
greater than 2047, the neuron is inhibited from further updating to avoid unnec-
essary oscillations around the cluster centroid. The advantages that this method

Table 8.1. Comparisons of Different Learning Rates

F 0 − 7 8 − 63 64 − 1023 1024 − 2047 > 2048

α 0.75 0.375 0.09 0.0156 0

offers are ample. Firstly, this implementation achieves a truly utilization de-
pendent learning as opposed to unity learning rate [31] or a broadcast common
learning rate [34]. Consequently, neurons that have been utilized quite heavily
undergo smaller change of magnitudes. This is equivalent to not disturbing
those neurons that are already representative of some majority colors. Sec-
ondly, training can be divided into stages, so that dead neurons can be detected
at each stage and reinitialized towards the active neurons. Software simulation
shows that adaptation can be sped up by eight times and utilization rate at the
final pixel mapping process improved significantly [30]. It has also been shown
that one pass of all pixels of an image is sufficient to achieve a good reconstruc-
tion quality. This deterministic convergence has eliminated substantial amount
of hardware cost and computation time to evaluate termination criteria in con-
ventional SOFM. Lastly, by decoupling learning rate function from the order
of presentation, input randomization can be foregone. Most VLSI implemen-
tations ignore neighborhood function without compensating for their severe
degradation on the adaptation results. With the rate of adaptation accelerated
by FAL, neighborhood updating can be ignored in our proposed implementa-
tion. Re-initialization of dead or undertrained neurons achieves a similar effect
as neighborhood updating to the clustering of neurons.

8.3 Architecture

This section deals with the architectural features of the implemented SOFM.
The most critical aspect of any hardware design is the selection and design of
the architecture that provides the most efficient and effective implementation
of the algorithm available. It is a general requirement of neural nets that the
neurons be richly interconnected for the purpose of inter-neuron communica-
tion. In an ideal situation, any neuron must be able to communicate with any
other neuron. A direct digital implementation of this rich interconnection can

232 Self Organizing Feature Map for Color Quantization on FPGA

only be achieved at the cost of an impractical number of I/O and routing re-
sources. An FPGA has only limited routing resources. Moreover, when the
routing gets congested, long routing paths may be necessary to complete a sig-
nal path. This could slow down the design and cause routing problems for the
signal that must travel across or around the congested areas.

An architecture that suits the need for interconnected networks admirably
without taxing hardware needs very much is the broadcast architecture [31, 34].
A broadcast architecture fully exploits the property of computational indepen-
dence of neurons. A distinct advantage of such a network is the leeway pro-
vided for scalability with respect to the network size. The network structure is
illustrated in Figure 8.2.

The Control Unit is the backbone of the network and it controls the opera-
tion of the network by broadcasting the control and data values on the control
and data buses, respectively. The individual neurons are also capable of taking
control of the bi-directional data bus to broadcast their data values.

ENCODER

CONTROL UNIT

C
O

N
T

R
O

L
 B

U
S

D
A

T
A

 B
U

S

Neuron 1 Neuron 2

Neuron 3

Neuron 5

Neuron 4

Neuron 6

Figure 8.2. Broadcast Architecture

Architecture 233

Each neuron in Figure 8.2 has a structure shown in Figure 8.3. The inter-
nal arithmetic circuits are designed to allow each processing element to au-
tonomously compute its distance to the input and update its weight. Another
salient feature of this neuron architecture is that all the computations can be
carried out with just a single adder module. The SORTING UNIT is used to
allow the controller to read any bit of the internal register through the single bit
feedback line by placing the bit mask on the data-in lines. This unit is very use-
ful for finding the neuron with the minimum Manhattan distance or minimum
frequency count. Using a down-counting frequency counter offers two distinct
advantages: The SORTING UNIT can be used to determine the neuron with
the maximum frequency and saturated neurons can be easily determined as
those with a frequency count of 0, thus cutting down on unnecessary compara-
tors. With the SORTING UNIT, the number of cycles taken to find the neuron
with minimum attributes is almost half that of the binary search method. The
tradeoff is in terms of an increase in hardware resources used.

During the initialization phase, the Control Unit sends an n-bit address on
the data bus (for a network of N = 2n neurons) and asserts the add cyc
signal. The addressed neuron acknowledged by setting its en neuron flag.
In the next cycle, the Control Unit broadcasts the 8-bit data on the data
bus and deasserts the add cyc signal to initialize the addressed neuron with
Wr = Wg = Wb = 255 · A(N − 1) where A is the address of the neuron.
This process is repeated with consecutive addresses until all neurons have been
initialized. The frequency counters of all neurons can be initialized in a similar
manner by asserting the init freq signal on the control bus and putting the
initial frequency value on the data bus. The frequency counters are initialized
to fmax instead of 0 so that the winning frequency, F = fmax − f , where f
is the counter value. This arrangement allows the SORTING UNIT to search
for the most active neuron during the reinitialization. In addition, saturated
neurons can be identified by zero frequency count so that they can be inhibited
from further updating.

After initialization, the system performs the following operations as the in-
put pixels are presented:

Step 1: The Control Unit broadcasts the input pixel values: r(t), g(t)
and b(t) on the data bus. The neurons calculate the metric |Xi − Wi|for
i = r, g, b and store the three difference values in the D registers, DR,
DG and DB .

Step 2: The Manhattan distance |(Xr −Wr)+(Xg −Wg)+(Xb−Wb)|
is calculated and stored in the internal register of the SORTING UNIT.
Through the SORTING UNIT, the neuron with the minimum Manhattan
distance is found and its wnr flag is set.

234 Self Organizing Feature Map for Color Quantization on FPGA

G
L
O
B
A
L

 B
U
S

2's
comp

Flag registers

Shift_Circuit

Arithmetic Unit

mux02_sel

clk
reset

start_calc
p_load

mux01_sel [1:0]

mem_out [8:0]

b_bus[8:0]

sh
ift

_o
ut

[8
:0

]

Frequency
Counter

b_bus[8:0]

init_freq
clk

reset

dec_freq

Comparator

f>32 f>128 f>1024 f>16384

sr_en

shift_add

sr_en

7-word Memory

T2RCT2GCT2BC

add/sub'

flag_sel[1:0]

Buffer

m
em

_o
ut

Wnr

Wnr

calc_done

Nrn_cntrl

flag_write

c_add[1:0]

en_mem

buf_o
ut[8:0]

Enable_Control

Decoder

en_neuron

b_bus

add-cyc

rd/wr'

data_en

MUX

diff_out[9:0]

a_out[9:0]

b_bus[8:0]

mux_cntrl[1:0]

WNR

s_bit

clk,reset

clk,reset

m
em

_o
ut

[8
:0

]

s2

ram_address[2:0]

da
ta

_i
n

[9
:0

]

neg_out

select

cyc_cntrl
cyc_cntrl

SORTING_UNIT

clk,reset

MUX
a_out[9

:0]

freq_count [14:0]data_mux_
min

b_bus[4]

b_bus[3:0]

reset_wnr
write_wnr

gnt_out

write_winning_frequency

WNR

dec_assert

S1

S2

fr
eq

_c
ou

nt
 [1

4:
0]

Figure 8.3. Neuron Structure

Implementation 235

Step 3: The Control Unit asserts the dec freq signal to decrement the
frequency counter of the winning neuron, which is identified by the local
wnr flag.

Step 4: The neuron with wnr asserted will be updated, i.e., Wc(t+1) =
Wc(t)+γi((X(t)−Wc(t+1)) is executed with the shift-add operations
through the shift register and the Arithmetic unit. The amount of shifts
is determined by the range of frequency counter value, f .

Step 5: At this stage, the Control Unit checks if the predefined cycle
time for re-initialization has reached. If the re-initialization cycle is not
due, it proceeds directly to Step 8. During re-initialization, the Control
Unit asserts the load frequency signal on the control bus to load the
frequency counter value to the internal register of the SORTING UNIT.
By accessing the bits of this register, the neuron with the minimum fre-
quency count (denoting maximum updates) is found and its wnr flag is
asserted.

Step 6: The neuron whose wnr flag is set takes control of the data bus
and places its Wr, Wg and Wb values on the bus.

Step 7: The neurons with f = fmax have their no update flag set. The
no update flag enables the neurons to reinitialize their weights to the
weights on the data bus.

Step 8: Steps 1 to 8 are repeated for the next input pixel.

After all the pixels of an image have been exhausted, the weights stored in the
neurons form the entries of the LUT indexed by the addresses of the neurons.
The quantizer mapping is done in a manner similar to the color palette design.

8.4 Implementation

The SOFM architecture discussed in earlier sections was implemented on
a Xilinx FPGA (XCV1000-4bg560). The design and verification was accom-
plished using Verilog HDL (Hardware Description Language). Verilog HDL
is an all purpose language that affords the user the ability to design hardware
elements in abstract terms as well as the ability to design the verification en-
vironment. Compilation and Simulation were achieved using MODELSIM.
Synthesis, which is the stage where the abstract Verilog elements is translated
into a gate-level net-list, was accomplished using Xilinx ISE and FPGA EX-
PRESS.

236 Self Organizing Feature Map for Color Quantization on FPGA

MONITOR
STIMULUS

GENERATOR

CHECKER

CONFIGURATION
FILE

DATA FILE
LOG FILE

CHECK TASKSCHECK TASKS

TOP DUT

LUT COLOR INDEX

Database
Bit Files
Configuration

RECONSTRUCTION

HARDWARE
RECONSTRUCTED IMAGE

SOFTWARE
RECONSTRUCTED IMAGE

FPGA

Figure 8.4. Complete Design and Verification Environment

8.4.1 Development Environment

Figure 8.4 shows the complete design and verification environment. The
TOP DUT (Device Under Test) is the synthesizable HDL description of the
hardware. This module is functionally verified using a combination of a stimu-
lus generator, which generates test stimuli and a checker module that compares
the obtained response with the expected response. Pre-written check tasks pro-
vide the checker module with the expected responses.

Functional simulation with actual images involves, firstly the software de-
construction of an image into a configuration file and a data file. The config-
uration file provides the stimulus generator with details such as the number of
neurons, the number of pixels in the image, the initialization values, etc. The

Implementation 237

data file, on the other hand contains the R, G and B values of all pixels of
the image. The stimulus generator generates stimuli based on these two files
and the monitor generates the log file, which carries information regarding the
quantization process. Information printed includes the weights of all neurons
after every learning cycle. The output of the DUT, meanwhile is stored sepa-
rately as the LUT values in one file and the color indices (weights) in the other
file.

To compare the hardware and software encoding qualities, the color indices
are used to encode the data using a software implementation and this is used
to obtain a software reconstruction of the image. Similarly, the LUT generated
for the hardware implementation is used to reconstruct the image. The image
quality is quantified using the PSNR.

8.4.2 Control Unit Description

The Control unit is described as a big Finite State Machine (FSM) that has
an almost one-to-one correspondence with the algorithm implemented. Figure
8.5 shows the state diagram simplified for presentation. Each of the states
shown in this figure can be seen as a super state that has child states. As can be
seen from this figure, the state machine closely follows the algorithmic steps.

All registers and sequential elements of the design are reset initially.
This is represented by the RESET state. This state is followed by the LOAD
CONFIGURATION state where the configuration data is loaded. Configu-
ration data includes such essential items as the number of neurons, number
of pixels and initial frequency. Once these data have been loaded as seen by
the setting of the flag load complete, the control unit goes about initializing
frequency counters of the neuron. This is followed by the INITIALIZE
WEIGHT state where the neuron weights are initialized. When all the neurons
have been initialized, which is reflected in initialize count being equal
to neuron count, the CALCULATE MANHATTAN DISTANCE state is
arrived at. This state is responsible for broadcasting the data, generating the
control signals for the calculation of the Manhattan distance, and storing the
computed distance in each neuron. At the end of this state, as witnessed by
the setting of the calculation done flag, the FIND WINNER state is entered.
As the name suggests, this state involves the generation of control and data
signals to expedite the sorting step for finding the neuron with the minimum
Manhattan distance. When this step has been accomplished, the wnr signal
that is feedback from the neurons to the control unit is asserted and the state
machine moves on to the UPDATE WINNER state. In this state, the winning
neuron is updated based on preset learning rates.

Following this comes the SELECT PATH state. The sole responsibility of
this state is to determine the path the state machine should take from thereon.

238 Self Organizing Feature Map for Color Quantization on FPGA

RESET

LOAD
CONFIGURATION

INITIALIZE
FREQUENCY

INITIALIZE
WEIGHT

CALCULATE
MANHATTAN

DISTANCE

FIND WINNER

UPDATE WINNER

SELECT PATH

REINITIALIZE
NON-UPDATED

NEURON

READ NEURON
WEIGHTS

ENCODE SETUP

!reset

ENABLE
ENCODER AND

WRITE LUT

start.data_available

load_complete

load_complete

2 clock cycles

initialize_count !=
neuron_count

load_complete

initialize_count =
neuron_count

en
co

de
_c

yc
le

. c
al

cu
la

tio
n_

do
ne

encode_cycle.calculation_done

Wnr

update_complete
loop_count !=neuron_count

&
loop_count != FAL_count

loop_count !=neuron_count
&

loop_count = FAL_count

reinitialization_complete

loop_count = neuron_count

read_count = neuron_count

read_count != neuron_count

encoding_done

encoding_done

Figure 8.5. Simplified State Diagram for the Controller

If the number of pixels that have already been trained (represented in Figure
8.5 by loop count) is not equal to the total number of pixels and also the preset
interval for frequency based re-initialization (represented by FAL count) has

Experimental results 239

not been reached, then the next pixel is presented for training by repeating
the CALCULATE MANHATTAN DISTANCE state. However, if the preset
interval for frequency based re-initialization has been reached, then the next
state is the REINITIALIZE NON-UPDATED NEURON state. On the other
hand if the number of pixels that have already been trained is equal to the total
number of pixels, then the training process is deemed to have been completed
and the state machine moves on to the READ NEURON WEIGHTS state. In
this state, the weights of the neuron are read and written as the “color index”
file shown in Figure 6.4. When all the neuron weights have been read the
read count becomes equal to the neuron count. In such a case, the next
state involves setting up the encoding process, by reloading the pixel values.
This state is called the ENCODE SETUP state. Encoding of pixel values
also involves the Manhattan distance calculation which is reflected in the
state diagram. This is followed by the ENABLE ENCODER AND WRITE
LUT state. When all the pixels in the data file have been encoded, the flag
encoding done is set. After encoding, the state machine goes back to the
reset state.

8.5 Experimental results

Table 8.2 shows the computational complexity of the network in terms of
the processing time spent on a P pixel image by a network with N neurons
with M cycles of frequency re-initialization.

Table 8.2. Time Complexity for Color Quantization for P pixels and N neurons

Operation Number of Clock Cycles
Weights Initialization 3N
Frequency Initialization 2
Distance Calculation 17P
Winner Search (22+N)P
Frequency Update 1P
Winner Update 30P
Dead neuron reinitialization 58M
Reading LUT 9N
Quantizer Mapping 17P

The time complexity of the training and quantizer mapping processes are
expressible as (3 + P) · N + 70 · P + 58 · M + 2 and 9 · N + 17 · P , re-
spectively. The weights initialization depends on the number of neurons in the
network owing to the fact that different neurons are initialized with different
values through the data bus from the controller. The initial frequency on the

240 Self Organizing Feature Map for Color Quantization on FPGA

other hand is common for all neurons and thus takes only 2 steps regardless of
the neural network size. The Manhattan distance calculation for a pixel takes
17 cycles owing to the need for distance calculation for the three color com-
ponents and the addition of these three individual components. The search for
the winning neuron for each pixel needs 22 cycles for winner determination
and N cycles for arbitration to resolve tie. For a pixel, the Winner Updating
process takes a good amount of time because of its frequency dependence and
the need for multiple shift and add operations. Dead neuron re-initialization is
an involved process where each reinitialization takes up 58 clock cycles. This
arises due to the need to have to do a minimum frequency search (using the
same resources as those used for Winner search) followed by a transmission of
the weights from a minimum frequency neuron to dead neurons. The saving
grace however is that this step has to be done only a few times in the course
of the learning process. Reading LUT values involves reading the weights of
the neurons and mapping them into a tabular format with the neuron addresses
representing the index values.

The synthesis results of the entire SOFM architecture along with the
breakup into individual components from XILINX ISE using Synopsys FPGA
Express is given in Table 8.3. The TOP DUT in Table 8.3 consists of the neural
network, the synchronous encoder and the control unit. The design has been
mapped on to the Xilinx Virtex series of target device XCV1000-4bg560. The
datapath is dominated by the processing element and the critical path delay of
the top level architecture is 27.866ns. This gives a maximum operating fre-
quency of 35.8MHz irrespective of the network size. It can be seen from this
table that most of the area is taken up by the neural network.

Table 8.3. Synthesis Results

16N 32N 64N

% No. Eqvt. % No. Eqvt. % No. Eqvt.
Slice of Gate Slice of Gate Slice of Gate

FF Count FF Count FF Count
Top DUT 37% 2734 57,424 68% 5281 107,480 99% 10369 226,703

Synchronous 1% 5 172 1% 6 342 1% 752 7
Encoder

Control unit 2% 125 4210 2% 125 4210 2% 125 4210

Most literatures on hardware implementations of SOFM [32, 3, 34] report
only their area-time complexity. The hardware simplifications and truncation
of several fractional decimal digit precision to integer representation has sig-
nificant impact on the quality of the output due to cumulative errors. Unfor-
tunately, this critical sacrifice of the output quality has often been omitted in
hardware implementation and no objective quality assessment for image

Conclusions 241

constructed from hardware based SOFM has been reported. The images are
trained by our hardware SOFM and its reconstructed PSNR in dB is presented
in Table 8.4. The second column for each network size specifies the perfor-
mance for a process where the color palette design is done in hardware and the
Quantizer Mapping is done in software

Table 8.4. Quality of reconstructed image in PSNR

16N 32N 64N

H/W S/W H/W S/W H/W S/W
mapped mapped mapped

Lena (512 X 512) 19.87 21.97 22.48 26.04 23.84 27.50
Pepper (512 X 512) 17.64 18.53 21.10 23.21 22.32 25.30
Baboon (512 X 512) 16.58 18.51 18.19 21.72 18.73 23.25

Figure 6.6 shows a few samples of images that have been quantized and
mapped using the hardware architecture developed. The top row shows the
original images Lena, Pepper and Baboon respectively. The bottom row shows
the corresponding images reconstructed from the quantized data. The quan-
tized images are for 64 neuron implementation.

Figure 8.6. Comparison between Original (top) and Reconstructed (bottom) Images

re

242 Self Organizing Feature Map for Color Quantization on FPGA

8.6 Conclusions

Unlike digital video, successive digital still images like those taken from
the digital camera, may vary drastically in their color distribution. Therefore,
it is imperative to have an adaptive colormap to minimize the distortion for a
given bit budget. VLSI chip for color quantization in such portable applica-
tion need not be real time but should be power efficient to extend the battery
life. Several important considerations that have significant impact on the trade-
off between hardware complexity and rate-distortion performance have been
omitted in conventional approaches to hardware implementation of adaptive
colormap design. We observe from software simulations that the variations
of neuron initialization, input pixel randomization and the training time have
non-negligible effect on the neuron utilization and adaptation rates. These fac-
tual results prompt us to adopt a drastically different philosophy to revising the
SOFM algorithm by endowing the low complexity architecture with an effec-
tive learning mechanism.

In this chapter, an efficient architecture of SOFM dedicated for color quan-
tization has been proposed. The frequency adaptive learning (FAL) func-
tion with dead neuron re-initialization is employed to enhance the learning
efficiency. A frequency down counter is used in each processing element
for finding the minimum Manhattan distance and the maximum frequency
count to save the number of comparators required by the FAL algorithm.
The architecture has been successfully implemented on the Xilinx Virtex
XCV1000Ű4bg560 FPGA and tested for network size of up to 64 neurons.

References

[1] J. P. Braquelaire and L. Brun, “Comparison and optimization of methods
of color image quantization,” IEEE Trans. Image Processing,vol. 6, no. 7,
pp. 1048-1052, 1997.

[2] M. Orchard and C. Bouman, “Color quantization of image,” IEEE Trans.
Signal Processing,vol. 39, no.12, pp. 2667-2690, 1991.

[3] N. Papamarkos, “Color reduction using local features and a SOFM neural
network,” Int. J. Imaging Systems and Technology, vol. 10, no.5, pp. 404-
409, 1999.

[4] N. Papamarkos, A. E. Atsalakis and C. P. Strouthopoulos, “Adaptive color
reduction,” IEEE Trans. Syst., Man, and Cybern., Part B, vol. 32, no. 1, pp.
44-56, Feb. 2002.

[5] S. C. Pei and Y.S. Lo, “Color image compression and limited display using
self-organization Kohonen map,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 8, no. 2, pp. 191-205, 1998.

243

[6] G. Sharma and H. J. Trusell, “Digital color imaging,” IEEE Trans. Image
Process., vol. 6, no. 7, pp. 901-932, 1997.

[7] C.H. Chang, R. Xiao and T. Srikanthan, “A MSB-biased selforganizing
feature map for still color image compression,” in Proc. IEEE Asia-Pacific
Conf. on Circuits and Syst., Bali, Indonesia, vol. 2, pp. 85-88, 2002.

[8] C. Amerijckx, M. Verleysen, P. Thissen and J. Legat, “Image compression
by Self-Organized Kohonen map,” IEEE Trans. Neural Networks, vol. 9,
no. 3, pp. 503-507, 1998.

[9] C.H. Chang, R. Xiao and T. Srikanthan, “An adaptive initialization tech-
nique for color quantization by self organizing feature map,” in Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSPŠ03),
Hong Kong, Apr. 2003.

[10] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol. COMM-28, no. 1, pp. 84-95, Jan.
1980.

[11] P. Heckbert, “Color image quantization for frame buffer display,” ACM
Comput. Graphics, vol. 16, no. 3, pp. 297-307, Jul. 1982.

[12] S. J. Wan, P. Prusinkiewicz and S. K. M. Wong, “Variance-based colour
image quantization for frame buffer display,” Colour Research and Appli-
cation, vol. 15, no. 1, pp. 52-58, 1990.

[13] M. Gervautz and W. Purgathofer, “A simple method for color quantiza-
tion: octree quantization,” in Graphics Gems. A. Glassner, Ed., pp. 287-
293, New York: Academic Press, 1990.

[14] E. S. Grossberg, Neural Networks and Natural Intelligence. Cambridge,
MA: M. I. T. Press, 1988.

[15] T. Kohonen, Self-Organization and Associative Memory. New York:
Springer-Verlag, 1989

[16] R. P. Lippmann, “An introduction to computing with neural nets,” IEEE
Acoustics, Speech, and Signal Processing Mag., pp. 4-22, Apr. 1987.

[17] D. E. Rumelhart, J. L. McClell and PDP Research Group, Parallel Dis-
tributed Processing. Cambridge, MA: M. I. T. Press, 1986.

[18] A. H. Dekker, “Kohonen neural networks for optimal color quantization,”
Network: Computtat. Neural Syst., vol. 5, pp. 351-367, 1994.

[19] Y. W. Lim and S. U. Lee, “On the color image segmentation algorithm
based on the thresholding and the fuzzy C-means techniques,” Pattern
Recognit., vol. 23, no. 9, pp. 935-952, 1990.

[20] S. A. Shafer and T. Kanade, “Color vision,” inEncyclopedia of Artificial
Intelligence, S. C. Shapiro and D. Eckroth, Eds., pp. 124-131, New York:
Wiley, 1978.

References

244 Self Organizing Feature Map for Color Quantization on FPGA

[21] O. Vereka, “The local K-means algorithm for color image quantization,”
M.Sc. dissertation, Univ. Alberta, Edmonton, AB, Canada, 1995.

[22] N. R. Pal, J. C. Bezdek and E.K. Tsao, “Generalized clustering networks
and Kohonen’s self organizing scheme.” IEEE Trans. Neural Networks,
vol. 4, no. 4, pp. 549-557, July 1993.

[23] E. Yair, K. Zeger and A. Gersho, “Competitive learning and soft compe-
tition for vector quantizer design,” IEEE Trans. Signal Processing, vol. 40,
no. 2, pp. 294-309, Feb. 1992.

[24] A. K. Krishnamurthy, S. C.Ahalt, D. E. Melton and P. Chen, “Neural
networks for vector quantization of speech and images,” IEEE J. Select.
Areas Commun., vol. 8, no. 8, pp. 1449Ű1457, Oct. 1990.

[25] T. C. Lee and A. M. Peterson, “Adaptive vector quantization using a self-
development neural network,” IEEE J. Select. Areas Commun., vol. 8, no.
8, pp. 1458-1471, Oct. 1990.

[26] T. D. Chiueh, T. T Tang and L. G. Chen, “Vector quantization using tree-
structured self-organizing feature maps,” IEEE J. Select. Areas Commun.,
vol. 12, no. 9, pp. 1594-1599, Dec. 1994.

[27] Haykin, Neural Networks: A comprehensive foundation. New York:
MacMillan College Publishing Company, 1994.

[28] D. J. Willshaw and C. V. D. Malsburg, “How patterned neural connections
can be set up by self-organization,” in Proc. Roy. Soc. London B, vol. 194,
pp. 431-445, 1976.

[29] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological Cybernetics, vol. 43, pp. 59-69, 1982.

[30] R. Xiao, C.H. Chang and T. Srikanthan, “An efficient learning rate updat-
ing scheme for the self-organizing feature maps,” in Proc. 2nd Int. Conf.
on Visualization, Imaging and Image Processing, Malaga, Spain, pp. 261-
264, Sep, 2002.

[31] M.S. Melton, T. Phan, D.S. Reeves and D.E.V.D. Bout, “The TinMANN
VLSI chip,” IEEE Trans. on N. N., vol. 3, no. 3, pp. 375-383, 1992.

[32] S. Rueping, K. Goser and U. Rueckert, “A chip for selforganizing feature
maps,” in Proc. IEEE Conf. On Microelectronics for Neural Network and
Fuzzy Syst., vol. 15, no. 3, pp. 26-33, Jun. 1995.

[33] P. Ienne, P. Thiran and N. Vassilas, “Modified self-organizing feature map
algorithms for efficient digital hardware implementation,” IEEE Trans. on
Neural Network, vol. 8, no. 2, pp. 315-330, 1997.

[34] E.T. Carlen and H.S. Abdel-Aty-Zohdy, “VLSI Implementation of a fea-
ture mapping neural network,” in Proc. 36th Midwest Symp. on Circuits
and Syst., vol. 2, pp. 958-962, 1993

245

[35] O.T.C Chen, B.J.Sheu and W.C. Fang, “Image compression using self-
organization networks,” IEEE Trans. Circuits Syst. Video Techno., vol. 4.
no. 5, pp. 480 Ű 489, 1994.

[36] T. Kohonen, Self-Organizing Maps. New York: Springer, 1995.

[37] X. Fang, P. Thole, J. Goppert and W. Rosenstiel, “A hardware supported
system for a special online application of self-organizing map,” in Proc.
IEEE Int. Conf. on Neural Networks, vol. 2, pp. 956-961, Jun. 1996

References

Chapter 9

IMPLEMENTATION OF SELF-ORGANIZING
FEATURE MAPS IN RECONFIGURABLE
HARDWARE

Mario Porrmann, Ulf Witkowski, and Ulrich Rückert
Heinz Nixdorf Institute, University of Paderborn, Germany
System and Circuit Technology

porrmann@hni.upb.de

Abstract In this chapter we discuss an implementation of self-organizing feature maps
in reconfigurable hardware. Based on the universal rapid prototyping system
RAPTOR2000 a hardware accelerator for self-organizing feature maps has been
developed. Using state of the art Xilinx FPGAs, RAPTOR2000 is capable of
emulating hardware implementations with a complexity of more than 15 million
system gates. RAPTOR2000 is linked to its host – a standard personal computer
or workstation – via the PCI bus. For the simulation of self-organizing feature
maps a module has been designed for the RAPTOR2000 system, that embodies
an FPGA of the Xilinx Virtex (-E) series and optionally up to 128 MBytes of
SDRAM. A speed-up of up to 190 is achieved with five FPGA modules on the
RAPTOR2000 system compared to a software implementation on a state of the
art personal computer for typical applications of self-organizing feature maps.

Keywords: SOM, Self-Organizing Feature Maps, Reconfigurable Hardware, RAPTOR2000

9.1 Introduction

Self-organizing feature maps (SOMs) [4] are successfully used for a wide
range of technical applications, in particular, dealing with noisy or incomplete
data. Examples of use are explorative data analysis, pattern matching, and
controlling tasks. In cooperation with an industrial partner we are using SOMs
for the analysis of IC (Integrated Circuits) fabrication processes. The large
amount of data, that is captured during fabrication, has to be analyzed in order
to optimize the process and to avoid a decrease of yield [5, 6]. Currently, we
are analyzing data sets with more than 15,000 input vectors and a vector

247

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 247–269.
© 2006 Springer. Printed in the Netherlands.

248 Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

mension of about100. Software simulations of medium sized maps (i.e. about
100 × 100 neurons) on state of the art workstations require calculation times
of several hours for these data sets. The simulation of larger maps (more than
one million neurons with vector dimensions in the order of hundreds) seems
promising but is not feasible with state of the art PCs or workstations. From
the various possibilities to speed up neural computations we have chosen the
design of a hardware accelerator for neural networks. Our goal is to integrate
the system into state of the art workstations if very high performance is re-
quired and to enable access to the accelerator via the internet if the accelerator
is only sporadically used.

In recent years various hardware implementations for different neural net-
work architectures have been presented [1–3]. The main benefit of special
purpose hardware is the higher resource efficiency compared to software im-
plementations. On the one hand, special purpose hardware is well suited for
low-power implementations, on the other hand, much higher performance can
be achieved, compared to software implementations on a sequential processor.
However, many of the proposed architectures are dedicated to single neural
network algorithms or groups of similar algorithms. The aim of our project
is to deliver a system that is capable of accelerating a wide range of differ-
ent neural algorithms. Additionally, in most applications, different methods
of information processing are combined. For example, artificial neural net-
works are combined with fuzzy logic or with techniques for knowledge-based
information processing. In contrast to implementing different components for
data pre- and postprocessing and for neural networks we use a dynamically
(i.e. during runtime) configurable hardware accelerator to implement all of the
algorithms that are required for a special application. The system can be recon-
figured for the different tasks in one application (e.g. different configurations
for pre- and postprocessing may be selected). Because of the reconfigurability
the hardware can be adapted to the changing requirements of the application,
thus allowing an easy expansion by new algorithms to improve flexibility and
performance.

9.2 Using reconfigurable hardware for neural networks

Dynamic reconfiguration (or runtime reconfiguration) offers an opportunity
for application specific implementations on a dedicated hardware environment.
Different levels of dynamic reconfiguration can be distinguished. For example
in [7] three categories are presented: algorithmic reconfiguration, architectural
reconfiguration and functional reconfiguration.

The goal in algorithmic reconfiguration is to reconfigure the system with
a different computational algorithm that implements the same functionality,
but with different performance, accuracy, power, or resource requirements [7].

di

249

In the field of neural network hardware, algorithmic reconfiguration can be
used e.g. to implement algorithms with variable precision. For self-organizing
feature maps a low precision of e.g. 8 bit is sufficient for a rough ordering of the
map in the beginning of the learning process. For fine tuning of the map, the
precision of the hardware is increased (e.g. to 16 bit). Using a lower precision
allows us to set up an optimized architecture that can be faster, smaller or more
energy efficient than a high precision architecture.

In architectural reconfiguration the hardware topology and the computation
topology are modified by reallocating resources to computations. The need for
this type of reconfiguration arises e.g. if resources become unavailable or if
additional resources become available. Designing massively parallel architec-
tures for neural networks with a large number of processing elements (PEs), an
interesting approach for architectural reconfiguration is to check the function-
ality of the processing elements during start up. Processing elements that are
not working correctly can be disabled. This makes it possible to enhance the
yield, because problems in single processing elements can be tolerated in this
way.

Functional reconfiguration is used to execute different algorithms on the
same resources. Thus, limited hardware resources can be used to implement a
wide range of different algorithms. In neural network simulation we are often
interested in providing as much computing power as possible to the simulation
of the algorithm. But pre- and postprocessing of the input and output data often
also requires quite a lot of calculations. In this case dynamic reconfiguration
offers us the opportunity to implement special preprocessing algorithms in the
beginning, switch to the neural network simulation and in the end reconfigure
the system for postprocessing. Thus, we do not require the system resources
that would be necessary to calculate all algorithms in parallel. An example
for functional reconfiguration in this sense is the use of self-organizing feature
maps as a preprocessing stage for radial basis function networks, as proposed
e.g. by [8].

Our implementation allows us to add additional functionality for data post-
processing like U-matrix calculation. The integration of postprocessing algo-
rithms on the one hand speeds up computation time, on the other hand it often
drastically reduces communication time because the amount of data, that has
to be transferred from the hardware accelerator to the host computer is reduced
by these algorithms. In the case of data visualization we are able to offer a
speed up compared to a postprocessing algorithm on the host computer, that
enables us to display U-matrices online, during learning with nearly no loss in
performance.

Using reconfigurable hardware for neural networks

250

9.3 The dynamically reconfigurable rapid prototyping
system RAPTOR2000

The hardware accelerator for self-organizing feature maps, that is presented
here is based on the modular rapid prototyping system RAPTOR2000. The
system consists of a motherboard and up to six application specific modules
(ASMs). Basically, the motherboard provides the communication infrastruc-
ture between the ASMs and links the RAPTOR2000 system via the PCI bus
to a host computer. Additionally, management functions like bus arbitration,
memory management and error detection services are integrated in two Com-
plex Programmable Logic Devices (CPLD).

The various communication schemes that can be used between different
ASMs and between the ASMs and the host computer are depicted in the block
diagram in figure 9.1. Every ASM slot is connected to the Local Bus for
internal communication with other devices or ASMs and for external com-
munication with the host processor or with other PCI bus devices. An addi-
tional Broadcast Bus can be used for simultaneous communication between
the ASMs. Additionally, a dual port SRAM can be accessed by all ASMs via
the Broadcast Bus (e.g. utilized as a buffer for fast direct memory accesses to
the main memory of the host system). Direct communication between adjacent
ASMs is realized by 128 signals that can be variably used, depending on the
actual implementation.

CTRL CPLD
Arbiter, MMU

Diagnose, CLK

Config. CPLD
PCI, JTAG

P
C

I B
u

s PCI Bus
Bridge

Master, Slave,
DMA

Local Bus

Flash ROM

Dual-Port
SRAM

85CTRL 85CTRL85CTRL

128

A
S

M
 6

A
S

M
 4

Configuration,
JTAG

Configuration,
JTAG

Configuration,
JTAG

ASM 1

128

ASM 2

128

ASM 3

128

75 75 75

Broadcast Bus

Figure 9.1. Architecture of the RAPTOR2000 system

A crucial aspect concerning FPGA designs is the configuration of the de-
vices. Each ASM that carries an FPGA has to be configured by an application
specific data stream that determines the function of the device. In order to uti-

Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

251

Figure 9.2. Photo of the RAPTOR2000 system with two ASMs of type DB-VS

lize dynamic reconfiguration (i.e. during runtime) it is necessary to minimize
this reconfiguration time, therefor the configuration algorithms have been im-
plemented in hardware. Reconfiguration of an ASM can be started by the host
computer, another PCI bus device or by another ASM. Thus, it is possible
that an FPGA autonomously reconfigures itself by configuration data that is
located anywhere in the system. Due to the hardware implementation of the
reconfiguration algorithm, a Xilinx Virtex 1000 FPGA can be completely re-
configured within less than 20 ms. The configuration algorithm implemented
into the hardware also supports the partial reconfiguration of the system [9].

For the simulation of self-organizing feature maps the module DB-VS has
been designed for the RAPTOR2000 system (figure 9.3). This ASM embod-
ies an FPGA of the Xilinx Virtex (-E) series and optionally up to 128 MBytes
of SDRAM. The ASM can be equipped with various chips, that emulate cir-
cuits with a complexity of 400,000 to 2.5 million system gates. The SDRAM
controller is integrated into the FPGA logic. A photo of the RAPTOR2000
system with two DB-VS modules is shown in figure 9.2. In the context of
this article we focus on the implementation of self-organizing feature maps on
RAPTOR2000. Because of the flexibility of the system many other neural and
conventional algorithms may be mapped to the system. As another example
for neural networks we have analyzed the implementation of neural associative
memories and of radial basis function networks on the RAPTOR2000 system
[10]. Another case study focuses on the implementation of octree based 3D
graphics [11].

The dynamically reconfigurable rapid prototyping system RAPTOR2000

252 Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

Local Bus

128

85

CTRL

Configuration,
JTAG

DB-VS

85

128

Broadcast Bus

Xilinx Virtex(E)
BG560 Package

128MByte
SDRAM

85

93 93

75

SDRAM
Controller

Figure 9.3. Block diagram of the application specific module DB-VS

9.4 Implementing self-organizing feature maps on
RAPTOR2000

Self-organizing feature maps as proposed by Kohonen [4] use an unsuper-
vised learning algorithm to form a nonlinear mapping from a given high di-
mensional input space to a lower dimensional (in most cases two-dimensional)
map of neurons (figure 9.4). A very important feature of this mapping is its
topology-preserving quality, i.e. two vectors that are neighbors in the input
space will be represented close to each other on the map.

I

J

L 1 to 2

1 to 2+1 bias neuron

1 to 6+1 bias neuron

K

layer 3

layer 2

layer 1

1 to 2+1 bias input

Figure 9.4. Arrangement of neurons in a two-dimensional SOM

An n-dimensional vector, called weight vector, is assigned to every neuron.
The simulation of self-organizing feature maps can be divided into two phases.
In the initial learning phase, the map is trained with a set of input vectors. After
learning, the weights of the map remain unchanged and the map is used in

Implementing self-organizing feature maps on RAPTOR2000 253

recall mode. The learning phase starts with an appropriate initialization of the
weight vectors (mi). If no information about the input data is given, then, e.g.,
a random initialization of the map may be used. Subsequently, the input vectors
(x) are presented to the map in multiple iterations. For each input vector the
distance to all weight vectors is calculated and the neuron with the smallest
distance is determined. This neuron is called the best matching element (mbm).
In most applications, when dealing with two-dimensional grids of neurons, the
Euclidean distance is used. After the best match has been determined, this
neuron and the vectors in its neighborhood are adapted to the input vector by

	mi(t + 1) = 	mi(t) + hci(t)[x(t) − 	mi(t)] (9.1)

with the neighborhood function hci(t), which is a function of the distance be-
tween the best matching element (mbm) and the indexed weight vector (mi).
The neighborhood function can be calculated e.g. by the term

hci = α(t) · exp
(
−‖	rbm − 	ri‖2

2σ2(t)

)
. (9.2)

The expression ‖	rbm −	ri‖2 determines the distance between the actual weight
vector and the best matching element on the two-dimensional grid of neurons.
By varying σ(t), the width of the neighborhood function can be changed. The
learning rate factor α(t) defines the strength of the adaptation and has to be
chosen application-specific. A large value at the beginning of the learning
process leads to a fast organization of the map while smaller values are used
for its fine-tuning.

9.4.1 Modifications of the Original SOM Algorithm

Our goal is to find an efficient implementation on state of the art FPGAs
that, on the one hand delivers the required high performance and, on the other
hand, fits into the limited resources of current FPGAs. Because of their inter-
nal structure FPGAs are well suited for the implementation of neural networks.
Previous work of the authors concerning highly optimized ASIC implementa-
tions of self-organizing feature maps has emphasized, that avoiding memory
bottlenecks by using on-chip memory is a must in order to achieve optimal
performance [12]. We use Xilinx Virtex FPGAs for our implementations, be-
cause these devices come with large internal SRAM blocks that can be used
for internal weight storage.

In order to facilitate an efficient implementation in hardware, the original
SOM-algorithm has been modified. In particular, the Manhattan distance, cf.
(9.3), is used for calculating the distance between the input vector and the
model vectors to avoid multiplications as required for the Euclidean distance

254 Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

(which is typically used in SOM implementations on PCs or workstations).

d = ‖	x − 	m‖1 =
l∑

j=1

|xj − mj | (9.3)

The internal precision is set to 16 bit and the precision of the input vector
components and of the model vectors is set to eight bit. Restricting the values
of the neighborhood function to negative powers of two, cf. (9.4), gives us the
opportunity to replace the multiplications that are required for adaptation by
shift operations.

hci ∈
{

1,
1
2
,
1
4
,
1
8
, . . .

}
(9.4)

The impact of the modifications on the quality of the results and on the conver-
gence speed has been analyzed in [13]. It has been shown that the simplified
algorithm is well suited for a lot of applications. Furthermore the actual gen-
eration of Xilinx FPGAs (Virtex II) comes with integrated multipliers. These
devices are integrated in the latest RAPTOR2000 ASMs and our implemen-
tations on these chips will thus be able to use Euclidean distance instead of
Manhattan distance with no loss in performance.

9.4.2 FPGA Implementation

Our SOM-implementation consists of processing elements (PE) that are
working in SIMD-manner. The elements are controlled by an additional con-
troller as depicted in figure 9.5 for a matrix of k · l PEs. Multiple FPGAs can
work in parallel in order to increase the size of the simulated maps and the
performance of the system. In this case, each FPGA contains its own internal
controller together with a matrix of processing elements. Nearly all calcula-
tions are performed in parallel on all processing elements. A bidirectional bus
is used for data transfers to dedicated elements and for broadcasting data to
groups of processor elements (or to all processor elements). Single elements
and groups of elements are addressed by row and column lines that are con-
nected to the two-dimensional matrix.

Every processing element has the capability to do all calculations required
for learning and recall. In order to minimize the resource requirements for
our FPGA implementation, the chip-internal controller performs those tasks
that are identical for all PEs, such as decoding the instructions and calculating
the memory addresses. The whole system is synchronously clocked with a
single clock signal. The externally generated instructions are transferred to the
processor elements via a dedicated control bus. Two additional signals are used
for status messages from and to the controller. The twelve instructions that can
be executed by the processing elements are explained in table 9.1.

Implementing self-organizing feature maps on RAPTOR2000 255

ControllerController

PE10 PE10

PEk0 PEk0

PE00 PE00
CTRL ALU

CTRL ALU

CTRL

DATA_IN

DATA_OUT
CONTROL

ALU

ROW(0)

ROW(1)

ROW(k)

COL(0)

•
• •

SRAM

SRAM

SRAM

PE1l PE1l

PEklPEkl

PE0l PE0l
CTRL ALU

CTRL ALU

CTRL ALU

ROW(0)

ROW(1)

ROW(n)

COL(l)

•
• •

SRAM

SRAM

SRAM

•• •

SRAM Address
and Control

SRAM Address
and Control

PE Data
and Control

PE Data
and Control

Figure 9.5. Architecture of the hardware accelerator – the processing elements are addressed
by row and column lines

The different processing steps that are required for recall and for learning of
self-organizing feature maps when using our FPGA based neuroprocessor are
illustrated in figure 9.6.

Table 9.1. Instruction set of the implemented processing elements

Instruction Description

RESET Reset all internal registers of the processing elements

WLOAD Load the initial weight vectors

CDIST Calculate the distance between the input vector and the weight vectors

FMINI Search for the best matching element, i.e. the element with the mini-
mum distance between input vector and weight vector

ALOAD Load the adaptation factors

ADAPT Adapt the weights

SELUM Select the element that distributes its weights over the data bus during
the U-Matrix calculation

CALUM Calculate the U-Matrix

WAIT Insert a wait cycle

BMSEA Find the best matching element

WDIST Write the distance between a selected element and the input vector to
the external controller

WRITE Write the weight vectors to the external controller

The computation of the recall phase is divided into three phases. First, the
distance between the actually presented input vector and the weight vectors is

256 Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

calculated. For that purpose, the components of the input vector have to be
presented to the system sequentially. If every processing element represents
one neuron all processing elements calculate their local distance in parallel.
For a given dimension l of the input space, the distance calculation is finished
after l clock cycles. The second step that has to be performed during recall
is the best match search. For all neurons a bit-serial comparison of the dis-
tance values is performed in parallel in all processing elements. Using eight
bit precision for the weights and for the input vectors, our implementation re-
quires
ld(l · 255)� steps (where ld means log2) of comparison to find the best
matching element. The bit-serial comparison requires a global AND operation
between all processing elements and a feedback to the PEs. In order to achieve
a high clock frequency for large numbers of processing elements a two stage
pipeline has been implemented in this path, while the rest of the design is not
pipelined in order to minimize the area requirements. Thus, the best match
search takes 2 ·
ld(l · 255)� clock cycles. In the last step, called "Output of
BM Position" in figure 9.6, the best match position is sent to the external con-
troller in two clock cycles. Thus, the number of clock cycles crecall that are
required for the recall of one input vector is given by

crecall = l + 2 ·
ld(l · 255)� + 2. (9.5)

For the adaptation phase a maximum of eight clock cycles is required to
distribute the adaptation factors (depending on the number of different adapta-
tion factors). Figure 9.7 illustrates this process. First, the processing elements

Reset

Calculate Distance

Best Match Search

Load Alpha

Adapt Weights

Output of BM-Position

recall

learning

Figure 9.6. Flow of operations that are required for the recall and the learning phase of self-
organizing feature maps when using the FPGA based hardware accelerator

Implementing self-organizing feature maps on RAPTOR2000 257

are initialized with the smallest adaptation factor (in figure 9.7 the PEs are
initialized with 1/8). Subsequently, the next adaptation factor (in our exam-
ple 1/4) is presented to the processor array. The PEs that are addressed via
the row and column lines overwrite their previous value of the adaptation fac-
tor. During the next steps the adaptation factor is increased and the number of
selected processing elements is decreased according to the selected neighbor-
hood function. In our example in figure 9.7, only the best match element loads
the adaptation factor 1/2.

1/8 1/8 1/8 1/8 1/8

1/8 1/4 1/4 1/4 1/8

1/8 1/4 1/4 1/4 1/8

1/8 1/4 1/4 1/4 1/8

1/8 1/8 1/8 1/8 1/8

1/8 1/8 1/8 1/8 1/8

1/8 1/4 1/4 1/4 1/8

1/8 1/4 1/2 1/4 1/8

1/8 1/4 1/4 1/4 1/8

1/8 1/8 1/8 1/8 1/8

A
dd

re
ss

 3
 r

ow
s

A
dd

re
ss

 1
 r

ow

Address 3 columns Address 1 column

First Step
Adaptation factor ¼ is loaded

Second Step
Adaptation factor ½ is loaded

Figure 9.7. Exemplary distribution of the adaptation factor

After all processing elements have received their adaptation factors, the in-
put vector is presented to the map again. One clock cycle is required for each
input vector component. Hence, the number of clock cycles cadapt for the
adaptation of the whole map to one input vector is given by

cadapt = l + 8. (9.6)

The number of clock cycles that are required for one learning step (clearn)
includes the time for the recall of this input vector (which is required prior to
any adaptation) and the time for the adaptation itself. As can be seen from the
given equations, the times that are required for classification and for training
depend linearly on the vector dimension and are independent of the matrix size.
The architecture is optimized for two-dimensional rectangular maps but any
other kind of network topology can be implemented (e.g. one-dimensional or
toroidal maps). Additionally, the values for the adaptation factors are provided
by the external controller, thus any adaptation function and neighborhood func-
tion may be realized with the proposed hardware without any changes in the
FPGA configuration.

258 Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

9.4.3 Simulation of Virtual Maps

An essential limitation of many hardware implementations of neural net-
works is their restriction to a relatively small number of neurons because
each processing element represents one (or a fixed small number) of neurons.
In the case of our implementation this would mean that a large amount of
weight memory remains unused when simulating maps with smaller vector di-
mensions than provided by the actual hardware implementation. In order to
achieve an optimal utilization of the available hardware resources (i.e. com-
puting power and internal memory) our FPGA based hardware implementa-
tion supports the simulation of virtual maps, i.e. it is possible to simulate maps
that are larger than the array of processor elements that is implemented. Thus,
the size of the maps that can be simulated with our FPGA implementation is
not limited by the number of processing elements but only by the amount of
on-chip memory.

PE0 PE1 PE2

PE3 PE4 PE5

PE8PE7PE6 PE0 PE1 PE2

PE3 PE4 PE5

PE8PE7PE6

PE0 PE1 PE2

PE3 PE4 PE5

PE8PE7PE6

PE0 PE1 PE2

PE3 PE4 PE5

PE8PE7PE6

PE0 PE1 PE2

PE3 PE4 PE5

PE8PE7PE6

43

21

4
3
2
1

Figure 9.8. For the simulation of virtual maps the internal weight memory of the processing
elements is divided into sections, each representing a part of the virtual map

Using virtual maps, a chip that integrates NN = 10×10 processing elements
with a maximum vector dimension of lmax = 2000 can be used to simulate
a map of the same size but can also be used to simulate a virtual map with
100 × 100 elements and l = 20 vector components. For the simulation of nv

neurons with one processing element, the SRAM memory of all processing
elements is divided into sections of equal size. Now each memory section of a
PE represents a weight vector of the self-organizing feature map.

Figure 9.8 illustrates this process for a self-organizing feature map with 6×
6 neurons, that is mapped onto an array of 3 × 3 processing elements. Thus,
the maximum number of neurons nv,max, that can be mapped onto one PE is

nv,max =
⌊

lmax

l

⌋
. (9.7)

Implementing self-organizing feature maps on RAPTOR2000 259

Where l is the vector dimension of the virtual map and lmax is the maximum
vector dimension that is supported by the processing elements. Because the
memory sections are processed sequentially, the maximum degree of paral-
lelism that can be achieved is still equal to the number of implemented process-
ing elements. During recall the best match search is performed separately for
all memory sections. The global best match is calculated in the external con-
troller of the map, two additional clock cycles are required for this operation,
cf. (9.5). After nv local best match searches, the global best match is detected.
The numbers of clock cycles crecall,v that are required for recall using a virtual
map is given by

crecall,v = nv · (l + 2 ·
ld(l · 255)� + 4); with nv ≤
⌊

lmax

l

⌋
. (9.8)

In the training phase the adaptation of the neurons is executed separately for
every level. Hence, the adaptation of one input vector requires

cadapt,v = nv · (l + 8); with nv ≤
⌊

lmax

l

⌋
(9.9)

clock cycles. With a decreasing width of the neighborhood function it becomes
more and more probable that neurons have to be updated only in some of the
memory sections. If – in the end of training – only the best matching element
is updated, only one section has to be updated (in contrast to nv sections as
supposed in 9.9). Therefore, equation 9.9 gives the maximum number of clock
cycles for adaptation.

9.4.4 Hardware Acceleration of Data Postprocessing

Data pre- and postprocessing is a crucial and often ignored aspect in neuro-
computer design. The use of reconfigurable hardware enables us to implement
optimally fitting hardware implementations - not only for neural networks but
also for pre- and postprocessing. As an example, we have integrated the main
visualization techniques for self-organizing feature maps, that had to be per-
formed in software so far, into hardware.

As mentioned earlier, the result of the unsupervised SOM learning algo-
rithm is an array of weight vectors which shows a representation of the input
data. Although the input space has an arbitrary dimension, the result is a two-
dimensional array (assuming a two-dimensional grid of neurons). Several vi-
sualization techniques for self-organizing feature maps are known, which help
to analyze the learning results and therefore the structure of the investigated
data. A component map is a picture that visualizes the values of a single com-
ponent of the weight vectors. Component maps can be used to analyze the
value of a component – usually representing a physical value, e.g. voltage – in
respect to other components.

260 Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

x

z

y

a) c)b)

Figure 9.9. Visualization of a SOM that has been trained with a simple three-dimensional data
set (a): pattern position map (b) and U-Matrix (c)

The U-Matrix [16] is a representation of two-dimensional SOMs which
takes into account the distance of a weight vector to the weights in the neigh-
boring neurons. For each neuron the mean of the distance between its weight
vector and the weight vector of the neighboring neurons is calculated. The ma-
trix of these values can be visualized e.g. as a grayscale picture whose bright
areas depict small distances and whose dark areas represent large distances
between the neurons.

Another representation of the SOM learning result is the pattern position
map which takes into account previous knowledge about the input data. If
information about the input data is available, attributes for the map areas can
be defined corresponding to this knowledge. After learning, the whole set
of input data is presented to the map again. For each input pattern the best
matching element is calculated and labeled with an attribute corresponding to
the type of the input vector.

Figure 9.9 illustrates the visualization of the learning results for a simple
example. The input data set consists of 500 vectors that represent two rings
in the three-dimensional input space (figure 9.9a). After learning, the SOM
(consisting of 30 × 30 neurons) has mapped these rings onto two separate re-
gions on the map. In the pattern position map (figure 9.9b) the best matching
neurons are labeled with A or B according to the ring, they represent. The sep-
aration of the two regions is illustrated by a U-Matrix in figure 9.9c), where the
dark areas correspond to a large difference between the weights of neighboring
neurons.

Implementing the post-processing algorithms in hardware significantly re-
duces I/O bandwidth requirements and thus enables a more efficient utilization
of the hardware accelerator. The data that is required for the presentation of
component maps can be received by downloading the appropriate weight vec-
tor components from the internal SRAM to the external controller unit. Pattern
position maps are generated by doing a recall on the whole input data set. Both

Implementing self-organizing feature maps on RAPTOR2000 261

representations can be generated very quickly because the calculations are part
of the instruction set that is typically required for the implementation of SOMs.
For an efficient implementation of the U-Matrix visualization, additional logic
and two special instructions have been implemented. As a fully parallel imple-
mentation would have required an immoderate increase in the complexity of
the processing elements, we have implemented a mechanism that fits best into
the given architecture.

First Step
Select a central PE

Second Step
Distribute weight vector to neighbors

PE PE PE PE PE

PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE

Figure 9.10. The U-Matrix calculation is performed in two steps: First a PE is selected, then
its distances to the neighboring PEs are calculated

The main bottleneck for the U-Matrix calculation is the 8-bit broadcast bus
that is connected to all processing elements. In order to avoid major changes
to the architecture this bus is used to transmit the weight vectors between the
processing elements. In the first step an element of the matrix is selected via the
row and column lines as depicted in figure 9.10. In the second step this element
distributes its weight vectors over the data bus and the neighboring processing
elements calculate their distance to this element. If necessary, the distance val-
ues are accumulated automatically. These calculations are performed for all
processing elements. Following these calculations, the results are transmitted
to the external control unit, which does the necessary normalization (i.e. divi-
sion by 8, 5 or 3, depending on the position of the processing element). The
U-Matrix calculation requires 2NN · (l + 1) clock cycles for the calculations
(with NN being the number of neurons) and 2NN clock cycles for the output
of the data. Thus, the total number of clock cycles for U-Matrix calculation
cUM is given by

cUM = 2NN · (l + 2). (9.10)

The main drawback of this implementation is the dependence of the cal-
culation time on the number of neurons. But, as has been shown in [14] and
[15], this technique offers sufficient performance up to the order of 10,000 ele-

262 Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

ments. For very large maps it is possible to accelerate the U-Matrix calculation
even more by means of a hierarchical internal bus system. In [15] an optimal
division into bus-segments depending on the number of simulated neurons is
derived. The speed up that can be achieved with this hardware accelerated
U-Matrix calculation is, on the one hand, based on the parallel distance calcu-
lation. On the other hand, only 2NN 8-bit data words have to be communicated
to the host computer while the transmission of all weight vectors (as required
if the U-Matrix is calculated on the host computer) results in l · NN 8-bit data
words.

9.4.5 System Integration and Performance

In order to implement the proposed architecture on the RAPTOR2000 rapid
prototyping system, five DB-VS modules are applied. Figure 9.11 shows the
architecture of the hardware accelerator. Four ASMs are used to implement a
matrix of processing elements while the fifth is used to implement the ma-
trix controller, an I/O controller for the connection to the local bus of the
RAPTOR2000 system and a dual port SRAM that is used to buffer input-
and output-data. An integrated SDRAM interface controls the external 128
MBytes of SDRAM. The dual port SRAM is used to store single input vectors,
commands from the host computer and the results (e.g. best match positions or
postprocessed visualizations of the map).

Control-FPGA

D
P

-R
A

M

M
at

rix
-

C
on

tr
o

lle
r

I/O
-

C
on

tr
o

lle
r

SDRAM-
Controller

128 MByte
SDRAM PE-Matrix: 4 × Xilinx Virtex

R
A

P
T

O
R

20
00

 -
 L

oc
al

-B
us

Figure 9.11. Architecture of the hardware accelerator for self-organizing feature maps on the
basis of the RAPTOR2000-system

The large SDRAM is used to store one or more input data sets. During
learning of a self-organizing feature map, the whole input data set has to be
presented to the map for several times. Thus, it is recommendable to transfer
the whole data set in one fast block transfer via the PCI bus to the hardware
accelerator in order to minimize the load of the PCI bus.

Implementing self-organizing feature maps on RAPTOR2000 263

The design has been described in VHDL and synthesized using the Synop-
sys FPGA compiler and the Xilinx Alliance tools for place and route. An im-
portant design goal was the optimal utilization of the embedded SRAM blocks
in order to be able to simulate maps as large as possible. The (meanwhile old-
fashioned) Xilinx Virtex XCV1000 offers only 32 internal SRAM Blocks, each
of the size 512 Byte. Hence, a straight forward implementation would integrate
32 processing elements. But synthesis has shown that 32 processing elements
result in a very small utilization of the FPGA’s slices. Thus we decided to im-
plement two processing elements per SRAM block, using the SRAM blocks in
the dual-port mode. This implementation results in an FPGA slice-utilization
of 48% (i.e. 48% of the FPGA slices have been used, while 100% of the inte-
grated block RAM is used). Theoretically, it is possible to further increase the
device utilization by implementing three or even four processing elements per
SRAM block but this would require a more complex memory controller. We
skipped this, because all newer FPGAs offer a larger number of SRAM blocks
per slices and are thus better suited for our implementation.

The design was synthesized to several FPGAs of the Xilinx Virtex-E and
Virtex-II series. Because of the large number of integrated block RAMs each
processing element has been equipped with an integer number of block RAMs.
By various synthesis flows, the number of block RAMs per processing element
has been chosen as small as possible in order to be able to implement as many
PEs as possible. When increasing the number of processing elements, the uti-
lization of the block RAMs was always fixed to 100% while the utilization of
the slices had to be chosen small enough in order to fit into the design. Table
9.2 shows the number of processing elements and the maximum vector dimen-
sion that can be achieved with some typical devices of the Xilinx Virtex family
(using only one Xilinx device). In all examined cases the resulting utilization
of logic blocks was small enough to enable synthesis to the clock frequency
that is given in the table. The implementation on Xilinx Virtex-II FPGAs is
not yet realized (the presented data is based on synthesis and place&route re-
sults) and does not take into account the special features of these FPGAs (like
integrated multipliers). The final performance, that can be achieved with these
devices will thus be even larger than the values presented here.

For the evaluation of the performance that a system achieves for neural net-
work simulation, the performance is determined separately for the recall phase
and for the learning phase. We are using the well established performance met-
rics MCPS (Million Connections per Second) for the recall phase and MCUPS
(Million Connection Updates per Second) for the learning phase. The com-
plexity of the calculations differs strongly for different models of neural net-
works. Hence, a direct comparison of the performance-values of different
neural networks is not possible, but the values are well suited to compare differ-
ent implementations of self-organizing feature maps. The performance during

264 Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

Table 9.2. Number of processing elements, maximum vector dimension and performance of
the proposed implementation of self-organizing feature maps on various FPGAs of the Xilinx
Virtex series

Device NPE lmax fFPGA PC,r PC,l Utilization
[MHz] [MCPS] [MCUPS] of Slices

XCV1000-6 64 256 50 2825 325 48

XCV812E-8 70 2048 65 4463 495 68

XCV2000E-8 160 512 65 9717 1097 77

XCV3200E-8 208 512 65 12632 1426 59

XC2V6000-6 288 1024 105 29158 3253 78

XC2V10000-6 384 1024 105 38877 4338 58

recall (PC,r) and the performance during learning (PC,l) can be calculated as
follows:

PC,r :=
l · NN

Tr
PC,l :=

l · NNA

Tl
(9.11)

Here, l is he input vector dimension, NN is the number of neurons and NNA is
the number of neurons that are updated during learning. Tr is the time that is
required to find the best matching element for a given input vector and Tl is the
time for one learning step (including recall and adaptation of an input vector).
It has to be mentioned, that, for the calculation of the performance PC,l during
learning, only those neurons are taken into account, that are updated during
learning (in agreement with many other authors, e.g. G. Myklebust [17]). Nev-
ertheless, some authors take into account all neurons during learning [18]. Of
cause, this leads to larger performance numbers. In [15] it has been shown,
that the mean of the number of neurons that are updated during learning is
approximately 22% for typical learning parameters. This allows an easy trans-
formation of the different performance values into one another.

With 9.5 and 9.6 the performance of a Matrix of NN processing elements,
each simulating one neuron with a clock frequency of f , is given by

PC,r =
l · NN · f

crecall
= NN · f · l

l + 2 ·
ld(l · 255)� + 2
, (9.12)

PC,l =
l · NNA · f

clearn
= NNA · f · l

2l + 2 ·
ld(l · 255)� + 10
. (9.13)

Using Virtex XCV812E-8 devices, NPE = 70 processing elements can be
implemented, each equipped with 2 kBytes of internal SRAM. The utiliza-
tion of the FPGAs is about 68% and a clock frequency of 65 MHz has been

Implementing self-organizing feature maps on RAPTOR2000 265

achieved. The maximum performance is achieved, if every processing element
represents one neuron (nv = 1) and if the maximum available vector dimen-
sion is used. For our system implementation we use the RAPTOR2000 config-
uration that has been described earlier, consisting of one DB-VS module that
acts as a system controller and four DB-VS modules that embed the process-
ing elements. Thus, the number of processing elements (and the achieved
performance) is four times higher than the values that are given in table 9.2.
With the proposed architecture and Xilinx Virtex XCV812E-8 devices, about
PC,r = 17900 MCPS can be achieved during recall and PC,l = 2000 MCUPS
during learning. With an optimized software implementation on a state of the
art personal computer (Pentium IV, 2.4 GHz) a performance of 205 MCPS
and 51 MCUPS has been achieved for this application. Thus, a maximum
speedup of 87 during recall and of 39 during learning can be achieved. Of
cause, the speed up can be increased by using larger FPGAs. Using four Vir-
tex XCV2000E-8 devices, e.g., a maximum speedup of 190 during recall and
of 86 during learning can be achieved (corresponding to 38900 MCPS and
4400 MCUPS).

0

20000

40000

60000

80000

100000

120000

140000

160000

0 256 512 768 1024 1280 1536 1792 2048

Vector Dimension

P
er

fo
rm

an
ce

 [
M

C
P

S
]

XC2V10000-6 XCV3200E-6 XCV812E-6

Figure 9.12. Performance that can be achieved with the proposed system, composed of five
DB-VS modules, for different Xilinx devices

When simulating virtual maps, i.e. emulating more than one neuron with
each processing element, the performance of our implementation decreases
due to additional sequential processing. In order to prove our calculated per-
formance data, various benchmark data sets have been applied. Using a bench-
mark data set with a vector dimension of l = 9 [19], maps with up to 250×250
neurons can be simulated on RAPTOR2000 equipped with four Xilinx Virtex
XCV812E FPGAs for the implementation of the processing elements and an

266 Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

additional system controller ASM. The performance that can be achieved with
this environment is PC,r = 4400 MCPS and PC,l = 665 MCUPS, respectively.

The performance data that is given in table 9.2 is based on the assumption
that the size of the simulated neural network is identical to the number of neu-
rons and the vector dimension is maximal. Figure 9.12 shows the performance
that can be achieved with the proposed system, composed of five DB-VS mod-
ules, during recall for different Xilinx Virtex devices. For the performance
estimation it has been assumed, that for a given vector dimension the size of
the simulated map is set to the maximum possible size. Performance increases
until the maximum vector dimension is reached for the particular FPGA, that is
given in table 9.2. Larger vector dimensions are implemented by reconfiguring
the FPGA for large vector dimensions with less processing elements and thus
with smaller performance.

Figure 9.13. Software architecture for the WWW integration of RAPTOR2000

267

In addition to the possibility of using the hardware accelerator from
any workstation in the local Intranet, we provide an environment that
enables access to the RAPTOR2000 system via the World Wide Web
(http:\\www.raptor2000.de). The RAPTOR2000 web interface offers access
to the functionality of the RAPTOR2000 system including, e.g. setting the
clock frequency of the local bus and configuring any available FPGA in the
system. Additionally, read and write access to the on-board dual-port SRAM
and to the ASMs is provided. Figure 9.13 shows the architecture of the soft-
ware that integrates RAPTOR2000 into the WWW. The software system con-
sists of two services. The low-level service is the C++ based SOAP-(Simple
Object Access Protocol)-server which manages the hardware requests to the
RAPTOR2000 system.

The communication between the SOAP-server and the higher level Applica-
tion and Web Container is based on messages, that are exchanged between the
two software modules. The Application and Web Container handles commu-
nication between the client and the RAPTOR2000 system. It provides multi
user handling, session management and basic security features concerning the
RAPTOR2000 system. Communication to a client java applet is facilitated via
the http-protocol. This applet offers a graphical user interface that allows the
user to configure the RAPTOR2000 system, limited by the security restrictions
only.

9.5 Conclusions

A dynamically reconfigurable hardware accelerator for the simulation of
self-organizing feature maps has been presented. Equipped with five FPGA
modules, the system achieves a maximum performance of about 39 GCPS
(Giga Connections per Second) during recall and more than 4 GCUPS (Giga
Connection Updates per Second) during learning. Even higher performance
numbers can be achieved by using new FPGA architectures like the Xilinx
Virtex-II series. Apart from the high performance the system is capable of do-
ing pre- and postprocessing tasks – either by use of the implemented visualiza-
tion features or by dynamically reconfiguring the devices during runtime. The
latter is supported by the RAPTOR2000 rapid prototyping system by means of
the ability to reconfigure the FPGAs very fast via the PCI bus.

References

[1] Glesner, M., Pochmüller, W.: "Neurocomputers: An Overview of Neural
Networks in VLSI", Chapman Hall, 1994.

[2] Rückert, U.: "ULSI Implementations for Artificial Neural Networks", 9th
Euromicro Workshop on Parallel and Distr. Processing 2001, Feb. 7-9,
2001, Mantova, Italien, pp. 436–442.

References

268 Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware

[3] Ienne, P.: "Digital Connectionist Hardware: Current Problems and Future
Challenges", Biological and Artificial Computation: From Neuroscience
to Technology, Vol. 1240 of Lecture Notes in Computer Science, pp. 688–
713, 1997, Springer, Berlin.

[4] Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Berlin, (1995).

[5] Marks, K.M., Goser, K. "Analysis of VLSI Process Data Based on Self-
Organizing Feature Maps", Proc. of First Int. Workshop on Neural Net-
works and their Applications, Neuro-Nimes, pp. 337 - 348, France, Nov.
1988.

[6] Rüping, S., Müller, J.: "Analysis of IC Fabrication Processing using Self-
Organizing Maps", Proc. of ICANNt’99, Edinburgh, 7.-10. Sept. 1999,
pp. 631–636.

[7] Neema, S., Bapty, T., Scott, J.: "Adaptive Computing and Runtime Re-
configuration", 2nd Military and Aerospace Applications of Program-
mable Devices and Technologies Conference, MAPLD99, Laurel, Mary-
land, USA, September 1999.

[8] Tinós, R., Terra, M. H.: "Fault detection and isolation in robotic manipu-
lators and the radial basis function network trained by Kohonen’s SOM".
In Proc. of the 5th Brazilian Symposium on Neural Networks (SBRN98),
Belo Horizonte, Brazil, pp. 85–90, 1998.

[9] Porrmann, M., Kalte, H., Witkowski, U., Niemann, J.-C., Rückert, U.: "A
Dynamically Reconfigurable Hardware Accelerator for Self-Organizing
Feature Maps", Proc. of SCI 2001 Orlando, Florida USA, 22.-25. Juli,
2001, pp. 242–247.

[10] Porrmann, M., Witkowski, U., Kalte, H., Rückert, U.: "Implementation of
Artificial Neural Networks on a Reconfigurable Hardware Accelerator",
10th Euromicro Workshop on Parallel, Distributed and Network-based
Processing (PDP 2002), 9.-11. Januar 2002, Gran Canaria Island, Spain.

[11] Kalte, H., Porrmann, M., Rückert, U.: "Using a Dynamically Reconfig-
urable System to Accelerate Octree Based 3D Graphics", PDPTA’2000,
June 26-29, 2000 Monte Carlo Resort, Las Vegas, Nevada, USA, pp.
2819–2824.

[12] Porrmann, M., Rüping, S., Rückert, U.: "The Impact of Communication
on Hardware Accelerators for Neural Networks", Proc. of SCI 2001 Or-
lando, Floriada USA, 22.-25. Juli 2001, pp. 248–253.

[13] Rüping, S., Porrmann, M., Rückert, U., "SOM Accelerator System", Neu-
rocomputing 21, pp. 31–50, 1998.

[14] Porrmann, M., Rüping, S., Rückert, U., "SOM Hardware with Accelera-
tion Module for Graphical Representation of the Learning Process", Proc.

269

of the 7th Int. Conference on Microelectronics for Neural, Fuzzy and Bio-
Inspired Systems, pp. 380–386, Granada, Spain, 1999.

[15] Porrmann, M.: "Leistungsbewertung eingebetteter Neurocomputersys-
teme", Phd thesis, University of Paderborn, System and Circuit Technol-
ogy, 2001.

[16] Ultsch, A.: "Knowledge Extraction from Self-organizing Neural Net-
works", in Opitz, O., Lausen, B. and Klar, R. (editors), Information and
Classification, pp. 301-306, London, UK, 1993.

[17] Myklebust, G.: "Implementations of an unsupervised neural network
model on an experimental multiprocessor system", Phd thesis, Norwe-
gian Institute of Technology, University of Trondheim, Trondheim, Nor-
way, 1996.

[18] Hämäläinen, T., Klapuri, H., Saarinen, J., and Kaski, K.: "Mapping of
SOM and LVQ algorithms on a tree shape parallel computer system",
Parallel Computing, 23(3), pp. 271-289, 1997.

[19] Mangasarian, O. L., Setiono, R., and Wolberg, W.H.: "Pattern recognition
via linear programming: Theory and application to medical diagnosis". In
Coleman, Thomas F. and Yuying Li: Large-scale numerical optimization,
pp. 22-30, SIAM Publications, Philadelphia, 1990.

References

Chapter 10

FPGA IMPLEMENTATION OF A FULLY AND
PARTIALLY CONNECTED MLP

Application to Automatic Speech Recognition

Antonio Canas1, Eva M. Ortigosa1, Eduardo Ros1 and Pilar M. Ortigosa2

1Dept. of Computer Architecture and Technology, University of Granada, Spain
2Dept. of Computer Architecture and Electronics, University of Almeria, Spain

Abstract In this work, we present several hardware implementations of a standard Multi-
Layer Perceptron (MLP) and a modified version called eXtended Multi-Layer
Perceptron (XMLP). This extended version is an MLP-like feed-forward net-
work with two-dimensional layers and configurable connection pathways. The
interlayer connectivity can be restricted according to well-defined patterns. This
aspect produces a faster and smaller system with similar classification capabil-
ities. The presented hardware implementations of this network model take full
advantage of this optimization feature. Furthermore the software version of the
XMLP allows configurable activation functions and batched backpropagation
with different smoothing-momentum alternatives. The hardware implementa-
tions have been developed and tested on an FPGA prototyping board. The de-
signs have been defined using two different abstraction levels: register transfer
level (VHDL) and a higher algorithmic-like level (Handel-C). We compare the
two description strategies. Furthermore we study different implementation ver-
sions with diverse degrees of parallelism. The test bed application addressed
is speech recognition. The implementations described here could be used for
low-cost portable systems. We include a short study of the implementation costs
(silicon area), speed and required computational resources.

Keywords: FPGA, Multi-Layer Perceptron (MLP), Artificial Neural Network (ANN),
VHDL, Handel-C, activation function, discretization.

10.1 Introduction

An Artificial Neural Network (ANN) is an information processing paradigm
inspired by the way biological nervous systems process information. An ANN

271

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 271–296.
© 2006 Springer. Printed in the Netherlands.

272 FPGA Implementation of a Fully and Partially Connected MLP

is configured for a specific application, such as pattern recognition or data
classification, through a learning process. As in biological systems, learning
involves adjustments of the synaptic connections that exist between the neu-
rons.

An interesting feature of the ANN models is their intrinsic parallel process-
ing strategies. However, in most cases, the ANN is implemented using se-
quential algorithms, that run on single processor architectures, and do not take
advantage of this inherent parallelism.

Software implementations of ANNs are appearing in an ever increasing
number of real-world applications [17, 2, 7]: OCR (Optical Character Recog-
nition), data mining, image compression, medical diagnosis, ASR (Automatic
Speech Recognition), etc. Currently, ANN hardware implementations and bio-
inspired circuits are used in a few niche areas [9, 7]: in application fields with
very high performance requirements (e.g. high energy physics), in embedded
applications of simple hard-wired networks (e.g. speech recognition chips),
and in neuromorphic approaches that directly implement a desired function
(e.g. artificial cochleas and silicon retinas).

The work presented here studies the implementation viability and efficiency
of ANNs into reconfigurable hardware (FPGA) for embedded systems, such as
portable real-time ASR devices for consumer applications, vehicle equipment
(GPS navigator interface), toys, aids for disabled persons, etc.

Among the different ANN models available used for ASR, we have focused
on the Multi-Layer Perceptron (MLP) [16].

A recent trend in neural network design for large-scale problems is to split
a task into simpler subtasks, each one handled by a separate module. The
modules are then combined to obtain the final solution. A number of these
modular neural networks (MNNs) have been proposed and successfully incor-
porated in different systems [3]. Some of the advantages of the MNNs include
reduction in the number of parameters (i.e., weights), faster training, improved
generalization, suitability for parallel implementation, etc. In this way, we pro-
pose a modified version of the MLP called eXtended Multi-Layer Perceptron
(XMLP). This new architecture considers image and speech recognition char-
acteristics that usually make use of two-dimensional processing schemes [14],
and its hardware implementability (silicon area and processing speed). Talk-
ing about two dimensions only makes sense if partial connectivity is assumed.
Therefore, our model allows defining neighborhood-restricted connection pat-
terns, which can be seen as a sort of modularity.

In this work, we introduce two implementation versions, a parallel and a se-
quential design of MLP and XMLP. Both parallel and sequential versions are
described using two different abstraction levels: register transfer level (RTL)
and a higher algorithmic-like level. These implementations have been defined
using two hardware description languages, VHDL and Handel-C respectively.

MLP/XMLP and speech recognition 273

Final computation results will show that RTL description generates more op-
timized systems. However, one of the main advantages of the high level de-
scription is the short design time.

Let us focus on a voice-controlled phone dial system. This can be of in-
terest for drivers that should pay attention to driving, for example. This ap-
plication defines the MLP/XMLP parameters to be implemented and the word
set required (numbers from 0 to 9). All classification results provided in the
next sections have been obtained in a speaker-independent scheme using these
words, extracted from a multi-speaker database [13].

The chapter is organized as follows. Section 10.2 briefly describes the MLP
and XMLP models. Section 10.3 addresses different aspects about activation
functions and discretization, which need to be studied before designing the
system. Then we described the detailed hardware implementation strategies of
the MLP (Section 10.4) and the XMLP (Section 10.5). Finally, Section 10.6
summarizes the conclusions.

10.2 MLP/XMLP and speech recognition

Automatic speech recognition is the process by which a computer maps
an acoustic signal to text [14]. Typically, speech recognition starts with the
digital sampling of the voice signal. The raw waveform sampled is not suitable
for direct input for a recognition system. The commonly adopted approach
is to convert the sampled waveform into a sequence of feature vectors using
techniques such as filter bank analysis and linear prediction analysis. The next
stage is the recognition of phonemes, groups of phonemes or words. This last
stage is achieved in this work by ANNs (MLP and XMLP) [13], although other
techniques can be used, such as HMMs (Hidden Markov Models) [11], DTW
(Dynamic Time Warping), expert systems or a combination of these.

10.2.1 Multi-Layer Perceptron

The MLP is an ANN with processing elements or neurons organized in a
regular structure with several layers (Figure 10.1): an input layer (that is simply
an input vector), some hidden layers and an output layer. For classification
problems, only one winning node of the output layer is active for each input
pattern.

Each layer is fully connected with its adjacent layers. There are no con-
nections between non-adjacent layers and there are no recurrent connections.
Each of these connections is defined by an associated weight. Each neuron cal-
culates the weighted sum of its inputs and applies an activation function that
forces the neuron output to be high or low, as shown in Eqn. (10.1).

Zli = f(Sli); Sli = sumjwlijZ(l−1)j) (10.1)

274 FPGA Implementation of a Fully and Partially Connected MLP

In this equation, zli is the output of the neuron i in layer l, sli is the weighted
sum in that neuron, f is the activation function and wlij is the weight of the
connection coming from neuron j in the previous layer (l–1).

Input: 10 vectors of 22 features

Word to be recognized

Output layer

Hidden Layer (24 neurons)

0 1 2 3 4 5 6 7 8 9

. . .

Connection
weights

Figure 10.1. Example of the MLP for isolated word recognition

In this way, propagating the output of each layer, the MLP generates an out-
put vector from each input pattern. The synaptic weights are adjusted through
a supervised training algorithm called backpropagation [16].

Different activation functions have been proposed to transform the activity
level (weighted sum of the node inputs) into an output signal. The most fre-
quently used is the sigmoid, although there are other choices such as a ramp
function, a hyperbolic tangent, etc. All of these are continuous functions, with
a smooth S-like waveform, that transform an arbitrary large real value to an-
other value in a much restricted range. More details about activation functions
are discussed in Section 10.3.1.

Activation functions and discretization problem 275

10.2.2 Extended Multi-Layer Perceptron

The XMLP is a feed-forward neural network with an input layer (without
neurons), a number of hidden layers selectable from zero to two, and an out-
put layer. In addition to the usual MLP connectivity, any layer can be two-
dimensional and partially connected to adjacent layers. As illustrated in Figure
10.2, connections come out from each layer in overlapped rectangular groups.
The size of a layer l and its partial connectivity pattern are defined by six para-
meters in the following form: x(gx, sx) × y(gy, sy), where x and y are the
sizes of the axes, and g and s specify the size of a group of neurons and the
step between two consecutive groups, both in abscissas (gx, sx) and ordinates
(gy, sy). A neuron i in the X-axis at layer l+1 (the upper one in Figure 10.2)
is fed from all the neurons belonging to the i-the group in the Xaxis at layer l
(the lower one). The same connectivity definition is used in the Y-axis. When
g and s are not specified for a particular dimension, the connectivity assumed
for that dimension is gx = x and sx = 0, or gy = y and sy = 0. Thus, MLP is
a particular case of XMLP where gx = x, sx = 0, gy = y and sy = 0 for all
layers.

The second dimension in each layer can be considered as a real spatial di-
mension for image processing applications or as the temporal dimension for
time related problems. Two particularizations of the XMLP in time-related
problems are the Scaly Multi-Layer Perceptron (SMLP) used in isolated word
recognition [8], and the Time Delay Neural Network (TDNN), used in phoneme
recognition [10].

10.2.3 Configurations Used for Speech Recognition

To illustrate the hardware implementation of the MLP/XMLP system we
have chosen a specific speaker-independent isolated word recognition appli-
cation. Nevertheless, many other applications require embedded systems in
portable devices (low cost, low power and reduced physical size).

For our test bed application, we need an MLP/XMLP with 220 scalar data
in the input layer and 10 output nodes in the output layer. The network input
consists of 10 vectors of 22 components (10 cepstrum, 10 ∆cepstrum, energy,
∆energy) obtained after preprocessing the speech signal. The output nodes
correspond to 10 recognizable words extracted from a multi-speaker database
[15]. After testing different architectures [4], the best classification results
(96.83% of correct classification rate in a speaker-independent scheme) have
been obtained using 24 nodes in a single hidden layer, with the connectivity
of the XMLP defined by 10(4,2)×22 in the input layer and 4×6 in the hidden
layer.

276 FPGA Implementation of a Fully and Partially Connected MLP

10.3 Activation functions and discretization problem

For hardware implementations, we have chosen a two’s complement repre-
sentation and different bit depths for the stored data (inputs, weights, outputs,
etc). In order to accomplish the hardware implementation, it is also necessary
to discretize the activation function. Next, we present different activation func-
tions used in the MLP and some details about their discretization procedure.

Figure 10.2. Structure of an example XMLP interlayer connectivity pattern defined by the
expression 5(3, 2) × 3(2, 1)

10.3.1 Activation Functions

One of the difficult problems encountered when implementing ANNs in
hardware is the nonlinear activation function used after the weighted summa-
tion of the inputs in each node (Eqn. 10.1). There are three main nonlinear ac-
tivation functions: threshold (hard limited), ramp and various sigmoid curves.
We have studied different options: classical sigmoid, hyperbolic tangent, arc

Activation functions and discretization problem 277

tangent and ramp activation functions. In the hardware implementation, we
have focused on the sigmoid activation function.

In order to achieve generality, an activation function f(x) is defined depend-
ing on three parameters: f0′ (slope at x = 0), fmax (maximum value of f(x))
and fmin (minimum value). The generic expressions for the four functions
considered and their respective derivatives, needed in the backpropagation al-
gorithm, are given in Table 10.1. An example for three particular values of the
parameters is plotted in Figure 10.3. For simplicity, fR is defined as fmax–
fmin.

Table 10.1. Activation functions and their derivatives

sigmoid f(x) = fR

1+e
− 4f′

0
fR

x

+ fmin f ′
0 = 1

4
, fmax = 1, fmin = 0

(fR = 1)
define the standard sigmoid function

g(x) = 1

1+e
− 4f′

0
fR

x

, we can obtain a simple expression of f(x) as a function

of g(x): f ′(x) = fRg′(x) = 4f ′
0g(x)(1 − g(x))

tanh f(x) = fR
2

tanh
2f ′

0
fR

x + (fmax + fmin)/2 This function coincides with
the sigmoid defined above.

f ′(x) = f ′
0

(
1 − tanh2 2f ′

0
fR

x
)

arctan f(x) = fR
π

arctan
(

f ′
0π

fR
x
)

+ (fmax + fmin) /2

f ′(x) =
f ′
0

1+

(
f ′
0π

fR
x

)2

ramp f(x) =

⎧⎨⎩
fmin ifx ≤ −fR/2f ′

0

f ′
0x + (fmax + fmin) /2 if − fR/2f ′

0 < x < fR/2f ′
0

fmax ifx ≥ fR/2f ′
0

f ′(x) =

{
f ′

0 if − fR/2f ′
0 < x < fR/2f ′

0

0 otherwise.

10.3.2 Discretization

One particular difficulty regarding the migration of ANNs towards hardware
is that the software simulations use floating point arithmetic and either double
or simple precision weights, inputs and outputs. Any hardware implemen-
tation would become unreasonably expensive if incorporating floating point
operations and therefore needing to store too many bits for each weight. Fixed
point arithmetic is better suited for hardware ANNs because a limited preci-
sion requires fewer bits for storing the weights and also simpler calculations.
This causes a reduction in the size of the required silicon area and a consid-
erable speed-up. A complete revision of different aspects concerning limited
precision ANNs can be found in [6].

278 FPGA Implementation of a Fully and Partially Connected MLP

-8 -6 -4 -2 0 2 4 6 8

-1

-0.5

0

0.5

1
sigmoid

x

f(
x)

,
f'

(x
)

sigmoid'

tanh

tanh'

arctan

arctan'

ramp

ramp'

Figure 10.3. Activation functions and their derivatives with f ′
0 = 1/2, fmax = 1, fmin =

−1(fR = 2)

In this contribution, learning is carried out offline using floating points,
while hardware implementations use discrete variables and computations.
However, classification results in hardware are very similar to the ones ob-
tained with the software approach. For instance, in phoneme recognition ap-
plication with the MLP, we obtained 69.33% correct classification with the
continuous model and 69% when using the discretized model.

In order to use limited precision values, it is necessary to discretize three
different sets of variables: network inputs and neuron outputs (both with the
same number of bits), weights and the activation function input. Each of these
sets has a different range, specified by the number of bits (n) of the discrete
variable and the maximum absolute value (M) of the corresponding continu-
ous variable. The expressions for the conversion between continuous (c) and
discrete (d) values are:

d = round

(
c
2n − 2
2M

)
; c = d

2M

2n − 2
(10.2)

10.3.2.1 Issues related to the discretization of the activation function.
In digital implementations only the threshold nonlinearity can be matched

exactly in hardware; the ramp and sigmoidal nonlinearities have to be approx-
imated. As summarized in [1, 7], classical digital solutions fall into two main
trends: Look-Up Tables (LUTs) and expansion into Taylor series. We have

Activation functions and discretization problem 279

adopted the first strategy because specific memory resources on FPGAs have
become common in this kind of devices.

Next, we describe how to compute the values to be stored in the LUT and
how to obtain the output of a neuron using this LUT.

Notation. Mz: maximum absolute value of the continuous MLP/XMLP
inputs and the continuous neuron output

Mw: maximum absolute value of the continuous weights
nz: number of bits of the discrete MLP/XMLP inputs and the discrete neu-

ron output
nw: number of bits of the discrete weights
#w: maximum number of incoming connections to a neuron (fan-in)
n#w: number of bits to specify #w (Eqn. 10.3)

n#w =
log2 #w� (10.3)

Ms: maximum absolute value of a continuous weighted sum (Eqn. 10.4)

Ms = #wMzMw (10.4)

Ns: number of bits of the discrete weighted sum (Eqn. 10.5)

Ns =
⌈
log2

(
#w

(
2nz−1 − 1

) (
2nw−1 − 1

))⌉
+ 1 (10.5)

fmind
: minimum value of the discrete activation function

fmaxd
: maximum value of the discrete activation function

LUT indexed with ns bits. We split the Ns-bits weighted sum into two
parts: the ns most significant bits (used as LUT input) and the ms least signif-
icant bits (Eqn. 10.6).

Ns = ns + ms; 1 ≤ ns ≤ Ns (10.6)

The greater ns, the more accurate activation function. We can choose a
trade-off value for ns labeled nsopt , for optimal. This is the minimum ns that
satisfies the condition that all the possible output values of the discrete activa-
tion function will be present in the LUT. We have obtained a good approxima-
tion of nsopt with the following expression (10.7)

[nsopt =
⌈
log2

(
f ′
0#wMw

2Ns (2nz − 2)
2Ns − 2

)⌉
(10.7)

280 FPGA Implementation of a Fully and Partially Connected MLP

Let us look at the following example: Mz = 1.0, Mw = 5.0, nz = 4, nw = 5,
n#w = 4. The maximum absolute value of the discrete weighted sum will be
4·7·15 = 420. Hence, the minimum number of bits necessary to represent all
the values (Ns) is 10 (Eqn. 10.5). Instead of using all the bits of the weighted
sum for the index of the LUT that stores the discrete activation function, we
use only the most significant ones (ns). In this example, we choose ns = 7.
With 7 bits for the activation function input and 4 bits for its output, the LUT
should have 128 entries, each one storing a value between -7 and 7. Figure
10.4 illustrates the calculation of some entries around zero for this example.
The upper plot in Figure 10.5 shows the whole discrete activation function for
the nine possible values of ns (1. . . 10).

() 1
1

2
f

22
12 −

+
=

−−−
csc

e
s () 1

1

2
f

12
11 −

+
=

−−−
csc

e
s () 1

1

2
f

02
10 −

+
=

− csc
e

s () 1
1

2
f

12
11 −

+
=

− csc
e

s

3.5

0.136986 0.450098 –0.176125–0.489237

–12.5 –4.5 11.5

–0.121703

“Undiscretization” of the weighted sum (Ms = 20.0, Ns = 10 bits)

–0.044003 0.034233 0.112052

Discretization of the activation function output (Mz = 1.0, nz = 4 bits)

–1 0 0 1

.

.

–16 –13 –12

–2 –1 0 1

–9 –8 –5 –4 –1 0 3 4 7 8 11 12 15

–1

–4

–5

–6

–2

–3

–7

2

1

0

7

Content of the LUT that stores the discrete function (4 bits)

ns = 7 msb of
weighted sum

Weighted
sum
(Ns =10 bits)

. .
 .

Figure 10.4. Example of computation of the discrete sigmoid function

For greater values of Ns, most of the values of the discrete activation func-
tion are highly replicated. In our implementation, we have chosen ns = 15 (the
most significant bits of a weighted sum of Ns = 23 bits). If we calculate the
discrete activation function in this case, most of the values are equal to fmind

(left side of plots in Figure 10.5) and fmaxd
(right side of plots in Figure 10.5).

Activation functions and discretization problem 281

Only a small central interval (0.5% of outputs) is different to fmind
andfmaxd

.
Due to this, we can use a smaller LUT that only stores the central interval
[imin, imax] of the ns-bits input where the discrete activation function is not
constant.

We now calculate general expressions for the limits imin and imax of that
central interval. These limits depend on the activation function, as expressed
in Eqn. 10.8-10.13.

- sigmoid / tanh activation function:

imin =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢

− fR(2Ns−2)
4f ′

0Ms
ln

⎛⎝ fR(⌊
fmin

2nz −2
Mz

⌋
+

⌊
fmin

2nz −2
Mz

⌋
mod 2+1

)
Mz

2nz −2
−fmin

− 1

⎞⎠ + 1

2ms+1
+

1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥
(10.8)

imax =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢

− fR(2Ns−2)
4f ′

0Ms
ln

⎛⎝ fR(⌊
fmax

2nz −2
Mz

⌋
+

⌊
fmax

2nz −2
Mz

⌋
mod 2−1

)
Mz

2nz −2
−fmin

− 1

⎞⎠ + 1

2ms+1
− 3

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥
(10.9)

-arctan activation function:

imin =

⎢⎢⎢⎢⎣fR(2Ns−2)
f ′
0πMs

tan
(

π
fR

((⌊
fmin

2nz −2
Mz

⌋
+
⌊
fmin

2nz −2
Mz

⌋
mod 2 + 1

)
Mz

2nz −2
− fmax+fmin

2

))
+ 1

2ms+1
+

1

2

⎥⎥⎥⎥⎦
(10.10)

imax=

⎡⎢⎢⎢⎢
fR(2Ns−2)

f ′
0πMs

tan
(

π
fR

((⌊
fmax

2nz −2
Mz

⌋
+
⌊
fmax

2nz −2
Mz

⌋
mod 2 − 1

)
Mz

2nz −2
− fmax+fmin

2

))
+1

2ms+1
−3

2

⎤⎥⎥⎥⎥
(10.11)

- ramp activation function:

imin =

⎢⎢⎢⎢⎣ 2Ns−2
f ′
0Ms

((⌊
fmin

2nz −2
Mz

⌋
+
⌊
fmin

2nz −2
Mz

⌋
mod 2 + 1

)
Mz

2nz −2
− fmax+fmin

2

)
+ 1

2ms+1
+

1

2

⎥⎥⎥⎥⎦
(10.12)

282 FPGA Implementation of a Fully and Partially Connected MLP

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-5
1

2

-4
48

-3
84

-3
20

-2
5

6

-1
92

-1
28 -6
4 0 64 12
8

19
2

25
6

32
0

3
84

44
8

Input (10 bits)

O
u

tp
u

t (
4

b
it

s)

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-2
56

-2
24

-1
92

-1
60

-1
28 -9
6

-6
4

-3
2 0 32 64 96 12
8

16
0

19
2

22
4

Input (9 msb of 10)

O
u

tp
u

t
(4

 b
it

s)

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-1
2

8

-1
12 -9
6

-8
0

-6
4

-4
8

-3
2

-1
6 0

16 3
2

48 64 80 9
6

11
2

Input (8 msb of 10)

O
u

tp
u

t
(4

 b
it

s)

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-6
4

-5
6

-4
8

-4
0

-3
2

-2
4

-1
6 -8 0 8 16 24 32 4
0

48 56

Input (7 msb of 10)

O
u

tp
u

t
(4

 b
it

s)

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-3
2

-2
8

-2
4

-2
0

-1
6

-1
2 -8 -4 0 4 8

1
2

16 20 24 28

Input (6 msb of 10)

O
u

tp
u

t
(4

 b
it

s)

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-1
6

-1
4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Input (5 msb of 10)

O
u

tp
u

t
(4

 b
it

s)

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Input (4 msb of 10)

O
u

tp
u

t (
4

b
it

s)

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-4 -3 -2 -1 0 1 2 3

Output (3 msb of 10)

O
ut

p
ut

 (4
 b

it
s)

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-2 -1 0 1

Input (2 msb of 10)

O
u

tp
u

t (
4

b
it

s)

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

-1 0

Input (1 msb of 10)

O
u

tp
u

t (
4

b
it

s)

Figure 10.5. Discretization of f(x) = 1 / (1+e−x (lighter plots) and f(x) = 2/(1+e−x/2) - 1
(darker plots), with ns = 1. . . 10, in the case: Mz = 1.0, Mw = 5.0, nz = 4, nw = 5, #w = 4, n#w

= 2, Ms = 20.0, Ns = 10)

Activation functions and discretization problem 283

imax=

⎡⎢⎢⎢⎢
2Ns−2
f ′
0Ms

((⌊
fmax

2nz −2
Mz

⌋
+
⌊
fmax

2nz −2
Mz

⌋
mod 2 − 1

)
Mz

2nz −2
− fmax+fmin

2

)
+ 1

2ms+1
−3

2

⎤⎥⎥⎥⎥
(10.13)

The number of bits (nLUT) needed to address that central interval [imin,
imax] is given in Eqn. 10.14.

nLUT =
log2 (imax − imin + 1)� (10.14)

The algorithm to calculate a LUT that only includes the central non-constant
interval of the activation function is shown below.

for i = imin to imax:

1 Calculate the Ns-bits value sdi corresponding to the center of an interval
of width 2ms (where ms = Ns - ns and ns can be nsopt (7) or an arbitrary
value in the range [1, Ns]):

sdi =
2ms − 1

2
+ i2ms (10.15)

2 Calculate the continuous value Sci corresponding to Sdi :

sci = sdi

2Ms

2Ns − 2
(10.16)

3 Apply to Sci the continuous activation function to obtain f(Sci).

4 Discretize f(Sci) and store it in the LUT:

LUT (i − imin) = f (sdi) = round

(
f (sci)

2nz − 2
2Mz

)
(10.17)

The algorithm to calculate the discrete output of a neuron from an Ns-bits
weighted sum is the following:

1 Take the ns most significant bits of the discrete Ns-bits weighted sum
sd[Ns– 1 : 0]:sd[Ns – 1 : ms]

2a If sd[Ns – 1 : ms] < imin then f(sd) = fmind

284 FPGA Implementation of a Fully and Partially Connected MLP

2b If sd[Ns – 1 : ms] > imax then f(sd) = fmaxd

2c If imin ≤ sd[Ns – 1 : ms] ≤ imax then:

2c.1 Take the nLUT least significant bits of

sd[Ns – 1 : ms]:sd[ms + nLUT – 1 : ms]

2c.2 f(sd) = LUT(sd[ms + nLUT – 1 : ms] – imin)

10.4 Hardware implementations of MLP

In this section, a sequential and a parallel version of the MLP architec-
ture (Figure 10.1) are described using two different abstraction levels: an
algorithmic-like level (Handel-C) and a register transfer level (VHDL).

10.4.1 High Level Description (Handel-C)

The high level design of MLP has been defined using Handel-C [5] as the
hardware description language. Handel-C is a language for rapidly implement-
ing algorithms in hardware straight from a standard C-based representation.
Based on ANSI-C, Handel-C has added a simple set of extensions required for
hardware development. These include flexible data widths, parallel processing
and communication between parallel threads. The language also utilizes a sim-
ple timing model that gives designers control over pipelining without needing
to add specific hardware definition to the models. Handel-C also eliminates
the need to exhaustively code finite state machines by proving the ability to
describe serial and parallel execution flows. Therefore, Handel-C provides a
familiar language with formal semantics for describing system functionality
and complex algorithms that result in substantially shorter and more readable
code than RTL-based representations.

Considering these Handel-C properties, both serial and parallel architec-
tures of the MLP have been implemented in an algorithmic description level
by defining their functionality as shown in the next subsections.

Although a detailed study of the possible architecture for both implementa-
tions has not been carried out in this work, it should be noted that a previous
analysis on how the information will be coded and stored is required. Conse-
quently, the designer must specify aspects such as the variable widths (num-
ber of bits), the required bits for each calculation, the variables that should
be stored in RAM or ROM modules, the kind of memory storage (distributed
in FPGA general proposed LUT resources or using specific Embedded Mem-
ory Blocks (EMBs)), etc. Therefore, although Handel-C dramatically reduces
the design time, to obtain an efficient system it is required the analysis of the
possible options in detail. In other words, a priori small modification of the

Hardware implementations of MLP 285

Handel-C code can result in a large change in the final architecture, and hence
either the area resources or the maximum clock rate can vary considerably.

The whole design process was done using the DK1 Design Suite tool from
Celoxica [5]. Multiple higher level languages are supported for simulation (C,
C++ and Handel-C). Sequential and parallel designs have been finally com-
piled using the synthesis tool Xilinx Foundation 3.5i [18].

10.4.1.1 Sequential Version. To describe the sequential MLP, only
its functionality is required. Thus, the MLP computes the synaptic signals for
each neuron in the hidden layer by processing the inputs sequentially and later
on, the obtained outputs are similarly processed by the final neurons.

From an algorithmic point of view, this functional description implies the
use of two loops, one for calculating the results of the neurons in the hidden
layer, and other one for neurons in the output layer. As an example of the high
level description reached when designing with Handel-C, the following shows
the programmed code of the first loop, whose functionality corresponds to the
weighted sum of the inputs of each node (Eqn. (10.1)).

for (i=0; i<NumHidden; i++)
{

Sum = 0;
for (j=0; j<NumInput; j++)

Sum = Sum+(W[i][j]*In[j]);
}
NumHidden is the number of neurons in the hidden layer (24 in our case).

NumInput is the number of inputs (220 in our case). W is the array containing
the weight values of the incoming connections to the hidden layer (24×220).
In is the input array. Sum is a variable that stores the accumulated weighted
sum of the inputs. If no parallel directive is used in Handel-C, the produced
system calculates all the operations sequentially.

10.4.1.2 Parallel Version. The functionality of the parallel version
is such that all neurons belonging to the same layer calculate their results si-
multaneously, in parallel, except for accessing the activation function that is
carried out in a serial way.

The parallel designs have been defined using the Handel-C “par” directive
that requires the implementation of dedicated circuits for a certain part of an
algorithm to be computed in parallel. To optimally use this “par” directive, it
is necessary to analyze the set of calculations and information transfers that can
be done in parallel. For example, the designer must know that RAM modules
only allow one location to be read in a single clock cycle.

As a result, the serial loop shown in the previous subsection can be paral-
lelized as:

286 FPGA Implementation of a Fully and Partially Connected MLP

par (i=0; i<NumHidden; i++)
Sum[i] = 0;

par (i=0; i<NumHidden; i++)
{

for (j=0; j<NumInput; j++)
Sum[i] = Sum[i]+(W[i][j])*In[j]);

}

10.4.2 Register transfer level description (VHDL)

The Register Transfer Level design of the MLP has been carried out using
standard VHDL as the hardware description language. This language allows
three different levels of description. We have chosen RTL to implement both
sequential and parallel architectures.

The entire design process was done using the FPGA Advantage 5.3 tool,
from Mentor Graphics [12].

Figure 10.6 describes the basic structure of the functional unit (or processing
element) that implements the calculations associated with Eqn. 10.1. It mainly
consists of an 8-bit multiplier and a 23-bit accumulative adder. In order to con-
nect the 16-bit multiplier output with the 23-bit adder input, a sign extension
unit is introduced. Note that we need 23 bits to accumulate the multiplications
of the 220 inputs by the corresponding weights.

Multiplier
(8 bits)

8 bits

8 bits

16 bits

S
ig

n
E

xt
.

Adder
(23 bits)

A
cc

um
ul

at
or

23 bits

23 bits

23 bits 23 bits
Multiplier

(8 bits)

8 bits

8 bits

16 bits

S
ig

n
E

xt
.

Adder
(23 bits)

A
cc

um
ul

at
or

23 bits

23 bits

23 bits 23 bits

Figure 10.6. Basic structure of the functional unit

10.4.2.1 Sequential Version. The sequential architecture has been
designed to estimate the minimum area needed to implement the MLP, even
though it implies a long execution time. Therefore, this serial version of the
MLP consists on a single functional unit that carries out all calculations for all
neurons, as is shown in Figure 10.7.

The inputs of the functional unit are both the synaptic signals and their asso-
ciated weights, which have been stored in different RAM modules. In partic-
ular, there is a single RAM module to store all the weights, and two different
RAM modules to store the synaptic signals, one for the values of the input

Hardware implementations of MLP 287

layer and the other one for the values of the hidden neurons. Separating these
RAM modules allows the MLP to read from the module associated with the
input layer and to store the output of the hidden neurons in the same clock
cycle.

The output of the functional unit is connected to the activation function mod-
ule. The activation function output is stored either in the hidden or in the final
neuron RAMs, depending on the layer that is being computed.

The different RAMs are addressed with an 8-bit and a 5-bit counter. The
8-bit counter addresses the synaptic signal RAM modules when reading them,
and the 5-bit counter addresses them when writing to memory.

The 13-bits address of the weights RAM module is calculated by merging
the addresses of both 5-bit and 8-bit counters, in such a way that the most sig-
nificant bits of the merged address correspond to the 5-bit counter (see Figure
10.7).

The control unit associated with this data path has been designed as a finite
state machine, and hence, the detailed description of all necessary states, their
outputs and transitions have been implemented.

RAM
(220 inputs)

Input bus
D

A

Functional
Unit

RAM
(24 hidden
outputs)

D

A

RAM

(220x24 weights
and

24x10 weights)

D

A

RAM
(10 final
outputs)

D

A

5 bits

8 bits

13 bits

8 bits

5 bits

8 bits

8 bits

4 bits

8 bits 8 bits

Counter5
(5 bits)

Counter8
(8 bits) Activation

Function

RAM
(220 inputs)

Input bus
D

A

Functional
Unit

RAM
(24 hidden
outputs)

D

A

RAM

(220x24 weights
and

24x10 weights)

D

A

RAM
(10 final
outputs)

D

A

5 bits

8 bits

13 bits

8 bits

5 bits

8 bits

8 bits

4 bits

8 bits 8 bits

Counter5
(5 bits)

Counter8
(8 bits) Activation

Function

Figure 10.7. Structure of the serial MLP

10.4.2.2 Parallel Version. The proposed parallel architecture de-
scribes a kind of node parallelism, in the sense that requires one functional unit
per neuron when working at a specific layer. With this strategy, all neurons of a
layer work in parallel and therefore produce their outputs simultaneously. This

288 FPGA Implementation of a Fully and Partially Connected MLP

is not a fully parallel strategy because the outputs are obtained in serial from
the “activation function” block (Figure 10.4).

For our particular MLP with 24 neurons in the hidden layer and 10 nodes
in the output layer, 24 functional units are required. All of them will work in
parallel when computing the weighted sums of the hidden layer and only 10 of
them will work for the output layer. Figure 10.8 shows the basic structure of
this parallel version.

As all functional units work in parallel for each synaptic signal, they need
to access the associated weights simultaneously, and hence, the weight RAM
should be private to each one.

Every functional unit also needs some local storage for output data because
the data between layers are transmitted in serial. We have decided to use 24
parallel registers instead of the RAM module of the serial version, because this
reduces the writing time. The data in these parallel registers are introduced
to a single activation function unit by a 24:1 multiplexer. The select signals
of the multiplexer are the 5-bit counter outputs. The output of the activation
unit is either used as a synaptic signal for the 10 neurons at the output layer or
stored in the output RAM module. A new control unit has been designed for
this parallel data path.

8 bits

Input bus

D

A

Activation
Function

RAM 0
(220 +
24 w.)

RAM
(10 final
outputs)

Functional
Unit 0

Functional
Unit 23

M
U

X
2

4:
1

RAM 23
(220)

8 bits

5 bits

4 bits

RAM 1
(220 +
24 w.)

R
eg

is
te

r0
R

eg
is

te
r2

3

Functional
Unit 1

R
eg

is
te

r1

Counter5
(5 bits)

Counter8
(8 bits)

RAM
(220 inputs)8 bits

Input bus

D

A

Activation
Function

RAM 0
(220 +
24 w.)

RAM
(10 final
outputs)

Functional
Unit 0

Functional
Unit 23

M
U

X
2

4:
1

RAM 23
(220)

8 bits

5 bits

4 bits

RAM 1
(220 +
24 w.)

R
eg

is
te

r0
R

eg
is

te
r2

3

Functional
Unit 1

R
eg

is
te

r1

Counter5
(5 bits)

Counter8
(8 bits)

RAM
(220 inputs)

Figure 10.8. Structure of the parallel MLP

Hardware implementations of MLP 289

10.4.3 Implementation characteristics of MLP with
different design strategies

To extract the EDIF files, the systems have been designed using the devel-
opment environments FPGA advantage, for VHDL, and DK1.1, for Handel-C.
All designs have been finally placed and routed onto a Virtex-E 2000 FPGA,
using the synthesis tool Xilinx Foundation 3.5i [18].

The basic building block of the Virtex-E CLB (Configurable Logic Block)
is the logic cell (LC). Each CLB contains four LCs organized in two similar
slices. An LC includes a 4-input function generator that is implemented as
4-input LUT. A LUT can provide a 16×1 synchronous RAM. Virtex-E also
incorporates large Embedded Memory Blocks (EMBs) (4096 bits each) that
complement the distributed RAM memory available in the CLBs.

Table 2 presents the results obtained after synthesizing the sequential and
parallel versions of the MLP using Handel-C. These results are characterized
by the following parameters: number and percentage of slices, number and
percentage of EMBs RAM, minimum clock period, the number of clock cycles
and the total time required for each input vector evaluation. The percentage
values apply to the Virtex-E 2000 device.

As mentioned in Section 10.4.1, obtaining an efficient system requires a de-
tailed analysis of the possible choices. When programming the MLP, there are
different options for data storage in the RAM. In order to analyze the effects
of the several techniques for distributing and storing data in RAM, we have
studied three different choices labeled (a), (b) and (c) in Table 10.2. In (a),
only distributed RAM for the whole designs has been used; in (b), the weights
associated with synaptic signals (large array) are stored in EMBs RAM mod-
ules, while the remaining data is stored in a distributed mode; and finally, (c)
only uses memory grouped in EMBs RAM modules.

Table 10.2. Implementation characteristics of the MLP designs described with Handel-C. (a)
Only distributed RAM. (b) Both EMBs and distributed RAM. (c) Only EMBs RAM

MLP � % �EMBs %EMBs Clock � EvaluationTime
Design Slices Slices RAM RAM (ns) Cycles (ms)
(a) Serial 2582 13 0 0 50.620 5588 282.864

Parallel 6321 32 0 0 58.162 282 16.402
(b) Serial 710 3 24 15 62.148 5588 347.283

Parallel 4411 22 24 15 59.774 282 16.856
(c) Serial 547 2 36 22 65.456 5588 365.768

Parallel 4270 22 36 22 64.838 282 18.284

The results in Table 10.2 show that regardless of the memory option, the
parallel version requires more area resources than its associated serial version.
Taking into account that the code for implementing the functionality of a single

290 FPGA Implementation of a Fully and Partially Connected MLP

Table 10.3. Implementation characteristics of the MLP designs described with VHDL

MLP � % �EMBs %EMBs Clock � EvaluationTime
Design Slices Slices RAM RAM (ns) Cycles (ms)
Serial 379 1.5 19 11 49.024 5630 276.005

Parallel 1614 8.5 26 16 53.142 258 13.710

functional unit uses about 70 slices after synthesis, the parallel version requires
at least 1680 slices for the 24 functional units. Actually, the increment in
the amount of resources is larger due to the replication of other registers and
variables. The computation time for each input vector is much shorter (about
20 times) in the parallel version.

Comparing the different options (a), (b) and (c) in Table 10.2, some gen-
eral characteristics of our synthesized MLP architecture can be noted. When
employing only distributed memory (a), the clock cycle and consequently the
evaluation time are shortest. In contrast, when only EMBs RAM are used
(c), the evaluation time is longest but the number of consumed slices is lower.
Therefore, it can be concluded that it is useful to employ EMBs RAM for
storing arrays whose size are similar to the size of an EMB RAM and use dis-
tributed memory for smaller amounts of data, as in (b) (Table 10.2). Due to
the almost shortest evaluation time and the percentage of area resources and of
memory blocks, this option is more efficient than the other options. Eventually,
the choice of a specific option will depend on the area and time constraints.
Nevertheless, defining the design with Handel-C makes it easy to change in
order to meet the area and computation time requirement for a specific appli-
cation.

Table 10.3 shows the implementation characteristics obtained after synthe-
sizing both sequential and parallel versions of the MLP using VHDL. This
design corresponds to option (b) described in Table 10.2.

As was expected, results indicate that the sequential version with only a
functional unit requires less area resources than the parallel one. Furthermore,
it is interesting to note that this increment in the amount of resources for the
parallel version is proportional to the number of functional units. Therefore, if
a single functional unit requires 53 slices, the parallel version needs at least 24
times more slices (1272). With regard to the computation time for each input
vector (last column), it can be seen that it is 20 times shorter in the parallel
version. In this way, we are taking advantage of the inherent parallelism of the
ANN computation scheme.

When comparing Tables 10.2 and 10.3, it can be seen that the RTL im-
plementation results in better performance and a more optimized approach.
However, one of the main advantages of the high level description is the time
saved in designing a system and in making future modifications. Therefore,

Hardware implementations of XMLP 291

the design time for the serial case when using high level description is about
10 times shorter than the RTL one. In the parallel case, the design time for
the high level was relatively short (just dealing with “par” directives), while in
the RTL description a new architecture and control unit was designed which
resulted in a greater difference in the system redefinition.

10.5 Hardware implementations of XMLP

This section introduces a sequential and a parallel version of the XMLP. For
reasons of clarity, only the hardware implementation for the parallel version
has been described in detail. However, the implementation characteristics of
both the sequential and parallel designs are presented.

In this particular XMLP implementation, the connectivity is defined by
10(4, 2) × 22 in the input layer and 4×6 in the hidden layer.

10.5.1 High Level Description (Handel-C)

From an algorithmic point of view, two-dimensional layers require the use
of nested loops to index both dimensions. The following example shows the
programmed code equivalent to that of the parallel MLP implementation de-
scribed in Section 10.4.1.2. Its functionality corresponds to the weighted sum
of the inputs of each node in the hidden layer. Note that the external loops have
been parallelized using the par directive.

par (X=0; X<NumHiddenX; X++)
{

FirstX[X] = X*InStepX;
par (Y=0; Y<NumHiddenX; Y++)
{

FirstY[Y] = Y*InStepY;
Sum[X][Y] = 0;

}
}
par (X=0; X<NumHiddenX; X++)
{

par (Y=0; Y<NumHiddenY; Y++)
{

for (XGrp=0; XGrp<InGrpX; XGrp++)
{

Mul[X][Y] = W[X][Y][XGrp][YGrp]*
In[FirstX[X]+XGrp][FirstY[Y]];
for (YGrp=1; YGrp<InGrpY; YGrp++)

par{
Sum[X][Y] = Sum[X][Y]+Mul[X][Y];
Mul[X][Y] = W[X][Y][XGrp][YGrp]*

In[FirstX[X]+XGrp][FirstY[Y]+YGrp];}
}

292 FPGA Implementation of a Fully and Partially Connected MLP

Sum[X][Y] = Sum[X][Y]+Mul[X][Y];
}

}
NumHiddenX and NumHiddenY are the sizes of the axes in the hidden layer.

InGrp and InStep specify the size of a group of inputs and the step between two
consecutive groups (in the input layer), both in abscissas (InGrpX, InStepX)
and ordinates (InGrpY, InStepY). W is the array containing the weight values.
In is the input array. Finally, Sum is a variable that stores the accumulated
weighted sum of the inputs.

In order to compare the XMLP to the MLP, similar design alternatives (a),
(b) and (c) to the ones considered in the MLP (Table 10.2) have been chosen.

Table 10.4. Implementation characteristics for the XMLP designs described with Handel-C.
(a) Only distributed RAM. (b) Both EMBs and distributed RAM. (c) Only EMBs RAM

MLP � % �EMBs %EMBs Clock � EvaluationTime
Design Slices Slices RAM RAM (ns) Cycles (ms)
(a) Serial 2389 12 0 0 44.851 2566 115.087

Parallel 5754 29 0 0 47.964 143 6.858
(b) Serial 1700 8 96 60 71.568 2566 183.643

Parallel 5032 26 96 60 64.270 143 9.190
(c) Serial 1608 8 140 91 77.220 2566 198.146

Parallel 4923 25 147 91 64.830 143 9.271

Similar considerations to the MLP model can be made after taking into ac-
count the implementation characteristics included in Table 10.4.

As in the MLP (Section 10.4.3), we observe that the occupation rate of the
parallel version increases. Also the computation time of the parallel version is
much shorter, on average 18 times.

As expected, the XMLP approaches result in systems twice as fast compared
to the fully connected MLP version. This gain in speed depends on the con-
nectivity pattern defined for the XMLP model. In the case studied, the XMLP
requires only 2352 multiplications compared to the 5520 needed by the MLP.

10.5.2 Register Transfer Level Description (VHDL)

The parallel architecture of the XMLP and the MLP are similar. Keeping in
mind that the connectivity pattern of the XMLP is different, only modifications
related to this feature need to be made, as in Figure 10.9.

Since each hidden neuron is only connected to 88 input values (4×22), the
global input RAM module with 220 MLP inputs has been replaced by 24 local
RAM modules. These local modules store the 88 necessary input values for
each functional unit. As each functional unit only computes 88 input values,
local weight RAMs can be reduced to 112-word RAM modules for the first ten

Conclusions 293

units (that also compute the output layer), and 88-word RAM modules for the
rest.

Count.5
(5 bits)

RAMi 0
(4×22 inputs)

Functional
Unit 1

Activation
Function

RAM
(10 final
outputs)

7 bits Functional
Unit 0

Functional
Unit 23

R
eg

is
te

r
0

R
eg

is
te

r
1

R
eg

is
te

r
23

M
U

X
24

:1

RAMw 1
(4×22 + 24 w.)

RAMw 23
(4×22)

7 bits

5 bits

4 bits

RAMi 1
(4×22 inputs)7 bits

RAMi 23
(4×22 inputs)7 bits

7 bits

7 bits

7 bits

Input bus

Count.7
(7 bits)

RAMw 0
(4×22 + 24 w.)

Count.5
(5 bits)

RAMi 0
(4×22 inputs)

Functional
Unit 1

Activation
Function

RAM
(10 final
outputs)

7 bits Functional
Unit 0

Functional
Unit 23

R
eg

is
te

r
0

R
eg

is
te

r
1

R
eg

is
te

r
23

M
U

X
24

:1

RAMw 1
(4×22 + 24 w.)

RAMw 23
(4×22)

7 bits

5 bits

4 bits

RAMi 1
(4×22 inputs)7 bits

RAMi 23
(4×22 inputs)7 bits

7 bits

7 bits

7 bits

Input bus

Count.7
(7 bits)

RAMw 0
(4×22 + 24 w.)

Figure 10.9. Structure of the parallel XMLP

Table 10.5 shows the implementation characteristics obtained after synthe-
sizing both sequential and parallel versions of the XMLP using VHDL. This
design corresponds to the option (b) described in Table 10.4.

Table 10.5. Implementation characteristics of the XMLP designs described with VHDL

MLP � % �EMBs %EMBs Clock � EvaluationTime
Design Slices Slices RAM RAM (ns) Cycles (ms)
Serial 267 2 11 6 37.780 2478 93.618

Parallel 1747 9 49 30 53.752 152 8.170

The performance improvement of the XMLP compared to the MLP is simi-
lar to that described for the Handel-C approaches.

10.6 Conclusions

We have presented an FPGA implementation of fully and partially con-
nected MLP-like networks for a speech recognition application. Both sequen-
tial and parallel versions of the MLP/XMLP models have been described using

294 FPGA Implementation of a Fully and Partially Connected MLP

two different abstraction levels: register transfer level (VHDL) and a higher
algorithmic-like level (Handel-C). Results show that RTL implementation pro-
duces more optimized systems. However, one of the main advantages of the
high level description is the reduction of design time. The Handel-C design is
completely defined with less than 100 code lines.

In both (VHDL and Handel-C) described systems, the parallel versions lead
to approaches 20 times faster on average for the MLP, and around 18 times
faster for the XMLP. This speed-up corresponds to the degree of parallelism
(24 functional units). Therefore, it depends on the number of hidden neurons
that are computed in parallel.

Finally on comparing the XMLP approaches (Tables 10.4 and 10.5) to the
MLP ones (Tables 10.2 and 10.3), we see that the XMLP computes faster than
the MLP. In the best case, it reduces the computation time from 13.7 to 6.9
microseconds for the parallel version. The advantages of XMLP are due to the
partial connectivity patterns, which reduce the number of multiplications from
5520, with a fully connected configuration (MLP), to 2352 with the XMLP
configured as described in Section 10.2.3. It can also be observed that XMLP
connectivity reduces the RAM storage requirements, once more because it re-
quires less connection weights to be stored.

For the speech recognition application we obtain a speaker-independent cor-
rect classification rate of 96.83% with a computation time of around 14-16 mi-
croseconds per sample. This amply fulfills the time restrictions imposed by
the application. Therefore, the implementation can be seen as a low-cost de-
sign where the whole system, even the parallel version, would fit into low-cost
FPGA device. The system could be embedded in a portable speech recognition
platform for voice-controlled systems.

A pipeline processing scheme taking one neural layer in each stage would
lead to a faster approach. The processing bottleneck is imposed by the maxi-
mum neural fan-in, 220 in a hidden node, because of the need for 220 multi-
plications. With a pipeline structure, we could overlap the computation time
of the hidden layer with the computation time of the output layer (24 multipli-
cations per node). This speeds up the data path by a maximum of 10%. Here
we did not study the pipeline choice because our design fulfills the application
requirements (portability, low-cost and computation time).

Acknowledgments

This work is supported by the SpikeFORCE (IST-2001-35271) and CICYT
TIC2002-00228 projects.

295

References

[1] Beiu V. Peperstraete J. A.Vandewalle J. and Lauwereins R. Close Ap-
proximations of Sigmoid Functions by Sum of Steps for VLSI Imple-
mentation of Neural Networks, Scientific Annals, Section on Informatics,
1994, pp. 31-50.

[2] Bishop C. M. Neural Networks for Pattern Recognition., 1995.

[3] Caelli T. Guan L. and Wen W.. Modularity in Neural Computing. Pro-
ceedings of the IEEE, 87, no. 9, 1999.

[4] Canas A. Ortigosa E. M. Diaz A. F and Ortega J.. XMLP: a Feed-
Forward Neural Network with Two-Dimensional Layers and Partial Con-
nectivity. Lecture Notes in Computer Science, LNCS, 2687, 2003, pp.
89-96

[5] Celoxica, http://www.celoxica.com/

[6] Draghici S. On the capabilities of neural networks using limited precision
weights, Neural Networks, 15, 2002, no. 3, pp. 395-414.

[7] Fiesler E. and Beale R. Handbook of Neural Computation,, IOP Publish-
ing Ltd and Oxford University Press, 1997.

[8] Huang X. D. Ariki Y. and Jack M. A. Hidden Markov Models for Speech
Recognition, Edinburgh University Press, 1990.

[9] Ienne P. Cornu T. and Gary K. Special-Purpose Digital Hardware for
Neural Networks: An Architectural Survey. Journal of VLSI Signal
Processing, 13, 1996, pp. 5-25.

[10] Krause A. and Hackbarth H. Scaly Artificial Neural Networks for
Speaker-Independent Recognition of Isolated Words, In: Proc. of the
IEEE Int. Conf, On Acoustics, Speech and Signal Processing, ICASSP
’89, 1989, pp. 21-24.

[11] Lippmann Richard P. Review of neural networks for speech recognition,
Neural Computation, 1, 1989, pp. 1-38.

[12] Mentor Graphics, http://www.mentorg.com/

[13] Peinado A. M. Lopez J. M. Sanchez V. E. Segura J. C. and Rubio A. J.
Improvements in HMM-based isolated word recognition system, Com-
munications, Speech and Vision, IEE Proceedings I , 138, 1991 pp. 201
-206

[14] Rabiner L. and Juang B. H. Fundamentals of Speech Recognition,
Prentice-Hall, 1993.

[15] Waibel A. Hanazawa T. Hinton G. Shikano K. and Lang K. Phoneme
Recognition Using Time-Delay Neural Networks. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37, 1989.

References

296 FPGA Implementation of a Fully and Partially Connected MLP

[16] Widrow B. and Lehr M. 30 years of adaptive neural networks: Perceptron,
Madaline and Backpropagation. Proceedings of the IEEE, 78, 1990, pp.
1415-1442.

[17] Widrow B. Rumenlhart D. and Lehr M. Neural networks: Applications in
industry, business and science. Communications of the ACM, 37(3), 1994.

[18] Xilinx, http://www.xilinx.com/

Chapter 11

FPGA IMPLEMENTATION OF NON-LINEAR
PREDICTORS

Application in Video Compression

Rafael Gadea-Girones
Laboratory of Design of Digital Systems, Universidad Politcnica de Valencia

rgadea@eln.upv.es

Agustn Ramrez-Agundis
Instituto Tecnol«ogico de Celaya

agraag@itc.mx

Abstract The paper describes the implementation of a systolic array for a non-linear pre-
dictor for image and video compression. We use a multilayer perceptron with
a hardware-friendly learning algorithm. Until now, mask ASICs (full and semi-
custom) offered the preferred method for obtaining large, fast, and complete
neural networks for designers who implement neural networks. Now, we can
implement very large interconnection layers by using large Xilinx and Altera
devices with embedded memories and multipliers alongside the projection used
in the systolic architecture. These physical and architectural features – together
with the combination of FPGA reconfiguration properties and a design flow
based on generic VHDL – create a reusable, flexible, and fast method of de-
signing a complete ANN on FPGAs . Our predictors with training on the fly, are
completely achievable on a single FPGA. This implementation works, both in re-
call and learning modes, with a throughput of 50 MHz in XC2V6000-BF957-6
of XILINX, reaching the necessary speed for real-time training in video applica-
tions and enabling more typical applications to be added to the image compres-
sion processing

Keywords: Non-Linear Prediction, Pipeline Backpropagation, Embedded FPGA Resources.

297

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 297–323.
© 2006 Springer. Printed in the Netherlands.

298 FPGA Implementation of Non-Linear Predictors

11.1 Introduction

In recent years, it has been shown that neural networks can provide solu-
tions to many problems in the areas of pattern recognition, signal processing,
and time series analysis, etc. Software simulations are useful for investigat-
ing the capabilities of neural network models and creating new algorithms;
but hardware implementations remain essential for taking full advantage of the
inherent parallelism of neural networks.

Traditionally, ANNs have been implemented directly on special purpose
digital and analogue hardware. More recently, ANNs have been implemented
with re-configurable FPGAs. Although FPGAs do not achieve the power, clock
rate, or gate density, of custom chips; they are much faster than software sim-
ulations [1]. Until now, a principal restriction to this approach has been the
limited logic density of FPGAs.

Although some current commercial FPGAs maintain very complex array
logic blocks, the processing element (PE) of an artificial neural network is un-
likely to be mapped onto a single logic block. Often, a single PE could be
mapped onto an entire FPGA device, and if a larger FPGA is chosen, it would
be possible to implement some PEs – perhaps a small layer of neurons – but,
never a complete neural network. In this way, we can understand the imple-
mentations in [2] and [3] – in which simple multilayer perceptrons (MLPs)
are mapped using arrays of almost 30 Xilinx XC3000 family devices. These
ANNs perform the training phase off-chip and so save considerable space.

A second solution for overcoming the problem of limited FPGA density is
the use of pulse-stream arithmetic. With this technique, the signals are stochas-
tically coded in pulse sequences and therefore can be summed and multiplied
using simple logic gates. This type of arithmetic can be observed with fine-
grained FPGAs, such as the ATMEL AT6005 [4]; or with coarse-grained FP-
GAs, such as the Xilinx XC4005 [5] and XC4003 [6]. These implementations
use an off-chip training phase, however, a simple ANN can be mapped onto a
single device. In the same way, [7] presents an FPGA prototyping implemen-
tation of an on-chip backpropagation algorithm that uses parallel stochastic
bit-streams.

A third solution is to implement separate parts of the same system by time-
multiplexing a single FPGA chip through run-time reconfiguration. This tech-
nique has been used mainly in standard backpropagation algorithms; divid-
ing the algorithm into three sequential stages: forward, backward, and update.
When the stage computations are completed, the FPGA is reconfigured for the
following stage. We can observe this solution by using the Xilinx XC3090 [8],
or the Altera Flex10K [9]. Evidently, the efficiency of this method depends on
the reconfiguration time when compared to computational time.

Pipeline and back-propagation algorithm 299

Finally, another typical solution is to use time-division multiplexing and a
single shared multiplier per neuron [10, 11]. This solution enables mapping
an MLP for the XOR problem (3-5-2) onto a single Xilinx XC4020 with the
training phase off-chip.

This paper offers advances in two basic respects to previously reported
neural implementations on FPGAs. The first is the use of an aspect of back-
propagation and stems from the fact that forward and backward passes of dif-
ferent training patterns can be processed in parallel[12]. This possibility was
noted, but unimplemented, in a work by Rosemberg and Belloch [13] with
the Connection Machine. Later, A. Petrowski et al.[14], describe a theoretical
analysis and experimental results with transputers. However, only the batch-
line version of the backpropagation algorithm was shown. The possibility of
an on-line version was noted by the authors in general terms, but it was not
implemented with systematic experiments and theoretical investigations.

The second point we contribute is to produce a completed ANN with on-
chip training, and good throughput for the recall phase – on a single FPGA.
This is necessary, for example, in industrial machine vision [2, 3], and for the
training phase, with continual online training (COT) [15].

In Section 2, a pipelined on-line backpropagation is presented and pro-
posed. Section 3 describes an alternating orthogonal systolic array, the design
of synapses, and the synthesis of non-linear functions of neurons. Finally, Sec-
tion 4 reviews some of the physical design issues that arose when mapping
an adaptive non linear predictor onto FPGA devices, and appraises the perfor-
mance of the network.

11.2 Pipeline and back-propagation algorithm

11.2.1 Initial point

The starting point of this study is the on-line version of the backpropagation
algorithm. We assume we have a multilayer perceptron with three layers: two
hidden layers and the output layer (2-6-2-2 of Fig. 1)

The phases involved in backpropagation – taking one pattern m at a time
and updating the weights after each pattern (on-line version) – are as follows:

1 Forward phase. Apply the pattern aK
i to the input layer and propagate

the signal forward through the network until the final outputs aL
i have

been calculated for each i (index of neuron) and l(index of layer)

al
i = f(ul

i) ul
i =

Nl−1∑
j=0

wl
ija

l−1
j 1 ≤ i ≤ Nl, 1 ≤ l ≤ L (11.1)

300 FPGA Implementation of Non-Linear Predictors

I

J

L 1 to 2

1 to 2+1 bias neuron

1 to 6+1 bias neuron

K

layer 3

layer 2

layer 1

1 to 2+1 bias input

Figure 11.1. Structure of a multiplayer perceptron

where a is the activation, w the weights and f the non-linear function

2 Error calculation step. Compute the δ’s for the output layer L and com-
pute the δ’s for the preceding layers by propagating the errors backwards
using

δL
i = f ′(uL

i)(ti − yi) (11.2a)

δl−1
j = f ′(ul−1

j)
Nl∑
i=1

wijδ
l
i 1 ≤ i ≤ Nl , 1 ≤ l ≤ L (11.2b)

where δ are the error terms, t the targets and f ′ the derivative function
of f

3 Weight update step. Update the weights using

mwl
ij = m−1wl

ij + m∆wl
ij (11.3a)

m∆wl
ij = ηmδl

iy
l−1
j 1 ≤ i ≤ Nl , 1 ≤ l ≤ L (11.3b)

where η is the learning factor and ∆w the variation of weight

All the elements in (3) are given at the same time as the necessary elements
for the error calculation step; therefore, it is possible to perform these last two
steps simultaneously (during the same clock cycle) in this on-line version and
to reduce the number of steps to two: forward step (1) and backward step (2)
and (3). However, in the batch version, the weight update is performed at the
end of an epoch (set of training patterns) and this approximation would be
impossible.

Pipeline and back-propagation algorithm 301

11.2.2 Pipeline versus non-pipeline

11.2.2.1 Non-pipeline. The algorithm takes one training pattern m.
Only when the forward step is finished in the output layer can the backward
step for this pattern occur. When this step reaches the input layer, the forward
step for the following training pattern can start (Fig. 2).

In each step sonly the neurons of each layer can perform simultaneously,
and so this is the only degree of parallelism for one pattern. However, this dis-
advantage means we can share the hardware resources for both phases, because
these resources are practically the same (matrix-vector multiplication).

11.2.2.2 Pipeline. The algorithm takes one training pattern m and
starts the forward phase in layer i. The following figure shows what happens
at this moment (in this step) in all the layers of the multilayer perceptron. Fig.3
shows that in each step, every neuron in each layer is busy working simulta-
neously, using two degrees of parallelism: synapse-oriented parallelism and
forward-backward parallelism. Of course, in this type of implementation, the
hardware resources of the forward and backward phases cannot be shared in
one cycle. Evidently, the pipeline carries an important modification of the orig-
inal backpropagation algorithm [16, 17]. This is clear because the alteration of
weights at a given step interferes with computations of the states ai and errors
δi for patterns taken from different steps in the network. For example, we are
going to observe what happens with a pattern m on its way to the network dur-
ing the forward phase (from input until output). In particular, we will take into
account the last pattern that has modified the weights of each layer. We can
see: For the layer I the last pattern to modify the weights of this layer is the
pattern m-5.

When our pattern mpasses the layer J , the last pattern to modify the weights
of this layer will be the pattern m−3.

Finally, when the pattern reaches the layer L the last pattern to modify the
weights of this layer will be the pattern m-1.

Of course, the other patterns also contribute. The patterns which have modi-
fied the weights before patterns m-5, m-3 and m−1, are patterns m-6, m-4 and
m−2 for the layers I, J and Lrespectively. In the pipeline version, the pattern

302 FPGA Implementation of Non-Linear Predictors

Figure 11.2. Non-pipeline version

Pipeline and back-propagation algorithm 303

Figure 11.3. Pipeline Version

304 FPGA Implementation of Non-Linear Predictors

Figure 11.4. Arquitecture of MLP

m−1 is always the last pattern to modify the weights of the all layers. It is curi-
ous to note that when we use the momentum variation of the backpropagation
algorithm with the pipeline version, the six patterns immediately before the
current pattern contribute to the weight updates, while with the non-pipeline
version, only the last two patterns contribute before the current pattern.

Therefore, we have a variation of the original on-line backpropagation al-
gorithm that consists basically in a modification of the contribution of the dif-
ferent patterns of a training set in the weight updates, and in the same line as
the momentum variation. The main advantage of this modification is that real-
time learning is enabled because of a reduction in the throughput of the neural
network.

11.3 Synthesis and FPGAs

11.3.1 Digital architecture of the ANN

We assume that we have a MLP (multilayer perceptron) with three layers
(Fig.1) and the following characteristics:

NE = number of inputs. N1O = number of neurons in the first hidden layer.
N2O = number of neurons in the second hidden layer. NS = number of outputs.

Synthesis and FPGAs 305

Fig. 4 shows the ‘alternating orthogonal systolic array’ of an MLP with two
hidden layers [18]. This architecture can implement the following structure
(2-N1O-2-NS) and is useful for the XOR problem.

We can observe that NE+1 (3) determines the number of vertical synapses
(SV) in the first layer, and N2O (2) determines the dimensions of the horizontal
layer and the last vertical layer; that is to say, the number of horizontal synapses
(SH) and horizontal neurons (NH) and the number of last vertical synapses
(SVU). The size of N1O will determine the size of the weight memories of the
vertical and horizontal synapses, and the size of NS will determine the size of
the weight memories of the synapses in the last vertical layer.

The design entry of the pipelined on-line BP is accomplished in VHDL. It is
very important to make these system descriptions independent of the physical
hardware (technology) because our future objective is to test our descriptions
on other FPGA’s and even on ASIC’s. The design flow is shown in Fig. 5.

The VHDL description of the ‘alternating orthogonal systolic array’ (always
the unit under test) is totally configurable by means of generics and generates
statements whose values are obtained from three ASCII files:

Database file: number of inputs, number of outputs, training, and vali-
dation patterns.

Learning file: number of neurons in the first hidden layer, number of
neurons in the second hidden layer, type of learning (on-line, batch-line
or BLMS), value of learning rate η, value of momentum rate, and type
of sigmoid.

Resolution file: resolution of weights (integer and decimal part), reso-
lution of activations, accumulator resolution (integer and decimal part),
etc.

11.3.2 Design of Synapses

The main problem in the incorporation of the forward-backward parallelism
(pipeline version) is the design of the synapses (white blocks of Fig. 4). We
can specify this problem in two aspects: a larger arithmetic and a more com-
plex memory of weights. We can see the necessary hardware resources for a
synapse in Fig. 6 when working in one cycle.

The structure of the Memory of Weights represented in Fig. 6 can be showed
in detail in Fig. 7. Evidently the control of the addresses are not a problem (de-
sign of simple counters); however, it doesn’t occur the same with the dual-port
RAM. We observe in Fig. 7 the necessary simultaneous operations in the RAM

306 FPGA Implementation of Non-Linear Predictors

Figure 11.5. Flow of Design and Tools

Figure 11.6. Structure of Synapse Units

Synthesis and FPGAs 307

Figure 11.7. Structure of memory

memory of synaptic weights: two read operations (one for forward hardware
and one for backward hardware), and one write operation from update hard-
ware. The working of the pipeline algorithm means that the addresses for read
operations of the backward phase and write operations of the update phase are
the same. However the read operation of the forward phase can work with a
different address – as is usual. This behaviour has to be taken into account
when we give solutions for the weights.

11.3.2.1 Memory of weights.

When we want to give a real solution for the weight storage in multilayer
perceptrons with the on-line pipeline backpropagation algorithm we have dif-
ferent alternatives in the world of FPGA. For our implementations we have
studied the technologic alternatives of Table 1 in order to implement this mem-
ory, and we have got different results and interesting conclusions:

CLB or Slices (XILINX). If we employ the DP RAM Macro from Logi-
BLOX we can implement our dual-port RAM for the weight storage without
functional limitations. The worse case, when the forward and backward ad-
dresses are the same, is resolved without conflicts in data storage.

The only problem with this solution is the inherent problem of using dis-
tributed RAM blocks. These small RAM blocks must be connected together
to make weight storage of manageable size. For example, if we want to im-
plement a memory module of a vertical synapse of our “alternating orthogonal
systolic array”, we need N1O CLBs for weight storage (being N1O the number
of neurons in the first hidden layer). These CLBs are connected together using

308 FPGA Implementation of Non-Linear Predictors

Table 11.1. Alternatives of implementation of memory of weights

FAMILY Resource Organization

XILINX
CLB o Slices 16x1 (4000 &Virtex)
Block SelecRAM+ 256x16 (Virtex)

1024x16 (Virtex II)

ALTERA

EAB 256x8 (FLEX10K)
EAB 256x16(FLEX10KE)
ESB 256x8 (APEX II)
M4K 256x16 (STRATIX)

multiplexers implemented with more logic blocks. These extra multiplexers
cause extra delay and extra routing problems, which slow down the weight
storage block. In contrast, non-distributed resources from the following can be
used to implement large, dedicated blocks of RAM that eliminate these timing
and routing concerns.

Block SelecRAM+(XILINX-VIRTEX-VIRTEX II). If we employ Block
SelecRAM+ we cannot implement our dual-port RAM for the weight storage
in one cycle. This dual-port RAM can perform two operations simultaneously
(read-read, read-write, write-write), but in the last two cases, the address for
these two operations must not be the same. Evidently, the case write-write is
not relevant for our problem, but the case of read-write is fundamental for a
one-cycle solution. If the address of the forward phase and backward phase is
the same the data of the forward phase is incorrect. Of course the probability
of this coincidence is low and we can employ this situation for introducing a
random noise in the working of the neural network.

Our contributed solution works in two cycles. In the first, we perform the
forward and backward read operations. In the second, we perform the update
write operation. For example, a Xilinx XC2V250 device has 24 blocks that can
implement 1024 weights with 16-bits of resolution. The architecture shown in
Fig. 5 only needs 8 of these embedded RAMs; one for each synapse. This
supposes that the size of N1O and NS is between 1 and 1024, and therefore we
can implement a (2-1024-2-1024) network with the same hardware resources.

Embedded Array Block (ALTERA). If we employ EAB we must distin-
guish between the FLEX10K family, and the FLEX10E family. The embedded
array blocks of FLEX10K cannot implement our dual-port RAM for the weight
storage in one cycle. This RAM can perform only one operation (read or write)
in each cycle, and therefore we need three cycles to perform the necessary op-
erations.

Synthesis and FPGAs 309

The FLEX10KE EAB can act in dual-port or single-port mode. When in
dual-port mode, separate clocks can be used for EAB read and write sections,
which allows the EAB to be written and read, as well as different rates. Addi-
tionally, the read and write sections can work with the same address, which is
the main issue for our application.

To perform the second read operation we propose one of two solutions:
either using another cycle and multiplexing in time; or storing the weights in
duplicate. Of course, this second solution requires two EABs for synapse: one
for the forward phase and another for the backward phase.

M4K (ALTERA). The Stratix M4K offer a true dual-port mode to support
any combination of two port operations. Between them, this mode permit per-
fectly the specifications of our weight memories. The biggest configuration
of these M4K is 256x16. This mode also existed in ESB (Embedded System
Blocks) of APEX II but their biggest organization is 256x8 . It is a good per-
spective for our next implementations.

11.3.2.2 Arithmetic resources. The arithmetic resources of the
synapses are practically three multiplier-accumulators (MAC); one for each
phase of the training algorithm. The size of the synapses is increased by 40%
when we want to manage the forward and backward phases simultaneously.
When we want to work in one cycle, the arithmetic blocks of both phases can-
not be shared. Some 24 multipliers (16x8) for a whole neural network as in
Fig.5 are necessary if we work with a precision of 16-bits for the weights and
8-bits for the activations and deltas – and this is a very large resource for each
FPGA.

Before the Virtex II and Stratix families, the only solution for these multi-
pliers would be a lot of implementing slices or logic cells. Fortunately, we now
find new FPGA families with embedded multipliers that enable considerably
larger neural networks; but we need to show that these new families open the
perspectives of implementation of neural networks in the world of FPGA .

For example , for our neural network of Fig. 4 we can observe easily in Table
2 the importance of the contributed resources for the new families of XILINX
FPGA. The family VIRTEX II incorporates embedded multipliers (18x18) that
considerably reduce the number of slices necessary – and it is much faster.

11.3.3 Design of Neurons

Fig. 8 shows the structure of the neuron units of the neural network illus-
trated in Fig. 4.

310 FPGA Implementation of Non-Linear Predictors

Table 11.2. Design summary for MLP (2-6-2-2)

RESOURCES XCV300E XCV300E X2V250

32x1 RAMs: 640 72 72
Slice Flip Flops: 653 896 846
4 input LUTs: 4712 3713 1931
Number of slices 2731 2519 1299
Number of block RAMs: 0 8 8
Number of Mult18x18s: 0 0 24
Maximum frequency MHz: 39,77 40.22 41.55

Figure 11.8. Structure of Neuron Units

The main digital design problem is the implementation of non-linear func-
tions (See equation 1). Common examples of activation functions include
hard-limiter, pseudo-linear functions; hyperbolic tangent functions; and sig-
moid functions. Of these, we will consider the bipolar sigmoid function (4)
that is commonly used in the implementation of a multilayer perceptron model.
We will also consider the first derivative of this function (5) necessary for the
training equation (2).

f(x) =
2

1 − ex
− 1 (11.4)

f ′(x) =
1
2
((1 + f(x))(1 − f(x)) =

1
2
(1 − f2(x)) (11.5)

Synthesis and FPGAs 311

Figure 11.9. Implementation of the Sigmoid Function

11.3.3.1 Sigmoid Function. In digital implementations, there are a
number of approaches for implementing the sigmoid function in FPGA tech-
nology.

(look-up table). The sigmoid function can be stored in RAM or ROM and
the appropriate values can be read either directly from the stored values, or
from interpolation of the stored values [19]. This method requires a large sil-
icon area for the implementation of the memory required. For example, if we
work with 16-bits of resolution for input data, we would need 128Kbytes of
memory. The number of bytes can be obtained by using the expression (n/8)2n

; n being the number of bits of resolution. For FPGAs, we would need 256
EAB for FLEX10KE of ALTERA, or 64 Block SelecRAM+ of VIRTEX II of
XILINX. Evidently, these numbers are currently impossible. However, these
quantities change if we work with 8-bits of resolution. With this resolution we
would need only 256 bytes, and of course, we would use only one embedded
RAM memory of these families of FPGA for each non-linear function. In this
paper, we have not considered this solution because it is inadequate to work
(section 4.1) with a precision of less than 14 or 16 bits for the input of the sig-
moid function and 8 bits for the output of this function. Therefore for a NN as
shown in Figure 4 (with four neuron units) we would need 128-512 EAB for
the implementation of all sigmoid functions if we worked with 14 or 16 bits

Bipartite tables is a method that has recently been developed for approxi-
mating functions [20]. With this technique, two tables are accessed in parallel.
The outputs of the two tables provide an approximation to the function in carry-
save form. These two tables must be combined with a carry propagate adder
two’s complement approximation to the function. Compared with the above
solution, bipartite tables require less memory. For 16 bit input and 8 bits out-
put, the sigmoid function can be implemented with a 2 EAB and 1 adder of 8
bits. We increase the logic cells used and the implementation delay to perform
the addition; but it may be a good alternative for a conventional look-up table.

Piecewise linear (PWL) approximation is achieved by approximating the
sigmoid function using a piecewise linear approximation PWL [21, 22]. Dif-
ferent alternatives have been evaluated in these papers and it seems that the best
solution (for performance and hardware approaches) is the PWL of 15-segment

312 FPGA Implementation of Non-Linear Predictors

Table 11.3. PWL approximation for the 15 segment bipolar sigmoid function

Input
Range

Input Output Output Range

-8 → -7 1000.abcdefghijklmno 1.0000000abcdefg -1 → -0.9921875
-7 → -6 1001.abcdefghijklmno 1.0000001abcdefg -0.9921875→ -0.984375
-6 → -5 1010.abcdefghijklmno 1.000001abcdefgh -0.984375 → -0.96875
-5 → -4 1011.abcdefghijklmno 1.00001abcdefghi -0.96875 → -0.9375
-4 → -3 1100.abcdefghijklmno 1.0001abcdefghij -0.9375 → -0.875
-3 → -2 1101.abcdefghijklmno 1.001abcdefghijk -0.875 → -0.75
-2 → -1 1110.abcdefghijklmno 1.01abcdefghijkl -0.75 → -0.5
-1 → 0 1111.abcdefghijklmno 1.1abcdefghijklm -0.5 → 0
0 → 1 0000.abcdefghijklmno 0.0abcdefghijklm 0 → 0.5
1 → 2 0001.abcdefghijklmno 0.10abcdefghijkl 0.5 → 0.75
2 → 3 0010.abcdefghijklmno 0.110abcdefghijk 0.75 → 0.875
3 → 4 0011.abcdefghijklmno 0.1110abcdefghij 0.875 → 0.9375
4 → 5 0100.abcdefghijklmno 0.11110abcdefghi 0.9375 → 0.96875
5 → 6 0101.abcdefghijklmno 0.111110abcdefgh 0.96875 → 0.984375
6 → 7 0110.abcdefghijklmno 0.1111110abcdefg 0.984375 → 0.9921875
7 → 8 0111.abcdefghijklmno 0.1111111abcdefg 0.9921875→ 1

[23]. If we work with the input range of –8 to 8; and outside of these limits we
approximate the outputs to the values 1 or –1; we can see the results in Table
3. We call this solution PWL sigmoid (15) mode. The solution is symmetric if
we use a sign-magnitude representation, therefore we can implement only half
of Table 3 by means of the structure in Figure 9.

Seven step approximation. This implementation is made to avoid the mul-
tipliers of the forward phase. This solution is found in [24] for the binary sig-
moid function. The proposed function for our bipolar sigmoid is the following
equation (6):

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if x ≤ y
1/2, if 1 ≤ x < 2
1/4, if 0 < x < 1
0, if x = 0
−1/4, if −1 < x < 0
−1/2, if −2 < x ≤ −1
−1, if x ≤ −2

(11.6)

As f(x) takes only seven values. The multiplications of (1) are made with a
combination of shift and logical circuitry, which is much simpler than a con-
ventional multiplier. We call this solution the STEP sigmoid (7) mode.

Implementation on FPGA 313

11.3.3.2 Derivative Function. In the digital implementations, there
are a number of approaches for implementing the derivative of sigmoid func-
tion in FPGA technology.

1 Implementation of the expression (5) . We call this the Equation alter-
native. This is obtained by computing the f(.) from the PWL (15) ap-
proximation of the sigmoid, and the derivative is obtained by basically
one multiplication (See equation 5). The error generated has an average
value of 0.00736 and a maximum value of 0.0325, occurring in the inter-
vals [3,4] and [-4,-3]. It is very important to have a good approximation
of the derivative around x=0. This approximation for the new FPGA
architectures with embedded multipliers could be very important in the
future.

2 Powers-of-two piecewise linear approximation (similar to f(x). This is
obtained by approximating the derivative by using piecewise approxi-
mations.. We call this the PWL (15) alternative.

3 Power-of-two step function approximation. This is obtained by a
straightforward differentiation of the PWL of the sigmoid function. The
gradient of each section is represented by a step function. We call this
the STEP (15) alternative. In this case, the approximation around x=0 is
very poor and this behaviour will have consequences in the training and,
therefore, the generalization.

11.4 Implementation on FPGA

We have examined the possibilities of FPGAs in the logic domain for neural
networks. From the point of view of physical domain, the main problem is dis-
covering if the FPGA has sufficient hardware resources to implement a whole
neural network. For showing these possibilities, we are going to plan the im-
plementation of a useful application of this type of neural network with the
pipeline version of the backpropagation algorithm.

11.4.1 Word ranges, precision and performance

If a digital approach is considered for implementing our pipelined BP algo-
rithm, one of the most important parameters to be fixed is the precision nec-
essary for making the individual building blocks of the array processing units.
We have to find a good balance between the system performance indicators
(processing speed and area occupied by the implementation) and the quality of
the solution that this system is capable of offering for real world tasks (conver-
gence and generalisation properties). This is why internal precision is one of
the first parameters to be fixed for a digital implementation of artificial neural
networks.

314 FPGA Implementation of Non-Linear Predictors

Figure 11.10. Precision analysis of inputs

Figure 11.11. Precision analysis of weights

We shall use in our analysis the sign-magnitude format for all the variables
involved. This format requires the individual variable to be represented by a bit
string divided into three fields. The first field indicates the sign associated with
the represented number. The second field is composed of a variable number
of bits that represent the number integer part. Finally, the third field represents
the decimal part of the considered variable.

Bearing in mind equations (1) (2) and (3), it is easy to deduce the parameters
whose precision will influence the performance of the algorithm: the synaptic
weight vector; the input and delta vectors; and finally, the precision used for
storing the partial products. However, from the point of view of the architec-
ture, we centre our analysis in the synaptic weight and the input vectors. We
show the vectors for speed of convergence and generalisation in the results ob-
tained for the vector weights and input (activation and delta) in Figures 10 and
11.

In these figures, we compare the behaviour between the pipeline version
(our approach) and the non-pipeline version. We can observe differences be-
tween both versions when we work with 32 bits (floating point). However,
we cannot observe differences between both versions when we work with lim-
ited precision. Therefore, the hardware implementation of the pipeline version

Implementation on FPGA 315

Table 11.4. Summary of performance results for MLP (2-6-2-2)

Family VIRTEXE
0.18 um, six-layer metal sili-
con process

VIRTEX2
0.15 um, eight-layer metal sil-
icon process

Device XCV300E
Max frequency: 40 MHz

X2V500
Max frequency: 60 MHz

Version Pipeline Non-pipeline Pipeline Non-pipeline

1/Throughput
recall phase

0.18 us 0.18 us 0.12 us 0.12 us

1/Throughput
training phase

0.18 us 0.78 us 0.12 us 0.51 us

Performance 217 MCPS 217 MCPS 326 MCPS 326 MCPS
217 MCUPS 49 MCUPS 326 MCUPS 73 MCUPS

works as well as the implementations of classic versions of BP. The other con-
clusion of our analysis is that the size of 8-bits for the activation data and
16-bits for the vector weight are adequate for the performance of the ANN.

With these word ranges and with the neural network of Fig. 4 we have
reached the speed performance showed in the Table 4 for different families of
XILINX. The ANN has been analysed in pipeline mode and in non-pipeline
mode. The performance of the training phase is measured with the number of
connections updated per second (CUPS). The processing in the recall phase
(after training) is measured with the number of processed connections per sec-
ond (CPS). Of course, the pipeline mode will only affect the training phase.

The throughput values for this implementation are satisfactory for most real-
time applications and the performance obtainable with a single FPGA easily
competes with other neurocomputers with standard Integrated Circuits or with
full or semi-custom ASICs.

11.4.2 Implementation of Non-Linear Predictor

After deciding the word ranges and precision we need to know the topology
of the neural network.

The application we have chosen is important for our research in image com-
pression based on wavelet transform. In this application, it is common to in-
troduce non-linear predictors based on neural networks. These neural network
predictors may be multiplayer perceptrons with one output and with a number
of inputs that equal the context size. We chose one of the biggest solutions in

316 FPGA Implementation of Non-Linear Predictors

Table 11.5. Design summary for MLP(42-128-50-1) with PWL sigmoid(15)

X2V8000BF957-5

Number of 4 input LUTS:
For 32x1 RAMs:
As route-thru:
As LUTs:

82,895 out of 93184
18,560
7,417
52,313

88%

Number of Slices: 46,590 out of 46,592 99%

Number of Flip-Flops: 17,454 out of 93,184 18%

Number of block RAMs: 144 out of 168 55%

Number of Mult18x18s: 168 out of 168 100%

this area of application because we want to know if it can implemented by an
FPGA without problems of hardware resources (area considerations).

Christopher, Simard and Malvar [25] make an exhaustive experimenting
task using a non-linear predictor as an element of an image compression system
based on the wavelet transform. They experiment with rectangular and pyra-
midal context, with completely connected and convolutional networks, with
static and dynamical training sets.

The first size of the multiplayer perceptron we want to implement for a
non-linear predictor in image compression is obtained of these experiments
: NE=42 Inputs, N1O=128, N2O=50, NS=1. We chose the largest available
FPGA devise from an XILINX vendor: the VIRTEX II X2V8000. The results
of this implementation are shown in Table 5.

We can observe that this neural network consumes a large percentage of
the VIRTEX II device. There is scarcely enough area for other applications
and therefore it is very difficult to justify this type of implementation. Evi-
dently, we tested the worst case when we used the PWL sigmoid (15) option
for the sigmoid function. If we use the STEP sigmoid (7) option, we can con-
siderably reduce the area for each synapse because the multiplication of the
forward phase is unnecessary. Another, more radical, solution to reduce the
hardware resources of our neural network is to not do the training on the fly.
We can first train the neural network predictor without other applications on
the chip, and then, with the fixed weights of the first step obtained, reconfig-
ure the FPGA with the neural network and the other applications – without
the learning structures. This neural network without training needs fewer re-
sources. The implementation results of both solutions are shown in the Tables
6 and 7.

Implementation on FPGA 317

Table 11.6. Design summary for MLP(42-128-50-1) with STEP sigmoid(7)

X2V8000BF957-5

Number of 4 input LUTS:
For 32x1 RAMs:
As route-thru:
As LUTs:

78,290 out of 93184
18,560
7,417
52,313

84%

Number of Slices: 46,590 out of 46,592 99%

Number of Flip-Flops: 17,454 out of 93,184 18%

Number of block RAMs: 144 out of 168 55%

Number of Mult18x18s: 168 out of 168 100%

Table 11.7. Design summary for MLP(42-128-50-1) with PWL sigmoid(15) without training

X2V8000BF957-5

Number of 4 input LUTS:
For 32x1 RAMs:
As route-thru:
As LUTs:

21,645 out of 93184
0
1,958
19,696

23%

Number of Slices: 13,735 out of 46,592 29%

Number of Flip-Flops: 7,283 out of 93,184 7%

Number of block RAMs: 144 out of 168 55%

Number of Mult18x18s: 71 out of 42 100%

318 FPGA Implementation of Non-Linear Predictors

Figure 11.13. Area for adaptive training

We can conclude that to implement a normal and complete neural network
with the current FPGA technology and the proposed degrees of parallelism is
almost impracticable; however, it is achievable without training. This conclu-
sion can seem pessimistic, but we must think that we have assumed the imple-
mentation of the largest predictor found in the image compression references.

One alternative is experimenting with the adaptive non linear prediction ap-
proach proposed by Marusic and Deng [26] in order to obtain a complete loss-
less compression system (Fig. 12).

The prediction stage is an adaptive predictor that uses a dynamic training
region for each pixel to be estimated. The training region has twelve context
windows, each one with twelve pixels (Fig. 13).

The image is scanned, pixel by pixel, from left to right and from top to bot-
tom. On each pixel, the training region is represented by twelve training vector;
these are used to train a 12-10-1 two layer perceptron. Once the network has
been trained, the pixel is predicted and the current weight matrix is used as the
initial one for the next pixel (Fig.13).

Conclusions 319

Table 11.8. Results of prediction with differents topologies with Lena256x256 Image

Hidden Neurons 10 20 10 10 20

Inputs 12 12 4 12 12

PSNR 27,85 27,95 27,49 28,56 28,55

Entropy en 4,98 4,97 5,04 4,85 4,86

Entropy hn 7,5888 7,5888 7,5888 7,5888 7,5888

Version Learning Batch line Batch line Batch line On line On line

Table 11.9. Design summary for MLP(12-10-1) in XILINX

XC2V6000-BF957-6 (VIRTEX2)

Number of Slices: 3,601 out of 33,792 10%

Number of Flip-Flops: 2,185 out of 67,584 3%

Number of Mult18x18s: 75 out of 144 52%

Number of RAMB16s: 48 out of 144 33 %

We can evaluate a predictor method by its ability to reduce the correlation
between pixels (entropy) as well as the PSNR for the predicted image (hn).
We can observe a summary of these parameters for different topologies of the
MLP of the Adaptive Non-linear Predictor in Table 8. We obtain, with the on
line version of the Backpropagation algorithm, better results than with batch
line version and we show that the number of hidden layers (20 or 10) is not
relevant for the prediction performance. These two ideas are very important
for our hardware implementation, both in throughput and in area.

The results of the implementation of the MLP(12-10-1) are shown in Table
9 and 10. This implementation works, both in recall and learning modes, with
a throughput of 50 MHz (only possible with our pipeline version), reaching the
necessary speed for real-time training in video applications and enabling more
typical applications (wavelet transform and run-length coder) to be added to
the image compression.

11.5 Conclusions

We believe this paper contributes new data for two classic contentions.

320 FPGA Implementation of Non-Linear Predictors

Figure 11.14. Original (hn) and residue (en) images, and its histograms

Table 11.10. Design summary for MLP(12-10-1) in ALTERA

EP1S60B856C7 (STRATIX)

Number of Logic Cells: 7,362 out of 57,120 12%

Number of Flip-Flops: 2,381 out of 59,193 4%

Number of DSP blocks: 133 out of 144 92%

Number of m512s: 47 out of 574 8%

321

Firstly; for researchers who work with a specific hardware implementation
for artificial neural networks and those working with software approaches and
general purpose processors. Until now, software solutions offered the pre-
ferred method to obtain quick, flexible designs for different topologies, algo-
rithms, connectivity, activation and base functions, etc. Now, we can see that
to exploit all the degrees of parallelism and fault tolerance, we can use hard-
ware designs with several fine-grained processors without degrading flexibility,
quick design, and reusability – thanks to the combination of the reconfiguration
properties of FPGA and a design flow based on VHDL .

Secondly; until now, mask ASICs offered the preferred method for obtain-
ing large, fast, and complete neural networks for designers who implement
neural networks with full and semi-custom ASICs and those implementing
with FPGA. Now, we can exploit all the embedded resources of the new pro-
grammable ASICs (FPGA) and the enormous quantities of logic cells to obtain
useful neural networks, with real-time training on the fly, and with topologies
that were impossible to achieve just two years ago.

References

[1] S. Hauck, “The Roles of FPGAs in Reprogrammable Systems” Proceed-
ings of the IEEE, 86(4), April 1998, pp. 615-638.

[2] C.E. Cox, W.E. Blanz, “GANGLION- A fast field-programmable gate ar-
ray implementation of a connectionist classifier” Journal of Solid State
Circuits, Vol.27, no. 3, March 1992, pp. 288-299.

[3] V. Jean, B. Patrice, R. Didier, S. Mark, T. Herv«e, B. Philippe. “Program-
mable active memories: reconfigurable systems come of age”, IEEE Trans-
actions on VLSI Systems, Vol 4, No 1, March 1996, pp. 56-69.

[4] P. Lysaght, J. Stockwood, J. Law and D. Girma, “Artificial Neural Network
Implementation on a Fine Grained FPGA”. Proc of FPL 94, pp.421-432

[5] V. Salapura, M. Gschwind, and O. Maischberger, “A fast FPGA imple-
mentation of a general purpose neuron”, Proc. of the Fourth International
Workshop on Field Programmable Logic and Applications, September
1994.

[6] S.L Bade and B.L. Hutchings, “FPGA-based stochastic neural network
implementation”, IEEE Workshop on FPGAs for Custom Computing Ma-
chines, April 1994, pp. 189-198.

[7] K. Kollmann, K. Riemschneider, and H.C. Zeider, “On-chip backpropa-
gation training using parallel stochastic bit streams” Proceedings of the
IEEE International Conference on Microelectronics for Neural Networks
and Fuzzy Systems MicroNeuro’96, pp. 149-156.

References

322 FPGA Implementation of Non-Linear Predictors

[8] J.G. Elredge and B.L. Hutchings, “RRANN: A hardware implementa-
tion of the backpropagation algorithm using reconfigurable FPGAs”, IEEE
World Conference on Computational Intelligence, June 1994, pp. 77-80.

[9] J-L. Beuchat, J-O. Haenni and E. Sanchez, “Hardware reconfigurable
neural networks. Parallel and Distributed Processing, Lecture Notes in
Computer Science, Springer-Verlag, Vol. 1388, 1998, pp. 91-98.

[10] N. Izeboudjen, A. Farah, S. Titri, H. Boumeridja, “Digital implementa-
tion of artificial neural networks: from VHDL description to FPGA imple-
mentation”, Lecture Notes in Computer Science , Vol.1607, June 1999, pp.
139-148.

[11] Titri, S.; Boumeridja, H.; Lazib, D.; Izeboudjen, N. “A reuse ori-
ented design methodology for artificial neural network implementation”,
ASIC/SOC Conference, 1999. Proceedings. 1999, pp. 409 –413.

[12] R. Gadea, A. Mochol«“, “Forward-backward parallelism in on-line back-
propagation”, Lecture Notes in Computer Science , Vol. 1607, June 1999,
pp. 157-165.

[13] C.R. Rosemberg, and G. Belloch, “An implementation of network learn-
ing on the connection machine”, Connectionist Models and their Implica-
tions, D. Waltz and J Feldman, eds., Ablex, Norwood, NJ. 1988

[14] A. Petrowski, G. Dreyfus, and C. Girault, “Performance analysis of
a pipelined backpropagation parallel algorithm”, IEEE Transaction on
Neural Networks, Vol.4 , no. 6, November 1993, pp. 970-981.

[15] B. Burton, R.G. Harley, G. Diana, and J.R. Rodgerson, “Reducing the
computational demands of continually online-trained artificial neural net-
works for system identification and control of fast processes” IEEE Trans-
action on Industry Applications, Vol 34. no.3, May/June 1998, pp. 589-
596.

[16] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal rep-
resentations by error backpropagation, Parallel Distributed processing,
Vol. 1, MIT Press. Cambridge, MA, 1986, pp. 318-362.

[17] S.E. Falhman, “Faster learning variations on backpropagation: An empir-
ical study”, Proc. 1988 Connectionist Models Summer School, 1988 , pp.
38-50.

[18] P. Murtagh, A.C. Tsoi, and N. Bergmann, “ Bit-serial array implemen-
tation af a multilayer perceptron “, IEEE Proceedings-E, Vol. 140, no. 5,
1993, pp. 277-288.

[19] J. Qualy, and G. Saucier, “Fast generation of neuro-ASICs”, Proc. Int.
Neural Networks Conf, vol. 2, 1990, pp. 563-567.

323

[20] H.Hassler and N. Takagi, “Function Evaluation by Table Look-up and
Addition“, Procedings of the 12th Symposium on Computer Arithmetic,
1995, pp. 10-16.

[21] D.J. Myers, and R.A. Hutchinson, “ Efficient implementation of piece-
wise linear activation function for digital VLSI neural networks”, Elec.
Lett., vol.25, (24), 1989, pp. 1662-1663.

[22] C. Alippi, and G. Storti-Gajani, “Simple approximation of sigmoidal
functions: realistic design of digital neural networks capable of Learning”,
Proc. IEEE Int. Symp. Circuits and Syst., 1991, pp. 1505-1508.

[23] P. Murtagh, and A.C.Tsoi, “Implementation issues of sigmoid function
and its derivative for VLSI digital neural networks”, IEE Proceedings,
V.139, 1992, pp.201-214.

[24] H. Hikawa, “Improvement of the learning performance of multiplierless
multiplayer neural network”, IEEE Intenatr.l Synposium on Circuits and
Systems”,1997, pp. 641-644.

[25] Christopher, J.C., Simard, P., Malvar, H.S.: Improving Wavelet Image
Compression with Neural Networks. 2000

[26] Marusic, S., Deng, G. “A Neural Network based Adaptive Non-Linear
Lossless Predictive Coding Technique”. Signal Processing and Its Appli-
cations, 1999. ISSPA ’99.

References

Chapter 12

THE REMAP RECONFIGURABLE
ARCHITECTURE: A RETROSPECTIVE

Lars Bengtsson,1 Arne Linde,1 Tomas Nordstr-om,2 Bertil Svensson,3 and
Mikael Taveniku4

1 Chalmers University of Technology, Sweden;
2 Telecommunications Research Center Vienna (FTW), Austria;
3 Halmstad University, Sweden;
4 XCube Communication, Inc., Westford MA, USA, and G-oteborg, Sweden.

Abstract The goal of the REMAP project was to gain new knowledge about the design
and use of massively parallel computer architectures in embedded real-time sys-
tems. In order to support adaptive and learning behavior in such systems, the
efficient execution of Artificial Neural Network (ANN) algorithms on regular
processor arrays was in focus. The REMAP-β parallel computer built in the
project was designed with ANN computations as the main target application
area. This chapter gives an overview of the computational requirements found
in ANN algorithms in general and motivates the use of regular processor ar-
rays for the efficient execution of such algorithms. REMAP-β was implemented
using the FPGA circuits that were available around 1990. The architecture, fol-
lowing the SIMD principle (Single Instruction stream, Multiple Data streams),
is described, as well as the mapping of some important and representative ANN
algorithms. Implemented in FPGA, the system served as an architecture labora-
tory. Variations of the architecture are discussed, as well as scalability of fully
synchronous SIMD architectures. The design principles of a VLSI-implemented
successor of REMAP-β are described, and the paper is concluded with a discus-
sion of how the more powerful FPGA circuits of today could be used in a similar
architecture.

Keywords: Artificial neural networks, parallel architecture, SIMD, field-programmable gate
arrays (FPGA).

325

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 325–360.
© 2006 Springer. Printed in the Netherlands.

326 The REMAP reconfigurable architecture: a retrospective

12.1 Introduction

Ten years is a long time in the computer industry. Still, looking back and
with the power of hindsight, many valuable conclusions can be drawn from a
project that old. We will therefore in this chapter look back on our REMAP
research project that ran between 1989 and 1996. A major part of this project
was to implement artificial neural networks (ANN) onto a parallel and recon-
figurable architecture, which we built out of field programmable gate arrays
(FPGA).

The chapter is organized as follows. First, we make a short retrospect of the
state of art in research and industry when we started this project. Then follows
some computational considerations regarding the simulation of ANN in hard-
ware. This then forms the background to the architecture decisions made in the
REMAP project. We then present the REMAP-β reconfigurable architecture,
which is based on FPGA technology. Next we look at the implementation and
mapping of some important and popular ANN algorithms onto REMAP-β. We
present further development in the VLSI-implemented REMAP-γ architecture,
designed for scalability in both array size and clock speed. Finally, conclusions
of the project are given, including reflections on possible designs using today’s
improved technology.

12.1.1 The REMAP Research Project

The REMAP project started in 1989 as “Reconfigurable, Embedded, Mas-
sively Parallel Processor Project” but later evolved into “Real-time, Embedded,
Modular, Adaptive, Parallel processor project.” This change reflects the change
of focus in the project. The reconfigurability became less emphasized, even if
it still was there. As discussed in [13, 29, 42], we instead found modular-
ity, adaptability, and real-time operations important for this type of massively
parallel computer. It also became apparent that building several highly paral-
lel modules better fit the intended application area than building a monolithic
massively parallel computer.

The REMAP project was carried out as a joint effort between three research
departments, the Centre for Computer Systems Architecture at Halmstad Uni-
versity, the Department of Computer Science and Engineering at Lulea Univer-
sity of Technology, and the Department of Computer Engineering at Chalmers
University of Technology, all in Sweden.

The REMAP project (supported by NUTEK, the Swedish National Board
for Industrial and Technical Development), had the overall goal of gaining new
knowledge about the design and use of massively parallel computer architec-
tures in embedded real-time systems. Since adaptive (learning) behavior was
important in this context, Artificial Neural Network (ANN) algorithm execu-
tion in hardware was in focus.

Target Application Area 327

Two research architectures (the REMAP-β and the REMAP-γ1) resulted
from the project. REMAP-β was implemented using field programmable logic
(FPGAs), and REMAP-γ in semi-custom VLSI.

12.1.2 Historical Perspective

In the beginning of the REMAP project, that is, in the early 1990’s, the first
larger field-programmable gate arrays (FPGAs) started to appear. With the
arrival of Xilinx XC4005 one had 5000 gates available as soft hardware. Even
if this is minuscule compared to the devices with 8 million gates now on the
market, it enabled us to start exploring reconfigurable processor architectures.
However, the limited amount of gates also restricted us in what architectures
we could implement.

In the late 1980’s we also saw a number of massively parallel computer
architectures of SIMD type (Single Instruction stream, Multiple Data streams
[16]) appearing on the market; following the tracks of exploratory research that
showed the power of data-parallel, bit-serial processing [6, 15]. Perhaps the
most famous product was the Connection Machine [18], the most powerful su-
percomputer of the late 80’s. It was a massively parallel SIMD computer with
up to 64k (bit-serial) processors clocked at 20 MHz. At the time, it sparked
a lot of application research that explored the applicability of the SIMD com-
puter concept.

We also should keep in mind that the typical PC in 1990 was using an Intel
80386SX processor at 16 MHz (even if the first 33 MHz 486 was announced).
We note that we didn’t have any clock speed difference between on-chip and
off-chip communication as we have in most modern processors/computers. We
also note that a fully synchronous machine with tens of thousands of proces-
sors (like the Connection Machine) could be clocked with the same speed as a
single microprocessor. This is not easily achieved anymore, and this has been
a limiting factor in further development of SIMD architectures, as noted by
Bengtsson and Svensson in [11].

12.2 Target Application Area

The target application area for our REMAP project was so called action-
oriented systems [4, 5]. These systems interact in real-time with their environ-
ments by means of sophisticated sensors and actuators, often with a high de-
gree of parallelism, and are able to learn and adapt to different circumstances
and environments. These systems should be trainable in contrast to the pro-
gramming of today’s computers.

1Earlier studies and implementations, known as REMAP and REMAP-α, were performed as Master thesis
projects.

328 The REMAP reconfigurable architecture: a retrospective

Action-oriented systems were studied mainly by focusing on separate ANN
modules (algorithms) and on separate hardware modules, but all these software
and hardware modules would then be parts in the concept of a modular and
heterogeneous system.

Even ten years ago the artificial neural networks area contained many dif-
ferent algorithms. In this section we will review some of the most common
ANN algorithms, in order to be able to discuss their implementation on our
architecture. A more thorough discussion of these algorithms will follow in
Section 12.4.

Multilayer perceptron (MLP) is maybe the most known ANN algorithm.
It is a multilayer feedforward network with supervised learning typically
using a so called error back-propagation (BP) [39]. In each layer every
node (neuron) computes a weighted sum of the output of the previous
layer and then applies a non-linear function to this sum before it forwards
this activation value to the next layer. The weight update can be seen as a
generalization of Widrow-Hoff error correction rule. In [39] Rumelhart,
Hinton, and Williams give a recipe for how weights in a hidden layer
can be updated by propagating the errors backwards in a clever way.

MLPs can thereby be used as efficient non-linear pattern classifiers or
feature detectors, meaning that they can recognize and separate complex
features or patterns presented to their inputs.

Feedback networks (also referred to as recurrent networks) use a single
layer topology where all the nodes are completely interconnected. Dif-
ferent variations in node topology and node characteristics have been
proposed. For example, symmetric connectivity and stochastic nodes:
Boltzmann machines [20]; symmetric connectivity and deterministic
nodes: Hopfield nets [21–23]; and nonsymmetric connectivity and de-
terministic nodes: Recurrent back-propagation (RBP) [3, 36].

The feedback models can be used as hetero- or autoassociative memo-
ries, but also for solving optimization problems. Using an ANN as an
autoassociative memory means that whenever a portion or a distorted
version of a pattern is presented, the remainder of the pattern is filled in
or the pattern is corrected.

Self-organizing maps (SOM), also called self-organizing feature maps
(SOFM) or topological feature maps, are models developed by Kohonen
[26, 27] which learn by using competitive learning. That is, when an in-
put is presented all nodes compete and the closest (using some measure)
to the current input is declared winner. This winner and a neighborhood
around it are then updated to even better resemble the input. Thus, they
learn without specific supervision (or teaching). With these models the

Target Application Area 329

responses from the adapted nodes (i.e., their weight vectors) tend to be-
come localized. After appropriate training, the nodes specify clusters or
codebook vectors that in fact approximate the probability density func-
tions of the input vectors.

The SOM model, with its variations learning vector quantization
(LVQ1-3), is used for vector quantization, clustering, feature extraction,
or principal component analysis [27].

Sparse distributed memory (SDM), developed by Kanerva [25] may be
regarded as a special form of a two-layer feedforward network, but is
more often – and more conveniently – described as an associative mem-
ory. It is capable of storing and retrieving data at an address referred to
as a “reference address”. A major difference compared to conventional
Random Access Memories (RAMs) is that, instead of having, e.g., 32 bit
addresses, SDMs may have 1000 bit addresses. Since it is impossible to
have a memory with 21000 bits, SDMs have to be sparse. Also, data are
stored in counters instead of one-bit cells as in RAMs. Note that the ad-
dress as well as the data can be of lengths of hundreds of bits, still there
are only a small number (like thousands) of actual memory locations.
The SDM algorithm has a comparison phase, in which the sparsely dis-
tributed locations that are closest to the reference address are identified,
and an update (write) or retrieval (read) phase, in which a counter value
in each of these locations is used.

The SDM model has been used, e.g., in pattern matching and temporal
sequence encoding [24]. Rogers [38] has applied SDM to statistical pre-
dictions, and also identified SDM as an ideal ANN for massively parallel
computer implementation [37].

In Section 12.4 we will generalize and visualize the commonalities between
all the models in the latter two groups into a localized learning system (LLS)
concept introduced by Nordstr-om [32].

Given that we want to design a digital parallel computer suitable for ANN
there are still many trade-offs. The main questions are:

What form and level of execution autonomy should the processing ele-
ments (PE) have?

What is a suitable size and complexity of the PEs? How many PEs
should be available and what amount of memory should each PE have?

How should the PEs be interconnected?

330 The REMAP reconfigurable architecture: a retrospective

These questions correspond to the building blocks of a parallel computer, cf.
Figure 12.1: the control unit, the processing elements and their memory, and
the interconnection network (ICN), which will be discussed in the following
sub-sections.

Control Unit

Data Instruction Address

ICN PE Memory

Figure 12.1.

How can this (still large) design space be further reduced? The most im-
portant aspect is of course the intended application, which in our case was
action-oriented systems. That is, the architecture should be able to run a num-
ber of different ANN models well. We first start by analyzing the inherent
parallelism in these ANN computations.

12.2.1 Parallelism in ANN Computations

For implementation on a parallel computing structure, parts of the algo-
rithm that can be run in parallel must be identified. Unfolding the computa-
tions into the smallest computational primitives reveals several dimensions of
parallelism.

12.2.1.1 Unfolding the Computations.
A typical ANN algorithm has the following structure:

For each training session
For each training example in the session

For each layer (going Forward and Backward)
For all neurons (nodes) in the layer

For all synapses (weights) of the node
For all bits of the weight value

Structure of a computer using SIMD control

Target Application Area 331

This shows that there are (at least) six different ways of achieving paral-
lelism:

Training session parallelism
Training example parallelism

Layer and Forward-Backward parallelism
Node (neuron) parallelism

Weight (synapse) parallelism
Bit parallelism

12.2.1.2 Dimensions of Parallelism.
Training session parallelism means starting different training sessions on dif-
ferent PEs. Different sessions may have different starting values for the
weights, and also different learning rates.

Training example parallelism. When training a network, the number of
training examples used is usually very large, typically much larger than the
number of nodes in the network. The parallelism of the training set can be uti-
lized by mapping sets of different training examples to different PEs and have
each PE calculate the outputs for its training example(s). The weight changes
are then summed.

Training example parallelism is easy to utilize without communication over-
head. This gives an almost linear speedup with the number of PEs. However,
a corresponding reduction in training time should not be taken for granted.

Layer parallelism. In a multilayer network the computations may be
pipelined, which introduces a small amount of parallelism.

Node (neuron) parallelism. The parallel processing performed by many
nodes in each layer is perhaps the most obvious form of parallelism in an ANN.
Each node computes a weighted sum of all its inputs. This form of parallelism
corresponds to viewing the calculations as matrix operations and letting each
row of the matrix map onto one processor.

Weight (synapse) parallelism. At each input to a neuron the arriving activa-
tion value is multiplied by the weight of the specific input. This can be done
simultaneously at all inputs to the neuron. The subsequent summation of all the
products may also be parallelized using a suitable communication structure.

Bit parallelism. Utilizing the full degree of bit parallelism (i.e., treating
all bits in a data item simultaneously) is often taken for granted. However,
giving up this form of parallelism, and treating data bit-serially, increases the
opportunities for using the other forms.

332 The REMAP reconfigurable architecture: a retrospective

12.2.1.3 Degrees of Parallelism.
The typical degree of parallelism varies widely between the six different kinds,
as Table 12.1 shows.

Table 12.1. Types and ranges of parallelism in ANN

Parallelism Typical range

Training session 10 – 1 000

Training example 10 – 1 000 000

Layer and Forward-Backward 1 – 6

Node (neuron) 100 – 1 000 000

Weight (synapse) 10 – 100 000

Bit 1 – 64

The table gives an indication of what dimensions should be utilized in a
massively parallel implementation. Such an implementation is capable of
performing at least thousands of elementary computations simultaneously.
Hence an ANN implementation that is to utilize the computing resources
efficiently must utilize at least one of the following dimensions:

Training session parallelism
Training example parallelism
Node parallelism
Weight parallelism

The use of the two first-mentioned types is of interest only in batch process-
ing situations in order to train a network. In real-time applications where the
ANN is interacting with the outside world, these two forms are not available.
In those cases, node and/or weight parallelism must be chosen, maybe in com-
bination with, e.g., bit and layer parallelism.

12.2.2 Computational Considerations

The computations involved in neural network simulations show great simi-
larities from one model to another. In this section we discuss topics that are of
general interest and not specific to one single model. The reader is referred to
the survey by Nordstr-om and Svensson [31] for more details.

12.2.2.1 Basic Computations.
For feedforward and feedback network algorithms the basic computation is
a matrix-by-vector multiplication, where the matrices contain the connection
weights and the vectors contain activation values or error values. Therefore,

Target Application Area 333

an architecture for ANN computation should have processing elements with
good support for multiply, or even multiply-and-add, operations and a commu-
nication structure and memory system suitable for the access and alignment
patterns of matrix-by-vector operations.

Assuming N units per layer, the matrix-by-vector multiplication contains
N2 scalar multiplications and N computations of sums of N numbers. The
fastest possible way to do this is to perform all N2 multiplications in parallel,
which requires N2 processing elements (PEs) and unit time, and then form the
sums by using trees of adders. The addition phase requires N(N − 1) adders
and O(log N) time.

The above procedure means exploitation of both node and weight paral-
lelism. For large ANNs, this is unrealistic, depending on both the number of
PEs required and the communication problems caused. Instead, a natural ap-
proach is to basically have as many PEs as the number of neurons in a layer
(node parallelism) and storing the connection weights in matrices, one for each
layer.

Many algorithms (such as the self-organizing map) require finding the max-
imum or minimum value of a set of values. The efficiency of this operation is
strongly dependent on the communication topology, but may also depend on
the characteristics of the PEs. Later we will demonstrate how bit-serial proces-
sors offer specific advantages. After a maximum (or minimum) node is found,
its neighbors are selected and updated. The selection time will depend on the
communication topology, and the update time on the length of the training
vectors.

In algorithms with binary valued matrices and vectors (like in the sparse
distributed memory) the multiplications are replaced with exclusive-or and the
summation by a count of ones.

Thus, to be efficient for ANN computations, computers need to have support
for matrix-by-vector multiplications, maximum and minimum finding, spread-
ing of activity values, count of ones, and comparisons.

12.2.2.2 Numerical Precision.
In order to optimize utilization of the computing resources, the numerical pre-
cision and dynamic range in, e.g., the multiply-and-add operations should
be studied with care. Unfortunately, one of the most used algorithms, back-
propagation, is very sensitive to the precision and the range used. Using ordi-
nary back-propagation with low precision without modifications will lead to in-
stability and poor learning ability. There are modifications to back-propagation
which improve the situation, and, for most problems, 8 – 16 bits per weight
seems to be efficient. (See [31] for a more thorough discussion).

334 The REMAP reconfigurable architecture: a retrospective

Finally, it should be noted that there is a trade-off between using few weights
(nodes) with high precision and using many weights (nodes) with low preci-
sion.

12.2.2.3 Bit-Serial Calculations.
Many massively parallel computers have been using bit-serial PEs. For the ma-
jority of operations, processing times on these computers grow linearly with
the data length used. This may be regarded as a serious disadvantage (e.g.,
when using 32- or 64-bit floating-point numbers), or as an attractive feature
(use of low-precision data speeds up the computations accordingly). In any
case, bit-serial data paths simplify communication in massively parallel com-
puters.

In simple bit-serial processors the multiplication time grows quadratically
with the data length. However, bit-serial multiplication can be performed in
linear time the time required to read the operands (bit by bit, of course) and
store the result. The method, based on the carry-save adder technique, requires
as many full adders as the length of the operands. Further details will be given
when we present the REMAP-β implementation below.

Floating-point calculations raise special problems on bit-serial computers
based on the SIMD principle. Additions and subtractions require the exponents
to be equal before operations are performed on the mantissas. This alignment
process requires different PEs to take different actions, and this does not con-
form with the SIMD principle. The same problem appears in the normalization
procedure. However, these issues may be solved with a reasonable amount of
extra hardware, as we show later in this chapter.

Some operations benefit from the bit-serial working mode and can be im-
plemented very efficiently. Search for maximum or minimum is such an op-
eration. Assuming that one number is stored in the memory of each PE, the
search for maximum starts by examining the most significant bit of each value.
If anyone has a one, all PEs with a zero are discarded. The search goes to the
next position, and so on, until all bit positions have been treated or there is only
one candidate left. The time for this search is independent of the number of
values compared; it depends only on the data length (provided that the number
of PEs is large enough).

12.2.3 Choice of Architectural Paradigm

The survey of parallel architectures used or designed for ANN computations
by Nordstr-om and Svensson [31] drew the major conclusion that the regularity
of ANN computations suits SIMD architectures perfectly; in none of the im-
plementations studied was a division in multiple instruction streams required.
It also showed that the demands on the inter-PE communication, for the re-
quirements of ANN algorithms, could be met with surprisingly simple means

REMAP-β – design and implementation 335

The choice of SIMD architecture in the REMAP project was based on this
fact, as well as on several detailed studies of algorithm-to-array mappings (to
be reviewed later in this chapter). Arrays of bit-serial PEs can be very effi-
ciently used for ANN computations. Since multiplication is the single most
important operation in these computations, there is much to gain in the bit-
serial architecture if support for fast multiplication is added. This will be
demonstrated in the PE design for REMAP shown below.

The REMAP-β was designed and implemented as a flexible research plat-
form (completed in 1991), in which various PE architecture/ algorithm trade-
offs could be studied [9]. The architecture follows the strict SIMD model
where a Control Unit (CU) broadcasts instructions to the PE array at the lowest
(clock cycle) level.

The PEs are bit-serial and each has a substantial amount of (off-chip) mem-
ory for local storage. A typical configuration has 128 PEs running at 10 MHz,
each having 256 kbit of local memory. Each PE is connected to its neighbors
in a ring, but also to a common one-bit bus to enable easy broadcast of data to
all other PEs.

FPGAs are used to house the PEs (and a part of the I/O section), enabling
changes in the PE architecture by downloading different configuration files.

12.3 REMAP-β – design and implementation

In this section, the architecture and implementation of REMAP-β is de-
scribed, both its overall structure and its constituent parts. Following this
comes a discussion of its use as an architecture laboratory, which stems from
the fact that it is implemented using FPGA circuits. As an architecture labo-
ratory, the prototype can be used to implement and evaluate, e.g., various PE
designs. A couple of examples of PE architectures, including one with floating-
point support, are given, and programming on low level is shortly discussed.
Finally, we briefly review our work on mapping of neural network algorithms
on processor arrays of this kind and discuss possible tuning of the architecture
to meet specific processing demands.

12.3.1 Overall Structure

The logical structure of the parallel computer is shown in Figure 12.2. The
machine is a SIMD organized architecture meaning that a large number of PEs
are working in parallel with different data, but all doing the same operations
on this data. In each clock cycle it is the task of the Control Unit to broadcast
the microinstruction (PE instruction and address) to all PEs in the system.

The PEs form an array of processors which are linearly connected (with
wraparound connections to form a ring). Each PE may communicate with its
two nearest neighbors (NORTH, SOUTH). Also, broadcast is possible where

336 The REMAP reconfigurable architecture: a retrospective

one PE may send information to all PEs in the system. This feature is very
useful in neural network execution. Each PE has its own memory (256 k *
1 bit) and the mode of operation is bit-serial, meaning that each operation
(microinstruction) operates on one or two bits of data only. An array-wide
I/O interface is present which can input or output one array-wide bit-slice per
clock cycle. A second I/O interface is handled with a corner-turner section,
which transforms the byte parallel data from the outside world (i.e., the master
processor) to the bit-slice parallel world of the array.

Since the PEs are implemented in FPGAs, large parts of the machine are
reconfigurable. Configuration data is downloaded whenever the PEs need to
be reconfigured. Different configurations may thus be used for different ap-
plications and algorithms. One configuration may suit a specific algorithm
in image processing, another may suit some special neural network execution
and a third may be used for a signal processing application. Detailed research
on the perfect combination of architecture/algorithm is thus possible on this
machine.

At the top, a Master Processor controls it all. It handles not only instruction
instantiation but also FPGA configuration downloading, and data I/O. In our
implementation, a conventional microprocessor (Motorola 68000) was used for
this purpose. A link to a Host computer (Workstation or PC) enables the use
of a convenient environment for software development for the parallel array.

Instruction Address

I/O PE Memory

Master Processor

Control UnitByte I/O

Host Connection

I/O Ctrl

ICN

Figure 12.2. Overall structure of REMAP-β: Each horizontal slice represents one element
of the processor array with associated memory and I/O. An interconnection network (ICN)
connects neighboring PEs with each other. The I/O unit to the left is used for array-parallel-bit-
serial or sequential, byte-parallel I/O

REMAP-β – design and implementation 337

12.3.2 The Control Unit

The principal task of the Control Unit (CU) [8], outlined in Figure 12.3, is
to generate instructions and addresses to the processor array. The address field
(maximum 32 bits) is generated by the Address Processor and the instruction
field (maximum 32 bits) by the Controller.

The CU interfaces to the master processor through control and status regis-
ters in the controller’s sequencer and through writing into the address proces-
sor’s register file. A standard VME bus was used for this interface.

Register File

Address Register

WCS

Instruction Register Clock

MPRegWrite MPSEQStatus MPSEQControl

PEAddress PEInstruction

Sequencer

ALU

(96 bits)

(32 bits)(64 bits)

(32 bits)

(32 bits)

(16 bits)(32 bits)(32 bits)

Address Processor Controller

Figure 12.3. The control unit (CU) with the address processor to the left and the controller to

The controller was implemented using a conventional microprogrammed
architecture. The microprogram execution was controlled by means of an
AM29C331 sequencer chip. This chip can be thought of as an advanced pro-
gram counter, including features like a stack for subroutine calls, a counter
register for looping, and a breakpoint register. The principal output of this chip
is a 16-bit address, addressing the microprogram memory.

The microprogram memory (the Writable Control Store - WCS) was an 8k
deep and 96 bits wide, static RAM. The WCS output was stored in a pipeline-
register, holding the current microinstruction while the next one was being cal-
culated. Out of these 96 bits in the pipeline-register, 64 bits were controlling
the control unit itself and 32 bits were used as the PE array instruction. Mi-
croprograms could be downloaded from the master processor under complete
software control.

the right

338 The REMAP reconfigurable architecture: a retrospective

The address processor was composed of three major parts – the Register
File, the ALU, and the Address Register. The register file contained 64 regis-
ters with 32 bits each, constructed from two AM29C334 chips. There were
two read-ports and two write-ports available for register access. The two read
register values were sent to the ALU while the ALU output value could be
written back through one of the write ports. The second write port was actu-
ally shared with the master processor (MP) interface in such a way that the MP
could write into this register file. This facilitated parameter passing between
the MP and the CU.

The ALU was implemented using the AM29C332 chip, capable of full 32-
bit arithmetic and logical operations. The address register was holding the
current address while the address processor was calculating the next.

Using this control unit design it was possible to generate a new microin-
struction every 100 nanoseconds. An important feature of this address proces-
sor was its ability to do a read-modify-write operation in one clock cycle. This
was especially important for the over-all performance, given that the PEs work
bit-serially.

12.3.3 The Processor Array Board

The Processor Array executes the microinstructions generated by the Con-
trol Unit. One microinstruction is executed every clock cycle. Seen from the
PE, the microinstruction consists of a number of control signals used to set the
data-paths in the PEs, memory and I/O-modules. These data-paths determine
the function to be performed. The functions available are simple one-bit opera-
tions, thus making the PEs small and fast. As mentioned earlier, several studies
have shown that this type of PE is well suited for high-speed signal processing
and neural network algorithms. Support for fast bit-serial multiplication is well
motivated, and it is described later how this is implemented.

Figure 12.4 shows one board (of four) of the REMAP-β prototype. This
prototype was mainly built with FPGA chips (Xilinx XC4005 and XC3020)
and memory. Depending on the configuration downloaded to the FPGAs the
number of PEs varies. However, implementing 32 PEs (i.e., 8 in each XC4005
chip) was the intended major use of the resources.

To each of the FPGAs hosting the PEs (i.e., the XC4005s) we connected
8 pieces of 256 kbit static RAM. Each memory was connected with one read
and one write bus. These two (one-bit) buses were also connected to the PE
neighbors as an ICN and to the data transposer for I/O. In total there were 32
pieces of 256 kbit static RAM on each board.

The data transposer (Corner Turner, CT) was used to convert byte-wide data
from the Master Processor, or other devices requiring byte-wide data, to the

REMAP-β – design and implementation 339

Master Interface CU Interface

CT
(XC3020)

CT
(XC3020)

CT
(XC3020)

CT
(XC3020)

PE
(XC4005)

PE
(XC4005)

PE
(XC4005)

PE
(XC4005)

Address ControlControl Status Data

RAM 256k x 1
(8 pieces)

RAM 256k x 1
(8 pieces)

RAM 256k x 1
(8 pieces)

RAM 256k x 1
(8 pieces)

Figure 12.4.

array-wide parallel format. Being reconfigurable, it could, of course, also be
programmed to perform other tasks.

The 32-bit instruction sent from the CU was divided into 26 PE-control
signals and 6 I/O-control signals. The master interface was primarily used for
data transfers between the master computer and the PEs, but also for loading
the configuration to the FPGAs.

The module has two built-in inter-PE communication paths, nearest neigh-
bor and broadcast communication (broadcast not shown in the figure). The
nearest neighbor communication network was implemented so that each PE
can read its neighbors’ memories, i.e., PE(n) can read from PE(n + 1) and
PE(n − 1) (the first and the last PEs are considered neighbors). At any time,
one of the PEs can broadcast a value to all other PEs or to the CU. The CU can
also broadcast to or read from the PEs. It also has the ability to check if any
of the PEs are active. (To disable a processing element is a common technique
used in SIMD processing in order to enable data dependent operations). If sev-
eral PEs are active at the same time and the CU wants one PE only to broadcast,
the CU simply does a select first operation, which selects the first active PE and
disables the rest. These communication and arbitration operations can be used
to efficiently perform matrix, search and test operations, which are the core
functions of many application areas, especially Artificial Neural Networks.

To be useful in real-time applications, where interaction with a constantly
changing environment is crucial, the processor array needs a powerful I/O-
system. To meet these demands, the processor array was equipped with two
I/O-channels, one for 8-bit wide communication and the other for array-wide
data. The byte-wide interface can run at speeds up to 80 MHz, with a maximum
transfer rate of 80 Mbyte/s. The array-wide interface follows the clock rate of
the PE array, i.e. 10 MHz, implying a maximal transfer rate of 156 Mbyte/s.

Chip level view of a single REMAP-β processor board. 32 PEs assumed

340 The REMAP reconfigurable architecture: a retrospective

12.3.4 An Architecture Laboratory

The PEs – reconfigurable through the use of FPGA technology – have a
fixed hardware surrounding, which consists of the Control Unit interface, the
Master Processor interface, the byte-parallel and array-parallel I/O interfaces,
and the external memory interface, which also can connect to an external inter-
connection network. The primary use of the Corner Turner (CT) was to com-
municate with devices requiring 8-bit wide data, such as the Master Processor.
The CU interface provides 32 control signals, of which 26 are used for PE
control. As the computer modules are primarily designed for bit-serial PEs,
arranged as a one-dimensional array, the boards can be split into 32 equal parts
(one of which is shown in Figure 12.5), consisting of a data-transposer, mem-
ory and a processing element.

CT slice

Address

Broadcast

Memory 256k x 1

8 bits from
previous
CT slice

PE

To next
CT slice

To South
neighbor PE

To North
neighbor PE

26 control
signals

From
neighbor

From
neighbor

External
I/O or Memory

B

MemWR

MemRD

N

S

Figure 12.5. One processing element with its I/O, memory, and a slice of the corner turner

12.3.4.1 Designing with Xilinx XC4005 FPGA Circuits.
The PEs were housed in Xilinx XC4005 FPGA circuits, which are based on
SRAM technology. This enables fast reprogramming as well as high den-
sity and speed. The XC4005 chip, the internal structure of which is shown
in Figure 12.6, consists of a number of combinatorial logic blocks (CLB),
input-output blocks (IOB) and an interconnection network (ICN), all user pro-
grammable. The configuration was loaded from an off-chip memory or from a
microprocessor. In the REMAP computer, programming/reprogramming was
done from the Master Processor. The programming sequence takes about 400
ms, thus enabling the Master Processor to dynamically change the architecture
of the PEs during the execution of programs (“soft hardware”).

The XC4005 circuit has a 14 by 14 matrix of configurable logic blocks
(CLBs), giving an approximate usable gate count of 5000 logic gates. One

(CT)

REMAP-β – design and implementation 341

Switching

I/O Block

CLB

matrix

Grid of general inter-
connect metal segments

Figure 12.6. Xilinx FPGA overview. The I/O Blocks connect the I/O-pads to the internal in-
terconnection network (ICN). These blocks can be configured as input, output or bidirectional
blocks. The CLBs are configurable logic blocks consisting of two 16-bit (and one 8-bit) “look-
up table” for logic functions and two flip-flops for state storage. These blocks are only con-
nected to the ICN. The ICN connects the different blocks in the chip, it consist of four kinds of
connections: short-range connections between neighboring blocks, medium-range connections
connecting blocks on slightly larger distances, long-lines connecting whole rows and columns
together, and global nets for clock and reset signals that are broadcast throughout the whole

PE of the kind shown in Figure 12.7 occupies 21 CLBs, which makes it possi-
ble to implement 8 PEs in each Xilinx chip.

We note that, with current FPGA technology (year 2003), it would be pos-
sible to implement on the order of a thousand bit-serial PEs in one chip. It is
not immediately clear if the best use of the added resources would be to imple-
ment more PEs of the same kind or to make the PEs more powerful. In both
cases, while the internal PE-to-PE communication between neighbors should
be quite easily solved inside the FPGA circuits, the chip I/O would present a
major challenge. This will be further discussed in the end of this chapter.

12.3.4.2 Using FPGAs to Build Computers.
One of the findings in our implementation work was that, in order to use the
FPGA circuits efficiently and get high performance, the signal flow is crucial
[28]. Unfortunately, the Xilinx EDA software did not support this at the time
of implementation (1991-1992), and the signal flow design had to be made
by hand. The need to permanently assign the I/O pins to memory and CU
further restricted the reconfigurability. Thus, even if the processing elements
were simple and regular, which made it fairly easy to implement them with
the XACT editor, the possibility to reconfigure was not used to the extent that

chip

342 The REMAP reconfigurable architecture: a retrospective

was anticipated when the project started. On the other hand, the implemented
PE design fulfills the requirements for most ANN models, and thus the need to
change the PEs was actually limited. The design method also gave the PEs high
performance, with clock rates up to 40-50 MHz. These issues were discussed
by Taveniku and Linde in [43].

The positive side of using FPGAs is that they allow you to think of the
computer as “modeling clay” and you feel free to really change the architecture
towards the application and not the other way around. With today’s better and
more evolved tools, this kind of technology also has the potential to allow
architectural variations to be tested and evaluated on real applications.

Our detailed studies of artificial neural network computations resulted in a
proposal for a PE that is well suited for this application area. The design is
depicted in Figure 12.7. Important features are the bit-serial multiplier and the
broadcast connection. Notably, no other inter-PE connections than broadcast
and nearest neighbor are needed. The PE is quite general purpose (and the
hypothesis is that this is also a useful PE in several other application areas). In
this version, the PE consists of four flip-flops (R, C, T, and X), eight multiplex-
ers, some logic and a multiplication unit. The units get their control signals
directly from the microinstruction word sent from the control unit. The multi-
plication unit may be considered a separate device that can be substituted for
something else (e.g. a counter) when it is advantageous.

1

0
1

N
S

MemRD

T Control

X
Broadcast

Some

SomeIn SelOut

B

M
U
X

C

X

T

R

≥ 1

≥ 1

C
Add
0
1

Multiplier

And
Or
Xor
Add
IN
IN

&

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

Ri

Ri
MemWR

Out

M
U
X

≥ 1

Figure 12.7. The sample PE: The ALU has inputs from memory input (MemRD), the previous
result (Ri), communication network (North, South, Broadcast) as well as the constants 0 and 1.

In a simple bit serial PE without support for multiplication, the multiplica-
tion time grows with the square of the operand size. This is a major drawback
in multiplication-intensive computations, such as many ANN algorithms. In
our design, we included hardware that makes the time of bit-serial multiplica-

The SomeIn, Some and SelOut creates a chain used in global comparison operations

REMAP-β – design and implementation 343

tion grow linearly with the data length. This means that multiplication is as
fast as addition. It simply takes the time it takes to read the operands and store
the result (bit-serially). The design, developed in the LUCAS project [15, 35]
and based on carry-save addition techniques, is shown in Figure 12.8. In the
Xilinx implementation the multiplier (8-bit) takes up about 50% of the PE.

Out

C

S

M

FA

C

&
S

M

FA

C

&
S

M

FA

C

&
S

M

FA

C

&

M

FA

S

In

C

&
S

M

FA

C

&
S

M

FA

C

&
S

M

FA

&

Figure 12.8. Design of a two’s-complement bit-serial multiplier. It is operated by first shifting
in the multiplicand, most significant bit first, into the array of M flip-flops. The bits of the
multiplier are then successively applied to the input, least significant bit first. The product bits

As shown by Nordstr-om [29], the incorporation of a counter instead of a
multiplier in the PE design may pay off well when implementing the Sparse
Distributed Memory (SDM) neural network model. In a variation of the PE
design we have therefore exchanged the multiplier with a counter, which takes
up about the same space in the FPGA.

12.3.4.3 A PE Design With Floating-Point Support.
Some low-level operations may require different actions to take place in dif-
ferent PEs, a fact that conflicts with the SIMD principle. Floating-point calcu-
lations belong to this category of operations. The processes of alignment and
normalization are data dependent, because the different mantissas may need to
be shifted a different number of steps at different places.

Adding shift registers to each PE provides the PE with some autonomy in the
addressing [1, 2]. Thus we overcome the rigidity in the addressing capability
of the SIMD model. The shift registers are still controlled by microinstruc-
tions broadcasted by the central control unit, but a local condition in each PE
determines whether these instructions should be performed, or not.

A floating-point support unit, based on the addition of shift registers, is
shown in Figure 12.9. It supports addition, subtraction and multiplication
operations, as well as (with additional connections not shown in the figure)
multiply-and-add. In addition to the units described above for addition, sub-
traction and multiplication, it contains three bi-directional shift registers. Two
of these hold the mantissas, which are to be shifted for alignment, and the third
register is used for holding the mantissa in the normalization stage. An

appear at the output with least significant bit first

344 The REMAP reconfigurable architecture: a retrospective

ponent comparator generates local conditions for the shift registers in order to
control the alignment operations. (The local condition for the normalization
operation is generated directly by one of the shift registers). The exponent
comparator also calculates the resulting exponent.

From Memory To Memory

Shift Register 3

Normalization Control

Shift Register 1

Shift Register 2

Arithmetic Unit

Multiplier

Alignment Control

Exponent
Comparator

Resulting
Exponent

Figure 12.9.

The combination of a bit-serial multiplier and a set of shift registers yields a
very powerful bit-serial arithmetic unit for floating-point operations. The mul-
tiplier is capable of multiplying two numbers as fast as they can be delivered
from and stored to memory. The shift register based units are able to perform

12.3.4.4 Programming.
With the “floating” environment resulting from our very flexible micropro-
gramming concept used for the CU, and the reconfigurability for the PE ar-
chitecture, it became difficult to handle programming. It was decided that two
programming levels should be defined, one at the microinstruction level, the
other at a “C - Assembly” level.

For the microinstruction level we specified and implemented a micropro-
gram assembler (MASS) [7], designed to be adaptable to changes in the under-
lying architecture. An instruction in MASS is one microinstruction word; this
word can be (from MASS point of view) of arbitrary length, divided into any
number of fields, each field defining one or more bits of the microinstruction
word. As the PE hardware is modifiable, it is essential that as much of the
software as possible can be translated from one PE implementation to another.
Therefore, MASS allows the user to define fields and the bits assigned to them
in an arbitrary fashion.

In MASS we then could write small microprograms implementing array
instructions such as ADD FIELDS, MULTIPLY FIELD WITH CONSTANT,
and COMPARE FIELDS. Also, specially tuned algorithms were written

alignment and normalization “on the fly” in pipelined operations

ex

Floating-point support for PE

REMAP-β – design and implementation 345

rectly in microcode like MATRIX MULT and CALC DIST (from the SDM
algorithm).

Then such array instructions/routines were called from the “C - Assembly”
level. This level, executing on the master processor, was implemented as an or-
dinary C program, where function calls to array instructions were made avail-
able. A function call here means that the master processor instructs the CU
to start executing at a point in the WCS where the microprogram subroutine
resides. MASS, or more correct, the MASS linker, automatically generated
the needed .c and .h files to make the connection between the MASS and the
“C - Assembly” level. Before running a “C - Assembly” program the mas-
ter processor needed to download the assembled MASS instructions into the
WCS.

An example MASS program, which adds two fields and places the result in
the first, is shown below.

OpParAddS2_1L: /* Micro procedure OpParAdd2_1L definition */
DECRA (R0);
LOOP (R2), PE_C = ZERO, LOADB_AR (R1); // Loop R2 times

PE_LOAD (R,MEM), INCRA (R0); // Mem(R1) -> Rreg
PE_ADDC (MEM), LOADB_AR (R0); // Rreg+Mem(R0)->Rreg

// Carry -> Creg
PE_STORE (R), INCRA (R1), // Rreg -> Mem(R0)

END_LOOP ();

An example “C - Assembly” program is shown below. It adds all the
columns of the matrix arg2 and places the result (which is a vector) in arg1.
The arguments arg1 and arg2 are pointers to parallel variables in the array.

/* Example add a number of vectors and place them in arg1 */
/* *arg1,*arg2 are pointers to parallel variables */
/* 16 is the length of integer (it could be of any length)*/
void SumVect (PARINT *arg1,PARINT *arg2,unsigned len)
{ int count;
OP_PAR_CLEAR1_1L(arg1,16); // set arg1 to all zeroes
for(count=0; count < len; count++){
OP_PAR_ADD2_1L(arg1,arg2[count],16);

}
}

di

346 The REMAP reconfigurable architecture: a retrospective

12.4 Neural networks mapped on REMAP-β

In the survey by Nordstr-om and Svensson [31] we identified the most com-
monly used ANN algorithms and the parallel computer architectures that had
been used to implement them. The computational and communication needs
were analyzed for the basic ANN models. The different dimensions of paral-
lelism in ANN computing were identified (as described earlier), and the possi-
bilities for mapping onto the structures of different parallel architectures were
analyzed.

We were mainly focusing our research on how various ANN modules (al-
gorithms) could be implemented on separate hardware modules, but all these
software and hardware modules would then be parts in our vision of an action-
oriented, modular, and heterogeneous system.

The concept of localized learning systems (LLSs), introduced by Nord-
str-om [33, 34, 32], makes it possible to combine many commonly used ANN
models into a single “superclass.” The LLS model is a feedforward network
using an expanded representation with more nodes in the hidden layer than
in the input or output layers. The main characteristics of the model are lo-
cal activity and localized learning in active nodes. Some of the well known
ANN models that are contained in LLS are generalized radial basis functions
(GRBF), self-organizing maps (SOM) and learning vector quantization (LVQ),
restricted Coulomb energy (RCE), probabilistic neural network, sparse distrib-
uted memory (SDM), and cerebellar model arithmetic computer (CMAC). The
connection between these models as variations of the LLS model was demon-
strated. Two of the LLS models were studied in greater detail (SDM and SOM)
[34, 32]. Furthermore, in [17] and [41] the mapping of two well known ANNs
not contained in the LLS class, the multilayer perceptron (MLP) with error
back-propagation and the Hopfield network, were studied. Thus, our studies
cover the mapping of both feedforward and feedback neural nets onto parallel
architectures. The characteristics of these models and system implementation
aspects are summarized below.

These results were then used to restrict the hardware design space (finding
what extensions to the basic concept that was needed).

12.4.1 Localized Learning Systems (LLS)

In this section we briefly summarize the main aspects of the LLS model. A
more complete description can be found in [32]. As mentioned in the previous
section the LLS is a feedforward ANN forming an expanded representation
(the largest number of nodes are in the hidden layer). The feed-forward phase
can be visualized as in Figure 12.10a. In Figure 12.10b the data flow and data
organization of the feedforward phase are shown.

Neural networks mapped on REMAP-β 347

24 -6 62 1

97
115
78
102
112

128
109

1
1
0
1
4

0
0

0
0
-2
0
1

1
-3

1
3
1
1
0

0
0

0
-1
0
5
1

1
0

1
0
1
1
0

0
1

Output

Distance ActivationCompare

Calculate node output

Weighted

1
1
0
1
4

0
0

0
0
-2
0
1

1
-3

1
3
1
1
0

0
0

0
-1
0
5
1

1
0

0
1
-3
0
1

2
0

2
1
0
0
-1

1
0

1 0 1 1 0 1
Input

sum of
nodes

•

a) b)

input

output

hidden
layer

y

x

•
•

∑
∑ cij wij

Figure 12.10. The LLS model is a feedforward neural network model with localized activity
at the hidden nodes. b) The data flow and data organization of the LLS model (feedforward

The main characteristics of the model are the local activity (only a subset
of nodes are active at the same time in the hidden layer), and the localized
learning (only active nodes are updated). We are mainly interested in variations
that allow training to take place after each new training data, that is, the LLS
is used in an on-line fashion.

The feedforward phase for LLS with M nodes and multiple outputs can be
written as:

Fj(xp, Θ) =
∑
i∈A

wijϕ(ri), (12.1)

where ϕ(ri) is the ith node output, A = A(xp) = { i | ϕ(ri(xp)) > α }
is the set of active nodes, α is a preset threshold, xp is the input, and wij

is the weight connecting node i with output j. The node output (ϕ(ri)) will
depend on the distance measurement used to calculate the distance ri to some
centers (templates) ci, the size and form of the receptive field Si, and type of
kernel function ϕ. One general form of distance measure ri can be defined as
r2
i = (xp−cp)Si(xp−cp) = ‖xp − cp‖S , where Si is a d×d positive definite

matrix. This measure is also called the Mahalanobis distance. However, the
more specialized cases with Si = diag[si, . . . , sd]i, Si = siI , or Si = I are
the commonly used receptive fields LLSs. A more complete discussion on
various receptive fields can be found in [33].

Training (if used) of the free parameters Θ = {wi, ci, Si}M
i=1, can be done

in many ways; one common way is to use a gradient descent method as de-
scribed in [33]; another common way to update the kernel centers is to use
competitive learning (CL) which we will describe in the self-organizing map
(SOM) section below.

phase)

348 The REMAP reconfigurable architecture: a retrospective

The characteristics of an LLS model can then be completely described by
nine features as shown below:

Feature: Variants
Input type: Real, Integer, Boolean
Distance measure: L1 (cityblock), L2 (Euclidean), L∞, Dot product, Hamming

distance
Type of receptive field: 1, sI , siI , diag[sj], diag[sj]i, Sij , Hierarchical, Sam-

ple/Hash
Kernel function: Radial, Threshold logic unit, Min/Max, exp
Initiation of ci: Random, Uniform, Subset of data, All data
Update method of c: Fixed, Gradient, Competitive learning (CL), CL+Topology,

Incremental addition, Genetic Algorithm
Update method of w: Pseudo-inverse, Gradient, Occurrence (Hebb)
Update method of S: Fixed, Gradient, RCE
Output type: Real, Integer, Boolean

Two of the LLS variations were studied in more detail through implemen-
tation on the REMAP-β. They were the Sparse Distributed Memory and the
Kohonen’s Self-Organizing (Feature) Map, described in more detail below.

12.4.1.1 Sparse Distributed Memory.
Sparse Distributed Memory (SDM) [25] is a neural network model which is
usually described as a memory. Instead of having (e.g.) 32-bit addresses as
an ordinary RAM, an SDM may have as large addresses as 1000 bits. Since
it is impossible to have 21000 memory locations, an SDM must be sparsely
populated. The key property of this memory is that data is stored not in one
position but in many.

Using our LLS characterization we can identify SDM as the following LLS
variation:

LLS feature: SDM and some SDM variations (in italic)

Input type: Boolean

Distance measure: Hamming distance, L∞
Type of receptive field: sI , siI , diag[sj], Sample/Hash

Kernel function: Threshold logic unit

Initiation of ci: Random, Subset of data, All data

Update method of c: Fixed, Competitive learning, Genetic Algorithm

Update method of w: Occurrence (Hebb)

Update method of S: Fixed

Output type: Boolean

Neural networks mapped on REMAP-β 349

The algorithm for training the network (i.e., writing to the memory) is as
follows (cf. Figure 12.11):

1 The location addresses are compared to the address register and the dis-
tances are calculated.

2 The distances are compared to a threshold and those below are selected.

3 In all the selected rows, if the data register is “1” the counter is incre-
mented, and if the data register is “0” the counter is decremented.

The corresponding algorithm for reading from the memory is:

1 The location addresses are compared to the address register and the dis-
tances are calculated.

2 The distances are compared to a threshold and those below are selected.

3 The values of the up-down counters from the selected rows are added to-
gether column-wise. If the sum is below “0” a zero is returned, otherwise
a “1”.

24

1011....011
0101....111
0110....101
0111....011
1101....101

•••
•••

0111....111
1011....010

97
115
78
102
112
•
•

128
105

1
1
0
1
4
•
•
0
0

0
0
-2
0
1
•
•
1
-3

1
3
1
1
0
•
•
0
0

0
-1
0
5
1
•
•
1
0

0
1
-3
0
1
•
•
2
0

2
1
0
0
-1
•
•
1
0

•
•
•

•
•
•

•
•

•
•

1
0
1
1
0
•
•
0
1

1011....011

Location
Addresses

Data-out register

Sums

Up-down
counters

Compare

Select

Store

Retrieve

1 0 1 1 0 1• •
Data-in registerAddress register

1 0 1 1 0 1• •
62 1 7-52-6

Dist Sel

Figure 12.11. Sparse Distributed Memory. Note that even when the address is hundreds of bit,

Thus, the SDM model requires a number of distance calculations, compar-
isons, and summations of vectors. Nordstr-om [29] shows extremely efficient
mappings of these computations on the REMAP-β architecture. He uses a
“mixed mapping”, meaning that, during the comparison phase, each PE com-
putes the distance from “its” location address to the reference address and
compares to the threshold value, but, during the update (or readout) phase,

there are only a small number of memory locations, some hundreds of thousands or so

350 The REMAP reconfigurable architecture: a retrospective

the computation is “turned 90 degrees” so that all counters corresponding to a
certain row are updated simultaneously, one in each PE.

Due to this efficient mapping a 128 PE REMAP-β with counters in the PEs
is found to run SDM at speeds 5–15 times that of an 8k PE Connection Ma-
chine CM-2 [18, 19] (same clock frequency assumed). Already without coun-
ters (then the PEs become extremely simple) a 128 PE REMAP outperforms
a 32 times larger CM-2 by a factor of between 2 and 5. Even if this speed-up
for REMAP can be partly explained by the more advanced control unit, the
possibility to tune the PEs for this application is equally important.

12.4.1.2 Self-Organizing Maps.
Self organizing maps (SOM), also called self organizing feature maps (SOFM)
or topological feature maps, are competitive learning models developed by Ko-
honen [26, 27]. For these models a competition finds the node (kernel centers
c in the LLS terminology) that most resembles the input. The training then
updates the winning node and a set of nodes that are (topologically) close to
the winner.

In a refined form (rival penalized competitive learning (RPCL) [44], only
the node closest to the input (node k) is moved towards the input, while the
second best node (the runner up) r is moved away. To involve all nodes, the
distances are weighted with the number of inputs assigned to a certain node.
We can note that the active set A, in this case, only contains two nodes (k and
r) and is determined in a slightly modified way compared to the original SOM.

Using our LLS characterization we can identify SOM as the following LLS
variation:

LLS feature: SOM (and CL) variation

Input type: Real

Distance measure: Dot product

Type of receptive field: siI

Kernel function: Threshold logic unit

Initiation of ci: Subset of data

Update method of c: Competitive learning + Topology

Update method of w: Gradient

Update method of S: Fixed

Output type: Real

In [32] Nordstr-om describes different ways to implement SOM on parallel
computers. The SOM algorithm requires an input vector to be distributed to
all nodes and compared to the weight vectors stored there. This is efficiently
implemented by broadcast and simple PE designs. The subsequent search for
minimum is extremely efficient on bit-serial processor arrays. Determining
the neighborhood for the final update part can again be done by broadcast and

Neural networks mapped on REMAP-β 351

distance calculations. Thus, for SOM and CL, it was found that broadcast is
sufficient as the means of communication. Node parallelism is, again, simple
to utilize. Efficiency measures of more than 80% are obtained (defined as the
number of operations per second divided by the maximum number of opera-
tions per second available on the computer).

12.4.2 Multilayer Perceptron

Multilayer perceptron (MLP) is the most commonly used ANN algorithm
that does not fall into the LLS class. This is actually a feedforward algorithm
using error backpropagation for updating the weights [39, 40]. (Therefore this
ANN model is commonly referred to as a back propagation network.)

The nodes of the network are arranged in several layers, as shown in Fig-
ure 12.12. In the first phase of the algorithm the input to the network is pro-
vided (O0 = I) and values propagate forward through the network to compute
the output vector O. The neurons compute weighted sums netj =

∑
j wl

jio
l−1
i ,

which are passed through a non-linear function ol
j = f(netj + bj) before leav-

ing each neuron.

Hidden Nodes

n

m

Input Nodes Hidden Nodes Output Nodes

w2
mn

Layer 1 Layer 3
(Hidden)
Layer 2

Figure 12.12.

The output vector of the network is then compared with a target vector, T ,
which is provided by a teacher, resulting in an error vector, E = T − O. This
part of the computation is easily mapped on the array using node parallelism
and either broadcast or ring communication.

In the training phase the values of the error vector are propagated back
through the network. The error signals for hidden units are thereby deter-
mined recursively: Error values for layer l are determined from a weighted
sum of the errors of the next layer, l + 1, again using the connection weights

A three-layer feedforward network

352 The REMAP reconfigurable architecture: a retrospective

– now ”backwards”. The weighted sum is multiplied by the derivative of the
activation function to give the error value,

δl
j = ol

j

(
1 − ol

j

) ∑
i

δl+1
i wl+1

ij .

Here we have used the fact that we can use a sigmoid function f(x) = 1/(1 +
exp(−x)) as the non-linear function which has the convenient derivative f ′ =
f(1 − f).

This back-propagation phase is more complicated to implement on a paral-
lel computer architecture than it might appear at first sight. The reason is that,
when the error signal is propagated backwards in the net, an “all-PE sum” must
be calculated. Two solutions are possible on the REMAP-β architecture: one is
based on an adder tree implemented in the corner turner (CT) FPGAs (used in
combination with broadcast), while the other one uses nearest-neighbor com-
munication in a ring and lets the partial sum shift amongst all PEs. Both meth-
ods give about the same performance [41].

Now, finally, appropriate changes of weights and thresholds can be made.
The weight change in the connection to unit i in layer l from unit j in layer
l − 1 is proportional to the product of the output value, oj , in layer l, and the
error value, δi, in layer l − 1. The bias (or threshold) value may be seen as the
weight from a unit that is always on and can be learned in the same way. That
is: ∆wl

ij = ηδl
io

l−1
j ,

∆bl
i = ηδl

i.

The REMAP architecture with an array of 128 PEs can run training at
14 MCUPS (Million Connection Updates Per Second) or do recall (forward
phase) at 32 MCPS (Million Connections Per Second), using 8-bit data and a
clock frequency of 10 MHz.

12.4.3 Feedback Networks

In addition to the feedforward ANN algorithms there are also algorithms
using feedback networks. (Hopfield nets, Boltzmann machines, recurrent nets,
etc). As reported in [17] and [41] we found that a simple PE array with broad-
cast or ring communication may be used efficiently also for feedback networks.

A feedback network consists of a single set of N nodes that are completely
interconnected, see Figure 12.13. All nodes serve as both input and output
nodes. Each node computes a weighted sum of all its inputs: netj =

∑
i wjioi.

Then it applies a nonlinear activation function to the sum, resulting in an ac-
tivation value – or output – of the node. This value is treated as input to the
network in the next time step. When the net has converged, i.e., when the out-

REMAP- γ architecture 353

put no longer changes, the pattern on the output of the nodes is the network
response.

This network may reverberate without settling down to a stable output.
Sometimes this oscillation is desired, but otherwise the oscillation must be
suppressed.

Input and Output

Figure 12.13.

Training or learning can be done in supervised mode with the delta rule [40]
or back-propagation [3], or it can be done unsupervised by a Hebbian rule [40].
It is also used “without” learning, where the weights are fixed at start to a value
dependent on the application.

The MCPS performance is, of course, the same as a for one-layer feed-
forward phase of the back-propagation algorithm above. Thus an array of 128
PEs runs recall (forward phase) at 32 MCPS (Million Connections Per Second)
using 8-bit data at 10 MHz.

12.5 REMAP- γ architecture

During the design of the REMAP-β machine, a number of important obser-
vations were made regarding the SIMD architecture. One of these is the speed
bottleneck encountered in the broadcasting of data values on the common data
broadcast bus. Several 10 MHz clock cycles must be used when transmitting
data on this bus. Other observations include the latency in address generation
and distribution, the latency in the control signal broadcast network, and the
importance of clock skew – all these are factors that contribute to the limitation
in clock frequency. These observations led us to examine fundamental clock
speed bottlenecks in a SIMD architecture (see Bengtsson’s analysis in [12]).
It was found that the SIMD concept suffered from two major bottlenecks: the
signal delay in the common data broadcast bus, and the global synchronism
required. Both these get worse as the array size increases (in other words, it

A seven-node feedback network

354 The REMAP reconfigurable architecture: a retrospective

shows bad scalability). In addition, Bengtsson found that shrinking the chip
geometries in fact emphasizes these speed bottlenecks.

To overcome the discovered limitations a hierarchical organization of the
control path was proposed. Two levels of control was suggested: one global
CU for the whole array and one local CU per PE. The REMAP-γ design (aimed
for VLSI implementation) was started in order to thoroughly analyze the feasi-
bility and performance of such a solution. REMAP-γ was a 2D array (in which
each PE was connected to its four neighbors) designed using a semi-custom
design style with VHDL synthesis at the front end and VLSI place&route of
standard cells at the back-end.

The hierarchical organization of the control path offered the possibility of
using only nearest-neighbor PE-to-PE communication, even for broadcasts. A
broadcast was implemented as a pipelined flow of bits, transmitted using the
nearest-neighbor links. With only nearest-neighbor connections, and no array-
wide broadcasts, array size scalability regarding clock speed was maintained.

Also, the possibility of abandoning the rigid synchronous SIMD style, with
a single global clock, was investigated. Instead, local PE clocks, synchronized
to their immediate neighbors, were used, making it possible to solve the clock
skew problems, independently of the array size [11].

In addition, a new type of SIMD instruction was introduced, namely the
pipelined array instructions, examples of which are the row and column
multiply-and-accumulate (i.e., RMAC and CMAC) instructions. These work
similar to the pipelined broadcast instruction, but during the flow of bits be-
tween the PEs, local products are added to the bit flow as it passes through
each PE, creating a sum-of-products across each row (RMAC) or column
(CMAC). Other instructions belonging to this category were RMIN/RMAX
and RMIN/CMIN, which searched and found the maximum and minimum val-
ues across the PE rows and columns, respectively. This instruction type was
found to be very useful when executing ANN algorithms. (Bengtsson’s thesis
[10] gives a more thorough description of this).

12.6 Discussion

Even if the REMAP-β implementation reached impressive performance for
some algorithms, also when compared to some of the fastest computers of
its time, the main goal of the REMAP project was not to build a machine
that achieved as high performance as possible for some specific applications.
Rather, we wanted to explore the design space for massively parallel archi-
tectures in order to find solutions that could offer modularity, scalability and
adaptability to serve the area of action-oriented, real-time systems. The ar-
chitecture was designed to take benefit from the common principles of several
ANN algorithms, without limiting the necessary flexibility. In addition to this

Discussion 355

algorithm – generality tradeoff, there is always a technology tradeoff, which,
as technology develops, influences the position of the optimal point in the de-
sign space. Therefore, after our retrospective on the REMAP project, a natural
question is: How would we have done it if we started today?

Most of our observations on how to efficiently map ANNs onto highly paral-
lel computers are still valid. From the point of view of mapping the algorithms
efficiently, there is no reason to abandon the SIMD paradigm. However, as
noted in the previous section, the inherent total synchronism of the SIMD par-
adigm creates problems when increasing the clock frequency. Keeping the
array size limited and instead increasing the performance of each individual
PE seems to be one way to handle this. The techniques described by Bengts-
son [10] (such as hierarchical control and pipelined execution) would also, to
some extent, alleviate these issues and allow implementation of large, high-
speed, maybe somewhat more specialized, arrays.

The design challenge is a matter of finding the right balance between bit
and node parallelism in order to reach the best overall performance and gen-
eral applicability to the chosen domain, given the implementation constraints.
Of course, when implementing the array in an FPGA, the tradeoff can be dy-
namically changed – although the necessary restrictions in terms of a perhaps
fixed hardware surrounding must be kept in mind.

One effect of the industry following Moore’s law during the last decade is
that we today can use FPGAs with up to 8 million gates, hundreds of em-
bedded multipliers, and one or more processor cores. We have also seen the
speed difference between logic and memory growing larger and so has also
the mismatch between on-chip and off-chip communication speeds. However,
for FPGA designs, DRAM and FPGA clock-speeds are reasonably in parity
with each other. An FPGA design can be clocked at around 200 MHz, while
memory access time is in the 10 ns range with data rates in the 400/800 MHz
range.

A 1000 times increase in FPGA size compared to the Xilinx XC4005 used
in the REMAP-β, enables a slightly different approach to PE design. Instead of
implementing, let’s say, 4000 bit-serial processing elements, a more powerful
processing element can be chosen. In this way, the size of the array imple-
mented on one chip will be kept at a reasonable level (e.g., 128). Similarly, the
processor clock speed could be kept in the range of external memory speed,
which today would be somewhere around 200–400 MHz. In the same way, the
latency effects of long communication paths and pipelining can be kept in a
reasonable range.

In addition, when implemented today, the control unit can very well be im-
plemented in the same FPGA circuit as the PEs. The block-RAM in a modern
FPGA can hold the micro-code. Furthermore, to keep up with the speed of the
PEs, the address generation unit could be designed using a fast adder structure.

356 The REMAP reconfigurable architecture: a retrospective

An hierarchical control structure with one global unit and local PE control units
(as in the REMAP-γ project), can be used to cope with control signal distrib-
ution latencies and the delay in the data broadcast bus. However, this scheme
imposes extra area overhead (about 20% extra in PE size was experienced in
the REMAP-γ design), so here is a tradeoff between speed and area that must
be considered in the actual design. An alternative solution, with less area over-
head, is to use a tree of pipeline registers to distribute control signals and use
no local PE control. However, the issue with a slow common data broadcast
bus would remain. Selecting the most suitable control structure is dependent
on both technology (speed of internal FPGA devices, single FPGA or multiple
connected FPGAs etc) and array size.

There is a tradeoff between ease of use and efficiency when mapping al-
gorithms onto the array, and this will influence the optimal processor array
size. For most of the ANN algorithms studied in the REMAP project, an array
size in the 100’s of nodes is acceptable, much larger array sizes makes map-
ping algorithms harder, and edge effects when ANN sizes grow over array size
boundaries become increasingly costly. Once more, this implies that it seems
to be advantageous to increase the complexity of the PE to keep clock fre-
quency moderate (to cope with control signal generation, memory speed, and
synchronization) and network sizes in the low hundreds (to deal with commu-
nication latency issues).

We see a similar tradeoff between general applicability and SIMD array size
in modern general purpose and DSP processors, for example the PowerPC with
Altivec from Motorola/IBM and the Pentium 4 processors from Intel. In these,
the SIMD units are chosen to be 128 bits wide, with the option to work on
8, 16, 32, or 64 bit data. The size is chosen so that it maximizes the general
usability of the unit, but still gives a significant performance increase. For the
next generation processors the trend seems to be to increase the number of
SIMD (as well as other) units instead of making them wider. This has to do
with (among other reasons) the difficulty with data alignment of operands in
memory.

Finally, it should be noted that, with hundreds of times more processing
power in one chip, we also need hundreds of times more input/output capac-
ity. While the REMAP-β implementation in no way pushed the limits of I/O
capacity in the FPGA chips, an implementation of a similar architecture today
definitely would. Here the high-speed links present in modern FPGAs proba-
bly would be an important part of the solution to inter-chip as well as external
I/O communication. The available ratio between I/O and processing capacity
in the FPGA circuits will, of course, also influence the choice of interconnec-
tion structure in the SIMD array.

357

12.7 Conclusions

In this chapter we have summarized an early effort to efficiently perform
ANN computations on highly parallel computing structures, implemented in
FPGA. The computational model and basic architecture were chosen based on
a thorough analysis of the computational characteristics of ANN algorithms.
The computer built in the project used a regular array of bit-serial processors
and was implemented using the FPGA circuits that were available around 1990.
In our continued research, also briefly described in this chapter, we have devel-
oped ways to increase the scalability of the approach - in terms of clock speed
as well as size. This issue is, of course, very important, considering that several
VLSI generations have passed during these years. The techniques described
can be applied also to FPGA implementations using today’s technology. In the
discussion towards the end of this chapter we discuss the implications of the
last decade’s technology development. We also outline some general guide-
lines that we would have followed if the design had been made today (as well
as the new problems we then would encounter).

Acknowledgments

The work summarized in this chapter was partially financed by NUTEK,
the Swedish National Board for Industrial and Technical Development. We
also acknowledge the support from the departments hosting the research, as
well as our present employers who have made resources available to complete
this retrospective work. Among the master students and research engineers
that also were involved in the project, we would like to particularly mention
Anders Ahlander for his study and design of bit-serial floating-point arithmetic
units as well as his contributions to the implementation and programming of
the machine.

References

[1] Ahlander, A. “Floating point calculations on bit-serial SIMD computers:
problems, evaluations and suggestions.” (Masters Thesis), University of
Lund, Sweden, 1991. (in Swedish)

[2] Ahlander, A. and B. Svensson, “Floating point calculations in bit-serial
SIMD computers,” Research Report, Centre for Computer Architecture,
Halmstad University, 1992.

[3] Almeida, L. D., “Backpropagation in perceptrons with feedback” In
NATO ASI Series: Neural Computers, Neuss, Federal Republic of Ger-
many, 1987.

[4] Arbib, M. A., Metaphorical Brain 2: An Introduction to Schema Theory
and Neural Networks, Wiley-Interscience, 1989.

References

358 The REMAP reconfigurable architecture: a retrospective

[5] Arbib, M. A., “Schemas and neural network for sixth generation com-
puting,” Journal of Parallel and Distributed Computing, vol. 6, no. 2, pp.
185-216, 1989.

[6] Batcher, K.E., “Bit-serial parallel processing systems”, IEEE Trans.
Computers, Vol. C-31, pp. 377-384, 1982.

[7] Bengtsson, L., “MASS - A low-level Microprogram ASSembler, specifi-
cation”, Report CCA9103, Centre for Computer Systems Architecture -
Halmstad, Oct. 1991.

[8] Bengtsson, L., “A control unit for bit-serial SIMD processor arrays”, Re-
port CCA9102, Centre for Computer Systems Architecture - Halmstad,
Oct. 1991.

[9] Bengtsson, L., A. Linde, B. Svensson, M. Taveniku and A. Ahlander,
“The REMAP massively parallel computer platform for neural computa-
tions,” Proceedings of the Third International Conference on Microelec-
tronics for Neural Networks (MicroNeuro ’93), Edinburgh, Scotland, UK,
pp. 47-62, 1993.

[10] Bengtsson L., “A Scalable SIMD VLSI-Architecture with Hierarchical
Control”, PhD dissertation, Dept. of Computer Engineering, Chalmers
Univ. of Technology, G-oteborg, Sweden, 1997.

[11] Bengtsson L., and B. Svensson, “A globally asynchronous, locally syn-
chronous SIMD processor”, Proceedings of MPCS’98: Third Interna-
tional Conference on Massively Parallel Computing Systems, Colorado
Springs, Colorado, USA, April 2-5, 1998.

[12] Bengtsson L., “Clock speed limitations and timing in a radar signal
processing architecture”, Proceedings of SIP’99: IASTED International
Conference on Signal and Image Processing, Nassau, Bahamas, Oct
1999.

[13] Davis, E. W., T. Nordstr-om and B. Svensson, “Issues and applications
driving research in non-conforming massively parallel processors,” in
Proceedings of the New Frontiers, a Workshop of Future Direction of
Massively Parallel Processing, Scherson Ed., McLean, Virginia, pp. 68-
78, 1992.

[14] Fahlman, S. E. “An Empirical Study of Learning Speed in Back-
Propagation Networks.” (Report No. CMU-CS-88-162), Carnegie Mel-
lon, 1988.

[15] Fernstr-om, C., I. Kruzela and B. Svensson. LUCAS Associative Array
Processor - Design, Programming and Application Studies. Vol. 216 of
Lecture Notes in Computer Science. Springer Verlag. Berlin. 1986.

[16] Flynn, M. J., “Some computer organizations and their effectiveness,”
IEEE Transactions on Computers, vol. C-21, pp. 948-60, 1972.

359

[17] Gustafsson, E., A mapping of a feedback neural network onto a SIMD
architecture, Research Report CDv-8901, Centre for Computer Science,
Halmstad University, May 1989.

[18] Hillis, W. D., The Connection Machine, MIT Press, 1985.
[19] Hillis, W. D. and G. L. J. Steel, “Data parallel algorithms,” Communica-

tions of the ACM, vol. 29, no. 12, pp. 1170-1183, 1986.
[20] Hinton, G. E. and T. J. Sejnowski. “Learning and relearning in Boltz-

mann machines.” Parallel Distributed Processing; Explorations in the
Microstructure of Cognition Vol. 2: Psychological and Biological Mod-
els. Rumelhart and McClelland ed. MIT Press, 1986.

[21] Hopfield, J. J., “Neural networks and physical systems with emergent
collective computational abilities”. Proceedings of the National Academy
of Science USA. 79: pp. 2554-2558, 1982.

[22] Hopfield, J. J. “Neurons with graded response have collective compu-
tational properties like those of two-state neurons”. Proceedings of the
National Academy of Science USA. 81: pp. 3088-3092, 1984.

[23] Hopfield, J. J. and D. Tank. “Computing with neural circuits: A model.”
Science. Vol. 233: pp. 624- 633, 1986.

[24] Kanerva, P. “Adjusting to variations in tempo in sequence recognition.”
In Neural Networks Supplement: INNS Abstracts, Vol. 1, pp. 106, 1988.

[25] Kanerva P., Sparse Distributed Memory, MIT press, 1988.
[26] Kohonen, T. Self-Organization and Associative Memory. (2nd ed.)

Springer-Verlag. Berlin. 1988.
[27] Kohonen, T., The self-organizing map, Proceedings of the IEEE. Vol. 78,

No. 9. pp. 1464-1480, 1990.
[28] Linde, A., T. Nordstr-om and M. Taveniku, “Using FPGAs to imple-

ment a reconfigurable highly parallel computer,” Field-Programmable
Gate Array: Architectures and Tools for Rapid Prototyping; Selected pa-
pers from: Second International Workshop on Field-Programmable Logic
and Applications (FPL’92), Vienna, Austria, Gr-unbacher and Hartenstein
Eds. New York: Springer-Verlag, pp. 199-210, 1992.

[29] Nilsson, K., B. Svensson and P.-A. Wiberg, “A modular, massively paral-
lel computer architecture for trainable real-time control systems,” Control
Engineering Practice, vol. 1, no. 4, pp. 655-661, 1993.

[30] Nordstr-om, T., “Sparse distributed memory simulation on REMAP3,”
Res. Rep. TULEA 1991:16, Lulea University of Technology, Sweden,
1991.

[31] Nordstr-om, T. and B. Svensson, “Using and designing massively parallel
computers for artificial neural networks,” Journal of Parallel and Distrib-
uted Computing, vol. 14, no. 3, pp. 260-285, 1992.

References

360 The REMAP reconfigurable architecture: a retrospective

[32] Nordstr-om, T., “Highly Parallel Computers for Artificial Neural Net-
works,” Ph.D. Thesis. 1995:162 D, Lulea University of Technology, Swe-
den, 1995.

[33] Nordstr-om, T., “On-line localized learning systems, part I - model de-
scription,” Res. Rep. TULEA 1995:01, Lulea University of Technology,
Sweden, 1995.

[34] Nordstr-om, T., “On-line localized learning systems, part II - parallel com-
puter implementation,” Res. Rep. TULEA 1995:02, Lulea University of
Technology, Sweden, 1995.

[35] Ohlsson, L., “An improved LUCAS architecture for signal processing,”
Tech. Rep., Dept. of Computer Engineering, University of Lund, 1984.

[36] Pineda, F. J. “Generalization of back-propagation to recurrent neural net-
works.” Physical Review Letters. Vol. 59(19): pp. 2229-2232, 1987.

[37] Rogers, D. “Kanerva’s sparse distributed memory: an associative memory
algorithm well-suited to the Connection Machine.” (Technical Report No.
88.32), RIACS, NASA Ames Research Center, 1988.

[38] Rogers, D. “Statistical prediction with Kanerva’s sparse distributed mem-
ory.” In Neural Information Processing Systems 1, pp. 586-593, Denver,
CO, 1988.

[39] Rumelhart, D. E. and J. L. McClelland. Parallel Distributed Processing;
Explorations in the Microstructure of Cognition. Vol. I and II, MIT Press,
1986.

[40] Rumelhart, D. E. and J. L. McClelland., Explorations in Parallel Distrib-
uted Processing, MIT Press, 1988.

[41] Svensson, B. and T. Nordstr-om, “Execution of neural network algorithms
on an array of bit-serial processors,” Proceedings of 10th International
Conference on Pattern Recognition, Computer Architectures for Vision
and Pattern Recognition, Atlantic City, New Jersey, USA, vol. II, pp.
501-505, 1990.

[42] Svensson, B., T. Nordstr-om, K. Nilsson and P.-A. Wiberg, “Towards mod-
ular, massively parallel neural computers,” Connectionism in a Broad
Perspective: Selected Papers from the Swedish Conference on Connec-
tionism - 1992, L. F. Niklasson and M. B. Bod«en, Eds. Ellis Horwood,
pp. 213-226, 1994.

[43] Taveniku, M. and A. Linde, “A Reconfigurable SIMD Computer for Ar-
tificial Neural Networks,” Licentiate Thesis 189L, Department of Com-
puter Engineering, Chalmers University of Technology, Sweden, 1995.

[44] Xu, L., A. Krzyzak and E. Oja, “Rival penalized competitive learning for
clustering analysis, RBF net, and curve detection,” IEEE Transactions on
Neural Networks, vol. 4, no. 4, pp. 636-649, 1993.

	0.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf

