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    Chapter 1   
 Introduction 

          Abstract     This book which describes the Best Practices for successful FPGA 
design is the result of meetings with hundreds of customers on the challenges facing 
each of their FPGA design teams. By gaining an understanding into their design 
environments, processes, what works, what does not work, I have been able to iden-
tify the areas of concern in implementing System designs. More importantly, it has 
enabled me to document a recommended methodology that provides guidance in 
applying a best practices design methodology to overcome the challenges.           

  This book which describes the Best Practices for successful FPGA design is the 
result of meetings with hundreds of customers on the challenges facing each of their 
FPGA design teams. By gaining an understanding into their design environments, 
processes, what works, what does not work, I have been able to identify the areas of 
concern in implementing System designs. More importantly, it has enabled me to 
document a recommended methodology that provides guidance in applying a best 
practices design methodology to overcome the challenges. 

 This material has a strong focus on design teams that are across sites. The goal being 
to increase the productivity of FPGA design teams by establishing a common methodol-
ogy across design teams; enabling the exchange of design blocks across teams. 

 Best Practices establishes a roadmap to predictability for implementing system 
designs in a FPGA. 

 The three steps to predictable results are:

    1.    Proper project planning and scoping.   
   2.    Choosing the right FPGA device to ensure that the right technology is available 

for today’s and tomorrows projects.   
   3.    Following the best practices for FPGA design development in order to shorten 

the design cycle and to ensure that your designs are complete on schedule and 
that the design blocks can be re-used on future projects with minimal effort.     

 All three elements need work together smoothly to guarantee a successful FPGA 
design Fig     1.1 .  
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 The choice of vendor should be a long-term partnership between the Companies. 
By sharing roadmaps and jointly managing existing projects, you can ensure that 
not only is the current project a success but provide the right solutions on time for 
future projects. A process of fi ne tuning based on experience working together to 
guarantee success on projects. 

 These two topics are touched upon briefl y in the Best Practices for Successful 
FPGA Design methodology. 

 The third topic is the FPGA design methodology. 
 This is the main focus of the best practices methodology. This covers the complete 

FPGA design fl ow from the basics to advanced techniques. This methodology is 
FPGA vendor independent in that the topics and recommendations are good 
practices that apply to the design of any FPGAs. While most of the material is 
generic, it does contain references to features in the Altera design tools that rein-
force the recommended best practices. 

 The diagram that is shown in Fig.  1.2  shows the outline of the best practices 
design methodology.  

Key Elements to Successful FPGA Design

Predictability
& Reliability

Program
Management

FPGA Design
Methodology Vendor

Choice
&
Partnership

Device Selection

IP Reuse

Team Based Design
Environment

Predictable Timing
Closure

Optimized verification
environment

Time to production

Si foundry partner

Technology roadmaps

Component roadmaps

Software roadmaps

IP roadmaps

Early Access to Advanced
Tools

Project requirements and objectives

WBS & schedule

Resources & costs

Risk assessment & management

Change control

Project execution

  Fig. 1.1    Three Steps to Successful FPGA design       
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 Each of the blocks in the diagram is represented by chapters in this book, with an 
additional chapter on power. Power is its own chapter as it spans many of the other 
areas of the design methodology. The topics of Board Layout, RTL Design, IP 
Reuse, Functional Verifi cation and Timing Closure tend to be the areas where design 
teams have different design methodologies and engineers need guidance on achiev-
ing consistent results and shortening the design cycle. 

 Many of the challenges that are faced in FPGA design are not unique to FPGA 
design but are common challenges in design. FPGA devices themselves do provide 
unique challenges and opportunities compared to ASIC designs. The increase in 
capability of FPGA devices has resulted in much more complex designs targeting 
FPGAs and a natural migration of ASIC designers to FPGA design. This has resulted 
in many design teams migrating ASIC design principles to FPGA designs. In gen-
eral, this has been a benefi t to the FPGA design fl ow; however it needs to be balanced 
with the benefi ts that FPGAs bring to the design fl ow. The programmable nature of 
FPGAs opens the door to performing more verifi cation in-system. When used 
correctly, this can greatly speed-up the verifi cation cycle, however when abused it 
can lengthen the design cycle. The confi gurable nature of I/Os provides challenges 
that do not exist in ASIC design. The tools that are used from the EDA industry are 
also different for FPGAs than for ASICs, in both functionality and cost. 

 This book will help you adopt the best design methodology to meet your 
requirements. 

 While it is recommended that you read the book in its entirety, you can also focus 
on the individual chapters of the book that target the areas of the design fl ow that is 
causing the biggest challenge to your design team.    

Recommended Design Methodology

SpecificationProject
Management

Resource Scoping

Design Environment
Infrastructure

IPRTL

Functional
Verification

Timing

In-System Debug

Design Sign-off

Board Design SW
Development

  Fig. 1.2    Recommended best practices design methodology for successful FPGA design       
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    Chapter 2   
 Project Management 

          Abstract     The scope of project management is to deliver the right features, on-time 
and within budget. As such there are three dimensions:           

2.1      The Role of Project Management 

 The scope of project management is to deliver the right features, on-time and within 
budget. As such there are three dimensions:

    1.    Features   
   2.    Development time   
   3.    Resources     

 The project manager needs to fi nd the right balance of these three dimensions to 
meet the goals of the project. 

 There are numerous books and training classes on project management. This 
chapter provides a brief overview of the elements of project management. It is rec-
ommended that you attend formal project management training. 

2.1.1     Project Management Phases 

 Every project can be broken into three project management phases.

    1.    The planning phase. This is establishing the feature list, creating the project plan 
and establishing the resource pools and budget.   

   2.    The tracking phase. This involves holding monthly feature reviews, weekly plan 
updates, reviewing the budget and staffi ng levels and reviewing any Engineering 
Change Orders.   

   3.    The wrap-up Phase. This involves project retrospectives, data mining and process 
improvement review and action plan.      
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2.1.2     Estimating a Project Duration 

 Estimating the overall project delivery target is best done with the following steps.

    1.    Select one of the latest major successfully completed projects.   
   2.    Create a macro model. This involves identifying the major project phases for 

specifi cation, designing and verifi cation. Extract the exact duration of the phases 
and any overlap.   

   3.    Set the overall process improvement target. An example would be stating that 
I want to implement a project of similar complexity 10 % faster.   

   4.    Defi ne project complexity metrics such as design characteristics and resource 
utilization. Design characteristics can include the number of pages of specifi cation, 
the number of FPGA resources, the number of lines of RTL, Speed, technical 
complexity.   

   5.    Derive the derating factor k.   
   6.    Scale the upcoming project by the derating factor.   
   7.    Evaluate the project with good judgment and make the appropriate adjustments.      

2.1.3     Schedule 

 The project schedule should be updated regularly. It is recommended that it is 
updated at least once a week. 

 Any schedule update meetings should be kept brief and should only focus on 
collecting the status information. This includes information on whether a task has 
started, is an activity complete, how long will a task take to complete, and any user 
task information that determines the level of completeness of a task. 

 The update meetings should also be used to estimate when a task is expected to 
be complete. The project manager must respect the duration estimates from the 
resources performing a task but should question any estimates that appear to be 
wildly wrong. 

2.1.3.1     Weekly Schedule Analysis 

 The project manager needs to rigorously analyze the project schedule on a weekly 
basis. There are ten main tasks involved in this process.

    1.    Analyzing and scrutinizing the critical paths.   
   2.    Reviewing the planned tasks for the coming week.   
   3.    Discussing and agreeing on the task priorities with the rest of the review team.   
   4.    Identifying a plan to accelerate the critical path.   
   5.    Identifying other at risk paths that are just behind the critical path.   
   6.    Checking the load on the resources assigned to the critical path.   

2 Project Management
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   7.    Confi rming the availability of resources with the managers.   
   8.    Determining the part of the project plan that needs more work.   
   9.    Capturing action items.   
   10.    Performing task refi nements.     

 It is critical that    the project manager does not get fooled by the percentage 
complete. It is a non-linear function and is not useful in estimating the remaining 
task duration Fig  2.1 .   

2.1.3.2     Pro-active Project Management 

 It requires an extreme degree of pro-active behavior to deliver a project on time. 
Be sure to dedicate enough management bandwidth to the project. 

 Due to the dynamic circumstances, it requires constant management attention 
with weekly rigorous project schedule updates. 

 The complexity of the project require the right tools to facilitate the decision 
making process. The identifi cation and management of the critical path simplifi es 
the priority setting.      

  Fig. 2.1    Percentage 
complete dilemma       

 

2.1 The Role of Project Management
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    Chapter 3   
 Design Specifi cation 

          Abstract     Having a complete and detailed specifi cation early in a project will 
 prevent false starts and reduce the likelihood of Engineering Change Orders (ECOs) 
late in the project. Late changes to the design specifi cation can dramatically increase 
the cost of a project both in terms of the project schedule and the cost of the 
FPGA. The latter occurring as signifi cant changes may result in the need for a larger 
FPGA device.           

3.1      Design Specifi cation: Communication Is Key to Success 

 Having a complete and detailed specifi cation early in a project will prevent false 
starts and reduce the likelihood of Engineering Change Orders (ECOs) late in the 
project. Late changes to the design specifi cation can dramatically increase the cost of 
a project both in terms of the project schedule and the cost of the FPGA. The latter 
occurring as signifi cant changes may result in the need for a larger FPGA device. 

 The purpose of a specifi cation is to accurately and clearly communicate 
information. 

 Another way of saying this is that specifi cations are a means to convey informa-
tion between teams/people. Without a thorough specifi cation, which has been 
approved by all impacted parties, a project is prone to delays and late changes in the 
requirements; all of which lead to longer project cycles and higher project cost. 
A key point in this statement is ‘agreed upon specifi cation’. This implies that a 
process is in place for the review of the specifi cation. 

 A fully agreed upon specifi cation ensures alignment between the different teams 
working on the project. This ensures that the delivered product conforms to the 
functional specifi cations and meets the customer requirements. This in turn facili-
tates accurate estimation of development cost, resource and project schedule. 
A solid specifi cation enables consistent project tracking, which will ultimately pro-
duce a high quality product release. The specifi cation also serves as a reference for 
the creation of documentation and collateral to be delivered with, or to support 
the product. All specifi cations should clearly identify changes that have been made 
to the specifi cation. In addition, the specifi cation should be stored under version 
control software. 

 Specifi cations are required at different stages of the FPGA design from defi nition 
through the development process. 
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3.1.1     High Level Functional Specifi cation 

 The high level functional specifi cation is created and owned by the systems engi-
neering team. This document describes the basic functionality of the FPGA design 
including the required interaction with the software interface and the interfaces 
between the FPGA and other devices on the board. This document should be offi -
cially reviewed with the FPGA design team Manager and the Software engineering 
manager. After the review, the document should be updated to refl ect the recom-
mend changes and to answer any of the issues raised during the review process. 
This process is iterative until all issues have been resolved and the FPGA design 
team understands and agrees upon the requirements. 

 One of the challenges in creating the high level functional specification is 
successfully describing the functionality in understandable English. Let’s be honest 
here; most Engineers are strong in mathematics and science but will never be the 
next John Steinbeck. 

 Executable specifi cations help resolve this issue. Executable specifi cations are 
abstract models of the system that describe the functionality of the end system. It is 
essentially a virtual prototype of the system. Most executable specifi cations are 
created in one of the fl avors of ‘C’ (C, C++, SystemC). These languages are good for 
modeling the desired functionality but do not cover key features such as timing, power 
and size of design. These need to be covered in an accompanying high level specifi ca-
tion to the executable specifi cation. The virtual prototype at this stage is the system 
model and the testbench which is part of the executable specifi cation. This executable 
specifi cation can be used throughout the development process to check that the 
detailed implementation is meeting the requirements of the executable specifi cation. 
The use of SystemC, etc. as a means for providing the specifi cation for the design 
provides the advantage that the specifi cation can be derived from the modeling trade-
offs that occur during the architectural exploration. This is described in more detail in 
Chap.   4     on system modeling. 

 Not all Companies are using executable specifi cations as part of the FPGA 
design process, but its use is becoming more common as more complex systems are 
being implemented in FPGA devices.  

3.1.2     Functional Design Specifi cation 

 The team that is creating the FPGA design should create a detailed design specifi cation 
that represents the needs of the high level functional specifi cation. The owner of this 
specifi cation is the FPGA engineering team. This specifi cation should be reviewed 
and approved by the FPGA design team, their management and with representation 
from the systems engineering and software engineering teams. This should fi nalize 
the specifi cation for the functionality of the FPGA design and detail the interfaces 
with the rest of the system including software. 

3 Design Specifi cation
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 It is critical to agree upon the details of the interfaces to the FPGA with the 
appropriate development teams that will use these interfaces. 

 Take for example, the H/W to S/W interface for a design where an A/D converter 
feeds the FPGA. The FPGA in turn feeds data to a microprocessor. The FPGA require-
ments specifi cation must cover the interface to the A/D and be designed to avoid any 
functional failures, even under corner case conditions. Failure to do so can result in 
functional failures not showing up until testing the design in system. Board tests could 
show the FPGA passing junk data to the S/W interfaces. The S/W engineers will likely 
not know how to interpret or debug this issue. This can result in extended board test 
time and under worst case scenario a redesign of either the software and/or the FPGA 
design; ultimately this will result in a delay to the schedule. 

3.1.2.1     Functional Specifi cation Outline 

 In this section, we will detail the minimum set of requirements that need to be 
included in the functional specifi cation.

    1.    Revision History. 
 A sample revision control page is shown in Fig.  3.1 . This includes the date of the 
changes, the author of the changes and the approval of the changes.    

   2.    Review Minutes. 
 This should include details on all review meetings on the specifi cation. The min-
utes should include the meeting date and location, attendees, minutes and the 
action items that need to be resolved to gain approval of the specifi cation.   

   3.    Table of Contents   
   4.    Feature overview. 

 The feature overview should provide context of the system in which the feature 
will be provided. If the feature is a subsystem in the end FPGA system design, 
this should section should describe where it fi ts in the overall system and its 
purpose, i.e. the problem it solves. The feature overview should also include a 
high level overview of its required functionality.   

   5.    Source references. 
 This section should describe the driver of the feature request, e.g. High Level 
Functional Specifi cation, Software Interface Functional Requirements, etc.   

   6.    Glossary. 
 The glossary should describe any industry standard terms and acronyms that are 
used in the document. More importantly, it should also do this for any internal 
Company terminology used in the document. It is amazing how much time is 
wasted and confusion caused due to the use of internal Company terminology. 
Many new employees or employees from other groups are often embarrassed to 
admit that they do not understand the ‘code’ words in review meetings, resulting 
in confusion, delays in decision and often the stifl ing of creativity.   

   7.    Detailed Feature Description. 
 This is really the meat of the document. This section should include descriptions of 
any of the algorithms used, details on the architecture of the design and the inter-
face with other parts of the design or system.   

3.1 Design Specifi cation: Communication Is Key to Success
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   8.    Test Plan. 
 The document should refer to the test plan, or at a minimum state the need for a 
test plan and be updated when the test plan exists.   

   9.    References. 
 In this section the document should refer to all supporting documents that should 
be read to understand the functional specifi cation.     

 Following the creation of the detailed FPGA design specifi cation, the engineering 
team will create a number of specifi cations for internal review within the engineering 
department. These include the Functional Test Plan and QA Test Plan. Each engineer 
that is assigned to the project will create an engineering plan and functional test plan 
for the portion of the design that they will be implementing. This should be reviewed 
within engineering against the overall functional plan. This ensures that it meets the 
overall requirements of the FPGA design.  

3.1.2.2     Test Specifi cation Outline 

     1.    Revision History. 
 A sample revision control page is shown in Fig.  3.1 . This includes the date of the 
changes, the author of the changes and the approval of the changes.   

Version Author Date Changes
0.9 psimpson 4-26-09 Initial revision

1.0 psimpson 5-11-09 Added timing details to CODEC

1.1 aclarke 5-30-09 Modified register map based upon review with SW
Engineering on May 28, 2009.

1.2 jjones 6-3-09 Adding a section to describe the interface to host processor.

1.3 psimpson 6-9-09 Updated host processor interface after second review with
SW Engineering on June 4.

  Fig. 3.1    Sample revision control page       

   2.    Review Minutes. 
 This should include details on all review meetings on the specifi cation. The min-
utes should include the meeting date and location, attendees, minutes and the 
action items that need to be resolved to gain approval of the specifi cation.   

   3.    Table of Contents   
   4.    Scope. 

 This will provide an overview of what specifi c features this test plan will cover. 
If test coverage overlaps with the testing of any subsystems, it should detail what 
will be covered in this test plan and refer to the other test plans.   

   5.    Test requirements. 
 This should detail any special hardware, software, EDA tools that are required to 
complete the testing. As part of this it should include any special set-up 
requirements.   

 

3 Design Specifi cation
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   6.    Test Strategy. 
 This includes the pass/failure criteria. 

 Do the test results require cross-verifi cation with any other sub-systems. 
 Will existing tests be re-used or modifi ed to meet the needs of this test plan. 
 Will the tests be automated and if so, how will the tests be automated. 
 How will the tests be run. An example of this would be an automated regtest 

that is run each night, or manual testing to verify that the graphics appear 
correctly on the screen when run on a development board.   

   7.    Automation plan. 
 It is desirable to automate as much of the testing as possible. This section will 
describe how to automate the test.   

   8.    Running the tests. 
 What is the expected runtime of the tests. If the test is not automated, what is the 
expected time for the tests to be performed manually.   

   9.    Test Documentation. 
 This section should include descriptions of the test cases. As standard practice, the 
test infrastructure should be set-up to isolate each test. Thus each test case should 
have its own test directory. The documentation should detail how to access the 
results from the regression tests database. This assumes that a regression tests 
system has been established. Not establishing such a system is setting a project 
up for failure as it will be incredibly diffi cult to monitor the quality of the 
product. 

 The test documentation should also cover test procedures for the cases where 
sub- tests cannot be automated. Under this scenario, it is necessary to document 
how to manually test the sub-feature.     

 As work begins on the development of the FPGA design, there should be regular 
design and verifi cation reviews as part of the engineering process to ensure that 
there are no changes to the plan. These reviews will provide a forum to communi-
cate any changes that may be needed to work around implementation issues and to 
clear up any areas of ambiguity in the specifi cations. As a result of these meetings, 
the specifi cations should be updated and reviewed. If the recommended changes 
will impact the high level functional specifi cation or any of the interfaces with the 
FPGA, there should be formal reviews with the relevant personnel to reach closure 
on the changes. 

 In summary, the main purpose of a specifi cation is to communicate information 
between teams such that the design meets the requirements and can be adequately 
staffed to deliver on the requirements in the specifi ed timeframe. 

 The requirements for the functional specifi cation and test specifi cation will be 
driven by your Company’s policy on standards compliance, e.g. ISO 9001 
 compliance. This book does not discuss the details on ISO 9001 compliance. A detailed 
description of the ISO 9001 standard is available from   www.iso.org    . 
 Recommended further reading: 

 Writing Better Requirements by Ian Alexander.      

3.1 Design Specifi cation: Communication Is Key to Success
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    Chapter 4   
 System Modeling 

          Abstract     The techniques that are used to perform system modeling vary from 
complex Excel spreadsheets to the use of system modeling tools and languages. The 
languages that are most commonly used include C/C++ to create an executable 
specifi cation with fast runtime, Lisa, UML, SystemC and Matlab. The languages 
that are most widely used in the modeling of FPGA system designs are C/C+, 
SystemC and Matlab.           

  The techniques that are used to perform system modeling vary from complex Excel 
spreadsheets to the use of system modeling tools and languages. The languages that 
are most commonly used include C/C++ to create an executable specifi cation with 
fast runtime, Lisa, UML, SystemC and Matlab. The languages that are most widely 
used in the modeling of FPGA system designs are C/C+, SystemC and Matlab. 

 Modeling is used by all designers. At the most basic level customers perform 
RTL simulation to verify the functionality of their RTL design at a modular level 
and of the full design. At the time of writing, there are a growing number of users 
that are using advanced system modeling techniques in the FPGA system design 
process. This varies from full system modeling using ‘C’ models or the Mathworks 
MATLAB language, to advanced system modeling of key parts of the design, 
such as the processor subsystem in order to develop software drivers and port an 
operating system such as Linux. This chapter explains where the different classes of 
models can be used throughout the system design process. 

 Matlab has a strong adoption for the modeling of DSP designs. This is partly due 
to the modeling environment that is offered by Mathworks being well tuned for DSP 
type applications or systems. An example of this is radar applications. It is also 
partly due to their being a direct path from the models to FPGA implementation via 
the Simulink modeling libraries and Mathworks themselves offering a MATLAB to 
HDL path. 

 C/C++ is a common method for modeling of software applications. However, it 
comes up short for architects that need to model the hardware aspect of system 
design. C/C++ does not have a concept of time. Hardware designs are inherently 
concurrent but C/C++ has no standard way of expressing concurrency. It also does 
not have a way of expressing hardware data types such as tri-states. So while C/C++ 
is good for modeling software systems it cannot provide the level of modeling 
required for hardware designs or mixed hardware and software system designs. 
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 SystemC was designed to solve the problem of modeling mixed hardware and 
software system designs, while offering the advantages that are offered by C/C++. 
This is described in more detail in Sect.  4.2 , ‘What is SystemC?’ 

 Since the standardization of SystemC, there has been an increase in SystemC 
modeling by FPGA system designers. With this, there has also been an increase 
in tool offerings in the EDA market that support SystemC. Based upon this, this 
chapter will focus mainly on SystemC modeling of FPGA based systems. 

4.1     Defi nition of System Modeling 

 System modeling is generally accepted to be an executable system description 
which allows the analysis and measurement of system behavior. This analysis can 
occur at different levels of abstraction. The process of modeling the system allows 
for the refi nement of the models throughout the modeling process until the fi nal 
implementation of the design is achieved and proven to meet the requirements that 
are specifi ed in the high level model. 

 System Modeling provides the ability to both design and analyze the system 
architecture. An example being the hardware to software interface. An example of 
system modeling in a FPGA system design is the process of design partitioning 
between the Processor subsystem and the FPGA logic. System modeling can be used 
to determine what should be implemented in the processor subsystem and what 
should be implemented as digital logic in the FPGA. This decision would be based 
upon the performance bottlenecks derived from the specifi cation. This requires mod-
eling of the Processor, Interconnect, Memory and the accelerators. In order to model 
such a system, different levels of models are required. Cycle accurate models are 
required for the modeling of the interconnect from the processor to the FPGA and to 
the memory in the system. In such areas latency is important for modeling of the 
performance. Instruction accurate models would be used to model the processor and 
cycle approximate models or approximately timed models for the accelerators. There 
are more details on model types in Sect.  4.3 , classes of SystemC models. 

 System Modeling is a key enabling technology for many parts of the FPGA 
system design process such as

    1.    HW and SW Co-development   
   2.    SW Verifi cation and Regression   
   3.    Rapid Iteration of design tradeoffs for high level design, e.g. ‘C’ based and 

model based FPGA design implementation fl ows.      

4.2      What is SystemC? 

 SystemC is a system modeling language that is based upon the C/C++ language. It is 
in effect a set of C++ classes and macros which provide an event driven simulation 
kernel. These libraries enable users to model mixed hardware and software systems 

4 System Modeling
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at multiple levels of abstraction. The SystemC standard is defi ned by Accelera. 
The SystemC libraries and standard are available for free download from http://
www.accelera.org. 

 SystemC has all of the features of C++. It also includes special data types that 
can be used by hardware engineers to model hardware features, such as tri-states. 
It has a simulation kernel that enables functional verifi cation at the system level 
through the use of testbenches. It adds the concept of time to C++, enabling the 
simulation of synchronous hardware designs and supports simulation at multiple 
levels of abstraction, enabling refi nement of the models in the verifi cation environ-
ment as the design progresses from specifi cation to implementation. It also includes 
the ability to simulate the concurrent behavior of hardware. 

 SystemC supports a level of modeling known as Transaction level Modeling 
(TLM). TLM models the communication between modules. The communication is 
modeled as physical interconnect independent transactions. 

 By using C/C++ development tools and the SystemC library, an executable 
specifi cation of a model can be created in order to simulate, validate, and optimize 
the system being designed.  

4.3      Classes of SystemC Models 

 SystemC supports several different levels of system modeling ranging from very 
high level with fast simulation times to cycle accurate with similar simulation times 
to RTL models. 

 As mentioned in the previous section, Transaction level Modeling (TLM) 
abstracts the communication between modules to physical interconnect indepen-
dent transactions. The SystemC TLM 2.0 standard has become widely adopted in 
the Electronic System Level (ESL) industry. 

4.3.1     Untimed (UT) 

 The UT model does not utilize the concept of time. It can be used to count events 
such as instructions. Any transactions are modeled as taking zero time. Untimed 
models tend to be used for system verifi cation, system specifi cation and SW devel-
opment in the case of virtual platforms. The models are procedural with the inter-
faces communication being based upon transactions.  

4.3.2     Loosely-Timed (LT) 

 The LT model includes suffi cient timing detail for correct functional behavior. This 
class of model is used to boot an Operating System and to run multi-core systems. 
Timing is used at the level of individual transactions with each transaction having a 

4.3 Classes of SystemC Models
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‘begin’ and ‘end’ timing point. Loosely timed models are used for verifi cation and 
for software development in the case of virtual platforms. The models are event/
transaction driven without clocking information.  

4.3.3     Approximately Timed (AT) 

 AT models are also referred to as cycle-approximate models. Approximately timed 
SystemC models are used for performance analysis, SW development on virtual plat-
forms and for architectural exploration. The models break down transactions into a 
number of phases corresponding to a HW protocol. A transaction will typically have 
four timing points, although the number of timing points can be extended.  

4.3.4     Cycle Accurate 

 SystemC cycle accurate models have one to one correspondence with the RTL 
implementation at the cycle level. Cycle accurate models are used for verifi cation 
and very accurate performance analysis and modeling. They are Register Transfer 
level (RTL) models that are timed to clock events.   

4.4     Software Development Using Virtual Targets 

 Virtual targets are a software model of the processing system. They are typically 
developed in SystemC and are provided by the FPGA vendor. The goal of the virtual 
target is to allow software code development for a target system prior to the avail-
ability of the FPGA devices, i.e. for early adopters of new FPGA technology. 

 Virtual targets are used by SoC chip designers as part of the architecture develop-
ment and exploration cycle when designing a processor based chip. For the pur-
poses of designers with FPGA devices, the FPGA vendor will have already designed 
the processor subsystem, so this aspect is not applicable. 

 Developing application software for embedded projects is typically the bottleneck 
in the system development process and requires the most engineering resources. 
The Virtual Target enables engineers to start their software development early, so 
that they can maximize their productivity and get to market quickly. The real 
 advantage is the enablement of functional verifi cation of the HW/SW interfaces, 
e.g. drivers. Low level SW development can be validated early. 

 It can also be used to determine which functions should run in hardware versus 
software. 

 After completing system partitioning, which involves determining what will run 
in software versus hardware, it is possible to develop the software drivers and to 

4 System Modeling
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functionally verify them on the Virtual Target. Once this is completed, the hardware 
IP is developed and the FPGA devices are available, the user can then port the 
design and code over to the actual SoC FPGA device for timing closure, perfor-
mance optimization and further application code development.  

4.5     SystemC Basics 

 In this section we will examine the basic syntax of SystemC and look at how a soft-
ware program and a hardware program are created in SystemC. 

 The function sc_main() is the SystemC equivalent of the function main() in a C/
C++ program. Every C/C++ program has a main() function and every SystemC 
program where the SystemC library is declared has a sc_main() function(). It is the 
entry point for the application. The use of the SystemC library is declared using the 
include statement, #include “systemc.h”. 

 Figure  4.1  shows the SystemC version of the classic “hello world” program.  
 The hello world example shows the similarities between SystemC and C/C++. 

The main difference is that the main() function is replaced with sc_main() and 
there are SC_MODULE and SC_CTOR functions. In order to explain their pur-
pose, we will look at a more hardware centric program. The example shown in 
Fig.  4.2  describes a SystemC header fi le for a representation of a basic 8-bit up/
down counter.  

  Fig. 4.1    “Hello World” in 
SystemC       

 

4.5 SystemC Basics
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 It is common practice to place the port defi nitions and process declarations inside 
a header fi le. These could appear inside the program fi le (.cpp fi le) for a module 
but would make the fi le very long. In the header fi le shown in Fig.  4.2  it contains 
the port defi nitions, port declarations and sensitivity lists for the processes. This 
 particular design is a cycle accurate model, i.e. it resembles an RTL implementation 
of an 8-bit up/down counter. 

  Fig. 4.2    SystemC model of an 8-bit up/down counter(updown.h)       

 

4 System Modeling
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4.5.1     SC_Module 

 Every design consists of a class or module ‘SC_MODULE’ of name ‘module name’. 
In the example in Fig.  4.2 , SC_MODULE is updown. Modules provide the ability 
to describe the design structure. They typically contain processes, ports, internal 
data, channels and possibly instances of other modules. Modules are the building 
blocks of SystemC designs and are much like entities in VHDL, modules in Verilog 
or a class in C++.  

4.5.2     Ports 

 Ports are objects through which a module can communicate with other modules or 
with channels. Ports can be single-directional (in, out) or bi-directional. 

 Channels defi ne how the functions of an interface are implemented.  

4.5.3     Process 

 Every module should have at least one process or method which gives the function-
ality of that particular module. All processes are conceptually concurrent. In the 
header fi le in Fig.  4.2 , two processes are declared using the void statement. They are 
behaviour and result_to_terminal.  

4.5.4     SC_CTOR 

 Every module should have a constructor ‘SC_CTOR’. The constructor is used to 
create the hierarchy, declare sensitivity lists for processes and perform initialization. 

 The constructor (SC_CTOR) calls the process. In this case it calls the process 
using SC_METHOD.  

4.5.5     SC_METHOD 

 SC_METHOD and SC_THREADS are the backbone for modeling hardware. SC_
METHOD processes are triggered by events and execute all of the statements in the 
method sequentially. 

 In the example in Fig.  4.2 , the process “behaviour”, which is called by SC_
METHOD is sensitive to the positive edge of clk and the positive edge of rst. 

4.5 SystemC Basics
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 The code that describes the behavior for the updown counter is in a fi le called 
updown.cpp that is shown in Fig.  4.3 .  

 The code shown in Fig.  4.3  describes the functionality of the processes declared 
in updown.h. The code must start with #include updown.h to reference the port defi -
nitions and process calls in the header fi le. The input ports are read from and written 
to using the .read() and .write() constructs. 

 One of the things to notice about this model is that it does not include the func-
tion sc_main. This is because the design is a module that will be compiled as part of 
larger program. 

  Fig. 4.3    Updown counter 
(updown.cpp)       
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 In order to get meaningful results from the model, it is necessary to apply stimulus. 
The program that links the testbench (stimulus) with the counter model will include 
the sc_main() function.  

4.5.6     SystemC Tesbenches 

 Much like in traditional RTL design, you need a testbench to verify the functionality 
of your design. The concept is similar to RTL simulation, but the terminology is 
slightly different. A diagram of a SystemC testbench is detailed in Fig.  4.4 .  

Driver

Stimulus Response

DUT Monitor

  Fig. 4.4    Diagram of a 
SystemC Testbench       

 In the diagram in Fig.  4.4 , there are three blocks: Design Under Test (DUT), 
driver and monitor. Together, they create the SystemC testbench. For the counter 
example design in Fig.  4.2 , the module updown is the DUT, i.e. the design to be 
tested. The driver program generates the stimulus that is applied to the inputs of 
the DUT, the same as in a traditional simulation testbench. The monitor block is a 
program that monitors the output of the DUT and captures the results. By compar-
ing the output with the expected output for the given stimulus, it is possible to 
determine if the design is functionally correct. 

 In the simulation of the 8-bit updown counter shown in Figs.  4.2  and  4.3 , 
the main.cpp program includes the driver and the DUT. There is no monitor that 
performs a comparison of the actual result versus expected result. Instead, the 
results are written to a Value Change Dump (.vcd) fi le. 

 The complete program is shown in Fig.  4.5 .  
 The main() program instantiates all of the modules to create the executable 

specifi cation. In the program that is shown in Fig.  4.5 , the program main() instanti-
ates the module updown and connects it up to the signals in main() that provide 
the stimulus and monitor the outputs. It contains a section of code that creates a .vcd 
fi le called updown_wave.vcd. This records the values of the signals throughout the 
simulation and fi nally it includes the stimulus. 

 The most common way of compiling a SystemC program is through the use of a 
“make” fi le. As this is a very simple program, it can easily be run using a simple 
shell script on Linux or batch fi le on windows. 
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 Figure  4.6  shows a shell script for compiling the program on Ubuntu 12.04 Linux.  
 g++ -I. -I$SYSTEMC_HOME/include -L. -L$SYSTEMC_HOME/lib-linux 

-Wl,-rpath,$SYSTEMC_HOME/lib-linux -o upout updown.cpp main.cpp -lsys-
temc –lm 

 Figure  4.6 : Shell script to compile the program. 
 The script calls the GNU C++ compiler to compile the C++ programs updown.

cpp and main.cpp. Note that the reference to $SYSTEMC_HOME will be dependent 
on your installation of the SystemC libraries. This script creates an executable called 
upout. The executable ‘upout’ is effectively an executable specifi cation. 

  Fig. 4.5    Main program that simulates updown counter         
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 When the executable is run, it will write the results shown in Fig.  4.6  to the 
terminal as specifi ed in the ‘result_to_terminal’ SC_Method in updown.h. 

 The executable also writes the results of the simulation to a .vcd fi le as specifi ed 
in the program main.cpp. The .vcd fi le can be imported and displayed in standard 
simulators   . Alternatively there are free .vcd viewers available for download, such as 
Waview Fig  4.7 .  

Fig. 4.5 (continued)

4.5 SystemC Basics
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  Fig. 4.6    Result on terminal after running executable       
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Fig. 4.6 (continued)
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 This is all that this chapter will cover on system modeling. There are a number of 
example programs and tutorials on SystemC available for free download on the 
web.     

  Fig. 4.7    .vcd view of simulation result       
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    Chapter 5   
 Resource Scoping 

          Abstract     This chapter is broken down into three main sections. The fi rst section 
deals with engineering resources. Whether you use internal resources or whether 
you use external contractor resources.           

5.1      Introduction 

 This chapter is broken down into three main sections. The fi rst section deals with 
engineering resources. Whether you use internal resources or whether you use 
external contractor resources. 

 The second section deals with IP. Do you have IP within the Company that you 
can reuse, or do you use third party IP? 

 The third and last section deals with device selection. This details how to selecting 
the right FPGA with the right resources for your application. It covers the various 
techniques that you can use to help choose the right device to enable you to meet 
your project schedule.  

5.2     Engineering Resources 

 The assignment of engineering resource to the project is a project management task. 
It is key that you adequately resource the resource with the appropriate personnel for 
the tasks in the project. When you are working on the FPGA its not only FPGA 
designers that you need to consider, you need to look at the team of engineers that are 
required to create the design. So, from a hardware engineer’s perspective you look at 
who are the engineers that are going to work on the FPGA design. There are the RTL 
designers, there are the engineers with the experience integrating the design in the 
FPGA design software and the engineers with design verifi cation experience. 

 In some Companies these roles will be performed by the same individual, or the 
same pool of engineers. However, depending upon the size of the design or the 
complexity of the project you may well require a team of engineers with different 
skill sets from the different engineering disciplines. From a hardware engineering 
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perspective, you also need to look at the board design, so you will to need to ensure 
that you have board layout engineers on the team. They will have to work close with 
the FPGA designers, so you want to make sure that the members of the team have a 
good working relationship. If you are creating a high speed design, particularly if 
you are looking at design with high speed transceivers or high speed memory inter-
faces you are likely going to need someone on the team with SI experience. 

 If your design uses a soft processor, then you will also want software engineers 
on the team. Even if the FPGA is interfacing with a microprocessor, you still want 
the software engineers to be available for when you start to debug the design on the 
board. You also may need engineers with other system specialties on the team. For 
example if your design contains DSP algorithms the individual that created the 
algorithm may not actually be a hardware engineer, thus will not be implementing 
the design in the FPGA. You need to ensure that the Specialist is available for advice 
during the design cycle and for debug of the design after implementation. Similarly, 
for other IP areas of excellence; examples being the main interface protocols such 
as PCIe or GigE. (Add in IP reuse). 

 An important decision in the assignment of engineering resources is the decisions 
as to what are you going to implement with the engineering resources that exist in the 
Company versus what will you implementation with external consultants.  

5.3     Third Party IP 

 You need to look at what third party IP is available and will be used in the design. 
Similarly what internal IP will be reused, do you have IP available from other projects 
targeting this FPGA family. Or if you are using third party IP you will probably want 
to look at what are you getting with the IP, do you get a consultancy service or what is 
your level of confi dence that the IP will meet your exact requirements in terms of area, 
speed and functionality.  

5.4     Device Selection 

 There are seven main factors that infl uence your choice of device. These are:

    1.    Specialty silicon features. Are there particularly capabilities that you need that 
dictate that you use a particular FPGA because they are not available in other 
FPGA devices.   

   2.    Device density. How much logic will your design require? What is the mix of 
logic to memory blocks to dedicated multiplier blocks that is needed for your 
application. This will have a big impact on the price of the device that you need.   

5 Resource Scoping



31

   3.    Speed requirements. This will impact the family that you choose and the 
speed- grade that you need to use. Once again this will have a large impact on the 
price of the device.   

   4.    Pinout of your device. What kind of package do you require? The choice of 
package type and the number of I/O in your design will impact both the FPGA 
cost and the board design. The package type will also infl uence the signal integrity 
and performance of the I/O in your design.   

   5.    Power. What is your power budget for the budget and which device is going to 
help you meet the budget?   

   6.    Availability of IP.   
   7.    The availability of silicon. You want to make sure that production silicon is 

available when you need it.     

 So these are the areas that we need to look at. 

5.4.1     Silicon Specialty Features 

 The fi rst area that you want to look at is the dedicated resources on the device. 
Does your design require high speed serial interfaces and if so, how many channels 
and at what performance. Many of the FPGA devices that are available together 
come with transceivers. The performance of transceivers tends to fall into three 
ranges, up to 3.125 Gbps, up to 6.5 Gbps and 10 Gbps+. These are important fac-
tors in the decision process as they impact both the performance of your design and 
the cost of the FPGA. You also need to look at your bandwidth requirements. Both 
the speed of the transceivers and the number of transceivers will determine your 
bandwidth. Take for example the communications market; if you are trying to 
implement 100 Gbit Ethernet, you will likely want a minimum of ten channels of 
10 Gbps transceivers. 

 Similarly, if you are completing a design which is math intensive such as a 
DSP encryption algorithm or radar application, you will require a device with a 
large number of DSP blocks and adequate RAM blocks to interface with the DSP 
blocks. The confi guration of the DSP blocks is also important. The depth and 
number of memory blocks will impact how much processing can be performed on 
chip versus having to use external memory. Internal memory is important in DSP 
for caching of processing results between stages of the processing algorithm. You 
also need to look at both the number and confi guration of the dedicated DSP 
blocks. What is the width of the multiplication operations that you need to per-
form? If the DSP block does not have suffi cient width, you will have to start 
combining blocks with logic. This can impact the performance of the operation 
that you are performing. 
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 How many internal RAM blocks do you need? This is becoming increasingly 
more important as we look at designs that make use of soft processors. Being able 
to use internal memory blocks as cache can signifi cantly increases the performance 
of the soft processor. The sizes of block RAM that is available is also important. 
If your design will use a lot of FIFOs, it’s the number of RAM blocks that are 
 available that matters and not the amount of bits available. FIFO’s are notorious for 
wasting memory bits when implemented in memory blocks. 

 You also need to consider the debug of your design. Internal block memory is 
often used in the debug cycle for storing the data from embedded logic analyzers 
before examination.  

5.4.2     Density 

 When selecting the density of the device, it is unlikely that you will be fortunate 
enough to have the completed design to determine the size of device needed. You will 
be choosing the device based upon previous experience. Many designs are based 
upon previous generations of the design. This can be aid in the device selection pro-
cess. You should recompile the previous design or the portions that will be used at 
your target FPGA family to get ballpark density estimates. If you have IP that you 
will be using, compile it to add to your area estimates and if you are evaluating IP for 
third party vendors, get an area estimate from the vendor. So, use the previous gen-
eration of the design, if it exists, add in the area requirements from IP and then using 
your experience, add in how much additional resources will be used for the new 
functionality. Once you have done this, add an additional 25 % on top. You should 
always target a larger device than you think you will need; this is where the extra 
25 % comes into the equation. 

 You should always target a larger device than you think you will need. Designs 
have a nasty habit of growing and you want to guarantee that the design will fi t in 
the targeted device and be able to close timing. You don’t want to be struggling to 
meet timing in a 95 % utilized device or be put in the position of having to pull 
functionality out of your system just to fi t in the targeted device. 

 Another benefi t of using a larger device is that it can help you get to in-system 
checkout quicker. If there is headroom in the device, the place and route software 
will likely not have to try as hard to meet timing and will result in shorter compile 
times. This benefi ts both the hardware and software engineer. The sooner that you 
have functional silicon, the sooner the software engineer can accelerate his code 
development process by trying it out on the targeted hardware. You can start the 
debug of the hardware and software much earlier in the design cycle. 

 Another benefi t of the additional headroom in the device is that it makes it easier 
to accommodate late ECOs in the device or accommodate growth in future versions 
of the design after production. 
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 After you have the design working functionally on the device and if there is 
signifi cant unused resources on the device, you can retarget the device to a smaller 
device to reduce cost and not have to worry about impacting the project schedule. 
Some of the FPGA vendor design tools have features that enable you to migrate 
between device densities in the same family while maintaining the same pin-out. 
These features restricts you to using only the I/O resources that exist across the 
density ranges selected in the targeted family; the benefi t being that you can retarget 
your design to a larger or smaller density device avoiding a board re-spin. If this 
feature is not available in your FPGA vendor software you can design the capability 
in manually by referencing data sheets and application notes. The manual process 
is painful and prone to user error, but is worth the investment if the automated fl ow 
is not available. 

 The key point is that you need to ensure that the ability to migrate between 
device densities while maintaining the pin-out capability is available in the FPGA 
family that you are considering for your application. 

 The recommendation is that you select a device that can migrate up in density to 
accommodate future design growth and can migrate down in density to allow for 
possible cost reduction. 

 This functionality is very useful if you intend to ship variations of your product 
at different price points with changes in the functionality, but the same board is 
shipped. A single design can be created and functionality removed from the FPGA 
at the lower price points. Normally the same FPGA is shipped on the same board 
with a different programming fi le based on the reduced functionality of the design. 
By maintaining the same pin-out you can now remove the functionality and retarget 
the design to a smaller device, further cost reducing your bill of materials.  

5.4.3     Speed Requirements 

 This can be determined from your previous design experience. You should compile 
designs or design blocks that you already have to get an indication of the perfor-
mance that they get in the targeted device. This can be used as a good best case 
indicator as to what you can expect from other design blocks. 

 The FPGA vendor’s data sheets are also a good source of information on perfor-
mance. They will tell you the absolute maximum that you can hope to get in terms 
of clock and I/O performance. While these numbers are achievable, it is likely to 
increase your timing closure cycle achieving these numbers, thus you should back 
off the numbers by approximately 15 % to give you a margin of safety for timing 
closure. 

 The choice of speed-grade will impact the price of the device. When choosing 
device, we recommend that you always start with the fastest speed-grade to enable 
you to get the device on the board as soon as possible to start software debug and 
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hardware functional check out as early as possible. If the design meets timing com-
fortably in the fastest speed-grade, you will benefi t from faster compilations as the 
place an route engine does not have to try as hard to close timing. There is the option 
to retarget the design to a slower device after the functionality is close to complete, 
for cost reduction purposes.  

5.4.4     Pin-Out 

 The type of interfaces that you need for the design will impact the number of pins 
required and the package type. You need to understand the I/O standards that you 
need, the requirements for drive strength. How many pins do you need? What are 
the power supply requirements? A good way of determining these requirements 
without the design is by looking at what your device will interface with. You also 
need to look at the signal integrity requirements for the design. Does your design 
have interfaces with a large number of pins that are likely to toggle simultaneously; 
if so, will you have SSN issues? It is worth noting that wirebond packages typically 
have worst signal integrity and I/O performance than fl ip chip devices. 

 It is recommended that when looking at the pin count for your design, that you 
reserve pins for in-system debug. The target should be 15 % of the device pins. 
They can be used to route internal signals off-chip for analysis with a logic 
analyzer. 

 The pin assignments need to be planned and verifi ed as part of the device selec-
tion process. In the past, designers would use Excel spreadsheets to model the target 
device. This provides an estimation that can work but does not consider the perfor-
mance required of the interfaces. With the complexity of modern FPGA devices, it 
is hard to model the various rules and restrictions accurately. The good news is that 
it is possible to verify the pinout without the fi nal functional RTL. This is possible 
providing all of the interfaces and the clock network is defi ned. 

 The best approach to doing this is to start with an existing design. If your project 
is a derivative of this design, you can edit it to include all of the I/Os and interface 
logic that you will have in the fi nal design. If you cannot start with an existing 
design, then it is necessary to create a dummy or skeleton design. 

 The dummy design should consist of the top-level design fi le that includes all of 
the ports for the design, the interface logic including all clocks and dummy logic 
such as shift registers to prevent logic optimization of the interface logic and to 
enable clock tree modeling. This dummy design needs to be able to successfully 
compile in synthesis to enable the interactive creation of the I/O assignments. The I/O 
assignments    can also be added as a Tcl script or using a .csv fi le Fig.  5.1 .  
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  Fig. 5.1    Design fl ow for determining device has necessary pins       
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 It is also necessary to create the I/O and clock timing constraints for the dummy 
design to ensure that the device can meet your I/O system timing requirements. 

 The accuracy of the I/O Assignment analysis will depend on the completion 
level of your design. The more complete your design, the more accurate the analysis. 
It is recommended that you perform a full compilation and a timing analysis using 
the timing analyzer to verify I/O timings with respect to externally connected 
components. 

 As part of the dummy design, you should create instances of the interface IP for 
the design and structurally connect them in the top-level design fi le. The external 
ports of the interface pins can then be assigned to device package pins and have the 
other I/O related assignments such as I/O standards created for them. It is also pos-
sible to connect the ports between multiple IP instances to create internal shared 
networks such as clocks or reset signals. 

 The FPGA design software also includes a Pad View. The Pad view is very useful 
for planning the clock resources. It displays the PLL and DLL resources available 
in the target device and enables the assignment of clock signals from your design 
to a specifi c clocking resource. The assignment of clock signals to a specifi c PLL or 
DLL, provides more control over the design implementation Fig.  5.2 .  

  Fig. 5.2    View of the pad view       

 Many FPGA devices provide the ability to migrate the pinout across device 
densities in the same device package. This provides the ability to migrate the design 
to a larger device or smaller device while avoiding a board re-spin. You should con-
sider using a migration device if there is a possibility that the design could grow 
beyond the density of the current device. Alternatively, if your design is smaller than 
expected you could save money and migrate to a smaller lower cost device. 

 

5 Resource Scoping



37

 The Altera pin planner tool provides a migration view that ensures that the 
I/O assignments will be valid in any migration devices selected for the project. 
The device migration view prohibits the use of the pins that cannot be migrated 
across devices.  

5.4.5     Power 

 You know the power budget for your design based upon the specifi cation. How many 
power supplies will be required for the device? Most modern FPGA devices require 
multiple power supplies as they have separate power planes for the core, I/O’s and 
often the transceivers. The more power supplies that are required, the more expensive 
the component cost on the board and the more complex the board design. 

 Once again, your previous FPGA design experience will come into play. Chapter   7     
in the book that is dedicated to power estimation; it will help master this 
challenge. 

 To summarize, it is recommended that you use the FPGA vendor’s power estima-
tion spreadsheet together with your previous experience to determine the power 
that your design will consume.  

5.4.6     Availability of IP 

 IP may be available for particular family of devices but may not have been ported to 
or verifi ed on the particular FPGA family that you are considering using. This is 
often the case with devices that are new to the market. Interface IP in particular is a 
challenge for devices where the silicon has been available for less than 6 months. 
The devices are normally not fully characterized thus the timing models are prelimi-
nary. High performance interface IP cannot be guaranteed to close timing until the 
models are fi nal.  

5.4.7     Availability of Silicon 

 If you have a project on the bleeding edge of technology, the chances are that you 
will be considering using the latest FPGA devices on the market. You will also 
likely be considering the latest FPGA device knowing that in the future, the pric-
ing will be more favorable. If the design will be going into production in 12 
months but you know that your volumes will be shipping for 5+ years, you will be 
hitting volume production when the FPGA process has matured and pricing is at 
its lowest.  

5.4 Device Selection
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5.4.8     Summary 

 We really recommend that when choosing device that you quickly stitch together 
dummy designs effectively to enable the process of successful device selection. You 
are going to have a good idea of what type of interfaces you are going to need on 
your device. This will help you to determine the pin requirements, the I/O planning 
requirements. By creating the dummy design you get an idea of the utilization that 
you can expect to get out of the device in terms of resources. It will also provide a 
good guide to the performance that you can expect for your type of design. It also 
enables you to perform an early power estimate for your design. The creation of a 
dummy design is instrumental in selecting the appropriate device. The dummy 
design should include any known IP blocks that you are going to be used in the 
design.     
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    Chapter 6   
 Design Environment 

          Abstract     The FPGA design environment is best expressed as a combination of all 
of the tools, techniques and equipment that is required to successfully complete a 
FPGA system design. The design environment in each Company is usually some-
what unique in that it has been customized to meet the needs of the Company. 
However, there are some common elements that exist across all design elements. 
The goal of this chapter is to make you aware of the bare minimum requirements for 
a design environment that will enable the successful creation of an FPGA design on 
time. The design environment can be represented by fi ve main elements.           

6.1      Introduction 

    The FPGA design environment is best expressed as a combination of all of the tools, 
techniques and equipment that is required to successfully complete a FPGA system 
design. The design environment in each Company is usually somewhat unique in 
that it has been customized to meet the needs of the Company. However, there are 
some common elements that exist across all design elements. The goal of this chapter 
is to make you aware of the bare minimum requirements for a design environment 
that will enable the successful creation of an FPGA design on time. The design 
environment can be represented by fi ve main elements.

    1.    A scripting environment.   
   2.    Interaction with Version Control software.   
   3.    Use of a problem tracking system.   
   4.    A regression test system   
   5.    Data collection for analysis      

6.2     Scripting Environment 

 One of the challenges for engineers that are designing with FPGA devices is when 
to use a scripted design fl ow versus when to use the GUI in the FPGA design 
environment? 
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 Scripts are ideal in the following scenarios:

    1.    Creation of projects   
   2.    Creation of assignments for the design   
   3.    Compilation of designs. In particular if you utilize a compute farm environment. 

A compute farm environment enables you to fi re off batch jobs to the server for 
compilation.   

   4.    Functional verifi cation and regression testing.   
   5.    Integration with version control software.     

 This covers most of the FPGA design fl ow. It may appear that it is recommended 
to use scripting for every part of the design fl ow. This is partially true. You really 
should deploy scripting for any repetitive tasks. It helps other users to easily repro-
duce your environment and results. 

 So, when is it recommended to use the GUI? 
 The GUI should be used for the parts of the design fl ow that are interactive. Areas 

where your actions will change based upon the results that you get. Examples would 
be the following scenarios:

    1.    In-system debug of your design.   
   2.    Floorplanning operations. This could be looking at the details of the fl oorplan to 

gain a better understanding of the device architecture or the resources that are 
available. This could also be creating a physical layout of your design in the 
fl oorplan in a team based design environment.   

   3.    Getting started with new tools. The GUI provides a great way for setting up your 
fi rst project and uncovering the features and capabilities of the tool. Once familiar 
with the tool, it is recommended that you move to a scripting environment.     

 Through the use of scripting you can save time and effort on repetitive tasks. 
One of the big benefi ts is that it simplifi es the passing of tasks between team members 
in a team based design. If someone is taking over a project or design block, from 
another engineer; Rather than having to write detailed instructions describing what 
needs to be done to get your results, you give them the script which is self docu-
menting. The new engineer reads the script, runs the script and they get started from 
where you left off on the project. Nearly all EDA tools that are part of the FPGA 
design fl ow have scripting interfaces, both a command-line interface for creating 
batch fi les and assignment scripting for creating settings in the project. Most of the 
EDA industry has standardized on Tcl as the scripting interface for tool 
assignments. 

 Make fi les are commonly used in the software programming world to compile 
software projects that consist of multiple programs. They help to automatically 
manage and build projects. This approach of project management and compilation 
can also apply to a scripted hardware design fl ow. 

6 Design Environment
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6.2.1      Make Files 

 Make is a program that looks for a fi le called makefi le and executes the commands 
in the makefi le. A major benefi t that is provided by ‘make’ is its ability to interpret 
dependencies and to understand timestamps on fi les to determine what action needs 
to be performed next. In the case of FPGA designs, this can reduce the number of 
complete compiles that need to be performed. An example in a FPGA design fl ow 
would be the scenario where the user changes a fi tter option. Rather than performing 
a complete compile from the start, through synthesis, ‘make’ can determine that 
synthesis does not have to happen and only run the fi tter and subsequent steps. This 
will reduce the compile time for the project. An example makefi le for a Quartus 
project is shown in Fig.  6.1 .  

 The Makefi le in Fig.  6.1  works with the chiptrip project which is shipped as part 
of the tutorial designs with the Quartus II software. 

  Fig. 6.1    Example make fi le       
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 There are several key elements to this makefi le. It starts by declaring variables that 
are used to specify the names of the source fi les, assignment fi les and the projects. 
They are assigned before writing the targets and are referenced using the dereference 
operator $(VARIABLENAME). 

 It also includes the targets. Targets are the basis of a makefi le. Targets convert a 
command-line input into a series of actions. For example, the ‘clean’ target in Fig.  6.1  
will perform the command-line operation ‘rm -rf *.rpt *.chg smart.log *.htm *.eqn 
*.pin *.sof *.pof db’, effectively removing a .rpt, .chg, smart.log, .htm, .pin, .sof. .pof 
fi les and the db directory. 

Fig. 6.1 (continued)
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 The real benefit that targets provide is that they can have dependencies. 
The dependencies can be targets or fi les. In the case of fi les, the target commands 
will only be executed if any of the dependent fi les have changed since the last time 
the command was executed. If the dependency is another target, then that target’s 
commands will be evaluated in the same way. 

 When you type “make” without specifying a target in the corresponding makefi le, 
it executes the fi rst target in the makefi le. In the makefi le example in Fig.  6.1 , this 
will run the “all” target. 

 The “all” target will run the operation “smart.log $(PROJECT).asm.rpt 
$(PROJECT).sta.rpt”. 

 The appropriate targets are called along with the substitutions for the variables. 
 The command-line commands that are run will be: 

 quartus_sh –determine_smart_action chiptrip chiptrip.asm.rpt chiptrip.sta.rpt > 
smart.log. 

 quartus_sh –prepare chiptrip. 
 quartus_sh –prepare is a Quartus command to create or open a project and make 

assignments in order to prepare the project for compilation. It is run with a 
dependency on the command quartus_sh –determine_smart_action. 

 The quartus_sh –determine_smart_action command is a Quartus command that 
determines the earliest command-line executable in the compilation fl ow that 
must be run based on the current project constraint fi le (.qsf), and generates a 
change fi le (.chg) corresponding to that executable. 

 For example, for the script in Fig.  6.1 , if quartus_map must be re-run, the deter-
mine_smart_action command creates or updates a fi le named map.chg. Thus, 
rather than including the .qsf in each makefi le rule, it includes only the appropriate 
change fi le. 

 If the chiptrip directory only includes the Verilog source fi les, then typing ‘make’ 
at the command-line will run the fi rst function in the ‘make’ fi le which is ‘all’. 

 This will create the project and then run the full compilation fl ow with the targets 
specifi ed in the makefi le script i.e. runs quartus_map targeting the Cyclone V family 
and runs quartus_fi t for the 5CEBA2F17C6 device. It then runs quartus_sta and 
then quartus_asm. 

 If you run ‘make’ again from the command-line, it will fi nish instantaneously 
with the message “Nothing to be done for ‘all’. This is as expected as there were no 
changes to any of source fi les or constraint fi les. 

 Make provides the fl exibility of being able to run the individual targets. For 
example, in order to remove all of the fi les that is created by the script, run ‘make 
clean’ from the command-line. This calls the clean    function in make Fig  6.2 .  
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 If you now run ‘make fi t’, the make fi le determines that there is no change fi le 
(map.chg) available for quartus_map and will run quartus_map and then quartus_fi t. 

 If you then run ‘make’, it determines that there are no changes that require 
quartus_map or quartus_fi t to run and runs quartus_asm and quartus_sta. 

 As can be seen, the use of makefi les can greatly improve designer productivity 
by only compiling the parts of the fl ow that needs to be compiled. It also provides 
designers with the ability to control what parts of the fl ow that they want to run 
through running make with the appropriate function, e.g. in order to only run quar-
tus_map to get the signal names needed to create SDC assignments, designers can 
run ‘make map’.  

6.2.2     Tcl Scripts 

 Tcl scripting enables custom analysis, automation of repetitive tasks, the creation 
of a reproducible design fl ow and compilation results. 

  Fig. 6.2    Result from running ‘make clean’       
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  Fig. 6.3    Example of a custom analysis Tcl script       

6.2.2.1     Custom Analysis 

 The use of Tcl scripts makes it easy to create reports that contain only the infor-
mation that you need. Figure  6.3  is a simple example of a script that examines the 
TimeQuest Timing Analysis Summary in the compilation report fi le and prints to 
screen a message on whether the design is passing or failing timing and writes out 
the worst case slacks.  

 The Tcl script in Fig.  6.3  works on the chiptrip project that is used in Sect.  6.2.1  
on ‘make’ fi les. The script loads the Quartus Tcl package report, opens the project 
and loads the report fi le. After this it determines the number of columns in the 
Multicorner Timing Analysis Summary report panel. It loops through all of the col-
umns getting the worst case slack. If any of the slacks are negative, it sets the 
variable failing to true. 

 It writes the worst case slacks to the terminal along with a failing message. 
This script would be run from the command-line using the command “quartus_sh –t 
ex3.tcl”, where ex3.tcl is the name of the script Fig.  6.4 .    
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  Fig. 6.4    Result from running the script in Fig.  6.3        

6.2.3     Automation 

 Tcl scripts can be used to eliminate manual that have to be performed using the 
GUI. An example is creating a new project and making pin assignments. It is very 
easy to create a Tcl script that creates a new project and to reuse this script in future 
projects by changing the names of the fi les and project, etc. 

 An example new project script is shown in Fig.  6.5 .  
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 The new project script that is shown in Fig.  6.5  creates a new project called chip-
trip with a revision name rev1. If a project already exists, it will be overwritten. 
After this it makes device assignments, specifi es the source fi les, the name of the 
top-level design and then sources another Tcl fi le called my_pins.tcl. The fi le my_
pins.tcl contains all of the Tcl commands to assign the pin locations, I/O standards 
and drive strengths, etc. The my_pins.tcl fi les is not shown. It is common practice in 
industry to include the pin assignments in a separate fi le for portability to other 
projects. One advantage of using Tcl fi les as opposed to the qsf constraint fi le for 
compilation is that it plays better with version control software than the constraint 
fi les that are time stamped even if no changes are made.  

6.2.4     Easier Project Maintenance and Documentation 

 The scripts are self-documenting and make it easier for other users to recreate the 
design environment that you have used by simply running a script as opposed to 
needing a detailed document describing each individual GUI step that needs to be 
performed and the execution order. This adds up to easier project maintenance. 

 Regression testing environments are automated and run at regular times. The use 
of scripts enables the automation of the compilation of your project as part of the 
regression test environment and the automation of the extraction of the relevant 
information from the report fi les.   

  Fig. 6.5    Script to create a new project          

 

6.2 Scripting Environment
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6.3     Interaction with Version Control Software 

 Revision Control software provides a record of the history of changes to your 
design. When you are designing a FPGA, it is necessary to understand the minimum 
set of fi les that is needed for check-in and check-out of the version control system. 
You need to minimize the number of fi les because the more fi les that you check-in, 
the more storage you will need and the more complex the operation will become. 
Each time you make a change to your design and need to check the FPGA project 
back in. A good scripting environment helps to simplify this process. The initial set-up 
of the scripts and the identifi cation of the fi les that need to be checked in and out 
may be complex. However, once the scripts are established, the scripts can be shared 
among he engineers that are working on the project. If you can recreate or describe 
your project with a script, the version control interaction becomes much simpler. 

 Different FPGA design tools require different sets of fi les to be placed under ver-
sion control in order to recreate the results; so the set-up that you use for one FPGA 
vendor may differ signifi cantly than the set-up used for another. The principle how-
ever is the same. If the tools use text fi les, the interaction with version control systems 
is much simpler than tools that use binary fi les to store critical information. 

 To date, FPGA vendors have done a poor job in documenting which fi les need to 
be checked into version control software to enable you to recreate the results of the 
previous compilation. This process becomes more complex if you use multiple tools 
in the FPGA design fl ow. It is recommended that you contact the vendors of each of 
the tools to understand their recommendations. 

 One of the major infl uences on how you use a version control system is the direc-
tory structure that you are using for your design environment. This comprises of the 
location of the RTL design fi les, location of the RTL and IP libraries, “c” code and 
programming image if you are using a soft processor, simulation testbenches, loca-
tion where the results of your regtests are stored and the scripts to compile the design 
in the FPGA software or in other EDA software. You need to be able to link all of these 
elements together successfully using the correct versions of the fi les. 

 A recommended structure is shown in Fig.   9.8     of Chap.   9    , Team Based Design. 
 You want to avoid the situation were you are trying to debug the design in the lab 

and you are using the wrong programming image for the FPGA, or you are loading the 
soft processor with old source code, or a designer is making changes to an out of date 
version of the RTL. Proper use of version control will provide an environment that 
prevents these scenarios from occurring. You also want to be able to store the report 
fi les in version control as the report fi les document the status of the design. This pro-
vides valuable information to other designers that work on the same project.  

6.4     Use of a Problem Tracking System 

 A problem tracking system is not a capability that you get from your FPGA vendor. 
However, I can guarantee that it is a tool that FPGA vendors use as part of their 
engineering and product planning process. Problem tracking systems tend to be 

6 Design Environment
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homegrown systems to meet the needs of the individual Company. In fact many of 
the EDA tool and FPGA vendors have a customer interface to their systems for 
submitting problem reports. 

 There are commercial systems available on the market. These systems are essen-
tially database system with a customizable front-end to meet your Companies 
needs. In your design environment, you will use the system to track all known issues 
with your FPGA design. It enables the design engineers to document problems with 
the design as they occur. This provides the team with an instant status on the design 
and can be used to track the stability of the design throughout the design process. 
It makes the other members of the team aware of the problems with you design 
avoiding the case were they are trying to debug a problem in their part of the system 
that is being caused by your design. By looking at this data it can be determined 
whether to use a particular project build or whether to revert to an earlier build that 
did not exhibit the problems that were introduced into that particular build. 

 It also enables users to document the closing of issues. This enables the team to 
collaborate on solving the issues in the design. This is very helpful in a team based 
design environment that spans multiple time zones. 

 As mentioned, the system can be used to provide a snapshot of the health of the 
project. To do this, it needs to be linked to the regression test system such that test 
failures automatically fi le problems reports in the tracking system against the build 
that is being tested.  

6.5     A Regression Test System 

 As part of your testing, the design engineers will create point tests to show that 
the design meets functionality. It must be a requirement that you have a set of 
tests that are run regularly on the design to provide a health check on the design. 
These tests give you confi dence that as your design changes that you do not 
 reintroduce old problems or break existing functionality. Regression tests are 
discussed in more detail in the chapter on functional verifi cation.  

6.6     When to Upgrade the Versions of the FPGA Design Tools 

 One of the challenges that you will face if you have a design that spans more than 
6 months is when to adopt new releases of the tools that are used in the FPGA 
design environment. FPGA vendors typically have at least two major releases per 
year plus a selection of service pack releases that include bug fi xes and timing 
model changes. When should you freeze the version of the design tools that you 
are using? 

 This decision will be driven by where you are in the design fl ow. If you are in 
the early stages of the design, then you should update to the latest release of the 
FPGA design software unless you are aware of serious problems with the software. 

6.6 When to Upgrade the Versions of the FPGA Design Tools
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This will give you access to the latest bug fi xes and features in the software. 
Normally there is some degree of compile time improvement in the major releases 
of the FPGA design software. 

 If your design is mostly complete and the version of the FPGA vendor software 
that you are using contains the fi nal timing models for the devices that you are tar-
geting, then you should consider freezing the version of the design software that you 
are using. An exception would be if you come across a bug in the design software 
that impacts your design. This will likely require you to upgrade the design tools to 
access the fi x to the bug. 

 If your design is close to complete but the FPGA vendor timing models are still 
preliminary you will have to upgrade the version of the design software once the 
fi nal timing models become available. This can be problematic as it may require 
you to upgrade the versions of the vendor IP blocks, possibly creating more work 
for you; in particular in verifying the design. It is strongly recommended that you 
verify your design against the production or fi nal version of the FPGA timing 
models. 

 Some of the FPGA vendors provide the capability to read a database from one 
version of the design software in a later release of the software. Thus the design 
does not have to be recompiled and only timing analysis rerun to verify that the 
design still meets timing.  

6.7     Common Tools in the FPGA Design Environment 

 FPGA design Software. This comes from the FPGA vendor and includes the FPGA 
Place and Route Software and Timing Analysis tools. The major FPGA vendors 
also include RTL Synthesis, Advanced Timing Closure Features. On-Chip debug 
and Floorplan Tools. 

 FPGA Synthesis Software. This may come from the FPGA vendor or may come 
form EDA synthesis tool vendors such as Synopsys or mentor Graphics. Most 
FPGA synthesis tools support Verilog and VHDL. Some of the tools now support 
SystemVerilog. 

 Simulation tools. Some FPGA vendors provide simulation tools but by far the 
majority of the tools that are used come from EDA tool vendors. The most popular 
tools are Mentor Modelsim and Questasim, Synopsys VCS, Cadence Incisive and 
Aldec Active HDL and Riviera Pro. Some of these tools include advanced capabilities 
for assertion based verifi cation, detection of clock domain crossing, etc. 

 Formal Verifi cation tools. These tools are not commonly used in FPGA designs 
due to the restrictions that they place on the optimizations that can be performed 
when using these tools in order to perform a successful verifi cation. 

 Timing Analysis tools. There are timing analysis tools available from EDA tool 
vendors. However, these are rarely used in FPGA design fl ows due to the availability 
of timing analysis tools in the FPGA vendor supplied design software. We recom-
mend that you use the FPGA vendor timing analysis tools for FPGA timing analysis 
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as the timing constraints that are used for timing sign-off are also used by the place 
and route software for optimization. 

 It is recommended that the EDA timing analysis tools are not used for FPGA 
verifi cation, but are used for board timing analysis. 

 Board design tools. EDA tools are used for board design. These include the 
board schematic tools, the board layout tools and the signal integrity tools. The 
HSPICE and IBIS models that are used by the signal integrity tools come from the 
FPGA vendors. 

6.7.1     High-Level Synthesis 

 Most of the tools in this space are based on designing in ‘C/C++’ and having the 
code produce RTL or a netlist for an FPGA. The adoption of these tools in the 
market has been slow. This is mainly because they have a spotty history of produc-
ing non-optimal results. These tools have matured a lot and are now gaining 
momentum in creating design blocks for certain types of applications. The stan-
dardization of the OpenCL language for heterogeneous compute systems has 
opened the door to solutions that provide a complete software design fl ow for a 
complete FPGA design. This will be discussed further in Chap.   15    , high level design. 
These tools tend to focus on the High Performance Computing Market and DSP 
algorithm implementation. 

 All of the offerings that are available are from EDA Companies. 
 The second class of High-Level Synthesis is Model based design tools. These 

utilize optimized libraries in the Mathworks Simulink environment. Their target 
markets are military markets and Modem designs. These tools rely on the Mathworks 
Matlab environment and are available from the main FPGA vendors and EDA 
Companies.  

6.7.2     Load Sharing Software 

 This is software that is used to schedule jobs that are being processed on compute 
farms. Load sharing solutions are heavily used in FPGA development, particularly 
in script based design fl ows. There are commercially available software packages as 
well as freeware. Some of the options in the FPGA software include a form of load 
sharing software. 

 Version Control Software. Version control tools are not considered EDA tools 
per se, but are a major part of the design fl ow environment, Commonly used version 
control software with FPGA designs are Clearcase, Perforce and PVCS.     

6.7 Common Tools in the FPGA Design Environment
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    Chapter 7   
 Board Design 

          Abstract     In order to meet the fast performance and high bandwidth of today’s 
system designs, FPGA devices are providing a large number of pins with increas-
ingly faster switching speeds. These higher package pin counts, together with the 
fact that the devices support many different I/O standards and support different 
package types, creates a challenge in successfully creating the FPGA pin-out effi -
ciently and correctly. The cost of a board re-spin, due to a problem with the pin-out, 
is expensive in terms of both the cost of the board re-spin and the impact on the 
project schedule.           

7.1      Challenges That FPGAs Create for Board Design 

 In order to meet the fast performance and high bandwidth of today’s system designs, 
FPGA devices are providing a large number of pins with increasingly faster switching 
speeds. These higher package pin counts, together with the fact that the devices 
support many different I/O standards and support different package types, creates 
a challenge in successfully creating the FPGA pin-out effi ciently and correctly. 
The cost of a board re-spin, due to a problem with the pin-out, is expensive in terms 
of both the cost of the board re-spin and the impact on the project schedule. 

 FPGAs provide pin-out fl exibility by supporting many different I/O standards on 
a single FPGA and by providing user control over drive strength and slew rate. This 
fl exibility also results in complex rules for the creation of a legal FPGA pin-out and 
impacts the termination requirements for the Printed Circuit Board (PCB). 

 The high package pin counts create an EDA tool fl ow challenge in the manage-
ment of data between the board design software and the FPGA design software. 

 Due to the complexity in designing high performance PCBs, the PCB design 
cycle needs to begin early in the system design cycle. This creates a challenge in 
aligning the fi nal FPGA pin-out with the board design cycle. Often the board layout 
needs to be complete prior to FPGA design completion. In fact, it is becoming 
increasingly common that the FPGA design and the board development are being 
undertaken simultaneously and that for many user system designs, the board design 
is often complete prior to the RTL code for the FPGA existing! 

 Early in the design cycle, it can be diffi cult to predict the size of the FPGA device 
that is required for the project. Most FPGA families have a technical solution to this 
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problem; they support pin migration between devices of different density in the 
same package. Thus, it is advised that designers select a FPGA device that has sev-
eral densities in the same package. This creates the challenge for the board designer 
in creating a pinout that is migratable across all the device densities. Once again, 
help is at hand from some of the FPGA design tools via a feature that is often 
referred to as device migration. Device Migration is the ability to transfer a design 
from one device in an FPGA family to a different density device in the same device 
family which has the same device package. This enables you to transfer a design 
from the design’s target device to a larger or smaller device with the equivalent 
pin- outs, while maintaining the same board layout and pin assignments. This is a 
feature that can be selected in the FPGA vendor software when making the device 
selection. This feature will prevent the user from making pin assignments to pins 
that cannot be migrated across the different device densities. It is recommended that 
you include this requirement as part of your design plan as insurance against unfore-
seen changes in the FPGA design, particularly if creating a pinout early in the FPGA 
design cycle. This enables you to use a larger device if the changes to the design 
results in a signifi cant logic growth or potentially the ability to use a smaller, hence 
cheaper device, if the design size permits this. 

 The increase in system performance and bandwidth has resulted in faster pin 
speeds. At the time of writing, FPGAs are capable of interfacing with 64-bit DDR 
III SRAM running at 533 MHz. This is a data rate of 1,067 Mbps per pin. This can 
produce a number of simultaneously switching pins on the FPGA, which can in turn 
result in functional failures due to noise. The device needs to have a pin-out that 
avoids Simultaneously Switching Noise (SSN) and the FPGA needs to be termi-
nated on the board in a manner that avoids SSN issues. 

 Many FPGAs also include transceiver blocks that can operate up to 11.3 Gbps 
and support various I/O protocols such as PCI Express, Serial RapidIO ® , Gigabit 
Ethernet (GbE), to name a few. These high speed transceiver based interfaces 
require careful termination on the board to avoid Signal Integrity (SI) issues. 

 Now that we have identifi ed the potential pitfalls in creating a PCB design for 
high performance systems containing FPGA devices, we will focus on the tech-
niques that can be deployed to ensure that the board design is right fi rst time. 
The remainder of the chapter describes the challenges in more detail. It describes 
the roles of different teams in the board design process. It presents a methodology 
that addresses all of the challenges that we have described and culminates in a 
check list that can be used on any FPGA project to achieve successful FPGA 
pin-out and board design.  

7.2     Engineering Roles and Responsibilities 

 The engineers that are involved in the board design of systems containing FPGA 
devices can be classifi ed into three distinct engineering skill sets. These are 
FPGA design engineers, PCB Design Engineers and Signal Integrity Engineers. 
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In some organizations there is overlap in the functionality, but in general they are 
distinct disciplines and the functions are performed by different engineers or 
engineering teams. 

7.2.1     FPGA Engineers 

 FPGA Engineers are familiar with the FPGA vendor software. The FPGA engineer is 
typically responsible for writing and verifying the RTL code for the design. He, or 
she, is also responsible for implementing the design in the FPGA and helps with the 
debug of the design in the end system. 

 The FPGA engineer has a keep role to play in the PCB design. He is responsible 
for the generation of the FPGA pin-out from the FPGA design software. As such, 
he interfaces heavily with the PCB design engineer, providing updates to the pin 
assignments and implementing and verifying any recommended changes from the 
PCB design engineer. 

 The FPGA Engineer also acts as the interface to the Signal Integrity engineer. 
He provides the pin-out information, as well as any HSPICE and/or HSPICE models 
and netlists that are generated by the FPGA design software.  

7.2.2     PCB Design Engineer 

 The PCB design engineer is familiar with PCB schematic and layout software. 
The PCB design engineer is typically responsible for creating board schematics, 
including the generation of device symbols. He is also responsible for creating the 
board layout, which includes routing the board. The board layout and in particular 
the routing of the board is heavily dependent upon the pin-out of the devices on the 
board. As such, the PCB design engineer has a strong infl uence on the FPGA pin 
assignments, as these greatly impact his task and the potentially the cost of the 
board. While the PCB design engineer infl uences the choice of pin assignments for 
the FPGA, he typically has no desire to use the FPGA design software. This creates 
the requirement for an effi cient means of passing information to/from the FPGA 
engineer and the Board Designer. This is effectively the need for a two-way inter-
face mechanism between the FPGA design software and the board schematic soft-
ware, from EDA tool vendors. Today, some EDA tools provide a two way interface 
to the FPGA design software. However, the most commonly used interface for the 
communication of information between these two engineers is Microsoft Excel. 
Most of the FPGA design software offerings from the FPGA vendors have the abil-
ity to read and write the .csv format, which is used as the interface to Microsoft 
Excel. Similarly some of the board schematic software packages can read the .csv 
format. It is common practice within industry for board design engineers to create 
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scripts that generate the appropriate schematic symbols from the .csv format or 
from the FPGA vendor pin report. Thus the .csv format serves multiple purposes.

    1.    A source of integration between the FPGA and Board design software packages.   
   2.    Documentation of the design pin-out. As such, it should be stored under revision 

control.     

 An example of a .csv fi le that can be used to interface between the FPGA design 
software and board schematic software is detailed in Fig.  7.1 .  

 A key point is that the csv details much more than the pin assignments. It includes 
details on the I/O standard and current strength. These are important as they impact 
the signal quality on the board, as well as the I/O timing. 

 The PCB design engineer also interfaces with the Signal Integrity engineer, by 
providing details of the board layout characteristics that are used to generate the 
model of the board for Signal Integrity modeling.  

7.2.3     Signal Integrity Engineer 

 SI engineers are familiar with signal integrity simulation software from leading 
EDA vendors such as Synopsys, Mentor Graphics, Cadence, Agilent, etc. They are 
responsible for verifying that the signal quality (e.g. overshoot/undershoot), includ-
ing simultaneous switching noise (SSN) effects are within specifi cation. Ultimately, 
the SI engineer is responsible for verifying that the board timing meets the system 
requirements. 

 In the past, most FPGAs were designed without using the services of Signal 
Integrity Engineers. In truth many FPGAs are still being designed today without the 
services of SI engineers. Board designers have tended to lay the board out conserva-

Pin Name Direction Location I/O Bank VREF Group I/O Standard Current Strength

clk_in Input PIN_B13 4 B4_N1 3.3-V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[3] Input PIN_AE6 8 B8_N1 3.3-V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[2] Input PIN_AB10 8 B8_N1 3.3-V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[1] Input PIN_AA10 8 B8_N1 3.3-V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[0] Input PIN_Y11 8 B8_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[7] Bidir PIN_A8 3 B3_N0 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[6] Bidir PIN_B8 3 B3_N0 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[5] Bidir PIN_C9 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[4] Bidir PIN_D9 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[3] Bidir PIN_G10 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[2] Bidir PIN_F10 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[1] Bidir PIN_C8 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[0] Bidir PIN_D8 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
out_port_from_the_led_pio[7] Output PIN_AA11 8 B8_N1 1.8 V 12mA (default)
out_port_from_the_led_pio[6] Output PIN_AF7 8 B8_N1 1.8 V 12mA (default)
out_port_from_the_led_pio[5] Output PIN_AE7 8 B8_N1 1.8 V 12mA (default)
out_port_from_the_led_pio[4] Output PIN_AF8 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[3] Output PIN_AE8 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[2] Output PIN_W12 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[1] Output PIN_W11 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[0] Output PIN_AC10 8 B8_N0 1.8 V 12mA (default)

  Fig. 7.1    Example .csv fi le that interfaces between board design SW and FPGA SW       
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tively when interfacing with FPGAs and assumed, correctly in most cases, that this 
will meet their requirements. However, based upon the reasons stated earlier in this 
chapter, this approach is no longer adequate. The increase in I/O speeds for interfaces 
such as DDR II/III SRAM memories, plus the addition of high speed transceiver 
blocks require correct board termination to prevent SI and SSN issues. 

 These types of interfaces can be successfully designed by following the guide-
lines that are provided in the application notes provided by the FPGA vendors. 
However, each board design is different and it is recommended that SI engineers 
simulate the I/Os that have high performance requirements. This creates the require-
ment that the SI engineer interacts with both the FPGA and the board designer. He 
requires the HSPICE or IBIS models from the FPGA design engineer and the details 
on the board traces, etc. from the Board designers. SI simulations tend to be lengthy 
and should only be performed on the pins of the FPGA that are considered a high risk 
for Signal Integrity. That is the high performance I/O in the design. 

 FPGA designer driven board design fl ow in Fig.  7.2  details the stage in the design 
cycle where each of the engineering disciplines should be involved throughout the 
FPGA design cycle. The diagram is explained in more detail in the section of this 
chapter on Design Flows for creating the FPGA pinout.    

7.3     Power and Thermal Considerations 

 FPGA power estimation helps guide power supply design for the board. 
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  Fig. 7.2    Design cycle diagram detailing engineering discipline involvement          
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7.3.1     Filtering Power Supply Noise 

 In order to reduce system noise it is critical to provide clean and evenly distributed 
power to all devices on the board. Low frequency power supply noise can be fi ltered 
out by placing a 100 μF electrolytic capacitor adjacent to where the power line joins 
the PCB. If you are using a voltage regulator, the capacitor should be placed at the 
fi nal stage that provides the Vcc signal to the devices. 

 In order to reduce the high frequency noise to the power plane it is recom-
mended that decoupling capacitors as placed as close as possible to each Vcc and 
ground pair.  

7.3.2     Power Distribution 

 A power bus network or power planes are used to distribute power throughout the 
PCB. A power bus network is the least expensive solution but does suffer from 
power degradation. As such this should only be considered for cost sensitive appli-
cations on two-layer PCBs. 

 The recommended approach is to use two or more power planes. The power 
planes cover the full area of the PCB and distribute Vcc evenly to all devices, 
providing good noise protection. It is recommended that you do not share the same 
plane for analog and digital power supplies. Virtually all FPGA devices now contain 
PLLs, thus board design must accommodate an analog and digital power plane for 
the FPGA. 

 In summary, the power distribution recommendations are: 

 Use separate power planes for the analog and digital power supplies. 
 Place a ground plane next to the PLL power supply plane. 
 Avoid multiple signal layers when routing the PLL power. 
 Place analog and digital components over their respective ground plane. 
 Isolate the PLL power supply from the digital power supply.   

7.4     Signal Integrity 

 Digital designs have not traditionally been impacted by transmission line effects. 
As system speeds increase, the higher frequency impact on the system means that 
not only the digital properties, but also the analog effects within the system must be 
considered. These problems are likely to come to the forefront with increasing data 
rates for both I/O interfaces and memory interfaces, but particularly with the high- 
speed transceiver technology being embedded into FPGAs. Transmission line 
effects can have a signifi cant effect on the data being sent. However, as speed 
increases, high-frequency effects take over and even the shortest lines can suffer 
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from problems such as ringing, crosstalk, refl ections, and ground bounce, seriously 
hampering the integrity of the signal. Poor signal integrity causes poor reliability, 
degrades system performance, and, worst of all, causes system failures. The good 
news is that these issues can be overcome by following good design techniques and 
simple layout guidelines. 

7.4.1     Types of Signal Integrity Problems 

 There are four general types of SI problems. These are Signal Integrity on one net, 
cross talk between adjacent nets, rail collapse and EMI. 

7.4.1.1     Signal Integrity on One Net 

 Drive strength specifi es how much current the driver sources/sinks, while the slew 
rate specifi es how fast it sources/sinks the current. Together, these two settings 
determine the rise and fall times of the output signal. Process technologies with 
smaller feature sizes allow faster clocks, but faster clocks also signify shorter rise 
and fall times. This means that switching times are reduced even on low frequency 
signals as the rise and fall times are set by the technology. This reduction of the 
switching time comes together with larger transient current; consequently, larger 
switching noise. For a high fmax link signal, it might be necessary to have short rise 
and fall times, but for a low fmax link signal, you may reduce the noise by using 
longer rise and fall times.  

7.4.1.2     Crosstalk 

 Whenever a signal is driven along a wire, a magnetic fi eld develops around the wire. 
If two wires are placed adjacent to each other, it is possible that the two magnetic fi elds 
interact causing a cross-coupling of energy between the signals known as crosstalk. 

 The following PCB design techniques can signifi cantly reduce crosstalk:

    1.    Widen spacing between signal lines as much as routing restrictions allow.   
   2.    Design the transmission line so that the conductor is as close to the ground plane 

as possible. This couples the transmission line tightly to the ground plane and 
helps decouple it from adjacent signals.   

   3.    Use differential routing techniques where possible, especially for critical nets.   
   4.    Route signals on different layers orthogonal to each other, if there is signifi cant 

coupling.   
   5.    Minimize parallel run lengths between signals. Route with short parallel sections 

and minimize long coupled sections between nets.      

7.4 Signal Integrity
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7.4.1.3     Rail Collapse 

 Rail collapse is noise in the power and ground distribution network feeding the chip. 
Switching I/Os can cause a voltage to form across the impedance of the power and 
ground paths. This effectively causes a voltage drop with less voltage reaching the 
FPGA, further accentuating the problem. 

 The solution is to design the power and ground distribution network to minimize 
the impedance of the power distribution system.   

7.4.2     Electromagnetic Interference (EMI) 

 EMI is a disturbance that affects an electrical circuit due to either electromagnetic 
conduction or radiation. The disturbance may interrupt, obstruct, or otherwise 
degrade or limit the effective performance of the circuit. The source of EMI is rapidly 
changing electrical currents. 

 FPGAs are rarely a source of EMI, however the possibility of EMI being generated 
increases with the use of heatsinks, circuit board planes and cables. 

 EMI can be reduced on FPGAs through:

    1.    The use of bypass or “decoupling” capacitors connected across the power supply, 
as close to the FPGA as possible   

   2.    Rise time control of high-speed signals using series resistors   
   3.    Vcc fi ltering.   
   4.    Shielding. This is typically used as a last resort due to the added expense of 

shielding components.     

 The two most common sources of EMI on boards are:

    1.    The conversion of differential signal into a common signal, which eventually 
gets onto an external twisted pair cable.   

   2.    Ground bounce on a board generating common currents on external single-ended 
shielded cables.     

 These EMI effects can be controlled by grouping high speed signals away from 
where they might exit the product. 

 The key to effi cient high-speed product design is to take advantage of analysis 
tools that enable accurate performance prediction. Use measurements as a way of 
validating the design process, reducing risk and increasing confi dence in the tools.   

7.5     Design Flows for Creating the FPGA Pinout 

 There are two fl ows that are recommended to successfully create an FPGA pinout 
for the board design. In both fl ows there is signifi cant communication between the 
board designer and the FPGA designer. 
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7.5.1     User Flow 1: FPGA Designer Driven 

 In this design fl ow, the FPGA engineer generates the initial FPGA pin-out and provides 
the FPGA pin-out details to the PCB design engineer. The board design engineer 
makes suggested pin changes to ease the board design and provides these details to 
the FPGA engineer. The FPGA engineer makes the pin changes in the FPGA design 
software and confi rms if the changes will work for the FPGA design. This process 
is continued until a fi nal pin-out is obtained that meets the needs of both the FPGA 
designer and the board design engineer. 

 In reality the initial pin-out that is developed by the FPGA designer needs to be 
created with knowledge of the board layout, i.e. the relative location of the board 
components, such as memories, transceivers, microprocessors, etc. that the FPGA 
will interface with. The FPGA engineer can then make fl exible pin assignments, 
such as assigning memory interfaces to particular I/O banks and leave the FPGA 
design software to make the actual pin assignments. This approach will speed-up 
the pin planning process such that the communication between the board design 
engineer and the FPGA designer is basic pin swapping for ease of board design to 
minimize board trace crossovers, etc. as opposed to    large scale changes Fig.  7.3 . 

   Step 1: This fi rst step occurs in the FPGA design software. The FPGA designer 
will create an FPGA design project targeting the appropriate FPGA device and 
package. At this stage it is recommended that the designer enables any device 
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migration capabilities that exist in the FPGA design software to accommodate 
future design expansion or contraction.  

  Step 2: The FPGA designer starts to enter pin information based upon the FPGA 
design. The FPGA design is unlikely to be complete at this stage in the design 
cycle however the interfaces must be solid. At a minimum, a top-level design fi le 
should exist. This provides enough information for the designer to enter the pin 
names and to start entering properties of the pins, such as I/O standard, current 
strength, etc. This information can be entered into the FPGA design software 
manually or in most cases can be imported from other sources, such as Microsoft 
Excel. The recommendation is that this information is defi ned in the specifi cation 
for the design and that the specifi cation enables this information to be available 
in the .csv format for import into the FPGA design software. This will greatly 
shorten this process and reduce the risk of human error. 

 If interface IP is being used, some of the IP may already contain the pin prop-
erties information. The source fi les should be added to the design. The FPGA 
design software can usually read in the pin properties information.  

  Step 3: Defi ne the design interfaces by confi guring the ports and parameters of any 
IP being used to make the port connections to the top-level HDL File. As men-
tioned previously, it is recommended that a top-level design fi le already exists, 
however, in the case were the specifi cation is complete and the design fi le does 
not exist, some of the FPGA design software solutions can automatically gener-
ate a top-level HDL wrapper fi le based upon the Pin information that is entered 
in the FPGA design software. The top-level design fi le is needed to enable I/O 
rules checking in the FPGA design software. By creating the design interfaces, 
you are effectively creating a top-level block diagram of the interfaces to the 
FPGA design. By providing as much design information as possible to the FPGA 
design software, the more complete the I/O rule checks that can be performed by 
the FPGA design software.  

  Step 4: Make the pin assignments. If you know the exact pin numbers that you want, 
you should enter them directly into the FPGA design software. These can often 
be imported for IP. If you only know the general area of the device that the pin 
needs to be assigned to, then you can make broader assignments such as I/O 
Bank 1 and allow the FPGA design software to select the actual pin location.  

  Step 5: Perform I/O rules checking and generate a valid pin-out. All FPGA design 
software has an I/O rule checking capability. This should be run to check the 
validity of the pin assignments. Some of the FPGA design software packages 
have the ability to generate pin assignments based upon assignments to a specifi c 
area of the device as opposed to specifi c pins. These assignments can be accepted 
by the user to replace the board assignments and passed to the board designer.    

 I/O rule checking options in the FPGA design software is limited in the mount 
of rules it can reliably check without a complete design. Hence, it is strongly 
recommended that you create a dummy design that includes all of the IP for the 
interfaces and clock network details. The interfaces can be terminated with dummy 
logic such as FIFO’s where internal design blocks are not yet available. This approach 
enables the FPGA design software to check all of the I/O rules with confi dence that 
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the same pin-out can be used when the internal design blocks are added to the design 
in the future. 

 Steps 4 and 5 are now performed iteratively until an FPGA pinout is achieved 
that works on both the FPGA and the board. 

 As the design becomes complete any potential pin-out issues should be 
communicated back to the board designer and changes made at either the board or 
FPGA design level. Changes will not be required for dummy designs that are repre-
sentative of how the fi nal design will communicate with the pins in the FPGA.  

7.5.2     User Flow 2 

 In this design fl ow, the PCB design engineer generates the initial FPGA pin-out in the 
board design software and provides the FPGA pin-out details to the FPGA design 
engineer. Optionally the Board Design Engineer can run the FPGA design software 
to enter the pin details. In reality this is rarely the case unless the same engineer is 
performing both the FPGA and board design. The FPGA design engineer makes the 
pin assignments in the FPGA design software and confi rms if the assignments will 
work for the FPGA design. If there is an issue with the assignments, the FPGA 
design engineer makes suggested edits that the FPGA design software shows to be 
legal and feeds these changes back to the board designer, This process is continued 
until a fi nal pin-out is obtained that meets the needs of both the FPGA designer and 
the board design engineer Fig.  7.4 . 
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   Step 1: The board designer creates the FPGA pin assignments based upon the 
components on the board that will interface with the FPGA. This requires details 
on drive strength and clock restrictions on the FPGA. In reality the Board 
designer will work with the FPGA designer on this step, asking questions on 
where the transceivers are located on the device, power rail requirements and 
other possible restrictions to pin-out. The board designer will then create a fi rst 
pass at creating the pinout and pass this information to the FPGA designer.  

  Step 2, 3 and 4: This is the same as steps 1, 2 and 4 in user fl ow 1. The FPGA 
designer will create the FPGA project, make the pin assignments and assign the 
pin properties.  

  Step 5: The FPGA design can run the I/O rule checker to validate the pin assign-
ments and communicate any recommended changes back to the board designer. 
This process will continue until a satisfactory pinout is achieved. As in user fl ow 
1, the FPGA designer should create a dummy design or use the real design to 
ensure that the pin-out will work     

7.5.3     How Do FPGA and Board Engineers Communicate 
Pin Changes? 

 There is a tendency to communicate the pin-out changes verbally or via email. 
However, this approach is prone to error. There needs to be an offi cial document 
which resides in version control that is used to communicate the changes between 
the board designer and the FPGA designer. As mentioned earlier in this chapter, 
Microsoft Excel tends to serve this purpose in many Companies. One of the advan-
tages of using Microsoft Excel is that many of the board design tools and some of 
the FPGA design software can import and export .csv fi les.   

7.6     Board Design Check List for a Successful FPGA Pin-out 

     1.    Perform Power Thermal Analysis to ensure that all power planes can deliver the 
maximum current required while keeping the voltage rail within specifi cation.   

   2.    Perform pin assignment checking.

    2.1.    Check pin assignments in FPGA design software   
   2.2.    Terminate unused inputs to Ground   
   2.3.    Terminate unused I/Os as desired   
   2.4.    Check correct VCCIO for each I/O bank   
   2.5.    Does design meet the SSN guidelines?   
   2.6.    Select migration devices to accommodate future design growth or reduction.       

   3.    Perform confi guration mode check against vendor confi guration handbook   
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   4.    Check Power supply connections and decoupling against vendor power supply 
recommendations   

   5.    Perform board Signal Integrity simulations.   
   6.    Compare I/O Timing to I/O Timing Requirements. This requires the design to 

be complete or at least the I/O interface portions of the design.   
   7.    Complete board design review between FPGA design team and PCB design 

team.        

7.6 Board Design Check List for a Successful FPGA Pin-out
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    Chapter 8   
 Power and Thermal Analysis 

          Abstract     The increase in density and performance of FPGAs has resulted in an 
increase in power consumed by the FPGA. Both FPGA and PCB design engineers 
need to consider the power when making the choice to use an FPGA and a particular 
FPGA vendor, as the power consumed by the FPGA will impact the design of the PCB 
power supplies, choice of voltage regulators, the heat sink and the system’s cooling 
system. In short, it is crucial in developing the power budget for the entire system.           

8.1      Introduction 

 The increase in density and performance of FPGAs has resulted in an increase in 
power consumed by the FPGA. Both FPGA and PCB design engineers need to 
consider the power when making the choice to use an FPGA and a particular FPGA 
vendor, as the power consumed by the FPGA will impact the design of the PCB 
power supplies, choice of voltage regulators, the heat sink and the system’s cooling 
system. In short, it is crucial in developing the power budget for the entire system. 

 For applications that are power sensitive and where it is anticipated that meeting 
the power budget will be tight, the design engineer needs to perform power analysis 
during the development of the design and deploy power saving techniques as appro-
priate. Throughout the design cycle, the engineers need to be able to refi ne the 
estimates and apply the appropriate power management design techniques. 

 Today’s FPGAs come with a variety of features for reducing the FPGA power, 
including power optimization options in the FPGA design software. Details on 
power optimization techniques are covered in the RTL coding guidelines and 
Timing Closure chapters of the book. 

 FPGA vendors also provide solutions for estimating the power that will be 
consumed by the FPGA at different stages of the design fl ow. 

 In this chapter we will review the basic elements of power consumption in FPGA 
devices, as well as the main factors that impact the ability of a designer to obtain an 
accurate estimation of a design’s power consumption. We will look at the tools and 
techniques for performing power estimation very early in the design cycle, in order 
to enable the right choice of FPGA technology and to select the right power regula-
tors and components for the board design. Then we will at the tools and techniques 
to enable you to perform a more detailed power estimation based upon the design 
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implementation. Finally we will review the best practice recommendations for 
dealing with power in FPGA designs.  

8.2     Power Basics 

 Thermal power is the component of total power that is dissipated within the device 
package. Designers need to consider the thermal power in determining whether they 
need to deploy thermal solutions on the FPGA, such as heat sinks, to keep the internal 
die-junction temperature within the recommended operating conditions. 

 The total power consumed by a device, considering its output loading and external 
termination, is comprised of the following major power components: 

8.2.1     Static Power 

 Static power is the power consumed by a device due to leakage currents when there 
is no activity or switching in the design. This is the quiescent state. This type of 
power is often referred to as standby power and is independent of the actual design. 
The amount of leakage current depends upon the die size, junction temperature, and 
process variation. This data can be extracted from the FPGA device data sheet or 
from the vendors Early Power Estimation Spreadsheet. It is recommended that you 
extract the data from the vendors Early Power Estimation Spreadsheet as the data is 
generally reported in a much clearer format than in most data sheets.  

8.2.2     Dynamic Power 

 This is the power consumed through device operation caused by internal nodes in the 
FPGA toggling. That is, the charging and discharging of capacitive loads in the logic 
array and routing. The main variables affecting dynamic power are capacitance 
charging, supply voltage, and clock frequency. A large portion of the total dynamic 
power consumed in FPGAs is due to the routing fabric of the FPGA device. 

 Dynamic power is design dependent and can be heavily infl uenced by the users 
RTL style.  

8.2.3     I/O Power 

 This is the power consumed due to the charging and discharging of external load 
 capacitors connected to the device output pins and any external termination networks. 
Again, I/O power is design dependent and is impacted by the I/O standard, data rate, 
the confi guration of the pin as either input or output or bidirectional. The termination 
on inputs, and the current strength, slew rate and load for outputs impact the I/O power.  
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8.2.4     Inrush Current 

 Inrush current is the current, hence power, that the device requires during initial 
power-up. During the power-up stage, a minimum level of logic array current 
(ICCINT) must be provided to the device, for a specifi c duration of time. This dura-
tion depends on the amount of current available from the power supply. When the 
voltage reaches 90 % of its nominal value, the initial high current is usually no 
longer required. As device temperature increases, the inrush current required during 
power-up decreases, however the standby current will increase.  

8.2.5     Confi guration Power 

 Confi guration power is the power required to confi gure the device. During confi gu-
ration and initialization, the device requires power to reset registers, enable I/O pins, 
and enter operating mode. The I/O pins are typically tri-stated during the power-up 
stage, both before and during confi guration in order to reduce power and to prevent 
them from driving out during this time.   

8.3     Key Factors in Accurate Power Estimation 

 Before discussing the best    approach to performing power and thermal analysis for 
an FPGA design, we will look at the key factors for accurate power estimation 
Fig.  8.1 .  
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  Fig. 8.1    Key elements in accurate power estimation       
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8.3.1     Accurate Power Models of the FPGA Circuitry 

 These are the models that are provided by the FPGA vendors as part of their power 
estimation solutions. The FPGA design engineer must trust that the FPGA vendor is 
being honest with the models. These models are typically developed from HSPICE 
and the models correlated with silicon characterization. This process varies slightly 
across FPGA vendors. The accuracy of the models will vary depending upon the 
maturity of the FPGA family. If the FPGA family is new to the market, the power 
models will be preliminary and subject to change as the FPGA vendor completes 
characterization of the family. The negative impact of the variation should be minor 
if the FPGA vendor is conservative in the development of the initial HSPICE models. 
Asking the silicon vendor for details on how they develop their power models will 
help set your expectations on the accuracy of the models.  

8.3.2     Accurate Toggle Rate Data on Each Signal 

 Toggle rate data, also referred to as Signal Activity, relates to the performance of the 
design. While clock speed is important, the average number of times that a signal 
changes value per unit of time is more important as this transition impacts the power 
consumption. 

 A logic ‘1’ condition consumes more power than a logic ‘0’, thus the amount of 
time that a signal is logic ‘1’ will impact power. This tends to have an impact on I/O 
power on pins that use terminated standards. 

 Toggle rate data is under the control of the FPGA design engineer, in that it is 
dependent upon system operation. This information is usually derived from design 
simulations or toggle rates which are based upon previous design experience. As 
such, entering reasonably accurate toggle rate data is an easier task for designs that 
are derivatives of previous designs than for new designs. I cannot overemphasize the 
importance of using toggle rate data that is refl ective of the end system operation, as 
gross inaccuracy in the prediction of the toggle rate is the main source of error in 
power estimation. 

 In many cases, the simulation data fails to represent real world operation. If 
simulation is performed for the purpose of measuring code coverage, it is likely to 
over predict the power that will be used in operation. As a designer, you need to 
avoid the dangerous situation of under predicting the toggle rate, as this will result 
in an under estimation of power. However, an over prediction of power may result 
in more expensive power management solution. 

 The power estimation solutions from the FPGA vendors assume a default toggle 
rate of 12.5 % unless specifi ed otherwise by the FPGA design engineer. For many 
applications, this is suffi cient very early in the design cycle, as most designs do not 
have a high toggle rate on all nodes, and the end application is specifi ed to cope with 
a margin of error within 30 % of the total power. However, this may not be the case 
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for designs in which the majority of the design performs high performance process-
ing, as is the case in many DSP processing applications. These designs will typi-
cally exhibit a higher toggle rate. 

 The FPGA vendor power estimation solutions allow you to easily change the 
toggle rate values and to quickly see the impact that it has on power. It is recom-
mended that you do what you can to correctly estimate the toggle rate for your 
application. It is also recommended that if you are not sure of the toggle rate that 
you try a range of toggle rate values to indicate a possible best case and worst case 
scenario. Note that it is unlikely that a complete system design will have a toggle 
rate above 40 %.  

8.3.3     Accurate Operating Conditions 

 When we look at the impact of temperature on standby power, particularly for 
devices at process geometries of 65 nm and below, we can see that there is a dramatic 
increase in power above Tj of 85C Fig.  8.2 .  

 Temperature has a big impact on static power, as the leakage power is an expo-
nential function of Tj. High leakage increases Tj, which, in turn, further increases 
the leakage, forming a potential positive feedback loop. Tj = Ta + θja × (standby 
power + dynamic power) where Ta is the ambient temperature, and θja is the thermal 
resistance between the device junction and ambient air. It is essential to ensure that 
the junction temperature remains within its operating range and does not enter a 
positive feedback loop. The more power a device consumes, the more heat it generates 
and this heat must be dissipated to maintain operating temperatures within specifi cation. 
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For the FPGA and board designer it is essential that this is modeled during power 
estimation and that the tools used to calculate the power consider the heatsink used, 
air fl ow and other factors to correctly model Tj. 

 Thus it is important that the FPGA and/or board design engineer uses the appro-
priate thermal management technique to minimize power consumption.  

8.3.4     Resource Utilization 

 There is a fourth element that impacts power and that is the utilization of the resources 
in the FPGA device. In general, the more logic used, the more power consumed. 

 However, as a designer you need to be aware of the impact of the different types 
of resources in the FPGA device on power. As the designer or implementer, you 
have the ability to trade-off resource type usage, e.g. Logic element usage versus 
dedicated hardware blocks, such as RAM and DSP Blocks. 

 If you look at a typical FPGA design, approx. 65 % of the power is core dynamic 
power, 24 % is core static power, 10.5 % is IO dynamic power and about 0.5 % is 
IO static power. 

 If we dig into the core dynamic power in more detail, the majority of it can be 
attributed to routing and combinational logic in the logic elements. RAM blocks 
also consumes signifi cant dynamic power. 

 The dynamic power for the clock networks consists of the global clock routing 
resources plus the power consumed by the local clock distribution within the LEs, 
RAM and DSP blocks. Designers can control the dynamic via the choice of resource 
type and the use of clock control blocks. This is discussed in more detail in the 
chapter on timing closure.   

8.4     Power Estimation Early in the Design Cycle (Power 
Supply Planning) 

 As mentioned previously, FPGA Vendor data sheets do not provide much data on 
the typical power consumption of an FPGA family. FPGA vendors do however 
provide Power Estimation tools to report the power for a given device. 

 Early FPGA power estimation helps guide power supply design for the board. 
More often than not, this task needs to be performed before the FPGA design 
is complete or started. The power estimation spreadsheets provided by the FPGA 
vendors can be used to estimate the power for your design and to perform prelimi-
nary thermal analysis on your design at various stages of the design cycle. 

 Figure  8.3  shows a sample power estimation spreadsheet for the Altera Stratix IV 
GX family.  

 The vendor provided spreadsheets are based upon Excel and can be downloaded 
from the FPGA vendor website free of charge. The accuracy of the power estimation 
increases as you provide more information that is indicative of your operating 
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conditions and of the fi nal design. The maturity of the devices will also impact the 
accuracy, i.e. are the vendor power models fi nal or preliminary. With minimal effort 
this can provide a good ballpark estimate on power, i.e. within 30 % of real num-
bers; enabling you to choose the right FPGA technology for your application and to 
specify the power supply design. By investing more time on entering more detailed 
data on your design and operating conditions, you can typically get within 20 % of 
the real power. These tools allow designers to enter details on their design and oper-
ating conditions. Some of the FPGA vendor tools have the capability to import data 
from their compiled designs into the Power Estimation Spreadsheet. This feature 
works well for partial designs or estimating power based upon legacy information. 
This information serves as a starting point and the details, such as the different 
resource counts, number of clocks, etc. can be edited in the spreadsheet to refl ect the 
expected size and characteristics of the fi nal design. This is a much quicker and less 
error prone approach to entering data by using the    power estimation and analysis 
solutions that exist in the FPGA vendor software as discussed in Sect.  8.5 , Simulation 
Based Power Estimation.  

8.5      Simulation Based Power Estimation (Design Power 
Verifi cation) 

 Simulation based power estimation provides the most accurate power estimation 
solution, providing the simulation vectors are representative of real system operation. 
Simulation based power estimation uses the results from running a simulation in 

  Fig. 8.3    Sample power estimation spreadsheet for the Altera Stratix IV GX family       
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standard EDA tools, such as Mentor Modelsim, Synopsys VCS and Cadence 
Incisive, to name a few, in order to simulate the device operation. The resulting 
simulation data is used as stimulus to the FPGA vendor simulation based power 
estimation tool. 

 A Value Change Dump (VCD) fi le is normally used to transfer the data from the 
EDA simulation tool to the FPGA vendor software. The reason why the power esti-
mation solution in the FPGA vendor software is more accurate than the spreadsheet 
power estimation solutions is that full Place and Route has been completed on the 
design and at this point the modeling takes into account the actual placement and 
the routing types used on the design. The ability to use real life operation values also 
has a large impact on the accuracy of the estimation. 

 Having a design plus accurate simulation vectors implies that the design is com-
plete or is very close to being complete. Therefore it is recommended for most 
designs that this type of analysis is run towards the end of the design cycle to deter-
mine what the real power consumption is for the design. Thus, t is more of a sanity 
check that the design is within power budget rather than something that is run con-
tinuously throughout the design cycle. 

 An exception is power sensitive designs where this data can be used to determine 
if the RTL needs to be optimized for power or whether to utilize power optimization 
options that exist in the FPGA vendor software. Simulation based power estimation 
can be run early in the design cycle on blocks of RTL that already exist to determine 
the toggle rate on these blocks for use in the spreadsheet based power estimation 
solutions. The power report on these blocks of reusable IP can also be included in 
the documentation on the blocks to give other users of the design blocks or IP, back-
ground data on the expected power consumption for the block. 

 One of the challenges with simulation based power estimation is that the most 
accurate power estimation is based upon gate level simulation of the design, as the 
toggle rate data from the simulation will be available for every node in the design. 
However this type of simulation tends to be runtime intensive for certain application 
spaces, such as video and image processing. So while this type of analysis provides 
the most accurate power results, the simulation time may make it impractical for 
certain applications. Thus, it is recommended that RTL simulations be used for 
these types of applications. Gate level simulations can be run as a sanity check on 
the design, i.e. only to models certain operating conditions of the design. It is rec-
ommended that you use gate level simulation if the simulation time is feasible for 
your end application. 

 An RTL simulation will contain the correct toggle rate on the I/O pins and on 
most of the registers. There will be some level of inaccuracy on the registers as 
synthesis will perform register duplication and register merging as part of its opti-
mizations. The combinational nodes will also be inaccurate as the names will not 
match due to the optimizations performed. This however is not a huge issue, as most 
of the simulation based power estimation solutions contain a mode called vectorless 
estimation, which can be combined with RTL simulation based estimation to 
provide an acceptable level of accuracy. 

8 Power and Thermal Analysis



75

 Vectorless power estimation uses a statistical analysis approach to predict the 
probability of the nodes between known good data points toggling. If we look at the 
circuit in Fig.  8.4 , if we know the static probabilities and toggle rates of inputs A, B, 
C, D, E, F, G and H, it is possible to estimate the static probabilities and toggle rates 
at I, J, K, L; hence the fi nal output M.  

 This capability can be used to enhance the accuracy of RTL simulation based 
estimation. As part of best practices we recommend running a sample of gate level 
simulations, but for long simulations, RTL + Vectorless estimation is the recom-
mended approach. It is also advised that you perform simulation based estimation at 
certain checkpoints throughout the design process. In reality, at this stage in the 
project this should be more of a sanity check rather than a necessity. After perform-
ing the early power estimation, you ought to have left suffi cient headroom on the 
power budget such that you are not constantly optimizing your design for power. 
As with Early Power Estimation, you need to vary the operating conditions in terms 
of temperature and voltage, to ensure that you are refl ecting the real world operating 
conditions. 

 The simulation based power estimation tools generate reports aimed at facilitating 
both thermal and power supply planning requirements. These reports pinpoint 
which device structures and even design hierarchy blocks are dissipating the most 
thermal power, thus enabling design decisions that reduce power consumption. This 
provides very high quality power estimates which are usually within 20 % of device 
measurements, provided the toggle rate data is accurate Fig.  8.5 .  

8.5.1     Partial Simulations 

 One of the challenges in a simulation based approach to power estimation is the 
initialization time in the testbench and hence simulation. This can reduce your 
effective toggle rate if the simulation is not run to refl ect a long period of operation. 
You can perform a simulation where the entire simulation time is not applicable to 
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  Fig. 8.4    Circuit demonstrating probability of nodes toggling       
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the signal activity calculation, reducing the accuracy of the estimation. For example, 
if you run a simulation for 10,000 clock cycles and reset the chip for the fi rst 2,000 
clock cycles. If the signal activity calculation is performed over all 10,000 cycles, 
the toggle rates are typically only 80 % of their steady state value (since the chip is 
in reset for the fi rst 20 % of the simulation). Some of the FPGA vendor solutions 
allow the user to specify the useful parts of the . vcd  fi le for power analysis, enabling 
you to ignore the initialization stage as part of the power estimation.   

8.6     Best Practices for Power Estimation 

 Figure  8.6.      

  Fig. 8.5    Sample power estimation report from Quartus II PowerPlay Estimator       
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Stage of Design Cycle Task Tools Additional Content
Legacy Designs
Previous Experience
Design Specification
Early RTL code

FPGA Vendor Power Estimation
Spreadsheet

Legacy Designs
Previous Experience
Design Specification
Early RTL code

FPGA Vendor Power Estimation
Spreadsheet

Spot check Power Based Upon
Evolving Design

FPGA Vendor Power Estimation
Spreadsheet HDL Design

Testbench
EDA Simulation Tools

Determine Final Power HDL Design
Estimate Power for Power
Optimization Testbench

EDA Simulation Tools
Final Board and Test
EquipmentFinal Design

FPGA Vendor Board Design GuidelinesBoard DesignEarly Power Estimation

Evolving Design
FPGA Vendor Simulation Based Power
Estimation Tool

Estimate Power for Power
Optimization

Device Selection FPGA Vendor Power Estimation
Spreadsheet

Board Power Supply Specification FPGA Vendor Board Design Guidelines

FPGA Vendor Simulation Based Power
Estimation ToolMeasure Power on Board

  Fig. 8.6    Best Practices for Power Estimation       
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    Chapter 9   
 Team Based Design Flow 

          Abstract     The successful deployment of a team based design environment enables 
you to take advantage of the following benefi ts:           

9.1      Introduction 

 The successful deployment of a team based design environment enables you to take 
advantage of the following benefi ts:

    1.    Project acceleration. Engineers can start implementing their portion of the design 
without having to wait for the rest of the team.   

   2.    Simplifi cation of timing closure and verifi cation. Simplify the resolution of 
timing closure issues by enabling team members to have to only implement their 
portion of the design. This reduces the compilation time and isolates the timing 
issues to a smaller portion of the design. Verifi cation is simplifi ed in that block 
level verifi cation can be complete at a functional and timing level.   

   3.    Reduced compile time. Compile time reduction when making small changes to 
one module portion of the design while preserving the performance in the rest of 
the design.   

   4.    Shorter timing closure cycle with performance preservation on completed design 
blocks.     

 There are some unique challenges in designing for FPGA devices in a team 
based environment. This is mainly due to the available resources in the FPGA 
device. This chapter describes the steps to successfully set-up a FPGA design project 
to allow multiple engineers to successfully design for a single FPGA device and to 
achieve all of the benefi ts that are mentioned above.  
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9.2     Recommended Team Based Design Flow 

9.2.1     Overview 

 A successful team based design fl ow usually involves a single team lead and many 
team members. The team lead is responsible for the up-front design planning and 
the fi nal integration of the design. The other team members are responsible for 
creating the RTL for their design blocks and implementing their design blocks, 
i.e., closing timing on their design blocks. 

 In order to implement this design fl ow, there is a need to perform project set-up 
of the projects for the individual team members and to integrate the individual team 
members design implementations into the top-level project. 

 The diagram in Fig.  9.1  shows the team based design fl ow at a high level.    

Team Leader sets up
project

Team Members
implement partitions

Team Leader
integrates & analyzes

full design

Design
Finished?

Done

Yes

No

Implement
Changes

  Fig. 9.1    Team based design 
fl ow       
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9.3     Design Set-up 

 The design set-up is performed by the team lead working with the individual team 
members. Ultimately, the lead will be responsible for assigning tasks to the team mem-
bers, setting up of the project, the fi nal integration of the design and design sign-off. 

 The initial design setup provides the framework for each team member to imple-
ment their portion of the design independently. However, the individual design blocks 
are implemented in the context of the top-level design to avoid integration issues. 

 The project set-up will work from a top-level project (design) that may or may 
not include the RTL for the other design modules. At a minimum it must contain the 
interfaces for the other design blocks. 

 The diagram in Fig.  9.2  describes the set-up process.  

Create Top-level Project

Create Project

Add Top-Level
RTL/Design

Synthesize Design

Partition Design

Timing Budgeting

Synthesize Design

Physical Partition /
Floorplan Design

Place & Route
Design

Create Projects for
Partitions/Other
team members

Timing Budget and Floorplan
may change as the design
solidifies

  Fig. 9.2    Design set-up       
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9.3.1     Creation of Top-Level Project 

 This task is performed by the team lead. In doing this, the team lead establishes the 
design directory structure that will be used in the project, such that each of the team 
members understands where the different fi les and scripts are located. At this stage, 
the manner in which source control will be managed should also be defi ned. All of 
the interfaces for each of the partitions will be defi ned, even though the design 
blocks themselves are likely black boxes as the logic is not yet available. The team 
lead will synthesis the design in order to establish the hierarchy of the design in the 
FPGA design tools. This is necessary to enable partitioning of the design and physical 
fl oorplanning of the logical partitions.  

9.3.2     Partitioning of the Design 

 The team lead will partition the design into functional blocks that will be assigned 
to the other team members. The partitions can be custom design blocks, IP, or Empty 
(not yet designed). At this time the partitioning of the design is a logical partitioning. 
The guidelines for successfully partitioning the design are the same as the guide-
lines in the Hierarchy and Design Partitioning section of Chap.   10    .  

9.3.3     Timing Budgets 

 The team lead will create the timing constraints in the top-level project. These 
constraints will propagate to the other partitions. This includes timing budgets 
between partitions. 

 As the design matures, the timing requriements must be synchronized between 
all of the projects. Timing closure problems within a block can be addressed in the 
RTL or at the physical level. 

 The individual designers of the partitions will inherit the timing data from the 
timing budget set at the top-level budget. The design fl ow will allow the team 
members to overwrite the delays in their projects based upon a review process 
with the team lead and other team members. Version control should be    used to 
ensure that all team members are working with the same top-level timing con-
straints Fig.  9.3 .  

9 Team Based Design Flow
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 In order to create the timing budget at the top-level design, the top-level design 
must past through synthesis. These timing constraints will include the top-level 
clock and I/O constraints for the project, as well as the constraints between the 
partitions in the design. 

 Prior to passing the constraints to the lower level projects, the design will be 
fl oorplanned and go through a top-level fi t to assign physical resources. 

 The timing assignments can be created prior to performing fl oorplanning Fig.  9.4 .  

Initial Design Budget on Top-level
design (Clock timing & Pin timing)

Early Floorplanning

Specify timing budgets between blocks

Create Sub-projects ( Inherit timing
constraints from top-level project)

  Fig. 9.3    Top-down timing 
budget       

Open Design (Inherits SDC constraints
from top-level project)

Create timing exceptions & advanced
timing assignments

Export timing constraints to top-level
project

Timing Budget in Lower-Level Project
Clock constraints
Pin constraints
Intra-partition constraints on virtual ports

Multicycle, false paths, etc. as RTL matures

Need to integrate the lower level SDC
constraints in the top-level project

  Fig. 9.4    Timing budget in lower level design       
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 The lower level project will inherit the timing constraints from the top-level 
project. As the engineer using the lower—level project adds the RTL and opti-
mizes the design for timing closure, they will likely create new timing constraints 
for the lower level partition, in order to close timing. These should not confl ict 
with the timing constraints from the top-level, but should be additive. In cases 
where they do change or confl ict with the top-level project there needs to be a 
review with the team lead to approve the change. This needs to be handled with 
version control and any approved changes in timing budgets updated in the other 
users projects. 

 Once the designer successfully closes timing on the design, he will export the 
design including the constraints for use in the top-level design. 

 It is likely that as functional problems are uncovered in the design, there will 
be numerous back and forth fl ows from top to lower-level back to top-level 
level.  

9.3.4     Physical Partitioning/Floorplan Design 

 The size of the Partition is important for design utilization. It is recommended 
that users limit the number of partitions. Floorplanning will be an iterative and con-
tinuous process that will start before the RTL is complete and may continue through 
to fi nal integration. 

 This requires both early and late fl oorplanning of the design.

    1.    Early Floorplanning: 
 Early on in the design, there team lead will want to perform rapid explora-
tion of trade-offs in physical architecture to provide the optimum floorplan. 
This will be required prior to the completion of all of the design blocks. 
This will highlight possible timing problems or resource conflicts early in 
the design cycle. 

 The early fl oorplanning process will defi ne the block specifi cations. This will 
include the number of blocks, size, top-level netlist and global timing require-
ments. It will also include the initial shape of modules and the exact timing 
relationship between the blocks.   

   2.    Late Floorplanning (Incremental Refi nement): 
 At this stage in the design fl ow, the designers of the lower-level partitions will be 
feeding back information to the team lead on changes that they need to meet the 
timing and functionality requirements for their design. Ideally, the team lead will 
have successfully allocated enough area and the region will not have to change. 

9 Team Based Design Flow
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In many cases, it is possible that some incremental changes will need to be made 
in the top-level. The number of changes should be limited as much as possible as 
the reallocation of resources and change in region dimensions is fairly disruptive 
to all users.      

9.3.5     Place and Route Design 

 The team lead will place and route the top-level design, together with any information 
that is available for the lower-level partitions. This will lock down the resources 
assigned to each of the partitions as well as the ports on the boundaries for each of 
the partitions to meet the inter-region timing requirements. 

 At this point the design is now ready for the rest of the team members to start 
their development independent of the rest of the team members.  

9.3.6     Create Project for Partitions/Other Team Members 

 The team lead will check the design and any scripts, including MAKE fi les, into 
version control, such that any user can recreate the project. The team lead will 
also perform an export on each of the lower level partitions. This will in effect 
create lower level projects for each of the partitions. These lower level partitions 
will be a variation of the top-level project, with the exception that the projects will 
not include any of the logic from the top-level design. It will contain post-fi t infor-
mation from the top-level project and the timing requirements required for the 
lower level project. Thus, the projects for the lower level partitions will only com-
pile the logic for the lower level partition and be restricted to the resources 
assigned at the top-level.   

9.4     Team Member Development Flow 

 Each team member can iterate on their block as needed and periodically export 
results for use by the team leader in an assembly run Fig.  9.5 .   

9.4 Team Member Development Flow
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9.5     Team Leader Design Integration 

 The design assembly can be done at regularly scheduled intervals, or whenever 
there has been a major update to one or more of the team member modules. 

 Assembly on a recurring basis also allows the team member to import the latest 
implemented version of other team member modules. This can help identify any 
potential timing closure or confl icts early in the design process. 

 During assembly, the team leader imports any existing team member modules. 
The top-level logic, including routes between the modules, can be reused from the 
initial setup stage or can be recompiled. The team lead also imports the timing con-

Open Project Generated by
Team Leader

Add RTL/Design &
Synthesize Design

Update timing constraints &
optionally lower-level
floorplan constraints

Place & Route Design

Achieved
Timing
Closure?

Export Design & Updated
Constraints

Yes

No

Modify
RTL/Design/Constraints

& Synthesize Design 

  Fig. 9.5    Team member development fl ow       
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straints and any location constraints from the lower-level projects as described earlier. 
There should be no placement confl icts during import. If there are any routing confl icts, 
they can be resolved by reducing the level of preservation on certain modules, such as 
allowing the ports to move and not preserving all routing on partitions. If this is allowed, 
the lower-level partition needs to be updated with the new information. 

 The team leader has overall responsibility for verifying timing closure on the 
complete design at the top-level Fig.  9.6 .   

Import Lower Level
Designs/Partitions

Synthesize Top-Level
Design or Reuse Previous

Results

Update Constraints

Achieved
Timing
Closure?

Place & Route Design or
Reuse Post-

Implementation Results

Done

Yes

No Modify Timing &/or
Location constraints &/or
Require design recoding

Export New Requirements
to Lower-Level Project(s)

Complete Lower-Level
Project(s)

  Fig. 9.6    Design assembly/integration fl ow       
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9.6     Working with Version Control Software 

 The entire design fl ow must be scriptable and be integrated with version control 
software. Users must be able to check their fi les out of version control, run their 
scripts and achieve the same results that they could achieve previously. In order to 
get the benefi ts of previously compiled designs, users need access to the database 
from the last compilation. It is not practical to check the database into version 
control. It is recommended that users access a master database on a server to take 
full advantage of the compile time benefi ts Fig.  9.7 .  

Version
Control

Network
Storage

FPGA SW

DatabasesFiles

FPGA SW

Daily
Build

Build 107

Build
108

Don’t build from scratch but re-
use previous incremental results

  Fig. 9.7    Interaction with version Control       

 The design that is placed under version control should contain all source fi les. 
In the case of projects that use the Altera Quartus software, this should include the 
Qsys system with user RTL in the Qsys system, RTL used outside of Qsys, the DSP 
Builder system, Altera IP and source code for a Nios II and/or ARM 9 system. This 
should include testbenches at the modular level and system level. Ideally, there 
should be scripts or MAKE fi les for each level of the project. 

 A suggested directory structure is shown in Fig.  9.8 .  
 This directory structure is similar to the structure used by the IP and reference 

design that are delivered by Opencores.org.  
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RTL
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Scripts
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Partition 2

Partition N

RTL
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Trunk

Top

Scripts

Constraint Files

SW Files

Generated
Reports

Generated
Reports

  Fig. 9.8    Suggested directory structure for version control       

9.7     Team Based Design Checklist 

     1.    Assign a team lead to the project   
   2.    Create directory structure for project   
   3.    Set-up top-level project   
   4.    Partition project to include including timing budgets and resource constraints   
   5.    Create scripts/MAKE fi les for project   
   6.    Create projects for other team members based upon partitions   
   7.    Ensure projects for other partitions include top-level design constraints   
   8.    Meet timing budget with 20 % margin in individual partitions   
   9.    Export design results and updated constraints to top-level project   
   10.    Integrate lower level implementations into top-level project   
   11.    Achieve timing closure on complete design        
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    Chapter 10   
 RTL Design 

          Abstract     The high level challenges that designers face when writing RTL for 
FPGA devices are similar to the challenges that are faced when writing RTL code 
for ASICs.           

10.1      Introduction 

 The high level challenges that designers face when writing RTL for FPGA devices 
are similar to the challenges that are faced when writing RTL code for ASICs.

    1.    What is the goal for my design block?   
   2.    Am I trying to achieve the highest performance or smallest area?   
   3.    Is my code functionally correct and is it easy to synthesize in the target synthesis 

tool?   
   4.    Is my RTL code usable?   
   5.    Is my design easy for place and route to successfully compile and close timing 

on the design?     

 There are however unique high level goals that apply to writing RTL for FPGAs.

    1.    Is my RTL optimized for the target FPGA architecture or can the RTL be targeted 
across multiple FPGA architectures?   

   2.    Is my RTL optimized for compile time?     

 As we look in more detail at writing RTL for FPGAs, we come across more 
differences compared to writing RTL for ASICs. These differences are due to the 
architecture of FPGA devices. This provides us with the fi rst rule of writing RTL for 
FPGA devices; “understand the architecture of the target FPGA.” 

 This chapter provides getting started tips to designers of various backgrounds. 
It describes some general FPGA architecture features, before covering general good 
practices in writing RTL. It then provides RTL coding guidelines that are optimized 
for FPGA architectures, before ending with a summary of best practice recommen-
dations of RTL design for FPGAs.  
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10.2     Common Terms and Terminology 

 HDL—Hardware Description Language is a software programming language that is 
used to model a piece of hardware. 

 RTL—Register Transfer Level, defi nes input–output relationships in terms of 
datafl ow operations on signals and register values. 

 Behavior Modeling—A component is described by its input–output relationship. 
Only the functionality of the circuit is described and not the structure of the end 
implementation. There is no specifi c hardware intent and the coding style is generic 
such that it can target any technology. 

input1, .., inputn
output1, .., outputn

if (input1)
for (j=0, j<8, j=j+2)

#5 output1 = 1’b0;
else

for (j=1, j<8, j=j+2)
#5 output1 = 1’b1;

  Fig. 10.1    Behavioral modeling          

input1

inputn

output1

outputn

Higher-level 

Lower-level
Component1

Lower-level
Component1

  Fig. 10.2    Structural modeling       

 Structural Modeling—A component is described by interconnecting lower-level 
components and primitives. It describes both the functionality and structure of the 
circuit. 

 It is created with the    implementation in hardware in mind Figs.  10.1 ,  10.2  and  10.3 .    
 Synthesis—This is the translation of HDL to a circuit and then the optimization 

of the circuit. Basically the RTL description of your design is interpreted and hard-
ware created for the targeted FPGA architecture. The synthesis tools require certain 
coding styles to generate correct logic. The coding style is important to achieve fast 
and effi cient logic.  
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10.3     Recommendations for Engineers with an ASIC 
Design Background 

 The fi rst thing to be aware of is that FPGAs are loaded with registers. Whether you 
use them or not, they are in the device that you have purchased. One way to look at 
it is that registers are free, therefore use them or lose them. 

 The use of registers is important for the performance of your FPGA design. 
FPGA logic is generally slower than that of ASICs on the same process geometry. 
Make use of the registers to pipeline your design to meet the design performance 
requirements. 

 Many ASIC designs make use of latches. Do not do this in FPGA designs. 
Use registers in place of latches. This will signifi cantly improve the FPGA clock 
performance, albeit potentially at the cost of latency. 

 A common technique in ASIC designs for power reduction and for design 
testability is to use gated clocks. In FPGA designs, do not gate the clock. Use the 
“clock enable” instead. FPGA devices have a limited number of low skew clock 
networks that are key to running the design at high performance. By gating the 
clock you will exhaust the number of low skew global signals, thereby limiting the 
design performance. Clock enable signals are available on all registers in the FPGA 

process(a, b, c, d, sel)
begin

case sel is
when “00” =>

mux_out = a;
when “00” =>

mux_out = b;
when “00” =>

mux_out = c;
when “00” =>

mux_out = d;
end case;

end process;

a

d
a

d

Translation

(architectural elements
of target device)

Optimization

a

d
sel

2

binferred mux_out
c

  Fig. 10.3    Synthesis       
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and can be used to achieve power reduction and to test the design functionality 
without infl icting unrecoverable damage on the performance of your design. 

 FPGA devices do not provide the option of using buffers as a safety net to boost the 
performance in the design. Thus, when designing timing critical portions of your 
design, it is best to be conservative and to guard band your timing requirements. 

 While you pay for resources in FPGA devices, whether you use them or not, 
the resources are limited to the density of the targeted device. You are limited to 
the amount of logic, memory blocks and multiplier blocks in the targeted device. 
In addition, there is a fi xed amount of routing in FPGAs. As your design reaches the 
higher boundaries of device utilization, you are likely to see the performance of 
your design start to drop off.  

10.4     Recommended FPGA Design Guidelines 

10.4.1     Synchronous vs. Asynchronous 

 In summary, practice Synchronous Design. It will help you to meet your design 
goals consistently. 

 Asynchronous design techniques can result in a reliance on propagation delays 
in a device, incomplete timing analysis, and possible glitches. 

 In a synchronous design, a clock signal triggers all events. As long as all of the 
registers’ timing requirements are met, a synchronous design behaves in a predict-
able and reliable manner for all process, voltage, and temperature (PVT) conditions. 
This will enable you to target synchronous designs to different device families or 
speed grades.  

10.4.2     Global Signals 

 The FPGA design software will automatically select global routing resources. 
Global signal resources are limited and thus should be treated as being expensive. It 
is recommended that you try to limit the number of clock domains whenever pos-
sible. You can control the selection yourself, but it is rare that you will achieve better 
results than the automated software. 

 You must select a reset scheme for your FPGA design, be it synchronous or 
asynchronous. You need a system reset that puts your entire circuit in a well-defi ned 
state and you should verify its operation by asserting it at the start of the testbench 
simulation. 

 If you are unsure as to which scheme is best for your system, use synchronous as 
it is easier to understand. 

 If you decide to use an Asynchronous reset, the asynchronous reset should be 
driven by a synchronizer as shown in Fig.  10.4 .  

10 RTL Design
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 Why should an asynchronous reset be driven by a synchronizer? 
 When the reset is released, there is no sure way of knowing when this occurred 

in relation to the clock. Some registers may see the clock fi rst, other registers may 
see the released reset fi rst, resulting in mixed register states. If you have a short 
reset, it may not be seen at all. 

 The synchronizer circuit shown in Fig.  10.4  mitigates these type of issues. 

10.4.2.1     Clock Network Resources 

 FPGAs provide device-wide global clock routing resources and dedicated inputs. You 
should use the FPGA’s low-skew, high fan-out dedicated routing where available. 

 You should attempt to limit the number of clocks in your design to the number of 
dedicated global clock resources available in your FPGA. Clocks feeding multiple 
locations that do not use dedicated clocks may exhibit clock skew across the device 
that could lead to timing problems. 

 The use of combinational logic to generate an internal clock adds delays on the 
clock line. In some cases, the delay on a clock line can result in a clock skew greater 
than the data path length between two registers. If the clock skew is greater than the 
data delay, the design will not function correctly.   

10.4.3     Dedicated Hardware Blocks 

 All FPGA vendors provide custom resources, designed to perform a small set of 
functions very effi ciently. However, by instantiating these functions in your RTL 
code, you are locking your code to one vendor or possibly even to one FPGA family. 
This effectively reduces the reusability of your design. You are also likely to suffer 
from slower RTL simulation. The behavioral description of your mode of RAM 
operation is likely to simulate much faster than the parameterized RAM model from 
the FPGA vendor. The FPGA vendor model covers every possible usage scenario 
and subsequently may simulate more slowly. 

 In some cases you may have no other option other than to use these optimized 
macros, as they may be the only way to access certain capabilities of the device. 
Examples of where these would be used are PLLs for the clock tree, or transceiver 
blocks for high speed serial interfaces. It is normal practice to use the vendor pro-
vided building blocks for these types of applications. They can usually be replaced 

D
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clk
rst

aclr aclr

rst_n, to system
ACLR ports

  Fig. 10.4    Synchronizer 
for an asynchronous reset       
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by the equivalent technology primitives from other families or vendors with mini-
mal disruption to your design. This approach is much like using purchased IP. 

 However, you may want to consider inferring the other blocks such as the internal 
RAM blocks and DSP blocks. These need only be instantiated if you need access to 
underlying technology that cannot be reached by RTL inference. 

 These functions from the FPGA vendor have a limited degree of parameterization 
and usually come with a wizard to help select the right parameters along with the 
user documentation Fig.  10.5 .  

10.4.3.1     Instantiation Versus Inferencing 

      Use of Low-Level Design Primitives 

Easy to do, GUI assisted

Fully leverages HW features

Architecture specific

Requires library files to simulate

Architecture independent

Simple to simulate
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Cons

Inference:

Pros

Cons
Fiddly hand-coding

Dependency on CAD tool

  Fig. 10.5    Instantiation versus inferencing       

 This section deals with the use of vendor specifi c low level design blocks, such as 
carry chains and LUT primitives to implement your design. 

 FPGA designers have been using this design technique since the invention of the 
FPGA. In the dark and distant past, it was the only way to guarantee the implemen-
tation of your design through synthesis. EDA synthesis tools have become a lot 
smarter over the years to the point where using this design style has become the 
exception as opposed to the norm. It really is akin to assembly level programming 
for hardware design or designing in schematics, only more painful in that you have 
to declare the wiring connections of the blocks in HDL. 

 So why has this style of design not disappeared completely? After all it is a 
tedious way of designing, synthesis tools are now exceptionally smart and the use 
of these low level primitives can reduce the ability to reuse the design block. 

 Well, in certain cases a good designer can still outsmart a synthesis tool. Take addi-
tion for example. Synthesis tools tend to restructure arithmetic and absorb logic that 
feeds adder chains opportunistically. The absorption is heuristic and occasionally pro-
duces sub- optimal groupings. If a designer thinks about the target hardware and struc-
tures the HDL accordingly, he can ensure that he gets the densest possible packing. The 
use of the low-level primitives makes the intent explicit, independent of the surround-
ing logic. An example where this approach to design is useful would be where you need 
to bit slice an adder, to clearly identify the intended carry-in and carry-out signals. 

 It is recommended that you avoid using these low-level primitives, unless perfor-
mance or area packing is a problem for your end design. Use standard RTL coding 
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techniques and if you cannot get the implementation that you need for the design, 
then consider using low level primitives to achieve your goal. It is possible to build 
up your own library of blocks comprised of low level primitives, e.g. an optimized 
ternary adder, or CRC. 

 An example of how to create an equality comparator of two 3-bit busses in a 
single six input LUT for Altera Stratix V family is shown in Fig.  10.6 .  

  Fig. 10.6    Comparator of two 3-bit busses using low-level primitives         
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 You need to be aware that these blocks can only be reused with that FPGA vendor 
and in some cases, only with that particular FPGA family. Be aware that low- level 
RTL design takes considerable time and effort. Thus, you should only do it for the 
critical parts of the design.  

10.4.4     Managing Metastability 

 If the data at the input to a register violates the registers setup and/or hold time 
requirements, the output of the register may go into a metastable state. In this state, 
the output of a register oscillates at a value between the high and low states. If this 
value propagates throughout the circuit, registers may latch the wrong value, causing 
system failure. 

 Metastability problems commonly occur when a data signal is transferred 
between two sets of circuitry that are in unrelated clock domains. 

 It is good practice for asynchronous signals to travel through two to three registers 
before being used in order to avoid potential metastability issues. 

 A VHDL example of a synchronizer is shown in Fig.  10.7 . 
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  Fig. 10.7    Two register 
synchronizer       

Fig. 10.6 (continued)
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 The depth parameter in this code specifi es the number of registers for synchro-
nization, e.g. a depth setting of two, will result in two registers as shown in 
Fig.  10.8 .    

  Fig. 10.8    Parameterizable synchronizer with a default value of three stages of registers       

10.5     Writing Effective HDL 

 The fi rst rule in writing effective RTL is to divide and conquer. Try to split the 
design into smaller, unrelated problems for ease of tackling. Start with the areas 
of the design that you expect to be problematic, particularly the bus interfaces. 
The system should be designed such that you can exercise and test individual blocks, 
even if they aren’t yet present in the design. Besides helping out early in the 
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development process, when specifi c blocks might be available to test while others 
are still being fi nalized, this practice will also allow you to make progress when 
specifi c blocks of your design are being revised or are otherwise unavailable. 

 Follow good synchronous design practices; asynchronous designs that are 
possible in ASICs because of tight control over timing delays can easily run into 
trouble in FPGAs. Pipelining your design, as well as registering all ports provides 
several benefi ts. First, it breaks combinational logic into more easily synthesizable 
portions. Pipelining also allows easier debugging since FPGA verifi cation tools can 
easily access the inputs and outputs of registers. Finally, it allows more options for 
optimizing performance through register placement. 

10.5.1     What’s the Best Language 

 For the purposes of this book we are only going to consider HDLs that have an IEEE 
standard associated with them, i.e. VHDL, Verilog and SystemVerilog. 

 In the distant past there were numerous HDLs for targeting PLDs. Some of these 
were developed by FPGA vendors. Once the IEEE endorsed Verilog and VHDL as 
standards, these languages quickly conquered the ASIC design market and gained 
in popularity in the FPGA market. Verilog, including SystemVerilog, and VHDL 
provide the advantage of allowing users to be able to use the same language for 
design implementation as for describing the test stimulus for simulation. Today, 
Verilog and VHDL have effectively obsoleted the old PLD languages. 

 So, which of these languages is the best language for FPGA design? 
 There isn’t a “best” language. All of these IEEE standard languages have 

strengths and weaknesses. 
 VHDL tends to be more verbose than Verilog, but also tends to be more 

feature- rich. VHDL has strong type checking which makes it harder to make silly 
mistakes. 

 Verilog is concise but loosely typed. 
 In summary Verilog and VHDL both work well for FPGA design. The choice of 

language is based upon personal preference. The key ingredient is that when you 
choose a language, make sure that you fully understand the language. Read up on the 
details of the language, as there are many non-obvious semantics in both languages. 

 A good starting point is to buy a copy of the relevant IEEE standard. While 
standards can make for dry reading, they will cover the details that HDL design 
books often gloss over. 

 There is an abundance of material on the web from white papers to training 
courses on HDL coding. These are good for getting a feel for the language and 
building a base knowledge in the language. I recommend paying for the cost of a 
hands-on HDL course from one of the many technology training vendors, local 
Colleges, EDA vendors or FPGA vendors. The instructors will tend to have a wealth 
of information that is often not covered in books and the hands on experiments will 
give you experience in the tools that you will use for creating the design. 
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10.5.1.1     Mixed Language Design 

 Most of the EDA synthesis tools on the market support designs that contain a mix of 
HDLs. There are however challenges in doing this and as such, it is recommended 
that you do not adopt a mixed language design unless you have no option. 

 So when would you have no other option but to use a mixed language design?

    1.    If you purchase IP that is written in a different HDL than the one that you have 
standardized on.   

   2.    You are reusing design blocks from another design that was created in the 
‘other’ HDL.     

 If your organization has a ‘genius’ that prefers a different language to the 
language that you have chosen, this is not a good reason to use mixed language 
design. This ‘genius’ needs to comply with the Company’s standard. 

 So, what are the problems that you may encounter when creating a mixed language 
design.

    1.    It is easy to make a non-portable design. There is no IEEE standard for mixed 
language design; consequently EDA tools make up there own rules, which can 
result in a non-portable design.   

   2.    Verilog is case sensitive, VHDL is not. If you deploy case sensitivity into your 
naming scheme you could be heading into a minefi eld.   

   3.    Not all simulators support mixed language design. Most of the major EDA 
simulation tools do, but it will cost more than the entry level version of the 
simulation tool.     

 So while it is recommended that you avoid mixed language design it can work if 
a module or entity to be instantiated in another language has bit or vector ports and 
simple parameter types.   

10.5.2     Documented Code 

 It should be common practice in an organization to include good documentation on 
major design blocks. This is an additional document to the RTL code for the design. 
This document should explain the structure of the design, including block diagrams 
and a description of the hierarchy. It should also include a description of timing 
details, such as which paths are timing exceptions. Timing exceptions are covered 
in detail in the timing analysis chapter of this book. 

 Documentation on major design blocks, such as block diagrams is essential for 
design reuse. If you do not understand what you are trying to reuse, you are unlikely 
to be successful in reducing your design cycle through design reuse. Documentation 
is also very helpful when you are returning to a design that you completed in the 
past and also for the training of new hires in the organization who are taking over 
the maintenance, or the completion of your design block. 
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 The RTL code for the design block should be self documenting, i.e. the naming 
conventions used in the RTL should be descriptive of what the signal is doing, e.g. 
dram_ctrl, regfi le0, crc32, egress_buffer. Comments should be used extensively 
throughout the RTL to explain the functionality of the code, e.g. identifi cation of test 
signals or multicycle paths and the purpose of certain modules within the design.  

10.5.3     Recommended Signal Naming Convention 

 A standard naming convention needs to exist throughout your Company. 
 Create a company naming convention and adhere to it! 
 This will make code reviews much more productive. There are EDA tools on the 

market to help establish coding guidelines and to enforce the coding standards. 
I highly recommend that you invest in an EDA Lint tool to enforce your Companies 
coding guidelines. This should also be built into your interaction with your version 
control software. All RTL code must pass the Lint tool with a clean bill of health in 
order to be checked into version control. 

 As discussed previously, all of the names used for ports, signal and variables, 
should be meaningful. 

 Here are some standard conventions that you should consider using as part of 
your signal naming convention. 
 “reset” or “rst”: reset signals. 
 “clock” or “clk”: clocks. 
 “clk125 or clock_125”: 125 MHz clocks. 
 “rest125 or reset125” : reset synchronized to the 125 MHZ clock domain. 
 Suffi x “_n”: an active low signal and the negative half of a differential signal, e.g. 

we_n is an active low write enable. 
 Suffi x “_p”: the positive half of a differential signal. 
 Prefi x “a”: an asynchronous control signal, e.g. aclr is an asynchronous clear 

signal. 
 Prefi x “s”: a synchronous control signal, e.g. sload is a synchronous load signal. 
 “en or ena”: Clock enables. 
 “_ack, _valid, _wait: bus fl ow control signals. 
 Use UPPERCASE: to identify parameters, enums and constants. 
 While constants generally minimize during synthesis, they are important for under-

standing the logic structure. 
 Bus signal rules: 

 Ensure that you use a uniform bus order. The most common use in industry is 
MSB:LSB, e.g. [63:0]. 

 Avoid declarations that omit the LSBs, e.g. [7:3]. These increase the likelihood of 
structural errors in hooking up design blocks. 

 It is safe to omit unused MSBs, e.g. [12:0] rather than [15:0]. This has the benefi t of 
reducing the analysis time in synthesis tools and also in reducing the number of 
warnings generated by the synthesis tool.  
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10.5.4     Hierarchy and Design Partitioning 

 Hierarchy is essential for design partitioning and should be designed for carefully. 
A good hierarchy is helpful for zooming in on problem areas of the design. Too many 
levels of hierarchy can also make a design diffi cult to understand. So, you need to 
keep the hierarchy depth modest. 

 A fl at design is virtually impossible to understand and will cause problems in 
debug. 

 The design should be partitioned along functional boundaries. This makes it 
easier to see the design’s behavior. When looking at the hierarchical partitioning 
of the design, the hierarchy of the design fi les should follow the spirit of block 
diagrams with one Verilog/VHDL module per text fi le. This improves the under-
standing of the design and will not impact the optimizations that can be applied by 
the EDA tools, as synthesis tools will optimize across block boundaries freely, 
unless you instruct them otherwise. 

 A benefi t of doing this is that it facilitates standalone simulation of sub-designs. 
It also enables you to quickly perform block performance analysis. 

 You should register all inputs and outputs of the blocks when partitioning designs 
across functional boundaries. This may cost you in terms of latency in the design, 
however the benefi ts that this will bring will usually far outweigh the cost. This 
method of insulating the blocks can be a life saver when it comes to timing closure, 
as critical paths are usually contained within a single partition and can be worked on 
in isolation from the rest of the design Fig.  10.9 . 
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 In the recent past, this extremely valuable advice was rarely 100 % honored by 
designers, as it requires upfront planning on the design. A common mistake among 
designers is to design with the mindset, “I can register the ports of the block later if 
I need it.” This statement is a vast underestimation of the effort that this will require. 
Any late latency changes will ripple through the rest of the design. 

 When partitioning the design, you must avoid inserting glue logic between 
partitions, as shown in Fig.  10.10 .  

Module A Module B’
Glue
Logic

GOOD

Module A Module BGlue
Logic BAD

  Fig. 10.10           

  Fig. 10.11           
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  Fig. 10.12    Divide and conquer approach to RTL design       

 Do not use tri-state or bi-directional ports on hierarchical boundaries unless 
they will always interface with device I/O pins. FPGA devices do not have internal 
tri- state busses. As such, the hardware vs simulation behavior is diffi cult to understand 
as the functionality of internal logic will be implemented using multiplexers. 

 The recommended way to handle this is to use the approach detailed in Figs.  10.9 , 
 10.10  and  10.11 .    

 Good design partitioning enables you to adopt a divide and conquer approach for 
building optimized design blocks. 

 The building blocks can be developed in parallel, potentially by different teams 
as shown in Figs.  10.12  and  10.13 .   
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 These optimized sub-blocks can be combined to form an optimized system with 
minimal effort Fig.  10.13 .  
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  Fig. 10.13    Combine sub-blocks to create an optimized design block       

10.5.5     Design Reuse 

 There is a complete chapter in this book dedicated to design reuse. In this section 
we will cover how the HDL coding style can impact design reuse. 

 Reusability will happen if the design is synchronous and reasonably partitioned 
for hierarchy. 

 It is very common for the FPGA design to be reused in its entirety in the next 
generation chip. This may happen for cost cutting reasons, i.e. combine multiple 
designs into a larger device, migration to an ASIC or for the addition of new func-
tionality to the next generation system in a larger FPGA device. 

 Optimized blocks will be generally reusable but may require some changes in 
cases were you have used dedicated design primitives that are specifi c to a particular 
family. 

 So, what constitutes a good FPGA building block:

    1.    Something of which the purpose/functionality can be easily described:   
   2.    It can be customized with parameters.   
   3.    It is standalone testable:   
   4.    It has registered IO. This provides timing closure insurance.   
   5.    It uses a standard protocol interface.   
   6.    The RTL code is self-documenting.   
   7.    The number of signals on the boundary is limited. Too many signals make it 

diffi cult to interface with the design block.     

 What to avoid:

    1.    Too many levels of hierarchy in the design block.   
   2.    The design block is too small.   
   3.    The use of a lot of specialized signals makes it diffi cult to interface with the 

design block.      
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10.5.6     Techniques for Reducing Design Cycle Time 

 The RTL design cycle time can be shortened by using both simulation and synthesis 
techniques. 

 Spending effort up from in functionally simulating the sub-designs will catch 
problems that are hard to catch when you simulate the whole design or when you 
are trying to debug a problem with the chip while operating on the board. It can be 
tedious, but it is much faster and easier to eliminate bugs at the lowest level. 

 There are a number of techniques that you can utilize to reduce the RTL synthesis 
time.

    1.    Perform an area evaluation. Run through the synthesis tool to get a ballpark fi gure 
of the size of the designs. Now you may be asking yourself why ballpark and not 
an exact area result? There are two main reasons. Firstly, when your design block 
is combined with the other design blocks, the synthesis tool performs a number 
of cross-boundary optimizations. Secondly, FPGA Place and Route tools 
perform a number of optimizations, e.g. packing unrelated registers with LUTs 
and merging of memory blocks.   

   2.    Perform place and route on the sub-block for a performance confi rmation when 
the sub design is almost done. If you just meet performance, you should try and 
build some margin in place for when the complete design is integrated. A 15 % 
margin is good. 20 % is better.   

   3.    Try to avoid doing any hand placement or fl oorplanning early in the design cycle. 
Instead change the RTL source to meet your performance goals.     

 There will be times when this is not possible. When you come across one of 
these cases, you should detail this in the documentation for the design and make use 
of incremental design practices for locking down the performance of the block. 

 You need to try and reduce the number of design iterations that you need to run, 
as iteration time is expensive for large FPGA devices. In most synthesis tools, 
synthesis runtime is close to linear with design size. The harder the synthesis tool has 
to work, the longer the synthesis time and quite likely the place and route time. 

 When structuring your design, you need to remember that the smaller the cones 
of logic the faster the design performance and synthesis time. In effect, more 
 pipelined designs have smaller cones of logic and faster performance as well as 
shorter synthesis time. 

 If your design has deep tangled cones of logic, the synthesis tool has to try harder 
to traverse the logic untangling the logic cones, resulting in a longer synthesis time.  

10.5.7     Design for Debug 

 This topic is covered in more detail in the chapter on In-System Debug. In this 
section we will cover some techniques that can be used at the RTL code level to 
increase the ability to debug your design in-system.
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    1.    Register the signals that you want to see in the chip. These signals are less likely 
to be optimized away by synthesis.   

   2.    Hierarchically partition the design for ease of debug. For example, if you have an 
interface that you are concerned about, you can place it at the edge of a device 
with the interface feeding I/O pins, which makes it easy to monitor.   

   3.    Build test blocks that can easily be extracted from the end design.   
   4.    Ensure that there are free memory and logic resources in the device to enable the 

use of Embedded Logic Analyzers.   
   5.    Leave free pins on the design for access to debug signals.       

10.6     RTL Coding Styles for Synthesis 

 Most Hardware Description Languages were originally developed for simulation 
and not for synthesis. As such, it is easy to describe functionality that can’t be reli-
ably implemented in hardware. You need to be aware that many synthesis tools will 
synthesize questionable code, which can result in an end result that may not match 
your simulation results. In this section, I am not going to show you examples of 
code that can be confusing, but rather recommend that you invest in an RTL coding 
training course or book. There is a standard subset of Verilog and VHDL that all 
synthesis tools understand and for which they will provide the same functional 
implementation. Study and adhere to this standard. 

 So, what are the guidelines?

    1.    Keep the hardware in mind when describing your design. What I mean by this is 
make sure that you can you express the functionality in terms of logic gates and 
registers.   

   2.    Know the limitations of the target device.   
   3.    When your design has run through synthesis successfully, examine and eliminate 

the warning messages generated by the synthesis tool.     

 When creating your design, should you design structurally of behaviorally? 
 In practice you will and should use both structural and behavioral coding styles. 

Old school FPGA designers will tell you that you need to use a highly structural 
design to guarantee the design implementation and performance. In reality, this is 
only true for designs that are pushing the envelope of performance and in these 
cases, only for a very small portion of the design; if at all. 

 The top-level module is invariably a collection of sub-instances, wired together 
with nets. 

 The sub-modules mostly implement core functionality with a behavioral style. 
 It is recommended that you describe your design using the most compact 

language constructs from the recommended synthesis coding guidelines. This 
makes it easier to understand the functionality of the design. 

 It is a general rule of coding that the less lines of code that you write, the less you 
need to debug. 
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 You should also only instantiate basic primitives when necessary. These may 
be required to meet your performance requirements or to access device-specifi c 
functionality, e.g. I/O primitives, transceiver blocks, etc. 

10.6.1     General Verilog Guidelines 

 We are not going to cover Verilog coding guidelines extensively but will touch on a 
few essential recommendations.

    1.    Invest in a Verilog RTL coding book or a copy of the IEEE Verilog standard.   
   2.    Appreciate the different between non-blocking assignments (<=) and blocking 

assignments (=). 
 Use = (blocking assignment) when modeling combination logic. 
 Use <= (non-blocking assignment) in an edge-triggered always block with the 

following two exceptions. 
 Exception 1: Assignments to temporary variables. 
 Exception 2: Assignments to a RAM with write-before-read semantics.   

   3.    Consider expression size. 
 You can freely assign a 16-bit vector to an 8-bit vector. 
 The context of an expression can alter the size of its operands, i.e. extend their 

precision.   
   4.    Consider the expression sign. 

 A single unsigned operand can coerce the sign of all the operands in a complex 
expression, e.g. unsigned_a + signed_b + signed_c.   

   5.    Beware of implicit net declarations.      

10.6.2     General VHDL Guidelines 

 Again, we are not going to cover VHDL coding guidelines extensively but will 
touch on a few essential recommendations.

    1.    Invest in a VHDL RTL coding book or a copy of the IEEE VHDL standard.   
   2.    use Standard Packages 

 Use rising_edge(clk) and falling_edge(clk) for edge conditions 
(ieee.std_logic_1164) 
 Use ieee.numeric_std and ieee.numeric_bit for unsigned and signed types/
operators   

   3.    Don’t use meta-values (‘X’, ‘U’, ‘Z’, ‘-’) in case statement choices. 
 The semantics of built-in VHDL “=“operator requires an exact match. 
 In particular, ‘X’ and ‘-” don’t behave as don’t cares!   

   4.    Constrain integer subtypes with actual dynamic range, e.g. integer range 7 
DOWNTO 0.     
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 This reduces the hardware costs dependence on bit-width optimizations.  

10.6.3     RTL Coding for Performance 

 The following high speed design techniques make it easier to close timing. They 
also have the effect of reducing the compile time and the number of compilations 
necessary to achieve timing closure. 

 The main rule in achieving the fastest clock performance in a FPGA design is to 
pipeline your design. Remember, registers are included in the FPGA cell fabric 
whether you use them or not. 

 Select a target number for the levels of logic between the registers based upon the 
data sheet numbers for the LUT and register delays for the FPGA technology that 
you are targeting. You should aim to maintain this target in all of the sub-blocks of 
the design. 

 Help the synthesis tool perform at its best by writing the RTL in ways that are 
easy and effi cient to implement in gates. Small changes can improve design perfor-
mance. Synthesis tools are good at optimizing RTL using heuristics to evaluate 
code, and to avoid excessive runtime. For high performance designs, you may be 
able to guide it toward a better result than it would achieve on its own. 

 There are advanced settings in synthesis tools and Physical Synthesis tools that can 
improve performance using techniques such as register retiming. These are good at 
fi xing a small number of long paths in the design. However, fi xing this manually in the 
RTL, guarantees the performance, reduces the compile time and will make the design 
block reusable. This approach also guarantees the implementation of the design block 
if you upgrade to a newer version of the FPGA design software. 

 Figure  10.14  shows a design with two levels of logic between the registers.  

D   Q LUT LUT D   Q

Two levels between registers  Fig. 10.14    Design with two 
levels of logic between the 
registers       

10.6.3.1     Timing Margin 

 When designing your sub-block, you should always be looking ahead to system 
timing closure. Compile the sub-designs standalone and monitor the timing perfor-
mance using static timing analysis. You should always build margin into the timing 
requirements for the sub-designs. This will allow headroom for integration with the 
rest of the design. 
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 Standalone designs get to choose from all of the resources available in the device 
during place and route. However when the overall design is integrated, not every 
sub-design can have a priority in the choice of resources in a full chip. You should 
try and budget for a 20 % speed degradation. This degradation may come from non- 
optimal placement, routing congestion or the need to include additional logic later 
in the design cycle. 

 It is much easier to avoid system timing problems than it is to fi x them later. 
You do not want to put yourself in the scenario where there is a change to the speci-
fi cation late in the design cycle which results in your module going from narrowly 
meeting timing to missing timing; making you accountable for the delay in being 
able to ship the product. 

 Do not trust estimated numbers from synthesis. Placement has a big impact on 
timing. 

 Sub-designs tend to be relatively small and do not take much runtime to get the 
true place and route timing numbers.  

10.6.3.2     Use of Pipeline Registers 

 Pipelining is a great technique for boosting performance in FPGA designs. In designs 
with wide buses that need to run at high speeds, it may be necessary to pipeline rout-
ing wires to span across the chip. Take the example where you take three clock cycles 
to move data from a pin on the bottom of the chip to a pin at the top of the chip at a 
clock frequency of 300 MHz. It may require more cycles if routing is congested. 
Figure  10.15  shows how an extra pipeline stage can be used to help the place and 
route engine meet performance. If the path shown is spread across the chip, possibly 
due to pin placement at both ends of the path, the ‘wasted’ register can be used to 
break up the long routing delay, enabling you to meet your clock requirement.  
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  Fig. 10.15    Use of pipeline stages to break up routing delays       

 It is good to remember that pipeline registers do come with a cost; that cost is 
area and in some cases power. You will need to pipeline each bit in a bus. If you 
have a wide bus you will add a large number of registers and additional routes to the 
design. Thus, over use of pipelining can make it harder to fi t the design. 
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 In the case of RAM or DSP blocks, it is highly recommended that you always use 
the optional input and output registers for pipelining. 

 The decision on how much pipelining is required is a learning process and will 
require refi nement on a design basis. A good rule of thumb when writing your 
Verilog/VHDL code is that it is typically easier to remove pipeline registers to 
reduce latency than it is to add registers later to increase speed. Thus if there is a 
debate about whether to add registers to reduce the logic depth, add the pipeline 
register as it can be removed later. 

 The placement of the pipeline registers is key to increasing the performance, 
thus be aware of the logic depth of the resulting logic when designing the logic. 
The FPGA design tools have features and reports that provide this information. For 
example the Altera Quartus tools provide the Technology Map Viewer and timing 
reports in the TimeQuest tool that detail the number of levels of logic. 

 For example, take a function with seven inputs and a logic depth of two as shown 
in Fig.  10.16 .  

 By retiming the output register, the logic depth can be reduced to 1 level of logic, 
as shown in Fig.  10.16 . This increases the register utilization but does increase the 
performance of the design. Most functions can be manipulated using this technique 
to reduce the logic depth. 
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  Fig. 10.16    1 level of logic       

  Fig. 10.17    Registered 4:1 MUX of N bit bus with a maximum depth of one LUT         

 Figure  10.17  is an example of how to structure your HDL to maximize perfor-
mance by pipelining while creating a fl exible design block that is ideal for reuse. 
The design uses a registered 4:1 MUX of N bit bus. It is constructed to have a 
maximum depth of 1 LUT.  
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Fig. 10.17 (continued)
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 The following design in Fig.  10.18  shows how smaller optimized design blocks 
can be used to build a larger optimized design block. In the example, a registered 8:1 
MUX of N bit bus is composed from two copies of the mux4 design in Fig.  10.17 . 
The implementation has a latency of two cycles and a LUT depth of one.  

  Fig. 10.18    Large design block composed of smaller optimized blocks         
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 Register retiming is a much more diffi cult problem in design blocks that contain 
feedback loops, as shown in Fig.  10.19 . The register can travel around the loop, but you 
can’t get more registers into the loop without changing the functionality of the design.  

 The best way to reduce the logic depth of functions containing feedback loops is 
to redesign the function with the loop as close as possible to the register. This is 
acheived by pre-computing as much of the function as possible, and registering this 
stage before approaching the loop. 

Fig. 10.18 (continued)
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 There a number of factors to consider in determining the optimal number of levels 
of logic. These are:

    1.    Device utilization. Adding additional logic to a design that is already pushing the 
utilization limits of the device will make the problem worst.   

   2.    Complexity of the design block that you are creating. The more complex the 
design block, the harder it can become to pipeline the design, particularly if the 
design block contains a number of feedback paths or loops.   

   3.    Performance requirements of the design block. If the design block does not need 
to run blazingly fast in this design or when reused in future designs, do not heav-
ily pipeline it.   

   4.    Width of the bus. As mentioned previously, pipelining of wide busses can have a 
large impact on device utilization for both logic and routing.      

10.6.3.3     Impact of Routing 

 Knowing the limits of the FPGA architecture is important. Generally fast narrow bus-
ses will route easier. In high speed, high bandwidth designs, routing is a critical 
resource. Increasing the clock fmax and reducing the bus width will reduce routing 
usage. The long wire network in the chip will start to fi ll as the bus width increases. 
As the long wore network fi lls, slower resources will be used to fi ll the gap, resulting 
in performance degradation. The chip will generally still be able to route, but you will 
fi nd yourself having to debug the source of timing closure failures. Narrow busses do 
not guarantee high performance. It requires good design and coding as described pre-
viously. Wide busses require hundreds of bits and will generally make your design 
slow. You cannot typically recover performance from the increase in routing, logic and 
area that comes with using a wide bus. Increasing the bus width as a technique to 
lower the fmax requirement in order to make for easier timing closure can have the 
inverse effect. It will increase the area. Doubling the bus width will typically double 
the area and often result in worst timing closure than using the narrow bus at 2× the 
fmax. Higher performance cores will require more attention during RTL design to 
manage logic depth per register stage, but will likely close timing more easily. 

 There are other techniques that can be used to reduce routing usage. One example 
is to move the data as little as possible. This can be achieved by leaving the data in 
memory/FIFOs or to move information around the data instead. 

DQ

  Fig. 10.19    Example of a 
feedback loop       
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 If a block of logic works on a few bits in a word, store the inactive bits in a 
FIFO. Memory is a cheaper way to store data than using registers and the routing 
necessary to connect them.  

10.6.3.4     Floorplan Aware Partitioning 

 Be aware of the physical implementation. Know where the I/O interfaces are placed 
when you design logic. Minimize the signals driving to both sides of a device, e.g. if 
a multi-transceiver interface is spread across both sides of a device, design the logic to 
also split across the device. Pipeline the signals that must cross the entire device. 

 Ideally, modules should use proportional amounts of registers, memory blocks, 
and DSP blocks, e.g. if a module uses 5 % of the device logic, ideally it should use 
about the same amount of M20K blocks, or fewer. Signifi cantly unbalanced resource 
use is a predictor of timing closure and/or routability problems. Look at the allocation 
of memory and DSP blocks. If a design block uses a lot of memory, it restricts the 
placement of the logic, resulting in irregular shapes for fl ow planning and requiring 
unplaced logic from other unrelated blocks having to be placed around the memory. 
This makes it harder to fl oorplan the device for team based design environments. 

 An example of this is shown in the fl oorplan in Fig.  10.20 . The design block 
only consumes about 5 % of the logic, but consumes 25 % of the RAM blocks. 
The M20K blocks must be spread out more than the logic. Consequently more 
routing resources are required to connect logic to the M20K blocks resulting in tim-
ing closure challenges as the signals have further to travel.    

  Fig. 10.20    Floorplan of RAM heavy design       

 

10 RTL Design



117

10.6.4     RTL Coding for Area 

 When you are writing your RTL, think about what logic you are creating. For example, 
do you want one adder or two? Could you construct the RTL to get one adder? 

 Be familiar with the logic structure of the target architecture. What control sig-
nals are available on the registers and how is the LUT structured, four input LUT, 
six input LUT? 

 Look at the synthesis report to get a good estimate on logic used. Most synthesis 
tools detail the resource utilization on a hierarchical basis. This is helpful in deter-
mining if certain blocks are consuming more logic than anticipated. 

 For smaller design blocks, you should use netlist viewing tools to analyze the 
optimization, e.g. one adder versus two, and so on. 

 If you have very slow logic in the design, consider deploying time division 
multiplexing. This approach is common place in DSP designs where one FIR runs 
2× or 4× required rate to save on resources. 

 When examining your design, look at duplicate registers and logic. These 
typically occur due to multiple design blocks duplicating functionality. While a 
small number of duplicates may be good for speed it is possible that you could 
achieve heavy area savings by removing the duplication. If you see possible 
heavy area savings, this may be an indicator of poor design hierarchy partition-
ing. You should consider creating a separate level of hierarchy for the common 
portion of the design. 

 Synthesis can save area by converting shift registers or register chains to 
RAM; however converting to RAM implementation often reduces speed. 
Consider turning off Auto shift register replacement. If the design is close to full, 
the use of shift register conversion to RAM may benefi t non-critical clock 
domains by reducing area.  

10.6.5     Synthesis Tool Settings 

 All synthesis tools come complete with dozens of options for optimizing your 
design to meet you target goal. These settings can be very effective, however you 
may not be guaranteed the exact same impact in a future release of the EDA tool. By 
using these advanced settings, you are effectively removing the guarantee of your 
RTL being reusable. Despite the marketing literature on the EDA synthesis tool, it 
is recommended that you try to maintain the default Synthesis settings and perform 
your optimizations in the RTL code, ensuring that your design is reusable. If there 
is a setting that you have to use to meet your goals, this should be fully described in 
the documentation for the design block.  

10.6 RTL Coding Styles for Synthesis
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10.6.6     Inference of RAM 

 Most synthesis tools have the ability to infer basic RAMs with a single read and 
write operation. 

 A few synthesis tools can also infer true dual-port RAMs. 
 Synthesis tools cannot infer all of the advanced features of the RAMs in FPGA 

devices. These capabilities can be utilized either through the addition of attributes 
to your RTL or through the instantiation of RAM primitives. 

 When writing the RTL that describes a RAM, you need to be aware that your 
coding style may be such that the memory blocks require the addition of external 
logic to match the behavior of your HDL. 

 When describing RAM blocks, it is recommended that you begin with the 
RAM templates provided by your synthesis tool. From this, you can then create 
your own library of RAM modules and re-use them in every design. The philoso-
phy behind this is that you work out all the tool/device inferencing issues in 
advance. This makes it easy to replace inferred RAMs with instantiated RAMs, 
as needed. 

 Avoid unsupported read-during-write behaviors. The synthesis tools will need to 
insert extra logic to achieve the functionality. This bypass logic will result in an 
increase in area and slow the performance of the design. 

10.6.6.1     Read During Write Behavior 

 Does a simultaneous read/write to the same address returns the OLD data or the 
NEW data? It depends on the HDL. 

 Figures  10.21  and  10.22  details a coding style that will infer a RAM that returns 
the NEW data on a simultaneous read/write.   

  Fig. 10.21    Verilog 
implementation of new data 
on simultaneous read/write       
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 Figures  10.23  and  10.24  details a coding style that will infer a RAM that returns 
the OLD data on a simultaneous read/write.   

  Fig. 10.22    VHDL implementation of new data on simultaneous read/write       

  Fig. 10.23    Verilog code that 
will infer a RAM that returns 
the OLD data on a 
simultaneous read/write       
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 It is also possible to infer initialized RAM. Figures  10.25  and  10.26  details the 
coding style for initializing the RAM.     

  Fig. 10.25    Verilog code to 
Initialize the RAM contents 
to all 1’s       

  Fig. 10.24    VHDL code that will infer a RAM that returns the OLD data on a simultaneous 
read/write       
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  Fig. 10.26    VHDL code that will infer a RAM which is initialized to all 1’s         
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10.6.7     Inference of ROMs 

 EDA synthesis tools can detect sets of registers and logic that can be implemented 
as ROMs in memory blocks. 

 Figures  10.27  and  10.28  shows how a ROM can be inferred through the use of 
case statements and registering of the output.   

  Fig. 10.27    Verilog 
inferencing of a ROM       

Fig. 10.26 (continued)
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  Fig. 10.28    VHDL inferencing of a ROM       
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10.6.7.1     Inference of Finite State Machines 

 When creating Finite State Machines, you should always specify your reset 
condition using an asynchronous condition; otherwise, the synthesis tool will 
guess your reset state which may cause functional issues for your design 
Figs.  10.29 .   

reset
s0 s1 s2

  Fig. 10.29           

 In VHDL, FSMs are inferred from signals/variables which have enumerated 
types Fig.  10.30 . 

 In Verilog, FSMs are inferred from variables with the following properties.

    1.    Assigned values are constant expressions or module parameters.   
   2.    Variables are not declared as an output port or used in a port connection.   
   3.    They are referenced or assigned as a whole.   
   4.    The state names are based on binary representation of state value or the name of 

the parameter that represents the state.     

 

10 RTL Design



  Fig. 10.30    Use of enumerated types in VHDL for state machine inferencing         
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 Figure  10.31  details an example of a Verilog FSM.  
 You should always specify your reset state.  

  Fig. 10.31    Verilog FSM       

Fig. 10.30 (continued)

10.6.7.2     State Machine Encoding Styles 

 Most FPGA synthesis tools have a default state machine style that they will use. 
 One-hot encoding is generally used for FPGA devices as the architecture 

features lesser fan-in per cell and an abundance of registers. 

 

10 RTL Design



127

State Binary
Encoding

Grey-Code
Encoding

One-Hot
Encoding

Idle 000 000 00001

Fill 001 001 00010

Heat_w 010 011 00100

Wash 011 010 01000

Drain 100 110 10000

  Fig. 10.32    State machine 
encoding styles       

 Binary (minimal bit) or grey-code encoding is generally used for CPLD or 
product- term devices, as these architectures feature fewer registers and greater 
fan- in Fig.  10.32 .   

10.6.7.3     Safe State Machines 

 One-hot encoded state machines are commonly used in FPGAs, due to the avail-
ability of registers. However, given n encoding bits, there are 2n – n illegal states. 
Many of the synthesis tools targeting FPGAs will optimize away any manual recov-
ery logic that you have created. They tend to have a safe machine option that can be 
set in the tool or controlled through the use of synthesis attributes. Make sure that 
you use this option as noise and spurious events in hardware can cause state 
machines to enter undefi ned states. 

 If state machines do not consider undefi ned states, it can cause mysterious 
“lock- ups” in hardware. It is good engineering practice is to consider these unde-
fi ned states.  

10.6.7.4     Large Complex State Machines 

 Embedded Processors are ideal for implementing large complex state machines. 
 Most FPGA vendors provide soft processors that can be used for this purpose 

with an easy to use ‘C’ programming environment for describing the state machine 
operation. When using dedicated hardware to implement state machines, each addi-
tional state or state transition increases the hardware utilization. The advantage of 
using a soft processor is that the hardware resources consumed are fi xed, with the 
exception of the memory resources. which depends upon the size of the state 
machine. A processor by defi nition, is a state machine that contains many states. 
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These states can be stored in either the processor register set or the memory 
available to the processor; the advantage that this provides is that state machines 
that do not fi t in the footprint of a FPGA can be implemented using memory con-
nected to the soft processor. 

 The FPGA vendors provide guidelines on implementing state machines with 
their particular fl avor of soft processor.   

10.6.8     Inference of DSP Blocks 

 Most FPGA devices contain a fi xed amount of dedicate hardware that is optimized 
for multiplication operations. 

 FPGA synthesis tools recognize the * operator and will infer the appropriate 
hardware in the FPGA silicon. 

 Some EDA synthesis tools have the additional capability of being able to detect 
multiply-accumulate operations and multiply-addition and to infer the dedicated 
DSP block. 

 In addition, some of the tools will map input / output registers into the DSP 
blocks to pack registers, improving performance and area utilization. 

 However, some of the more advanced features of the DSP blocks, such as high 
pipeline modes are only available via vendor primitives and these DSP blocks must 
be instantiated in the design. 

 Figures  10.33  and  10.34  details a Multiply-Accumulate operation that will infer 
the dedicated DSP block.   

  Fig. 10.33    Verilog multiply- 
accumulate operation       
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  Fig. 10.34    VHDL multiply-accumulate operation       
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10.6.9     Inference of Registers 

 FPGA synthesis tools infer registers from the same basic if-else templates. 
 In verilog, asynchronous conditions differentiate the clock from asynchronous 

controls, as shown in Fig.  10.35 .   

  Fig. 10.35    verilog example 
of a register       

 In VHDL the rising_edge() indicates the clock as shown in Fig.  10.36 :  
 You must specify all asynchronous conditions fi rst, which takes priority over 

synchronous conditions. 

  Fig. 10.36    Register in VHDL       
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10.6.9.1     Secondary Signals for Registers 

 Once again, it is necessary to understand the target hardware. 
 In some technologies, the device registers support asynchronous clear only, only 

power up to ground and may not support asynchronous load. 
 For registers that do not support asynchronous load, it must be emulated with 

latches and combinational logic that is inherently prone to glitches. 
 The use of secondary signals also impacts place and route. Many devices are 

restricted in the amount of secondary resources that are available. An example 
being the Altera Stratix architectures where clock enable (ena), synchronous clear 
(sclr), synchronous load (sload) are shared by all logic cells within the same 
LAB. Too many unique LAB-wide signals will impact the logic utilization of the 
design Fig.  10.37 .  

1. Asynchronous clear, (aclr)
2. Preset (pre)
3. Asynchronous load (aload)
4. Enable (ena)
5. Synchronous clear (sclr)
6. Synchronous load (sload)
7. Data in (data)

highest

lowest

  Fig. 10.37    Synthesis priority of secondary control signals for registers       

10.6.9.2     Conditional Statements 

 The use of if-else statements infers 2:1 multiplexer trees with preserved priority. 
This coding style gives the user the control over late arriving signals, as shown in 
Fig.  10.38  where ‘a’ is a late arriving signal.   

 Care must be taken when using this style of coding for inferencing of multiplexers. 
Too much nesting can increase delay signifi cantly. 

 It is recommended that if the conditions are mutually exclusive, to recode the 
multiplexer as a case statement which will infer a N:1 multiplexer. 
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  Fig. 10.38    Multiplexer tree       
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 case statements infer N:1 muxes. 
 This type of multiplexer is easier to optimize and provides much better delay 

than the equivalent priority multiplexer implementation Fig.  10.39 .    

  Fig. 10.39    N:1 multiplexer       
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10.6.10     Avoiding Latches 

 As mentioned previously, FPGA devices have registers and not latches. Thus latches 
are implemented using combinational logic. This makes timing analysis more com-
plex and will likely hurt the performance of your design. You need to be aware of 
the impact of your HDL coding style. It is very easy to unintentionally infer a latch 
in the design. The good news is that this can easily be avoided by ensuring that the 
output results are always specifi ed for all input conditions. 

10.6.10.1     If-Else Structures 

 Latches can be avoided in if-else structures by using don’t care conditions (‘x’) in 
the fi nal ELSE clause. This provides the synthesis tool the freedom to encode don’t 
cares for maximum optimization. 

 An example of how to do this is shown in Fig.  10.40 .  

  Fig. 10.40    Complete if-else statement that avoids unintentional latch       

10.6.10.2     Nested If-Else Statements 

 A common mistake is to leave uncovered cases in nested if-else statements. These 
uncovered cases infer latches if there are no default values for objects. Unintentional 
latches can be avoided by using signal initialization to cover all cases. This is shown 
in Fig.  10.41 .    
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10.6.10.3     Case Statements 

 VHDL requires the use of the ‘WHEN OTHERS’ clause to cover all cases, how-
ever undefi ned outputs for any given case can generate latches. The solution is to 
either assign all of the outputs in each case or to initialize all case outputs. An 
example case statement that uses signal initialization to avoid latches is shown in 
Fig.  10.42 .   

  Fig. 10.42    Use of 
initialization in case 
statements to avoid latch 
generation       

  Fig. 10.41    Use of 
initialization in nested if-else 
to avoid latches       

10.6.10.4     Variables 

 Always assign an initial value or signal to a variable in order to avoid a latch. If a 
variable is not assigned an initial value or signal in a combinational process, a latch 
will be generated.    
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10.7     Analyzing the RTL Design 

 All FPGA synthesis tools include a set of tools that report information on your 
RTL. This information can be used to check that your RTL design description is 
meeting your goals. They also provide the added benefi t of detailing the structure 
of the design, thus helping in the understanding of design blocks that you have not 
created yourself. 

10.7.1     Synthesis Reports 

 All synthesis tools generate a report fi le that details critical information about your 
design. 

10.7.1.1     Source Files 

 The synthesis report will detail which source fi les and libraries were synthesized for 
the design. This is important in ensuring that you are using the intended version of 
source fi les in the design.  

10.7.1.2     Synthesis Settings 

 This will detail which options are being used to implement the design in the synthesis 
tool. This information should be included in the documentation on the design as it 
is critical for repeatability of results.  

10.7.1.3     Resource Usage Information 

 This is typically broken down by hierarchy. This information is useful for identi-
fying areas of the design that consume a lot of FPGA resources. It can also help 
identify areas were logic has been optimized out unintentionally or implemented 
in a manner that is different than what you intended. An example of this would be 
a multiply operation that is implemented using LUTs as opposed to dedicated 
DSP blocks.  

10.7.1.4     State Machines 

 Most reports will have a dedicated section that identifi es all of the state machines 
that have been recognized in the design and will detail information on the state 
machine encoding. This information will identify cases were your coding style 
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resulted in a different encoding than you intended. It will also identify cases were 
state machines were not recognized. This can result in non-optimal implementation 
and can impact the debug of your design.  

10.7.1.5     Optimization Information 

 This section of the report contains information on optimizations that have been 
performed on the design. This is usually with regard to registers that have been 
optimized out or duplicated. In some tools it will explain why the optimization has 
occurred, e.g. register has no fan-out therefore optimized out, or a register has been 
duplicated to reduce fan-out. It also contains connectivity data such as input port to 
a module or input to a register is stuck at ground. This is useful for uncovering 
possible errors in the RTL code, in particular for the hook-up of structural code.  

10.7.1.6     Timing Estimates 

 As mentioned previously. The timing estimates from synthesis are inaccurate and 
should be viewed as a coarse estimate. It is best to perform a place and route operation 
to get a good feel for the timing of the design or sub-design.   

10.7.2     Messages 

 You should review all of the messages from the synthesis engine to ensure the 
design gets a clear bill of health. 

 Synthesis tools will generate a large number of messages of different levels of 
severity. 

 The code or synthesis options should be modifi ed to remove any warning mes-
sages. If the messages cannot be avoided, you should fully understand the cause of 
the message and if it is verifi ed that there is not a problem, cover it in the documen-
tation for the module. Most synthesis tools provide the capability to review mes-
sages and to suppress them in subsequent compiles. This will greatly simplify the 
review process for subsequent compiles. 

 However, we recommend that a full message review be completed before fi nal 
design sign-off.  

10.7.3     Block Diagram View 

 Most EDA synthesis tools have schematic viewer options that can be used to analyze 
your design. The viewers create a schematic view of your designs and provide 
the ability to quickly debug your RTL design. In most cases they can cross-probe 
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 It is very easy to view a state machine design and determine if your description 
meets the desired implementation. 

 Figure  10.44  shows an example state machine diagram created by the Quartus II 
software.    

  Fig. 10.43    Quartus II RTL Viewer       

between these schematic views and HDL source code for easy tracing of signals and 
debug of the design implementation. 

 These tools are excellent for gaining an understanding into RTL code that you 
did not create but are reusing from another designer. It quickly shows the structure 
of the design and the fl ow of data through the design. 

 Figure  10.43  shows an example of such a tool from the Quartus II software.  
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10.8     Recommended Best Practices for RTL Design 

     1.    Choose an HDL language   
   2.    Select the EDA synthesis tool   
   3.    Understand the capabilities of your FPGA   
   4.    Create a rough system design   
   5.    Follow recommended HDL coding guidelines   
   6.    Divide and conquer   
   7.    Identify goals for each design block—speed, power or area.   
   8.    Run compilations with individual design blocks for area and performance 

estimates   
   9.    Simulate each block   
   10.    Document each block   
   11.    Remove warnings from synthesis reports   
   12.    Combine blocks to form full project   
   13.    Simulate complete design   
   14.    Analyze synthesis report for complete design   
   15.    Remove warnings from complete design   
   16.    Document complete design   
   17.    Move onto Timing Closure for complete design        

  Fig. 10.44    Quartus II State Machine Viewer       
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    Chapter 11   
 IP and Design Reuse 

          Abstract     This main purpose of this book is to guide you in creating reusable design 
blocks targeting FPGA devices; from Specifi cation through RTL design and 
Verifi cation. This chapter on IP reuse is complementary to these other two chapters. 
It focuses on the benefi ts of IP reuse, how to determine whether to design your own 
IP versus buying IP and how to package your IP for ease of reuse.           

11.1      Introduction 

 This main purpose of this book is to guide you in creating reusable design blocks 
targeting FPGA devices; from Specifi cation through RTL design and Verifi cation. 
This chapter on IP reuse is complementary to these other two chapters. It focuses on 
the benefi ts of IP reuse, how to determine whether to design your own IP versus 
buying IP and how to package your IP for ease of reuse.  

11.2     The Need for IP Reuse 

 It is universally accepted in the industry that design reuse can result in reduced 
engineering effort; consequently resulting in faster time to market and reduced 
development costs. 

 This is demonstrated with many projects where the next version of the product is 
a variation of the previous design, hence effective design reuse. In most of these 
cases the new product has additional functionality to the existing design and the 
original design is used in its entirety. 

 However, when it comes to completely new designs or other products that are 
developed by other design teams, design reuse is not so common. 

 In practice, design blocks from other designs could be utilized in these other 
designs by other teams. 

 So, why does this happen so infrequently? 
 The main reason is that most Companies do not have a design reuse methodology 

that is adopted across development teams. 
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 Engineers that develop design blocks are not going to drive a design reuse 
through a Corporation. They will be the adopters and contributors to a design reuse 
methodology. 

 It is the Engineering Management that needs to drive the design methodology 
from the top. 

11.2.1     Benefi ts of IP Reuse 

 There are fi ve main benefi ts to a design reuse methodology.

    1.    Leverage of existing investment. 
 It doesn’t make sense for every design team to create their own design of a function 
that is common across all designs. Reusing a functional block across designs make 
use of the investment that was originally invested in creating the design block.   

   2.    Predictable results. 
 The performance of existing design blocks is a known entity. Through the use of 
existing design blocks, you are reducing the amount of your design for which the 
results are unknown. In the case of design blocks that are retargeted to another 
FPGA technology, if the design block has followed the recommendations in 
Chap.   8     on RTL coding, it is relatively easy to compile the design block in the 
new technology and quickly gauge the performance of the design block in the 
new technology. This is much faster than creating and verifying a new RTL 
design from scratch.   

   3.    Enables engineers to focus on their core competencies. 
 Some of the components of a design may not be an area for which the designer 
has intimate knowledge. By leveraging design blocks from experts in this area, 
the designer can focus on their area of expertise. An example could be a packet 
processing design where the data comes onto the chip via an Ethernet interface. 
The design engineer may be an expert in packet processing but not in developing an 
Ethernet interface. By reusing an existing design block that implements the 10G 
Ethernet interface, the designer can focus on his core competency of implementing 
the packet processing interface.   

   4.    Minimizes the verifi cation cycle. 
 The design blocks that are being reused have previously been verifi ed, thus they 
only have to be re-verifi ed as part of full system verifi cation.   

   5.    Achieve faster time-to-market 
 It may take a matter of hours to add existing design blocks to your system design 
as opposed to the months that it may take to implement complex functionality, 
such as an Interlaken or DDR III memory interface.      
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11.2.2     Challenges in Developing a Design Reuse Methodology 

 Design reuse does not come for free. While the benefi ts in turns of cost and produc-
tivity are huge, it requires a change in mindset across the engineering teams in a 
Corporation. 

11.2.2.1     Engineers Mindset 

 The fi rst challenge is winning the mindset of the engineers that develop design 
blocks and that will in turn become the consumers of existing design blocks. Many 
Companies suffer from the not-invented-here (NIH) syndrome. Some engineers 
view the reuse of other engineers design blocks as reducing their personal value in 
the designs they are creating. They want to create the design themselves as opposed 
to using others code. 

 In addition, when some designers create blocks, they often want to keep the blocks 
to themselves as their own intellectual property. They may view the sharing of their 
design blocks as reducing their ownership of the design. There can also be a fear that 
other designers that reuse their design blocks will criticize their designs. 

 There is extra effort involved in making design blocks reusable, some engineers 
do not want to expend the effort in making life easy for other engineers at cost to 
themselves. 

 These challenges can be addressed through formal development policies at the 
Company. After the initial pain of adoption, it will become a way of life for engi-
neers and they will take pride in creating reusable design blocks just as they do 
today in creating their designs.  

11.2.2.2     Awareness of Reusable Design Blocks 

 IP distribution is a challenge. Engineers need to be aware of where to fi nd design 
blocks that may benefi t them. Consumers of these design blocks need to be able to 
fi nd information that makes them aware of the capability of the IP, how to use the IP 
and how the IP has been verifi ed. This will remove any concerns over the quality of 
the design. 

 Similarly engineers need to be aware of how to publish their IP; publishing in 
this context meaning how to make their IP available to other users. 

 IP distribution and validation can be a hurdle in the adoption of an IP-Reuse 
methodology. Since the IP, is used by the designers who do not directly have access 
to original design process, they need a lot of information packaged with the IP. This 
includes documentation, all design views required by the ASIC methodology, veri-
fi cation plan and tests etc. 

 These issues can be resolved via a common managed design reuse website, wiki- 
site or sharepoint site that is linked to version control.  

11.2 The Need for IP Reuse
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11.2.2.3     Development Effort 

 There is extra time and effort, hence cost in making a design block reusable as 
opposed to designing a block for one time use in a single project. The project schedule 
can be a factor in determining whether a block is developed for reuse. A Company 
that is serious about design reuse needs to ensure that all of their project schedules 
allows for key design blocks to be designed for reuse. This will allow for more 
effi cient designs in the future. 

 It is crucial to avoid trying to make every single piece of a design reusable. 
 Proper defi nition and selection of design blocks for reuse can be a diffi cult task. 

It is not easy to defi ne design blocks that can successfully be used in different 
applications. 

 Thus when defi ning the specifi cation of a design block, it is necessary to under-
stand the functionality of the design block with respect to other applications and 
products within a Company. This information can be used to determine whether the 
block should be created in a manner for design reuse and documented accordingly 
in the specifi cation for the design block. 

 Certain small blocks such as address decoders and arbiters are best left to system 
integration tools. 

 Similarly, performance challenged design blocks where the functionality of the 
design is closely related to the timing, may not be reusable in other FPGA families 
or even in other devices in the same family. These blocks will have a onetime use 
model and need not follow all of the design reuse recommendations.    

11.3     Make Versus Buy 

 One of the questions that an engineering manager will face is when to develop IP 
in-house versus when to purchase IP from a source outside of the Company. 

 One of the infl uences on the decision for the in-house development of IP is 
whether an IP is critical to the overall performance of the design. Internally devel-
oped design blocks provide more control over design optimization and potentially 
customization. If this is a concern, then designers should consider designing this 
functionality in house or re-using design blocks from other teams, for which they 
have access to the source code. 

 Similarly, if the design block is one of the areas where you are going to differen-
tiate your product from the competition, you will want a strong understanding of the 
capability and ownership of the RTL code. 

 Another factor that will impact in-house development versus purchasing of the 
IP is cost. It needs to be understood how much it would cost to develop and verify 
the functionality in-house versus buying a readily available solution. 
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 Time to market may push you in the direction of purchasing IP. If your schedule 
is tight, purchasing IP may save you several months of development, if your existing 
resources are already fully occupied. 

 The availability of IP for your target FPGA technology is another point to be 
considered. There is usually a delay from the availability of new FPGA families to 
the porting of IP to these new families. Many of the smaller FPGA vendors will wait 
for a lead customer prior to performing the port. This can cause a delay in the avail-
ability of IP that has tight timing requirements. The risk in being the fi rst adopter of 
new IP is that you may become the cleaning house on the IP verifi cation in the new 
technology. This can also be a benefi t in that if you are the fi rst to adopt the IP in a 
leading edge technology, you may gain a lead on your competition. 

 Anytime that you are receiving design blocks from another source, there will be 
concerns over the quality the design blocks, in particular if you are purchasing 
the IP. 

 There is no industry standard for IP quality that is available to help in the 
selection of IP. Several initiatives have started in the past, but never reached the 
level of industry approval and adoption. Consequently, you need to rely on IP pro-
vider’s reputation or ask for details on the IP provider’s verifi cation process and 
results for the IP that is being purchased. 

 These are all cases were you can compare the costs of internal development of 
design blocks versus purchasing of design blocks. 

 If your design team does not have the knowledge or experience in the area of 
functionality that you need, it should be a slam dunk to use purchased IP.  

11.4     Architecting Reusable IP 

11.4.1     Specifi cation 

 The overall system specifi cation should identify new blocks that are being developed 
that could be used in other designs. This will impact the schedule and specifi cation 
for the development of these blocks. 

 Thus when these blocks are being defi ned it will be in their requirements that 
they should be developed for reuse and should follow the IP reuse guidelines. 

 When the specifi cations for these reusable blocks are being reviewed, it should 
include reviewers from the other teams that could be consumers of the IP. This will 
serve three main purposes. Firstly it will increase the awareness of the IP across 
teams. Secondly, by involving the other teams in the specifi cation process they will 
have a vested interest in the IP and will be more open to adopting the blocks in their 
design. Finally, these other teams may provide feedback that your team may have 
overlooked.  
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11.4.2     Implementation Methods 

11.4.2.1     Parameterized RTL 

 Developing IP using parameterized RTL is the most common IP development 
methodology in the industry. It provides the simplest way to create and maintain 
reusable design blocks. Some examples would be the use of parameters to set 
different data widths for Memory or FIFOs. 

 Parameterization provides built-in fl exibility through the use of non-constant 
variables; these are parameters in Verilog and generics in VHDL. 

 When you are determining what should be parameterized in an IP you should 
consider the likely uses of the core, anticipate the range of desired features and build 
parameterized functionality for each desired confi guration. 

 Generate statements which are available both in Verilog and VHDL should be 
used together with parameters in reusable IP to achieve effi cient implementation of 
the design. Generated instantiations and module parameters can be used to remove 
redundant logic and create fl exible designs. 

 Generate loops allows multiple statements and blocks to be instantiated using 
‘for’ loops. 

 Generate based upon conditions can be used to create parameterized logic. 
An example showing the use of a generate statement with parameters to generate a 
multiplexer is shown in Fig.   10.18     in Chap.   10    . 

 More detailed guidelines on creating RTL for IP reuse are available in Chap.   10     
on RTL design. 

 Section   10.5.4     of the chapter on    RTL design provides guidelines on hierarchy 
and design partitioning. Section   10.5.5     of Chap.   10     provides coding guidelines for 
design reuse.  

11.4.2.2     High Level Synthesis 

 High level synthesis is good for algorithmic exploration; particularly in the DSP 
space where users enter their design in Ansi C/C++. This class of tools has been 
shown to provide a large development time reduction over designing algorithms 
in RTL and opens the hardware design process to a new class of user; the software 
or system engineer. They are excellent for the architecture exploration phase of 
the algorithm design as the description is much closer, or the same as the algo-
rithm model. The amount of ‘C’ code needed to describe the functionality is likely 
to be much smaller than an RTL implementation; hence the gain in productivity. 
These tools also tend to provide more fl exibility in porting the design across 
FPGA families. At the highest level of design, the code is not created with a target 
FPGA family in mind. 

 There main disadvantage in these solutions is that they tend not to be an optimal 
solution for fi ne tuned optimized Quality of Results; thus tend to be area ineffi cient 
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or leave some performance on the table. In recent years, these tools have made good 
progress in the QoR aspect for certain classes of DSP applications. They should be 
considered for the creation of non-performance critical DSP IP. 

 In addition to C/C++ tools there is also another class of design tools which is 
model based design. These tools provide an interface to the MATLAB environment 
via Simulink. Once again, these tools mostly target DSP applications. They have 
been shown to be used successfully in a smaller application space; mostly in Modem 
designs and some Military applications. This class of tools should be considered for 
creating IP in these application spaces.  

11.4.2.3     IP Generators 

 IP generators are programs that are written in C++, Perl, or other high-level languages that 
build RTL code dynamically, based on parameter settings from the end user. The gen-
erators tend to pull together RTL design blocks based upon the chosen parameters. 

 This technique is commonly used by FPGA vendors to provide complex IP to 
their customer base. 

 An IP Generator generates the HDL code based on the customer specifi cation 
with all of the parameters resolved. 

 They are suitable for complex parameter combinations, complex legality checking 
and advanced processing for arithmetic operations. 

 The disadvantage of IP Generators is that they require software programming 
skills to implement.   

11.4.3     Use of Standard Interfaces 

 It is recommended that you adopt a common interface protocol on all of your IP. 
The use of standard interfaces simplifi es the interconnection and management of 
functional blocks that makes up a design.

    1.    It ensures compatibility between IP components from different design teams or 
vendors.   

   2.    It enables fast system level integration of IP. Consumers of the IP are aware of 
the operation of the signals to which they are interfacing; greatly simplifying the 
interface logic to the design block.   

   3.    It also opens the door to using design automation tools for system integration.   
   4.    This simplifi es team based design, by enabling individual team members to build 

and test their individual design blocks. Through the understanding of the 
common interface protocol, each of the team members will understand how to 
interface to the blocks that use the common specifi cation. This simplifi es the 
integration of the individual design blocks into a full system design.   

   5.    It enables Plug and Play interoperability of IP.   
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   6.    It also increases the stability of the IP. The operation of the interface signals are 
described in the specifi cation for the interface protocol and the operation of the 
interface signals on the core verifi ed against the specifi cation.     

 There are various standard interfaces on the market today. The most widely 
adopted interface standards that are used in FPGA and ASIC design are AMBA(AXI, 
AHB and APB) from ARM, Avalon (MM and ST) from Altera, OCP from OCP-IP 
and Wishbone from Opencores. 

 When selecting a standard interface protocol you need to ensure that the IP 
infrastructure is in place. When we refer to IP infrastructure we mean that IP is 
available targeting the FPGA technology that you will be targeting using the standard 
interface protocol and that the specifi cation for the protocol is solid. IP includes 
both the IP that will be part of your end design and verifi cation IP such as Bus 
Functional Models. 

 The interface standard needs to be easy to understand, compact, and the hard-
ware interfaces should not produce performance or area penalties when imple-
mented. The standard needs to support all of your application needs. This will 
normally include Memory mapped interfaces with address-based read/write inter-
faces typical of master–slave connections, point-to-point interfaces that support the 
unidirectional fl ow of data, including multiplexed streams, packets, and DSP data. 

 Once a decision has been made on the choice of standard interface to be used 
within the company, each designer of a system component or major design block 
must consider what interface types the block will need, and which standard inter-
face type each will use. It is best to understand the standard interface specifi cation 
and design the system to that specifi cation whenever possible, rather than try to 
convert existing signals to use the standard. For example, if the design team chooses 
to use the ARM AXI-4 Lite protocol, separate the control paths that may be designed 
as a memory-mapped ARM AXI-4 Lite slave interface from the data paths that may 
use an ARM AXI-4 Stream protocol connection. An IP block may have more than 
one interface, or set of signals that follows the standard. If the IP is performing dif-
ferent types of transactions, it may be preferable to split those transactions into 
different system interfaces, or even different design blocks, to make each design 
block easier to verify and more versatile for reuse in other systems. 

 Another area to consider is the boundary of the IP logic versus the system- 
interconnect logic. For example, if a design block accesses memory, you may want 
to split the read and write functions and allow standard interconnect logic to per-
form the arbitration instead of designing all the custom arbitration logic. Systems 
generally result in the highest performance and effi ciency when characteristics such 
as data width, burst lengths, and clock domain are matched between components of 
the system. However, if you are designing a reusable design block, it is often better 
to allow the system interconnect to perform tasks such as width and burst length 
adaption and clock domain crossing, unless you know the characteristics of all the 
target systems. There is often no need for the IP blocks to contain this type of logic. 

 In summary the use of a standard interface protocol really is the heart of a design 
reuse strategy.   
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11.5     Packaging of IP 

 The IP package is the IP core plus the supporting fi les and utilities. 
 A good IP package should place everything at the user’s fi ngertips. It should be 

easy to fi nd, install and to maintain. 
 User access to the IP could be in a Company library of reusable IP or it could 

require installation on the user’s workstation or Design Environment. If it requires 
installation, it is recommended that you leverage an off the shelf commercial 
product to perform the installation, such as install shield, or create a self extracting 
executable using WinZip or a similar program. 

 The minimum requirements for an IP package are:

    1.    IP core. The design that implements the required functionality. This can be plain 
text HDL or an encrypted HDL fi le or netlist.   

   2.    Timing Constraints and any location constraints.   
   3.    Simulation Model, if different from the design fi les for the IP core.   
   4.    User Documentation. This should be the user manual for the IP as well as any 

errata. This is described in more detail in Sect.  11.5.1  on documentation.   
   5.    User Interface and/or scripts for parameterizing the core or compiling the core.   
   6.    Compatibility with any System Integration tools that you intend using.     

11.5.1      Documentation 

 It should be common practice in an organization to include good documentation on 
major design blocks. This is an additional document to the RTL code for the design. 
This document should explain the structure of the design, including block diagrams 
and a description of the hierarchy. It should also include a description of timing 
details, such as which paths are timing exceptions. 

 Documentation on major design blocks is essential for design reuse. If the end 
user does not understand what they are trying to reuse, they are unlikely to be suc-
cessful in reducing the design cycle through design reuse. Documentation is also 
very helpful when you are returning to a design that you completed in the past, and 
for the training of new employees in the organization who will maintain or complete 
your design block. 

 As mentioned previously the documentation on the IP should include the user 
manual and any errata. It should include version control on the documentation that 
details the history of changes to the IP core and documentation. The version of the 
core needs to be identifi able in the core itself, as well as in the documentation. 

 While the functionality of the design may be unique to the IP core, the format of 
the documentation needs to be consistent across all IP cores. This includes the user 
documentation and the RTL code formatting which in itself should be self 
documenting. 
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 The documentation should include an example design or testbench for the IP that 
demonstrates how to connect the IP to the rest of a design. Ideally this can be used 
to demonstrate the functionality of the IP. Ensure that the IP core and any example 
design and test benches can be simulated in all simulators used within the 
company. 

 The fi le structure of the design must be common with all other IP and the naming 
convention of signals must follow the Company coding guidelines. 

 For parameterized IP, there should be tips on the parameter settings.  

11.5.2     User Interface 

 The most common way that designers make IP available to other designers within 
their Company is that they provide the RTL for the design along with user documen-
tation on the design. While this works, it makes it diffi cult for the end user to really 
understand how to use the IP that they are receiving. 

 IP should come with an interface that makes it easy for the user to understand 
the constraints that apply to the IP. At a minimum the IP should come with a docu-
mented command-line script that enables users to pass values to the parameters in 
the IP. Ideally it should come with a GUI to help users get started. 

 Our recommendation is that you provide a simple GUI for your IP and a scripting 
interface. 

 The simple GUI should enable users to set parameters, set constraints and be able 
to validate that the selections are legal. 

 This type of interface will help designers to learn the functionality of the IP, 
generate the correct verifi cation fi les and scripts for the block, as well as providing 
a link to documentation that is available for the IP. 

 This is the type of interface that you will see in the IP that is provided by the 
FPGA vendors and in many cases from other IP providers. 

 The GUI need not be elaborate; it needs to show the user what settings that they 
can make and enable them to make the settings. 

 A sample GUI available in the Component Editor from Altera is shown    in 
Fig.  11.1 .  

 If you have reasonable programming skills, you could create a GUI in Tcl/TK or 
in Java. 

 If not, you can adopt the IP GUIs from the FPGA vendors. This requires the 
adoption of the FPGA development tools.  
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11.5.3     Compatibility with System Integration Tools 

 Standardized design entry and design integration tools can reduce the design entry 
overhead. 

 System Integration tools auto-generate the HDL for the interconnection of IP 
blocks. The major FPGA vendor tools provide IP integration tools that perform this 
function. These system integration tools take care of the relatively mundane tasks 
that RTL designers have to do such as address decoding, data multiplexing, wait 
state generation in processor systems, dynamic bus sizing, slave side arbitration and 
direct interconnect of blocks. This functionality is analogous to a software linker. 
A software linker creates an executable program out of MAIN and a selection of 
precompiled library functions. 

  Fig. 11.1    Sample GUI for IP demonstrated by the Quartus II component editor       
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 System integration tools, such as Qsys from Altera, automatically create a system 
out of a variety of system blocks. This enables designers to focus on value-add archi-
tecture ideas, effectively extracting themselves from the low level integration details. 

 These tools should be used in both the architecture exploration and implementa-
tion phases of the design process, where they will increase your productivity. 
They facilitate architecture exploration by allowing you to plug and play design 
blocks into your system and to quickly generate the RTL for the given architecture 
without having to modify the arbitration logic, width adaption logic, memory map, 
etc. manually. This enables you to quickly try different architecture variations. Once 
you fi nd the architecture that you want to use for the implementation you can then 
fi ne tune the blocks that are in the system to meet your overall goals.  

11.5.4     Constraint Files 

 If a design block requires specifi c timing constraints (such as timing exceptions or 
frequency limitations), or any location constraints on the target device (such as pin 
locations or I/O standards), reusable IP requires an easy way for the end user to 
make those constraints in the design tool. 

 One challenge with reusable IP is that signal and pin names may change when the 
IP is integrated into a new design, due to different design names and different hierar-
chy. For example, full hierarchy names will change when IP is moved from a lower-
level design to a top-level design. The name changes for core logic such as registers 
are usually predictable, as the name changes involve a change in the hierarchy leading 
up to the register. For example, a register named “lower_module:inst1|reg1” may 
become “top_module:inst1| lower_module:inst1|reg1” in the top-level project. 
However, the name changes for I/O pins may change in a non- uniform way when 
moving from a lower-level design to a top-level design due to the actual device I/O pin 
names used in the different designs. For example, a pin named “lower_module_data_
bus” in the lower level may be named “top_level_input_data_bus_4” in the top level. 

 You should provide complete Synopsys Design Constraint (SDC)-format timing 
constraints, such as timing exceptions or frequency limitations, if the IP core 
requires these constraints to function correctly. To allow timing constraints to work 
in different design hierarchies, defi ne a variable that contains the design hierarchy 
leading up to the module to be constrained. 

 Create a hierarchy variable for the reusable IP block (such as “my_IP_hierarchy”) 
and set it to an empty string because the block is the top-level instance in the IP 
design. Check fi rst if the variable is already defi ned in the project, as shown in the 
following Tcl command: 

 if {![info exists my_IP_hierarchy]} 
 {set my_IP_hierarchy ""} 

 Whenever a design name is used as an argument to a constraint, add the prefi x 
“my_IP_hierarchy” to the hierarchy name in the constraint. Ensure that you use the 
hierarchy variable as a prefi x to any wildcard characters to limit their scope to the 
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given design block when incorporated in the full design, such as in the following 
SDC false path constraint: 

 set_false_path -from ${my_IP_hierarchy}reg_1 –to ${my_IP_hierarchy}* 

 With this approach, the top-level SDC fi le needs only to set the hierarchy vari-
ables for each IP block and include the lower-level IP block SDC fi le(s). This hier-
archy approach eliminates the effort of translating constraints on lower-level IP 
design hierarchies into constraints that apply in the top-level hierarchy. 

 You should also provide pin constraints for all IP cores that require assignments 
to function correctly. These constraints include the correct I/O standards for inputs 
and outputs of the design block that will be device I/O pins in the fi nal design. 
The unique fl exibility of FPGA I/O pins can make it challenging to plan the pin 
connections for a full FPGA design, so including complete I/O constraints for the IP 
is important to allow the FPGA design tool to verify the legality of pin location 
assignments early in the design process. 

 To avoid pin-naming problems, make reusable constraints to variable names 
representing the IP port names, instead of hard-coded pin names. Then in the top-level 
design, the user sets all the variables for I/O names.  

11.5.5     IP Integration File Formats 

 Traditionally, FPGA vendors and other EDA tools vendors have used their own fi le 
format to integrate IP into their design fl ow. For example, Altera uses a hw.tcl fi le to 
integrate IP into the Qsys tool. Each IP block has a <fi lename>_hw.tcl that describes 
the characteristics of the IP. 

 The ‘_hw.tcl’ fi le specifi es the following information about the IP or design block:

    1.    Identifying information, such as name, version, author, etc.   
   2.    SystemVerilog, Verilog HDL, or VHDL fi les, and constraint fi les that defi ne the 

component for synthesis and simulation.   
   3.    It enables the automatic creation of an HDL template for a component by fi rst 

defi ning its parameters, signals, and interfaces.   
   4.    It associates and defi nes signals for a component’s interfaces.   
   5.    Sets parameters on interfaces, which specify characteristics.   
   6.    Specifi es the relationships between interfaces.   
   7.    Declares parameters that alter the component structure or functionality.     

 In recent years there has been a move towards providing a standard format for 
describing the characteristics of IP. This has resulted in the IP-XACT standard 
that was created by the SPIRIT consortium and is now a published IEEE standard. 
The current release of the standard is IEEE 1685-2009. 

 The goals of the standard is to enable exchange of component libraries between 
EDA tools by using metadata to describe parameterizable components. 

 The standard has not been adopted by all of the FPGA vendors, EDA tools or IP 
vendors. While the standard is very powerful, it is also very broad and supports user 
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extensions. This makes the standard open to misinterpretation. This makes it diffi -
cult for tools to support all of the features of the standard and makes it possible for 
cores to be described that cannot be integrated. 

 Some of the benefi ts provided by IP-XACT include:

    1.    It is a controlled IEEE standard   
   2.    It supports IP confi guration   
   3.    It is tool or vendor independent   
   4.    It is XML based, thus is machine readable   
   5.    The XML can describe Memory maps, Bus interfaces, Ports, Parameters, 

Generators (which apply to IP that is generated at compile time), fi le sets and can 
be integrated into an UVM based verifi cation environment.     

 EDA tools and IP vendors appear to be limiting the features of the standard that 
they support. This is resulting in higher adoption. It is likely that an extension 
of IP-XACT will become the de facto standard in the FPGA industry over the next 
2–3 years.  

11.5.6     IP Security 

 The IP that you purchase from IP vendors normally arrive encrypted. The IP vendors 
do this to preserve the integrity of their RTL and to prevent non-authorized users 
from being able to design with their IP. The encryption scheme that is used tends to 
vary across IP vendors and EDA vendors. From the perspective of a consumer of IP, 
you care about which synthesis tools support the IP and the quality of the simulation 
model from the IP vendor. 

 There are moves in the industry to provide a standard encryption methodology. 
The IEEE has created the IEEE 1499 standard based upon the Open Mode Interface 
(OMI). The standard is still evolving to meet the protection needs of all IP vendors. 
The standard enables the RTL to be compiled into a model format that cannot be 
reversed engineered. These models can be simulated in OMI-compliant simulators. 
The benefi t is that the RTL code for simulation model and synthesis is the same. 
This reduces the development effort for the IP vendor. 

 Some IP vendors will provide the source code for the IP. This simplifi es the 
design fl ow but usually costs signifi cantly more than the encrypted RTL. 

 If you intend to provide encrypted IP, you must work with your FPGA vendor to 
utilize their encryption tools. 

 Some IP vendors provide obfuscated RTL. This provides a limited form of 
security in that the code is diffi cult to understand as the signal names appear to be 
 nonsensical. Obfuscation makes it diffi cult for non-authorized users to reverse engi-
neer the RTL. It does not prevent them from compiling the design. 

 Some of the FPGA vendors enable you to provide the IP in a post-compilation 
format as opposed to at the RTL level. An example being a design block that has 
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been compiled using an incremental compilation methodology with the placement 
and routing locked down. This level of IP guarantees the performance of the IP, thus 
reducing the support burden on the IP. 

 These are some of the ways that you can provide IP to other users. Most 
Corporations provide the RTL for design reuse within their own Corporation 
and encryption only comes into play on purchased IP. However, some 
Corporations are deploying encryption schemes internally for the distribution of 
key IP blocks. 

 Due to the complication of the design fl ow, it is recommended that you only use 
encryption or obfuscation on your design blocks if security is a major concern.   

11.6     IP Reuse Checklist 

     1.    Purchase or design the functionality?   
   2.    Does the specifi cation state that the design be reusable?   
   3.    Select the appropriate IP implementation method, i.e. RTL, High-Level Synthesis 

or Generator?   
   4.    For RTL solutions, follow the RTL coding guidelines.   
   5.    For RTL solutions, parameterize the IP.   
   6.    Use standard interfaces on the design block.   
   7.    Is encryption or obfuscation required?   
   8.    Does the IP follow the IP packaging guidelines?        

11.6 IP Reuse Checklist
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    Chapter 12   
 Embedded Design 

          Abstract     The fi rst question that may come to mind is why is the design of an 
Embedded System in a FPGA any different than standard FPGA development?           

  The fi rst question that may come to mind is why is the design of an Embedded 
System in a FPGA any different than standard FPGA development? 

 In an embedded design, the FPGA system now includes a processor or microcon-
troller and will be running software. This adds a new dimension to the development. 
This generally requires the software engineering team to become involved and 
imposes additional development challenges on the hardware engineer. In the last 
few years, FPGAs have gone from offering low to mid-performance processors via 
soft processors, such as Altera’s Nios II, to now offering higher performance hard-
ened processors, such as the dual ARM A9 processors in the Altera SoC devices. 

 In this chapter, we are going to cover some of the challenges in embedded hard-
ware design that are unique to embedded designs. We will touch upon some of the 
software challenges and end with an overview of some of the FPGA design tools 
that can simplify the design of embedded systems in FPGAs. 

 Before going into the details of the challenges in embedded FPGA designs, it is 
best to fi rst look at the defi nition of an embedded design. 

12.1     Defi nition of an Embedded Design 

 An Embedded design is a non-desktop system that is designed to perform specifi c 
tasks rather than being a general purpose compute systems such as a Personal 
Computer. It includes both hardware and software, thus includes a microprocessor 
or microcontroller. FPGA devices have been used to perform specifi c tasks for 
many years; what is changing now is that processors of higher performance are now 
being embedded within the FPGA device. 

 A characteristic of embedded processors is that they meet the needs of the end 
application. They are usually power effi cient and reliable. These characteristics vary 
based on the needs of the end application. The key thing being that they are developed 
to meet the needs of the end application rather than being general purpose. 
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 What is an embedded microcontroller? 
 A microcontroller is chip that contains a processor, memory for program memory 

and for use as RAM, as well as programmable peripherals for input and output 
functionality. Microcontrollers can also contain other peripherals such as Analog 
to Digital Converters (ADCs), Digital to Analog Converters (DACs) and timers. 
The CPU in a microcontroller can be 4, 8, 16, 32 or 64-bit with the most recogniz-
able microcontrollers being the 8051 microcontroller, ARM Cortex-M processors 
and Microchip Technology PIC devices. They may provide a predictable response 
to events in the embedded system they are controlling by using interrupts that are 
triggered by certain events to suspend processing of the current instruction sequence 
and to begin an interrupt service routine. This is completed before returning to the 
event where the processing left off   . 

 Figure  12.1  shows the block diagram of a typical Embedded System.  
 An embedded system may or may not contain a Real Time Operating System 

(RTOS). An RTOS is used to control the execution of the application program and 
tends to be used in large complex embedded systems. Smaller Embedded Systems, 
which are typically 8 or 16-bit microcontrollers with less complex hardware and 
complexity, tend to not require real-time application requests. Thus they tend to 
have the application software run without a RTOS. 

 The ease of use of a Microcontroller is dependent upon three main factors.

    1.    The quality of the development tools.   
   2.    The availability of development kits.   
   3.    The support infrastructure for the microprocessor.     

 Most microcontroller vendors provide free compilers for their microcontroller. 
There are also compilers that can be purchased. These tend to have better debug 
capability and in some cases, better optimizations capabilities. Development boards 
are extremely important in embedded systems. They allow software engineers to get 
started on their design while the end board is being developed. It effectively allows 
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  Fig. 12.1    Example of a typical Embedded System       
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developers to test their code on the target microcontroller in a system prior to having 
their own board. The support infrastructure includes documentation, example 
designs and technical support. 

12.1.1     Advantages That FPGA Devices Provide for Embedded 
Design 

 FPGA devices provide the option to customize the end design to the exact requirements 
of the end system. This provides the end user the option to differentiate their design in 
both software and hardware, as opposed to just software. The use of microcontrollers, 
such as Nios II, hard ARM A9 processors together with the custom logic capability of 
FPGA logic enables the creation of designs ranging from small to medium scale 
embedded systems, to large scale embedded systems, to the replacement of Application 
Specifi c Standard Products (ASSP) and Digital Signal Processor devices. 

 The FPGA logic when added to the processors in FPGA devices can effi ciently 
address intensive signal processing or math applications that have previously been 
only possible to implement in DSP processors.   

12.2     Challenges in a FPGA Based Embedded Design 

 The challenges that a FPGA based embedded design face are dependent upon the 
end application. One of the major advantages that a FPGA provides is the ability to 
use custom hardware to replace software functionality or to improve system perfor-
mance. This raises the challenge of determining which implementation is the best 
solution for the end system; faster hardware or more capable software? Which 
approach is going to meet the project deadline and which approach is more portable 
to the next generation platform? 

 There are three constraints that are common across most embedded applications. 
These are memory use, processor performance and power.

    1.    System memory—Embedded systems are generally self-contained and thus have 
limited memory. This requires the software code to be written very effi ciently to 
maximize memory use. Most embedded system applications are coded in ‘C’. As an 
embedded designer, it helps to have an understanding of the microcontroller’s 
architecture and assembly instructions in order to write effi cient ‘C’ code.   

   2.    Processor speed—What performance can be achieved using ‘C’ code running on 
the processor versus using hardware accelerators implemented in the FPGA logic. 
How much FPGA logic will be required to meet the performance requirements?   

   3.    Power—How do we minimize the power using software and hardware design 
techniques? Is it possible to turn off logic during periods of inactivity?     

 In addition there are the challenges of testing a design that contains both 
hardware and software. Does the design meet the end specifi cation and does it really 
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work in the end system. Testing introduces the challenge of determining if a failure 
is due to software, hardware or both? 

 There are now three classes of engineers involved in the embedded FPGA 
processor design.

    1.    FPGA Hardware Design Engineer   
   2.    Firmware Engineer   
   3.    Application Software Engineer.      

12.3     Embedded Hardware Design 

 The FPGA design engineer is responsible for the design and/or integration of 
IP blocks in the FPGA design. This includes the interface between the processor 
(soft or hard) and the FPGA logic. The FPGA engineer works with the Firmware 
engineer to maintain the register map for the design, to ensure that the software can 
work on the device. There are more details on this in Sect.  12.4  Hardware to 
Software Interface. The HW engineer is responsible for the design of the bus system 
that integrates the IP together with the processor. As such, the hardware engineer 
needs to be aware of the pros and cons of the different bus arbitration schemes and 
the pros and cons of using automated systems, such as Altera’s Qsys tool versus 
manually implementing the bus and bus arbitration scheme. 

 The hardware engineer must also work with the Firmware engineer to under-
stand the impact of endianness on the design. So what is endianness? 

12.3.1     Endianness 

 Endianness refers to how the bytes in a system and/or bus are ordered. Big Endian 
systems are ordered most signifi cant (1 st  byte) to least signifi cant (Last Byte). Little 
Endian systems are ordered least signifi cant (1 st  Byte) to most signifi cant (Last 
Byte). Figure  12.2  details this for an integer of value 918.  

Integer i = 918 = x000396

MSB
00000000 00000000 00000011 10010110 Big Endian

00 00 03 96

Lower -> Higher

LSB
10010110 00000011 00000000 00000000 Little Endian

96 03 00 00

Address

  Fig. 12.2    Interpretation of an integer in big and little endian systems       
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 Data transfer between blocks/IP in an embedded system is comprised of the data 
being transferred, the address of the data, and control signals for synchronizing 
transmission and reception. The IP needs to process the data in the correct sequence, 
thus needs to be aware of the endianness scheme in order to process the appropriate 
data. If the hardware blocks in the system are designed using different endian-
ness schemes, it creates a challenge for device driver development to make the 
data transfers work seamlessly between the blocks. Needless to say, using hard-
ware blocks of differing endianness is a source of contention between hardware, 
fi rmware and software engineers and it is best if all hardware blocks are developed 
to use the same endianess scheme.  

12.3.2     Busses 

 As a designer, you need to also be aware of the benefi ts and the challenges that 
busses bring to hardware design. 

 It is standard design practice to use busses in embedded system designs. Designers 
need to be aware that the implementation of the bus system in the embedded design 
can hurt the performance of the system. The most common being the creation of 
bottlenecks in the communication channels. The bus system needs to be designed to 
accommodate the number of devices that will be connected in the system. For large 
systems, it needs to be able to cope with design blocks that have different data 
transfer rates and design blocks that have different latencies. This effectively means 
that there needs to be a way to support a hierarchical bus system where lower per-
formance systems can run on a slower clock domain and higher performance 
peripherals on a faster clock domain. This also means that the system needs to deal 
with clock domain crossing to bridge between the levels of hierarchy that are operat-
ing at different clock rates. 

 The system hardware performance depends on multiple items and not purely 
on clock performance. Often the performance of a system is described in terms of 
bandwidth, throughput, effi ciency and latency. There is a heavy overlap in the 
defi nitions of each. The following descriptions capture the essence of each 
terminology. 

 Bandwidth is a measurement of the achievable bit-rate in multiples of bits per 
second, e.g. bit/s, Mbit/s, etc. A good example is memory bandwidth which is 
expressed in bytes/s to represent the rates at which data can be written to, or read 
from memory. The maximum memory bandwidth is calculated as a function of 
clock rate, number of lines per clock, width of data bus and number of interfaces. 

 Throughput is measured in bits per second or data packets per timeslot depend-
ing on the end application. It is the sum of the data rates on all of the destinations in 
the system. Throughput is usually referenced in network based applications. 

 Effi ciency is a measurement of the bandwidth achieved. The channel effi ciency, 
also known as bandwidth utilization effi ciency, is a percentage used to describe the 
achieved throughput related to the net bitrate in bit/s of a digital communication 
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channel. For example, if the throughput is 6,000 Mbit/s in a 8,500 Mbit/s DDR III 
Memory then effi ciency is approximately 70 %. 

 Latency refers to the number of clock cycles for data to get from the source to the 
destination, Latency impacts the bandwidth. In network applications, latency is 
expressed as either one-way latency or round-trip latency. One way latency is the 
time from source to destination. Round-trip latency is the time from source to 
destination plus the time from destination back to the source. 

 So now that we understand the various factors of measuring performance, we 
will look at the function of busses and the various bus architectures that are avail-
able to HW designers. 

 The basic operation of busses is based upon transactions. The system contains 
multiple components, that are classifi ed as masters and slaves and that are con-
nected to the bus. The masters control the bus and the slave performs a task based 
upon the request from the master. Because there are multiple masters and slaves in 
a system, a scheme needs to be implemented to determine who has control of the 
bus at a given time. The basic principal of operation is that a master component 
requests to use the bus. It selects the address of the destination, which is a slave and 
the type of transaction that it wants to perform, e.g. read or write. If the request is 
granted, the operation occurs and the bus master sends a signal to the system to 
inform it that the transaction is complete and that another masters can take control 
of the bus. The key factor in the performance is that a bus master has to make a 
request to perform a transaction and cannot use the bus until the request is granted. 
Once the request is complete, it must relinquish control of the bus to allow other 
masters to have their request serviced. It is the implementation of this scheme that 
will impact the performance of the system. The implementation will use a bus arbi-
tration scheme. Section  12.3.3  details the most commonly used bus arbitration 
schemes. 

 For very simple systems, it is possible to use a single bus system. This is easy to 
implement but has the disadvantage that it is not easily scalable and will suffer from 
being a performance bottleneck. 

 For more complex embedded systems there is likely to be two or more buses. In 
general one bus is used for the processor to memory interface and the other is used 
for interfacing to external devices or peripherals. Often a separate bus is used for 
lower performance blocks that are running off a slower clock. 

 The bus system can be synchronous or asynchronous. 
 A Synchronous bus system tends to provide higher bandwidth with lower latency. 

One of the challenges is that every component in the system has to run at the same 
clock rate. This is diffi cult to achieve in practice, hence the need for a hierarchical 
bus system that has slower components running off a slower clock. This introduces 
the complexity of managing cross-clock domain transfers. 

 Asynchronous bus systems have the advantage that there is no dependency on 
clocks, thus can support a wide variety of components. Control lines such as request 
(req) and acknowledge (ack) are used to make the transactions. However, the 
communication protocol of such schemes is extremely complex. 

 The most common scheme used in FPGA based embedded system design is that 
of the synchronous bus.  

12 Embedded Design



163

12.3.3      Bus Arbitration Schemes 

 Bus arbitration is used to prevent bus contention. It needs to able to service high 
priority blocks, while not completely ignoring lower priority blocks. This requires 
the implementation of a prioritization scheme to service the highest priority compo-
nents that also includes a fairness scheme that enables lower priority blocks to 
access the bus. Bus arbitration schemes can be divided into centralized schemes and 
distributed arbitration schemes. 

 In distributed or decentralized arbitration there isn’t an arbiter, so the devices have 
to decide which component gains access to the bus. This makes the components 
more complicated, but avoids having to develop an arbiter. However, it means that 
control logic has to be added to each block in the system that is connected to the bus. 
An example of a distributed arbitration scheme is the VAX SBI Bus. In this system, 
there are multiple request lines which all of the components monitor. The compo-
nents also know their priority level. In order to request access to the bus, a component 
fi rst checks to see if a higher priority component has requested the bus. If not, it 
makes the request and gets access to the bus. When it completes its transaction, it 
negates its request, allowing other components to access the bus. 

 Centralized schemes are the most commonly used schemes in embedded FPGA 
design. 

 Centralized Arbitration is used in nearly all embedded systems Fig.  12.3 .  
 There are several different ways to implement a system that uses centralized 

bus arbitration. In the case of systems that require high bus bandwidth, such as 
processor to memory busses, it is common practice to use separate address and data 
lines. While this will cost area, it enables address and data to be transmitted in one 
bus cycle. 

 Another technique to increase the bandwidth is using a wider data bus. This 
enables transfers of multiple words in fewer bus cycles. When using wider busses, 
you need to pay attention to the size of the system and the impact that has on routing 
resources within the FPGA. 

 Another common technique is to transfer multiple words in back-to-back bus 
cycles. Using this technique, when an address is sent at the beginning of a transfer, 
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  Fig. 12.3    Diagram of centralized bus arbitration       
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it is help until the transfer is fi nished, i.e. the last word is transferred. This technique 
can greatly increase the performance but at the cost of implementation complexity. 

 There are several common arbitration schemes that are used to implement 
embedded systems. The simplest arbitration scheme is daisy chain arbitration. 

12.3.3.1     Daisy Chain Arbitration 

 Daisy Chain arbitration is simple in both implementation and the ease of under-
standing how it operates. 

 The simplicity of daisy chain arbitration results in a number of limitations. 
A daisy chain scheme does not support fairness. As you look at the structure of the 
daisy chain scheme in Fig.  12.4 , you can see that the components position in the 
chain signifi es its priority. The system relies on a prioritized request scheme using a 
grant and release signal. The bus control passes from one master to the next one and 
so on. When a component releases control of the bus, it starts back at the highest 
priority component and moves down the chain from component to component until 
a component requests control. This can result in lower priority components being 
locked out and never serviced. The grant signal which is chained to each component 
from highest priority to lowest priority is often the limiting factor in the perfor-
mance of the bus.  

 The performance limitations are such that it is rarely used in modern embedded 
system design. 

 A variation on the daisy chain scheme that uses a centralized two level bus 
arbitration scheme helps alleviate some of the prioritization limitations. By imple-
menting a Bus Request line for each level and a Bus Grant line for each level. 
This alleviates the problem that the closest device to the controller always gets the 
bus. In the case where requests are made on more than one request line during the 
same clock cycle, then the highest priority component is granted the bus. If he bus 
has been granted to a lower priority device, a higher priority device cannot access 
the bus until the lower priority device releases the bus. There is still the possibility 
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  Fig. 12.4    Daisy Chain arbitration       
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that lower level components will never get access to the bus. This could happen if 
higher priority components request the bus during each cycle.  

12.3.3.2     Round Robin Arbitration 

 Round robin arbitration is perhaps the most common scheduling scheme that is used 
in FPGA based embedded system design. There are many variations on round robin 
arbitration, adapted to meet the end system requirements. Round Robin is a sched-
uling scheme which gives to each component its share of the bus for a limited time. 
In its most basic implementation, once a component has been serviced, it goes back 
to the end of the line and will be the last to be serviced again. The main limitation 
of this simple allocation based round robin is the wasted time slots for components 
that do not have valid requests. 

 A more advanced form is weighted round robin arbitration. Weighted round 
robin introduces a fairness scheme to avoid the wasted time slots and to provide 
priority to more valuable components. It provides a mechanism for prioritizing the 
allocation of a shared resource, based on a relative “weight” given to each compo-
nent. The priority is such that the timeslots available to each component is relative 
to its weight. Inactive components are not granted time slots.   

12.3.4     Hardware Verifi cation Using Simulation 

 The simulation of processor based FPGA designs introduces a new challenge in the 
design verifi cation; how to simulate your designs interaction with the processor. 
While it is possible to simulate the embedded code running on the processor and it’s 
interaction with the rest of the design, the runtime of such a simulation is prohibitive 
and thus is rarely performed. It is easier to verify this operation on silicon. 

 Where simulation comes into play, is in the verifi cation of the interface between 
the processor and the users design blocks. This is usually achieved through the use 
of Bus Functional Models (BFMs) for the processor or the standard interface used 
to connect the components in the system, e.g., AXI, Avalon memory Mapped, etc. 
The BFM effectively models the interaction with the bus. The BFM provides an 
Applications Programming Interface (API) which is used to communicate with 
the BFM. This programming interface provides the ability to generate bus stimu-
lus, simplifying the verifi cation of hardware components that attach to the bus. 
This enables the simulation of the operation of individual components in the 
embedded system without having to build and simulate the complete embedded 
system. The programming interface also simplifi es the creation of the stimulus for 
the test system. There are usually several Bus Functional Models, e.g. Master model 
and slave model. There may be other models, dependent upon the interface standard, 
such as clock source and reset source, or streaming interfaces. 

 Take the case where you want to verify the operation of your component, which 
is a Slave component, e.g. an UART, as it interacts with the processor. You would 
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replace the processor with a Master BFM and simulate the interaction of your UART 
with the Master BFM. The BFM will model the operation of the processor as it 
would interact with the UART, e.g. setting up a write operation to a specifi c address 
with the appropriate data and latency or the response based on the interaction with 
the UART. As well as testing the functionality of the UART it also tests that the 
interface used complies with the standard, i.e. if the UART has AXI-4 interfaces, 
hooking it up to the AXI-4 master BFM will check that the interfaces on the UART 
are AXI-4 compliant Fig.  12.5 .  

 The test program is the code that is used to interface with the API for the BFM, 
i.e. select addresses, request write operations, etc. This will produce the appropriate 
operation from the BFM. This is run on your simulator and produces results in the 
same manner as you would see with a standard testbench. It has the advantage that 
it does not require the complex and slow processor model and the API enables you 
to more easily achieve higher level of simulation coverage. 

 In the case where you have created a master component, such as a DMA, you 
would interface with a Slave BFM in a similar manner as previously described. An 
example would be where the DMA interfaces with a memory. The slave BFM would 
be programmed through it’s interface to operate like a memory would, modeling 
read and write operations Fig.  12.6 .    

Test Program

Master
BFM

UART
Slave
(DUT)

User Testbench  Fig. 12.5    Simulation 
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12.4      Hardware to Software Interface 

 Master interfaces have address spaces, or address_space objects. Slave interfaces 
have an address_space container, called a memory map, to map the slave to the 
address space of the associated master. 

 The memory map for each slave interface pin contains address segments, or 
address_segment objects. These address segments correspond to the address decode 
window for that slave. A typical AXI4-Lite slave will have only one address segment, 
representing a range of addresses. However, some slaves, like a bridge, will have 
multiple address segments; or a range of addresses for each address decode window. 

 When a slave is mapped to the master address space, a master address_segment 
object is created, mapping the address segments of the slave to the master. 

12.4.1     Defi nition of Register Address Map 

 The register address map is often referred to by many different names including 
Control and Status Registers (CSRs), Memory Mapped registers, Register File, 
Register Block, or Register Interface. Registers in the design are used to represent 
data that is communicated between the hardware and the software. Each block of IP 
provides a register interface that is mapped to addresses for the software interface.  

12.4.2     Software Interface 

 The main interface between the application software and the RTL is the Register 
Address Map. The register address map is shared across multiple disciplines in the 
design process. 

 This creates the challenge in the project of synchronizing the fi rmware, RTL, 
hardware verifi cation, and the documentation. In the case of documentation this 
refers to both internal use and in the case of IP development, the documentation that 
is provided to the end user. 

 As such, it is essential that the information is strictly controlled and any change 
in the information is communicated across the design team, with changes being 
avoided as much as possible to avoid a fi rmware and/or hardware rewrite.  

12.4.3     Use of the Register Address Map 

 As mentioned at the start of the chapter, the Register Address Map is used by differ-
ent disciplines throughout the design process. Each of the different disciplines will 
likely require the data in a slightly different format. 
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12.4.3.1     IP Selection 

 As part of your selection criteria for IP, you need to understand how you will interface 
to the IP from both the hardware the software perspective. The Register Address 
Map will address how your software will interface with the IP. The user documentation 
on the IP core should refl ect this information.  

12.4.3.2     Software Engineers Interface 

 The software engineer needs to know the register map in order to develop the 
software drivers that interface with the hardware. The software engineer will want 
the register map information in the form of software header fi les which defi ne the 
component base address and register offsets Fig.  12.7 .   

12.4.3.3     RTL Engineers Interface 

 The RTL Engineer needs to connect the Register Map interface to the rest of the 
system. This involves writing the logic for each of the register bits and creating 
address decoders for read/write cycles. The challenge to the RTL design is defi ning 
this up front and maintaining the register map throughout the design cycle. It is 
likely that at sometime in the design cycle that the RTL designers will need to 

  Fig. 12.7    Sample from Header fi le generated by the Altera Qsys tool       
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change some part of the Register Address Map. The whole process of coding, docu-
menting, reviewing and communicating the Register Address Map is an error prone 
task that many RTL designers prefer to avoid. 

 Fortunately there are several tools on the market that help with this task. The 
System Integration tools from the FPGA vendors provide an automated interface 
between the Hardware System Design and the Software Engineer, by automatically 
generating software header fi les. In addition they take care of the generation of the 
logic for the address decoding. 

 There are EDA tools that provide much more advanced capability. These tools 
can create the synthesizable RTL for the Register Address Map from register 
descriptions, generate the software header fi les, header fi les for verifi cation and also 
create user documentation in various formats.  

12.4.3.4     Verifi cation Interface 

 It is good engineering practice to develop testbenches that verify the operation of 
the RTL Register Address Map. As such the verifi cation engineer needs the Register 
Address Map details in a format that can be used with the verifi cation language that 
is being used. 

 As part of the verifi cation cycle, you will want to validate that the software can read 
and write to the Register Address Map as detailed in the specifi cation. This can be tested 
on the device with the register map document being used as a functional checklist.  

12.4.3.5     Documentation 

 As mentioned at the start of this chapter, documentation refers to both internal 
documentation for use among the design team and the documentation that is 
provided to the end users of IP. 

 Whenever there are changes to the RTL for the Register Address Map, it is the 
designer’s responsibility to update the documentation and to review the changes 
with all of the teams that may be impacted by the change. 

 The format used to describe the Register Address Map must be consistent in 
terms of the naming convention that us used among all designers. The\is is achieved 
by having a process for creating the Register Address Map specifi cation which 
specifi es how it should be documented. 

 There is a standard format that exists in the industry for specifying the Register 
Address Map for IP. This is the IP-XACT standard which uses XML metadata that 
can be read by several EDA tools on the market. However, at the time of writing, 
this standard has not been widely adopted by all IP vendors and EDA tools. 

 It is recommended that you review the standard prior to beginning your project 
as you may want to consider adopting this standard as opposed to developing your 
own standard.   
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12.4.4     Summary 

 The Register Address Map Interface is the main interface between the Software 
Engineer and the RTL Engineer. This information is used by several different func-
tions in the design process, all of which need access to the same information in 
different formats to fi t in with their function. As such this information needs to be 
strictly controlled and any changes reviewed with the teams that need this informa-
tion. Due to the fact that it is time consuming and error prone to manually update all 
of the fi le formats that use this information, it is recommended that you invest in an 
EDA tool that specializes in Register Address map Management.   

12.5     Embedded SW Design 

 This section of the book will provide an overview of the different stages in the soft-
ware development fl ow for Embedded FPGA design. The Embedded software 
development fl ow can be separated into two main development roles, Firmware 
development and Application software development. 

12.5.1     Firmware Development 

 The Firmware development engineer tends to have detailed hardware knowledge 
and works on the tasks that are highly hardware dependent. These include hardware 
abstraction through the development of the hardware libraries, driver development. 
Board Support Package (BSP) development and OS bring-up. 

12.5.1.1     Hardware Libraries 

 The hardware libraries are an abstraction of all the system registers. They contain 
tested functions for base system operations such as changing cache speed or FPGA 
confi guration and provide diagnostics to developers. Their main use is in bare metal 
applications and OS driver development. The register interfaces and hardware 
features of the processor system are referred to as bare metal.  

12.5.1.2     Bare Metal Programming 

 Bare metal programming is the code that reads and writes direct to the hardware. 
It does not use abstraction layers. This gives the programmer complete control over 
the hardware, thus enabling the development of applications with the smallest pos-
sible memory footprint. However it comes with a major disadvantage in that the 
software programmer requires in depth knowledge of the hardware and requires 
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complex code. . Embedded software engineers must understand how software inter-
faces with hardware. As such they must be much more hardware aware, e.g. under-
stand how to interface with hardware inputs and outputs, e.g. UARTS, SPI, Ethernet, 
etc. The software code is diffi cult to debug and understand. This results in longer 
development times, making it impractical for large designs. The code itself is often 
non-portable to processor systems. 

 Consequently it is usually used for initial board bring-up, test and verifi cation. It is 
useful driver development for RTOS/OS and for FPGA peripheral management.  

12.5.1.3     Device Drivers 

 A device driver supports the basic I/O functions such as read, write, get confi g, and set 
confi g. It also uses and manages interrupts from the device as well. All of the hardware 
peripherals in the system require a software driver. The driver performs register 
accesses and bit manipulation to control the device; thus removing the need for low-
level access routines from the application code. The purpose of a device driver is to 
provide software application code access to a device. The goal of the Firmware engi-
neer that is creating the driver is the make this access simple and effi cient. 

 The majority of device drivers are used to move data such as data through an inter-
face such as SPI or packets through a network interface such as Ethernet. The challenge 
to the driver developer is to do this effi ciently. This normally makes use of interrupts to 
allow other application processing to take place while the data transfers are in progress. 
The interrupts are used to indicate when certain events have occurred. The goal being 
that it does not require any active participation by the application code. 

 Drivers can be synchronous or asynchronous. Synchronous drivers are simple block-
ing where the application or OS task must wait for the completion of the I/O operation. 

 Asynchronous drivers operate in a non-blocking mode where the application or 
OS task continues to run while the device driver processes the I/O operation. 
Asynchronous drivers are more complex and require more code space than synchro-
nous drivers.  

12.5.1.4     Board Support Package (BSP) 

 A board support package (BSP) is a collection of software drivers and documentation 
required to build your application. In certain applications it also includes the operat-
ing system on which to build your application. It is effectively the support code for 
a given hardware platform or board that helps in basic initialization at power up and 
helps software applications to run on top of it. 

 It typically includes:

    1.    A collection of source code fi les to adapt the Hardware to the Operating System.   
   2.    The Board/Processor specifi c boot code.   
   3.    Device drivers for peripherals on the board.   
   4.    A defi ned interface which the OS uses to access hardware.   
   5.    Board-specifi c documentation for OS.       

12.5 Embedded SW Design



172

12.5.2     Application Software Development 

 The Application Software Engineer focusses on middleware and application devel-
opment. The application software engineer that is writing software for an FPGA 
based embedded system is concerned about writing optimized code, i.e. ensuring 
that he meets the functional requirements of the application while staying within 
the memory footprint of the system. In order to achieve this goal, the software pro-
grammer needs to understand the strengths and weaknesses of the targeted platform. 
This includes items such as which data types are supported effi ciently, support for 
mathematical operations and endianness Fig.  12.8 .  

12.5.2.1     Endianness 

 Embedded software programmers need to be aware how, depending on endianness, 
different data types are stored in memory and the consequences of accessing indi-
vidual byte locations of a multi-byte data element in memory. Different compilers 
may implement data types differently, such as an int is 4 bytes in length and a short 
is 2 bytes. A method to avoid this compiler dependency is to defi ne your own data 
types which are explicit in the defi nition of the number of bytes for the data type. 
By isolating these type defi nitions into a ‘port’ fi le, it makes the software code por-
table across systems and compilers. Only the port fi le needs to be rewritten when 
using a different compiler of targeting a different processor, leaving the application 
software untouched. 

 In a little endian system, when multi-byte length data type is written to memory, the 
least signifi cant byte is stored in the lowest address offset of memory. In a big endian 
system, the most signifi cant byte is stored in the lowest address offset of memory. 
Software is impacted by endianess when storing a certain byte-length element into 
memory and reading the same memory as a different byte-length element. The solution 
to neutralize the impact of endianess is a 32-bit element was stored at a memory address, 
the content at that memory address needs to be read out as 32-bit element. After it has 
been read out of memory, the required bytes can be extracted and used.   
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12.5.3     Use of Operating Systems 

 An operating system (OS) is software that manages the computer hardware 
resources, and provides common services for execution of the application software. 
The operating system acts as intermediary between application programs and the 
computer hardware. It abstracts the resources to enable applications to easily use 
and share the hardware Fig.  12.9 .  
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 An OS for a complex embedded system is as critical as an operating system for 
a PC. The benefi ts that it provides are:

    1.    An increase in application software development productivity.   
   2.    Faster applications development cycles.   
   3.    Application code that is written on top of an operating system is more portable. 

This makes the code more reusable.   
   4.    It is easier to write applications on top of an OS, as the programmers do not need 

detailed hardware knowledge.   
   5.    Better multi-tasking, real-time support and device management.     

 An RTOS (Real Time Operating System) is a class of embedded OS that is capable 
of meeting real-time constraints. It is a predictable or deterministic operating 
system that runs on an embedded system. It is effectively a scheduler. The worst 
case execution time of each of its system calls is calculable. The RTOS helps to 
manage the fi rmware. 

 Real-time can be hard or soft. Hard real time is deterministic and bounded. 
A missed deadline is a failure. Soft real time is less deterministic but is still gener-
ally bounded. A missed deadline is an error but not a failure. From an end users 
perspective soft real time may only be used if the level of determinism meets their 
requirement. 

 In order to be hard real-time, a RTOS requires specifi c hardware features. In the 
case where the processor is not truly real-time, the FPGA offers techniques to 
improve the determinism. These include the use of state machines or accelerators in 
the FPGA logic. 

 If there is a way that the system might be held-off indefi nitely, then it is not 
real-time. 
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 Operating Systems are essential to the management of Multi-processing embedded 
systems. In the case of embedded systems, both Altera and Xilinx offer dual A9 core 
systems on their SoC and Zynq devices. These systems can operate as Symmetric 
Multiprocessing (SMP) or Asymmetric Multiprocessing (AMP). 

 Symmetric Multiprocessing (SMP) has a single operating system that is running 
on both processor cores. The OS manages booting, confi guration, memory manage-
ment, and work distribution. Not all operating systems support SMP. This solution 
provides a simpler programming model for the application programmer and thus is 
used more often. 

 Asymmetric Multiprocessing (AMP) uses a different operating system running 
on each processor. It is complicated to boot, confi gure, partition memory, and to 
distribute work. Consequently it has not been widely adopted in FPGA embedded 
system designs. 

 The Linux OS is one of the most commonly used non-real-time operating systems 
on embedded systems. The FPGA creates unique challenges for building Linux in 
that the FPGA is not a fi xed form chip. This creates the challenge of building Linux 
for a chip where the hardware is easily and frequently changed. One technique to 
solve this problem is to use a Linux device tree. This enables device drivers to be 
linked to the Linux kernel at runtime. When Linux is used on a processor there is a 
set process for loading the operating system and bringing up the application. 
Figure  12.10  details a typical OS boot process.  

 The Preloader confi gures the essential hardware such as the Clock Manager, 
IOCSR and Reset Manager. It fetches the boot image into SDRAM and passes 
control to the subsequent bootloader. 

 The Bootloader fetches the OS image to SDRAM. It sets up the OS environment 
such as the Device Tree Blob (DTB) for Linux. It performs run-time updating of 
items such as the OS image, DTB content for Linux and MAC address during run 
time. It then passes control to the operating system.  

12.5.4     SW Tools 

 In order to get the best results using your software design tools, it is imperative that 
you understand how the software compiler interprets the high level language into 
assembly/machine language. By failing to do this you may be adding unwittingly 
adding constraints to the system. A common mistake is slowing the system perfor-
mance by using the wrong programming memory model, resulting in long addresses 
for commonly used variables. 

Boot
ROM

Preloader Bootloader OS Application

  Fig. 12.10    Typical OS boot process       
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 It is necessary to understand features of the compiler such as array and indirect 
memory access effi ciency, and the optimizations that are available. The application 
software programmers will spend the majority of the design cycle using the Software 
Design Kit. 

 The hardware platform must be imported into SDK prior to creation of software 
applications and the BSP. 

 The designers will profi le their application from within the SDK. In the world of 
embedded software, profi ling is a technique which determines the software execu-
tion of each routine. This information is used to identify critical pieces of code in a 
design. This information can is used to restructure the code to meet the performance 
requirements. A common optimization is the placement of frequently run routines 
into cache. The profi ler enables application programmers to analyze the  performance 
of their instruction scheduling. This task is more complex to perform in parallel 
programs due to the dependency on the time relationship of events. 

 In the case of FPGA embedded system designs, profi ling is used to determine 
whether a piece of code can be placed in hardware, thereby improving the overall 
system performance. 

12.5.4.1     Debugging 

 The debug techniques used to debug an FPGA based embedded system is more 
complicated than a pure microprocessor based embedded system. In a FPGA based 
embedded system much of the processing is performed by the peripherals and 
accelerators that are implemented in the FPGA logic. This requires a mixture of 
typical FPGA debug tools and embedded software debug tools. This is described in 
more detail in Chap.   16    , in-system debug. 

 The two main options for software verifi cation are:

    1.    Load your design on a supported development board and use a debugging tool to 
control the target processor.   

   2.    Gauge the performance of the system by profi ling the execution of the code.     

 If the FPGA device is not yet available then it could be possible to use a virtual 
prototype for software development. This would be the case where you need to start 
development for a new FPGA technology that has not yet sampled devices or 
devices are in short supply. A virtual prototype is a complete bit accurate models of 
a SoC that is suffi cient for SW engineers to use as a target. This is a system model 
of the SoC. This is discussed in more detail in Chap.   4     on system modeling.    

12.6     Use of FPGA System Integration Tools 
for Embedded Design 

 As described earlier in this chapter, the design of a typical FPGA based embedded 
system requires a signifi cant engineering work. Even for a system that mostly 
involves the integration of IP blocks, the design of the arbitration, address decoding, etc. 
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is a somewhat tedious and error-prone process. Anytime that you make a change to 
the architecture can involve a signifi cant rewrite of the basic address decoding or 
arbitration circuit. The generation of the fi les that are required by the Firmware and 
SW Engineer to set-up their development environment can tedious and repetitious 
as you change the design. 

 The major FPGA vendors all provide tools to simplify this process. In the case of 
Altera, this tool is Qsys. Qsys enables you to describe connections from masters to 
slave and then saves on development time by generating the logic for the intercon-
nect. Qsys automatically generates the decoding logic so that master components 
can access slave registers. The tool also includes an address map tab that details the 
address range that each connected memory-mapped master uses to address each 
slave component to which it interfaces. The tool generates multiplexors on any mas-
ter interfaces that communicate with multiple slaves. It also generates the arbitra-
tion logic for slave components that are controlled by multiple master components. 
This controls which masters have current slave access. In the case of Qsys, the 
interconnect fabric utilizes weighted round robin arbitration. It generates width 
adapters that can accept packets of one width and convert the packet to a different 
width. Thus the master does not need to know the width of the slave. 

 For complex systems that involve multiple clock domains, Qsys will also create 
the clock domain crossing synchronizing logic. These capabilities lend the tool to 
architecture exploration, i.e. trying different system architectures to determine 
which is best suited to your application. This process would take weeks for hand 
created designs, however it can be implemented in days or hours with this tool auto-
matically generating the interconnect logic. The size of the system will generally be 
a little larger than a design created using hand optimized RTL code, however the 
design time will be signifi cantly faster. 

 These system integration tools all provide interfaces for importing your design 
blocks/IP into the tool and publishing the IP for reuse by other users. This effec-
tively provides IP management capability that promotes design reuse. 

 The design entry interface for the system integration tools vary from vendor to 
vendor. In the case of Qsys, it is a connection panel, as shown in Fig.  12.11 .  

 The designer specifi es the interface connectivity in the interconnect panel by 
connecting the clocks, resets, Master and slaves, any Sources and sinks, as well as 
the interrupt senders and receivers. The interconnect is generated based upon the 
connections. 

 The tool also provides a number of ease of use features such as assigning base 
addresses to automatically eliminate confl icts in slave addressing. 

 It also simplifi es the verifi cation process by generating the Verilog or VHDL sim-
ulation model for the system that you have entered in the your interconnect panel as 
well as generating a simple testbench with the Bus Functional Models components 
that drive the external interfaces of your system, as well as the simulation scripts to 
script the simulation environment for the most commonly used simulators. These 
scripts compile the required device libraries and system design fi les in the correct 
order and loads the top-level design for simulation. 
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 The Qsys tool also offers some basic performance optimization capabilities such 
as an option to automatically pipeline the interconnect logic for higher performance. 
This allows you to trade-off latency versus clock frequency. 

 One of the most value features that these system generation tools provide is 
the generation of the fi les that are needed to interface by the software build tools to 
create the Board Support Package. This greatly simplifi es the software/hardware 
sign off process. 

 One of the challenges that these system integration tools will introduce into your 
end design is debug. The fact that the tool generates RTL code for the design adds a 
level of obscurity into the design. Machine generated code is often hard to read, 
certainly from a signal naming perspective and it can be hard to debug something 
for which you have not developed the functionality. 

 These system integration tools provide capabilities to help address these chal-
lenges. In the case of Qsys, the creation of the simulation testbench certainly helps 
in the RTL verifi cation. In addition it also includes a suite of verifi cation IP modules 
that can be used in simulation to verify the functionality and in some cases be imple-
mented in the end design to debug the design in system. This includes monitor 
components that can be used to measure system performance in system. As a 
designer you can view the content that these debug components capture via a JTAG 
interface to the FPGA. This is discussed further in Chap.   16    , in-system debug. 

 The lack of understanding of the generated interconnect logic can be a concern 
when it comes to timing closure of your design. As mentioned previously, the Qsys 
tool does offer an auto-pipelining option to increase the clock FMAX performance. 
I also allows you to control the pipelining on a data path basis, thus only increasing 
the latency where absolutely necessary, providing the performance where needed 
and thus reducing the area impact of the optimization. 

  Fig. 12.11    Qsys Interconnect panel       
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 Another technique for improving the performance is the use of hierarchy and the 
use of bridges. This can greatly reduce the complexity of the interconnect logic 
allowing higher performance. Most embedded systems includes a processor, DMA 
and external memory interface components that run at high performance on a fast 
clock domain. There are usually additional peripherals such as timers, UARTs, SPI 
interfaces, etc. that run on a slower clock. It is good design practice to create these 
as separate levels of hierarchy and to bridge between the slow system and the fast 
system. In this case, Qsys will generate the necessary clock crossing logic together 
with the appropriate timing constraints for the complete system. 

 In summary, It is recommended that you use the FPGA vendors system integration 
tools if you are using one of the processors from the system vendor, be it a hardened 
processor such as the ARM A9 processor or a soft processor such as the Nios pro-
cessor. These tools greatly simplify the hardware to software hand-off process and 
the setting up of the design environment for the software engineer. In addition they 
allow you to very quickly change the structure of your design to meet your design 
requirements. These tools can satisfy the needs of most embedded system designs 
and shorten the development cycle by weeks or months. 

 There are many    example designs on the FPGA vendors websites that can be 
downloaded for free and used as a reference for creating embedded system designs 
based on select target markets. There is also a golden hardware reference design 
available for the FPGA vendors development kits. This design comes complete with 
basic ‘C’ code enabling you to walk through the process of compiling the HW 
design, the software code and running it on the development kit. This is a great way 
to get started with FPGA based embedded design.    

12 Embedded Design



179© Springer International Publishing Switzerland 2015 
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_13

    Chapter 13   
 Functional Verifi cation 

          Abstract     There are two simple questions that every design team needs to be able to 
answer. Does my design function properly and is my design verifi cation complete?           

13.1      Introduction 

 There are two simple questions that every design team needs to be able to answer. 
Does my design function properly and is my design verifi cation complete? 

 These two simple questions are likely to take more than 60 % of your design 
cycle to achieve acceptable answers. Just defi ning what is meant by functioning 
properly and what is deemed acceptable as complete are diffi cult tasks. 

 In the past, when FPGA designs were small and many designer were not 
concerned with the concept of design reuse, FPGA designers deployed the “blow 
and go” approach to FPGA design verifi cation. They would create the design, 
perform a cursory functional simulation on the RTL, then program the FPGA and 
test the design in system. If they found a problem, they would fi x the code and 
repeat. Not practical for large, complex, quality system designs. 

 The programmable nature of FPGAs does add a powerful weapon to the design 
verifi cation armory. However, when used by itself, it is not a method for creating 
reliable and reusable designs. 

 There are many publications and EDA tool solutions dedicated to the topic of 
functional verifi cation. 

 There are also many different verifi cation techniques that can be used to verify 
that a design meets the requirements that are dictated in the specifi cation. Many of 
the techniques that are used in the verifi cation of ASICs are applicable to the verifi -
cation of FPGA designs. As mentioned, the programmable capabilities of FPGAs 
provide some additional capability that can be used in the verifi cation of designs 
that are targeting FPGA devices. This chapter will describe the techniques that are 
known to work well in functionally verifying FPGA designs and IP targeting FPGA 
devices.  



180

13.2     Challenges of Functional Verifi cation 

 At a high level, the goal of functional verifi cation is to verify that the design functions 
as specifi ed. This applies to the complete design as well as any of the sub-designs. 

 Functional verifi cation of the design must cover all modes of operation of the 
design. This includes corner cases. The last thing that you want is that when your 
design is deployed in a product, that your system enters a mode of operation that 
you have not considered or tested against, resulting in a catastrophic failure. 

 The application interface to your design needs to operate as expected, i.e. testing 
needs to emulate the interaction of your design with the rest of the system. 

 In the scenario where your FPGA device interfaces to the rest of the system via 
standard protocol interfaces, such as PCI Express or Serial Rapid I/O, it is necessary 
to verify that the interface block complies with the appropriate standard. 

 In the case of parameterized IP, it is necessary to test all architectural variations 
of the design based upon the parameterization. This will provide confi dence to con-
sumers of the IP that the IP meets their requirements. 

 In the case that the IP has been packaged for reuse and there is a user interface to 
the IP, it must be possible to verify that the user interface operates as intended and 
on all supported operation systems. 

 Finally, you need to verify that the documentation on the design or IP block is 
clear and matches the behavior of the core. 

 This may sound like a lot of work….and it is! 
 The challenges that you face include how do you achieve adequate verifi cation 

coverage in the given schedule with the resources that are available? 
 How do you determine what is an acceptable level of coverage? 
 The answer to these questions will come from the verifi cation plan. The verifi cation 

plan must detail the coverage goals and other completion metrics. As such, this has 
an impact on the project plan. 

 You need to plan the verifi cation of the design at the same time that you are 
developing the functional specifi cation of the design. 

 There needs to be a system in place that enables you to monitor the progress 
against the verifi cation plan throughout the design and verifi cation cycle. This system 
must be capable of managing the large amount of data that you will receive from the 
testing and report the progress against the verifi cation plan.  

13.3     Glossary of Verifi cation Concepts 

     1.    Device Under Test (DUT). This is the IP being tested.   
   2.    Assertions (coverage points). These describe the behavior of the design that is 

true when the design is behaving correctly. Assertions are also activated when 
the design behaves incorrectly. It effectively covers the state of the DUT.   

   3.    VMM. Synopsys Verifi cation Methodology Manual. It details a methodology 
based around SystemVerilog for verifying complex designs.   

13 Functional Verifi cation
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   4.    Testbench. A test bench is an environment that is used to exercise and verify the 
correctness of the design.   

   5.    Transactors. In a testbench environment, the transactor is a model that defi nes 
the sequence of events or tasks to be performed.   

   6.    Scoreboards. The scoreboard is a data structure that holds the expected results 
from an operation for comparison against the actual results achieved.   

   7.    Register Abstraction Layer (RAL). The VMM Register Abstraction Layer (RAL) 
automates the creation of the high-level abstraction layer for memory- mapped 
registers and memories. The VMM specifi cation provides more detail on RAL.   

   8.    Executable specifi cation. An executable specifi cation is a high level model that 
describes the functionality of the design, hardware and/or software. It is usually 
written in a high level language such as C, C++, SystemC or SystemVerilog.   

   9.    Regression Tests. Regression tests are a set of tests that are run on the application 
after every design change and on a regular basis, such as every night or every 
weekend, in order to ensure that no new bugs have been introduced. It is an auto-
mated environment that proves that the design operates to the specifi cation.   

   10.    OVM (Open Verifi cation Methodology) OVM is a standard SystemVerilog library 
and verifi cation methodology developed by Cadence and mentor Graphics.      

13.4     RTL Versus Gate Level Simulation 

 Simulating at the RTL level performs functional verifi cation without consideration 
for the timing delays that will occur when the design is implemented. It is common 
practice to perform RTL simulations to prove the functionality of the design and 
timing analysis to prove that there is no timing violations in the design. 

 Gate level simulation utilizes the timing netlist generated after place and route. 
This contains the device timing delays in the Standard Delay Format (SDF). This 
provides a more accurate view of how the design will function on-chip as it includes 
timing information. Timing simulations take considerably longer to run than RTL 
simulations. In fact they are considered by many designers as prohibitively long for 
certain application types such as video and image processing applications and for 
large designs. As such it is recommended that timing simulations should only be 
performed on critical sub-designs instead of the full design, or when debugging 
problems that are found during hardware checkout of the system..  

13.5     Verifi cation Methodology 

 In order to achieve success in verifying your design, you must deploy a variety of 
techniques. 

 You should use a combination of functional coverage and code coverage 
techniques. 

13.5 Verifi cation Methodology
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 These are complementary to each other. 
 In the case of certain protocols, you should also perform hardware interoperability 

testing. 
 Finally, let’s not forget that the target devices are programmable. Implement 

parts of the design in hardware to fi nd those hard to reach bugs that may take days 
or weeks of simulation to uncover. In-system debug techniques are described in 
more detail in the chapter on in-System Debug. 

 The verifi cation methodology should use the following steps.  

13.6     Attack Complexity 

 There are three main rules for helping to deal with the complexity of testing your design.

    1.    Modularize your design and your tests. 
 It is extremely unlikely that you will be able to test all of the functionality of your 
design with a single test. As such you should have different tests for testing dif-
ferent aspects of the design. In addition to providing a more thorough verifi ca-
tion environment, this approach will make it easier to transfer the testing to other 
persons as the tests will be easier to understand. 

 For large design blocks you should adopt a functional verifi cation methodology 
that breaks the design into smaller sub-designs, as described in the chapter in 
RTL design and thoroughly verify each sub-design prior to verifying the 
complete design.   

   2.    Plan for expected operation. 
 Create tests to confi rm that the design will work in the planned or normal mode 
of operation. You should exercise the design under all of the operational modes 
under the various normal conditions. These tests must cover all of the features 
listed in the functional description and specifi cation. 

 Exercise the corner cases and confi rm that they operate as defi ned. 
 As part of the functional tests, ensure that you exercise every register bit and 

every signal on every port. 
 When verifying designs with multiple modules that can be user parameterized, 

you need to exercise all possible combinations of the modes to verify the interac-
tions between the adjacent modules. 

 After each operation, verify that the system returns to the correct state.   
   3.    Plan for the unexpected. 

 The last thing that you want is that your system enters an unrecoverable state 
based upon system conditions that you had not tested. As such, you must test 
exception conditions. These exception conditions will vary from application to 
application. Examples of such conditions are overfl ows, underfl ows, CRC errors, 
aborts. As part of testing unexpected conditions you should test the functionality 
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in these unplanned conditions and then exercise recovery from the exception 
conditions. Exceptions aren’t necessarily errors; they can be outlier conditions 
that are unlikely to occur in practice. The key thing is that your system can 
recover from them.     

 This testing should test conditions that cannot happen:

    1.    Test illegal conditions   
   2.    Violate design assumptions   
   3.    Violate protocols   
   4.    Change modes in mid-operation     

 Once again, the key factor is that while the design may behave incorrectly, it 
should recover eventually. 

 As part of the functional verifi cation of IP or deign blocks, you should test the 
interaction with other cores in the overall design to ensure that the interfaces operate 
as expected.  

13.7     Functional Coverage 

 Compliance and corner case testing, as described in the Sect.   9.6    , attack complexity, 
is good but on its own it is not suffi cient to fully test your system. It is unlikely that 
you will be able to predict and exercise all possible conditions. This increases the risk 
of failure in system. Functional coverage increases the confi dence in the verifi cation 
of your design block or system. It is the determination of how much functionality of 
the design has been exercised by the verifi cation environment. Each test is created to 
check the particular functionality of a specifi cation. The key point is that you need to 
be able to prove that the test executed the functionality that it is supposed to check. 

 The test plan for your design block and for the overall system should specify the 
metrics for verifi cation coverage. That is the functional coverage goals for the 
design. 

 The challenges that you face when planning for functional coverage are ensuring 
that the design implements formal Functional Description and in the case of inter-
faces, conforms to standard protocol specifi cations. 

 Your goal is to ensure that it satisfi es formal Functional Test Plan and matches 
the behavior established by a suitable golden reference model. 

 In the case of reusable design blocks, you want to ensure that the coverage items 
capture

    1.    All features and capabilities of the Device under test   
   2.    All confi guration variants   
   3.    Types of stimulus applied   
   4.    The response of DUT     

13.7 Functional Coverage
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 Functional coverage does have limitations in that it is diffi cult to defi ne a list that 
proves 100% functionality of the design. Thus it is important to identify the coverage 
holes in the coverage space. 

13.7.1     Directed Testing 

 Directed testing requires hand crafted test case for each test plan item. Thus the 
number of tests required to achieve acceptable coverage is enormous. The tests 
themselves tend not to be easily reusable. 

 It is best used to test typical behavior due to the time it takes to perform the 
simulations. 

 It is recommended that directed testing be used for reasonably small blocks. 
For much larger blocks and at the system level, you will need to adopt constrained 
random techniques.  

13.7.2     Random Dynamic Simulation 

 In this verifi cation methodology, random stimulus is used to increase the functional 
coverage. This method of verifi cation is best performed using a high level verifi ca-
tion language. Over the years, many languages and tools have been developed to 
serve this purpose. SystemVerilog has emerged as the leader in this space. 
SystemVerilog has been ratifi ed as a standard by the IEEE and provides the broadest 
tool support among verifi cation languages. 

 It is recommended that you should consider adopting SystemVerilog for the 
verifi cation of your system.  

13.7.3     Constrained Random Tests 

 Constrained random testing is built on top of random dynamic simulation. Random 
simulations are best run in the early stages of the design to catch a lot of bugs. Then 
as the design nears completion, the random simulations are constrained to fully 
cover the test space. 

 A single test run can cover many items in the test plan, resulting in less simula-
tion time. 

 This approach can also detect problems   /bugs that are not part of test plan Fig.  13.1.    
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13.7.4     Use of SystemVerilog for Design and Verifi cation 

 SystemVerilog is really 3 languages in 1.

    1.    It contains design constructs that are more powerful than Verilog and VHDL for 
design and synthesis.   

   2.    It has advanced testbench constructs for stimulus and coverage.   
   3.    It supports assertion constructs to capture the designer intent.     

 SystemVerilog has built-in support for coverage-driven constrained-random 
verifi cation. 

 It has options for pre-verifi ed libraries of assertions with the major EDA simulators 
on the market. 

 At this time, the industry is split on the SystemVerilog verifi cation methodology. 
The two main libraries are VMM (Verifi cation Methodology Manual and OVM 
(Open Verifi cation Methodology). There is a push to standardize on a single library. 

13.7.4.1     Assertions 

 Assertions are used to check assumptions made by designers and the behavior associ-
ated with a design. They are triggered during a dynamic simulation if the design meets 
or fails the specifi cation. They can be used at both the module and the system level. 

 They also provide the benefi t that they are reusable with reusable design blocks. 
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  Fig. 13.1    Constrained random test fl ow       
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13.7.6     Self Verifying Testbenches 

 Self verifying testbenches are more diffi cult to create. Being able to write the 
“expected results” requires a strong understanding of the design block under test. 
This requires more work up front as any errors in the “expected results” can be hard 
to catch. However once it is set, you can run the tests and get a quick pass or fail. 

 This is the approach that you should use for reusable design blocks. 
 When creating self-checking testbenches, you must add the functions to an existing 

process so that the outputs can be monitored. A “compare_process” or equivalent is 
used to check the received results against the expected results Fig.  13.3 .  

 Assertions provide early visibility into problems such as FIFO ever overfl ow/
underfl ow errors. They also capture inter-block communication such as memory 
interface behavior.   

13.7.5     General Testbench Methods 

 The simplest testbenches to write does not involve the creation of verifi cation code. 
It requires that the engineer manually verifi es that the design passes. This is 
normally achieved by viewing the resulting waveforms. One of the challenges with 
this approach is that while the designer who fully understands the design can 
understand the waverforms, a different engineer may miss errors or take much 
longer to understand the results. 

 This approach is best applied to simple design blocks that are not intended for 
re-use. 

 The designer creates the “test harness” code to instantiate the design code and 
creates stimulus signals Fig.  13.2 .   

  Fig. 13.2    Simple testbench that requires manual checking       
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  Fig. 13.3    Example diagram of a self-checking testbench       
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  Fig. 13.4    Verifi cation system architecture       

 This class of testbench can contain sequential or concurrent stimulus, as well as 
the expected results. 

 Often the signaling is too complicated to model without using vectors saved in 
“time-slices.” This can be achieved using internal arrays or external fi les. 

 When using an array containing stimulus and with the expected results inside 
the testbench, there is no need to perform type translations. This provides faster 
simulation times, but is diffi cult to write and can create very large fi les. 

 When using an external fi le that contains the stimulus and the expected results, 
it is likely that you will need to use type translations. This can result in slower 
simulation times, but is easier to write Fig.  13.4 .   
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13.7.7     Formal Equivalency Checking 

 Formal Equivalency Checking compares the logical equivalence between different 
points in the design fl ow, or between different netlists. It uses mathematical tech-
niques to compare the logical equivalence of two versions of the same design rather 
than using test vectors to perform simulation 

 It is normally used to compare the RTL code to the post-synthesis gate level 
netlist to ensure that the synthesis optimizations have not introduced any bugs. 
It can also be used to compare the RTL or post-synthesis netlist to the post-fi t netlist 
to ensure that the Place and Route optimizations have not changed the functionality 
of the design. 

 Whilst Equivalency checking can determine if two netlists are functionally the 
same, it does not guarantee functional correctness. If the design functionality has been 
implemented incorrectly in the RTL, equivalency checking will report a “Success” if 
the netlist it is compared with has the same functionality. Thus equivalency checking is 
normally used to compare functionally verifi ed RTL to gate level netlists. 

 Formal Equivalency checking tools tend to be limited in the size of design 
that they can support and as such are used mostly on design blocks as opposed to 
complete designs. 

 It is a particularly diffi cult technique to use for FPGAs. FPGA synthesis optimi-
zations perform a lot of register optimizations such as register merging, register 
duplication and register retiming. The fi rst two optimizations can lead to false 
reports of failures. Investigation of the design can remove these false negatives but 
is time consuming. The third optimization type, register retiming, is usually a show-
stopper. Most Formal Equivalency tools cannot cope with the register retiming that 
is performed by FPGA synthesis or physical synthesis. Thus Formal Equivalency 
checking is rarely used in FPGA design fl ows.   

13.8     Code Coverage 

 Code coverage refl ects how thoroughly the HDL code has been exercised. 
 It provides information about how many lines of code is executed, providing a 

quantitative measurement of the testing effort and assisting in the directing of future 
testing effort. 

 Code Coverage is limited in that it does not look at the sequence of events, nor 
does it check any interaction between design blocks. It only looks at what is in the 
design, thus can overlook what has not been implemented. In short, it does not look 
at the functionality of the design. 

 One of its benefi ts is that it can be used to hit the corner cases which are not 
reached by the random test cases. In order to do this, users have to write the directed 
test cases to reach the missing code coverage areas.  

13 Functional Verifi cation
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13.9     QA Testing 

13.9.1     Functional Regression Testing 

 The objective of functional regression testing is to provide an automated environ-
ment that proves that the design operates as specifi ed. 

 Regression testing is necessary to ensure that there is not the reemergence of old 
faults. It is considered good practice that when a bug is identifi ed and fi xed, that a 
test is created to test that the bug is fi xed. This test is then run on any future changes 
to the design to ensure that the new changes have not re-introduced the bug. 
Regression testing automates this testing process. This test is combined into a test 
suite of designs that enables the testing environment to execute all the regression 
test cases automatically. 

 Typical automated QA regression testing exercises the IP or design via scripts. It 
compiles and compares the results against a known good standard. The testing is 
self-checking with a verifi cation log for reporting exceptions. Note the use of the 
term exceptions. A test failure is an exception until any analysis determines that the 
failure was caused by a bug in the design. Often the exceptions occur due to prob-
lems with the test environment as opposed to a bug in the design. If this is found to 
be the case, the problem with the test environment should be resolved and the test 
rerun to verify that the test passes. The regression test environment must be capable 
of compiling the test statistics and reporting on the health of the design. This 
includes reporting on the individual design blocks as well as the fi nal system design 
that integrates all of the design blocks.  

13.9.2     GUI Testing for Reusable IP 

 While the GUI for IP should be relatively simple to use, it needs to be tested to 
ensure a good user experience. The GUI is likely to be other user’s fi rst exposure to 
your IP. You want to ensure that it is a good experience and avoid the scenario where 
your IP is not being used because of bugs in the Graphical User Interface. 

 There are test programs available in the market that will enable you to perform 
regression testing on GUIs, however the most valuable testing is Manual GUI 
testing. 

 The purpose of the testing is to:

    1.    Ensure that parameterization GUI functions as intended.   
   2.    Validate the behavior when used correctly.   
   3.    Validate the behavior under user error conditions.     

 The testing is performed by humans thoroughly exercising the GUI against a 
checklist. The testers click buttons, load fi les, examine expected results and perform 
error reporting. 

 This method of testing is labor and time intensive but will guarantee a good user 
experience with the graphical user interface.   

13.9 QA Testing
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13.10     Hardware Interoperability Tests 

 Hardware Interoperability testing is used where your design is interfacing with stan-
dard protocols. Hardware is tested in the lab against industry standard ASSP(s) and/
or tested at industry plug-fests and testing laboratories.  

13.11     Hardware/Software Co-verifi cation 

 There are tools on the market that enable hardware/software co-simulation. This is 
effectively running the ‘c’ code on the model of the hardware. The ‘c’ code will run 
much slower than it will on silicon. As such, it is a common technique with FPGA 
designs to bypass this test and run the code on the FPGA on a development board or 
in the end system. 

13.11.1     Getting to Silicon Fast 

 FPGAs offer the ability to get preliminary designs on boards fast. In system testing 
can uncover bugs that cannot be detected using RTL verifi cation. Hardware check-
out should be combined with simulation to verify your design. Simulating the FPGA 
design is most valuable in the early stages of the design. Hardware checkout is 
useful when debugging interfaces and drivers.   

13.12     Functional Verifi cation Checklist 

     1.    Create the test plan. This should detail the interesting test cases to verify the 
design.   

   2.    Create the functional coverage specifi cation. This should defi ne what should be 
covered.   

   3.    Build the system testbench.   
   4.    Write functional tests and perform simulations to measure functional coverage.   
   5.    Perform Code Coverage. This should only be run after the RTL is steady.   
   6.    Achieve thorough coverage—If block coverage is at 100 %, expand the system 

level coverage.   
   7.    Perform GUI testing on IP.   
   8.    Complete Hardware Interoperability testing for standard protocol IP   
   9.    Perform In-system debug. This includes hardware’s software co-verifi cation 

with the software running on the targeted hardware.        

13 Functional Verifi cation
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    Chapter 14   
 Timing Closure 

          Abstract     Timing Closure is the area of the design fl ow that can cause the most 
frustration to FPGA designers. This is the area which can eat up the compute cycles 
on your workstation, it can result in feature drop from your system design and may 
result in you having to pay for a faster speed-grade device than you intended to use.           

14.1      Timing Closure Challenges 

 Timing Closure is the area of the design fl ow that can cause the most frustration to 
FPGA designers. This is the area which can eat up the compute cycles on your 
workstation, it can result in feature drop from your system design and may result in 
you having to pay for a faster speed-grade device than you intended to use. 

 Most of the chapters in this book have revolved around preventing timing closure 
challenges in your design. 

 This chapter presents moves onto the next stage by presenting a design methodology 
for achieving timing closure. 

 So, why is timing closure a challenge in FPGA designs? 
 Over the last decade there has been a huge increase in the FPGA device density 

and the size of the designs targeting the FPGAs. FPGA device logic density has 
increased by approximately 30×, and amount of embedded memory has increased by 
approximately 70×. Over the same period of time, the speed of workstation CPUs 
have only increased by a factor of 14. All of these create a compile time challenge for 
high density FPGA designs. 

 On top of this, the clock speeds of the designs and the interface speeds have risen 
substantially. Today’s devices include transceivers that can reach speeds of more 
than 11G and DDR III memory interfaces that run in excess of 533 MHz. 

 These types of applications    require more complex timing constraints such as 
source synchronous interfaces and inter clock transfers. 

 The process geometries of modern FPGAs now dictate that timing analysis be 
performed at two or more timing corners in order to guarantee timing closure. 
At these smaller process geometries the delays are typically dominated by the delays 
of the interconnect routing as opposed to the cell delays. This creates a challenge in the 
placement of the design to avoid long interconnect delays whilst avoiding routing 
congestion. 
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 The addition of dedicated hardware blocks, such as embedded memory and DSP 
blocks provide the benefi t of increased functionality, but can create a challenge in 
placement with relation to the logic that interfaces with these blocks. 

 The good news is that the FPGA vendor software has risen to the challenges and 
includes a number of features to solve these challenges. In many cases, the default 
settings will meet your performance goals push-button. For the designs that do not 
meet your goals there are a number of analysis tools and features to enable you to 
succeed.  

14.2     The Importance of Timing Assignments and Timing 
Analysis 

 Timing Analysis is the singly most important topic that you need to understand 
when it comes to timing closure. Unfortunately, it is also the topic that designers 
have the greatest challenge in understanding. 

 In this section of the chapter we will explain the importance of timing analysis 
and provide a basic background on timing analysis. In depth coverage of timing 
analysis could be a book in its own right. For an advanced understanding of timing 
analysis, it is recommended that you attend training from one of the FPGA vendors 
and download the various application notes from their websites. 

 Timing assignments serve two purposes in FPGA design.

    1.    They direct the synthesis and place and route software. 
 The impact on    place and route is described in detail in Sect.  14.3.4.1 , ‘under-
standing the fi tter (place and route)’. Timing assignments drives where the opti-
mizations are focused for synthesis and determines which paths the place and 
route engine needs to prioritize in the fi tting process.   

   2.    They are used in timing analysis. Timing analysis does not guarantee the 
functionality of the RTL but does guarantee that your design does not have tim-
ing violations. Static timing analysis computes the timing of the design without 
performing a simulation,     

14.2.1     Background 

 If we step back in time, timing analysis on FPGA designs was relatively simple. The 
end applications were reasonably simple in that their were a limited number of 
clock domains and the timing models from the vendors were heavily guard-banded 
such that designers needed only to analyze the design at a single timing corner. Each 
FPGA vendor created their own timing assignment language with a heavy focus on 
the clock frequency. The FPGA vendors effectively sheltered the designers from 
needing to know the intricacies of timing analysis. 

14 Timing Closure
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 If we look at the current class of designs targeting FPGA devices, designers now 
face much of the same timing analysis challenges that ASIC designers have been 
facing for several years. Typical designs now use multiple clock domains, have 
complex relationships between clock domains and have a heavy focus on interface 
timing rather than purely fi nding the maximum clock frequency. On top of this the 
modern process geometries of 65 nm and 40 nm require that analysis be performed 
at multiple timing corners to guarantee operation. The original vendor timing lan-
guages were not originally designed for constraining this class of designs. This has 
resulted in FPGA designers needing to learn ASIC timing analysis techniques. 

 The good news is that FPGA vendors and the EDA tool industry is standardizing 
on a timing constraint language. This is the SDC (Synopsys Design Constraints) 
language from Synopsys.  

14.2.2     Basics of Timing Analysis 

 This section of the chapter explains the common terminology that is used in timing 
analysis, along with a brief description of the base level of timing constraints upon 
which timing analysis is built. 

14.2.2.1     Static Timing Analysis 

 Static timing analysis measures the timing delays along the timing paths in the design 
and reports the timing against the timing constraints. It identifi es whether the design 
will operate functionally based upon the timing characteristics of the FPGA silicon. 
The timing analysis is performed independent of the functionality of the inputs and 
determines the delay of the circuit over all possible input combinations with every 
device path in the design being analyzed with respect to the timing requirements. 

 Static timing analysis catches timing-related errors faster and easier than gate- 
level simulation and board testing.  

14.2.2.2     SDC 

 SDC is the acronym for Synopsys Design Constraints. This is the industry standard 
language for timing constraints that has been adopted by most FPGA vendors and 
EDA tools that support FPGA devices.  

14.2.2.3     Clocks 

 Clocks are used to specify register-to-register requirements for synchronous trans-
fers and to guide the Synthesis and Place and Route optimization algorithms to 
achieve the best possible implementation of the design. 

14.2 The Importance of Timing Assignments and Timing Analysis
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 Clocks should be the fi rst constraints specifi ed in any design’s SDC fi les. This is 
important as many constraints reference clocks; therefore, the clocks must be 
defi ned fi rst.  

14.2.2.4     Launch Edge 

 The launch edge is an active clock edge that sends data out of a sequential element, 
such as a register, acting as a source for the data transfer.  

14.2.2.5     Latch Edge 

 A latch edge is the active clock edge that captures data at the data input of a sequen-
tial element, such as a register, acting as a destination for the data transfer. 

 This is detailed, along with the launch edge in Fig.  14.1 .   

D

clk

clk

0 ns 5 ns 10 ns 15 ns

reg1

Launch Edge at Source Register reg1
Latch Edge at Destination Register reg2

reg2

Q D Q  Fig. 14.1    Launch and Latch 
edge diagram       

14.2.2.6     Hold Time (t h ) 

 Hold time is the minimum length of time for which data that feeds a register via its 
data or enable input(s) must be retained at an input pin after the clock signal that 
clocks the register is asserted at the clock pin. 

 A hold time failure occurs when an input signal change too quickly after the 
clock’s active transition on a sequential element. This will result in a timing failure 
on the sequential element.  

14.2.2.7     Set-up Time (t su ) 

 Set-up time is the length of time that the data that feeds a register via its data or 
enable inputs must be present at an input pin before the clock signal that clocks the 
register is asserted at the clock pin. 

 This is detailed in Fig.  14.2 .  
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 A set-up time violation occurs when a signal arrives too late at the input of a 
sequential element missing the time when it should advance. This will result in a 
timing failure on the sequential element.  

14.2.2.8     Arrival Time 

 Arrival time can be separated into data arrival time and clock arrival time. 
 Data arrival time is the delay from the source clock to the destination register. 
 Clock arrival time is the delay from the destination clock node to the destination 

register. 
 Data arrival time and clock arrival time are detailed in Fig.  14.3 .   
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  Fig. 14.2    tsu and th diagram       
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Clock Arrival

Q D Q  Fig. 14.3    Clock arrival and 
data arrival diagram       

14.2.2.9     Required Time 

 This is the latest time at which a signal can arrive without making the clock cycle 
longer than desired.  

 

 

14.2 The Importance of Timing Assignments and Timing Analysis



196

14.2.2.10     Slack 

 Slack is the margin by which a timing requirement is met or not met. It is the difference 
between the required time and the arrival time. A positive slack value indicates 
the margin by which a requirement was met. A negative slack value indicates the 
margin by which a requirement was not met.  

14.2.2.11     Timing Exception 

 This is a constraint that is not required, but may be needed to better describe how a 
design should work. Timing Exceptions adjust how timing analysis is performed on 
the design. Examples of timing exceptions are multi-cycle paths and false paths.  

14.2.2.12     Multi-Cycle Path 

 Multi-cycle paths require more than one clock cycle for a signal to be updated. 
These paths need to be identifi ed by the designer of the block, as their identifi cation 
requires a detailed understanding of the functionality of the design. 

 A multi-cycle assignment relaxes the setup relationship by allowing you to specify 
the number of destination clock cycles required before a register latches a value. 

 Figure  14.4  details a Multicycle value of two to a clocked register which delays 
the latch edge by one destination clock cycle.  

 The set_multicycle_path SDC command is used to change the default launch 
or latch edge used in either the setup or hold analysis. By default, the TimeQuest 
timing analyzer assumes that all data transactions take one clock cycle to reach 
their destinations. Specifying a multicycle path moves the launch or latch edge, 
 loosening the timing by providing extra clock cycles for logic that specifi cally 
requires it. A good example of where this might be used would be with a multiplier. 
If the multiplier requires two clock cycles to output a value, there’s no way timing 
can be met with the default of only one cycle for a transaction. Adding a multicycle 
constraint on data going through the multiplier provides the extra clock cycle 
required by the logic.  

new setup
default setup

0 10 20 30

  Fig. 14.4    Multi-cycle path           

14 Timing Closure



197

14.2.2.13     False Path 

 A False path assignment is used to defi ne paths that the timing analyzer should not 
analyze. Examples of such paths are test logic or any other path not relevant to the 
circuit’s operation. False paths are also commonly used on paths that cross clock 
domains. 

 The set_false_path command tells the timing analyzer to intentionally ignore certain 
paths in the design or separate clock domains that do not interact with each other.  

14.2.2.14     Rise/Fall Time 

 The rise time is the time required for a signal to change from a low value to a high 
value. A low value is typically 10 % of the signal value and the high value is 90 % 
of the signal value. The fall time is the time required for a signal to change from a 
high value to a low value.  

14.2.2.15     Input Delay 

 The input delay (set_input_delay) specifi es the required data arrival times at the 
specifi ed input ports relative to the clock. The input delays are specifi ed relative to 
the rising edge or falling edge of the clock Fig.  14.5 .   

  Fig. 14.5    Input delay       

  Fig. 14.6    Output delay       

14.2.2.16     Output Delay 

 The output delay (set_output_delay) specifi es the required data arrival times at the 
specifi ed output ports relative to the clock The output delays are specifi ed relative 
to the rising edge or falling edge of the clock Fig.  14.6 .   
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14.2.2.17     Synchronous I/O 

 In the example shown in Fig.  14.7 , the set_input_delay and set_output_delay 
constraints are used to fully constrain synchronous I/O. First, the clock named clk 
is constrained as usual along with its matching virtual clocks named clk_v_in and 
clk_v_out. The clk_v_in and clk_v_out clocks are the clocks for the external input 
and output devices in Fig.  14.7 . The -max and -min options for the set_input_delay 
commands constrain the input on the datain port, referencing the virtual clock 
clk_v_in.  

 The external delay values are broken down into their factors using the expr com-
mand. The input max delay is equal to the maximum board delay of 1 ns minus the 
minimum clock skew of −0.5 ns plus the maximum tco of the external device, which 
is specifi ed as 5 ns. 

 The set_output_delay commands are used to constrain the timing to the external 
device, ext device 2. The -clock_fall option is used because the output data is 
clocked in on the falling edge of the virtual clock clk_v_out at the external device.  
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  Fig. 14.7    Synchronous I/O       

14.2.2.18     Combinatorial Interfaces 

 In the cases where I/O signals simply go through combinational logic in the design 
the set_max_delay and set_min_delay constraints specify an absolute delay range 
that signals should take when going through the logic. 
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 In Fig.  14.8 , -from option is used to select which input path the constraint should 
be applied to. The -to option that selects out* indicates that the constraint is applied 
to the paths that go from that input to any of the output ports.  

 The pairs of maximum and minimum constraints defi ne a range of delay through 
the combinatorial logic.  

  Fig. 14.8    Example of constraining combinatorial interfaces       
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  Fig. 14.9    Clock uncertainty       

14.2.2.19     Clock Uncertainty 

 Clock uncertainty is often referred to as the skew for clocks or clock-to-clock transfers. 
It is specifi ed separately for setup and hold times and can specify separate rising and 
falling clock transitions Fig.  14.9 .  

 The SDC command set_clock_uncertainty is used to model jitter, guard band or 
skew on the clock.  
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14.2.2.20     Clock Latency 

 There are two types of clock latency. These are network and source. Network latency 
is the delay on the clock network between the clock and register clock pins. 

 Source latency is the clock network delay between the clock and its source 
(e.g., the system clock or base clock of a generated clock). 

 The source latency can be assigned to generated clocks for specifying board level 
delays from a clock output port to a clock input port when the clock input port is 
acting as a feedback clock. 

 The SDC command set_clock_latency command defi nes the source latency on 
input clocks.  

14.2.2.21    Source Synchronous 

 Source Synchronous clocking is used to describe the technique of sourcing a 
clock along with the data. In source-synchronous interfaces, the source of the clock 
is the same device as the source of the data. Source synchronous interfaces are most 
commonly used in DDR memory interfaces Fig.  14.10 .  

 The clock and data are sent over matched paths. The data is either edge aligned 
or center aligned with the clock. In the case of DDR memory, data is sent on the 
rising and falling edge of the clock. 

 In order to constrain the DDR interface it is necessary to create the following 
constraints on the input:

    1.    Virtual clock for the input delay constraints.   
   2.    Create a base clock constraint on the FPGA input clock port.   
   3.    Specify the input delays relative to the virtual clock.   
   4.    Duplicate the input delays and constrain the duplicates on the falling edge of the 

clock.   
   5.    Add any exceptions that are required. The data is being launched on both rising 

and falling edges and data is being latched in on both rising and falling edges 
across the same line. Timing Analysis analyzes all of the possible edge transfers 

  Fig. 14.10    DDR input and output logic       
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which is rising to falling, falling to rising, rising to rising, and falling to falling 
for both setup and hold. DDR interfaces can be either same edge transfer or 
opposite edge transfer not both. In the same edge transfer case, data launched on 
a type of clock edge are meant to be launched in on the same edge, in this case 
only same edge setup calculations need to be made so opposite edge setup analy-
sis can be cut. For hold analysis, we want to make sure the clock transfer does 
not corrupt the data on the previous clock edge so here for the same edge transfer 
case, hold analysis between same edges can be cut while hold analysis across 
opposite edges are preserved. The opposite is true where setup between same 
edges can be cut and hold between opposite edges can be cut Fig.  14.11 .      

  Fig. 14.11    DDR input interface constraints       
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 In order to constrain the DDR interface it is necessary to create the following 
constraints on the output:

    1.    Create clock constraint on the output clock port. In the case of Altera, use a 
generated clock constraint.   

   2.    Specify the output delays relative to the generated clock constraint.   
   3.    Duplicate the output delays and constrain the duplicates on the falling edge of 

the clock.   
   4.    Add any exceptions that are required Fig.  14.12 .       

  Fig. 14.12    DDR output constraints       
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14.2.2.22    Operating Conditions 

 Operating conditions consist of the combination of voltage and temperature settings 
that are used during the timing analysis of the design. These values impact the 
delays in the timing models used during timing analysis.  

14.2.2.23    Multi-Corner Analysis 

 Multi-corner analysis allows a design to be verifi ed under a variety of operating 
conditions while performing a static timing analysis on the design. This typically 
performed on the slow corner model and the fast corner model. 

 You must perform multi-corner timing analysis on your design before signing off 
on the design timing. Many years ago, FPGA vendors only provided a single timing 
model that represented worst case operating conditions. The model had enough tim-
ing guard-band built in that users could perform timing sign-off with the one model 
and be guaranteed that the design timing would work. As the process geometries of 
FPGA devices have shrunk to 65 nm, 40 nm and below, this statement is no longer 
true. You need to sign off on the design timing under best and worst case conditions. 
This means that you will have to optimize your design in both the best case and 
worst case operating conditions.  

14.2.2.24    Slow Corner Model 

 The slow corner timing model indicates the slowest possible performance for any 
single path timing under worst case operating conditions. The model represents the 
slowest device at the max operating temperature and VCCMIN. The Slow timing 
model is typically used to ensure setup timing is met.  

14.2.2.25    Fast Corner Model 

 The fast corner timing model indicates the fastest possible performance for any 
single path timing under best case conditions. This model represents the fastest 
device at the minimum operating temperature and VCCMAX. The Fast timing 
model is typically used to ensure hold timing is met. 

 This analysis allows you to verify that short paths meet timing requirements 
under best-case operating conditions.    

14.3     A Methodology for Successful Timing Closure 

 This section of the book will describe a design methodology that will consistently 
enable you to successfully achieve timing closure in your FPGA design. 

14.3 A Methodology for Successful Timing Closure
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14.3.1     Family and Device Assignments 

14.3.1.1    Speed-Grade Selection 

 It is recommended that you start with the fastest speed-grade of the targeted device 
to enable you to close timing quickly. This will enable you to get to the board 
quicker for functional checkout and to start on software development sooner. 

 You can work on optimizing the design for a lower speed device during the 
verifi cation cycle or later once functional verifi cation is complete.  

14.3.1.2    I/O Settings 

 The drive strength and I/O standards that you select will impact the timing at your pins. 
They will also impact the power consumption and signal integrity of your device. 

 The techniques that can be used to improve the I/O timing are, in order of 
preference:

    1.    Ensure that the appropriate timing constraints are set on the I/O pins.   
   2.    Examine the report fi le to determine if the I/O registers are being used. If they are 

not being used, look at the RTL and recode the RTL such that the output registers 
drive the pins and the pins drive input registers. The place and route software will 
normally use the I/O registers in order to meet the I/O timing requirements. If this 
is not working, you can force the use of I/O registers via settings in the FPGA 
design software.   

   3.    Look at the delay chain settings for the I/O cells. Use the shortest delays for pins that 
feed or are fed directly by pins. Most FPGA devices have programmable delays 
options in the I/O cells that can be used to minimize the tsu and tco times. These are 
typically set by the FPGA design software based upon the I/O timing settings. If this 
is not working, you can manually set the delay through settings in the software.   

   4.    Use PLLs to shift the clock edges to meet the I/O timing. If a PLL is providing 
the clock to the registers that are driving the I/O pin or are being fed by the I/O 
pin, the PLL output can be phase shifted to change the I/O timing. A backwards 
shift in the clock will provide better tco at the expense of tsu. Shifting the PLL 
output forward provides a better tsu at the expense of tco and thold.       

14.3.2     Design Planning 

 As mentioned in the chapter on RTL design, it is important that you plan up front 
for timing closure. Up front planning will help to identify issues before they arise 
and avoid delays late in the design cycle. 

 One of the common mistakes in timing closure is waiting for all of the RTL code 
to be available before compiling the top-level design. You should compile the 

14 Timing Closure
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top- level design as soon as the RTL for any of the major lower level modules is 
complete, in order to catch integration and resource issues as early as possible. 

 In order to be able to do this, you need to have planned for timing closure at the 
specifi cation stage where you defi ne how the design will be partitioned into func-
tional blocks. This will include the timing requirements for the individual blocks, 
inter-block timing requirements and any placement restrictions on blocks that inter-
face with dedicated hardware blocks or device pins. These requirements need to be 
adhered to when compiling the RTL at the top-level. More detailed information on 
   RTL design partitioning is available in Sect. 10.5.4 of Chap.   10     on RTL design. 

 It is also recommended that you plan to use an incremental design methodology. 
In reality, by partitioning your design appropriately, as described in Sect. 10.5.4 you 
will have planned for an incremental compilation methodology. The advantage of 
such an approach is that it makes it easy to apply a team based design methodology 
to the FPGA design, whereby multiple engineers can work on the design and timing 
closure of the FPGA design. This design methodology will also enable you to mini-
mize the impact of Engineering Change Orders on the design. 

 The major FPGA and EDA vendors include features in their FPGA design software 
to enable an incremental design methodology. 

14.3.2.1    Incremental Compilation 

 As mentioned previously, incremental compilation capabilities that are available 
from the FPGA vendors can dramatically shorten you compile times. This is not the 
only benefi t of this approach. An incremental compilation methodology can shorten 
the timing closure cycle. The key factor behind the use of this capability is good 
design planning. 

 So, how does incremental compilation work? 
 Incremental compilation provides the ability to preserve the blocks in your 

design that have not changed and to only compile the parts of the blocks in the 
design that have changed. The net benefi t is reduced compile time as there is less 
logic to recompile and a reduced number of compilations, as you can lock down the 
timing critical modules in the design once timing is met, thus preserving the perfor-
mance of these blocks. A third benefi t that is often overlooked is that you can add in 
debug logic when going to the lab without impacting the design. This is discussed 
in more detail in Chap.   13    , In-System Debug. 

 You should deploy an incremental design methodology. 
 You should also be aware of the restrictions that it can place on your design so 

that you can avoid the pitfalls.

    1.    It requires up front planning on the design partitioning, as described in Sect. 10.5.4 
in Chap.   10      This can place restrictions on how your design blocks interface.   

   2.    It prevents optimizations across design blocks. This restriction can be alleviated 
by maintaining the critical path inside a design block, by registering the ports on 
the design block and by not inserting combinational logic between design blocks 
at the next level of hierarchy.   
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   3.    It reduces the device utilization that you can achieve. This is true in that some of 
the area optimizations that exist in FPGA design software are more effective 
when applied to the complete design. An example of such an optimization is the 
packing of unrelated registers and LUTs in the same logic cell to save area. If 
you are trying to utilize every logic cell in your design, you are likely to have 
timing closure issues due to the routing resources available in devices. Sacrifi cing 
device utilization for faster timing closure and higher performance is a decision 
that should be addressed in the device selection and specifi cation. Most designs 
can reach 85 %+ logic utilization and close timing using an incremental design 
methodology.     

   Top-Down Design Flow 

 In a top-down design fl ow, the entire design is compiled in one project and timing 
closure is performed on the whole design. As the RTL for the different blocks in the 
design are complete, they are added to the top-level design and compiled with the 
rest of the design. One of the advantages of using this technique is that it provides 
good visibility into the paths between partitions. Timing closure is performed on the 
whole design. Once the designer is satisfi ed with the results for his block, it can be 
locked down such that it does not need to be recompiled, reducing the compile time 
and locking down the performance.  

   Bottom-up Design Flow 

 In a bottom-up design fl ow, the modules are compiled in separate projects and locked 
down once the designer has achieved timing closure on the blocks. The lower-level 
partitions are then imported into the top-level project for fi nal integration. This does 
not require a recompile, but rather a merger of the place and routed netlists followed 
by a routing operation for the connections between the blocks Fig.  14.13 . 
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  Fig. 14.13    Bottom-up design fl ow       
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 The bottom-up design fl ow lends itself to a simpler partitioning of the design 
between different team members, but has the disadvantage of involving total iso-
lation of lower-level modules. This requires more up front effort tin the allocation 
of chip resources. This creates the need for detailed fl oorplanning to accommo-
date each block that will be compiled in a separate project. It also complicates the 
timing constraints for the overall project as timing constraints need to pass from 
the top- level project to the lower level project. Any timing constraints that are 
added in the lower level project will also need to be migrated to the top-level 
project Fig.  14.14 .   

Without a Floorplan With a Floorplan

Top-Level
Integration Conflict

Top-Level
Integration Successful

  Fig. 14.14    Integration of modules in the top-level design       

14.3.2.2    Design Scenarios Using Incremental Compilation 

 In this section we are going to look at a few scenarios where incremental compilation 
can signifi cantly reduce the timing closure cycle. 

 Take the example design shown in Fig.  14.15 . 
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  Fig. 14.15    Example design partitioned for incremental compilation       
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 This design has been planned to contain 3 main hierarchies that have been parti-
tioned for incremental compilation. The hierarchy ‘Motion’, the hierarchy ‘Control’ 
and the block ‘Top’. Top is the top-level hierarchy of the design and contains the 
block ‘Motion’, the block ‘Control’ as well as other levels of hierarchy. The block 
‘Motion’ is also hierarchical containing two other design hierarchies and the block 
Controller is a sub-set of the ‘Decoder’ Module which is one of the design blocks in 
hierarchy ‘Top’. The design has been compiled and meets performance.    

   Scenario 1: Parameter Tuning 

 In this scenario, the system needs some fi ne tuning due to a small change in the 
specifi cation that will impact the memory module in the top-level fi le. The user can 
lock down the place and route on the ‘Control’ and ‘Motion’ blocks, as their RTL 
will not be changed, make the change to the block ‘Memory’ and recompile the 
block ‘Top’. This will preserve the performance of the ‘Control’ and ‘Motion’ 
blocks as they are not compiled and greatly reduce the compile time as only 75 % 
of the design has to be recompiled and the timing critical block that would typically 
challenge the fi tter has not been touched. 

 If this design typically compiles in 6 h, a complete recompile means that you can 
only achieve one iteration of the design in a normal working day. It is usually an 
iterative process to make a design change successfully. 

 By using the incremental compilation approach, your compile time would likely 
drop to less than 4 h, enabling two design iterations in a day, possibly more if these 
parts of the design are not timing critical allowing you to use the fast compilation 
options described in Sect.   14.3.3     on early timing estimation.  

   Scenario 2: Bug Fixing 

 In this scenario, you have fi nished the design and are in the fi nal stages of in-system 
testing in the lab. The system is running at-speed and you have a functional failure. 
You need to fi nd and fi x this bug fast. 

 You can preserve the place and route of the complete design and utilize some of 
the debug options available from the FPGA vendors without having to complete a 
total recompile. 

 You can route internal signals in the design to unused pins quickly without dis-
turbing the placement or routing of your design. 

 You can add in the Embedded Logic Analyzer from the FPGA vendor without 
recompiling the blocks ‘Top’, ‘Motion’ and ‘Control’. As you try to isolate the bug, 
you can refi ne the trigger conditions of the Embedded Logic Analyzer and quickly 
create a new programming fi le. 

 A total recompile would take 6 h and would change the design implementation. 
Without the incremental compilation methodology, the addition of the Embedded 
Logic Analyzer, or changes to the Embedded Logic Analyzer may cause the bug to 
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disappear; leaving you wondering is your design functionally correct? Will the 
problem reappear in production? 

 Using the incremental compilation capability, the design implementation is 
preserved and the compile time is likely to be in the order of 45 min; enabling 
multiple iterations as you debug the design. The design preservation guarantees 
bug reproduction. 

 An example of the type of bug that you would capture is an asynchronous signal 
with a race condition. This type of bug is hard to capture with simulation. Once you 
fi nd the bug in-system, you correctly constrain the paths and recompile the blocks 
that are impacted. 

 This is the recommended methodology that you should adopt for bugs that only 
occur when running at speed.  

   Scenario 3: Timing Closure 

 In this scenario, there is a need to make a few enhancements to the time to increase 
the overall performance of the design. This may happen if you receive a new version 
of IP from a third party. In the example that we have been looking at, a new version 
of the ‘Motion’ core must be used. The specifi cation has also changed such that the 
block performance must increase from 120 to 150 MHz. 

 You compile the design and have trouble closing timing in the ‘Motion’ core. You 
do not have the option to optimize the RTL code, as the design is an encrypted core 
from a third party. Your only option, outside of waiting for the IP vendor to deliver a 
new version of the IP core, is to use the advanced optimization settings in the FPGA 
vendor software. You try the various settings until you close timing on the IP core, 
‘Motion’ and lock in the results by setting the block to post-fi t and preserve routing. 

 If there is a change in any of the other design blocks, such as ‘Top’ there will not be 
a timing closure problem on the blocks ‘Motion’ and ‘Control’ as they are locked down.    

14.3.3     Early Timing Estimation 

 As mentioned in the chapter on RTL design, timing estimation is inaccurate unless 
a design has had some level of placement performed. Early in the design cycle, you 
do not want to go through a complete place and route compilation to get a perfor-
mance estimate for your design. The FPGA vendors have provided a solution to this 
problem. 

 Most FPGA vendor software includes a setting that results in reduced compile 
time. This is achieved by limiting the number of placement attempts. This can dra-
matically reduce the compile time, usually at the expense of performance. The timing 
results using the fast compilation options are usually within 10 % of the results that 
can be achieved by performing a full compile, but in a much shorter compilation 
time. This is a powerful tool that can greatly reduce your timing closure cycle. 
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 It is recommended that you use this Fast compilation option in the following 
scenarios.

    1.    Early in the design cycle when you are determining the performance on 
design blocks that are undergoing change. Your timing results are likely to be 
within 10 % of what is possible, but your iteration time will be signifi cantly 
shorter.   

   2.    Use it on complete designs that can easily meet timing. If your design is not high 
performance compared to the FPGA technology being targeted, this mode will 
reduce your iteration time throughout the full life of the project.     

 The project documentation should refl ect the fact that this fi tter option has been 
used for the design or for a particular design block. 

 If your design is missing timing by more than 10 %, go back and work on the 
RTL rather than continuing with a complete compile. 

 As stated in design planning, you should compile your major design blocks as 
early as possible at the top-level of the design in order to catch integration and 
resource issues as early as possible. In order to achieve this, you can create dummy 
blocks for the blocks that are not complete. These empty blocks need to contain the 
correct port connections.  

14.3.4     CAD Tool Settings 

 It is recommended that you try to maintain the default Synthesis and Fitter settings. 
The FPGA vendors provide you with dozens of knobs and switches that will impact 
the results. You should avoid the temptation to fi ddle them and only use them when 
you have exhausted your RTL coding capability. 

 This being said, these settings can be very effective and can drastically change 
compilation results. However the results that they provide can vary signifi cantly 
from one release of the FPGA vendor software to the next. Thus they can make 
your design non-portable between tool versions, effectively making your IP 
non-reusable. 

 If you have your back to the wall and have to close timing on this project at all 
costs, then you should take advantage of these options. 

 In addition to optimization settings, the FPGA vendor software also provides the 
ability to infl uence the result via fl oorplanning of the logic. You can specify cell 
placements, in various groups, regions, down to individual routing tracks. 

 Again it is recommended that you avoid doing this unless the FPGA vendor 
software is doing a poor job on placement. 

 It is rare for human architecture experts to beat the tool with hand-work, however 
it can work in isolated cases and is another weapon in your arsenal if it appears that 
all hope is lost. 
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14.3.4.1     Understanding the Fitter (Place and Route) 

 The Place and Route tools from the main FPGA vendors will adjust their operation 
to try and meet the requirements for your design. This means that you will see dif-
ferent results based upon your timing constraints. Tougher timing constraints 
equates to longer compilation time. 

 The Place and Route engines are timing driven and understand complex timing 
constraints. Thus it is recommended that you use real timing constraints. 

 The Fitter tries to fi nd a placement that can be routed to meet your timing 
requirements. 

 One of the phenomena of FPGA Place and Route Software is the variation in 
results based upon the ‘seed effect’. 

 The initial placement for the logic is random, based upon the starting condition 
of your design and it is possible that different placements can meet your goals. The 
Place and Route seed, also know as the Fitter seed, changes the initial starting point 
of the algorithm for placement, effectively impacting how optimizations proceed. 
The Fitter’s algorithm runs multiple placement attempts based upon the previous 
results to converge on a successful result. However, by changing the initial starting 
placement you may result in a different fi nal placement and hence different timing 
results. 

 A common technique used in timing closure is ‘seed sweeping’. This is running 
multiple different seeds to determine which will give the best result for your design. 
In the past, seed sweeping resulted in large changes in performance. Today, the 
average change in performance for the latest FPGA technologies is in the ± 5 % 
range. Note this can change signifi cantly from FPGA vendor to FPGA vendor and 
family to family. 

 It is recommended that you avoid using seed sweeping on design blocks that you 
intend to reuse or on fi nal designs that are likely to require future updates as the 
same seed will have a different effect in future versions of the FPGA vendor soft-
ware or if you make any changes to your design, such as logic changes, assignment 
changes or pin changes. 

 So when would you use seeds?

    1.    If the design can meet timing, however you want to maximize your timing 
margin.   

   2.    You need to quickly get the design in the lab for functional checkout. You should 
always go back and remove the need for a particular seed or seed sweeping.   

   3.    This is the fi nal version of the design, it is the only way to meet timing and there 
will not be future versions of the design. An example of this would be FPGA 
prototyping of an ASIC design.     

 An IP, or design block is not reusable if timing closure depends upon a particular 
seed and hence a particular version of an FPGA vendors software.  
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14.3.4.2    Physical Synthesis Optimizations 

 Most FPGA vendor tools contain Physical Synthesis optimization options. Physical 
synthesis is tightly integrated with the place and route engine and re-synthesizes the 
logic where timing is a problem. Common techniques that are used include register 
retiming and register duplication. These are techniques that could be fi xed at the 
RTL level, but may require major recoding. There are a lot of other optimizations 
performed by Physical Synthesis but these are the most common and often most 
effective. 

 In certain designs, it can improve the clock performance by greater than 20 %. 
For designs which have been carefully coded with balanced registers, the perfor-
mance gain may be only 1–2 %. This optimization comes with a price. The design 
compile time will increase dramatically, normally by a factor of 2 or more. It will 
also limit your use of Formal Verifi cation tools as they typically struggle with reg-
ister retiming optimizations. 

 Due to the compile time impact, you should consider limiting the use to problem 
blocks in an incremental design fl ow. 

 The use of Physical Synthesis is fully automated, i.e. you set the option and 
compile.  

14.3.4.3    Design Space Exploration 

 Most of the FPGA vendors provide utilities in their tool that will automatically run 
multiple compilations using different settings and seeds to fi nd the settings in the 
tools that provide the best results for your design. 

 Due to the effect of seeds on place and route, you should only use Design Space 
Exploration in the late stages of your design when the design is effectively complete 
and you are focused on timing closure. 

 This type of utility will typically perform ten or more compilations and as such 
can result in compilation times of several days. 

 Fortunately the main FPGA vendors have added multi-processing to their utili-
ties such that multiple compilations can be performed in parallel as opposed to 
sequentially. This greatly reduces the compile time. 

 The downside of using a Design Space Exploration tool is that if you make a 
change to the RTL of your design, you will need to rerun the utility due to the ran-
dom nature of seeds. 

 Design Space Exploration can be run on individual blocks in your design. This is 
a powerful technique for reducing the compile time and only focusing the optimiza-
tions on the performance critical areas of the design. 

 This technique is particularly effective in an incremental compilation design fl ow 
where Design Space Exploration is only run on the blocks of the design that are 
timing critical. 

 If you use Design Space Exploration on a design block or complete design the 
exact settings used should be documented with the design to enable other users to 
recreate the results.   
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14.3.5     Compilation Reports and Analysis Tools 

 Review the messages from the synthesis and place and route reports to help with 
timing closure. These will often provide information that can be used to help 
improve the performance of the design. Your design process should dictate that 
designers should always review and remove all warnings from a project. This is 
necessary as the messages may indicate problems with the design such as the inad-
vertent use of latches or missing timing constraints. One of the challenges with 
reviewing warnings is that the messages may come from purchased IP and you can-
not change the RTL to remove the message. In this scenario, you should check with 
the IP vendor on the message and if they prove that it is safe to ignore the message, 
you can document this information in the project and ignore the message for future 
compilations. 

 The report fi le itself details information on resource usage in the device and can 
be used to determine which modules are using the most resources in the device. 

 Information from the compilation reports, such as the amount of time spent in 
placement and routing, can help identify challenges to the fi tter. Long route time can 
be due to restrictions created by the placement. This can be improved by possible 
hand placement of some nodes or increasing the placement effort. 

 The compilation report also provides details on the optimizations that have been 
performed, such as the registers that have been removed from the design. This infor-
mation can help you to fi nd problems in the RTL, or explain why debug logic has 
been removed, enabling you to fi x the RTL. 

 Similarly messages on ignored assignments can resolve problems caused by 
typos when creating assignments or identify assignments that are out of date and 
should be removed from the project. 

 In addition to the compilation report fi les, the FPGA vendors provide tools that 
detail the design in graphical form. 

 These tools should be used when examining the results for gaining an under-
standing of the RTL and viewing the results of synthesis and place and route. 

 These viewer tools provide hierarchical block diagram views of the design, as 
well as a technology implementation view detailing how the design has been 
mapped to the target technology after synthesis or after fi tting. 

 The hierarchical block diagram view is useful for understanding the architecture 
of the design, thus is useful for understanding the design fl ow as shown in Fig.  14.16 .  

  Fig. 14.16    Example of the RTL viewer in the Quartus II software       
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 This should be applied when inheriting design blocks from other users to gain a 
visual understanding of the design and for planning the fl oorplan of a device as it 
will detail the data fl ow through the design and interaction of the blocks. It also 
provides visibility into functions such as Finite State Machines as shown in 
Fig.  14.17 . 

  Fig. 14.17    Example view of a FSM from the Quartus II RTL viewer       

  Fig. 14.18    Critical path view in Quartus II technology map viewer       

 The technology-specifi c view is useful for understanding how the design has 
been implemented in the FPGA and can be used to determine where optimization is 
possible Fig.  14.17 .  

 It can quickly detail the number of levels of logic in the critical path and can link 
back to the RTL to help relate the implementation to the original RTL. 

 The technology map view helps in creating legal complex timing constraints for 
your design when used with the timing analysis tool. It is possible to locate from a path 
in the Timing Analysis timing report to the Technology Map View. In the Technology 
Map view, you can examine the implementation, determine whether the path is a 
timing exception, such as a multicycle path or false path, and then make the appropriate 
assignment in your timing constraint fi le Fig.  14.18 .   
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14.3.6     Floorplanning Tools 

 All FPGA vendor design tools contain a fl oorplan tool, or in some cases multiple 
fl oorplan tools. 

 In the early days of FPGAs, these tools were critical for both understanding the 
FPGA architecture and optimizing the design for performance. 

 Today, the former statement is still true. Floorplan tools help explain what resources 
are available in the FPGA device and can be useful in analyzing the results of place 
and route on a design. The latter statement on design optimization is less true. In most 
cases it is not necessary to fl oorplan a design to meet the performance requirements. 
In the cases were fl oorplanning for performance provides a benefi t, you will likely be 
fl oorplanning a small part of the design rather than all of the design. 

 Today there is another area where fl oorplanning can help. This is in a bottom-up 
team based design fl ow. In this scenario, you will assign design blocks to areas of 
the device rather than designing at the cell level. Each major design block is assigned 
an area in the device. 

 In summary, there are four main uses of the FPGA vendor fl oorplan tools. These 
are architecture exploration, analysis of placement and routing, creation of fl oorplan 
assignments and Engineering Change Orders. 

14.3.6.1    Architecture Exploration 

 The fl oorplan provides a visual display of chip resources. It is akin to having a 
data sheet on your desktop that details the resources used as well as the resources 
that are still available. The fl oorplan can be used to view details on the device 
architecture, such as the number of registers in a LAB, number of LABs in a row, 
placement of memories and routing information. It will also allow you to view the 
logic inside of dedicated blocks, such as the confi guration of LUTs and registers 
Fig.  14.19 .  

 It provides visibility into the confi guration of the I/O cell such as details on the 
delay chains, I/O standard, direction and use of registers inside of I/O cells. 

 It is a real benefi t in team based designs for viewing the connectivity of your 
design blocks. 

 It is also extremely useful for clock network planning. As well as detailing the 
confi guration of PLLs it details which areas of the chip can be driven by the outputs 
of the PLLs and from the global signals in the device. This capability works well in 
a team based design environment where you need to assign devices resources to the 
different engineers and functional blocks, preventing resource confl icts and enabling 
you to plan for the sharing or merging of resources, such as PLLs.  
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14.3.6.2    Analysis of Placement and Routing 

 The fl oorplan tool provides an excellent solution for examining design 
implementation. 

 It displays logic placement information, detailed routing information, fan-in 
and fan-out connections and enables the viewing of critical path information 
Fig.  14.20 .  

 An analysis of placement and routing need only be performed if you have a prob-
lem. In the case of timing failures it can be used with the timing analyzer to locate 
from failing paths in the timing report to a view of these paths in the fl oorplan. It is 
then possible to analyze the placement and routing of the design to determine if the 
issue can be fi xed by location constraints or to get visibility into the congestion in 
that area of the chip. 

 The fl oorplan provides visibility in the number of levels of logics between 
registers as well as whether the registers in the I/O cell are being used. This infor-
mation can also be viewed in other tools such as the compilation report and 
Technology map views.  

  Fig. 14.19    The Quartus II chip planner detailing the Stratix IV ALM architecture       
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14.3.6.3    Floorplan Assignments 

 The fl oorplan can be used to optimize the performance of the design through placement 
assignments. In most cases it is diffi cult to perform a better placement than what the 
place and route software does automatically. However there are cases where it can help. 
A good example is the placement of pipeline registers between nodes that are placed 
far apart due to resource constraints, such as access to dedicated hardware blocks and/
or pins. In this scenario, the place and route software does not always optimize the 
placement of the registers between the source and destination nodes, Users can move 
the registers on the fl oorplan for optimal placement and performance. 

 Assignments should mainly be used in the fl oorplan to create region constraints 
in an incremental or team based design environment. In this scenario, regions are 
created in the fl oorplan and blocks of the design assigned to the region. Alternatively 
region assignments can be used to prevent the resources in a region being used, 
effectively reserving resources for design blocks that are not yet complete. 

 One of the challenges in creating region assignments is dealing with internal 
memory blocks and DSP blocks. Depending upon the resource requirements of the 
block you may need a non-rectangular region in order to include enough memory or 
DSP blocks for the design. 

 You also need to consider how the design block interfaces with the rest of the 
design so that you do not inadvertently hurt timing closure.  

14.3.6.4    Engineering Change Orders 

 The fl oorplan tool can help in the in-system design debug cycle. It provides a means 
to try out small design changes quickly. 

  Fig. 14.20    The Quartus II chip planner detailing fan-out from a node       

 

14.3 A Methodology for Successful Timing Closure



218

 It allows the editing, creation and deletion of logic and connections in the design. 
It is recommended that you only do this for simple changes, such as changing the 
polarity on clocks, clock enables, or the insertion of simple test logic. 

 This method is particularly useful for changing the properties of I/O cells such as 
delay chain values, use of pull-ups, slew rate, I/O standard and current strength. 

 It should also be used to modify the PLL settings or for routing a signal out to a 
pin for analysis. 

 It is not recommended that you go to production using changes that are made to 
the logic with this method, as the RTL will no longer match the functionality of the 
implementation. This method should only be used to try out simple changes and 
when proven to work in-system, the RTL be modifi ed to match the functionality, the 
design simulated, recompiled and the new programming image tested in-system. 
The full verifi cation cycle should be performed on this new version of the design.   

14.3.7     Miscellaneous Techniques 

 Identify the timing paths that are consistently failing timing. Try seed sweeping and/
or run DSE. If the software has been unable to fi x the paths, m even though it has tried 
on multiple compiles consider recoding or redesigning that part of the design. 

 Ensure that the changes that you have made to the compilation settings still make 
a difference as the design has matured. Periodically compile the design with the 
default settings and without any LogicLock regions; especially after making signifi -
cant changes to the RTL or architecture. This will identify whether the change in 
settings really make a difference for your design.   

14.4     Analysis of Common Timing Closure Failures 

 In this section we will look at how to review and evaluate compilation results to 
identify problems that make the design fail timing. You should start with a review of 
the compilation results, then check details of specifi c failing paths, make changes to 
software settings or the RTL and fi nally recompile the design. 

14.4.1     Missing Timing by a Small Margin 

 If your design is functionally complete, you are marginally missing timing and your 
schedule does not permit you to go back to the RTL code, then you should try every 
option that is available in the FPGA design tool to try and close timing. Most of the 
vendors have design space exploration features that will cycle through variations of 
the optimization settings along with seed sweeps to try and fi nd the optimal settings to 
meet timing on your design. This approach is extremely time consuming, as you may 
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have to run 10+ compilations. However, it can provide performance improvements in 
excess of 20 %. In order to reduce the compile time hit of performing multiple com-
pilations, you should compile multiple settings in parallel on multiple machines using 
the capabilities inside the Design Space Exploration tools from the FPGA vendors.  

14.4.2     Review of Compilation Results and Messages 

 The fi rst thing you should do after a compile is review the messages in each section 
of the compilation report. Most designs that fail timing also start out with other 
problems that are reported as warning messages during the compilation. 

 Determine what causes a warning, and whether you should fi x it, or whether it can be 
ignored. After you’ve reviewed the warnings, also review the information messages. 

 Take note of anything unexpected. The types of messages are dependent on the 
design; you will develop intuition as you review compilation results throughout the 
development cycle of the project. Unexpected messages might be about unconnected 
ports, ignored constraints, missing fi les, and certain assumptions or optimizations 
that the software makes.  

14.4.3     Synthesis and Physical Synthesis 

 During synthesis, the software can perform register retiming and other netlist opti-
mizations. If you’ve turned on physical synthesis, you should review the Optimization 
Results reports in the Analysis and Synthesis report. The reports list the optimiza-
tions performed by the physical synthesis optimizations, such as register duplica-
tion, retiming, and removal. 

 If you have turned on physical synthesis options, there will be a panel in the report 
fi le on physical synthesis that will include a summary of the physical synthesis algo-
rithms that were run, how long they took to run, and how much performance improve-
ment each algorithm achieved. The values that are reported for the slack improvements 
can vary from compile to compile because of the random starting point of the compi-
lation algorithms, but the values should be similar from compile to compile. 

 The fi tter can also perform netlist optimizations such as register duplication. You 
should review those optimizations in the Fitter report under the Netlist Optimizations 
section. 

 In addition to checking what optimizations were performed, and how they 
improved performance, you should also evaluate what runtime it took to achieve 
that extra performance. 

 In particular, you should review the physical synthesis and netlist optimizations 
performed over a couple of compilations, and edit the RTL to refl ect the same 
changes that physical synthesis performed. If the software consistently retimes a 
particular set of registers, you can edit the RTL to retime the registers in the same 
way. By making the same changes that the physical synthesis algorithms do, you can 
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turn off the physical synthesis algorithms and get more predictable performance and 
save on compile time. Physical synthesis typically adds 50 % to the fi tter time. 

 You should also turn off any physical synthesis algorithms that consistently 
report no improvement (0 ps). This will also save on compile time.  

14.4.4     Global Signals 

 Check the resources that have been used in the design such as global signal use, 
routing utilization, and the diffi cult level reported in the clustering operation. 

 Review the global and non-global signals. This is especially important for 
designs that have a lot of clocks. 

 This helps to determine whether global resources are being used effectively and 
enables you to make the appropriate changes to promote or demote signals from 
global routes. You should focus on global clocks with low fan-outs. These clocks are 
good candidates to be assigned to other types of clock resources such as Regional 
Clocks. This makes the Global clock available for other signals. 

 The fi tter section of the report fi le includes a section on non-global high fanout 
signals. This lists the signals with the highest fan-out that are not routed on global 
signals. Often reset and enable signals are at the top of the list. If a design has prob-
lems with routing congestion, and there are high fanout non-global signals in the area 
of congestion, consider using a global or regional signal to fan-out the node, or dupli-
cate the high fan-out register so that each of the duplicates has a lower fan-out that can 
feed a smaller area of the chip. If you do promote signals to use global routes, be 
cognizant of the fact that remember that the path delay will increase because of the 
buffer insertion delay required to access the global networks. The fl oorplan tools can 
be used to locate high fan-out nodes, and to report routing congestion, and determine 
whether the alternatives that have been proposed in this section are viable. 

14.4.4.1    Control Signals and High Fan-out Signals 

 The number of fl ow control signals such as control signals on registers increase in 
multiples of the bus width and can quickly become the high fan-out signals in a 
design. FPGA tools typically perform automatic global promotion based upon 
signal type and fan-out. The Place and Route algorithms do not always make the 
optimum choice. As a designer you should make Global Signal assignments to con-
trol a specifi c clock/control signal. As mentioned previously, the report fi les from 
place and route details the high fan-out signals that are not using global signals. 
These are good candidates for manual assignment to Global signals. It is good 
design practice to limit the number of high fan-out signals in the RTL source by 
using techniques such as using small FIFOs to break up backpressure signal propa-
gation and by not resetting self-fl ushing datapath components. 

 Break up high fanout signals based on the intended physical destination, by 
duplicating and pipelining the control signals in the RTL. Note: You may have to 
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use attributes to preserve the registers form synthesis optimization that may merge 
the registers. 

 Resets can be distributed on global signal networks or in the case of resets that 
drive a small numbers of registers placed close together, use local routing. 

 Be aware that the buffers that drive the global signal networks suffer an unavoidable 
insertion delay. This may require the reset cycle implementation to require multiple 
cycles to reset. Be aware that the use of local routing for resets on large numbers of 
registers, may cause routing congestion. 

 There are several methods to manage fl ow control in designs. 
 Method 1 is through the use of clock enables / ready signals/ acknowledge 

signals. 
 Method 2 is through the use of FIFOs / almost full / almost empty / credits. 

This approach enables higher clock rates at the expense of increased latency. 
 Method 3 is to manipulate the data stream based on prediction of downstream 

backpressure needs. Backpressure is defi ned as the build-up of data when the buffers 
are full and incapable of receiving any more data; the transmitting device halts the 
sending of data until the buffers are able to store data. This approach enables higher 
clock speed and reduced control routing usage; however at the expense of design 
complexity. This relies on the prediction of the state of the pipeline some clock cycles 
ahead. This involves the start of calculations early in time, or early in the processing 
pipeline, where the resource usage is cheap or partial results are already available. The 
designer needs to insert a gap in data fl ow for things that are computed in parallel and 
inserted later. The designer speculatively calculates values that might be used later. As 
a designer, you should avoid having to backpressure large portions of logic. 

 This form of predictive fl ow control is not often used in FPGA designs, but its 
use is likely to increase for high performance designs. While it reduces the number 
and criticality of control signals, as the bandwidth and clock speed increase do does 
the use of routing resources.   

14.4.5     High Fan-out Registers 

 The location of the destination registers for high fan-out registers can result in long 
routing delays between the source and the destination register. The Place and Route 
software will normally optimize the placement such that this is not a problem. 
However it can still be a problem when location constraints restrict the placement 
options. An example could be a register with a high fan-out that feeds many regis-
ters that interface with pins on different sides of the device and there is a tight tco 
requirement from the registers to the pin. The destination registers have to be placed 
inside or next to the I/O cell to meet the tco timing. The source register cannot pos-
sibly be placed close to all of the destination registers. 

 The best solution to this is to either:

    1.    Create better pin assignments, or   
   2.    Duplicate the source register such that it can be placed close to each group of 

pins. This is best performed at the RTL level.     

14.4 Analysis of Common Timing Closure Failures
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 To summarize, the best way to fi x high fan-out routes is to make them disappear 
via register duplication Fig.  14.21 .   

14.4.6     Routing Congestion 

 Review the routing usage reported in the fi tter resource usage summary report. 
This will report the average interconnect usage compared to what is available on 
the FPGA device. It will also report the peak amount of interconnect that is used. 
This will happen in the most congested area of your design. Designs with an 
average routing usage value below 50 % will not have any problems routing. 
Designs with an average between 50 and 65 % may have some diffi culty routing. 
Designs with an average over 65 % typically have diffi culty meeting timing 
unless the RTL is well designed to tolerate a highly utilized chip. Peak routing 
values of up to 90 % are typically low risk, however peak values between 90 and 
100 % are indicative of likely problems with timing closure, and peak values at 
100 % indicate that all routing in an area of the device has been used, so the 
design is likely to suffer from a timing performance degradation. It is possible to 
view a heat map of the routing congestion in the FPGA fl oorplan. It is very useful 
to look at the heat map view, identify the area of congestion and locate from the 
region in the fl oorplan to the RTL or hierarchy view in order to fi x the problem 
in the RTL Fig.  14.22 .  

 As part of the fi tting process, the router may add routing delay by taking a more 
circuitous route on register to register paths to increase the delay in order to meet 
hold time requirements. This will be reported in the router messages in the report 
fi le, including details on how much extra routing was used to meet hold time require-
ments. Excessive amounts of added routing can indicate problems with the design. 
Often these are incorrect multi-cycle transfers, particularly between different rate 
clocks, and transfers between different types of clock networks. 

 The router will also add routing for hold time requirements in a case where data 
is transferred within the same clock domain, but between clock branches that use 
different buffering. 

 To identify cases where a path has different clock network types, review the path 
in the timing analyzer, and check the nodes along the source and destination clock 
paths. Also check the source and destination clock frequencies, to see whether 
they’re equal, or even multiples, and whether there are any multi-cycle exceptions 
on the path. 

 If any class of routing is heavily used (e.g. more than about 60 or 70 %) it will 
likely reduce the circuit speed. This information can be obtained from the fi tting 
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  Fig. 14.21    Duplication of 
high fanout registers       
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report. In most cases, it is possible to restructure the design to use less routing. The 
techniques that can be used include:

    1.    Re-arranging terms in computations to get routes into LUTs.   
   2.    Pre-computing something, to fan-out a 3 bit encoded signal instead of the 12 

signals used without encoding.   
   3.    Duplicating registers so that there is a local copy of the register available for 

fan-out.   
   4.    Pipelining the routing wire t. Check the resources that have been used in the 

design such as global signal use, routing utilization, and clustering diffi culty.      

  Fig. 14.22    Routing heat map view in Quartus II chip planner       
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14.4.7     Clustering 

 Clustering is the fi tting process of grouping logic together for placement. As cluster-
ing diffi culty gets higher, timing closure gets harder. Going from Medium to High 
can result in signifi cant drop in performance and/or increase in compile time. The 
easiest way to reduce clustering diffi culty is to reduce the amount of logic. This may 
or may not be an option for your particular design.  

14.4.8     Assignments 

 Review the ignored assignments panel in the compilation report. The compilation 
report includes details of any assignments ignored during fi tting. Make sure your 
intended assignments are not being ignored. Assignments are typically ignored if 
design names change but assignment names are not updated. 

14.4.8.1    Placement 

 Make sure placement makes sense. Look for logic that isn’t where you expect it to 
be, based on your knowledge of the design. An example being logic that interfaces 
with I/Os. It should be located close to the I/Os. 

 Look for any signals that route across the chip. These are likely to be timing 
challenged or require pipelining for performance. 

 The use of global signals can negatively impact the placement. Any logic that 
feeds a global buffer, such as a high fan-out signal, may be pulled close to the global 
buffer, away from the related logic that it feeds. 

 Routing congestion may cause the fi tter to spread out the logic to reduce the 
congestion. This can often be identifi ed if the router takes much more time than 
placement. 

 Any signals that have a very high fan-out and are using local routing may pull the 
logic that they drive close to them. This can result in other paths failing timing. 
Duplicating registers can help reduce criticality of high-fanout paths. This is best 
done manually in the RTL. 

 Reset signals are often routed on global networks. Sometimes the use of a global 
network can cause recovery timing failures. Review the placement of the register 
that generates the reset, and the routing path of the reset signal. 

 Ensure that you are aware of how the design should be placed relative to the 
clocking architecture of the device. Any registers that are driven by a regional clock 
must be placed in one quadrant of the chip.  

14 Timing Closure
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14.4.8.2    Restrictive Location Constraints 

 When location constraints are used early in the design process, there is a tendency 
to keep the constraints throughout the evolution of the design. This can result in the 
scenario where constraints that added value to the early versions of the design can 
hinder the performance in later versions of the design. 

 There is also the temptation to overly constrain the design. The constraints may 
work well on individual blocks, but when the design is integrated restricts the opti-
mizations that the place and route tool can perform resulting in poor performance. 

 In both of these scenarios, the recommendation is to create a new revision of the 
design and remove the logic location constraints. If the design does not meet your 
timing requirements, examine which blocks are having the problem and add back in 
the constraints on the problem blocks individually. See if it impacts timing. If it does 
not, remove the constraint, if it does, keep the constraint and move onto the next 
constraint. 

 Ideally you want to be able to close timing without using logic location 
constraints.   

14.4.9     Missing Timing Constraints 

 The FPGA vendor place and route software optimizes the design based upon the 
timing constraints that are provided. If you fail to constrain a critical path, this path 
will not be optimized by the FPGA software and may fail timing. To further compli-
cate issues, you may not know that you have a timing problem. Timing analysis will 
only report timing against the timing constraints, thus if a path is not constrained, it 
will not be analyzed. 

 Most timing analysis tools have a command to report paths that do not have tim-
ing constraints. It is recommended that you run this command to determine if you 
have unconstrained paths and then set the appropriate timing constraints on the 
paths. 

 It is important that you use the correct timing constraints for your design. Analyze 
the timing report and ensure that any multi-cycle or false paths truly are timing 
exceptions. It is easy to use wildcards as part of a timing exception and inadver-
tently applies the constraint to a register that is not a timing exception, resulting in 
a timing failure in-system that is not reported as a failure by timing analysis. Review 
the SDC constraints for the design. The most common reason for timing constraints 
being ignored is incorrect signal name or names in the SDC fi le versus the design 
name. If you make any changes to the RTL in your design, ensure your timing con-
straints are up to date.  

14.4 Analysis of Common Timing Closure Failures



226

14.4.10     Confl icting Timing Constraints 

 It is possible that you create confl icting timing constraints on paths through the use of 
wildcards. While the use of wildcards is encouraged, you need to be certain that a 
wildcard is appropriate. If a path has confl icting constraints, the optimization of the 
place and route engine will only work on one of the constraints. This is generally the 
last constraint entered. This can result in a timing failure on the other constraint. 

 Timing confl icts often happen in designs with paths between multiple clock 
domains.  

14.4.11     Long Compile Times 

 The fi rst technique is to use an incremental compilation design fl ow. If you have 
used an incremental compilation methodology then you will not be suffering from 
long compile times. 

 The second technique complements the fi rst technique. That is to use a workstation 
with multiple processors or multi-core processors. The algorithms in the FPGA 
vendor software are multi-threaded and can take advantage of multiple cores or 
processors to reduce the compile time. To complement the multiple processors you 
should ensure that the workstation has plenty of fast RAM. The compilation of designs 
targeting the latest FPGA devices can use as much as 16 G RAM. The algorithms are 
constantly accessing RAM, thus fast RAM will help the compilation time. 

 If your design meets performance reasonably easily, you may consider using one 
of the FPGA vendor options to quickly fi t the design. This can cut the compile time 
in half but will result in reduced design performance.   

14.5     Design Planning, Implementation, Optimization 
and Timing Closure Checklist 

     1.    Follow synchronous design practices   
   2.    Follow recommended coding guidelines.   
   3.    Partition the design for an incremental design methodology.   
   4.    Ensure that the RTL is taking advantage of the dedicated hardware resources in 

the device. This can be achieved by instantiating vendor primitives to access 
special hardware features that cannot be inferred from RTL.   

   5.    Create complete timing assignments for the design.   
   6.    Ensure that any multi-processor features for reduced compilation are enabled.   
   7.    Floorplan timing critical partitions in the design.   
   8.    Perform timing analysis at all process corners.   
   9.    Analyze all warnings and errors. Make the necessary changes to remove these 

warnings and document any exceptions.   
   10.    Document the settings    that achieve timing closure   .        
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    Chapter 15   
 High Level Design 

          Abstract     High level design, which is often referred to as behavioral synthesis has 
a growing adoption in FPGA based system designs. As the technology has matured, 
the quality of the results has improved to the point that in many cases it can equal 
the results achieved with hand optimized RTL design, but in a fraction of the devel-
opment time. One of the reasons for the improvement is that there has been a real-
ization among the solution providers and the end users of these tools that one 
solution will not satisfy all class of designs. The tools have become focused on 
certain application areas and provide great benefi t when used in these areas.           

15.1      High Level Design 

 High level design, which is often referred to as behavioral synthesis has a growing 
adoption in FPGA based system designs. As the technology has matured, the quality 
of the results has improved to the point that in many cases it can equal the results 
achieved with hand optimized RTL design, but in a fraction of the development 
time. One of the reasons for the improvement is that there has been a realization 
among the solution providers and the end users of these tools that one solution will 
not satisfy all class of designs. The tools have become focused on certain applica-
tion areas and provide great benefi t when used in these areas. 

 The tools can be separated into four different classes of tools.

    1.    Algorithmic synthesis which is used mainly for the implementation of DSP 
based designs blocks.   

   2.    ‘C’ to gates which tends to be used for select blocks in data path design blocks.   
   3.    SystemC which is used more for modeling than for design implementation.   
   4.    OpenCL which targets software programmers and creates complete FPGA 

designs, mainly in the High Performance Computing markets. This is new 
technology for FPGA design and is likely to move into other markets as the 
technology matures.     
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15.1.1     Algorithmic Synthesis 

 The main algorithmic synthesis solutions on the market that target FPGA devices 
are based around the MATHWORKS Simulink environment. The Simulink addition 
to Matlab provides a graphical modeling environment that enables the exploration 
of different architectures. It includes a suite of tools for analyzing the simulation 
results. The two main FPGA vendors have developed their own optimized Simulink 
libraries. These enable designers to turn the Simulink modeling environment into a 
modeling and design environment. 

 The main applications where Simulink is used for FPGA design is in DSP design 
blocks. While this class of design tools can implement a complete system design, 
they are generally used to design and implement portions of the design such as 
complex DSP design blocks. The output from the tools is RTL code that can be 
integrated with existing IP blocks and RTL code to target the FPGA device. 

 One of the benefi ts of this type of environment is that it enables system engineers 
to try their algorithm in hardware and to hand off an executable specifi cation to the 
hardware engineers for integration with the rest of the design. 

 In practice, many of the users of the Simulink environment are RTL designers 
that use it for the implementation and analysis of complex DSP functions that are 
diffi cult to express using traditional RTL design. 

 The quality of the output from the different vendor tools varies from vendor to 
vendor, but in general this is mature technology and when used as recommended by 
the vendor provides good quality of results. 

 System engineers who are mainly concerned with algorithm development can 
use the Simulink fl ow to try their algorithm in hardware. The fl ow enables the 
designer to achieve an FPGA implementation without leaving the MATLAB/
Simulink    environment Fig.  15.1 . 

    1.    Create a Simulink FPGA model of the algorithm 
 The designer creates a schematic based design by selecting and parameterizing 
components from the FPGA vendors Simulink library. These components are 
optimized for implementation in the FPGA. Simulink adds the concept of clock 
cycles to the design making implementation in hardware realizable. In the case of 
the Altera DSP Builder Advanced Blockset the user can also enter their desired 
clock frequency. When the Signal Compiler creates the RTL for the design it will 
automatically pipeline the code to meet the performance requirements.   

   2.    Simulate in Simulink 
 The Mathworks Simulink environment provides a set of components that can be 
hooked up to the design to simulate the design at the system level. It also pro-
vides good visualization capability that can be tuned to your application needs. 
An example of the visualization capability is a frequency spectrum view of the 
results.   

   3.    Verify the generated RTL 
 The RTL that is generated can be simulated in standard RTL simulators. The 
DSP Builder generator will create the scripts to automate the simulation in cer-
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tain simulators such as Mentor Modelsim. This step is optional as the algorithm 
has been already verifi ed in the Simulink environment but is useful for simula-
tion of the integration of the block with the users RTL design blocks.   

   4.    Compile the FPGA 
 The next step is to create an FPGA project and to compile the design. In the case 
of DSP Builder Advanced Blockset, it will automate the creation of the project, 
enabling you to compile the FPGA from within the Simulink environment.   

   5.    Program the device on a board 
 This can be performed from within the Signal Compiler interface in Simulink.   

   6.    Debug the design 
 The design can be debugged using traditional FPGA debug techniques such as 
SignalTAP or by using a feature called Hardware in the Loop (HIL). In the case of 
SignalTAP, it can create a ‘.mex’ fi le that can be imported into the Simulink environ-
ment in order to display the debug information in the same manner as the original 
simulation. The Hardware in the Loop feature enables a simulation that is run in the 
Simulink environment to simulate against the design running on the FPGA. This is 
effectively accelerating the simulation by running the design on silicon. This is par-
ticularly useful for video applications that tend to have very long simulation times.    

Create a Simulink FPGA
Model

Simulate in Simulink

Verify the Generated
RTL

Compile the FPGA

Program a Device on a
Board

Debug the design

  Fig. 15.1    Altera DSP 
Builder Simulink design fl ow       
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15.1.2       ‘C’ to Gates 

 For many years there has been the dream of taking existing C/C++ code and implementing 
the functionality as hardware design blocks. This approach has had limited success 
and limited market adoption. This has mainly been due to concerns over code por-
tability and the modifi cations that are required to the original C/C++ code to achieve 
the hardware implementation. 

 The ‘C’ language does not support some of the necessary characteristics of 
hardware systems, hence the development of the SystemC library. The main limita-
tions in using ‘C’ for hardware design are:

    1.    Concurrency. 
 The standard C/C++ language does not have a means of expressing concurrency. 
This means that providers of C/C++ solutions require the use of tool specifi c 
attributes and constraints to specify concurrency. This problem is solved with the 
addition of SystemC and now the OpenCL class libraries.   

   2.    Timing 
 Designs in ‘C’ cannot express the relationship of events to clock cycles. It under-
stands the relationship between statements but not timing dependency. Again, 
this has resulted in non-standard coding practices and the use of attributes and 
constraints to establish the relationship to clock cycles.   

   3.    Data types 
 There is no means to describe hardware data types such as tri-states. 

 These limitations have resulted in the tools from the various vendors requir-
ing different coding styles than would typically be used in C/C++ programs and 
for the user to have a strong understanding of the tool. This is knowledge that 
most programmers do not need for their standard C/C++ compiler and in the case 
of ‘C’ to gates tools, is not reusable on other tools. In addition, the tools often 
require the use of a vendor specifi c C++ class library. 

 While these are substantial limitations, the tools can work well on certain 
applications. These are mainly data path applications or DSP algorithms that do 
not require the use of control logic, or at least complex control logic. With the 
release of hard processors on FPGA’s, it is likely that the use of such tools will 
increase for the creation of hardware accelerators for processor based designs. 

 In summary, the use of such tools for design blocks without control logic and 
data path designs can increase designer productivity but at the cost of design 
portability between FPGA vendors. However such tools can provide a good solu-
tion for creating reusable IP across the same FPGA vendors families.      

15.1.3     SystemC to Gates 

 The benefi ts that are provided by SystemC are described in Chap.   4    , System 
Modeling. Good quality of results can be achieved with SystemC by using a coding 
style similar to writing RTL. This will deliver the benefi t of integration in the system 
modeling process. However it requires a designer with detailed hardware design 
experience and will result in similar development times to using traditional RTL 
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design. There are tools on the market that will synthesize higher levels of SystemC 
design abstraction. However, these tools require the use of custom attributes and 
constraints that reduces the code portability between SystemC synthesis tools.  

15.1.4     OpenCL 

 OpenCL stands for Open Computing language. It is a framework for writing software 
programs that execute across heterogeneous platforms, i.e. systems consisting of CPUs, 
GPU, other processors and now FPGA devices. OpenCL was initially developed by 
apple, and the standard was refi ned by collaboration with technical teams from AMD, 
IBM, Intel and Nvidia. The standard is now maintained by the Khronos Group. The 
basic mode of operation is that the host CPU offl oads performance intensive functions 
to the other hardware blocks as hardware accelerators in the form of kernels. The CPU 
can spawn off many kernels that can be implemented in parallel based on the target 
hardware’s parallel capability. This parallel capability is where FPGA devices excel. 

 A key feature of OpenCL is the fact that the code is portable, meaning that the 
same code can run on multiple platforms. The OpenCL language is based on C99, a 
version of the C programming language standard published in 1999. It provides mech-
anisms for parallel computing using both task-based and data-based parallelism. 

 The OpenCL specifi cation is defi ned in four models. 

15.1.4.1     OpenCL Models 

     1.    Platform model 
 The platform model defi nes the relationship between the host and the device that 
will run the acceleration kernels, i.e. the roles of the host and the devices, which 
can be FPGAs, DSPs, GPUs, or CPUs. The host coordinates the execution of the 
kernels.   

   2.    Execution model 
 The execution model specifi es how the host sets up the kernel for devices to run. 
This includes mechanisms for host-device interaction and defi ning a concur-
rency model used for devices to execute the kernel.   

   3.    memory model 
 The memory model defi nes the abstract memory hierarchy that the kernel uses.   

   4.    Programming model 
 The programming model defi nes how the execution is mapped to the physical 
hardware.      

15.1.4.2     Host 

 The host is usually an ×86 processor that communicates with the device over PCIe. 
When we refer to device we mean the target accelerator which can be an FPGA, 
GPU, CPU or other compute device Fig.  15.2 .  
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 In the OpenCL Programming model, the host performs the task of launching the 
kernels. The host also can perform other tasks in serial in between device (FPGA) ker-
nel launches. These tasks may include memory management, data transfer to and from 
the accelerator device, error handling and other tasks. The execution of the kernel is 
performed asynchronous to the host code unless there are specifi c data dependencies. 

 The OpenCL features are accessed through a ‘C’ API that is defi ned in a single 
header fi le cl.h. This fi le must be included in your host code. 

 There are six steps in order to run an OpenCL program on the device (FPGA) 
from the host.

    1.    Query and select the platforms (e.g., Altera). 
 This is where the program queries and selects the vendor specifi c platform. In the 
case of the Altera design fl ow this would be the Altera development board.   

   2.    Query the devices. 
 This is where the program identifi es the target devices on the board or boards for 
the kernels. In this case it will be the specifi c FPGA. This enables the compiler 
to understand the resources available on the target for the kernels.   

   3.    Create a context. 
 Contexts are abstract containers that manage host device interaction. This 
includes keeping track of memory objects, compiling programs, extracting ker-
nels, and managing a queue for all the actions needed to be performed by the 
device.   

   4.    Create a command queue. 
 A command queue allows the OpenCL host to request actions to be performed 
by a device (FPGA). Each command queue is associated with one device. When 
the host submits commands to the queue, it performs actions such as memory 
transfers and the launching of kernels.   

Host Program Kernel
Program

Standard ‘C’
Compiler

Altera OpenCL
Compiler

x86
Processor

FPGA Development
Board

x86 binary
SOF (FPGA Programming File)

PCIe

  Fig. 15.2    Altera OpenCL to FPGA fl ow       
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   5.    Read/Write to the device 
 OpenCL application tends to work with large arrays or multidimensional matri-
ces. The data needs to be physically located on the device (FPGA) before execu-
tion. Memory objects are used to encapsulate the data before it is transferred to 
the device (FPGA). The host and the device each have their own physical mem-
ory space. 

 OpenCL data transfers needs to be explicitly specifi ed with commands placed 
on the command queue. The precise time the data is physically transferred to and 
from the device (FPGA) happens at runtime. If a kernel or the algorithm execut-
ing on the accelerator is dependent on the memory object, it is transferred to the 
device prior to the execution of the kernel.   

   6.    Launch the kernel      

15.1.4.3     Kernels 

 The functions in the OpenCL standard that run on the accelerator device are called 
Kernels. 

 The syntax of a kernel is very similar to a standard ‘C’ function but there are 
some restrictions in language support and the need to use a set of keywords to 
specify the functionality as a kernel. The OpenCL code is a low-level language that 
is fl exible enough to be mapped effi ciently into a wide range of hardware types. 
Kernels are in effect the instructions to be run. In the context of OpenCL, programs 
are a collection of one or more kernels. The kernel operations are mapped to hard-
ware during runtime. When a kernel is launched in a data parallel fashion, the unit 
of concurrent execution is called a work-item. Each work-item executes the same 
exact kernel function independently. 

 It is good practice in the development of a kernel to map a single iteration of a 
loop in standard C to a work item. It is normal to generate as many work items as 
elements in the input and output array Fig.  15.3 .  

  Fig. 15.3    Comparison of standard ‘C’ code and OpenCL kernel code       
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 There are fi ve steps to execute a kernel.

    1.    Create a program 
 This involves converting source code, or a precompiled binary into an OpenCL 
program object.   

   2.    Compile the program   
   3.    Create the kernel by extracting it from the program object 

 Extracting the kernel from the program object is similar to obtaining an exported 
function from a dynamic library.   

   4.    Setup kernel arguments individually 
 This is done by mapping the kernel to specifi c memory objects.   

   5.    Dispatch the kernel      

15.1.4.4     Memory Model 

 In OpenCL, you can have different memory types which have different scopes. 
You can specify the type of memory through the use of qualifi ers in front of the 
pointers. 

 Private memory is memory that is only visible from one work-item and it has the 
lifetime of the work-item. In FPGAs this is implemented in Registers. 

 Local Memory is accessible by any work-item of a work-group from which it 
was created. A work-group is a collection of work-items. It has the lifetime of the 
work-group and must be explicitly declared and managed. This is implemented as 
on-chip memory in the FPGA. 

 Global Memory is visible by every work item. In FPGA devices, it is imple-
mented in off chip DDR SDRAM. 

 Constant Memory has the same restrictions as global memory but is accessed 
through caches and constant hardware buffers. 

 Host memory is only visible on the host CPU.  

15.1.4.5     Altera OpenCL Design Flow 

 The Altera OpenCL design fl ow is detailed in Fig.  15.4 . 

    1.    Develop Kernel code & compile on CPU for functional correctness 
 It is recommended that you develop and perform the initial optimization of the 
Kernel code while running on a CPU. The compile times are extremely fast com-
pared to the time to place and route the algorithm on a FPGA. This approach will 
enable you to achieve functional correctness of the code and to achieve a good 
level of optimization.   

   2.    Compile OpenCL Kernel with Altera SDK Compiler 
 Collect all kernels into a single .cl fi le and run the Altera OpenCL compiler. The 
compiler will produce a project that can be compiled by Quartus II. It also pro-
duces a throughput analyzer report and area report. If the area estimation on the 
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number of lookup tables (LUT’s), registers, DSP blocks, or block memory usage 
exceeds 100 %; you will have to re-architect the design as the circuit will more 
than likely not fi t on a given device.   

   3.    Build, compile and link the host application 
 The ‘C’ code that will run on the host processor can be compiled using a standard 
C compiler. The compiler must be able to reference the ACL host library which 
includes the API to the PCIe connected board. Ensure that the ‘alteracl’ and 
‘alterahalpcie’ libraries are in the compilation. Link the application.   

   4.    Program the FPGA board 
 The Altera OpenCL compiler generates an RTL representation of the design that 
must be compiled in the Quartus II software. This can be run from within the 
OpenCL design environment. Once complete, it will produce a programming fi le 
(.sof) that can be used to confi gure the FPGA board. The FPGA device can be 
programmed from within the OpenCL environment or by using the Quartus II 
programmer.   

   5.    Run the Application 
 The host application is run be running the executable that was created in step 3.   

   6.    Optimize the kernel for the FPGA architecture and the OpenCL compiler    

Develop Kernel code & compile
on CPU for functional

correctness

Compile OpenCL Kernel with
Altera SDK Compiler

Build, compile & link the host
application

Program the FPGA board

Run the application

Optimize the Kernel for the
FPGA board architecture and

OpenCL compiler

  Fig. 15.4    Altera OpenCL development fl ow       
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  Now that the application is running on the board, you can view the performance 
of the algorithm. If the design is not meeting your requirements, you can optimize 
the code based upon your bottlenecks from profi ling the code running on the board. 
This can be achieved by changing the structure of the design or by enabling optimi-
zations in the OpenCL compiler. The OpenCL compiler optimizations can be 
applied through attributes that are added to the OpenCL code or by using compiler 
arguments. The coding techniques to improve the performance will be application 
dependent. Often they will start with looking at the interaction with memory, in 
particular with shared memory as this will impact your ability to go parallel. Other 
techniques include loop unrolling and resource sharing of infrequently used 
hardware.   

15.1.5     Summary 

 As FPGA devices begin to add hard processors that run at higher performance, the 
devices are becoming more attractive to new application spaces and are attracting a 
new class of user that are not RTL designers. This is increasing the need for engi-
neers with a software development background to be able to take advantage of the 
FPGA fabric, in addition to the processor. This is increasing the need for high level 
design tools. The FPGA vendors are increasing their offering in this space with the 
introduction of design tools that target specifi c markets. These include Simulink 
based design solutions for DSP designs and the introduction of OpenCL for high 
performance computing. Over the coming years it is expected that the FPGA ven-
dors will continue to increase their investments and product offerings in this area. 
High level design will become a standard part of the FPGA design fl ow as opposed 
to the limited use that exists today.     
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    Chapter 16   
 In-System Debug 

          Abstract     The debug of any chip that is operating in-system is a challenging a nerve 
racking experience. As your board springs to life…. or not, the thought that crosses 
your mind is “Does my design work?” Then the real discussion starts, is it the sys-
tem software or the system hardware. Due to the expense in developing system 
software, the hardware is almost assumed guilty until proven innocent. In this chap-
ter we will look at techniques that can be deployed to identify the problems, quickly.           

16.1      In-System Debug Challenges 

 The debug of any chip that is operating in-system is a challenging a nerve racking 
experience. As your board springs to life…. or not, the thought that crosses your 
mind is “Does my design work?” Then the real discussion starts, is it the system 
software or the system hardware. Due to the expense in developing system software, 
the hardware is almost assumed guilty until proven innocent. In this chapter we will 
look at techniques that can be deployed to identify the problems, quickly. 

 FPGAs have a distinct advantage over ASICs when it comes to In-System Debug. 
This is programmability. With an ASIC design, you have to design your debug logic 
up front in order to prove the design operation on the board. With an ASIC, you so 
need to be as close to 100 % certain as possible that the design is functionally correct 
in order to avoid an expensive chip respin. The upfront design of debug logic is a criti-
cal functionality that should also be used when designing FPGAs. However, the pro-
grammability that is inherent in FPGAs enables debug logic to be controlled by a host 
processor customized or added to the design as the in-system debug progresses. 

 The intent of simulation is to catch any design or integration bugs prior to getting 
to silicon. However, exhaustive simulation of an FPGA design is time consuming 
and compute intensive. The ability to stimulate a design under real world condi-
tions, can uncover problems that are diffi cult to detect in simulation. Examples of 
such problems are asynchronous timing issues, signal integrity peculiarities and 
hardware/software integration issues. 

 In this chapter we will recommend a debug methodology that will enable you to 
verify your design operates in-system as intended and helps you capture problems 
with your design while operating in-system. The techniques discussed will draw 
upon the tools and techniques that are commonly available today.  
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16.2     Plan for Debug 

 When creating designs, most engineers tend not to consider that they will have 
bugs in the design or implementation. Inexperienced engineers only start to think 
about In-System debug once there is a problem with the board. The seasoned 
veteran has been through the pressure of debugging designs many times and 
wants to minimize the time spent in this high pressure environment. He/She 
wants to avoid spending evenings and weekends in the lab determining the cause 
of a problem. As such, these engineers plan for debug up front. This is what you 
need to do! 

 In-System debug should be part of the design specifi cation. Each of the major 
blocks in the design should have a plan for how its operation is going to be verifi ed 
in-system and what the debug strategy will be for that block. This should include 
information on the type of information that can be viewed to determine that the 
block is operating as intended. This includes system level statistics such as the effi -
ciency of memory interfaces, performance bottleneck analysis on buses and bit 
error ratio information on high speed transceiver interfaces. 

 In addition to the debug of blocks, there should be a debug plan for the top-level 
design when all of the design blocks are implemented. This information is derived 
from the information in Chap.   5     on resource scoping, where it addresses density 
and pins. 

 This plan should specify how many pins and how much logic and memory are 
reserved for in-system debug. It should also detail the techniques and tools that will 
be used as part of the in-system debug process. The defi nition of the debug strategy 
should also include the channel to be used for accessing debug data. The Embedded 
Logic Analyzers (ELAs) that are provided by the major FPGA vendors typically use 
JTAG as the channel for debug. The design engineer needs to determine how to 
extract data from their debug logic that he or she has used in the design. He or she 
can use device pins, hook it up to the ELA, or design his or her own debug channel. 
One technique is to use a soft processor to control the debug process and access to 
the debug data. 

 A good guideline is to reserve 15 % of the device pins for debug of the design. 
This does not include the JTAG pins that are used for programming the FPGA and 
can be used as part of the debug process. The recommended resource requirements 
for debug will be discussed further in Sect.  16.3  on debug techniques.  

16.3      Techniques 

 There are multiple tools available from FPGA vendors and EDA Companies that 
can be used to facilitate the debug of your design in-system. In this section we will 
look at the mostly commonly used tools and techniques and recommend when they 
should be used. 

16 In-System Debug

http://dx.doi.org/10.1007/978-3-319-17924-7_5


239

16.3.1     Use of Pins for Debug 

 This is the mostly commonly used debug technique for FPGA designs. One of the 
reasons that it is so popular has to do with the programmability of FPGAs and the 
fact that compile times for routing different signals to the pins are fast. Thus when 
debugging in the lab, you can have a new programming fi le that routes a different 
set of signals to the debug pins in 10s of minutes. In most cases this can occur with-
out impacting the previous design implementation, outside of adding a fan-out on 
the signals that you are probing. 

 If your design is highly utilized, it may be necessary to change routing or 
placement in order to be able to access the signals. This latter scenario should be 
avoided; as such a change may cause any asynchronous timing issues to 
disappear. 

 This capability requires that you have reserved selected pins or a bank of pins 
for debug. 

 There are several ways to route internal signals to pins in the FPGA design 
software. The most common approach is via the Floorplan tool where you select 
the required signal as the source and the pin as the destination. The Place and 
Route software will incrementally route the signals to the pin. This approach is 
simple for 1 or 2 signals. However, it can become laborious for larger groups of 
signals. A common example is debugging a 32-bit bus on 32 pins. Some of the 
tools have the capability to allow you to select the source and destination via a 
signal fi nd utility or scripting interface, and then it will automatically route the 
signals to the pins. 

 The timing of the routing of the signals at the pins is important, particularly if 
routing a bus out to the pins. It is recommended that you register the pins at the pins 
to synchronize the bus to a clock. You do not want these signals to be the critical 
path in your design, thus you should add timing constraints to these paths. For high 
performance designs you may need to insert several levels of pipeline registers 
between the signal and the pins. Once again this is an automated option in some of 
the FPGA vendor software offerings. 

 A common technique is to use pin multiplexing to connect a large set of internal 
device signals to a smaller number of output pins. These pins will be connected to 
an external logic analyzer for debugging. 

 There are three main methods of implementing the multiplexer approach. 
 The fi rst method that is shown in Fig.  16.1  is to use external pins to control the 

switching of the multiplexer, i.e. controlling which internal signals are visible at 
the pins.  

16.3 Techniques
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 The second method that is shown in Fig.  16.2  is using internal logic in the design 
to control the switching of the multiplexer, i.e. controlling which signals are visible 
at the pins. The internal logic that is used to control the multiplexer is often a soft 
processor, such as the Altera Nios II processor.  
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  Fig. 16.1    Pin multiplexing using a pin to control the multiplexer       
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  Fig. 16.2    Pin multiplexing using internal logic to control the multiplexer       
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 The third method is specifi c to Altera. This is the Logic Analyzer Interface. This 
is an IP from Altera that provides JTAG control over a multiplexer that the user 
confi gures in their design. It offers the option to synchronize the results before rout-
ing them to the pin. The user can then control the switching of the multiplexer 
through JTAG. It also offers an API to display the signals on the pins using the signal 
names as opposed to the pin names. This is the solution that is used by several of the 
external logic analyzer vendors as part of their solutions. 

 The steps in using pins for debug signals are:

    1.    Reserve the pins for debug.   
   2.    Set the appropriate I/O standard on the pins.   
   3.    Identify the signals that you want to route to the pins.   
   4.    Determine if the signals require the insertion of pipeline registers.   
   5.    Make the appropriate timing assignments.   
   6.    Route the signals to the pins.   
   7.    Analyze the timing of the signals.   
   8.    Program the device   
   9.    Analyze the data at the pins with an external logic analyzer or oscilloscope.     

 If you want to view different signals at the pin, remove the connections to the 
pins that you no longer want to examine and repeat from step 3.  

16.3.2     External Logic Analyzer 

 The major FPGA vendors provide special interfaces to the Logic Analyzers from 
Agilent and Tektronix. In order to use these optional interfaces in the Logic 
Analyzers requires a JTAG connection and a test header for the Logic Analyzer. 

 The interface enables viewing of internal signals using an external logic analyzer 
and using a minimal number of FPGA I/O pins, while the design is running at full 
speed on the FPGA. 

 This solution uses a multiplexer, similar to the method described in Sect.  16.3.3  
on custom logic, to connect a large set of internal device signals to a small number 
of output pins. 

 The multiplexer is JTAG controlled via the user interface of the Logic Analyzer. 
In addition to controlling the multiplexer, the logic analyzer can display the signal 
names on the logic analyzer to simplify debug. 

 This debug approach provides some key advantages over using internal logic 
analyzers.

    1.    Wider sample depth.   
   2.    Ability to handle more data. External Logic Analyzers have much more memory 

than the amount of memory that is available inside of FPGAs.     

 This debug technique is recommended when you need to store and analyze a 
large amount of debug data and have room on your board for a test header.  

16.3 Techniques
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16.3.3      Internal Logic Analyzer 

 The Internal Logic Analyzer (ILA) is the tool that has saved the day for many 
designers. This is the tool that is considered by many as an option in their design 
fl ow; until the day when come across a bug in the lab that they cannot fi nd with 
simulation. They use the ILA to isolate and debug the problem and to verify the fi x 
in system. After this fi rst eye opening scenario, the ILA becomes a key part of their 
FPGA design fl ow. 

 This capability is provided by the major FPGA vendors and some of the EDA 
tool vendors. The Internal Logic Analyzer solutions are implemented in the FPGA 
device using the spare logic and memory resources inside the device. 

 So what exactly is an Internal Logic Analyzer, or ILA? 
 Basically it is a tool that is implemented inside the FPGA that provides similar 

triggering capabilities to the capabilities that is provided by external logic analyz-
ers. ILAs have the advantage that they do not require additional pins to be reserved 
for debug as they rely on the JTAG interface. They can acquire data on internal 
signals while the design is running at full speed on an FPGA device at clock speeds 
exceeding 250 MHz in the latest FPGA technology. However, the performance may 
vary depending upon the complexity of the trigger conditions being used. They also 
have the benefi t of being able to be used without requiring changes to your design 
fi les, as the FPGA vendor software can automatically insert the ILA into the design 
after the design has been implemented in the FPGA without disturbing the imple-
mentation of the design. 

 The captured signal data is stored in device block memory until you are ready to 
read and analyze the data. In addition, multiple logic analyzers can be implemented 
in a single device. This provides the benefi t of being able to capture data from mul-
tiple clock domains in a design at the same time. 

 So, the question is that if they are so great, why are the not used by all designers? 
 The answer is quite simply, poor planning. Many designs do not leave suffi cient 

resources in the device to be able to use an ILA. The most common mistake is not 
leaving any memory resources for storing the data for analysis. 

 As mentioned many times in this book, you must plan for debug up front. 
 You need to ensure that you have the following in order to use an ILA.

    1.    A JTAG connection.   
   2.    Memory blocks for storing the data for analysis.   
   3.    Logic for creating the trigger conditions.     

 Most ILAs come with the following standard feature sets. 
 Control over the sample depth and the type of RAM that is used to store the data. 
 Advanced trigger conditions such as state based triggering. This precisely defi nes 

upon what conditions the ILA will capture the data. 
 Continuous storage of data. When the trigger condition occurs, the data that is 

being tapped is continuously written to memory. This mode of operation can result 
in the need for large amounts of internal memory in order to prevent data being 
overwritten. 
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 Transitional storage of data. During acquisition, if any of the signals being tapped 
have changed since the previous clock cycle, new data is written to the acquisition 
buffer. If none of the signals being tapped have changed since the previous clock 
cycle then no data is stored. 

 Conditional Storage. Only stores data if the qualifying condition to write data to 
memory is true. 

 The amount of logic and memory that is required to implement the ILA depends 
upon the complexity of the trigger conditions and the amount of data that needs to 
be stored. 

 A useful technique to reduce the amount of logic that is required is to minimize 
the number of segments in the acquisition buffer to only those required. 

 Another technique is to use the buffer acquisition control to precisely control the 
data that is written into the acquisition buffer. This enables you to discard data 
samples that are not relevant to the debug of your design. 

 Transitional storage and conditional storage can be used to reduce the amount of 
internal memory that is required. 

16.3.3.1     The Design Flow with an ILA 

     1.    Add an ILA to your design. This can be auto-inserted by the FPGA vendor soft-
ware without modifying your design or the design implementation in the FPGA.   

   2.    Confi gure the logic analyzer. Defi ne the signals that you want to capture and the 
storage conditions.   

   3.    Defi ne the trigger conditions.   
   4.    Compile design   
   5.    Program device   
   6.    Run the ILA application on the host workstation.   
   7.    View and Analyze Captured data.      

16.3.3.2     ILA Limitations 

 Not all signals in the design are able to be viewed, or tapped, due to architectural 
limitations. This includes signals that are part of a carry chain 

 You cannot view JTAG Signals. 
 You can only view signals that are available after fi tting, unless you want to per-

form a full design compilation. This can make it diffi cult to identify combinational 
signals in the design. This is because RTL synthesis tends to change the names due 
to the optimizations that are formed during synthesis. These signals can be made 
available for viewing by using attributes in the RTL to preserve these signals. 
However, this will change your design implementation. As such it is recommended 
that you focus your in-system debug on registers, most of which will be available 
post-fi t and not require a full compilation.  

16.3 Techniques
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16.3.3.3     Tips 

 It is recommended that you leave the ILA in the end design. This will enable remote 
debug of designs in remote locations, if there is JTAG access to the FPGA. This can 
prove invaluable in debugging designs that are in remote locations or even provides 
you with the ability to debug designs that are in the lab while you are in your offi ce 
or at home; this is providing that you have a network connection to the workstation 
connected to the board. 

 Some of the more advanced ILAs provide an interface to the Mathworks 
MATLAB software. This is a useful option for analyzing DSP data. Once the data 
has been imported into the MATLAB environment, the view of the data can be 
displayed in a format suitable to the application being tested. 

 If you are in the position that you have a design that does not leave adequate 
resources for using an ILA to debug the design, you should strip out functionality 
from the end design as part of the debug cycle. This enables you to debug isolated 
blocks in-system, verifying the functionality of these key blocks. This will not 
enable you to resolve full system integration issues, but will enable you to examine 
the integration of certain key blocks.   

16.3.4      Use of Debug Logic 

 Designs that have complex logic implementation usually demand real time debug 
capabilities. It is a common and recommended design practice to insert debug logic 
in the design. This is discussed in    Sect.  16.3.9 , reporting of system performance. 

 As mentioned, you should build in test logic, monitors and checkers on the inter-
face of major design blocks. The debug logic can be removed after the design is 
proved to be functionally complete; however leaving the logic in the design pro-
vides remote debug capability in the case of in-fi eld failures. If the debug logic is 
left in the production version of the design, is recommended that the debug logic be 
disabled and controlled by a pin, JTAG or a soft processor. This will reduce the 
power consumption in your fi nal design. 

 Debug logic can also be used with the other debug techniques that are described 
in this chapter. 

 User created debug logic can be used to force the FPGA into certain conditions, in 
order to recreate failure conditions or to test the operation under these isolated corner 
cases. 

 The main FPGA vendors provide utilities that can help with forcing logic to a 
particular state via their debug utilities. Using these utilities can reduce the amount 
of development that you need to do. 

 Once again these utilities can be combined with other debug capabilities to pro-
vide advanced debug solutions. When combined with JTAG it enables you to 
dynamically control run-time control signals. Similarly it can be combined with 
Internal Logic Analyzers to force the occurrence of trigger conditions setup in the 
Internal Logic Analyzer. Through this approach it is possible to create simple test 
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vectors that exercise your design and displays internal signal information without 
requiring the use of external test equipment. 

 In FPGA designs that contain processors, it is good design practice to make the debug 
logic memory mapped so that it can be driven and examined by a software debugger. 

 This approach means that the design can be debugged without having to pull the 
signals out to pins. The use of monitors enables the processor to compare the results 
against the expected results and fl ag an error as appropriate. 

 The Altera Quartus II software offers a Tcl based interface called System Console 
that can be used to communicate with user debug logic. It can communicate with com-
ponents that have Avalon MM or Avalon ST interfaces. This makes it ideal for the 
debug of Qsys systems. The interface can communicate over several different commu-
nication channels such as JTAG, SPI and TCP/IP. SystemConsole provides fi ve differ-
ent types of services. In this section, I will only cover the application of the two most 
commonly used services. You can get details on the other services from Altera. 

 The jtag_debug service provides the capability to debug the JTAG chain and to 
test the system clock and reset capabilities in a Qsys system. In order to access this 
service, it requires the insertion of the ‘JTAG to Avalon MM Bridge’ component in 
the Qsys system. An example Qsys system that can run on an Altera development 
kit is shown in Fig.  16.3 . This basic system enables the basic exploration of the 
capabilities that are provided by System Console.  

 The Tcl commands, shown in Fig.  16.4 , details how it is possible to check that 
the JTAG chain is functional by using System Console. It loops a set of values 
around the JTAG chain.  

 A correctly functioning JTAG chain echoes the $values back to the System 
Console session, as shown in Fig.  16.5 .  

Qsys Interconnect Logic

JTAG Avalon-MM
(master)

On-chip Memory
(Slave)

LED Interface
(Slave)

  Fig. 16.3    Sample Qsys design that enables testing of JTAG chain debug       

  Fig. 16.4    SystemConsole JTAG chain test commands       
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 SystemConsole also provides a bytestream service that enables you to send and 
receive streams of bytes to bytestream compatible Qsys components and a master 
service enables users to read and write to any Avalon MM slave in a Qsys 
system. 

 The master service is very powerful for debugging master/slave based 
systems. 

 The design in Fig.  16.3  that was used for JTAG can also be used to test the master 
service. The tcl commands that are shown in Fig.  16.6  details the ability of System 
Console to write to and read from the register map of a slave component using the 
master service. If this Qsys design is implemented on an Altera development kit, it 
will show the LED’s on the kit turning on and off as you write to the register map of 
the LED    interface component Figs.  16.6  and  16.7 .    

  Fig. 16.5    Results from running the SystemConsole JTAG test commands       
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16.3.5     Editing Memory Contents 

 The contents of the internal memory blocks in your design can be used to force your 
system into conditions for test and debug. This technique can be extremely effective 
in testing DSP Applications, such as fi lters were the memory blocks are used to 
store coeffi cients. There are three main approaches to performing this operation.

    1.    Update the memory initialization fi les by programming the device with a new 
image. You can change the memory initialization fi les without having to 
 recompile the design. You normally only have to run the Assembler to generate 

  Fig. 16.6    Tcl commands to read/write register map of peripherals using System Console       

  Fig. 16.7    Results from reading and writing to memory map of LED controller       
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the new programming image. This approach works but requires you to bring the 
FPGA system down in order to change the memory contents.   

   2.    The second solution is to generate logic to enable you to write to the internal 
memory for debug. This is using the technique    described in Sect.  16.3.4  on 
using logic for debug. This has more fl exibility than the previous technique in 
that you control the writing to the memory blocks while the design is opera-
tional. The creation of the logic can be quite complex but the return is 
invaluable.   

   3.    The third technique is to use one of the FPGA vendor supplied solutions that use 
the JTAG interface to control the writing and reading to the internal memory 
blocks. This needs to be designed into your system. This means that you will 
have to replace some of your inferred memories with the primitives from the 
FPGA vendor. While this offers the simplest and most fl exible approach to 
updating the memory blocks in system, it also comes with some limitations. The 
biggest limitation being that it does not work with dual port RAM.     

 These techniques work well for other applications outside of DSP applications. 
 They can be used to test and correct memory parity bits. It can be used to write 

incorrect parity bit values into the memory to check the ability of your design to 
handle errors. In addition if you are in the lab and your system is failing due to incor-
rect parity bits, you can use this technique to correct the errors and to continue the 
check-out. 

 This technique can be combined with the other debug techniques that are 
described in this chapter to provide a very powerful debug arsenal.  

16.3.6      Use of a Soft Processor for Debug 

 Many designers overlook the fact that a processor can be added to your design for 
the purpose of design debug. The cost of adding a soft processor is 1,000–2,000 
Logic Elements, plus internal memory resources. 

 This is a powerful weapon when combined with custom logic for debug. The 
processor can take care of controlling the operation of the debug logic or can serve 
as debug logic itself. It can be easier to describe complex debug trigger conditions, 
such as state machine trigger conditions, in ‘C’ than in HDL. 

 The processor can also be used to control the reading and writing to memory. 
A benefi t that it adds beyond the ILA solution is that it can enable the storage of data 
in external memory, such as DDR III. This enables a larger amount of data to be 
stored for analysis. 

 If you are comfortable with coding in ‘C’, you should consider using a soft 
processor as one of your debug options,  
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16.3.7     Power-Up Debug 

 When the board is fi rst being brought to life, you will want to determine if certain 
sequences are happening in your design in the correct sequence, to give you confi -
dence that the design can communicate with the rest of the system. In the case were 
the system does not appear to be operating at power-up, you can use the Internal 
Logic Analyzer to capture trigger events that occur during device initialization, 
immediately after the FPGA is powered on or after the FPGA has been reset. The 
Internal Logic Analyzer can then capture data immediately after device program-
ming. This power-up debug feature is available in some of the FPGA vendor Internal 
Logic Analyzer solutions.  

16.3.8     Debug of Transceiver Interfaces 

 Just after the board has been powered-up, you will want to determine if the trans-
ceiver on the FPGA is operating, i.e. is it capable of transmitting/receiving data 
from the system. 

 It is not uncommon that the settings that you have used in your design for the 
transceiver do not perfectly match the actual board. This scenario can be debugged 
fairly easily if your transceiver can be dynamically reconfi gured, i.e. the settings 
reprogrammed while the device is operational. Once again the main FPGA vendors 
provide solutions in this space that can cycle through the settings in the transceiver 
and report Bit Error Ratio data. 

 This can be achieved using your existing design if you have built the debug 
design blocks into the transceiver interface, or you can load the device with one of 
the debug designs from the FPGA vendor. The latter is the approach that is most 
commonly used. 

 These designs consist of Data Pattern Generator and checker blocks along with 
the dynamic reconfi guration block of the transceiver, which allows modifi cation of 
the PMA confi guration. For the Transmitter, it can change the pre-emphasis settings 
which affect the eye opening at the receiver end and the Differential Voltage (VOD); 
which targets different channel medium. On the Receiver, it can change the settings 
on Equalization and DC gain. 

 By cycling through the settings and generating and checking data, Bit Error Ratio 
Testing can be performed on each of the settings. This can serve two main purposes.

    1.    Analysis of Transceiver Signal Quality.   
   2.    Tuning of the Transceiver settings to match the board for board bring-up and to 

mitigate possible signal integrity issues between the Transceiver interface and 
the board.     

 Once the optimal settings have been found they can be applied to the transceiver 
design in the real design.  

16.3 Techniques
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16.3.9      Reporting of System Performance 

 It is likely that you will want to collect system-level statistics on your design to 
determine if the design is giving the system performance that you want. The type 
of data that you may want includes details on the throughput and bandwidth of 
your system. By identifying the bottlenecks, you can improve the design to meet 
your throughput and bandwidth requirements. This can be achieved through the 
use of monitors. 

 You may want to generate data traffi c in order to exercise different transactions 
in early testing or to isolate corner cases. Normally the system software will take 
care of this, however early in the board debug, their could be problems with the 
software or the software may not be ready, so the hardware engineer needs a means 
to generate traffi c to test blocks of the design. 

 For applications that use specifi c protocols, you may want to check and report 
protocol violations. You may want to instrument and analyze the state of the transac-
tions and signals. 

 These types of data capture, stimulus and reporting is best solved by building 
verifi cation IP into your design, e.g. monitors that hang off your processor sub- 
system blocks or protocol checkers that are on your interface IP. 

 As mentioned previously, by planning for in-system verifi cation, you will hit the 
ground running when you fi rst receive hardware. If you have been using a standard 
interface on your design blocks, as recommended in Chap.   11     on IP and design 
reuse, you will quickly be able to build up a library of verifi cation IP that can be 
reused on future designs and will easily plug-into your system. It will enable you to 
use system integration tools, such as Altera’s Qsys to drop the verifi cation blocks 
into your system with minimal design work and impact on the system performance. 
By having the verifi cation IP available in the fi nal design it will also help in the 
debug of any systems that fail in the fi eld. The verifi cation IP that you are using can 
be used with the JTAG control infrastructure, on the FPGAs, to enable you to access/
control the data via the JTAG interface.  

16.3.10     Debug of Soft Processors 

 The debug of soft processor designs requires familiarity with multiple disciplines. 
This complicates the process as it requires the debugging of both the hardware and 
the application software. The debug of the hardware can be completed using the 
techniques described previously in this chapter. However it needs to be performed 
with code running on the processor. Limited debug can be completed using tech-
niques that can force the hardware into known conditions, effectively emulating the 
operation of the software. 

 The debug of the software is heavily reliant on the software tool chain that is 
being used. It is recommended that you read the literature on your soft processor to 
understand what debug capabilities are available. 
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 In the remainder of this section, we will look at the standard feature set that is 
available in most software debug tool chains and how they can be used to perform 
run-time analysis of your design. 

16.3.10.1     Software Profi ling 

 Most processor tool chains provide a software profi ler. This can be used to provide 
reports on how long the various functions run in your application. This will identify 
non-optimal areas of your code that may cause performance issues on your design. 
You should always profi le your software to determine where you need to optimize 
the software code or potentially accelerate the code via hardware.  

16.3.10.2     Watchpoints 

 The insertion of watchpoints in your code enables the capture of all writes to a 
global variable. This technique is useful for the debug of a global in the ‘C’ code that 
appears to be corrupted.  

16.3.10.3     Stack Overfl ow 

 This technique is applicable to processors that are running a real-time operating 
system. In this scenario, each task that is running has its own stack. This increases 
the probability of a stack overfl ow condition occurring. This type of problem can be 
more common in FPGA based embedded systems where there is more likely to be 
restrictions on the amount of memory available for the stack. Most processor IDEs 
include options to enable runtime stack checking.  

16.3.10.4     Breakpoints 

 Some processor tool chains provide a debug option to set hardware breakpoints on 
code located in read-only memory such as fl ash memory. This requires modifying 
the compilations settings on your code which will result in less optimized code, but 
code that is much easier to debug.  

16.3.10.5     Step Through the Code 

 By setting the software compiler optimization level to none, you will get software 
code that runs slower but is much easier to debug as the source code and executable 
code will now match. This method works well with software breakpoints where the 
code will run until it hits a breakpoint at which point it will halt. This enables single 
stepping through the code to examine the values of your variables in order to debug 
the functionality of the operation.   

16.3 Techniques
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16.3.11     Device Programming Issues 

 There is a wealth of JTAG Debug tools from independent Companies and from the 
FPGA vendors to help you to debug programming issues via JTAG. The most com-
mon problem is trying to debug a JTAG chain issue where there are multiple devices 
from different vendors in the JTAG chain. 

 The debug tools that come from the FPGA vendors focus on testing the signal 
integrity of the JTAG chain and to detect intermittent failures of the JTAG chain. 
The tools check that the devices are connected correctly and provide the ability to 
run JTAG debug commands. 

 These tools are excellent for detecting the following type of failures:

    1.    Open circuits   
   2.    Short to VCC   
   3.    Short to GND     

 It is recommended that you use a JTAG debug tool on your JTAG chain as soon 
as you receive your board in house.  

16.3.12     Hardware/Software Debug 

 The debug of processor based FPGA designs is complicated by the fact that each 
FPGA based embedded system design is unique due to the customized logic imple-
mented in the FPGA. This creates the challenge of determining whether a complex 
problem is caused by a hardware or software bug. As mentioned in Sect.  16.3.6  on 
soft processors, the hardware and software are different debug disciplines. The 
debug process usually consists of triggering on an error condition in the software, 
and analyzing the state of the hardware around that point in time, or triggering on an 
error condition in the hardware, and exploring what the software was doing around 
that point in time. 

 The process of trying to align the software instructions with the hardware debug 
is not automated and is prone to error. 

 The introduction of hardened processors in FPGA devices, such as the ARM A9 
processors in the Altera Cyclone V SoC devices has simplifi ed this process. The sili-
con implementation includes dedicated debug hardware on the boundary between 
the hardened processor system and the FPGA fabric. 

 The ARM DS-5 toolkit unifi es the software debugging information from the 
processor and FPGA domains and presents them in an organized fashion within the 
standard DS-5 user interface. The DS-5 toolkit provides signal-level hardware cross 
triggering between the CPU and FPGA domains utilizing the Altera SignalTAP inter-
face. The use of this technology enables the software and FPGA designers to analyze 
the captured trace and co-debug across the hardware-to-software boundary. 

16 In-System Debug



253

 Any debug trigger, whether it is a software trigger or hardware trigger can be 
used to simultaneously trigger the software and FPGA logic. 

 The following methodology is recommended for debugging a processor crash.

    1.    Restart the system and step through the code until the crash occurs.   
   2.    Once that critical point or instruction in the software is located, use the DS-5 to 

generate a trigger on or before that instruction.   
   3.    Use SignalTAP to capture the hardware signals around this trigger.     

 When the processor reaches the software trigger, the FPGA will capture the 
hardware conditions in the FPGA logic.   

16.4     In-System Debug Checklist 

     1.    Plan for debug.

    a.    Reserve pins for debug.   
   b.    Reserve logic and memory resources for ILA use.   
   c.    Ensure that you use the JTAG interface to the FPGA   
   d.    Place a Header on the Board as an interface to an external logic analyzer or 

scope.   
   e.    Add debug logic to your design or considering using the FPGA vendor utili-

ties for forcing data to memories and multiplexing data at the pins.   
   f.    Consider adding a soft processor to your design for debug.       

   2.    Perform debug

    a.    Lock down the design implementation using incremental compilation.   
   b.    For free running data, or for a small handful of control signals, incrementally 

route the signals to pins for analysis on a logic analyzer or scope.   
   c.    In order to capture data based upon events, add an ILA to your design. Where 

possible, use post-fi t signal names to avoid a full recompile of the design.       

   3.    If there are multiple devices within the JTAG chain, select the device that you 
want to target.   

   4.    Once you have identifi ed the bug, fi x the RTL and validate that the fi x works with 
functional simulation.        

16.4 In-System Debug Checklist
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    Chapter 17   
 Design Sign-off 

          Abstract     There needs to be a process in place to decide at what point to release the 
design to production. This decision will occur after the design has been fully hard-
ware tested and all of the design and testing processes have been met.           

17.1      Sign-off Process 

 There needs to be a process in place to decide at what point to release the design to 
production. This decision will occur after the design has been fully hardware tested 
and all of the design and testing processes have been met. 

 There should be a “GO”/“NO GO” approval process with a management meet-
ing between all of the stake holders in the project. This will review the quality data 
and decide on whether the design is acceptable for production. 

 All known bugs should be closed or accepted as not being a gating factor for the 
release, documented and transferred to the next version of the design for repair. 

 There needs to be approval for sign-off from all parties and departments. 
 The sign-off process draws upon the metrics that are captured by the tools 

described in Chap.   6    , design environment.

    1.    The RTL must meet the coding guidelines.   
   2.    The design must meet the functional coverage and code coverage targets.   
   3.    The FPGA project must be free of warnings and any exceptions fully 

documented.   
   4.    It must meet the timing requirements from the specifi cation.   
   5.    It must meet the in-system debug requirements. In some products, this may 

involve burn-in testing and full environmental testing.   
   6.    All exceptions to the specifi cation must be fully documented.    

17.2       After Sign-off 

 After the design has been approved for production, it is necessary to archive the 
release version and all related design and testing materials. This will serve as the 
base for any future versions of the design. 

http://dx.doi.org/10.1007/978-3-319-17924-7_6
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 The project manager will host a post-project review to discuss what went right, 
what went wrong, and what was learned from the project. This information will be 
used in future project plans. 

 After the well deserved design release party, start working on the next project, 
which could well be the next version of the design!    
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