
Philip Andrew Simpson

FPGA
Design
Best Practices for Team-based Reuse

 Second Edition

 FPGA Design

 Philip Andrew Simpson

 FPGA Design
 Best Practices for Team-based Reuse

Second Edition

 ISBN 978-3-319-17923-0 ISBN 978-3-319-17924-7 (eBook)
 DOI 10.1007/978-3-319-17924-7

 Library of Congress Control Number: 2014952901

 Springer Cham Heidelberg New York Dordrecht London
 © Springer International Publishing Switzerland 2010, 2015
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

 Printed on acid-free paper

 Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

 Philip Andrew Simpson
 San Jose , CA , USA

v

 1 Introduction ... 1

 2 Project Management ... 5
 2.1 The Role of Project Management .. 5

 2.1.1 Project Management Phases .. 5
 2.1.2 Estimating a Project Duration .. 6
 2.1.3 Schedule ... 6

 3 Design Specification .. 9
 3.1 Design Specifi cation: Communication Is Key to Success 9

 3.1.1 High Level Functional Specifi cation 10
 3.1.2 Functional Design Specifi cation .. 10

 4 System Modeling ... 15
 4.1 Defi nition of System Modeling .. 16
 4.2 What is SystemC? .. 16
 4.3 Classes of SystemC Models ... 17

 4.3.1 Untimed (UT)... 17
 4.3.2 Loosely-Timed (LT) ... 17
 4.3.3 Approximately Timed (AT) ... 18
 4.3.4 Cycle Accurate ... 18

 4.4 Software Development Using Virtual Targets 18
 4.5 SystemC Basics .. 19

 4.5.1 SC_Module .. 21
 4.5.2 Ports ... 21
 4.5.3 Process ... 21
 4.5.4 SC_CTOR .. 21
 4.5.5 SC_METHOD.. 21
 4.5.6 SystemC Tesbenches .. 23

 5 Resource Scoping .. 29
 5.1 Introduction .. 29
 5.2 Engineering Resources ... 29

 Contents

vi

 5.3 Third Party IP ... 30
 5.4 Device Selection .. 30

 5.4.1 Silicon Specialty Features .. 31
 5.4.2 Density ... 32
 5.4.3 Speed Requirements... 33
 5.4.4 Pin-Out ... 34
 5.4.5 Power ... 37
 5.4.6 Availability of IP .. 37
 5.4.7 Availability of Silicon .. 37
 5.4.8 Summary .. 38

 6 Design Environment ... 39
 6.1 Introduction .. 39
 6.2 Scripting Environment ... 39

 6.2.1 Make Files .. 41
 6.2.2 Tcl Scripts .. 44
 6.2.3 Automation .. 46
 6.2.4 Easier Project Maintenance and Documentation 47

 6.3 Interaction with Version Control Software 48
 6.4 Use of a Problem Tracking System .. 48
 6.5 A Regression Test System .. 49
 6.6 When to Upgrade the Versions of the FPGA Design Tools 49
 6.7 Common Tools in the FPGA Design Environment 50

 6.7.1 High-Level Synthesis ... 51
 6.7.2 Load Sharing Software .. 51

 7 Board Design ... 53
 7.1 Challenges That FPGAs Create for Board Design 53
 7.2 Engineering Roles and Responsibilities ... 54

 7.2.1 FPGA Engineers .. 55
 7.2.2 PCB Design Engineer .. 55
 7.2.3 Signal Integrity Engineer ... 56

 7.3 Power and Thermal Considerations ... 57
 7.3.1 Filtering Power Supply Noise .. 58
 7.3.2 Power Distribution ... 58

 7.4 Signal Integrity ... 58
 7.4.1 Types of Signal Integrity Problems 59
 7.4.2 Electromagnetic Interference (EMI) 60

 7.5 Design Flows for Creating the FPGA Pinout................................... 60
 7.5.1 User Flow 1: FPGA Designer Driven 61
 7.5.2 User Flow 2 .. 63
 7.5.3 How Do FPGA and Board Engineers Communicate

Pin Changes? ... 64
 7.6 Board Design Check List for a Successful FPGA Pin-out 64

Contents

vii

 8 Power and Thermal Analysis ... 67
 8.1 Introduction .. 67
 8.2 Power Basics .. 68

 8.2.1 Static Power... 68
 8.2.2 Dynamic Power ... 68
 8.2.3 I/O Power .. 68
 8.2.4 Inrush Current ... 69
 8.2.5 Confi guration Power ... 69

 8.3 Key Factors in Accurate Power Estimation 69
 8.3.1 Accurate Power Models of the FPGA Circuitry 70
 8.3.2 Accurate Toggle Rate Data on Each Signal 70
 8.3.3 Accurate Operating Conditions 71
 8.3.4 Resource Utilization .. 72

 8.4 Power Estimation Early in the Design Cycle
(Power Supply Planning) ... 72

 8.5 Simulation Based Power Estimation
(Design Power Verifi cation) ... 73
 8.5.1 Partial Simulations .. 75

 8.6 Best Practices for Power Estimation .. 76

 9 Team Based Design Flow .. 79
 9.1 Introduction .. 79
 9.2 Recommended Team Based Design Flow 80

 9.2.1 Overview ... 80
 9.3 Design Set-up ... 81

 9.3.1 Creation of Top-Level Project ... 82
 9.3.2 Partitioning of the Design ... 82
 9.3.3 Timing Budgets ... 82
 9.3.4 Physical Partitioning/Floorplan Design 84
 9.3.5 Place and Route Design .. 85
 9.3.6 Create Project for Partitions/Other Team Members 85

 9.4 Team Member Development Flow ... 85
 9.5 Team Leader Design Integration .. 86
 9.6 Working with Version Control Software .. 88
 9.7 Team Based Design Checklist ... 89

 10 RTL Design .. 91
 10.1 Introduction .. 91
 10.2 Common Terms and Terminology ... 92
 10.3 Recommendations for Engineers with an ASIC

Design Background .. 93
 10.4 Recommended FPGA Design Guidelines 94

 10.4.1 Synchronous vs. Asynchronous 94
 10.4.2 Global Signals ... 94
 10.4.3 Dedicated Hardware Blocks .. 95
 10.4.4 Managing Metastability .. 98

Contents

viii

 10.5 Writing Effective HDL .. 99
 10.5.1 What’s the Best Language ... 100
 10.5.2 Documented Code ... 101
 10.5.3 Recommended Signal Naming Convention 102
 10.5.4 Hierarchy and Design Partitioning 103
 10.5.5 Design Reuse ... 105
 10.5.6 Techniques for Reducing Design Cycle Time 106
 10.5.7 Design for Debug .. 106

 10.6 RTL Coding Styles for Synthesis ... 107
 10.6.1 General Verilog Guidelines ... 108
 10.6.2 General VHDL Guidelines .. 108
 10.6.3 RTL Coding for Performance .. 109
 10.6.4 RTL Coding for Area .. 117
 10.6.5 Synthesis Tool Settings ... 117
 10.6.6 Inference of RAM ... 118
 10.6.7 Inference of ROMs .. 122
 10.6.8 Inference of DSP Blocks ... 128
 10.6.9 Inference of Registers .. 130
 10.6.10 Avoiding Latches ... 134

 10.7 Analyzing the RTL Design .. 136
 10.7.1 Synthesis Reports .. 136
 10.7.2 Messages ... 137
 10.7.3 Block Diagram View ... 137

 10.8 Recommended Best Practices for RTL Design 139

 11 IP and Design Reuse.. 141
 11.1 Introduction .. 141
 11.2 The Need for IP Reuse ... 141

 11.2.1 Benefi ts of IP Reuse .. 142
 11.2.2 Challenges in Developing a Design

Reuse Methodology ... 143
 11.3 Make Versus Buy ... 144
 11.4 Architecting Reusable IP ... 145

 11.4.1 Specifi cation .. 145
 11.4.2 Implementation Methods ... 146
 11.4.3 Use of Standard Interfaces .. 147

 11.5 Packaging of IP .. 149
 11.5.1 Documentation .. 149
 11.5.2 User Interface .. 150
 11.5.3 Compatibility with System Integration Tools................ 151
 11.5.4 Constraint Files ... 152
 11.5.5 IP Integration File Formats .. 153
 11.5.6 IP Security ... 154

 11.6 IP Reuse Checklist ... 155

Contents

ix

 12 Embedded Design.. 157
 12.1 Defi nition of an Embedded Design .. 157

 12.1.1 Advantages That FPGA Devices Provide
for Embedded Design .. 159

 12.2 Challenges in a FPGA Based Embedded Design 159
 12.3 Embedded Hardware Design ... 160

 12.3.1 Endianness... 160
 12.3.2 Busses .. 161
 12.3.3 Bus Arbitration Schemes... 163
 12.3.4 Hardware Verifi cation Using Simulation 165

 12.4 Hardware to Software Interface ... 167
 12.4.1 Defi nition of Register Address Map 167
 12.4.2 Software Interface ... 167
 12.4.3 Use of the Register Address Map 167
 12.4.4 Summary ... 170

 12.5 Embedded SW Design ... 170
 12.5.1 Firmware Development ... 170
 12.5.2 Application Software Development 172
 12.5.3 Use of Operating Systems ... 173
 12.5.4 SW Tools ... 174

 12.6 Use of FPGA System Integration Tools
for Embedded Design .. 175

 13 Functional Verification ... 179
 13.1 Introduction .. 179
 13.2 Challenges of Functional Verifi cation .. 180
 13.3 Glossary of Verifi cation Concepts ... 180
 13.4 RTL Versus Gate Level Simulation.. 181
 13.5 Verifi cation Methodology .. 181
 13.6 Attack Complexity ... 182
 13.7 Functional Coverage .. 183

 13.7.1 Directed Testing .. 184
 13.7.2 Random Dynamic Simulation ... 184
 13.7.3 Constrained Random Tests .. 184
 13.7.4 Use of SystemVerilog for Design and Verifi cation 185
 13.7.5 General Testbench Methods .. 186
 13.7.6 Self Verifying Testbenches .. 186
 13.7.7 Formal Equivalency Checking .. 188

 13.8 Code Coverage ... 188
 13.9 QA Testing ... 189

 13.9.1 Functional Regression Testing .. 189
 13.9.2 GUI Testing for Reusable IP ... 189

Contents

x

 13.10 Hardware Interoperability Tests ... 190
 13.11 Hardware/Software Co-verifi cation ... 190

 13.11.1 Getting to Silicon Fast .. 190
 13.12 Functional Verifi cation Checklist ... 190

 14 Timing Closure .. 191
 14.1 Timing Closure Challenges .. 191
 14.2 The Importance of Timing Assignments

and Timing Analysis .. 192
 14.2.1 Background .. 192
 14.2.2 Basics of Timing Analysis ... 193

 14.3 A Methodology for Successful Timing Closure 203
 14.3.1 Family and Device Assignments 204
 14.3.2 Design Planning ... 204
 14.3.3 Early Timing Estimation .. 209
 14.3.4 CAD Tool Settings ... 210
 14.3.5 Compilation Reports and Analysis Tools 213
 14.3.6 Floorplanning Tools ... 215
 14.3.7 Miscellaneous Techniques ... 218

 14.4 Analysis of Common Timing Closure Failures 218
 14.4.1 Missing Timing by a Small Margin 218
 14.4.2 Review of Compilation Results and Messages 219
 14.4.3 Synthesis and Physical Synthesis 219
 14.4.4 Global Signals .. 220
 14.4.5 High Fan-out Registers... 221
 14.4.6 Routing Congestion .. 222
 14.4.7 Clustering ... 224
 14.4.8 Assignments ... 224
 14.4.9 Missing Timing Constraints ... 225
 14.4.10 Confl icting Timing Constraints 226
 14.4.11 Long Compile Times .. 226

 14.5 Design Planning, Implementation, Optimization
and Timing Closure Checklist .. 226

 15 High Level Design ... 227
 15.1 High Level Design ... 227

 15.1.1 Algorithmic Synthesis .. 228
 15.1.2 ‘C’ to Gates .. 230
 15.1.3 SystemC to Gates ... 230
 15.1.4 OpenCL .. 231
 15.1.5 Summary .. 236

 16 In-System Debug ... 237
 16.1 In-System Debug Challenges ... 237
 16.2 Plan for Debug ... 238

Contents

xi

 16.3 Techniques ... 238
 16.3.1 Use of Pins for Debug ... 239
 16.3.2 External Logic Analyzer ... 241
 16.3.3 Internal Logic Analyzer .. 242
 16.3.4 Use of Debug Logic .. 244
 16.3.5 Editing Memory Contents ... 247
 16.3.6 Use of a Soft Processor for Debug 248
 16.3.7 Power-Up Debug ... 249
 16.3.8 Debug of Transceiver Interfaces 249
 16.3.9 Reporting of System Performance 250
 16.3.10 Debug of Soft Processors .. 250
 16.3.11 Device Programming Issues.. 252
 16.3.12 Hardware/Software Debug .. 252

 16.4 In-System Debug Checklist ... 253

 17 Design Sign-off .. 255
 17.1 Sign-off Process ... 255
 17.2 After Sign-off ... 255

Bibliography .. 257

Contents

1© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_1

 Chapter 1
 Introduction

 Abstract This book which describes the Best Practices for successful FPGA
design is the result of meetings with hundreds of customers on the challenges facing
each of their FPGA design teams. By gaining an understanding into their design
environments, processes, what works, what does not work, I have been able to iden-
tify the areas of concern in implementing System designs. More importantly, it has
enabled me to document a recommended methodology that provides guidance in
applying a best practices design methodology to overcome the challenges.

 This book which describes the Best Practices for successful FPGA design is the
result of meetings with hundreds of customers on the challenges facing each of their
FPGA design teams. By gaining an understanding into their design environments,
processes, what works, what does not work, I have been able to identify the areas of
concern in implementing System designs. More importantly, it has enabled me to
document a recommended methodology that provides guidance in applying a best
practices design methodology to overcome the challenges.

 This material has a strong focus on design teams that are across sites. The goal being
to increase the productivity of FPGA design teams by establishing a common methodol-
ogy across design teams; enabling the exchange of design blocks across teams.

 Best Practices establishes a roadmap to predictability for implementing system
designs in a FPGA.

 The three steps to predictable results are:

 1. Proper project planning and scoping.
 2. Choosing the right FPGA device to ensure that the right technology is available

for today’s and tomorrows projects.
 3. Following the best practices for FPGA design development in order to shorten

the design cycle and to ensure that your designs are complete on schedule and
that the design blocks can be re-used on future projects with minimal effort.

 All three elements need work together smoothly to guarantee a successful FPGA
design Fig 1.1 .

2

 The choice of vendor should be a long-term partnership between the Companies.
By sharing roadmaps and jointly managing existing projects, you can ensure that
not only is the current project a success but provide the right solutions on time for
future projects. A process of fi ne tuning based on experience working together to
guarantee success on projects.

 These two topics are touched upon briefl y in the Best Practices for Successful
FPGA Design methodology.

 The third topic is the FPGA design methodology.
 This is the main focus of the best practices methodology. This covers the complete

FPGA design fl ow from the basics to advanced techniques. This methodology is
FPGA vendor independent in that the topics and recommendations are good
practices that apply to the design of any FPGAs. While most of the material is
generic, it does contain references to features in the Altera design tools that rein-
force the recommended best practices.

 The diagram that is shown in Fig. 1.2 shows the outline of the best practices
design methodology.

Key Elements to Successful FPGA Design

Predictability
& Reliability

Program
Management

FPGA Design
Methodology Vendor

Choice
&
Partnership

Device Selection

IP Reuse

Team Based Design
Environment

Predictable Timing
Closure

Optimized verification
environment

Time to production

Si foundry partner

Technology roadmaps

Component roadmaps

Software roadmaps

IP roadmaps

Early Access to Advanced
Tools

Project requirements and objectives

WBS & schedule

Resources & costs

Risk assessment & management

Change control

Project execution

 Fig. 1.1 Three Steps to Successful FPGA design

1 Introduction

3

 Each of the blocks in the diagram is represented by chapters in this book, with an
additional chapter on power. Power is its own chapter as it spans many of the other
areas of the design methodology. The topics of Board Layout, RTL Design, IP
Reuse, Functional Verifi cation and Timing Closure tend to be the areas where design
teams have different design methodologies and engineers need guidance on achiev-
ing consistent results and shortening the design cycle.

 Many of the challenges that are faced in FPGA design are not unique to FPGA
design but are common challenges in design. FPGA devices themselves do provide
unique challenges and opportunities compared to ASIC designs. The increase in
capability of FPGA devices has resulted in much more complex designs targeting
FPGAs and a natural migration of ASIC designers to FPGA design. This has resulted
in many design teams migrating ASIC design principles to FPGA designs. In gen-
eral, this has been a benefi t to the FPGA design fl ow; however it needs to be balanced
with the benefi ts that FPGAs bring to the design fl ow. The programmable nature of
FPGAs opens the door to performing more verifi cation in-system. When used
correctly, this can greatly speed-up the verifi cation cycle, however when abused it
can lengthen the design cycle. The confi gurable nature of I/Os provides challenges
that do not exist in ASIC design. The tools that are used from the EDA industry are
also different for FPGAs than for ASICs, in both functionality and cost.

 This book will help you adopt the best design methodology to meet your
requirements.

 While it is recommended that you read the book in its entirety, you can also focus
on the individual chapters of the book that target the areas of the design fl ow that is
causing the biggest challenge to your design team.

Recommended Design Methodology

SpecificationProject
Management

Resource Scoping

Design Environment
Infrastructure

IPRTL

Functional
Verification

Timing

In-System Debug

Design Sign-off

Board Design SW
Development

 Fig. 1.2 Recommended best practices design methodology for successful FPGA design

1 Introduction

4

 Acknowledgements Misha Burich for providing the spark behind the Best Practices concept.
 Brian Holley and Rich Catizone for driving the idea at their customer base and providing a

constant source of feedback.
 Gregg Baeckler for his wizardry in RTL optimizations.
 The many customers who have contributed to the material by describing their design environ-

ments and the challenges that they have faced in completing their system designs in FPGA devices.
 Jean-Michel Vuillamy for his continued design methodology feedback over the many years that

we have worked together
 My wonderful in-laws, James and Carolyn Leroy, for welcoming me into the family and for

keeping a smile on my face.
 My mother, Iris Simpson, for her energy and undying love for my father George.
 My wife Jill and daughter Kayla, for their patience, support, love and showing me how to fully

enjoy life.

1 Introduction

5© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_2

 Chapter 2
 Project Management

 Abstract The scope of project management is to deliver the right features, on-time
and within budget. As such there are three dimensions:

2.1 The Role of Project Management

 The scope of project management is to deliver the right features, on-time and within
budget. As such there are three dimensions:

 1. Features
 2. Development time
 3. Resources

 The project manager needs to fi nd the right balance of these three dimensions to
meet the goals of the project.

 There are numerous books and training classes on project management. This
chapter provides a brief overview of the elements of project management. It is rec-
ommended that you attend formal project management training.

2.1.1 Project Management Phases

 Every project can be broken into three project management phases.

 1. The planning phase. This is establishing the feature list, creating the project plan
and establishing the resource pools and budget.

 2. The tracking phase. This involves holding monthly feature reviews, weekly plan
updates, reviewing the budget and staffi ng levels and reviewing any Engineering
Change Orders.

 3. The wrap-up Phase. This involves project retrospectives, data mining and process
improvement review and action plan.

6

2.1.2 Estimating a Project Duration

 Estimating the overall project delivery target is best done with the following steps.

 1. Select one of the latest major successfully completed projects.
 2. Create a macro model. This involves identifying the major project phases for

specifi cation, designing and verifi cation. Extract the exact duration of the phases
and any overlap.

 3. Set the overall process improvement target. An example would be stating that
I want to implement a project of similar complexity 10 % faster.

 4. Defi ne project complexity metrics such as design characteristics and resource
utilization. Design characteristics can include the number of pages of specifi cation,
the number of FPGA resources, the number of lines of RTL, Speed, technical
complexity.

 5. Derive the derating factor k.
 6. Scale the upcoming project by the derating factor.
 7. Evaluate the project with good judgment and make the appropriate adjustments.

2.1.3 Schedule

 The project schedule should be updated regularly. It is recommended that it is
updated at least once a week.

 Any schedule update meetings should be kept brief and should only focus on
collecting the status information. This includes information on whether a task has
started, is an activity complete, how long will a task take to complete, and any user
task information that determines the level of completeness of a task.

 The update meetings should also be used to estimate when a task is expected to
be complete. The project manager must respect the duration estimates from the
resources performing a task but should question any estimates that appear to be
wildly wrong.

2.1.3.1 Weekly Schedule Analysis

 The project manager needs to rigorously analyze the project schedule on a weekly
basis. There are ten main tasks involved in this process.

 1. Analyzing and scrutinizing the critical paths.
 2. Reviewing the planned tasks for the coming week.
 3. Discussing and agreeing on the task priorities with the rest of the review team.
 4. Identifying a plan to accelerate the critical path.
 5. Identifying other at risk paths that are just behind the critical path.
 6. Checking the load on the resources assigned to the critical path.

2 Project Management

7

 7. Confi rming the availability of resources with the managers.
 8. Determining the part of the project plan that needs more work.
 9. Capturing action items.
 10. Performing task refi nements.

 It is critical that the project manager does not get fooled by the percentage
complete. It is a non-linear function and is not useful in estimating the remaining
task duration Fig 2.1 .

2.1.3.2 Pro-active Project Management

 It requires an extreme degree of pro-active behavior to deliver a project on time.
Be sure to dedicate enough management bandwidth to the project.

 Due to the dynamic circumstances, it requires constant management attention
with weekly rigorous project schedule updates.

 The complexity of the project require the right tools to facilitate the decision
making process. The identifi cation and management of the critical path simplifi es
the priority setting.

 Fig. 2.1 Percentage
complete dilemma

2.1 The Role of Project Management

9© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_3

 Chapter 3
 Design Specifi cation

 Abstract Having a complete and detailed specifi cation early in a project will
 prevent false starts and reduce the likelihood of Engineering Change Orders (ECOs)
late in the project. Late changes to the design specifi cation can dramatically increase
the cost of a project both in terms of the project schedule and the cost of the
FPGA. The latter occurring as signifi cant changes may result in the need for a larger
FPGA device.

3.1 Design Specifi cation: Communication Is Key to Success

 Having a complete and detailed specifi cation early in a project will prevent false
starts and reduce the likelihood of Engineering Change Orders (ECOs) late in the
project. Late changes to the design specifi cation can dramatically increase the cost of
a project both in terms of the project schedule and the cost of the FPGA. The latter
occurring as signifi cant changes may result in the need for a larger FPGA device.

 The purpose of a specifi cation is to accurately and clearly communicate
information.

 Another way of saying this is that specifi cations are a means to convey informa-
tion between teams/people. Without a thorough specifi cation, which has been
approved by all impacted parties, a project is prone to delays and late changes in the
requirements; all of which lead to longer project cycles and higher project cost.
A key point in this statement is ‘agreed upon specifi cation’. This implies that a
process is in place for the review of the specifi cation.

 A fully agreed upon specifi cation ensures alignment between the different teams
working on the project. This ensures that the delivered product conforms to the
functional specifi cations and meets the customer requirements. This in turn facili-
tates accurate estimation of development cost, resource and project schedule.
A solid specifi cation enables consistent project tracking, which will ultimately pro-
duce a high quality product release. The specifi cation also serves as a reference for
the creation of documentation and collateral to be delivered with, or to support
the product. All specifi cations should clearly identify changes that have been made
to the specifi cation. In addition, the specifi cation should be stored under version
control software.

 Specifi cations are required at different stages of the FPGA design from defi nition
through the development process.

10

3.1.1 High Level Functional Specifi cation

 The high level functional specifi cation is created and owned by the systems engi-
neering team. This document describes the basic functionality of the FPGA design
including the required interaction with the software interface and the interfaces
between the FPGA and other devices on the board. This document should be offi -
cially reviewed with the FPGA design team Manager and the Software engineering
manager. After the review, the document should be updated to refl ect the recom-
mend changes and to answer any of the issues raised during the review process.
This process is iterative until all issues have been resolved and the FPGA design
team understands and agrees upon the requirements.

 One of the challenges in creating the high level functional specification is
successfully describing the functionality in understandable English. Let’s be honest
here; most Engineers are strong in mathematics and science but will never be the
next John Steinbeck.

 Executable specifi cations help resolve this issue. Executable specifi cations are
abstract models of the system that describe the functionality of the end system. It is
essentially a virtual prototype of the system. Most executable specifi cations are
created in one of the fl avors of ‘C’ (C, C++, SystemC). These languages are good for
modeling the desired functionality but do not cover key features such as timing, power
and size of design. These need to be covered in an accompanying high level specifi ca-
tion to the executable specifi cation. The virtual prototype at this stage is the system
model and the testbench which is part of the executable specifi cation. This executable
specifi cation can be used throughout the development process to check that the
detailed implementation is meeting the requirements of the executable specifi cation.
The use of SystemC, etc. as a means for providing the specifi cation for the design
provides the advantage that the specifi cation can be derived from the modeling trade-
offs that occur during the architectural exploration. This is described in more detail in
Chap. 4 on system modeling.

 Not all Companies are using executable specifi cations as part of the FPGA
design process, but its use is becoming more common as more complex systems are
being implemented in FPGA devices.

3.1.2 Functional Design Specifi cation

 The team that is creating the FPGA design should create a detailed design specifi cation
that represents the needs of the high level functional specifi cation. The owner of this
specifi cation is the FPGA engineering team. This specifi cation should be reviewed
and approved by the FPGA design team, their management and with representation
from the systems engineering and software engineering teams. This should fi nalize
the specifi cation for the functionality of the FPGA design and detail the interfaces
with the rest of the system including software.

3 Design Specifi cation

http://dx.doi.org/10.1007/978-3-319-17924-7_4

11

 It is critical to agree upon the details of the interfaces to the FPGA with the
appropriate development teams that will use these interfaces.

 Take for example, the H/W to S/W interface for a design where an A/D converter
feeds the FPGA. The FPGA in turn feeds data to a microprocessor. The FPGA require-
ments specifi cation must cover the interface to the A/D and be designed to avoid any
functional failures, even under corner case conditions. Failure to do so can result in
functional failures not showing up until testing the design in system. Board tests could
show the FPGA passing junk data to the S/W interfaces. The S/W engineers will likely
not know how to interpret or debug this issue. This can result in extended board test
time and under worst case scenario a redesign of either the software and/or the FPGA
design; ultimately this will result in a delay to the schedule.

3.1.2.1 Functional Specifi cation Outline

 In this section, we will detail the minimum set of requirements that need to be
included in the functional specifi cation.

 1. Revision History.
 A sample revision control page is shown in Fig. 3.1 . This includes the date of the
changes, the author of the changes and the approval of the changes.

 2. Review Minutes.
 This should include details on all review meetings on the specifi cation. The min-
utes should include the meeting date and location, attendees, minutes and the
action items that need to be resolved to gain approval of the specifi cation.

 3. Table of Contents
 4. Feature overview.

 The feature overview should provide context of the system in which the feature
will be provided. If the feature is a subsystem in the end FPGA system design,
this should section should describe where it fi ts in the overall system and its
purpose, i.e. the problem it solves. The feature overview should also include a
high level overview of its required functionality.

 5. Source references.
 This section should describe the driver of the feature request, e.g. High Level
Functional Specifi cation, Software Interface Functional Requirements, etc.

 6. Glossary.
 The glossary should describe any industry standard terms and acronyms that are
used in the document. More importantly, it should also do this for any internal
Company terminology used in the document. It is amazing how much time is
wasted and confusion caused due to the use of internal Company terminology.
Many new employees or employees from other groups are often embarrassed to
admit that they do not understand the ‘code’ words in review meetings, resulting
in confusion, delays in decision and often the stifl ing of creativity.

 7. Detailed Feature Description.
 This is really the meat of the document. This section should include descriptions of
any of the algorithms used, details on the architecture of the design and the inter-
face with other parts of the design or system.

3.1 Design Specifi cation: Communication Is Key to Success

12

 8. Test Plan.
 The document should refer to the test plan, or at a minimum state the need for a
test plan and be updated when the test plan exists.

 9. References.
 In this section the document should refer to all supporting documents that should
be read to understand the functional specifi cation.

 Following the creation of the detailed FPGA design specifi cation, the engineering
team will create a number of specifi cations for internal review within the engineering
department. These include the Functional Test Plan and QA Test Plan. Each engineer
that is assigned to the project will create an engineering plan and functional test plan
for the portion of the design that they will be implementing. This should be reviewed
within engineering against the overall functional plan. This ensures that it meets the
overall requirements of the FPGA design.

3.1.2.2 Test Specifi cation Outline

 1. Revision History.
 A sample revision control page is shown in Fig. 3.1 . This includes the date of the
changes, the author of the changes and the approval of the changes.

Version Author Date Changes
0.9 psimpson 4-26-09 Initial revision

1.0 psimpson 5-11-09 Added timing details to CODEC

1.1 aclarke 5-30-09 Modified register map based upon review with SW
Engineering on May 28, 2009.

1.2 jjones 6-3-09 Adding a section to describe the interface to host processor.

1.3 psimpson 6-9-09 Updated host processor interface after second review with
SW Engineering on June 4.

 Fig. 3.1 Sample revision control page

 2. Review Minutes.
 This should include details on all review meetings on the specifi cation. The min-
utes should include the meeting date and location, attendees, minutes and the
action items that need to be resolved to gain approval of the specifi cation.

 3. Table of Contents
 4. Scope.

 This will provide an overview of what specifi c features this test plan will cover.
If test coverage overlaps with the testing of any subsystems, it should detail what
will be covered in this test plan and refer to the other test plans.

 5. Test requirements.
 This should detail any special hardware, software, EDA tools that are required to
complete the testing. As part of this it should include any special set-up
requirements.

3 Design Specifi cation

13

 6. Test Strategy.
 This includes the pass/failure criteria.

 Do the test results require cross-verifi cation with any other sub-systems.
 Will existing tests be re-used or modifi ed to meet the needs of this test plan.
 Will the tests be automated and if so, how will the tests be automated.
 How will the tests be run. An example of this would be an automated regtest

that is run each night, or manual testing to verify that the graphics appear
correctly on the screen when run on a development board.

 7. Automation plan.
 It is desirable to automate as much of the testing as possible. This section will
describe how to automate the test.

 8. Running the tests.
 What is the expected runtime of the tests. If the test is not automated, what is the
expected time for the tests to be performed manually.

 9. Test Documentation.
 This section should include descriptions of the test cases. As standard practice, the
test infrastructure should be set-up to isolate each test. Thus each test case should
have its own test directory. The documentation should detail how to access the
results from the regression tests database. This assumes that a regression tests
system has been established. Not establishing such a system is setting a project
up for failure as it will be incredibly diffi cult to monitor the quality of the
product.

 The test documentation should also cover test procedures for the cases where
sub- tests cannot be automated. Under this scenario, it is necessary to document
how to manually test the sub-feature.

 As work begins on the development of the FPGA design, there should be regular
design and verifi cation reviews as part of the engineering process to ensure that
there are no changes to the plan. These reviews will provide a forum to communi-
cate any changes that may be needed to work around implementation issues and to
clear up any areas of ambiguity in the specifi cations. As a result of these meetings,
the specifi cations should be updated and reviewed. If the recommended changes
will impact the high level functional specifi cation or any of the interfaces with the
FPGA, there should be formal reviews with the relevant personnel to reach closure
on the changes.

 In summary, the main purpose of a specifi cation is to communicate information
between teams such that the design meets the requirements and can be adequately
staffed to deliver on the requirements in the specifi ed timeframe.

 The requirements for the functional specifi cation and test specifi cation will be
driven by your Company’s policy on standards compliance, e.g. ISO 9001
 compliance. This book does not discuss the details on ISO 9001 compliance. A detailed
description of the ISO 9001 standard is available from www.iso.org .
 Recommended further reading:

 Writing Better Requirements by Ian Alexander.

3.1 Design Specifi cation: Communication Is Key to Success

http://www.iso.org/

15© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_4

 Chapter 4
 System Modeling

 Abstract The techniques that are used to perform system modeling vary from
complex Excel spreadsheets to the use of system modeling tools and languages. The
languages that are most commonly used include C/C++ to create an executable
specifi cation with fast runtime, Lisa, UML, SystemC and Matlab. The languages
that are most widely used in the modeling of FPGA system designs are C/C+,
SystemC and Matlab.

 The techniques that are used to perform system modeling vary from complex Excel
spreadsheets to the use of system modeling tools and languages. The languages that
are most commonly used include C/C++ to create an executable specifi cation with
fast runtime, Lisa, UML, SystemC and Matlab. The languages that are most widely
used in the modeling of FPGA system designs are C/C+, SystemC and Matlab.

 Modeling is used by all designers. At the most basic level customers perform
RTL simulation to verify the functionality of their RTL design at a modular level
and of the full design. At the time of writing, there are a growing number of users
that are using advanced system modeling techniques in the FPGA system design
process. This varies from full system modeling using ‘C’ models or the Mathworks
MATLAB language, to advanced system modeling of key parts of the design,
such as the processor subsystem in order to develop software drivers and port an
operating system such as Linux. This chapter explains where the different classes of
models can be used throughout the system design process.

 Matlab has a strong adoption for the modeling of DSP designs. This is partly due
to the modeling environment that is offered by Mathworks being well tuned for DSP
type applications or systems. An example of this is radar applications. It is also
partly due to their being a direct path from the models to FPGA implementation via
the Simulink modeling libraries and Mathworks themselves offering a MATLAB to
HDL path.

 C/C++ is a common method for modeling of software applications. However, it
comes up short for architects that need to model the hardware aspect of system
design. C/C++ does not have a concept of time. Hardware designs are inherently
concurrent but C/C++ has no standard way of expressing concurrency. It also does
not have a way of expressing hardware data types such as tri-states. So while C/C++
is good for modeling software systems it cannot provide the level of modeling
required for hardware designs or mixed hardware and software system designs.

16

 SystemC was designed to solve the problem of modeling mixed hardware and
software system designs, while offering the advantages that are offered by C/C++.
This is described in more detail in Sect. 4.2 , ‘What is SystemC?’

 Since the standardization of SystemC, there has been an increase in SystemC
modeling by FPGA system designers. With this, there has also been an increase
in tool offerings in the EDA market that support SystemC. Based upon this, this
chapter will focus mainly on SystemC modeling of FPGA based systems.

4.1 Defi nition of System Modeling

 System modeling is generally accepted to be an executable system description
which allows the analysis and measurement of system behavior. This analysis can
occur at different levels of abstraction. The process of modeling the system allows
for the refi nement of the models throughout the modeling process until the fi nal
implementation of the design is achieved and proven to meet the requirements that
are specifi ed in the high level model.

 System Modeling provides the ability to both design and analyze the system
architecture. An example being the hardware to software interface. An example of
system modeling in a FPGA system design is the process of design partitioning
between the Processor subsystem and the FPGA logic. System modeling can be used
to determine what should be implemented in the processor subsystem and what
should be implemented as digital logic in the FPGA. This decision would be based
upon the performance bottlenecks derived from the specifi cation. This requires mod-
eling of the Processor, Interconnect, Memory and the accelerators. In order to model
such a system, different levels of models are required. Cycle accurate models are
required for the modeling of the interconnect from the processor to the FPGA and to
the memory in the system. In such areas latency is important for modeling of the
performance. Instruction accurate models would be used to model the processor and
cycle approximate models or approximately timed models for the accelerators. There
are more details on model types in Sect. 4.3 , classes of SystemC models.

 System Modeling is a key enabling technology for many parts of the FPGA
system design process such as

 1. HW and SW Co-development
 2. SW Verifi cation and Regression
 3. Rapid Iteration of design tradeoffs for high level design, e.g. ‘C’ based and

model based FPGA design implementation fl ows.

4.2 What is SystemC?

 SystemC is a system modeling language that is based upon the C/C++ language. It is
in effect a set of C++ classes and macros which provide an event driven simulation
kernel. These libraries enable users to model mixed hardware and software systems

4 System Modeling

17

at multiple levels of abstraction. The SystemC standard is defi ned by Accelera.
The SystemC libraries and standard are available for free download from http://
www.accelera.org.

 SystemC has all of the features of C++. It also includes special data types that
can be used by hardware engineers to model hardware features, such as tri-states.
It has a simulation kernel that enables functional verifi cation at the system level
through the use of testbenches. It adds the concept of time to C++, enabling the
simulation of synchronous hardware designs and supports simulation at multiple
levels of abstraction, enabling refi nement of the models in the verifi cation environ-
ment as the design progresses from specifi cation to implementation. It also includes
the ability to simulate the concurrent behavior of hardware.

 SystemC supports a level of modeling known as Transaction level Modeling
(TLM). TLM models the communication between modules. The communication is
modeled as physical interconnect independent transactions.

 By using C/C++ development tools and the SystemC library, an executable
specifi cation of a model can be created in order to simulate, validate, and optimize
the system being designed.

4.3 Classes of SystemC Models

 SystemC supports several different levels of system modeling ranging from very
high level with fast simulation times to cycle accurate with similar simulation times
to RTL models.

 As mentioned in the previous section, Transaction level Modeling (TLM)
abstracts the communication between modules to physical interconnect indepen-
dent transactions. The SystemC TLM 2.0 standard has become widely adopted in
the Electronic System Level (ESL) industry.

4.3.1 Untimed (UT)

 The UT model does not utilize the concept of time. It can be used to count events
such as instructions. Any transactions are modeled as taking zero time. Untimed
models tend to be used for system verifi cation, system specifi cation and SW devel-
opment in the case of virtual platforms. The models are procedural with the inter-
faces communication being based upon transactions.

4.3.2 Loosely-Timed (LT)

 The LT model includes suffi cient timing detail for correct functional behavior. This
class of model is used to boot an Operating System and to run multi-core systems.
Timing is used at the level of individual transactions with each transaction having a

4.3 Classes of SystemC Models

18

‘begin’ and ‘end’ timing point. Loosely timed models are used for verifi cation and
for software development in the case of virtual platforms. The models are event/
transaction driven without clocking information.

4.3.3 Approximately Timed (AT)

 AT models are also referred to as cycle-approximate models. Approximately timed
SystemC models are used for performance analysis, SW development on virtual plat-
forms and for architectural exploration. The models break down transactions into a
number of phases corresponding to a HW protocol. A transaction will typically have
four timing points, although the number of timing points can be extended.

4.3.4 Cycle Accurate

 SystemC cycle accurate models have one to one correspondence with the RTL
implementation at the cycle level. Cycle accurate models are used for verifi cation
and very accurate performance analysis and modeling. They are Register Transfer
level (RTL) models that are timed to clock events.

4.4 Software Development Using Virtual Targets

 Virtual targets are a software model of the processing system. They are typically
developed in SystemC and are provided by the FPGA vendor. The goal of the virtual
target is to allow software code development for a target system prior to the avail-
ability of the FPGA devices, i.e. for early adopters of new FPGA technology.

 Virtual targets are used by SoC chip designers as part of the architecture develop-
ment and exploration cycle when designing a processor based chip. For the pur-
poses of designers with FPGA devices, the FPGA vendor will have already designed
the processor subsystem, so this aspect is not applicable.

 Developing application software for embedded projects is typically the bottleneck
in the system development process and requires the most engineering resources.
The Virtual Target enables engineers to start their software development early, so
that they can maximize their productivity and get to market quickly. The real
 advantage is the enablement of functional verifi cation of the HW/SW interfaces,
e.g. drivers. Low level SW development can be validated early.

 It can also be used to determine which functions should run in hardware versus
software.

 After completing system partitioning, which involves determining what will run
in software versus hardware, it is possible to develop the software drivers and to

4 System Modeling

19

functionally verify them on the Virtual Target. Once this is completed, the hardware
IP is developed and the FPGA devices are available, the user can then port the
design and code over to the actual SoC FPGA device for timing closure, perfor-
mance optimization and further application code development.

4.5 SystemC Basics

 In this section we will examine the basic syntax of SystemC and look at how a soft-
ware program and a hardware program are created in SystemC.

 The function sc_main() is the SystemC equivalent of the function main() in a C/
C++ program. Every C/C++ program has a main() function and every SystemC
program where the SystemC library is declared has a sc_main() function(). It is the
entry point for the application. The use of the SystemC library is declared using the
include statement, #include “systemc.h”.

 Figure 4.1 shows the SystemC version of the classic “hello world” program.
 The hello world example shows the similarities between SystemC and C/C++.

The main difference is that the main() function is replaced with sc_main() and
there are SC_MODULE and SC_CTOR functions. In order to explain their pur-
pose, we will look at a more hardware centric program. The example shown in
Fig. 4.2 describes a SystemC header fi le for a representation of a basic 8-bit up/
down counter.

 Fig. 4.1 “Hello World” in
SystemC

4.5 SystemC Basics

20

 It is common practice to place the port defi nitions and process declarations inside
a header fi le. These could appear inside the program fi le (.cpp fi le) for a module
but would make the fi le very long. In the header fi le shown in Fig. 4.2 it contains
the port defi nitions, port declarations and sensitivity lists for the processes. This
 particular design is a cycle accurate model, i.e. it resembles an RTL implementation
of an 8-bit up/down counter.

 Fig. 4.2 SystemC model of an 8-bit up/down counter(updown.h)

4 System Modeling

21

4.5.1 SC_Module

 Every design consists of a class or module ‘SC_MODULE’ of name ‘module name’.
In the example in Fig. 4.2 , SC_MODULE is updown. Modules provide the ability
to describe the design structure. They typically contain processes, ports, internal
data, channels and possibly instances of other modules. Modules are the building
blocks of SystemC designs and are much like entities in VHDL, modules in Verilog
or a class in C++.

4.5.2 Ports

 Ports are objects through which a module can communicate with other modules or
with channels. Ports can be single-directional (in, out) or bi-directional.

 Channels defi ne how the functions of an interface are implemented.

4.5.3 Process

 Every module should have at least one process or method which gives the function-
ality of that particular module. All processes are conceptually concurrent. In the
header fi le in Fig. 4.2 , two processes are declared using the void statement. They are
behaviour and result_to_terminal.

4.5.4 SC_CTOR

 Every module should have a constructor ‘SC_CTOR’. The constructor is used to
create the hierarchy, declare sensitivity lists for processes and perform initialization.

 The constructor (SC_CTOR) calls the process. In this case it calls the process
using SC_METHOD.

4.5.5 SC_METHOD

 SC_METHOD and SC_THREADS are the backbone for modeling hardware. SC_
METHOD processes are triggered by events and execute all of the statements in the
method sequentially.

 In the example in Fig. 4.2 , the process “behaviour”, which is called by SC_
METHOD is sensitive to the positive edge of clk and the positive edge of rst.

4.5 SystemC Basics

22

 The code that describes the behavior for the updown counter is in a fi le called
updown.cpp that is shown in Fig. 4.3 .

 The code shown in Fig. 4.3 describes the functionality of the processes declared
in updown.h. The code must start with #include updown.h to reference the port defi -
nitions and process calls in the header fi le. The input ports are read from and written
to using the .read() and .write() constructs.

 One of the things to notice about this model is that it does not include the func-
tion sc_main. This is because the design is a module that will be compiled as part of
larger program.

 Fig. 4.3 Updown counter
(updown.cpp)

4 System Modeling

23

 In order to get meaningful results from the model, it is necessary to apply stimulus.
The program that links the testbench (stimulus) with the counter model will include
the sc_main() function.

4.5.6 SystemC Tesbenches

 Much like in traditional RTL design, you need a testbench to verify the functionality
of your design. The concept is similar to RTL simulation, but the terminology is
slightly different. A diagram of a SystemC testbench is detailed in Fig. 4.4 .

Driver

Stimulus Response

DUT Monitor

 Fig. 4.4 Diagram of a
SystemC Testbench

 In the diagram in Fig. 4.4 , there are three blocks: Design Under Test (DUT),
driver and monitor. Together, they create the SystemC testbench. For the counter
example design in Fig. 4.2 , the module updown is the DUT, i.e. the design to be
tested. The driver program generates the stimulus that is applied to the inputs of
the DUT, the same as in a traditional simulation testbench. The monitor block is a
program that monitors the output of the DUT and captures the results. By compar-
ing the output with the expected output for the given stimulus, it is possible to
determine if the design is functionally correct.

 In the simulation of the 8-bit updown counter shown in Figs. 4.2 and 4.3 ,
the main.cpp program includes the driver and the DUT. There is no monitor that
performs a comparison of the actual result versus expected result. Instead, the
results are written to a Value Change Dump (.vcd) fi le.

 The complete program is shown in Fig. 4.5 .
 The main() program instantiates all of the modules to create the executable

specifi cation. In the program that is shown in Fig. 4.5 , the program main() instanti-
ates the module updown and connects it up to the signals in main() that provide
the stimulus and monitor the outputs. It contains a section of code that creates a .vcd
fi le called updown_wave.vcd. This records the values of the signals throughout the
simulation and fi nally it includes the stimulus.

 The most common way of compiling a SystemC program is through the use of a
“make” fi le. As this is a very simple program, it can easily be run using a simple
shell script on Linux or batch fi le on windows.

4.5 SystemC Basics

24

 Figure 4.6 shows a shell script for compiling the program on Ubuntu 12.04 Linux.
 g++ -I. -I$SYSTEMC_HOME/include -L. -L$SYSTEMC_HOME/lib-linux

-Wl,-rpath,$SYSTEMC_HOME/lib-linux -o upout updown.cpp main.cpp -lsys-
temc –lm

 Figure 4.6 : Shell script to compile the program.
 The script calls the GNU C++ compiler to compile the C++ programs updown.

cpp and main.cpp. Note that the reference to $SYSTEMC_HOME will be dependent
on your installation of the SystemC libraries. This script creates an executable called
upout. The executable ‘upout’ is effectively an executable specifi cation.

 Fig. 4.5 Main program that simulates updown counter

4 System Modeling

25

 When the executable is run, it will write the results shown in Fig. 4.6 to the
terminal as specifi ed in the ‘result_to_terminal’ SC_Method in updown.h.

 The executable also writes the results of the simulation to a .vcd fi le as specifi ed
in the program main.cpp. The .vcd fi le can be imported and displayed in standard
simulators . Alternatively there are free .vcd viewers available for download, such as
Waview Fig 4.7 .

Fig. 4.5 (continued)

4.5 SystemC Basics

26

 Fig. 4.6 Result on terminal after running executable

4 System Modeling

27

Fig. 4.6 (continued)

4.5 SystemC Basics

28

 This is all that this chapter will cover on system modeling. There are a number of
example programs and tutorials on SystemC available for free download on the
web.

 Fig. 4.7 .vcd view of simulation result

4 System Modeling

29© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_5

 Chapter 5
 Resource Scoping

 Abstract This chapter is broken down into three main sections. The fi rst section
deals with engineering resources. Whether you use internal resources or whether
you use external contractor resources.

5.1 Introduction

 This chapter is broken down into three main sections. The fi rst section deals with
engineering resources. Whether you use internal resources or whether you use
external contractor resources.

 The second section deals with IP. Do you have IP within the Company that you
can reuse, or do you use third party IP?

 The third and last section deals with device selection. This details how to selecting
the right FPGA with the right resources for your application. It covers the various
techniques that you can use to help choose the right device to enable you to meet
your project schedule.

5.2 Engineering Resources

 The assignment of engineering resource to the project is a project management task.
It is key that you adequately resource the resource with the appropriate personnel for
the tasks in the project. When you are working on the FPGA its not only FPGA
designers that you need to consider, you need to look at the team of engineers that are
required to create the design. So, from a hardware engineer’s perspective you look at
who are the engineers that are going to work on the FPGA design. There are the RTL
designers, there are the engineers with the experience integrating the design in the
FPGA design software and the engineers with design verifi cation experience.

 In some Companies these roles will be performed by the same individual, or the
same pool of engineers. However, depending upon the size of the design or the
complexity of the project you may well require a team of engineers with different
skill sets from the different engineering disciplines. From a hardware engineering

30

perspective, you also need to look at the board design, so you will to need to ensure
that you have board layout engineers on the team. They will have to work close with
the FPGA designers, so you want to make sure that the members of the team have a
good working relationship. If you are creating a high speed design, particularly if
you are looking at design with high speed transceivers or high speed memory inter-
faces you are likely going to need someone on the team with SI experience.

 If your design uses a soft processor, then you will also want software engineers
on the team. Even if the FPGA is interfacing with a microprocessor, you still want
the software engineers to be available for when you start to debug the design on the
board. You also may need engineers with other system specialties on the team. For
example if your design contains DSP algorithms the individual that created the
algorithm may not actually be a hardware engineer, thus will not be implementing
the design in the FPGA. You need to ensure that the Specialist is available for advice
during the design cycle and for debug of the design after implementation. Similarly,
for other IP areas of excellence; examples being the main interface protocols such
as PCIe or GigE. (Add in IP reuse).

 An important decision in the assignment of engineering resources is the decisions
as to what are you going to implement with the engineering resources that exist in the
Company versus what will you implementation with external consultants.

5.3 Third Party IP

 You need to look at what third party IP is available and will be used in the design.
Similarly what internal IP will be reused, do you have IP available from other projects
targeting this FPGA family. Or if you are using third party IP you will probably want
to look at what are you getting with the IP, do you get a consultancy service or what is
your level of confi dence that the IP will meet your exact requirements in terms of area,
speed and functionality.

5.4 Device Selection

 There are seven main factors that infl uence your choice of device. These are:

 1. Specialty silicon features. Are there particularly capabilities that you need that
dictate that you use a particular FPGA because they are not available in other
FPGA devices.

 2. Device density. How much logic will your design require? What is the mix of
logic to memory blocks to dedicated multiplier blocks that is needed for your
application. This will have a big impact on the price of the device that you need.

5 Resource Scoping

31

 3. Speed requirements. This will impact the family that you choose and the
speed- grade that you need to use. Once again this will have a large impact on the
price of the device.

 4. Pinout of your device. What kind of package do you require? The choice of
package type and the number of I/O in your design will impact both the FPGA
cost and the board design. The package type will also infl uence the signal integrity
and performance of the I/O in your design.

 5. Power. What is your power budget for the budget and which device is going to
help you meet the budget?

 6. Availability of IP.
 7. The availability of silicon. You want to make sure that production silicon is

available when you need it.

 So these are the areas that we need to look at.

5.4.1 Silicon Specialty Features

 The fi rst area that you want to look at is the dedicated resources on the device.
Does your design require high speed serial interfaces and if so, how many channels
and at what performance. Many of the FPGA devices that are available together
come with transceivers. The performance of transceivers tends to fall into three
ranges, up to 3.125 Gbps, up to 6.5 Gbps and 10 Gbps+. These are important fac-
tors in the decision process as they impact both the performance of your design and
the cost of the FPGA. You also need to look at your bandwidth requirements. Both
the speed of the transceivers and the number of transceivers will determine your
bandwidth. Take for example the communications market; if you are trying to
implement 100 Gbit Ethernet, you will likely want a minimum of ten channels of
10 Gbps transceivers.

 Similarly, if you are completing a design which is math intensive such as a
DSP encryption algorithm or radar application, you will require a device with a
large number of DSP blocks and adequate RAM blocks to interface with the DSP
blocks. The confi guration of the DSP blocks is also important. The depth and
number of memory blocks will impact how much processing can be performed on
chip versus having to use external memory. Internal memory is important in DSP
for caching of processing results between stages of the processing algorithm. You
also need to look at both the number and confi guration of the dedicated DSP
blocks. What is the width of the multiplication operations that you need to per-
form? If the DSP block does not have suffi cient width, you will have to start
combining blocks with logic. This can impact the performance of the operation
that you are performing.

5.4 Device Selection

32

 How many internal RAM blocks do you need? This is becoming increasingly
more important as we look at designs that make use of soft processors. Being able
to use internal memory blocks as cache can signifi cantly increases the performance
of the soft processor. The sizes of block RAM that is available is also important.
If your design will use a lot of FIFOs, it’s the number of RAM blocks that are
 available that matters and not the amount of bits available. FIFO’s are notorious for
wasting memory bits when implemented in memory blocks.

 You also need to consider the debug of your design. Internal block memory is
often used in the debug cycle for storing the data from embedded logic analyzers
before examination.

5.4.2 Density

 When selecting the density of the device, it is unlikely that you will be fortunate
enough to have the completed design to determine the size of device needed. You will
be choosing the device based upon previous experience. Many designs are based
upon previous generations of the design. This can be aid in the device selection pro-
cess. You should recompile the previous design or the portions that will be used at
your target FPGA family to get ballpark density estimates. If you have IP that you
will be using, compile it to add to your area estimates and if you are evaluating IP for
third party vendors, get an area estimate from the vendor. So, use the previous gen-
eration of the design, if it exists, add in the area requirements from IP and then using
your experience, add in how much additional resources will be used for the new
functionality. Once you have done this, add an additional 25 % on top. You should
always target a larger device than you think you will need; this is where the extra
25 % comes into the equation.

 You should always target a larger device than you think you will need. Designs
have a nasty habit of growing and you want to guarantee that the design will fi t in
the targeted device and be able to close timing. You don’t want to be struggling to
meet timing in a 95 % utilized device or be put in the position of having to pull
functionality out of your system just to fi t in the targeted device.

 Another benefi t of using a larger device is that it can help you get to in-system
checkout quicker. If there is headroom in the device, the place and route software
will likely not have to try as hard to meet timing and will result in shorter compile
times. This benefi ts both the hardware and software engineer. The sooner that you
have functional silicon, the sooner the software engineer can accelerate his code
development process by trying it out on the targeted hardware. You can start the
debug of the hardware and software much earlier in the design cycle.

 Another benefi t of the additional headroom in the device is that it makes it easier
to accommodate late ECOs in the device or accommodate growth in future versions
of the design after production.

5 Resource Scoping

33

 After you have the design working functionally on the device and if there is
signifi cant unused resources on the device, you can retarget the device to a smaller
device to reduce cost and not have to worry about impacting the project schedule.
Some of the FPGA vendor design tools have features that enable you to migrate
between device densities in the same family while maintaining the same pin-out.
These features restricts you to using only the I/O resources that exist across the
density ranges selected in the targeted family; the benefi t being that you can retarget
your design to a larger or smaller density device avoiding a board re-spin. If this
feature is not available in your FPGA vendor software you can design the capability
in manually by referencing data sheets and application notes. The manual process
is painful and prone to user error, but is worth the investment if the automated fl ow
is not available.

 The key point is that you need to ensure that the ability to migrate between
device densities while maintaining the pin-out capability is available in the FPGA
family that you are considering for your application.

 The recommendation is that you select a device that can migrate up in density to
accommodate future design growth and can migrate down in density to allow for
possible cost reduction.

 This functionality is very useful if you intend to ship variations of your product
at different price points with changes in the functionality, but the same board is
shipped. A single design can be created and functionality removed from the FPGA
at the lower price points. Normally the same FPGA is shipped on the same board
with a different programming fi le based on the reduced functionality of the design.
By maintaining the same pin-out you can now remove the functionality and retarget
the design to a smaller device, further cost reducing your bill of materials.

5.4.3 Speed Requirements

 This can be determined from your previous design experience. You should compile
designs or design blocks that you already have to get an indication of the perfor-
mance that they get in the targeted device. This can be used as a good best case
indicator as to what you can expect from other design blocks.

 The FPGA vendor’s data sheets are also a good source of information on perfor-
mance. They will tell you the absolute maximum that you can hope to get in terms
of clock and I/O performance. While these numbers are achievable, it is likely to
increase your timing closure cycle achieving these numbers, thus you should back
off the numbers by approximately 15 % to give you a margin of safety for timing
closure.

 The choice of speed-grade will impact the price of the device. When choosing
device, we recommend that you always start with the fastest speed-grade to enable
you to get the device on the board as soon as possible to start software debug and

5.4 Device Selection

34

hardware functional check out as early as possible. If the design meets timing com-
fortably in the fastest speed-grade, you will benefi t from faster compilations as the
place an route engine does not have to try as hard to close timing. There is the option
to retarget the design to a slower device after the functionality is close to complete,
for cost reduction purposes.

5.4.4 Pin-Out

 The type of interfaces that you need for the design will impact the number of pins
required and the package type. You need to understand the I/O standards that you
need, the requirements for drive strength. How many pins do you need? What are
the power supply requirements? A good way of determining these requirements
without the design is by looking at what your device will interface with. You also
need to look at the signal integrity requirements for the design. Does your design
have interfaces with a large number of pins that are likely to toggle simultaneously;
if so, will you have SSN issues? It is worth noting that wirebond packages typically
have worst signal integrity and I/O performance than fl ip chip devices.

 It is recommended that when looking at the pin count for your design, that you
reserve pins for in-system debug. The target should be 15 % of the device pins.
They can be used to route internal signals off-chip for analysis with a logic
analyzer.

 The pin assignments need to be planned and verifi ed as part of the device selec-
tion process. In the past, designers would use Excel spreadsheets to model the target
device. This provides an estimation that can work but does not consider the perfor-
mance required of the interfaces. With the complexity of modern FPGA devices, it
is hard to model the various rules and restrictions accurately. The good news is that
it is possible to verify the pinout without the fi nal functional RTL. This is possible
providing all of the interfaces and the clock network is defi ned.

 The best approach to doing this is to start with an existing design. If your project
is a derivative of this design, you can edit it to include all of the I/Os and interface
logic that you will have in the fi nal design. If you cannot start with an existing
design, then it is necessary to create a dummy or skeleton design.

 The dummy design should consist of the top-level design fi le that includes all of
the ports for the design, the interface logic including all clocks and dummy logic
such as shift registers to prevent logic optimization of the interface logic and to
enable clock tree modeling. This dummy design needs to be able to successfully
compile in synthesis to enable the interactive creation of the I/O assignments. The I/O
assignments can also be added as a Tcl script or using a .csv fi le Fig. 5.1 .

5 Resource Scoping

35

Create top-level
design file

Configure Interface IP

Make Pin
Assignments

Run Analysis &
Elaboration

Create SDC Timing
Assignments

Run I/O Assignment
Analysis

Errors

Run Place & Route

Timing Errors

Done!

No

Yes

No

Yes

Fix Problem
(Device Selection/Pin
Assignments/Timing
Assignments/ Clock

Tree Planning)

 Fig. 5.1 Design fl ow for determining device has necessary pins

5.4 Device Selection

36

 It is also necessary to create the I/O and clock timing constraints for the dummy
design to ensure that the device can meet your I/O system timing requirements.

 The accuracy of the I/O Assignment analysis will depend on the completion
level of your design. The more complete your design, the more accurate the analysis.
It is recommended that you perform a full compilation and a timing analysis using
the timing analyzer to verify I/O timings with respect to externally connected
components.

 As part of the dummy design, you should create instances of the interface IP for
the design and structurally connect them in the top-level design fi le. The external
ports of the interface pins can then be assigned to device package pins and have the
other I/O related assignments such as I/O standards created for them. It is also pos-
sible to connect the ports between multiple IP instances to create internal shared
networks such as clocks or reset signals.

 The FPGA design software also includes a Pad View. The Pad view is very useful
for planning the clock resources. It displays the PLL and DLL resources available
in the target device and enables the assignment of clock signals from your design
to a specifi c clocking resource. The assignment of clock signals to a specifi c PLL or
DLL, provides more control over the design implementation Fig. 5.2 .

 Fig. 5.2 View of the pad view

 Many FPGA devices provide the ability to migrate the pinout across device
densities in the same device package. This provides the ability to migrate the design
to a larger device or smaller device while avoiding a board re-spin. You should con-
sider using a migration device if there is a possibility that the design could grow
beyond the density of the current device. Alternatively, if your design is smaller than
expected you could save money and migrate to a smaller lower cost device.

5 Resource Scoping

37

 The Altera pin planner tool provides a migration view that ensures that the
I/O assignments will be valid in any migration devices selected for the project.
The device migration view prohibits the use of the pins that cannot be migrated
across devices.

5.4.5 Power

 You know the power budget for your design based upon the specifi cation. How many
power supplies will be required for the device? Most modern FPGA devices require
multiple power supplies as they have separate power planes for the core, I/O’s and
often the transceivers. The more power supplies that are required, the more expensive
the component cost on the board and the more complex the board design.

 Once again, your previous FPGA design experience will come into play. Chapter 7
in the book that is dedicated to power estimation; it will help master this
challenge.

 To summarize, it is recommended that you use the FPGA vendor’s power estima-
tion spreadsheet together with your previous experience to determine the power
that your design will consume.

5.4.6 Availability of IP

 IP may be available for particular family of devices but may not have been ported to
or verifi ed on the particular FPGA family that you are considering using. This is
often the case with devices that are new to the market. Interface IP in particular is a
challenge for devices where the silicon has been available for less than 6 months.
The devices are normally not fully characterized thus the timing models are prelimi-
nary. High performance interface IP cannot be guaranteed to close timing until the
models are fi nal.

5.4.7 Availability of Silicon

 If you have a project on the bleeding edge of technology, the chances are that you
will be considering using the latest FPGA devices on the market. You will also
likely be considering the latest FPGA device knowing that in the future, the pric-
ing will be more favorable. If the design will be going into production in 12
months but you know that your volumes will be shipping for 5+ years, you will be
hitting volume production when the FPGA process has matured and pricing is at
its lowest.

5.4 Device Selection

http://dx.doi.org/10.1007/978-3-319-17924-7_7

38

5.4.8 Summary

 We really recommend that when choosing device that you quickly stitch together
dummy designs effectively to enable the process of successful device selection. You
are going to have a good idea of what type of interfaces you are going to need on
your device. This will help you to determine the pin requirements, the I/O planning
requirements. By creating the dummy design you get an idea of the utilization that
you can expect to get out of the device in terms of resources. It will also provide a
good guide to the performance that you can expect for your type of design. It also
enables you to perform an early power estimate for your design. The creation of a
dummy design is instrumental in selecting the appropriate device. The dummy
design should include any known IP blocks that you are going to be used in the
design.

5 Resource Scoping

39© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_6

 Chapter 6
 Design Environment

 Abstract The FPGA design environment is best expressed as a combination of all
of the tools, techniques and equipment that is required to successfully complete a
FPGA system design. The design environment in each Company is usually some-
what unique in that it has been customized to meet the needs of the Company.
However, there are some common elements that exist across all design elements.
The goal of this chapter is to make you aware of the bare minimum requirements for
a design environment that will enable the successful creation of an FPGA design on
time. The design environment can be represented by fi ve main elements.

6.1 Introduction

 The FPGA design environment is best expressed as a combination of all of the tools,
techniques and equipment that is required to successfully complete a FPGA system
design. The design environment in each Company is usually somewhat unique in
that it has been customized to meet the needs of the Company. However, there are
some common elements that exist across all design elements. The goal of this chapter
is to make you aware of the bare minimum requirements for a design environment
that will enable the successful creation of an FPGA design on time. The design
environment can be represented by fi ve main elements.

 1. A scripting environment.
 2. Interaction with Version Control software.
 3. Use of a problem tracking system.
 4. A regression test system
 5. Data collection for analysis

6.2 Scripting Environment

 One of the challenges for engineers that are designing with FPGA devices is when
to use a scripted design fl ow versus when to use the GUI in the FPGA design
environment?

40

 Scripts are ideal in the following scenarios:

 1. Creation of projects
 2. Creation of assignments for the design
 3. Compilation of designs. In particular if you utilize a compute farm environment.

A compute farm environment enables you to fi re off batch jobs to the server for
compilation.

 4. Functional verifi cation and regression testing.
 5. Integration with version control software.

 This covers most of the FPGA design fl ow. It may appear that it is recommended
to use scripting for every part of the design fl ow. This is partially true. You really
should deploy scripting for any repetitive tasks. It helps other users to easily repro-
duce your environment and results.

 So, when is it recommended to use the GUI?
 The GUI should be used for the parts of the design fl ow that are interactive. Areas

where your actions will change based upon the results that you get. Examples would
be the following scenarios:

 1. In-system debug of your design.
 2. Floorplanning operations. This could be looking at the details of the fl oorplan to

gain a better understanding of the device architecture or the resources that are
available. This could also be creating a physical layout of your design in the
fl oorplan in a team based design environment.

 3. Getting started with new tools. The GUI provides a great way for setting up your
fi rst project and uncovering the features and capabilities of the tool. Once familiar
with the tool, it is recommended that you move to a scripting environment.

 Through the use of scripting you can save time and effort on repetitive tasks.
One of the big benefi ts is that it simplifi es the passing of tasks between team members
in a team based design. If someone is taking over a project or design block, from
another engineer; Rather than having to write detailed instructions describing what
needs to be done to get your results, you give them the script which is self docu-
menting. The new engineer reads the script, runs the script and they get started from
where you left off on the project. Nearly all EDA tools that are part of the FPGA
design fl ow have scripting interfaces, both a command-line interface for creating
batch fi les and assignment scripting for creating settings in the project. Most of the
EDA industry has standardized on Tcl as the scripting interface for tool
assignments.

 Make fi les are commonly used in the software programming world to compile
software projects that consist of multiple programs. They help to automatically
manage and build projects. This approach of project management and compilation
can also apply to a scripted hardware design fl ow.

6 Design Environment

41

6.2.1 Make Files

 Make is a program that looks for a fi le called makefi le and executes the commands
in the makefi le. A major benefi t that is provided by ‘make’ is its ability to interpret
dependencies and to understand timestamps on fi les to determine what action needs
to be performed next. In the case of FPGA designs, this can reduce the number of
complete compiles that need to be performed. An example in a FPGA design fl ow
would be the scenario where the user changes a fi tter option. Rather than performing
a complete compile from the start, through synthesis, ‘make’ can determine that
synthesis does not have to happen and only run the fi tter and subsequent steps. This
will reduce the compile time for the project. An example makefi le for a Quartus
project is shown in Fig. 6.1 .

 The Makefi le in Fig. 6.1 works with the chiptrip project which is shipped as part
of the tutorial designs with the Quartus II software.

 Fig. 6.1 Example make fi le

6.2 Scripting Environment

42

 There are several key elements to this makefi le. It starts by declaring variables that
are used to specify the names of the source fi les, assignment fi les and the projects.
They are assigned before writing the targets and are referenced using the dereference
operator $(VARIABLENAME).

 It also includes the targets. Targets are the basis of a makefi le. Targets convert a
command-line input into a series of actions. For example, the ‘clean’ target in Fig. 6.1
will perform the command-line operation ‘rm -rf *.rpt *.chg smart.log *.htm *.eqn
*.pin *.sof *.pof db’, effectively removing a .rpt, .chg, smart.log, .htm, .pin, .sof. .pof
fi les and the db directory.

Fig. 6.1 (continued)

6 Design Environment

43

 The real benefit that targets provide is that they can have dependencies.
The dependencies can be targets or fi les. In the case of fi les, the target commands
will only be executed if any of the dependent fi les have changed since the last time
the command was executed. If the dependency is another target, then that target’s
commands will be evaluated in the same way.

 When you type “make” without specifying a target in the corresponding makefi le,
it executes the fi rst target in the makefi le. In the makefi le example in Fig. 6.1 , this
will run the “all” target.

 The “all” target will run the operation “smart.log $(PROJECT).asm.rpt
$(PROJECT).sta.rpt”.

 The appropriate targets are called along with the substitutions for the variables.
 The command-line commands that are run will be:

 quartus_sh –determine_smart_action chiptrip chiptrip.asm.rpt chiptrip.sta.rpt >
smart.log.

 quartus_sh –prepare chiptrip.
 quartus_sh –prepare is a Quartus command to create or open a project and make

assignments in order to prepare the project for compilation. It is run with a
dependency on the command quartus_sh –determine_smart_action.

 The quartus_sh –determine_smart_action command is a Quartus command that
determines the earliest command-line executable in the compilation fl ow that
must be run based on the current project constraint fi le (.qsf), and generates a
change fi le (.chg) corresponding to that executable.

 For example, for the script in Fig. 6.1 , if quartus_map must be re-run, the deter-
mine_smart_action command creates or updates a fi le named map.chg. Thus,
rather than including the .qsf in each makefi le rule, it includes only the appropriate
change fi le.

 If the chiptrip directory only includes the Verilog source fi les, then typing ‘make’
at the command-line will run the fi rst function in the ‘make’ fi le which is ‘all’.

 This will create the project and then run the full compilation fl ow with the targets
specifi ed in the makefi le script i.e. runs quartus_map targeting the Cyclone V family
and runs quartus_fi t for the 5CEBA2F17C6 device. It then runs quartus_sta and
then quartus_asm.

 If you run ‘make’ again from the command-line, it will fi nish instantaneously
with the message “Nothing to be done for ‘all’. This is as expected as there were no
changes to any of source fi les or constraint fi les.

 Make provides the fl exibility of being able to run the individual targets. For
example, in order to remove all of the fi les that is created by the script, run ‘make
clean’ from the command-line. This calls the clean function in make Fig 6.2 .

6.2 Scripting Environment

44

 If you now run ‘make fi t’, the make fi le determines that there is no change fi le
(map.chg) available for quartus_map and will run quartus_map and then quartus_fi t.

 If you then run ‘make’, it determines that there are no changes that require
quartus_map or quartus_fi t to run and runs quartus_asm and quartus_sta.

 As can be seen, the use of makefi les can greatly improve designer productivity
by only compiling the parts of the fl ow that needs to be compiled. It also provides
designers with the ability to control what parts of the fl ow that they want to run
through running make with the appropriate function, e.g. in order to only run quar-
tus_map to get the signal names needed to create SDC assignments, designers can
run ‘make map’.

6.2.2 Tcl Scripts

 Tcl scripting enables custom analysis, automation of repetitive tasks, the creation
of a reproducible design fl ow and compilation results.

 Fig. 6.2 Result from running ‘make clean’

6 Design Environment

45

 Fig. 6.3 Example of a custom analysis Tcl script

6.2.2.1 Custom Analysis

 The use of Tcl scripts makes it easy to create reports that contain only the infor-
mation that you need. Figure 6.3 is a simple example of a script that examines the
TimeQuest Timing Analysis Summary in the compilation report fi le and prints to
screen a message on whether the design is passing or failing timing and writes out
the worst case slacks.

 The Tcl script in Fig. 6.3 works on the chiptrip project that is used in Sect. 6.2.1
on ‘make’ fi les. The script loads the Quartus Tcl package report, opens the project
and loads the report fi le. After this it determines the number of columns in the
Multicorner Timing Analysis Summary report panel. It loops through all of the col-
umns getting the worst case slack. If any of the slacks are negative, it sets the
variable failing to true.

 It writes the worst case slacks to the terminal along with a failing message.
This script would be run from the command-line using the command “quartus_sh –t
ex3.tcl”, where ex3.tcl is the name of the script Fig. 6.4 .

6.2 Scripting Environment

46

 Fig. 6.4 Result from running the script in Fig. 6.3

6.2.3 Automation

 Tcl scripts can be used to eliminate manual that have to be performed using the
GUI. An example is creating a new project and making pin assignments. It is very
easy to create a Tcl script that creates a new project and to reuse this script in future
projects by changing the names of the fi les and project, etc.

 An example new project script is shown in Fig. 6.5 .

6 Design Environment

47

 The new project script that is shown in Fig. 6.5 creates a new project called chip-
trip with a revision name rev1. If a project already exists, it will be overwritten.
After this it makes device assignments, specifi es the source fi les, the name of the
top-level design and then sources another Tcl fi le called my_pins.tcl. The fi le my_
pins.tcl contains all of the Tcl commands to assign the pin locations, I/O standards
and drive strengths, etc. The my_pins.tcl fi les is not shown. It is common practice in
industry to include the pin assignments in a separate fi le for portability to other
projects. One advantage of using Tcl fi les as opposed to the qsf constraint fi le for
compilation is that it plays better with version control software than the constraint
fi les that are time stamped even if no changes are made.

6.2.4 Easier Project Maintenance and Documentation

 The scripts are self-documenting and make it easier for other users to recreate the
design environment that you have used by simply running a script as opposed to
needing a detailed document describing each individual GUI step that needs to be
performed and the execution order. This adds up to easier project maintenance.

 Regression testing environments are automated and run at regular times. The use
of scripts enables the automation of the compilation of your project as part of the
regression test environment and the automation of the extraction of the relevant
information from the report fi les.

 Fig. 6.5 Script to create a new project

6.2 Scripting Environment

48

6.3 Interaction with Version Control Software

 Revision Control software provides a record of the history of changes to your
design. When you are designing a FPGA, it is necessary to understand the minimum
set of fi les that is needed for check-in and check-out of the version control system.
You need to minimize the number of fi les because the more fi les that you check-in,
the more storage you will need and the more complex the operation will become.
Each time you make a change to your design and need to check the FPGA project
back in. A good scripting environment helps to simplify this process. The initial set-up
of the scripts and the identifi cation of the fi les that need to be checked in and out
may be complex. However, once the scripts are established, the scripts can be shared
among he engineers that are working on the project. If you can recreate or describe
your project with a script, the version control interaction becomes much simpler.

 Different FPGA design tools require different sets of fi les to be placed under ver-
sion control in order to recreate the results; so the set-up that you use for one FPGA
vendor may differ signifi cantly than the set-up used for another. The principle how-
ever is the same. If the tools use text fi les, the interaction with version control systems
is much simpler than tools that use binary fi les to store critical information.

 To date, FPGA vendors have done a poor job in documenting which fi les need to
be checked into version control software to enable you to recreate the results of the
previous compilation. This process becomes more complex if you use multiple tools
in the FPGA design fl ow. It is recommended that you contact the vendors of each of
the tools to understand their recommendations.

 One of the major infl uences on how you use a version control system is the direc-
tory structure that you are using for your design environment. This comprises of the
location of the RTL design fi les, location of the RTL and IP libraries, “c” code and
programming image if you are using a soft processor, simulation testbenches, loca-
tion where the results of your regtests are stored and the scripts to compile the design
in the FPGA software or in other EDA software. You need to be able to link all of these
elements together successfully using the correct versions of the fi les.

 A recommended structure is shown in Fig. 9.8 of Chap. 9 , Team Based Design.
 You want to avoid the situation were you are trying to debug the design in the lab

and you are using the wrong programming image for the FPGA, or you are loading the
soft processor with old source code, or a designer is making changes to an out of date
version of the RTL. Proper use of version control will provide an environment that
prevents these scenarios from occurring. You also want to be able to store the report
fi les in version control as the report fi les document the status of the design. This pro-
vides valuable information to other designers that work on the same project.

6.4 Use of a Problem Tracking System

 A problem tracking system is not a capability that you get from your FPGA vendor.
However, I can guarantee that it is a tool that FPGA vendors use as part of their
engineering and product planning process. Problem tracking systems tend to be

6 Design Environment

http://dx.doi.org/10.1007/978-3-319-17924-7_9#Fig8
http://dx.doi.org/10.1007/978-3-319-17924-7_9

49

homegrown systems to meet the needs of the individual Company. In fact many of
the EDA tool and FPGA vendors have a customer interface to their systems for
submitting problem reports.

 There are commercial systems available on the market. These systems are essen-
tially database system with a customizable front-end to meet your Companies
needs. In your design environment, you will use the system to track all known issues
with your FPGA design. It enables the design engineers to document problems with
the design as they occur. This provides the team with an instant status on the design
and can be used to track the stability of the design throughout the design process.
It makes the other members of the team aware of the problems with you design
avoiding the case were they are trying to debug a problem in their part of the system
that is being caused by your design. By looking at this data it can be determined
whether to use a particular project build or whether to revert to an earlier build that
did not exhibit the problems that were introduced into that particular build.

 It also enables users to document the closing of issues. This enables the team to
collaborate on solving the issues in the design. This is very helpful in a team based
design environment that spans multiple time zones.

 As mentioned, the system can be used to provide a snapshot of the health of the
project. To do this, it needs to be linked to the regression test system such that test
failures automatically fi le problems reports in the tracking system against the build
that is being tested.

6.5 A Regression Test System

 As part of your testing, the design engineers will create point tests to show that
the design meets functionality. It must be a requirement that you have a set of
tests that are run regularly on the design to provide a health check on the design.
These tests give you confi dence that as your design changes that you do not
 reintroduce old problems or break existing functionality. Regression tests are
discussed in more detail in the chapter on functional verifi cation.

6.6 When to Upgrade the Versions of the FPGA Design Tools

 One of the challenges that you will face if you have a design that spans more than
6 months is when to adopt new releases of the tools that are used in the FPGA
design environment. FPGA vendors typically have at least two major releases per
year plus a selection of service pack releases that include bug fi xes and timing
model changes. When should you freeze the version of the design tools that you
are using?

 This decision will be driven by where you are in the design fl ow. If you are in
the early stages of the design, then you should update to the latest release of the
FPGA design software unless you are aware of serious problems with the software.

6.6 When to Upgrade the Versions of the FPGA Design Tools

50

This will give you access to the latest bug fi xes and features in the software.
Normally there is some degree of compile time improvement in the major releases
of the FPGA design software.

 If your design is mostly complete and the version of the FPGA vendor software
that you are using contains the fi nal timing models for the devices that you are tar-
geting, then you should consider freezing the version of the design software that you
are using. An exception would be if you come across a bug in the design software
that impacts your design. This will likely require you to upgrade the design tools to
access the fi x to the bug.

 If your design is close to complete but the FPGA vendor timing models are still
preliminary you will have to upgrade the version of the design software once the
fi nal timing models become available. This can be problematic as it may require
you to upgrade the versions of the vendor IP blocks, possibly creating more work
for you; in particular in verifying the design. It is strongly recommended that you
verify your design against the production or fi nal version of the FPGA timing
models.

 Some of the FPGA vendors provide the capability to read a database from one
version of the design software in a later release of the software. Thus the design
does not have to be recompiled and only timing analysis rerun to verify that the
design still meets timing.

6.7 Common Tools in the FPGA Design Environment

 FPGA design Software. This comes from the FPGA vendor and includes the FPGA
Place and Route Software and Timing Analysis tools. The major FPGA vendors
also include RTL Synthesis, Advanced Timing Closure Features. On-Chip debug
and Floorplan Tools.

 FPGA Synthesis Software. This may come from the FPGA vendor or may come
form EDA synthesis tool vendors such as Synopsys or mentor Graphics. Most
FPGA synthesis tools support Verilog and VHDL. Some of the tools now support
SystemVerilog.

 Simulation tools. Some FPGA vendors provide simulation tools but by far the
majority of the tools that are used come from EDA tool vendors. The most popular
tools are Mentor Modelsim and Questasim, Synopsys VCS, Cadence Incisive and
Aldec Active HDL and Riviera Pro. Some of these tools include advanced capabilities
for assertion based verifi cation, detection of clock domain crossing, etc.

 Formal Verifi cation tools. These tools are not commonly used in FPGA designs
due to the restrictions that they place on the optimizations that can be performed
when using these tools in order to perform a successful verifi cation.

 Timing Analysis tools. There are timing analysis tools available from EDA tool
vendors. However, these are rarely used in FPGA design fl ows due to the availability
of timing analysis tools in the FPGA vendor supplied design software. We recom-
mend that you use the FPGA vendor timing analysis tools for FPGA timing analysis

6 Design Environment

51

as the timing constraints that are used for timing sign-off are also used by the place
and route software for optimization.

 It is recommended that the EDA timing analysis tools are not used for FPGA
verifi cation, but are used for board timing analysis.

 Board design tools. EDA tools are used for board design. These include the
board schematic tools, the board layout tools and the signal integrity tools. The
HSPICE and IBIS models that are used by the signal integrity tools come from the
FPGA vendors.

6.7.1 High-Level Synthesis

 Most of the tools in this space are based on designing in ‘C/C++’ and having the
code produce RTL or a netlist for an FPGA. The adoption of these tools in the
market has been slow. This is mainly because they have a spotty history of produc-
ing non-optimal results. These tools have matured a lot and are now gaining
momentum in creating design blocks for certain types of applications. The stan-
dardization of the OpenCL language for heterogeneous compute systems has
opened the door to solutions that provide a complete software design fl ow for a
complete FPGA design. This will be discussed further in Chap. 15 , high level design.
These tools tend to focus on the High Performance Computing Market and DSP
algorithm implementation.

 All of the offerings that are available are from EDA Companies.
 The second class of High-Level Synthesis is Model based design tools. These

utilize optimized libraries in the Mathworks Simulink environment. Their target
markets are military markets and Modem designs. These tools rely on the Mathworks
Matlab environment and are available from the main FPGA vendors and EDA
Companies.

6.7.2 Load Sharing Software

 This is software that is used to schedule jobs that are being processed on compute
farms. Load sharing solutions are heavily used in FPGA development, particularly
in script based design fl ows. There are commercially available software packages as
well as freeware. Some of the options in the FPGA software include a form of load
sharing software.

 Version Control Software. Version control tools are not considered EDA tools
per se, but are a major part of the design fl ow environment, Commonly used version
control software with FPGA designs are Clearcase, Perforce and PVCS.

6.7 Common Tools in the FPGA Design Environment

http://dx.doi.org/10.1007/978-3-319-17924-7_15

53© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_7

 Chapter 7
 Board Design

 Abstract In order to meet the fast performance and high bandwidth of today’s
system designs, FPGA devices are providing a large number of pins with increas-
ingly faster switching speeds. These higher package pin counts, together with the
fact that the devices support many different I/O standards and support different
package types, creates a challenge in successfully creating the FPGA pin-out effi -
ciently and correctly. The cost of a board re-spin, due to a problem with the pin-out,
is expensive in terms of both the cost of the board re-spin and the impact on the
project schedule.

7.1 Challenges That FPGAs Create for Board Design

 In order to meet the fast performance and high bandwidth of today’s system designs,
FPGA devices are providing a large number of pins with increasingly faster switching
speeds. These higher package pin counts, together with the fact that the devices
support many different I/O standards and support different package types, creates
a challenge in successfully creating the FPGA pin-out effi ciently and correctly.
The cost of a board re-spin, due to a problem with the pin-out, is expensive in terms
of both the cost of the board re-spin and the impact on the project schedule.

 FPGAs provide pin-out fl exibility by supporting many different I/O standards on
a single FPGA and by providing user control over drive strength and slew rate. This
fl exibility also results in complex rules for the creation of a legal FPGA pin-out and
impacts the termination requirements for the Printed Circuit Board (PCB).

 The high package pin counts create an EDA tool fl ow challenge in the manage-
ment of data between the board design software and the FPGA design software.

 Due to the complexity in designing high performance PCBs, the PCB design
cycle needs to begin early in the system design cycle. This creates a challenge in
aligning the fi nal FPGA pin-out with the board design cycle. Often the board layout
needs to be complete prior to FPGA design completion. In fact, it is becoming
increasingly common that the FPGA design and the board development are being
undertaken simultaneously and that for many user system designs, the board design
is often complete prior to the RTL code for the FPGA existing!

 Early in the design cycle, it can be diffi cult to predict the size of the FPGA device
that is required for the project. Most FPGA families have a technical solution to this

54

problem; they support pin migration between devices of different density in the
same package. Thus, it is advised that designers select a FPGA device that has sev-
eral densities in the same package. This creates the challenge for the board designer
in creating a pinout that is migratable across all the device densities. Once again,
help is at hand from some of the FPGA design tools via a feature that is often
referred to as device migration. Device Migration is the ability to transfer a design
from one device in an FPGA family to a different density device in the same device
family which has the same device package. This enables you to transfer a design
from the design’s target device to a larger or smaller device with the equivalent
pin- outs, while maintaining the same board layout and pin assignments. This is a
feature that can be selected in the FPGA vendor software when making the device
selection. This feature will prevent the user from making pin assignments to pins
that cannot be migrated across the different device densities. It is recommended that
you include this requirement as part of your design plan as insurance against unfore-
seen changes in the FPGA design, particularly if creating a pinout early in the FPGA
design cycle. This enables you to use a larger device if the changes to the design
results in a signifi cant logic growth or potentially the ability to use a smaller, hence
cheaper device, if the design size permits this.

 The increase in system performance and bandwidth has resulted in faster pin
speeds. At the time of writing, FPGAs are capable of interfacing with 64-bit DDR
III SRAM running at 533 MHz. This is a data rate of 1,067 Mbps per pin. This can
produce a number of simultaneously switching pins on the FPGA, which can in turn
result in functional failures due to noise. The device needs to have a pin-out that
avoids Simultaneously Switching Noise (SSN) and the FPGA needs to be termi-
nated on the board in a manner that avoids SSN issues.

 Many FPGAs also include transceiver blocks that can operate up to 11.3 Gbps
and support various I/O protocols such as PCI Express, Serial RapidIO ® , Gigabit
Ethernet (GbE), to name a few. These high speed transceiver based interfaces
require careful termination on the board to avoid Signal Integrity (SI) issues.

 Now that we have identifi ed the potential pitfalls in creating a PCB design for
high performance systems containing FPGA devices, we will focus on the tech-
niques that can be deployed to ensure that the board design is right fi rst time.
The remainder of the chapter describes the challenges in more detail. It describes
the roles of different teams in the board design process. It presents a methodology
that addresses all of the challenges that we have described and culminates in a
check list that can be used on any FPGA project to achieve successful FPGA
pin-out and board design.

7.2 Engineering Roles and Responsibilities

 The engineers that are involved in the board design of systems containing FPGA
devices can be classifi ed into three distinct engineering skill sets. These are
FPGA design engineers, PCB Design Engineers and Signal Integrity Engineers.

7 Board Design

55

In some organizations there is overlap in the functionality, but in general they are
distinct disciplines and the functions are performed by different engineers or
engineering teams.

7.2.1 FPGA Engineers

 FPGA Engineers are familiar with the FPGA vendor software. The FPGA engineer is
typically responsible for writing and verifying the RTL code for the design. He, or
she, is also responsible for implementing the design in the FPGA and helps with the
debug of the design in the end system.

 The FPGA engineer has a keep role to play in the PCB design. He is responsible
for the generation of the FPGA pin-out from the FPGA design software. As such,
he interfaces heavily with the PCB design engineer, providing updates to the pin
assignments and implementing and verifying any recommended changes from the
PCB design engineer.

 The FPGA Engineer also acts as the interface to the Signal Integrity engineer.
He provides the pin-out information, as well as any HSPICE and/or HSPICE models
and netlists that are generated by the FPGA design software.

7.2.2 PCB Design Engineer

 The PCB design engineer is familiar with PCB schematic and layout software.
The PCB design engineer is typically responsible for creating board schematics,
including the generation of device symbols. He is also responsible for creating the
board layout, which includes routing the board. The board layout and in particular
the routing of the board is heavily dependent upon the pin-out of the devices on the
board. As such, the PCB design engineer has a strong infl uence on the FPGA pin
assignments, as these greatly impact his task and the potentially the cost of the
board. While the PCB design engineer infl uences the choice of pin assignments for
the FPGA, he typically has no desire to use the FPGA design software. This creates
the requirement for an effi cient means of passing information to/from the FPGA
engineer and the Board Designer. This is effectively the need for a two-way inter-
face mechanism between the FPGA design software and the board schematic soft-
ware, from EDA tool vendors. Today, some EDA tools provide a two way interface
to the FPGA design software. However, the most commonly used interface for the
communication of information between these two engineers is Microsoft Excel.
Most of the FPGA design software offerings from the FPGA vendors have the abil-
ity to read and write the .csv format, which is used as the interface to Microsoft
Excel. Similarly some of the board schematic software packages can read the .csv
format. It is common practice within industry for board design engineers to create

7.2 Engineering Roles and Responsibilities

56

scripts that generate the appropriate schematic symbols from the .csv format or
from the FPGA vendor pin report. Thus the .csv format serves multiple purposes.

 1. A source of integration between the FPGA and Board design software packages.
 2. Documentation of the design pin-out. As such, it should be stored under revision

control.

 An example of a .csv fi le that can be used to interface between the FPGA design
software and board schematic software is detailed in Fig. 7.1 .

 A key point is that the csv details much more than the pin assignments. It includes
details on the I/O standard and current strength. These are important as they impact
the signal quality on the board, as well as the I/O timing.

 The PCB design engineer also interfaces with the Signal Integrity engineer, by
providing details of the board layout characteristics that are used to generate the
model of the board for Signal Integrity modeling.

7.2.3 Signal Integrity Engineer

 SI engineers are familiar with signal integrity simulation software from leading
EDA vendors such as Synopsys, Mentor Graphics, Cadence, Agilent, etc. They are
responsible for verifying that the signal quality (e.g. overshoot/undershoot), includ-
ing simultaneous switching noise (SSN) effects are within specifi cation. Ultimately,
the SI engineer is responsible for verifying that the board timing meets the system
requirements.

 In the past, most FPGAs were designed without using the services of Signal
Integrity Engineers. In truth many FPGAs are still being designed today without the
services of SI engineers. Board designers have tended to lay the board out conserva-

Pin Name Direction Location I/O Bank VREF Group I/O Standard Current Strength

clk_in Input PIN_B13 4 B4_N1 3.3-V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[3] Input PIN_AE6 8 B8_N1 3.3-V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[2] Input PIN_AB10 8 B8_N1 3.3-V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[1] Input PIN_AA10 8 B8_N1 3.3-V LVTTL (default) 24mA (default)
in_port_to_the_button_pio[0] Input PIN_Y11 8 B8_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[7] Bidir PIN_A8 3 B3_N0 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[6] Bidir PIN_B8 3 B3_N0 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[5] Bidir PIN_C9 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[4] Bidir PIN_D9 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[3] Bidir PIN_G10 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[2] Bidir PIN_F10 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[1] Bidir PIN_C8 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
ext_flash_enet_bus_data[0] Bidir PIN_D8 3 B3_N1 3.3-V LVTTL (default) 24mA (default)
out_port_from_the_led_pio[7] Output PIN_AA11 8 B8_N1 1.8 V 12mA (default)
out_port_from_the_led_pio[6] Output PIN_AF7 8 B8_N1 1.8 V 12mA (default)
out_port_from_the_led_pio[5] Output PIN_AE7 8 B8_N1 1.8 V 12mA (default)
out_port_from_the_led_pio[4] Output PIN_AF8 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[3] Output PIN_AE8 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[2] Output PIN_W12 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[1] Output PIN_W11 8 B8_N0 1.8 V 12mA (default)
out_port_from_the_led_pio[0] Output PIN_AC10 8 B8_N0 1.8 V 12mA (default)

 Fig. 7.1 Example .csv fi le that interfaces between board design SW and FPGA SW

7 Board Design

57

tively when interfacing with FPGAs and assumed, correctly in most cases, that this
will meet their requirements. However, based upon the reasons stated earlier in this
chapter, this approach is no longer adequate. The increase in I/O speeds for interfaces
such as DDR II/III SRAM memories, plus the addition of high speed transceiver
blocks require correct board termination to prevent SI and SSN issues.

 These types of interfaces can be successfully designed by following the guide-
lines that are provided in the application notes provided by the FPGA vendors.
However, each board design is different and it is recommended that SI engineers
simulate the I/Os that have high performance requirements. This creates the require-
ment that the SI engineer interacts with both the FPGA and the board designer. He
requires the HSPICE or IBIS models from the FPGA design engineer and the details
on the board traces, etc. from the Board designers. SI simulations tend to be lengthy
and should only be performed on the pins of the FPGA that are considered a high risk
for Signal Integrity. That is the high performance I/O in the design.

 FPGA designer driven board design fl ow in Fig. 7.2 details the stage in the design
cycle where each of the engineering disciplines should be involved throughout the
FPGA design cycle. The diagram is explained in more detail in the section of this
chapter on Design Flows for creating the FPGA pinout.

7.3 Power and Thermal Considerations

 FPGA power estimation helps guide power supply design for the board.

Development Time

Early SI
Analysis

SI analysis
with actual
board traces

Early Pin
Planning

Board
Specifications

Board
Engineer

FPGA

Signal Integrity
(SI) Engineer

Engineer

Pin
Signoff PCB Design &

Verification

SI Signoff

PCB
ready

RTL Design &
Verification,
Implementation

Qualification,
Debug &
ECO

 Fig. 7.2 Design cycle diagram detailing engineering discipline involvement

7.3 Power and Thermal Considerations

58

7.3.1 Filtering Power Supply Noise

 In order to reduce system noise it is critical to provide clean and evenly distributed
power to all devices on the board. Low frequency power supply noise can be fi ltered
out by placing a 100 μF electrolytic capacitor adjacent to where the power line joins
the PCB. If you are using a voltage regulator, the capacitor should be placed at the
fi nal stage that provides the Vcc signal to the devices.

 In order to reduce the high frequency noise to the power plane it is recom-
mended that decoupling capacitors as placed as close as possible to each Vcc and
ground pair.

7.3.2 Power Distribution

 A power bus network or power planes are used to distribute power throughout the
PCB. A power bus network is the least expensive solution but does suffer from
power degradation. As such this should only be considered for cost sensitive appli-
cations on two-layer PCBs.

 The recommended approach is to use two or more power planes. The power
planes cover the full area of the PCB and distribute Vcc evenly to all devices,
providing good noise protection. It is recommended that you do not share the same
plane for analog and digital power supplies. Virtually all FPGA devices now contain
PLLs, thus board design must accommodate an analog and digital power plane for
the FPGA.

 In summary, the power distribution recommendations are:

 Use separate power planes for the analog and digital power supplies.
 Place a ground plane next to the PLL power supply plane.
 Avoid multiple signal layers when routing the PLL power.
 Place analog and digital components over their respective ground plane.
 Isolate the PLL power supply from the digital power supply.

7.4 Signal Integrity

 Digital designs have not traditionally been impacted by transmission line effects.
As system speeds increase, the higher frequency impact on the system means that
not only the digital properties, but also the analog effects within the system must be
considered. These problems are likely to come to the forefront with increasing data
rates for both I/O interfaces and memory interfaces, but particularly with the high-
speed transceiver technology being embedded into FPGAs. Transmission line
effects can have a signifi cant effect on the data being sent. However, as speed
increases, high-frequency effects take over and even the shortest lines can suffer

7 Board Design

59

from problems such as ringing, crosstalk, refl ections, and ground bounce, seriously
hampering the integrity of the signal. Poor signal integrity causes poor reliability,
degrades system performance, and, worst of all, causes system failures. The good
news is that these issues can be overcome by following good design techniques and
simple layout guidelines.

7.4.1 Types of Signal Integrity Problems

 There are four general types of SI problems. These are Signal Integrity on one net,
cross talk between adjacent nets, rail collapse and EMI.

7.4.1.1 Signal Integrity on One Net

 Drive strength specifi es how much current the driver sources/sinks, while the slew
rate specifi es how fast it sources/sinks the current. Together, these two settings
determine the rise and fall times of the output signal. Process technologies with
smaller feature sizes allow faster clocks, but faster clocks also signify shorter rise
and fall times. This means that switching times are reduced even on low frequency
signals as the rise and fall times are set by the technology. This reduction of the
switching time comes together with larger transient current; consequently, larger
switching noise. For a high fmax link signal, it might be necessary to have short rise
and fall times, but for a low fmax link signal, you may reduce the noise by using
longer rise and fall times.

7.4.1.2 Crosstalk

 Whenever a signal is driven along a wire, a magnetic fi eld develops around the wire.
If two wires are placed adjacent to each other, it is possible that the two magnetic fi elds
interact causing a cross-coupling of energy between the signals known as crosstalk.

 The following PCB design techniques can signifi cantly reduce crosstalk:

 1. Widen spacing between signal lines as much as routing restrictions allow.
 2. Design the transmission line so that the conductor is as close to the ground plane

as possible. This couples the transmission line tightly to the ground plane and
helps decouple it from adjacent signals.

 3. Use differential routing techniques where possible, especially for critical nets.
 4. Route signals on different layers orthogonal to each other, if there is signifi cant

coupling.
 5. Minimize parallel run lengths between signals. Route with short parallel sections

and minimize long coupled sections between nets.

7.4 Signal Integrity

60

7.4.1.3 Rail Collapse

 Rail collapse is noise in the power and ground distribution network feeding the chip.
Switching I/Os can cause a voltage to form across the impedance of the power and
ground paths. This effectively causes a voltage drop with less voltage reaching the
FPGA, further accentuating the problem.

 The solution is to design the power and ground distribution network to minimize
the impedance of the power distribution system.

7.4.2 Electromagnetic Interference (EMI)

 EMI is a disturbance that affects an electrical circuit due to either electromagnetic
conduction or radiation. The disturbance may interrupt, obstruct, or otherwise
degrade or limit the effective performance of the circuit. The source of EMI is rapidly
changing electrical currents.

 FPGAs are rarely a source of EMI, however the possibility of EMI being generated
increases with the use of heatsinks, circuit board planes and cables.

 EMI can be reduced on FPGAs through:

 1. The use of bypass or “decoupling” capacitors connected across the power supply,
as close to the FPGA as possible

 2. Rise time control of high-speed signals using series resistors
 3. Vcc fi ltering.
 4. Shielding. This is typically used as a last resort due to the added expense of

shielding components.

 The two most common sources of EMI on boards are:

 1. The conversion of differential signal into a common signal, which eventually
gets onto an external twisted pair cable.

 2. Ground bounce on a board generating common currents on external single-ended
shielded cables.

 These EMI effects can be controlled by grouping high speed signals away from
where they might exit the product.

 The key to effi cient high-speed product design is to take advantage of analysis
tools that enable accurate performance prediction. Use measurements as a way of
validating the design process, reducing risk and increasing confi dence in the tools.

7.5 Design Flows for Creating the FPGA Pinout

 There are two fl ows that are recommended to successfully create an FPGA pinout
for the board design. In both fl ows there is signifi cant communication between the
board designer and the FPGA designer.

7 Board Design

61

7.5.1 User Flow 1: FPGA Designer Driven

 In this design fl ow, the FPGA engineer generates the initial FPGA pin-out and provides
the FPGA pin-out details to the PCB design engineer. The board design engineer
makes suggested pin changes to ease the board design and provides these details to
the FPGA engineer. The FPGA engineer makes the pin changes in the FPGA design
software and confi rms if the changes will work for the FPGA design. This process
is continued until a fi nal pin-out is obtained that meets the needs of both the FPGA
designer and the board design engineer.

 In reality the initial pin-out that is developed by the FPGA designer needs to be
created with knowledge of the board layout, i.e. the relative location of the board
components, such as memories, transceivers, microprocessors, etc. that the FPGA
will interface with. The FPGA engineer can then make fl exible pin assignments,
such as assigning memory interfaces to particular I/O banks and leave the FPGA
design software to make the actual pin assignments. This approach will speed-up
the pin planning process such that the communication between the board design
engineer and the FPGA designer is basic pin swapping for ease of board design to
minimize board trace crossovers, etc. as opposed to large scale changes Fig. 7.3 .

 Step 1: This fi rst step occurs in the FPGA design software. The FPGA designer
will create an FPGA design project targeting the appropriate FPGA device and
package. At this stage it is recommended that the designer enables any device

Step 1.Create Project and
Choose Device

Step 2. Add Pins and
I/O Properties

Step 3. Define Design
Interfaces

Step 4. Make Pin
Assignments

Step 5.Perform I/O Rules
Checking

Iterative
pin changes

 Fig. 7.3 FPGA designer
driven fl ow for creating the
FPGA pin-out

7.5 Design Flows for Creating the FPGA Pinout

62

migration capabilities that exist in the FPGA design software to accommodate
future design expansion or contraction.

 Step 2: The FPGA designer starts to enter pin information based upon the FPGA
design. The FPGA design is unlikely to be complete at this stage in the design
cycle however the interfaces must be solid. At a minimum, a top-level design fi le
should exist. This provides enough information for the designer to enter the pin
names and to start entering properties of the pins, such as I/O standard, current
strength, etc. This information can be entered into the FPGA design software
manually or in most cases can be imported from other sources, such as Microsoft
Excel. The recommendation is that this information is defi ned in the specifi cation
for the design and that the specifi cation enables this information to be available
in the .csv format for import into the FPGA design software. This will greatly
shorten this process and reduce the risk of human error.

 If interface IP is being used, some of the IP may already contain the pin prop-
erties information. The source fi les should be added to the design. The FPGA
design software can usually read in the pin properties information.

 Step 3: Defi ne the design interfaces by confi guring the ports and parameters of any
IP being used to make the port connections to the top-level HDL File. As men-
tioned previously, it is recommended that a top-level design fi le already exists,
however, in the case were the specifi cation is complete and the design fi le does
not exist, some of the FPGA design software solutions can automatically gener-
ate a top-level HDL wrapper fi le based upon the Pin information that is entered
in the FPGA design software. The top-level design fi le is needed to enable I/O
rules checking in the FPGA design software. By creating the design interfaces,
you are effectively creating a top-level block diagram of the interfaces to the
FPGA design. By providing as much design information as possible to the FPGA
design software, the more complete the I/O rule checks that can be performed by
the FPGA design software.

 Step 4: Make the pin assignments. If you know the exact pin numbers that you want,
you should enter them directly into the FPGA design software. These can often
be imported for IP. If you only know the general area of the device that the pin
needs to be assigned to, then you can make broader assignments such as I/O
Bank 1 and allow the FPGA design software to select the actual pin location.

 Step 5: Perform I/O rules checking and generate a valid pin-out. All FPGA design
software has an I/O rule checking capability. This should be run to check the
validity of the pin assignments. Some of the FPGA design software packages
have the ability to generate pin assignments based upon assignments to a specifi c
area of the device as opposed to specifi c pins. These assignments can be accepted
by the user to replace the board assignments and passed to the board designer.

 I/O rule checking options in the FPGA design software is limited in the mount
of rules it can reliably check without a complete design. Hence, it is strongly
recommended that you create a dummy design that includes all of the IP for the
interfaces and clock network details. The interfaces can be terminated with dummy
logic such as FIFO’s where internal design blocks are not yet available. This approach
enables the FPGA design software to check all of the I/O rules with confi dence that

7 Board Design

63

the same pin-out can be used when the internal design blocks are added to the design
in the future.

 Steps 4 and 5 are now performed iteratively until an FPGA pinout is achieved
that works on both the FPGA and the board.

 As the design becomes complete any potential pin-out issues should be
communicated back to the board designer and changes made at either the board or
FPGA design level. Changes will not be required for dummy designs that are repre-
sentative of how the fi nal design will communicate with the pins in the FPGA.

7.5.2 User Flow 2

 In this design fl ow, the PCB design engineer generates the initial FPGA pin-out in the
board design software and provides the FPGA pin-out details to the FPGA design
engineer. Optionally the Board Design Engineer can run the FPGA design software
to enter the pin details. In reality this is rarely the case unless the same engineer is
performing both the FPGA and board design. The FPGA design engineer makes the
pin assignments in the FPGA design software and confi rms if the assignments will
work for the FPGA design. If there is an issue with the assignments, the FPGA
design engineer makes suggested edits that the FPGA design software shows to be
legal and feeds these changes back to the board designer, This process is continued
until a fi nal pin-out is obtained that meets the needs of both the FPGA designer and
the board design engineer Fig. 7.4 .

Step 1.Create
Pinout in Board
Design Software

Step 2. Create
FPGA Project &
Choose Device

Step 3. Add Pin
Properties

Step 4. Make Pin
Assignments

Step 5.Perform I/O Rules
Checking

Iterative
pin changes

 Fig. 7.4 Board designer
driven fl ow

7.5 Design Flows for Creating the FPGA Pinout

64

 Step 1: The board designer creates the FPGA pin assignments based upon the
components on the board that will interface with the FPGA. This requires details
on drive strength and clock restrictions on the FPGA. In reality the Board
designer will work with the FPGA designer on this step, asking questions on
where the transceivers are located on the device, power rail requirements and
other possible restrictions to pin-out. The board designer will then create a fi rst
pass at creating the pinout and pass this information to the FPGA designer.

 Step 2, 3 and 4: This is the same as steps 1, 2 and 4 in user fl ow 1. The FPGA
designer will create the FPGA project, make the pin assignments and assign the
pin properties.

 Step 5: The FPGA design can run the I/O rule checker to validate the pin assign-
ments and communicate any recommended changes back to the board designer.
This process will continue until a satisfactory pinout is achieved. As in user fl ow
1, the FPGA designer should create a dummy design or use the real design to
ensure that the pin-out will work

7.5.3 How Do FPGA and Board Engineers Communicate
Pin Changes?

 There is a tendency to communicate the pin-out changes verbally or via email.
However, this approach is prone to error. There needs to be an offi cial document
which resides in version control that is used to communicate the changes between
the board designer and the FPGA designer. As mentioned earlier in this chapter,
Microsoft Excel tends to serve this purpose in many Companies. One of the advan-
tages of using Microsoft Excel is that many of the board design tools and some of
the FPGA design software can import and export .csv fi les.

7.6 Board Design Check List for a Successful FPGA Pin-out

 1. Perform Power Thermal Analysis to ensure that all power planes can deliver the
maximum current required while keeping the voltage rail within specifi cation.

 2. Perform pin assignment checking.

 2.1. Check pin assignments in FPGA design software
 2.2. Terminate unused inputs to Ground
 2.3. Terminate unused I/Os as desired
 2.4. Check correct VCCIO for each I/O bank
 2.5. Does design meet the SSN guidelines?
 2.6. Select migration devices to accommodate future design growth or reduction.

 3. Perform confi guration mode check against vendor confi guration handbook

7 Board Design

65

 4. Check Power supply connections and decoupling against vendor power supply
recommendations

 5. Perform board Signal Integrity simulations.
 6. Compare I/O Timing to I/O Timing Requirements. This requires the design to

be complete or at least the I/O interface portions of the design.
 7. Complete board design review between FPGA design team and PCB design

team.

7.6 Board Design Check List for a Successful FPGA Pin-out

67© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_8

 Chapter 8
 Power and Thermal Analysis

 Abstract The increase in density and performance of FPGAs has resulted in an
increase in power consumed by the FPGA. Both FPGA and PCB design engineers
need to consider the power when making the choice to use an FPGA and a particular
FPGA vendor, as the power consumed by the FPGA will impact the design of the PCB
power supplies, choice of voltage regulators, the heat sink and the system’s cooling
system. In short, it is crucial in developing the power budget for the entire system.

8.1 Introduction

 The increase in density and performance of FPGAs has resulted in an increase in
power consumed by the FPGA. Both FPGA and PCB design engineers need to
consider the power when making the choice to use an FPGA and a particular FPGA
vendor, as the power consumed by the FPGA will impact the design of the PCB
power supplies, choice of voltage regulators, the heat sink and the system’s cooling
system. In short, it is crucial in developing the power budget for the entire system.

 For applications that are power sensitive and where it is anticipated that meeting
the power budget will be tight, the design engineer needs to perform power analysis
during the development of the design and deploy power saving techniques as appro-
priate. Throughout the design cycle, the engineers need to be able to refi ne the
estimates and apply the appropriate power management design techniques.

 Today’s FPGAs come with a variety of features for reducing the FPGA power,
including power optimization options in the FPGA design software. Details on
power optimization techniques are covered in the RTL coding guidelines and
Timing Closure chapters of the book.

 FPGA vendors also provide solutions for estimating the power that will be
consumed by the FPGA at different stages of the design fl ow.

 In this chapter we will review the basic elements of power consumption in FPGA
devices, as well as the main factors that impact the ability of a designer to obtain an
accurate estimation of a design’s power consumption. We will look at the tools and
techniques for performing power estimation very early in the design cycle, in order
to enable the right choice of FPGA technology and to select the right power regula-
tors and components for the board design. Then we will at the tools and techniques
to enable you to perform a more detailed power estimation based upon the design

68

implementation. Finally we will review the best practice recommendations for
dealing with power in FPGA designs.

8.2 Power Basics

 Thermal power is the component of total power that is dissipated within the device
package. Designers need to consider the thermal power in determining whether they
need to deploy thermal solutions on the FPGA, such as heat sinks, to keep the internal
die-junction temperature within the recommended operating conditions.

 The total power consumed by a device, considering its output loading and external
termination, is comprised of the following major power components:

8.2.1 Static Power

 Static power is the power consumed by a device due to leakage currents when there
is no activity or switching in the design. This is the quiescent state. This type of
power is often referred to as standby power and is independent of the actual design.
The amount of leakage current depends upon the die size, junction temperature, and
process variation. This data can be extracted from the FPGA device data sheet or
from the vendors Early Power Estimation Spreadsheet. It is recommended that you
extract the data from the vendors Early Power Estimation Spreadsheet as the data is
generally reported in a much clearer format than in most data sheets.

8.2.2 Dynamic Power

 This is the power consumed through device operation caused by internal nodes in the
FPGA toggling. That is, the charging and discharging of capacitive loads in the logic
array and routing. The main variables affecting dynamic power are capacitance
charging, supply voltage, and clock frequency. A large portion of the total dynamic
power consumed in FPGAs is due to the routing fabric of the FPGA device.

 Dynamic power is design dependent and can be heavily infl uenced by the users
RTL style.

8.2.3 I/O Power

 This is the power consumed due to the charging and discharging of external load
 capacitors connected to the device output pins and any external termination networks.
Again, I/O power is design dependent and is impacted by the I/O standard, data rate,
the confi guration of the pin as either input or output or bidirectional. The termination
on inputs, and the current strength, slew rate and load for outputs impact the I/O power.

8 Power and Thermal Analysis

69

8.2.4 Inrush Current

 Inrush current is the current, hence power, that the device requires during initial
power-up. During the power-up stage, a minimum level of logic array current
(ICCINT) must be provided to the device, for a specifi c duration of time. This dura-
tion depends on the amount of current available from the power supply. When the
voltage reaches 90 % of its nominal value, the initial high current is usually no
longer required. As device temperature increases, the inrush current required during
power-up decreases, however the standby current will increase.

8.2.5 Confi guration Power

 Confi guration power is the power required to confi gure the device. During confi gu-
ration and initialization, the device requires power to reset registers, enable I/O pins,
and enter operating mode. The I/O pins are typically tri-stated during the power-up
stage, both before and during confi guration in order to reduce power and to prevent
them from driving out during this time.

8.3 Key Factors in Accurate Power Estimation

 Before discussing the best approach to performing power and thermal analysis for
an FPGA design, we will look at the key factors for accurate power estimation
Fig. 8.1 .

Toggle rates & signal
probabilities

(from simulation, user entry
and/or vectorless

techniques)

Operating conditions &
device characteristics

Power models of
circuitry

Power Report

 Fig. 8.1 Key elements in accurate power estimation

8.3 Key Factors in Accurate Power Estimation

70

8.3.1 Accurate Power Models of the FPGA Circuitry

 These are the models that are provided by the FPGA vendors as part of their power
estimation solutions. The FPGA design engineer must trust that the FPGA vendor is
being honest with the models. These models are typically developed from HSPICE
and the models correlated with silicon characterization. This process varies slightly
across FPGA vendors. The accuracy of the models will vary depending upon the
maturity of the FPGA family. If the FPGA family is new to the market, the power
models will be preliminary and subject to change as the FPGA vendor completes
characterization of the family. The negative impact of the variation should be minor
if the FPGA vendor is conservative in the development of the initial HSPICE models.
Asking the silicon vendor for details on how they develop their power models will
help set your expectations on the accuracy of the models.

8.3.2 Accurate Toggle Rate Data on Each Signal

 Toggle rate data, also referred to as Signal Activity, relates to the performance of the
design. While clock speed is important, the average number of times that a signal
changes value per unit of time is more important as this transition impacts the power
consumption.

 A logic ‘1’ condition consumes more power than a logic ‘0’, thus the amount of
time that a signal is logic ‘1’ will impact power. This tends to have an impact on I/O
power on pins that use terminated standards.

 Toggle rate data is under the control of the FPGA design engineer, in that it is
dependent upon system operation. This information is usually derived from design
simulations or toggle rates which are based upon previous design experience. As
such, entering reasonably accurate toggle rate data is an easier task for designs that
are derivatives of previous designs than for new designs. I cannot overemphasize the
importance of using toggle rate data that is refl ective of the end system operation, as
gross inaccuracy in the prediction of the toggle rate is the main source of error in
power estimation.

 In many cases, the simulation data fails to represent real world operation. If
simulation is performed for the purpose of measuring code coverage, it is likely to
over predict the power that will be used in operation. As a designer, you need to
avoid the dangerous situation of under predicting the toggle rate, as this will result
in an under estimation of power. However, an over prediction of power may result
in more expensive power management solution.

 The power estimation solutions from the FPGA vendors assume a default toggle
rate of 12.5 % unless specifi ed otherwise by the FPGA design engineer. For many
applications, this is suffi cient very early in the design cycle, as most designs do not
have a high toggle rate on all nodes, and the end application is specifi ed to cope with
a margin of error within 30 % of the total power. However, this may not be the case

8 Power and Thermal Analysis

71

for designs in which the majority of the design performs high performance process-
ing, as is the case in many DSP processing applications. These designs will typi-
cally exhibit a higher toggle rate.

 The FPGA vendor power estimation solutions allow you to easily change the
toggle rate values and to quickly see the impact that it has on power. It is recom-
mended that you do what you can to correctly estimate the toggle rate for your
application. It is also recommended that if you are not sure of the toggle rate that
you try a range of toggle rate values to indicate a possible best case and worst case
scenario. Note that it is unlikely that a complete system design will have a toggle
rate above 40 %.

8.3.3 Accurate Operating Conditions

 When we look at the impact of temperature on standby power, particularly for
devices at process geometries of 65 nm and below, we can see that there is a dramatic
increase in power above Tj of 85C Fig. 8.2 .

 Temperature has a big impact on static power, as the leakage power is an expo-
nential function of Tj. High leakage increases Tj, which, in turn, further increases
the leakage, forming a potential positive feedback loop. Tj = Ta + θja × (standby
power + dynamic power) where Ta is the ambient temperature, and θja is the thermal
resistance between the device junction and ambient air. It is essential to ensure that
the junction temperature remains within its operating range and does not enter a
positive feedback loop. The more power a device consumes, the more heat it generates
and this heat must be dissipated to maintain operating temperatures within specifi cation.

© 2005 Altera Corporation -Confidential
4

Standby Power vs. TemperatureStandby Power vs. Temperature

Lower Temperature = Lower Power

Insufficient Heat
Dissipation

Curve affected by Heat
Sink & Cooling System

Junction Temperature (°C)

S
ta

nd
by

 P
ow

er

125°100°75°50°25°

85°Adequate Heat
Dissipation

65°

 Fig. 8.2 Standby Power versus temperature graph

8.3 Key Factors in Accurate Power Estimation

72

For the FPGA and board designer it is essential that this is modeled during power
estimation and that the tools used to calculate the power consider the heatsink used,
air fl ow and other factors to correctly model Tj.

 Thus it is important that the FPGA and/or board design engineer uses the appro-
priate thermal management technique to minimize power consumption.

8.3.4 Resource Utilization

 There is a fourth element that impacts power and that is the utilization of the resources
in the FPGA device. In general, the more logic used, the more power consumed.

 However, as a designer you need to be aware of the impact of the different types
of resources in the FPGA device on power. As the designer or implementer, you
have the ability to trade-off resource type usage, e.g. Logic element usage versus
dedicated hardware blocks, such as RAM and DSP Blocks.

 If you look at a typical FPGA design, approx. 65 % of the power is core dynamic
power, 24 % is core static power, 10.5 % is IO dynamic power and about 0.5 % is
IO static power.

 If we dig into the core dynamic power in more detail, the majority of it can be
attributed to routing and combinational logic in the logic elements. RAM blocks
also consumes signifi cant dynamic power.

 The dynamic power for the clock networks consists of the global clock routing
resources plus the power consumed by the local clock distribution within the LEs,
RAM and DSP blocks. Designers can control the dynamic via the choice of resource
type and the use of clock control blocks. This is discussed in more detail in the
chapter on timing closure.

8.4 Power Estimation Early in the Design Cycle (Power
Supply Planning)

 As mentioned previously, FPGA Vendor data sheets do not provide much data on
the typical power consumption of an FPGA family. FPGA vendors do however
provide Power Estimation tools to report the power for a given device.

 Early FPGA power estimation helps guide power supply design for the board.
More often than not, this task needs to be performed before the FPGA design
is complete or started. The power estimation spreadsheets provided by the FPGA
vendors can be used to estimate the power for your design and to perform prelimi-
nary thermal analysis on your design at various stages of the design cycle.

 Figure 8.3 shows a sample power estimation spreadsheet for the Altera Stratix IV
GX family.

 The vendor provided spreadsheets are based upon Excel and can be downloaded
from the FPGA vendor website free of charge. The accuracy of the power estimation
increases as you provide more information that is indicative of your operating

8 Power and Thermal Analysis

73

conditions and of the fi nal design. The maturity of the devices will also impact the
accuracy, i.e. are the vendor power models fi nal or preliminary. With minimal effort
this can provide a good ballpark estimate on power, i.e. within 30 % of real num-
bers; enabling you to choose the right FPGA technology for your application and to
specify the power supply design. By investing more time on entering more detailed
data on your design and operating conditions, you can typically get within 20 % of
the real power. These tools allow designers to enter details on their design and oper-
ating conditions. Some of the FPGA vendor tools have the capability to import data
from their compiled designs into the Power Estimation Spreadsheet. This feature
works well for partial designs or estimating power based upon legacy information.
This information serves as a starting point and the details, such as the different
resource counts, number of clocks, etc. can be edited in the spreadsheet to refl ect the
expected size and characteristics of the fi nal design. This is a much quicker and less
error prone approach to entering data by using the power estimation and analysis
solutions that exist in the FPGA vendor software as discussed in Sect. 8.5 , Simulation
Based Power Estimation.

8.5 Simulation Based Power Estimation (Design Power
Verifi cation)

 Simulation based power estimation provides the most accurate power estimation
solution, providing the simulation vectors are representative of real system operation.
Simulation based power estimation uses the results from running a simulation in

 Fig. 8.3 Sample power estimation spreadsheet for the Altera Stratix IV GX family

8.5 Simulation Based Power Estimation (Design Power Verifi cation)

74

standard EDA tools, such as Mentor Modelsim, Synopsys VCS and Cadence
Incisive, to name a few, in order to simulate the device operation. The resulting
simulation data is used as stimulus to the FPGA vendor simulation based power
estimation tool.

 A Value Change Dump (VCD) fi le is normally used to transfer the data from the
EDA simulation tool to the FPGA vendor software. The reason why the power esti-
mation solution in the FPGA vendor software is more accurate than the spreadsheet
power estimation solutions is that full Place and Route has been completed on the
design and at this point the modeling takes into account the actual placement and
the routing types used on the design. The ability to use real life operation values also
has a large impact on the accuracy of the estimation.

 Having a design plus accurate simulation vectors implies that the design is com-
plete or is very close to being complete. Therefore it is recommended for most
designs that this type of analysis is run towards the end of the design cycle to deter-
mine what the real power consumption is for the design. Thus, t is more of a sanity
check that the design is within power budget rather than something that is run con-
tinuously throughout the design cycle.

 An exception is power sensitive designs where this data can be used to determine
if the RTL needs to be optimized for power or whether to utilize power optimization
options that exist in the FPGA vendor software. Simulation based power estimation
can be run early in the design cycle on blocks of RTL that already exist to determine
the toggle rate on these blocks for use in the spreadsheet based power estimation
solutions. The power report on these blocks of reusable IP can also be included in
the documentation on the blocks to give other users of the design blocks or IP, back-
ground data on the expected power consumption for the block.

 One of the challenges with simulation based power estimation is that the most
accurate power estimation is based upon gate level simulation of the design, as the
toggle rate data from the simulation will be available for every node in the design.
However this type of simulation tends to be runtime intensive for certain application
spaces, such as video and image processing. So while this type of analysis provides
the most accurate power results, the simulation time may make it impractical for
certain applications. Thus, it is recommended that RTL simulations be used for
these types of applications. Gate level simulations can be run as a sanity check on
the design, i.e. only to models certain operating conditions of the design. It is rec-
ommended that you use gate level simulation if the simulation time is feasible for
your end application.

 An RTL simulation will contain the correct toggle rate on the I/O pins and on
most of the registers. There will be some level of inaccuracy on the registers as
synthesis will perform register duplication and register merging as part of its opti-
mizations. The combinational nodes will also be inaccurate as the names will not
match due to the optimizations performed. This however is not a huge issue, as most
of the simulation based power estimation solutions contain a mode called vectorless
estimation, which can be combined with RTL simulation based estimation to
provide an acceptable level of accuracy.

8 Power and Thermal Analysis

75

 Vectorless power estimation uses a statistical analysis approach to predict the
probability of the nodes between known good data points toggling. If we look at the
circuit in Fig. 8.4 , if we know the static probabilities and toggle rates of inputs A, B,
C, D, E, F, G and H, it is possible to estimate the static probabilities and toggle rates
at I, J, K, L; hence the fi nal output M.

 This capability can be used to enhance the accuracy of RTL simulation based
estimation. As part of best practices we recommend running a sample of gate level
simulations, but for long simulations, RTL + Vectorless estimation is the recom-
mended approach. It is also advised that you perform simulation based estimation at
certain checkpoints throughout the design process. In reality, at this stage in the
project this should be more of a sanity check rather than a necessity. After perform-
ing the early power estimation, you ought to have left suffi cient headroom on the
power budget such that you are not constantly optimizing your design for power.
As with Early Power Estimation, you need to vary the operating conditions in terms
of temperature and voltage, to ensure that you are refl ecting the real world operating
conditions.

 The simulation based power estimation tools generate reports aimed at facilitating
both thermal and power supply planning requirements. These reports pinpoint
which device structures and even design hierarchy blocks are dissipating the most
thermal power, thus enabling design decisions that reduce power consumption. This
provides very high quality power estimates which are usually within 20 % of device
measurements, provided the toggle rate data is accurate Fig. 8.5 .

8.5.1 Partial Simulations

 One of the challenges in a simulation based approach to power estimation is the
initialization time in the testbench and hence simulation. This can reduce your
effective toggle rate if the simulation is not run to refl ect a long period of operation.
You can perform a simulation where the entire simulation time is not applicable to

A

C
D
E

G

l

J

K

L

M

H

B

F

 Fig. 8.4 Circuit demonstrating probability of nodes toggling

8.5 Simulation Based Power Estimation (Design Power Verifi cation)

76

the signal activity calculation, reducing the accuracy of the estimation. For example,
if you run a simulation for 10,000 clock cycles and reset the chip for the fi rst 2,000
clock cycles. If the signal activity calculation is performed over all 10,000 cycles,
the toggle rates are typically only 80 % of their steady state value (since the chip is
in reset for the fi rst 20 % of the simulation). Some of the FPGA vendor solutions
allow the user to specify the useful parts of the . vcd fi le for power analysis, enabling
you to ignore the initialization stage as part of the power estimation.

8.6 Best Practices for Power Estimation

 Figure 8.6.

 Fig. 8.5 Sample power estimation report from Quartus II PowerPlay Estimator

8 Power and Thermal Analysis

77

Stage of Design Cycle Task Tools Additional Content
Legacy Designs
Previous Experience
Design Specification
Early RTL code

FPGA Vendor Power Estimation
Spreadsheet

Legacy Designs
Previous Experience
Design Specification
Early RTL code

FPGA Vendor Power Estimation
Spreadsheet

Spot check Power Based Upon
Evolving Design

FPGA Vendor Power Estimation
Spreadsheet HDL Design

Testbench
EDA Simulation Tools

Determine Final Power HDL Design
Estimate Power for Power
Optimization Testbench

EDA Simulation Tools
Final Board and Test
EquipmentFinal Design

FPGA Vendor Board Design GuidelinesBoard DesignEarly Power Estimation

Evolving Design
FPGA Vendor Simulation Based Power
Estimation Tool

Estimate Power for Power
Optimization

Device Selection FPGA Vendor Power Estimation
Spreadsheet

Board Power Supply Specification FPGA Vendor Board Design Guidelines

FPGA Vendor Simulation Based Power
Estimation ToolMeasure Power on Board

 Fig. 8.6 Best Practices for Power Estimation

8.6 Best Practices for Power Estimation

79© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_9

 Chapter 9
 Team Based Design Flow

 Abstract The successful deployment of a team based design environment enables
you to take advantage of the following benefi ts:

9.1 Introduction

 The successful deployment of a team based design environment enables you to take
advantage of the following benefi ts:

 1. Project acceleration. Engineers can start implementing their portion of the design
without having to wait for the rest of the team.

 2. Simplifi cation of timing closure and verifi cation. Simplify the resolution of
timing closure issues by enabling team members to have to only implement their
portion of the design. This reduces the compilation time and isolates the timing
issues to a smaller portion of the design. Verifi cation is simplifi ed in that block
level verifi cation can be complete at a functional and timing level.

 3. Reduced compile time. Compile time reduction when making small changes to
one module portion of the design while preserving the performance in the rest of
the design.

 4. Shorter timing closure cycle with performance preservation on completed design
blocks.

 There are some unique challenges in designing for FPGA devices in a team
based environment. This is mainly due to the available resources in the FPGA
device. This chapter describes the steps to successfully set-up a FPGA design project
to allow multiple engineers to successfully design for a single FPGA device and to
achieve all of the benefi ts that are mentioned above.

80

9.2 Recommended Team Based Design Flow

9.2.1 Overview

 A successful team based design fl ow usually involves a single team lead and many
team members. The team lead is responsible for the up-front design planning and
the fi nal integration of the design. The other team members are responsible for
creating the RTL for their design blocks and implementing their design blocks,
i.e., closing timing on their design blocks.

 In order to implement this design fl ow, there is a need to perform project set-up
of the projects for the individual team members and to integrate the individual team
members design implementations into the top-level project.

 The diagram in Fig. 9.1 shows the team based design fl ow at a high level.

Team Leader sets up
project

Team Members
implement partitions

Team Leader
integrates & analyzes

full design

Design
Finished?

Done

Yes

No

Implement
Changes

 Fig. 9.1 Team based design
fl ow

9 Team Based Design Flow

81

9.3 Design Set-up

 The design set-up is performed by the team lead working with the individual team
members. Ultimately, the lead will be responsible for assigning tasks to the team mem-
bers, setting up of the project, the fi nal integration of the design and design sign-off.

 The initial design setup provides the framework for each team member to imple-
ment their portion of the design independently. However, the individual design blocks
are implemented in the context of the top-level design to avoid integration issues.

 The project set-up will work from a top-level project (design) that may or may
not include the RTL for the other design modules. At a minimum it must contain the
interfaces for the other design blocks.

 The diagram in Fig. 9.2 describes the set-up process.

Create Top-level Project

Create Project

Add Top-Level
RTL/Design

Synthesize Design

Partition Design

Timing Budgeting

Synthesize Design

Physical Partition /
Floorplan Design

Place & Route
Design

Create Projects for
Partitions/Other
team members

Timing Budget and Floorplan
may change as the design
solidifies

 Fig. 9.2 Design set-up

9.3 Design Set-up

82

9.3.1 Creation of Top-Level Project

 This task is performed by the team lead. In doing this, the team lead establishes the
design directory structure that will be used in the project, such that each of the team
members understands where the different fi les and scripts are located. At this stage,
the manner in which source control will be managed should also be defi ned. All of
the interfaces for each of the partitions will be defi ned, even though the design
blocks themselves are likely black boxes as the logic is not yet available. The team
lead will synthesis the design in order to establish the hierarchy of the design in the
FPGA design tools. This is necessary to enable partitioning of the design and physical
fl oorplanning of the logical partitions.

9.3.2 Partitioning of the Design

 The team lead will partition the design into functional blocks that will be assigned
to the other team members. The partitions can be custom design blocks, IP, or Empty
(not yet designed). At this time the partitioning of the design is a logical partitioning.
The guidelines for successfully partitioning the design are the same as the guide-
lines in the Hierarchy and Design Partitioning section of Chap. 10 .

9.3.3 Timing Budgets

 The team lead will create the timing constraints in the top-level project. These
constraints will propagate to the other partitions. This includes timing budgets
between partitions.

 As the design matures, the timing requriements must be synchronized between
all of the projects. Timing closure problems within a block can be addressed in the
RTL or at the physical level.

 The individual designers of the partitions will inherit the timing data from the
timing budget set at the top-level budget. The design fl ow will allow the team
members to overwrite the delays in their projects based upon a review process
with the team lead and other team members. Version control should be used to
ensure that all team members are working with the same top-level timing con-
straints Fig. 9.3 .

9 Team Based Design Flow

http://dx.doi.org/10.1007/978-3-319-17924-7_10

83

 In order to create the timing budget at the top-level design, the top-level design
must past through synthesis. These timing constraints will include the top-level
clock and I/O constraints for the project, as well as the constraints between the
partitions in the design.

 Prior to passing the constraints to the lower level projects, the design will be
fl oorplanned and go through a top-level fi t to assign physical resources.

 The timing assignments can be created prior to performing fl oorplanning Fig. 9.4 .

Initial Design Budget on Top-level
design (Clock timing & Pin timing)

Early Floorplanning

Specify timing budgets between blocks

Create Sub-projects (Inherit timing
constraints from top-level project)

 Fig. 9.3 Top-down timing
budget

Open Design (Inherits SDC constraints
from top-level project)

Create timing exceptions & advanced
timing assignments

Export timing constraints to top-level
project

Timing Budget in Lower-Level Project
Clock constraints
Pin constraints
Intra-partition constraints on virtual ports

Multicycle, false paths, etc. as RTL matures

Need to integrate the lower level SDC
constraints in the top-level project

 Fig. 9.4 Timing budget in lower level design

9.3 Design Set-up

84

 The lower level project will inherit the timing constraints from the top-level
project. As the engineer using the lower—level project adds the RTL and opti-
mizes the design for timing closure, they will likely create new timing constraints
for the lower level partition, in order to close timing. These should not confl ict
with the timing constraints from the top-level, but should be additive. In cases
where they do change or confl ict with the top-level project there needs to be a
review with the team lead to approve the change. This needs to be handled with
version control and any approved changes in timing budgets updated in the other
users projects.

 Once the designer successfully closes timing on the design, he will export the
design including the constraints for use in the top-level design.

 It is likely that as functional problems are uncovered in the design, there will
be numerous back and forth fl ows from top to lower-level back to top-level
level.

9.3.4 Physical Partitioning/Floorplan Design

 The size of the Partition is important for design utilization. It is recommended
that users limit the number of partitions. Floorplanning will be an iterative and con-
tinuous process that will start before the RTL is complete and may continue through
to fi nal integration.

 This requires both early and late fl oorplanning of the design.

 1. Early Floorplanning:
 Early on in the design, there team lead will want to perform rapid explora-
tion of trade-offs in physical architecture to provide the optimum floorplan.
This will be required prior to the completion of all of the design blocks.
This will highlight possible timing problems or resource conflicts early in
the design cycle.

 The early fl oorplanning process will defi ne the block specifi cations. This will
include the number of blocks, size, top-level netlist and global timing require-
ments. It will also include the initial shape of modules and the exact timing
relationship between the blocks.

 2. Late Floorplanning (Incremental Refi nement):
 At this stage in the design fl ow, the designers of the lower-level partitions will be
feeding back information to the team lead on changes that they need to meet the
timing and functionality requirements for their design. Ideally, the team lead will
have successfully allocated enough area and the region will not have to change.

9 Team Based Design Flow

85

In many cases, it is possible that some incremental changes will need to be made
in the top-level. The number of changes should be limited as much as possible as
the reallocation of resources and change in region dimensions is fairly disruptive
to all users.

9.3.5 Place and Route Design

 The team lead will place and route the top-level design, together with any information
that is available for the lower-level partitions. This will lock down the resources
assigned to each of the partitions as well as the ports on the boundaries for each of
the partitions to meet the inter-region timing requirements.

 At this point the design is now ready for the rest of the team members to start
their development independent of the rest of the team members.

9.3.6 Create Project for Partitions/Other Team Members

 The team lead will check the design and any scripts, including MAKE fi les, into
version control, such that any user can recreate the project. The team lead will
also perform an export on each of the lower level partitions. This will in effect
create lower level projects for each of the partitions. These lower level partitions
will be a variation of the top-level project, with the exception that the projects will
not include any of the logic from the top-level design. It will contain post-fi t infor-
mation from the top-level project and the timing requirements required for the
lower level project. Thus, the projects for the lower level partitions will only com-
pile the logic for the lower level partition and be restricted to the resources
assigned at the top-level.

9.4 Team Member Development Flow

 Each team member can iterate on their block as needed and periodically export
results for use by the team leader in an assembly run Fig. 9.5 .

9.4 Team Member Development Flow

86

9.5 Team Leader Design Integration

 The design assembly can be done at regularly scheduled intervals, or whenever
there has been a major update to one or more of the team member modules.

 Assembly on a recurring basis also allows the team member to import the latest
implemented version of other team member modules. This can help identify any
potential timing closure or confl icts early in the design process.

 During assembly, the team leader imports any existing team member modules.
The top-level logic, including routes between the modules, can be reused from the
initial setup stage or can be recompiled. The team lead also imports the timing con-

Open Project Generated by
Team Leader

Add RTL/Design &
Synthesize Design

Update timing constraints &
optionally lower-level
floorplan constraints

Place & Route Design

Achieved
Timing
Closure?

Export Design & Updated
Constraints

Yes

No

Modify
RTL/Design/Constraints

& Synthesize Design

 Fig. 9.5 Team member development fl ow

9 Team Based Design Flow

87

straints and any location constraints from the lower-level projects as described earlier.
There should be no placement confl icts during import. If there are any routing confl icts,
they can be resolved by reducing the level of preservation on certain modules, such as
allowing the ports to move and not preserving all routing on partitions. If this is allowed,
the lower-level partition needs to be updated with the new information.

 The team leader has overall responsibility for verifying timing closure on the
complete design at the top-level Fig. 9.6 .

Import Lower Level
Designs/Partitions

Synthesize Top-Level
Design or Reuse Previous

Results

Update Constraints

Achieved
Timing
Closure?

Place & Route Design or
Reuse Post-

Implementation Results

Done

Yes

No Modify Timing &/or
Location constraints &/or
Require design recoding

Export New Requirements
to Lower-Level Project(s)

Complete Lower-Level
Project(s)

 Fig. 9.6 Design assembly/integration fl ow

9.5 Team Leader Design Integration

88

9.6 Working with Version Control Software

 The entire design fl ow must be scriptable and be integrated with version control
software. Users must be able to check their fi les out of version control, run their
scripts and achieve the same results that they could achieve previously. In order to
get the benefi ts of previously compiled designs, users need access to the database
from the last compilation. It is not practical to check the database into version
control. It is recommended that users access a master database on a server to take
full advantage of the compile time benefi ts Fig. 9.7 .

Version
Control

Network
Storage

FPGA SW

DatabasesFiles

FPGA SW

Daily
Build

Build 107

Build
108

Don’t build from scratch but re-
use previous incremental results

 Fig. 9.7 Interaction with version Control

 The design that is placed under version control should contain all source fi les.
In the case of projects that use the Altera Quartus software, this should include the
Qsys system with user RTL in the Qsys system, RTL used outside of Qsys, the DSP
Builder system, Altera IP and source code for a Nios II and/or ARM 9 system. This
should include testbenches at the modular level and system level. Ideally, there
should be scripts or MAKE fi les for each level of the project.

 A suggested directory structure is shown in Fig. 9.8 .
 This directory structure is similar to the structure used by the IP and reference

design that are delivered by Opencores.org.

9 Team Based Design Flow

89

RTL

Simulation

Documentation

Scripts

Constraint Files

SW Files

Partition 1

Partition 2

Partition N

RTL

Simulation

DocumentationBranches

Trunk

Top

Scripts

Constraint Files

SW Files

Generated
Reports

Generated
Reports

 Fig. 9.8 Suggested directory structure for version control

9.7 Team Based Design Checklist

 1. Assign a team lead to the project
 2. Create directory structure for project
 3. Set-up top-level project
 4. Partition project to include including timing budgets and resource constraints
 5. Create scripts/MAKE fi les for project
 6. Create projects for other team members based upon partitions
 7. Ensure projects for other partitions include top-level design constraints
 8. Meet timing budget with 20 % margin in individual partitions
 9. Export design results and updated constraints to top-level project
 10. Integrate lower level implementations into top-level project
 11. Achieve timing closure on complete design

9.7 Team Based Design Checklist

91© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_10

 Chapter 10
 RTL Design

 Abstract The high level challenges that designers face when writing RTL for
FPGA devices are similar to the challenges that are faced when writing RTL code
for ASICs.

10.1 Introduction

 The high level challenges that designers face when writing RTL for FPGA devices
are similar to the challenges that are faced when writing RTL code for ASICs.

 1. What is the goal for my design block?
 2. Am I trying to achieve the highest performance or smallest area?
 3. Is my code functionally correct and is it easy to synthesize in the target synthesis

tool?
 4. Is my RTL code usable?
 5. Is my design easy for place and route to successfully compile and close timing

on the design?

 There are however unique high level goals that apply to writing RTL for FPGAs.

 1. Is my RTL optimized for the target FPGA architecture or can the RTL be targeted
across multiple FPGA architectures?

 2. Is my RTL optimized for compile time?

 As we look in more detail at writing RTL for FPGAs, we come across more
differences compared to writing RTL for ASICs. These differences are due to the
architecture of FPGA devices. This provides us with the fi rst rule of writing RTL for
FPGA devices; “understand the architecture of the target FPGA.”

 This chapter provides getting started tips to designers of various backgrounds.
It describes some general FPGA architecture features, before covering general good
practices in writing RTL. It then provides RTL coding guidelines that are optimized
for FPGA architectures, before ending with a summary of best practice recommen-
dations of RTL design for FPGAs.

92

10.2 Common Terms and Terminology

 HDL—Hardware Description Language is a software programming language that is
used to model a piece of hardware.

 RTL—Register Transfer Level, defi nes input–output relationships in terms of
datafl ow operations on signals and register values.

 Behavior Modeling—A component is described by its input–output relationship.
Only the functionality of the circuit is described and not the structure of the end
implementation. There is no specifi c hardware intent and the coding style is generic
such that it can target any technology.

input1, .., inputn
output1, .., outputn

if (input1)
for (j=0, j<8, j=j+2)

#5 output1 = 1’b0;
else

for (j=1, j<8, j=j+2)
#5 output1 = 1’b1;

 Fig. 10.1 Behavioral modeling

input1

inputn

output1

outputn

Higher-level

Lower-level
Component1

Lower-level
Component1

 Fig. 10.2 Structural modeling

 Structural Modeling—A component is described by interconnecting lower-level
components and primitives. It describes both the functionality and structure of the
circuit.

 It is created with the implementation in hardware in mind Figs. 10.1 , 10.2 and 10.3 .
 Synthesis—This is the translation of HDL to a circuit and then the optimization

of the circuit. Basically the RTL description of your design is interpreted and hard-
ware created for the targeted FPGA architecture. The synthesis tools require certain
coding styles to generate correct logic. The coding style is important to achieve fast
and effi cient logic.

10 RTL Design

93

10.3 Recommendations for Engineers with an ASIC
Design Background

 The fi rst thing to be aware of is that FPGAs are loaded with registers. Whether you
use them or not, they are in the device that you have purchased. One way to look at
it is that registers are free, therefore use them or lose them.

 The use of registers is important for the performance of your FPGA design.
FPGA logic is generally slower than that of ASICs on the same process geometry.
Make use of the registers to pipeline your design to meet the design performance
requirements.

 Many ASIC designs make use of latches. Do not do this in FPGA designs.
Use registers in place of latches. This will signifi cantly improve the FPGA clock
performance, albeit potentially at the cost of latency.

 A common technique in ASIC designs for power reduction and for design
testability is to use gated clocks. In FPGA designs, do not gate the clock. Use the
“clock enable” instead. FPGA devices have a limited number of low skew clock
networks that are key to running the design at high performance. By gating the
clock you will exhaust the number of low skew global signals, thereby limiting the
design performance. Clock enable signals are available on all registers in the FPGA

process(a, b, c, d, sel)
begin

case sel is
when “00” =>

mux_out = a;
when “00” =>

mux_out = b;
when “00” =>

mux_out = c;
when “00” =>

mux_out = d;
end case;

end process;

a

d
a

d

Translation

(architectural elements
of target device)

Optimization

a

d
sel

2

binferred mux_out
c

 Fig. 10.3 Synthesis

10.3 Recommendations for Engineers with an ASIC Design Background

94

and can be used to achieve power reduction and to test the design functionality
without infl icting unrecoverable damage on the performance of your design.

 FPGA devices do not provide the option of using buffers as a safety net to boost the
performance in the design. Thus, when designing timing critical portions of your
design, it is best to be conservative and to guard band your timing requirements.

 While you pay for resources in FPGA devices, whether you use them or not,
the resources are limited to the density of the targeted device. You are limited to
the amount of logic, memory blocks and multiplier blocks in the targeted device.
In addition, there is a fi xed amount of routing in FPGAs. As your design reaches the
higher boundaries of device utilization, you are likely to see the performance of
your design start to drop off.

10.4 Recommended FPGA Design Guidelines

10.4.1 Synchronous vs. Asynchronous

 In summary, practice Synchronous Design. It will help you to meet your design
goals consistently.

 Asynchronous design techniques can result in a reliance on propagation delays
in a device, incomplete timing analysis, and possible glitches.

 In a synchronous design, a clock signal triggers all events. As long as all of the
registers’ timing requirements are met, a synchronous design behaves in a predict-
able and reliable manner for all process, voltage, and temperature (PVT) conditions.
This will enable you to target synchronous designs to different device families or
speed grades.

10.4.2 Global Signals

 The FPGA design software will automatically select global routing resources.
Global signal resources are limited and thus should be treated as being expensive. It
is recommended that you try to limit the number of clock domains whenever pos-
sible. You can control the selection yourself, but it is rare that you will achieve better
results than the automated software.

 You must select a reset scheme for your FPGA design, be it synchronous or
asynchronous. You need a system reset that puts your entire circuit in a well-defi ned
state and you should verify its operation by asserting it at the start of the testbench
simulation.

 If you are unsure as to which scheme is best for your system, use synchronous as
it is easier to understand.

 If you decide to use an Asynchronous reset, the asynchronous reset should be
driven by a synchronizer as shown in Fig. 10.4 .

10 RTL Design

95

 Why should an asynchronous reset be driven by a synchronizer?
 When the reset is released, there is no sure way of knowing when this occurred

in relation to the clock. Some registers may see the clock fi rst, other registers may
see the released reset fi rst, resulting in mixed register states. If you have a short
reset, it may not be seen at all.

 The synchronizer circuit shown in Fig. 10.4 mitigates these type of issues.

10.4.2.1 Clock Network Resources

 FPGAs provide device-wide global clock routing resources and dedicated inputs. You
should use the FPGA’s low-skew, high fan-out dedicated routing where available.

 You should attempt to limit the number of clocks in your design to the number of
dedicated global clock resources available in your FPGA. Clocks feeding multiple
locations that do not use dedicated clocks may exhibit clock skew across the device
that could lead to timing problems.

 The use of combinational logic to generate an internal clock adds delays on the
clock line. In some cases, the delay on a clock line can result in a clock skew greater
than the data path length between two registers. If the clock skew is greater than the
data delay, the design will not function correctly.

10.4.3 Dedicated Hardware Blocks

 All FPGA vendors provide custom resources, designed to perform a small set of
functions very effi ciently. However, by instantiating these functions in your RTL
code, you are locking your code to one vendor or possibly even to one FPGA family.
This effectively reduces the reusability of your design. You are also likely to suffer
from slower RTL simulation. The behavioral description of your mode of RAM
operation is likely to simulate much faster than the parameterized RAM model from
the FPGA vendor. The FPGA vendor model covers every possible usage scenario
and subsequently may simulate more slowly.

 In some cases you may have no other option other than to use these optimized
macros, as they may be the only way to access certain capabilities of the device.
Examples of where these would be used are PLLs for the clock tree, or transceiver
blocks for high speed serial interfaces. It is normal practice to use the vendor pro-
vided building blocks for these types of applications. They can usually be replaced

D
Q

D
Q

clk
rst

aclr aclr

rst_n, to system
ACLR ports

 Fig. 10.4 Synchronizer
for an asynchronous reset

10.4 Recommended FPGA Design Guidelines

96

by the equivalent technology primitives from other families or vendors with mini-
mal disruption to your design. This approach is much like using purchased IP.

 However, you may want to consider inferring the other blocks such as the internal
RAM blocks and DSP blocks. These need only be instantiated if you need access to
underlying technology that cannot be reached by RTL inference.

 These functions from the FPGA vendor have a limited degree of parameterization
and usually come with a wizard to help select the right parameters along with the
user documentation Fig. 10.5 .

10.4.3.1 Instantiation Versus Inferencing

 Use of Low-Level Design Primitives

Easy to do, GUI assisted

Fully leverages HW features

Architecture specific

Requires library files to simulate

Architecture independent

Simple to simulate

Instantiation:

Pros

Cons

Inference:

Pros

Cons
Fiddly hand-coding

Dependency on CAD tool

 Fig. 10.5 Instantiation versus inferencing

 This section deals with the use of vendor specifi c low level design blocks, such as
carry chains and LUT primitives to implement your design.

 FPGA designers have been using this design technique since the invention of the
FPGA. In the dark and distant past, it was the only way to guarantee the implemen-
tation of your design through synthesis. EDA synthesis tools have become a lot
smarter over the years to the point where using this design style has become the
exception as opposed to the norm. It really is akin to assembly level programming
for hardware design or designing in schematics, only more painful in that you have
to declare the wiring connections of the blocks in HDL.

 So why has this style of design not disappeared completely? After all it is a
tedious way of designing, synthesis tools are now exceptionally smart and the use
of these low level primitives can reduce the ability to reuse the design block.

 Well, in certain cases a good designer can still outsmart a synthesis tool. Take addi-
tion for example. Synthesis tools tend to restructure arithmetic and absorb logic that
feeds adder chains opportunistically. The absorption is heuristic and occasionally pro-
duces sub- optimal groupings. If a designer thinks about the target hardware and struc-
tures the HDL accordingly, he can ensure that he gets the densest possible packing. The
use of the low-level primitives makes the intent explicit, independent of the surround-
ing logic. An example where this approach to design is useful would be where you need
to bit slice an adder, to clearly identify the intended carry-in and carry-out signals.

 It is recommended that you avoid using these low-level primitives, unless perfor-
mance or area packing is a problem for your end design. Use standard RTL coding

10 RTL Design

97

techniques and if you cannot get the implementation that you need for the design,
then consider using low level primitives to achieve your goal. It is possible to build
up your own library of blocks comprised of low level primitives, e.g. an optimized
ternary adder, or CRC.

 An example of how to create an equality comparator of two 3-bit busses in a
single six input LUT for Altera Stratix V family is shown in Fig. 10.6 .

 Fig. 10.6 Comparator of two 3-bit busses using low-level primitives

10.4 Recommended FPGA Design Guidelines

98

 You need to be aware that these blocks can only be reused with that FPGA vendor
and in some cases, only with that particular FPGA family. Be aware that low- level
RTL design takes considerable time and effort. Thus, you should only do it for the
critical parts of the design.

10.4.4 Managing Metastability

 If the data at the input to a register violates the registers setup and/or hold time
requirements, the output of the register may go into a metastable state. In this state,
the output of a register oscillates at a value between the high and low states. If this
value propagates throughout the circuit, registers may latch the wrong value, causing
system failure.

 Metastability problems commonly occur when a data signal is transferred
between two sets of circuitry that are in unrelated clock domains.

 It is good practice for asynchronous signals to travel through two to three registers
before being used in order to avoid potential metastability issues.

 A VHDL example of a synchronizer is shown in Fig. 10.7 .

D
Q

clk

din

aclr

D
Q

aclr

din_sync
 Fig. 10.7 Two register
synchronizer

Fig. 10.6 (continued)

10 RTL Design

99

 The depth parameter in this code specifi es the number of registers for synchro-
nization, e.g. a depth setting of two, will result in two registers as shown in
Fig. 10.8 .

 Fig. 10.8 Parameterizable synchronizer with a default value of three stages of registers

10.5 Writing Effective HDL

 The fi rst rule in writing effective RTL is to divide and conquer. Try to split the
design into smaller, unrelated problems for ease of tackling. Start with the areas
of the design that you expect to be problematic, particularly the bus interfaces.
The system should be designed such that you can exercise and test individual blocks,
even if they aren’t yet present in the design. Besides helping out early in the

10.5 Writing Effective HDL

100

development process, when specifi c blocks might be available to test while others
are still being fi nalized, this practice will also allow you to make progress when
specifi c blocks of your design are being revised or are otherwise unavailable.

 Follow good synchronous design practices; asynchronous designs that are
possible in ASICs because of tight control over timing delays can easily run into
trouble in FPGAs. Pipelining your design, as well as registering all ports provides
several benefi ts. First, it breaks combinational logic into more easily synthesizable
portions. Pipelining also allows easier debugging since FPGA verifi cation tools can
easily access the inputs and outputs of registers. Finally, it allows more options for
optimizing performance through register placement.

10.5.1 What’s the Best Language

 For the purposes of this book we are only going to consider HDLs that have an IEEE
standard associated with them, i.e. VHDL, Verilog and SystemVerilog.

 In the distant past there were numerous HDLs for targeting PLDs. Some of these
were developed by FPGA vendors. Once the IEEE endorsed Verilog and VHDL as
standards, these languages quickly conquered the ASIC design market and gained
in popularity in the FPGA market. Verilog, including SystemVerilog, and VHDL
provide the advantage of allowing users to be able to use the same language for
design implementation as for describing the test stimulus for simulation. Today,
Verilog and VHDL have effectively obsoleted the old PLD languages.

 So, which of these languages is the best language for FPGA design?
 There isn’t a “best” language. All of these IEEE standard languages have

strengths and weaknesses.
 VHDL tends to be more verbose than Verilog, but also tends to be more

feature- rich. VHDL has strong type checking which makes it harder to make silly
mistakes.

 Verilog is concise but loosely typed.
 In summary Verilog and VHDL both work well for FPGA design. The choice of

language is based upon personal preference. The key ingredient is that when you
choose a language, make sure that you fully understand the language. Read up on the
details of the language, as there are many non-obvious semantics in both languages.

 A good starting point is to buy a copy of the relevant IEEE standard. While
standards can make for dry reading, they will cover the details that HDL design
books often gloss over.

 There is an abundance of material on the web from white papers to training
courses on HDL coding. These are good for getting a feel for the language and
building a base knowledge in the language. I recommend paying for the cost of a
hands-on HDL course from one of the many technology training vendors, local
Colleges, EDA vendors or FPGA vendors. The instructors will tend to have a wealth
of information that is often not covered in books and the hands on experiments will
give you experience in the tools that you will use for creating the design.

10 RTL Design

101

10.5.1.1 Mixed Language Design

 Most of the EDA synthesis tools on the market support designs that contain a mix of
HDLs. There are however challenges in doing this and as such, it is recommended
that you do not adopt a mixed language design unless you have no option.

 So when would you have no other option but to use a mixed language design?

 1. If you purchase IP that is written in a different HDL than the one that you have
standardized on.

 2. You are reusing design blocks from another design that was created in the
‘other’ HDL.

 If your organization has a ‘genius’ that prefers a different language to the
language that you have chosen, this is not a good reason to use mixed language
design. This ‘genius’ needs to comply with the Company’s standard.

 So, what are the problems that you may encounter when creating a mixed language
design.

 1. It is easy to make a non-portable design. There is no IEEE standard for mixed
language design; consequently EDA tools make up there own rules, which can
result in a non-portable design.

 2. Verilog is case sensitive, VHDL is not. If you deploy case sensitivity into your
naming scheme you could be heading into a minefi eld.

 3. Not all simulators support mixed language design. Most of the major EDA
simulation tools do, but it will cost more than the entry level version of the
simulation tool.

 So while it is recommended that you avoid mixed language design it can work if
a module or entity to be instantiated in another language has bit or vector ports and
simple parameter types.

10.5.2 Documented Code

 It should be common practice in an organization to include good documentation on
major design blocks. This is an additional document to the RTL code for the design.
This document should explain the structure of the design, including block diagrams
and a description of the hierarchy. It should also include a description of timing
details, such as which paths are timing exceptions. Timing exceptions are covered
in detail in the timing analysis chapter of this book.

 Documentation on major design blocks, such as block diagrams is essential for
design reuse. If you do not understand what you are trying to reuse, you are unlikely
to be successful in reducing your design cycle through design reuse. Documentation
is also very helpful when you are returning to a design that you completed in the
past and also for the training of new hires in the organization who are taking over
the maintenance, or the completion of your design block.

10.5 Writing Effective HDL

102

 The RTL code for the design block should be self documenting, i.e. the naming
conventions used in the RTL should be descriptive of what the signal is doing, e.g.
dram_ctrl, regfi le0, crc32, egress_buffer. Comments should be used extensively
throughout the RTL to explain the functionality of the code, e.g. identifi cation of test
signals or multicycle paths and the purpose of certain modules within the design.

10.5.3 Recommended Signal Naming Convention

 A standard naming convention needs to exist throughout your Company.
 Create a company naming convention and adhere to it!
 This will make code reviews much more productive. There are EDA tools on the

market to help establish coding guidelines and to enforce the coding standards.
I highly recommend that you invest in an EDA Lint tool to enforce your Companies
coding guidelines. This should also be built into your interaction with your version
control software. All RTL code must pass the Lint tool with a clean bill of health in
order to be checked into version control.

 As discussed previously, all of the names used for ports, signal and variables,
should be meaningful.

 Here are some standard conventions that you should consider using as part of
your signal naming convention.
 “reset” or “rst”: reset signals.
 “clock” or “clk”: clocks.
 “clk125 or clock_125”: 125 MHz clocks.
 “rest125 or reset125” : reset synchronized to the 125 MHZ clock domain.
 Suffi x “_n”: an active low signal and the negative half of a differential signal, e.g.

we_n is an active low write enable.
 Suffi x “_p”: the positive half of a differential signal.
 Prefi x “a”: an asynchronous control signal, e.g. aclr is an asynchronous clear

signal.
 Prefi x “s”: a synchronous control signal, e.g. sload is a synchronous load signal.
 “en or ena”: Clock enables.
 “_ack, _valid, _wait: bus fl ow control signals.
 Use UPPERCASE: to identify parameters, enums and constants.
 While constants generally minimize during synthesis, they are important for under-

standing the logic structure.
 Bus signal rules:

 Ensure that you use a uniform bus order. The most common use in industry is
MSB:LSB, e.g. [63:0].

 Avoid declarations that omit the LSBs, e.g. [7:3]. These increase the likelihood of
structural errors in hooking up design blocks.

 It is safe to omit unused MSBs, e.g. [12:0] rather than [15:0]. This has the benefi t of
reducing the analysis time in synthesis tools and also in reducing the number of
warnings generated by the synthesis tool.

10 RTL Design

103

10.5.4 Hierarchy and Design Partitioning

 Hierarchy is essential for design partitioning and should be designed for carefully.
A good hierarchy is helpful for zooming in on problem areas of the design. Too many
levels of hierarchy can also make a design diffi cult to understand. So, you need to
keep the hierarchy depth modest.

 A fl at design is virtually impossible to understand and will cause problems in
debug.

 The design should be partitioned along functional boundaries. This makes it
easier to see the design’s behavior. When looking at the hierarchical partitioning
of the design, the hierarchy of the design fi les should follow the spirit of block
diagrams with one Verilog/VHDL module per text fi le. This improves the under-
standing of the design and will not impact the optimizations that can be applied by
the EDA tools, as synthesis tools will optimize across block boundaries freely,
unless you instruct them otherwise.

 A benefi t of doing this is that it facilitates standalone simulation of sub-designs.
It also enables you to quickly perform block performance analysis.

 You should register all inputs and outputs of the blocks when partitioning designs
across functional boundaries. This may cost you in terms of latency in the design,
however the benefi ts that this will bring will usually far outweigh the cost. This
method of insulating the blocks can be a life saver when it comes to timing closure,
as critical paths are usually contained within a single partition and can be worked on
in isolation from the rest of the design Fig. 10.9 .

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Easy to route

Minimizations and critical paths
tend to stay within blocks

Registers easy to find
in final results

Good setup for incremental compilation.
Is this a hard requirement? NO. Just make an effort.
Partial compliance = partial benefit.

 Fig. 10.9

10.5 Writing Effective HDL

104

 In the recent past, this extremely valuable advice was rarely 100 % honored by
designers, as it requires upfront planning on the design. A common mistake among
designers is to design with the mindset, “I can register the ports of the block later if
I need it.” This statement is a vast underestimation of the effort that this will require.
Any late latency changes will ripple through the rest of the design.

 When partitioning the design, you must avoid inserting glue logic between
partitions, as shown in Fig. 10.10 .

Module A Module B’
Glue
Logic

GOOD

Module A Module BGlue
Logic BAD

 Fig. 10.10

 Fig. 10.11

Desired
circuit

sub

Identify required
subfunctions

HDL Simulation

Write VHDL Behavioral test

P&R

Speed / Area
evaluation

Sub.vhd

Optimized block

sub HDL Simulation P&R Sub.vhd

sub HDL Simulation P&R Sub.vhd

 Fig. 10.12 Divide and conquer approach to RTL design

 Do not use tri-state or bi-directional ports on hierarchical boundaries unless
they will always interface with device I/O pins. FPGA devices do not have internal
tri- state busses. As such, the hardware vs simulation behavior is diffi cult to understand
as the functionality of internal logic will be implemented using multiplexers.

 The recommended way to handle this is to use the approach detailed in Figs. 10.9 ,
 10.10 and 10.11 .

 Good design partitioning enables you to adopt a divide and conquer approach for
building optimized design blocks.

 The building blocks can be developed in parallel, potentially by different teams
as shown in Figs. 10.12 and 10.13 .

10 RTL Design

105

 These optimized sub-blocks can be combined to form an optimized system with
minimal effort Fig. 10.13 .

Sub.vhd

Optimized
blocks

Sub.vhd

Sub.vhd

Optimized top

Merge to form
top design

Place & Route

Compile to
FPGA

Board testing

 Fig. 10.13 Combine sub-blocks to create an optimized design block

10.5.5 Design Reuse

 There is a complete chapter in this book dedicated to design reuse. In this section
we will cover how the HDL coding style can impact design reuse.

 Reusability will happen if the design is synchronous and reasonably partitioned
for hierarchy.

 It is very common for the FPGA design to be reused in its entirety in the next
generation chip. This may happen for cost cutting reasons, i.e. combine multiple
designs into a larger device, migration to an ASIC or for the addition of new func-
tionality to the next generation system in a larger FPGA device.

 Optimized blocks will be generally reusable but may require some changes in
cases were you have used dedicated design primitives that are specifi c to a particular
family.

 So, what constitutes a good FPGA building block:

 1. Something of which the purpose/functionality can be easily described:
 2. It can be customized with parameters.
 3. It is standalone testable:
 4. It has registered IO. This provides timing closure insurance.
 5. It uses a standard protocol interface.
 6. The RTL code is self-documenting.
 7. The number of signals on the boundary is limited. Too many signals make it

diffi cult to interface with the design block.

 What to avoid:

 1. Too many levels of hierarchy in the design block.
 2. The design block is too small.
 3. The use of a lot of specialized signals makes it diffi cult to interface with the

design block.

10.5 Writing Effective HDL

106

10.5.6 Techniques for Reducing Design Cycle Time

 The RTL design cycle time can be shortened by using both simulation and synthesis
techniques.

 Spending effort up from in functionally simulating the sub-designs will catch
problems that are hard to catch when you simulate the whole design or when you
are trying to debug a problem with the chip while operating on the board. It can be
tedious, but it is much faster and easier to eliminate bugs at the lowest level.

 There are a number of techniques that you can utilize to reduce the RTL synthesis
time.

 1. Perform an area evaluation. Run through the synthesis tool to get a ballpark fi gure
of the size of the designs. Now you may be asking yourself why ballpark and not
an exact area result? There are two main reasons. Firstly, when your design block
is combined with the other design blocks, the synthesis tool performs a number
of cross-boundary optimizations. Secondly, FPGA Place and Route tools
perform a number of optimizations, e.g. packing unrelated registers with LUTs
and merging of memory blocks.

 2. Perform place and route on the sub-block for a performance confi rmation when
the sub design is almost done. If you just meet performance, you should try and
build some margin in place for when the complete design is integrated. A 15 %
margin is good. 20 % is better.

 3. Try to avoid doing any hand placement or fl oorplanning early in the design cycle.
Instead change the RTL source to meet your performance goals.

 There will be times when this is not possible. When you come across one of
these cases, you should detail this in the documentation for the design and make use
of incremental design practices for locking down the performance of the block.

 You need to try and reduce the number of design iterations that you need to run,
as iteration time is expensive for large FPGA devices. In most synthesis tools,
synthesis runtime is close to linear with design size. The harder the synthesis tool has
to work, the longer the synthesis time and quite likely the place and route time.

 When structuring your design, you need to remember that the smaller the cones
of logic the faster the design performance and synthesis time. In effect, more
 pipelined designs have smaller cones of logic and faster performance as well as
shorter synthesis time.

 If your design has deep tangled cones of logic, the synthesis tool has to try harder
to traverse the logic untangling the logic cones, resulting in a longer synthesis time.

10.5.7 Design for Debug

 This topic is covered in more detail in the chapter on In-System Debug. In this
section we will cover some techniques that can be used at the RTL code level to
increase the ability to debug your design in-system.

10 RTL Design

107

 1. Register the signals that you want to see in the chip. These signals are less likely
to be optimized away by synthesis.

 2. Hierarchically partition the design for ease of debug. For example, if you have an
interface that you are concerned about, you can place it at the edge of a device
with the interface feeding I/O pins, which makes it easy to monitor.

 3. Build test blocks that can easily be extracted from the end design.
 4. Ensure that there are free memory and logic resources in the device to enable the

use of Embedded Logic Analyzers.
 5. Leave free pins on the design for access to debug signals.

10.6 RTL Coding Styles for Synthesis

 Most Hardware Description Languages were originally developed for simulation
and not for synthesis. As such, it is easy to describe functionality that can’t be reli-
ably implemented in hardware. You need to be aware that many synthesis tools will
synthesize questionable code, which can result in an end result that may not match
your simulation results. In this section, I am not going to show you examples of
code that can be confusing, but rather recommend that you invest in an RTL coding
training course or book. There is a standard subset of Verilog and VHDL that all
synthesis tools understand and for which they will provide the same functional
implementation. Study and adhere to this standard.

 So, what are the guidelines?

 1. Keep the hardware in mind when describing your design. What I mean by this is
make sure that you can you express the functionality in terms of logic gates and
registers.

 2. Know the limitations of the target device.
 3. When your design has run through synthesis successfully, examine and eliminate

the warning messages generated by the synthesis tool.

 When creating your design, should you design structurally of behaviorally?
 In practice you will and should use both structural and behavioral coding styles.

Old school FPGA designers will tell you that you need to use a highly structural
design to guarantee the design implementation and performance. In reality, this is
only true for designs that are pushing the envelope of performance and in these
cases, only for a very small portion of the design; if at all.

 The top-level module is invariably a collection of sub-instances, wired together
with nets.

 The sub-modules mostly implement core functionality with a behavioral style.
 It is recommended that you describe your design using the most compact

language constructs from the recommended synthesis coding guidelines. This
makes it easier to understand the functionality of the design.

 It is a general rule of coding that the less lines of code that you write, the less you
need to debug.

10.6 RTL Coding Styles for Synthesis

108

 You should also only instantiate basic primitives when necessary. These may
be required to meet your performance requirements or to access device-specifi c
functionality, e.g. I/O primitives, transceiver blocks, etc.

10.6.1 General Verilog Guidelines

 We are not going to cover Verilog coding guidelines extensively but will touch on a
few essential recommendations.

 1. Invest in a Verilog RTL coding book or a copy of the IEEE Verilog standard.
 2. Appreciate the different between non-blocking assignments (<=) and blocking

assignments (=).
 Use = (blocking assignment) when modeling combination logic.
 Use <= (non-blocking assignment) in an edge-triggered always block with the

following two exceptions.
 Exception 1: Assignments to temporary variables.
 Exception 2: Assignments to a RAM with write-before-read semantics.

 3. Consider expression size.
 You can freely assign a 16-bit vector to an 8-bit vector.
 The context of an expression can alter the size of its operands, i.e. extend their

precision.
 4. Consider the expression sign.

 A single unsigned operand can coerce the sign of all the operands in a complex
expression, e.g. unsigned_a + signed_b + signed_c.

 5. Beware of implicit net declarations.

10.6.2 General VHDL Guidelines

 Again, we are not going to cover VHDL coding guidelines extensively but will
touch on a few essential recommendations.

 1. Invest in a VHDL RTL coding book or a copy of the IEEE VHDL standard.
 2. use Standard Packages

 Use rising_edge(clk) and falling_edge(clk) for edge conditions
(ieee.std_logic_1164)
 Use ieee.numeric_std and ieee.numeric_bit for unsigned and signed types/
operators

 3. Don’t use meta-values (‘X’, ‘U’, ‘Z’, ‘-’) in case statement choices.
 The semantics of built-in VHDL “=“operator requires an exact match.
 In particular, ‘X’ and ‘-” don’t behave as don’t cares!

 4. Constrain integer subtypes with actual dynamic range, e.g. integer range 7
DOWNTO 0.

10 RTL Design

109

 This reduces the hardware costs dependence on bit-width optimizations.

10.6.3 RTL Coding for Performance

 The following high speed design techniques make it easier to close timing. They
also have the effect of reducing the compile time and the number of compilations
necessary to achieve timing closure.

 The main rule in achieving the fastest clock performance in a FPGA design is to
pipeline your design. Remember, registers are included in the FPGA cell fabric
whether you use them or not.

 Select a target number for the levels of logic between the registers based upon the
data sheet numbers for the LUT and register delays for the FPGA technology that
you are targeting. You should aim to maintain this target in all of the sub-blocks of
the design.

 Help the synthesis tool perform at its best by writing the RTL in ways that are
easy and effi cient to implement in gates. Small changes can improve design perfor-
mance. Synthesis tools are good at optimizing RTL using heuristics to evaluate
code, and to avoid excessive runtime. For high performance designs, you may be
able to guide it toward a better result than it would achieve on its own.

 There are advanced settings in synthesis tools and Physical Synthesis tools that can
improve performance using techniques such as register retiming. These are good at
fi xing a small number of long paths in the design. However, fi xing this manually in the
RTL, guarantees the performance, reduces the compile time and will make the design
block reusable. This approach also guarantees the implementation of the design block
if you upgrade to a newer version of the FPGA design software.

 Figure 10.14 shows a design with two levels of logic between the registers.

D Q LUT LUT D Q

Two levels between registers Fig. 10.14 Design with two
levels of logic between the
registers

10.6.3.1 Timing Margin

 When designing your sub-block, you should always be looking ahead to system
timing closure. Compile the sub-designs standalone and monitor the timing perfor-
mance using static timing analysis. You should always build margin into the timing
requirements for the sub-designs. This will allow headroom for integration with the
rest of the design.

10.6 RTL Coding Styles for Synthesis

110

 Standalone designs get to choose from all of the resources available in the device
during place and route. However when the overall design is integrated, not every
sub-design can have a priority in the choice of resources in a full chip. You should
try and budget for a 20 % speed degradation. This degradation may come from non-
optimal placement, routing congestion or the need to include additional logic later
in the design cycle.

 It is much easier to avoid system timing problems than it is to fi x them later.
You do not want to put yourself in the scenario where there is a change to the speci-
fi cation late in the design cycle which results in your module going from narrowly
meeting timing to missing timing; making you accountable for the delay in being
able to ship the product.

 Do not trust estimated numbers from synthesis. Placement has a big impact on
timing.

 Sub-designs tend to be relatively small and do not take much runtime to get the
true place and route timing numbers.

10.6.3.2 Use of Pipeline Registers

 Pipelining is a great technique for boosting performance in FPGA designs. In designs
with wide buses that need to run at high speeds, it may be necessary to pipeline rout-
ing wires to span across the chip. Take the example where you take three clock cycles
to move data from a pin on the bottom of the chip to a pin at the top of the chip at a
clock frequency of 300 MHz. It may require more cycles if routing is congested.
Figure 10.15 shows how an extra pipeline stage can be used to help the place and
route engine meet performance. If the path shown is spread across the chip, possibly
due to pin placement at both ends of the path, the ‘wasted’ register can be used to
break up the long routing delay, enabling you to meet your clock requirement.

D Q D
Q

D Q D
Q

D
Q

The presence of this “wasted”
register can save the day during
place and route.

D Q D
Q

D Q D
Q

D
Q

 Fig. 10.15 Use of pipeline stages to break up routing delays

 It is good to remember that pipeline registers do come with a cost; that cost is
area and in some cases power. You will need to pipeline each bit in a bus. If you
have a wide bus you will add a large number of registers and additional routes to the
design. Thus, over use of pipelining can make it harder to fi t the design.

10 RTL Design

111

 In the case of RAM or DSP blocks, it is highly recommended that you always use
the optional input and output registers for pipelining.

 The decision on how much pipelining is required is a learning process and will
require refi nement on a design basis. A good rule of thumb when writing your
Verilog/VHDL code is that it is typically easier to remove pipeline registers to
reduce latency than it is to add registers later to increase speed. Thus if there is a
debate about whether to add registers to reduce the logic depth, add the pipeline
register as it can be removed later.

 The placement of the pipeline registers is key to increasing the performance,
thus be aware of the logic depth of the resulting logic when designing the logic.
The FPGA design tools have features and reports that provide this information. For
example the Altera Quartus tools provide the Technology Map Viewer and timing
reports in the TimeQuest tool that detail the number of levels of logic.

 For example, take a function with seven inputs and a logic depth of two as shown
in Fig. 10.16 .

 By retiming the output register, the logic depth can be reduced to 1 level of logic,
as shown in Fig. 10.16 . This increases the register utilization but does increase the
performance of the design. Most functions can be manipulated using this technique
to reduce the logic depth.

DQ

DQ

DQ

DQ

 Fig. 10.16 1 level of logic

 Fig. 10.17 Registered 4:1 MUX of N bit bus with a maximum depth of one LUT

 Figure 10.17 is an example of how to structure your HDL to maximize perfor-
mance by pipelining while creating a fl exible design block that is ideal for reuse.
The design uses a registered 4:1 MUX of N bit bus. It is constructed to have a
maximum depth of 1 LUT.

10.6 RTL Coding Styles for Synthesis

112

Fig. 10.17 (continued)

10 RTL Design

113

 The following design in Fig. 10.18 shows how smaller optimized design blocks
can be used to build a larger optimized design block. In the example, a registered 8:1
MUX of N bit bus is composed from two copies of the mux4 design in Fig. 10.17 .
The implementation has a latency of two cycles and a LUT depth of one.

 Fig. 10.18 Large design block composed of smaller optimized blocks

10.6 RTL Coding Styles for Synthesis

114

 Register retiming is a much more diffi cult problem in design blocks that contain
feedback loops, as shown in Fig. 10.19 . The register can travel around the loop, but you
can’t get more registers into the loop without changing the functionality of the design.

 The best way to reduce the logic depth of functions containing feedback loops is
to redesign the function with the loop as close as possible to the register. This is
acheived by pre-computing as much of the function as possible, and registering this
stage before approaching the loop.

Fig. 10.18 (continued)

10 RTL Design

115

 There a number of factors to consider in determining the optimal number of levels
of logic. These are:

 1. Device utilization. Adding additional logic to a design that is already pushing the
utilization limits of the device will make the problem worst.

 2. Complexity of the design block that you are creating. The more complex the
design block, the harder it can become to pipeline the design, particularly if the
design block contains a number of feedback paths or loops.

 3. Performance requirements of the design block. If the design block does not need
to run blazingly fast in this design or when reused in future designs, do not heav-
ily pipeline it.

 4. Width of the bus. As mentioned previously, pipelining of wide busses can have a
large impact on device utilization for both logic and routing.

10.6.3.3 Impact of Routing

 Knowing the limits of the FPGA architecture is important. Generally fast narrow bus-
ses will route easier. In high speed, high bandwidth designs, routing is a critical
resource. Increasing the clock fmax and reducing the bus width will reduce routing
usage. The long wire network in the chip will start to fi ll as the bus width increases.
As the long wore network fi lls, slower resources will be used to fi ll the gap, resulting
in performance degradation. The chip will generally still be able to route, but you will
fi nd yourself having to debug the source of timing closure failures. Narrow busses do
not guarantee high performance. It requires good design and coding as described pre-
viously. Wide busses require hundreds of bits and will generally make your design
slow. You cannot typically recover performance from the increase in routing, logic and
area that comes with using a wide bus. Increasing the bus width as a technique to
lower the fmax requirement in order to make for easier timing closure can have the
inverse effect. It will increase the area. Doubling the bus width will typically double
the area and often result in worst timing closure than using the narrow bus at 2× the
fmax. Higher performance cores will require more attention during RTL design to
manage logic depth per register stage, but will likely close timing more easily.

 There are other techniques that can be used to reduce routing usage. One example
is to move the data as little as possible. This can be achieved by leaving the data in
memory/FIFOs or to move information around the data instead.

DQ

 Fig. 10.19 Example of a
feedback loop

10.6 RTL Coding Styles for Synthesis

116

 If a block of logic works on a few bits in a word, store the inactive bits in a
FIFO. Memory is a cheaper way to store data than using registers and the routing
necessary to connect them.

10.6.3.4 Floorplan Aware Partitioning

 Be aware of the physical implementation. Know where the I/O interfaces are placed
when you design logic. Minimize the signals driving to both sides of a device, e.g. if
a multi-transceiver interface is spread across both sides of a device, design the logic to
also split across the device. Pipeline the signals that must cross the entire device.

 Ideally, modules should use proportional amounts of registers, memory blocks,
and DSP blocks, e.g. if a module uses 5 % of the device logic, ideally it should use
about the same amount of M20K blocks, or fewer. Signifi cantly unbalanced resource
use is a predictor of timing closure and/or routability problems. Look at the allocation
of memory and DSP blocks. If a design block uses a lot of memory, it restricts the
placement of the logic, resulting in irregular shapes for fl ow planning and requiring
unplaced logic from other unrelated blocks having to be placed around the memory.
This makes it harder to fl oorplan the device for team based design environments.

 An example of this is shown in the fl oorplan in Fig. 10.20 . The design block
only consumes about 5 % of the logic, but consumes 25 % of the RAM blocks.
The M20K blocks must be spread out more than the logic. Consequently more
routing resources are required to connect logic to the M20K blocks resulting in tim-
ing closure challenges as the signals have further to travel.

 Fig. 10.20 Floorplan of RAM heavy design

10 RTL Design

117

10.6.4 RTL Coding for Area

 When you are writing your RTL, think about what logic you are creating. For example,
do you want one adder or two? Could you construct the RTL to get one adder?

 Be familiar with the logic structure of the target architecture. What control sig-
nals are available on the registers and how is the LUT structured, four input LUT,
six input LUT?

 Look at the synthesis report to get a good estimate on logic used. Most synthesis
tools detail the resource utilization on a hierarchical basis. This is helpful in deter-
mining if certain blocks are consuming more logic than anticipated.

 For smaller design blocks, you should use netlist viewing tools to analyze the
optimization, e.g. one adder versus two, and so on.

 If you have very slow logic in the design, consider deploying time division
multiplexing. This approach is common place in DSP designs where one FIR runs
2× or 4× required rate to save on resources.

 When examining your design, look at duplicate registers and logic. These
typically occur due to multiple design blocks duplicating functionality. While a
small number of duplicates may be good for speed it is possible that you could
achieve heavy area savings by removing the duplication. If you see possible
heavy area savings, this may be an indicator of poor design hierarchy partition-
ing. You should consider creating a separate level of hierarchy for the common
portion of the design.

 Synthesis can save area by converting shift registers or register chains to
RAM; however converting to RAM implementation often reduces speed.
Consider turning off Auto shift register replacement. If the design is close to full,
the use of shift register conversion to RAM may benefi t non-critical clock
domains by reducing area.

10.6.5 Synthesis Tool Settings

 All synthesis tools come complete with dozens of options for optimizing your
design to meet you target goal. These settings can be very effective, however you
may not be guaranteed the exact same impact in a future release of the EDA tool. By
using these advanced settings, you are effectively removing the guarantee of your
RTL being reusable. Despite the marketing literature on the EDA synthesis tool, it
is recommended that you try to maintain the default Synthesis settings and perform
your optimizations in the RTL code, ensuring that your design is reusable. If there
is a setting that you have to use to meet your goals, this should be fully described in
the documentation for the design block.

10.6 RTL Coding Styles for Synthesis

118

10.6.6 Inference of RAM

 Most synthesis tools have the ability to infer basic RAMs with a single read and
write operation.

 A few synthesis tools can also infer true dual-port RAMs.
 Synthesis tools cannot infer all of the advanced features of the RAMs in FPGA

devices. These capabilities can be utilized either through the addition of attributes
to your RTL or through the instantiation of RAM primitives.

 When writing the RTL that describes a RAM, you need to be aware that your
coding style may be such that the memory blocks require the addition of external
logic to match the behavior of your HDL.

 When describing RAM blocks, it is recommended that you begin with the
RAM templates provided by your synthesis tool. From this, you can then create
your own library of RAM modules and re-use them in every design. The philoso-
phy behind this is that you work out all the tool/device inferencing issues in
advance. This makes it easy to replace inferred RAMs with instantiated RAMs,
as needed.

 Avoid unsupported read-during-write behaviors. The synthesis tools will need to
insert extra logic to achieve the functionality. This bypass logic will result in an
increase in area and slow the performance of the design.

10.6.6.1 Read During Write Behavior

 Does a simultaneous read/write to the same address returns the OLD data or the
NEW data? It depends on the HDL.

 Figures 10.21 and 10.22 details a coding style that will infer a RAM that returns
the NEW data on a simultaneous read/write.

 Fig. 10.21 Verilog
implementation of new data
on simultaneous read/write

10 RTL Design

119

 Figures 10.23 and 10.24 details a coding style that will infer a RAM that returns
the OLD data on a simultaneous read/write.

 Fig. 10.22 VHDL implementation of new data on simultaneous read/write

 Fig. 10.23 Verilog code that
will infer a RAM that returns
the OLD data on a
simultaneous read/write

10.6 RTL Coding Styles for Synthesis

120

 It is also possible to infer initialized RAM. Figures 10.25 and 10.26 details the
coding style for initializing the RAM.

 Fig. 10.25 Verilog code to
Initialize the RAM contents
to all 1’s

 Fig. 10.24 VHDL code that will infer a RAM that returns the OLD data on a simultaneous
read/write

10 RTL Design

121

 Fig. 10.26 VHDL code that will infer a RAM which is initialized to all 1’s

10.6 RTL Coding Styles for Synthesis

122

10.6.7 Inference of ROMs

 EDA synthesis tools can detect sets of registers and logic that can be implemented
as ROMs in memory blocks.

 Figures 10.27 and 10.28 shows how a ROM can be inferred through the use of
case statements and registering of the output.

 Fig. 10.27 Verilog
inferencing of a ROM

Fig. 10.26 (continued)

10 RTL Design

123

 Fig. 10.28 VHDL inferencing of a ROM

10.6 RTL Coding Styles for Synthesis

124

10.6.7.1 Inference of Finite State Machines

 When creating Finite State Machines, you should always specify your reset
condition using an asynchronous condition; otherwise, the synthesis tool will
guess your reset state which may cause functional issues for your design
Figs. 10.29 .

reset
s0 s1 s2

 Fig. 10.29

 In VHDL, FSMs are inferred from signals/variables which have enumerated
types Fig. 10.30 .

 In Verilog, FSMs are inferred from variables with the following properties.

 1. Assigned values are constant expressions or module parameters.
 2. Variables are not declared as an output port or used in a port connection.
 3. They are referenced or assigned as a whole.
 4. The state names are based on binary representation of state value or the name of

the parameter that represents the state.

10 RTL Design

 Fig. 10.30 Use of enumerated types in VHDL for state machine inferencing

126

 Figure 10.31 details an example of a Verilog FSM.
 You should always specify your reset state.

 Fig. 10.31 Verilog FSM

Fig. 10.30 (continued)

10.6.7.2 State Machine Encoding Styles

 Most FPGA synthesis tools have a default state machine style that they will use.
 One-hot encoding is generally used for FPGA devices as the architecture

features lesser fan-in per cell and an abundance of registers.

10 RTL Design

127

State Binary
Encoding

Grey-Code
Encoding

One-Hot
Encoding

Idle 000 000 00001

Fill 001 001 00010

Heat_w 010 011 00100

Wash 011 010 01000

Drain 100 110 10000

 Fig. 10.32 State machine
encoding styles

 Binary (minimal bit) or grey-code encoding is generally used for CPLD or
product- term devices, as these architectures feature fewer registers and greater
fan- in Fig. 10.32 .

10.6.7.3 Safe State Machines

 One-hot encoded state machines are commonly used in FPGAs, due to the avail-
ability of registers. However, given n encoding bits, there are 2n – n illegal states.
Many of the synthesis tools targeting FPGAs will optimize away any manual recov-
ery logic that you have created. They tend to have a safe machine option that can be
set in the tool or controlled through the use of synthesis attributes. Make sure that
you use this option as noise and spurious events in hardware can cause state
machines to enter undefi ned states.

 If state machines do not consider undefi ned states, it can cause mysterious
“lock- ups” in hardware. It is good engineering practice is to consider these unde-
fi ned states.

10.6.7.4 Large Complex State Machines

 Embedded Processors are ideal for implementing large complex state machines.
 Most FPGA vendors provide soft processors that can be used for this purpose

with an easy to use ‘C’ programming environment for describing the state machine
operation. When using dedicated hardware to implement state machines, each addi-
tional state or state transition increases the hardware utilization. The advantage of
using a soft processor is that the hardware resources consumed are fi xed, with the
exception of the memory resources. which depends upon the size of the state
machine. A processor by defi nition, is a state machine that contains many states.

10.6 RTL Coding Styles for Synthesis

128

These states can be stored in either the processor register set or the memory
available to the processor; the advantage that this provides is that state machines
that do not fi t in the footprint of a FPGA can be implemented using memory con-
nected to the soft processor.

 The FPGA vendors provide guidelines on implementing state machines with
their particular fl avor of soft processor.

10.6.8 Inference of DSP Blocks

 Most FPGA devices contain a fi xed amount of dedicate hardware that is optimized
for multiplication operations.

 FPGA synthesis tools recognize the * operator and will infer the appropriate
hardware in the FPGA silicon.

 Some EDA synthesis tools have the additional capability of being able to detect
multiply-accumulate operations and multiply-addition and to infer the dedicated
DSP block.

 In addition, some of the tools will map input / output registers into the DSP
blocks to pack registers, improving performance and area utilization.

 However, some of the more advanced features of the DSP blocks, such as high
pipeline modes are only available via vendor primitives and these DSP blocks must
be instantiated in the design.

 Figures 10.33 and 10.34 details a Multiply-Accumulate operation that will infer
the dedicated DSP block.

 Fig. 10.33 Verilog multiply-
accumulate operation

10 RTL Design

129

 Fig. 10.34 VHDL multiply-accumulate operation

10.6 RTL Coding Styles for Synthesis

130

10.6.9 Inference of Registers

 FPGA synthesis tools infer registers from the same basic if-else templates.
 In verilog, asynchronous conditions differentiate the clock from asynchronous

controls, as shown in Fig. 10.35 .

 Fig. 10.35 verilog example
of a register

 In VHDL the rising_edge() indicates the clock as shown in Fig. 10.36 :
 You must specify all asynchronous conditions fi rst, which takes priority over

synchronous conditions.

 Fig. 10.36 Register in VHDL

10 RTL Design

131

10.6.9.1 Secondary Signals for Registers

 Once again, it is necessary to understand the target hardware.
 In some technologies, the device registers support asynchronous clear only, only

power up to ground and may not support asynchronous load.
 For registers that do not support asynchronous load, it must be emulated with

latches and combinational logic that is inherently prone to glitches.
 The use of secondary signals also impacts place and route. Many devices are

restricted in the amount of secondary resources that are available. An example
being the Altera Stratix architectures where clock enable (ena), synchronous clear
(sclr), synchronous load (sload) are shared by all logic cells within the same
LAB. Too many unique LAB-wide signals will impact the logic utilization of the
design Fig. 10.37 .

1. Asynchronous clear, (aclr)
2. Preset (pre)
3. Asynchronous load (aload)
4. Enable (ena)
5. Synchronous clear (sclr)
6. Synchronous load (sload)
7. Data in (data)

highest

lowest

 Fig. 10.37 Synthesis priority of secondary control signals for registers

10.6.9.2 Conditional Statements

 The use of if-else statements infers 2:1 multiplexer trees with preserved priority.
This coding style gives the user the control over late arriving signals, as shown in
Fig. 10.38 where ‘a’ is a late arriving signal.

 Care must be taken when using this style of coding for inferencing of multiplexers.
Too much nesting can increase delay signifi cantly.

 It is recommended that if the conditions are mutually exclusive, to recode the
multiplexer as a case statement which will infer a N:1 multiplexer.

10.6 RTL Coding Styles for Synthesis

132

 Fig. 10.38 Multiplexer tree

10 RTL Design

133

 case statements infer N:1 muxes.
 This type of multiplexer is easier to optimize and provides much better delay

than the equivalent priority multiplexer implementation Fig. 10.39 .

 Fig. 10.39 N:1 multiplexer

10.6 RTL Coding Styles for Synthesis

134

10.6.10 Avoiding Latches

 As mentioned previously, FPGA devices have registers and not latches. Thus latches
are implemented using combinational logic. This makes timing analysis more com-
plex and will likely hurt the performance of your design. You need to be aware of
the impact of your HDL coding style. It is very easy to unintentionally infer a latch
in the design. The good news is that this can easily be avoided by ensuring that the
output results are always specifi ed for all input conditions.

10.6.10.1 If-Else Structures

 Latches can be avoided in if-else structures by using don’t care conditions (‘x’) in
the fi nal ELSE clause. This provides the synthesis tool the freedom to encode don’t
cares for maximum optimization.

 An example of how to do this is shown in Fig. 10.40 .

 Fig. 10.40 Complete if-else statement that avoids unintentional latch

10.6.10.2 Nested If-Else Statements

 A common mistake is to leave uncovered cases in nested if-else statements. These
uncovered cases infer latches if there are no default values for objects. Unintentional
latches can be avoided by using signal initialization to cover all cases. This is shown
in Fig. 10.41 .

10 RTL Design

135

10.6.10.3 Case Statements

 VHDL requires the use of the ‘WHEN OTHERS’ clause to cover all cases, how-
ever undefi ned outputs for any given case can generate latches. The solution is to
either assign all of the outputs in each case or to initialize all case outputs. An
example case statement that uses signal initialization to avoid latches is shown in
Fig. 10.42 .

 Fig. 10.42 Use of
initialization in case
statements to avoid latch
generation

 Fig. 10.41 Use of
initialization in nested if-else
to avoid latches

10.6.10.4 Variables

 Always assign an initial value or signal to a variable in order to avoid a latch. If a
variable is not assigned an initial value or signal in a combinational process, a latch
will be generated.

10.6 RTL Coding Styles for Synthesis

136

10.7 Analyzing the RTL Design

 All FPGA synthesis tools include a set of tools that report information on your
RTL. This information can be used to check that your RTL design description is
meeting your goals. They also provide the added benefi t of detailing the structure
of the design, thus helping in the understanding of design blocks that you have not
created yourself.

10.7.1 Synthesis Reports

 All synthesis tools generate a report fi le that details critical information about your
design.

10.7.1.1 Source Files

 The synthesis report will detail which source fi les and libraries were synthesized for
the design. This is important in ensuring that you are using the intended version of
source fi les in the design.

10.7.1.2 Synthesis Settings

 This will detail which options are being used to implement the design in the synthesis
tool. This information should be included in the documentation on the design as it
is critical for repeatability of results.

10.7.1.3 Resource Usage Information

 This is typically broken down by hierarchy. This information is useful for identi-
fying areas of the design that consume a lot of FPGA resources. It can also help
identify areas were logic has been optimized out unintentionally or implemented
in a manner that is different than what you intended. An example of this would be
a multiply operation that is implemented using LUTs as opposed to dedicated
DSP blocks.

10.7.1.4 State Machines

 Most reports will have a dedicated section that identifi es all of the state machines
that have been recognized in the design and will detail information on the state
machine encoding. This information will identify cases were your coding style

10 RTL Design

137

resulted in a different encoding than you intended. It will also identify cases were
state machines were not recognized. This can result in non-optimal implementation
and can impact the debug of your design.

10.7.1.5 Optimization Information

 This section of the report contains information on optimizations that have been
performed on the design. This is usually with regard to registers that have been
optimized out or duplicated. In some tools it will explain why the optimization has
occurred, e.g. register has no fan-out therefore optimized out, or a register has been
duplicated to reduce fan-out. It also contains connectivity data such as input port to
a module or input to a register is stuck at ground. This is useful for uncovering
possible errors in the RTL code, in particular for the hook-up of structural code.

10.7.1.6 Timing Estimates

 As mentioned previously. The timing estimates from synthesis are inaccurate and
should be viewed as a coarse estimate. It is best to perform a place and route operation
to get a good feel for the timing of the design or sub-design.

10.7.2 Messages

 You should review all of the messages from the synthesis engine to ensure the
design gets a clear bill of health.

 Synthesis tools will generate a large number of messages of different levels of
severity.

 The code or synthesis options should be modifi ed to remove any warning mes-
sages. If the messages cannot be avoided, you should fully understand the cause of
the message and if it is verifi ed that there is not a problem, cover it in the documen-
tation for the module. Most synthesis tools provide the capability to review mes-
sages and to suppress them in subsequent compiles. This will greatly simplify the
review process for subsequent compiles.

 However, we recommend that a full message review be completed before fi nal
design sign-off.

10.7.3 Block Diagram View

 Most EDA synthesis tools have schematic viewer options that can be used to analyze
your design. The viewers create a schematic view of your designs and provide
the ability to quickly debug your RTL design. In most cases they can cross-probe

10.7 Analyzing the RTL Design

138

 It is very easy to view a state machine design and determine if your description
meets the desired implementation.

 Figure 10.44 shows an example state machine diagram created by the Quartus II
software.

 Fig. 10.43 Quartus II RTL Viewer

between these schematic views and HDL source code for easy tracing of signals and
debug of the design implementation.

 These tools are excellent for gaining an understanding into RTL code that you
did not create but are reusing from another designer. It quickly shows the structure
of the design and the fl ow of data through the design.

 Figure 10.43 shows an example of such a tool from the Quartus II software.

10 RTL Design

139

10.8 Recommended Best Practices for RTL Design

 1. Choose an HDL language
 2. Select the EDA synthesis tool
 3. Understand the capabilities of your FPGA
 4. Create a rough system design
 5. Follow recommended HDL coding guidelines
 6. Divide and conquer
 7. Identify goals for each design block—speed, power or area.
 8. Run compilations with individual design blocks for area and performance

estimates
 9. Simulate each block
 10. Document each block
 11. Remove warnings from synthesis reports
 12. Combine blocks to form full project
 13. Simulate complete design
 14. Analyze synthesis report for complete design
 15. Remove warnings from complete design
 16. Document complete design
 17. Move onto Timing Closure for complete design

 Fig. 10.44 Quartus II State Machine Viewer

10.8 Recommended Best Practices for RTL Design

141© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_11

 Chapter 11
 IP and Design Reuse

 Abstract This main purpose of this book is to guide you in creating reusable design
blocks targeting FPGA devices; from Specifi cation through RTL design and
Verifi cation. This chapter on IP reuse is complementary to these other two chapters.
It focuses on the benefi ts of IP reuse, how to determine whether to design your own
IP versus buying IP and how to package your IP for ease of reuse.

11.1 Introduction

 This main purpose of this book is to guide you in creating reusable design blocks
targeting FPGA devices; from Specifi cation through RTL design and Verifi cation.
This chapter on IP reuse is complementary to these other two chapters. It focuses on
the benefi ts of IP reuse, how to determine whether to design your own IP versus
buying IP and how to package your IP for ease of reuse.

11.2 The Need for IP Reuse

 It is universally accepted in the industry that design reuse can result in reduced
engineering effort; consequently resulting in faster time to market and reduced
development costs.

 This is demonstrated with many projects where the next version of the product is
a variation of the previous design, hence effective design reuse. In most of these
cases the new product has additional functionality to the existing design and the
original design is used in its entirety.

 However, when it comes to completely new designs or other products that are
developed by other design teams, design reuse is not so common.

 In practice, design blocks from other designs could be utilized in these other
designs by other teams.

 So, why does this happen so infrequently?
 The main reason is that most Companies do not have a design reuse methodology

that is adopted across development teams.

142

 Engineers that develop design blocks are not going to drive a design reuse
through a Corporation. They will be the adopters and contributors to a design reuse
methodology.

 It is the Engineering Management that needs to drive the design methodology
from the top.

11.2.1 Benefi ts of IP Reuse

 There are fi ve main benefi ts to a design reuse methodology.

 1. Leverage of existing investment.
 It doesn’t make sense for every design team to create their own design of a function
that is common across all designs. Reusing a functional block across designs make
use of the investment that was originally invested in creating the design block.

 2. Predictable results.
 The performance of existing design blocks is a known entity. Through the use of
existing design blocks, you are reducing the amount of your design for which the
results are unknown. In the case of design blocks that are retargeted to another
FPGA technology, if the design block has followed the recommendations in
Chap. 8 on RTL coding, it is relatively easy to compile the design block in the
new technology and quickly gauge the performance of the design block in the
new technology. This is much faster than creating and verifying a new RTL
design from scratch.

 3. Enables engineers to focus on their core competencies.
 Some of the components of a design may not be an area for which the designer
has intimate knowledge. By leveraging design blocks from experts in this area,
the designer can focus on their area of expertise. An example could be a packet
processing design where the data comes onto the chip via an Ethernet interface.
The design engineer may be an expert in packet processing but not in developing an
Ethernet interface. By reusing an existing design block that implements the 10G
Ethernet interface, the designer can focus on his core competency of implementing
the packet processing interface.

 4. Minimizes the verifi cation cycle.
 The design blocks that are being reused have previously been verifi ed, thus they
only have to be re-verifi ed as part of full system verifi cation.

 5. Achieve faster time-to-market
 It may take a matter of hours to add existing design blocks to your system design
as opposed to the months that it may take to implement complex functionality,
such as an Interlaken or DDR III memory interface.

11 IP and Design Reuse

http://dx.doi.org/10.1007/978-3-319-17924-7_8

143

11.2.2 Challenges in Developing a Design Reuse Methodology

 Design reuse does not come for free. While the benefi ts in turns of cost and produc-
tivity are huge, it requires a change in mindset across the engineering teams in a
Corporation.

11.2.2.1 Engineers Mindset

 The fi rst challenge is winning the mindset of the engineers that develop design
blocks and that will in turn become the consumers of existing design blocks. Many
Companies suffer from the not-invented-here (NIH) syndrome. Some engineers
view the reuse of other engineers design blocks as reducing their personal value in
the designs they are creating. They want to create the design themselves as opposed
to using others code.

 In addition, when some designers create blocks, they often want to keep the blocks
to themselves as their own intellectual property. They may view the sharing of their
design blocks as reducing their ownership of the design. There can also be a fear that
other designers that reuse their design blocks will criticize their designs.

 There is extra effort involved in making design blocks reusable, some engineers
do not want to expend the effort in making life easy for other engineers at cost to
themselves.

 These challenges can be addressed through formal development policies at the
Company. After the initial pain of adoption, it will become a way of life for engi-
neers and they will take pride in creating reusable design blocks just as they do
today in creating their designs.

11.2.2.2 Awareness of Reusable Design Blocks

 IP distribution is a challenge. Engineers need to be aware of where to fi nd design
blocks that may benefi t them. Consumers of these design blocks need to be able to
fi nd information that makes them aware of the capability of the IP, how to use the IP
and how the IP has been verifi ed. This will remove any concerns over the quality of
the design.

 Similarly engineers need to be aware of how to publish their IP; publishing in
this context meaning how to make their IP available to other users.

 IP distribution and validation can be a hurdle in the adoption of an IP-Reuse
methodology. Since the IP, is used by the designers who do not directly have access
to original design process, they need a lot of information packaged with the IP. This
includes documentation, all design views required by the ASIC methodology, veri-
fi cation plan and tests etc.

 These issues can be resolved via a common managed design reuse website, wiki-
site or sharepoint site that is linked to version control.

11.2 The Need for IP Reuse

144

11.2.2.3 Development Effort

 There is extra time and effort, hence cost in making a design block reusable as
opposed to designing a block for one time use in a single project. The project schedule
can be a factor in determining whether a block is developed for reuse. A Company
that is serious about design reuse needs to ensure that all of their project schedules
allows for key design blocks to be designed for reuse. This will allow for more
effi cient designs in the future.

 It is crucial to avoid trying to make every single piece of a design reusable.
 Proper defi nition and selection of design blocks for reuse can be a diffi cult task.

It is not easy to defi ne design blocks that can successfully be used in different
applications.

 Thus when defi ning the specifi cation of a design block, it is necessary to under-
stand the functionality of the design block with respect to other applications and
products within a Company. This information can be used to determine whether the
block should be created in a manner for design reuse and documented accordingly
in the specifi cation for the design block.

 Certain small blocks such as address decoders and arbiters are best left to system
integration tools.

 Similarly, performance challenged design blocks where the functionality of the
design is closely related to the timing, may not be reusable in other FPGA families
or even in other devices in the same family. These blocks will have a onetime use
model and need not follow all of the design reuse recommendations.

11.3 Make Versus Buy

 One of the questions that an engineering manager will face is when to develop IP
in-house versus when to purchase IP from a source outside of the Company.

 One of the infl uences on the decision for the in-house development of IP is
whether an IP is critical to the overall performance of the design. Internally devel-
oped design blocks provide more control over design optimization and potentially
customization. If this is a concern, then designers should consider designing this
functionality in house or re-using design blocks from other teams, for which they
have access to the source code.

 Similarly, if the design block is one of the areas where you are going to differen-
tiate your product from the competition, you will want a strong understanding of the
capability and ownership of the RTL code.

 Another factor that will impact in-house development versus purchasing of the
IP is cost. It needs to be understood how much it would cost to develop and verify
the functionality in-house versus buying a readily available solution.

11 IP and Design Reuse

145

 Time to market may push you in the direction of purchasing IP. If your schedule
is tight, purchasing IP may save you several months of development, if your existing
resources are already fully occupied.

 The availability of IP for your target FPGA technology is another point to be
considered. There is usually a delay from the availability of new FPGA families to
the porting of IP to these new families. Many of the smaller FPGA vendors will wait
for a lead customer prior to performing the port. This can cause a delay in the avail-
ability of IP that has tight timing requirements. The risk in being the fi rst adopter of
new IP is that you may become the cleaning house on the IP verifi cation in the new
technology. This can also be a benefi t in that if you are the fi rst to adopt the IP in a
leading edge technology, you may gain a lead on your competition.

 Anytime that you are receiving design blocks from another source, there will be
concerns over the quality the design blocks, in particular if you are purchasing
the IP.

 There is no industry standard for IP quality that is available to help in the
selection of IP. Several initiatives have started in the past, but never reached the
level of industry approval and adoption. Consequently, you need to rely on IP pro-
vider’s reputation or ask for details on the IP provider’s verifi cation process and
results for the IP that is being purchased.

 These are all cases were you can compare the costs of internal development of
design blocks versus purchasing of design blocks.

 If your design team does not have the knowledge or experience in the area of
functionality that you need, it should be a slam dunk to use purchased IP.

11.4 Architecting Reusable IP

11.4.1 Specifi cation

 The overall system specifi cation should identify new blocks that are being developed
that could be used in other designs. This will impact the schedule and specifi cation
for the development of these blocks.

 Thus when these blocks are being defi ned it will be in their requirements that
they should be developed for reuse and should follow the IP reuse guidelines.

 When the specifi cations for these reusable blocks are being reviewed, it should
include reviewers from the other teams that could be consumers of the IP. This will
serve three main purposes. Firstly it will increase the awareness of the IP across
teams. Secondly, by involving the other teams in the specifi cation process they will
have a vested interest in the IP and will be more open to adopting the blocks in their
design. Finally, these other teams may provide feedback that your team may have
overlooked.

11.4 Architecting Reusable IP

146

11.4.2 Implementation Methods

11.4.2.1 Parameterized RTL

 Developing IP using parameterized RTL is the most common IP development
methodology in the industry. It provides the simplest way to create and maintain
reusable design blocks. Some examples would be the use of parameters to set
different data widths for Memory or FIFOs.

 Parameterization provides built-in fl exibility through the use of non-constant
variables; these are parameters in Verilog and generics in VHDL.

 When you are determining what should be parameterized in an IP you should
consider the likely uses of the core, anticipate the range of desired features and build
parameterized functionality for each desired confi guration.

 Generate statements which are available both in Verilog and VHDL should be
used together with parameters in reusable IP to achieve effi cient implementation of
the design. Generated instantiations and module parameters can be used to remove
redundant logic and create fl exible designs.

 Generate loops allows multiple statements and blocks to be instantiated using
‘for’ loops.

 Generate based upon conditions can be used to create parameterized logic.
An example showing the use of a generate statement with parameters to generate a
multiplexer is shown in Fig. 10.18 in Chap. 10 .

 More detailed guidelines on creating RTL for IP reuse are available in Chap. 10
on RTL design.

 Section 10.5.4 of the chapter on RTL design provides guidelines on hierarchy
and design partitioning. Section 10.5.5 of Chap. 10 provides coding guidelines for
design reuse.

11.4.2.2 High Level Synthesis

 High level synthesis is good for algorithmic exploration; particularly in the DSP
space where users enter their design in Ansi C/C++. This class of tools has been
shown to provide a large development time reduction over designing algorithms
in RTL and opens the hardware design process to a new class of user; the software
or system engineer. They are excellent for the architecture exploration phase of
the algorithm design as the description is much closer, or the same as the algo-
rithm model. The amount of ‘C’ code needed to describe the functionality is likely
to be much smaller than an RTL implementation; hence the gain in productivity.
These tools also tend to provide more fl exibility in porting the design across
FPGA families. At the highest level of design, the code is not created with a target
FPGA family in mind.

 There main disadvantage in these solutions is that they tend not to be an optimal
solution for fi ne tuned optimized Quality of Results; thus tend to be area ineffi cient

11 IP and Design Reuse

http://dx.doi.org/10.1007/978-3-319-17924-7_10#Fig18
http://dx.doi.org/10.1007/978-3-319-17924-7_10
http://dx.doi.org/10.1007/978-3-319-17924-7_10
http://dx.doi.org/10.1007/978-3-319-17924-7_10#Sec16
http://dx.doi.org/10.1007/978-3-319-17924-7_10#Sec17
http://dx.doi.org/10.1007/978-3-319-17924-7_10

147

or leave some performance on the table. In recent years, these tools have made good
progress in the QoR aspect for certain classes of DSP applications. They should be
considered for the creation of non-performance critical DSP IP.

 In addition to C/C++ tools there is also another class of design tools which is
model based design. These tools provide an interface to the MATLAB environment
via Simulink. Once again, these tools mostly target DSP applications. They have
been shown to be used successfully in a smaller application space; mostly in Modem
designs and some Military applications. This class of tools should be considered for
creating IP in these application spaces.

11.4.2.3 IP Generators

 IP generators are programs that are written in C++, Perl, or other high-level languages that
build RTL code dynamically, based on parameter settings from the end user. The gen-
erators tend to pull together RTL design blocks based upon the chosen parameters.

 This technique is commonly used by FPGA vendors to provide complex IP to
their customer base.

 An IP Generator generates the HDL code based on the customer specifi cation
with all of the parameters resolved.

 They are suitable for complex parameter combinations, complex legality checking
and advanced processing for arithmetic operations.

 The disadvantage of IP Generators is that they require software programming
skills to implement.

11.4.3 Use of Standard Interfaces

 It is recommended that you adopt a common interface protocol on all of your IP.
The use of standard interfaces simplifi es the interconnection and management of
functional blocks that makes up a design.

 1. It ensures compatibility between IP components from different design teams or
vendors.

 2. It enables fast system level integration of IP. Consumers of the IP are aware of
the operation of the signals to which they are interfacing; greatly simplifying the
interface logic to the design block.

 3. It also opens the door to using design automation tools for system integration.
 4. This simplifi es team based design, by enabling individual team members to build

and test their individual design blocks. Through the understanding of the
common interface protocol, each of the team members will understand how to
interface to the blocks that use the common specifi cation. This simplifi es the
integration of the individual design blocks into a full system design.

 5. It enables Plug and Play interoperability of IP.

11.4 Architecting Reusable IP

148

 6. It also increases the stability of the IP. The operation of the interface signals are
described in the specifi cation for the interface protocol and the operation of the
interface signals on the core verifi ed against the specifi cation.

 There are various standard interfaces on the market today. The most widely
adopted interface standards that are used in FPGA and ASIC design are AMBA(AXI,
AHB and APB) from ARM, Avalon (MM and ST) from Altera, OCP from OCP-IP
and Wishbone from Opencores.

 When selecting a standard interface protocol you need to ensure that the IP
infrastructure is in place. When we refer to IP infrastructure we mean that IP is
available targeting the FPGA technology that you will be targeting using the standard
interface protocol and that the specifi cation for the protocol is solid. IP includes
both the IP that will be part of your end design and verifi cation IP such as Bus
Functional Models.

 The interface standard needs to be easy to understand, compact, and the hard-
ware interfaces should not produce performance or area penalties when imple-
mented. The standard needs to support all of your application needs. This will
normally include Memory mapped interfaces with address-based read/write inter-
faces typical of master–slave connections, point-to-point interfaces that support the
unidirectional fl ow of data, including multiplexed streams, packets, and DSP data.

 Once a decision has been made on the choice of standard interface to be used
within the company, each designer of a system component or major design block
must consider what interface types the block will need, and which standard inter-
face type each will use. It is best to understand the standard interface specifi cation
and design the system to that specifi cation whenever possible, rather than try to
convert existing signals to use the standard. For example, if the design team chooses
to use the ARM AXI-4 Lite protocol, separate the control paths that may be designed
as a memory-mapped ARM AXI-4 Lite slave interface from the data paths that may
use an ARM AXI-4 Stream protocol connection. An IP block may have more than
one interface, or set of signals that follows the standard. If the IP is performing dif-
ferent types of transactions, it may be preferable to split those transactions into
different system interfaces, or even different design blocks, to make each design
block easier to verify and more versatile for reuse in other systems.

 Another area to consider is the boundary of the IP logic versus the system-
interconnect logic. For example, if a design block accesses memory, you may want
to split the read and write functions and allow standard interconnect logic to per-
form the arbitration instead of designing all the custom arbitration logic. Systems
generally result in the highest performance and effi ciency when characteristics such
as data width, burst lengths, and clock domain are matched between components of
the system. However, if you are designing a reusable design block, it is often better
to allow the system interconnect to perform tasks such as width and burst length
adaption and clock domain crossing, unless you know the characteristics of all the
target systems. There is often no need for the IP blocks to contain this type of logic.

 In summary the use of a standard interface protocol really is the heart of a design
reuse strategy.

11 IP and Design Reuse

149

11.5 Packaging of IP

 The IP package is the IP core plus the supporting fi les and utilities.
 A good IP package should place everything at the user’s fi ngertips. It should be

easy to fi nd, install and to maintain.
 User access to the IP could be in a Company library of reusable IP or it could

require installation on the user’s workstation or Design Environment. If it requires
installation, it is recommended that you leverage an off the shelf commercial
product to perform the installation, such as install shield, or create a self extracting
executable using WinZip or a similar program.

 The minimum requirements for an IP package are:

 1. IP core. The design that implements the required functionality. This can be plain
text HDL or an encrypted HDL fi le or netlist.

 2. Timing Constraints and any location constraints.
 3. Simulation Model, if different from the design fi les for the IP core.
 4. User Documentation. This should be the user manual for the IP as well as any

errata. This is described in more detail in Sect. 11.5.1 on documentation.
 5. User Interface and/or scripts for parameterizing the core or compiling the core.
 6. Compatibility with any System Integration tools that you intend using.

11.5.1 Documentation

 It should be common practice in an organization to include good documentation on
major design blocks. This is an additional document to the RTL code for the design.
This document should explain the structure of the design, including block diagrams
and a description of the hierarchy. It should also include a description of timing
details, such as which paths are timing exceptions.

 Documentation on major design blocks is essential for design reuse. If the end
user does not understand what they are trying to reuse, they are unlikely to be suc-
cessful in reducing the design cycle through design reuse. Documentation is also
very helpful when you are returning to a design that you completed in the past, and
for the training of new employees in the organization who will maintain or complete
your design block.

 As mentioned previously the documentation on the IP should include the user
manual and any errata. It should include version control on the documentation that
details the history of changes to the IP core and documentation. The version of the
core needs to be identifi able in the core itself, as well as in the documentation.

 While the functionality of the design may be unique to the IP core, the format of
the documentation needs to be consistent across all IP cores. This includes the user
documentation and the RTL code formatting which in itself should be self
documenting.

11.5 Packaging of IP

150

 The documentation should include an example design or testbench for the IP that
demonstrates how to connect the IP to the rest of a design. Ideally this can be used
to demonstrate the functionality of the IP. Ensure that the IP core and any example
design and test benches can be simulated in all simulators used within the
company.

 The fi le structure of the design must be common with all other IP and the naming
convention of signals must follow the Company coding guidelines.

 For parameterized IP, there should be tips on the parameter settings.

11.5.2 User Interface

 The most common way that designers make IP available to other designers within
their Company is that they provide the RTL for the design along with user documen-
tation on the design. While this works, it makes it diffi cult for the end user to really
understand how to use the IP that they are receiving.

 IP should come with an interface that makes it easy for the user to understand
the constraints that apply to the IP. At a minimum the IP should come with a docu-
mented command-line script that enables users to pass values to the parameters in
the IP. Ideally it should come with a GUI to help users get started.

 Our recommendation is that you provide a simple GUI for your IP and a scripting
interface.

 The simple GUI should enable users to set parameters, set constraints and be able
to validate that the selections are legal.

 This type of interface will help designers to learn the functionality of the IP,
generate the correct verifi cation fi les and scripts for the block, as well as providing
a link to documentation that is available for the IP.

 This is the type of interface that you will see in the IP that is provided by the
FPGA vendors and in many cases from other IP providers.

 The GUI need not be elaborate; it needs to show the user what settings that they
can make and enable them to make the settings.

 A sample GUI available in the Component Editor from Altera is shown in
Fig. 11.1 .

 If you have reasonable programming skills, you could create a GUI in Tcl/TK or
in Java.

 If not, you can adopt the IP GUIs from the FPGA vendors. This requires the
adoption of the FPGA development tools.

11 IP and Design Reuse

151

11.5.3 Compatibility with System Integration Tools

 Standardized design entry and design integration tools can reduce the design entry
overhead.

 System Integration tools auto-generate the HDL for the interconnection of IP
blocks. The major FPGA vendor tools provide IP integration tools that perform this
function. These system integration tools take care of the relatively mundane tasks
that RTL designers have to do such as address decoding, data multiplexing, wait
state generation in processor systems, dynamic bus sizing, slave side arbitration and
direct interconnect of blocks. This functionality is analogous to a software linker.
A software linker creates an executable program out of MAIN and a selection of
precompiled library functions.

 Fig. 11.1 Sample GUI for IP demonstrated by the Quartus II component editor

11.5 Packaging of IP

152

 System integration tools, such as Qsys from Altera, automatically create a system
out of a variety of system blocks. This enables designers to focus on value-add archi-
tecture ideas, effectively extracting themselves from the low level integration details.

 These tools should be used in both the architecture exploration and implementa-
tion phases of the design process, where they will increase your productivity.
They facilitate architecture exploration by allowing you to plug and play design
blocks into your system and to quickly generate the RTL for the given architecture
without having to modify the arbitration logic, width adaption logic, memory map,
etc. manually. This enables you to quickly try different architecture variations. Once
you fi nd the architecture that you want to use for the implementation you can then
fi ne tune the blocks that are in the system to meet your overall goals.

11.5.4 Constraint Files

 If a design block requires specifi c timing constraints (such as timing exceptions or
frequency limitations), or any location constraints on the target device (such as pin
locations or I/O standards), reusable IP requires an easy way for the end user to
make those constraints in the design tool.

 One challenge with reusable IP is that signal and pin names may change when the
IP is integrated into a new design, due to different design names and different hierar-
chy. For example, full hierarchy names will change when IP is moved from a lower-
level design to a top-level design. The name changes for core logic such as registers
are usually predictable, as the name changes involve a change in the hierarchy leading
up to the register. For example, a register named “lower_module:inst1|reg1” may
become “top_module:inst1| lower_module:inst1|reg1” in the top-level project.
However, the name changes for I/O pins may change in a non- uniform way when
moving from a lower-level design to a top-level design due to the actual device I/O pin
names used in the different designs. For example, a pin named “lower_module_data_
bus” in the lower level may be named “top_level_input_data_bus_4” in the top level.

 You should provide complete Synopsys Design Constraint (SDC)-format timing
constraints, such as timing exceptions or frequency limitations, if the IP core
requires these constraints to function correctly. To allow timing constraints to work
in different design hierarchies, defi ne a variable that contains the design hierarchy
leading up to the module to be constrained.

 Create a hierarchy variable for the reusable IP block (such as “my_IP_hierarchy”)
and set it to an empty string because the block is the top-level instance in the IP
design. Check fi rst if the variable is already defi ned in the project, as shown in the
following Tcl command:

 if {![info exists my_IP_hierarchy]}
 {set my_IP_hierarchy ""}

 Whenever a design name is used as an argument to a constraint, add the prefi x
“my_IP_hierarchy” to the hierarchy name in the constraint. Ensure that you use the
hierarchy variable as a prefi x to any wildcard characters to limit their scope to the

11 IP and Design Reuse

153

given design block when incorporated in the full design, such as in the following
SDC false path constraint:

 set_false_path -from ${my_IP_hierarchy}reg_1 –to ${my_IP_hierarchy}*

 With this approach, the top-level SDC fi le needs only to set the hierarchy vari-
ables for each IP block and include the lower-level IP block SDC fi le(s). This hier-
archy approach eliminates the effort of translating constraints on lower-level IP
design hierarchies into constraints that apply in the top-level hierarchy.

 You should also provide pin constraints for all IP cores that require assignments
to function correctly. These constraints include the correct I/O standards for inputs
and outputs of the design block that will be device I/O pins in the fi nal design.
The unique fl exibility of FPGA I/O pins can make it challenging to plan the pin
connections for a full FPGA design, so including complete I/O constraints for the IP
is important to allow the FPGA design tool to verify the legality of pin location
assignments early in the design process.

 To avoid pin-naming problems, make reusable constraints to variable names
representing the IP port names, instead of hard-coded pin names. Then in the top-level
design, the user sets all the variables for I/O names.

11.5.5 IP Integration File Formats

 Traditionally, FPGA vendors and other EDA tools vendors have used their own fi le
format to integrate IP into their design fl ow. For example, Altera uses a hw.tcl fi le to
integrate IP into the Qsys tool. Each IP block has a <fi lename>_hw.tcl that describes
the characteristics of the IP.

 The ‘_hw.tcl’ fi le specifi es the following information about the IP or design block:

 1. Identifying information, such as name, version, author, etc.
 2. SystemVerilog, Verilog HDL, or VHDL fi les, and constraint fi les that defi ne the

component for synthesis and simulation.
 3. It enables the automatic creation of an HDL template for a component by fi rst

defi ning its parameters, signals, and interfaces.
 4. It associates and defi nes signals for a component’s interfaces.
 5. Sets parameters on interfaces, which specify characteristics.
 6. Specifi es the relationships between interfaces.
 7. Declares parameters that alter the component structure or functionality.

 In recent years there has been a move towards providing a standard format for
describing the characteristics of IP. This has resulted in the IP-XACT standard
that was created by the SPIRIT consortium and is now a published IEEE standard.
The current release of the standard is IEEE 1685-2009.

 The goals of the standard is to enable exchange of component libraries between
EDA tools by using metadata to describe parameterizable components.

 The standard has not been adopted by all of the FPGA vendors, EDA tools or IP
vendors. While the standard is very powerful, it is also very broad and supports user

11.5 Packaging of IP

154

extensions. This makes the standard open to misinterpretation. This makes it diffi -
cult for tools to support all of the features of the standard and makes it possible for
cores to be described that cannot be integrated.

 Some of the benefi ts provided by IP-XACT include:

 1. It is a controlled IEEE standard
 2. It supports IP confi guration
 3. It is tool or vendor independent
 4. It is XML based, thus is machine readable
 5. The XML can describe Memory maps, Bus interfaces, Ports, Parameters,

Generators (which apply to IP that is generated at compile time), fi le sets and can
be integrated into an UVM based verifi cation environment.

 EDA tools and IP vendors appear to be limiting the features of the standard that
they support. This is resulting in higher adoption. It is likely that an extension
of IP-XACT will become the de facto standard in the FPGA industry over the next
2–3 years.

11.5.6 IP Security

 The IP that you purchase from IP vendors normally arrive encrypted. The IP vendors
do this to preserve the integrity of their RTL and to prevent non-authorized users
from being able to design with their IP. The encryption scheme that is used tends to
vary across IP vendors and EDA vendors. From the perspective of a consumer of IP,
you care about which synthesis tools support the IP and the quality of the simulation
model from the IP vendor.

 There are moves in the industry to provide a standard encryption methodology.
The IEEE has created the IEEE 1499 standard based upon the Open Mode Interface
(OMI). The standard is still evolving to meet the protection needs of all IP vendors.
The standard enables the RTL to be compiled into a model format that cannot be
reversed engineered. These models can be simulated in OMI-compliant simulators.
The benefi t is that the RTL code for simulation model and synthesis is the same.
This reduces the development effort for the IP vendor.

 Some IP vendors will provide the source code for the IP. This simplifi es the
design fl ow but usually costs signifi cantly more than the encrypted RTL.

 If you intend to provide encrypted IP, you must work with your FPGA vendor to
utilize their encryption tools.

 Some IP vendors provide obfuscated RTL. This provides a limited form of
security in that the code is diffi cult to understand as the signal names appear to be
 nonsensical. Obfuscation makes it diffi cult for non-authorized users to reverse engi-
neer the RTL. It does not prevent them from compiling the design.

 Some of the FPGA vendors enable you to provide the IP in a post-compilation
format as opposed to at the RTL level. An example being a design block that has

11 IP and Design Reuse

155

been compiled using an incremental compilation methodology with the placement
and routing locked down. This level of IP guarantees the performance of the IP, thus
reducing the support burden on the IP.

 These are some of the ways that you can provide IP to other users. Most
Corporations provide the RTL for design reuse within their own Corporation
and encryption only comes into play on purchased IP. However, some
Corporations are deploying encryption schemes internally for the distribution of
key IP blocks.

 Due to the complication of the design fl ow, it is recommended that you only use
encryption or obfuscation on your design blocks if security is a major concern.

11.6 IP Reuse Checklist

 1. Purchase or design the functionality?
 2. Does the specifi cation state that the design be reusable?
 3. Select the appropriate IP implementation method, i.e. RTL, High-Level Synthesis

or Generator?
 4. For RTL solutions, follow the RTL coding guidelines.
 5. For RTL solutions, parameterize the IP.
 6. Use standard interfaces on the design block.
 7. Is encryption or obfuscation required?
 8. Does the IP follow the IP packaging guidelines?

11.6 IP Reuse Checklist

157© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_12

 Chapter 12
 Embedded Design

 Abstract The fi rst question that may come to mind is why is the design of an
Embedded System in a FPGA any different than standard FPGA development?

 The fi rst question that may come to mind is why is the design of an Embedded
System in a FPGA any different than standard FPGA development?

 In an embedded design, the FPGA system now includes a processor or microcon-
troller and will be running software. This adds a new dimension to the development.
This generally requires the software engineering team to become involved and
imposes additional development challenges on the hardware engineer. In the last
few years, FPGAs have gone from offering low to mid-performance processors via
soft processors, such as Altera’s Nios II, to now offering higher performance hard-
ened processors, such as the dual ARM A9 processors in the Altera SoC devices.

 In this chapter, we are going to cover some of the challenges in embedded hard-
ware design that are unique to embedded designs. We will touch upon some of the
software challenges and end with an overview of some of the FPGA design tools
that can simplify the design of embedded systems in FPGAs.

 Before going into the details of the challenges in embedded FPGA designs, it is
best to fi rst look at the defi nition of an embedded design.

12.1 Defi nition of an Embedded Design

 An Embedded design is a non-desktop system that is designed to perform specifi c
tasks rather than being a general purpose compute systems such as a Personal
Computer. It includes both hardware and software, thus includes a microprocessor
or microcontroller. FPGA devices have been used to perform specifi c tasks for
many years; what is changing now is that processors of higher performance are now
being embedded within the FPGA device.

 A characteristic of embedded processors is that they meet the needs of the end
application. They are usually power effi cient and reliable. These characteristics vary
based on the needs of the end application. The key thing being that they are developed
to meet the needs of the end application rather than being general purpose.

158

 What is an embedded microcontroller?
 A microcontroller is chip that contains a processor, memory for program memory

and for use as RAM, as well as programmable peripherals for input and output
functionality. Microcontrollers can also contain other peripherals such as Analog
to Digital Converters (ADCs), Digital to Analog Converters (DACs) and timers.
The CPU in a microcontroller can be 4, 8, 16, 32 or 64-bit with the most recogniz-
able microcontrollers being the 8051 microcontroller, ARM Cortex-M processors
and Microchip Technology PIC devices. They may provide a predictable response
to events in the embedded system they are controlling by using interrupts that are
triggered by certain events to suspend processing of the current instruction sequence
and to begin an interrupt service routine. This is completed before returning to the
event where the processing left off .

 Figure 12.1 shows the block diagram of a typical Embedded System.
 An embedded system may or may not contain a Real Time Operating System

(RTOS). An RTOS is used to control the execution of the application program and
tends to be used in large complex embedded systems. Smaller Embedded Systems,
which are typically 8 or 16-bit microcontrollers with less complex hardware and
complexity, tend to not require real-time application requests. Thus they tend to
have the application software run without a RTOS.

 The ease of use of a Microcontroller is dependent upon three main factors.

 1. The quality of the development tools.
 2. The availability of development kits.
 3. The support infrastructure for the microprocessor.

 Most microcontroller vendors provide free compilers for their microcontroller.
There are also compilers that can be purchased. These tend to have better debug
capability and in some cases, better optimizations capabilities. Development boards
are extremely important in embedded systems. They allow software engineers to get
started on their design while the end board is being developed. It effectively allows

CPU

On-Chip
ROM

On-Chip
RAM

UART

SDRAM
Controller

GPIO

Timer

SPI

Interconnect

 Fig. 12.1 Example of a typical Embedded System

12 Embedded Design

159

developers to test their code on the target microcontroller in a system prior to having
their own board. The support infrastructure includes documentation, example
designs and technical support.

12.1.1 Advantages That FPGA Devices Provide for Embedded
Design

 FPGA devices provide the option to customize the end design to the exact requirements
of the end system. This provides the end user the option to differentiate their design in
both software and hardware, as opposed to just software. The use of microcontrollers,
such as Nios II, hard ARM A9 processors together with the custom logic capability of
FPGA logic enables the creation of designs ranging from small to medium scale
embedded systems, to large scale embedded systems, to the replacement of Application
Specifi c Standard Products (ASSP) and Digital Signal Processor devices.

 The FPGA logic when added to the processors in FPGA devices can effi ciently
address intensive signal processing or math applications that have previously been
only possible to implement in DSP processors.

12.2 Challenges in a FPGA Based Embedded Design

 The challenges that a FPGA based embedded design face are dependent upon the
end application. One of the major advantages that a FPGA provides is the ability to
use custom hardware to replace software functionality or to improve system perfor-
mance. This raises the challenge of determining which implementation is the best
solution for the end system; faster hardware or more capable software? Which
approach is going to meet the project deadline and which approach is more portable
to the next generation platform?

 There are three constraints that are common across most embedded applications.
These are memory use, processor performance and power.

 1. System memory—Embedded systems are generally self-contained and thus have
limited memory. This requires the software code to be written very effi ciently to
maximize memory use. Most embedded system applications are coded in ‘C’. As an
embedded designer, it helps to have an understanding of the microcontroller’s
architecture and assembly instructions in order to write effi cient ‘C’ code.

 2. Processor speed—What performance can be achieved using ‘C’ code running on
the processor versus using hardware accelerators implemented in the FPGA logic.
How much FPGA logic will be required to meet the performance requirements?

 3. Power—How do we minimize the power using software and hardware design
techniques? Is it possible to turn off logic during periods of inactivity?

 In addition there are the challenges of testing a design that contains both
hardware and software. Does the design meet the end specifi cation and does it really

12.2 Challenges in a FPGA Based Embedded Design

160

work in the end system. Testing introduces the challenge of determining if a failure
is due to software, hardware or both?

 There are now three classes of engineers involved in the embedded FPGA
processor design.

 1. FPGA Hardware Design Engineer
 2. Firmware Engineer
 3. Application Software Engineer.

12.3 Embedded Hardware Design

 The FPGA design engineer is responsible for the design and/or integration of
IP blocks in the FPGA design. This includes the interface between the processor
(soft or hard) and the FPGA logic. The FPGA engineer works with the Firmware
engineer to maintain the register map for the design, to ensure that the software can
work on the device. There are more details on this in Sect. 12.4 Hardware to
Software Interface. The HW engineer is responsible for the design of the bus system
that integrates the IP together with the processor. As such, the hardware engineer
needs to be aware of the pros and cons of the different bus arbitration schemes and
the pros and cons of using automated systems, such as Altera’s Qsys tool versus
manually implementing the bus and bus arbitration scheme.

 The hardware engineer must also work with the Firmware engineer to under-
stand the impact of endianness on the design. So what is endianness?

12.3.1 Endianness

 Endianness refers to how the bytes in a system and/or bus are ordered. Big Endian
systems are ordered most signifi cant (1 st byte) to least signifi cant (Last Byte). Little
Endian systems are ordered least signifi cant (1 st Byte) to most signifi cant (Last
Byte). Figure 12.2 details this for an integer of value 918.

Integer i = 918 = x000396

MSB
00000000 00000000 00000011 10010110 Big Endian

00 00 03 96

Lower -> Higher

LSB
10010110 00000011 00000000 00000000 Little Endian

96 03 00 00

Address

 Fig. 12.2 Interpretation of an integer in big and little endian systems

12 Embedded Design

161

 Data transfer between blocks/IP in an embedded system is comprised of the data
being transferred, the address of the data, and control signals for synchronizing
transmission and reception. The IP needs to process the data in the correct sequence,
thus needs to be aware of the endianness scheme in order to process the appropriate
data. If the hardware blocks in the system are designed using different endian-
ness schemes, it creates a challenge for device driver development to make the
data transfers work seamlessly between the blocks. Needless to say, using hard-
ware blocks of differing endianness is a source of contention between hardware,
fi rmware and software engineers and it is best if all hardware blocks are developed
to use the same endianess scheme.

12.3.2 Busses

 As a designer, you need to also be aware of the benefi ts and the challenges that
busses bring to hardware design.

 It is standard design practice to use busses in embedded system designs. Designers
need to be aware that the implementation of the bus system in the embedded design
can hurt the performance of the system. The most common being the creation of
bottlenecks in the communication channels. The bus system needs to be designed to
accommodate the number of devices that will be connected in the system. For large
systems, it needs to be able to cope with design blocks that have different data
transfer rates and design blocks that have different latencies. This effectively means
that there needs to be a way to support a hierarchical bus system where lower per-
formance systems can run on a slower clock domain and higher performance
peripherals on a faster clock domain. This also means that the system needs to deal
with clock domain crossing to bridge between the levels of hierarchy that are operat-
ing at different clock rates.

 The system hardware performance depends on multiple items and not purely
on clock performance. Often the performance of a system is described in terms of
bandwidth, throughput, effi ciency and latency. There is a heavy overlap in the
defi nitions of each. The following descriptions capture the essence of each
terminology.

 Bandwidth is a measurement of the achievable bit-rate in multiples of bits per
second, e.g. bit/s, Mbit/s, etc. A good example is memory bandwidth which is
expressed in bytes/s to represent the rates at which data can be written to, or read
from memory. The maximum memory bandwidth is calculated as a function of
clock rate, number of lines per clock, width of data bus and number of interfaces.

 Throughput is measured in bits per second or data packets per timeslot depend-
ing on the end application. It is the sum of the data rates on all of the destinations in
the system. Throughput is usually referenced in network based applications.

 Effi ciency is a measurement of the bandwidth achieved. The channel effi ciency,
also known as bandwidth utilization effi ciency, is a percentage used to describe the
achieved throughput related to the net bitrate in bit/s of a digital communication

12.3 Embedded Hardware Design

162

channel. For example, if the throughput is 6,000 Mbit/s in a 8,500 Mbit/s DDR III
Memory then effi ciency is approximately 70 %.

 Latency refers to the number of clock cycles for data to get from the source to the
destination, Latency impacts the bandwidth. In network applications, latency is
expressed as either one-way latency or round-trip latency. One way latency is the
time from source to destination. Round-trip latency is the time from source to
destination plus the time from destination back to the source.

 So now that we understand the various factors of measuring performance, we
will look at the function of busses and the various bus architectures that are avail-
able to HW designers.

 The basic operation of busses is based upon transactions. The system contains
multiple components, that are classifi ed as masters and slaves and that are con-
nected to the bus. The masters control the bus and the slave performs a task based
upon the request from the master. Because there are multiple masters and slaves in
a system, a scheme needs to be implemented to determine who has control of the
bus at a given time. The basic principal of operation is that a master component
requests to use the bus. It selects the address of the destination, which is a slave and
the type of transaction that it wants to perform, e.g. read or write. If the request is
granted, the operation occurs and the bus master sends a signal to the system to
inform it that the transaction is complete and that another masters can take control
of the bus. The key factor in the performance is that a bus master has to make a
request to perform a transaction and cannot use the bus until the request is granted.
Once the request is complete, it must relinquish control of the bus to allow other
masters to have their request serviced. It is the implementation of this scheme that
will impact the performance of the system. The implementation will use a bus arbi-
tration scheme. Section 12.3.3 details the most commonly used bus arbitration
schemes.

 For very simple systems, it is possible to use a single bus system. This is easy to
implement but has the disadvantage that it is not easily scalable and will suffer from
being a performance bottleneck.

 For more complex embedded systems there is likely to be two or more buses. In
general one bus is used for the processor to memory interface and the other is used
for interfacing to external devices or peripherals. Often a separate bus is used for
lower performance blocks that are running off a slower clock.

 The bus system can be synchronous or asynchronous.
 A Synchronous bus system tends to provide higher bandwidth with lower latency.

One of the challenges is that every component in the system has to run at the same
clock rate. This is diffi cult to achieve in practice, hence the need for a hierarchical
bus system that has slower components running off a slower clock. This introduces
the complexity of managing cross-clock domain transfers.

 Asynchronous bus systems have the advantage that there is no dependency on
clocks, thus can support a wide variety of components. Control lines such as request
(req) and acknowledge (ack) are used to make the transactions. However, the
communication protocol of such schemes is extremely complex.

 The most common scheme used in FPGA based embedded system design is that
of the synchronous bus.

12 Embedded Design

163

12.3.3 Bus Arbitration Schemes

 Bus arbitration is used to prevent bus contention. It needs to able to service high
priority blocks, while not completely ignoring lower priority blocks. This requires
the implementation of a prioritization scheme to service the highest priority compo-
nents that also includes a fairness scheme that enables lower priority blocks to
access the bus. Bus arbitration schemes can be divided into centralized schemes and
distributed arbitration schemes.

 In distributed or decentralized arbitration there isn’t an arbiter, so the devices have
to decide which component gains access to the bus. This makes the components
more complicated, but avoids having to develop an arbiter. However, it means that
control logic has to be added to each block in the system that is connected to the bus.
An example of a distributed arbitration scheme is the VAX SBI Bus. In this system,
there are multiple request lines which all of the components monitor. The compo-
nents also know their priority level. In order to request access to the bus, a component
fi rst checks to see if a higher priority component has requested the bus. If not, it
makes the request and gets access to the bus. When it completes its transaction, it
negates its request, allowing other components to access the bus.

 Centralized schemes are the most commonly used schemes in embedded FPGA
design.

 Centralized Arbitration is used in nearly all embedded systems Fig. 12.3 .
 There are several different ways to implement a system that uses centralized

bus arbitration. In the case of systems that require high bus bandwidth, such as
processor to memory busses, it is common practice to use separate address and data
lines. While this will cost area, it enables address and data to be transmitted in one
bus cycle.

 Another technique to increase the bandwidth is using a wider data bus. This
enables transfers of multiple words in fewer bus cycles. When using wider busses,
you need to pay attention to the size of the system and the impact that has on routing
resources within the FPGA.

 Another common technique is to transfer multiple words in back-to-back bus
cycles. Using this technique, when an address is sent at the beginning of a transfer,

Bus
Arbiter

Comp
1

Comp
2

Comp
3

Comp
N

Grant
Request

 Fig. 12.3 Diagram of centralized bus arbitration

12.3 Embedded Hardware Design

164

it is help until the transfer is fi nished, i.e. the last word is transferred. This technique
can greatly increase the performance but at the cost of implementation complexity.

 There are several common arbitration schemes that are used to implement
embedded systems. The simplest arbitration scheme is daisy chain arbitration.

12.3.3.1 Daisy Chain Arbitration

 Daisy Chain arbitration is simple in both implementation and the ease of under-
standing how it operates.

 The simplicity of daisy chain arbitration results in a number of limitations.
A daisy chain scheme does not support fairness. As you look at the structure of the
daisy chain scheme in Fig. 12.4 , you can see that the components position in the
chain signifi es its priority. The system relies on a prioritized request scheme using a
grant and release signal. The bus control passes from one master to the next one and
so on. When a component releases control of the bus, it starts back at the highest
priority component and moves down the chain from component to component until
a component requests control. This can result in lower priority components being
locked out and never serviced. The grant signal which is chained to each component
from highest priority to lowest priority is often the limiting factor in the perfor-
mance of the bus.

 The performance limitations are such that it is rarely used in modern embedded
system design.

 A variation on the daisy chain scheme that uses a centralized two level bus
arbitration scheme helps alleviate some of the prioritization limitations. By imple-
menting a Bus Request line for each level and a Bus Grant line for each level.
This alleviates the problem that the closest device to the controller always gets the
bus. In the case where requests are made on more than one request line during the
same clock cycle, then the highest priority component is granted the bus. If he bus
has been granted to a lower priority device, a higher priority device cannot access
the bus until the lower priority device releases the bus. There is still the possibility

Bus
Arbiter

Comp
1

Highest
Priority

Comp
2

Comp
3

Comp
N

Lowest
Priority

Grant

Release

Request

 Fig. 12.4 Daisy Chain arbitration

12 Embedded Design

165

that lower level components will never get access to the bus. This could happen if
higher priority components request the bus during each cycle.

12.3.3.2 Round Robin Arbitration

 Round robin arbitration is perhaps the most common scheduling scheme that is used
in FPGA based embedded system design. There are many variations on round robin
arbitration, adapted to meet the end system requirements. Round Robin is a sched-
uling scheme which gives to each component its share of the bus for a limited time.
In its most basic implementation, once a component has been serviced, it goes back
to the end of the line and will be the last to be serviced again. The main limitation
of this simple allocation based round robin is the wasted time slots for components
that do not have valid requests.

 A more advanced form is weighted round robin arbitration. Weighted round
robin introduces a fairness scheme to avoid the wasted time slots and to provide
priority to more valuable components. It provides a mechanism for prioritizing the
allocation of a shared resource, based on a relative “weight” given to each compo-
nent. The priority is such that the timeslots available to each component is relative
to its weight. Inactive components are not granted time slots.

12.3.4 Hardware Verifi cation Using Simulation

 The simulation of processor based FPGA designs introduces a new challenge in the
design verifi cation; how to simulate your designs interaction with the processor.
While it is possible to simulate the embedded code running on the processor and it’s
interaction with the rest of the design, the runtime of such a simulation is prohibitive
and thus is rarely performed. It is easier to verify this operation on silicon.

 Where simulation comes into play, is in the verifi cation of the interface between
the processor and the users design blocks. This is usually achieved through the use
of Bus Functional Models (BFMs) for the processor or the standard interface used
to connect the components in the system, e.g., AXI, Avalon memory Mapped, etc.
The BFM effectively models the interaction with the bus. The BFM provides an
Applications Programming Interface (API) which is used to communicate with
the BFM. This programming interface provides the ability to generate bus stimu-
lus, simplifying the verifi cation of hardware components that attach to the bus.
This enables the simulation of the operation of individual components in the
embedded system without having to build and simulate the complete embedded
system. The programming interface also simplifi es the creation of the stimulus for
the test system. There are usually several Bus Functional Models, e.g. Master model
and slave model. There may be other models, dependent upon the interface standard,
such as clock source and reset source, or streaming interfaces.

 Take the case where you want to verify the operation of your component, which
is a Slave component, e.g. an UART, as it interacts with the processor. You would

12.3 Embedded Hardware Design

166

replace the processor with a Master BFM and simulate the interaction of your UART
with the Master BFM. The BFM will model the operation of the processor as it
would interact with the UART, e.g. setting up a write operation to a specifi c address
with the appropriate data and latency or the response based on the interaction with
the UART. As well as testing the functionality of the UART it also tests that the
interface used complies with the standard, i.e. if the UART has AXI-4 interfaces,
hooking it up to the AXI-4 master BFM will check that the interfaces on the UART
are AXI-4 compliant Fig. 12.5 .

 The test program is the code that is used to interface with the API for the BFM,
i.e. select addresses, request write operations, etc. This will produce the appropriate
operation from the BFM. This is run on your simulator and produces results in the
same manner as you would see with a standard testbench. It has the advantage that
it does not require the complex and slow processor model and the API enables you
to more easily achieve higher level of simulation coverage.

 In the case where you have created a master component, such as a DMA, you
would interface with a Slave BFM in a similar manner as previously described. An
example would be where the DMA interfaces with a memory. The slave BFM would
be programmed through it’s interface to operate like a memory would, modeling
read and write operations Fig. 12.6 .

Test Program

Master
BFM

UART
Slave
(DUT)

User Testbench Fig. 12.5 Simulation
environment of a UART
interfacing with a Master
BFM

Test Program

DMA
Master
(DUT)

Slave
BFM

User Testbench Fig. 12.6 Simulation
environment of a DMA
master component interfacing
with a Slave BFM

12 Embedded Design

167

12.4 Hardware to Software Interface

 Master interfaces have address spaces, or address_space objects. Slave interfaces
have an address_space container, called a memory map, to map the slave to the
address space of the associated master.

 The memory map for each slave interface pin contains address segments, or
address_segment objects. These address segments correspond to the address decode
window for that slave. A typical AXI4-Lite slave will have only one address segment,
representing a range of addresses. However, some slaves, like a bridge, will have
multiple address segments; or a range of addresses for each address decode window.

 When a slave is mapped to the master address space, a master address_segment
object is created, mapping the address segments of the slave to the master.

12.4.1 Defi nition of Register Address Map

 The register address map is often referred to by many different names including
Control and Status Registers (CSRs), Memory Mapped registers, Register File,
Register Block, or Register Interface. Registers in the design are used to represent
data that is communicated between the hardware and the software. Each block of IP
provides a register interface that is mapped to addresses for the software interface.

12.4.2 Software Interface

 The main interface between the application software and the RTL is the Register
Address Map. The register address map is shared across multiple disciplines in the
design process.

 This creates the challenge in the project of synchronizing the fi rmware, RTL,
hardware verifi cation, and the documentation. In the case of documentation this
refers to both internal use and in the case of IP development, the documentation that
is provided to the end user.

 As such, it is essential that the information is strictly controlled and any change
in the information is communicated across the design team, with changes being
avoided as much as possible to avoid a fi rmware and/or hardware rewrite.

12.4.3 Use of the Register Address Map

 As mentioned at the start of the chapter, the Register Address Map is used by differ-
ent disciplines throughout the design process. Each of the different disciplines will
likely require the data in a slightly different format.

12.4 Hardware to Software Interface

168

12.4.3.1 IP Selection

 As part of your selection criteria for IP, you need to understand how you will interface
to the IP from both the hardware the software perspective. The Register Address
Map will address how your software will interface with the IP. The user documentation
on the IP core should refl ect this information.

12.4.3.2 Software Engineers Interface

 The software engineer needs to know the register map in order to develop the
software drivers that interface with the hardware. The software engineer will want
the register map information in the form of software header fi les which defi ne the
component base address and register offsets Fig. 12.7 .

12.4.3.3 RTL Engineers Interface

 The RTL Engineer needs to connect the Register Map interface to the rest of the
system. This involves writing the logic for each of the register bits and creating
address decoders for read/write cycles. The challenge to the RTL design is defi ning
this up front and maintaining the register map throughout the design cycle. It is
likely that at sometime in the design cycle that the RTL designers will need to

 Fig. 12.7 Sample from Header fi le generated by the Altera Qsys tool

12 Embedded Design

169

change some part of the Register Address Map. The whole process of coding, docu-
menting, reviewing and communicating the Register Address Map is an error prone
task that many RTL designers prefer to avoid.

 Fortunately there are several tools on the market that help with this task. The
System Integration tools from the FPGA vendors provide an automated interface
between the Hardware System Design and the Software Engineer, by automatically
generating software header fi les. In addition they take care of the generation of the
logic for the address decoding.

 There are EDA tools that provide much more advanced capability. These tools
can create the synthesizable RTL for the Register Address Map from register
descriptions, generate the software header fi les, header fi les for verifi cation and also
create user documentation in various formats.

12.4.3.4 Verifi cation Interface

 It is good engineering practice to develop testbenches that verify the operation of
the RTL Register Address Map. As such the verifi cation engineer needs the Register
Address Map details in a format that can be used with the verifi cation language that
is being used.

 As part of the verifi cation cycle, you will want to validate that the software can read
and write to the Register Address Map as detailed in the specifi cation. This can be tested
on the device with the register map document being used as a functional checklist.

12.4.3.5 Documentation

 As mentioned at the start of this chapter, documentation refers to both internal
documentation for use among the design team and the documentation that is
provided to the end users of IP.

 Whenever there are changes to the RTL for the Register Address Map, it is the
designer’s responsibility to update the documentation and to review the changes
with all of the teams that may be impacted by the change.

 The format used to describe the Register Address Map must be consistent in
terms of the naming convention that us used among all designers. The\is is achieved
by having a process for creating the Register Address Map specifi cation which
specifi es how it should be documented.

 There is a standard format that exists in the industry for specifying the Register
Address Map for IP. This is the IP-XACT standard which uses XML metadata that
can be read by several EDA tools on the market. However, at the time of writing,
this standard has not been widely adopted by all IP vendors and EDA tools.

 It is recommended that you review the standard prior to beginning your project
as you may want to consider adopting this standard as opposed to developing your
own standard.

12.4 Hardware to Software Interface

170

12.4.4 Summary

 The Register Address Map Interface is the main interface between the Software
Engineer and the RTL Engineer. This information is used by several different func-
tions in the design process, all of which need access to the same information in
different formats to fi t in with their function. As such this information needs to be
strictly controlled and any changes reviewed with the teams that need this informa-
tion. Due to the fact that it is time consuming and error prone to manually update all
of the fi le formats that use this information, it is recommended that you invest in an
EDA tool that specializes in Register Address map Management.

12.5 Embedded SW Design

 This section of the book will provide an overview of the different stages in the soft-
ware development fl ow for Embedded FPGA design. The Embedded software
development fl ow can be separated into two main development roles, Firmware
development and Application software development.

12.5.1 Firmware Development

 The Firmware development engineer tends to have detailed hardware knowledge
and works on the tasks that are highly hardware dependent. These include hardware
abstraction through the development of the hardware libraries, driver development.
Board Support Package (BSP) development and OS bring-up.

12.5.1.1 Hardware Libraries

 The hardware libraries are an abstraction of all the system registers. They contain
tested functions for base system operations such as changing cache speed or FPGA
confi guration and provide diagnostics to developers. Their main use is in bare metal
applications and OS driver development. The register interfaces and hardware
features of the processor system are referred to as bare metal.

12.5.1.2 Bare Metal Programming

 Bare metal programming is the code that reads and writes direct to the hardware.
It does not use abstraction layers. This gives the programmer complete control over
the hardware, thus enabling the development of applications with the smallest pos-
sible memory footprint. However it comes with a major disadvantage in that the
software programmer requires in depth knowledge of the hardware and requires

12 Embedded Design

171

complex code. . Embedded software engineers must understand how software inter-
faces with hardware. As such they must be much more hardware aware, e.g. under-
stand how to interface with hardware inputs and outputs, e.g. UARTS, SPI, Ethernet,
etc. The software code is diffi cult to debug and understand. This results in longer
development times, making it impractical for large designs. The code itself is often
non-portable to processor systems.

 Consequently it is usually used for initial board bring-up, test and verifi cation. It is
useful driver development for RTOS/OS and for FPGA peripheral management.

12.5.1.3 Device Drivers

 A device driver supports the basic I/O functions such as read, write, get confi g, and set
confi g. It also uses and manages interrupts from the device as well. All of the hardware
peripherals in the system require a software driver. The driver performs register
accesses and bit manipulation to control the device; thus removing the need for low-
level access routines from the application code. The purpose of a device driver is to
provide software application code access to a device. The goal of the Firmware engi-
neer that is creating the driver is the make this access simple and effi cient.

 The majority of device drivers are used to move data such as data through an inter-
face such as SPI or packets through a network interface such as Ethernet. The challenge
to the driver developer is to do this effi ciently. This normally makes use of interrupts to
allow other application processing to take place while the data transfers are in progress.
The interrupts are used to indicate when certain events have occurred. The goal being
that it does not require any active participation by the application code.

 Drivers can be synchronous or asynchronous. Synchronous drivers are simple block-
ing where the application or OS task must wait for the completion of the I/O operation.

 Asynchronous drivers operate in a non-blocking mode where the application or
OS task continues to run while the device driver processes the I/O operation.
Asynchronous drivers are more complex and require more code space than synchro-
nous drivers.

12.5.1.4 Board Support Package (BSP)

 A board support package (BSP) is a collection of software drivers and documentation
required to build your application. In certain applications it also includes the operat-
ing system on which to build your application. It is effectively the support code for
a given hardware platform or board that helps in basic initialization at power up and
helps software applications to run on top of it.

 It typically includes:

 1. A collection of source code fi les to adapt the Hardware to the Operating System.
 2. The Board/Processor specifi c boot code.
 3. Device drivers for peripherals on the board.
 4. A defi ned interface which the OS uses to access hardware.
 5. Board-specifi c documentation for OS.

12.5 Embedded SW Design

172

12.5.2 Application Software Development

 The Application Software Engineer focusses on middleware and application devel-
opment. The application software engineer that is writing software for an FPGA
based embedded system is concerned about writing optimized code, i.e. ensuring
that he meets the functional requirements of the application while staying within
the memory footprint of the system. In order to achieve this goal, the software pro-
grammer needs to understand the strengths and weaknesses of the targeted platform.
This includes items such as which data types are supported effi ciently, support for
mathematical operations and endianness Fig. 12.8 .

12.5.2.1 Endianness

 Embedded software programmers need to be aware how, depending on endianness,
different data types are stored in memory and the consequences of accessing indi-
vidual byte locations of a multi-byte data element in memory. Different compilers
may implement data types differently, such as an int is 4 bytes in length and a short
is 2 bytes. A method to avoid this compiler dependency is to defi ne your own data
types which are explicit in the defi nition of the number of bytes for the data type.
By isolating these type defi nitions into a ‘port’ fi le, it makes the software code por-
table across systems and compilers. Only the port fi le needs to be rewritten when
using a different compiler of targeting a different processor, leaving the application
software untouched.

 In a little endian system, when multi-byte length data type is written to memory, the
least signifi cant byte is stored in the lowest address offset of memory. In a big endian
system, the most signifi cant byte is stored in the lowest address offset of memory.
Software is impacted by endianess when storing a certain byte-length element into
memory and reading the same memory as a different byte-length element. The solution
to neutralize the impact of endianess is a 32-bit element was stored at a memory address,
the content at that memory address needs to be read out as 32-bit element. After it has
been read out of memory, the required bytes can be extracted and used.

User

Application

Operating System

BSP

Hardware

 Fig. 12.8 BSP position in
embedded software design

12 Embedded Design

173

12.5.3 Use of Operating Systems

 An operating system (OS) is software that manages the computer hardware
resources, and provides common services for execution of the application software.
The operating system acts as intermediary between application programs and the
computer hardware. It abstracts the resources to enable applications to easily use
and share the hardware Fig. 12.9 .

User

Application

Operating System

Hardware

 Fig. 12.9 Operating System
position in embedded
software design

 An OS for a complex embedded system is as critical as an operating system for
a PC. The benefi ts that it provides are:

 1. An increase in application software development productivity.
 2. Faster applications development cycles.
 3. Application code that is written on top of an operating system is more portable.

This makes the code more reusable.
 4. It is easier to write applications on top of an OS, as the programmers do not need

detailed hardware knowledge.
 5. Better multi-tasking, real-time support and device management.

 An RTOS (Real Time Operating System) is a class of embedded OS that is capable
of meeting real-time constraints. It is a predictable or deterministic operating
system that runs on an embedded system. It is effectively a scheduler. The worst
case execution time of each of its system calls is calculable. The RTOS helps to
manage the fi rmware.

 Real-time can be hard or soft. Hard real time is deterministic and bounded.
A missed deadline is a failure. Soft real time is less deterministic but is still gener-
ally bounded. A missed deadline is an error but not a failure. From an end users
perspective soft real time may only be used if the level of determinism meets their
requirement.

 In order to be hard real-time, a RTOS requires specifi c hardware features. In the
case where the processor is not truly real-time, the FPGA offers techniques to
improve the determinism. These include the use of state machines or accelerators in
the FPGA logic.

 If there is a way that the system might be held-off indefi nitely, then it is not
real-time.

12.5 Embedded SW Design

174

 Operating Systems are essential to the management of Multi-processing embedded
systems. In the case of embedded systems, both Altera and Xilinx offer dual A9 core
systems on their SoC and Zynq devices. These systems can operate as Symmetric
Multiprocessing (SMP) or Asymmetric Multiprocessing (AMP).

 Symmetric Multiprocessing (SMP) has a single operating system that is running
on both processor cores. The OS manages booting, confi guration, memory manage-
ment, and work distribution. Not all operating systems support SMP. This solution
provides a simpler programming model for the application programmer and thus is
used more often.

 Asymmetric Multiprocessing (AMP) uses a different operating system running
on each processor. It is complicated to boot, confi gure, partition memory, and to
distribute work. Consequently it has not been widely adopted in FPGA embedded
system designs.

 The Linux OS is one of the most commonly used non-real-time operating systems
on embedded systems. The FPGA creates unique challenges for building Linux in
that the FPGA is not a fi xed form chip. This creates the challenge of building Linux
for a chip where the hardware is easily and frequently changed. One technique to
solve this problem is to use a Linux device tree. This enables device drivers to be
linked to the Linux kernel at runtime. When Linux is used on a processor there is a
set process for loading the operating system and bringing up the application.
Figure 12.10 details a typical OS boot process.

 The Preloader confi gures the essential hardware such as the Clock Manager,
IOCSR and Reset Manager. It fetches the boot image into SDRAM and passes
control to the subsequent bootloader.

 The Bootloader fetches the OS image to SDRAM. It sets up the OS environment
such as the Device Tree Blob (DTB) for Linux. It performs run-time updating of
items such as the OS image, DTB content for Linux and MAC address during run
time. It then passes control to the operating system.

12.5.4 SW Tools

 In order to get the best results using your software design tools, it is imperative that
you understand how the software compiler interprets the high level language into
assembly/machine language. By failing to do this you may be adding unwittingly
adding constraints to the system. A common mistake is slowing the system perfor-
mance by using the wrong programming memory model, resulting in long addresses
for commonly used variables.

Boot
ROM

Preloader Bootloader OS Application

 Fig. 12.10 Typical OS boot process

12 Embedded Design

175

 It is necessary to understand features of the compiler such as array and indirect
memory access effi ciency, and the optimizations that are available. The application
software programmers will spend the majority of the design cycle using the Software
Design Kit.

 The hardware platform must be imported into SDK prior to creation of software
applications and the BSP.

 The designers will profi le their application from within the SDK. In the world of
embedded software, profi ling is a technique which determines the software execu-
tion of each routine. This information is used to identify critical pieces of code in a
design. This information can is used to restructure the code to meet the performance
requirements. A common optimization is the placement of frequently run routines
into cache. The profi ler enables application programmers to analyze the performance
of their instruction scheduling. This task is more complex to perform in parallel
programs due to the dependency on the time relationship of events.

 In the case of FPGA embedded system designs, profi ling is used to determine
whether a piece of code can be placed in hardware, thereby improving the overall
system performance.

12.5.4.1 Debugging

 The debug techniques used to debug an FPGA based embedded system is more
complicated than a pure microprocessor based embedded system. In a FPGA based
embedded system much of the processing is performed by the peripherals and
accelerators that are implemented in the FPGA logic. This requires a mixture of
typical FPGA debug tools and embedded software debug tools. This is described in
more detail in Chap. 16 , in-system debug.

 The two main options for software verifi cation are:

 1. Load your design on a supported development board and use a debugging tool to
control the target processor.

 2. Gauge the performance of the system by profi ling the execution of the code.

 If the FPGA device is not yet available then it could be possible to use a virtual
prototype for software development. This would be the case where you need to start
development for a new FPGA technology that has not yet sampled devices or
devices are in short supply. A virtual prototype is a complete bit accurate models of
a SoC that is suffi cient for SW engineers to use as a target. This is a system model
of the SoC. This is discussed in more detail in Chap. 4 on system modeling.

12.6 Use of FPGA System Integration Tools
for Embedded Design

 As described earlier in this chapter, the design of a typical FPGA based embedded
system requires a signifi cant engineering work. Even for a system that mostly
involves the integration of IP blocks, the design of the arbitration, address decoding, etc.

12.6 Use of FPGA System Integration Tools for Embedded Design

http://dx.doi.org/10.1007/978-3-319-17924-7_16
http://dx.doi.org/10.1007/978-3-319-17924-7_4

176

is a somewhat tedious and error-prone process. Anytime that you make a change to
the architecture can involve a signifi cant rewrite of the basic address decoding or
arbitration circuit. The generation of the fi les that are required by the Firmware and
SW Engineer to set-up their development environment can tedious and repetitious
as you change the design.

 The major FPGA vendors all provide tools to simplify this process. In the case of
Altera, this tool is Qsys. Qsys enables you to describe connections from masters to
slave and then saves on development time by generating the logic for the intercon-
nect. Qsys automatically generates the decoding logic so that master components
can access slave registers. The tool also includes an address map tab that details the
address range that each connected memory-mapped master uses to address each
slave component to which it interfaces. The tool generates multiplexors on any mas-
ter interfaces that communicate with multiple slaves. It also generates the arbitra-
tion logic for slave components that are controlled by multiple master components.
This controls which masters have current slave access. In the case of Qsys, the
interconnect fabric utilizes weighted round robin arbitration. It generates width
adapters that can accept packets of one width and convert the packet to a different
width. Thus the master does not need to know the width of the slave.

 For complex systems that involve multiple clock domains, Qsys will also create
the clock domain crossing synchronizing logic. These capabilities lend the tool to
architecture exploration, i.e. trying different system architectures to determine
which is best suited to your application. This process would take weeks for hand
created designs, however it can be implemented in days or hours with this tool auto-
matically generating the interconnect logic. The size of the system will generally be
a little larger than a design created using hand optimized RTL code, however the
design time will be signifi cantly faster.

 These system integration tools all provide interfaces for importing your design
blocks/IP into the tool and publishing the IP for reuse by other users. This effec-
tively provides IP management capability that promotes design reuse.

 The design entry interface for the system integration tools vary from vendor to
vendor. In the case of Qsys, it is a connection panel, as shown in Fig. 12.11 .

 The designer specifi es the interface connectivity in the interconnect panel by
connecting the clocks, resets, Master and slaves, any Sources and sinks, as well as
the interrupt senders and receivers. The interconnect is generated based upon the
connections.

 The tool also provides a number of ease of use features such as assigning base
addresses to automatically eliminate confl icts in slave addressing.

 It also simplifi es the verifi cation process by generating the Verilog or VHDL sim-
ulation model for the system that you have entered in the your interconnect panel as
well as generating a simple testbench with the Bus Functional Models components
that drive the external interfaces of your system, as well as the simulation scripts to
script the simulation environment for the most commonly used simulators. These
scripts compile the required device libraries and system design fi les in the correct
order and loads the top-level design for simulation.

12 Embedded Design

177

 The Qsys tool also offers some basic performance optimization capabilities such
as an option to automatically pipeline the interconnect logic for higher performance.
This allows you to trade-off latency versus clock frequency.

 One of the most value features that these system generation tools provide is
the generation of the fi les that are needed to interface by the software build tools to
create the Board Support Package. This greatly simplifi es the software/hardware
sign off process.

 One of the challenges that these system integration tools will introduce into your
end design is debug. The fact that the tool generates RTL code for the design adds a
level of obscurity into the design. Machine generated code is often hard to read,
certainly from a signal naming perspective and it can be hard to debug something
for which you have not developed the functionality.

 These system integration tools provide capabilities to help address these chal-
lenges. In the case of Qsys, the creation of the simulation testbench certainly helps
in the RTL verifi cation. In addition it also includes a suite of verifi cation IP modules
that can be used in simulation to verify the functionality and in some cases be imple-
mented in the end design to debug the design in system. This includes monitor
components that can be used to measure system performance in system. As a
designer you can view the content that these debug components capture via a JTAG
interface to the FPGA. This is discussed further in Chap. 16 , in-system debug.

 The lack of understanding of the generated interconnect logic can be a concern
when it comes to timing closure of your design. As mentioned previously, the Qsys
tool does offer an auto-pipelining option to increase the clock FMAX performance.
I also allows you to control the pipelining on a data path basis, thus only increasing
the latency where absolutely necessary, providing the performance where needed
and thus reducing the area impact of the optimization.

 Fig. 12.11 Qsys Interconnect panel

12.6 Use of FPGA System Integration Tools for Embedded Design

http://dx.doi.org/10.1007/978-3-319-17924-7_16

178

 Another technique for improving the performance is the use of hierarchy and the
use of bridges. This can greatly reduce the complexity of the interconnect logic
allowing higher performance. Most embedded systems includes a processor, DMA
and external memory interface components that run at high performance on a fast
clock domain. There are usually additional peripherals such as timers, UARTs, SPI
interfaces, etc. that run on a slower clock. It is good design practice to create these
as separate levels of hierarchy and to bridge between the slow system and the fast
system. In this case, Qsys will generate the necessary clock crossing logic together
with the appropriate timing constraints for the complete system.

 In summary, It is recommended that you use the FPGA vendors system integration
tools if you are using one of the processors from the system vendor, be it a hardened
processor such as the ARM A9 processor or a soft processor such as the Nios pro-
cessor. These tools greatly simplify the hardware to software hand-off process and
the setting up of the design environment for the software engineer. In addition they
allow you to very quickly change the structure of your design to meet your design
requirements. These tools can satisfy the needs of most embedded system designs
and shorten the development cycle by weeks or months.

 There are many example designs on the FPGA vendors websites that can be
downloaded for free and used as a reference for creating embedded system designs
based on select target markets. There is also a golden hardware reference design
available for the FPGA vendors development kits. This design comes complete with
basic ‘C’ code enabling you to walk through the process of compiling the HW
design, the software code and running it on the development kit. This is a great way
to get started with FPGA based embedded design.

12 Embedded Design

179© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_13

 Chapter 13
 Functional Verifi cation

 Abstract There are two simple questions that every design team needs to be able to
answer. Does my design function properly and is my design verifi cation complete?

13.1 Introduction

 There are two simple questions that every design team needs to be able to answer.
Does my design function properly and is my design verifi cation complete?

 These two simple questions are likely to take more than 60 % of your design
cycle to achieve acceptable answers. Just defi ning what is meant by functioning
properly and what is deemed acceptable as complete are diffi cult tasks.

 In the past, when FPGA designs were small and many designer were not
concerned with the concept of design reuse, FPGA designers deployed the “blow
and go” approach to FPGA design verifi cation. They would create the design,
perform a cursory functional simulation on the RTL, then program the FPGA and
test the design in system. If they found a problem, they would fi x the code and
repeat. Not practical for large, complex, quality system designs.

 The programmable nature of FPGAs does add a powerful weapon to the design
verifi cation armory. However, when used by itself, it is not a method for creating
reliable and reusable designs.

 There are many publications and EDA tool solutions dedicated to the topic of
functional verifi cation.

 There are also many different verifi cation techniques that can be used to verify
that a design meets the requirements that are dictated in the specifi cation. Many of
the techniques that are used in the verifi cation of ASICs are applicable to the verifi -
cation of FPGA designs. As mentioned, the programmable capabilities of FPGAs
provide some additional capability that can be used in the verifi cation of designs
that are targeting FPGA devices. This chapter will describe the techniques that are
known to work well in functionally verifying FPGA designs and IP targeting FPGA
devices.

180

13.2 Challenges of Functional Verifi cation

 At a high level, the goal of functional verifi cation is to verify that the design functions
as specifi ed. This applies to the complete design as well as any of the sub-designs.

 Functional verifi cation of the design must cover all modes of operation of the
design. This includes corner cases. The last thing that you want is that when your
design is deployed in a product, that your system enters a mode of operation that
you have not considered or tested against, resulting in a catastrophic failure.

 The application interface to your design needs to operate as expected, i.e. testing
needs to emulate the interaction of your design with the rest of the system.

 In the scenario where your FPGA device interfaces to the rest of the system via
standard protocol interfaces, such as PCI Express or Serial Rapid I/O, it is necessary
to verify that the interface block complies with the appropriate standard.

 In the case of parameterized IP, it is necessary to test all architectural variations
of the design based upon the parameterization. This will provide confi dence to con-
sumers of the IP that the IP meets their requirements.

 In the case that the IP has been packaged for reuse and there is a user interface to
the IP, it must be possible to verify that the user interface operates as intended and
on all supported operation systems.

 Finally, you need to verify that the documentation on the design or IP block is
clear and matches the behavior of the core.

 This may sound like a lot of work….and it is!
 The challenges that you face include how do you achieve adequate verifi cation

coverage in the given schedule with the resources that are available?
 How do you determine what is an acceptable level of coverage?
 The answer to these questions will come from the verifi cation plan. The verifi cation

plan must detail the coverage goals and other completion metrics. As such, this has
an impact on the project plan.

 You need to plan the verifi cation of the design at the same time that you are
developing the functional specifi cation of the design.

 There needs to be a system in place that enables you to monitor the progress
against the verifi cation plan throughout the design and verifi cation cycle. This system
must be capable of managing the large amount of data that you will receive from the
testing and report the progress against the verifi cation plan.

13.3 Glossary of Verifi cation Concepts

 1. Device Under Test (DUT). This is the IP being tested.
 2. Assertions (coverage points). These describe the behavior of the design that is

true when the design is behaving correctly. Assertions are also activated when
the design behaves incorrectly. It effectively covers the state of the DUT.

 3. VMM. Synopsys Verifi cation Methodology Manual. It details a methodology
based around SystemVerilog for verifying complex designs.

13 Functional Verifi cation

181

 4. Testbench. A test bench is an environment that is used to exercise and verify the
correctness of the design.

 5. Transactors. In a testbench environment, the transactor is a model that defi nes
the sequence of events or tasks to be performed.

 6. Scoreboards. The scoreboard is a data structure that holds the expected results
from an operation for comparison against the actual results achieved.

 7. Register Abstraction Layer (RAL). The VMM Register Abstraction Layer (RAL)
automates the creation of the high-level abstraction layer for memory- mapped
registers and memories. The VMM specifi cation provides more detail on RAL.

 8. Executable specifi cation. An executable specifi cation is a high level model that
describes the functionality of the design, hardware and/or software. It is usually
written in a high level language such as C, C++, SystemC or SystemVerilog.

 9. Regression Tests. Regression tests are a set of tests that are run on the application
after every design change and on a regular basis, such as every night or every
weekend, in order to ensure that no new bugs have been introduced. It is an auto-
mated environment that proves that the design operates to the specifi cation.

 10. OVM (Open Verifi cation Methodology) OVM is a standard SystemVerilog library
and verifi cation methodology developed by Cadence and mentor Graphics.

13.4 RTL Versus Gate Level Simulation

 Simulating at the RTL level performs functional verifi cation without consideration
for the timing delays that will occur when the design is implemented. It is common
practice to perform RTL simulations to prove the functionality of the design and
timing analysis to prove that there is no timing violations in the design.

 Gate level simulation utilizes the timing netlist generated after place and route.
This contains the device timing delays in the Standard Delay Format (SDF). This
provides a more accurate view of how the design will function on-chip as it includes
timing information. Timing simulations take considerably longer to run than RTL
simulations. In fact they are considered by many designers as prohibitively long for
certain application types such as video and image processing applications and for
large designs. As such it is recommended that timing simulations should only be
performed on critical sub-designs instead of the full design, or when debugging
problems that are found during hardware checkout of the system..

13.5 Verifi cation Methodology

 In order to achieve success in verifying your design, you must deploy a variety of
techniques.

 You should use a combination of functional coverage and code coverage
techniques.

13.5 Verifi cation Methodology

182

 These are complementary to each other.
 In the case of certain protocols, you should also perform hardware interoperability

testing.
 Finally, let’s not forget that the target devices are programmable. Implement

parts of the design in hardware to fi nd those hard to reach bugs that may take days
or weeks of simulation to uncover. In-system debug techniques are described in
more detail in the chapter on in-System Debug.

 The verifi cation methodology should use the following steps.

13.6 Attack Complexity

 There are three main rules for helping to deal with the complexity of testing your design.

 1. Modularize your design and your tests.
 It is extremely unlikely that you will be able to test all of the functionality of your
design with a single test. As such you should have different tests for testing dif-
ferent aspects of the design. In addition to providing a more thorough verifi ca-
tion environment, this approach will make it easier to transfer the testing to other
persons as the tests will be easier to understand.

 For large design blocks you should adopt a functional verifi cation methodology
that breaks the design into smaller sub-designs, as described in the chapter in
RTL design and thoroughly verify each sub-design prior to verifying the
complete design.

 2. Plan for expected operation.
 Create tests to confi rm that the design will work in the planned or normal mode
of operation. You should exercise the design under all of the operational modes
under the various normal conditions. These tests must cover all of the features
listed in the functional description and specifi cation.

 Exercise the corner cases and confi rm that they operate as defi ned.
 As part of the functional tests, ensure that you exercise every register bit and

every signal on every port.
 When verifying designs with multiple modules that can be user parameterized,

you need to exercise all possible combinations of the modes to verify the interac-
tions between the adjacent modules.

 After each operation, verify that the system returns to the correct state.
 3. Plan for the unexpected.

 The last thing that you want is that your system enters an unrecoverable state
based upon system conditions that you had not tested. As such, you must test
exception conditions. These exception conditions will vary from application to
application. Examples of such conditions are overfl ows, underfl ows, CRC errors,
aborts. As part of testing unexpected conditions you should test the functionality

13 Functional Verifi cation

183

in these unplanned conditions and then exercise recovery from the exception
conditions. Exceptions aren’t necessarily errors; they can be outlier conditions
that are unlikely to occur in practice. The key thing is that your system can
recover from them.

 This testing should test conditions that cannot happen:

 1. Test illegal conditions
 2. Violate design assumptions
 3. Violate protocols
 4. Change modes in mid-operation

 Once again, the key factor is that while the design may behave incorrectly, it
should recover eventually.

 As part of the functional verifi cation of IP or deign blocks, you should test the
interaction with other cores in the overall design to ensure that the interfaces operate
as expected.

13.7 Functional Coverage

 Compliance and corner case testing, as described in the Sect. 9.6 , attack complexity,
is good but on its own it is not suffi cient to fully test your system. It is unlikely that
you will be able to predict and exercise all possible conditions. This increases the risk
of failure in system. Functional coverage increases the confi dence in the verifi cation
of your design block or system. It is the determination of how much functionality of
the design has been exercised by the verifi cation environment. Each test is created to
check the particular functionality of a specifi cation. The key point is that you need to
be able to prove that the test executed the functionality that it is supposed to check.

 The test plan for your design block and for the overall system should specify the
metrics for verifi cation coverage. That is the functional coverage goals for the
design.

 The challenges that you face when planning for functional coverage are ensuring
that the design implements formal Functional Description and in the case of inter-
faces, conforms to standard protocol specifi cations.

 Your goal is to ensure that it satisfi es formal Functional Test Plan and matches
the behavior established by a suitable golden reference model.

 In the case of reusable design blocks, you want to ensure that the coverage items
capture

 1. All features and capabilities of the Device under test
 2. All confi guration variants
 3. Types of stimulus applied
 4. The response of DUT

13.7 Functional Coverage

http://dx.doi.org/10.1007/978-3-319-17924-7_9#Sec13

184

 Functional coverage does have limitations in that it is diffi cult to defi ne a list that
proves 100% functionality of the design. Thus it is important to identify the coverage
holes in the coverage space.

13.7.1 Directed Testing

 Directed testing requires hand crafted test case for each test plan item. Thus the
number of tests required to achieve acceptable coverage is enormous. The tests
themselves tend not to be easily reusable.

 It is best used to test typical behavior due to the time it takes to perform the
simulations.

 It is recommended that directed testing be used for reasonably small blocks.
For much larger blocks and at the system level, you will need to adopt constrained
random techniques.

13.7.2 Random Dynamic Simulation

 In this verifi cation methodology, random stimulus is used to increase the functional
coverage. This method of verifi cation is best performed using a high level verifi ca-
tion language. Over the years, many languages and tools have been developed to
serve this purpose. SystemVerilog has emerged as the leader in this space.
SystemVerilog has been ratifi ed as a standard by the IEEE and provides the broadest
tool support among verifi cation languages.

 It is recommended that you should consider adopting SystemVerilog for the
verifi cation of your system.

13.7.3 Constrained Random Tests

 Constrained random testing is built on top of random dynamic simulation. Random
simulations are best run in the early stages of the design to catch a lot of bugs. Then
as the design nears completion, the random simulations are constrained to fully
cover the test space.

 A single test run can cover many items in the test plan, resulting in less simula-
tion time.

 This approach can also detect problems /bugs that are not part of test plan Fig. 13.1.

13 Functional Verifi cation

185

13.7.4 Use of SystemVerilog for Design and Verifi cation

 SystemVerilog is really 3 languages in 1.

 1. It contains design constructs that are more powerful than Verilog and VHDL for
design and synthesis.

 2. It has advanced testbench constructs for stimulus and coverage.
 3. It supports assertion constructs to capture the designer intent.

 SystemVerilog has built-in support for coverage-driven constrained-random
verifi cation.

 It has options for pre-verifi ed libraries of assertions with the major EDA simulators
on the market.

 At this time, the industry is split on the SystemVerilog verifi cation methodology.
The two main libraries are VMM (Verifi cation Methodology Manual and OVM
(Open Verifi cation Methodology). There is a push to standardize on a single library.

13.7.4.1 Assertions

 Assertions are used to check assumptions made by designers and the behavior associ-
ated with a design. They are triggered during a dynamic simulation if the design meets
or fails the specifi cation. They can be used at both the module and the system level.

 They also provide the benefi t that they are reusable with reusable design blocks.

Simulate
Design

Debug
Failures

Generate
Coverage

Report

Analyze
Coverage

New Seed
and/or
Modify

Constraints

Passing?
Yes No

Met
Coverage

Goal?

No

Yes

Done

 Fig. 13.1 Constrained random test fl ow

13.7 Functional Coverage

186

13.7.6 Self Verifying Testbenches

 Self verifying testbenches are more diffi cult to create. Being able to write the
“expected results” requires a strong understanding of the design block under test.
This requires more work up front as any errors in the “expected results” can be hard
to catch. However once it is set, you can run the tests and get a quick pass or fail.

 This is the approach that you should use for reusable design blocks.
 When creating self-checking testbenches, you must add the functions to an existing

process so that the outputs can be monitored. A “compare_process” or equivalent is
used to check the received results against the expected results Fig. 13.3 .

 Assertions provide early visibility into problems such as FIFO ever overfl ow/
underfl ow errors. They also capture inter-block communication such as memory
interface behavior.

13.7.5 General Testbench Methods

 The simplest testbenches to write does not involve the creation of verifi cation code.
It requires that the engineer manually verifi es that the design passes. This is
normally achieved by viewing the resulting waveforms. One of the challenges with
this approach is that while the designer who fully understands the design can
understand the waverforms, a different engineer may miss errors or take much
longer to understand the results.

 This approach is best applied to simple design blocks that are not intended for
re-use.

 The designer creates the “test harness” code to instantiate the design code and
creates stimulus signals Fig. 13.2 .

 Fig. 13.2 Simple testbench that requires manual checking

13 Functional Verifi cation

187

 Fig. 13.3 Example diagram of a self-checking testbench

Coverage

Generator/
Monitor

Self-Check
Scoreboard

BFM DUT BFM Generator/
Monitor

Verification
IP

IP Core

 Fig. 13.4 Verifi cation system architecture

 This class of testbench can contain sequential or concurrent stimulus, as well as
the expected results.

 Often the signaling is too complicated to model without using vectors saved in
“time-slices.” This can be achieved using internal arrays or external fi les.

 When using an array containing stimulus and with the expected results inside
the testbench, there is no need to perform type translations. This provides faster
simulation times, but is diffi cult to write and can create very large fi les.

 When using an external fi le that contains the stimulus and the expected results,
it is likely that you will need to use type translations. This can result in slower
simulation times, but is easier to write Fig. 13.4 .

13.7 Functional Coverage

188

13.7.7 Formal Equivalency Checking

 Formal Equivalency Checking compares the logical equivalence between different
points in the design fl ow, or between different netlists. It uses mathematical tech-
niques to compare the logical equivalence of two versions of the same design rather
than using test vectors to perform simulation

 It is normally used to compare the RTL code to the post-synthesis gate level
netlist to ensure that the synthesis optimizations have not introduced any bugs.
It can also be used to compare the RTL or post-synthesis netlist to the post-fi t netlist
to ensure that the Place and Route optimizations have not changed the functionality
of the design.

 Whilst Equivalency checking can determine if two netlists are functionally the
same, it does not guarantee functional correctness. If the design functionality has been
implemented incorrectly in the RTL, equivalency checking will report a “Success” if
the netlist it is compared with has the same functionality. Thus equivalency checking is
normally used to compare functionally verifi ed RTL to gate level netlists.

 Formal Equivalency checking tools tend to be limited in the size of design
that they can support and as such are used mostly on design blocks as opposed to
complete designs.

 It is a particularly diffi cult technique to use for FPGAs. FPGA synthesis optimi-
zations perform a lot of register optimizations such as register merging, register
duplication and register retiming. The fi rst two optimizations can lead to false
reports of failures. Investigation of the design can remove these false negatives but
is time consuming. The third optimization type, register retiming, is usually a show-
stopper. Most Formal Equivalency tools cannot cope with the register retiming that
is performed by FPGA synthesis or physical synthesis. Thus Formal Equivalency
checking is rarely used in FPGA design fl ows.

13.8 Code Coverage

 Code coverage refl ects how thoroughly the HDL code has been exercised.
 It provides information about how many lines of code is executed, providing a

quantitative measurement of the testing effort and assisting in the directing of future
testing effort.

 Code Coverage is limited in that it does not look at the sequence of events, nor
does it check any interaction between design blocks. It only looks at what is in the
design, thus can overlook what has not been implemented. In short, it does not look
at the functionality of the design.

 One of its benefi ts is that it can be used to hit the corner cases which are not
reached by the random test cases. In order to do this, users have to write the directed
test cases to reach the missing code coverage areas.

13 Functional Verifi cation

189

13.9 QA Testing

13.9.1 Functional Regression Testing

 The objective of functional regression testing is to provide an automated environ-
ment that proves that the design operates as specifi ed.

 Regression testing is necessary to ensure that there is not the reemergence of old
faults. It is considered good practice that when a bug is identifi ed and fi xed, that a
test is created to test that the bug is fi xed. This test is then run on any future changes
to the design to ensure that the new changes have not re-introduced the bug.
Regression testing automates this testing process. This test is combined into a test
suite of designs that enables the testing environment to execute all the regression
test cases automatically.

 Typical automated QA regression testing exercises the IP or design via scripts. It
compiles and compares the results against a known good standard. The testing is
self-checking with a verifi cation log for reporting exceptions. Note the use of the
term exceptions. A test failure is an exception until any analysis determines that the
failure was caused by a bug in the design. Often the exceptions occur due to prob-
lems with the test environment as opposed to a bug in the design. If this is found to
be the case, the problem with the test environment should be resolved and the test
rerun to verify that the test passes. The regression test environment must be capable
of compiling the test statistics and reporting on the health of the design. This
includes reporting on the individual design blocks as well as the fi nal system design
that integrates all of the design blocks.

13.9.2 GUI Testing for Reusable IP

 While the GUI for IP should be relatively simple to use, it needs to be tested to
ensure a good user experience. The GUI is likely to be other user’s fi rst exposure to
your IP. You want to ensure that it is a good experience and avoid the scenario where
your IP is not being used because of bugs in the Graphical User Interface.

 There are test programs available in the market that will enable you to perform
regression testing on GUIs, however the most valuable testing is Manual GUI
testing.

 The purpose of the testing is to:

 1. Ensure that parameterization GUI functions as intended.
 2. Validate the behavior when used correctly.
 3. Validate the behavior under user error conditions.

 The testing is performed by humans thoroughly exercising the GUI against a
checklist. The testers click buttons, load fi les, examine expected results and perform
error reporting.

 This method of testing is labor and time intensive but will guarantee a good user
experience with the graphical user interface.

13.9 QA Testing

190

13.10 Hardware Interoperability Tests

 Hardware Interoperability testing is used where your design is interfacing with stan-
dard protocols. Hardware is tested in the lab against industry standard ASSP(s) and/
or tested at industry plug-fests and testing laboratories.

13.11 Hardware/Software Co-verifi cation

 There are tools on the market that enable hardware/software co-simulation. This is
effectively running the ‘c’ code on the model of the hardware. The ‘c’ code will run
much slower than it will on silicon. As such, it is a common technique with FPGA
designs to bypass this test and run the code on the FPGA on a development board or
in the end system.

13.11.1 Getting to Silicon Fast

 FPGAs offer the ability to get preliminary designs on boards fast. In system testing
can uncover bugs that cannot be detected using RTL verifi cation. Hardware check-
out should be combined with simulation to verify your design. Simulating the FPGA
design is most valuable in the early stages of the design. Hardware checkout is
useful when debugging interfaces and drivers.

13.12 Functional Verifi cation Checklist

 1. Create the test plan. This should detail the interesting test cases to verify the
design.

 2. Create the functional coverage specifi cation. This should defi ne what should be
covered.

 3. Build the system testbench.
 4. Write functional tests and perform simulations to measure functional coverage.
 5. Perform Code Coverage. This should only be run after the RTL is steady.
 6. Achieve thorough coverage—If block coverage is at 100 %, expand the system

level coverage.
 7. Perform GUI testing on IP.
 8. Complete Hardware Interoperability testing for standard protocol IP
 9. Perform In-system debug. This includes hardware’s software co-verifi cation

with the software running on the targeted hardware.

13 Functional Verifi cation

191© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_14

 Chapter 14
 Timing Closure

 Abstract Timing Closure is the area of the design fl ow that can cause the most
frustration to FPGA designers. This is the area which can eat up the compute cycles
on your workstation, it can result in feature drop from your system design and may
result in you having to pay for a faster speed-grade device than you intended to use.

14.1 Timing Closure Challenges

 Timing Closure is the area of the design fl ow that can cause the most frustration to
FPGA designers. This is the area which can eat up the compute cycles on your
workstation, it can result in feature drop from your system design and may result in
you having to pay for a faster speed-grade device than you intended to use.

 Most of the chapters in this book have revolved around preventing timing closure
challenges in your design.

 This chapter presents moves onto the next stage by presenting a design methodology
for achieving timing closure.

 So, why is timing closure a challenge in FPGA designs?
 Over the last decade there has been a huge increase in the FPGA device density

and the size of the designs targeting the FPGAs. FPGA device logic density has
increased by approximately 30×, and amount of embedded memory has increased by
approximately 70×. Over the same period of time, the speed of workstation CPUs
have only increased by a factor of 14. All of these create a compile time challenge for
high density FPGA designs.

 On top of this, the clock speeds of the designs and the interface speeds have risen
substantially. Today’s devices include transceivers that can reach speeds of more
than 11G and DDR III memory interfaces that run in excess of 533 MHz.

 These types of applications require more complex timing constraints such as
source synchronous interfaces and inter clock transfers.

 The process geometries of modern FPGAs now dictate that timing analysis be
performed at two or more timing corners in order to guarantee timing closure.
At these smaller process geometries the delays are typically dominated by the delays
of the interconnect routing as opposed to the cell delays. This creates a challenge in the
placement of the design to avoid long interconnect delays whilst avoiding routing
congestion.

192

 The addition of dedicated hardware blocks, such as embedded memory and DSP
blocks provide the benefi t of increased functionality, but can create a challenge in
placement with relation to the logic that interfaces with these blocks.

 The good news is that the FPGA vendor software has risen to the challenges and
includes a number of features to solve these challenges. In many cases, the default
settings will meet your performance goals push-button. For the designs that do not
meet your goals there are a number of analysis tools and features to enable you to
succeed.

14.2 The Importance of Timing Assignments and Timing
Analysis

 Timing Analysis is the singly most important topic that you need to understand
when it comes to timing closure. Unfortunately, it is also the topic that designers
have the greatest challenge in understanding.

 In this section of the chapter we will explain the importance of timing analysis
and provide a basic background on timing analysis. In depth coverage of timing
analysis could be a book in its own right. For an advanced understanding of timing
analysis, it is recommended that you attend training from one of the FPGA vendors
and download the various application notes from their websites.

 Timing assignments serve two purposes in FPGA design.

 1. They direct the synthesis and place and route software.
 The impact on place and route is described in detail in Sect. 14.3.4.1 , ‘under-
standing the fi tter (place and route)’. Timing assignments drives where the opti-
mizations are focused for synthesis and determines which paths the place and
route engine needs to prioritize in the fi tting process.

 2. They are used in timing analysis. Timing analysis does not guarantee the
functionality of the RTL but does guarantee that your design does not have tim-
ing violations. Static timing analysis computes the timing of the design without
performing a simulation,

14.2.1 Background

 If we step back in time, timing analysis on FPGA designs was relatively simple. The
end applications were reasonably simple in that their were a limited number of
clock domains and the timing models from the vendors were heavily guard-banded
such that designers needed only to analyze the design at a single timing corner. Each
FPGA vendor created their own timing assignment language with a heavy focus on
the clock frequency. The FPGA vendors effectively sheltered the designers from
needing to know the intricacies of timing analysis.

14 Timing Closure

193

 If we look at the current class of designs targeting FPGA devices, designers now
face much of the same timing analysis challenges that ASIC designers have been
facing for several years. Typical designs now use multiple clock domains, have
complex relationships between clock domains and have a heavy focus on interface
timing rather than purely fi nding the maximum clock frequency. On top of this the
modern process geometries of 65 nm and 40 nm require that analysis be performed
at multiple timing corners to guarantee operation. The original vendor timing lan-
guages were not originally designed for constraining this class of designs. This has
resulted in FPGA designers needing to learn ASIC timing analysis techniques.

 The good news is that FPGA vendors and the EDA tool industry is standardizing
on a timing constraint language. This is the SDC (Synopsys Design Constraints)
language from Synopsys.

14.2.2 Basics of Timing Analysis

 This section of the chapter explains the common terminology that is used in timing
analysis, along with a brief description of the base level of timing constraints upon
which timing analysis is built.

14.2.2.1 Static Timing Analysis

 Static timing analysis measures the timing delays along the timing paths in the design
and reports the timing against the timing constraints. It identifi es whether the design
will operate functionally based upon the timing characteristics of the FPGA silicon.
The timing analysis is performed independent of the functionality of the inputs and
determines the delay of the circuit over all possible input combinations with every
device path in the design being analyzed with respect to the timing requirements.

 Static timing analysis catches timing-related errors faster and easier than gate-
level simulation and board testing.

14.2.2.2 SDC

 SDC is the acronym for Synopsys Design Constraints. This is the industry standard
language for timing constraints that has been adopted by most FPGA vendors and
EDA tools that support FPGA devices.

14.2.2.3 Clocks

 Clocks are used to specify register-to-register requirements for synchronous trans-
fers and to guide the Synthesis and Place and Route optimization algorithms to
achieve the best possible implementation of the design.

14.2 The Importance of Timing Assignments and Timing Analysis

194

 Clocks should be the fi rst constraints specifi ed in any design’s SDC fi les. This is
important as many constraints reference clocks; therefore, the clocks must be
defi ned fi rst.

14.2.2.4 Launch Edge

 The launch edge is an active clock edge that sends data out of a sequential element,
such as a register, acting as a source for the data transfer.

14.2.2.5 Latch Edge

 A latch edge is the active clock edge that captures data at the data input of a sequen-
tial element, such as a register, acting as a destination for the data transfer.

 This is detailed, along with the launch edge in Fig. 14.1 .

D

clk

clk

0 ns 5 ns 10 ns 15 ns

reg1

Launch Edge at Source Register reg1
Latch Edge at Destination Register reg2

reg2

Q D Q Fig. 14.1 Launch and Latch
edge diagram

14.2.2.6 Hold Time (t h)

 Hold time is the minimum length of time for which data that feeds a register via its
data or enable input(s) must be retained at an input pin after the clock signal that
clocks the register is asserted at the clock pin.

 A hold time failure occurs when an input signal change too quickly after the
clock’s active transition on a sequential element. This will result in a timing failure
on the sequential element.

14.2.2.7 Set-up Time (t su)

 Set-up time is the length of time that the data that feeds a register via its data or
enable inputs must be present at an input pin before the clock signal that clocks the
register is asserted at the clock pin.

 This is detailed in Fig. 14.2 .

14 Timing Closure

195

 A set-up time violation occurs when a signal arrives too late at the input of a
sequential element missing the time when it should advance. This will result in a
timing failure on the sequential element.

14.2.2.8 Arrival Time

 Arrival time can be separated into data arrival time and clock arrival time.
 Data arrival time is the delay from the source clock to the destination register.
 Clock arrival time is the delay from the destination clock node to the destination

register.
 Data arrival time and clock arrival time are detailed in Fig. 14.3 .

data_in
data_out

D

reg reg

Q D Q

src_dk

dst_dk

setup
hold

0 10 20 30

 Fig. 14.2 tsu and th diagram

D

Data Arrival

Clock Arrival

Q D Q Fig. 14.3 Clock arrival and
data arrival diagram

14.2.2.9 Required Time

 This is the latest time at which a signal can arrive without making the clock cycle
longer than desired.

14.2 The Importance of Timing Assignments and Timing Analysis

196

14.2.2.10 Slack

 Slack is the margin by which a timing requirement is met or not met. It is the difference
between the required time and the arrival time. A positive slack value indicates
the margin by which a requirement was met. A negative slack value indicates the
margin by which a requirement was not met.

14.2.2.11 Timing Exception

 This is a constraint that is not required, but may be needed to better describe how a
design should work. Timing Exceptions adjust how timing analysis is performed on
the design. Examples of timing exceptions are multi-cycle paths and false paths.

14.2.2.12 Multi-Cycle Path

 Multi-cycle paths require more than one clock cycle for a signal to be updated.
These paths need to be identifi ed by the designer of the block, as their identifi cation
requires a detailed understanding of the functionality of the design.

 A multi-cycle assignment relaxes the setup relationship by allowing you to specify
the number of destination clock cycles required before a register latches a value.

 Figure 14.4 details a Multicycle value of two to a clocked register which delays
the latch edge by one destination clock cycle.

 The set_multicycle_path SDC command is used to change the default launch
or latch edge used in either the setup or hold analysis. By default, the TimeQuest
timing analyzer assumes that all data transactions take one clock cycle to reach
their destinations. Specifying a multicycle path moves the launch or latch edge,
 loosening the timing by providing extra clock cycles for logic that specifi cally
requires it. A good example of where this might be used would be with a multiplier.
If the multiplier requires two clock cycles to output a value, there’s no way timing
can be met with the default of only one cycle for a transaction. Adding a multicycle
constraint on data going through the multiplier provides the extra clock cycle
required by the logic.

new setup
default setup

0 10 20 30

 Fig. 14.4 Multi-cycle path

14 Timing Closure

197

14.2.2.13 False Path

 A False path assignment is used to defi ne paths that the timing analyzer should not
analyze. Examples of such paths are test logic or any other path not relevant to the
circuit’s operation. False paths are also commonly used on paths that cross clock
domains.

 The set_false_path command tells the timing analyzer to intentionally ignore certain
paths in the design or separate clock domains that do not interact with each other.

14.2.2.14 Rise/Fall Time

 The rise time is the time required for a signal to change from a low value to a high
value. A low value is typically 10 % of the signal value and the high value is 90 %
of the signal value. The fall time is the time required for a signal to change from a
high value to a low value.

14.2.2.15 Input Delay

 The input delay (set_input_delay) specifi es the required data arrival times at the
specifi ed input ports relative to the clock. The input delays are specifi ed relative to
the rising edge or falling edge of the clock Fig. 14.5 .

 Fig. 14.5 Input delay

 Fig. 14.6 Output delay

14.2.2.16 Output Delay

 The output delay (set_output_delay) specifi es the required data arrival times at the
specifi ed output ports relative to the clock The output delays are specifi ed relative
to the rising edge or falling edge of the clock Fig. 14.6 .

14.2 The Importance of Timing Assignments and Timing Analysis

198

14.2.2.17 Synchronous I/O

 In the example shown in Fig. 14.7 , the set_input_delay and set_output_delay
constraints are used to fully constrain synchronous I/O. First, the clock named clk
is constrained as usual along with its matching virtual clocks named clk_v_in and
clk_v_out. The clk_v_in and clk_v_out clocks are the clocks for the external input
and output devices in Fig. 14.7 . The -max and -min options for the set_input_delay
commands constrain the input on the datain port, referencing the virtual clock
clk_v_in.

 The external delay values are broken down into their factors using the expr com-
mand. The input max delay is equal to the maximum board delay of 1 ns minus the
minimum clock skew of −0.5 ns plus the maximum tco of the external device, which
is specifi ed as 5 ns.

 The set_output_delay commands are used to constrain the timing to the external
device, ext device 2. The -clock_fall option is used because the output data is
clocked in on the falling edge of the virtual clock clk_v_out at the external device.

PRE
D

1 ns

Tskew = ±0.5 ns Tperiod = 10 ns

1 ns

clk_v_in clk_v_out

datain dataout
in_reg out_reg

clk

Ext device 1 Ext device 2

Notice inversion on
register

FPGATco(max) = 5 ns
Tco(min) = 3 ns

Tsu = 2 ns
Th = 0.4 ns

Q

CLR

PRE
D

CLR

PRE
D Q

CLR

PRE
D Q Q

CLR

 Fig. 14.7 Synchronous I/O

14.2.2.18 Combinatorial Interfaces

 In the cases where I/O signals simply go through combinational logic in the design
the set_max_delay and set_min_delay constraints specify an absolute delay range
that signals should take when going through the logic.

14 Timing Closure

199

 In Fig. 14.8 , -from option is used to select which input path the constraint should
be applied to. The -to option that selects out* indicates that the constraint is applied
to the paths that go from that input to any of the output ports.

 The pairs of maximum and minimum constraints defi ne a range of delay through
the combinatorial logic.

 Fig. 14.8 Example of constraining combinatorial interfaces

0 6 7 10

Setup Relationship with Uncertainty

Clock Setup Uncertainty

Setup Relationship without Uncertainty

 Fig. 14.9 Clock uncertainty

14.2.2.19 Clock Uncertainty

 Clock uncertainty is often referred to as the skew for clocks or clock-to-clock transfers.
It is specifi ed separately for setup and hold times and can specify separate rising and
falling clock transitions Fig. 14.9 .

 The SDC command set_clock_uncertainty is used to model jitter, guard band or
skew on the clock.

14.2 The Importance of Timing Assignments and Timing Analysis

200

14.2.2.20 Clock Latency

 There are two types of clock latency. These are network and source. Network latency
is the delay on the clock network between the clock and register clock pins.

 Source latency is the clock network delay between the clock and its source
(e.g., the system clock or base clock of a generated clock).

 The source latency can be assigned to generated clocks for specifying board level
delays from a clock output port to a clock input port when the clock input port is
acting as a feedback clock.

 The SDC command set_clock_latency command defi nes the source latency on
input clocks.

14.2.2.21 Source Synchronous

 Source Synchronous clocking is used to describe the technique of sourcing a
clock along with the data. In source-synchronous interfaces, the source of the clock
is the same device as the source of the data. Source synchronous interfaces are most
commonly used in DDR memory interfaces Fig. 14.10 .

 The clock and data are sent over matched paths. The data is either edge aligned
or center aligned with the clock. In the case of DDR memory, data is sent on the
rising and falling edge of the clock.

 In order to constrain the DDR interface it is necessary to create the following
constraints on the input:

 1. Virtual clock for the input delay constraints.
 2. Create a base clock constraint on the FPGA input clock port.
 3. Specify the input delays relative to the virtual clock.
 4. Duplicate the input delays and constrain the duplicates on the falling edge of the

clock.
 5. Add any exceptions that are required. The data is being launched on both rising

and falling edges and data is being latched in on both rising and falling edges
across the same line. Timing Analysis analyzes all of the possible edge transfers

 Fig. 14.10 DDR input and output logic

14 Timing Closure

201

which is rising to falling, falling to rising, rising to rising, and falling to falling
for both setup and hold. DDR interfaces can be either same edge transfer or
opposite edge transfer not both. In the same edge transfer case, data launched on
a type of clock edge are meant to be launched in on the same edge, in this case
only same edge setup calculations need to be made so opposite edge setup analy-
sis can be cut. For hold analysis, we want to make sure the clock transfer does
not corrupt the data on the previous clock edge so here for the same edge transfer
case, hold analysis between same edges can be cut while hold analysis across
opposite edges are preserved. The opposite is true where setup between same
edges can be cut and hold between opposite edges can be cut Fig. 14.11 .

 Fig. 14.11 DDR input interface constraints

14.2 The Importance of Timing Assignments and Timing Analysis

202

 In order to constrain the DDR interface it is necessary to create the following
constraints on the output:

 1. Create clock constraint on the output clock port. In the case of Altera, use a
generated clock constraint.

 2. Specify the output delays relative to the generated clock constraint.
 3. Duplicate the output delays and constrain the duplicates on the falling edge of

the clock.
 4. Add any exceptions that are required Fig. 14.12 .

 Fig. 14.12 DDR output constraints

14 Timing Closure

203

14.2.2.22 Operating Conditions

 Operating conditions consist of the combination of voltage and temperature settings
that are used during the timing analysis of the design. These values impact the
delays in the timing models used during timing analysis.

14.2.2.23 Multi-Corner Analysis

 Multi-corner analysis allows a design to be verifi ed under a variety of operating
conditions while performing a static timing analysis on the design. This typically
performed on the slow corner model and the fast corner model.

 You must perform multi-corner timing analysis on your design before signing off
on the design timing. Many years ago, FPGA vendors only provided a single timing
model that represented worst case operating conditions. The model had enough tim-
ing guard-band built in that users could perform timing sign-off with the one model
and be guaranteed that the design timing would work. As the process geometries of
FPGA devices have shrunk to 65 nm, 40 nm and below, this statement is no longer
true. You need to sign off on the design timing under best and worst case conditions.
This means that you will have to optimize your design in both the best case and
worst case operating conditions.

14.2.2.24 Slow Corner Model

 The slow corner timing model indicates the slowest possible performance for any
single path timing under worst case operating conditions. The model represents the
slowest device at the max operating temperature and VCCMIN. The Slow timing
model is typically used to ensure setup timing is met.

14.2.2.25 Fast Corner Model

 The fast corner timing model indicates the fastest possible performance for any
single path timing under best case conditions. This model represents the fastest
device at the minimum operating temperature and VCCMAX. The Fast timing
model is typically used to ensure hold timing is met.

 This analysis allows you to verify that short paths meet timing requirements
under best-case operating conditions.

14.3 A Methodology for Successful Timing Closure

 This section of the book will describe a design methodology that will consistently
enable you to successfully achieve timing closure in your FPGA design.

14.3 A Methodology for Successful Timing Closure

204

14.3.1 Family and Device Assignments

14.3.1.1 Speed-Grade Selection

 It is recommended that you start with the fastest speed-grade of the targeted device
to enable you to close timing quickly. This will enable you to get to the board
quicker for functional checkout and to start on software development sooner.

 You can work on optimizing the design for a lower speed device during the
verifi cation cycle or later once functional verifi cation is complete.

14.3.1.2 I/O Settings

 The drive strength and I/O standards that you select will impact the timing at your pins.
They will also impact the power consumption and signal integrity of your device.

 The techniques that can be used to improve the I/O timing are, in order of
preference:

 1. Ensure that the appropriate timing constraints are set on the I/O pins.
 2. Examine the report fi le to determine if the I/O registers are being used. If they are

not being used, look at the RTL and recode the RTL such that the output registers
drive the pins and the pins drive input registers. The place and route software will
normally use the I/O registers in order to meet the I/O timing requirements. If this
is not working, you can force the use of I/O registers via settings in the FPGA
design software.

 3. Look at the delay chain settings for the I/O cells. Use the shortest delays for pins that
feed or are fed directly by pins. Most FPGA devices have programmable delays
options in the I/O cells that can be used to minimize the tsu and tco times. These are
typically set by the FPGA design software based upon the I/O timing settings. If this
is not working, you can manually set the delay through settings in the software.

 4. Use PLLs to shift the clock edges to meet the I/O timing. If a PLL is providing
the clock to the registers that are driving the I/O pin or are being fed by the I/O
pin, the PLL output can be phase shifted to change the I/O timing. A backwards
shift in the clock will provide better tco at the expense of tsu. Shifting the PLL
output forward provides a better tsu at the expense of tco and thold.

14.3.2 Design Planning

 As mentioned in the chapter on RTL design, it is important that you plan up front
for timing closure. Up front planning will help to identify issues before they arise
and avoid delays late in the design cycle.

 One of the common mistakes in timing closure is waiting for all of the RTL code
to be available before compiling the top-level design. You should compile the

14 Timing Closure

205

top- level design as soon as the RTL for any of the major lower level modules is
complete, in order to catch integration and resource issues as early as possible.

 In order to be able to do this, you need to have planned for timing closure at the
specifi cation stage where you defi ne how the design will be partitioned into func-
tional blocks. This will include the timing requirements for the individual blocks,
inter-block timing requirements and any placement restrictions on blocks that inter-
face with dedicated hardware blocks or device pins. These requirements need to be
adhered to when compiling the RTL at the top-level. More detailed information on
 RTL design partitioning is available in Sect. 10.5.4 of Chap. 10 on RTL design.

 It is also recommended that you plan to use an incremental design methodology.
In reality, by partitioning your design appropriately, as described in Sect. 10.5.4 you
will have planned for an incremental compilation methodology. The advantage of
such an approach is that it makes it easy to apply a team based design methodology
to the FPGA design, whereby multiple engineers can work on the design and timing
closure of the FPGA design. This design methodology will also enable you to mini-
mize the impact of Engineering Change Orders on the design.

 The major FPGA and EDA vendors include features in their FPGA design software
to enable an incremental design methodology.

14.3.2.1 Incremental Compilation

 As mentioned previously, incremental compilation capabilities that are available
from the FPGA vendors can dramatically shorten you compile times. This is not the
only benefi t of this approach. An incremental compilation methodology can shorten
the timing closure cycle. The key factor behind the use of this capability is good
design planning.

 So, how does incremental compilation work?
 Incremental compilation provides the ability to preserve the blocks in your

design that have not changed and to only compile the parts of the blocks in the
design that have changed. The net benefi t is reduced compile time as there is less
logic to recompile and a reduced number of compilations, as you can lock down the
timing critical modules in the design once timing is met, thus preserving the perfor-
mance of these blocks. A third benefi t that is often overlooked is that you can add in
debug logic when going to the lab without impacting the design. This is discussed
in more detail in Chap. 13 , In-System Debug.

 You should deploy an incremental design methodology.
 You should also be aware of the restrictions that it can place on your design so

that you can avoid the pitfalls.

 1. It requires up front planning on the design partitioning, as described in Sect. 10.5.4
in Chap. 10 This can place restrictions on how your design blocks interface.

 2. It prevents optimizations across design blocks. This restriction can be alleviated
by maintaining the critical path inside a design block, by registering the ports on
the design block and by not inserting combinational logic between design blocks
at the next level of hierarchy.

14.3 A Methodology for Successful Timing Closure

http://dx.doi.org/10.1007/978-3-319-17924-7_10
http://dx.doi.org/10.1007/978-3-319-17924-7_13
http://dx.doi.org/10.1007/978-3-319-17924-7_10

206

 3. It reduces the device utilization that you can achieve. This is true in that some of
the area optimizations that exist in FPGA design software are more effective
when applied to the complete design. An example of such an optimization is the
packing of unrelated registers and LUTs in the same logic cell to save area. If
you are trying to utilize every logic cell in your design, you are likely to have
timing closure issues due to the routing resources available in devices. Sacrifi cing
device utilization for faster timing closure and higher performance is a decision
that should be addressed in the device selection and specifi cation. Most designs
can reach 85 %+ logic utilization and close timing using an incremental design
methodology.

 Top-Down Design Flow

 In a top-down design fl ow, the entire design is compiled in one project and timing
closure is performed on the whole design. As the RTL for the different blocks in the
design are complete, they are added to the top-level design and compiled with the
rest of the design. One of the advantages of using this technique is that it provides
good visibility into the paths between partitions. Timing closure is performed on the
whole design. Once the designer is satisfi ed with the results for his block, it can be
locked down such that it does not need to be recompiled, reducing the compile time
and locking down the performance.

 Bottom-up Design Flow

 In a bottom-up design fl ow, the modules are compiled in separate projects and locked
down once the designer has achieved timing closure on the blocks. The lower-level
partitions are then imported into the top-level project for fi nal integration. This does
not require a recompile, but rather a merger of the place and routed netlists followed
by a routing operation for the connections between the blocks Fig. 14.13 .

‘Motion’
Project

Programming
Files

‘Control’
Project

‘Motion’
Results

Top-
Level

Project
HDL

Top-Level

Netlists

‘Control’
Results

Lower-Level Top-Level

HDL

 Fig. 14.13 Bottom-up design fl ow

14 Timing Closure

207

 The bottom-up design fl ow lends itself to a simpler partitioning of the design
between different team members, but has the disadvantage of involving total iso-
lation of lower-level modules. This requires more up front effort tin the allocation
of chip resources. This creates the need for detailed fl oorplanning to accommo-
date each block that will be compiled in a separate project. It also complicates the
timing constraints for the overall project as timing constraints need to pass from
the top- level project to the lower level project. Any timing constraints that are
added in the lower level project will also need to be migrated to the top-level
project Fig. 14.14 .

Without a Floorplan With a Floorplan

Top-Level
Integration Conflict

Top-Level
Integration Successful

 Fig. 14.14 Integration of modules in the top-level design

14.3.2.2 Design Scenarios Using Incremental Compilation

 In this section we are going to look at a few scenarios where incremental compilation
can signifi cantly reduce the timing closure cycle.

 Take the example design shown in Fig. 14.15 .

Motion

Control

Partition
‘Top’

Partition
‘Control’

Partition
‘Motion’

Timing Critical

75% of Design

10% of Design

15% of Design

Top-Level
Glue Logic

IP Core
Controller IP Core

Decoder Memory

Output
Controller

Motion
Compensation

Engine

Partition
‘Top’

Partition
‘Control’

Partition
‘Motion’

Timing Critical

75% of Design

10% of Design

15% of Design

Top-Level
Glue Logic

IP Core
Controller

IP Core

Decoder Memory

Output
Controller

Motion
Compensation

Engine

 Fig. 14.15 Example design partitioned for incremental compilation

14.3 A Methodology for Successful Timing Closure

208

 This design has been planned to contain 3 main hierarchies that have been parti-
tioned for incremental compilation. The hierarchy ‘Motion’, the hierarchy ‘Control’
and the block ‘Top’. Top is the top-level hierarchy of the design and contains the
block ‘Motion’, the block ‘Control’ as well as other levels of hierarchy. The block
‘Motion’ is also hierarchical containing two other design hierarchies and the block
Controller is a sub-set of the ‘Decoder’ Module which is one of the design blocks in
hierarchy ‘Top’. The design has been compiled and meets performance.

 Scenario 1: Parameter Tuning

 In this scenario, the system needs some fi ne tuning due to a small change in the
specifi cation that will impact the memory module in the top-level fi le. The user can
lock down the place and route on the ‘Control’ and ‘Motion’ blocks, as their RTL
will not be changed, make the change to the block ‘Memory’ and recompile the
block ‘Top’. This will preserve the performance of the ‘Control’ and ‘Motion’
blocks as they are not compiled and greatly reduce the compile time as only 75 %
of the design has to be recompiled and the timing critical block that would typically
challenge the fi tter has not been touched.

 If this design typically compiles in 6 h, a complete recompile means that you can
only achieve one iteration of the design in a normal working day. It is usually an
iterative process to make a design change successfully.

 By using the incremental compilation approach, your compile time would likely
drop to less than 4 h, enabling two design iterations in a day, possibly more if these
parts of the design are not timing critical allowing you to use the fast compilation
options described in Sect. 14.3.3 on early timing estimation.

 Scenario 2: Bug Fixing

 In this scenario, you have fi nished the design and are in the fi nal stages of in-system
testing in the lab. The system is running at-speed and you have a functional failure.
You need to fi nd and fi x this bug fast.

 You can preserve the place and route of the complete design and utilize some of
the debug options available from the FPGA vendors without having to complete a
total recompile.

 You can route internal signals in the design to unused pins quickly without dis-
turbing the placement or routing of your design.

 You can add in the Embedded Logic Analyzer from the FPGA vendor without
recompiling the blocks ‘Top’, ‘Motion’ and ‘Control’. As you try to isolate the bug,
you can refi ne the trigger conditions of the Embedded Logic Analyzer and quickly
create a new programming fi le.

 A total recompile would take 6 h and would change the design implementation.
Without the incremental compilation methodology, the addition of the Embedded
Logic Analyzer, or changes to the Embedded Logic Analyzer may cause the bug to

14 Timing Closure

http://dx.doi.org/10.1007/978-3-319-17924-7_14#Sec7

209

disappear; leaving you wondering is your design functionally correct? Will the
problem reappear in production?

 Using the incremental compilation capability, the design implementation is
preserved and the compile time is likely to be in the order of 45 min; enabling
multiple iterations as you debug the design. The design preservation guarantees
bug reproduction.

 An example of the type of bug that you would capture is an asynchronous signal
with a race condition. This type of bug is hard to capture with simulation. Once you
fi nd the bug in-system, you correctly constrain the paths and recompile the blocks
that are impacted.

 This is the recommended methodology that you should adopt for bugs that only
occur when running at speed.

 Scenario 3: Timing Closure

 In this scenario, there is a need to make a few enhancements to the time to increase
the overall performance of the design. This may happen if you receive a new version
of IP from a third party. In the example that we have been looking at, a new version
of the ‘Motion’ core must be used. The specifi cation has also changed such that the
block performance must increase from 120 to 150 MHz.

 You compile the design and have trouble closing timing in the ‘Motion’ core. You
do not have the option to optimize the RTL code, as the design is an encrypted core
from a third party. Your only option, outside of waiting for the IP vendor to deliver a
new version of the IP core, is to use the advanced optimization settings in the FPGA
vendor software. You try the various settings until you close timing on the IP core,
‘Motion’ and lock in the results by setting the block to post-fi t and preserve routing.

 If there is a change in any of the other design blocks, such as ‘Top’ there will not be
a timing closure problem on the blocks ‘Motion’ and ‘Control’ as they are locked down.

14.3.3 Early Timing Estimation

 As mentioned in the chapter on RTL design, timing estimation is inaccurate unless
a design has had some level of placement performed. Early in the design cycle, you
do not want to go through a complete place and route compilation to get a perfor-
mance estimate for your design. The FPGA vendors have provided a solution to this
problem.

 Most FPGA vendor software includes a setting that results in reduced compile
time. This is achieved by limiting the number of placement attempts. This can dra-
matically reduce the compile time, usually at the expense of performance. The timing
results using the fast compilation options are usually within 10 % of the results that
can be achieved by performing a full compile, but in a much shorter compilation
time. This is a powerful tool that can greatly reduce your timing closure cycle.

14.3 A Methodology for Successful Timing Closure

210

 It is recommended that you use this Fast compilation option in the following
scenarios.

 1. Early in the design cycle when you are determining the performance on
design blocks that are undergoing change. Your timing results are likely to be
within 10 % of what is possible, but your iteration time will be signifi cantly
shorter.

 2. Use it on complete designs that can easily meet timing. If your design is not high
performance compared to the FPGA technology being targeted, this mode will
reduce your iteration time throughout the full life of the project.

 The project documentation should refl ect the fact that this fi tter option has been
used for the design or for a particular design block.

 If your design is missing timing by more than 10 %, go back and work on the
RTL rather than continuing with a complete compile.

 As stated in design planning, you should compile your major design blocks as
early as possible at the top-level of the design in order to catch integration and
resource issues as early as possible. In order to achieve this, you can create dummy
blocks for the blocks that are not complete. These empty blocks need to contain the
correct port connections.

14.3.4 CAD Tool Settings

 It is recommended that you try to maintain the default Synthesis and Fitter settings.
The FPGA vendors provide you with dozens of knobs and switches that will impact
the results. You should avoid the temptation to fi ddle them and only use them when
you have exhausted your RTL coding capability.

 This being said, these settings can be very effective and can drastically change
compilation results. However the results that they provide can vary signifi cantly
from one release of the FPGA vendor software to the next. Thus they can make
your design non-portable between tool versions, effectively making your IP
non-reusable.

 If you have your back to the wall and have to close timing on this project at all
costs, then you should take advantage of these options.

 In addition to optimization settings, the FPGA vendor software also provides the
ability to infl uence the result via fl oorplanning of the logic. You can specify cell
placements, in various groups, regions, down to individual routing tracks.

 Again it is recommended that you avoid doing this unless the FPGA vendor
software is doing a poor job on placement.

 It is rare for human architecture experts to beat the tool with hand-work, however
it can work in isolated cases and is another weapon in your arsenal if it appears that
all hope is lost.

14 Timing Closure

211

14.3.4.1 Understanding the Fitter (Place and Route)

 The Place and Route tools from the main FPGA vendors will adjust their operation
to try and meet the requirements for your design. This means that you will see dif-
ferent results based upon your timing constraints. Tougher timing constraints
equates to longer compilation time.

 The Place and Route engines are timing driven and understand complex timing
constraints. Thus it is recommended that you use real timing constraints.

 The Fitter tries to fi nd a placement that can be routed to meet your timing
requirements.

 One of the phenomena of FPGA Place and Route Software is the variation in
results based upon the ‘seed effect’.

 The initial placement for the logic is random, based upon the starting condition
of your design and it is possible that different placements can meet your goals. The
Place and Route seed, also know as the Fitter seed, changes the initial starting point
of the algorithm for placement, effectively impacting how optimizations proceed.
The Fitter’s algorithm runs multiple placement attempts based upon the previous
results to converge on a successful result. However, by changing the initial starting
placement you may result in a different fi nal placement and hence different timing
results.

 A common technique used in timing closure is ‘seed sweeping’. This is running
multiple different seeds to determine which will give the best result for your design.
In the past, seed sweeping resulted in large changes in performance. Today, the
average change in performance for the latest FPGA technologies is in the ± 5 %
range. Note this can change signifi cantly from FPGA vendor to FPGA vendor and
family to family.

 It is recommended that you avoid using seed sweeping on design blocks that you
intend to reuse or on fi nal designs that are likely to require future updates as the
same seed will have a different effect in future versions of the FPGA vendor soft-
ware or if you make any changes to your design, such as logic changes, assignment
changes or pin changes.

 So when would you use seeds?

 1. If the design can meet timing, however you want to maximize your timing
margin.

 2. You need to quickly get the design in the lab for functional checkout. You should
always go back and remove the need for a particular seed or seed sweeping.

 3. This is the fi nal version of the design, it is the only way to meet timing and there
will not be future versions of the design. An example of this would be FPGA
prototyping of an ASIC design.

 An IP, or design block is not reusable if timing closure depends upon a particular
seed and hence a particular version of an FPGA vendors software.

14.3 A Methodology for Successful Timing Closure

212

14.3.4.2 Physical Synthesis Optimizations

 Most FPGA vendor tools contain Physical Synthesis optimization options. Physical
synthesis is tightly integrated with the place and route engine and re-synthesizes the
logic where timing is a problem. Common techniques that are used include register
retiming and register duplication. These are techniques that could be fi xed at the
RTL level, but may require major recoding. There are a lot of other optimizations
performed by Physical Synthesis but these are the most common and often most
effective.

 In certain designs, it can improve the clock performance by greater than 20 %.
For designs which have been carefully coded with balanced registers, the perfor-
mance gain may be only 1–2 %. This optimization comes with a price. The design
compile time will increase dramatically, normally by a factor of 2 or more. It will
also limit your use of Formal Verifi cation tools as they typically struggle with reg-
ister retiming optimizations.

 Due to the compile time impact, you should consider limiting the use to problem
blocks in an incremental design fl ow.

 The use of Physical Synthesis is fully automated, i.e. you set the option and
compile.

14.3.4.3 Design Space Exploration

 Most of the FPGA vendors provide utilities in their tool that will automatically run
multiple compilations using different settings and seeds to fi nd the settings in the
tools that provide the best results for your design.

 Due to the effect of seeds on place and route, you should only use Design Space
Exploration in the late stages of your design when the design is effectively complete
and you are focused on timing closure.

 This type of utility will typically perform ten or more compilations and as such
can result in compilation times of several days.

 Fortunately the main FPGA vendors have added multi-processing to their utili-
ties such that multiple compilations can be performed in parallel as opposed to
sequentially. This greatly reduces the compile time.

 The downside of using a Design Space Exploration tool is that if you make a
change to the RTL of your design, you will need to rerun the utility due to the ran-
dom nature of seeds.

 Design Space Exploration can be run on individual blocks in your design. This is
a powerful technique for reducing the compile time and only focusing the optimiza-
tions on the performance critical areas of the design.

 This technique is particularly effective in an incremental compilation design fl ow
where Design Space Exploration is only run on the blocks of the design that are
timing critical.

 If you use Design Space Exploration on a design block or complete design the
exact settings used should be documented with the design to enable other users to
recreate the results.

14 Timing Closure

213

14.3.5 Compilation Reports and Analysis Tools

 Review the messages from the synthesis and place and route reports to help with
timing closure. These will often provide information that can be used to help
improve the performance of the design. Your design process should dictate that
designers should always review and remove all warnings from a project. This is
necessary as the messages may indicate problems with the design such as the inad-
vertent use of latches or missing timing constraints. One of the challenges with
reviewing warnings is that the messages may come from purchased IP and you can-
not change the RTL to remove the message. In this scenario, you should check with
the IP vendor on the message and if they prove that it is safe to ignore the message,
you can document this information in the project and ignore the message for future
compilations.

 The report fi le itself details information on resource usage in the device and can
be used to determine which modules are using the most resources in the device.

 Information from the compilation reports, such as the amount of time spent in
placement and routing, can help identify challenges to the fi tter. Long route time can
be due to restrictions created by the placement. This can be improved by possible
hand placement of some nodes or increasing the placement effort.

 The compilation report also provides details on the optimizations that have been
performed, such as the registers that have been removed from the design. This infor-
mation can help you to fi nd problems in the RTL, or explain why debug logic has
been removed, enabling you to fi x the RTL.

 Similarly messages on ignored assignments can resolve problems caused by
typos when creating assignments or identify assignments that are out of date and
should be removed from the project.

 In addition to the compilation report fi les, the FPGA vendors provide tools that
detail the design in graphical form.

 These tools should be used when examining the results for gaining an under-
standing of the RTL and viewing the results of synthesis and place and route.

 These viewer tools provide hierarchical block diagram views of the design, as
well as a technology implementation view detailing how the design has been
mapped to the target technology after synthesis or after fi tting.

 The hierarchical block diagram view is useful for understanding the architecture
of the design, thus is useful for understanding the design fl ow as shown in Fig. 14.16 .

 Fig. 14.16 Example of the RTL viewer in the Quartus II software

14.3 A Methodology for Successful Timing Closure

214

 This should be applied when inheriting design blocks from other users to gain a
visual understanding of the design and for planning the fl oorplan of a device as it
will detail the data fl ow through the design and interaction of the blocks. It also
provides visibility into functions such as Finite State Machines as shown in
Fig. 14.17 .

 Fig. 14.17 Example view of a FSM from the Quartus II RTL viewer

 Fig. 14.18 Critical path view in Quartus II technology map viewer

 The technology-specifi c view is useful for understanding how the design has
been implemented in the FPGA and can be used to determine where optimization is
possible Fig. 14.17 .

 It can quickly detail the number of levels of logic in the critical path and can link
back to the RTL to help relate the implementation to the original RTL.

 The technology map view helps in creating legal complex timing constraints for
your design when used with the timing analysis tool. It is possible to locate from a path
in the Timing Analysis timing report to the Technology Map View. In the Technology
Map view, you can examine the implementation, determine whether the path is a
timing exception, such as a multicycle path or false path, and then make the appropriate
assignment in your timing constraint fi le Fig. 14.18 .

14 Timing Closure

215

14.3.6 Floorplanning Tools

 All FPGA vendor design tools contain a fl oorplan tool, or in some cases multiple
fl oorplan tools.

 In the early days of FPGAs, these tools were critical for both understanding the
FPGA architecture and optimizing the design for performance.

 Today, the former statement is still true. Floorplan tools help explain what resources
are available in the FPGA device and can be useful in analyzing the results of place
and route on a design. The latter statement on design optimization is less true. In most
cases it is not necessary to fl oorplan a design to meet the performance requirements.
In the cases were fl oorplanning for performance provides a benefi t, you will likely be
fl oorplanning a small part of the design rather than all of the design.

 Today there is another area where fl oorplanning can help. This is in a bottom-up
team based design fl ow. In this scenario, you will assign design blocks to areas of
the device rather than designing at the cell level. Each major design block is assigned
an area in the device.

 In summary, there are four main uses of the FPGA vendor fl oorplan tools. These
are architecture exploration, analysis of placement and routing, creation of fl oorplan
assignments and Engineering Change Orders.

14.3.6.1 Architecture Exploration

 The fl oorplan provides a visual display of chip resources. It is akin to having a
data sheet on your desktop that details the resources used as well as the resources
that are still available. The fl oorplan can be used to view details on the device
architecture, such as the number of registers in a LAB, number of LABs in a row,
placement of memories and routing information. It will also allow you to view the
logic inside of dedicated blocks, such as the confi guration of LUTs and registers
Fig. 14.19 .

 It provides visibility into the confi guration of the I/O cell such as details on the
delay chains, I/O standard, direction and use of registers inside of I/O cells.

 It is a real benefi t in team based designs for viewing the connectivity of your
design blocks.

 It is also extremely useful for clock network planning. As well as detailing the
confi guration of PLLs it details which areas of the chip can be driven by the outputs
of the PLLs and from the global signals in the device. This capability works well in
a team based design environment where you need to assign devices resources to the
different engineers and functional blocks, preventing resource confl icts and enabling
you to plan for the sharing or merging of resources, such as PLLs.

14.3 A Methodology for Successful Timing Closure

216

14.3.6.2 Analysis of Placement and Routing

 The fl oorplan tool provides an excellent solution for examining design
implementation.

 It displays logic placement information, detailed routing information, fan-in
and fan-out connections and enables the viewing of critical path information
Fig. 14.20 .

 An analysis of placement and routing need only be performed if you have a prob-
lem. In the case of timing failures it can be used with the timing analyzer to locate
from failing paths in the timing report to a view of these paths in the fl oorplan. It is
then possible to analyze the placement and routing of the design to determine if the
issue can be fi xed by location constraints or to get visibility into the congestion in
that area of the chip.

 The fl oorplan provides visibility in the number of levels of logics between
registers as well as whether the registers in the I/O cell are being used. This infor-
mation can also be viewed in other tools such as the compilation report and
Technology map views.

 Fig. 14.19 The Quartus II chip planner detailing the Stratix IV ALM architecture

14 Timing Closure

217

14.3.6.3 Floorplan Assignments

 The fl oorplan can be used to optimize the performance of the design through placement
assignments. In most cases it is diffi cult to perform a better placement than what the
place and route software does automatically. However there are cases where it can help.
A good example is the placement of pipeline registers between nodes that are placed
far apart due to resource constraints, such as access to dedicated hardware blocks and/
or pins. In this scenario, the place and route software does not always optimize the
placement of the registers between the source and destination nodes, Users can move
the registers on the fl oorplan for optimal placement and performance.

 Assignments should mainly be used in the fl oorplan to create region constraints
in an incremental or team based design environment. In this scenario, regions are
created in the fl oorplan and blocks of the design assigned to the region. Alternatively
region assignments can be used to prevent the resources in a region being used,
effectively reserving resources for design blocks that are not yet complete.

 One of the challenges in creating region assignments is dealing with internal
memory blocks and DSP blocks. Depending upon the resource requirements of the
block you may need a non-rectangular region in order to include enough memory or
DSP blocks for the design.

 You also need to consider how the design block interfaces with the rest of the
design so that you do not inadvertently hurt timing closure.

14.3.6.4 Engineering Change Orders

 The fl oorplan tool can help in the in-system design debug cycle. It provides a means
to try out small design changes quickly.

 Fig. 14.20 The Quartus II chip planner detailing fan-out from a node

14.3 A Methodology for Successful Timing Closure

218

 It allows the editing, creation and deletion of logic and connections in the design.
It is recommended that you only do this for simple changes, such as changing the
polarity on clocks, clock enables, or the insertion of simple test logic.

 This method is particularly useful for changing the properties of I/O cells such as
delay chain values, use of pull-ups, slew rate, I/O standard and current strength.

 It should also be used to modify the PLL settings or for routing a signal out to a
pin for analysis.

 It is not recommended that you go to production using changes that are made to
the logic with this method, as the RTL will no longer match the functionality of the
implementation. This method should only be used to try out simple changes and
when proven to work in-system, the RTL be modifi ed to match the functionality, the
design simulated, recompiled and the new programming image tested in-system.
The full verifi cation cycle should be performed on this new version of the design.

14.3.7 Miscellaneous Techniques

 Identify the timing paths that are consistently failing timing. Try seed sweeping and/
or run DSE. If the software has been unable to fi x the paths, m even though it has tried
on multiple compiles consider recoding or redesigning that part of the design.

 Ensure that the changes that you have made to the compilation settings still make
a difference as the design has matured. Periodically compile the design with the
default settings and without any LogicLock regions; especially after making signifi -
cant changes to the RTL or architecture. This will identify whether the change in
settings really make a difference for your design.

14.4 Analysis of Common Timing Closure Failures

 In this section we will look at how to review and evaluate compilation results to
identify problems that make the design fail timing. You should start with a review of
the compilation results, then check details of specifi c failing paths, make changes to
software settings or the RTL and fi nally recompile the design.

14.4.1 Missing Timing by a Small Margin

 If your design is functionally complete, you are marginally missing timing and your
schedule does not permit you to go back to the RTL code, then you should try every
option that is available in the FPGA design tool to try and close timing. Most of the
vendors have design space exploration features that will cycle through variations of
the optimization settings along with seed sweeps to try and fi nd the optimal settings to
meet timing on your design. This approach is extremely time consuming, as you may

14 Timing Closure

219

have to run 10+ compilations. However, it can provide performance improvements in
excess of 20 %. In order to reduce the compile time hit of performing multiple com-
pilations, you should compile multiple settings in parallel on multiple machines using
the capabilities inside the Design Space Exploration tools from the FPGA vendors.

14.4.2 Review of Compilation Results and Messages

 The fi rst thing you should do after a compile is review the messages in each section
of the compilation report. Most designs that fail timing also start out with other
problems that are reported as warning messages during the compilation.

 Determine what causes a warning, and whether you should fi x it, or whether it can be
ignored. After you’ve reviewed the warnings, also review the information messages.

 Take note of anything unexpected. The types of messages are dependent on the
design; you will develop intuition as you review compilation results throughout the
development cycle of the project. Unexpected messages might be about unconnected
ports, ignored constraints, missing fi les, and certain assumptions or optimizations
that the software makes.

14.4.3 Synthesis and Physical Synthesis

 During synthesis, the software can perform register retiming and other netlist opti-
mizations. If you’ve turned on physical synthesis, you should review the Optimization
Results reports in the Analysis and Synthesis report. The reports list the optimiza-
tions performed by the physical synthesis optimizations, such as register duplica-
tion, retiming, and removal.

 If you have turned on physical synthesis options, there will be a panel in the report
fi le on physical synthesis that will include a summary of the physical synthesis algo-
rithms that were run, how long they took to run, and how much performance improve-
ment each algorithm achieved. The values that are reported for the slack improvements
can vary from compile to compile because of the random starting point of the compi-
lation algorithms, but the values should be similar from compile to compile.

 The fi tter can also perform netlist optimizations such as register duplication. You
should review those optimizations in the Fitter report under the Netlist Optimizations
section.

 In addition to checking what optimizations were performed, and how they
improved performance, you should also evaluate what runtime it took to achieve
that extra performance.

 In particular, you should review the physical synthesis and netlist optimizations
performed over a couple of compilations, and edit the RTL to refl ect the same
changes that physical synthesis performed. If the software consistently retimes a
particular set of registers, you can edit the RTL to retime the registers in the same
way. By making the same changes that the physical synthesis algorithms do, you can

14.4 Analysis of Common Timing Closure Failures

220

turn off the physical synthesis algorithms and get more predictable performance and
save on compile time. Physical synthesis typically adds 50 % to the fi tter time.

 You should also turn off any physical synthesis algorithms that consistently
report no improvement (0 ps). This will also save on compile time.

14.4.4 Global Signals

 Check the resources that have been used in the design such as global signal use,
routing utilization, and the diffi cult level reported in the clustering operation.

 Review the global and non-global signals. This is especially important for
designs that have a lot of clocks.

 This helps to determine whether global resources are being used effectively and
enables you to make the appropriate changes to promote or demote signals from
global routes. You should focus on global clocks with low fan-outs. These clocks are
good candidates to be assigned to other types of clock resources such as Regional
Clocks. This makes the Global clock available for other signals.

 The fi tter section of the report fi le includes a section on non-global high fanout
signals. This lists the signals with the highest fan-out that are not routed on global
signals. Often reset and enable signals are at the top of the list. If a design has prob-
lems with routing congestion, and there are high fanout non-global signals in the area
of congestion, consider using a global or regional signal to fan-out the node, or dupli-
cate the high fan-out register so that each of the duplicates has a lower fan-out that can
feed a smaller area of the chip. If you do promote signals to use global routes, be
cognizant of the fact that remember that the path delay will increase because of the
buffer insertion delay required to access the global networks. The fl oorplan tools can
be used to locate high fan-out nodes, and to report routing congestion, and determine
whether the alternatives that have been proposed in this section are viable.

14.4.4.1 Control Signals and High Fan-out Signals

 The number of fl ow control signals such as control signals on registers increase in
multiples of the bus width and can quickly become the high fan-out signals in a
design. FPGA tools typically perform automatic global promotion based upon
signal type and fan-out. The Place and Route algorithms do not always make the
optimum choice. As a designer you should make Global Signal assignments to con-
trol a specifi c clock/control signal. As mentioned previously, the report fi les from
place and route details the high fan-out signals that are not using global signals.
These are good candidates for manual assignment to Global signals. It is good
design practice to limit the number of high fan-out signals in the RTL source by
using techniques such as using small FIFOs to break up backpressure signal propa-
gation and by not resetting self-fl ushing datapath components.

 Break up high fanout signals based on the intended physical destination, by
duplicating and pipelining the control signals in the RTL. Note: You may have to

14 Timing Closure

221

use attributes to preserve the registers form synthesis optimization that may merge
the registers.

 Resets can be distributed on global signal networks or in the case of resets that
drive a small numbers of registers placed close together, use local routing.

 Be aware that the buffers that drive the global signal networks suffer an unavoidable
insertion delay. This may require the reset cycle implementation to require multiple
cycles to reset. Be aware that the use of local routing for resets on large numbers of
registers, may cause routing congestion.

 There are several methods to manage fl ow control in designs.
 Method 1 is through the use of clock enables / ready signals/ acknowledge

signals.
 Method 2 is through the use of FIFOs / almost full / almost empty / credits.

This approach enables higher clock rates at the expense of increased latency.
 Method 3 is to manipulate the data stream based on prediction of downstream

backpressure needs. Backpressure is defi ned as the build-up of data when the buffers
are full and incapable of receiving any more data; the transmitting device halts the
sending of data until the buffers are able to store data. This approach enables higher
clock speed and reduced control routing usage; however at the expense of design
complexity. This relies on the prediction of the state of the pipeline some clock cycles
ahead. This involves the start of calculations early in time, or early in the processing
pipeline, where the resource usage is cheap or partial results are already available. The
designer needs to insert a gap in data fl ow for things that are computed in parallel and
inserted later. The designer speculatively calculates values that might be used later. As
a designer, you should avoid having to backpressure large portions of logic.

 This form of predictive fl ow control is not often used in FPGA designs, but its
use is likely to increase for high performance designs. While it reduces the number
and criticality of control signals, as the bandwidth and clock speed increase do does
the use of routing resources.

14.4.5 High Fan-out Registers

 The location of the destination registers for high fan-out registers can result in long
routing delays between the source and the destination register. The Place and Route
software will normally optimize the placement such that this is not a problem.
However it can still be a problem when location constraints restrict the placement
options. An example could be a register with a high fan-out that feeds many regis-
ters that interface with pins on different sides of the device and there is a tight tco
requirement from the registers to the pin. The destination registers have to be placed
inside or next to the I/O cell to meet the tco timing. The source register cannot pos-
sibly be placed close to all of the destination registers.

 The best solution to this is to either:

 1. Create better pin assignments, or
 2. Duplicate the source register such that it can be placed close to each group of

pins. This is best performed at the RTL level.

14.4 Analysis of Common Timing Closure Failures

222

 To summarize, the best way to fi x high fan-out routes is to make them disappear
via register duplication Fig. 14.21 .

14.4.6 Routing Congestion

 Review the routing usage reported in the fi tter resource usage summary report.
This will report the average interconnect usage compared to what is available on
the FPGA device. It will also report the peak amount of interconnect that is used.
This will happen in the most congested area of your design. Designs with an
average routing usage value below 50 % will not have any problems routing.
Designs with an average between 50 and 65 % may have some diffi culty routing.
Designs with an average over 65 % typically have diffi culty meeting timing
unless the RTL is well designed to tolerate a highly utilized chip. Peak routing
values of up to 90 % are typically low risk, however peak values between 90 and
100 % are indicative of likely problems with timing closure, and peak values at
100 % indicate that all routing in an area of the device has been used, so the
design is likely to suffer from a timing performance degradation. It is possible to
view a heat map of the routing congestion in the FPGA fl oorplan. It is very useful
to look at the heat map view, identify the area of congestion and locate from the
region in the fl oorplan to the RTL or hierarchy view in order to fi x the problem
in the RTL Fig. 14.22 .

 As part of the fi tting process, the router may add routing delay by taking a more
circuitous route on register to register paths to increase the delay in order to meet
hold time requirements. This will be reported in the router messages in the report
fi le, including details on how much extra routing was used to meet hold time require-
ments. Excessive amounts of added routing can indicate problems with the design.
Often these are incorrect multi-cycle transfers, particularly between different rate
clocks, and transfers between different types of clock networks.

 The router will also add routing for hold time requirements in a case where data
is transferred within the same clock domain, but between clock branches that use
different buffering.

 To identify cases where a path has different clock network types, review the path
in the timing analyzer, and check the nodes along the source and destination clock
paths. Also check the source and destination clock frequencies, to see whether
they’re equal, or even multiples, and whether there are any multi-cycle exceptions
on the path.

 If any class of routing is heavily used (e.g. more than about 60 or 70 %) it will
likely reduce the circuit speed. This information can be obtained from the fi tting

DQ DQ

DQ

 Fig. 14.21 Duplication of
high fanout registers

14 Timing Closure

223

report. In most cases, it is possible to restructure the design to use less routing. The
techniques that can be used include:

 1. Re-arranging terms in computations to get routes into LUTs.
 2. Pre-computing something, to fan-out a 3 bit encoded signal instead of the 12

signals used without encoding.
 3. Duplicating registers so that there is a local copy of the register available for

fan-out.
 4. Pipelining the routing wire t. Check the resources that have been used in the

design such as global signal use, routing utilization, and clustering diffi culty.

 Fig. 14.22 Routing heat map view in Quartus II chip planner

14.4 Analysis of Common Timing Closure Failures

224

14.4.7 Clustering

 Clustering is the fi tting process of grouping logic together for placement. As cluster-
ing diffi culty gets higher, timing closure gets harder. Going from Medium to High
can result in signifi cant drop in performance and/or increase in compile time. The
easiest way to reduce clustering diffi culty is to reduce the amount of logic. This may
or may not be an option for your particular design.

14.4.8 Assignments

 Review the ignored assignments panel in the compilation report. The compilation
report includes details of any assignments ignored during fi tting. Make sure your
intended assignments are not being ignored. Assignments are typically ignored if
design names change but assignment names are not updated.

14.4.8.1 Placement

 Make sure placement makes sense. Look for logic that isn’t where you expect it to
be, based on your knowledge of the design. An example being logic that interfaces
with I/Os. It should be located close to the I/Os.

 Look for any signals that route across the chip. These are likely to be timing
challenged or require pipelining for performance.

 The use of global signals can negatively impact the placement. Any logic that
feeds a global buffer, such as a high fan-out signal, may be pulled close to the global
buffer, away from the related logic that it feeds.

 Routing congestion may cause the fi tter to spread out the logic to reduce the
congestion. This can often be identifi ed if the router takes much more time than
placement.

 Any signals that have a very high fan-out and are using local routing may pull the
logic that they drive close to them. This can result in other paths failing timing.
Duplicating registers can help reduce criticality of high-fanout paths. This is best
done manually in the RTL.

 Reset signals are often routed on global networks. Sometimes the use of a global
network can cause recovery timing failures. Review the placement of the register
that generates the reset, and the routing path of the reset signal.

 Ensure that you are aware of how the design should be placed relative to the
clocking architecture of the device. Any registers that are driven by a regional clock
must be placed in one quadrant of the chip.

14 Timing Closure

225

14.4.8.2 Restrictive Location Constraints

 When location constraints are used early in the design process, there is a tendency
to keep the constraints throughout the evolution of the design. This can result in the
scenario where constraints that added value to the early versions of the design can
hinder the performance in later versions of the design.

 There is also the temptation to overly constrain the design. The constraints may
work well on individual blocks, but when the design is integrated restricts the opti-
mizations that the place and route tool can perform resulting in poor performance.

 In both of these scenarios, the recommendation is to create a new revision of the
design and remove the logic location constraints. If the design does not meet your
timing requirements, examine which blocks are having the problem and add back in
the constraints on the problem blocks individually. See if it impacts timing. If it does
not, remove the constraint, if it does, keep the constraint and move onto the next
constraint.

 Ideally you want to be able to close timing without using logic location
constraints.

14.4.9 Missing Timing Constraints

 The FPGA vendor place and route software optimizes the design based upon the
timing constraints that are provided. If you fail to constrain a critical path, this path
will not be optimized by the FPGA software and may fail timing. To further compli-
cate issues, you may not know that you have a timing problem. Timing analysis will
only report timing against the timing constraints, thus if a path is not constrained, it
will not be analyzed.

 Most timing analysis tools have a command to report paths that do not have tim-
ing constraints. It is recommended that you run this command to determine if you
have unconstrained paths and then set the appropriate timing constraints on the
paths.

 It is important that you use the correct timing constraints for your design. Analyze
the timing report and ensure that any multi-cycle or false paths truly are timing
exceptions. It is easy to use wildcards as part of a timing exception and inadver-
tently applies the constraint to a register that is not a timing exception, resulting in
a timing failure in-system that is not reported as a failure by timing analysis. Review
the SDC constraints for the design. The most common reason for timing constraints
being ignored is incorrect signal name or names in the SDC fi le versus the design
name. If you make any changes to the RTL in your design, ensure your timing con-
straints are up to date.

14.4 Analysis of Common Timing Closure Failures

226

14.4.10 Confl icting Timing Constraints

 It is possible that you create confl icting timing constraints on paths through the use of
wildcards. While the use of wildcards is encouraged, you need to be certain that a
wildcard is appropriate. If a path has confl icting constraints, the optimization of the
place and route engine will only work on one of the constraints. This is generally the
last constraint entered. This can result in a timing failure on the other constraint.

 Timing confl icts often happen in designs with paths between multiple clock
domains.

14.4.11 Long Compile Times

 The fi rst technique is to use an incremental compilation design fl ow. If you have
used an incremental compilation methodology then you will not be suffering from
long compile times.

 The second technique complements the fi rst technique. That is to use a workstation
with multiple processors or multi-core processors. The algorithms in the FPGA
vendor software are multi-threaded and can take advantage of multiple cores or
processors to reduce the compile time. To complement the multiple processors you
should ensure that the workstation has plenty of fast RAM. The compilation of designs
targeting the latest FPGA devices can use as much as 16 G RAM. The algorithms are
constantly accessing RAM, thus fast RAM will help the compilation time.

 If your design meets performance reasonably easily, you may consider using one
of the FPGA vendor options to quickly fi t the design. This can cut the compile time
in half but will result in reduced design performance.

14.5 Design Planning, Implementation, Optimization
and Timing Closure Checklist

 1. Follow synchronous design practices
 2. Follow recommended coding guidelines.
 3. Partition the design for an incremental design methodology.
 4. Ensure that the RTL is taking advantage of the dedicated hardware resources in

the device. This can be achieved by instantiating vendor primitives to access
special hardware features that cannot be inferred from RTL.

 5. Create complete timing assignments for the design.
 6. Ensure that any multi-processor features for reduced compilation are enabled.
 7. Floorplan timing critical partitions in the design.
 8. Perform timing analysis at all process corners.
 9. Analyze all warnings and errors. Make the necessary changes to remove these

warnings and document any exceptions.
 10. Document the settings that achieve timing closure .

14 Timing Closure

227© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_15

 Chapter 15
 High Level Design

 Abstract High level design, which is often referred to as behavioral synthesis has
a growing adoption in FPGA based system designs. As the technology has matured,
the quality of the results has improved to the point that in many cases it can equal
the results achieved with hand optimized RTL design, but in a fraction of the devel-
opment time. One of the reasons for the improvement is that there has been a real-
ization among the solution providers and the end users of these tools that one
solution will not satisfy all class of designs. The tools have become focused on
certain application areas and provide great benefi t when used in these areas.

15.1 High Level Design

 High level design, which is often referred to as behavioral synthesis has a growing
adoption in FPGA based system designs. As the technology has matured, the quality
of the results has improved to the point that in many cases it can equal the results
achieved with hand optimized RTL design, but in a fraction of the development
time. One of the reasons for the improvement is that there has been a realization
among the solution providers and the end users of these tools that one solution will
not satisfy all class of designs. The tools have become focused on certain applica-
tion areas and provide great benefi t when used in these areas.

 The tools can be separated into four different classes of tools.

 1. Algorithmic synthesis which is used mainly for the implementation of DSP
based designs blocks.

 2. ‘C’ to gates which tends to be used for select blocks in data path design blocks.
 3. SystemC which is used more for modeling than for design implementation.
 4. OpenCL which targets software programmers and creates complete FPGA

designs, mainly in the High Performance Computing markets. This is new
technology for FPGA design and is likely to move into other markets as the
technology matures.

228

15.1.1 Algorithmic Synthesis

 The main algorithmic synthesis solutions on the market that target FPGA devices
are based around the MATHWORKS Simulink environment. The Simulink addition
to Matlab provides a graphical modeling environment that enables the exploration
of different architectures. It includes a suite of tools for analyzing the simulation
results. The two main FPGA vendors have developed their own optimized Simulink
libraries. These enable designers to turn the Simulink modeling environment into a
modeling and design environment.

 The main applications where Simulink is used for FPGA design is in DSP design
blocks. While this class of design tools can implement a complete system design,
they are generally used to design and implement portions of the design such as
complex DSP design blocks. The output from the tools is RTL code that can be
integrated with existing IP blocks and RTL code to target the FPGA device.

 One of the benefi ts of this type of environment is that it enables system engineers
to try their algorithm in hardware and to hand off an executable specifi cation to the
hardware engineers for integration with the rest of the design.

 In practice, many of the users of the Simulink environment are RTL designers
that use it for the implementation and analysis of complex DSP functions that are
diffi cult to express using traditional RTL design.

 The quality of the output from the different vendor tools varies from vendor to
vendor, but in general this is mature technology and when used as recommended by
the vendor provides good quality of results.

 System engineers who are mainly concerned with algorithm development can
use the Simulink fl ow to try their algorithm in hardware. The fl ow enables the
designer to achieve an FPGA implementation without leaving the MATLAB/
Simulink environment Fig. 15.1 .

 1. Create a Simulink FPGA model of the algorithm
 The designer creates a schematic based design by selecting and parameterizing
components from the FPGA vendors Simulink library. These components are
optimized for implementation in the FPGA. Simulink adds the concept of clock
cycles to the design making implementation in hardware realizable. In the case of
the Altera DSP Builder Advanced Blockset the user can also enter their desired
clock frequency. When the Signal Compiler creates the RTL for the design it will
automatically pipeline the code to meet the performance requirements.

 2. Simulate in Simulink
 The Mathworks Simulink environment provides a set of components that can be
hooked up to the design to simulate the design at the system level. It also pro-
vides good visualization capability that can be tuned to your application needs.
An example of the visualization capability is a frequency spectrum view of the
results.

 3. Verify the generated RTL
 The RTL that is generated can be simulated in standard RTL simulators. The
DSP Builder generator will create the scripts to automate the simulation in cer-

15 High Level Design

229

tain simulators such as Mentor Modelsim. This step is optional as the algorithm
has been already verifi ed in the Simulink environment but is useful for simula-
tion of the integration of the block with the users RTL design blocks.

 4. Compile the FPGA
 The next step is to create an FPGA project and to compile the design. In the case
of DSP Builder Advanced Blockset, it will automate the creation of the project,
enabling you to compile the FPGA from within the Simulink environment.

 5. Program the device on a board
 This can be performed from within the Signal Compiler interface in Simulink.

 6. Debug the design
 The design can be debugged using traditional FPGA debug techniques such as
SignalTAP or by using a feature called Hardware in the Loop (HIL). In the case of
SignalTAP, it can create a ‘.mex’ fi le that can be imported into the Simulink environ-
ment in order to display the debug information in the same manner as the original
simulation. The Hardware in the Loop feature enables a simulation that is run in the
Simulink environment to simulate against the design running on the FPGA. This is
effectively accelerating the simulation by running the design on silicon. This is par-
ticularly useful for video applications that tend to have very long simulation times.

Create a Simulink FPGA
Model

Simulate in Simulink

Verify the Generated
RTL

Compile the FPGA

Program a Device on a
Board

Debug the design

 Fig. 15.1 Altera DSP
Builder Simulink design fl ow

15.1 High Level Design

230

15.1.2 ‘C’ to Gates

 For many years there has been the dream of taking existing C/C++ code and implementing
the functionality as hardware design blocks. This approach has had limited success
and limited market adoption. This has mainly been due to concerns over code por-
tability and the modifi cations that are required to the original C/C++ code to achieve
the hardware implementation.

 The ‘C’ language does not support some of the necessary characteristics of
hardware systems, hence the development of the SystemC library. The main limita-
tions in using ‘C’ for hardware design are:

 1. Concurrency.
 The standard C/C++ language does not have a means of expressing concurrency.
This means that providers of C/C++ solutions require the use of tool specifi c
attributes and constraints to specify concurrency. This problem is solved with the
addition of SystemC and now the OpenCL class libraries.

 2. Timing
 Designs in ‘C’ cannot express the relationship of events to clock cycles. It under-
stands the relationship between statements but not timing dependency. Again,
this has resulted in non-standard coding practices and the use of attributes and
constraints to establish the relationship to clock cycles.

 3. Data types
 There is no means to describe hardware data types such as tri-states.

 These limitations have resulted in the tools from the various vendors requir-
ing different coding styles than would typically be used in C/C++ programs and
for the user to have a strong understanding of the tool. This is knowledge that
most programmers do not need for their standard C/C++ compiler and in the case
of ‘C’ to gates tools, is not reusable on other tools. In addition, the tools often
require the use of a vendor specifi c C++ class library.

 While these are substantial limitations, the tools can work well on certain
applications. These are mainly data path applications or DSP algorithms that do
not require the use of control logic, or at least complex control logic. With the
release of hard processors on FPGA’s, it is likely that the use of such tools will
increase for the creation of hardware accelerators for processor based designs.

 In summary, the use of such tools for design blocks without control logic and
data path designs can increase designer productivity but at the cost of design
portability between FPGA vendors. However such tools can provide a good solu-
tion for creating reusable IP across the same FPGA vendors families.

15.1.3 SystemC to Gates

 The benefi ts that are provided by SystemC are described in Chap. 4 , System
Modeling. Good quality of results can be achieved with SystemC by using a coding
style similar to writing RTL. This will deliver the benefi t of integration in the system
modeling process. However it requires a designer with detailed hardware design
experience and will result in similar development times to using traditional RTL

15 High Level Design

http://dx.doi.org/10.1007/978-3-319-17924-7_4

231

design. There are tools on the market that will synthesize higher levels of SystemC
design abstraction. However, these tools require the use of custom attributes and
constraints that reduces the code portability between SystemC synthesis tools.

15.1.4 OpenCL

 OpenCL stands for Open Computing language. It is a framework for writing software
programs that execute across heterogeneous platforms, i.e. systems consisting of CPUs,
GPU, other processors and now FPGA devices. OpenCL was initially developed by
apple, and the standard was refi ned by collaboration with technical teams from AMD,
IBM, Intel and Nvidia. The standard is now maintained by the Khronos Group. The
basic mode of operation is that the host CPU offl oads performance intensive functions
to the other hardware blocks as hardware accelerators in the form of kernels. The CPU
can spawn off many kernels that can be implemented in parallel based on the target
hardware’s parallel capability. This parallel capability is where FPGA devices excel.

 A key feature of OpenCL is the fact that the code is portable, meaning that the
same code can run on multiple platforms. The OpenCL language is based on C99, a
version of the C programming language standard published in 1999. It provides mech-
anisms for parallel computing using both task-based and data-based parallelism.

 The OpenCL specifi cation is defi ned in four models.

15.1.4.1 OpenCL Models

 1. Platform model
 The platform model defi nes the relationship between the host and the device that
will run the acceleration kernels, i.e. the roles of the host and the devices, which
can be FPGAs, DSPs, GPUs, or CPUs. The host coordinates the execution of the
kernels.

 2. Execution model
 The execution model specifi es how the host sets up the kernel for devices to run.
This includes mechanisms for host-device interaction and defi ning a concur-
rency model used for devices to execute the kernel.

 3. memory model
 The memory model defi nes the abstract memory hierarchy that the kernel uses.

 4. Programming model
 The programming model defi nes how the execution is mapped to the physical
hardware.

15.1.4.2 Host

 The host is usually an ×86 processor that communicates with the device over PCIe.
When we refer to device we mean the target accelerator which can be an FPGA,
GPU, CPU or other compute device Fig. 15.2 .

15.1 High Level Design

232

 In the OpenCL Programming model, the host performs the task of launching the
kernels. The host also can perform other tasks in serial in between device (FPGA) ker-
nel launches. These tasks may include memory management, data transfer to and from
the accelerator device, error handling and other tasks. The execution of the kernel is
performed asynchronous to the host code unless there are specifi c data dependencies.

 The OpenCL features are accessed through a ‘C’ API that is defi ned in a single
header fi le cl.h. This fi le must be included in your host code.

 There are six steps in order to run an OpenCL program on the device (FPGA)
from the host.

 1. Query and select the platforms (e.g., Altera).
 This is where the program queries and selects the vendor specifi c platform. In the
case of the Altera design fl ow this would be the Altera development board.

 2. Query the devices.
 This is where the program identifi es the target devices on the board or boards for
the kernels. In this case it will be the specifi c FPGA. This enables the compiler
to understand the resources available on the target for the kernels.

 3. Create a context.
 Contexts are abstract containers that manage host device interaction. This
includes keeping track of memory objects, compiling programs, extracting ker-
nels, and managing a queue for all the actions needed to be performed by the
device.

 4. Create a command queue.
 A command queue allows the OpenCL host to request actions to be performed
by a device (FPGA). Each command queue is associated with one device. When
the host submits commands to the queue, it performs actions such as memory
transfers and the launching of kernels.

Host Program Kernel
Program

Standard ‘C’
Compiler

Altera OpenCL
Compiler

x86
Processor

FPGA Development
Board

x86 binary
SOF (FPGA Programming File)

PCIe

 Fig. 15.2 Altera OpenCL to FPGA fl ow

15 High Level Design

233

 5. Read/Write to the device
 OpenCL application tends to work with large arrays or multidimensional matri-
ces. The data needs to be physically located on the device (FPGA) before execu-
tion. Memory objects are used to encapsulate the data before it is transferred to
the device (FPGA). The host and the device each have their own physical mem-
ory space.

 OpenCL data transfers needs to be explicitly specifi ed with commands placed
on the command queue. The precise time the data is physically transferred to and
from the device (FPGA) happens at runtime. If a kernel or the algorithm execut-
ing on the accelerator is dependent on the memory object, it is transferred to the
device prior to the execution of the kernel.

 6. Launch the kernel

15.1.4.3 Kernels

 The functions in the OpenCL standard that run on the accelerator device are called
Kernels.

 The syntax of a kernel is very similar to a standard ‘C’ function but there are
some restrictions in language support and the need to use a set of keywords to
specify the functionality as a kernel. The OpenCL code is a low-level language that
is fl exible enough to be mapped effi ciently into a wide range of hardware types.
Kernels are in effect the instructions to be run. In the context of OpenCL, programs
are a collection of one or more kernels. The kernel operations are mapped to hard-
ware during runtime. When a kernel is launched in a data parallel fashion, the unit
of concurrent execution is called a work-item. Each work-item executes the same
exact kernel function independently.

 It is good practice in the development of a kernel to map a single iteration of a
loop in standard C to a work item. It is normal to generate as many work items as
elements in the input and output array Fig. 15.3 .

 Fig. 15.3 Comparison of standard ‘C’ code and OpenCL kernel code

15.1 High Level Design

234

 There are fi ve steps to execute a kernel.

 1. Create a program
 This involves converting source code, or a precompiled binary into an OpenCL
program object.

 2. Compile the program
 3. Create the kernel by extracting it from the program object

 Extracting the kernel from the program object is similar to obtaining an exported
function from a dynamic library.

 4. Setup kernel arguments individually
 This is done by mapping the kernel to specifi c memory objects.

 5. Dispatch the kernel

15.1.4.4 Memory Model

 In OpenCL, you can have different memory types which have different scopes.
You can specify the type of memory through the use of qualifi ers in front of the
pointers.

 Private memory is memory that is only visible from one work-item and it has the
lifetime of the work-item. In FPGAs this is implemented in Registers.

 Local Memory is accessible by any work-item of a work-group from which it
was created. A work-group is a collection of work-items. It has the lifetime of the
work-group and must be explicitly declared and managed. This is implemented as
on-chip memory in the FPGA.

 Global Memory is visible by every work item. In FPGA devices, it is imple-
mented in off chip DDR SDRAM.

 Constant Memory has the same restrictions as global memory but is accessed
through caches and constant hardware buffers.

 Host memory is only visible on the host CPU.

15.1.4.5 Altera OpenCL Design Flow

 The Altera OpenCL design fl ow is detailed in Fig. 15.4 .

 1. Develop Kernel code & compile on CPU for functional correctness
 It is recommended that you develop and perform the initial optimization of the
Kernel code while running on a CPU. The compile times are extremely fast com-
pared to the time to place and route the algorithm on a FPGA. This approach will
enable you to achieve functional correctness of the code and to achieve a good
level of optimization.

 2. Compile OpenCL Kernel with Altera SDK Compiler
 Collect all kernels into a single .cl fi le and run the Altera OpenCL compiler. The
compiler will produce a project that can be compiled by Quartus II. It also pro-
duces a throughput analyzer report and area report. If the area estimation on the

15 High Level Design

235

number of lookup tables (LUT’s), registers, DSP blocks, or block memory usage
exceeds 100 %; you will have to re-architect the design as the circuit will more
than likely not fi t on a given device.

 3. Build, compile and link the host application
 The ‘C’ code that will run on the host processor can be compiled using a standard
C compiler. The compiler must be able to reference the ACL host library which
includes the API to the PCIe connected board. Ensure that the ‘alteracl’ and
‘alterahalpcie’ libraries are in the compilation. Link the application.

 4. Program the FPGA board
 The Altera OpenCL compiler generates an RTL representation of the design that
must be compiled in the Quartus II software. This can be run from within the
OpenCL design environment. Once complete, it will produce a programming fi le
(.sof) that can be used to confi gure the FPGA board. The FPGA device can be
programmed from within the OpenCL environment or by using the Quartus II
programmer.

 5. Run the Application
 The host application is run be running the executable that was created in step 3.

 6. Optimize the kernel for the FPGA architecture and the OpenCL compiler

Develop Kernel code & compile
on CPU for functional

correctness

Compile OpenCL Kernel with
Altera SDK Compiler

Build, compile & link the host
application

Program the FPGA board

Run the application

Optimize the Kernel for the
FPGA board architecture and

OpenCL compiler

 Fig. 15.4 Altera OpenCL development fl ow

15.1 High Level Design

236

 Now that the application is running on the board, you can view the performance
of the algorithm. If the design is not meeting your requirements, you can optimize
the code based upon your bottlenecks from profi ling the code running on the board.
This can be achieved by changing the structure of the design or by enabling optimi-
zations in the OpenCL compiler. The OpenCL compiler optimizations can be
applied through attributes that are added to the OpenCL code or by using compiler
arguments. The coding techniques to improve the performance will be application
dependent. Often they will start with looking at the interaction with memory, in
particular with shared memory as this will impact your ability to go parallel. Other
techniques include loop unrolling and resource sharing of infrequently used
hardware.

15.1.5 Summary

 As FPGA devices begin to add hard processors that run at higher performance, the
devices are becoming more attractive to new application spaces and are attracting a
new class of user that are not RTL designers. This is increasing the need for engi-
neers with a software development background to be able to take advantage of the
FPGA fabric, in addition to the processor. This is increasing the need for high level
design tools. The FPGA vendors are increasing their offering in this space with the
introduction of design tools that target specifi c markets. These include Simulink
based design solutions for DSP designs and the introduction of OpenCL for high
performance computing. Over the coming years it is expected that the FPGA ven-
dors will continue to increase their investments and product offerings in this area.
High level design will become a standard part of the FPGA design fl ow as opposed
to the limited use that exists today.

15 High Level Design

237© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_16

 Chapter 16
 In-System Debug

 Abstract The debug of any chip that is operating in-system is a challenging a nerve
racking experience. As your board springs to life…. or not, the thought that crosses
your mind is “Does my design work?” Then the real discussion starts, is it the sys-
tem software or the system hardware. Due to the expense in developing system
software, the hardware is almost assumed guilty until proven innocent. In this chap-
ter we will look at techniques that can be deployed to identify the problems, quickly.

16.1 In-System Debug Challenges

 The debug of any chip that is operating in-system is a challenging a nerve racking
experience. As your board springs to life…. or not, the thought that crosses your
mind is “Does my design work?” Then the real discussion starts, is it the system
software or the system hardware. Due to the expense in developing system software,
the hardware is almost assumed guilty until proven innocent. In this chapter we will
look at techniques that can be deployed to identify the problems, quickly.

 FPGAs have a distinct advantage over ASICs when it comes to In-System Debug.
This is programmability. With an ASIC design, you have to design your debug logic
up front in order to prove the design operation on the board. With an ASIC, you so
need to be as close to 100 % certain as possible that the design is functionally correct
in order to avoid an expensive chip respin. The upfront design of debug logic is a criti-
cal functionality that should also be used when designing FPGAs. However, the pro-
grammability that is inherent in FPGAs enables debug logic to be controlled by a host
processor customized or added to the design as the in-system debug progresses.

 The intent of simulation is to catch any design or integration bugs prior to getting
to silicon. However, exhaustive simulation of an FPGA design is time consuming
and compute intensive. The ability to stimulate a design under real world condi-
tions, can uncover problems that are diffi cult to detect in simulation. Examples of
such problems are asynchronous timing issues, signal integrity peculiarities and
hardware/software integration issues.

 In this chapter we will recommend a debug methodology that will enable you to
verify your design operates in-system as intended and helps you capture problems
with your design while operating in-system. The techniques discussed will draw
upon the tools and techniques that are commonly available today.

238

16.2 Plan for Debug

 When creating designs, most engineers tend not to consider that they will have
bugs in the design or implementation. Inexperienced engineers only start to think
about In-System debug once there is a problem with the board. The seasoned
veteran has been through the pressure of debugging designs many times and
wants to minimize the time spent in this high pressure environment. He/She
wants to avoid spending evenings and weekends in the lab determining the cause
of a problem. As such, these engineers plan for debug up front. This is what you
need to do!

 In-System debug should be part of the design specifi cation. Each of the major
blocks in the design should have a plan for how its operation is going to be verifi ed
in-system and what the debug strategy will be for that block. This should include
information on the type of information that can be viewed to determine that the
block is operating as intended. This includes system level statistics such as the effi -
ciency of memory interfaces, performance bottleneck analysis on buses and bit
error ratio information on high speed transceiver interfaces.

 In addition to the debug of blocks, there should be a debug plan for the top-level
design when all of the design blocks are implemented. This information is derived
from the information in Chap. 5 on resource scoping, where it addresses density
and pins.

 This plan should specify how many pins and how much logic and memory are
reserved for in-system debug. It should also detail the techniques and tools that will
be used as part of the in-system debug process. The defi nition of the debug strategy
should also include the channel to be used for accessing debug data. The Embedded
Logic Analyzers (ELAs) that are provided by the major FPGA vendors typically use
JTAG as the channel for debug. The design engineer needs to determine how to
extract data from their debug logic that he or she has used in the design. He or she
can use device pins, hook it up to the ELA, or design his or her own debug channel.
One technique is to use a soft processor to control the debug process and access to
the debug data.

 A good guideline is to reserve 15 % of the device pins for debug of the design.
This does not include the JTAG pins that are used for programming the FPGA and
can be used as part of the debug process. The recommended resource requirements
for debug will be discussed further in Sect. 16.3 on debug techniques.

16.3 Techniques

 There are multiple tools available from FPGA vendors and EDA Companies that
can be used to facilitate the debug of your design in-system. In this section we will
look at the mostly commonly used tools and techniques and recommend when they
should be used.

16 In-System Debug

http://dx.doi.org/10.1007/978-3-319-17924-7_5

239

16.3.1 Use of Pins for Debug

 This is the mostly commonly used debug technique for FPGA designs. One of the
reasons that it is so popular has to do with the programmability of FPGAs and the
fact that compile times for routing different signals to the pins are fast. Thus when
debugging in the lab, you can have a new programming fi le that routes a different
set of signals to the debug pins in 10s of minutes. In most cases this can occur with-
out impacting the previous design implementation, outside of adding a fan-out on
the signals that you are probing.

 If your design is highly utilized, it may be necessary to change routing or
placement in order to be able to access the signals. This latter scenario should be
avoided; as such a change may cause any asynchronous timing issues to
disappear.

 This capability requires that you have reserved selected pins or a bank of pins
for debug.

 There are several ways to route internal signals to pins in the FPGA design
software. The most common approach is via the Floorplan tool where you select
the required signal as the source and the pin as the destination. The Place and
Route software will incrementally route the signals to the pin. This approach is
simple for 1 or 2 signals. However, it can become laborious for larger groups of
signals. A common example is debugging a 32-bit bus on 32 pins. Some of the
tools have the capability to allow you to select the source and destination via a
signal fi nd utility or scripting interface, and then it will automatically route the
signals to the pins.

 The timing of the routing of the signals at the pins is important, particularly if
routing a bus out to the pins. It is recommended that you register the pins at the pins
to synchronize the bus to a clock. You do not want these signals to be the critical
path in your design, thus you should add timing constraints to these paths. For high
performance designs you may need to insert several levels of pipeline registers
between the signal and the pins. Once again this is an automated option in some of
the FPGA vendor software offerings.

 A common technique is to use pin multiplexing to connect a large set of internal
device signals to a smaller number of output pins. These pins will be connected to
an external logic analyzer for debugging.

 There are three main methods of implementing the multiplexer approach.
 The fi rst method that is shown in Fig. 16.1 is to use external pins to control the

switching of the multiplexer, i.e. controlling which internal signals are visible at
the pins.

16.3 Techniques

240

 The second method that is shown in Fig. 16.2 is using internal logic in the design
to control the switching of the multiplexer, i.e. controlling which signals are visible
at the pins. The internal logic that is used to control the multiplexer is often a soft
processor, such as the Altera Nios II processor.

8

8

3

Debug Pins

Design

Mux
Control
Pins

8

8

8

8
8

8

8

 Fig. 16.1 Pin multiplexing using a pin to control the multiplexer

8

8

3

Debug Pins

Design

8

8

8

8
8

8

8

 Fig. 16.2 Pin multiplexing using internal logic to control the multiplexer

16 In-System Debug

241

 The third method is specifi c to Altera. This is the Logic Analyzer Interface. This
is an IP from Altera that provides JTAG control over a multiplexer that the user
confi gures in their design. It offers the option to synchronize the results before rout-
ing them to the pin. The user can then control the switching of the multiplexer
through JTAG. It also offers an API to display the signals on the pins using the signal
names as opposed to the pin names. This is the solution that is used by several of the
external logic analyzer vendors as part of their solutions.

 The steps in using pins for debug signals are:

 1. Reserve the pins for debug.
 2. Set the appropriate I/O standard on the pins.
 3. Identify the signals that you want to route to the pins.
 4. Determine if the signals require the insertion of pipeline registers.
 5. Make the appropriate timing assignments.
 6. Route the signals to the pins.
 7. Analyze the timing of the signals.
 8. Program the device
 9. Analyze the data at the pins with an external logic analyzer or oscilloscope.

 If you want to view different signals at the pin, remove the connections to the
pins that you no longer want to examine and repeat from step 3.

16.3.2 External Logic Analyzer

 The major FPGA vendors provide special interfaces to the Logic Analyzers from
Agilent and Tektronix. In order to use these optional interfaces in the Logic
Analyzers requires a JTAG connection and a test header for the Logic Analyzer.

 The interface enables viewing of internal signals using an external logic analyzer
and using a minimal number of FPGA I/O pins, while the design is running at full
speed on the FPGA.

 This solution uses a multiplexer, similar to the method described in Sect. 16.3.3
on custom logic, to connect a large set of internal device signals to a small number
of output pins.

 The multiplexer is JTAG controlled via the user interface of the Logic Analyzer.
In addition to controlling the multiplexer, the logic analyzer can display the signal
names on the logic analyzer to simplify debug.

 This debug approach provides some key advantages over using internal logic
analyzers.

 1. Wider sample depth.
 2. Ability to handle more data. External Logic Analyzers have much more memory

than the amount of memory that is available inside of FPGAs.

 This debug technique is recommended when you need to store and analyze a
large amount of debug data and have room on your board for a test header.

16.3 Techniques

242

16.3.3 Internal Logic Analyzer

 The Internal Logic Analyzer (ILA) is the tool that has saved the day for many
designers. This is the tool that is considered by many as an option in their design
fl ow; until the day when come across a bug in the lab that they cannot fi nd with
simulation. They use the ILA to isolate and debug the problem and to verify the fi x
in system. After this fi rst eye opening scenario, the ILA becomes a key part of their
FPGA design fl ow.

 This capability is provided by the major FPGA vendors and some of the EDA
tool vendors. The Internal Logic Analyzer solutions are implemented in the FPGA
device using the spare logic and memory resources inside the device.

 So what exactly is an Internal Logic Analyzer, or ILA?
 Basically it is a tool that is implemented inside the FPGA that provides similar

triggering capabilities to the capabilities that is provided by external logic analyz-
ers. ILAs have the advantage that they do not require additional pins to be reserved
for debug as they rely on the JTAG interface. They can acquire data on internal
signals while the design is running at full speed on an FPGA device at clock speeds
exceeding 250 MHz in the latest FPGA technology. However, the performance may
vary depending upon the complexity of the trigger conditions being used. They also
have the benefi t of being able to be used without requiring changes to your design
fi les, as the FPGA vendor software can automatically insert the ILA into the design
after the design has been implemented in the FPGA without disturbing the imple-
mentation of the design.

 The captured signal data is stored in device block memory until you are ready to
read and analyze the data. In addition, multiple logic analyzers can be implemented
in a single device. This provides the benefi t of being able to capture data from mul-
tiple clock domains in a design at the same time.

 So, the question is that if they are so great, why are the not used by all designers?
 The answer is quite simply, poor planning. Many designs do not leave suffi cient

resources in the device to be able to use an ILA. The most common mistake is not
leaving any memory resources for storing the data for analysis.

 As mentioned many times in this book, you must plan for debug up front.
 You need to ensure that you have the following in order to use an ILA.

 1. A JTAG connection.
 2. Memory blocks for storing the data for analysis.
 3. Logic for creating the trigger conditions.

 Most ILAs come with the following standard feature sets.
 Control over the sample depth and the type of RAM that is used to store the data.
 Advanced trigger conditions such as state based triggering. This precisely defi nes

upon what conditions the ILA will capture the data.
 Continuous storage of data. When the trigger condition occurs, the data that is

being tapped is continuously written to memory. This mode of operation can result
in the need for large amounts of internal memory in order to prevent data being
overwritten.

16 In-System Debug

243

 Transitional storage of data. During acquisition, if any of the signals being tapped
have changed since the previous clock cycle, new data is written to the acquisition
buffer. If none of the signals being tapped have changed since the previous clock
cycle then no data is stored.

 Conditional Storage. Only stores data if the qualifying condition to write data to
memory is true.

 The amount of logic and memory that is required to implement the ILA depends
upon the complexity of the trigger conditions and the amount of data that needs to
be stored.

 A useful technique to reduce the amount of logic that is required is to minimize
the number of segments in the acquisition buffer to only those required.

 Another technique is to use the buffer acquisition control to precisely control the
data that is written into the acquisition buffer. This enables you to discard data
samples that are not relevant to the debug of your design.

 Transitional storage and conditional storage can be used to reduce the amount of
internal memory that is required.

16.3.3.1 The Design Flow with an ILA

 1. Add an ILA to your design. This can be auto-inserted by the FPGA vendor soft-
ware without modifying your design or the design implementation in the FPGA.

 2. Confi gure the logic analyzer. Defi ne the signals that you want to capture and the
storage conditions.

 3. Defi ne the trigger conditions.
 4. Compile design
 5. Program device
 6. Run the ILA application on the host workstation.
 7. View and Analyze Captured data.

16.3.3.2 ILA Limitations

 Not all signals in the design are able to be viewed, or tapped, due to architectural
limitations. This includes signals that are part of a carry chain

 You cannot view JTAG Signals.
 You can only view signals that are available after fi tting, unless you want to per-

form a full design compilation. This can make it diffi cult to identify combinational
signals in the design. This is because RTL synthesis tends to change the names due
to the optimizations that are formed during synthesis. These signals can be made
available for viewing by using attributes in the RTL to preserve these signals.
However, this will change your design implementation. As such it is recommended
that you focus your in-system debug on registers, most of which will be available
post-fi t and not require a full compilation.

16.3 Techniques

244

16.3.3.3 Tips

 It is recommended that you leave the ILA in the end design. This will enable remote
debug of designs in remote locations, if there is JTAG access to the FPGA. This can
prove invaluable in debugging designs that are in remote locations or even provides
you with the ability to debug designs that are in the lab while you are in your offi ce
or at home; this is providing that you have a network connection to the workstation
connected to the board.

 Some of the more advanced ILAs provide an interface to the Mathworks
MATLAB software. This is a useful option for analyzing DSP data. Once the data
has been imported into the MATLAB environment, the view of the data can be
displayed in a format suitable to the application being tested.

 If you are in the position that you have a design that does not leave adequate
resources for using an ILA to debug the design, you should strip out functionality
from the end design as part of the debug cycle. This enables you to debug isolated
blocks in-system, verifying the functionality of these key blocks. This will not
enable you to resolve full system integration issues, but will enable you to examine
the integration of certain key blocks.

16.3.4 Use of Debug Logic

 Designs that have complex logic implementation usually demand real time debug
capabilities. It is a common and recommended design practice to insert debug logic
in the design. This is discussed in Sect. 16.3.9 , reporting of system performance.

 As mentioned, you should build in test logic, monitors and checkers on the inter-
face of major design blocks. The debug logic can be removed after the design is
proved to be functionally complete; however leaving the logic in the design pro-
vides remote debug capability in the case of in-fi eld failures. If the debug logic is
left in the production version of the design, is recommended that the debug logic be
disabled and controlled by a pin, JTAG or a soft processor. This will reduce the
power consumption in your fi nal design.

 Debug logic can also be used with the other debug techniques that are described
in this chapter.

 User created debug logic can be used to force the FPGA into certain conditions, in
order to recreate failure conditions or to test the operation under these isolated corner
cases.

 The main FPGA vendors provide utilities that can help with forcing logic to a
particular state via their debug utilities. Using these utilities can reduce the amount
of development that you need to do.

 Once again these utilities can be combined with other debug capabilities to pro-
vide advanced debug solutions. When combined with JTAG it enables you to
dynamically control run-time control signals. Similarly it can be combined with
Internal Logic Analyzers to force the occurrence of trigger conditions setup in the
Internal Logic Analyzer. Through this approach it is possible to create simple test

16 In-System Debug

245

vectors that exercise your design and displays internal signal information without
requiring the use of external test equipment.

 In FPGA designs that contain processors, it is good design practice to make the debug
logic memory mapped so that it can be driven and examined by a software debugger.

 This approach means that the design can be debugged without having to pull the
signals out to pins. The use of monitors enables the processor to compare the results
against the expected results and fl ag an error as appropriate.

 The Altera Quartus II software offers a Tcl based interface called System Console
that can be used to communicate with user debug logic. It can communicate with com-
ponents that have Avalon MM or Avalon ST interfaces. This makes it ideal for the
debug of Qsys systems. The interface can communicate over several different commu-
nication channels such as JTAG, SPI and TCP/IP. SystemConsole provides fi ve differ-
ent types of services. In this section, I will only cover the application of the two most
commonly used services. You can get details on the other services from Altera.

 The jtag_debug service provides the capability to debug the JTAG chain and to
test the system clock and reset capabilities in a Qsys system. In order to access this
service, it requires the insertion of the ‘JTAG to Avalon MM Bridge’ component in
the Qsys system. An example Qsys system that can run on an Altera development
kit is shown in Fig. 16.3 . This basic system enables the basic exploration of the
capabilities that are provided by System Console.

 The Tcl commands, shown in Fig. 16.4 , details how it is possible to check that
the JTAG chain is functional by using System Console. It loops a set of values
around the JTAG chain.

 A correctly functioning JTAG chain echoes the $values back to the System
Console session, as shown in Fig. 16.5 .

Qsys Interconnect Logic

JTAG Avalon-MM
(master)

On-chip Memory
(Slave)

LED Interface
(Slave)

 Fig. 16.3 Sample Qsys design that enables testing of JTAG chain debug

 Fig. 16.4 SystemConsole JTAG chain test commands

16.3 Techniques

246

 SystemConsole also provides a bytestream service that enables you to send and
receive streams of bytes to bytestream compatible Qsys components and a master
service enables users to read and write to any Avalon MM slave in a Qsys
system.

 The master service is very powerful for debugging master/slave based
systems.

 The design in Fig. 16.3 that was used for JTAG can also be used to test the master
service. The tcl commands that are shown in Fig. 16.6 details the ability of System
Console to write to and read from the register map of a slave component using the
master service. If this Qsys design is implemented on an Altera development kit, it
will show the LED’s on the kit turning on and off as you write to the register map of
the LED interface component Figs. 16.6 and 16.7 .

 Fig. 16.5 Results from running the SystemConsole JTAG test commands

16 In-System Debug

247

16.3.5 Editing Memory Contents

 The contents of the internal memory blocks in your design can be used to force your
system into conditions for test and debug. This technique can be extremely effective
in testing DSP Applications, such as fi lters were the memory blocks are used to
store coeffi cients. There are three main approaches to performing this operation.

 1. Update the memory initialization fi les by programming the device with a new
image. You can change the memory initialization fi les without having to
 recompile the design. You normally only have to run the Assembler to generate

 Fig. 16.6 Tcl commands to read/write register map of peripherals using System Console

 Fig. 16.7 Results from reading and writing to memory map of LED controller

16.3 Techniques

248

the new programming image. This approach works but requires you to bring the
FPGA system down in order to change the memory contents.

 2. The second solution is to generate logic to enable you to write to the internal
memory for debug. This is using the technique described in Sect. 16.3.4 on
using logic for debug. This has more fl exibility than the previous technique in
that you control the writing to the memory blocks while the design is opera-
tional. The creation of the logic can be quite complex but the return is
invaluable.

 3. The third technique is to use one of the FPGA vendor supplied solutions that use
the JTAG interface to control the writing and reading to the internal memory
blocks. This needs to be designed into your system. This means that you will
have to replace some of your inferred memories with the primitives from the
FPGA vendor. While this offers the simplest and most fl exible approach to
updating the memory blocks in system, it also comes with some limitations. The
biggest limitation being that it does not work with dual port RAM.

 These techniques work well for other applications outside of DSP applications.
 They can be used to test and correct memory parity bits. It can be used to write

incorrect parity bit values into the memory to check the ability of your design to
handle errors. In addition if you are in the lab and your system is failing due to incor-
rect parity bits, you can use this technique to correct the errors and to continue the
check-out.

 This technique can be combined with the other debug techniques that are
described in this chapter to provide a very powerful debug arsenal.

16.3.6 Use of a Soft Processor for Debug

 Many designers overlook the fact that a processor can be added to your design for
the purpose of design debug. The cost of adding a soft processor is 1,000–2,000
Logic Elements, plus internal memory resources.

 This is a powerful weapon when combined with custom logic for debug. The
processor can take care of controlling the operation of the debug logic or can serve
as debug logic itself. It can be easier to describe complex debug trigger conditions,
such as state machine trigger conditions, in ‘C’ than in HDL.

 The processor can also be used to control the reading and writing to memory.
A benefi t that it adds beyond the ILA solution is that it can enable the storage of data
in external memory, such as DDR III. This enables a larger amount of data to be
stored for analysis.

 If you are comfortable with coding in ‘C’, you should consider using a soft
processor as one of your debug options,

16 In-System Debug

249

16.3.7 Power-Up Debug

 When the board is fi rst being brought to life, you will want to determine if certain
sequences are happening in your design in the correct sequence, to give you confi -
dence that the design can communicate with the rest of the system. In the case were
the system does not appear to be operating at power-up, you can use the Internal
Logic Analyzer to capture trigger events that occur during device initialization,
immediately after the FPGA is powered on or after the FPGA has been reset. The
Internal Logic Analyzer can then capture data immediately after device program-
ming. This power-up debug feature is available in some of the FPGA vendor Internal
Logic Analyzer solutions.

16.3.8 Debug of Transceiver Interfaces

 Just after the board has been powered-up, you will want to determine if the trans-
ceiver on the FPGA is operating, i.e. is it capable of transmitting/receiving data
from the system.

 It is not uncommon that the settings that you have used in your design for the
transceiver do not perfectly match the actual board. This scenario can be debugged
fairly easily if your transceiver can be dynamically reconfi gured, i.e. the settings
reprogrammed while the device is operational. Once again the main FPGA vendors
provide solutions in this space that can cycle through the settings in the transceiver
and report Bit Error Ratio data.

 This can be achieved using your existing design if you have built the debug
design blocks into the transceiver interface, or you can load the device with one of
the debug designs from the FPGA vendor. The latter is the approach that is most
commonly used.

 These designs consist of Data Pattern Generator and checker blocks along with
the dynamic reconfi guration block of the transceiver, which allows modifi cation of
the PMA confi guration. For the Transmitter, it can change the pre-emphasis settings
which affect the eye opening at the receiver end and the Differential Voltage (VOD);
which targets different channel medium. On the Receiver, it can change the settings
on Equalization and DC gain.

 By cycling through the settings and generating and checking data, Bit Error Ratio
Testing can be performed on each of the settings. This can serve two main purposes.

 1. Analysis of Transceiver Signal Quality.
 2. Tuning of the Transceiver settings to match the board for board bring-up and to

mitigate possible signal integrity issues between the Transceiver interface and
the board.

 Once the optimal settings have been found they can be applied to the transceiver
design in the real design.

16.3 Techniques

250

16.3.9 Reporting of System Performance

 It is likely that you will want to collect system-level statistics on your design to
determine if the design is giving the system performance that you want. The type
of data that you may want includes details on the throughput and bandwidth of
your system. By identifying the bottlenecks, you can improve the design to meet
your throughput and bandwidth requirements. This can be achieved through the
use of monitors.

 You may want to generate data traffi c in order to exercise different transactions
in early testing or to isolate corner cases. Normally the system software will take
care of this, however early in the board debug, their could be problems with the
software or the software may not be ready, so the hardware engineer needs a means
to generate traffi c to test blocks of the design.

 For applications that use specifi c protocols, you may want to check and report
protocol violations. You may want to instrument and analyze the state of the transac-
tions and signals.

 These types of data capture, stimulus and reporting is best solved by building
verifi cation IP into your design, e.g. monitors that hang off your processor sub-
system blocks or protocol checkers that are on your interface IP.

 As mentioned previously, by planning for in-system verifi cation, you will hit the
ground running when you fi rst receive hardware. If you have been using a standard
interface on your design blocks, as recommended in Chap. 11 on IP and design
reuse, you will quickly be able to build up a library of verifi cation IP that can be
reused on future designs and will easily plug-into your system. It will enable you to
use system integration tools, such as Altera’s Qsys to drop the verifi cation blocks
into your system with minimal design work and impact on the system performance.
By having the verifi cation IP available in the fi nal design it will also help in the
debug of any systems that fail in the fi eld. The verifi cation IP that you are using can
be used with the JTAG control infrastructure, on the FPGAs, to enable you to access/
control the data via the JTAG interface.

16.3.10 Debug of Soft Processors

 The debug of soft processor designs requires familiarity with multiple disciplines.
This complicates the process as it requires the debugging of both the hardware and
the application software. The debug of the hardware can be completed using the
techniques described previously in this chapter. However it needs to be performed
with code running on the processor. Limited debug can be completed using tech-
niques that can force the hardware into known conditions, effectively emulating the
operation of the software.

 The debug of the software is heavily reliant on the software tool chain that is
being used. It is recommended that you read the literature on your soft processor to
understand what debug capabilities are available.

16 In-System Debug

http://dx.doi.org/10.1007/978-3-319-17924-7_11

251

 In the remainder of this section, we will look at the standard feature set that is
available in most software debug tool chains and how they can be used to perform
run-time analysis of your design.

16.3.10.1 Software Profi ling

 Most processor tool chains provide a software profi ler. This can be used to provide
reports on how long the various functions run in your application. This will identify
non-optimal areas of your code that may cause performance issues on your design.
You should always profi le your software to determine where you need to optimize
the software code or potentially accelerate the code via hardware.

16.3.10.2 Watchpoints

 The insertion of watchpoints in your code enables the capture of all writes to a
global variable. This technique is useful for the debug of a global in the ‘C’ code that
appears to be corrupted.

16.3.10.3 Stack Overfl ow

 This technique is applicable to processors that are running a real-time operating
system. In this scenario, each task that is running has its own stack. This increases
the probability of a stack overfl ow condition occurring. This type of problem can be
more common in FPGA based embedded systems where there is more likely to be
restrictions on the amount of memory available for the stack. Most processor IDEs
include options to enable runtime stack checking.

16.3.10.4 Breakpoints

 Some processor tool chains provide a debug option to set hardware breakpoints on
code located in read-only memory such as fl ash memory. This requires modifying
the compilations settings on your code which will result in less optimized code, but
code that is much easier to debug.

16.3.10.5 Step Through the Code

 By setting the software compiler optimization level to none, you will get software
code that runs slower but is much easier to debug as the source code and executable
code will now match. This method works well with software breakpoints where the
code will run until it hits a breakpoint at which point it will halt. This enables single
stepping through the code to examine the values of your variables in order to debug
the functionality of the operation.

16.3 Techniques

252

16.3.11 Device Programming Issues

 There is a wealth of JTAG Debug tools from independent Companies and from the
FPGA vendors to help you to debug programming issues via JTAG. The most com-
mon problem is trying to debug a JTAG chain issue where there are multiple devices
from different vendors in the JTAG chain.

 The debug tools that come from the FPGA vendors focus on testing the signal
integrity of the JTAG chain and to detect intermittent failures of the JTAG chain.
The tools check that the devices are connected correctly and provide the ability to
run JTAG debug commands.

 These tools are excellent for detecting the following type of failures:

 1. Open circuits
 2. Short to VCC
 3. Short to GND

 It is recommended that you use a JTAG debug tool on your JTAG chain as soon
as you receive your board in house.

16.3.12 Hardware/Software Debug

 The debug of processor based FPGA designs is complicated by the fact that each
FPGA based embedded system design is unique due to the customized logic imple-
mented in the FPGA. This creates the challenge of determining whether a complex
problem is caused by a hardware or software bug. As mentioned in Sect. 16.3.6 on
soft processors, the hardware and software are different debug disciplines. The
debug process usually consists of triggering on an error condition in the software,
and analyzing the state of the hardware around that point in time, or triggering on an
error condition in the hardware, and exploring what the software was doing around
that point in time.

 The process of trying to align the software instructions with the hardware debug
is not automated and is prone to error.

 The introduction of hardened processors in FPGA devices, such as the ARM A9
processors in the Altera Cyclone V SoC devices has simplifi ed this process. The sili-
con implementation includes dedicated debug hardware on the boundary between
the hardened processor system and the FPGA fabric.

 The ARM DS-5 toolkit unifi es the software debugging information from the
processor and FPGA domains and presents them in an organized fashion within the
standard DS-5 user interface. The DS-5 toolkit provides signal-level hardware cross
triggering between the CPU and FPGA domains utilizing the Altera SignalTAP inter-
face. The use of this technology enables the software and FPGA designers to analyze
the captured trace and co-debug across the hardware-to-software boundary.

16 In-System Debug

253

 Any debug trigger, whether it is a software trigger or hardware trigger can be
used to simultaneously trigger the software and FPGA logic.

 The following methodology is recommended for debugging a processor crash.

 1. Restart the system and step through the code until the crash occurs.
 2. Once that critical point or instruction in the software is located, use the DS-5 to

generate a trigger on or before that instruction.
 3. Use SignalTAP to capture the hardware signals around this trigger.

 When the processor reaches the software trigger, the FPGA will capture the
hardware conditions in the FPGA logic.

16.4 In-System Debug Checklist

 1. Plan for debug.

 a. Reserve pins for debug.
 b. Reserve logic and memory resources for ILA use.
 c. Ensure that you use the JTAG interface to the FPGA
 d. Place a Header on the Board as an interface to an external logic analyzer or

scope.
 e. Add debug logic to your design or considering using the FPGA vendor utili-

ties for forcing data to memories and multiplexing data at the pins.
 f. Consider adding a soft processor to your design for debug.

 2. Perform debug

 a. Lock down the design implementation using incremental compilation.
 b. For free running data, or for a small handful of control signals, incrementally

route the signals to pins for analysis on a logic analyzer or scope.
 c. In order to capture data based upon events, add an ILA to your design. Where

possible, use post-fi t signal names to avoid a full recompile of the design.

 3. If there are multiple devices within the JTAG chain, select the device that you
want to target.

 4. Once you have identifi ed the bug, fi x the RTL and validate that the fi x works with
functional simulation.

16.4 In-System Debug Checklist

255© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7_17

 Chapter 17
 Design Sign-off

 Abstract There needs to be a process in place to decide at what point to release the
design to production. This decision will occur after the design has been fully hard-
ware tested and all of the design and testing processes have been met.

17.1 Sign-off Process

 There needs to be a process in place to decide at what point to release the design to
production. This decision will occur after the design has been fully hardware tested
and all of the design and testing processes have been met.

 There should be a “GO”/“NO GO” approval process with a management meet-
ing between all of the stake holders in the project. This will review the quality data
and decide on whether the design is acceptable for production.

 All known bugs should be closed or accepted as not being a gating factor for the
release, documented and transferred to the next version of the design for repair.

 There needs to be approval for sign-off from all parties and departments.
 The sign-off process draws upon the metrics that are captured by the tools

described in Chap. 6 , design environment.

 1. The RTL must meet the coding guidelines.
 2. The design must meet the functional coverage and code coverage targets.
 3. The FPGA project must be free of warnings and any exceptions fully

documented.
 4. It must meet the timing requirements from the specifi cation.
 5. It must meet the in-system debug requirements. In some products, this may

involve burn-in testing and full environmental testing.
 6. All exceptions to the specifi cation must be fully documented.

17.2 After Sign-off

 After the design has been approved for production, it is necessary to archive the
release version and all related design and testing materials. This will serve as the
base for any future versions of the design.

http://dx.doi.org/10.1007/978-3-319-17924-7_6

256

 The project manager will host a post-project review to discuss what went right,
what went wrong, and what was learned from the project. This information will be
used in future project plans.

 After the well deserved design release party, start working on the next project,
which could well be the next version of the design!

17 Design Sign-off

257© Springer International Publishing Switzerland 2015
P.A. Simpson, FPGA Design, DOI 10.1007/978-3-319-17924-7

 Bibliography

 Altera Corporation (2001) Altera AN75: high speed board design, pp 11–15
 Altera Corporation (2014) Quartus II handbook v14.0, 2:3.7–3.8
 Altera Corporation (2014) Quartus II handbook v14.0, 1:12.1–12.24
 Bhasker J (1992) A VHDL primer. Prentice Hall, Upper Saddle River, pp 7–17
 Bogatin E (2004) Signal integrity—simplifi ed. Prentice Hall, Upper Saddle River, pp 8–14
 Dempster D, Stuart M (2001) Verifi cation methodology manual: techniques for verifying HDL

Designs. Teamwork Int, pp 23–29
 Grotker T, Liao S, Martin G, Swan S (2002) System design with SystemC. Kluwer Academic,

Dordrecht, pp 11–22
 Hammami O, Wang Z, Fresse V, Houzet D (2008) A case study: quantitative evaluation of C-based

high-level synthesis systems. EURASIP J Embed Syst 2008:685128
 Keating M, Bricaud P (2007) Reuse methodology manual for system-on-a-chip designs, 3rd edn.

Springer, Berlin, pp 19–21
 Simpson P, Stephenson J (2011) SNUG 2011: a methodology for creating reusable design blocks

targeting FPGA devices. In: SNUG 2011 Proc., pp 5–9
 Thibault, Pellegrin (2005) Practical FPGA programming in C. Prentice Hall, Upper Saddle River,

pp 35–37

	Contents
	Chapter 1: Introduction
	Chapter 2: Project Management
	2.1 The Role of Project Management
	2.1.1 Project Management Phases
	2.1.2 Estimating a Project Duration
	2.1.3 Schedule
	2.1.3.1 Weekly Schedule Analysis
	2.1.3.2 Pro-active Project Management

	Chapter 3: Design Specification
	3.1 Design Specification: Communication Is Key to Success
	3.1.1 High Level Functional Specification
	3.1.2 Functional Design Specification
	3.1.2.1 Functional Specification Outline
	3.1.2.2 Test Specification Outline

	Chapter 4: System Modeling
	4.1 Definition of System Modeling
	4.2 What is SystemC?
	4.3 Classes of SystemC Models
	4.3.1 Untimed (UT)
	4.3.2 Loosely-Timed (LT)
	4.3.3 Approximately Timed (AT)
	4.3.4 Cycle Accurate

	4.4 Software Development Using Virtual Targets
	4.5 SystemC Basics
	4.5.1 SC_Module
	4.5.2 Ports
	4.5.3 Process
	4.5.4 SC_CTOR
	4.5.5 SC_METHOD
	4.5.6 SystemC Tesbenches

	Chapter 5: Resource Scoping
	5.1 Introduction
	5.2 Engineering Resources
	5.3 Third Party IP
	5.4 Device Selection
	5.4.1 Silicon Specialty Features
	5.4.2 Density
	5.4.3 Speed Requirements
	5.4.4 Pin-Out
	5.4.5 Power
	5.4.6 Availability of IP
	5.4.7 Availability of Silicon
	5.4.8 Summary

	Chapter 6: Design Environment
	6.1 Introduction
	6.2 Scripting Environment
	6.2.1 Make Files
	6.2.2 Tcl Scripts
	6.2.2.1 Custom Analysis

	6.2.3 Automation
	6.2.4 Easier Project Maintenance and Documentation

	6.3 Interaction with Version Control Software
	6.4 Use of a Problem Tracking System
	6.5 A Regression Test System
	6.6 When to Upgrade the Versions of the FPGA Design Tools
	6.7 Common Tools in the FPGA Design Environment
	6.7.1 High-Level Synthesis
	6.7.2 Load Sharing Software

	Chapter 7: Board Design
	7.1 Challenges That FPGAs Create for Board Design
	7.2 Engineering Roles and Responsibilities
	7.2.1 FPGA Engineers
	7.2.2 PCB Design Engineer
	7.2.3 Signal Integrity Engineer

	7.3 Power and Thermal Considerations
	7.3.1 Filtering Power Supply Noise
	7.3.2 Power Distribution

	7.4 Signal Integrity
	7.4.1 Types of Signal Integrity Problems
	7.4.1.1 Signal Integrity on One Net
	7.4.1.2 Crosstalk
	7.4.1.3 Rail Collapse

	7.4.2 Electromagnetic Interference (EMI)

	7.5 Design Flows for Creating the FPGA Pinout
	7.5.1 User Flow 1: FPGA Designer Driven
	7.5.2 User Flow 2
	7.5.3 How Do FPGA and Board Engineers Communicate Pin Changes?

	7.6 Board Design Check List for a Successful FPGA Pin-out

	Chapter 8: Power and Thermal Analysis
	8.1 Introduction
	8.2 Power Basics
	8.2.1 Static Power
	8.2.2 Dynamic Power
	8.2.3 I/O Power
	8.2.4 Inrush Current
	8.2.5 Configuration Power

	8.3 Key Factors in Accurate Power Estimation
	8.3.1 Accurate Power Models of the FPGA Circuitry
	8.3.2 Accurate Toggle Rate Data on Each Signal
	8.3.3 Accurate Operating Conditions
	8.3.4 Resource Utilization

	8.4 Power Estimation Early in the Design Cycle (Power Supply Planning)
	8.5 Simulation Based Power Estimation (Design Power Verification)
	8.5.1 Partial Simulations

	8.6 Best Practices for Power Estimation

	Chapter 9: Team Based Design Flow
	9.1 Introduction
	9.2 Recommended Team Based Design Flow
	9.2.1 Overview

	9.3 Design Set-up
	9.3.1 Creation of Top-Level Project
	9.3.2 Partitioning of the Design
	9.3.3 Timing Budgets
	9.3.4 Physical Partitioning/Floorplan Design
	9.3.5 Place and Route Design
	9.3.6 Create Project for Partitions/Other Team Members

	9.4 Team Member Development Flow
	9.5 Team Leader Design Integration
	9.6 Working with Version Control Software
	9.7 Team Based Design Checklist

	Chapter 10: RTL Design
	10.1 Introduction
	10.2 Common Terms and Terminology
	10.3 Recommendations for Engineers with an ASIC Design Background
	10.4 Recommended FPGA Design Guidelines
	10.4.1 Synchronous vs. Asynchronous
	10.4.2 Global Signals
	10.4.2.1 Clock Network Resources

	10.4.3 Dedicated Hardware Blocks
	10.4.3.1 Instantiation Versus Inferencing

	 Use of Low-Level Design Primitives
	10.4.4 Managing Metastability

	10.5 Writing Effective HDL
	10.5.1 What’s the Best Language
	10.5.1.1 Mixed Language Design

	10.5.2 Documented Code
	10.5.3 Recommended Signal Naming Convention
	10.5.4 Hierarchy and Design Partitioning
	10.5.5 Design Reuse
	10.5.6 Techniques for Reducing Design Cycle Time
	10.5.7 Design for Debug

	10.6 RTL Coding Styles for Synthesis
	10.6.1 General Verilog Guidelines
	10.6.2 General VHDL Guidelines
	10.6.3 RTL Coding for Performance
	10.6.3.1 Timing Margin
	10.6.3.2 Use of Pipeline Registers
	10.6.3.3 Impact of Routing
	10.6.3.4 Floorplan Aware Partitioning

	10.6.4 RTL Coding for Area
	10.6.5 Synthesis Tool Settings
	10.6.6 Inference of RAM
	10.6.6.1 Read During Write Behavior

	10.6.7 Inference of ROMs
	10.6.7.1 Inference of Finite State Machines
	10.6.7.2 State Machine Encoding Styles
	10.6.7.3 Safe State Machines
	10.6.7.4 Large Complex State Machines

	10.6.8 Inference of DSP Blocks
	10.6.9 Inference of Registers
	10.6.9.1 Secondary Signals for Registers
	10.6.9.2 Conditional Statements

	10.6.10 Avoiding Latches
	10.6.10.1 If-Else Structures
	10.6.10.2 Nested If-Else Statements
	10.6.10.3 Case Statements
	10.6.10.4 Variables

	10.7 Analyzing the RTL Design
	10.7.1 Synthesis Reports
	10.7.1.1 Source Files
	10.7.1.2 Synthesis Settings
	10.7.1.3 Resource Usage Information
	10.7.1.4 State Machines
	10.7.1.5 Optimization Information
	10.7.1.6 Timing Estimates

	10.7.2 Messages
	10.7.3 Block Diagram View

	10.8 Recommended Best Practices for RTL Design

	Chapter 11: IP and Design Reuse
	11.1 Introduction
	11.2 The Need for IP Reuse
	11.2.1 Benefits of IP Reuse
	11.2.2 Challenges in Developing a Design Reuse Methodology
	11.2.2.1 Engineers Mindset
	11.2.2.2 Awareness of Reusable Design Blocks
	11.2.2.3 Development Effort

	11.3 Make Versus Buy
	11.4 Architecting Reusable IP
	11.4.1 Specification
	11.4.2 Implementation Methods
	11.4.2.1 Parameterized RTL
	11.4.2.2 High Level Synthesis
	11.4.2.3 IP Generators

	11.4.3 Use of Standard Interfaces

	11.5 Packaging of IP
	11.5.1 Documentation
	11.5.2 User Interface
	11.5.3 Compatibility with System Integration Tools
	11.5.4 Constraint Files
	11.5.5 IP Integration File Formats
	11.5.6 IP Security

	11.6 IP Reuse Checklist

	Chapter 12: Embedded Design
	12.1 Definition of an Embedded Design
	12.1.1 Advantages That FPGA Devices Provide for Embedded Design

	12.2 Challenges in a FPGA Based Embedded Design
	12.3 Embedded Hardware Design
	12.3.1 Endianness
	12.3.2 Busses
	12.3.3 Bus Arbitration Schemes
	12.3.3.1 Daisy Chain Arbitration
	12.3.3.2 Round Robin Arbitration

	12.3.4 Hardware Verification Using Simulation

	12.4 Hardware to Software Interface
	12.4.1 Definition of Register Address Map
	12.4.2 Software Interface
	12.4.3 Use of the Register Address Map
	12.4.3.1 IP Selection
	12.4.3.2 Software Engineers Interface
	12.4.3.3 RTL Engineers Interface
	12.4.3.4 Verification Interface
	12.4.3.5 Documentation

	12.4.4 Summary

	12.5 Embedded SW Design
	12.5.1 Firmware Development
	12.5.1.1 Hardware Libraries
	12.5.1.2 Bare Metal Programming
	12.5.1.3 Device Drivers
	12.5.1.4 Board Support Package (BSP)

	12.5.2 Application Software Development
	12.5.2.1 Endianness

	12.5.3 Use of Operating Systems
	12.5.4 SW Tools
	12.5.4.1 Debugging

	12.6 Use of FPGA System Integration Tools for Embedded Design

	Chapter 13: Functional Verification
	13.1 Introduction
	13.2 Challenges of Functional Verification
	13.3 Glossary of Verification Concepts
	13.4 RTL Versus Gate Level Simulation
	13.5 Verification Methodology
	13.6 Attack Complexity
	13.7 Functional Coverage
	13.7.1 Directed Testing
	13.7.2 Random Dynamic Simulation
	13.7.3 Constrained Random Tests
	13.7.4 Use of SystemVerilog for Design and Verification
	13.7.4.1 Assertions

	13.7.5 General Testbench Methods
	13.7.6 Self Verifying Testbenches
	13.7.7 Formal Equivalency Checking

	13.8 Code Coverage
	13.9 QA Testing
	13.9.1 Functional Regression Testing
	13.9.2 GUI Testing for Reusable IP

	13.10 Hardware Interoperability Tests
	13.11 Hardware/Software Co-verification
	13.11.1 Getting to Silicon Fast

	13.12 Functional Verification Checklist

	Chapter 14: Timing Closure
	14.1 Timing Closure Challenges
	14.2 The Importance of Timing Assignments and Timing Analysis
	14.2.1 Background
	14.2.2 Basics of Timing Analysis
	14.2.2.1 Static Timing Analysis
	14.2.2.2 SDC
	14.2.2.3 Clocks
	14.2.2.4 Launch Edge
	14.2.2.5 Latch Edge
	14.2.2.6 Hold Time (th)
	14.2.2.7 Set-up Time (tsu)
	14.2.2.8 Arrival Time
	14.2.2.9 Required Time
	14.2.2.10 Slack
	14.2.2.11 Timing Exception
	14.2.2.12 Multi-Cycle Path
	14.2.2.13 False Path
	14.2.2.14 Rise/Fall Time
	14.2.2.15 Input Delay
	14.2.2.16 Output Delay
	14.2.2.17 Synchronous I/O
	14.2.2.18 Combinatorial Interfaces
	14.2.2.19 Clock Uncertainty
	14.2.2.20 Clock Latency
	14.2.2.21 Source Synchronous
	14.2.2.22 Operating Conditions
	14.2.2.23 Multi-Corner Analysis
	14.2.2.24 Slow Corner Model
	14.2.2.25 Fast Corner Model

	14.3 A Methodology for Successful Timing Closure
	14.3.1 Family and Device Assignments
	14.3.1.1 Speed-Grade Selection
	14.3.1.2 I/O Settings

	14.3.2 Design Planning
	14.3.2.1 Incremental Compilation
	Top-Down Design Flow
	Bottom-up Design Flow

	14.3.2.2 Design Scenarios Using Incremental Compilation
	Scenario 1: Parameter Tuning
	Scenario 2: Bug Fixing
	Scenario 3: Timing Closure

	14.3.3 Early Timing Estimation
	14.3.4 CAD Tool Settings
	14.3.4.1 Understanding the Fitter (Place and Route)
	14.3.4.2 Physical Synthesis Optimizations
	14.3.4.3 Design Space Exploration

	14.3.5 Compilation Reports and Analysis Tools
	14.3.6 Floorplanning Tools
	14.3.6.1 Architecture Exploration
	14.3.6.2 Analysis of Placement and Routing
	14.3.6.3 Floorplan Assignments
	14.3.6.4 Engineering Change Orders

	14.3.7 Miscellaneous Techniques

	14.4 Analysis of Common Timing Closure Failures
	14.4.1 Missing Timing by a Small Margin
	14.4.2 Review of Compilation Results and Messages
	14.4.3 Synthesis and Physical Synthesis
	14.4.4 Global Signals
	14.4.4.1 Control Signals and High Fan-out Signals

	14.4.5 High Fan-out Registers
	14.4.6 Routing Congestion
	14.4.7 Clustering
	14.4.8 Assignments
	14.4.8.1 Placement
	14.4.8.2 Restrictive Location Constraints

	14.4.9 Missing Timing Constraints
	14.4.10 Conflicting Timing Constraints
	14.4.11 Long Compile Times

	14.5 Design Planning, Implementation, Optimization and Timing Closure Checklist

	Chapter 15: High Level Design
	15.1 High Level Design
	15.1.1 Algorithmic Synthesis
	15.1.2 ‘C’ to Gates
	15.1.3 SystemC to Gates
	15.1.4 OpenCL
	15.1.4.1 OpenCL Models
	15.1.4.2 Host
	15.1.4.3 Kernels
	15.1.4.4 Memory Model
	15.1.4.5 Altera OpenCL Design Flow

	15.1.5 Summary

	Chapter 16: In-System Debug
	16.1 In-System Debug Challenges
	16.2 Plan for Debug
	16.3 Techniques
	16.3.1 Use of Pins for Debug
	16.3.2 External Logic Analyzer
	16.3.3 Internal Logic Analyzer
	16.3.3.1 The Design Flow with an ILA
	16.3.3.2 ILA Limitations
	16.3.3.3 Tips

	16.3.4 Use of Debug Logic
	16.3.5 Editing Memory Contents
	16.3.6 Use of a Soft Processor for Debug
	16.3.7 Power-Up Debug
	16.3.8 Debug of Transceiver Interfaces
	16.3.9 Reporting of System Performance
	16.3.10 Debug of Soft Processors
	16.3.10.1 Software Profiling
	16.3.10.2 Watchpoints
	16.3.10.3 Stack Overflow
	16.3.10.4 Breakpoints
	16.3.10.5 Step Through the Code

	16.3.11 Device Programming Issues
	16.3.12 Hardware/Software Debug

	16.4 In-System Debug Checklist

	Chapter 17: Design Sign-off
	17.1 Sign-off Process
	17.2 After Sign-off

	Bibliography

