

Excel by Example

Excel by Example
A Microsoft® Excel Cookbook for Electronics Engineers

By Aubrey Kagan

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
200 Wheeler Road, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2004, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights De-
partment in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Customer Support” and then “Obtaining Per-
missions.”

Recognizing the importance of preserving what has been written, Elsevier prints its books on
acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

 (Application submitted.)

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 0-7506-7756-2

For information on all Newnes publications
visit our website at www.newnespress.com

04 05 06 07 08 09 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America.

In memory of Jonathan Moshe Kagan

vii

Acknowledgments ...xiii
Introduction ...xiv
What’s on the CD-ROM? .. xviii

EXAMPLE 1: Voltage-to-Current Converter ..1
Model Description ..1
Starting Excel ...2
Data Entry into a Worksheet ...3
Autofill ...5
Bulk Formatting ...7
Formulas ...8
Copying Formulas ..9
Relative and Absolute References ...10
Naming Cells ..12
Hiding Cells ...15
Borders ..15
Bells and Whistles ..17
Conditional IF and Absolute Value ...17
Chart ..17
Error Bars ..20
Adding a Trendline ..21
Macro: Timer ..22

EXAMPLE 2: Baud Rate Selection ...26
Model Description ..26
Setup Workbook ..27
Hexadecimal ...29
Lookup Tables ..30
Conditional Formatting ...33
Macro ...35

EXAMPLE 3: Mean Time Between Failures (MTBF) ..41
Model Description ..41
Factors ..42

Contents

Bill of Material ...44
Calculating the Quality Factor ..49
Calculate Electrical Stress Factor ...50
Calculation of λG ..52
Scenario ..54

EXAMPLE 4: Counting Machine Cycles ...58
Model Description ..58
Importing the File ..58
Extracting Op-code ..62
Opening a Second Workbook ..63
Cross Workbook Reference ..67
Easing the Pain of Nested IFs ...67

EXAMPLE 5: Character Generator ..69
Model Description ..69
Creating the Basic Workbook ..70
LEN Function ...71
Forms Controls ...71
Text Orientation ..75
Comments ..75
Double-Click Macro ..76
Macro Activation by the Command Button ...78
Save to Data File ..81
Usage ..85

EXAMPLE 6: 8052 Microcomputer Register Setup ..86
Model Description ..86
Spreadsheet Concept ...86
Counter/Timer 0 Sheet ..93
Timer Counter Control Register TCON ...97
Counting Types ..97
Macros to Hide and Unhide ..102
Adding Forms ...106
Add Image Control ..108
Timer/Counter 1 Sheet ..111
Timer/Counter 2 Sheet ..112
Serial Port Sheet ..113
Interrupt Control Sheet ...113
Summary Sheet ..115
Initialize Values ..116
Conclusion ...116

EXAMPLE 7: Finding the Optimal Resistor Combination: LP 2951118
Model Description ..118
Custom Autofill ..118
Data Tables ...120
Min Function ...123
MATCH Function ...123

viii

Excel by Example

INDEX Function ..124
Block Conditional Formatting ...125

EXAMPLE 8: Resistor Color Code Decoder Using Speech Input127
Model Description ..127
Implementing Speech Recognition ...129
Viewing and Hiding the Language Bar ..129
Worksheet Setup ..130
Macros ..130
Custom Toolbar ..134
Adding Speech ...137
Evaluate the Color Code ..137
Text to Speech ...141
Conclusion ...142

EXAMPLE 9: RTD to 4–20 mA Converter: XTR105 ..143
Model Description ..143
Acquiring RTD Tables ...144
Lookup RTD Value ..148
Creating a Function ...149
Accessing a Function ..150
Adding a Help Description to a Function ...152
Creating the Model in Excel ..152
Standard Resistor Values ..155
Creation of Add-In ..158
Installing the NearestValues Add-In ...158
Back to the Project At Hand ...159
Prompting for User Input ...161
Printout ..162
Running Macros when the Workbook is Started ..163
Running from the Desktop ..166

EXAMPLE 10: Voltage Regulator: LM317 ...167
Model Description ..167
Installing the NearestValues Add-In ...168
Initial Model ..168
Goal Seek ...170
Worst Case Analysis ...172
Thermal Analysis ...173
Half-Wave Rectification ..179
True RMS and Integration ...179
More Preparation ...181
Standard Capacitance Value ..184
Chart ..186
Conclusion ...189

EXAMPLE 11: TL431 Adjustable Voltage Reference ..190
Model Description ..190
Installing the NearestValues Add-In ...190

ix

Contents

Initial Model ..191
Solver ...191
Standard Resistor Values ..199
Adding a Macro ...199
Limitations ...204

EXAMPLE 12: 555 Timer ..206
Model Description ..206
Monostable Operation ...206
Setup ...207
Add User Form ...207
Add Image Control ..208
Second Image ...210
Modifying Form Location ..212
Monostable Pulse Width Entry ..214
Command Button ..216
Solver ...219
Standard Values ..220
SolverSolve ..220
Using Standard Capacitor Values ..221
Tidying Up ..223
Astable Operation ..223
Worksheet Setup ..224

EXAMPLE 13: Purchase Order Generator ...229
Model Description ..229
Create a Purchase Order ..229
Print Macro ..231
User Form ...233
Initial Procedure ...235
Event Actions ..236
Auto Startup ..238
Running PurchaseOrder ...239

EXAMPLE 14: Interface to a Digital MultimeterUsing a Serial Port240
Model Description ..240
DMM Interface Protocol ..241
MSComm32 ...243
Initializing the Serial Port ..248
Conversion of DMM Display to Data ..258
Analog Meter Chart ...260
Zone Identification ...267
Data Plot—Chart Recorder ...271
Food For Thought ..279

EXAMPLE 15: Vernier Caliper Interface ..281
Model Description ..281
Pinout ...282
Hardware Interface ...282

x

Excel by Example

Timing Diagram ..283
Installing IO.DLL ...284
PC Parallel Port ..284
First Steps ...286
Actual Interface ...287
Acquiring Data ...287
Adding Sound ..292
Thoughts on Improvement ..293
Statistics ...294

EXAMPLE 16: Function Generator Interface ...301
Model Description ..301
Serial Interface ...302
Workbook Open and Close ..302
Adding VBA Controls: Granularity ..305
Adding VBA Controls: Frequency ..309
Waveform Sampling Frequency ...311
Bump Frequency ...313
Generating Frequency Tables ...315
Add a Chart ...319
Download Waveform ...322
Setting the Amplitude ...326
Skew ...327
Average Voltage, RMS Voltage ..330

APPENDIX A: VBA and Excel ...333
APPENDIX B: Parallel and Serial I/O ..349

References ..354
About the Author ...357
Index ..358

 List of In Parenthesis Sidebars
Copying With and Without Format ...6
Autofill of Nonnumeric Sequences ...7
Multiple Selections ...8
Adding Columns/Rows ...9
Deleting Columns/Rows/Cells ..10
Cell Names ..13
Worksheet Navigation ..14
Zoom ..20
Merge Cells ...28
Number Base Conversion ...29
Split Screen ...30
Lookup ...31
Conditional Formatting ..34
Multiple Worksheets ...42

xi

Contents

Comma Delimited Files ..45
Comments ...46
INDEX ...49
Table Functions ...51
Recalculation and Auditing Formulas ..65
Forms Controls in a Different Version of Excel ..72
Cell Protection ..77
Cells Notation Versus String Manipulation ...78
Forms Control ...87
Excel Warning Detection ..99
ROUND ..101
Communicating Custom Lists Between Different Computers ...119
Data Tables ..119
Transposing Data ...121
MATCH ..123
INDEX ...124
Speech Recognition ..129
Installing Speech Recognition ..129
Exporting a Toolbar ...136
CONVERT ..154
InputBox ..162
MessageBox ...163
CHOOSE ...177
Solver Options ..197
Use of Constraints ...198
More on Combo Boxes ..213
Control Toolbox ..218
SolverSolve Function ..221
Calling an Excel Function from VBA ..221
Additional Controls ...245
MSComm Properties ...246
Timer ...250
DoEvents ...251
OnComm Event ..252
Custom Toolbar Limitation ..257
OFFSET ...275
COUNTA/COUNT/DCOUNT/DCOUNTA/COUNTBLANK ...275
SERIES Function ..276
FREQUENCY ...296
NORMDIST ...297
Controls in Excel ..305
Combo Box Control ..307
String Functions ..309
Fourier Analysis ...316
Fill ...319
VBA and Bit Manipulation ..323

xii

Excel by Example

xiii

Acknowlegments

The idea of this book was introduced by Carol Lewis, and her guidance and expertise have
piloted it through to publication. Conversion of my manuscript to the product you have in
your hands was done by Kelly Johnson. My thanks goes to them both and Tiffany Gasbarrini,
and to those whose work at Elsevier has remained unseen to me, for what I hope you will
agree is an outstanding effort.

I would also like to thank the management and my co-workers at Emphatec Inc. (previously
Weidmuller Canada Ltd.), especially Ernesto Gradin and Don Robinson for their support,
advice and encouragement for my original articles and subsequently this book.

Thanks are also due to:

Alberto Ricci Bitti for permission to use his idea, which forms the basis of Example 6, Fred
Bulback for permission to include IO.DLL on the CD-ROM, Circuit Cellar and EDN for
providing the format to allow me to develop my ideas and hone my writing skills.

To my children, parents and sister, all of whom encouraged me to tackle this project and
whose continued interest continued to motivate, thank you.

In her usual self-deprecating manner, my wife, Nicky, has asked that she not be mentioned,
and that acknowledgment is not needed for her support, both spiritual and logistical. Far be
it from me to contradict her, but nevertheless, Thank You.

xiv

Introduction

When faced with a new software tool, most of us learn what we need to address our
immediate problem, and then armed with 10% of the tools that are available we attempt
to solve all future problems. In my discussions with colleagues, I have found that the
spreadsheet is the quintessence of this effect. Almost everybody has Microsoft® Excel
on their computer, yet few use it for anything but the most mundane tasks, rather like
a sophisticated, but unwieldy calculator. In fact, I recently saw a newspaper article that
heralded the demise of the calculator as a result of the spreadsheet, PDAs and other
electronic tools.

Most of the literature on the subject of spreadsheets in general, and Microsoft Excel in
particular, deal with generic cases of home economics or financial projects. Very few have
direct analogies to the work done in electronics. Yet, the spreadsheet is ideally suited to allow
the electronics engineer (indeed any engineer) to “work smarter, not harder.” Over the years
I have worked with Supercalc, Multimate, Lotus 1-2-3, Framework, Symphony, Quattro and
Quattro Pro. In the end, they all are very similar. Most of what is covered in this book can be
implemented in any one of the current competitors to Excel, without too many changes.

The genesis of the book was a little circuitous. My supervisor at work suggested that we
should run seminars on different subjects sharing each individual’s expertise. I thought some
reference notes on Excel might be helpful. This led to a series of three articles that were
published in Circuit Cellar Online starting in January 2002. Several readers contacted me and
suggested additional subject matter that would be interesting. Then, out of the blue, I was
approached by Elsevier to write a book based on these articles. Since the format of a book
allows for more scope, I have expanded on the original ideas, added a few, and I have also
tried to incorporate much of the feedback that I received.

If you only buy one book on Excel, then of course, I hope it is mine. However, it is not my
intention that this book be the only book on the subject that you will ever need. I have only
tried to explain general subjects that I use in the examples, since I have found them useful. I
leave the detailed explanations to the more general books that are available, since I am sure

Introduction

xv

they are better at it than I. Since I am writing this book for electronics engineers, I presume a
degree of familiarity with a computer, including programming, and I jump into macros fairly
early. I have tried to make most of the macros into a “black box” so that if you don’t really
want to know what goes on inside, but still need the function, you can. In addition, I have
tried to make the examples “stand alone,” which means that some of the basic techniques
like invoking the Visual Basic® Editor (VBE) are described quite frequently.

The examples have been developed for this book under Excel 2002. No doubt by the
time the book is published there will be at least one new revision. Some of the original
development work was created under Excel 97, so most of this should work on any version
from that time. Where I am aware that a feature has been added since ‘97 (such as speech
input) I hope to point them out. Please forgive me if I am less than accurate with this
information.

Like most of us, after a period of use I have become settled within my knowledge of the
subject. I am guilty of not extending my knowledge using more of the features of Excel. Feel
free to contact me and let me know what you find useful and what you think is missing.
Better yet, why don’t you submit the idea to EDN or Electronic Design and see your name in
print (plus make a little money on the side). That’s how I started; perhaps you too can write
a book.

An English engineer once told me that my writing style reminded him of Somerset
Maugham, a British novelist from the 1930s. This is no small feat considering that I was
writing specifications for a robotic arm on the International Space Station at the time.
Whilst I am sure my editor will correct all my anglicized spellings, the style will likely
remain. I hope you don’t find it too distracting.

It has been my experience that in any technical presentation, when the application has
some glamour about it the audience is far more interested, irrespective of how mundane
the technology might be. In that light, I hope that you find the ideas included in this book
original, provocative and useful. Depending on work commitments, I cannot promise a
speedy or detailed response, but feel free to contact me at antediluvian@sympatico.ca with
comments and suggestions.

Rules of Engagement

Conventions:
I have adopted a fairly traditional approach to documenting data entry into Excel. Unless
otherwise indicated, a click on the mouse is a click on the left mouse button. Notwithstanding
that it is possible to change the allocation of the mouse keys, I am referring to the default
configuration. Where a click of the (left) mouse button executes the desired action it is
printed in bold text, for instance: Save. Where there is a sequence of menus that require
several mouse clicks the actions are in bold and are combined by a vertical bar, for example
File | Save as. Sometimes, a series of selections will result in the presentation of file tabs. I
feel I am being consistent in documenting this click in bold as well. Things get a little greyer

when trying to describe clicking on a check box or an option button. I have tried to maintain
the bold text to describe this action. Things become even murkier though when trying to
describe clicking on a control that has been set up by the user. If the user has created a Combo
Box and my description is to click on one of the options in the drop-down menu that appears,
is it part of the application and therefore definitely in bold are part of the application and
perhaps some other formatting is needed. In this set of circumstances, I don’t use formatting.

Certain actions are initiated by a combination of keystrokes. These are indicated in bold
with angle brackets as in <Ctrl>. Where there is a combination of keystrokes that must
occur simultaneously, they are joined by a plus symbol. The key combination to bring up
the VBA editor copy would be <Alt> + <F11> as an example. In Excel (and any Microsoft
Office application), it is possible to run a macro from a key combination. Although this is
not part of the application, this combination will appear in exactly the same way.

Any text that is entered either as data, formula or as code in VBA appears in italics.

VBA Help/Add-Ins:
When Excel/Office is installed, the VBA help is normally omitted. Typically, you would
change this by going to Control Panel and Add/Remove Programs. Then select the Office
entry. You will probably be given an option to Change the installation. Under Add features,
search for the VBA help installation. On my machine, it was under the Office Shared
Features folder. Select the Run from my computer option, and follow the prompts to install.

While you are here, also go to the Microsoft Excel for Windows folder in the Add-ins sub-
folder, and set the following options to Run from my computer as well: Analysis Toolpak,
Solver. Go one level back up the tree and enable Text to speech as well. Continue with
the installation supplying the CDs as requested. If you don’t do this, the first time you try to
access one of the functions you will be prompted for the CD to complete the installation.

Analysis ToolPak Add-In:
Many of the functions that I will use in the book are available in the Analysis ToolPak add-
in. You may as well go ahead and add it now or you will start to pick up #NAME errors that
indicate the function was not found. This is how to do it:

1. In Excel, on the Tools menu, click Add-Ins.

2. In the Add-Ins available list, select the Analysis ToolPak box, the Analysis
ToolPak – VBA, and the Solver Add-in, and then click OK.

3. If necessary, follow the instructions in the setup program.

Macro Protection Message:
When you first start Excel and you open a file with a macro or procedure in it, Excel will ask
if you want to go ahead and do this. This is as a result of a proliferation of viruses that were
passed in macros. You can modify the level of security to bypass this in Excel by following
the sequence Tools | Options | Security | Macro Security. Choose the level (and degree
of intrusion) that you are comfortable with.

Excel by Example

xvi

VBA Variable Declaration and Naming Conventions:
They tell me that good programming practice requires that every variable be explicitly
declared (in VBA using the Dim statement). VBA does not require this in its default
state, probably as a hangover from the original Basic. This option can be set in the VBA
environment under Tools | Options | Editor and select the Require Variable Declaration
option.

It is also convention to follow Hungarian notation when naming variables and objects. In
this method, object names are prefixed by a three-character identifier (Form1 would be called
frmForm1), and a variable would be prefixed by a single character that identifies its data type.
iVariable would be an integer.

Some of my examples were developed before I was aware of this notation and in others
I simply forgot or was not disciplined enough to employ it. In addition, most of my
programming is self-taught and was based on small microcomputers, so I am sure I commit
all manner of software coding sins from public variables to goto statements to insufficient
comments. I am afraid it is very much a case of “Do as I say, not as I do.”

Figure 1: Analysis ToolPak Add-Ins.

Introduction

xvii

Included on the accompanying CD-ROM:

• A full searchable eBook version of the text in Adobe pdf format
• Ready to run, customizable Excel worksheets for each application covered

Introduction

Documenting Worksheets:
I find documenting Excel quite difficult. Normally, you only see the end result while there
is actually a formula behind the result and there is a “knock on effect” as results depend on
other cells. Formatting is even more difficult because it may not be obvious that the cell
has been formatted. There are techniques in Excel to unmask these hidden factors, but
they require explicit actions. Use the Formulas option in Tools | Options | View to see
the formulas used. Antecedents and precedents can be traced using the Tools | Formula
Auditing sequence. Conditional formatting can be identified by clicking on any cell and
then Edit | Go To | Special | Conditional Formats. It is possible to find conditional
formatting like the current cell or all conditional formatting. Pay attention to the other Go
To options here. All comments can be made visible with View | Comments. To find out
what range a name refers to, use the drop-down arrow by the name box to find the name and
then click on the name.

xviii

What’s on the CD-ROM?

Voltage-to-Current Converter

1E X A M P L E

1

Model Description
A very common use of Excel is to enter data into the worksheet and then use its power to
analyze the data. To start with, let me present a simple application to demonstrate some of
the tools included with Excel to enhance productivity.

In the industrial automation field, analog signals are still distributed using the venerable 4
to 20 mA current loop. In this technique, the output from any transducer is conditioned by
means of some electronics to generate a current of 4 mA at the bottom of the scale and vary
continuously up to 20 mA at the top of the scale. The block diagram in Figure 1-1 describes
just such an application where a 0 Vdc to +10 Vdc input signal is translated to 4–20 mA
output. The transfer function is Iout = ((Vin/Vfullscale) * 16) + 4. The current, Iout, is measured in
milliamps. Since Vfullscale is 10V, this function reduces to Iout = 16 * (Vin /10) + 4.

V to I Converter

Vin

Iout

This application will take the measured input voltages and output currents and analyze the
linearity of the system. Even though this is a simple application, I use it quite frequently. It
is useful to build a model since the measurements are taken at different ambient tempera-
tures to establish performance specifications. In this example, the data is keyed in by hand.
It is simple enough to do, but we will see in a later application how the data can be acquired
automatically.

Figure 1-1:
0 Vdc to +10 Vdc is converted
to 4–20 mA through this module.

2

Excel by Example

Starting Excel
This early example includes several very basic features in Excel that I normally find useful. In
many cases they are intuitive, in others they may be well known to most of us. Nevertheless,
I think it is beneficial to go through them, slow though it may be. Please forgive me. We will
move a lot faster in later examples.

When we first open Excel 2002, there may be an extra window on the right side of the
screen that simplifies the creation of a new file as shown in Figure 1-2. I am not partial to
this screen, so this is the only time you will see it in this book. We can get rid of it by un-
checking the appropriate box, or we can turn it on or off through the menus: Tools | Options,
and in the View tab, select or deselect the box named Startup Task Pane.

As with most applications, we can close the window using the X in the top right-hand corner.

Figure 1-2: Startup screen in Excel with Startup Task Pane.

Excel refers to a spreadsheet as a workbook. Inside the workbook there can be several sheets
(referred to as worksheets), and there can be several workbooks open at a time. Open a new
workbook. If the Startup Task Pane is still available, simply click on the “Blank Workbook”
selection. Otherwise, we can start a new workbook in several ways depending on our preference.
There is the menu option: Files | New selection, the keyboard shortcut (<Ctrl> + <N>)
as listed in the menu option, and there is also an icon on the extreme left of the toolbar (see
Figure 1-3).

3

Example 1: Voltage-to-Current Converter

Data Entry into a Worksheet
Entering information into any cell of the workbook is easy. Excel automatically presumes
any data is text and left justifies it. Any information that is purely numerical is interpreted as
a number and is entered right justified. Any entry preceded by a mathematical symbol “+”,
“–” or “=” is interpreted as a formula. A number can be manipulated directly using formulas
and so forth, whereas text is normally processed through string manipulation in formulas.
Of course, it is possible to change the justification as well as the format of a cell or a group
of cells using formatting controls and the standard Microsoft® Windows® techniques. If we
want an entry to be interpreted as a string when the default will interpret it as a number, we
prefix the entry with an apostrophe ’ . If we enter a number that includes nonnumeric char-
acters, Excel will simply identify it as an error.

If a text entry in a cell is too long to fit within the cell it will appear to flow over to the
adjacent cell, if that cell is empty. If the adjacent cell is not empty, the text will be truncated.
There are some techniques that allow us to improve on this which we will see later on. Edit-
ing the entry though still requires clicking on the original cell.

Figure 1-3: Blank workbook showing the location of some of the items discussed in this
example.

4

Excel by Example

It is possible to size the width and height of columns and rows by moving the cursor over the
line that demarcates the separation of the columns in the column selection bar (or rows in
the row selection bar) until the symbol changes to a bar with arrows on either side and then
clicking and dragging the line. One of the secrets of Windows is that it is possible to auto-
matically size the column (this works in Windows® Explorer as well). Instead of clicking and
dragging the line, simply double-click when the double arrow symbol appears. The column
will adjust to fit the largest entry in that column.

Entering data into a cell is intuitive, but there are some features that can simplify the pro-
cess. It is possible to terminate the entry by pressing the <Enter> key or one of the direction
arrows. The arrows are a kind of shorthand in data entry, so that one keystroke both enters
the information and takes us to the next cell (in the direction of the arrow). Actually, they
only work on the original entry of data and not when the data is edited. The Tab key will
also enter the data and move one column to the right. The action of the <Enter> key after
using the <Tab> is quite interesting. In this case, Excel determines that we are entering
tabular data and the <Enter> key will vector us to the cell below the cell we started the hori-
zontal data entry. This is great when we are entering several columns of data, line by line as
it acts like a carriage return and line feed.

Aside from the Tab technique above, it is possible to decide which way the cursor will move
after Entering information. It can be changed in the Tools | Options menu and the Edit tab.

Editing data in a cell requires that we click in the cell and then click in the formula bar
in order to edit there. Alternatively, we can double-click on the cell in question, and edit
directly in the cell. We can now resort to the usual editing procedures.

Let us view some of this in action. Open a new workbook. In cell A1, enter the text Volt-
age to Current Converter. Now navigate back to cell A1 using the direction arrows or more
simply, click on cell A1. It is possible to format the appearance using the controls on the task
bar or the menu controls. Change the font size to 12, and make the appearance bold using
the drop-down box by using the format option on the task bar.

Click on cell A5. Enter the text Input Voltage and press the Tab key. Notice how it overlaps
into B5. In cell B5 (which should be selected already), enter the text Output Current fol-
lowed by the Tab key. The text in cell A5 is now truncated. Enter the text Proportion in cell
C5 followed by the Tab key. Enter the text Theoretical Current in cell D5, followed by the
Tab key. In cell E5, enter the text Error followed by the Tab key. Finally, enter Linearity Er-
ror, followed by the Enter key in cell F5. Note that the selected cell is now A6. The screen
should look like Figure 1-4.

Right click on the row select button for row 5. Click on Format Cells and then click on the
Alignment tab. In the Text Control section, check the Wrap text option and then the OK
button. Move the cursor so that it hovers over the line demarcating two columns in the col-
umn selection bar and drag the line so that the text splits into two columns with the desired
visual effect.

5

Example 1: Voltage-to-Current Converter

Move the cursor so that it hovers over the join of columns A and B in the column selection
bar. Double-click and notice how the column width changes. It actually changed to accom-
modate the widest entry in the column, the title in cell A1. Return to the join of columns A
and B and click and drag the line so that column A is a suitable width. Of course, the Undo
feature could also be used.

Let’s do a little more bulk formatting. Click on the row selection button for row 5 on the
extreme left of the screen. Notice how the whole row is selected. Now click on the B (for
Bold) button on the task bar and the whole row is instantly converted to a bold type.

Autofill
Let’s assume that we are going to apply 0 volts to 10 volts at the input of our conversion
module in steps of 1V. This data will be entered in column A. Now we could simply type in
0 in A6, 1 in A7 and so on all the way through to 10 in cell A16. This could prove tedious,
and Excel provides an extremely easy method of autofilling. Enter the value 0 in cell A6 and
1 in cell A7, providing the seed of the starting number and the increment (or decrement) for
the autofill. Now click on A6 without releasing the mouse button and drag to cell A7 so that
both are selected as shown in Figure 1-5.

Figure 1-4: Table headings showing the truncation of the text.

6

Excel by Example

Notice the little black square (called the fill handle) at the bottom right-hand corner of the
frame surrounding the selection. Move the mouse cursor over this square and the cursor will
transform from a large unfilled plus sign to a smaller solid plus sign. When this happens, click
and drag the fill handle down. Notice a small yellow box that pops up near the cursor. This is
the maximum number that will be “autofilled” when we release the mouse button. Drag this
until the pop-up number reads “10” as in Figure 1-6 and release the mouse button.

In Parenthesis: Copying With and Without Format

There is a small symbol at the bottom corner of the block that has just been filled .
This symbol is only present on later versions of Excel. Clicking on it allows us to modify
the way the formatting of the cells involved in the autofill is affected. We can safely
ignore it for the moment.

In earlier versions of Excel (and Microsoft® Word), there was an option of copying with or
without the formatting, but it was buried in the menu system. This is now more explicit as can
be seen by this and similar symbols that appear on the worksheet after an autofill or copy
operation. It can, however, be disabled in the Tools | Options menu and the Edit tab.

While we build the model we don’t have any real data, but it helps to have some numbers to
work with. Enter 4 representing the intial current of 4 mA in cell B6 and 4.5 in B7. Autofill
using these cells to cell B16.

Figure 1-5: Preparing for autofill. Cell A6 is the initial value, and the difference between
A7 and A6 provides the step increment.

7

Example 1: Voltage-to-Current Converter

In Parenthesis: Autofill of Nonnumeric Sequences

The autofill function is quite intelligent and will recognize dates, days and some other
normal sequences. If you enter a series of text entries, the autofill will fill the range with
the same text in the same order.

Bulk Formatting
The formatting of the cells in column B is not fixed, so the number of digits changes and
the appearance is unappealing as well as philosophically incorrect since the digital ammeter
that we will be using reports the current to 3 decimal places. We can bulk format this as well.
Click on the “B” column selection button and the whole column is selected. Now right click
on it to bring up some options (actually we could achieve the same thing by simply right-
clicking on the “B” column selection button). Select the Format Cells option and then the
Number tab. In the scroll-down menu, click on Number and set it to 3 decimal places and

Figure 1-6: Autofill in action. Note the pop-up showing the number that will be placed
in the last cell of the selection. Releasing the button at this point will result in the entries
running from 0 to 10 in unit increments.

8

Excel by Example

click on OK. I know that, depending on the accuracy of the meter, we shouldn’t place too much
trust in the last digit, but that is another issue. Even though the column heading is in text, Excel
is smart enough to leave its formatting alone, modifying only the numerical entries.

If a column is too narrow to display a number in the selected format, Excel resorts to dis-
playing the symbol “#####.” To see this effect, move the join of columns B and C so that B
becomes too narrow to display the full number. Resize the column by double-clicking the
column join.

We will be measuring the input voltage on a digital voltmeter with 3 decimal places as well,
so format column A to 3 decimal places as before.

In Parenthesis: Multiple Selections

It is possible to select many groups of cells for bulk actions using standard Windows tech-
niques by using the Ctrl and Shift keys in conjunction with the mouse block selection.

Formulas
In order to calculate the theoretical current output for a given input voltage, I am going to
break the calculation in stages. As with all programming, it is possible to embed calcula-
tions within calculations and it quickly confuses things. Maintaining embedded calculations
(although providing job security) can be troublesome. For instance, try figuring out what

=IF((DCOUNT(AL7:AX31,1,AX33:AX34)>0),DAVERAGE(AL7:AX31,1,AX33:AX34),””)

refers to, especially four years after you have written it.

The model we are developing is a simple example, and several of the steps could easily be
compressed, but this will allow me the opportunity to demonstrate some techniques to im-
prove readability and reliability.

The third column was entitled “Proportion,” and this calculation will result in the propor-
tion of the measured input to the full scale. In other words, an input of 3 volts on a span of
10 volts (0 to 10) would give a number of 3/10. So the calculation would be:

 (Vin – Vmin)/(Vmax – Vmin)

where Vmin corresponds to the minimum input voltage of 0V, and Vmax to the maximum input
voltage, 10V.

To enter this in the worksheet, click on cell C6. Now enter the following:

 =A6/A26

The “=” sign must be there (or a “+”) to indicate that it is a formula. A6 is the input voltage
in this column, and A16 contains Vmax. Notice how this appears in the formula bar at the top

9

Example 1: Voltage-to-Current Converter

of the worksheet and in the cell, until we press <Enter> (or of course, the direction arrows
or the Tab key). The cell shows the result of the calculation. When we click on the cell, the
formula will appear again in the formula bar. Figure 1-7 shows where we’re at.

Figure 1-7: Result of formula calculation in cell C6, and the formula used in the calculation
appears in the formula bar.

Copying Formulas
We could now enter this formula for every cell in the column, but of course it is simple
enough to copy and paste. Click on cell C6 and copy to the clipboard with standard Win-
dows techniques such as <Ctrl> + <C>. Now click on cell C7 and paste. Ignore the error
that appears for the moment and click on C7 to check the formula in the formula bar:

 =A7/A17

Excel has made the relative translation for the cell and this is very handy except that A17
does not contain Vmax.

In Parenthesis: Adding Columns/Rows

It is an easy matter to insert a column or a row. Simply use the menu function Insert
| Column and everything will move to the right by one column. Inserting a row is very
similar. All the relative addresses and absolute addresses are all maintained without
missing a beat.

10

Excel by Example

In Parenthesis: Deleting Columns/Rows/Cells

The delete cells function is very similar to adding a column/row, except we go through
the Edit | Delete menu and then decide whether we need to delete a column or a cell
and what the result will be. Of course, if you delete an entity that is being referenced
elsewhere, Excel will report a problem. Fortunately, there is always the Undo button.

Depending on how a cell is deleted influences the residual effect on the cell. If we select
the cell and press Delete or Backspace, the contents are gone, but the formatting re-
mains. To get rid of the formatting, we use the menu action: Edit | Clear | Formats. To
clear both, use the menu action: Edit | Clear | All.

Relative and Absolute References
Obviously, we need some technique to reference a particular cell without allowing for the
automatic adjustment. Simply entering the cell coordinates is known as relative referencing.
In order to make an absolute reference, use the prefix “$” to the column or the row identifier,
or both. The ability to create an absolute reference in one dimension only can prove very
handy.

Double-click on cell C7 to edit the formula in the cell or click on the formula bar to edit it
there. Modify the formula to read:

 =A7/A$16

The “$” symbol only references the lines since there is no copying across the columns yet.
We could have used the following format to fix the changes in either dimension:

 =A7/A16

Terminate the entry and then copy cell C7 to the clipboard. Block the range C8 to C16, by
clicking on the former and dragging to the latter, then paste. Figure 1-8 should be the result.

Clicking on any one of the entries in the column will show that only the first cell reference
is relative. The numbers look reasonable, but not formatted. I am not going to bother doing
that at the moment. This is a transitional calculation and will be hidden later.

The next stage of the calculation is to take the number from each cell in the Proportion
column and multiply by the range of the output, 16 mA and add the offset of 4 mA. Click on
cell D6 and enter the following:

 =(c6*16)+4

It should result in a calculated value of 4. Now copy this cell to the range D7 to D16. The
entry in D16 should be 20 corresponding to the top end of the output current range. Format
the column for 3 decimal places. Figure 1-9 is the result.

11

Example 1: Voltage-to-Current Converter

Figure 1-8: The result of a formula (including absolute and relative addressing) copied
to a block of cells.

Figure 1-9: Theoretical current calculated from a mathematical operation on the cell
in the previous column.

12

Excel by Example

The calculation of the error of the measured output compared to the theoretical output is
simple, subtracting the measured value from the theoretical value. Click on cell E6 and enter
the formula:

 =d6-b6

and copy this to the other cells E7–E16.

The definition of linearity is not absolute. Generally, it is given as a percentage based on cal-
culation of the error divided by the full scale value, although on 4–20 mA, it could be argued
that the maximum range is only 16 mA. Opting for former definition, we enter:

 =E6/FullScale

in cell F6. This is also copied to the range F7 to F16.

There is an alternative method to fill a block of cells. To see a description of the feature, see
“In Parenthesis: Fill Box” in Example 16.

Enter the text “Full Scale Value” in cell A3. In B3, enter the value “20”. It will take the 3
decimal place format already existing for the column. In order to fit the text in A3 into the
cell, another option is possible. Right-click on the cell, select Format Cells and click on the
Alignment tab. In the Text Control section, check the Shrink to Fit option, followed by the
OK button.

Naming Cells
Any reference to the Full Scale Value would be an absolute reference to B3, that is B3. On
any complex worksheet, trying to skip back and forth trying to figure out what B3 refers
to is exceedingly inefficient. Excel allows us to provide a contextual name for either a cell or
a group of cells. It can be done in two ways. The first is more generic, and is helpful where
there are multiple pages or multiple workbooks. It is accessible through the menu sequence:

 Insert | Name | Define

It is possible to navigate to the cell or range of cells within the dialog, although it does con-
veniently start at the current cell selection. We will need this dialog to remove a name.

I find the second method quicker for simple applications. Simply select the cell (or group
of cells) on the worksheet. In the current example, this would be cell B3. Then click in the
Name box at the top left-hand corner of the spreadsheet (see Figure 1-3) just to the left
of the formula bar. Enter the name of the cell here, FullScale, with the result appearing in
Figure 1-10.

13

Example 1: Voltage-to-Current Converter

In Parenthesis: Cell Names

You need to exercise a little caution in naming cells using the name box because the name
box also serves as a GoTo box. Clicking on the box and entering a valid cell coordinate
will result in the addressed cell being selected and not the current cell being renamed.
You will see this later when trying to name a cell for a resistor, for example, R17. There
are a huge number of possible columns in Excel. They range from A through to Z, AA
on past AZ followed by BA and on until you get to column IV. On a positive note, the
drop-down control at the side shows all the named cells and clicking on that will take
you to your destination rather quickly. There are rules for naming cells as you would
expect. The name cannot start with a number, nor can it include spaces or other special
characters. Reference to the cell name is not case sensitive.

Using a cell name of course is an absolute reference.

Figure 1-10: Naming cell B3 to “FullScale”.

14

Excel by Example

In Parenthesis: Worksheet Navigation

While we are on the subject of moving around the workbook, aside from the Name box,
it is possible to go to a cell location using the Edit | Go To menu sequence or <Ctrl> +
<G> will bring up the same dialog.

Ctrl plus the direction arrows, Home or End, result in grand movements. They are some-
times contextual, depending on where you are in a worksheet. For instance, if you have
cell A1 selected in the spreadsheet we are currently working in and you press <Ctrl> +
<→> you will arrive at cell IV1. If you are in the body of the worksheet, cell C8 say, the
same key combination will take you to the last valid column of data. Repeating the key
combination will then take you to IV8.

<Ctrl> + <Home> returns you to cell A1.

Any reference to the cell can simply use the name as a handle. Click on cell F6. Enter the
formula:

 =(e6/fullscale)

That is the error divided by the full scale range. Now copy this cell from F7 to F16 and then
format column F as a percentage to two decimal places by right-clicking on the column F se-
lection button, choosing Format and selecting the Percentage entry under the Number tab.
The reference to FullScale is an absolute reference. Figure 1-11 should be the result.

Figure 1-11: Full model.

15

Example 1: Voltage-to-Current Converter

Hiding Cells
As I promised earlier, columns C and E are intermediate steps and so do not need to be
visible. Column select both by clicking on column select button C and then pressing the
<Ctrl> key and clicking on column select button E. Then right-click on either and select
the Hide option. See Figure 1-12.

Figure 1-12: The process of hiding cells.

The columns now disappear, although their presence is denoted by the discontinuity of the
column lettering. It is also indicated by the thickening of the divider line on the column
buttons. To retrieve the column, select the columns on either side of the “divide.” Simply
click on the one column adjacent to the split and drag to the adjacent column on the other
side. Right-click and select Unhide. Multiple selections with the <Ctrl> key will not work
successfully to unhide the hidden column.

Borders
In order to enhance the tabular appearance, we must add lines around the entries. Block the
area where this formatting is to be done as shown in Figure 1-13.

16

Excel by Example

We can do this in a number of ways. In this simple case, it is possible to click and drag from
cell A6 to F16. Where a table is bigger, this can sometimes be inconvenient, because, as you
will discover, dragging the selection over a large number of columns or rows results in them
whizzing past. It becomes difficult to get to exactly where we want to go.

Click in cell A6 and then navigate using the control bars till the last cell is visible. Press the
Shift key and click in the last right-hand cell of the table. This too, can be inconvenient if
the table is large since navigating to the last cell can lose the initial cell selection. Here is a
really quick way. Click in cell A6. Use the key combination <Shift> + <Ctrl> + <End> and
our selection is done.

Back to the job in hand. Within the selection, right-click and select Format Cells and the
Border tab. For the current selection, the dialog allows us to select line widths, which side to
have a line, hatching and cross hatching and many other options. Note that we could do this
for any group of cells starting from an individual one. While we are here, notice the other
tab options that allow background color to be modified, cell alignment, text fonts and so
on. Return to the Border tab and click first on the line style—I am using the lightest weight
(bottom left-hand corner). Then click on Outline and Inside and the OK, and the model is
ready for operation.

Figure 1-13: Preparing to add borders.

17

Example 1: Voltage-to-Current Converter

Bells and Whistles
While we are here, why don’t we add some features? Most of the time we only do what is
necessary to complete a job, but I want to whet your appetite for some of the subjects that we
will cover later.

Conditional IF and Absolute Value
Let’s set the upper limit of linearity performance to ±1%. Instead of scanning each result,
why don’t we add a marker on the right of the table to indicate when the reading is out of
limits?

Since the error could be positive or negative, we need to look at the absolute value. The
ABS function works exactly as if we are working in a computer programming language
(which is of course what we are doing) returning the absolute value of the number it is
handed as a parameter. The IF statement is perhaps a little more cryptic than the IF, THEN,
ELSE construction of a high-level programming statement, but that’s what it does. It has
three parameters separated by commas. The first parameter is the logical test, the second is
the value of the cell if the test is true, the third if the value of the cell if the test is negative.

Click on cell F3 and add the text “Maximum Tolerance.” In cell H3, add the value 1 and
name the cell MaximumTolerance. Format the cell for percentage. Now click on cell G6 and
enter the formula:

 =IF(ABS(F6>MaximumTolerance),”<<<“,””)

In other words, if the value in cell F6 is greater than the value in MaximumTolerance (cell
H3), the symbols <<< will appear in that cell.

Copy cell G6 to cells G7 to G16. Then format cells G6 to G16 so that the text is red (by
formatting the font). I deliberately chose the output current results so that there would be
faults. From row 9, all the readings should be indicated by the <<< symbols in column G.
The advantage of using a constant in the worksheet is that if the specifications change allow-
ing and easing of the linearity, or tightening the requirements, it is a simple matter to go to
cell H3 (using the Goto MaximumTolerance sequence, if you like) and modify the value to
whatever is required.

Chart
The charting application can easily be used in any workbook. Let’s get a feel for it now.
Block from cell A5 to B16 and then using the <Ctrl> create a second block from D5 to D16.
Actually, if column C is hidden, we can create as a single block, since hidden columns won’t
be used in a chart. Be sure to include the headings of the columns as the charting wizard will
use this information to identify the curves. Click on the Chart Wizard button on the toolbar
or go through the Insert | Chart menu. We will be presented with a dialog box as shown in
Figure 1-14.

18

Excel by Example

There are many possible types of charts. The initial charts and defaults are more for market-
ing types. As Dilbert might say, “So that they can find them!” As engineers, we will mostly
need an XY (Scatter) chart. Select this chart type, and then click on the sub-type on the
bottom left. Click on the Next button.

The next screen (Figure 1-15) gives an idea of what the chart will look like and an opportunity
to change the selections that Excel has guessed at based on the initial selection (if there was
one). Clicking on the Series tab allows us to select additional ranges as well. Click on the
Next button.

In the next step, we can add some cosmetic effects, labels and gridlines amongst them. When
we are satisfied with the settings shown in Figure 1-16, click on the Next button.

Figure 1-14: Selecting a chart type.

Figure 1-15: Definition of series on the chart.

19

Example 1: Voltage-to-Current Converter

Figure 1-16: Adding chart titles, and so forth.

As the final step of the wizard, we have to decide if the chart goes in the same worksheet as
the data or in a sheet all on its own. For the time being, place it in the current worksheet.
We get to select exactly where and how big, by dragging it around and sizing it.

I have sized it quite large in order to magnify the separation between the two plotted lines.
See Figure 1-17.

Figure 1-17: Placing the chart on the worksheet.

20

Excel by Example

In Parenthesis: Zoom

You can zoom in or out using the View | Zoom menu, or pressing Ctrl and using the
scroll wheel on the mouse.

By clicking on each element of the chart, it is possible to change some associated properties.
For instance, the input voltage will never go above 10V, so by clicking on the horizontal axis,
this can be modified. The vertical axis can be changed in a similar manner.

Error Bars
It is possible to add error bars on a curve in a chart. Click on the Output Current line in the
chart and in its Format option deselect the markers (under the Patterns tab). Return to the
worksheet by entering the heading “Error” in cell E5. In cell E6, enter the formula:

 =MaximumTolerance*FullScale

We use this calculation to find the maximum allowable error. Now copy this formula from
cell E7 to E16. It is the same value, but for what I am going to show you, Excel needs the
information in this form.

Return to the chart and click on the Theoretical Current line in the chart, deselect the
markers and then select the Y Error Bars tab as in Figure 1-18.

Figure 1-18: Setting up the Y Error Bars.

21

Example 1: Voltage-to-Current Converter

Figure 1-19: Initiating a trendline.

Click on the Custom option, and using the block select button on the right of the data entry
box we can visually block the data for both the positive and negative sides of the error bar.

Now whenever the measured value is outside the theoretical value, it is visible on the chart.
The error bars are visible in Figure 1-22.

Adding a Trendline
Excel has the capability of generating a regression on a line and determining the best form
of the equation. Right-click on the Output Current line and select Add Trendline from the
menu as shown in Figure 1-19.

Figure 1-20 shows the dialog that appears. Select a linear regression and then click on the
Options tab.

Figure 1-20:
Defining the type of regression.

22

Excel by Example

Under the options (Figure 1-21), ensure the Display equation on chart is selected and click
on OK.

Figure 1-21: Adding the equation to the chart.

The trendline and the equation for it are added to the chart as shown in Figure 1-22.

Figure 1-22:
Trendline and associated equation.

Macro: Timer
In many circuits, especially where a current is being generated, the output requires some time
to stabilize. Why not use the computer to time this period and notify us when it is time for
the next measurement?

23

Example 1: Voltage-to-Current Converter

In order to do this, we need to use a macro. I will go into this in greater depth later in the
book. For the moment, just follow along to see the effect. In order to use this feature, we will
need to have installed certain add-in modules as described in the front of this book.

Navigate the menus Tools | Macros | Visual Basic Editor. We should arrive at a screen
resembling Figure 1-23.

Figure 1-23: Startup Visual Basic screen.

Click on the workbook name in the Object Explorer window (top left). If it is not visible
enable it through the menus View | Project Explorer. Now click on Insert | Module and
something like Figure 1-24 should result.

At the bottom left of the module window, click on the Full Module View button, that is, the
one next to the arrow. We should see a tool-tip pop up with the information.

Click in the module window and type:

 sub Notify

followed by the <Enter> key. This immediately notifies Visual Basic to create a template for
a new procedure (also known as a subroutine in older parlance). Visual Basic will automati-
cally add some formatting and the last line “End Sub”. Click after the End Sub line and type:

 sub StartTimer

followed by the <Enter> key.

24

Excel by Example

Notice how Visual Basic prepares the second template and delineates it from the first. Click
between the module view buttons to see the effect. Obviously, the Procedure view shows
only one procedure at a time.

Now add the text for both procedures as in Figure 1-25. The text in Notify produces a message
box to notify the user that the time has elapsed. It is accompanied by the OK button with
this message box, plus a sound tone to attract the user’s attention. As we enter the text, we
notice the Visual Basic prompts guiding us for the next parameter or format required.

The StartTimer procedure initiates an action to take place 1 minute after the procedure
(which will be our macro) is run. That action is to run the Notify procedure. It will continue
to run even if we move to another application in Windows while we wait. It appears to me
that the version of Windows determines the exact action that occurs when in another ap-
plication and the timer has expired, but we will be notified somehow. In Windows 2000, the
Excel button in the desktop task bar begins flashing.

Return to Excel by clicking on the Excel button on the left of the toolbar, or by any other
technique including the Windows taskbar. Once in Excel, click on Tools | Macro | Macros
to arrive at Figure 1-26. Notice both procedures appear as macros. Click on StartTimer. It is
possible to click the Run button now to run the macro, but to do this every time will become
tedious.

Figure 1-24: Visual Basic, ready to enter code.

25

Example 1: Voltage-to-Current Converter

Figure 1-25: Timer code.

There are many techniques to invoke macros, but for the moment let’s use a shortcut key.
Excel itself uses a number of shortcut keys (<Ctrl> + <X>, for example), so we may not want
to use some of these. It is also possible to create a <Ctrl> + <Shift> combination. Click on
the options button, and in the next window press the <Shift> + <G>. Click on the OK but-
ton to return to the window in Figure 1-26. Close this window.

And that does it. To take a reading, hit the shortcut combination <Ctrl> + <Shift> + <G>
and wait to be prompted to take the next reading.

The file named VtoI.xls can be found on the CD-ROM accompanying this book.

Figure 1-26: Setting up and running a macro.

Baud Rate Selection

2E X A M P L E

26

Model Description
Most 8-bit microcontrollers on the market today include a Universal Asynchronous Re-
ceiver/Transmitter (UART) as part of the peripheral set. The baud rate for the UART is
normally generated by using a programmable counter to divide the frequency of some local
oscillator. Depending on the frequency of the oscillator and the divisors, not all standard
baud rates can be accurately generated. For reliable operation, a rule of thumb is to use a
baud rate with a tolerance of ±5%.

The Programmable System-on-ChipTM (PSoC) microcontroller from Cypress MicroSystems
is different to most in that it does not have fixed functional blocks. Rather, it has several
digital and analog blocks that can be configured to generate the functions required on the
chip. Despite that, the principles of this example are applicable to all microcontrollers
although judicious selection of a suitable oscillator frequency can generate exact baud rates
across the spectrum.

The PSoC microcontroller is a low cost part and in order to further the economy of the de-
sign, the PSoC has an onboard oscillator running at 24 MHz with an accuracy of ±2%. This
oscillator can be divided by one or two prescalers, each of which can have a divisor of
1 through 16. The resultant of this division is connected to an 8-bit counter as shown in
Figure 2-1. The baud rate generator is derived from the overflow of this 8-bit counter. The
actual baud rate is 1/8 of the overflow rate and its value is derived from the formula:

 (24 × 106) / (24V1 * 24V2 * (N – 1) * 8),

where 24V1 is the first prescaler, 24V2 is the second prescaler, and N is the setting of the
8-bit counter. As with all microcontrollers, these internal settings are written to registers
integral to the device. The complexity of the block configuration on the PSoC is masked by
an elegant user interface “PSoC Designer,” but that is beyond our concerns at the moment.

27

Example 2: Baud Rate Selection

It is possible to start with a desired baud rate and work backwards to generate the desired di-
visors, but electronic design (or life, for that matter) isn’t always so simple. There are always
other issues. On the PSoC for instance, the prescaler outputs are used to drive other blocks
and the chosen frequency needs to be compatible with those functions. The model is based
on an actual example where the prescalers had been cast in stone in order to refresh a display
at a constant rate. The available baud rates were subservient to this requirement. One of the
advantages of computers is that they can execute repeated calculations in the blink of an eye,
so this example takes a brute force approach. For a given set of prescalers, we will calculate
all the possible baud rates.

Setup Workbook

Figure 2-1: Divider chain in PSoC to generate a baud rate.

PrescalerPr
24V1

Prescaler
24V2

24 MHz
8 bit

down counter

8 x
Baud Rate

Divisor:
1-16

Divisor:
1-16

Divisor:
1-256

Figure 2-2: Initial setup of the workbook.

28

Excel by Example

Figure 2-2 shows the initial approach at the spreadsheet. Before we analyze what is actually
the intention of the workbook, we should look at some items of note.

In Parenthesis: Merge Cells

We saw in Example 1 how it was possible to maintain the visibility of headings when they
occupy more room than one cell. A further technique to allow this is to block the cells
where the text will appear and then following the sequence Format Cells | Alignment
tab and checking the Merge Cells box. Where cells are merged, the first cell (leftmost
in a horizontal merge, topmost in a vertical merge) contains the information. The other
cells within the merged area cannot be used.

Of course, it is possible to combine several options as you see here in cells D19 to D21,
where the cells are merged vertically and the word wrap feature is selected.

The title in cell A1 has merged 5 cells (see the accompanying “In Parenthesis: Merge
Cells”). The same technique was used to format cells A3 to C3 as well as the sub headings
in row 15. Cell A16 has been named to PreV1, cell C16 to PreV2, cell E16 has been named
AcceptableError and has been formatted to percent. The block A4 to H5 has been
named StandardBaudRates.

In Example 1, we saw that it is possible to insert a chart into a worksheet, so it is logical to
presume that it is possible to insert a picture into the workbook. It could be used as docu-
mentation or for presentation. As with most Microsoft products, it is possible to use the
sequence Insert Picture | From File and then select the format and picture as desired. It
is possible to size, rotate and edit the image as normal. Unlike Word, however, there is no
direct way to create a frame. This is easy to remedy. Block the cells that surround the picture
and merge them, getting rid of the cell lines. Then, using the same block, create a border
(Format Cells | Border tab) for the unified cell.

Let’s consider the intended objectives for this model. The listing of the standard baud rates
will be used as part of a lookup table. The prescalers can be set under the respective titles
in row 16. We can also decide the acceptable error to be when choosing the baud rate, by
changing the value in cell E16.

The table header (in rows 19-21) sets out what we are going to do. For each divisor in the
256 possible combinations, we will show the hexadecimal equivalent. Using the look up
table of standard baud rates, we will find the nearest standard value less than the actual baud
rate, and the nearest standard value greater than the actual baud rate. We will then find
which is closest, and calculate the error.

29

Example 2: Baud Rate Selection

Hexadecimal
In order to use the hexadecimal conversion, you must have enabled the add-ins as described
in the beginning of the book or Excel will not recognize the function.

In Parenthesis: Number Base Conversion

It is possible to convert between the different number bases: decimal, binary hexadecimal,
and octal using one of the following functions:

bin2hex(number, places)

bin2dec(number)

bin2oct(number, places)

dec2hex(number, places)

dec2bin(number, places)

dec2oct(number, places)

hex2dec(number)

hex2bin(number, places)

hex2oct(bin2hex (number, places)

oct2hex(number, places)

oct2dec(number)

oct2bin(number, places)

In above parameters “number” is the value in the source number base. “Places” is the
number of digits that the answer will contain. It will “pad” the answer with zeroes for
numbers that use less than the number of digits required by “places”. If “places” is omit-
ted, then only the minimum required number of digits to express the number are used.

Autofill all the numbers in column A, starting from the number 2 through to 255. In cell
B22, add the formula:

 =dec2hex(a22,2)

This results in a two digit hexadecimal number, but there is no real indication that it is
hexadecimal. It is possible to add (concatenate) an “h” suffix (or a “0x” prefix) using string
manipulation. Edit cell B22 to read:

 =dec2hex(a22,2)&”h”

(or =”0x” & dec2hex(a22,2) for the alternative notation) and copy this cell from B22 to B275.

30

Excel by Example

In Parenthesis: Split Screen

As we scroll down the workbook, the titles at the top of the columns disappear and there
may be some confusion as to what the contents of a cell represent. This is very easy to
solve by splitting the screen.

It is possible to split horizontally, vertically or both. For a horizontal split, select a row
by clicking on the row select button. In the example, we click on the row select button
for row 22. Then go through the menu sequence Window | Split. There are now two
windows and two copies of the same workbook. This way we can keep the heading in the
one pane, and scroll up and down in the other. In order to do this vertically, we select
a column with the column button and follow the same procedure. To split the window
into four panes, we click on the cell that we want to be the nexus of the splits and once
again follow the same procedure.

To clear the split, we use the menu sequence Window | Remove split.

It is also possible to lock a pane to disable any user shifting. In our case we may use it
to hold the titles constant. To achieve this we click in the pane we want constant, and
enter the menu sequence Window | Freeze. Now the bar that indicates the pane changes
to a thin black line, and the selected pane remains constant while the cursor controls
only affect the other pane.

Unfreezing is as intuitive as unsplitting.

In cell C22, we enter the following formula:

 =24E6/(8*pre24v1*pre24v2*(A22-1))

and then copy it to C23 through to C275. The E6 notation represents 106.

Lookup Tables
Before the advent of scientific calculators, lookup tables were all the rage for engineers,
second only to slide rules. There were trigonometrical tables and logarithmic tables amongst
others. Programmers use them to handle nonlinearities in sequences, high-speed access to
data and many other applications. Excel provides this feature and it can be set up as a hori-
zontal or a vertical lookup.

Let’s consider the case of a horizontal lookup. The data is arranged in one or more rows as
can be seen from our case for the standard baud rates. Using the actual baud rate I am going
to search the first row of the table for the nearest standard value that is less than (or equal
to) the actual baud rate. The second row is organized as the first row shifted to the left. For
a value in the first row that is less than the actual baud rate, the corresponding value in the
cell beneath the identified cell will be the standard baud rate above the actual baud rate.

31

Example 2: Baud Rate Selection

In Parenthesis: Lookup

It is possible to lookup a value horizontally (or vertically) using the HLOOKUP (or
VLOOKUP) function. The function takes the lookup value and searches the first row (or
column) of the table. When a match is found (it can be an exact match or a value just
less than the lookup value), a number is returned. This number is based on an offset
number of rows (or columns) from the identified matching cell.

The format is:

HLOOKUP(lookup_value,table_array,row_index_num,range_lookup)

lookup_value is the number on which the search is based.

table_array defines the area of the table.

row_index_num is the offset from the matching cell. It cannot be negative and must be
less than the total number of rows in to table.

range_lookup is a logical value. If set to TRUE or omitted, if an equal value is not found,
the cell with the value closest to and less than the lookup_value is identified. If there are
no more entries in the table, the highest value in the table is returned. If set to FALSE,
an exact match must be found.

VLOOKUP follows the same format.

We recall that we had prenamed the lookup table as StandardBaudRates. We want cell E22 to
contain the value below the calculated baud rate in C22, so we want to look in the first row
of the table. The “index” value is therefore “1”.

In cell E22, we enter the following formula:

 =hlookup(C22,StandardBaudRates,1,TRUE)

Now we want to identify the value higher than the actual baud rate, so we enter in cell D22
the formula:

 =hlookup(c22,StandardBaudRates,2,TRUE)

Note that the only difference is the “index” value. We block copy these two cells, D22, and
E22, from D23 and E23 through to D275, E275. And, we can visually scan to see that it is
performing as expected.

32

Excel by Example

In order to decide whether the upper or lower standard baud rate is closer to the standard
value, we need to subtract the actual baud rate from each of the standard values and compare
the absolute values. This can be succinctly combined into an Excel formula that we enter in
cell F22.

 =IF((ABS(D22-C22)>ABS(E22-C22)),E22,D22)

Before we consider the next calculation, we should format the cells G22 through to G275 as
a percentage with no digits after the decimal point, and then in cell G22 enter:

 =(C22-F22)/F22

as a calculation of the error.

We block copy cells F22 and G22 through to row 275.

For a little formatting, block the whole table from A19 to G275 and format for a border and
center justification. We should be looking at something like Figure 2-3.

Figure 2-3: Basic model of baud rate calculation completed. Note the split and frozen
screen line below row 21.

It is now possible to scan down and look for where the error is less than or equal to 1%.
Of course, we can use the technique we developed in Example 1 where we add “<<<” to a

33

Example 2: Baud Rate Selection

column to the right to indicate where the acceptable values are. Let’s do that. First, we for-
mat the text color of cells H22 to H275 to red. Then in cell H22 we enter:

 =IF(ABS(G22)<=AcceptableError,”<<<”,””)

(remembering that “AcceptableError” had been prenamed) and copy this cell from H23
through to H275.

Conditional Formatting
We can actually go a step further. It is possible to change the formatting of a cell based on
several conditions. As an example, when the error is less than the Acceptable Error and posi-
tive, the cell background should be yellow, the text red and in bold. If the error is negative
and within the same range as before, the background color is green.

Block select cell H22 to cell H275. Select Format | Conditional formatting… and in the
resulting dialog box we define the conditional for the formatting (as seen in the Conditional
Formatting box on the lower left of Figure 2-4) and the desired format when the condition
is met (in the Format Cells box in Figure 2-4) changing the font to red and bold under the
Font tab and the cell shading under the Patterns tab.

Figure 2-4: Defining the first condition of the cell format.

34

Excel by Example

It is possible to have multiple conditions. Click on the Add>> button and define the second
condition as in Figure 2-5. It is possible to have up to three conditions in total.

In Parenthesis: Conditional Formatting

Aside from the formatting provided in this example, you can achieve a number of
effects.

It is possible to create alternating shaded rows like computer printouts used to have.
First, we block the area that we want the effect. Next, we select the Format button in
the same dialog box, click on the Patterns tab and choose the color that takes our fancy,
and return via the OK button. Then we invoke the Conditional Formatting dialog box,
selecting Formula Is from the drop-down menu on the left, and add the formula:

=row()=odd(row())

The OK button returns us to the workbook, and hopefully, the desired result.

Another thing we may want to do is to have formatting repeated every N rows. Perhaps
a horizontal line every 8 rows. The process is very similar. First, we select the total area
where we want to use the effect, and then get to the Conditional Formatting dialog box.
We format for a border along the top of the cell only, (followed by the OK) and then
change the action descriptor to Formula Is and add the following formula:

=mod(row(),8)=0

Click OK and we are done. Removing the “=0” at the end seems to have the opposite
effect, removing the line every 8th row.

While it is not readily obvious that there is conditional formatting on a cell, it is possible
to find cells with conditional formatting by using the Edit | Go To | Special | Conditional
Format. Once there it is possible to select all cells, or to search for a cell with the same
formatting as the current one.

When using this technique, we should keep in mind that, other than the visible formatting
effect, there is no immediate indication (see “In Parenthesis: Conditional Formatting”) that
the cell has been conditionally formatted—something that could cause some problems when
returning to a workbook after several years. Note there is no condition here for between or
equal to so that it only highlights errors less than 1%. We could easily solve this by changing
the acceptable value to 1.01% or some similar minor increment. You may notice that some
1% entries are not highlighted. This is because the rounding effect displays 1%, but the error
is larger than this. In this case, the acceptable error could be set to 1.5%.

35

Example 2: Baud Rate Selection

It is now possible to change the prescalers and pick out the possible baud rates. Figure 2-6
shows what the results would look like. It is possible to change the prescaler values and see
what baud rates are feasible in the circumstances. The Excel file is titled BaudRate.xls.

Macro
OK, so it’s still tedious to scroll down through 254 entries to find the ones that meet the
criterion. We can create a macro to generate a table of just the valid entries. All macros in
Excel are created in Visual Basic for Applications (VBA). So if we need to get a guide of how
to write a macro or implement a particular feature, we can create a macro close to the desired
action using the macro learn feature and then analyze it and either modify it or copy parts in
order achieve our aims.

First, we will create a table header for a three-column table starting in cell K3. Since the ti-
tles are identical to the original table, it is simplest to copy each merged cell. What we want
the macro to do is to scan down column H. If it detects a nonblank cell, then the pertinent
information from the row is copied to the new table. The new table row is then formatted
with a border and the text is centered.

Figure 2-5: Adding a second condition in the cell formatting.

36

Excel by Example

We invoke the macro learn facility by the menu sequence Tools | Macro | Record New
Macro. You will be presented with a dialog box to name the macro as in Figure 2-7.

Figure 2-6: Completed basic model.

Figure 2-7:
Naming a macro
prior to “learning.”

37

Example 2: Baud Rate Selection

A small window box may pop up over the spreadsheet. (If it does not, it can be enabled by
going through the sequence View | Toolbars | Customize | Toolbars tab | Stop Record-
ing. But don’t do this while recording the macro! You can always stop recording the macro by
using the sequence Tools | Macro | Stop Recording.) The stop button will terminate the
macro recording when clicked. Block any three cells in a row, say K6 to M6, right-click and
select the sequence Format cells | Alignment tab and select the Center from the Horizon-
tal drop-down selector. Stop recording the macro.

Now open VBA by going through the menus Tools | Macro | Macros, click on “center”
and then click on the Edit button. It is also possible to get to Visual Basic by the menu
options Tools | Macro | Visual Basic Editor. Once in the editor, go through the menu
sequence Tools | Macros | Edit.

Sub centre()
‘ centre Macro
‘
 Range(“K6:M6”).Select
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlCenter
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
 End With
End Sub

The above listing is the result. We would also like to know how to set up borders, so we fol-
low the same idea in recording a macro that formats the cells for a border along all edges. We
will call the procedure frame. The following listing is the result. If we follow either listing, we
notice that the difference between this recorded sequence and what we are going to need is
the selection of the cell block, that is, the line “Range(“K6:M6”).Select”.

Sub frame()
 Range(“K6:M6”).Select
 Selection.Borders(xlDiagonalDown).LineStyle = xlNone
 Selection.Borders(xlDiagonalUp).LineStyle = xlNone
 With Selection.Borders(xlEdgeLeft)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
 With Selection.Borders(xlEdgeTop)
 .LineStyle = xlContinuous

38

Excel by Example

 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
 With Selection.Borders(xlEdgeBottom)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
 With Selection.Borders(xlEdgeRight)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
 With Selection.Borders(xlInsideVertical)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
End Sub

Armed with this information, we create a new procedure titled CompressPossibilties. To do
this click below the end of the macros we have created and type: “sub CompressPossibilties”,
followed by enter. VBA will automatically setup a blank procedure with the same name.
Then, add the macro as follows. Large portions may be copied from the previously recorded
macros.

Sub CompressPossibilties()
 Dim iVertInput As Integer
 Dim iVertOutput As Integer

 For iVertInput = 0 To 254 Step 1
 ‘set active cell to known position
 Range(“H1”).Select

 If (ActiveCell.Offset((iVertInput + 22), 0).Value <> “”) Then
 ActiveCell.Offset((iVertOutput + 5), 3).Value = ActiveCell.Offset((iVertInput + 22), -7).Value
 ‘transferring cell in column A
 ActiveCell.Offset((iVertOutput + 5), 4).Value = ActiveCell.Offset((iVertInput + 22), -6).Value
 ‘transferring cell in column B
 ActiveCell.Offset((iVertOutput + 5), 5).Value = ActiveCell.Offset((iVertInput + 22), -3).Value
 ‘transferring cell in column C

 ‘formattingthe 3 cells with a border
 ‘this is derived from using the macro learn

 Range(ActiveCell.Offset((iVertOutput + 5), 3), ActiveCell.Offset((iVertOutput + 5), 5)).Select

 Selection.Borders(xlDiagonalDown).LineStyle = xlNone
 Selection.Borders(xlDiagonalUp).LineStyle = xlNone

39

Example 2: Baud Rate Selection

 With Selection.Borders(xlEdgeLeft)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
 With Selection.Borders(xlEdgeTop)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
 With Selection.Borders(xlEdgeBottom)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
 With Selection.Borders(xlEdgeRight)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
 With Selection.Borders(xlInsideVertical)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With

 With Selection
 ‘this will center the entries in the block

 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlCenter
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
 End With
 iVertOutput = iVertOutput + 1
 ‘bumping on to next row in output

 End If
 Next

 ‘return active cell to start of table
 Range(“A22”).Select
End Sub

40

Excel by Example

The CompressPossibilties macro searches for nonblank entries in column H from rows 22
to 275, and when the nonblank cell is detected, it will copy the relevant information to a
concise table on the right of the worksheet. In the VBA code in Excel, one technique to
accessing cells in a worksheet is to select a particular cell as the reference position and then
manipulate all the other cells relative to that one. I arbitrarily chose cell H1 as can be seen
from the Range(“H1”).Select statement.

Running this macro (Tools | Macro | Macros, click on CompressPossibilties from the list
and click on Run) will generate a table as seen on the upper right-hand side of the workbook
in Figure 2-8.

Once this the macro has been coded, we can delete the “center” and “frame” macros since
we no longer need them, but I have left them in “BaudRateWithMacro.xls” as a reference.

Figure 2-8: The complete baud rate selection workbook. The heading K3 to M3 has been
set up as part of the workbook. Each row beneath this title is added by the macro replete
with center alignment and border formatting.

Mean Time Between Failures
(MTBF)

3E X A M P L E

41

Model Description
The difficulty of reworking products using surface-mount devices and the cost of labor have
turned the concept of Mean Time Between Failures (MTBF) into a bit of a misnomer since
the concept was derived for a unit that is repairable. Nevertheless, MTBF remains as the
most quoted measure of equipment reliability.

The probability that a piece of equipment will experience no failures in time t (that is, the
reliability) can be derived from the equation:

 Reliability = e –λt

As usual in engineering, e represents the base of Naperian logarithms (2.718). λ is a constant
representing the failure rate. The MTBF is the inverse of the failure rate:

 MTBF = 1/λ

There are several methods of calculating MTBF for a piece of equipment. The most common
is based on the failure rate of each component, the number of components and the environ-
mental stresses on the components.

For each device in a piece of equipment, the steady-state failure rate is given by:

 λSSi = λGi ΠQi ΠSi ΠTi

where:

 λSSi is the Steady-State Failure Rate for the device under consideration.

 λGi is the Generic Failure Rate for the device under consideration.

 ΠQi is the Quality Factor for the device under consideration.

 ΠSi is the Stress Factor for the device under consideration.

 ΠTi is the Temperature Factor for the device under consideration under normal operating
conditions.

42

Excel by Example

Based on each individual component, it is then possible to derive the overall steady-state
failure rate by summing the failure rate for each component part and applying a unit envi-
ronmental factor

 λSS = ΠE Σ λSSi

where:

 the sum is from i = 1 the total number of devices in the unit.

 λSS is the overall steady-state failure rate.

 ΠE is the unit Environment Factor.

Once this is done, as we have seen MTBF = 1/λSS

The information required to calculate this quantity is derived from statistical analysis of
observed data. It is normally presented in the form of tables and so it is not too difficult to
create an Excel model to make this calculation.

It should be noted that the numbers that I have used are derived from a dated document,
Bellcore Technical Reference TR-NWT-000332, Issue 3, September 1990. Use these tables
with caution since they a most likely to have been updated in line with the changes in
the electronics industry in packaging and transistor density. In addition, different organi-
zations (especially the military) may use different specifications in deriving their MTBF
requirements.

Factors
Figure 3-1, Figure 3-2, Figure 3-3, and Figure 3-4 represent the different factors (denoted by
ΠX above) entered onto different sheets in the workbook. It is not possible to enter the title
ΠX directly onto the tab, but it can be done by writing the text (using Insert | Symbol) into
a cell and copying from the cell to the tab. The subscript formatting is not copied.

In Parenthesis: Multiple Worksheets

By default, Excel initiates a workbook (based on a template) with three worksheets named
Sheet1, Sheet2 and Sheet3. (Incidentally, it is possible to create new templates and even
change the default template that Excel uses.)

To change the name of the worksheet, change the color of the tab, insert or delete a
tab, the secret is similar to many other Windows applications. Right-click on the tab
and follow the selections.

By using the right-click, reordering or copying tabs is possible. It is also possible to move
a worksheet tab by clicking and dragging the tab until a small black triangular indicator
(just above the tabs) shows where the result of the move will be.

43

Example 3: Mean Time Between Failures (MTBF)

Figure 3-1: Device Quality Factor.
When we reference this table based on
information in the Bill of Materials, column
B will be considered column 1, Column C
as 2, and so forth. This is implicit in the
naming of the range PI_Q for cells B4
to F6.

Figure 3-2: Electrical Stress Factors. Column A is formatted as percentage and the other data
is formatted to one decimal place. Everything is formatted for center alignment. Note the
additional Excel column M (entitled “L”) to allow for devices that do not require the electrical
stress factor. There is also a 0% row to allow the use of the VLOOKUP function. I took the
liberty of duplicating the 10% row for the new row. The range A3 to M12 is named PI_S.

44

Excel by Example

Bill of Material
The first step in building the model is entering a Bill of Material into Excel. There is the
old-fashioned way of entering each part, key press by key press, but for anything more than a
few parts, this can be a laborious process. If you are lucky enough to use a product like Parts
& Vendors, it will have a direct Excel export facility and you can load the Bill of Materi-
als in a few mouse clicks. There is an alternative file format that Excel can load, known as
the “comma delimited” format that uses a “csv” file suffix. If it is possible to have the Bill of
Material formatted in this way, entry of the parts should be a breeze.

Figure 3-3: Temperature Factors. I added a row for 0 degrees in order to use the
VLOOKUP function. The range A4 to K57 is named PI_T.

Figure 3-4: Environmental Factors.
The range B2 to C4 is named PI_E.

45

Example 3: Mean Time Between Failures (MTBF)

In Parenthesis: Comma Delimited Files

In this dated but simple file format, text and information is saved in a text file in the same
way that the data is seen on the screen. Separation between the entries is by means of a
delimiter. Originally this was a comma, but Excel does allow for other delimiters as well.
It is traditional to have the column titles as the first “row” of the file.

To create a comma delimited file to experiment with, create a worksheet in Excel with
different text and numerical entries. Then using the File | Save as… sequence, select the
CSV (comma delimited) (*.csv) filetype. It is possible to open this with a text processor
and analyze the file contents. Importing the data can be done either by opening a *.csv
file, or going through the sequence Data | Import External Data | Import data…

If we open the file, because of the simplicity of the format, we will be left with a file with
a single worksheet beginning at cell A1. This can easily be manipulated, but with a large
file, it may be cumbersome. Importing data allows the data to be placed anywhere in
the workbook.

This single-sheet effect means that it is a little more difficult to build a model that can be
reused with different Bills of Material. For more information on how to approach this,
look at the Microsoft Knowledge Base Article 213816 titled, XL2000: Macro to import a
text file into an existing workbook.

There is one more possible approach to use to save entry time if we are likely to be doing an
MTBF analysis on a regular basis. Each device has a failure rate, quality factor and a maxi-
mum rating (used in the electrical stress calculation) associated with it. In addition, inherent
to the failure rate for each device are two “curve” types (reduced to tables) for the electrical
stress factor and the temperature stress factor. For instance, there is a different temperature
stress curve for transistors and resistors. In fact, it is possible even to have different stress
curves within a classification like “integrated circuits.” Each device also needs a category for
the Device Quality Factor calculation.

Trying to create and maintain a lookup table of failure rates for individual components is
probably a guarantee of rather boring lifetime employment, so my suggestion is to try and get
five extra fields in the part number database. When a part number is generated, these five
fields should be filled out based on the latest available data. Parts & Vendors has the capabil-
ity to have up to five user fields (in P&V under Edit | Options and select the User tab). It is
possible to get by with a single field since Excel could parse the field into the five columns of
information.

The five fields required for each part in the Bill of Materials are: the Device Failure Rate λ,
the Temperature Stress Curve that should be used, the Electrical Stress Curve that should
be used, the Device Quality Factor ΠQ, and the maximum electrical stress permitted for the
device.

46

Excel by Example

The Device Failure Rate λ, is the number of failures in 109 hours (also known as FIT). The
actual numbers are derived from published tables provided with the specification or some
other authority.

Each device has a Temperature Stress curve associated with it. In Figure 3-3, the “curve” is
represented by a column labeled “1” to “10”. The actual factor used ΠT, is the number that is
at the intersection of the Curve column and the temperature of operation of the device.

In a similar manner, each device has an Electrical Stress Curve associated with it. In Figure
3-2, the “curve” is represented by a column labeled “A” to “L”. The actual factor used ΠS,
is the number that is at the intersection of the Curve column and the percentage electrical
stress that device is subjected to. For most devices, the electrical stress is the ratio of actual
power dissipated by the part to the maximum power dissipation allowed. Some components
like capacitors and relays use different ratios. For capacitors, the electrical stress is the ratio
of voltage across the capacitor to the maximum allowed voltage.

Every device has a quality factor depending on the device type and the packaging technol-
ogy, as can be seen from the Device Quality Factors table ΠQ in Figure 3-1. The columns are
numbered 1–5 for simplicity, with 1 corresponding to the Integrated Circuits “Hermetic”
column.

In addition, when undertaking a MTBF analysis, there are some global variables that must be
decided by the user. These are the ambient temperature, the Quality Level, and the Environ-
mental Condition Factor ΠE.

In Parenthesis: Comments

A comment may be added to any cell in a worksheet. When the cursor hovers above the
cell, a pop-up message appears. This message can be used to prompt the user for an
input or to remind the programmer what his original intention was. A cell that contains
a comment has a small red triangle in the top right-hand corner.

Adding a comment is simple. Right-click on a cell, and then select Insert Comment from
the pop-up menu. Text can be pasted into the comment box. Right-clicking on a cell
containing a comment will allow the text to be edited or deleted.

The Quality Level is defined as part of the overall product specification. For instance, it
could be specified by the customer or by the intended environment for the product. The
Quality Level defines the row that will be used in the table if Figure 3-1.

The Environmental Condition is derived from the table in Figure 3-4. It is defined as part of
the product specification. We need to choose one of three possibilities based on the type of
ground the system employs.

The “Maximum Electrical Stress” column carries no units, so it is simply the number that
represents the maximum value to be used in the ratio when calculating the electrical stress.

47

Example 3: Mean Time Between Failures (MTBF)

With or without the Bill of Material importation, this information must appear in the work-
sheet in order to calculate the MTBF. The data in the tables presented here is used as a guide
only. You must obtain the data for the parts that you use from the latest tables.

The initial data input is shown in Figure 3-5. Because of the size of the worksheet, a shifted
view is shown in Figure 3-6.

This information for each component in the Bill of Materials in the worksheet is filled in the
respective columns E to I, or if you have managed to configure the Bill of Material database,
it will be imported directly. Up to this point, all the factors discussed for these columns are
fixed and can be permanently associated with the component, hence the advantage of em-
bedding them in the database.

Figure 3-5: Initial setup of bill of materials.

48

Excel by Example

From a working unit, measurements must be taken to determine the stress levels and these
are entered in the Actual Electrical Stress column. In real-life, measuring the power dissipa-
tion in a resistor (or similar device) is done by measuring the voltage across the resistor and
then using the power calculation (V2/R) to generate the power. If we figure out what the
maximum V2 is for a device (for a ½W resistor it would be P*R or 0.5*R) and use it as the
maximum stress entry, we can then enter the voltage measured in the actual stress cell and
use Excel to calculate the square. I will continue with this thread a little later.

Also, as a result of self-heating of onboard components and the thermal gradient away from
the heat source, the temperature of some components may be above ambient. This too
should be measured and added in column “Temp. Above Ambient”.

In cell A5, I entered the formula:

 =Today()

so that the current date is always shown, which is useful in identifying the latest version of
the workbook when there are several copies of the document that have been printed.

Figure 3-6: View of the right-hand extents of the worksheet. Columns E to I contain data that
is constant for a given device. Columns J and K have data derived from a working unit.

49

Example 3: Mean Time Between Failures (MTBF)

On Sheet “BOM”, I have named cell D8 AmbientTemperature, cell D9 QualityLevel, and cell
D10 EnvCondition. On sheet “ΠQ”, I have named the range B4:F6 PI_Q, on sheet “ΠS”
range A3:L12 PI_S, on sheet “ΠT” range A4:K57 PI_T, and on sheet “ΠE” B2:C4 PI_E.

Calculating the Quality Factor
To start the initial model design, we enter the titles of the three columns ΠQ, ΠS, and ΠT
(see Figure 3-6). I intend to calculate these individually to allow debugging and for ease of
explanation.

To find the desired quality factor we need to know the Quality Level, which is the number
contained in cell D9 (on the BOM sheet, named QualityLevel). This determines which row
the information is in on worksheet ΠQ. The device quality factor (BOM sheet, cell H14 for
the first component) determines which column. We just need to use this information for the
INDEX function.

In Parenthesis: INDEX

The INDEX function returns a value from a table based on its row and column identifiers.
The index function has the syntax:

=INDEX(array,row_num,column_num)

where the array is the lookup matrix, and the row_num and column_num are self
explanatory.

If we click on cell L14 and enter the text:

 =index(

Excel will respond with a prompt as to what syntax format to follow. The table we want is
on another worksheet and to compound the problem it is named with a character that Excel
won’t accept in the data entry. The simple solution is to click on the ΠQ tab and the work-
sheet name is automatically entered followed by an exclamation point as the delimiter of the
sheet. The data entry so far would appear as:

 =index(ΠQ!

Add the name of the range in the table PI_Q and add a comma so that the entry appears as:

 =index(ΠQ!PI_Q,

and then click on the BOM tab. Add the row number by typing the name “QualityLevel”,
add a comma and type “h14”. Close the parenthesis so that you have:

 =index(ΠQ!PI_Q,BOM!qualitylevel,h14)

50

Excel by Example

<Enter> will terminate the entry and return a value of 1.8, which is the quality factor for a
nonhermetic integrated circuit at quality level 1.

Excel will use defaults if the page and workbook entries are not specified. Rather like pri-
vate and public variables in programming it starts with the local and expands outwards. For
instance, we didn’t need the BOM! in the formula entry. It just got placed there when we
clicked on the worksheet tab. Of course we could enter the text directly (with the exception
of special characters like Π) without following the prompts of the data input.

We now copy this cell to all the necessary cells in the ΠQ column.

Calculate Electrical Stress Factor
The electrical stress is defined for each row as the contents of column J (actual stress) divid-
ed by the contents of column I (maximum stress). Since this does not work out to an integer
value, we will need to use a lookup function that allows for a noninteger offset. We will need
the VLOOKUP function. Its syntax is:

 =VLOOKUP(lookup_value,table_array,col_index_num,range_lookup)

The lookup value is the number used for the lookup, and for row 14 would be the result of
the division J14/I14. The division can be used as the parameter directly. The table array is
located on sheet “ΠS” and is named PI_S.

Let’s put this together. Click on cell M14 and enter:

 =vlookup((J14/I14),

Click on the ΠS tab and type in PI_S followed by a comma so that the entry is:

 =vlookup((J14/I14), ΠS!PI_S,

and then click on the BOM tab (although not really necessary), add G14+1 and close the
parenthesis and <Enter>. So that the full entry is:

 =vlookup((J14/I14), ΠS!PI_S,BOM!G14+1)

The +1 is to allow for the fact that the first column in the range of the table PI_S is the
percentages. As an aside, the cell description in the above line is BOM!G14. If we want-
ed to add parenthesis to the BOM!G14+1, it would have to be (BOM!G14+1) and not
BOM!(G14+1).

This entry returns a value of 1 corresponding to the electrical stress of an integrated circuit.
Copy the cell M14 to M15 through to M41.

The reason that I added a 0% row is that the VLOOKUP function needs to find a number in
the column that is less than the lookup_value. If it does not, it will return an error message.
Clearly it is possible to have a stress level less than 10% (but more than 0%) so a row of 0%
was added.

51

Example 3: Mean Time Between Failures (MTBF)

As I mentioned earlier, in order to save time, instead of entering resistor power we could
enter resistor voltage. We could then modify the above line to be:

 =vlookup(if(G14=3,(J14^2)/I14,(J14/I14)), ΠS!PI_S,BOM!G14+1)

so that if it is a resistor, the value of J14 would be squared. In an attempt to keep this simple,
I have not implemented this.

In Parenthesis: Table Functions

There are several functions included with Excel that relate to tabular lookup. For detailed
explanations use the Excel Help function, but as a simplified summary of what to con-
sider, here is a list and a brief explanation.

HLOOKUP: in a table, search a row for a particular value (or between values) and then
using the identified cell as a reference point, return the value from the cell in the same
column, but offset by a defined number of rows.

VLOOKUP: in a table, search a column for a particular value (or between values) and
then using the identified cell as a reference point, return the value from the cell in the
same row, but offset by a defined number of columns.

LOOKUP: is very similar to HLOOKUP and VLOOKUP, only works with a single input range
(column or row) and returns a value from a single output range (column or row).

MATCH: has the same approach as LOOKUP, but instead of returning the value of the
addressed cell, it returns the position in the lookup array.

INDEX: returns the value from the intersection of a particular column and a particular
row in a range.

Other associated functions are:

COLUMN: returns a number associated with the column of a cell or range of cells (A=1,
B=2, and so forth).

COLUMNS: returns the number of columns in a range.

ROW: returns a number associated with the row of a cell or range of cells.

ROWS: returns the number of rows in a range.

TRANSPOSE: will return a horizontal range as a vertical range, or a vertical range as a
horizontal range.

ADDRESS: returns text with the cell co-ordinates and can be relative to current cell use
relative and absolute addressing.

AREAS: returns the number of contiguous cells in a range.

CHOOSE: returns a value from a list using an index

INDIRECT: will be familiar to users of assembly or C code. Excel takes the contents of a
cell and uses it as the cell co-ordinates for a fetch.

OFFSET: accesses a cell or range of cells, offset from a cell or range.

52

Excel by Example

The composite temperature to use for the Temperature Stress Curve is the ambient tempera-
ture plus the value in the associated row of column K, “Temperature Above Ambient”. Since
the table in the specification only begins at 30°C, we need to consider what will happen
with an operating temperature below that. We could use the INDEX function because we
are working with integer temperatures, but what will happen to sub 30°C values? Rather
than complicate the INDEX function by adding an IF statement, we will resort back to the
VLOOKUP, but that means that there needs to be an entry row below 30°C. If there is a
likelihood of subzero temperatures, the minimum value should be entered here. I opted
for 0°C.

The lookup_value parameter for the VLOOKUP is the sum of the cell named AmbientTem-
perature and the relevant cell in column K. The result should be:

 =VLOOKUP((AmbientTemperature+K14),ΠT!PI_T,BOM!F14+1)

This cell should be copied to L15 through to L41.

Calculation of λG

For each device type, the Steady State Failure Rate is the Device Failure Rate multiplied
by the Device Quality Factor, the Electrical Stress Factor and the Temperature Stress Fac-
tor. This is true for each occurrence of the device so we need to multiply by the number of
identical devices used.

Click on cell O14 and enter:

 =B14*E14*L14*M14*N14

and copy as before through to O41. If similar devices are subjected to different stresses they
should be treated individually.

The total Steady-State Failure Rate is the sum of the cells from O14 to O41. Before I gener-
alize the model, let me show you a quick way to enter the sum. Block from cell O14 to O43.
Then click on the Σ button on the toolbar, and presto—it is done! Now, click on the undo
button to get rid of this. I would like to place the results of the workbook above the Bill of
Materials entries. My reasoning is that each Bill of Materials is going to have a different
number of components and I would like to save entering the SUM every time.

I created a result table in cells F5 to G8. In G5, I entered the formula:

 =sum(O14:O300)

Summing blank cells does not affect the total so I chose an arbitrarily large number. We will
see in later examples how to use the COUNT and COUNTA functions to determine how
many rows actually exist.

53

Example 3: Mean Time Between Failures (MTBF)

Cell G6 must contain the product of λSS (cell G5) and the environmental conditions based
on cell D10 (named EnvCondition). It contains:

 =G5*(VLOOKUP(EnvCondition,ΠE!PI_E,2,FALSE))

Note the use of the FALSE parameter to indicate that the lookup must find the exact entry.

Now the MTBF in hours is the inverse of cell G6 multiplied by 109. It is a trivial task to
divide down to generate years. In cell G7, I entered the formula:

 =1E9/g6

and in G8:

 =G7/(60*365)

Figure 3-7 shows the result of the calculations and the completed model. One of the things
to consider is the further generalization of the model. Depending on the file format, it is
quite possible that importing the Bill of Material will overwrite the formulas. Aside from the
approach given in the Microsoft article discussed previously, a possible solution is to do the
calculations on a separate worksheet, but the problem with that is we lack the immediacy of
working alongside the data. What we can do is go to each of the cells L14, M14, N14 and
O14 and place an apostrophe ’ in front of the line turning the formulas into text. Copy these
cells to another worksheet and paste them somewhere. Now once the bill of materials is
loaded, these cells can be copied back and the apostrophes removed.

Figure 3-7: Model to generate MTBF. Note the summary block in cells F5:G8.

54

Excel by Example

Scenario
Now that we have completed our model, we can play “what if” by changing the ambient
temperature or consider the implication on the MTBF of the added cost of choosing a higher
quality level or even a change in the harshness of the environment. Each time we change
these parameters, the MTBF will be updated. Unless we print out each case, we are forced
to remember just what the result was. Now in this instance this may be easy enough, but in
other models the result may be a lot more complex, so let’s use the opportunity to investigate
the Scenario Manager tool. As with all complex models, it is probably a good idea to create a
copy of the original file, just in case Murphy was right. (Actually, Murphy was an optimist!)

Select the sequence Tools | Scenarios… and you will be faced with the dialog in Figure 3-8
since no scenarios have been yet been defined.

Click on the Add button and you will be presented with a further dialog similar to Figure
3-9. The scenario manager allows you to specify which cells are going to change in each
scenario. Initially, the active cell appears in the Changing cells: box. If this cell is not one of
the cells that will change, we must delete the entry in the box. The cells that can change do
not have to be contiguous. We can enter the cells directly or we can point to the cells after
clicking on the Expand button.

Figure 3-8: Starting the creation of a scenario.

55

Example 3: Mean Time Between Failures (MTBF)

First, we name the scenario. It is probably a good idea to start out with a normal condition
and I have named it as such.

Clicking on the expand button on the right side of the Changing Cells: box will result in
something similar to Figure 3-10. Clicking and <Ctrl> + <Click> will have the cells added
to the box.

Figure 3-9: Creating a scenario.

Figure 3-10: Picking the cells that will change for the Scenario Manager.

56

Excel by Example

Clicking the collapse button on the right of the box will take us back to Figure 3-9. Click on
OK. That will then take us to the next step where we must add the value that we want the
scenario to evaluate. The dialog box in Figure 3-11 will cater for all the variable cells that we
have defined.

Figure 3-11: Entering the scenario values.

We enter the values that we would like to see evaluated, click on OK and our bidding is
done. Following the same process (Tools | Scenarios… | Add…), we add scenarios, except
that we no longer have to define which cells are going to change if we don’t want to, as the
cells we have already defined appear in the dialog box. See Figure 3-12.

We can then add the new values we want evaluated as in Figure 3-13.

Figure 3-12: Defining an alternative scenario.

57

Example 3: Mean Time Between Failures (MTBF)

Once we have completed all the scenarios, we can immediately view the results of a particu-
lar scenario by following the steps Tools | Scenarios…, click on the named scenario, and
then Show. On simple examples, where the results can be condensed into a small area of
the screen, it is possible to place the Scenario Manager dialog box so that selecting different
scenarios shows the changes without having to close the dialog box as in Figure 3-14. This
project is called mtbf_scenario.xls on the accompanying CD-ROM.

Figure 3-13:
Values for
new scenario.

Figure 3-14: Choosing a scenario to view.

Figure 3-14: Choosing a scenario to view.

Counting Machine Cycles

4E X A M P L E

58

Model Description
Despite the plethora of 16- and 32-bit processors, 8-bit devices still dominate the embed-
ded market. Sometimes, we have to write very tight code and need to know the execution
time by counting machine cycles. Revisions in the code mean reworking the machine cycle
count. Looking up the number of machine cycles for each instruction is both labor intensive
and prone to error. Cue the theme to the “Lone Ranger.” Enter Excel to the rescue. The
secret is Excel’s ability to load almost any text file and interpret spaces and other characters
as delimiters. Once the listing is loaded, we need to identify the cells with machine code and
extract and manipulate the op-code to produce a numerical lookup value. Using a lookup
table derived from the microcomputer’s op-codes, this value is used to collect the associated
number of machine cycles.

Each processor and compiler/assembler combination results in a different format of code so
it is hard to provide a generalized model, but the principle remains the same. We will need
to look at the idiosyncrasies of the compiler or the assembler in each case in order to format
the model. Working with RISC type processors like the PIC is relatively simple in that all
instructions take one machine cycle except jumps, which take two. Other processors, like
the 8051, have different lengths of machine cycles for instructions, but irrespective of the
conditional program execution, the time taken is the same. Yet more complex processors like
the Z80 are a combination of both.

Since I have examples of 8051 code written in C, I will use this as a demonstration, but I will
allow for the possibility that conditional instructions may take longer, just so you can see the
approach.

Importing the File
The file I will be importing is a listing file produced from the source code written in C using
the IAR Embedded Workbench Compiler (version 5.20).

In Excel, open the listing file in the usual way: File | Open, and then add *.lst in the File
Name box and select the file that you want as shown in Figure 4-1.

59

Example 4: Counting Machine Cycles

Open the file and you will be presented with the Text Import Wizard, as shown in Figure 4-2.

Figure 4-1: Open a list file.

Figure 4-2: Step 1 of the Text Import Wizard.

Click on the Delimited data type. It is possible to remove a number of lines from the top of
the file by starting the import at a particular row. Identify which row by scrolling down the
preview window at the bottom of the screen, but you must manually enter the line number
in the Start import at row box. Then click on the Next button. The next step in the File
Import process is seen in Figure 4-3.

60

Excel by Example

Choose Tab and Space as delimiters and Treat consecutive delimiters as one. The Data Pre-
view provides an idea of how the worksheet is going to appear. Select the Next button and
the third stage (Figure 4-4) will be seen.

Figure 4-3: Second stage of file import, definition of delimiters.

Figure 4-4: Third stage of file insert, formatting columns.

For each of the first four columns, click on the bar at the top and format the column as text
using the radio buttons in the Column data format area. This is important because without
this Excel will look at each cell in the op-codes and interpret as a number (when there is no

61

Example 4: Counting Machine Cycles

alpha character) and text when there is. Classifying it as text will allow us to analyze the op-
codes in a consistent manner.

Click on Finish to see the initial worksheet (Figure 4-5).

Figure 4-5: Initial worksheet.

Some comments in a line may stretch across many cells in a row, but this will not affect what
we are trying to do. You will notice that the file importation results in only one worksheet.

Of particular note is that the compiler places a backslash “\” as the first character of any line
with code in it, so I will use this as an indicator of a machine code entry.

62

Excel by Example

Extracting Op-code
Rather than work on a large segment of code, for this example let’s concentrate on the FOR
loop that stretches from Excel line 110 to line 138 as shown in Figure 4-6. You will notice
that I have done some additional preparation in the line in the form of headings for some of
the columns (in bold).

In order to extract the op-code, we need to scan the cell in column B for each row in the
range. If it is the backslash “\”, then we must extract the first two characters of the string
in the associated cell in column D. To do this, we will need the IF function followed by the
LEFT function. We have seen that the IF function has the format

 IF(logical_test,value_if_true,value_if_false)

For the logical test on row 110 we would enter =IF(B111=”\”, …

The format of the LEFT function is:

 LEFT(text,num_chars)

In order to extract the first two characters in cell D110, this would become

 LEFT(D110,2).

If there is no backslash, we want the column to be blank. If we put all that together as

 =if(B110=”\”, LEFT(D110,2),””)

in cell I110, the result is a blank. Copying this cell to all the cells from I111 to I138 shows up
all the op-codes as hexadecimal numbers, but formatted as text.

You will notice from cell I118 that the address label is also captured and since we would like
to exclude it, we need to modify the formula. To this end, we note that the address text be-
gins with the question mark. We can add a nested IF function so that the second term of the
IF statement is the second IF statement:

 IF (LEFT(D110,1)=”?”,””,LEFT(D110,2))

The complete statement would be

 =IF(B110=”\”,IF(LEFT(D110,1)=”?”,””,LEFT(D110,2)),””)

If we copy this to the cells in column I, the problem disappears. An alternative could have
been to use the logical AND in the logical test, that is:

 =IF(AND(B110=”\”,LEFT(D110,1)<>”?”),LEFT(D110,2),””)

Although Excel can handle text lookups, I chose to convert the text in column I to a number
in order to use the lookup tables because the values in the lookup table are numeric. I have
added this as another column in J to simplify the explanation. It is possible to combine the
steps in the lookup function that we will use later. The entry in J110 is =hex2dec(I110) and this
is copied down the cells in the range. Yet another hiccup shows up. Obviously from the results,

63

Example 4: Counting Machine Cycles

applying this function to a blank cell returns a number 0. If we look this up in the op-codes it
will return a valid instruction cycle time (NOP in the case of the 8051) and thus introduce an
error into our calculations. We need to modify cell J110 to =IF(I110=””,””,HEX2DEC(I110)).
In other words, if I110 is a blank, then so is J110.

This workbook is named listing.xls.

Figure 4-6: Initial extract of op-codes from a C listing.

Opening a Second Workbook
You will have noticed that there is only one sheet in this workbook. Inserting a file in this
manner will always result in a single sheet. This proves troublesome in trying to general-
ize the model, since we would have to add a sheet and then copy and paste into the sheet. I
suppose we could create a macro to do this, but it is not necessary. In Excel it is possible to
access the contents of a second workbook as long as that workbook is open. We can create
a workbook with all the op-codes and machine cycles as a separate entity especially since it
does not need much in the way of modification once it has been created.

64

Excel by Example

Let me describe the second workbook (8051opcodes.xls) as it appears in Figure 4-7. It can be
opened while in any workbook using the File | Open sequence. Depending on the version
of Excel, and probably the computer operating system, switching between the workbooks can
be achieved by using the Window menu and selecting the workbook. Alternatively, you may
be able to switch from the Windows taskbar as well.

Figure 4-7: Lookup table of 8051 op-codes.

I “autofilled” from 0 to 255 in column B, and then created a hex format in column A. Con-
verting the decimal number to hexadecimal requires a simple function in the form of:

 DEC2HEX(number,places)

which will generate the hex number as a string to the length of the number of digits
specified. In our case, in cell A6 this would be =DEC2HEX(B6,2). This will generate a
two-character string, but no indication that it is hexadecimal. It is easy enough to prefix the
number with “0x” using concatenation. Excel has a special command for this:

 CONCATENATE (text1,text2,...)

65

Example 4: Counting Machine Cycles

However, it also recognizes the ampersand as a concatenation instruction which is easier to
use. Cell A6 becomes:

 =(“0x”& DEC2HEX(B6,2))

This cell is copied from A7 through to A261. Once this calculation is done, we really don’t
need the resources of the computer taken up by monitoring the value of cells that are not
going to change. Select cells A7 through to A261 using <Ctrl> + <C> or one of the other
alternatives to copy a block of cells to the clipboard. I have left A6 out so that the formula
remains in the worksheet, in order to remember how this column was generated. With the
same block still selected, click on Edit | Paste special | Values and the calculation is con-
verted, nevermore to change.

Mnemonics have been added for aesthetic purposes, as well as to confirm the lookup while
we check the operation of the worksheet.

I have reserved a cell, E3, for the number of cycles per byte read to allow for the newer ver-
sions of 8051s that execute in fewer machine cycles. Column D6 is a product of this cell
and the number of bytes in the instruction. Although the 8051 executes the same number
of cycles in a conditional statement, whether it is true or false, I have added a true and false
column to illustrate how this may be used in the model for a different processor. If your pro-
cessor does have different execution times, then this column will differ from the true column
only in those specific instructions.

The range of cells B6 to E261 has been named op_codes.

In Parenthesis: Recalculation and Auditing Formulas

In this example, it may seem counter-intuitive that the value of cell A6 is derived from
a value that appears later in cell B6. In early versions of spreadsheets, you had to con-
sider the order that the spreadsheet evaluated cells (normally left to right and top to
bottom), but today this is not normally an issue. A formula or cell is updated when any
input that affects it is updated. Tools | Options | Calculation tab can affect how this
calculation is done.

In some worksheets, the recalculation may take some time and can be inhibited by
selecting the Manual button. Pressing the F9 key will force the whole workbook to be
recalculated including custom functions, irrespective of whether the manual option is
selected.

66

Excel by Example

It is possible to audit cells in order to track how one cell is affected by another, or even
help to diagnose a problem. Follow the sequence Tools | Formula Auditing. This shows
a bunch of options, but these are also available on a floating toolbar so click on Show
Formula Auditing Toolbar, which will result in the following toolbar:

Figure 4-8.

Figure 4-9.

Using the toolbar, it is possible to visually trace dependents and precedents of a par-
ticular cell (if indeed it does have connections). Each relationship has a tracer arrow
marked as each cell is considered. The arrow is not removed until they are explicitly
deleted individually or as a group. You can identify which button to use for a function
from the pop-up tool tips.

When a formula results in an error, like #REF, click on the problem cell and use the Trace
Error button to help analyze the problem. Clicking on Circle Invalid Data will highlight
cells with invalid data in red to help with the debugging.

This is an invaluable tool in larger workbooks.

67

Example 4: Counting Machine Cycles

Cross Workbook Reference
At the risk of repeating myself, the vertical lookup function has the format:

 VLOOKUP(lookup_value,table_array,col_index_num,range_lookup)

So in cell K111 of the listing.xls worksheet we enter:

 =VLOOKUP($J111,’8051opcodes.xls’!op_codes,3,FALSE)

and we are rewarded when the number of machine cycles for the true condition appears.
There is a problem in that there are cells in column J that have no value, so we need to em-
bed the above formula in an IF statement as follows:

 =IF($J111<>””,VLOOKUP($J111,’8051opcodes.xls’!op_codes,3,FALSE),””)

so that if a cell in column J is blank, the cell in K will also be blank.

In order to look up the number of execution cycles for a false condition, the formula in K111
is copied to L111 (hence, the absolute reference to column J). You will notice that I have
added a column marked “Notes”. In this column I have either a blank value, or the number
1 or 2. A blank value means that in a program with a loop, such as this example, this line is
only counted once. The note “1” means that the instruction is executed once in each loop
execution, and “2” is the conditional statement where it is executed once for each loop
except for the final loop where it executes a (possibly) different number of cycles. In order to
do this we use nested IF statements:

 =IF(M111=””,K111,(IF(M111=1,(H110*K111),(((H110-1)*K111)+L111))))

where H110 is the cell containing the number of cycles.

There is a bit more I have to say about the complexity of this nested IF, but I would like to
leave this as a file on the CD-ROM so let me complete it first. We just need to sum all the
entries in column N by blocking from N111 to N138 and clicking on the quick sum button
(the Σ on the toolbar). This is the total number of cycles. If we divide it by the clock fre-
quency (12 MHz in this case), we will have the execution time in seconds. This file is titled
listing.xls, and the result is shown in Figure 4-10.

Easing the Pain of Nested IFs
As you can see from the formula, it can be difficult to keep track of the parentheses and the
IFs. Imagine if you wanted to nest even more conditions!

Now is a good time to introduce the CHOOSE function. It has the format: CHOOSE(index_
num,value1,value2,...)

Based on the index_num value, contents of the cell associated with that index are returned.
In cell N111 the formula will be:

 = CHOOSE(M111,K111,H110*K111,((H110-1)*K111)+L111)

68

Excel by Example

but if this formula was to occur on a blank cell in column M, an error would be generated.
We obviously need to modify the formula with an IF statement and it becomes:

 =IF(M111=””,””,CHOOSE(M111,K111,H110*K111,((H110-1)*K111)+L111))

This formula is copied through the range, and the project is complete and saved as listing1.xls
on the CD-ROM. The appearance, however, is no different to Figure 4-10.

Unfortunately, since opening the list file results in a new worksheet, this method does not
lend itself to automation. It is possible to cut and paste from the initial development into
the new file, but you need to keep track of the size of the block that is copied and the size it
is being pasted to. An alternative is possible by changing a line of the formulas to text and
copying them to some other location, perhaps in 8051opcodes.xls. This is easy enough. To
convert from a formula to text, either remove the = from the start of the line or add an apos-
trophe ’ to the start of the line.

Figure 4-10: Completed calculation of execution time.

Character Generator

5E X A M P L E

69

Model Description
There are many instances of dot matrix displays in use in electronics. Some devices, like the
ubiquitous LCD modules that are based on the Hitachi standard, have a built in character
generator. However, the Hitachi designers recognized that the user may want to have spe-
cial characters and allows the creation of customized patterns. Other devices like the NKK
Smartswitch (36 × 24 LCD display) or the Fairchild GMA2875 (5 × 7 LED display) require a
character generator.

Every pattern or shape in a dot matrix display is defined by a series of active and inactive
bits that determine if a pixel is on or off. Figure 5-1 indicates the formation of one such
character.

Figure 5-1:
5 × 7 dot matrix pattern
for the letter "B”.

Most dot matrix displays employ some form of multiplexing to drive the pixels. Depending
on the display and the technique employed, the pixels can be generated for the horizontal
axis or the vertical axis. If we take the example in Figure 5-1, and allocate a byte to each
horizontal row, assuming the least significant bit corresponds to the rightmost pixel, the
value of the first byte would be 30 (0x1e), the second would be 17 (0x11), and so forth.

While I was developing a controller for the NKK Smartswitch, I serendipitously came across
a brilliant design idea by Alberto Ricci Bitti in EDN. The idea was to lay out the matrix
on a worksheet to visually create the character and use Excel to automatically generate the
number associated with a particular bit pattern. The example you are reading is an extension

70

Excel by Example

of the idea, hopefully providing versatility for a wide number of applications and especially
insights into the use of Excel. The idea for the original extensions was also published as my
Design Idea in EDN.

Creating the Basic Workbook

Figure 5-2: First setup of the workbook.

In order to generalize the idea, I allowed for a maximum size of the display graphic/charac-
ter to be 10 columns by 16 rows. As is obvious from Figure 5-2, I intend to allow the user to
enter the number of rows and columns so that the concept can be applied to smaller graph-
ics. The matrix D9 to M24 represents the pixels on the display and I have formatted the
width of the columns to approximate the height of the rows. By selecting the columns D to
M (using the column select buttons) and right-clicking, it is possible to set them all to the
same width. The same is true for the rows, although the value from row to column is not the
same, so it requires a little trial and error. I also formatted the matrix for borders, bold text
and centered alignment.

71

Example 5: Character Generator

LEN Function
The crux of this project is the LEN function. It checks a string and returns the number of
characters. In a row, we then check the contents of each of the columns from column D
to M. If there are characters (nonzero LEN), then a number associated with this column is
added to a running total. This is akin to the longhand process of converting a binary number
to base 10. For example, 1011 binary is converted as 23 + 21 + 20. Let’s consider the Excel
function:

 =IF (LEN(D9),512,0)

Let’s enter this in cell N9. If there is any character in cell D9, the value of cell D9 will be
512, otherwise it will be 0.

Now we need to consider all the cells in the row, so we change the entry in cell N9 to

 =IF(LEN(D9),512,0)+IF(LEN(E9),256,0)+IF(LEN(F9),128,0)+IF(LEN(G9),64,0)+

 IF(LEN(H9),32,0)+IF(LEN(I9),16,0)+IF(LEN(J9),8,0)+IF(LEN(K9),4,0)+

 IF(LEN(L9),2,0)+IF(LEN(M9),1,0)

This is all entered as a single line without <Enter> or formatting. With this we have a sim-
ple method of generating a number for row 9. For the whole display, we copy this cell from
D9 to D10 through to D24. Try clicking on a cell, entering a character, say x, and watch the
numbers change in column D. We can now visibly set up the character we want and transfer
the number for the rows to our software listing. Wait! There’s lots more to come that can
save you time.

Forms Controls
Some applications require the data to be shifted out horizontally and some vertically. It is a
simple enough matter to transpose the above formula to generate the numbers for columns
instead of rows. Instead of having both the horizontal and vertical calculations visible at the
same time, we can add a drop-down control (called a Combo box) that will display the hori-
zontal data when chosen, and blank it displaying the vertical selection when it is chosen.

Enter the data in cells N3, Q3 and Q4 as in Figure 5-3. N3 is a title, while Q3 and Q4 will be
the entries in the drop-down box.

72

Excel by Example

In Parenthesis: Forms Controls in a Different Version of Excel

The use of Forms controls differs from one version of Excel to another. The Microsoft
Knowledge Base has entries for the following versions:

Excel 2002: Q291073

Excel 2000: Q214262

Excel 97: Q142135

These are very handy in helping to understand the application of the controls.

We select View | Toolbars | Forms and then click on the symbol for the Combo box (note
the pop-up tool help). Now we click around the top left corner of N4 and drag to form a
rectangle. When you release the mouse button, you will see the Combo box as in Figure 5-4.

Figure 5-3: Preparation for addition of a Forms control.

73

Example 5: Character Generator

We have to link the entries to appear in the Combo box with the Combo box itself. As
mentioned before, this is contained in cells Q3 and Q4. This information must be on the
worksheet, although we can hide the column later. The resulting output of the Combo box
must also be on the worksheet and it is a number associated with the Combo box selection.
In our case with two possible options, it can be 1 or 2. We choose cell Q6 arbitrarily to con-
tain the result. To connect the selection entries with the Combo box, we right-click on the
Combo box and select Format Control and then select the Control tab. We select the input
range, the cell link and the number of drop down lines. We terminate by clicking on OK.
Now we click on any cell to take the focus away from the Combo box.

Figure 5-4: Placing a Combo box on a workbook. Note the toolbar at the lower center
of the figure.

74

Excel by Example

Clicking and making a selection in the Combo box will result in cell Q6 changing its value
between 1 and 2.

We return to cell N9 in order to make a composite IF statement. The whole existing IF
statement becomes the [value_if_true] part of the new IF statement. We need to insert the
statement IF(Q6=1, after the first “=” and add ,””) to the end of the statement, so that if
the condition is not true, the cell becomes blank. The full line becomes:

 =IF(Q6=1,IF(LEN(D9),512,0)+IF(LEN(E9),256,0)+IF(LEN(F9),128,0)+

 IF(LEN(G9),64,0)+IF(LEN(H9),32,0)+IF(LEN(I9),16,0)+

 IF(LEN(J9),8,0)+IF(LEN(K9),4,0)+

 IF(LEN(L9),2,0)+IF(LEN(M9),1,0),””)

Figure 5-5: Linking the Combo box to entries on the workbook.

75

Example 5: Character Generator

We now copy this statement to cells N10 through to N24, and hide column Q. Changing
the Combo box selection will toggle the cells N9 to N24 from blank to a number. To get the
vertical shift ability, cell D25 must contain a formula that will allow for 16 entries. It should be:

 =IF(Q6=2,IF(LEN(D9),32768,0)+IF(LEN(D10),16384,0)+IF(LEN(D11),8192,0)+

 IF(LEN(D12),4096,0)+IF(LEN(D13),2048,0)+IF(LEN(D14),1024,0)+

 IF(LEN(D15),512,0)+IF(LEN(D16),256,0)+IF(LEN(D17),128,0)+

 IF(LEN(D18),64,0)+IF(LEN(D19),32,0)+IF(LEN(D20),16,0)+IF(LEN(D21),8,0)+

 IF(LEN(D22),4,0)+IF(LEN(D23),2,0)+IF(LEN(D24),1,0),””)

The formula should be copied into cells E25 to M25.

Text Orientation
When the number in a column contains a large number, the cell shows “###” to indicate
that the column is too narrow to display the result. This would be inelegant in the cells asso-
ciated with the vertical shift. There is an easy way around it by formatting the cells from D25
to M25 to an orientation of 90 degrees, and then sizing the height of row 25 accordingly.

Comments
Some of us may have noticed a green triangle in the left-hand corner of some cells. This is
an indicator that Excel considers the result of a calculation that is contained in the cell to be
potentially suspect. See “In Parenthesis: Excel Warning Detection” in the next example for a
more detailed explanation.

There can also be a red triangle in the right-hand corner of a cell, which indicates a com-
ment. As in programming, a comment is placed by a programmer in order to help understand
and remember the reasons for a particular approach. Excel’s comments though, provide a
pop-up window when the cursor hovers over the cell. This feature can be used to guide a user
or the programmer as to what number to enter or any other useful information.

Adding, editing and deleting a comment is no more difficult than right-clicking on a cell
and choosing the relevant menu entry. The entry box is a mini-word processor and we can
paste and cut text, size the window and more.

I have added a comment to cell N3 to describe the use of the function associated with this
cell. I will be adding other comments to the workbook as we go although I will not mention
them. When starting, the comment box is initialized with the registered user’s name. This is
ordinary text and can be edited as you like. I just delete it. Comments are hinted at by the
red triangle, and can all be viewed simultaneously using the menu sequence View | Com-
ments. Repeating the sequence will return to the pop-up mode.

76

Excel by Example

Double-Click Macro
Moving around the workbook, typing a character and moving with the <Enter> or arrow
keys is inefficient. A macro that uses the double-click of the mouse to toggle between a char-
acter and no character would make the application much more elegant. And while we are at
it, we will add a black shading (that actually hides the character) and gives a better approxi-
mation of the appearance of the pattern.

Open the Visual Basic Editor and right-click on Sheet1 under Microsoft Excel Projects.
Select View Code. In the left-hand drop-down box select Worksheet, and in the right-hand
box select BeforeDoubleClick.

Enter the following code:
Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)
 ‘checking if we add or remove data
 If Target = “x” Then
 Target = “”
 ‘blanking cell entry
 Selection.Interior.ColorIndex = xlNone
 ‘using no shading colour

 Else
 Target = “x”
 ‘setting the cell contents to a string of finite length
 ‘so that the number generator sees it.

 ‘and then turning the shading black to obscure the x

 With Selection.Interior
 .ColorIndex = 1
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 End With

 End If
End Sub

Because this procedure runs on an event occurrence (double-clicking on a cell), there is no
need to explicitly invoke it.

Pretty easy stuff, but the result is great. Only one drawback, once we have toggled a pixel on
or off, we need to change the cell focus (click in another cell) before returning to the origi-
nal cell to toggle it again. Actually, there is another failing. It is possible to double-click in
any cell and this character and shading effect will happen. We can mostly get around that by
protecting cells (or by testing for valid cells in the double-click procedure).

77

Example 5: Character Generator

In Parenthesis: Cell Protection

Changing cells containing formulas can cause some problems for the workbook. The
simplest solution is to protect the cells so that it is impossible to change. Excel imple-
ments protection in two stages. Initially, we set the cells we want to unprotect (Excel
assumes all cells are protected unless informed otherwise). This does not initiate the
protection yet. In the second stage, the worksheet is protected and now the protected
cells are inviolate.

In order to achieve cell protection, select the cells that are to be unprotected and then
right-click and choose Format Cells and the Protection tab. Ensure that the Locked Cells
is unchecked and click on OK. Then follow the sequence Tools | Protection | Protect
Sheet. Check and uncheck the boxes that are pertinent. There is no need for a password
if you don’t want one. Click on OK. The user can now modify the unprotected cells.

In the Format Cells dialog there was a Hidden checkbox. If it is selected and you subse-
quently click on a cell with a formula with the worksheet protected, the formula will not
be displayed in the formula bar. Note that one of the options when protecting the sheet
is to disallow selection of protected cells, so the user can never get there if we so wish.

Figure 5-6: Options on
protecting a sheet.

Disable protection on cell block D9 to M24. Unhide column Q and disable protection on
cell Q6. Unhiding can only be done when the sheet is unprotected. If you are reading this
paragraph in sequence, then the sheet is still unprotected. If you are rereading it, trying to
get the Shift Output drop-down to work, then Tools | Protection | Unprotect Sheet….

78

Excel by Example

Since the Select locked cells is unchecked, the user will be unable to click on any of the
locked cells. We must check the Format cells option or the Double-click macro will not be
able to change the shading on a cell.

Once we are satisfied on the operation, we must unprotect the sheet in order to allow some
of the new features we are going to add. We must just remember to reprotect at the comple-
tion of the project. The individual protection remains with each cell.

Macro Activation by the Command Button
So far, the model requires users to determine their limits on the screen when working with
matrix less than the maximum size. We are going to add a macro that will take the contents
of cells D3 and D4 and shade the matrix to provide an indication of the nonusable area. This
macro will be run from a pushbutton on the workbook.

First we must ensure that cells D3 and D4 are unlocked. We will also format the cells as bold
for cosmetic reasons.

Create a macro in the Workbook area as follows: Tools | Macro | Visual Basic Editor,
right-click on the This Workbook “folder” and select View Code. Select (General) from the
drop-down box on the left of the code window. In the code window, enter

Sub ShadeMatrix_Click followed by the <Enter> and Visual Basic will automatically initiate
the routine.

In Parenthesis: Cells Notation Versus String Manipulation

The code used in this example accesses cells on the worksheet and works by creating
strings. Microsoft considers that this is not good programming practice as detailed in
the VBA Help subject “Range Collection”. It is much easier to use the alternate notation
CELL(row,column) to read or write to a cell.

Consider me admonished.

Enter the macro as follows:
Sub ShadeMatrix_Click()
‘
‘ shade Macro
‘
 Dim sX As String
 Dim iUtil As Integer

 ‘ clear all the shading
 Range(“D9:M24”).Select
 Selection.Interior.ColorIndex = xlNone

 ‘and clear all the contents

79

Example 5: Character Generator

 Selection.ClearContents

 If Range(“c9”).Value > Range(“D4”).Value Then
 ‘to allow full range of operation

 sX = “D9:M”
 ‘initiate the horizontal range as a string
 iUtil = (Range(“c9”).Value - (Range(“D4”).Value + 1)) + 9
 ‘by using the value in C9, it is possible to create larger
 ‘matrices without changing the macro
 ‘D$ has the number of rows
 sX = sX & iUtil
 ‘this easy concantenation merges a string and a number into a string
 ‘sX is has a range now stretching down from row 9
 ‘Note how easy string manipulation is.
 Range(sX).Select
 ‘shading the rows
 With Selection.Interior
 .ColorIndex = 16
 .PatternColorIndex = xlAutomatic
 End With
 End If

 If Range(“d8”).Value > Range(“D3”).Value Then
 ‘to allow extremes of range
 ‘create the vertical range
 iUtil = 68 ‘D in ascii
 ‘since we have to figurue out how many columns
 ‘we need to work arithmetically with the column identifier (a letter)
 iUtil = iUtil + ((Range(“d8”).Value - Range(“D3”).Value) - 1)
 ‘by using the value in d8, it is possible to create larger
 ‘matrices without changing the macro
 sX = Chr$(iUtil)
 ‘converting the calaculated value back to text to use
 ‘as a column identifier
 sX = “D9:” & Chr$(iUtil) & “24”
 ‘concantenating strings
 Range(sX).Select
 ‘once the area is defined we select it
 With Selection.Interior
 .ColorIndex = 16
 .PatternColorIndex = xlAutomatic
 ‘and shade it
 End With

80

Excel by Example

 End If

 ‘place pointer at top left hand of allowed frame

 IPoint = 24
 IPoint = IPoint - (Range(“D4”).Value - 1)
 sX = IPoint
 ‘type conversion
 sX = “R” & sX & “C”
 ‘concantenate for rows and add C for columns
 IPoint = 13
 IPoint = IPoint - (Range(“D3”).Value - 1)
 sX = sX & IPoint
 ‘should do the conversion as well
 Application.Goto Reference:=sX

End Sub

Sequence through View | Toolbars | Forms and click on the Button icon. Click in the top
left-hand corner of cell G3 and drag until the button is a suitable size. When we release the
mouse button, a dialog to name the macro pops up as Figure 5-7. Select the macro we have
just entered, ShadeMatrix_Click, and OK.

Figure 5-7: Placing a button and naming the associated macro that runs when the
button is clicked.

81

Example 5: Character Generator

If not already selected, select the button by right-clicking. Then click on the button and edit
the caption to read “Shade Matrix” and click away from the button.

Save to Data File
All this is well and good, but in creating a whole character set it is a good idea to reduce
keystrokes. Rather than cut and paste each character to the text editor of the compiler, we
are going to create a macro that produces a text file (if it does not already exist) and then
adds a character definition to that file every time the macro is run. If we create a command
button to run this macro next to the matrix, the process becomes very simple since it is all
mouse controlled. When the button is clicked the user is prompted for a comment about the
character, so we could simply enter the character associated with the pattern, or something
more complex. Once the character is stored, the “canvas” is cleared in readiness for the next
character. This target file is intended to be opened with a text editor and the contents copied
to the source file. Since there are many assemblers and variations of C (and even other lan-
guages) we should allow for maximum versatility.

We create the cells A26 to B29 as in Figure 5-8. Unlock cells B26 to B29.

Figure 5-8: User input to allow for customization of text file
output.

The leader is placed at the start of a line in order to define a series of constants. In some
assemblers this is a “db” directive. I could foresee that there may be some time when in one
project I would need the assembler character set and at a later stage, the same character set
in C. If we use the “/* db */” format then, using the editing capabilities of the word processor
it would be possible to search and replace as necessary. The comment field is the string that
will be used as the prefix to cause the compiler/assembler to ignore the comment.

The delimit entry is the character that is used to separate the bytes in the source code. If the
delimiter is not accessible from the keyboard (like the Tab code), we can enter the formula:

 =CHAR(xx)

where xx is the numerical representation of the character. For example, the space character
would be 32.

82

Excel by Example

Finally, the File Name is the name the the data will be stored in with the suffix “.txt”. In ad-
dition, it will be used as the first line of the file appended to the comment character above.

Now we create a macro as follows:
Sub SaveCharacter_Click()
‘
‘ SaveCharacter Macro
‘ Macro recorded 11/16/01 by Aubrey Kagan
‘
‘ Keyboard Shortcut: <Ctrl>+<Shift>+<T>
‘
‘if file does not exist then create it.
 Dim sFname As String
 Dim sX As String
 Dim iPoint As Integer
 Dim sComment As String
 Dim iUtil As Integer
 Dim iFileExists As Boolean
 Dim sX2 As String

 sFname = Range(“B29”).Value
 ‘fetch the file name and tag the suffix on
 sFname = sFname & “.txt”

 sX = Dir(sFname)
 ‘if the file does not already exist, then create it
 If sX <> “” Then
 iFileExists = True
 Else
 iFileExists = False
 Open sFname For Output As #1

 ‘take the comment symbols an place the file name as the first
 ‘comment
 sX = Range(“B27”).Value & sFname
 Print #1, sX
 Close #1
 ‘file created and saved, with the first line
 End If
 ‘now we print a range of values across the page
 ‘associated with the bytes for the pixels
 If (Range(“Q6”).Value) = 1 Then
 ‘for horizontal shift
 iPoint = 24
 ‘iPoint is the highest numerical value of row of the matrix
 iPoint = iPoint - (Range(“D4”).Value - 1)
 sX = iPoint
 ‘converting typ to string
 sX = “R” & sX
 sX = sX & “C14”
 ‘pointing at the start of the data
 Application.Goto Reference:=sX

 ‘get character description
 sComment = InputBox(“Enter you comment for this Character”, “Comment Creation”)

83

Example 5: Character Generator

 Open sFname For Append As #1
 Print #1, Range(“B26”).Value;

 For iUtil = 0 To (Range(“D4”).Value - 1)
 sX = (iPoint + iUtil)
 sX = “R” & sX
 sX = sX & “C14”
 ‘placing the cursor at the data address
 ‘column 14
 Application.Goto Reference:=sX
 Print #1, ActiveCell.Value;
 Print #1, Range(“B28”).Value;
 ‘print value followed by the delimiter
 Next
 Else
 ‘for vertical shift
 iPoint = 13
 ‘equal to column M
 ‘iPoint is the highest numerical value of column of the matrix
 iPoint = iPoint - (Range(“D3”).Value - 1)

 sX = “R25C” & iPoint
 ‘string type convesion and concatenation

 ‘pointing at the start of the data
 Application.Goto Reference:=sX

 ‘get character description
 sComment = InputBox(“Enter you comment for this Character”, “Comment Creation”)

 Open sFname For Append As #1
 Print #1, Range(“B26”).Value;

 For iUtil = 0 To (Range(“D3”).Value - 1)
 sX = “R25C” & (iPoint + iUtil)
 ‘placing the cursor at the data address
 ‘row24
 Application.Goto Reference:=sX
 Print #1, ActiveCell.Value;
 Print #1, Range(“B28”).Value;
 ‘print value followed by the delimiter
 Next
 End If

 sComment = Range(“B27”).Value & sComment
 Print #1, sComment

 ‘ensure all files are closed
 Close
‘as a final step clear the page for the next character
 Range(“D9:M24”).Select
 Selection.ClearContents
 ‘move to the top left hand of screen
 ‘first deal with rows

84

Excel by Example

 iPoint = 24
 ‘for row 24
 iPoint = iPoint - (Range(“D4”).Value - 1)
 sX = iPoint
 ‘type conversion
 sX2 = iPoint
 ‘sX2 is used to clear the shading.

 sX = “R” & sX & “C”
 ‘concantenate for rows and add C for columns
 iPoint = 13
 ‘for column M (A=1, B=2...)
 iPoint = iPoint - (Range(“D3”).Value - 1)
 sX = sX & iPoint
 sX2 = Chr(iPoint + (65 - 1)) & sX2
 ‘creating the ASCII of the column
 ‘and combining with the row for the cell location

 ‘getting rid of the pixel shading

 Range(sX2 & “:M24”).Select
 Selection.Interior.ColorIndex = xlNone

 ‘and going to the top left cell
 Application.Goto Reference:=sX

End Sub

Once this is done we return to the workbook. After creating a command button, starting in
cell P12 (see Figure 5-9), we link it to the SaveCharacter_Click macro. The caption in the
button should also be changed to something more relevant. We must remember to protect
the worksheet and then save. CharacterGenerator.xls is the file of this model on the accompa-
nying CD-ROM.

Usage

One thing to note: When changing the data in any cell and then needing to click on a
button, until that cell is deselected, the button will not activate. We simply have to click
anywhere on the worksheet, protected area or not, before clicking on a control button.
Depending on the zoom settings of the worksheet, Figure 5-9 is how the screen of the com-
pleted application would look. The instructions to use this application would be:

1. Enter the number of rows and columns in the display and click on the Shade Matrix
button.

2. Select a horizontal or vertical shift from the drop-down box.

3. Enter the information required in cells B26 to B29. If the file name already exists, the
information will be appended to the file.

85

Example 5: Character Generator

4. Create the pattern for the first character/image by double-clicking in a cell to activate a
pixel and double-clicking a second time to deactivate the pixel.

5. When the character/image is complete, click on the Update to File button.

6. At the prompt in the message box, enter a comment for the help identify the character
just entered, or any other text.

7. Every time this is done the tile is opened, the character data is added and the file is
closed, so the application can be terminated at any time.

8. Repeat for all the characters in the set. Since the file is closed every time and because the
application simply adds data to the existing file it is possible to create the character set
over several sessions.

9. Edit the resultant file as necessary to match the computer language being used. It is also
possible to edit the actual data if errors were made during entry.

10. Copy the file into a source file for the project.

Did you think Excel could do this kind of application?

Figure 5-9: Completed application.

8052 Microcomputer Register Setup

6E X A M P L E

86

Model Description
Most modern microcomputers have a graphical user interface where the register configura-
tion can be done through the modern paradigm of mouse clicks, graphical depiction and
setup value calculation. Once you have worked with this approach, the return to the “good
old days” for a more venerable processor may not be appreciated. Since you are reading a
book on Excel, you could be forgiven for jumping to the conclusion that it is possible to do
this in Excel. Of course you would be right!

This is a fairly simple, if somewhat lengthy application, but it gives me a great opportunity to
showcase Forms controls while demonstrating several other features of Excel.

I still remember the feeling of freedom migrating from the Intel 8048 microcomputer to
the 8051. Although by today’s standards the resources of the 8051 are limited, obviously
the Intel designers covered a large segment of the market as proven by the longevity of the
product. The structure of the peripherals in the device is controlled by configuring a series of
registers. I have broken the register structure into four sections: the input/output, the coun-
ter/timers, the serial communications port and the interrupt structure. I have further broken
the counter/timers into three sub-groups. These sheets will be named: I_O, C_T0, C_T1,
C_T2, Serial and Interrupt.

Spreadsheet Concept
For each section, I created a worksheet in the workbook named 8052.xls. I added and named
sheets according to the microcomputer hardware partition as listed above. This can be done
by right-clicking on the sheet tab, and selecting Insert or Rename. It is also possible to
rename by double-clicking on the Sheet tab.

To place controls we need the Forms toolbox, which we invoke from View | Toolbars |
Forms. Starting with sheet I_O, we place a Group box in the upper left-hand corner by
clicking on the Group box button and then clicking in the worksheet and dragging to a suit-
able size. In order to change the Group box name, it must first be selected and then you can

87

Example 6: 8052 Microcomputer Register Setup

click on the text, or right-click and select Edit Text. I renamed it to Processor Selection since
I am going to select between the 8051 and 8052. It is prudent to place the Group box before
placing the controls that it contains, or the controls may not be associated. The size and
placement of the Group box can be changed when the box is selected. The size is changed
by the “handles” on the selection window when the cursor changes to a two-headed arrow.
The position can be changed by dragging the Group box when the cursor changes to a four-
headed arrow over the frame of the box.

In Parenthesis: Forms Control

The Forms control should not be confused with the Control Toolbox, which is for insert-
ing ActiveX controls. The Forms controls are easier to understand and use than ActiveX
controls, but they are less flexible. To get to the Forms toolbox in Excel 2002, follow the
sequence View | Toolbars | Forms. The toolbar that appears is similar to this:

Every Excel worksheet has an invisible layer. Like graphs and graphics, the tools are
stored on this layer and appear to “hover” above the worksheet. It is possible to have
an Excel entry behind it.

We have all experienced these controls in many Windows applications. The Label tool
allows text to be entered and can be used to provide a title to a control. The Check box
allows the user to select or remove a feature. The Option buttons are similar, but are
linked so that only one feature of the group is selected at a time. The Group box collects
objects like the Option buttons into a logical group. If you have two or more groups of
Option buttons, then they must be placed in two Group boxes or Excel will only allow
one or all of them to be selected. The Button control, when suitably configured, will run
a macro when it is “pressed.”

The List box shows a list of a number of options (with a Scroll bar when the number of
options exceeds the box size). The user clicks on one to make a selection. The Combo
box is similar, but only displays the list when the drop-down control is clicked. Once
selected, the selected option is shown in the box.

A Scroll bar allows the user to adjust a value from a maximum to a minimum and back. It
allows for three vernier levels. Coarse adjustment is by dragging the Scroll bar; medium by

Figure 6-1.

88

Excel by Example

clicking within the gap between the Scroll bar and the direction arrows; and fine by click-
ing on the direction arrows. The result appears in an Excel cell and it is associative—i.e.,
if a value is entered in the cell, the Scroll bar will move to the appropriate position.

The Spinner is a set of up and down arrows that will increase or decrease a value.

Although not really a control, the Toggle Grid makes the background grid of lines visible
or invisible.

I placed two Option buttons in the Group box by clicking on the Option button icon in the
Forms toolbar, then clicking within the “Processor Selection” Group box and dragging to a
suitable size. Placement of the buttons is a hit and miss affair since it appears that Excel does
not provide tools to align them, but does provide tools to size them, although not simulta-
neously. (Within Visual Basic however, these restrictions do not exist though this does not
help us here.) I renamed the Option buttons 8051 and 8052 since the difference between the
NMOS and the CMOS versions is only in the power saving modes, and it does not form part
of the initial setup of the device.

Once placed, the control becomes functional so that clicking on it will not allow us to
change the properties. We can only modify the properties by right-clicking on the control.

We have to decide on a cell
that will carry the resultant of
this group of Option buttons.
Depending on which button is
selected, this cell will have a
value representative of the but-
ton. Right-click on either of the
Option buttons, and select Format
Controls and then the Control
tab. We direct the Cell link to
cell A6 (see Figure 6-2). Since
these Option buttons are linked,
we only need to set up this cell
link for one of them. Now click
away from the button. Click on
8051 and check that cell A6 has
the value of one. Click on 8052,
and notice that the value of A6
changes to 2. Since A6 will be
used in later processes, this value
must always be there, but at a later
stage we will hide the column. Figure 6-2: Formatting the Option button.

89

Example 6: 8052 Microcomputer Register Setup

Throughout this example, I will also place the outputs (and inputs where they exist) in
the rows below the Check box control so that they can be hidden, thereby improving the
aesthetics.

In the Format Control for the Option buttons, there are other options that you can consider.
Each button can have a line around it, the background color filled in, or even a 3D shading
effect. I just opted for a line around, which actually helps with the alignment.

I also named cell A6 Processor.

Next we want to select the processor oscillator frequency, so I placed a horizontal Scroll bar
and above it I placed a Text box. The completed result can be seen in Figure 6-4. The Label
box format capability is rather thin, with far fewer format capabilities than text in a regular
Excel cell. However, it does have one advantage in that it can be shifted around to just the
right location. Of course there is font consistency between all the text entries in the con-
trols. Figure 6-3 shows the control format capability of the Scroll bar.

Since the processor will run from 0 to 12 MHz, these limits determine the minimum and
the maximum values of the Scroll bar. Clicking the left and right arrows is the “Incremental
change” on the Scroll bars and we want this to increment by 1 each time this happens. Click-
ing in the gap between the slider bar and the incremental arrow is termed the “Page change”
and we set this to 5. I have linked the changes to cell F4. Click away from the control, and

Figure 6-3: Formatting a Scroll bar control.

90

Excel by Example

then move the slider bar around and note how cell F4 changes. Of course, it is conceivable that
the crystal frequency will be a value other than in integer between 0 and 12. Simply clicking
on cell F4 and changing the value to whatever the crystal frequency is (in MHz) will reverse
the process and the slider bar will move to the appropriate place. I named cell F4 Oscillator.

To date, the worksheet appears as Figure 6-4.

Figure 6-4: Initial placement of Forms controls.

From a configuration point of view, the port pins of the 8051 are simple. The only thing that
needs to be set up is if a pin is an output, then it may need to be cleared to 0 on startup. We
will use Check boxes to decide which inputs must be initialized to 0. After creating a table
for the 8 bits of Port 0 in the worksheet range A8 to H10 (as in Figure 6-5), we have to place
eight Check boxes. You will remember from the Option buttons how difficult it was to align
just two. The description of one way to align the Check boxes follows. Now that this ap-
proach is in print, no doubt someone will let me know of a simpler way.

First, place a Check box anywhere on the worksheet. Delete the text and size it to as small as
it will go. Click away from the box. Right-click on the Check box and select Cut. Then click
in cell A11, right-click and Paste. Repeat for cells B11 through to H11. We should now have
eight Check boxes, all offset to the same degree from the midpoint position of cells A11 to

91

Example 6: 8052 Microcomputer Register Setup

H11. Left-click on the one in column A. A menu may pop up, but ignore it and press <Ctrl>
and then click on the remaining seven Check boxes allowing a multiple selection. Move the
cursor within this selection until the cursor changes to a four-headed arrow. Click and drag
the boxes to the desired position. As before, each Check box requires a cell associated with
it, and we do this with the cell below each box, for example, A12 through to H12.

Checking and unchecking each Check box will change the cell beneath it from FALSE to
TRUE and back again. For bit 7, in cell A10 we enter:

 =IF(A12=TRUE,0,1)

So it shows a 1 if the box is unchecked and a 0 if it is. We copy this formula to all the bits in
cells B10 through to H10.

At the right-end of the table, we will add the hexadecimal byte associated with this setup.
Cell I10 contains the formula:

 =DEC2HEX(128*A10+64*B10+32*C10+16*D10+8*E10+4*F10+2*G10+1*H10,2) &”H”

Within the parenthesis is the numerical conversion based on the binary value of each bit.
The DEC2HEX function converts the number to hexadecimal (with 2 characters derived

Figure 6-5: First register setup.

92

Excel by Example

from the last parameter in the junction), and then the “&” concatenates the “H” suffix. The
overall appearance will look even better when we hide row 12.

Next, we block from A8 to I12 and copy to locations A14, A20 and A26. In this manner,
the Check boxes are copied as well. Note that when “showing” the cell using the expand
button, an absolute address is inserted. When you copy this, if this remains as absolute we
will need to edit every control after the copy. It is probably a good idea to remove the $ signs.
I should note that doing this can be quite frustrating, since the arrow keys don’t move the
cursor but add in cell information. You will need a combination of mouse clicks and Back-
space or Delete keys.

We then edit the title of each table to the correct port ID. Later in the process, we will want
to protect the whole workbook to prevent the user from changing the controls and formula.
To allow this to happen we must first unlock the following cells: F4, A6, A12:H12, A18:
H18, A24:H24 and A30:H30. The process is as follows: select the cell(s), right-click, Format
Cells | Protection and make sure Locked and Hidden are unchecked.

After hiding rows 6, 12, 18 and 24, we click on Toggle Grid on the Forms Control toolbar to
see Figure 6-6.

Figure 6-6: First sheet showing processor selection, oscillator frequency and port
initialization. Note the lack of the grid.

93

Example 6: 8052 Microcomputer Register Setup

We will improve further on this appearance by the end of the model development, but for
the moment, I suggest clicking the Toggle Grid again so we can develop further.

Counter/Timer 0 Sheet

Figure 6-7: Timer/Counter 0, Mode 0.

Figure 6-8: Timer/Counter 0, Mode 1.

Figure 6-9: Timer/Counter 0, Mode 2.

Figure 6-10: Timer/Counter 0, Mode 3.

Osc/12

T0
TR0

GATE
INT0

TL0
(5 bits)

TH0
(8bits) TF0 Interrupt

Osc/12

T0
TR0

GATE
INT0

TL0
(8 bits)

TH0
(8bits) TF0 Interrupt

Osc/12

T0
TR0

GATE
INT0

TL0
(8 bits)

TH0
(8bits)

TF0 Interrupt

Reload

Osc/12

T0
TR0

GATE
INT0

TL0
(8 bits) TF0 Interrupt

Osc/12

TR1

TH0
(8 bits) TF1 Interrupt

94

Excel by Example

Let’s move along to the next worksheet marked “C_T0”. Counter Timer 0 can be operated in
one of four modes (see Figure 6-7 to Figure 6-10), and to select the mode we will implement
a Combo box control. The options that drop down in the Combo box selection must ap-
pear in the workbook. One of the shortcomings of this Forms Control is that the list must be
vertical, it cannot be horizontal. (Another shortcoming is that it is not possible to make the
controls visible or invisible, unlike ActiveX controls where it is possible with similar controls.
The limitation has influenced my approach to this model.) As with the other controls that
we have used, there also needs to be a cell link to hold the output. As you can see in Figure
6-11, the text input for the options is in cells A5 to A8, and the linked cell is A4. Cell A4
has also been named TC0_Mode in a separate step and is unprotected.

Figure 6-11: Combo box setup.

The timer/counter can be configured as a timer or a counter. The essential difference is the
source of the clock for the up counter, as can be seen from the switch between OSC/12 and
T0 in Figure 6-7 to Figure 6-10. In principle there are only these two options, but conceptu-
ally, there is an added dimension if we want to add some sophistication to the application.

Let’s consider if we want to measure a pulse width using Mode 0 (Figure 6-7). We would
want the input to be on INT0, and the switch C/T set to the C option. When the signal on

95

Example 6: 8052 Microcomputer Register Setup

INT0 is high (with the configuration bits GATE and TR0 both set to 1), the OSC/12 signal
is counted. The count is directly associated with the period that INT0 was high. In this situa-
tion, it would make some sense to initialize the counter to 0 before starting the measurement.

If we were trying to generate a predetermined time period, the counter would still be fed
from the OSC/12 signal (Figure 6-7). The GATE configuration bit would be 0, and the TR0
configuration bit would be 1. We would like an interrupt to be generated after N counts,
where N represents the number of counts associated with the time period. Because the coun-
ter is an up counter, we would like to preload the counter with the maximum count, minus
these N counts.

As an extension of this time period concept, when the counter clock is periodic, it would be
nice to enter the actual time period and have Excel generate the count required to achieve this.

For want of a better expression, I refer to these as “counting types,” and these concepts can
be extended to the other modes as well.

I have implemented these concepts using two Combo boxes (see Figure 6-13). The first of
these two Combo boxes selects between the Counter and Timer concepts with these two op-
tions being listed in cells A10 and A11. The linked output cell is A9. The second of the two
Combo boxes selects the Counting Type providing the options “Count from nn”, “Count
nn”, and “Timer” to cover the concepts just described. The input cells are A13 to A15, and
the output is in cell A12.

It is necessary to unprotect cells A9 and A12 because of the way Excel works with the output
from controls. If protected and the whole sheet is protected, any event that attempts to
change their value will generate an error message.

The configuration of this counter is achieved by writing to the four least significant bits of
the TMOD register. The outputs of the first two Combo boxes are used to set the bits in
the register representation, which I set up in cells B12 to F15, as seen in Figure 6-13. The
gate function (cell B15) may be set or cleared by entering a 1 or 0 in the cell, so it must be
unprotected. In addition, its value can only be 0 or 1 so the cell is formatted for zero decimal
places, and also conditionally formatted. Click on the cell, and then Format | Conditional
Formatting and choose the conditions of less than 0 or greater than 1 as in Figure 6-12. The
background of the cell will turn to red if the incorrect value is entered.

96

Excel by Example

The other bits in TMOD are derived from the Combo box linked cells. The value of C/T
(cell C15) is calculated from:

 =IF(CT0=1,0,1)

That is, if the value of linked cell “CT0” is 1, then this bit is a zero. If it is anything else (and
the value is only set to go to 2), then the bit is 1.

Calculating M0 and M1 may not be as intuitive as you (certainly I) might think. I assumed
that if I logically ANDed the value in the linked cell “TC0_Mode” with the number one,
the result would be (as in programming) the least significant bit. This would look like:

 AND(TC0_Mode,1)

However the AND function assumes both the inputs are logical values, and if the value of
TC0 is not zero, then it is TRUE.

I had to find another way to calculate bits M1 and M0. I opted for the CHOOSE function as
follows. For M0 (in cell E15), I entered:

 =CHOOSE(TC0_Mode,0,1,0,1)

and for M1 (Cell D15), I entered:

 =CHOOSE(TC0_Mode,0,0,1,1)

Using concatenation and the dec2hex function, I created the hex equivalent of this nibble
using the “n” character to remind the user that this is, in fact, a nibble and the most signifi-
cant nibble is still to be added. Cell F15 contains:

 =”n”&DEC2HEX(B15*8+C15*4+D15*2+E15,1)&”H”

Figure 6-12: Conditional Formatting cell B15.

97

Example 6: 8052 Microcomputer Register Setup

Figure 6-13 shows the result so far.

Figure 6-13: Setup of Counter Timer 0.

Timer Counter Control Register TCON
Only one bit in the TCON configuration register needs to be setup, and this is TR0, the
Timer control bit. We will use a Check box to indicate if this is set or not. The linked cell is
A17 and named TR0. The control is just visible at the bottom of Figure 6-16.

Counting Types
Since the requirements of each of the counting types are dissimilar, rather than create huge
IF statements, we will create each condition separately, and then hide or unhide the associ-
ated series of lines. Unfortunately, because the controls hover above the lines, they cannot
be made to disappear.

In all of the counting types we need to enter a number, but the number can be in hexa-
decimal or decimal, we place Option buttons that can be used for all configurations of the
counting types. The buttons are linked to A20, which has been named Base and of course, is
unprotected.

98

Excel by Example

The “Count up from …” type is simple enough, as all the user has to do is enter a value,
which will be written into the registers. There is a setup for each mode in this counting type
in the cell block A23:H36 in Figure 6-16. In each mode, there are a different number of bits
that can be written to the registers. In each of the input cells (remembering that from the
user’s perspective, only one of these setup registers will be visible), I have added a comment
as to how many bits are permitted. In addition, the input cell also has conditional formatting
that will turn the cell red for a number that is too large. The conditional formatting is set to
formula as shown in Figure 6-14.

Figure 6-14: Using a formula in the Conditional Formatting box.

The data entry cell is formatted as text so that later manipulation is consistent and won’t
have to consider numbers as well as text.

To convert from text to a number, we use the VALUE function. Cell A24 will always have
the decimal value of the number entered and it is translated to cell D25 so it can be entered
into the source software for the project. Figure 6-15 is shown so that you are not totally in
the dark. I have also used the Tools | Formula Auditing to indicate the precedents and
descendents of the cells, in an attempt to clarify the sequence of events.

Figure 6-15: Initial register configuration on Mode 0,
as a counter, and start counting from the designated
value.

As before, the calculation is placed in column A to provide a focused area for the derived
information and, of course, to hide it at a later stage.

99

Example 6: 8052 Microcomputer Register Setup

In Parenthesis: Excel Warning Detection

Aside from the red triangles sitting in the top right-hand corner of a cell which indicates
that the cell contains a comment, you may have noticed a green triangle in the upper
left-hand corner of some cells. This is Excel’s method of indicating that there may be a
problem with the cell. Click on the cell with the green indicator, like A24, and you will
notice an exclamation point in a diamond shape. Allow the cursor to hover over this
symbol and Excel will provide a pop-up summary of what it believes to be noteworthy.
Click on this symbol and there are a host of things that you may do associated with this
perceived problem.

In each of the modes 1 to 3, while set as a counter for the counting type of “Count From”,
the register setting is an expanded form of the Mode 0 setup just described. TL0 and TH0 are
treated as two separate registers. In Mode 3, TH0 does not work as a counter, so the user will
have to manually do a timer calculation if TL1 is set as a counter. In all my years of experi-
ence, I have never used this mode so I have made an “authoritative” (pun intended) decision
not to pursue this avenue.

Figure 6-16 shows the four modes so far. I have also added the precedents and descendents
for TH0, since this is vaguely different to Figure 6-15.

Figure 6-16: Modes 0–3 for Counter input, counter type “count from”. In usage, only
one of the modes will be visible at a time, depending on the mode.

100

Excel by Example

Count

The next four modes are very similar to previous modes. The only difference is that for any
value entered, the programmed value is subtracted from the (maximum count + 1) to allow
for the overflow. The whole previous modes (A23 to G36) block is copied and the associated
test in cells changed for “Count from:” to “Count:”. The entries in column A are also modi-
fied. For instance, cell A38 contains:

 =IF(Base=1,8192-VALUE(D38),8192-HEX2DEC(D38))

where the maximum count of a 13-bit counter is 8191.

Figure 6-17 shows the appearance of this small section.

Figure 6-17: Modes 0–3 for Counter input, counter type “count”.

Timer

Although the microcomputer peripheral may be configured as a counter, it can act as a timer
for a periodic input on T0. The user needs to enter the frequency in hertz and the desired
period in milliseconds. Excel then performs the calculation for the necessary divisor, and
checks whether this is attainable.

Figure 6-18 shows the layout for Mode 0 Timer.

Figure 6-18: Setup of Mode 0 in a timer application.

The user will be expected to type the number in hertz for the input frequency, and the
overflow period in milliseconds. The maximum input frequency on T0 is limited to the 8051
oscillator frequency/24 and this fact is commented in cell D52 (reading 12000) in Figure
6-18. The cell is also conditionally formatted, but there is a slight hiccup here. A conditional

101

Example 6: 8052 Microcomputer Register Setup

formatting statement cannot access a cell on a different worksheet, so I added the following
formula in cell A2:

 =I_O!F4*1000000

so that frequency does appear on this worksheet. The Conditional Formatting box is shown
in Figure 6-19.

Figure 6-19: Conditional Formatting the input frequency.

The divisor is calculated from the input frequency divided by the output frequency and since
the frequency is the inverse of the period, the contents of cell G52 are:

 =D52*G52*1E-3

Since the divisor can only be set to an integer value, we need to introduce the ROUND
function. So the cell becomes:

 =round(D52*G52*1E-3,0)

In Parenthesis: ROUND

The action of the ROUND function is intuitive. Its format is ROUND(number,num_digits).

Where number is the number to be rounded, and the num_digits is the number of decimal
places. The function will round up at 1.50 and down at 1.49. A num_digits of zero will
result in an integer, but of note is that you can use a negative number to move to the
left of the decimal point. ROUND (47.9,-1) produces a value of 50.

This function should not be confused with the Number option in the cell formatting.
In the ROUND function, the number is changed and any reference to the cell uses the
rounded value. In the formatted state, the number is modified visibly, but the full ac-
curacy is used and any further calculation.

In Mode 0 the counter is configured to count 13 bits, so the maximum it can be is 8191 and
the cell is conditionally formatted to turn red if it exceeds this value. The formula in cell
A53 subtracts the calculated divisor from 8192 (depending on decimal or hexadecimal for-
mat) since each counter is an up counter. The results appear as a hexadecimal number in cell
G54. The cell at the bottom, reminds the user that the result can only be 13 bits long. This
message changes to an alarm message if the result is greater than 13 bits.

102

Excel by Example

Since the calculated divisor must be an integer, the resulting overflow is not always exact, so
I added a calculation to the right, to substitute the divisor back and calculate the exact time
and the percentage error.

The rows for Mode 1 are almost identical except that the counter is a 16-bit counter, so
things are changed accordingly. Mode 2 is an 8-bit counter, so no further explanation is
required.

Mode 3 results in 2 counters. The first is the same as Mode 2, but the second is clocked from
the microcomputer oscillator (or at least 1/12 of it). It should be noted that since we cannot
turn on a control, if the user desires to use the TH0 counter, they need to set the TF1 bit in
the C_T1 worksheet.

To cut a long story short, the timer configurations are very similar to the counter. The con-
figurations have been copied and modified to reflect that the input is from the oscillator/12.
The “Count from nn” makes some sense if we are measuring a pulse width. Even though
Mode 2 in this configuration is unlikely, it is still presented. “Count n” has the same meaning
as the “Timer”, and so the same configuration is used. Since we still have a lot of ground to
cover, look at the workbook “8052.xls” if you are interested in further detail.

Macros to Hide and Unhide
As promised, we now consider hiding and unhiding lines, which we will use to show only
one of the modes that we have developed. The easiest way to create the macro is to use the
macro record facility, and then analyze and edit the result. It normally helps to think about
the process we want to implement in advance so that it can all be included in one macro.
We will want to invoke the macro from different sheets so we should start recording the
macro from a different sheet to where we are going to hide the lines.

Click on the I_O sheet. Select Tools | Macro | Record new macro… and title it HideLines
and then click on OK. All our actions will now be recorded. Click on sheet T_C0. Click on
the row selection bar 23 and drag to line 25. Right-click on the selection and select Hide.
Then Select Tools | Macro | Stop Recording. If the Macro toolbar is present, you can
simply click on the Stop control.

Let’s repeat the process for unhide and name the process RevealLines. Then we go to Tools |
Macro | Macros, select either macro and Edit it. The result should be similar to the following:

Sub HideLines()
‘
‘ HideLines Macro
 Sheets(“C_T0”).Select
 Rows(“23:25”).Select
 Selection.EntireRow.Hidden = True
End Sub

103

Example 6: 8052 Microcomputer Register Setup

Sub RevealLines()
‘
‘ RevealLines Macro
 Sheets(“C_T0”).Select
 Rows(“22:26”).Select
 Selection.EntireRow.Hidden = False
End Sub

It is obvious that the macros are procedures (also called subroutines) in Visual Basic. Pro-
cedures allow for passing values as parameters, so if we convert these we can generalize the
procedures and call them from anywhere.

Figure 6-20: Preparation for revelation of a particular mode of operation.

Figure 6-20 shows how I have modified the procedures to allow for three strings (passed as
parameters) that will allow for any set of lines on any sheet to be hidden. Once these param-
eters are added, the procedure (macro) cannot be accessed as a macro from any Excel feature
like a control button or running a macro from the Macro list. These procedures have to be
called from another macro, which you can see as ProcessT_C0. This is sufficient to test the
process.

104

Excel by Example

We can run the macro in the normal fashion, but in reality, we want the display to be updat-
ed every time we change the selection in a Combo box. Right-click on each of the Combo
boxes and click on Assign Macro. Associate the control with the ProcessT_C0 macro that is
listed in the window, as shown in Figure 6-21.

Figure 6-21: Assigning a macro to a control.

Once we have tested that the macro does indeed blank all the options, it is time to expand
the scope.

Here is a snippet of the code that looks at all possible combinations and displays only one of
the possible configurations. Each value of Mode Selection is treated as a case. Within each
Mode case, there is a selection of a Counter or Timer case and that is further broken down
into Counting Type cases. With the advantage of hindsight, it is possible to shorten the code
by taking a different approach, but it may detract from the generality of the approach and
would be more difficult to explain.

Sub ProcessT_C0()
 Call HideLines(“C_T0”, “23”, “114”)
 ‘this blanks the whole set of configurations,
 ‘we will turn on the associated on now.
 Select Case Range(“A4”).Value
 ‘choose based on “Mode Selection”
 Case 1
 ‘Mode 0
 Select Case Range(“A9”).Value
 ‘choose based on Counter/Timer

105

Example 6: 8052 Microcomputer Register Setup

 Case 1
 ‘Timer
 Select Case Range(“A12”).Value
 ‘Choose base on Counting Type
 Case 1
 ‘count from nn
 Call RevealLines(“C_T0”, “76”, “78”)
 Case Else
 ‘timer & count n
 Call RevealLines(“C_T0”, “90”, “94”)
 End Select

 Case Else
 ‘counter
 Select Case Range(“A12”).Value
 ‘Choose base on Counting Type
 Case 1
 ‘count from nn
 Call RevealLines(“C_T0”, “23”, “25”)
 Case 2
 ‘count n
 Call RevealLines(“C_T0”, “37”, “39”)
 Case Else
 Call RevealLines(“C_T0”, “51”, “55”)
 ‘timer

 End Select

 End Select
 Case 2
 ‘mode 1
 ……
 ……
 Case 3
 ‘mode 2
 ……
 ……
 Case Else
 ‘mode 3
 ……
 ……
 End Select
 Range(“B114”).Select
 ‘deselect the range.
End Sub

106

Excel by Example

Experimenting with the different choices in the Combo boxes hopefully will result in some-
thing similar to Figure 6-22. (I have hidden column A to improve the effect. I also removed
the gridlines, formula bar and status bar.)

Figure 6-22: An operational worksheet!

Adding Forms
It seems to me that this application is missing a certain je ne sais quoi. Perhaps it lacks the
verve and vitality of, say, a user manual. Seriously though, it would improve the interface
significantly if there were graphic images of each configuration so that the parameters could
be seen in context.

Based on the 8052 hardware description, I created the line drawings that I wanted using
CorelDRAW® (of course any drawing software would work). I saved the output in several
formats, but when I used the resultant graphics (coming up), the text in the graphics was
unacceptable in every case but the Windows Metafile (.wmf) format.

In order to create a form we need to be in the Visual Basic Editor. Insert | User Form will
result in Figure 6-23.

107

Example 6: 8052 Microcomputer Register Setup

Note that the forms that are created appear as folders in the Project Window. When an ob-
ject is selected, its properties can be viewed (if not immediately visible, right-click the object
and select Properties). The properties can be viewed alphabetically or by category depending
on the tab selected. We need to change some of these properties to suit our purposes. First,
the name should be changed to provide a handle that is more meaningful. Click in the right-
hand column of the (Name) row and give it a name. Visual Basic recommends that users
implement “Hungarian“ notation in naming objects. The recommended prefix for a form is
“frm”, so we name the form frmT0Mode3.

Change the caption (the text at the top of the window) to Timer/Counter 0: Mode 3.

In order to maintain the same size window for all the different graphics that will be displayed,
change the height to 200 and the width to 260 (VBA will adjust these slightly at some point
in the creation process). The form pops up over the worksheet and I didn’t want it obscuring
anything on the worksheet so that each time it changed, the user would have to drag it out of
the way. I set up the window so that we manually place it at the top left-hand corner, so that
the user could size the worksheet to fit in the right-hand side of the screen as shown in Figure
6-25. To this end, change StartUpPosition to 0-Manual and Left and Top to 0.

If the modality of the window is true, the user must supply information or close the window
to continue. In other words, with this property set to true, if the window pops up you are
stuck there until it is closed. Since this is only a picture, we want the ShowModal property
to be set to False.

Figure 6-23: Adding a user form.

108

Excel by Example

As we will see shortly, the image that is displayed has a white background. For aesthetic rea-
sons, I changed the BackColor (background color) to white (click on Palette tab and select
the white color) so that the picture will appear to occupy the whole window.

Add Image Control
If the toolbox has gone missing, click on the form itself. If still not visible, click on View |
Toolbox. Identify and click on the image control, and then click and drag a window on the
form resulting in Figure 6-24.

Figure 6-24: Placing the image on a form.

The properties of the image object must also be customized. First and foremost is obviously
the image that is going to be displayed. Click on the Picture property and using the browse
function, find the file that is to be used. In this case it is T0Mode3.wmf. Since we (at least I)
want the picture to blend in with the whole window, the BackColor is set to white, and the
BorderStyle is set to 0-fmBorderStyleNone.

Scaling the image is mostly by trial and error. Set the Autosize property to True and the
PictureSizeMode to 1-fmPictureSizeModeStretch. Doing this results in the image borders

109

Example 6: 8052 Microcomputer Register Setup

falling outside of the form and so the edges are unreachable. Modifying the height and width
properties to about 100 resizes the image so that it is manageable. The image is then sized by
dragging the edges till it looks right.

Once all the forms have been created, the code must be altered to show and hide the forms. I
first created a procedure to clear all the forms:

Sub HideForms()
 frmT0Mode0.Hide
 frmT0Mode1.Hide
 frmT0Mode2.Hide
 frmT0Mode3.Hide
End Sub

This is called at the beginning of ProcessT_C0, which you will recall is run every time one of
the Combo boxes is modified. Depending on the setting of the Mode Combo box one of the
forms is shown by using the associated instruction:

 frmT0Mode0.Show

in each of the four possible cases. Running the spreadsheet and clicking on the mode box
will result in a picture something like Figure 6-25.

Figure 6-25: Running the application. The Excel window has been sized so that the form
does not hide anything on the worksheet.

110

Excel by Example

As with all programming, there is yet another issue. If we change the worksheet by clicking
on a tab, the form does not disappear. We need to find an event (remembering that Windows
is event driven) that occurs when the worksheet tab is clicked. In the project window, under
the Microsoft Excel Objects folder is a ThisWorkbook folder. Double-click on this. In the
left-hand drop-down box of the VB editor, select Workbook, and in the right select Work-
book_SheetActivate. In this procedure, we add the code:

Call HideForms

This will resolve the problem as we can quickly test. However, we can even go one step
further and use the change to detect which sheet is now valid and automatically initiate the
form. The code becomes:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 Call HideForms
 Select Case Sh.Name

 Case “C_T0”
 Call ProcessT_C0
 End Select
End Sub

And the process should act as expected. The only thing that does not happen, is when the
workbook is first opened, no form is triggered. We will deal with that later after we have
finished the whole application.

111

Example 6: 8052 Microcomputer Register Setup

The information on worksheet C_T1 is very similar to C_T0, as can be seen in Figure 6-26
to Figure 6-28. I simply copied the whole of page T_C0 to T_C1. The difference between
the counters is that Timer 1 cannot have Mode 3, so all those options are deleted. When in
Mode 2 it can be configured to operate as a baud rate generator.

The Mode Combo box is edited to have only three entries. As I have discussed earlier, it is
not possible to modify the Forms controls, but it would be nice in this case since the baud
rate generator only occurs in one combination of events. There is a way that is only slightly
inelegant. The text to appear in the Counting Type Combo box appears on sheet C_T1 cells
A13 to A16. A16, however, is conditional:

 =IF(AND(A9=1,A4=3),”Baud Rate”,””)

so that it can be blank or have text. The associated line on the drop-down box will either be
a blank or carry the text “Baud Rate”. It is still possible to click on the space, but the soft-
ware in the macro looks after this.

Figure 6-28: Timer/Counter 1, Mode 2.

Osc/12

T1
TR1

GATE
INT1

TL1
(8bits)

TH1
(8bits)

TF1 Interrupt

Reload

Figure 6-26: Timer/Counter 1, Mode 0.

Osc/12

T1
TR1

GATE
INT1

TL1
(5bits)

TH1
(8bits)

TF1 Interrupt

Osc/12

T1
TR1

GATE
INT1

TL1
(8bits)

TH1
(8bits) TF1 Interrupt

Figure 6-27: Timer/Counter 1, Mode 1.

Timer/Counter 1 Sheet

112

Excel by Example

Actually, the baud rate is affected by a bit in the PCON register, which I have added to the
I_O sheet. The baud rate is calculated from (2SMOD/32)* Timer 1 Overflow. This can be re-
written as (2SMOD/32)*((Osc/12)/N), where N is the divisor. Rearranging this to get N, given
the Baud Rate:

 N=(2SMOD/32)*(Osc/32)/BR and cell G86 implements this as

 =ROUND(((2^’8052.xls’!SMOD)*D85)/(G85*32),0)

The circumflex ^ is the exponent symbol. It is also possible to express this using the POWER
function.

A new macro is created for revealing the associated lines, new images created, and the other
procedures modify to take into account the changes when working with sheet C_T1.

Timer/Counter 2 Sheet

Figure 6-29: Timer/Counter 2, Auto Reload mode.

Osc/12

T2

TR2

TL2
(8bits)

TH2
(8bits) TF2

Interrupt

TL2
(8bits)

TH2
(8bits)

EXEN2

T2EX
EXF2

Figure 6-30: Timer/Counter 2, Capture mode.

Osc/12

T2

TR2

TL2
(8bits)

TH2
(8bits) TF2

Interrupt

TL2
(8bits)

TH2
(8bits)

EXEN2

T2EX EXF2

The setting of the control bits for Timer/Counter 2 is completely different to timers 0 and
1 as can be seen in Figure 6-29 to Figure 6-31. There are three possible modes, but the
Baud Rate mode can have three states: TCLK=1 and RCLK=0, RCLK=1 and TCLK=0, or
TCLK=1 and RCLK=1. This is easily handled by just extending the mode selection.

113

Example 6: 8052 Microcomputer Register Setup

The different calculations are very similar to Timer/Counter 0 and so I just copied the sheet
and whittled it down. I also copied and modified the macros, along with creating new dia-
grams and forms. I won’t detail much more of it, but if you want to see what all the formulas
are, it is possible to see by going to Tools | Options and clicking on the Formulas box. You
will see a screen similar to Figure 6-32 which will allow you to see which cells have formulas,
and what they are.

In addition, you can also find which cells have been conditionally formatted. Follow the se-
quence Edit | Go To | Special and when the window as shown in Figure 6-33 is presented,
select Conditional formats and then OK. This will result in all conditionally formatted cells
being indicated.

Serial Port Sheet
Since the serial port is straightforward, the user interface needs no special mentions. No
forms are associated with this worksheet.

Interrupt Control Sheet
The interrupt registers are straight forward and created in a manner similar to earlier work-
sheets as seen in Figure 6-34. The only item of note is that bits TR1 and TR0 in register
TCON are derived from the settings on sheets C_T1 and C_T0 respectively. There is one
user form associated with this worksheet. Obviously the macro “Workbook_SheetActivate”
is modified to accommodate this.

Figure 6-31: Timer/Counter 2, Baud Rate Generator mode.

Osc/2

T2

TR2

TL2
(8bits)

TH2
(8bits)

Interrupt

TL2
(8bits)

TH2
(8bits)

EXEN2

T2EX EXF2

“1”

RCLK

“0”

/2

/16
“1”

TCLK

“0”

/16

“0” “1”

SMOD

TF1

114

Excel by Example

Figure 6-33: Finding conditional
format in cells.

Figure 6-34: Interrupt configuration.

INT0 IE0

0

1

TF0

INT1 IE1

0

1

TF1

TI
RI

TF2
EXF2 (8052 only)

Figure 6-32: Viewing formulas.

115

Example 6: 8052 Microcomputer Register Setup

Summary Sheet
The summary sheet is where all the register data is accumulated in preparation to write it
to a file. Some registers like SP or P1 are simply loaded from the hexadecimal representa-
tion in the associated worksheet. Registers like TCON are created by string manipulation
to generate a 2-character hexadecimal number. Other registers like TH1 and TL1 are more
problematic, because they depend on the mode of operation chosen. Typically, they are
modified after the mode is fixed, so that the event that selects the mode cannot be used to
write the values.

In order to solve this conundrum, we extract TH1 (or TH or TH2) and TL1 in each possible
mode of operation. If the calculation results in a single 13 or 16 bit number then two bytes
are extracted. The numbers are positioned in column L and M on each counter worksheet.
They could be hidden at a later stage, but I have chosen not to do this.

Two cells in column A in each counter worksheet (remember they will be hidden later) are
reserved. Each mode change uniquely triggers the revelation of several lines so the location
of TH and TL can be isolated as well. The macro is therefore modified to write the cell iden-
tity where TH and TL are located into these two cells in column A.

For instance, on worksheet C_T0, these cell addresses are stored at A115 and A116. Each
line revelation is now invoked by two calls. The first “unhides” the line, the second saves
the cell locations to cells A115 and A116. The calling code has been modified to have this
second call. Here is an extract from ProcessT_C0:

 Select Case Range(“A12”).Value
 ‘Choose base on Counting Type
 Case 1
 ‘count from nn
 Call RevealLines(“C_T0”, “76”, “78”)
 Call GenerateTHTL0(“L78”, “M78”)
 Case Else
 ‘timer & count n
 Call RevealLines(“C_T0”, “90”, “94”)
 Call GenerateTHTL0(“L93”, “M93”)
 End Select

The routine that saves these values is short and sweet:
Sub GenerateTHTL0(sTH0 As String, sTL0 As String)
 ‘load the current pointers for TH0 and TL0
 Range(“A115”).Value = “C_T0!” & sTH0
 Range(“A116”).Value = “C_T0!” & sTL0
End Sub

The cells in the summary sheet use the INDIRECT function to get the cell address from
A115 and A116 and then lookup the value. The sheet name must be added to the address in
A115 and 116, otherwise the INDIRECT function will access the sheet that it is invoked on.

116

Excel by Example

The idea of this model is to generate an assembler file with the necessary code to initi-
ate the registers. Clicking on the button will run a macro that will do just that. The macro
creates a text file from the name in cell B3. The assembly file consists of a series of MOV
regname,#data type instructions. Depending on your assembler or even high level language
you could create whatever file you wanted, following this example.

Initialize Values
By naming a macro Auto_Open, the macro is executed every time the workbook is opened.
The Auto_Open macro in this workbook cycles through all the sheets setting up the default
values and then positions the cursor at the location I think most users will start—the crystal
frequency.

Conclusion
All through this exercise, we’ve gone to the trouble of unprotecting certain cells so that
data can be entered and changed, but when we protect a sheet, we discover that the macros
to hide and unhide will crash. The solution is to add an unprotect instruction for the sheet
before a line is hidden or unhidden and to reinstate the protection after the action. For
instance, the “HideLines” procedure becomes:

Sub HideLines(sSheetID As String, sStartLine As String, sEndLine As String)
‘ HideLines Macro
 Sheets(sSheetID).Select
 ActiveSheet.Unprotect
 Rows(sStartLine & “:” & sEndLine).Select
 Selection.EntireRow.Hidden = True
 ActiveSheet.protect DrawingObjects:=True, Contents:=True, Scenarios:=True
End Sub

All that is left to do is to hide column A in those sheets where it contains working data, pro-
tect the sheets and then go to Tools | Options and get rid of the Formula bar, Status bar,
Gridlines and Row & column headers. The latter two have to be changed for each sheet.
Figure 6-35 shows how well the application cleans up. You could almost forget it is Excel!

117

Example 6: 8052 Microcomputer Register Setup

Figure 6-35: One of the sheets with the associated form.

Finding the Optimal Resistor
Combination: LP 2951

7E X A M P L E

118

Model Description
Many products in the electronics world rely on the ratio of two resistors to determine the
output of a programmable device. This can include voltage regulators, amplifiers, and current
sources. There is one degree of freedom, so the normal approach is to fix one of the values
and solve for the second. This will produce a result, but because there are only discrete values
for resistors, there is an inherent inaccuracy. We will see this in many forthcoming examples.
However, sometimes we want to get as close as possible to a solution and that involves trying
one resistor value against another for the optimal ratio.

The LP2951 is an adjustable voltage regulator. The output voltage is determined by the fol-
lowing formula:

 Vout = Vref (1 + (R1/R2))

where R1 and R2 are the values of the feedback resistors as configured in Figure 7-1 and
Vref = 1.23V.

Figure 7-1: Programmable
voltage regulator.

R1

R2

FB

VoutVin

GND

V+

LP2951

Custom Autofill
The flexibility in Excel allows the creation of custom lists for use with the Autofill feature.
We electronic guys have our own special sequences like the standard resistor values. It would
be nice to have these as a custom list. I have opted to use the “A” decade values for two

119

Example 7: Finding the Optimal Resistor Combination: LP2951

reasons. First, if we really want accuracy, it would be better to use 0.1% tolerance resistors,
and these are more readily available in these “A” values. Second, it is easier to show fewer
values in the figures.

A custom list must be formatted as text since the autofill function could not tell the differ-
ence between a normal numerical sequence and the custom input if it were numerical. This
is not a problem as we will see. In order to enter the series, we must first select all the cells
that will be in the range and format them (Format | Cells | Number | Text) and then
enter into those cells the sequence 10, 11, 12, 15, 16, and so on to 100. It is not possible to
reverse the formatting order—that is, the numbers followed by formatting as text—because
the custom list creation will not recognize this. As an alternative, you may prefer to enter an
apostrophe ’ before each number. Excel will place the little green triangle in the left-hand
corner to suggest that perhaps we have erred in formatting a number as text.

In Parenthesis: Communicating Custom Lists Between Different Computers

Any custom list is created as part of Excel and is not carried with the worksheet. As a result,
when you load the “LP2951.xls” workbook, the autofill list will not be present. To install
the list, simply block cells E5 to AC5 and import the range as described in this example.

Click on Tools | Options | Custom Lists and Import the range we have just created as in
Figure 7-2. Anytime we enter the sequence ’10,’11 or any other pair and then autofill, Excel
will expand with the standard resistors values that we have setup. Note that the apostrophe
must be used. Despite the fact that this is text, if employed in a formula evaluation, Excel is
flexible enough to interpret it as a number.

In Parenthesis: Data Tables

The data tables approach in Excel can be applied in one or two dimensions. In a single
dimension, the user prepares a list of values that can be used for the input variable in
a formula, and the result of the formula calculated for each of these input values is
produced in a parallel list. In a two-dimensional data table, it is possible to vary two
input parameters to the formula. One variable is listed on the horizontal axis, while the
second is on the vertical axis. The result creates a table using the horizontal and vertical
values for each row/column intersection in the table. This approach is a variation of the
scenario technique.
The single parameter data table can operate in columns or rows. In columns, the range
of input values are in the first column, and the outputs are in the second. The formula
must be placed in the cell above the first cell of the output column. Similarly for rows,
the upper row is used for inputs, the lower for outputs and the lower cell to the left of
the output row contains the formula for evaluation.
In a two-dimensional data table where the data is arranged horizontally and vertically,
the formula is placed in the cell above the column data and to the left of the row data.
This is the approach used in this model.

120

Excel by Example

Data Tables
Opening a new workbook, we create a cell at location C3 for the target voltage and name
it TargetVoltage. Starting at cell E5, we enter ’10 and ’11 in F5. We then autofill this to the
value 100 in cell AC5. These values will be used for R2 in the calculation. We could create
a method of entering the standard values for R1 in the column that covers several decades,
but in order to save time we can rewrite the output voltage formula to get an idea of the ratio
between R1 and R2. This ratio can then be used to select the one or two decades of data
needed. The TRANSPOSE function will then allow us to take the initial sequence for R2,
multiply each entry in the input row by the factor and place the product in a corresponding
cell in the output column.

At an output of 15V, R1 would be a factor of 10 greater than R2. I added a cell at D3 named
Factor that will contain this ratio. Block from D6 to D30. Click in the formula bar and enter:
=factor*transpose(E5:AC5), followed by <Ctrl> + <Shift> + <Enter> to enter an array for-
mula. (See Appendix A for more on Array Formulas.) The E5:AC5 region can be established
in the formula through clicking and dragging when the opening bracket of the parenthesis is

Figure 7-2: Creating a custom list.

121

Example 7: Finding the Optimal Resistor Combination: LP2951

typed. Cells D6 to D30 now have values ten times greater than the horizontal row. In truth,
getting the exact size of the target can be painful. It is easier to size it larger than will actually
be needed, and then simply delete the cells with the error messages.

What we are trying to discover is what ratio provides a minimum error. The error is the tar-
get value minus the output voltage, i.e., TargetValue–(1.23(1+(R1/R2))). Setting this model
up requires a dummy calculation. I selected cell B6 to represent R2 and B7 to represent R1
and I entered any value there.

Click on cell D5 and enter:

 =TargetVoltage–(1.23*(1+(B7/B6)))

and the result is shown in Figure 7-4.

In Parenthesis: Transposing Data

In some cases (like this model), we would like to transform data arranged in columns
to data in rows and vice versa. The technique we use is dependent on what we are try-
ing to achieve. To merely copy the data, select the range in question and copy it to the
clipboard (Ctrl + C or similar) in the normal fashion. Click on the first cell of the desti-
nation. Click on the menu sequence Edit | Paste Special | Transpose (see Figure 7-3)
and voila, it is done.

Figure 7-3.

There is a formula that visually achieves the same effect, but it maintains the connection
to the originating cell so that any value update in one of the original cells is reflected in
the transposed cell. The relationship is not bidirectional. In order to transpose a range of

122

Excel by Example

data, first block the range of the destination, sizing it to the exact dimensions desired or
larger. (Actually, if the exact size is not used, the function is still executed. If the area is too
small, the data is truncated. If it is too large, error messages will occur in those cells.)

We enter:

=transpose (source range)

As we open the parenthesis, it is possible to click and drag the source range desired or
to enter the top left and bottom right cell row/column identifiers. But, we do not press
Enter. Instead, we use a variation of the “three-fingered salute,” Ctrl + Shift + Enter, and
the transposition is done. This peculiar entry combination enters the formula as an “ar-
ray formula.” A convenient feature (used in this model) is that it is possible to perform
a mathematical function on the original cells during the transposition.

This function is also available in VBA. In appearance, the execution of this function is
similar to matrix manipulation and indeed it is. Those of you interested in other matrix
functions should investigate MDETERM (matrix determinant), MINVERSE (inverse ma-
trix) and MMULT (product of two arrays).

Figure 7-4: Preparation for a two variable table.

123

Example 7: Finding the Optimal Resistor Combination: LP2951

Block the range D5 to AC30, and then click on the menu sequence Data | Table and we
are faced with the dialog box to associate the row and column data with the input data. Add
the two cells used in the input calculation (see Figure 7-5) and click on OK. The area of
the table is filled with data derived from the values in the respective row and column. Now
would probably be a good time to manicure the table.

Figure 7-5: Associating
row and column with
input data.

Min Function
We are going to look at each column and try to find the minimum value in the column. In
cell E31, we enter:

 =MIN(E6:E30)

The minimum function does not return a value that is closest to zero, but the most negative
number if it exists. In order to resolve this, we must edit the formula in cell D5 to:

 =abs(TargetVoltage-(1.23*(1+(B7/B6))))

and we copy this to all the columns through to AC31. Row 31 now contains the minimum
possible error in the output voltage for each possible value of R2. (The MIN function allows
for up to 30 parameters, since it can act in an immediate sense, for example, MIN(1,-4,5…),
but a large-range input is considered a single parameter so it would be possible to enter the
complete B series range. Or even on a particularly slow day, you could enter every resistor
value from 1 ohm to 1M!

MATCH Function

In Parenthesis: MATCH

The function has the format:

MATCH(lookup_value,lookup_array,match_type)

This searches a lookup array for a particular value and returns the offset from the beginning
of the range. The match type defines how the match is defined. For a match type value
of 0, the function looks for an exact match. A match type value of –1 forces the function
to identify the smallest value that is greater than or equal to lookup_value. Similarly, a
match type value of 1 forces the function to identify the largest value that is less than or
equal to lookup_value. In the case of –1 and 1, the array values must be ordered.

124

Excel by Example

We also want to know (trust me for now) which row this minimum appears in. To find the
row number, we need the MATCH function.

In cell E32 enter:

 =MATCH(E31,E6:E30,0)

and then copy this for all the cells E33 to AC33. Row 33 contains the row that will indicate
which value or R1 gives the minimum error for each value of R2.

In order to find the minimum of the minima (that is the smallest error that can be found),
enter the following in cell D31:

 =MIN(E31:AC31)

which searches all the minima for the smallest value.

In order to find the associated value of R2, we need to find the column in which the smallest
error is found. In cell D32, enter the formula:

 =MATCH(D31,E31:AC31,0)

which identifies this column.

INDEX Function

In Parenthesis: INDEX

This function is formatted as follows:

INDEX(array,row_num,column_num)

It will return the value of the cell in the array at the intersection of the row and column
chosen. It is possible to omit the row or the column for a single line range. An interesting
option is to use the value 0 as a row, and the function will then return an array of all the
cells in the column. The same is obviously true by interchanging the column and row.
You will need to enter this as an array formula to make this option work.

In order to extract the resistor values for R1, we need to take the column number found in
cell D32 and use it as the base of a lookup in the range identified as the range of resistor val-
ues (E32:AC32). We will extract the column number to using the INDEX function

Cell D33 contains:

 =INDEX(E32:AC32,,D32)

We could of course embed this as a nested function in the following lookups—it just seems
easier to have it visible on the worksheet.

Finding the associate values is achieved using the index function again.

125

Example 7: Finding the Optimal Resistor Combination: LP2951

D34 has the value of R2 and contains the formula:

 =INDEX(E5:AC5,,D32)

while D35 has the value of R1 and contains the formula:

 =INDEX(D6:D30,D33,)

Obviously, the numbers are a ratio and can be scaled to the suitable value in K ohms as
required.

Block Conditional Formatting
It is possible to emphasize the intersection where the minimum occurs by Conditional For-
matting of the whole block. The do this, we click and drag across the whole range from D5
to AC30 and then click on Format | Conditional Formatting. Enter the condition for the
rows and then Add>> the condition for the columns as in Figure 7-6.

Figure 7-6: Block conditional formatting.

The ROW function returns the row number within the worksheet, so the formula takes into
account the relative position within the range of the table, hence the (5+D33). The same
is true for the COLUMN function. The bracket pair used in the conditions in Figure 7-6,
(ROW() or COLUMN()), is the notation used to indicate that the calculation pertains to
each cell in turn and to use the associated cell/row number.

The completed application is seen in Figure 7-7. All the user has to do now is to enter the
desired voltage and the factor needed in terms of the resistor ratio. Despite the brute force of
the computer calculating every possible option, in my opinion this is quite an elegant solu-
tion to a problem that has faced most of us at one time or another.

126

Excel by Example

Figure 7-7: The completed application indicating the row and column that generated the
smallest error and the resulting resistor ratio.

Resistor Color Code Decoder
Using Speech Input

8E X A M P L E

127

Model Description
A search on the web will reveal several approaches to entering the resistor color code on a
computer and having the resistor value revealed. Doing this in Excel would not be that dif-
ficult using some Forms controls and a bit of code, but this would be reinventing the wheel.
It seemed to me that whenever I was trying to decide what a resistor value was, both my
hands were occupied. The simplest solution would be to say the colors out loud and have the
computer decode this. Excel (or rather Office) 2002 has speech recognition built-in. Since
modern resistors can have up to six bands and it is not always easy to tell which is the first or
last band, an additional spin (pun intended) is to take the bands in as left to right, or right to
left and look for a standard value that matches the pattern.

Resistors can have four, five or six color bands. In the early days when the color-coding was
developed, the resistor value was represented by two color bands and one multiplication
factor band. The fourth band represented the tolerance and would have one of three colors:
nothing for 20% (hence the three-band resistor), silver for 10% and gold for 5%. As the re-
sistor tolerance improved, a third band for the value was added and the tolerance colors were
expanded to use the same color scheme as the value bands. More recently, a sixth band has
been added for the temperature coefficient. These schemes can be seen in Figure 8-1, Figure
8-2 and Figure 8-3.

Figure 8-1: Three or
four band marking. 1st digit

2nd digit

Multiplication factor

Tolerance

128

Excel by Example

The possible colors on a resistor and their associated values are detailed in the following table.

Figure 8-2: Five band
marking. 1st digit

2nd digit

Multiplication factor

Tolerance

3rd digit

Figure 8-3: Six band
marking. 1st digit

2nd digit

Multiplication factor

Tolerance

3rd digit

Temp. Coeff.

Color Digits Multiplication
Factor

Tolerance Temperature
Coefficient

None 20%
Silver 10* 0.01 10%
Gold 11* 0.1 5%
Black 0 1 1% 200 ppm
Brown 1 10 2% 100 ppm
Red 2 1K 50 ppm
Orange 3 10K 15 ppm
Yellow 4 100K 25 ppm
Green 5 1M 0.5%
Blue 6 10M 0.25% 10 ppm
Violet 7 0.1% 5 ppm
Grey 8 1 ppm
White 9
* needed in the application (see later)

129

Example 8: Resistor Color Code Decoder Using Speech Input

Let’s see if we can generate a model that can handle all of this.

In Parenthesis: Speech Recognition

I used to regard speech recognition as a solution looking for a problem, but then I
don’t have a great reputation as a successful prognosticator. I remember seeing my first
photocopy machine on an episode of “Mission Impossible” and wondering why anyone
would ever want to copy anything. It was a much simpler time and place.

I am still not sure how practical this model will be in a noisy environment, but the feature
is there and no doubt some of you will take the speech recognition into Excel applica-
tions I could never have imagined.

In Parenthesis: Installing Speech Recognition

Before we can use speech recognition, it must be installed. Open the Excel Help and search
for “Speech Recognition”. Locate the topic “Install and train speech recognition” and
follow the instructions. The more you train the system the better the recognition gets.

Implementing Speech Recognition
The speech recognition function can operate in two modes: dictation and command mode.
In the former mode, text is decoded from the speech and creates one long string. In the latter
mode, any command from the toolbars can be invoked by speech. Selection between the two
is through voice commands or clicking on the associated button in the language bar. If you
have been through the voice training, you will have seen some of this in action.

It is possible to create voice commands by building a custom toolbar. On the toolbar we
place buttons with the name of the word we will use as the command, like Commence. We
will then create a macro with the same name as the command that will execute when the
command is spoken.

I was faced with two possible approaches. I could have implemented a few commands and
have the band colors dictated for later parsing. I opted for the second approach where each
color acts as a command allowing for immediate feedback. There are twelve colors and three
additional commands: “Commence”, “Evaluate” and “Backup”.

Quite a bit of preparation is required before the speech recognition can be implemented.

Viewing and Hiding the Language Bar
Working with the Language bar active can prove irritating, so while we set up the model,
let’s turn it off (if it is on). The easiest way to do this is to click on the microphone button of
the expanded toolbar as seen in Figure 8-4(I), so that the toolbar collapses to Figure 8-4(II).
(It is necessary to do this since the microphone can pick up and interpret signals even when

130

Excel by Example

the toolbar is minimized.) Then click on the minimize button on the Language toolbar and it
is transformed into the EN (for English) icon in the system tray as shown in Figure 8-4(III).

Figure 8-4: Language toolbar controls.

It can be restored by the menu sequence Tools | Speech | Speech Recognition, or by right-
clicking on the Language Bar icon in the system tray and selecting Show the Language bar.

Worksheet Setup
First, we set up the worksheet as shown in Figure 8-5 to create a pictorial image of a resis-
tor. The cell rows in the body of the resistor are merged in columns and sized so that it will
be possible to generate a pictorial representation of the resistor. The body of the resistor is
colored a light yellow so that a white band will show up against the light yellow background.
Also, all the cells are center formatted.

Macros
We need to create four types of macros. The first, called Commence, will clear all the cells
within the body of the resistor and place the cell selection on the first band. The second type
is for all the different color possibilities. This macro will change the color of the cell selected,
save the digit associated with the color within the cells allocated as the color band, and then
move two columns to the right. A third macro, called Evaluate, will analyze the number
sequence and pop-up the resistor value. Finally the fourth, titled Backup, allows the user to
go back one cell and correct the color.

As I have mentioned before, the simplest way to start creating a macro is to execute the steps
in the Record Macro mode and then edit them. For “Commence”, I first ensured that the cell
selected was outside the resistor body and then enabled the Macro Record. I clicked in cell
C7 and dragged to P7, which selected the whole body of the resistor. I pressed the Delete key

131

Example 8: Resistor Color Code Decoder Using Speech Input

to remove any values, and then right-clicked on the selection and set the color to light yel-
low. This action cleared all of the bands. I then clicked on cell C13 and entered the value of
zero, which zeroed the number of bands. Finally, I clicked back in cell D7 which positioned
the cursor at the first band, ready for a new input.

This is the result and needs no further editing:
Sub Commence()
 Range(“C7:P11”).Select
 Selection.ClearContents
 With Selection.Interior
 .ColorIndex = 19
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 End With
 Range(“C13”).Select
 ActiveCell.FormulaR1C1 = “0”
 Range(“D7:D11”).Select
End Sub

Figure 8-5: Resistor setup.

132

Excel by Example

Let’s create a typical macro to change the color of the band. Select a cell that contains a
band and then start recording macro “brown”. Enter the number “1”, Enter, and press the
arrow keys to get the next cell to the right. Terminate the macro to get the following result:

Sub Brown()
 Range(“D7:D11”).Select
 With Selection.Interior
 .ColorIndex = 9
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 End With
 ActiveCell.FormulaR1C1 = “1”
 Range(“F7:F11”).Select
End Sub

There are some problems with this in making it generic. The initial range selection is not re-
quired so we should delete it. The second range selection at the end of the procedure is also
limiting and we need to find an instruction that will move the active cell. Such a command
would have the format:
 ActiveCell.Offset (Rows,Columns).Range(“A1”).Select

We also need to keep a running count of how many bands have been entered. This tally is
maintained in cell C13 (named as NumberOfBands), and is incremented by 1 every time a
color macro is executed. In addition, there must also be a check so that there can only be a
maximum of six bands. Since this increment algorithm is common to all the color bands, a
subroutine would be in order. The “Brown” macro becomes:

Sub Brown()
‘ changes the cell color to brown and the value to 1
 With Selection.Interior
 .ColorIndex = 9
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 End With
 ActiveCell.FormulaR1C1 = “1”
 Call MoveRight
End Sub

Sub MoveRight()
 If Range(“NumberOfBands”).Value < 5 Then
 ‘limit this to 6 bands
 ActiveCell.Offset(0, 2).Range(“A1”).Select
 ‘move selection 2 columns to the right
 End If
 If Range(“NumberOfBands”).Value < 6 Then
 ‘count up to 6
 Range(“NumberOfBands”).Value = Range(“NumberOfBands”).Value + 1
 End If
End Sub

133

Example 8: Resistor Color Code Decoder Using Speech Input

We copy and paste and create macros for the remaining eleven colors. For the purpose of
analyzing the colors later, silver has been assigned the value of 10 and gold the value of 11.
The color value that is used is the index number in the color palette. How to get to these
numbers is beyond me, so I recorded a macro that formatted a series of cells to the colors I
wanted and I took those values and substituted them into the macros. These are the values
that I used:

Color Color Value Numeric
Value

Black 1 0
Brown 9 1

Red 3 2
Orange 45 3
Yellow 6 4
Green 4 5
Blue 5 6

Violet 7 7
Grey 15 8

White 2 9
Silver 16 10
Gold 44 11

For those of you who want greater adjustment, it is possible to give RGB values using the
Color property.

The Backup macro moves left by two columns and formats the color back to the original
light yellow. This is what it looks like:

Sub Backup()
 If Range(“NumberOfBands”).Value = 6 Then
 ‘last band and cursor hasn’t moved to right so delete
 ‘this band first
 Selection.ClearContents
 With Selection.Interior
 .ColorIndex = 19
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 End With
 Range(“NumberOfBands”).Value = Range(“NumberOfBands”).Value - 1
 End If

 If Range(“NumberOfBands”).Value > 0 Then
 ‘on the last cell the cursor does not move
 Range(“NumberOfBands”).Value = Range(“NumberOfBands”).Value - 1
 ActiveCell.Offset(0, -2).Range(“A1”).Select
 ‘move selection 2 columns to the left

134

Excel by Example

 End If
 Selection.ClearContents
 With Selection.Interior
 .ColorIndex = 19
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 End With
End Sub

I am going to leave the Evaluate macro until later. You can run these macros at any time to
see that they are functioning properly. Figure 8-6 indicates that they are!

Figure 8-6: Checking that the macros work correctly.

To ensure that the workbook always starts in the correct location, I also added a macro called
Auto_Open, which will run the “Commence” macro every time the workbook is opened.

Custom Toolbar
Excel allows extensive editing and creation of toolbars. To create a new toolbar we click on
the sequence Tools | Customize, click on the Toolbars tab, and select New. You should
be looking at something like Figure 8-7. Name the toolbar Resistor, and click OK. A small
toolbar will appear on the screen.

Click on the Commands tab in the Customize dialog box. Scroll down and click on Macros
in the Categories window. Click and drag the Custom button to the new toolbar and a smi-
ley face appears as in Figure 8-8.

135

Example 8: Resistor Color Code Decoder Using Speech Input

Figure 8-7: Creating a customized toolbar.

Figure 8-8: Placing a button on the new toolbar.

136

Excel by Example

Right-click on this smiley and on the pop-up menu (Figure 8-9), change the Name to
Commence, select Text Only (Always), and Assign Macro assigning the button to the
macro of the same name. Irritatingly, this process may take several right-clicks.

Figure 8-9: Changing button
properties.

We repeat the process for all the colors and the Backup macros until we are left with a tool-
bar that looks like Figure 8-10.

Clicking on any one of the buttons should run the macro updating the bands on the resistor.
We can get rid of the toolbar by clicking the “X” on the top right-hand corner, and make
it reappear (or disappear) by right-clicking on a toolbar and selecting (or deselecting) the
Resistor option. Of course, it is possible to delete entirely by going into Tools | Customize
| Resistor | Delete but I don’t think we should do that just yet.

In Parenthesis: Exporting a Toolbar

Toolbars are normally associated with an Excel installation. They can be inserted into
a workbook for transportation, which is what I hope will happen with this example. In
the customize dialog (Figure 8-7) having selected the Toolbars tab, click on the Attach
button. In the next dialog box that appears, select the desired toolbar (in the “Custom
Toolbars” panel) and click on the Copy>> button between the panels. The toolbar should
be copied to the “Toolbars in Workbook” panel. Click on OK.

Figure 8-10: The Resistor toolbar.

137

Example 8: Resistor Color Code Decoder Using Speech Input

Adding Speech
We now re-enable the Language toolbar using the menu selections Tools | Speech | Speech
Recognition. Ensure that the microphone is in the record state (also the mute button on the
actual microphone, if there is one), click on the Voice Command button and then on the
Tools button. On the drop-down menu, select Add/Delete Words and you will be presented
with the dialog box of Figure 8-11. For each voice command that we are going to use, type
the command word (like “Commence” or “Red”) in the “Word” box, click on Record pro-
nunciation, and annunciate the word. The software then adds the word to the dictionary.
It is more reliable to record the exact word to associate with the macro than to rely on the
speech recognition algorithm to recognize a word by application of rules.

Figure 8-11: Adding
specific words to the word
recognition database.

When all fifteen words (including Evaluate) have been added, close the box. It is time to
try out how this works. Ensure that the Voice Command button is clicked on the Language
toolbar and that the microphone is enabled. Now say the words and the macro should be
executed. Simple enough!

By the way, as suggested by the Speech Recognition documentation, a good microphone re-
ally does improve the performance.

Evaluate the Color Code
The Evaluate function is far too lengthy to produce here in its entirety. It evaluates a different
set of circumstances for each number of bands. An excerpt for the 4-band case is shown here:

 Case 4
 ‘4 bands
 nLegalValue = 0
 ‘preset value to indicate that the output is legal
 ‘if set to 1 then this is an illegal value

138

Excel by Example

 If Range(“d7”).Value < 10 Then
 nForward = Range(“d7”).Value * 10
 If Range(“f7”).Value < 10 Then
 nForward = nForward + Range(“f7”).Value
 If FindValueA(nForward) = 1 Then
 ‘found value
 Else
 nLegalValue = 1
 End If

 Else
 ‘second digit gold or silver
 nLegalValue = 1
 End If
 Else
 nLegalValue = 1
 ‘to indicate an illegal value
 End If
 If nLegalValue = 1 Then
 Range(“result”).Value = “Forward value not found”
 Else
 If Range(“h7”).Value = 10 Then
 ‘silver
 nForward = nForward * 0.01 & “R”
 Else
 If Range(“h7”).Value = 11 Then
 ‘golde
 nForward = nForward * 0.1 & “R”
 Else
 ‘any other value
 nForward = nForward * 10 ^ Range(“h7”).Value
 If nForward < 1000 Then
 nForward = nForward & “R”
 Else
 If nForward < 1000000 Then
 nForward = nForward / 1000 & “K”
 Else
 nForward = nForward / 1000000 & “M”
 End If
 End If

 End If
 End If
 ‘now for the tolerance
 Select Case Range(“j7”).Value
 Case 11:

139

Example 8: Resistor Color Code Decoder Using Speech Input

 ‘gold
 Range(“result”).Value = nForward & “ 5%”
 Case 10:
 ‘silver
 Range(“result”).Value = nForward & “ 10%”
 Case 1:
 ‘brown
 Range(“result”).Value = nForward & “ 1%”
 Case 2:
 ‘red
 Range(“result”).Value = nForward & “ 2%”
 Case 5:
 ‘green
 Range(“result”).Value = nForward & “ 0.5%”
 Case 6:
 ‘blue
 Range(“result”).Value = nForward & “ 0.25%”
 Case 7:
 ‘violet
 Range(“result”).Value = nForward & “ 0.1%”
 Case Else:
 Range(“result”).Value = nForward & “ ??%”

 End Select
 End If

 ‘now for reverse
 nLegalValue = 0

 If Range(“j7”).Value < 10 Then
 nForward = Range(“j7”).Value * 10
 If Range(“h7”).Value < 10 Then
 nForward = nForward + Range(“h7”).Value
 If FindValueA(nForward) = 1 Then
 ‘found value
 Else
 nLegalValue = 1
 End If

 Else
 ‘second digit gold or silver
 nLegalValue = 1
 End If
 Else
 nLegalValue = 1
 ‘to indicate an illegal value

140

Excel by Example

 End If
 If nLegalValue = 1 Then
 Range(“result2”).Value = “Reverse value not found”
 Else
 If Range(“f7”).Value = 10 Then
 ‘silver
 nForward = nForward * 0.01 & “R”
 Else
 If Range(“f7”).Value = 11 Then
 ‘golde
 nForward = nForward * 0.1 & “R%”
 Else
 ‘any other value
 nForward = nForward * 10 ^ Range(“f7”).Value
 If nForward < 1000 Then
 nForward = nForward & “R”
 Else
 If nForward < 1000000 Then
 nForward = nForward / 1000 & “K”
 Else
 nForward = nForward / 1000000 & “M”
 End If
 End If

 End If
 End If
 ‘now for the tolerance
 Select Case Range(“d7”).Value
 Case 11:
 ‘gold
 Range(“result2”).Value = nForward & “ 5%”
 Case 10:
 ‘silver
 Range(“result2”).Value = nForward & “ 10%”
 Case 1:
 ‘brown
 Range(“result2”).Value = nForward & “ 1%”
 Case 2:
 ‘red
 Range(“result2”).Value = nForward & “ 2%”
 Case 5:
 ‘green
 Range(“result2”).Value = nForward & “ 0.5%”
 Case 6:
 ‘blue
 Range(“result2”).Value = nForward & “ 0.25%”

141

Example 8: Resistor Color Code Decoder Using Speech Input

 Case 7:
 ‘violet
 Range(“result2”).Value = nForward & “ 0.1%”
 Case Else:
 Range(“result2”).Value = nForward & “ ??%”
 End Select
 End If

The procedure looks at the first two bands and if they are not gold or silver creates a number
from the value stored within the band cell. The call to function “FindValueA” takes this
number and compares it to all the legal numbers for resistors in the A series. If a match is
found the function returns a value of 1, otherwise it is zero. If a match is found, the third
band is used to scale the resistor value and present it in standard format (for example, 4.7 K),
and then based on the fourth band the tolerance is tacked on to the result.

Since sometimes it is hard to figure out which is the first band and which is the last, the rou-
tine also reverses the process and evaluates the bands from right to left.

The results are saved in two cells reserved for the forward and the reverse readings.

Obviously, the interpretation of five- and six-band resistors has a few more lines of code and
uses a different series of resistor values, but in principle, they work exactly in the same way.

Of some note in the software is the “exit for” statement. Those of you with “C” experience
will know this as the “break” statement used with a “for” loop in order to break out of the
loop. This is also the first time in this book we have used our own function call. A function
only differs from a procedure in that it returns a value.

Now that the Evaluate macro is complete, we must add the button to the Resistor toolbar in
exactly the same way as before using the Tools | Customize | Commands tab & Macro se-
quence, dragging the button to the toolbar and then changing the name and associating the
macro. (There is a drop-down button on the Resistor toolbar that allows you to add a button
instead of the above technique. It was possibly finger problems on my part, but I could not
get this approach to work with speech recognition.)

Now we are almost ready to roll. You can try it out and see how it works. Obviously you don’t
need to use speech recognition; you can simply click on the toolbar buttons. The toolbar
must be visible in order for the speech recognition to work.

Text to Speech
Not only do you get to talk to your computer, you can get your computer to talk back to you.
You can change the properties of the speaking voice and the output device from the Speech
icon in the Window Control Panel. Click on the Text to speech tab. Once this has been set
to your satisfaction, return to the workbook.

Enable the Text To Speech toolbar by following the menus Tools | Speech | Show Text To
Speech toolbar. Click on the By Rows button (as seen from the pop-up description) on the

142

Excel by Example

toolbar. Then block cells A15 to C16 and click on the Speak Cells button. The four cells
should be read back to you.

It is simple enough to record this process to a macro called Speak, and the call to it is tucked
in as the last thing to do in the Evaluate function. The only problem is that the Text to
Speech function changes the active cell and that plays havoc with the backup function. We
need to insert a method to record the current location and then restore it after the “Speak”
procedure. We can do that using the following sequence:

 vRow = ActiveCell.Row
 vColumn = ActiveCell.Column
 ‘saving current cursor location
 Call Speak
 ‘restoring cursor location
 Cells(vRow, vColumn).Select

Figure 8-12: Getting the computer to talk back.

Conclusion
So there you have it. I hope this application is not anachronistic given that the industry is
moving to surface-mount resistors. When I finally find a use for a particular tool, it becomes
obsolete! Isn’t that just the way of the world?

9E X A M P L E

143

Model Description
Temperature is one of the real-world measurements that is required in electronics and espe-
cially in industrial control. There are many techniques to convert the temperature into an
electronic format. One approach is to use a Resistance Temperature Detector (RTD), which
consists of a wire with a resistance proportional to the temperature. Different metal alloys
have different characteristics and each type is specified by the principal metal in the alloy
and its temperature coefficients. The resistance RT is approximated by the Callendar-Van
Dusen equation:

 RT = R0 + α R0 [T – δ(T/100 – 1) –β (T/100 – 1)(T3/100)]

But normally, only the α coefficient is given and lookup tables are provided. From this equa-
tion it is obvious that the relationship between resistance and temperature is nonlinear.

One of the most common RTD types is made with platinum wire, with an α of 0.00385,
which has a resistance of 100Ω at 0°C. RTDs are available in 2-, 3- and 4-wire types. The
additional wires are used to null the effect of the resistance of the wires connecting the RTD
to the electronics.

As discussed in an earlier example, the 4–20 mA current loop is very popular as a means of
transmitting an analog signal around a factory floor because of its high noise immunity to
electrically induced noise and its ability to power the sensor (hence the 4 mA offset) while
measuring the signal. At the bottom end of the input range, the current through the loop
driver is controlled to 4 mA, and it will increase to 20 mA at full scale input.

The RTD and current loop are so common that Texas Instruments/Burr-Brown manufacture
an integrated circuit (XTR105) that does the conversion. A basic circuit can be seen in
Figure 9-1.

The XTR105 provides two identical current sources to drive the RTD and a reference resis-
tor RZ. The difference in voltages developed by these currents is amplified and conditioned
to generate the 16 mA range at the output. At the minimum input temperature RZ should
be equal to the RTD value so that the input voltage differential is zero. The upper value

RTD to 4–20 mA Converter:
XTR105

144

Excel by Example

is determined by the gain resistor RG, and the XTR105 also has the ability to linearize the
output with the addition of another resistor, RLIN1.

The relationship between the resistor values is as follows:

 RZ = RRTD at Tmin

 RG = ((2R1(R2 + RZ)) – (4(R2RZ)))/(R2 – R1)

 RLIN1 = (RLIN(R2 – R1))/(2(2R1 – R2 – RZ))

Where R1 = RTD resistance at (Tmin + Tmax)/2,

 R2 = RTD resistance at Tmax

 RLIN = 1KΩ (internal to the XTR105).

Assuming we make this as a product where a customer can order any input temperature
range, it would make an ideal model to implement in Excel.

Acquiring RTD Tables
The first step is to generate the RTD tables in Excel. After a search on the Internet, I ac-
cessed a table in HTML format from www.instrumentation.com (named for the company) for
a platinum RTD, in degrees Celsius. In the browser, I selected Edit | Select All and copied
the selection into a Wordpad file, where I gently massaged it and saved it as a text file which
is on the CD-ROM as table.txt. An extract follows:

-200 18.52 -200
-190 22.83 22.40 21.97 21.54 21.11 20.68 20.25 19.82 19.38 18.95 18.52 -190
-180 27.10 26.67 26.24 25.82 25.39 24.97 24.54 24.11 23.68 23.25 22.83 -180
-170 31.34 30.91 30.49 30.07 29.64 29.22 28.80 28.37 27.95 27.52 27.10 -170
-160 35.54 35.12 34.70 34.28 33.86 33.44 33.02 32.60 32.18 31.76 31.34 -160
-150 39.72 39.31 38.89 38.47 38.05 37.64 37.22 36.80 36.38 35.96 35.54 -150

Figure 9-1: 2-wire RTD to 4-20 mA conversion.

RG

RZ

RL

Power
Supply

I
4–20mA

O

RLIN1

RTD

RCM

IRET

Vin+

Vin–

VLIN

IR2

IR1

I = 0.8mAR

I =4mA+ V *(40/R)OI NG

XTR105

145

Example 9: RTD to 4-20 mA Converter: XTR105

In order to get this into Excel, we follow the menu sequence Data | Import External Data |
Import Data, and browse and select the “table.txt” file. We will be faced with Figure 9-2.

Figure 9-2: Importing a text file.

Ensure that the Delimited radio button is selected and click on Next, proceeding to Figure 9-3.

Figure 9-3: Setting delimiters.

146

Excel by Example

Make sure the Space option is checked as a delimiter and click on Finish. The data will ap-
pear as in Figure 9-4.

Figure 9-4: RTD data loaded.

Note that for negative temperatures, the change in the values from left to right corresponds
to the increase in the absolute value of the temperature and is inconsistent with the data
presented for temperatures above zero in terms of a software lookup approach. I looked at
tables provided by several RTD suppliers and quite a few seemed to use this approach. It is
easy enough to use Excel to manipulate the data into a form that we need. Initially we need
to mirror the data, so in cell N4 I entered the formula:

 =L4

In O4, I entered the formula:

 =K4

and so on, to:

 =B4 in cell X4

147

Example 9: RTD to 4-20 mA Converter: XTR105

I then blocked and copied N4 to X4 and pasted them into the range N5 to X23. Having
done this, we no longer need the formula and we should revert to the values. Select the
range N4 to X23 and copy it (<Ctrl> + <C> or through the menus). Then click on Edit |
Paste Special and select Values (Figure 9-5).

Figure 9-5: Paste special, to convert
formulas to values.

Figure 9-6: Values converted.

148

Excel by Example

Figure 9-6 shows the results to date. For the same selection, we cut (<Ctrl> + <X>) and
paste it into the range B4 to L23 overwriting the original order. We block A3 to A22, cut it
and shift it down a row. We delete the last two columns (L and M), add a little formatting
and we are left with Figure 9-7.

Figure 9-7: Completed RTD table.

Lookup RTD Value
The INDEX function has the format:

 INDEX(array,row_num,column_num)

We have to manipulate the temperature to locate the correct row and column number. First,
we enter any temperature in cell N1, just to start the process off. Let’s use 125.

The rows increment by ten degrees, so we need to find the row based on the number of tens
in the temperature. To do this we use the INT function. In cell N3, we enter:

 =INT(N1/10)

and this returns a number of 12. The columns are based on the remainder of the above divi-
sion. In cell O3 we enter:

 =MOD(N1,10)

149

Example 9: RTD to 4-20 mA Converter: XTR105

and it returns 5. We still need to do some manipulation of this. First, the table starts at
–200°C, so we need to add a (200/10) for the offset and also the table (we will define later)
starts at cell B4. For the INDEX function, row 1 column 1 defines cell B4, so we need to add
a 1 to the 20 on the row offset and a 1 to the column offset to align the lookup action with
the actual table.

If we put it all together, we enter in cell N5:

 =INDEX(B4:K89,N3+21,O3+1)

We can play around with the value in cell N1 to see that the lookup works correctly.

Creating a Function
What we actually want to do is create a function with the temperature as an argument and
the RTD resistance is returned as the value of the function.

As a programmer, you would immediately think of implementing the project using FOR
loops to help identify the correct cell, but we have seen above that there is a perfectly good
Excel function that can do the job. All we have to do is persuade VBA to use it.

Go to the VBA editor (Macro | Visual Basic Editor or <Alt> + <F11>). Insert a module
(Insert | Module). Change the name of the Project to RTDproject, and the name of the
module to RTDmodule in the module properties window. We need to do this because when
this function is accessed from another workbook, the name must be unique or there may be
a conflict. In the code window for the RTDmodule, add the code as shown below. The result
appears in Figure 9-8.

Function RTDvalue(nTemperature As Integer) As Variant
 Dim nItermediate As Variant
 Dim nItermediate2 As Variant

 nIntermediate = Int(nTemperature / 10)
 nIntermediate2 = nTemperature - (10 * nIntermediate)
 nIntermediate = nIntermediate + 20 + 1
 nIntermediate2 = nIntermediate2 + 1

 RTDvalue = Application.WorksheetFunction.Index _
 (Range(“[RTD.xls]RTD!b4:k89”), _
 nIntermediate, nIntermediate2)
 ‘add workbook reference to allow usage from
 ‘another module
 ‘Note the use of <space>_ to allow line
 ‘continuation
End Function

150

Excel by Example

The first part of the code recreates the Excel MOD function. The VBA Mod instruction does
not perform in the same way and since they are named the same you cannot access the Excel
function in this case. But VBA can access the Excel INDEX function using the Application.
WorksheetFunction construct.

Accessing a Function
Although we will actually want to access the RTDvalue function from outside the module,
this would be a good point to try and see that the function does indeed work.

On the Excel RTD worksheet, click in cell N7 and then using the menus, click on Insert |
Function (Figure 9-9) and in the drop-down box select the User Defined category. Select
the RTDvalue function and OK, and this leads to Figure 9-10.

Figure 9-8: Function to lookup the RTD resistance.

151

Example 9: RTD to 4-20 mA Converter: XTR105

Using the expand button, it is possible to actually click on the actual cell needed for the
argument of the function, and click on OK. The cell now should have the same value as cell
N5, which was calculated directly in Excel. Changing the temperature in N1 should lead to
both cells N5 and N7 updating and showing the same value. Notice that there is a preview
of the result in the lower part of Figure 9-10.

It is possible to avoid this Insert Function utility by simply entering the formula in F7:

 =RTDvalue(N1)

Figure 9-9: Insert a function.

Figure 9-10: Selecting the input range.

152

Excel by Example

Adding a Help Description to a Function
In Figure 9-9 and Figure 9-10, the comment “No help available” can be changed to provide
something more informative. In the RTD workbook, go through the menus Tools | Macros
| Macros (or <Alt> + <F8>). Only procedures will be found automatically, so we enter the
name RTDvalue manually. We then click on the Options button and add descriptive text as
in Figure 9-11. Click on OK and then Cancel.

Figure 9-11: Adding a help description to a function.

Creating the Model in Excel
Open a new workbook and name it XTR105.xls using the File | Save as sequence. Open
the VBA editor (<Alt> + <F11> or use the menus). In VBA, select Tools | References |
Browse and select type of files to *.xls. Search for and select the “RTD.xls” files (Figure
9-12) and click on Open, followed by Enter.

We only need to do this if the worksheet containing the function (RTD.xls) is not open.
Nevertheless, this will open the worksheet since we require the worksheet to be open in one
form or another during regular operation.

Return to the new workbook and prepare the initial data, naming cells D4 to D7 for the
descriptions in A4 to A7.

153

Example 9: RTD to 4-20 mA Converter: XTR105

Figure 9-13 shows the formulas that are entered to calculate the resistor values (done by
selecting the Formulas option in the Tools | Options | View sequence). The CONVERT
function can be used to convert between many different kinds of units.

Figure 9-12: Finding a function in another workbook.

Figure 9-13: Formulas behind the worksheet of Figure 9-14.

154

Excel by Example

In Parenthesis: CONVERT

The convert function will allow a conversion from one measurement system to another.
Its format is:

CONVERT(number,from_unit,to_unit)

There are many different conversions possible. To see them all, use the Excel Help feature.
The units that will probably interest us are as follows:

Unit Use as Argument
Weight
Gram “g”
Pound “lbm”
Temperature
Celsius “C”
Fahrenheit “F”
Kelvin “K”
Distance
Meter “m”
Mile “mi”
Inch “in”
Foot “ft”
Yard “yd”
Angstrom “ang”
Time
Year “yr”
Day “day”
Hour “hr”
Minute “mn”
Second “sec”
Power
Horsepower “HP”
Watt “W”
Magnetism
Tesla “T”
Gauss “ga”
Orders of Magnitude
peta 1015 “P”
tera 1012 “T”
giga 109 “G”
mega 106 “M”
kilo 103 “k”
deci 10–1 “d”
centi 10–2 “c”
milli 10–3 “m”
micro 10–6 “u”
nano 10–9 “n”
pico 10–12 “p”
femto 10–15 “f”

155

Example 9: RTD to 4-20 mA Converter: XTR105

Figure 9-14 is the actual worksheet with the resistor results shown. The user is expected to
choose Fahrenheit or Celsius, and the minimum and maximum temperature. The resultant
values of RZ, RG and RLIN1 are produced in response to these inputs.

Figure 9-14: Initial worksheet.

Standard Resistor Values
Of course, you all know what the next step is going to be! Resistors are only made in dis-
crete values and so we would like to know what values to use. Let’s put the current project
on hold while we investigate a new workbook (NearestValue.xls) that will allow us to look
up the nearest resistor values. The functions return a numeric value rather than text so that
they can be used directly in calculations. This is an interesting workbook since it does not
need any entries on any of the sheets. It is purely an exercise in VBA programming. The four
functions provided in the workbook allow for selection of resistors in the A (NearestValueA)
and B (NearestValueB) series of values, for potentiometers (NearestPot), and a procedure
that converts a number to the normal way of expressing the resistor value (LookupStan-
dardResB).

By the way, if you don’t want to get into the programming, the four functions can be accessed
by simply using the module as an “add-in.” You should then skip to the section titled, Install-
ing the NearestValues Add-In.

There are several ways of generating a standard value for a given resistor value. The tech-
nique I adopted in the end, while it is a “brute force” approach, allows for simple expansion
for other types of devices.

The code is too large to reproduce here, and anyway you have the source code on the CD, so
I will show a snippet or two in order to elucidate.

The initial part of the function “NearestResistorA” defines the variables used. I found that
I needed the double precision to prevent rounding errors in the value returned. The value
under consideration, provided as an argument to the function, is called CalculatedValue. The
first step in the process is to consider that the CalculatedValue must be greater than 1 Ω and
less than 10 MΩ. If the value is outside this range, an error value is returned. In order for
other Excel functions to interpret this as an error, the CVErr function must be invoked.

156

Excel by Example

In order to simplify the identification of the lookup process, the value is changed to en-
gineering notation. The mantissa is a variable titled StandardForm in the code, and the
exponent is a variable called Power.

Function NearestResistorA(CalculatedValue As Double) As Double
 Dim i As Integer
 Dim Power As Long
 Dim StandardForm As Double
 Dim StdFrm As Double
 Dim Upper As Double
 Dim Lower As Double

 If CalculatedValue < 1 Or CalculatedValue > 10000000 Then
 ‘check for resitors < 1R or > 10M
 NearestResistorA = CVErr(xlErrValue)
 Else
 Power = 1
 StandardForm = CalculatedValue
 For i = 0 To 6
 If StandardForm >= 1 And StandardForm < 10 Then
 Exit For
 Else
 Power = Power * 10
 StandardForm = StandardForm / 10
 End If
 Next i

Using the mantissa as the key, we have a large Select Case statement. It caters for all possible
ranges. On vectoring to any one of the cases, the standard value below the mantissa is stored
on the “Lower” variable and similarly, the value above is stored on the “Upper” variable.

 Select Case StandardForm
 Case 1 To 1.1
 ‘set upper and lower to use later
 Lower = 1
 Upper = 1.1
 Case 1.1 To 1.2
 Lower = 1.1
 Upper = 1.2
 Case 1.2 To 1.3
 Lower = 1.2
 Upper = 1.3
.
.
.
 Case 9.1 To 10
 Lower = 9.1
 Upper = 10

 End Select

157

Example 9: RTD to 4-20 mA Converter: XTR105

The next step is to consider which of the Lower or Upper values is closer to the mantissa
and set the variable “StdFrm” to the complete value (that is the mantissa multiplied by the
exponent):

 If StandardForm - Lower > Upper - StandardForm Then
 StdFrm = Upper
 Else
 StdFrm = Lower
 End If
 ‘use lower to save the value for later calculation
 Lower = StdFrm
 StdFrm = StdFrm * Power

In certain ranges, there are some values that are omitted so we need to consider this:
 ‘now between 1 and 10 there are fewer values
 If (StdFrm < 3.9) Or (StdFrm > 1000000) Then
 Select Case Lower
 Case 1 To 1.1
 Lower = 1
 Case 1.1 To 1.3
 Lower = 1.2
.
.
.
 Case Else
 Lower = Lower
 End Select
 StdFrm = Lower * Power
 End If

 And finally, the return value is set up and the function completed.
 NearestResistorA = StdFrm
 End If
End Function

The B range of values is implemented in exactly the same way except that of course there are
significantly more values. The function is called NearestResistorB.

The lookup of potentiometers differs since the philosophy of using a variable resistor is differ-
ent. You normally go for the value greater than the calculated value, but otherwise it is much
the same. It is named NearestPot.

Finally, there is also a procedure that will take a number and format it to a standard resistor
notation (as in 2.43 K ohms). It is titled LookupStandardResB.

158

Excel by Example

Creation of Add-In
I will be using these functions in several models in this book, so it seems to me that it is a
likely candidate as an add-in so that it will be readily accessible from any workbook. The in-
ner machinations are irrelevant and using the add-in functionality, they can be hidden.

If it is not already open, open workbook “NearestValue.xls” and go to the VBA editor. Click
on Debug | Compile LookupValue. Then right-click on the LookupValue(NearestValue.
xls) entry in the VBA explorer bringing up Figure 9-15. Enter the information you want
here. If you want, you can click on the Protection tab and fill in the required fields. Since
you already have the source, this would be a pointless exercise for me.

It should be noted that by leaving this add-in unprotected, the code will be visible in all
the workbooks (rather in the VBA environment) where this add-in has been enabled. This
is not a problem, except that it is surprising when first noticed, and it is possible for you to
change it (perhaps inadvertently).

Figure 9-15: Setting properties for the add-in.

Now click on the sequence File | Save As, and save it as a Microsoft Excel Add-In (*.xla)
type. This will automatically save it to the AddIns folder, but of course you can save it to
anywhere you choose. I have added it to the CD-ROM as well.

Installing the NearestValues Add-In
Close the NearestValues workbook and open a new workbook. Click on Tools | Add-Ins
and in the dialog box click on Browse. Locate the “NearestValue.xla” file and click on OK.

159

Example 9: RTD to 4-20 mA Converter: XTR105

While the add-in has now been established for Excel as a whole, it is enabled or disabled in
each individual workbook. As an example for the current model, open the “XTR105.xls”
workbook as well as the “RTD.xls” workbook. Go through the sequence Tools | Add-Ins,
and check the NearestValue option as in Figure 9-16.

Figure 9-16: Installing
an add-in.

Back to the Project At Hand
In the real world, component tolerances will lead to inaccuracies so each unit will have to be
calibrated. To do this, a potentiometer should be placed in series with RZ and a second one in
series with RG. This leads to four different values; two for the two fixed resistors and two for
the potentiometers in series. Allowing for a 20% adjustment by the potentiometers (±10%),
the result we calculate for RZfixed and RGfixed is 90% of the calculated value. We have set up the
worksheet for the results to be entered in cells G4 to G8 (See Figure 9-19).

The easiest way to insert the function is almost identical to the procedure we used earlier.
Click in cell G4 and click through Insert | Function. Select the user defined category, and
then select the function NearestValueB as in Figure 9-17 and click on OK.

160

Excel by Example

The next dialog that pops up (Figure 9-18) is to provide the arguments for the function. The
value entered is the calculation of 90% of the calculated value.

Figure 9-17: Inserting an add-in function.

Figure 9-18: Adding an argument for the function. Note the real-time
evaluation of the argument and the returned value of the function.

161

Example 9: RTD to 4-20 mA Converter: XTR105

Click on OK. This procedure is followed for all four resistor values as shown using the for-
mulas option shown in Figure 9-19, and the overall result is shown in Figure 9-20. There you
have it—a fully functional workbook. But we can still make some improvements, provided
you are prepared to join me in a little programming.

Figure 9-19: Actual values to be used.

Prompting for User Input
Let’s assume that we produce this product with maximum customer flexibility, so they can
call and order a product to measure the range from –17 to 213°C. Rather than tie up an
engineer to calculate the values, we can create a macro for clerical staff to enter and produce
the values required.

We need a user response to four questions: a reference number to tie the customer to the
requested temperature range, a choice of Fahrenheit or Celsius, and minimum and maximum
temperatures.

Figure 9-20: The worksheet to date.

162

Excel by Example

In Parenthesis: InputBox

VBA provides an easy way to prompt the user for input data. The format is

InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])

The only argument that is necessary is the prompt, which is the request posed to the
user. It is possible to have several lines of text by concatenating the vbCrLf constant with
the strings that make up the lines of text.

The title is the name that appears in the top left of the box. The default is the default
string that you can use to suggest an input to the user. The box can appear anywhere on
the screen using the xpos and ypos arguments. A helpfile can also be provided.

The InputBox function returns a string. This example shows how to check that the string
is a number or a specific value.

The helpfile is the text file that contains the help for this function. It must have an input
for the context, which vectors the help file to the correct entry.

There is also an InputBox method, which allows the box to return data types other than
just strings. See the VBA help file for further information.

For the XTR105 workbook, I have added a module in the VBA Editor and then created a
macro named CreatePart, which is a series of Input boxes and Message boxes to acquire the
data.

It does little more than prompt the user for information and then checks that it is in the
format needed. If the format is correct, the values are placed in the worksheet, and obviously
a recalculation takes place. Take a look if you want to see how I used these interactive boxes.

Printout
If we want to print out part of a workbook, we first need to prepare for this by defining the
print area beforehand. Click and drag the cursor over the areas of the workbook that are to
be printed. They can consist of multiple areas created in the normal way of using the <Ctrl>
key together with the mouse selection. Then follow the menu function File | Print Area |
Set Print Area and Excel will then maintain a dotted line around the print area. I created it
from cell A1 to G8.

As part of our ordering process, let’s also assume that we would like to have a printout for the
paper trail in production. Using the macro record function, we simply record the pressing of
the print button (it uses the defined print area). Let’s call this function PartPrint. It is also
added as the last step of the CreatePart macro so that it prints out when the user has finished
entering the data. Figure 9-24 shows the appearance of the project in operation.

163

Example 9: RTD to 4-20 mA Converter: XTR105

In Parenthesis: MessageBox

The MessageBox function allows the program to announce something to the user. It
also provides for a number of buttons so that the user can respond by clicking these
buttons, and the function returns a number associated with that button. The format of
the function call is:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The only argument that is necessary is the prompt, which is the message displayed to
the user. It is possible to have several lines of text by concatenating the vbCrLf constant
with the strings that make up the lines of text.

The buttons to be shown are turned on by using VBA constants like vbYesNoCancel. It is
possible to combine these with some form of special icon (which will carry an associated
sound derived from the Windows setup), like vbQuestion. They are joined using the +
symbol in a manner similar to this:

 vbYesNoCancel+ vbQuestion

The title is the name that appears in the top left of the box.

The helpfile is the text file that contains the help for this function. It must have an input
for the context, which vectors the help file to the correct entry.

Following is something that I found confusing. If you are not returning a value, that is
you are treating the MessageBox as a procedure rather than a function, then you do not
use the parenthesis in the code. For example, it would appear like this:

MsgBox “Procedure call”, vbOKOnly as opposed to

Variable=MsgBox (“Function call”, vbYesNo + vbQuestion)

Running Macros when the Workbook is Started
Irrespective of which of the two methods you used to reference “RTD.xls”, every time you
start “XTR105.xls” before opening “RTD.xls”, you will be face with the pop-up window as
shown in Figure 9-21. Even if we place the instruction to open the RTD workbook as part of
the workbook startup event on “XTR105.xls”, this message will normally show up.

On the assumption we would prefer a smooth user interface without this dialog, there are
two possible approaches. First, you can set up “RTD.xls” to act as an add-in. This is quick
and easy, but means that it is a module that is accessible to every workbook.

164

Excel by Example

Second, I have not been able to find any documentation on it, so I had to go through a lot
of trial and error, ending with infinite loops that needed the three-fingered salute (<Ctrl> +
<Alt> +) to exit. I think I have the answer, but before you do try to run the macro,
make sure everything is saved.

The actual change is very simple. Open the VBA explorer and click on the ThisWork-
book folder of the VBAProject (XTR105.xls). In the Properties window, scroll down to
UpdateLinks and select option 2 – xlUpdateLinksNever. Now save! This property is not
available in Excel 97.

Figure 9-21: Every time a workbook has an off book reference,
it starts by asking if the information should be updated.

Figure 9-22: Changing the parameters of ThisWorkbook in XTR105.xls.

165

Example 9: RTD to 4-20 mA Converter: XTR105

Double-click on the same “ThisWorkbook” folder and find the “Workbook_Open” event.
This is the event that is triggered every time the workbook is opened. Add the text as shown
in Figure 9-23. Be sure that the path in the Workbooks.Open line is correct.

Figure 9-23: Run macro every time workbook is opened.

The first action that occurs is to load “RTD.xls”. Because the CreatePart procedure is de-
signed to operate with “RTD.xls” active, we must activate it first.

Also, we want the application to quit when we have generated the printout, but Excel will
query if the workbook should be saved, so the statement Application.DisplayAlerts=False
prevents that.

Every time the application is opened, the CreatePart macro is run, and at the end Excel
is shut down—so remember to save the code before you run the macro! The macro also
presumes that the user’s printer is ready and waiting. The print request is handed to the oper-
ating system and spooling and errors are handled there.

In order to debug or change the workbook, open Excel and then while opening the work-
book “XTR105.xls”, hold the <Shift> key down. Also, remember the <Ctrl> + <Break>
will also halt VBA program in its tracks.

166

Excel by Example

Running from the Desktop
If we take this application to its logical conclusion, it is possible to create an icon on the
desktop that, when activated (double-click), Excel is opened and the user is prompted for the
inputs, the report is printed and Excel is terminated. Simply create a shortcut to “XTR105.
xls” on the desktop. Change the icon and caption if you like. Now, the operator never has to
be instructed how to start Excel, open a file and so forth.

Figure 9-24: The application in full flight.

Voltage Regulator: LM317

10E X A M P L E

167

Model Description

The concept of using the ratio of two resistors to define a desired output pervades electronics.
The LM317 was probably the first voltage regulator IC to implement it, but despite the age
of the product, it is still in wide use. In any event, the techniques that I will use here are ap-
propriate to all devices that rely on the resistor ratio approach. I will go on to consider heat
sinking requirements as well, and this too may be extended to other applications

For the LM317 the output voltage is normally calculated by the first approximation equa-
tion, Vout = 1.25 (1 + (R2/R1)), since it is easy to rearrange the equation to find the resistor
values for a given Vout. The equation is more correctly:

 Vout = Vref (1 + (R2/R1)) + Iadj R2

where Vref is nominally 1.25V, and Iadj is the current flowing into the Adj terminal of the device.

Although in this example it may be possible to rewrite this formula in terms of R2, there
are many equations where this is more difficult. As we all know, computers are very good at
trying the same thing repetitively without complaint. Given a fixed value of R1, it is possible
to try different values of R2 until the desired voltage is reached. Excel provides a function
called Goal Seek, which does precisely that.

Figure 10-1: LM317
programmable voltage regulator. R1

R2

VoutVin

Adj

LM317

Vin Vout

168

Excel by Example

Installing the NearestValues Add-In
If you have not installed the NearestValues add-in, follow the instructions in the section
titled Installing the NearestValues Add-In in Example 9. The functions in this add-in will
allow us to look up standard resistor values.

Initial Model
We first create the model as shown in Figure 10-2. The values for Vref and Iadj are derived
from the data sheet for the LM317. We restrict ourselves to one degree of freedom and set
the value of R1 to that suggested in the data sheet. Note the formula checkbox has been se-
lected in the Tools | Options | View in order to show the formulas in the cells. Some cells
have been suitably named.

Figure 10-2: Initial setup showing the formulas in the cells.

The value for R2 and the nearest value for R2 are arbitrary at the moment, simply to setup
the model. The output voltage is recalculated using the standard value as the last step.

Click in cell D12, and then follow the sequence Insert | Function and then select the op-
tions as shown in Figure 10-3.

169

Example 10: Voltage Regulator: LM317

Click on OK and select the input parameter as in Figure 10-4.

Figure 10-3: Inserting a custom function (in this case, the module is
an add-in).

Figure 10-4: Selecting the input parameter for the function.

Alternatively, if you have a good memory you can enter:

 =NearestResistorB(re2)

without the help features of Excel.

170

Excel by Example

Goal Seek
Click on Tools | Goal Seek and enter the relative cells as in Figure 10-5, and then click on
OK. Excel will calculate the value that solves the requirement, and the NearestResistorB
function finds the nearest standard value. The Goal Seek function provides a summary as in
Figure 10-6.

Figure 10-5: Priming the Goal Seek function.

Figure 10-6: Summary of Goal Seek function.

Rather than go through the Goal Seek sequence every time, a macro could save the drudgery
of repeating the actions.

As we have done before, we record the macro and then modify it. Follow Tools | Macro |
Record new macro and set the macro as in Figure 10-7 (naming the macro LM317), and
then follow the same sequence to Goal Seek a value (any value) and then stop the recording.

171

Example 10: Voltage Regulator: LM317

The recorded macro is:
Sub LM317()
 Range(“D4”).GoalSeek Goal:=10, ChangingCell:=Range(“D10”)
End Sub

We now need to add some functionality to prompt the user for the desired output voltage. To
do this we need the InputBox function, which we add as the first step of the macro as follows:

Sub LM317()
 Dim nNewGoal As Single
 nNewGoal = Val(InputBox(“Enter the output voltage”, “LM317 Output Voltage Configuration”, “5”))

 Range(“D4”).GoalSeek Goal:=nNewGoal, ChangingCell:=Range(“D10”)
End Sub

Figure 10-8 shows how the different arguments for the input box are presented.

Figure 10-7: Recording a macro.

Figure 10-8: Input box showing the prompt, title and default values.

172

Excel by Example

Let’s add a Command button to the sheet to run the LM317 macro. Open the forms toolbox
by clicking through Insert | Toolbars | Forms. Click on the Command button on the tool-
box, and then click and drag a button on the worksheet and assign a macro when the dialog
shown in Figure 10-11 appears.

Figure 10-9: Formulas used in worst-case analysis.

Worst Case Analysis
It is a simple matter to add a worst case analysis to find the possible variation range of the
output voltage based on the tolerances of the resistors and the LM317. This is at 25°C.
Figure 10-9 shows the formulas that are used, and Figure 10-10 has been reformatted to show
the actual appearance.

Figure 10-10: Appearance of the first sheet.

173

Example 10: Voltage Regulator: LM317

Click on OK, and right-click on the button to edit the button text to “Set Voltage”. Click
away from the button to end the change. Clicking on the button will now run the macro.

Thermal Analysis
Let’s add another dimension by considering the thermal implications of the design. First, let’s
consider some theory.

Figure 10-11: Inserting a button and associating a macro with it.

ΘJC

T = junction temp.j

T = case temp.c

T = heat sink temp.hs

T = ambient temp.a

ΘCS

ΘSA

Heat source

Figure 10-12: Analogy for
thermal analysis.

174

Excel by Example

It is possible to draw an analogy between thermal and electrical conductivity. The tempera-
ture corresponds to voltage, the thermal resistance to electrical resistance and heat flow to
current. Using this approach and applying it to Figure 10-12, we can write

 ΘJA = (Tj – Ta)/Pd (1)

where ΘJA is the thermal resistance from semiconductor junction to the ambient temperature
(in °C/W), Tj is the junction temperature, Ta is the ambient temperature and Pd is the power
dissipated.

 ΘJA = ΘJC + ΘCS + ΘSA (2)

where ΘJC is the thermal resistance from the junction to the case, ΘCS is the thermal resis-
tance from the case to the heat sink, and ΘSA is the thermal resistance from the heat sink to
the ambient air.

The power dissipation, Pd, is calculated from the volt drop across the device Vd and the cur-
rent flowing into it Iin.

 Pd = Vd * Iin = (Vin – Vout) * Iin ≈ (Vin – Vout) * Iout (3)

The last approximation is true only where the quiescent current of the device is small in
comparison to the output current.

In every case where heat dissipation is an issue, we must first consider the total power dissipa-
tion and provide enough heat sinking that is necessary to limit the junction temperature to a
safe maximum. We need to consider the worst case of an application, and that may include a
dead short across the output of the device.

Using these generalities with our specific example of an LM317T (that is the TO-220 pack-
age), the absolute maximum for the junction temperature is 150°C and traditionally we limit
it to 25°C less than this. The next step in this example is creating a model that produces the
required thermal resistance of the heat sink required.

Moving to Sheet2 and renaming it Thermal, we create the initial format as in Figure 10-13.

Each variable input can have several possible sources of data or value. For instance, as we
shall see, the source voltage could be from DC or rectified AC. We are going to handle these
alternatives by means of Option buttons.

The Option buttons are grouped together to deal with a single common aspect of the model.
Each group of Option buttons is associated with a cell in column A, a column that we will
hide later. The value of the cell corresponds to the Option button selected.

Depending on the design, the input voltage to the regulator can come from a DC source or
some form of AC waveform. We will deal with a non-DC input later, but for the moment,
the input voltage to the regulator will be derived from cell D3 for a DC input, or D4 for a
rectified AC input, depending on an Option button selection. We first need to get the cor-

175

Example 10: Voltage Regulator: LM317

rect toolbox by clicking on View | Toolbars | Forms. Then click on the Group box icon
and then click and drag an area as in Figure 10-14.

Figure 10-13: Preliminary setup for thermal analysis.

Figure 10-14: Creating a Group box.

176

Excel by Example

Click on a cell away from the Group box and then move the cursor over the text of the
group box until the cursor becomes a four-headed arrow. Then right-click and select Edit
Text from the pop-up menu. Change the Group box title to something like “Input Voltage
Selection ” with a few spaces at the end to improve the appearance.

Click on the Option button in the toolbox. Click within the Group box, and drag a window
(within the Group box) to a suitable size. There are to be two Option buttons in this box,
but rather than creating a second, select the first by right-clicking on it and cutting and
copying. There is another way to copy a control. <Ctrl> + <Click> on the original control
and then drag while still holding the <Ctrl> key.

By copying the control, both buttons and associated text will be the same size. Right-click on
each and modify the text. Also, right-click on either one and select the Format Control and
point the cell link to cell A7. If you want to copy this setup (and I certainly will), it is better
to make this a relative and not an absolute reference. Click away from the button to lose the
focus, and then clicking on one or other of the buttons will change the value of cell A7 from
1 to 2 and back. See Figure 10-15.

Figure 10-15: Using
Option buttons.

We now add other options, either by copying and pasting or by starting fresh each time until
we arrive at Figure 10-16.

There are several types of component packages, but for simplicity I have stayed with the TO-
220. There are different methods of affixing the LM317 to the heat sink. In the one that uses
the Kapton insulator (Sil-Pad®), the thermal conductivity varies with the pressure affixing
the component to the heat sink. I have stayed with one value.

Figure 10-17 shows the formulas used in the calculations. The user is expected to enter the
current through the device in cell D15 and the maximum ambient temperature in cell D16.
The power dissipation in the device is found using equation (3), as previously shown.

The overall thermal conductivity is derived from equation (1), and if the result is greater
than 50 °C/W (derived from the data sheet entry “Thermal Resistance, Junction-to-Ambi-
ent (No Heat Sink)”) then no heat sink will be required and this will be annunciated in cell

177

Example 10: Voltage Regulator: LM317

E32. Otherwise, the required thermal resistance is calculated from equation (1) and (2) and
reported in cell D32. Figure 10-18 shows the completed thermal model.

In Parenthesis: CHOOSE

The format of the CHOOSE function is:

 CHOOSE(index_num,value1,value2,...)

index_num selects which entry in the following list is used. It can be a numerical value,
evaluate to a numerical value or refer to a cell containing a numerical value, but it cannot
exceed the value of 29. In other words, the maximum size of the following list is 29.

The following list can be a value, a calculation, or refer to a cell. It can even refer to an
array of cells. For instance:

 =min(choose(1,b7:b25,b26:b30,b31:b45))

will effectively reduce to:

 =min(b7:b25)

Figure 10-16: Preparatory work on options and inputs.

178

Excel by Example

Figure 10-17: Formulas needed to calculate the thermal conductivity for a heat sink.

Figure 10-18: Completed thermal analysis.

179

Example 10: Voltage Regulator: LM317

Half-Wave Rectification
It is very common to provide a rectified and smoothed voltage as a source to a voltage regula-
tor. Throughout the building automation sector, 24VAC is used as a supply voltage with one
of the sides tied to chassis ground. The simplest way of converting this to a DC voltage (with
a ripple on it) is through half-wave rectification as shown in Figure 10-19.

Figure 10-19: Half-wave
rectification circuit.

AC input ½ wave rectified

The minimum value for the input voltage to the voltage regulator must not drop below the
dropout voltage of the regulator, so a large smoothing capacitor would reduce the ripple. On
the other hand, the less the value of the smoothing capacitor, the smaller and cheaper it is
likely to be. In addition, the effective voltage (RMS voltage) is reduced and consequently
the power dissipated is also reduced, economizing on the requirements for the heat sinking of
the regulator. We can use Excel to calculate the optimal value of this capacitor.

True RMS and Integration
Part of the model will calculate the RMS value of the voltage to use in the calculation of the
power dissipated in the regulator. Before we examine the complex waveform of the smoothed
half-rectified AC, let us test the model as to how we are going to calculate a finite integral
using Excel and we will use a sine wave since we know what the results should be. The RMS
voltage is calculated from the equation:

Integration between limits defines area under a curve, so by dividing the area into trap-
ezoids, we can calculate the area of each trapezoid and sum them to calculate the total area.
The area of a trapezoid is the average of the sum of the two parallel sides multiplied by the
distance between them. This is shown in Figure 10-20. The area of one of the trapezoids is
((Y1 + Y2)/2) * X1. Obviously, the smaller the value of X1, the greater the accuracy of the
calculation.

Y

X

Y2
Y1

X1

Figure 10-20: Trapezium method
of calculating the area under a
curve.

()2

0

1 T

rmsV v t dt
T

= ∫

180

Excel by Example

If we take a formula for a curve and evaluate it for a number of points, we can use these
points as the values for Y1 and Y2 and so calculate the area.

Figure 10-21 shows the formulas used to implement this for a sine wave. I have hidden some
of the middle of the range points (rows 14 to 43) to fit the top and bottom of the worksheet
into the figure. I have chosen to work with 50 Hz since the numbers are nicer, and anyway
when we get to the smoothing capacitor, the result will be that the design can be used in
the rest of the world as well as North America. The formula for a sine wave is A0 sin (2 π ft)
where A0 is the peak amplitude, f is the frequency of the wave, and t is the elapsed time. The
0.001 factor that appears is the conversion of milliseconds to seconds.

Figure 10-21: Formulas to calculate the RMS value of a sine wave. Note that
the worksheet has been renamed.

Cells B9 to B49 calculate the amplitude of the sine function at different times. Note the use
of the PI() function for the π value. Cells C9 to C49 contain the square of the amplitudes.
Cells D10 to D49 contain the calculation for the area of each trapezoid, and the areas are
all summed in D51. This value is divided by the period (1/f) in cell D52, and the square root
is found in cell D53. The results are shown in the worksheet in Figure 10-22 (please excuse
the lack of formatting), and the result is very close to reality. See the actual results in Figure
10-22.

181

Example 10: Voltage Regulator: LM317

Now that we have considered the calculation of the RMS voltage, we can put it aside for a
while. I have left this workbook as LM317_Sine.xls.

Figure 10-22: Calculation of the RMS value of a 50 Hz sine wave
with an amplitude of 10.

More Preparation
In a half-wave rectifier, the smoothing capacitor is charged until the AC voltage peaks. It
then discharges according to the formula i = Cdv/dt where i is the current, C is the capaci-
tance of the capacitor, dv is the change in voltage and dt is the change in time. The AC
voltage continues to drop until it reaches zero and stays zero until the next positive cycle
starts. In the meantime, the capacitor discharges linearly (since the current through the
regulator is constant) until the increasing AC voltage exceeds the reduced capacitor voltage
whereupon the capacitor is recharged.

Actually, the capacitor discharge may not start exactly at the AC peak, but it should be close
enough for this calculation.

I have created the top of the worksheet to include all the parameters that are needed (see Fig-
ure 10-24), and the cells C3 to C9 have been suitably named. Only the nominal transformer
voltage is required as an entry from the user. This whole effort is to find the capacitance, but
to initiate the development an arbitrary value is entered. All the other cells are derived.

182

Excel by Example

Let’s create the table of the AC waveform. We will start the analysis from the time 5 mS
since this is where the AC signal peaks and the capacitor starts to discharge, and continue it
to 25 mS, which is where the AC signal next peaks. Each cell with the amplitude calculation
(B10 to B50) contains the following formula (adjusted for relative cell locations):

 =IF(ac*SIN(2*PI()*freq*A10*0.001)>=0,ac*SIN(2*PI()*freq*A10*0.001),0)

to allow for the fact that the signal is at 0 in the negative half of the sine wave as a result of
the rectification.

The voltage drop dv is given by:

 dv=i*dt/C

and this is calculated in cells C13 to C53. The entry is:

 =current*(A13−A13)*0.001/(Cap*0.000001)

The capacitance is converted to farads by the factor 0.000001 in the denominator.

D13 to D53 have the resulting droop generated by subtracting dv from the peak voltage that
the capacitor was charged to:

 =ac−C13

We now combine the two voltages in cells E13 to E53. The higher of the two voltages be-
comes dominant by use of the following formula:

 =IF((D13>B13),D13,B13)

This traces the waveform as it charges and discharges the capacitor.

The MIN function in Excel simply looks at a range of numbers and returns the minimum
value. Cell E55 contains the formula:

 =MIN(E13:E53)

which is the minimum value of the regulator input voltage. We would like this minimum
voltage to be no lower than the regulated output voltage plus the dropout voltage of the
regulator. From the data sheet, we pick a safe dropout voltage of 2.5V, entered as a constant
in cell C8.

Now we use the Goal Seek tool. It will be set up to change the value of the capacitor (cell
c5=“Cap”), while monitoring the cell E55 (the minimum voltage) for the value of the drop-
out voltage plus the output voltage.

In order to do this, we follow the sequence Tools | Goal Seek and the dialog window pops
up as in Figure 10-23.

Right away we notice a problem that is hinted to by the lack of the expand button on the
right-hand side of the To value: entry. Excel requires a number here, it cannot handle a cell
reference. This is easy enough to solve by recording this Goal Seek process as a macro. The
result of this, recorded to the macro named FindCapacitance in the example, follows:

183

Example 10: Voltage Regulator: LM317

Figure 10-23: Using Goal
Seek to determine the
capacitor value.

Sub FindCapacitance()
 Range(“E55”).GoalSeek Goal:= 15, ChangingCell:=Range(“C6”)
End Sub

We edit the macro to read:
Sub FindCapacitance()
 Range(“E55”).GoalSeek Goal:=(Range(“Vreg”).Value + Range(“Vdrop”).Value), ChangingCell:
 =Range(“C6”)
End Sub

and this will automate the process. Figure 10-24 shows the progress so far.

Figure 10-24: Calculation of minimum capacitance value. Note that rows 20 to 43 are
hidden.

184

Excel by Example

Standard Capacitance Value
I am sure that it comes as no surprise to you that as with resistors, there are standard capaci-
tance values as well. Since the smoothing capacitors are only likely to be between 10 µF and
10000 µF, there are very few values to consider, so I have just created a new worksheet and
entered the possible values in a vertical column (Figure 10-25).

Figure 10-25: New worksheet with standard capacitor values. To add a worksheet,
right-click on the sheet tabs and click on the Add Worksheet icon.

If we enter a formula in cell E6 of the HalfWave sheet:

 =vlookup (Cap,StdCap!B4:B16,1)

the value returned is the entry below the desired capacitance. In this instance, we want the
capacitor value greater than the calculated value, so we first need to fetch the identified
location using the MATCH function to find the associated row, and then use the INDEX
function to get the next value up. Cell E6 becomes:

 =INDEX(StdCap!B4:B16,(MATCH(Cap,StdCap!B4:B16)+1),1)

Having calculated the standard capacitance, we need to reevaluate the input waveform.
Cells F13 to F53 contain the formula (suitably transposed for relative cells):

 =ac-current*(A13-A13)*0.001/(StdCap*0.000001)

which represents the discharge curve of the capacitor, and cells G13 to G53 contain the
resultant waveform when combined with the AC input. As before, while the capacitor’s

185

Example 10: Voltage Regulator: LM317

decaying voltage is higher than the AC input, it is the dominant voltage. Once the AC
input exceeds it, it becomes dominant and the capacitor recharges. The formula is:

 =IF((F13>B13),F13,B13)

This column forms the basis for the RMS value calculation. Column H contains the square
of the input voltage (for example, G13^2), and then using the Trapezium method as detailed
earlier, each trapezoid area is calculated in cells I14 to I53 using the formula:

 =(((H14+H13)/2)*((A14-A13)*0.001))

Note that there is no entry for cell I13 as there is no previous value to use. From this point, it
is easy to add each calculated area segment to get the total area under the curve (in cell I55)
and to multiply by the inverse of the period (cell I56) and then take the square root (cell
I57) for the RMS voltage. This is the number that we should use in the Thermal worksheet
for non-DC inputs (if you remember we had deferred that issue). So on the Thermal work-
sheet, cell D4 becomes:

 =Vrms

Note that a named cell does not need to have a sheet reference with it.

Figure 10-26 has the results of this calculation. In terms of the sequence of data entry, it
seems to me that the HalfWave worksheet should be before the Thermal worksheet. It is

Figure 10-26: Completed worksheet—almost!

186

Excel by Example

easy enough to rearrange. Click the HalfWave tab, then drag the tab to the left of the Ther-
mal tab until a small black triangle pops up just above the insertion point and then release
the mouse button.

I added a Command button that triggers the FindCapacitance macro at the top of the
worksheet.

Chart
It would be nice to have a graphical representation of the ripple, so let’s introduce a chart.
With the HalfWave sheet selected, select cells A13 to A53 and G13 to G53. Click on the
Chart icon on the standard toolbar, or follow the toolbars Insert | Chart and select the
Standard Type tab. Select the options as shown in Figure 10-27 and click on Next.

Figure 10-27: Creating a chart.

Having preselected the ranges, we do not need to modify anything in step 2, although some-
times Excel does not correctly interpret your desires. Click on Next. We are now given the
opportunity to add some cosmetic effects to the chart. We can add titles to the axes, a chart
title, gridlines and more (see Figure 10-27). Once more, click on Next to get to the fourth
step.

187

Example 10: Voltage Regulator: LM317

The final step allows us to place the chart on the sheet or elsewhere. I preferred to place it on
the same sheet with the result in Figure 10-29.

Figure 10-28: Adding information to the chart.

Figure 10-29: Graphical representation of the ripple waveform.

188

Excel by Example

This shows an interesting effect in Excel. You will notice an irregularity in the 20 to 25 mSec
area and it doesn’t seem to get anywhere near the expected minimum. If we expand the hid-
den cells, this is the chart that we get (Figure 10-30). That’s more like it! This effect can be
turned off in the Tools | Options | Chart sequence. It can also be used to your advantage
on a chart with a large number of entries, using every fifth reading, say.

Figure 10-30: The correct output on the chart.

Right-clicking on almost any aspect of the chart will allow you to change the object’s proper-
ties. For instance, you can change the number of “ticks,” and the font and alignment on an
axis. Go ahead and try a few!

With all its versatility, the chart model apparently doesn’t allow you to add a freehand line,
which I would like to add to indicate the absolute minimum, the line y=14.4 in our particu-
lar case. The simplest way to do this is to enter =E55 in cell J13 and copy it to cells J14 to
J53. Then right-click on the chart and select Source Data, or go through Chart | Source
data. Click on the Series tab, and then click on the Add button (see Figure 10-31). Define
the new series and click on OK. This will have the desired effect with the result in Figure
10-32. Another shortcoming of the Chart utility is that it is not possible to add random text,
and as a result, if you want to identify which line is which, you need to name each series and
enable the Series name option under the Data labels tab in the Chart Options dialog.

189

Example 10: Voltage Regulator: LM317

Conclusion
This has been quite a broad area to cover as a single model, and as a result I have tried to
keep it simple. I have not included all the possible tolerances on the components that could
have an effect on the outcome. The tolerance of the capacitor for instance could be ±20%.

Development of the model through stages has lead to some inconsistencies in data entry and
data flow. For instance, irrespective of whether the thermal or half wave analysis is done first,
data is needed from one to feed the other. The model would benefit from adding the DC cur-
rent to the SetVoltage worksheet, possibly with an input box in the LM317 macro. Although
the model could use a little polish it does show quite how useful Excel can be.

Figure 10-31: Adding a new series to a chart.

Figure 10-32: Chart with two series.

TL431 Adjustable Voltage Reference

11E X A M P L E

190

Model Description
Like the LM317 in the previous example, the TL431 adjustable voltage reference has perme-
ated throughout the industry. Its simple configuration, low cost and wide adjustment ability
are the features that have endeared it to electronics engineers. The basic schematic is shown
in Figure 11-1.

Figure 11-1: Connections to the TL431.

R1

R2

Vin

Vka

R3

TL431

Iload

The output reference voltage Vka is defined by the ratio of the two resistors R1 and R2, the
device reference voltage Vref and the current flowing into the reference terminal of the de-
vice Iref. The formula is:

 Vka = Vref(1 + R1/R2) + Iref * R1

Installing the NearestValues Add-In
If you have not installed the NearestValues add-in, follow the instructions in the section
titled Installing the NearestValues Add-In in Example 9. This function will allow us to look up
standard resistor values.

191

Example 11: TL431 Adjustable Voltage Reference

Initial Model

Figure 11-2: Initial setup.

In doing the analysis, aside from the output voltage, there are other constraints that need
to be evaluated. For reasonable results, we must know what the system requirements are:
system supply voltage (Vin), and the current to the load (Iload). The TL431 needs at least 1
mA through it (I431min) to guarantee that it regulates correctly. The resistive divider of R1 and
R2 also loads the regulator output voltage (Vka) and we would like this to be as small as pos-
sible (Idiv). Finally, we would like R3 to be as small as possible so as not to limit Iload, yet large
enough to prevent excessive power dissipation in it.

Figure 11-2 shows the initial setup of the formulas for this evaluation. R1, R2 and R3 have
arbitrary values for the moment to check out the model. Note the factors of 0.001 and 1000
within some of the formulas, which are required for milliamp to amp conversions and back.
The Excel file on the CD-ROM is called TL431.xls.

Solver
In earlier examples, we have seen that Goal Seek can change the value of a cell while
monitoring the result in another cell, stopping when the target cell reaches a chosen value.
Goal Seek works well when we can reduce the problem to a single variable. If you remember,

192

Excel by Example

in the LM317 example we set the value of one of the resistors to that recommended in the
data sheet. Solver is the tool we reach for when there are two or more variables that we need
resolved.

In setting up, we let Solver know what cells to change and which cell to monitor as an
output. In this aspect, it is very similar to Goal Seek, but it also allows us to apply the con-
straints that I mentioned in the last section. To invoke Solver, click on Tools | Solver. Up
pops the dialog window in Figure 11-3. Add the information into the entry boxes as shown.

Figure 11-3: Defining the cells to change, and the result cell to monitor.

Note that aside from looking for an exact value in the target cell, we can also look for a
minimum or a maximum. The cells that may be changed can be entered as an array (block)
or individually using the <Ctrl> + <Click> for multiple cells. You can run the Solver now by
clicking on the Solve button. It will attempt to solve the problem, but the minute it finds a
solution it will stop—there is no guarantee that the solution meets our requirements or even
reality! For instance, a negative value resistor may work nicely in theory.

First, let’s set up the global constraints. Click on the Options button in the Solver Param-
eters dialog (Figure 11-3). A new dialog box appears with a whole bunch of arcane options
(translation: I am having trouble understanding some of them), as shown in Figure 11-4. We
will discuss some of them later. For the moment, just check the Assume Non-Negative op-
tion and then click on the OK. This will force Solver to only consider positive numbers for
the inputs.

You will be returned to the dialog of Figure 11-3. Click on the Add button and enter the
data in the dialog as in Figure 11-5. Click on Add for a new constraint, and add constraints
as in Figure 11-6 and Figure 11-7. Click on OK to return to Figure 11-8, which provides a
summary of these settings. Note the use of cell names, which have been previously defined.

193

Example 11: TL431 Adjustable Voltage Reference

Figure 11-4: Forcing all input values to be positive or zero.

Figure 11-5: Limiting the power dissipation in R3 to 1/8W (assuming
a 1206 size resistor).

Figure 11-6: Limiting the current through the resistor combination
R1 and R2.

194

Excel by Example

Now click on Solve and … it failed to find the answer. Since I am trying to make a point
here, you didn’t really expect success at the first try, did you? See Figure 11-9.

Figure 11-7: Ensuring that there is sufficient current through
the TL431.

Figure 11-8: Solver parameters dialog showing the constraints.

Figure 11-9: Reevaluation needed! Click on Restore Original Values
and then OK.

Programs that work on an iterative basis like Solver (and even P-SPICE), take certain values
and try to adjust them in certain ways and see how the relationships respond. The condi-
tions that Solver starts from are based on the numbers that we enter as the seed—the initial
numbers in the worksheet. It certainly speeds up the calculation, and may even allow con-

195

Example 11: TL431 Adjustable Voltage Reference

vergence, to have a good idea of what the answer is likely to be and use that as the seed. The
actual algorithm that Solver uses to generate a solution is hidden from us and we cannot
influence its predictability, but we can step through each iteration to try to get an idea why
the solution is unattainable.

In the Solver Options dialog (Figure 11-4), check the Show Iteration Results option, and
run the Solver. It will pause after each iteration to allow an evaluation of the perturbations
to the input cells and the results on the outputs. The final result is shown in Figure 11-10.

Figure 11-10: Final stage of stepping through the iterations—the numbers for the
variables will depend on the initial values.

As we stepped through, you may have noticed that cell B18 (R3power) never dropped to any-
where near 0.125W, so we should consider increasing this. Click on Restore Original Values
and then OK.

Go to the Solver Parameters dialog, click on the constraint for R3 power and then click on
Change. Modify the constraint to <=0.5. Also, go to the Solver Options and disable Show
Iteration Results option. Now try to solve and it works! Click on the Save Scenario button
and name it FirstAttempt.

196

Excel by Example

Return to the Solver Results dialog, and click on OK, so that the new results remain on the
worksheet. Modify the values of R1, R2, and R3 to 200. Now using these values, run Solver
again (Tools | Solver, and click on Solve). Name this scenario as SecondAttempt.

We can now view the scenarios by clicking on Tools | Scenarios and in the Scenario Man-
ager (Figure 11-11) viewing each scenario. Note that the results are different, yet both are an
acceptable solution.

Figure 11-11: Scenario Manager to allow investigation of
different conditions.

As we play around with the Solver settings trying to find a solution, it is possible to save each
group of settings by clicking on the Save Model button in the Solver options dialog. These
settings are saved to a series of cells in the worksheet after the user is prompted for the loca-
tion that the user wants them to be stored at. It stands to reason that it is possible to reload
the settings with the Load Model button.

197

Example 11: TL431 Adjustable Voltage Reference

In Parenthesis: Solver Options

If we look at the different Solver Options (Figure 11-4), some are obvious as to their
impact. The maximum time limits the amount of time that the solver will attempt to
find a solution. The number of iterations will cap the number of times it tries to solve
the problem. Exceeding either condition will terminate the attempt.

Precision affects what Solver will accept as a value in a constraint cell. It is a number
between 0 and 1.The closer it is to 0, the closer the resulting value will be to the target
value. Conversely, the closer it is to 1, the less precise the result. One of the options on
setting a constraint is to set a number to an integer or a binary number. However, having
an exact number can cause Solver to expend excessive time on its way to a solution. The
mathematical definition of an integer can be relaxed by adjusting the precision.

The Tolerance setting pertains to the target cell and is only valid if there are constraints
restricting the inputs to integers. It represents the percentage within which the result will
be considered acceptable.

Convergence is only valid for nonlinear models (Assume Linear Model option is un-
checked). If the value of the target cell changes by less than the convergence value in the
last five iterations, the solver process is terminated. The smaller the number, the longer
it takes for Solver to reach a solution. The convergence value can be between 0 and 1.
Obviously, if every part of the model is linear, setting the Assume Linear Model option
will result in quicker results.

The Show Iteration Results option forces solver to pause after iteration and is used in
analyzing and changing the model to lead to a solution.

If inputs and outputs have large difference in magnitudes (a small number in the de-
nominator of an expression can lead to very large answers), select the Use Automatic
Scaling option.

The Estimates, Derivatives and Search settings determine how Solver approaches find-
ing a solution. If you genuinely need to know about these, then you are well beyond the
scope of this book and I will be looking to you for advice.

The Estimates selection determines the way the initial guesses are made for the input cells.
Advice I have seen recommends tangent for linear problems and quadratic for nonlinear.

The Derivatives selection chooses the differencing method for partial derivative estimates.
In other words, when successive changes in the input cells results in a slow result change,
the Forward option should be used (for most problems). For a very sensitive response,
use the Central option.

The choice in Search affects the algorithm used in determining the size of memory needed
for the calculations. The Newton selection uses more memory, but because it requires

198

Excel by Example

less iterations is quicker. The Conjugate selection uses less memory, but takes longer. It
may be preferred in larger models where memory usage is an issue.

Some more detailed information can be found in the Microsoft Knowledge Base numbers
82890 and 214115.

The truth is, for simple models the defaults are normally more than sufficient. If you
are having a problem, then a few well considered constraints can work wonders.

In Parenthesis: Use of Constraints

Constraint Relationships:

There are five forms of constraints that can be set: >=, =, <=, integer and binary. The
Solver evaluates the constraint and decides if it is valid within certain limits. These lim-
its are fixed by the Precision setting in the Solver Options. For instance, if one of the
constraints was =B33=0, then if the cell value was 0.001 (given the nature of computer
calculation), the strict evaluation of the constraint would result in a false condition.
Setting the precision to a number closer to 0 makes the acceptance of the value more
stringent. As I understand it, a Precision of 0.00001 would not accept the above cell
value as equal zero, but 0.002 would.

A similar philosophy applies to the integer constraint and the binary constraint. In true
mathematical terms, an integer is 3, not 3., or 3.0 or 3.000001. In the Solver world,
however, it may be acceptable and as before, the precision defines the acceptability.
Extrapolating on this concept: True is 1 and False is 0 within the Precision limits, and
these could be used as a go/no go decision.

Cell Reference (left-hand side of constraint):

The entry here can be any individual selection of cells. They can be a single cell or a single
block of cells (column, row, or rectangle), but they cannot have multiple selections.

Constraint Entries (right-hand side of constraint):

Frontline Systems (creators of Solver) recommend that the constraint entry (right-hand
side) is a constant or links to a cell (or cells) that contains a constant. The cell refer-
ence can be a single cell or a group of cells (for example, B3:B42) or even a formula like
C2*B4. Of course, cell names can be used. If you have more than one cell (as in the B3:
B42 example), the number of cells must match the number of cells on the left-hand side.
Multiple cell selections are permitted and they do not have to have the same cell pattern
on the worksheet, but they will be matched element for element, that is, the third item
on the left-hand side will be evaluated to the third item on the right-hand side.

199

Example 11: TL431 Adjustable Voltage Reference

Standard Resistor Values
Let’s add the feature of looking up standard resistor values. Provided we have enabled the
add-in as described at the beginning of this example, we can insert the function (if we don’t
remember its name) as follows: click on cell D11, and then Insert | Function and the dialog
of Figure 11-12 appears.

Figure 11-12: Inserting the nearest standard resistor value function.

Select User Defined and then NearestResistorB options, and for the parameter enter RE1
and OK. Repeat or copy the formula to cells D12 and D13 editing the parameter to RE2 and
RE3, respectively. We then name the cell D11 as RE1_S, and so on.

In cell D15, we enter the formula:

 =(V_REF*(1+RE1_S/RE2_S))+((I_REF*0.001)*RE1_S)

which will reevaluate the voltage output in terms of the standard resistors. After some cos-
metic adjustment, Figure 11-13 is the result.

Adding a Macro
For multiple usage of the model, a macro would probably be a good idea. A word of cau-
tion here: there are two ways to record the macro, with or without the constraints. The
constraints are maintained, so there is no real need to include them in the macro and it will
allow the user to change them without having them reset when running the macro. On the

200

Excel by Example

other hand, once changed, they will stay modified the next time the application is run. Of
course it is possible to add a second macro to set the constraints back to the default. I am
opting not to change the constraints within the macro.

As before, we start the process by learning the Solver sequence. Tools | Macro | Record
new macro, and name it Solve. Then click on Tools | Solver | Solve. Leave the update
worksheet option Keep Solver Solution (although this will not show up in the macro, and
you will always be given this option). The macro is recorded as:

Sub Solve()
 SolverOk SetCell:=”B15”, MaxMinVal:=3, ValueOf:=”10”, ByChange:= _
 “B11,B12,B13”
 SolverSolve
End Sub

The first time you run this macro, however, will likely end up with an error message. This is
because although you will have added the Solver as an add-in in Excel, it has not been added
in VBA. The way to solve this is to get to the VBA editor (if it is not already open: Tools |
Macro | Visual Basic Editor is one method). In VBA, click on Tools | References, and in

Figure 11-13: Worksheet with standard values added.

201

Example 11: TL431 Adjustable Voltage Reference

the Available References window click on Solver.xla. If it does not exist in the list, click on
Browse and find it on your hard drive. It is normally in the Office\Library subfolder. Mine
was in:

 C:\Program Files\Microsoft Office\Office 10\Library\Solver

Now the macro will run without detecting an error. Let’s create a Command button on the
worksheet so that running the macro repeatedly will not take too many key clicks. Using
View | Toolbars | Forms, click on the Command button icon in the Forms toolbox and
then click and drag a button on the worksheet. Associate the Command button with the
Solve macro and change the button text to “Solve”.

If we added a few user prompts for the input voltage, desired reference voltage and load
current, it would surely streamline the process so let’s modify the macro as follows (note the
<space>_ line continuation):

Sub Solve()
 Dim nValueOf

 Range(“RE1”).Value = 100
 Range(“RE2”).Value = 100
 Range(“RE3”).Value = 100
 ‘ intitiate from the same point
 Range(“Vin”).Value = (InputBox(“Enter input voltage”, _
 “TL431 Configuration”, “24”))
 nValueOf = (InputBox(“Enter reference voltage”, _
 “TL431 Configuration”, “5”))

 Range(“I_load”).Value = Val(InputBox(“Enter desired load current”, _
 “TL431 Configuration”, “1”))

 SolverOk SetCell:=”B15”, MaxMinVal:=3, ValueOf:=”nValueOf”, ByChange:= _
 “B11,B12,B13”
 SolverSolve
End Sub

I also added an initiation of the resistor values to add some consistency to the results. The
input boxes sequentially prompt the user for data, and then save it in the worksheet, or pass
it through to the solver function. The appearance of one of the input boxes is shown in
Figure 11-14.

Figure 11-14: Input
box. Note the prompt,
title and default values
as related to the
function call.

202

Excel by Example

Report Generation

At the final stage of the Solver function when a solution has been found, you must have
noticed the option of a report as in Figure 11-15.

Figure 11-15: Successful conclusion of a Solve process.

These reports can be used to help analyze the solution. Clicking on any one of the Report
options will result in a new sheet being added to the workbook with the report. Figure 11-16
shows the Answer Report, which is largely a summary of the solver action. Figure 11-17 in-
dicates the Sensitivity of the data to change, while Figure 11-18 indicates the Limits placed
on the changes that took place. These are of much more significance in complex models.

Within the reports:

“Slack” is the difference between the actual solution and the constraint target value.

“Reduced Gradient” shows how a unit increase in a cell value will affect the solution.

“Legrange Multipliers” indicates the amount by which the solution will improve as a result of
a relaxation of the constraint by one unit.

203

Example 11: TL431 Adjustable Voltage Reference

Figure 11-16: Answer report worksheet.

Figure 11-17: Sensitivity report.

204

Excel by Example

Limitations
It occurred to me that using Solver to find resistor and capacitor values and then fetching
the standard value may result in solutions that may be bettered by starting out using the stan-
dard resistor and capacitor values. I set out to find a method to achieve this. My solution was
to create a table of standard values (as opposed to the NearestValue approach). I wanted to
access the standard value by using an INDEX function based on an integer that would vary.
I hope Figure 11-19 gives you the idea of what I was trying to achieve. It is on the CD-ROM
as Index.xls.

Unfortunately, Solver only applies the “integerization” of cell A4 once it approaches a solu-
tion. It also requires a change in the target cell, no matter how small, within 5 iterations or
it terminates, unable to find a solution. In this case, it sets A4 to 1.0000001 as the first step.
Since the INDEX function returns the exact same value, you might think that Excel should
try a larger value in cell A4. It does not—it simply maintains the value. It seems to me that
Excel must see some change in the target cell in order to calculate what to try next since
the value in A4 is not modified in the next iteration. (Ironically, the equivalent feature in
Quattro Pro, called Optimize, does allow for this and works well. Optimize was also developed

Figure 11-18: Limits report.

205

Example 11: TL431 Adjustable Voltage Reference

Figure 11-19: Trying to use the index function with the Solver modification of an integer
in A4. E2 to E20 contain general data, just to prove the point.

by Frontline Systems, the developer of Solver in Excel.) Microsoft has confirmed to me that
Solver will not work with a lookup function. There are upgraded versions of Solver available
from Frontline Systems (www.solver.com), but I don’t know whether they can handle this
approach either.

This discussion serves as a segue to the next example, where I will use the Solver as part of a
procedure to partially achieve this operation.

Incidentally, Excel includes an example called Solvsamp.xls, which should be on your hard
disk. Included on one of the worksheets is an example of the application of Solver to an RLC
circuit.

555 Timer

12E X A M P L E

206

Model Description
The 555 timer and its descendants still enjoy great popularity in the electronics world. This
“bubble-gum” part owes its longevity to simplicity of use, versatility of configuration, robust
operation and economical pricing. Hardly suitable for an Excel model you might think, but
do not be hasty; it will still provide a challenge for some of Excel’s abilities. Hopefully, we
will learn something along the way.

The principle configurations of the 555 are a monostable or an astable multivibrator (Is multi-
vibrator an archaic term? Is there a newer word for it? Am I showing my age?). There are many
other functions that may be realized, but the treatment is very similar and so they are left to
you (as my lecturers used to say, as an exercise). I will deal with each function independently,
and they will be implemented on two separate worksheets of the workbook 555Timer.xls.

Monostable Operation

R1

Out

GND

Vcc

555

Disch

Trig

Cont

Thrs

Rst

Vcc

Vcc

C1

Figure 12-1: 555 timer as a
monostable multivibrator.

Figure 12-1 shows the connections of the 555 when configured for monostable operation.
When a trigger occurs (input voltage less than Vcc/3), the output of the 555 goes high for a
period of:

 T = 1.1 * R1 * C1

207

Example 12: 555 Timer

Provided the trigger has returned to a level above Vcc/3 in the interim, the output returns
low and the system is ready for the next trigger.

Setup
Let us create a new workbook setup as in Figure 12-2. Note that Sheet1 has been renamed as
Monostable. Cell C8 contains the formula:

 =1.1*CAP1*1E−12*RE1*1E−6

where the numerical factors are used for scaling the capacitors to farads and the time to
microseconds.

Figure 12-2: Preparation for monostable model.

Add User Form
Cosmetically, it would be a nice touch to add the schematic of Figure 12-1 right in the work-
sheet. Invoke the VBA editor (Tools | Macros | Visual Basic Editor or <Alt> + <F11>).
Detailed explanations of the setup used here are covered in Example 6. In the editor, click in
Insert | User Form and modify the forms properties by clicking in the right-hand column of
the associated property:

208

Excel by Example

(name): frmMonostable

Caption: Monostable Configuration (title at the top of the form).

Height: 200 (fixed height to keep consistency with the other image).

Width: 260 (fixed width to keep consistency with the other image).

StartUpPosition: 1- Center Owner (will appear in the middle of the Excel window).

ShowModal: False (to allow the form to be shown an still enter data).

BackColor: White (selected from palette—white to blend in with image that we will add
shortly).

Figure 12-3: Adding a user form.

Add Image Control
We now want to add the image into the user form. We need the VBA Controls toolbox. If it
is not visible, click on View | Toolbox.

Click on the Image Control icon in the toolbox, and then click and drag on the user form to
define an area.

209

Example 12: 555 Timer

Modify the Image box properties as follows:

Picture: monostable.wmf (find on disk. As mentioned in Example 7, the wmf format seems to
give me better results than any other format.)

BackColor: select white on the palette (to blend in with the user form).

BorderStyle: 0-fmBorderStyleNone (no border).

Autosize: True (image automatically sizes to window).

Height: 100 (shrinks image to size that can be handled within user frame).

Width: 100 (shrinks image to size that can be handled within user frame).

Size and position the image by dragging the “handles” on the edges so that it fills the user
form and looks right.

Figure 12-4 will give you an idea of the result.

Figure 12-4: Adding an image control to the user form and sizing it.

210

Excel by Example

Second Image
Let’s repeat the process for a second diagram for the astable configuration, even though we
are getting a little ahead of ourselves. We create form frmAstable and insert an image control
using the image astable.wmf.

While we are so far ahead, let’s also rename Sheet2 to Astable.

Turning Forms On (and Off)

We will need a procedure to turn all the forms off, since we will do this from several places.
Double-click on the ThisWorkbook folder in the 555 Timer VBA project, right-click on
it and select Insert Module. Double-click on the newly added Module1 and then Insert |
Procedure. Name the procedure HideForms, and select the options as in Figure 12-5.

Figure 12-5: Adding a procedure.

Add the code so that the procedure appears as follows:
Public Sub HideForms()
‘hide all forms
 frmAstable.Hide
 frmMonostable.Hide
End Sub

Next, double-click on the Sheet 1(Monostable) folder in the VBA Explorer, and click on
the drop-down button of the Object bar, selecting the Worksheet option as in Figure 12-6.
Then click on the drop-down button of the Procedure bar and select Activate. Enter the
code as shown in Figure 12-6.

211

Example 12: 555 Timer

We also need to do the same process for the second sheet. Double-click on Sheet2(Astable)
and find the associated Worksheet_Activate event. Add the code as follows:

Private Sub Worksheet_Activate()
 ‘first turn of all forms
 Call HideForms
 frmAstable.Show
End Sub

Try clicking between sheets, and the two different diagrams should pop up in the respective
sheet.

We also need to initialize the workbook. Double-click in ThisWorkbook folder, and select
the WorkbookOpen event. Add this code to close all forms and then activate the first sheet
(and as a consequence showing the monostable diagram).

Private Sub Workbook_Open()
 Call HideForms
 Sheets(“Monostable”).Select
End Sub

Figure 12-6: Selecting and modifying sheet events.

212

Excel by Example

Modifying Form Location
As can be seen from Figure 12-7, placing the picture in the middle of the worksheet may
prove irritating in operation, so let’s change the process to place the form in the lower right-
hand of the window. First, we must change the StartUpPosition property of both forms to
0 – Manual. This will prevent the position of the form from being reinitialized every time
the Show procedure is executed. Then we modify both event procedures as follows:

For the Monostable sheet activation:
Private Sub Worksheet_Activate()
 ‘first turn of all forms
 Call HideForms
 ‘positioning the form at the bottom
 frmMonostable.Top = Excel.Application.Top _
 + Excel.Application.Height _
 - frmMonostable.Height
 ‘positioning the form at the right
 frmMonostable.Left = Excel.Application.Left _
 + Excel.Application.Width _
 - frmMonostable.Width

Figure 12-7: Worksheet with form shown smack-dab in the middle of the window.

213

Example 12: 555 Timer

 frmMonostable.Show
End Sub

and for the Astable sheet activation:
Private Sub Worksheet_Activate()
 ‘first turn of all forms
 Call HideForms
 ‘positioning the form at the bottom
 frmAstable.Top = Excel.Application.Top _
 + Excel.Application.Height _
 - frmAstable.Height
 ‘positioning the form at the right
 frmAstable.Left = Excel.Application.Left _
 + Excel.Application.Width _
 - frmAstable.Width

 frmAstable.Show
End Sub

In Parenthesis: More on Combo Boxes
In all the examples to date, all the controls that we have placed on a worksheet have
been drawn from the Forms toolbox. These controls are simple to use, but have several
disadvantages. First, they cannot be turned on and off, so they cannot be made to simply
disappear when they are not needed and then reappear. Second, when there are several
of the controls, it is not always easy to set them up to the same size or on the same
horizontal or vertical line. For better or worse, the control “floats” above the worksheet
and the selection must be referred to a cell on the worksheet.
It is possible to get a drop-down effect right in a cell, so that the number is embedded
and directly accessible. To do this, select a cell and click on Data | Validation. In the
window that pops up (Figure 12-8) under the Settings tab, you can define what kind
of data entry that will be accepted (decimal, text, and so forth), and the upper and
lower limits, where applicable. If a list is chosen, then a series of cells can be used for
the input or a list separated by commas can be used. Under the Input Message tab, you
can create a message that will show when the cell is selected (Figure 12-9) and you can
provide an error message if the function rejects the input value under the Error Alert
tab (Figure 12-10).
Aside from the Combo box available in the Forms toolbox, there is also a Combo box
option available in the Control Toolbox. Find the Control Toolbox by clicking on View
| Toolbars | Control Toolbox. These are the controls with Excel and not part of VBA.
The Combo box control has a nice feature in that when the user starts to enter data, the
selection that is displayed is refined as the user types. Unfortunately, it does not validate
the input. The in-cell approach does. It is possible to combine the two approaches by
applying in-cell validation to the output cell of the Combo box. For the data validation
entries, select List and make sure the In-cell drop-down is unchecked.

214

Excel by Example

Monostable Pulse Width Entry
In previous examples, I set up the macro to prompt for the target value using an Input box.
Let’s take a new approach.

Click on cell B5. Click on Data | Validation, and fill in the data as in Figure 12-8, Figure
12-9 and Figure 12-10.

Figure 12-8: Allowing any decimal
number between 0 and 999.

Figure 12-9: Message shows when
cell is selected.

Figure 12-10: Error handling procedure
for in cell validation.

215

Example 12: 555 Timer

If we try to enter an erroneous value in B5, Figure 12-11 is the result.

Figure 12-11: In-cell validation. Note the message from the cell selection and the error
message for erroneous data.

In addition, let’s set up cell C5 to allow for units of microseconds, milliseconds and seconds,
as follows in Figure 12-12.

Figure 12-12: List data for the units
of the pulse width.

216

Excel by Example

It is possible to click in C5 and enter data, but it will be rejected if it is not the same as the
list. You will notice that when the cell is selected, the drop-down arrow appears to the right
of the cell and this can be used to enter the desired units.

Figure 12-13: Entry of pulse width time units.

We now need to make a single number out of these two entries. In cell E5, we enter the
formula:

 =IF(C5=”uSec”,1,IF(C5=”mSec”,2,IF(C5=”Sec”,3,0)))

which selects a number between 0 and 3 depending on the units selected.

Cell E6 has the formula:

 =IF(AND(E5<>0, B5<>0),CHOOSE(E5,B5,B5*1000,B5*1000000),0)

Provided that there are valid entries, this formula uses the lookup function CHOOSE to
return the valid calculation of the desired pulse width time in microseconds.

Command Button
Running ahead of ourselves for the second time in this example, we will be using a button to
execute the macro (which is still to be written). Rather than use the Forms control button,
which cannot be hidden or enabled, we are going to use the Control Toolbox Command but-
ton. When there is a valid entry for the time, the button will be enabled, otherwise it will be
disabled and the macro cannot be run. That is the plan anyway!

Place the Command button on the worksheet by working through View | Toolbars | Con-
trol Toolbox. Click on the Command button icon, and then click on the worksheet and drag
out an area for the button as in Figure 12-14. Right-click on the button and select Proper-
ties. In the properties window, edit the name to cmdSolve and the caption to Solve.

217

Example 12: 555 Timer

After much trial and error and investigation, it seems to me that there are some limitations
on enabling and disabling a control (see “In Parenthesis: Control Toolbox”). The most el-
egant solution I found was to place the following code in the worksheet change event. Every
time anything on the worksheet changes, this code is run.

Private Sub Worksheet_Change(ByVal Target As Range)
 If Range(“e6”).Value <> 0 Then
 Sheet1.cmdSolve.Enabled = True
 Else
 Sheet1.cmdSolve.Enabled = False
 End If
End Sub

Figure 12-14: Placing a command button.

218

Excel by Example

In Parenthesis: Control Toolbox

As a result of historical development, I guess, Excel has two forms of “in-sheet” controls.
Up until now, we have only considered the Forms controls. They are much easier to
use, but lack versatility. If I were to prognosticate, I might say that these controls would
gradually fade out in favor of the controls in the Control Toolbox.

Using the Control Toolbox will produce controls that act much as the controls from the
Forms toolbox, but they are much more like VBA objects and their properties are avail-
able without having to go into VBA. This allows them to be sized, enabled, and made
visible and invisible. Like the Forms controls, it is possible to link to a cell which has a
value associated with the control output. This cell is accessed through a property of the
control and obviously accessed through the properties window.

Unlike the Forms controls, you cannot associate just any VBA procedure with these
controls. The procedure must be invoked from the events associated with the controls.
Of course, these events can call any procedure you want.

Inserting or editing the controls requires that the Control Toolbox be in Design Mode,
which is attained when the Design Mode button is pressed in. When the button is out,
Excel is in Run Mode, and the effects of the controls can be seen.

Figure 15: Control Toolbox toolbar.

As usual, right-clicking on the object (in Design Mode) brings up the options for the
object. Note that sometimes you will need to click away from the object and then right-
click on it to get the correct options to show up.

Having said that, it is possible to enable or disable or make visible controls from the
Control Toolbox. I should mention that from my observations, this is only possible from
within certain events. While it is possible to modify properties (like the caption) from a
VBA function or any event, the Enabled and Visible properties appear to be changeable
only from events that are triggered by a click. In most of the other events, although the
code is executed, the property does not change. I have not found any documentation on
this, so it is based on trial and error. In this example, I have found that these properties
can also be changed in the Worksheet_Change event.

It appears that it is not possible to change any of the object properties directly from a
worksheet formula. Of course it can be accessed through a VBA function contained in
the worksheet, subject to the above limitation.

219

Example 12: 555 Timer

Solver
Returning from the tangent that we went off on, we want to find the component pair R1 and
C1 for a given pulse width. For this, we resort to Solver. If we plunge headfirst into it, the
result will be values for R1 and C1, without any regard to the fact that they can only have
certain specific values. Now this is not normally a problem for resistors since there are many
values, but the standard range of values for capacitors has some sizeable gaps and the result
may not be reasonable.

As we saw at the end of the last example, it is not possible to use lookup techniques within
Solver, so what I will present is a method of fixing a capacitor in VBA and then calling
Solver. If the result is unacceptable, the next value of capacitor in a list is selected and so on
through the range of capacitors until a result is found.

First, let’s construct a simple model to show that everything works. We will not use the cell
for C1 as an input, allowing Solver just to find the value for R1. See Figure 15.

Figure 12-16: First attempt at Solver. In Options, the Assume Non-
Negative is selected. R1 is limited to 1 MOhm.

The target value of 50 µS is arbitrary at the moment, since it is not possible to directly link
this to a cell.

Now we record each step of this to a macro including a Reset All to start off with. This is
the macro that should result:

Sub Solve()
‘
 SolverReset
 SolverOk SetCell:=”C8”, MaxMinVal:=3, ValueOf:=”50”, ByChange:=”C7”
 SolverAdd CellRef:=”C7”, Relation:=1, FormulaText:=”1000000”
 SolverOk SetCell:=”C8”, MaxMinVal:=3, ValueOf:=”50”, ByChange:=”C7”
 SolverOptions MaxTime:=100, Iterations:=100, Precision:=0.000001, AssumeLinear _
 :=False, StepThru:=False, Estimates:=1, Derivatives:=1, SearchOption:=1, _
 IntTolerance:=5, Scaling:=False, Convergence:=0.0001, AssumeNonNeg:=True

220

Excel by Example

 SolverOk SetCell:=”C8”, MaxMinVal:=3, ValueOf:=”50”, ByChange:=”C7”
 SolverSolve
End Sub

Notice that the ValueOf property is assigned at each step. This is the value that we want
to associate with a cell, but we only really need to change it in the last instance. That line
becomes:
 SolverOk SetCell:=”C8”, MaxMinVal:=3, ValueOf:=Range(“e6”).Value, ByChange:=”C7”

In addition, I also added a limitation that R1 should be greater than 100 ohms. This restric-
tion looks like:
 SolverAdd CellRef:=”C7”, Relation:=3, FormulaText:=”100”

In the cmdSolve_Click event we add the line:
 call Solve

Any time we click the button, the Solver is run for whatever time period is entered. How-
ever, this only modifies the value of R1. We now need to find a way to introduce standard
capacitor values.

Standard Values
There are times when the approach used to find standard component values in the Nearest-
Values functions is not suitable. To remedy this, I have created a worksheet with the standard
values of resistors and capacitors. It will be easy enough to cut and paste this to any workbook,
so I am not going to attempt to create any form of standard interface as I have with other
functions. You will find it in the “555 Timer.xls” workbook on the StandardValues sheet.

Before you think that this is a lot of work, I would like to point out that with a little thought
it is not that much. We only need to enter a range of data for the first decade and then
create the second decade as 10 times greater, and so forth. For instance, if cells C5 to C19
contained the standard capacitor values, then cell C10 would have the formula = 10* C5.
This is then copied through the entire remainder of the range. Some care should be taken
since the first decade(s) is (are) missing some values. It is actually easier to create the second
decade and then work from there.

Once all the values have been created, highlight the whole range (using click and drag or
similar) and copy it using <Ctrl> + <C> or Edit | Copy. Then go through Edit | Paste
Special, and select Paste Values and OK. All the formulas are simply transformed into values.

SolverSolve
The function call that does all the work on the solver is called SolverSolve. There does not
appear to be much documentation out there on the subject, so I have had to improvise
and find my way through trial and error. This is the third time in two examples that I have
bumped into the limits of Excel. Is this book cutting edge or what? (To those of you that lean
toward the “what” side of the equation, please note that I am being self-deprecating.)

221

Example 12: 555 Timer

One of the things that you may have noticed when clicking on the Solve button is that the
Solver always reports the result of the calculation, but the information does not appear to
be available to the calling procedure. This is simply resolved by looking for the return value
from SolverSolve. The last line of the macro is changed to:
 varSolveReturn = SolverSolve(True)

where varSolveReturn is defined as a variant at the start of the procedure. We should also
note that the Solver completion message is suppressed in the function call.

In Parenthesis: SolverSolve Function

As a function call, SolverSolve employs the format:

 SolverSolve(UserFinish, ShowRef)

UserFinish is a Boolean value of True or False. If it is True, then no Solver results are dis-
played. False or nothing will lead to the solver results being displayed.

ShowRef is a macro name that will be executed at each Solver iteration if the Show Itera-
tion Results option is set.

Undocumented are the return values. Empirically, I have found that 0 corresponds to
success and the value of 4 represents a failure to find a value. There are other conditions
that Solver detects like division by 0 and other errors, but on the assumption that the
model is first perfected using the normal procedures, I have not tried to find the other
possibilities. Microsoft could not give me the values and suggested that I use their “Pro”
support (read: services that an individual cannot afford). They could not tell me if in
fact they did have this information.

In Parenthesis: Calling an Excel Function from VBA

While it is possible to create any function you want in VBA, sometimes it is quicker and
easier to use an existing Excel function. The magic words are:

 Application.WorksheetFunction.

Casting this incantation at the beginning of the function will allow access to the func-
tion, provided there is no function within VBA that has the same name. VBA will even
provide the prompts that you would expect to see from Excel.

Using Standard Capacitor Values
The process I intend to follow is to start with a low capacitor value (we will set the minimum
value to be 100 pF) and try to solve using Solver. If a solution is found, then the process ter-
minates. Otherwise, the next standard capacitor value is fetched and a new attempt made for
a solution. If there are no more capacitor values, an error message is generated, but instead of

222

Excel by Example

creating our own, we will user the solver message. The philosophy in this approach is to find
the lowest value capacitor that will achieve the result. The modified procedure Solve looks
like this:

Sub Solve()
‘
 Dim varSolveReturn As Variant
 Dim intI As Integer

 For intI = 16 To 63
 ‘starting at 100pF and limiting at 10uF
 Range(“c6”).Value = Application.WorksheetFunction.Index(Worksheets(“Standardvalues”).
Range(“D5:D82”), intI)
 SolverReset
 SolverOk SetCell:=”C8”, MaxMinVal:=3, ValueOf:=”50”, ByChange:=”C7”
 SolverAdd CellRef:=”C7”, Relation:=1, FormulaText:=”1000000”
 SolverAdd CellRef:=”C7”, Relation:=3, FormulaText:=”100”
 SolverOk SetCell:=”C8”, MaxMinVal:=3, ValueOf:=”50”, ByChange:=”C7”
 SolverOptions MaxTime:=100, Iterations:=100, Precision:=0.000001, AssumeLinear _
 :=False, StepThru:=False, Estimates:=1, Derivatives:=1, SearchOption:=1, _
 IntTolerance:=5, Scaling:=False, Convergence:=0.0001, AssumeNonNeg:=True
 SolverOk SetCell:=”C8”, MaxMinVal:=3, ValueOf:=Range(“e6”).Value, ByChange:=”C7”
 varSolveReturn = solversolve(True)
 If varSolveReturn = 0 Then
 Exit For
 ‘force a break
 End If
 Next intI

 If varSolveReturn <> 0 Then
 solversolve
 ‘rerun with failed values and no update of C1.
 End If
End Sub

If you run this, you will actually see every update and it is quite slow. We can speed it up by
preventing the screen update from occurring. If we add:

Application.ScreenUpdating=False before the For statement and the inverse just before the
End Sub statement, it does improve the situation a little.

223

Example 12: 555 Timer

Tidying Up
Let’s just add a summary at the bottom with the Standard values found with the result in
Figure 12-17.

Figure 12-17: Finished worksheet. Note column E is hidden.

Cells A15 to C15 have some formatting to allow expression of the numbers in a more “nor-
mal” format. For instance, B15 has the formula:

 =IF(E7<1000,E7&”R”,(IF(E7<1000000,E7/1000&”K”,E7/1000000&”M”)))

Unfortunately, Solver is incompatible with any level of protection on the worksheet, so we
are left with the possibility of inadvertently changing some of the cells.

Astable Operation
Figure 12-18 shows the schematic of the astable configuration for the 555 timer. The fre-
quency of oscillation is:

()
1.44

1 2 2 1R R C+
, and the duty cycle is calculated from 2

1 2 2
R

R R+
. The duty cycle can only

vary from 0% to 50%. Depending on how you view the duty cycle, some texts look at the
inverse of the signal and the duty cycle would then vary from 50 to 100%. I am going with
the former.

224

Excel by Example

The implementation of the astable model is very similar to the monostable, except that with
the duty cycle calculation, there are a few more limitations on the Solver solution. Because
of the similarities, we will go through this a little quicker.

Figure 12-18: 555 Timer in
Astable Configuration.

R1

R2

Out

GND

Vcc

555

Disch

Trig

Cont

Thrs

Rst

Vcc

Vcc

C1

Worksheet Setup
The initial setup of the worksheet appears in Figure 12-19. Cell B5 has been set up for data
validation for value from 1 to 999, and cell C5 has been set up for Hz and KHz. Cell E5 has
the actual frequency in Hz. Cell B8 has been set up for a data validation of 1–50.

Figure 12-19: Initial Astable Model.

225

Example 12: 555 Timer

Since the maximum recommended frequency for the 555 is 500 KHz, cells B5 and C5 have
been conditionally formatted to turn red for cell E5 greater than 500000. You remember how
to conditionally format? No−Select cells B5 and C5, Format | Conditional Formatting and
enter the details as shown in Figure 12-20.

Figure 12-20: Conditional formatting of cells B5 and C5.

Cell C13 contains the formula to calculate the frequency:

 =1.44/((RES1A+(2*RES2A))*(CAP1A*1e−12))

and C14 has the formula for the duty cycle:

 =(RES2A/(RES1A+(2*RES2A)))*100

The macro that is recorded is based on the setup of Figure 12-21. The constraints allow the
duty cycle to be ±5% of the desired value and force the resistors to be at least 100 ohms.

Figure 12-21: Solver Parameters, Assume Non-Negative option set.

When we try to run this macro (before expanding the procedure to vary C1), we notice that
the first and third constraints are lost. The macro records them as:

 ‘SolverAdd CellRef:=”C14”, Relation:=1, FormulaText:=”b8+5”””

and,

 ‘SolverAdd CellRef:=”C14”, Relation:=1, FormulaText:=”b8-5”””

226

Excel by Example

This appears to be yet another minor flaw in Solver and/or its relationship with the Macro
Recorder. I would guess that any relative calculation recorded in this way will fail. The solu-
tion is simple. Create two cells on the worksheet that perform the calculation. Cell E8 has
the formula =b8+5, and cell F8 contains =b8−5. These two cells absolve Solver from doing
the calculation and the lines become:

 ‘SolverAdd CellRef:=”C14”, Relation:=1, FormulaText:=”$e8”

and,

 ‘SolverAdd CellRef:=”C14”, Relation:=1, FormulaText:=”$f8”

This now runs correctly. The listing to date is:
Sub SolveAstable()
‘
 SolverReset
 SolverOptions MaxTime:=100, Iterations:=100, Precision:=0.000001, AssumeLinear _
 :=False, StepThru:=False, Estimates:=1, Derivatives:=1, SearchOption:=1, _
 IntTolerance:=5, Scaling:=False, Convergence:=0.0001, AssumeNonNeg:=True
 SolverOk SetCell:=”C13”, MaxMinVal:=3, ValueOf:=”300000”, ByChange:= _
 “C11,C12”
 ‘SolverAdd CellRef:=”C14”, Relation:=1, FormulaText:=”b8+5”””
 ‘this line did not record correctly replaced by:
 SolverAdd CellRef:=”C14”, Relation:=1, FormulaText:=”e8”
 ‘SolverAdd CellRef:=”C14”, Relation:=3, FormulaText:=”b8-5”””
 ‘this line did not record correctly replaced by:
 SolverAdd CellRef:=”C14”, Relation:=3, FormulaText:=”f8”

 SolverAdd CellRef:=”C14”, Relation:=1, FormulaText:=”50”
 SolverAdd CellRef:=”C14”, Relation:=3, FormulaText:=”1”
 SolverAdd CellRef:=”C11”, Relation:=3, FormulaText:=”100”
 SolverAdd CellRef:=”C12”, Relation:=3, FormulaText:=”100”
 SolverOk SetCell:=”C13”, MaxMinVal:=3, ValueOf:=Range(“e5”).Value, ByChange:= _
 “C11,C12”
 SolverSolve
End Sub

Following the same techniques as before, we add the capacitor search. From some experi-
mentation, it also becomes obvious that we need to add an upper constraint to R1 and R2
limiting them to 1 MΩ, and so the completed procedure becomes:

Sub SolveAstable()
‘
 Dim varSolveReturn As Variant
 Dim intI As Integer

 Application.ScreenUpdating = False
 For intI = 16 To 63

227

Example 12: 555 Timer

 ‘starting at 100pF and limiting at 10uF
 Range(“c10”).Value = Application.WorksheetFunction.Index(Worksheets(“Standardvalues”).
Range(“D5:D82”), intI)

 SolverReset
 SolverOptions MaxTime:=100, Iterations:=100, Precision:=0.000001, AssumeLinear _
 :=False, StepThru:=False, Estimates:=1, Derivatives:=1, SearchOption:=1, _
 IntTolerance:=5, Scaling:=False, Convergence:=0.0001, AssumeNonNeg:=True
 SolverOk SetCell:=”C13”, MaxMinVal:=3, ValueOf:=”300000”, ByChange:= _
 “C11,C12”
 ‘SolverAdd CellRef:=”C14”, Relation:=1, FormulaText:=”b8+5”””
 ‘this line did not record correctly replaced by:
 SolverAdd CellRef:=”C14”, Relation:=1, FormulaText:=”e8”
 ‘SolverAdd CellRef:=”C14”, Relation:=3, FormulaText:=”b8-5”””
 ‘this line did not record correctly replaced by:
 SolverAdd CellRef:=”C14”, Relation:=3, FormulaText:=”f8”

 SolverAdd CellRef:=”C11”, Relation:=1, FormulaText:=”1000000”
 SolverAdd CellRef:=”C12”, Relation:=1, FormulaText:=”1000000”
 ‘these lines added to limit maximum resistor value to 1M

 SolverAdd CellRef:=”C14”, Relation:=1, FormulaText:=”50”
 SolverAdd CellRef:=”C14”, Relation:=3, FormulaText:=”1”
 SolverAdd CellRef:=”C11”, Relation:=3, FormulaText:=”100”
 SolverAdd CellRef:=”C12”, Relation:=3, FormulaText:=”100”
 SolverOk SetCell:=”C13”, MaxMinVal:=3, ValueOf:=Range(“e5”).Value, ByChange:= _
 “C11,C12”
 varSolveReturn = SolverSolve(True)
 If varSolveReturn = 0 Then
 Exit For
 ‘force a break
 End If
 Next intI

 If varSolveReturn <> 0 Then
 SolverSolve
 ‘rerun with failed values and no update of C1.
 End If

 Application.ScreenUpdating = True
End Sub

228

Excel by Example

A command button is placed on the worksheet and the associated click will call this proce-
dure. Also, we want to disable the button if the inputs are invalid, so we add the following in
the Astable worksheet change event:

Private Sub Worksheet_Change(ByVal Target As Range)
 If Range(“e5”).Value <> 0 And Range(“b8”).Value <> 0 Then
 Sheet2.cmdAstableSolve.Enabled = True
 Else
 Sheet2.cmdAstableSolve.Enabled = False
 End If
End Sub

The result of the calculation is summarized in cells A18 to C23, where the data is formatted
into traditional engineering format. For instance, cell A23 contains the formula

 =IF(ActualFreq<1000,ROUND(ActualFreq,0)&”Hz”,ROUND((ActualFreq/1000),2)&”KHz”)

Figure 12-22 shows the completed worksheet.

So there you have it. Quite a lot to say for such a simple circuit!

Figure 12-22: Completed worksheet. (Columns E,F are hidden.)

Purchase Order Generator

13E X A M P L E

229

Model Description
Assume you work for a small organization and you need to create a purchase order form.
These forms will be filled in by hand, but it would be more professional if the forms were
numbered in print, rather than scrawled in. This model will allow you to print many copies
of the purchase order, incrementing the purchase order number on each sheet by one.

This may seem trivial after some of the models we have produced, but this will allow me to
show you how to create an application that hides the fact (well almost!) that it is an Excel
application. I know using Excel is nothing to be ashamed of, but there are times when the
user does not have sufficient knowledge to open the application and run a macro. All the
user will have to do is double-click the icon on the desktop, add one or two numbers on a
form and the process is over, bar the printing.

Create a Purchase Order
The first thing to do is to create a Purchase Order (PO) using all the formatting tools at your
disposal. Remember, it is possible to insert graphics (Insert | Picture | select object) if you
want to use the corporate logo.

All that you have to do for this model is allocate one cell where the PO number will reside.
You should seed this cell with a number, and this number will become the first number in the
PO numbering sequence. Figure 13-1 was my attempt.

Once you are happy with the visual effect, you need to see how the worksheet will print out.
First, you block the entire area that you want to be printed, and then click on Files | Print
Area | Set Print Area. Although you won’t be using this directly in this model, it is use-
ful to note that Excel automatically names the block to “Print_Area” for ease of reference.
Before we actually print it, you need to size and orient the printout. Click on File | Page
Setup. The dialog box of Figure 13-2 will pop up.

230

Excel by Example

Figure 13-1: Prepared purchase order. Note the PO number in cell K8.

Figure 13-2: Page setup options for printing.

231

Example 13: Purchase Order Generator

While you are here, note the tab options. You can set the page margins, add a header and
footer on every sheet and if you look under the Sheet tab (Figure 13-3), you will find that it
is possible to create title rows and columns that will repeat on every page when you have a
table that spans several pages both horizontally and vertically.

Figure 13-3: Printout options for every page.

If you return to the Page tab (Figure 13-2), you will notice a very convenient option which
automatically sizes the selected area to print on one (or more) pages. This will be great for
the PO model. Select Print to 1 page and click on OK. If you have more than one printer,
also select the printer that should be used.

After printing it out, make any modifications you like to achieve the appearance you are
looking for. Remember to save frequently, especially now since the procedures that you are
going to be playing with are going to terminate and start Excel automatically.

Print Macro
We need to record a macro that encompasses these printout actions. It is probably a good
idea to include the print area definition in the macro to ensure the correct area is printed ev-
ery time. If you already know how to record a macro, please forgive the repetition. Click on
Tools | Macro | Record new macro and select a name. Then repeat the print setup process
above and then remember to stop recording the macro. The result is:

232

Excel by Example

Sub PrintPO()
‘
 Range(“A1:K36”).Select
 ActiveSheet.PageSetup.PrintArea = “A1:K36”
 With ActiveSheet.PageSetup
 .PrintTitleRows = “”
 .PrintTitleColumns = “”
 End With
 ActiveSheet.PageSetup.PrintArea = “A1:K36”
 With ActiveSheet.PageSetup
 .LeftHeader = “”
 .CenterHeader = “”
 .RightHeader = “”
 .LeftFooter = “”
 .CenterFooter = “”
 .RightFooter = “”
 .LeftMargin = Application.InchesToPoints(0.748031496062992)
 .RightMargin = Application.InchesToPoints(0.748031496062992)
 .TopMargin = Application.InchesToPoints(0.984251968503937)
 .BottomMargin = Application.InchesToPoints(0.984251968503937)
 .HeaderMargin = Application.InchesToPoints(0.511811023622047)
 .FooterMargin = Application.InchesToPoints(0.511811023622047)
 .PrintHeadings = False
 .PrintGridlines = False
 .PrintComments = xlPrintNoComments
 .CenterHorizontally = False
 .CenterVertically = False
 .Orientation = xlPortrait
 .Draft = False
 .PaperSize = xlPaperLetter
 .FirstPageNumber = xlAutomatic
 .Order = xlDownThenOver
 .BlackAndWhite = False
 .Zoom = False
 .FitToPagesWide = 1
 .FitToPagesTall = 1
 .PrintErrors = xlPrintErrorsDisplayed
 End With
 ActiveWindow.SelectedSheets.PrintOut Copies:=1, Collate:=True
End Sub

There are, no doubt, many superfluous entries in this macro. Unless you are really concerned
with the speed of execution or out of a deeper interest in how to code Excel, there is not
much point in analyzing it in detail.

233

Example 13: Purchase Order Generator

User Form
In order to activate the printout of the PO, you will need some operator input. For reasons
that I will discuss shortly, you cannot resort to the InputBox technique and you will have to
create your own form. In the VBA editor, click on Insert | User Form. Then using the tool-
box, add two Labels, two Text boxes and two Command buttons, as shown in Figure 13-4.

Figure 13-4: User form
creation.

Click on the user form and change the properties in the Properties window. If the properties
window is not active, select the object and right click on it and select Properties.

Figure 13-5: User form
properties.

234

Excel by Example

Only three properties need to be changed. The first two are the form name and caption. The
third property that I changed is most important to this application¯change the ShowModal
property to False. If a user form is modal, once activated, the user must close the window
before proceeding to any other window. An extract from the procedure to run the PO ap-
plication is:

Sub PO()
 ‘run the application minimized
 Application.WindowState = xlMinimized
 ‘and now show the form
 frmPOPrint.Show
End Sub

Despite the coding order of this procedure, it will show the user form and then proceed to
minimize the Excel window (thereby hiding its operation). If the user form is modal, it will
not get to the process to minimize the workbook until the user form is terminated. The Excel
form will remain visible, something we are trying to avoid. This is the same reason that the
InputBox cannot be used since it too, is modal. If the user form is modeless, the form dialog
is opened, but the procedure then continues on to minimize the application without waiting
for user input. The full code will be discussed later.

You also need to modify the properties of the other controls. You can do this by right-click-
ing on each control and selecting Properties. Actually, if the Properties window is already
open, just clicking on the control should do it. As another alternative, you can find the
properties by clicking on the Combo box at the top of the Properties window and selecting
the object as in Figure 13-6.

Figure 13-6: Selecting the properties of an object.

235

Example 13: Purchase Order Generator

All you really need to do is to set up the captions on the object properties, but of course, it
does make sense to give them meaningful names. The only other properties of interest are
the TabStop and TabIndex. This affects where the focus (the object where a keyboard action
will take place) moves when the Tab key is pressed. As each control is placed on the form,
it is assigned a TabIndex number. Pressing the Tab moves from control to control in the
sequence defined by the TabIndex. Changing the numerical order by modifying this property
will resequence this order. In some controls, like a label or a form, the TabStop is set to False
automatically. If you don’t want the tab to move to a particular control, you can also manu-
ally (or in code) set the TabStop property to False.

When editing a workbook and you want to find the user forms, you will find them listed
under the Forms folder in the VBA Explorer. Double-clicking on the form name will show
the form.

Initial Procedure
The initial procedure to start the whole process is as follows:

Sub PO()
 ‘run the application minimized
 Application.WindowState = xlMinimized
 ‘and now show the form

 frmPOPrint.txtPONumber.Text = Range(“K8”).Value
 ‘fetch the last value that was printed +1

 frmPOPrint.txtQuantity.Text = “1”

 frmPOPrint.Show
 frmPOPrint.txtPONumber.SetFocus
 ‘place cursor at the end of the line
 ‘although not sticly necessary in this case
 ‘where tab index and tab stop settings ensure
 ‘this is the first control to gte the focus.
End Sub

The first instruction minimizes the Excel window. As discussed earlier, this does not happen
immediately, but VBA moves on to the next two instructions which prepare the initial val-
ues to be shown in the text boxes of the user form. The initial number for the purchase order
is retrieved from the cell K8. The default number of POs is 1.The next value to be written in
the next batch of purchase orders that will be printed in the future is stored in cell K8 at the
end of the print process (see later).

The fourth instruction displays the user form in all its glory and is followed by an instruc-
tion to set the focus to the txtPONumber text box. As it happens in this case, the TextIndex
property (combined with the TextStop) is the lowest value so it will be the first object
selected. As a result we could have omitted it.

236

Excel by Example

As the application runs, you will see the blank Excel workbook open and then minimize to
the task bar. This is the only indication that Excel is running, and requires no user interaction.

Event Actions
Entry of data into the text boxes is handled automatically. There are only four events that
you need to consider. They are: click on the Print button, click on the Cancel button, click
on the form terminate button (the “X” in the right-hand corner) and workbook startup.

In order to find the location code for the button events, if the user form is visible, right-click
on the button and select View Code from the menu. The associated click code will pop up
immediately. Alternatively, you could right-click on the form name in the VBA Explorer
and select View Code from that menu. Depending on the view you have chosen for the code
window, all events may not be visible by scrolling up and down. Once you have selected the
form object, you can locate the command object within it from the Combo box on the left-
hand side, and the event from the right-hand Combo box above the code window as shown
in Figure 13-7.

Figure 13-7: VBA code event location.

The Cancel click event simply closes the user window and then shuts down Excel. Debug-
ging this can be painful since Excel may have already terminated while you are trying to
isolate the problem. You may want to exclude the Excel termination until the application is
almost complete.

237

Example 13: Purchase Order Generator

The code is:
Private Sub cmdCancel_Click()
 Me.Hide
 ‘Unload Application
 Application.Quit
End Sub

Find the UserForm_Terminate event and add the exact same code.

Now to consider how to run the application once the Print button is clicked:
Private Sub cmdPrint_Click()
 Dim intI As Integer

 nNumberOfCopies = -1
 ‘used to flag accepted data entry

 While nNumberOfCopies = -1
 If IsNumeric(txtPONumber.Text) = False Then
 MsgBox “Only numbers please! “, vbOKOnly
 txtPONumber.Text = Range(“K8”).Value
 ‘fetch the last value that was printed +1
 Else
 If IsNumeric(txtQuantity.Text) = False Then
 MsgBox “Only numbers please! “, vbOKOnly
 txtQuantity.Text = “1”
 Else
 ‘fetching the setup values
 nStartingFrom = Round(Val(txtPONumber.Text), 0)
 nNumberOfCopies = Round(Val(txtQuantity.Text), 0)
 End If
 End If
 Wend

 If nNumberOfCopies <> 0 Then
 For intI = 1 To nNumberOfCopies
 Range(“K8”).Value = nStartingFrom
 Call PrintPO
 nStartingFrom = nStartingFrom + 1
 Next intI
 ‘save the values in the workbook
 ‘to prevent the “ARe you sure question
 ‘when the application closes
 Range(“K8”).Value = Range(“K8”).Value + 1
 ‘saving the next number to be printed
 ActiveWorkbook.Save

238

Excel by Example

 End If

 Me.Hide
 ‘Unload Application
 Application.Quit
End Sub

Two public variables are used and are declared in the general declarations area of the mod-
ules and are:

Public nStartingFrom As Integer
Public nNumberOfCopies As Integer

The procedure first analyzes the input. If the user has modified the PO number in the
P.O.Number box, this becomes the start of a new numbering sequence. The numbering
sequence that is stored on K8 is erased, and the next number to be printed in the new
numbering sequence is stored back to cell K8 for the next batch of purchase orders that will
be printed. If there are illegal inputs (non-numeric characters in this case), a message box is
used to alert the user of the error. Since Excel is already minimized, the modality of the mes-
sage box does not interfere with the operation. If the input is legitimate, the print process is
repeated for the number of times entered in the txtQuantity text box. In this process, the PO
number is stored at cell K8 and then the form is handed over to the Windows print handler.
The PO number is incremented and the process is repeated until the required number of
sheets has been printed.

Once the print process is completed, the value of the next PO number is placed in the
worksheet and the worksheet is saved. The reason for this is twofold. First, the worksheet
is the repository of the PO number to be used next time. Second, as you know from regular
operation, exiting a workbook if it has been modified will result in the user prompt with the
option of saving the worksheet. Saving it first disposes of this message allowing the applica-
tion to close without any user response needed.

Finally the application unloads the form and quits the application.

Auto Startup
To run this procedure as the worksheet is open we place the following in the worksheet open
event:

Private Sub Workbook_Open()
 Call PO
End Sub

Incidentally, if you need to debug this application, open Excel and then hold the Shift key
down while opening the application file (PurchaseOrder.xls, in this case). Also, remember
that <Ctrl> + <Break> stops VBA code from executing.

239

Example 13: Purchase Order Generator

Running PurchaseOrder
All that is left to do is close Excel, and place a shortcut to the workbook “PurchaseOrder.xls”
on the desktop. Double-clicking on the icon (and of course you can change the default icon)
will run the whole application with no user knowledge of Excel and with little awareness
that Excel is in fact used for the application.

If the print function should fail, Windows will take care of that, alerting the user through the
standard error messages outside of this application. Figure 13-8 gives an idea of the end result.

Figure 13-8: Running the application. Note the workbook icon
on the right. No sign of Excel anywhere!

Interface to a Digital Multimeter
Using a Serial Port

14E X A M P L E

240

Model Description
Many electronic instruments are supplied with a computer interface. Several manufacturers,
like Agilent, even provide utilities that allow the instrument to operate within Excel. So
why do I want to reinvent the wheel? Well, my experience of these interfaces is that they are
limiting. First, unless you use a GPIB interface, you are stuck using one instrument at a time
and, as you saw in Example 1, a simple automated test would need at least two instruments,
one to stimulate the input and one to measure the output. Second, mixing Excel drivers for
instruments from different manufacturers within Excel may generate conflicts between them.
Third, the instrument you want may not have a driver for Excel, and fourth, being an engi-
neer there is a high probability that you will end up designing your own piece of equipment
with some kind of interface port on it.

This model will create an RS-232 interface through Excel with the Radio Shack 220-0812
Digital Multimeter (DMM). Although the RS-232 port on PCs is slowly being edged out,
many instruments still retain this communications capability and probably will for some time
in the future. There are USB-to-serial port adapters on the market, so the communications
ability will still exist. Using multiple serial ports, or by using a serial port expander (also
controlled through the serial port) like the 232SS2 from B&B Electronics will allow the use
of multiple instruments. Of course you can convert to RS-485 and create your own multidrop
network.

The Radio Shack DMM is probably not the most accurate meter on the market, but it does
have a serial interface, the price was right for my experimentation and most of the protocol
is published. In addition, the interface is unusual enough to justify the creation of our own
software, yet simple enough not to blur the explanation that I will try to give. The DMM
does come with its own software to chart and record any reading, but it runs outside of Excel.
It is not my intention to duplicate this functionality; I merely want to use a particular DMM
setting to take a reading periodically, introduce that into a worksheet and process it.

For a description of different methods of interfacing to the serial and parallel ports, see Ap-
pendix B. I have chosen to use the Visual Basic MSCOMM driver because it will allow us

241

Example 14: Interface to a Digital Multimeter Using a Serial Port

to write almost any serial interface, provided we can get a definition of the protocol that a
particular instrument uses.

DMM Interface Protocol
The Radio Shack DMM communicates at 4800 baud, using 8-bit data, no parity and 1 stop
bit. It transmits a burst of 9 bytes about every 200 mS with no handshaking at all. Some of
this was deduced with the aid of an oscilloscope. It is not stated anywhere, but it appears as
if the RS-232 interface is powered from the DTR (must be at +12V) and RTS (must be at
–12V) for the serial port of the DMM to function. Aside from the first and last bytes, each
bit in the packet message represents an LCD element on the display. For instance, a seven
segment digit 2 (see Figure 14-1 and Table 14-1) would result in a byte 0xb5 for that digit.
Where a digit contains the decimal point indicator, the dot actually precedes the digit. Even
the “m” and “V” in “mV” are represented by two bits.

Figure 14-1: 7 Segment identification.

A

B

C

D

E

F

G

P

242

Excel by Example

Mode Function
0 DC V
1 AC V
2 DC uA
3 DC mA
4 DC A
5 AC uA
6 AC mA
7 AC A
8 OHM
9 CAP
10 HZ
11 NET HZ
12 AMP HZ
13 DUTY
14 NET DUTY
15 AMP DUTY
16 WIDTH
17 NET WIDTH
18 AMP WIDTH
19 DIODE
20 CONT
21 HFE
22 LOGIC
23 DBM
24 EF
25 TEMP

Table 14-1. Bit identification in transmission packet.

Packet # Description LCD Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
0 Mode ---- Mode (see Table 14-2)
1 Units1 LCDF-

0x3F
Hz Ω K M F A V m

2 Units2 LCDE-
0x3E

u n dBm S % hFE REL MIN

3 Least Sign.
Digit

LCDD-
0x3D

D C G B P E F A

4 2nd digit LCDC-
0x3C

D C G B P E F A

5 3rd digit LCDB-
0x3B

D C G B P E F A

6 Most Sign.
Digit

LCDA-
0x3A

D C G B P E F A

7 Extra LCD9-
0x39

BEEP DIODE BAT HOLD - ~ RS232 AUTO

8 Check ---- Checksum + 0x57

Table 14-2: Mode decoder.

243

Example 14: Interface to a Digital Multimeter Using a Serial Port

Unfortunately, Radio Shack provides little in the way of details on how the checksum is calcu-
lated. I have tried a number of different combinations including using the cryptic information
in the “LCD” column of Table 14-1, but I could not get to the same result that they do.

Having looked at a few DMMs before starting this example, I also get the feeling that obtain-
ing protocol information from some other instrumentation manufacturers may be difficult.

MSComm32
In order to work with this example, you will need to have the ActiveX control MSComm32
installed and registered. This may not be an easy task, so see Appendix B for details. If you
intend to create applications with the serial port, then I am sure you will benefit from two
other books: Serial Port Complete by Jan Axelson and Visual Basic Programmer’s Guide to Serial
Communications by Richard Grier. (See the references at the end of the book.)

Before you can access MSComm32 (provided it is installed and registered in Excel), it must
be placed as an object in a worksheet. This can be done in two ways. It can be placed in the
worksheet directly, or on a form in VBA. The only difference is the actual location when you
actually use the function. In this model, I have placed the control on UserForm1 (we will get
to it later). The reference to the control is entered as:

 UserForm1.MSComm1

If placed in a worksheet, the UserForm1 will be replaced by the sheet name.

To place the MSComm32 control on a worksheet, first make sure that the Control Toolbox is
visible in the worksheet. If not, click on View | Toolbars | Control Toolbox . Then click on
the More controls button and select Microsoft Communications Control as in Figure 14-2.

Then click and drag a rectangle on the worksheet and a control with a telephone icon
should appear as in Figure 14-3. Note that when the Design Mode button (the icon is a set
square) on the Control Toolbox is in the Run Mode, the MSComm control is invisible.

Pin Name Direction
1 DCD- Data Carrier Detect Into PC
2 RD- Received Data Into PC *
3 TD- Transmitted Data Out of PC
4 DTR- Data Terminal Ready Out of PC*
5 SG- Signal Ground n/a*
6 DSR- Data Set Ready Into PC
7 RTS- Request To Send Out of PC*
8 CTS- Clear To Send Into PC
9 RI- Ring Indicator Into PC

Table 14-3: Pinout for 9-way D-Sub male connector on a PC.
* Only these signals are used in this example.

244

Excel by Example

Figure 14-2: Placing more controls not on toolbar.

Figure 14-3: MSComm placed on worksheet.

245

Example 14: Interface to a Digital Multimeter Using a Serial Port

An alternate way (and the way I have done it in this model), is to place the control on a user
form. In VBA (<Alt> + <F11>, or Tools | Macro | Visual Basic Editor) click on Insert |
Userform. If the toolbox is not visible, make sure that the userform is selected by clicking on
it. If it still is not visible, enable it through the View | Toolbox sequence. Right-click on the
toolbox (if the MSComm telephone icon is not already there) and select Additional Con-
trols from the pop-up menu. Then select Microsoft Communications Control as in Figure
14-4. Click on OK and the telephone icon will appear on the toolbox.

Figure 14-4: Adding MSComm Control to the tools.

In Parenthesis: Additional Controls

When you have some spare time, try enabling some of the controls that appear in the
Additional Controls list. I don’t know which are standard with Office. Some may get
added if Visual Basic is installed, as well as from many other applications. On my system
I managed to find a Level Slider Control, Microsoft Progress Bar Control, and a Knob
Control.

Place the MSComm control by clicking on the MSComm icon on the toolbox and then
click and drag a rectangle on the user form and the icon will appear as in Figure 14-5.

246

Excel by Example

In Parenthesis: MSComm Properties

Most Universal Asynchronous Receiver/Transmitters (UART) have a number of setup
registers. The device used on the PC has its fair share. The only way to set these up in
MSComm is by accessing the properties of the control. Here is a description of most of
those properties.

CommPort: object.Commport[=value]

There can be up to sixteen COM ports on a PC, denoted COM1 to COM16. This prop-
erty must be set prior to opening a port and must be set to a port that does exist in the
hardware map or an error 68 will occur.

PortOpen: object.PortOpen[=value]

Before a port is used, it must be opened (or an error 68 will occur) by setting this property
to TRUE. Its status can be interrogated by checking this property. Obviously setting it
to FALSE closes the port. The port should be closed as a matter of good design practice
when the application is shut down.

Figure 14-5: MSComm placed in user form. Note the additional controls on the
toolbox.

247

Example 14: Interface to a Digital Multimeter Using a Serial Port

Settings: object.Settings [= value]

This property sets the standard communications properties: baud rate (BBBB), parity
(P), number of data bits (D), and number of stop bits (S). These are fed as a string in
the format:

“BBBB,P,D,S”

BBBB, the baud rate, can have one of the following values 110, 300, 600, 1200, 2400,
4800, 9600, 14400, 19200, 28800, 38400, 56000, 128000, 256000. This does not
guarantee that the hardware can work at the higher baud rates.

P, the parity setting can be E for Even, M for Mark, N for None, O for Odd, and S for
Space. Using the M and S, it is possible to implement the 9-bit Intel style UART (see
reference 65).

D, the data bits setting, can have a value of 4,5,6,7 or 8.

S, the stop bit settings, can be 1, 1.5, or 2

Handshaking: object.Handshaking[=value]

There are two types of handshaking protocol between RS-232 interfaces. They are needed
with relatively high speed data rates to prevent the loss of data. XON/XOFF embeds
codes in the serial data stream to start and stop transmission. An alternative uses the
RTS/CTS signal lines. There are four possible values: comNone (no handshaking used),
comXOnXOff, comRTS, and comRTSXOnXOff (both XOn/XOff and RTS/CTS).

RThreshold: object.RThreshold [=value]

The MSComm control can work through interrupt actions (see OnComm decription).
This property will generate an interrupt after the set number of characters have been
received. Fixing this value to 0 disables the onComm interrupt.

InBufferCount: object.InBufferCount

As data is received, it is accumulated for the number of characters in RThreshold and
then the OnComm event occurs. The number of characters stored is available by read-
ing this property.

InputLen: object.InputLen[=value]

As data is received, it is accumulated for the number of characters in RThreshold until
the OnComm event. When reading the data using the Input property (see later in this
box), InputLen determines how many characters are read. This is good for fixed length
messages. A value of 0 will read out all the received bytes. If an attempt is made to access
the received data before this number of bytes have been received a zero length string is
returned (“”).

DTREnable: object.DTREnable[=value]

Setting this to FALSE disables the DTR line (–12V). Setting this to TRUE enables the DTR
line (+12V). When the port is closed, the output is changed back to –12V.

248

Excel by Example

RTSEnable: object.RTSEnable[=value]

Setting this to FALSE disables the RTS line (–12V). Setting this to TRUE enables the RTS
line (+12V). When the port is closed, the output is changed back to –12V.

CommEvent: object.CommEvent

The OnComm event is a blanket interrupt for any event within the MSComm control.
This property defines which event actually happened. It is described more fully in the “In
Parenthesis: OnComm” box in this example.

InputMode: object.InputMode[=value]

Data can be received as text or binary format. This property can be set to comInputMo-
deText or comInputModeBinary.

Input: object.Input

Reading this property removes a stream of data from the input buffer. If the data is in
text format (from InputMode property), it is returned in a variant. If it is binary, it is
returned as an array of bytes in a variant. Got that? Never mind, just follow the example,
or read Serial Port Complete, Chapter 4.

Output: object.Output[=value]

This is how data is transmitted. If the data to be transmitted is text (only ANSI strings),
then the output is a variant that contains a string. If the data is binary, then we have to
use a variant that contains a byte array. Confused? Me too. Example 14 (this example)
only deals with data reception. Example 16 will have both transmission and reception.
Of course, the aforementioned books also covers this.

SThreshold: object.SThreshold [=value]

The MSComm control can work through interrupt actions (see OnComm decription).
This property will generate an interrupt while there are less than SThreshold characters
in the buffer.

Initializing the Serial Port
Because I don’t know how to calculate the checksum in this protocol, I have had to resort to
the fact that there is about 200 mS between transmissions in order to synchronize the read-
ings. Initially, we will set the serial port to look for single characters and every time it sees
one, a timer is reset. When the timer exceeds 100 mS, the serial port is initialized to read
packets of 9 characters. Let’s create the code to do this.

In VBA, click on Insert | Module. In the General Declarations, add the following global
variables. (I know this will incur the wrath of software purists. Please forgive me for showing
you my bad habits derived from programming microcomputers when the world was young
and 64 bytes was all the RAM I had.)

249

Example 14: Interface to a Digital Multimeter Using a Serial Port

Public bSeekingSync As Boolean
‘used to indicate that the program is
‘looking to synchronise the bytes
Public nFrozenTime As Single
‘used to timeout to allow sync
Public iDMMMessage(9) As Byte
Public bEndFlag As Boolean
‘used to denote stop button

‘input buffer
Public bBlocReceived As Boolean
‘indicates a 9 byte block has been recived
Public iInputPointer As Integer

Add a procedure called PollDMM as follows:
Sub PollDMM()
 Dim i As Integer
 bEndFlag = False
 ‘set up port to read
 ‘one byte
 With UserForm1.MSComm1
 ‘this is just shorthand to save writing
 ‘UserForm1.MSComm1.xxxx= nnn
 ‘every time.
 .CommPort = 1
 .PortOpen = True
 .Handshaking = comNone
 ‘no handshaking required
 .Settings = “4800,N,8,1”
 ‘set for 4800 baud, no parity, 8 bits, 1 stop bit
 .InputMode = comInputModeBinary
 ‘binary data returned in variant array
 .InputLen = 1
 ‘set to one character when read by Input
 .RThreshold = 1
 ‘number of characters to receive before
 ‘generating on comm event
 .DTREnable = True
 .RTSEnable = False
 End With
 bSeekingSync = True
 ‘indicate that we are looking for sync
 nFrozenTime = Timer
 ‘initialize timer
 bBlocReceived = False
 ‘and that there is no valid block

250

Excel by Example

 While (Timer - nFrozenTime) < 0.2
 ‘waiting untill there is a dead time
 DoEvents
 Wend

 ‘now to format port to read 9 bytes
 bSeekingSync = False
 UserForm1.MSComm1.RThreshold = 9
 ‘interrupt after 9 bytes
 UserForm1.MSComm1.InputLen = 0
 ‘transfer all received bytes when read

 While bEndFlag = False
 DoEvents

 If bBlocReceived = True Then
 ‘block has been received.
 ‘write them to sheet1

 Sheets(“Sheet1”).Select
 For i = 0 To 8
 Cells(i + 1, 1) = iDMMMessage(i)

 Cells(11, 1) = iCounter
 Cells(12, 2) = TestP
 Next i
 bBlocReceived = False
 ‘clear block and start looking again
 End If
 Wend
End Sub

Initially, the serial port is opened and configured for single-byte reception using the “with”
construction. At the end of the port setup, some values are initialized. bSeekingSync is a flag
that indicates to the OnComm interrupt that we are looking for a sync signal. nFrozen is set
to the current time in seconds. bBlocReceived is cleared, but is not used in the synchroniza-
tion process. The intention is that during the interrupt caused by a character reception, if
bSeekingSync is TRUE, then the latest time is stored on nFrozen, thereby resetting the coun-
ter. In the background loop in PollDMM, the program waits for the time to expire at 200 mS.
Pay attention to the DoEvents instruction—without it there will be no OnComm interrupt.

In Parenthesis: Timer

The Timer function in VBA returns the number of seconds since midnight. It has a reso-
lution of 10 mS. If this (or any) program is going to run late at night, you need to allow
for this rollover.

251

Example 14: Interface to a Digital Multimeter Using a Serial Port

In Parenthesis: DoEvents

Running loops in VBA where there are no screen updates or other system calls, can result
in the program consuming a large portion of the system’s resources and certain processes
may not run. During these loops, it is advisable to execute a DoEvents instruction which
allows Windows to handle all the other processes going on.

The OnComm event is an interrupt routine that occurs for almost any status change of the
UART. The property CommEvent defines the reason for the interrupt. See “In Parenthesis:
OnComm” for a list of the possible values of the property. It is possible to sort out the cause
of the interrupt and to service it by using Select Case construct within the OnComm event.

Go to the MSComm code window. You can do this in two ways. In the VBA Explorer,
double-click on the UserForm1 folder (or wherever the control is stored). Right-click on the
MSComm telephone icon, and select View Code from the pop-up window. A quicker way
is to right-click on the UserForm1 folder in the VBA Explorer, and select View Code from
there. This will take us straight to the OnComm event. The code we will use is:

Private Sub MSComm1_OnComm()

 Dim Dummy As Variant
 Dim RXbytes() As Byte
 Dim iI As Integer

 Select Case MSComm1.CommEvent
 Case comEvReceive
 If bSeekingSync = True Then
 ‘looking for sync.
 nFrozenTime = Timer
 ‘refresh time since a character
 ‘has been seen
 Dummy = MSComm1.Input
 ‘unload the data
 Else
 ‘here we must read 9 bytes when ready
 Dummy = MSComm1.Input
 RXbytes() = Dummy
 For iI = 0 To 8
 iDMMMessage(iI) = RXbytes(iI)
 Next iI
 bBlocReceived = True

 End If
 Case Else
 End Select

End Sub

252

Excel by Example

Notice in the first part of the OnComm event, while bSeekingSync is TRUE, that timer gets
refreshed and the data buffer emptied.

If we look at the PollDMM procedure again, we see that once the synchronization is found,
the serial port is reconfigured to handle 9 bytes of data at a time. When the 9 bytes are
received, they are actually read in the else clause of the OnComm procedure. A flag is set for
the PollDMM procedure to indicate there is valid data available to be processed in the loop-
ing section of PollDMM.

The background loop scans two Boolean variables. The first, bBlocReceived, has just been dis-
cussed. The second, bEndFlag, is a flag to indicate that the process should halt. It is generated
from a Command button, which we will introduce shortly. Once a block of data is received,
it is placed on Sheet1 using the Cells instruction. Just prior to this, the code sets the active
sheet to Sheet1 using a Sheets(“Sheet1”).Select statement.

In Parenthesis: OnComm Event

It is possible to use the serial port without resorting to the interrupts used by the On-
Comm event. Given that the operating system can have a lot to do, and can be fairly
unpredictable in doing it, it is safer, in my opinion, to rely on the interrupt structure. The
OnComm event can be triggered by the following occurrences. The names are actual VB
constants that can be used in the case statements.

Normal Operation:

comEvCD: change in state of the CD input signal.
comEvCTS: change in state of the CTS input signal.
comEvDSR: change in state of the DSR input signal.
comEvRing: change in state of the RI input signal.
comEvReceive: The receive buffer has RThreshold characters stored.
comEvSend: The transmit buffer has less than SThreshold characters stored.
comEvEOF: EOF (End of File) character (0x1A) received.

Exceptions:

comEventBreak: break signal received.
comEventFrame: framing error detected.
comEventOverrun: overrun error detected.
comEventRxOver: more than RThreshold characters received.
comEventRxParity: parity error detected.
comEventTxOver: more than SThreshold characters placed in buffer.
comEventDCB: unexpected error retrieving Device Control Block from port.

253

Example 14: Interface to a Digital Multimeter Using a Serial Port

Before we attempt to run this, let’s place two Command buttons on Sheet1. View | Toolbars
Control Toolbox brings up the correct toolbox. Place two buttons and change the names to
cmdStart and cmdStop. Then change the captions to Stop and Start. In their click events, let’s
add the code:

Private Sub cmdStart_Click()
 cmdStart.Enabled = False
 cmdStop.Enabled = True
 Call PollDMM

End Sub

Private Sub cmdStop_Click()
 Call Module1.ForceStop

End Sub

In module1 we add the code to stop the process:
Sub ForceStop()
 UserForm1.MSComm1.RThreshold = 0
 ‘disable interrupts- sometimes the click happens
 ‘while the inrerrupt is being serviced
 ‘if this isn’t here the click may have no effect
 ‘in those circustances
 UserForm1.MSComm1.PortOpen = False
 ‘close the port
 Sheet1.cmdStart.Enabled = True
 Sheet1.cmdStop.Enabled = False
 bEndFlag = True

End Sub

Since we disable the buttons alternately, there is no need at the moment to check if the
serial port is open or closed (since a repeat attempt to do either will trigger a fault). We also
need to add an initialize procedure in the workbook open event to allow the process to start.

Private Sub Workbook_Open()
Sheet1.cmdStart.Enabled = True
Sheet1.cmdStop.Enabled = False
End Sub

When working the RS-232, we are always faced with the question as to whether the two
devices are DCE or DTE. What it boils down to is whether to use a null modem cable or a
straight through cable. We use the latter (supplied with the DMM) in this case. First, con-
nect the DMM to the PC Com port with the cable supplied with the meter. Now turn the
DMM on to VDC and set the communications mode to on by simultaneously pressing the
Select and Range buttons.

254

Excel by Example

In Excel, click on the Start button and watch the numbers change. Change the function
selector on the DMM and observe the effects. It’s all downhill from here, but we still have
quite a bit to cover. Figure 14-6 is how the worksheet should appear with the DMM reading
as in Figure 14-7.

Try stopping the process by clicking on the Stop button. Typically, this is very difficult since
it appears that the OnComm interrupt masks the click. I don’t know why, but after some
trial and error, I found that menu bars are not subject to the same problems so I modified the
program to run from a Menu Bar.

Figure 14-6: Placing incoming data on the worksheet. In fact, the reading was 164.8 mA.

255

Example 14: Interface to a Digital Multimeter Using a Serial Port

I have left this spreadsheet stored on the CD-ROM as DMM1.xls, in case you wish to experi-
ence the frustration on having to click many times on the stop button just to get it to be seen
by the PC.

Before we add the toolbar, let’s get rid of the Command buttons. If the Control Toolbox is
not visible, make it so by View | Toolbars | Control Toolbox. Make sure the Design Mode
button (the set square) is active. Right-click on each button and select Cut from the pop-up
menu. Unfortunately, this does not remove the code we have written referring to these ex-
buttons. We have to go to VBA and in the VBA Explorer, right-click on Sheet1 and select
View Code. Delete the code for both buttons and then in a similar fashion view the code for
the workbook and delete the code for the workbook open event.

Now let’s create a toolbar. In Sheet1, click on Tools | Customize and select the Toolbars
tab. Click on the New button and we should see something like Figure 14-8.

 After clicking on the OK button, this toolbar will be added to the list. (It will be available
to any application if it is enabled by placing a check next to the name.) A small toolbar
appears with no buttons on it. To add a button, click on the Commands tab in the Custom-
ize dialog box. Find the entry Macros in the Categories window and then click and drag the
Custom button to the DMM toolbar. Repeat the process of adding a Custom button and you
will have two smiley-faced buttons within the bar. While keeping the Customize dialog box
open, right-click on one of the smileys and modify the Name to &Acquire. The ampersand
places a line under the following letter and can be used for a keyboard shortcut. Unfortu-
nately, this shuts the pop-up window and we have to right-click several times to complete
the setup. Check next to the Image and Text and Change the Button Image to the picture
of a running man. Assign the macro PollDMM with this button. Change the second button
to a Stop button in a similar fashion, assigning the macro ForceStop to it. See Figure 14-9.

Figure 14-7: Setup of DMM
being read into worksheet.

256

Excel by Example

Figure 14-8: Adding a toolbar named DMM.

Figure 14-9: Setting up
toolbar button properties.

257

Example 14: Interface to a Digital Multimeter Using a Serial Port

The toolbar should look like Figure 14-10.

Figure 14-10: Resulting toolbar.

In Parenthesis: Custom Toolbar Limitation

The toolbar, once created, will always appear in all workbooks as they are opened. They
can be turned off using the “X” in the top right-hand corner. Toolbars can be re-enabled
from the Customize dialog under the Toolbars tab (see Figure 14-8). Finding the toolbar
and checking the box next to it will re-enable it.

By default, toolbars are stored with Excel and not with the workbook. They can be em-
bedded into the workbook from the Customize dialog under the Toolbars tab (see Figure
14-8). Click on the Attach button, and in the resulting dialog select the desired toolbar
that is listed in the Custom Toolbars window and click on the Copy>> button to copy
the toolbar to the Toolbars in workbook window. Click on the OK button followed by
the Close button and save the workbook.

As a direct upshot of this, the macro associated with a menu button is tied to a particular
workbook. If that workbook is not open, it will be opened. This can be positive since it
will automatically open a workbook when the control is clicked without any effort on our
part. However, in our current example it is problematic. As we go, I am saving different
versions of the same workbook and the macros, although they are named the same, are
different. Make sure that the macros the buttons refer to are in the current workbook.
In order to do this, make sure the Customize dialog is open, right-click on the button
and edit the cell to the associated macro.

We also need to edit both macros to make sure that we don’t try to open an open port or to
close a closed port. The beginning of PollDMM becomes:

Sub PollDMM()
 Dim i As Integer
 bEndFlag = False
 ‘set up port to read
 ‘one byte
 With UserForm1.MSComm1
 ‘this is just shorthand to save writing
 ‘UserForm1.MSComm1.xxxx= nnn
 ‘every time.
 .CommPort = 1
 ‘.PortOpen = True
 ‘enabled in a few lines to allow check if open

258

Excel by Example

 .Handshaking = comNone
 ‘no handshaking required
 .Settings = “4800,N,8,1”
 ‘set for 4800 baud, no parity, 8 bits, 1 stop bit
 .InputMode = comInputModeBinary
 ‘binary data returned in variant array
 .InputLen = 1
 ‘set to one character when read by Input
 .RThreshold = 1
 ‘number of characters to receive before
 ‘generating on comm event
 .DTREnable = True
 .RTSEnable = False
 End With
 ‘add check if port is open
 If UserForm1.MSComm1.PortOpen = False Then
 UserForm1.MSComm1.PortOpen = True
 End If

Note that the PortOpen line of code within the With construction has been commented
out. There is a check afterwards if the port is already open. Similarly, let’s modify ForceStop
as follows:

Sub ForceStop()
 UserForm1.MSComm1.RThreshold = 0
 ‘disable interrupts- sometimes the click happens
 ‘while the interrupt is being serviced
 ‘if this isn’t here the click may have no effect
 ‘in those circumstances
 If UserForm1.MSComm1.PortOpen = True Then
 UserForm1.MSComm1.PortOpen = False
 End If
 ‘close the port
 bEndFlag = True
End Sub

At this time, we can also add a call to ForceStop in the workbook deactivate event so that
the port is closed when the application is over.

Conversion of DMM Display to Data
I have decided to ignore all the non-numeric outputs that are possible, like the units. I don’t
see any point in trying to recreate the universal DVM input since an interface that we are
trying to create would likely be to gather a single range of data. I will also presume that since
the user has to manually invoke the RS-232 interface, he or she can just as easily set the unit
to a particular range (anything but autorange). I hope you find this approach reasonable. It
will certainly make the code shorter and more understandable.

259

Example 14: Interface to a Digital Multimeter Using a Serial Port

In Module1 of VBA, enter the following function:
Public Function sCreateDigit(i7Segment As Integer) As String
 Dim bDecPnt As Boolean
 Dim sRetVal As String
 Dim iTemp As Integer
 ‘checking for decimal point
 ‘see text for description on And
 iTemp = i7Segment And 8
 If iTemp <> 0 Then
 bDecPnt = True
 i7Segment = i7Segment And 247
 ‘clearing DP

 sRetVal = “.”
 ‘initiating string with dp
 Else
 bDecPnt = False
 sRetVal = “”
 End If

 ‘using lookup table for possible characters
 Select Case i7Segment
 Case 215
 ‘0xd7= 0
 sCreateDigit = sRetVal & “0”
 Case 80
 ‘0x50 =1
 sCreateDigit = sRetVal & “1”
 Case 181
 ‘0xb5=2
 sCreateDigit = sRetVal & “2”
 Case 241
 ‘0xf1=3
 sCreateDigit = sRetVal & “3”
 Case 114
 ‘0x72=4
 sCreateDigit = sRetVal & “4”
 Case 227
 ‘0xe3=5
 sCreateDigit = sRetVal & “5”
 Case 231
 ‘0xe7=6
 sCreateDigit = sRetVal & “6”
 Case 81
 ‘0x51=7
 sCreateDigit = sRetVal & “7”

260

Excel by Example

 Case 247
 ‘0xf7=8
 sCreateDigit = sRetVal & “8”
 Case 243
 ‘0xf3=9
 sCreateDigit = sRetVal & “9”
 Case Else
 sCreateDigit = “F”
 End Select
End Function

This function is applied to each 7-segment digit, returning a text value for the associated
number. I am using strings because the concatenation is easy and we can then convert to a
numeric value. If the decimal point appears, it precedes the digit in the text string.

Visual Basic unfortunately uses the same word for both a logical and a bitwise AND. It is
taken in context, so that you cannot look for a bit in an integer (as in the above code) by
entering if i7segment AND 8 since VB would evaluate i7segment which is either true or false
(nonzero or zero), and logically AND it with the number 8 (which will always be true) and
the meaning will not be the same as a bitwise AND. The way around this is to ascribe the
operation to a variable as in iTemp=i7segment And 8 and then have a conditional test for
iTemp.

Enter the formula:

 =sCreateDigit(A4)

in cell C4. Copy the cell to C5, C6 and C7. In cell C11, enter the formula:

 =C7 & C6 & C5 & C4

which concatenates the digits and creates a number that should agree with the instantaneous
display of the DMM.

In cell C12, the formula:

=value(c11) converts the string to a number. We could format C11 (and I have) to re-
semble an LED output by changing the size and color of the cell text format.

Analog Meter Chart
Despite the fact that I said I did not want to recreate a DVM input, there is an interesting
way of applying a pie chart to make it look like an analog meter. While it is hardly Labview®,
it is certainly a lot cheaper.

Before we start, it might be easier if you looked at Figure 14-19 to get an idea of what we are
trying to implement. The full 360 degrees of the pie chart are broken into three sectors. The
first sector of the pie chart is obviously our reading as a percentage of full scale. The second
sector is the full-scale reading minus the actual reading, and the third sector is the balance of

261

Example 14: Interface to a Digital Multimeter Using a Serial Port

the pie chart. The meter will operate through an angle of 150 degrees (which we can make
programmable by entering it in a cell), so we need to scale the ratios according to this. Take
a look at the formulas in Figure 14-11.

Figure 14-11: Formulas needed for analog meter. Note cell B17 has been named
MetAng.

Obviously the sum of the elements of the pie chart must add up to the whole. Return to the
nonformula display (Tools | Options and uncheck Formulas on the View tab), and block
select cells B19 to B21. Click on the Chart Wizard icon on the main toolbar (or click on
Insert | Chart). You should see the first window of the Chart Wizard. Select the Pie Chart
as in Figure 14-12. Click on Next.

The second step (Figure 14-13) gives us an idea of what we are going to see. Since we have
already predefined the data block, no further entry is needed so we click on Next.

262

Excel by Example

Figure 14-12: Step 1 – We are going to create a pie
chart.

Figure 14-13: Step 2 – We have the option to modify
the selected data series.

263

Example 14: Interface to a Digital Multimeter Using a Serial Port

In the third step, we can add a title on the Titles tab. Click on the Legend tab and deselect
the Show legend option. Then click on Next.

Figure 14-14: Step 3 – Some cosmetic changes.

Finally, we need to decide where the chart will reside. I decided that it should be on Sheet1
(see Figure 14-15). Then click on Finish.

Figure 14-15: Step 4 – We place the chart on Sheet1.

We maneuver the chart to a convenient place on the sheet as in Figure 14-16.

Now we want to get rid of the largest area of the chart. Click on this area until it is selected.
You may need to click twice. Then right-click and select Format Data Point from the pop-
up menu. Under the Patterns tab (Figure 14-17), we set the selection to no border and no
Area fill effect.

264

Excel by Example

Figure 14-16: Chart is now resident on Sheet1.

Figure 14-17: Making the
largest area invisible.

265

Example 14: Interface to a Digital Multimeter Using a Serial Port

Next we click on the Options tab. We can see that the largest slice has already vanished.
Modify the Angle of the first slice to 75 degrees and deselect the Vary colors by slice op-
tion. The result is Figure 14-18. Click on OK.

Figure 14-18: Rotating the dial. Using the same color for both
slices makes the separating line appear like a needle.

We can change the background color to anything. I chose to go with white. Click on both
segments in turn so they are selected (again you may need to click twice), and right-click.
Select Format Data Point and then select the white color in the Patterns tab. As an after-
thought, I suppose you could change the background color if an alarm exists.

Before we decide to run the data acquisition, I need to mention something that will save
you some confusion. For some reason that I do not understand, when the chart is placed on
Sheet1, the code in the PollDMM procedure:
 For i = 0 To 8
 Cells(i + 1, 1) = iDMMMessage(i)
 Next i

will not run without generating an error. If the chart is on another sheet there is no problem,
although we would need to get rid of the Sheets(“Sheet1”).Select statement that occurs just
prior to the above code. If it is left in, viewing the chart becomes quite irritating with the
continual return of Sheet1. Of course, this would necessitate changing the Cells(i+1,1) to
include a reference to Sheet1. I actually take this approach later in the example, but for the
moment, let it ride.

266

Excel by Example

I also tried experimenting with concatenation of strings adding the iteration number “i” to a
string containing “A” to allow a slightly less elegant approach (as in Range(“Ax”) where x is
the string value of i), but that caused the same problem. However, if we take the brute force
approach of writing each cell directly, it works well. That section of PollDMM becomes:

 If bBlocReceived = True Then
 ‘block has been received.
 ‘write them to sheet1

 Sheets(“Sheet1”).Select

 Range(“a1”).Value = iDMMMessage(0)
 Range(“a2”).Value = iDMMMessage(1)
 Range(“a3”).Value = iDMMMessage(2)
 Range(“a4”).Value = iDMMMessage(3)
 Range(“a5”).Value = iDMMMessage(4)
 Range(“a6”).Value = iDMMMessage(5)

Figure 14-19: Almost ready to roll.

267

Example 14: Interface to a Digital Multimeter Using a Serial Port

 Range(“a7”).Value = iDMMMessage(6)
 Range(“a8”).Value = iDMMMessage(7)
 Range(“a9”).Value = iDMMMessage(8)
 bBlocReceived = False
 ‘clear block and start looking again
 End If

Inelegant it may be, but there is something to be said for a method that works! This has been
stored as DMM2.xls.

Zone Identification
Before you modify the procedures for this new approach, please consider the information in
“In Parenthesis: Custom Toolbar Limitation.”

If we like, we can add an outer ring to the meter with indication for certain ranges. (Take a
look at Figure 14-24 for our objective.) In order to do this, we must clear the existing chart
since we need to start again. We modify the angle of the meter to 180 degrees just to simplify
matters and we create a second table in cells D19 to E22. The cells in D19 to D22 represent
the different ranges that should appear while the cells in E19 to E22 define text to appear in
the ranges.

Figure 14-20: Preparing a donut chart.

268

Excel by Example

After highlighting cells B19 to B21, we click on the Chart Wizard creating a Donut chart
and “whiz” through only stopping to uncheck the Legend Display option. Next, click on the
chart so that the chart as a whole is selected. Right-click on it and select Source Data. In the
dialog that appears (Figure 14-20), under the Series tab, click on Add and define the new
series for D19 through D22. Then click in the Category Labels bar and select the range E19
to E22. It is important that we do this here. If we try to add this after we rotate the figure, the
category labels will get confused. Click on OK.

Once the Chart Wizard has been completed, click on the donut so that the outer circle is
selected (indicated by four little squares around the circumference and not a square contain-
ing the circle). Right-click and select Format Data Series. Under the Data Labels tab, select
Category Name as in Figure 14-21.

Figure 14-21: Placing category names within the outer band.

269

Example 14: Interface to a Digital Multimeter Using a Serial Port

Under the Options tab, modify the settings as in Figure 14-22.

Figure 14-22: Rotating chart and reducing donut hole size.

Figure 14-23 is the result. By selecting the lower segments as before, we can make them in-
visible. We also change the color behind the “needle” to white and the colors of the zone by
selecting each segment in turn, right-clicking, selecting Format Data Point and then modi-
fying the settings under the Patterns tab.

270

Excel by Example

We are almost there. We can add the contents of any cell as the title of the chart, although
it is a little convoluted. Select the chart as a whole, and then right-click and select Chart
Options. Under the Titles tab, enter anything and click on OK.

Now click on the newly entered title so that it is selected, click in the formula bar of the
main toolbar and enter “=” and the location of the desired cell. You can click on that cell or
enter the cell location in longhand. As you can see in Figure 14-24, this can be a dynamic
reading. In this case we have placed the DVM reading above the analog meter. This is stored
as DMM3.xls.

Figure 14-23: Initial setup complete. Note the Category labels. Each can be selected
and reformatted on an individual basis.

271

Example 14: Interface to a Digital Multimeter Using a Serial Port

Data Plot—Chart Recorder
Before you modify the procedures for this new approach, please consider the information in
“In Parenthesis: Custom Toolbar Limitation.”

Let’s get rid of the donut/pie charts and consider how to create a graphical representation of
the changes on the DMM as a continuously updating chart. In order to do that, we need to
take a reading periodically. If we add a value on Sheet1 in cell B14 (named SampleTime), we
use this value to determine when to take a reading. We then add a variable nPeriodic in the
declarations and we modify the heart of the PollDMM procedure as follows:

 ‘now to format port to read 9 bytes
 bSeekingSync = False
 UserForm1.MSComm1.RThreshold = 9
 ‘interrupt after 9 bytes
 UserForm1.MSComm1.InputLen = 0
 ‘transfer all received bytes when read
 iCounter = 0
 ‘initialize
 nPeriodic = Timer
 While bEndFlag = False
 DoEvents

Figure 14-24: Using a donut chart with two ranges to give a VU meter effect. Note the
title reference in the formula at the top.

272

Excel by Example

 If bBlocReceived = True Then
 ‘block has been received.
 ‘write them to sheet1
 For i = 0 To 8
 Worksheets(1).Range(“A1”).Cells(i + 1, 1) = iDMMMessage(i)
 Next i
 bBlocReceived = False
 ‘clear block and start looking again

 If Timer > nPeriodic + Range(“SampleTime”).Value Then
 Worksheets(2).Range(“A1”).Cells(iCounter + 2, 1) = iCounter * Range(“SampleTime”).Value
 Worksheets(2).Range(“A1”).Cells(iCounter + 2, 2) = Worksheets(1).Range(“c12”).Value
 nPeriodic = Timer
 iCounter = iCounter + 1
 End If
 End If
 Wend

Note that instead of selecting Sheet1 and then writing the received data, the storage has
the sheet name explicitly included in the instruction. As a result, we can change worksheets
without being returned to Sheet1 every time a reading is taken. When the sample time ex-
pires (as set on the nPeriodic variable), the decoded value in cell C12 on Sheet1 is stored on
Sheet2 along with the accumulated time. The first reading is stored in A2 and B2, and then
in sequence in A3, B3 and so on. Figure 14-25 will give you the idea.

Figure 14-25: Data acquired to Sheet1 is periodically stored as a column on Sheet2.
Note the DMM toolbar is visible on any sheet.

273

Example 14: Interface to a Digital Multimeter Using a Serial Port

Now we want to create a chart. Highlight cells A2 to B5 and click on the Chart icon to bring
up the wizard, or as before you can access it through the menus. You should see Figure 14-26.

Figure 14-26: Specifying the chart type.

Select the XY (Scatter) type and select the sub-type as shown. Click Next twice, and on the
third dialog (Figure 14-27) enter the titles and modify the appearance of the chart to suit
your tastes.

Click on Next, and in the fourth step place the chart on Sheet2. The chart should appear
looking much like the preview in Figure 14-27. However, this chart is static. The input range
is fixed and we would really like the chart to expand or contract to include all the readings,
no matter how many there are. Here’s how we achieve that.

Click on Insert | Name | Define. As shown in Figure 14-28, type the word Time in the
Names in workbook bar and in the Refers to: bar enter the formula:

 =OFFSET(Sheet2!A2,0,0,COUNTA(Sheet2!$A:$A)-1)

274

Excel by Example

Similarly create a Volts range and include the formula:

 =OFFSET(Sheet2!B2,0,0,COUNTA(Sheet2!$B:$B)-1)

Figure 14-27: Cosmetic changes to the chart.

Figure 14-28: Creating a name that automatically extends to cover
all the entries in a column.

275

Example 14: Interface to a Digital Multimeter Using a Serial Port

In Parenthesis: OFFSET

The OFFSET function returns a reference to a range of cells. The format is:

OFFSET(reference,rows,cols,height,width)

The reference is the base cell or range of cells. The rows parameter defines how many
rows away from the base to start, and the same is true for the columns with obvious varia-
tions. The height is how many rows to include in the range. Ditto for width in the second
dimension. If height or width are omitted, they will default to the setting of the reference
cell(s).

Essentially this process allows the named ranges to change dynamically to match the growth
of the data. This is as a result of the use of the COUNTA function within the Name formula.

In Parenthesis: COUNTA/COUNT/DCOUNT/DCOUNTA/COUNTBLANK

The COUNTA function counts the number of nonempty cells in a range. It differs from
the COUNT function in that COUNT only includes numbers in the returned value.

DCOUNT and DCOUNTA count the number of cells in a range that meet specific
criteria.

COUNTBLANK does the opposite—it counts the number of empty cells.

Now click on the actual curve in the chart and modify the formula bar in the main menu to
read as follows (Figure 14-29):

 =SERIES(,DMM.xls!Time,DMM.xls!Volts,1)

The selections for the range are now replaced by names, and as we have seen, the names we
have chosen will dynamically adjust.

276

Excel by Example

Figure 14-29: Redefining the series used on the chart.

In Parenthesis: SERIES Function

Every chart employs a series formula to define the curve. It is not accessible as an entry
in a cell in a worksheet, but can be edited as in this example. The format is

SERIES(name, category_labels, values, sequence, sizes)

the name in entry is optional and refers to a cell that holds the Series Name used in the
legend.

The category_labels refers to a range of cells that contain category labels that will be used
in the chart. It is easier to get a feel for what this means when you realize that on an XY
chart, it is the range used for the X values. Its use is optional and if omitted, Excel will
resort to integer numbers starting from 1.

values is the variable that is described in the chart. On XY charts, it is the Y value.

The plotting sequence with multiple series determines which series is plotted first, but it
must be included even with single series charts.

sizes defines the a range that is used to determine the size of bubbles on a bubble
chart.

277

Example 14: Interface to a Digital Multimeter Using a Serial Port

Since Excel automatically scales the axes, all that is left is to see how the model performs.
Ensure that you have clicked away from all the objects so that nothing is selected before
clicking on Acquire. I charged a 1000 µF capacitor to 1.8 Volts and then discharged it
through a 12KΩ resistor. You can see the graphical effect as the discharge starts (Figure
14-30), and then at a later stage as shown in Figure 14-31.

Figure 14-30: Capacitor
discharge in the early
stages.

Figure 14-31: Capacitor
discharge curve several
seconds later.

Wait! There’s more! Click on the curve so that it is selected, right-click and then click on
the Add Trendline option from the pop-up menu. Figure 14-30 will be the resulting dialog.

Since we know that a discharging capacitor is exponential, click on the Exponential icon.
Under the Options tab (or at a later stage, right-click on the trendline), add the choice to
Display equation on chart (Figure 14-33).

278

Excel by Example

Figure 14-32: Adding an exponential trendline to the chart.

Figure 14-33: Placing equation on the chart.

279

Example 14: Interface to a Digital Multimeter Using a Serial Port

The result (Figure 14-34) is close to the theoretical: y = 1.8e-0.083t. This model is on the CD-
ROM as DMM.xls.

Food For Thought
Since we now know how to manipulate the length of a series on a chart, it should come as
no surprise that it is fairly easy to display the last N readings. Let’s assume that we create a
cell on the worksheet named NumberOfReadings. The OFFSET formula we used before could
be modified to:

=OFFSET(Sheet2!B2,0,0,COUNTA(Sheet2!$B:$B)- NumberOfReadings -1,0, NumberOfRead-
ings,1)

The Excel charting feature does not normally use values that are in hidden rows. This can
be changed in Tools | Options under the Chart tab, but this could be used to our advantage
to plot every Nth reading only. Let’s assume we only want every 5th reading. On Sheet2 in
column C (now on DMM4.xls), enter the title Decision in cell C1 (just for aesthetics). In cell
C2, enter the formula

 =MOD(a2,5)

where the 5 derives from the number of readings. Copy this cell starting from C3 down for
all the corresponding cells in columns A and B that have data in them. The MOD func-
tion merely returns the remainder from a division by 5. Now if we hide every row where the
remainder is not zero, then we will have achieved our aim. There is a very quick way to do
this. First, click on any cell in column C. Next, click on Data | Filter | Autofilter.

Notice how a spinner control is added to columns A, B and C (as in Figure 14-35). Clicking
on the 1 in column C and selecting 0 removes 80% of the data. It’s like magic! This could
easily be added to any procedure as a final step. Removing the Autofilter results is merely a
case of repeating the selection process.

Figure 14-34: And
the result is shown on
the chart (after a little
positioning).

280

Excel by Example

Figure 14-35: Using an Autofilter.

Vernier Caliper Interface

15E X A M P L E

281

Model Description
The vernier caliper is very definitely a device that belongs in the mechanical engineering
realm, so you may be puzzled why it appears as a topic in a book on Excel in electrical engi-
neering. You will soon discover that it provides the perfect foil for a description on how to
use the PC parallel port to interface to the real world, as well as a discussion on statistics.

Mitutoyo Corporation produces a whole host of products to measure linear displacement.
Several of these actually do have PC interfaces. The CD-6”C (Code Number 500-171) is
a 6-inch vernier Caliper with an electronic interface. As far as I can tell from the web site
(www.mitutoyo.com), there are several methods to get data from the caliper into Excel, but
all require an extra hardware interface. One method uses a hardware interface to simulate
keyboard strokes. Another converts the output to RS-232 and then requires additional soft-
ware to place the data in Excel. If you are prepared to make a very simple hardware interface
consisting of one transistor and four resistors, the capability to read the caliper data into
Excel and the ensuing statistical data analysis is a cinch.

Figure 15-1: Vernier caliper
with cable attached.

282

Excel by Example

The Mitutoyo vernier caliper has a 5-way connector to provide access to the interface
signals. The connections, however, are simply gold plated PCB tracks and you will need the
Mitutoyo cable assembly (959149 for a 1-meter cable, 959150 for 2 meters) to make contact
with the connector. The price for the cable is reasonable (about $25), and it includes a Data
button that can be used to initiate a data transfer as you can see in Figure 15-1.

Pinout
The connector on the other end of the cable has a 2 × 5-way 0.1" header. Figure 15-2 shows
the pinout looking at the connector head-on.

Figure 15-2: Cable pinout. No identification of
pin 1 is provided so I simply defined one.

1

2

1
2
3
4
5

Pin No. Function
Gnd

Data
Clock

Button (to Gnd)
!Request

Hardware Interface
There is one signal that goes to the caliper (!Request) from the user interface, and two sig-
nals (Clock and Data) from the caliper to the user interface. There is also a ground reference
line, and finally a signal that is shorted to the ground when the Data button is pressed. This
signal does not connect to the caliper at all. When a data train is initiated by the !Request
signal going low, the caliper shifts data out on the Data line with the synchronous separate
clock signal. The two outputs each drive an open drain transistor. This allows the use of
pull-up resistors to a maximum of 7V for a broad range of interfaces. These are some of the
resistors we must add when we construct the hardware interface. The !Request input has its
own internal pull-up resistor and should be driven from an open drain/collector configura-
tion. This is the transistor we must build into the hardware interface. Figure 15-3 shows the
electrical circuit required.

The printer port connector on the back of the PC does not have a 5V (or any other voltage)
as an output. Instead, since the interface draws very little power, we can provide a voltage
from one of the data outputs to the pull-up resistors. The rationale is that if it is good enough
for a “1” on the output, it should be good enough for the input as well.

Any transistor with a reasonable gain can be used. It should be no problem to saturate the
transistor as the collector current is very low.

283

Example 15: Vernier Caliper Interface

Timing Diagram

Figure 15-3: Interconnection and user electronics for the caliper
interface.

7V max
I =400uA
V =0.4Vmax
OL

OL

1.55V

~110K

Data

Clock

!Request

2

3

5

4

Caliper

1
BC546

2

3

24

13

12

11

Data0

Data1

Status6

Status4

Status5

Gnd

User Interface
PC
25-Pin
D-Sub
Connector

10K

3K3

Figure 15-4: Caliper timing diagram. Note that if !Request is kept low
continuously the sequence is repeated about every 90 mS. !Request
can be taken high at anytime before the start of the next sequence to
prevent a new transmission.

T1

T2

3

T4

!Request

Data

Clock

0mS<T1<93.75mS
110uS<T2<140uS
110uS<T3<140uS
230uS<T4<260uS

284

Excel by Example

The timing relationship is shown in Figure 15-4 at the bit level. For each reading, the caliper
waits for the !Request (the exclamation point indicates that the signal is active low) signal
to go low and then transmits 52 bits of information. The information is grouped into 4-bit
nibbles as shown in Table 15-1. Each nibble is shifted out with the LSB first.

Table 15-1: Details of nibble transmission from the caliper.

Output
Order

Digit Name Description

1 D1 Digit 1 All ones “1111”
2 D2 Digit 2 All ones “1111”
3 D3 Digit 3 All ones “1111”
4 D4 Digit 4 All ones “1111”
5 D5 Sign +: 0000 –:0001
6 D6 Digit 6 Binary Coded Digit (BCD)

Most Significant: =0000 if blank
7 D7 Digit 7 Binary Coded Digit (BCD)
8 D8 Digit 8 Binary Coded Digit (BCD)
9 D9 Digit 9 Binary Coded Digit (BCD)
10 D10 Digit 10 Binary Coded Digit (BCD)
11 D11 Digit 11 Binary Coded Digit (BCD)

Least Significant
12 D12 Decimal Point Indicates how many digits to the right of the

decimal point.
Can range from 2 (0010) to 5 (0101)

13 D13 Unit mm: 0000, inch: 0001

Installing IO.DLL
In order to access the I/O lines of the PC parallel interface, you need some form of software
interface that will bypass the operating system and control the hardware directly. Appendix
B discusses the options and their availability in more detail. I opted for the Data Link Library
called IO.DLL.

With the permission of the author, Fred Bulback, the program is included on the CD-ROM.
Copy the file, IO.DLL, to the System or System32 subfolder in the Windows/System folder.
Cut and paste the Visual Basic declarations from the Geek Hideout web site to the General
Declarations in Module1 in VBA. If you are working with “Caliper.xls”, obviously the dec-
larations are already there. I suppose you could just as easily copy the declarations from here
for a new application.

PC Parallel Port
The PC parallel port was originally intended for a Centronics printer interface. The ad-
dresses were referred to as LPT1 through to LPT3. Each printer port consisted of a series of
I/O addresses at one of three base addresses as in Table 15-2. The actual address that your

285

Example 15: Vernier Caliper Interface

computer will use depends on the age of your machine, but Table 15-2 is the most likely
configuration. You can find out what your system is using by going to the System Properties
window of your computer’s Control Panel. There will be a listing of the port addresses in the
Device Manager section.

Port Address

LPT1 0x378
LPT2 0x3BC
LPT3 0x278

Table 15-2: Printer port
base addresses.

As newer parallel port approaches evolved, these interfaces became more flexible, but in its
basic form the port consists of an 8-bit latched output port located at the LPT base address
called the Data register. At LPT +1 there is a 5-bit input register known as the Status register.
The Control register at LPT +2 adds 4 digital outputs. The pinout of the 25-pin parallel port
is given in Table 15-3. The original function of the bits is irrelevant to our discussion, but if
you would like to know more about this or the other variations of the port, see the excellent
book, Parallel Port Complete, by Jan Axelson.

Table 15-3: Parallel port function and pinout.

D-sub

pin

Signal
(Register + bit
number)

Function Direction

(relative to PC)

Inverted

1 nStrobe Control bit0 Out Y
2 D0 Data bit output, bit0 Out N
3 D1 Data bit output, bit1 Out N
4 D2 Data bit output, bit2 Out N
5 D3 Data bit output, bit3 Out N
6 D4 Data bit output, bit4 Out N
7 D5 Data bit output, bit5 Out N
8 D6 Data bit output, bit6 Out N
9 D7 Data bit output, bit7 Out N
10 nAck Status bit6

(may trigger interrupt)
In N

11 Busy Status bit 7 In Y
12 Paper End Status bit5 In N
13 Select Status bit4 In N
14 nAutoLF Control bit1 Out Y
15 nError Status bit 3 In N
16 nInit Control bit2 Out N
17 nSelectIn Control bit3 Out Y
18-25 Gnd

286

Excel by Example

First Steps
Open an Excel workbook and go to VBA (<Alt> + <F11>). Add a module (Insert | Mod-
ule), and copy the Visual Basic declarations (as discussed above) to the General Declarations
section of the module. In actual fact, for this example, you will only need the PortOut and
PortIn declarations.

The nine-month-old computer that I am using for this development is a 1.8 GHz Celeron
with 500 MB of RAM running Windows 2000. I was not sure how fast the I/O switching
would be, so I wrote a short VBA program to toggle an output (pin 2 of the port, D0) along
with some fictitious operations that would give me some idea of the cycle time. This is the
program:

Sub test()
 Dim i As Integer
 Dim j As Integer
 Dim k As Integer
 Dim m(25) As Integer

 For i = 1 To 20
 k = 0
 For j = 0 To 8
 Call PortOut(888, 1)
 ‘888=0x378
 k = k * 2
 k = k Or 1

 Call PortOut(888, 0)
 Next j
 m(i) = k
 m(i) = k * 2
 ‘DoEvents
 Next i

End Sub

In the worst case, the first cycle took 13.1 µS and all the following cycles improved to 2.9 µS
(see Figure 15-5), so reading the output of the caliper should be well within the capability
of this computer. I also added a DoEvents instruction to see what the effect would be; the
performance deteriorated so badly that I didn’t even try and measure it. The implication
here is that while we are reading data from the caliper, any other process must be frozen until
reading is complete.

287

Example 15: Vernier Caliper Interface

Actual Interface
After that lengthy prelude, we are ready to begin. The data from the caliper will be read on
bit 4 of the Status register and the clock will be on bit 5. Power to the pull up resistors of the
interface will be derived from bit 0 of the data register. The !Request signal is derived from
bit 1 of the data register inverted by a transistor (see Figure 15-3). The Data pushbutton
signal is read in the status register bit 7.

The principle of operation is as follows:

1. Wait for Data pushbutton to go active.

2. Activate !Request signal.

3. In groups of 4 bits, wait for the clock bit to go active, read in bit, and wait for
clock to go inactive combining the 4 bits to generate a digit.

4. Repeat for the remaining twelve digits.

5. Deactivate !Request.

6. Create number from the readings and place in worksheet.

7. Wait for the Data pushbutton to go inactive.

Acquiring Data
It seems to me that a natural mode of operation in measuring a series of readings (for sta-
tistical analysis) would consist of starting the sequence with a Start button on the Excel
interface, acquiring caliper data every time the Data button is pressed, and clicking on a Stop
button on the Excel interface to terminate the acquisition and allow data analysis.

Figure 15-5: Assessing
the execution times
of my computer. The
longest cycle time was
always the first as
shown here at
12.20 µS.

288

Excel by Example

Let’s deal with the Stop function first. We will use a single global variable that is set when
the stop button is clicked, and cleared when acquisition starts. The procedure that will be
called when the Stop button is clicked is:

Sub StopRequest()
 bStopRequest = True
End Sub

and this will be placed in Module1, which should still be active from the earler execution
time tests.

When the workbook is first opened, we would like the pull-up resistors in the interface pow-
ered and the Request line to the caliper disabled, so in the Worksheet Activate event we call
a call to the procedure SetupPort which is also in module 1.

Sub SetupPort()
 Call PortOut(888, 1)
 ‘ensure power is applied to pull up resistors
 ‘and the !request line is inactive
 bStopRequest = False
End Sub

The heart of the process is invoked from a Start button which will run the Capture proce-
dure. This is quite lengthy, so let’s discuss it in parts. Obviously, the code exists in “Caliper.
xls”. Aside from the memory declarations, the procedure is initialized as follows:

 ‘first clear contents
 Sheets(“Sheet1”).Select
 Range(“A:A,B:B”).Select
 Range(“B1”).Activate
 Selection.ClearContents
 Cells(1, 4) = “”
 Cells(1, 5) = “”

 iCellPoint = 0
 ‘intialize pointer
 Cells(1, 4) = “REC”

 bStopRequest = False
 ‘initiating the condition

The results of the readings are placed in columns A and B, so the first thing to do is to clear
all the previous results. Also, when data is being acquired, cell D1 contains a red “REC” (the
text in the cell is formatted during worksheet setup) and cell E1 contains the total number of
readings acquired since initiation. Actually, it is more of a pointer that is incremented every
time a reading is taken.

The continuous loop is achieved through the “while 1” statement at the start of the follow-
ing code. The corresponding wend comes right at the end of the procedure and is not shown
here. The Data button on the caliper is connected to bit 7 of the Status register of the

289

Example 15: Vernier Caliper Interface

parallel port. This input is inverted so when the button is pressed connecting the signal to
ground, the software will see this as a digital one. While it is scanning for this input, the pro-
cedure allows other events to occur, so that if the Stop button is clicked, the bStopRequest
flag will be set and the procedure can be terminated.

 While 1
 ‘do forever

 j = 0
 While j = 0
 ‘waiting for Data switch to be pressed
 ‘it goes low, but this input is inverted
 DoEvents
 j = PortIn(889) And 128
 If bStopRequest = True Then
 Cells(1, 4) = “”
 ‘remove REC symbol
 Exit Sub
 End If
 Wend

Once the Data button is seen, the procedure reads the input without allowing for other
system events. Errors in the read process can happen, which is not surprising since the signals
are unbuffered and are at very low current and low voltage levels. Although the caliper serial
data protocol does not include checksums, it is possible to add some checks to detect the
errors. When an error is detected, the read process is reinitiated using the inelegant go to ap-
proach. I couldn’t think of anything simpler. Retry: is the go to address.

The !Request signal is first disabled, and then enabled after a period of 100 mS to allow the
caliper to reset. Bits are then read in nibbles as the clock is detected. On occasion, the read
sequence can go out of phase and the procedure will lock-up waiting for a clock pulse and
none arrives. I added a simple counter (since the timer will not work without DoEvents) and
found a suitable value by trial and error. This value is likely to vary between processors. If the
value is too large, then it may take some time to detect and then clear the error. If the value
is too small, the process will be endlessly repeated because of false timeouts. At any rate,
each time the loop waiting for the clock pulse is executed, the counter iErrorDetect is in-
cremented. When the counter gets too large, the acquisition process is restarted. As a quick
note, it is not possible to use the Exit statement within a while/wend loop. It can only be used
in the alternative construct of do/loop while loop.

Once all the bits have been read, the !Request line is deactivated.
Retry:
 Call PortOut(888, 1)
 ‘ensure system is off for retry
 nTimerSave = Timer
 While Timer < nTimerSave + 0.1

290

Excel by Example

 ‘wait for debounce
 Wend

 Call PortOut(888, 3)
 ‘REQUEST signal low (after transistor)

 For i = 0 To 12
 ‘13 digits
 iDigit = 0
 For k = 0 To 3
 ‘4 bit per digit
 j = 1
 ‘flag for while statement
 iErrorDetect = 0
 Do
 ‘waiting for input ot go low
 j = PortIn(889) And 32
 iErrorDetect = iErrorDetect + 1
 If iErrorDetect > 50000 Then
 Exit Do
 End If
 Loop While j <> 0
 iX = PortIn(889) And 16
 ‘bitwise and
 iDigit = iDigit / 2
 ‘shift right
 If iX <> 0 Then
 iDigit = iDigit Or 8
 ‘oring on msb
 End If
 j = 0
 ‘flag for while statement
 While j = 0
 ‘waiting for input ot go high
 j = PortIn(889) And 32
 Wend
 Next k
 iDigitArray(i) = iDigit
 Next i

 Call PortOut(888, 1)
 ‘REQUEST signal low (after transistor)

With the 13 nibbles stored in iDigitArray, a check is made for suitable values in some of the
bytes. If an error is detected, the reading is discarded and another one taken.

291

Example 15: Vernier Caliper Interface

 ‘error check
 If iDigitArray(0) <> 15 Or _
 iDigitArray(1) <> 15 Or _
 iDigitArray(2) <> 15 Or _
 iDigitArray(3) <> 15 Or _
 iDigitArray(11) > 5 Or _
 iDigitArray(11) < 2 Then GoTo Retry

The procedure then takes the digits that have been read in and formats them in a string
adding the decimal point in the correct spot. Then the result is converted to a number and
stored at the desired cell in the worksheet.
 i = iDigitArray(11)
 ‘fetching how many digits there are to the right of the dp
 sNumber = iDigitArray(10)
 For i = 1 To iDigitArray(11) - 1
 sNumber = iDigitArray(10 - i) & sNumber
 Next i
 sNumber = “.” & sNumber
 For i = 10 - iDigitArray(11) To 5 Step -1
 sNumber = iDigitArray(i) & sNumber
 Next i

 Cells(iCellPoint + 2, 1) = iCellPoint
 Cells(iCellPoint + 2, 2) = sNumber
 Cells(1, 5) = iCellPoint

 iCellPoint = iCellPoint + 1

The procedure takes less time to execute than it does to explain, and it is quite likely that
the Data button is still activated when the procedure iteration is complete. As a result, there
needs to be some code to wait for the button to be released.
 j = 128
 While j <> 0
 ‘waiting for Data switch to be pressed
 ‘it goes low, but this input is inverted
 DoEvents
 j = PortIn(889) And 128
 If bStopRequest = True Then
 Cells(1, 4) = “”
 Exit Sub

 End If
 Wend

 nTimerSave = Timer
 While Timer < nTimerSave + 0.2
 ‘wait for debounce
 Wend

292

Excel by Example

Having created the code, we add two command buttons using the Forms control as shown in
Figure 15-6. Link them to the corresponding procedures, and then format the text in cell D1
to red, so that the REC will appear in red.

Figure 15-6: Placing two command buttons from the Forms toolbox.

Figure 15-7 shows the acquisition of data from the caliper in operation.

Adding Sound
As each reading is stored, the incremented count appears in cell E1, but it would be nice to
give the operator some audio indication that the data has been stored so that they do not
have to look at the screen at all. Earlier versions of Excel had a function that generated some
kind of sound, but that feature has been removed. There is a “beep” instruction in VBA, but
if your computer is relatively modern, it likely does not have the internal speaker. We can-
not use the message box because it will require operator interaction to close it for the next
reading and that defeats the hands-free approach. The only route available to us is to play a
“.wav” file. This is how we do it. First, place the following declaration in the General Decla-
rations area of Module1.

Private Declare Function mciExecute _
Lib “winmm.dll” (_
 ByVal lpstrCommand As String _
) As Long

293

Example 15: Vernier Caliper Interface

Figure 15-7: Acquiring data. Each reading is added in the next row forming a column of a
pair of numbers. Note the data is still being acquired as seen by the “REC” in cell D1.

Remember that the <space>_ is how a line continuation is achieved in VBA.

In the location where the process has been successfully concluded, we insert the line

 x = mciExecute(“play c:\winnt\media\ding.WAV”)

It appears just prior to the condition waiting for the Data button to be released. The
DoEvents in the following while loop allows the sound to be played. Obviously almost any
.wav file can be played, but it would probably be sensible to choose a shorter one in this case.

Thoughts on Improvement
Even with the error-checking, some erroneous readings still sneak through. These readings
are way off the mark and I suppose as part of the check, we could make a comparison to a
nominal value and if it differed by more than say 40%, we could invoke a new reading.

Aside from the printer port, it is possible to buy expansion boards for the internal bus of the
computer. Most times, these devices rely on some implementation of the flexible Intel 8255
parallel port adapter. The manufacturer of the card will either provide a driver or the I/O
address for the port and you can use the same techniques shown here to achieve greater flex-
ibility (in terms of number of I/O lines and directionality) for more complex projects.

294

Excel by Example

Statistics
Excel has an extensive array of functions for statistical analysis. Most are installed with the
Analysis Toolpak. If you have not done this, you should install the add-in as described in the
introduction. I am far from being an expert in this field, so I merely want to highlight some
of the functions that you can use.

In an attempt to make this example vaguely electronic, I measured the contents of three
tubes of 28-pin integrated circuits (27C512s if you must know) with the results shown in
Figure 15-10. It is simple enough to generate the average, cell D3 contains the formula

 =AVERAGE(B2:B40)

which does not need further explanation. In a similar manner, the standard deviation can be
easily calculated and the cell D6 has the formula:

 =STDEV(B2:B40)

to quickly calculate it. Finding the minimum and maximum readings is simple with the =min
and =max functions.

Let’s create a frequency distribution for these readings. The quickest and easiest way is to
use the Data Analysis tool. Click on Tools | Data Analysis, and then select Histogram and
OK. You should see the resulting dialog in Figure 15-8.

Figure 15-8: Creating a frequency distribution histogram.

The frequency distribution is grouped into bins. You can enter a series of values (not neces-
sarily equally spaced) in a range in the worksheet and enter in the Bin Range bar, or you can
let the feature do the grouping automatically by leaving the entry blank. Select the options
that you want, and Figure 15-9 is the result. You can massage the chart’s appearance to your
heart’s content.

295

Example 15: Vernier Caliper Interface

Figure 15-9: Frequency distribution output.

There is an alternative approach that is a little more complex, but may yield more flexibility.
At any rate, it allows us to see a few more Excel functions in action. The first item on the
agenda is to create the bins, which are equally spaced ranges between the maximum and
minimum readings. Five bins would seem reasonable for this small spread of data. Let’s create
a table of the bin ranges automatically.

Select cells G2 to G6 (a total of 5 cells) and then click in the formula toolbar with the cells
still selected. Type in the formula:

 =MIN(B2:B40)+(ROW(INDIRECT(“1:5”))*(MAX(B2:B40)-MIN(B2:B40))/5)

and instead of pressing <Enter>, we enter an array formula by pressing <Ctrl> + <Shift> +
<Enter>. (See Appendix A for a discussion on array formulas.) The result is seen in Figure
15-10. Note that if you want more bins, the “5” has to be changed in two places in the for-
mula and the number of cells selected must also be changed.

Highlight cells H2 to H6 and in the formula bar enter the formula:

 =FREQUENCY(B2:B20,G2:G7)

(yes G7! see the FREQUENCY sidebar) followed by <Ctrl> + <Shift> + <Enter> to enter
the array formula. The distribution now appears in column H.

296

Excel by Example

Figure 15-10: Simple statistics applied to the acquired data together with bin creation.

In Parenthesis: FREQUENCY

It is possible to determine the number of different values that occur within a range of
numbers. The granularity of the range of numbers is expressed as bins each covering a
subset of values within the range. The FREQUENCY function returns an array of numbers,
and as a result, must be entered as an array formula. The syntax is:

 FREQUENCY (data_array,bins_array)

where the data array is the array of measurements where the frequencies are to be mea-
sured. For no readings, an array of zeroes is returned.

The bins_array is an array that contains the upper value of each range of the bin. The
lower value is defined by the upper value of the previous bin. Since this is in a tabulated
form, uneven ranges can be created.

This function returns one additional array element more than the bins_array. It is the
value of number of readings above the last value of the bins.

We can also try and see how our readings compare to a normal distribution. In cell H2, enter
the formula:
 =NORMDIST(G2,mean,std_dev,FALSE)

and copy it to cells C3 to G7.

297

Example 15: Vernier Caliper Interface

In Parenthesis: NORMDIST

For a given average and standard deviation, this function will return the normal distribu-
tion at a given point of the population (the x-axis). The syntax is:

NORMDIST(x,mean,standard_deviation,cumulative)

x is the point at which the distribution will be evaluated.

mean is the average of the function

standard deviation needs no explanation.

cumulative is a logic value. If it is set to TRUE, the cumulative distribution is found. FALSE
returns the probability mass.

Figure 15-11: Results of the statistical analysis of the data in B2:B40.

Figure 15-11 is the result of our efforts to date. The next logical step is to depict this on a
chart. Select the Chart Wizard by clicking on the icon, or from the Insert | Charts menu.
As in Figure 15-12, select the standard line type chart. Click on Next.

298

Excel by Example

The next step defines the source data. Select the Data range as cells H1 to I6, which includes
the titles in the selection as shown in Figure 15-13. Excel will automatically include the text
in the first row as the names for the data used in the chart.

Figure 15-12: Choosing a chart type.

Figure 15-13: Establishing the
source data for the y-axis.

299

Example 15: Vernier Caliper Interface

Click on the Series tab and enter the cells associated with the bin values in the Category
(X) Data Labels box as in Figure 15-14.

Figure 15-14: Establishing the
source data for the x-axis.

The third step is for cosmetic enhancements, and we will ignore them for the moment. In
the fourth step, we place the chart on Sheet1. The result is shown in Figure 15-15.

Figure 15-15: Chart output
of the distribution frequency,
showing the actual data
selected.

It might improve the appearance of the chart if we change the graph type of the actual read-
ings to columns. Excel will allow us to mix different chart types. To do this we need to click
on the associated curve as in Figure 15-15, right-click on it and select Chart Type. From the

300

Excel by Example

Chart Type dialog, select the column type as in Figure 15-16. Click on OK and Figure 15-17
is the result.

Figure 15-16: Modifying the type of one of the curves on the chart.

Obviously there are not enough readings, or the bin granularity is not fine enough to show
the classic bell shape curve, but I am sure you get the idea.

How’s that for convergence? Electrical engineering, mechanical engineering, statistics and
computer science—four disciplines in one example!

Figure 15-17: Chart output of the
distribution frequency mixing two
different chart types.

Function Generator Interface

16E X A M P L E

301

Model Description
Our department had just acquired a Stanford Research Systems Model DS345 30-MHz Syn-
thesized Function Generator, and I wanted to use it to generate an adjustable pulse width to
test the speed characteristics of a Pulse Width Modulation (PWM) controlled electric motor.
Despite the generator’s versatility, I found the pushbutton interface of the instrument (Figure
16-1) and its optional DOS-based configuration program did not lend themselves to conve-
niently realize this function. The idea for this model was born from this need.

Figure 16-1: The DS345 Synthesized Function Generator.

The DS345 is available with an RS-232 interface. The documentation supplied with the
generator is exemplary and is obviously written for exactly this kind of application, although
I don’t think the designers ever presumed it would be run from Excel.

Generating typical waveforms is easy enough to do from the keyboard, and I am far from an
expert on modulation techniques. These two reasons coupled with the desire to develop a
simple model have led me to only show a technique to develop custom waveforms along with
the ability to skew them.

My rationale for using Excel was that you could create a chart that would reflect the output
that you wanted. Since the chart is always based on a tabular input and since we know it
is possible to create a chart that expands dynamically to cover the exact amount of data, I

302

Excel by Example

thought that it would be easy to create and modify the chart to show complex waveforms. I
also allowed for initializing the data in the table to a recognized waveform and then allowing
further modification. Once the waveform was created, it could be saved (as a scenario per-
haps) and archived for use at some other time. In addition, it would be possible to generate
information that is certainly not available normally, like RMS voltage and Crest Factor.

Serial Interface
The serial protocol that the DS345 uses includes 8 data bits, no parity and 2 stop bits. The
baud rate is programmable, and I selected 9600 baud. The Function Generator must have the
serial port enabled and the baud rate set from the keyboard, and this information is covered
in the DS345 user manual. The Function Generator front panel even has a display setting
to allow the user a view of the received data, making debugging especially easy. The RS-232
interface connector is the original DB25 format. You will need to use a 25-way adapter to a
DB9 connector, and then use a “straight-through” 9-way cable to the serial port on the PC.

The control is mostly achieved with ASCII commands, but the custom waveforms are
downloaded in binary. The DS345 has many commands, but they are not really pertinent to
our needs here, so I will only describe the commands that I am going to use. If you are going
to try this yourself, you will no doubt have a DS345 and the manual that goes with it, so you
will have a description of all the possible commands.

The command protocol allows for a series of four ASCII characters, followed by some
numbers where additional data is required. Spaces are treated as null characters and the com-
mand is terminated by a line feed or carriage return.

*RST is the command that resets the DS345.

FUNC 5 sets the DS345 into the custom waveform mode.

FSMP x determines the granularity of the output waveform. The Function Generator output
is driven from a D/A converter. Each reading on the converter is held for a period of time.
This time period is expressed as a frequency (the inverse of the time) that is derived from
the value 40 MHz/(N) where 0<N<(234–1). As a result, x (used in the command) must be
an exact divisor of 40MHz or it will be rounded to the nearest allowable frequency. Based on
this range each data point of the wave can be held for an interval of 25 nS to 2.3 mS.

LWDF 0,j allows downloading j (a maximum of 16,300) points in the waveform. Each point
in the download data is sent as a 16-bit binary number made up of two 8-bit bytes. The num-
ber is limited to between –2047 and +2047. The data is terminated with a checksum, which
is the 16-bit addition of all the data words transmitted.

Workbook Open and Close
Before we start adding worksheet controls, let’s make sure that when the workbook opens the
Function Generator is reset. That will involve initializing the serial port, and sending the
reset command.

303

Example 16: Function Generator Interface

In a new workbook, invoke VBA (<Alt> + <F11> or Tools | Macro | Visual Basic Edi-
tor) and then add a module (Insert | Module) and a user form (Insert | UserForm). With
the User Form active, click on the MSComm icon on the toolbox and then place the control
on the User Form (see Example 14 and Appendix B on how to get the MSComm icon). See
Figure 16-2.

Figure 16-2: Placing MSComm in a user form.

Double-click on the Module1 folder, and in the code window add the following:
Sub SerialPortOpen()
‘Normally the following commented lines would be used
‘and when the model is complete they will be uncommented.
‘During development the access to the serial port may go
‘out of phase and so, if the port is open we first close
‘and then reopen it to prevent false information being read or sent
‘
‘Created as a procedure so that it only needs to be changed once,
‘but can be accessed from anywhere
 ‘If UserForm1.MSComm1.PortOpen= False Then
 ‘UserForm1.MSComm1.PortOpen = True
 ‘End If
‘remove when model is complete

304

Excel by Example

 If UserForm1.MSComm1.PortOpen = False Then
 UserForm1.MSComm1.PortOpen = True
 Else
 UserForm1.MSComm1.PortOpen = False
 UserForm1.MSComm1.PortOpen = True
 End If
End Sub

Add a second procedure:
Sub Initiate()
 With UserForm1.MSComm1
 ‘this is just shorthand to save writing
 ‘UserForm1.MSComm1.xxxx= nnn
 ‘every time.
 .CommPort = 1
 ‘.PortOpen = True
 ‘enabled in a few lines to allow check if open
 .Handshaking = comNone
 ‘no handshaking required
 .Settings = “9600,N,8,2”
 ‘set for 9600 baud, no parity, 8 bits, 2 stop bit
 .DTREnable = True
 .RTSEnable = True
 End With
 ‘add check if port is open
 Call SerialPortOpen
 UserForm1.MSComm1.InputMode = comInputModeText
 ‘text data

 TransmitBuffer = “*RST” + Chr(13)
 UserForm1.MSComm1.Output = TransmitBuffer

End Sub

For a detailed description of the MSComm properties see Example 14. Note the transmission
of the 4-character command “*RST” with the concatenation of the carriage return character
to complete the message. With the DS345 connected, we can run this procedure to see that
it does in fact get reset.

In the Workbook_Open event, add the code:
Private Sub Workbook_Open()
 Call Module1.Initiate
End Sub

It is good form to close the serial port when the application is closed, so in the workbook
deactivate event we add:

Private Sub Workbook_Deactivate()
 Call Module1.SerialPortClose
End Sub

305

Example 16: Function Generator Interface

and create a procedure in Module1 that will close the port:
Sub SerialPortClose()
 UserForm1.MSComm1.RThreshold = 0
 ‘disable interrupts-
 If UserForm1.MSComm1.PortOpen = True Then
 UserForm1.MSComm1.PortOpen = False
 End If
 ‘close the port
End Sub

Adding VBA Controls: Granularity
Return to the Excel workbook from VBA and name Sheet1 to “Controls” and Sheet2 to
“Workings”. As we have seen elsewhere in this book, there are several ways to introduce
controls to Excel. Since I want the ability to dynamically modify some of the controls, I
chose to go with the Control Toolbox. The controls will be associated with a particular sheet
so we won’t have to turn the visibility of the controls on and off, but because these controls
are ActiveX controls, the approach will be very similar to VBA controls placed on a form.

In Parenthesis: Controls in Excel

We have seen in previous examples that there are four ways to create controls in Excel.
Each method has advantages and disadvantages.

Method Advantages Disadvantages
Data Validate Simple data validation.

Results and selection in single
cell.

No directly associated procedure
possible.
Only combo box type
functionality.

Form Control Simple to use.
Floats above worksheet.
Associated with a worksheet.

Lack flexibility and features, for
example, cannot be enabled or
disabled, cannot dynamically
change range of slider control.
Difficulty sizing several controls
to the same size.

Control
Toolbox

ActiveX controls allow for a wide
variety.
Can be dynamically changed and
enabled/disabled.
Floats above worksheet.
Associated with a worksheet.

More complex setup.
May require initialization.

VBA Form ActiveX controls allow for a wide
variety.
Can be dynamically changed and
enabled/disabled.
Floats above worksheet.
Not associated with a worksheet.

More complex setup.
May require initialization.
Requires form visibility control.

306

Excel by Example

In order to start, we need the Control Toolbox visible (View | Toolbars | Control Tool-
box). We place a text box with the text “Granularity” on the worksheet, and then format the
TextAlign property to center alignment and the SpecialEffect property to a flat appearance.
Next, we add a combo box control which we will name “Granularity” and link it to cell B1
on the Workings sheet. Make sure that the Style property is set to style 0. Also, the Match-
Entry property should be set to 2, or data entry will be somewhat puzzling as the data entry
will automatically try to select the value closest to the first character the user enters. You
should be looking at something like Figure 16-3.

Figure 16-3: Placing a combo box control.

307

Example 16: Function Generator Interface

In Parenthesis: Combo Box Control

The ActiveX combo box control allows two styles: style 0-fmStyleDropDownCombo
allows the user to enter data or select from the drop-down list. Style 2- fmStyleDrop-
DownList only allows the user to select from the drop-down list. The result appears in
a cell identified in the LinkedCell property. Each time the entry is changed, a click event
is triggered.

The data that appears in the box is also found on the text property of the combo box,
but in order to create the drop-down list, the program must initialize the values in VBA,
possibly in some initialization event. To do this we use the AddItem method, which takes
the format :
 Object.Additem “Text1”
 Object.Additem “Text2”
The VBA help suggests that it is possible to add an index number to allow the user to
specify the order of appearance in the drop-down list. From my experience, this variation
does not work in the Control Toolbox implementation of the control, and the order of
appearance is the order in which the AddItem method is executed.

The ListRows property determines the maximum number of rows shown in the drop-
down list.

Before we implement this, let’s define “granularity.” The output of the function generator is
driven by a digital-to-analog converter (DAC). This output is updated periodically, and the
more updates there are in the waveform, the smoother the output is (within the limits of the
resolution of the DAC), as shown in Figure 16-4. In this context, “granularity” is the number
of times the output is updated in one cycle of the waveform.

Figure 16-4: Creation of an arbitrary waveform with a very
coarse granularity.

The value that we use for granularity must be an integer. It will be manipulated together
with our desired output frequency (which we will tackle next) to generate the FSMP instruc-
tion as described above. The more points there are in the waveform, the longer it will take
to download as every point in the waveform must be downloaded. The number of points that
can be transmitted to the DS345 is very large indeed, but since the maximum number of
lines in Excel, 65536, exceeds the maximum number of points, 16300, Excel should not be a
limiting factor in this regard. The approach to this model will be to create a table for all the

308

Excel by Example

points. In an attempt to help with the comprehension of the model, I am going to be work-
ing with relatively small numbers: 100, 500 and 1000, although the user can theoretically
enter any number up to 16300. At higher frequencies, the DS345 also places some restric-
tions on the number of points as we shall see.

The following code is added to the Initiate procedure so that it is run once when the work-
sheet is opened. It creates the drop-down text that is used in the Granularity control. Keep
in mind that the control works with text values that we will have to convert to values later.

 Sheet1.Granularity.Clear
 ‘numbers are added to existing which is
 ‘especially a problem duuring developemnt
 ‘as the items are added over and over again
 With Sheet1.Granularity
 .AddItem “100”
 .AddItem “500”
 .AddItem “1000”
 End With
 ‘and inititalise the selection
 Sheet1.Granularity.Text = “100”

It is also probably prudent to parse the output from the Granularity control, so we need to
add the following to the Granularity_Change event. You can get to this event code from the
VBA Explorer by double-clicking on the Sheet1 folder and then finding the object in the
drop-down menus in the Events Box above the VBA Editor window. Alternatively, within
Excel set the Controls Toolbox to the Design Mode (the Set Square icon in the top left-
hand of the toolbox), right-click on the control and select View Code.

Private Sub Granularity_Change()
 If IsNumeric(Granularity.Text) = False Or Right(Granularity.Text, 1) = “.” Then
 ‘this is monitored character by character entry
 ‘exclude non numeric characters and decimal point
 ‘ignore the last entry if non-integer entry
 If Len(Granularity.Text) = 0 Then
 Granularity.Text = “”
 Else
 Granularity.Text = Left(Granularity.Text, Len(Granularity.Text) - 1)
 End If
 End If
End Sub

309

Example 16: Function Generator Interface

In Parenthesis: String Functions

It is possible to analyze and manipulate text strings by using the LEFT, RIGHT and MID
functions.

Left (String, NumberOfCharacters) will look at the specified number of characters on the
left of the string. Similarly, Right (String, NumberOfCharacters) will look at the specified
number of characters on the right of the string. It is possible to access the mid portion
of the string using the MID function. Its format is:

Mid (String, Start, Length). The start is where the extraction will begin, and the length is the
number of characters that will be extracted. If length is omitted, then all the characters
to the end of the string are returned.

It is possible to find out how long the string is using the Len function.

Combining of strings can be achieved with the concatenation action, which is simply
expressed using the ampersand “&” character to link the strings. The plus symbol “+”
fulfils the same function. Within Excel, there is also the CONCATENATE function which
also does the same thing.

The InStr function will locate a string within a second string based on its position from
the beginning of the string. The InStrRev does the same, but measures the position from
the end of the string.

StrComp will compare to see if strings are equal and can check for equality based on text
and binary data. See the VBA help file for greater detail.

Adding VBA Controls: Frequency
The frequency we will be entering is obviously the frequency of the output waveform. As en-
gineers, we are accustomed to express the frequency in Hz, kHz and MHz, so we should allow
that approach here by means of two Combo Boxes.

Frequency can have any value as long as it is numeric. The approach is very similar to the
Granularity using a text box and a combo box (called Frequency). The linked cell is at
Workings!B2. We should note that the ListRows property should be set to greater than or
equal to the number of entries in the drop-down list. Set this to 9. The Initiate procedure has
the following setup added:

 Sheet1.Frequency.Clear
 With Sheet1.Frequency
 .AddItem “1”
 .AddItem “2”
 .AddItem “3”
 .AddItem “4”
 .AddItem “5”
 .AddItem “6”
 .AddItem “7”

310

Excel by Example

 .AddItem “8”
 .AddItem “9”
 End With
 ‘and inititalise the selection
 Sheet1.Frequency.Text = “1”

The Frequency_Change event, the occurrence that is triggered by a change in the Frequency
Combo Box, is basically the same as the Granularity event except that it will not exclude a
decimal point:

Private Sub Frequency_Change()
 If IsNumeric(Frequency.Text) = False Then
 ‘this is monitored character by character entry
 ‘exclude non numeric characters
 ‘ignore the last entry if non-integer entry
 If Len(Frequency.Text) = 0 Then
 Frequency.Text = “”
 Worksheets(2). Range(“fsp”).Value = 0

 Else
 Frequency.Text = Left(Frequency.Text, Len(Frequency.Text) - 1)
 Worksheets(2).Range(“fsp”).Value = Val(Frequency.Text)
 End If
 Else
 Worksheets(2).Range(“fsp”).Value = Val(Frequency.Text)
 End If
End Sub

As we will see in a while, there will be another method of changing the frequency so I have
created a cell named FSP at Workings!C2. The frequency set is copied to this location when-
ever the Frequency_Change event occurs.

The Units Combo Box can only have specific entries and Style property on this control
should be set to 2, since only the entries shown in the drop-down list can be selected. The
MatchEntry property should be set to 1, and the output linked to Workings!B3. The code
added to the Initiate procedure is:

 Sheet1.Units.Clear
 With Sheet1.Units
 .AddItem “Hz”
 .AddItem “KHz”
 .AddItem “MHz”
 End With
 ‘and inititalise the selection
 Sheet1.Units.Text = “MHz”

There is no need to parse the input since it is not possible for the user to enter any data. On
the Workings sheet in cell C3, we add the formula:

 =IF(B3=”Hz”,C2,(IF(B3=”KHz”,C2*1000,C2*1000000)))

311

Example 16: Function Generator Interface

which will calculate the actual frequency desired based on the number entered and the units
selected (using the value in the FSP cell). In order to warn the user if the desired frequency
is beyond the 30 MHz maximum, cell Controls!C5 is merged with C6 and C7 and formatted
for red text. It contains the formula:

 =IF(Workings!C3<=30000000,””,”Maximum Frequency: 30MHz”)

so that the message is displayed whenever the maximum frequency is exceeded (see Figure 16-5).

Figure 16-5: Initial user interface for DS345 driver.

Waveform Sampling Frequency
The granularity and the frequency must be combined to calculate the waveform sampling
frequency needed by the FSMP command to the function generator. From the DS345 user
manual definition, 1/FSMP is the time that the output value is held for before moving to
the next value. For us that period is 1/(granularity*frequency), and so FSMP = granularity *
frequency. However, there is a further constraint as part of the DS345 requirements. FSMP
can only be an integer divisor of 40 MHz/N and cannot exceed 40 MHz, so it is obvious that
at higher frequencies our granularity will drop down and our synthesized waveform will not
be particularly smooth for anything other than a square wave. This means there will be a

312

Excel by Example

little give and take in order to arrive at a desired setting. First the user selects the granularity
gs and the frequency fs. The initial stab at FSMP is:

 FSMPinit = gs * fs

and this should be equal to 40MHz/N where N is an integer.

 40MHz/N = gs * fs

Rearranging, we set N equal to the integer result (using the \ operator) of the division

 N = 40MHz \ (gs * fs)

Obviously if N is 0, there is a problem and we will annunciate this. Using N, we now reverse
the calculation process. I am going to assume that if the user has chosen a particular fre-
quency, it should take precedence over the number of samples and remain constant. The new
granularity gn is given by:

 gn = 40MHz/(N * fs)

The recalculation will be offered to the user to OK or Cancel. It is important to get the
number correct because this determines the number of values of the waveform that will be
calculated and downloaded. It must be an integer number, so the frequency will have to be
modified as a consequence. The effective granularity ge is derived from:

 ge = gn \ 1

The effective frequency fe is recalculated:

 fe = 40MHz/(ge * N)

It seems to me that there may be a case for substituting this process with the Solve For fea-
ture, but I don’t want to cloud this example with other issues as we may run into the integer
issue that we discovered in Example 11. At any rate, the approach is consistent with the
other parameters that we will add. So for better or worse, the procedure SetFSMP is imple-
mented based on the above algorithm:

Sub SetFSMP()
 Dim TransmitBuffer As String
 Dim Response As Variant
 ‘calculating FSMPinit
 Range(“FSMPinit”) = Range(“GS”) * Range(“FSactual”)
 ‘and now N
 Range(“N”) = 40000000 \ Range(“FSMPinit”)
 If Range(“N”) = 0 Then
 ‘force the granualrity to be 1
 Range(“N”) = 1
 End If

 ‘create new granularity GN
 Range(“GN”) = 40000000 / (Range(“N”) * Range(“FSactual”))

313

Example 16: Function Generator Interface

 Range(“GE”) = Range(“GN”) \ 1
 If Range(“ge”) = Val(Range(“gs”)) Then
 ‘if no change force the update nevertheless
 Response = vbYes
 Else
 ‘If Range(“ge”) = Range(“gs”) Then
 ‘ Response = vbYes
 ‘Else
 ‘if there is a change then notify
 Response = MsgBox(“Granularity modified to “ _
 + Str(Range(“GE”)) + Chr(13) + Chr(10) + _
 “Is this acceptable”, vbYesNo, “New Granularity”)
 ‘End If
 End If
 If Response = vbYes Then
 Range(“FE”) = 40000000 / (Range(“GE”) * Range(“N”))
 Range(“FSMPactual”) = Range(“ge”) * Range(“FE”)
 Worksheets(1).txtGranular.Text = Range(“ge”)
 Worksheets(1).txtFrequency.Text = Round(Range(“fe”), 2) & “Hz”

 Call SerialPortOpen
 TransmitBuffer = “FSMP” + Str(Worksheets(2).Range(“c4”)) + Chr(13)
 UserForm1.MSComm1.Output = TransmitBuffer
 Else
 ‘place holder in case of need
 End If
End Sub

You will notice towards the end of the code that I have added some Text boxes to show to
the user the actual values used. These Text boxes have been added to the control interface
and can be seen as the green text on a black background under the “Actual Frequency” and
“Actual Granularity” headings in Figure 16-7.

I struggled to find a combination of events around the changes of the three combo boxes
above, but because of the interrelationship, I couldn’t find the right combination that would
result in only one call of SetFSMP under all circumstances. I looked at the LostFocus, Key-
Down and Click events, but in the end I solved this by creating a Command button. That
allows the user to change all the values and then Update by clicking on the button. This
button is also shown in Figure 16-7.

Bump Frequency
To add some versatility to the frequency change, I added a Scroll control that will allow the
user to move the frequency by ± 50%. The properties of the control are shown in Figure
16-6. The linked cell is set to the cell Workings!B10. I have set the Maximum property
to 50 (for 50%) and the Minimum property to –50. A SmallChange (by clicking on the

314

Excel by Example

Up or Down arrows of the slider) will result in a change of 1 in the Value property of this
control. A LargeChange will change by 5 (clicking in the space between the slider bar and
the arrows). Of course moving the slider bar (a.k.a. scroll thumb) will result in a proportional
change as well. Each of these will trigger a scrBumpFreq_Change event which will modify
the value in FSP (overwriting the value placed there in the Frequency Change event), and
then update the frequency output using the setFSMP procedure. Note that the maximum
value is at the bottom of the slider, so I had to manipulate the operation to reverse this to
have the maximum value at the top.

Private Sub scrBumpFreq_Change()
 Dim vTemp As Variant
 vTemp = Worksheets(2).Range(“fs”).Value * scrBumpFreq.Value / 100
 ‘multiply by -50 to 50 and work as percentage
 Worksheets(2).Range(“fsp”).Value = Worksheets(2).Range(“fs”).Value - vTemp
 ‘up = increase frequency in percentage
 Call SetFSMP
End Sub

Figure 16-6: Properties of the
scrBumpFreq scroll bar.

315

Example 16: Function Generator Interface

When the frequency is entered via the Combo box, it should reset the scroll bar to the cen-
ter position. This may automatically result in a SetFSMP call, so the command button click
should be modified as follows:

Private Sub cmdUpdate_Click()
 If scrBumpFreq.Value = 0 Then
 Call SetFSMP
 Else
 scrBumpFreq.Value = 0
 ‘which will trigger setFSMP
 End If
End Sub

Figure 16-7 shows the results of our efforts so far.

Figure 16-7: The frequency controls.

Generating Frequency Tables
The DS345 waveform is generated from a RAM table driving a 12-bit DAC converter. The
input values to the DAC can range from –2047 to + 2047. The maximum range of the DAC
is thereafter amplified to the desired amplitude by a separate amplifier that is calibrated so

316

Excel by Example

the waveform with a peak value of 2047 would have defined output amplitude. In other
words, any waveform we create should aim to peak at 2047. If the DS345 is set to an ampli-
tude of 2V, the number 2047 would correspond to this output and –2047 to –2V. Changing
the amplitude to 5V will associate the 2047 value with this output amplitude.

Rather than download a waveform directly to the Function Generator, I decided to create
an Excel table so that we could generate a standard waveform and then manipulate it either
by manually editing the table or creating a second waveform and adding the two together.
Indeed, using a Fourier transform would allow you to combine a number of signals to create
any waveform.

In Parenthesis: Fourier Analysis

I have absolutely no experience in Fast Fourier Transforms, so I cannot give you an ex-
ample of how to use FFT in Excel, but the feature is supported. Click on Tools | Data
Analysis | Fourier Analysis. Here is a quote from the Excel 2002 help file:

“The Fourier Analysis tool solves problems in linear systems and analyzes periodic data
by using the Fast Fourier Transform (FFT) method to transform data. This tool also
supports inverse transformations, in which the inverse of transformed data returns the
original data.”

I inserted three more Combo box controls on the Controls worksheet. The first, called
comWaveform, allows for three possible waveforms as an initialization. They are Sine, Triangle,
and Square, and are set up in the Initiate procedure. Obviously, you can create many other
waveforms if you want.

One of the idiosyncrasies of the DS345 is that the signal always oscillates positive and
negative about the time axis. Even setting a TTL output on the instrument simply applies
an offset of 2.5V and sets the amplitude of the wave (irrespective of the waveform) to 2.5V.
Tweaking the amplitude results in the amplitude changing, but the offset remains at 2.5V, so
the minimum of the signal moves away from zero. I have some applications where I want to
vary the amplitude while keeping the minimum at 0V. The second combo box, comStyle is
my solution to this. comStyle has two possible selections: About Zero and From Zero. The for-
mer is the standard output, and the latter is the new mode that I have just discussed. When
we generate the waveform for the former, the numbers will range from –2047 to + 2047. In
the latter case, the numbers only vary from 0 to 2047. I know it halves the resolution and in
addition, the amplitude set on the DS345 front panel will also be out by a factor of two, but
the minimum stays at 0. Providing an amplitude control on the Excel front panel will solve
this problem.

The third combo box, comScale is added to allow us to scale the D/A output to less than
2047. The reason for this is if we are summing a number of signals, we don’t want the re-
sult to be greater than 2047. I have limited the possible values to click selections from the
Combo box only, simplifying the code and event interactions considerably.

317

Example 16: Function Generator Interface

The following listing shows the procedure for generation of the sine wave. The example on
the CD-ROM, FuncGen.xls, has the code for the other waveforms as well. Figure 16-8 shows
how far we’ve come.

Figure 16-8: New additions to the User Interface.

The results of the waveform calculations are saved on the Workings worksheet starting at
column F which represents the elapsed time in a single cycle, and column G which is the
resulting waveform. The number of lines is determined by the Granularity. Column H allows
you to add any data to distort a continuous waveform since columns G and H are summed
for the result in column I. You should note that the formula for the summing of each column
cell is added as part of the procedure so that there are only as many formulas as there are
entries. The formula not only sums the cells in the two columns, it also caps the output to a
maximum of 2047. Since the formula is inserted through software, the user can update the
output cells in column I with impunity to create any waveform. Anytime the GenerateWave
procedure is run, this information will be overwritten with the formula.

Sub GenerateWave()
 Dim iMin As Integer
 Dim iMax As Integer
 Dim iI As Integer
 Dim varPeriod As Variant
 Dim strTmpStr As String

 ‘The range select that follows appears
 ‘to only work if the sheet is active
 ‘Clear ranges
 Worksheets(“Workings”).Activate
 Worksheets(2).Range(“ChartTable”).Select
 Selection.ClearContents

 ‘calculate period

318

Excel by Example

 varPeriod = 1 / (Range(“fe”) * Range(“ge”))

 If Range(“Waveform”) = “Sin” Then
 ‘if sin wave
 If Range(“Style”) = “From Zero” Then
 iMin = 1023 * Range(“Scale”)
 iMax = 1023 * Range(“Scale”)
 ‘offset adjustment
 Else
 iMin = 0
 iMax = 2047 * Range(“Scale”)
 End If
 For iI = 0 To Range(“ge”) - 1
 ‘generate times in column F
 Worksheets(2).Range(“a1”).Cells(iI + 1, 6) = iI * varPeriod
 Worksheets(2).Range(“a1”).Cells(iI + 1, 7) = Round _
 ((iMax * Sin(2 * 3.14159 * Range(“fe”) * _
 Worksheets(2).Range(“a1”).Cells(iI + 1, 6))) + iMin)
 Next iI

 Else
 If Range(“Waveform”) = “Triangle” Then
 ‘triangle wave
 Else
 ‘square wave

 End If
 End If
‘insert formula into column I
 Range(“I1”).Select
 ActiveCell.FormulaR1C1 = “=IF(RC[-2]+RC[-1]>2047,2047,RC[-2]+RC[-1])”
 strTmpStr = “I1:I” & Mid(Str(Range(“ge”)), 2)
 Range(strTmpStr).Select
 Selection.FillDown
End Sub

319

Example 16: Function Generator Interface

In Parenthesis: Fill

In this example, the code for the formula fill was derived from recording a macro. In
it I use a different method of copying data rather than the copy/paste technique used
throughout the book. Why am I introducing this now? Because there are many things
that I still have to learn about Excel and I just found this as an incidental part of a ques-
tion in PC Magazine. One of the problems in systematically finding new features is that
the cascading menus in Excel are contextual and you have to have the right combination
setup to see a particular menu.

Anyway, back to how to do this. Enter a formula into the first cell of a row or column
(or both) of the cell where the formula is going to be copied. In this example, the first
formula will be entered into cell I1 and this formula will then be copied to I2 through
to cell I100. Block-select the area where the formula will be copied (in this example, I1
to I100). Then click on the menu item Edit | Fill | Down, and it is executed. The last
selection of Down will differ depending on the selection you have made to Up, Right
or Left.

The waveform will be updated in the comWaveform, comStyle, comScale change event
similar to the following:

Private Sub comScale_Change()
 Call GenerateWave
 Worksheets(“Controls”).Activate
End Sub

The call is followed by the reactivation of the Controls worksheet since the GenerateWave
procedure sets the worksheet to the Workings sheet. The two statements are also added to
the cmdUpdate button click and to the scrFreqBump change event.

Add a Chart
We saw in Example 14 how it is possible to create an open-ended chart, so that it dynami-
cally accommodates different lengths of data. If we add a chart for the amplitude versus time
for the single cycle, we could get an idea of what the waveform would look like before down-
loading it to the Function Generator.

On the Workings worksheet, select cells F1 to F100 and cells I1 to I100. Invoke the Charts
Wizard, select the XY (Scatter) chart type and the Scatter with data points connected by
lines without markers (the bottom right-hand option) sub type. Cosmetically modify the
chart to your liking. I simply removed the Show Legend option in the Legend tab and I
placed the chart on the Controls sheet. We should be looking at something like Figure 16-9.

320

Excel by Example

Now we have to modify the chart to allow for input variation. Define a range by clicking on
Insert | Name | Define. Add the name time, and define the range as:

 =OFFSET(Workings!F1,0,0,COUNTA(Workings!$F:$F)-1)

as shown in Figure 16-10. For details on these functions used, refer to Example 14.

Figure 16-9: Control worksheet with chart derived from waveform data on Workings
sheet.

Figure 16-10:
Naming a
range.

321

Example 16: Function Generator Interface

In a similar manner, add a second range named volts, and enter the range as:

 =OFFSET(Workings!I1,0,0,COUNTA(Workings!$I:$I)-1)

Both of these ranges dynamically change their size by counting the number of entries within
the range.

Click on the actual curve of the chart, and in the main formula bar modify the existing
formula to read:

 =SERIES(,FuncGen.xls!time,FuncGen.xls!volts,1)

This is shown in Figure 16-11.

Figure 16-11: Modifying the series formula.

Try changing the waveform type, frequency or any of the other controls to see the chart
dynamically update. Remember, some of the controls only update when the Update button is
clicked.

As I have said before, I have designed this application so that it would be possible to go
into the chart, modify the values and see the changes reflected as they are made. With the
chart on the Controls sheet, this would require toggling between sheets. The same is true for
changes in the settings of the controls. Although it is possible to place a chart in a number of

322

Excel by Example

places including other documents, I have not found a way to place it on a user form so that it
will “hover” above the application and be visible all the time. However, it is simple enough
to copy the chart from the Controls page and paste it in the Workings worksheet. Figure
16-12 shows a portion of the Workings sheet.

Figure 16-12: Dynamic chart on the Workings sheet. Note that I have added two entries
in cells H13 and H14 to distort the waveform and to see the immediate effect on the
chart.

Download Waveform
In order to download, the commands must be given as text and then the data must be down-
loaded as binary. The data for each point in the chart is an integer number that is split into
2 bytes. In addition, a checksum is created by adding all the words and creating an integer
that is transmitted as 2 bytes to complete the transmission. This is fully documented in the
DS345 user manual. As you can see from the “In Parenthesis: VBA and Bit Manipulation”
box, there are some software hardships in making these conversions.

323

Example 16: Function Generator Interface

In Parenthesis: VBA and Bit Manipulation

VBA has many advantages and great versatility except when it comes to bit manipula-
tion. There is not much information around so what I show here, I arrived at by trial and
error. It appears that the Byte variable type works as expected, that is, a division by 2
will shift the bits to the right, and a multiplication by 2 will shift the bits to the left. The
problems start as VBA becomes overprotective. If the shift results in a number greater
than 255, an overflow error is generated.

When you move to integer arithmetic, VBA will detect a problem when you try to set the
most significant bit because (I am guessing) it expects that this is the negative sign and
so you may have to end up generating complementary numbers. I reverted to bytes since
VBA will allow you to set bit 7 of a byte type without generating a run-time error.

The final problem that I detected (and I cannot explain why my solution works) is that
when working with more significant nibbles, dividing by 256 would return a number that
was consistently out by one. If a 13 (0xd) was expected, the result would be 14 (0xe).
Following are the steps that appear to generate the correct result:

1. AND the number with a mask of only the bits that we are interested in. For instance,
for bits 8 to 15 use NUMBER And &HFF00,

2. Then perform the division: NUMBER/256,

3. And then look only at the relevant resultant bits: NUMBER And &HFF,

4. “cast” the number by storing in a byte variable.

VBA has a number of Type Conversion Functions. Although none of them appear to
be of help in this instance, you can review them in the VBA Help. Just search for “Type
Conversion”.

The following code will generate the bytes and checksum and then download the waveform
to the Function Generator. It does not transmit the amplitude.

Sub Download()
 ‘send LDWF?0,and number
 ‘wait for return
 Dim TransmitBuffer As String
 Dim varReturnedData As Variant
 Dim bytWaveData() As Byte
 Dim varWavedata As Variant
 Dim lngCheckSum As Long
 Dim iI As Integer
 Dim intSpare As Integer
 Dim intSpare1 As Integer
 Dim varIntermediate As Variant
 Dim cc0 As Byte

324

Excel by Example

 ReDim bytWaveData((Range(“ge”) * 2) + 2)
 ‘2 bytes for every value and checksum

 lngCheckSum = 0

 For iI = 0 To (Range(“Ge”) - 1)
 varIntermediate = Worksheets(2).Range(“a1”).Cells(iI + 1, 9)
 If varIntermediate < 0 Then
 ‘catering for the negative arithemtic
 ‘and forcing into an integer
 varIntermediate = varIntermediate * -1
 intSpare = varIntermediate
 intSpare = intSpare * -1
 Else
 ‘force into an integer
 intSpare = varIntermediate
 End If

 bytWaveData(iI * 2) = intSpare And 255
 ‘least significant byte first
 intSpare1 = intSpare And &HFF00
 intSpare1 = intSpare1 / 256
 bytWaveData((iI * 2) + 1) = intSpare1 And 255

 lngCheckSum = lngCheckSum + intSpare
 ‘maintaining checksum
 Next iI
 ‘changing type
 bytWaveData((Range(“ge”) * 2)) = lngCheckSum And 255
 bytWaveData((Range(“ge”) * 2) + 1) = ((lngCheckSum And &HFF00) / 256) And 255

 ‘initially we work in text mode
 UserForm1.MSComm1.InputMode = comInputModeText
 Call SerialPortOpen
 TransmitBuffer = “LDWF?0,” + Str(Range(“ge”)) + Chr(13)
 ‘DS345 will ignore the space in str conversion
 ‘TransmitBuffer = “LDWF?0,” + Str(5) + Chr(13)
 UserForm1.MSComm1.Output = TransmitBuffer
 ‘set to one character when read by Input

 ‘rather than use the interrupt for a singel byte back
 UserForm1.MSComm1.InputLen = 1
 Do
 DoEvents
 Loop Until UserForm1.MSComm1.InBufferCount > 1
 varReturnedData = UserForm1.MSComm1.Input

325

Example 16: Function Generator Interface

 If varReturnedData = “1” Then
 ‘it passes
 Else
 ‘erroneous return,
 ‘but I am not sure what to do with it
 End If

 ‘now for the data
 UserForm1.MSComm1.InputMode = comInputModeBinary
 varWavedata = bytWaveData()
 ‘placing array in variant
 UserForm1.MSComm1.Output = varWavedata

 ‘and then set the mode
 UserForm1.MSComm1.InputMode = comInputModeText

 TransmitBuffer = “FUNC5” + Chr(13)
 UserForm1.MSComm1.Output = TransmitBuffer
End Sub

I decided that this procedure should only be run from a specific user button command as
the detection of a user-induced change could be quite complex. Since the user could be
working on either sheet, I placed Command buttons on both sheets and the click event of
either simply calls the Download procedure. Figure 16-13 shows the resulting output on an
oscilloscope.

Figure 16-13: Output waveform. Note the distortion introduced, and the stepped
output due to the fairly coarse granularity.

326

Excel by Example

Setting the Amplitude
Rather than using the approach of the DS345 Function Generator of defining the output as
amplitude, I chose to work with volts peak-to-peak since this means we don’t have to con-
sider the moving midpoint when we are working with a signal with the minimum fixed at 0V.

I added two Text boxes and a Scroll Bar as in Figure 16-14. Any change in the scroll bar
value is transmitted to the DS345. The scroll bar is actually set up in percent (minimum of
0 and maximum of 100) because the output will change from 20 Vpp maximum for a signal
about the time axis, and 10 Vpp maximum for a signal from the time axis. The resultant
voltage is also displayed in one of the text boxes (the other acts as a heading). The code for
the scroll bar change looks like this:

Private Sub scrVpp_Change()
 Dim varVpp As Variant
 varVpp = (scrVpp.Max - scrVpp.Value) / 100
 ‘as a %
 If Worksheets(2).Range(“Style”) = “From Zero” Then
 Worksheets(2).Range(“vpp”).Value = varVpp * 10
 Else
 Worksheets(2).Range(“vpp”).Value = varVpp * 20
 End If

 txtVpp.Value = Str(Worksheets(2).Range(“vpp”).Value) & “ V”
 Call SetAmplitude
End Sub

and the procedure call to send the amplitude is found in Module1:
Sub SetAmplitude()
 Dim varTemp As Variant
 If Range(“Style”) = “From Zero” Then
 varTemp = Range(“Vpp”).Value
 Else
 varTemp = Range(“Vpp”).Value / 2
 End If

 Call SerialPortOpen
 TransmitBuffer = “AMPL” & Str(varTemp) + “VP” + Chr(13)
 UserForm1.MSComm1.Output = TransmitBuffer

End Sub

SetAmplitude is also added in the two Update buttons associated procedures.

327

Example 16: Function Generator Interface

Skew
Since some signal generators have a skew feature for sine waves, I am sure it is possible to
express the signal mathematically, but I have been unable to find this relationship. It can
be done by analyzing periods similar to the triangular wave approach that you will soon see.
Since I don’t want to bloat this example and still get a sub-optimal wave, I decided to disable
the skew feature for sine waves and only use it on a square wave or a triangular wave. When
a sine wave is selected, the skew controls are made invisible. For the other two options, the
skew percentage control is enabled under the control of a Toggle button.

In order to implement the Skew control, the Waveform_change event is modified to the
following:

Private Sub comWaveform_Change()
 Select Case Worksheets(2).Range(“waveform”)
 Case “Sin”
 scrSkew.Visible = False
 togSkew.Visible = False
 txtSkew.Visible = False
 togSkew.Value = False
 scrSkew.Value = 50
 Case Else
 scrSkew.Visible = False
 togSkew.Visible = True
 txtSkew.Visible = False
 togSkew.Value = False
 scrSkew.Value = 50

 End Select
 Call GenerateWave
 Worksheets(“Controls”).Activate
End Sub
The event triggered by clicking the Skew toggle button is:
Private Sub togSkew_Click()
 If togSkew.Value = True Then
 scrSkew.Visible = True
 txtSkew.Visible = True
 scrSkew.Value = 50
 Else
 scrSkew.Visible = False
 txtSkew.Visible = False
 End If
End Sub

328

Excel by Example

Let us consider how this is implemented for a triangular wave. The code is:
Sub SetupTriangle(varPer As Variant)
 Dim iMin As Integer
 Dim iMax As Integer
 Dim iI1 As Integer
 Dim varSlope1 As Variant
 Dim varSlope2 As Variant
 Dim varConst1 As Variant
 Dim varConst2 As Variant
 Dim varTimePeak As Variant
 If Range(“Style”) = “From Zero” Then
 iMin = 1023 * Range(“Scale”)
 iMax = 1023 * Range(“Scale”)
 ‘offset adjustment
 Else
 iMin = 0
 iMax = 2047 * Range(“Scale”)
 End If
 varTimePeak = (Range(“ge”) - 1) * varPer * Sheet1.scrSkew.Value / 100
 ‘finding where the peak period is
 ‘setting constants for the line
 ‘so they don’t have to be recalculated for every iI
 varSlope1 = 2 * iMax / varTimePeak
 varSlope2 = -2 * iMax / (((Range(“ge”) - 1) * varPer) - varTimePeak)
 varConst1 = -iMax
 varConst2 = iMax - varSlope2 * varTimePeak
 ‘using the waveform y=Slope*x + Constant
 For iI1 = 0 To Range(“ge”) - 1
 ‘generate times in column F
 Worksheets(2).Range(“a1”).Cells(iI1 + 1, 6) = iI1 * varPer
 ‘now looking for which part of the waveform we are in based
 ‘on the skew setting
 If Sheet1.scrSkew.Value >= ((iI1 / (Range(“ge”) - 1)) * 100) Then
 ‘on the left of the skew point
 Worksheets(2).Range(“a1”).Cells(iI1 + 1, 7) = _
 Round((varSlope1 * Worksheets(2).Range(“a1”).Cells(iI1 + 1, 6)) _
 + varConst1 + iMin)
 Else
 ‘on the right of the skew point
 Worksheets(2).Range(“a1”).Cells(iI1 + 1, 7) = _
 Round((varSlope2 * (Worksheets(2).Range(“a1”).Cells(iI1 + 1, 6)) - varTimePeak) _
 + varConst2 + iMin)
 End If
 Next iI1
End Sub

329

Example 16: Function Generator Interface

Before I describe this, I should mention that there appears to be a shortcoming in the debug-
ging capabilities of VBA. Stepping through some of these statements may cause VBA to
report phantom incorrect references to a sheet (without actually specifying which sheet).
If you run through the statements using breakpoints instead of stepping, the statement is
executed correctly.
The first part of the procedure determines the limits of the waveform in the y dimension
determined by the scaling and whether the signal oscillates about the time axis, or has its
minimum set to 0.
The triangular waveform is divided into two lines of the form y = mx + c where m is the slope
and c is a constant. The next stage calculates the slope and the constant based on the maxi-
mum and minimum of the waveform and the position of the apex of the triangle defined by
the skew setting. If the skew Toggle button is off, the skew setting is 50%.
The final step evaluates which line is to be used for a particular time, and calculates the as-
sociated value placing the time in column F and the result of the calculation in column G on
the Workings sheet.
This procedure is called from within the GenerateWave procedure, and so on the return to
that procedure the summing formula is added in column I and it is possible to add individual
data points in column H to distort the waveform.
Figure 16-14 shows the controls and the resultant skewed triangular wave.

Figure 16-14: Controls used to setup a skewed triangular waveform. Note that the
gridlines have been turned off (in the Options menu) to improve the appearance.

330

Excel by Example

The code for the square wave is trivial compared to the triangle wave and can be found in
the SetupSquare procedure.

Average Voltage, RMS Voltage
As we have seen in Example 10, it is possible to use Excel to evaluate definite integrals by
calculating and summing the area of consecutive trapeziums created by the curve. The aver-
age value of a waveform is given by:

The RMS value is calculated from:

The calculation of the area of each trapezium is applied to the formulas added during the
waveform generation at the end of the GenerateWave procedure:
 Range(“J2”).Select
 ActiveCell.FormulaR1C1 = _
 “=((ABS(RC[-1])+ABS(R[-1]C[-1]))/2)*(RC[-4]-R[-1]C[-4])”
 ‘now to create areas using trapezium method for rms power
 ‘add two square of ordinals and average them and multiply
 ‘by the timw
 Range(“K2”).Select
 ActiveCell.FormulaR1C1 = “=((RC[-2]^2+R[-1]C[-2]^2)/2)*(RC[-5]-R[-1]C[-5])”
 strTmpStr = “J2:K” & Mid(Str(Range(“ge”)), 2)
 Range(strTmpStr).Select
 Selection.FillDown

The average value calculated is the value seen on a non-RMS Digital Voltmeter when
measuring AC volts since the mathematical average of a sine wave is zero. The area of each
trapezium is stored in column J, and the area of each trapezium of the squared value is stored
in column K in the above listing. To find the definite integral, we need to sum all of these
areas. In order to generalize the calculation, we need to name the columns with the open-
ended approach used for the chart. We do this by creating two named regions using Insert |
Name | Define, and create a region called AveVolt and enter the formula:

 =OFFSET(Workings!J2,0,0,COUNTA(Workings!$J:$J)-1)

in the Refers to bar. Create a second region called RMSVolt with the following formula:

 =OFFSET(Workings!K2,0,0,COUNTA(Workings!$K:$K)-1)

The reciprocal of the period is the frequency, and so we can add the formula for the average
value in cell B17:

 =FSactual*SUM(AveVolt)

()
0

0

1
t T

avg
t

V v t dtT

+

= ∫

()
0

2

0

1
t T

RMS
t

V v t dtT

+

= ∫

331

Example 16: Function Generator Interface

For the normal sine wave about the time axis with an amplitude of 2047, this returns a value
of approximately 1300. This is a factor of 1300/2047=0.635, which is very close to the actual
value of 0.636. This factor is stored in cell C17 (named AveFactor). Note that there are two
sources of error besides that quantization error. First, there is one reading missing, the last
period of the waveform that would return the signal to its original value. Second, where the
wave crosses the time axis (goes positive to negative and vice versa) there is a potential for
further inaccuracy.

Similarly, we enter the following formula in cell B18 to calculate the RMS value:

 =(FSactual*SUM(RMSVolt))^0.5

The calculated value for the sine wave is approximately 1447, which is a factor of 0.707
which is exactly the RMS value to the first approximation despite the inaccuracies discussed
above. This factor is stored in cell C18 (named RMSfactor).

The Crest Factor (CF) is defined as the peak voltage divided by the RMS value. Since the
conversion to voltage would be applied to numerator and denominator and would cancel
out, we can calculate the CF in cell B19 using the following formula:

 =MAX(OutSig)/RMS

where RMS is the name for cell B18, and OutSig is another named region define by:

 =OFFSET(Workings!I1,0,0,COUNTA(Workings!$I:$I)-1)

For the sine wave example, the calculated value is 1.414 which is exactly right.

It would be nice to show the average voltage, RMS voltage and Crest Factor on the Control
sheet. It would be pretty easy to process the numbers in a cell on the sheet, but it would not
be consistent with the other displays. There are three Text boxes added, but the question is
what event will update them. The best event, I thought was the calculate event for Sheet2.
After some debugging, the code evolved into:

Private Sub Worksheet_Calculate()
 ‘when this is recalculated, update
 ‘the average, RMS and CF on Controls sheet
 Dim varTemp As Variant
 Dim varFactor As Variant

 If IsNumeric(Range(“avefactor”)) = True _
 And IsNumeric(Range(“RMSfactor”)) = True _
 And IsNumeric(Range(“CF”)) = True Then
 If Range(“Style”) = “From Zero” Then
 ‘determining divisor
 varFactor = 1
 Else
 varFactor = 2
 End If

332

Excel by Example

 varTemp = Round(Range(“Avefactor”) * Range(“scale”) * Range(“vpp”) / varFactor, 3)
 Sheet1.txtAvg.Value = Str(varTemp)
 varTemp = Round(Range(“RMSfactor”) * Range(“scale”) * Range(“vpp”) / varFactor, 3)
 Sheet1.txtRMS.Value = Str(varTemp)
 varTemp = Round(Range(“CF”), 3)
 Sheet1.txtCF.Value = Str(varTemp)

 End If
End Sub

The calculate event may happen several times as a result of some action. The problem is that
during the intermediate stages, the calculated factors sometimes return faults that are cleared
when the process is complete. In order to prevent VBA from detecting an error we need to
check that the accessed cells do indeed contain a number (and hence not an error message)
before allowing the text boxes to be updated.

Figure 16-15: The completed user interface.

Ah, the sweet science of ergonomics! As you can see, my layout in Figure 16-15 could ben-
efit from some help, but there is no denying how versatile the combination of Excel and the
DS345 Function Generator can be in generating custom waveforms.

VBA and Excel

AAPPENDIX

333

Since it is a standard across all Microsoft Office applications (and now other applications),
VBA is obviously consistent in all those applications except in the nitty-gritty details of
how it interacts with the specific objects within the application. It was never my intention
to provide a detailed VBA description, since this book was supposed to show by “example.”
However, I feel there should be some reference point where the basics are collected in one
place. This is that place.

Where Do Macros, Procedures and Functions Get Stored?
Macros, procedures, functions, forms and so forth are stored within a workbook, although
not necessarily the workbook you are working on. There are several methods to access code
depending on your application. First, let’s consider where this code is stored in the workbook.

Figure A-1 shows some aspects of the VBA (Project) Explorer which is part of the Visual
Basic Environment. Within each workbook are a number of objects as can be seen in the
hierarchical structure. Double-clicking on the object will result in the information pertain-
ing to that object being brought into “focus.” If the object is a form, the form is displayed. If
it is some code, then the code is displayed.

The Module view buttons will change how code is displayed in the code window, showing
a procedure at a time or as one long document. An object may have different elements and
each can be selected in the drop-down Object box. The procedure within the object element
is selected from the drop-down Procedure box.

Any code is stored in a module or on a sheet. Typically, the code associated with events on
the sheet is stored there, but it is possible to enter any procedure there as well. Macros are
stored in modules. Recording a macro automatically opens a module and records it in that
module. Depending on what modules are open, their names, and what is contained in the
module, VBA may or may not open a new module. I have not found a rule as yet.

You can change the name of a module, and this is often advisable when there are going
to be two or more workbooks open. Click on the module that you want to rename. If a

334

Excel by Example

“Properties–ModuleX” window does not appear, follow View | Properties Window, or press
<F4>. Then change the name in the (name) field.

Procedures may be grouped logically in multiple modules in preparation for using the module
in other applications. Moving the procedures around can be achieved with standard cut and
paste, or drag and drop techniques.

Opening a second (or more) workbook results in the new workbook extending the tree
within the VBA Explorer, so moving modules across workbooks is pretty easy.

Using a Macro
If a macro is only applicable to a particular workbook, the macro need only reside in that
workbook so there is no further consideration required.

Figure A-1: VBA Explorer.

335

Appendix A: VBA and Excel

Open Workbooks at Startup
Any workbook in the XLStart folder is automatically opened when Excel is started, so you
can create a number of workbooks that you want to open on initialization. The Personal
Macro Workbook is only different in that it is hidden automatically.

If your Excel application is a shared application, the XLStart folder is a shared folder as well.
It is possible to add a second startup folder; first, create the folder on your drive and then in
Excel click on the sequence Tools | Options and go to the General tab (see Figure A-3).
Enter the directory in the box titled At startup, open all files in:.

Accessing a Function Across Workbook Boundaries
As can be seen in some of the applications in this book, it is possible to access a function
across workbook boundaries. The first method needs to be done once for a workbook and
is accessed from the VBA application. Go through the following menu sequence Tools |
References | Browse and then find the target workbook that contains the functions that
you want to access. If you use this approach, it is recommended that the project and the
module in the target workbook be named to some unique name. If not, an error message will

Figure A-2: Selecting storage of macro.

Personal Macro Workbook
If there are certain macros that you always want access to, saving to the Personal Macro
Workbook saves this to a hidden file called Personal.xls. This option is found in the Record
macro dialog box as shown in Figure A-2. The file is created the first time you write to it and
is saved in the XLStart folder which will be located deep in the hierarchy of the hard drive.
Mine is located at C:\Program Files\Microsoft Office\Office10\XLStart. If you want to edit
or delete a macro from the Personal Macro Workbook, you first need to unhide the workbook
using the Windows | Unhide (in Excel) sequence. The sequence is reversed to hide it again,
since it will not become invisible automatically.

336

Excel by Example

be generated. Even if you use this method, the upshot will be that the user will be prompted
to open the target workbook if not already open.

The second method requires that the target workbook be open. This can be done manually
or through code in VBA. Checking for open workbooks and opening them is discussed a
little later in this appendix.

For both approaches, in order to access the target functions, click on the cell where you want
the function to reside, select the menu sequence Insert | Function | User Defined and
select the function required from the presented menu.

I am not entirely sure why the first method exists, since in either case, any time you reopen
the principal application it will insist on the support application being open. I investigate
this in Example 10.

If a macro in another workbook is linked to a custom toolbar, when the workbook with the
toolbar is opened, the second workbook (with the macro included) is also opened.

Template
Sometimes we may want the template of a workbook, which may include all the necessary
code for the application. Once the template is opened, all association with the new workbook
is terminated so that any further changes in the new workbook do not appear in the template.
To create a template, save the worksheet in the templates folder which is normally at:

 C:\Documents and Settings\user_name\ApplicationData\Microsoft\Templates.

By clicking on File | Save as | Save as Type | Template and then entering a name (if dif-
ferent from the actual file name) and clicking on Save. Every time a new workbook is started,
the user will be given the option of using this file as a template.

Figure A-3:
Adding a
startup
folder.

337

Appendix A: VBA and Excel

If you want to modify the template that is used for the blank new workbook, it is possible to
change all or part by creating one or more of the following templates: book.xlt, sheet.xlt, chart.xlt,
dialog.xlt, or module.xlt and saving it in the XLStart folder or the alternate as described above.

Add-Ins
With some of the functions that you create, it would be ideal to have them available as a
library to use as and when necessary, exactly as with the libraries provided for Excel. This
means that the library has to be loaded first (Tools | Add-Ins), and then the procedures/
functions are available for all installation in any workbooks at any stage The advantage is
that this method adds a level of security in that the code is compiled and can be made invis-
ible and inaccessible to the user.

Step 1. Once the workbook with the desired functions is complete, it must be compiled. In
the Visual Basic Environment, click on Debug | Compile VBA Project.

Step 2. Right-click on the workbook in the Visual Base Explorer. In the dialog window (Fig-
ure A-4) add a project name. This is the name that will appear in the menu when it is added.
Click on the Protection tab and enter the required information to prevent a user from view-
ing it. Incidentally, a workbook can also be protected in this way. This is not the same as the
Tools | Protection option in the workbook.

Figure A-4: Setting workbook properties.

338

Excel by Example

Step 3. Using the menu sequence File | Save As and selecting the Microsoft Excel Add-In
(*.xla) option in the Save as type options, save this to anywhere you like.

Provided you have the password to open the add-in, it can be debugged without having to
use the original .xls file.

It should be noted that if an add-in has been added under VBA control as part of a proce-
dure, closing Excel will not close the add-in. You will need to add a procedure to do this in
the “Workbook_BeforeClose” event.

Automatic Startup
If a procedure is named Auto_Open, then it is executed when the workbook is opened. This
is not the only way of doing this. There is an event called Workbook_Activate, which obvi-
ously occurs in that circumstance. The startup procedure could be located here.

There are instances where you may want the computer on power up to go straight into Excel
and execute a particular process. You could achieve this by placing a shortcut to Excel in the
Windows startup folder, placing the desired file in the XLstart folder and then setting up the
procedure to run in the workbook_activate.

If you don’t want the “Workbook_Activate” macro to run, hold the <Shift> button down
while the workbook is starting up.

Private
Use of the word “Private” in the procedure declaration has other VBA implication as to the
visibility of variables and so forth, but it also means that the procedure cannot be seen from
the Tools | Macro | Macros. This means that an inexperienced user will not be able to
run them by accident. Some procedures are only called from other procedures. It is probably
prudent to classify them as private so that they cannot be run before the calling routine has
set up anything that is needed.

Running a Macro
Excel is an event-driven application. Any click, change of value, selection of a cell, and so
forth triggers an event. Once you have located that event within the VBA environment, any
procedure or function can be executed in that event.

In the macro dialog, it is possible to associate a macro with a “hotkey” combination as well
(see Figure A-2). Take care not to overwrite an existing key combination like <Ctrl> +
<V>.

Certain objects like buttons and menus have dedicated menu entries for adding a macro
when you right-click on them.

Finally, a macro can also be run when called from VBA (and from the debugger of course).

339

Appendix A: VBA and Excel

Finding the Stop Recording Macro Toolbar
The stop recording macro toolbar initially pops up when you record a macro. It is all too easy
to click on the X at the top of the window and it disappears forever. In order to make it reap-
pear, go through the menu sequence Tools | Customize, select the Toolbars tab and make
sure the Stop Recording selection is checked.

Actions Recorded During Macro Record
Once you have recorded and analyzed a few macros, you will realize that the feature gener-
ates a generic approach, and there may be many statements that appear in the macro that do
not change anything. You can easily delete these.

Names
In Excel, it is possible to name cells, a range of cells, an object and even a row or a column.
Using the same technique, it is possible to create constants and name a formula.

Naming Objects
To name an object (for instance, a chart), click on the object and then in the name box
enter the name. No other technique (such as Insert | Name | Define) will work in this
instance.

Naming Constants
If you want to use a constant throughout the workbook without using a cell to hold the
value, you can name a constant. For instance, if you wanted to use pF to indicate 10-9, you
could do the following:

Insert | Name | Define, which will bring up the Define Name dialog, which is filled in as
per Figure A-5. This is similar to the definition of any constant in software and it can be used
anywhere. To enter 220 pF as a value, you could enter a formula =220*pF, and the number is
immediately calculated.

Figure A-5: Naming
a constant.

340

Excel by Example

Naming Formulas
If you have a formula that is repeated several times throughout the workbook, always per-
forming the same function on some cells (either absolute or relative), it is possible to name
this formula. This is especially convenient if the formula is likely to change, since it only
needs to be changed in one place and it is updated throughout the workbook. As an exam-
ple, let’s assume that we want to calculate the power dissipated in a resistor. Initially, we are
considering DC and we have the current in cell H4, the resistance in cell I4, and we want
the power shown in cell J4. We also assume that there are several resistors in the project and
that they are all arranged in the same pattern in the cell. As we all know, the power through
the resistor is I2R. We click on cell J4 and go through the name definition as above. As the
name enter, “PowerDissipation” and in the Refers to: box enter “= H4^2*I4”.

Now if you ever need to evaluate the power dissipation for AC current, all you have to do is
edit the definition in the Define Name box, to account for the √2 factor.

Absolute and Relative Reference
Included in the Stop Recording macro toolbar is a button for absolute and relative reference
of cells. It can be toggled on and off as necessary. Careful consideration should be paid as to
what the macro is going to be used for. Let’s say you wanted to move the cursor two cells to
the right and use this as a generic approach (as we did in Example 8 by identifying the resis-
tor color bands). In the absolute mode, the movement of the cursor simply results in code
that makes a particular cell active:

 Range(“F7:F7”).Select

This makes calling a generic procedure difficult. The use of the offset method allows move-
ment of the cursor by rows and columns as in:

 ActiveCell.Offset(m,n).Range(“A1”).select

When m and n are the row and column offsets and may be negative, allowing movement in
any direction.

Normally, when using the point-and-click technique of showing Excel where you want the
data to be fetched from or sent to, the resulting formula will be recorded in absolute format.
Take care if you intend to copy this formula elsewhere. Excel is not always consistent in this
approach.

Moving Cell Selection Relative to Current Cell
While we are here, it should be noted that the activation of a cell relative to the current
selected cell can be done as above, or using the statement:

 ActiveCell.Offset(rowOffset:=m, columnOffset:=n).Activate

When m and n are the row and column offsets and may be negative.

341

Appendix A: VBA and Excel

Cell Access
Many times it is not worth the effort to change the active cell just to access it. The active
cell can be left untouched using the following techniques.

The cells may be accessed using the Range or Cells property. In most of the applications in
this book, the cell references are a combination of the column letter on row number. This
is called A1 notation. There is a setting in the Options menu (under the General tab) that
allows an alternative notation of RnCn where any cell is denoted by a combination of the
letter “R” (for Rows) and a number, and the letter “C” (for columns) and a number. The
cells property is a variation of that although the RnCn option does not have to be selected to
use the cells technique. I try to ignore the RnCn notation in this book, but occasionally the
macro learn slips something in like the FormulaR1C1 property (see later).

The range property uses the following format:

Range{“Mn”) where Mn can be a single cell in the standard letter/number format (A1 for-
mat), a range of cells formed by the top left-hand and bottom right-hand or a named range.
An example might be:

 Range(“A3:B9”).value=””

The cells approach deals with numeric values only so it is much easier to use in a loop state-
ment. For instance:

 for i=3 to 9

 cells(i,7)=’’

 end for

Sometimes, a sort of hybrid approach may be needed to define a range using the cell method,
for example:

 Range (Cells(5,6),Cells(10,12)).select

In the following example, a cell at the top left of a particular range is set to a specific value:

 Worksheets(1).Range(“F4:L10”).Cells(1,1).value=9 will result in cell F4 having a value of 9.

If this cell were in another file you would enter:

 Application.Workbooks(“Wbook.xls”).Worksheets(1).Range(“F4:L:10”),Cells(1,1).value=9

As discussed above, you can also access a cell relative to another using the offset property.
Changing the value of a cell three rows down and two across from a particular cell (without
changing the selected cell), could be written as:

 Selection.Offset(3, 2).Cells(3, 4) = 19

342

Excel by Example

The current column can be found using the column property, and similarly, the current row
from the row property. Changing the value of a cell relative to the current cell would be-
come:

 Selection.Offset(3, 2).Cells(ActiveCell.Row, ActiveCell.Column) = 19

It is possible to access the intersection of two ranges. The expression:

 Range (F9:F15 D11:H11) accesses cell F11. The space between the ranges is the intersec-
tion operator.

In order to access a number of cells simultaneously, we need to use the union operator, which
is the comma as in the following example: Range (“A6, F7, X9”)=72.

To clear a group of cells, we could use the ClearContents method. To clear the entire work-
sheet:

 ActiveSheet.Cells.ClearContents

Note that cells without the parenthesis accesses all the cells in the object. For a smaller range
your could use:

 ActiveSheet.Range(“A1:F17”).ClearContents

It is possible to persuade VBA to use the RnCn format by using the FormulaR1C1 property.
Assume the active cell is G7.

 ActiveCell.FormulaR1C1=”R[-1]C[-2]” will get the value from cell E6.

Detecting Blank Cells
In this book we have used several techniques to detect if a cell is blank. We have looked for
the length of a string (using the LEN function) to be zero. We have also checked that the
contents were equal to “”. Another technique is to use the function IsEmpty as in:

 If IsEmpty(Range”A7”) then …

Extended Range Selection
Range selection from the current cell to the last valid cell in the column can be achieved as
follows:

 Range (ActiveCell, ActiveCell.End(xlDown)).Select

The possible constants are xlDown, xlUp, xlToLeft and xlToRight.

343

Appendix A: VBA and Excel

Accessing Data off the Current Sheet
In the same workbook, preface the cell with the sheet name and an exclamation point (ex-
clamation mark, in an alternative English dialect). For example, accessing cell Y3 on a sheet
named “StandardCapacitors” would be:

 = StandardCapacitors!Y3 &”nF”

In a different workbook, this reference is prefixed by the workbook name in square brackets
similar to this:

 =[Capacitors.xls] StandardCapacitors!Y3 &”nF”

If there are spaces in the filename, then single quotation marks must begin and end the full
sheet access as in:

 =’D:\Excel Utilities\[Kemet Capacitors.xls] StandardCapacitors’!Y3 &”nF”

Provided the second workbook is open, it is possible to select the target using the standard
point-and-click techniques. Keep in mind that changes in filenames can really confuse these
settings. Updates while the files are open are normally reflected in the changes, but if there
are accesses to a reference workbook from several other places, you have been warned! As a
special caveat, keep in mind that using the File | Save As (especially as a backup procedure)
changes the filename and the references to it.

Accessing a Procedure in a Different Module
If you have two procedures of the same name in different modules, you need to add a prefix
using the module name to the procedure name, separated by a dot. Assuming Test1 exists in
module Trial1 and module Trial2, you would need to enter:

 Call Trial1.Test1

Accessing a Procedure in a Different Workbook
This can be approached in two ways. It is possible to create the connection as described in
“Accessing a function across workbook boundaries” above. Alternatively, you can do the
following:

 Call ProjectName.ModuleName.ProcedureName

Or,

 Application.Run “Filename.xls!Trial1”

Note that if the filename includes spaces, it must be included in single quote marks. The file
must be open to access the procedure.

344

Excel by Example

Recalculate
Unless the feature is turned off, Excel updates cells as necessary when the precedents to the
cell change. However, it is possible to force a recalculation in VBA as follows:

 ActiveSheet.Calculate

Screen Update
Some procedures may take some time to execute. The execution time is lengthened by
screen updates. These can be prevented by turning the updates off:

 Application.ScreenUpdating=false

and then reenabling by setting the property to true.

Exit
It is possible to force early termination of the execution of a loop or a procedure using the
Exit statement. For example:

Exit sub or

Exit for

Workbook Open, Activation
Certain actions can only be done if a workbook is open, or active or both. In order to detect
if a workbook is open, we would need to do something like this:

Function bIsWorkbookOpen(sCheckFile As String) As Boolean
 Dim WB As Workbook
 bIsWorkbookOpen = False
 For Each WB In Application.Workbooks
 If WB.Name = sCheckFile Then
 bIsWorkbookOpen = True
 Exit For
 End If
End Function

This approach will determine any open workbooks including hidden workbooks, but does
not include open add-ins. For an add-in, you have to examine whether it is open by checking
for its name explicitly.

To activate an application requires a statement of the form:

 WorkbookName.Activate

And to open a workbook, the form is:

 Workbooks.Open WorkbookName

Where WorkbookName is the name of the workbook to be opened including the path, if necessary.

345

Appendix A: VBA and Excel

Multiple Actions on an Object: With Statement
There are times when a number of actions need to be done on a single selection. For instance,
cell A23 could be set to the value 123.34, in Arial font and in bold with a font size of 12.

You could have:
ActiveSheet.Range(“A23”).Value=123.34
ActiveSheet.Range(“A23”).Font.Name=”Arial”
ActiveSheet.Range(“A23”).Font.Size=12
ActiveSheet.Range(“A23”).Font.Bold=True

It would be better to write this as:
With ActiveSheet.Range(“A23”)
 .Font.Name=”Arial”
 .Font.Size=12
 .Font.Bold=True
End With

Using an Excel Function in VBA
There are some instances where it would be convenient to use a function that exists in Excel
to save reinventing the wheel. It is possible to do this, provided that a function of the same
name does not exist in VBA. For instance, the MOD function exists in both Excel and VBA.

In order to do this, we preface the complete Excel function with “Application.Worksheet-
Function.”. For example, to find the average of a range we would enter the line of code:

 Variable=Application.WorksheetFunction.Avg(range(“c15:c25”))

Where Variable obviously receives its value from the result of the function call.

Arrays
An array in Excel is purely a range of cells. It is possible to perform actions on an array by en-
tering the formula once, and all the action is then performed on every element of the array.
Those of us familiar with matrix operations (do they still teach that in the university?) will
find this concept intuitive.

Array Formula
Let’s consider the calculation of power in a circuit based on the current flowing through a
component and the voltage across it. If Congress has not yet changed the laws of physics,
power is the product of current and voltage. If we tabulate them as in Figure A-6, we can
then create the array formula as follows: block the range C8 to G8 where the results will
appear. Enter the “=” character in the formula bar, click and drag over the range C6 to G6
(noting the appearance of the range in the formula bar). Type the “*” character, and then
click and drag the range C7 to G7. Now comes the secret to the array formula. Instead of

346

Excel by Example

hitting <Enter>, you must use the key combination <Ctrl> + <Shift> + <Enter>, and the
answer appears in all the designated cells. In the formula bar, this calculation is indicated by
the use of the curly brackets “{“ and “}”.

Figure A-6: Entering an array formula before.

An interesting aspect of the array formula is that Excel can hold the array result in memory
and perform and display a function applied to that array. Let’s change this example to calcu-
late the total power dissipation (Figure A-8). Click on the cell where the result will live, cell
D10 in this case, and type into the formula bar (using click and drag techniques if you want):

 =sum(c6:g6*c7:g7) and <Ctrl> + <Shift> + <Enter>

Figure A-7: Array formula, after <Ctrl> + <Shift> + <Enter>.

347

Appendix A: VBA and Excel

Returning an Array from a Function
A very powerful feature of VBA within Excel (and possibly unique to any programming
language), is the fact that Excel is capable of returning an array of values from a function call
and not just a single value. Remember, when entering the formula in the worksheet to use
the <Ctrl> + <Shift> + <Enter>.

Error Values
When an Excel function detects an error, it returns a description that cryptically provides a
diagnosis of the problem. Possible error descriptors are:

Figure A-8: Array formula with results stored in memory.

Error Descriptor Diagnosis
#VALUE One of the calling parameters to the function is incorrect.
#NULL There is no intersection (of course, Excel must be looking for the intersection)

of the selected ranges.
#REF Invalid cell reference (cell being accessed has been deleted).
#NAME? Cell/Range name reference error. It has been renamed or the name deleted.
#NUM A value somewhere is not what was expected. Perhaps a number outside of the

permissible range.
#NA The function is trying to access a cell where the data is invalid or not available.
#DIV/0! The path to “infinity and beyond” is blocked by this Error Message (with ac-

knowledgement to Buzz Lightyear).

If you want your function to return an error value that will comply with Excel standards so
that Excel functions act in a consistent way, you need to assign an error code to the return
value using the CVErr function. The code may look something like this:

If InputParameter<0 Then
 FunctionName=CVErr(xlErrNum)
Else
 …

348

Excel by Example

The possible constants corresponding to the Error Descriptor above are:

Error Descriptor Error Constants
#VALUE xlErrValue
#NULL xlErrNull
#REF xlErrRef
#NAME? xlErrName
#NUM xlErrNum
#NA xlErrNA
#DIV/0! xlErrDiv0

Useful Functions
Here are some useful features, just to give an indication of what is possible. Using the VBA
Help (and the See also links) will provide more detailed usage.

Dir (filename) will search for a filename (including path), returning a null string if it does not
exists.

GetAttr (PathName) will return an integer representing the attributes of a file, directory, or
folder.

ActiveWorkbook.Names is a method of accessing the named ranges of the active workbook.

ActiveWorkbook.Sheets (SheetName) is a method of detecting if there is a sheet of a particular
name in the active workbook. It returns an error if there is no sheet.

Workbooks returns all the workbooks that are open.

Workbooks(“FredNurke”).Activate will activate the named workbook.

Workbooks.Open filename:=”RTD.XLS” will open the named workbook.

The cell function is actually an Excel function, but I am not quite sure where to include it.
It packs quite a punch, enabling you to find out everything about a cell and more, including
the path of the workbook that it is found in. Have a look at the Excel Help on the subject.

Web Resources
Aside from the Microsoft Knowledge Base and the information in PC Magazine, there are
three “excel”lent web sites dedicated to Excel that I know about. Although they are more
oriented towards the mass market, there are many gems in these sites. Enjoy your digging.

1. http://j-walk.com/ss/excel/index.htm
2. http://www.mrexcel.com/articles.shtml
3. http://www.cpearson.com/excel.htm

Parallel and Serial I/O

BA P PE N D I X

349

Based on the number of packages I found that allow Excel to interface to the real world
(Table 1), there is a market for this type of application. Indeed, I have needed to do this
several times, but every time I tried it, I never really found a way to do it without having to
spend several hundred dollars. I always felt there was a way, and in researching this book,
I think I can show you how to interface to the parallel and serial ports without too much
expense. Unfortunately, this information comes right at the end of the life of the parallel and
serial ports. For some time into the future, however, engineering and scientific instrumenta-
tion are likely to have serial ports, so if your PC does not have a serial port you should be
able to interface to a serial port with a USB-to-serial port adapter. The parallel port is handy
for some low-level electronic prototyping or creating some kind of electronic circuitry that
occasionally appears in the design ideas of electronics magazines. Most of these ideas use C
to achieve the software interface between PC and prototype. The techniques used here will
work in VB as well, but because this book is about Excel, we will be using VBA.

Table B-1 details all the information I could find on the Internet about interfacing to parallel
and serial ports. Some of the information is dated, some may no longer be there by the time
this book is published, some of them may or may not work on your machine. No doubt, I
have missed many. I played with most of the freeware and some of the shareware. I also tried
Measure® from National Instruments.

There appear to be several ways of creating the software interface within VBA. It is not
always obvious to me what technique is being used in the applications listed in Table B-1.
I think all of the possible ways are as follows:

DLL: This is simply a module that you treat as external calls. The DLL file must appear in
the system or system32 subfolder of the windows folder.

Sendkeys: It is possible to send a message between applications as if the keyboard was be-
ing pressed using the Sendkeys function. See the help in a Microsoft application for this
approach.

350

Excel by Example

Product Name Manufacturer Web site Product type Price
Direct-IO Ingenieurbuero Paule www.direct-io.com DLL $29

shareware
Comm-Drv/Lib RegNow http://development.newfreeware.com/

programs/165/
DLL $99.95

IO.dll Geek Hideout http://www.geekhideout.com/iodll.shtml DLL Free
CommX Geenleaf Software http://www.greenleafsoftware.com/Com-

mX/CommXInfo1.asp
DLL $249

CommTools/ DLL Magna Carta Software http://www.sofdesign.com/developer/
commtools/dll.html

DLL $249.95

Measure National Instruments www.ni.com DLL $495
WinWedge Taltech www.taltech.com DDE/

SendKey

$259

Inpout32.dll Logix4u http://www.logix4u.cjb.net/ DLL $240
CrystalCOMM Crystal Software http://www.crystalcom.com/crs_cnt.htm DLL $200

Windmill 4.3 Windmill Software http://www.windmill.co.uk/rs232.html ? Free
Port95nt Scientific Software

Tools
http://www.driverlinx.com/

Measure Foundry Data Translation www.datatranslation.com ? $995
COMxL RS232C Lye Softlab http://www.geocities.com/lyesoft/ ? $59
MSComm32 Microsoft www.microsoft.com DLL Free?
UltimaSerial http://www.geocities.com/ultimaserial/

May not be universal
DLL $18

personal
use

Table B-1. Software resources.

DDE: Microsoft created this standard to allow handshaking between two separate applica-
tions. It is my understanding that the approach is being replaced by RTD functionality.

RTD: (Real Time Data). This functionality is intended for the acquisition of data like stock
prices, but it doesn’t take much imagination to stretch this to any data. You just need an
application to format the data. If you want to do this yourself, you will need to know about
Component Object Model (COM) automation.

Windows Component Objects: It is possible for an application (written in Visual Basic, for
example) to open Excel and modify components and objects as desired. You may want to do
this if your application needs some specialized functionality like charting, but you need the
flexibility of a separate application.

Support for lower-end software in Table B-1 is nonexistent. It is also not possible to predict
whether something will work on some particular hardware since the hardware I/O map has
changed from the original LPT and COM days. In addition, the newer operating systems like
Windows 2000 try to isolate the application from direct I/O writing. You just have to fiddle
around until you find something that works for you. The two solutions that I use in the book
probably have a greater chance of succeeding, but I can’t promise.

351

Appendix B: Parallel and Serial I/O

For parallel I/O, I am using IO.DLL available from Geek Hideout (http://www.geekhideout.
com/iodll.shtml). The author, Fred Bulback, has graciously allowed me to supply the file on
the CD. I claim no credit, nor take any responsibility for it. You can find an example using
IO.DLL (besides mine of course) from http://www.southwest.com.au/~jfuller/vb/vbout.htm.

I did try to use IO.DLL (and many others) to directly drive the serial port, but to no avail.
Perhaps this is just as well, since it would have been difficult to create an interrupt handler.

For the serial I/O I am going to use the MSComm ActiveX control that has been used in
Visual Basic.

Parallel (Printer) Port
A good source for all things to do with the parallel port is the web site associated with the
book, Parallel Port Complete, by Jan Axelson (www.lvr.com).

In order to install IO.DLL, all you have to do is locate the file on the web and download it.
The DLL file should be placed in c:\windows\system32 or c:\windows\system or similar.
The public declarations (copied directly from the web site) are described in the model in the
main body of the book.

Serial Port
In order to use the MSComm ActiveX control, you need to have the file MSComm32x.ocx
in your “system” or “system32” subfolder. However, this does not guarantee that Excel will
recognize it. I think this file comes with the Professional and Enterprise versions of Micro-
soft Office, but I can’t guarantee that. It also comes with Visual Basic in the Professional
and Enterprise versions. However, you can get it on the web as well. Try www.zaber.com
and http://www.yes-tele.com/mscomm.html. If it is not on your hard drive you must obtain
it. It is not easy to tell what does work because once MSComm has been registered on your
system, it can’t be undone. So it was impossible for me to try something else to test different
approaches.

In order to detect whether you have MSComm, first let’s investigate how to place the com-
munications control in VBA. Open Excel and go to VBA (<Alt> + <F11>). Then click on
Insert | User Form and you should see Figure B-1.

Right click on the toolbox and select Additional Controls form the menu. Scroll down and
find the control “Microsoft Communications Control” as in Figure B-2. Click on the selec-
tion box and on OK.

352

Excel by Example

A telephone icon will should appear on the toolbox. Click on it and then click on the user
form and drag a rectangle. If you see the telephone on the form, then mutter a quiet prayer of
thanks and ignore the next few paragraphs.

Figure B-1: Inserting a user form. If the Toolbox is not visible, enable it from the View
menu.

Figure B-2: Adding the
serial port control.

353

Appendix B: Parallel and Serial I/O

In all probability you will get a message that this control is not licensed. How to license it?
Well if you have Visual Basic (probably VB6) then bypass the next few attempts.

First try to register the software. Click on the Start button, then Run and type in:

 regsvr32 mscomm32.ocx

Now try to place the communications control again. Successful? I didn’t think so.

Try to download VBDEMO.ZIP from www.zaber.com. Install and run it as per Zaber’s sugges-
tion. Did it work for you? Me neither. (While you are here, download ZaberExcelVBdemo for
some examples on MSComm in Excel.)

In Microsoft VBA, click on Tools | References and Browse and find the ActiveX Con-
trol mscomm32.ocx. Does it work now? Well, it was a long shot. I tried finding out from
Microsoft, but they claim it is not an installation problem and that I should try paying to
get advice. After my experience with the User function, where I was charged $35 to find
out that nobody could give me the answers I needed, I decided to take the advice given at
http://www.yes-tele.com/mscomm.html and I gave up. Incidentally, this site has the only full
description of the MSComm control that I have found.

The only sure-fire way I have found is to install VisualBasic 6 Professional or Enterprise edi-
tions. I don’t really know what will happen with earlier or later versions of Excel vis-à-vis
the Visual Basic version since once the control is registered it stays that way, no matter what.
You can uninstall it immediately afterwards, but the registration remains. If I were you I
wouldn’t try this without consulting a lawyer, but it seems to me that you could borrow VB6,
install and then immediately uninstall it and you wouldn’t be violating the copyright.

If you want to get VB6 Professional or better, the easiest (and cheapest) way that I found is
to buy VB.NET. I can only find the standard edition listed anywhere. Microsoft will allow
you to downgrade any software you buy, so once you have VB.NET, contact Microsoft and
ask for the VB6 Professional or Enterprise CDs. Remember to ask for the MSDN library CDs
as well if you intend to use VB6 at all.

Possible Hardware Sources
USB to serial and/or parallel ports can be found at SeaLevel Systems (http://www.sealevel.
com) (Tech support there actually suggested MSComm as a potential solution), or B & B
Electronics (http://www.bb-elec.com). National Instruments and Belkin also make adapters.

References

354

In as much as any author is a product of experience and absorbed knowledge, the following
books and articles have contributed some part to the contents of this book. It is sometimes
difficult to provide a one-to-one traceability, but I am grateful to all the authors who have
shared their wisdom with the world. The books in bold have featured prominently in my
learning of Excel.

1. Do You Excel in Electronics? Circuit Cellar Online January–March 2002.
2. Microsoft Excel User’s Guide Version 5.0, Microsoft Corporation © 1992–1993.
3. Microsoft Office 2000 Visual Basic Programmer’s Guide, Microsoft Corporation © 1991–1999.
4. Using Microsoft Excel 97, Bruce Hallberg, Sherry Kinkoph, Bill Ray, et al., Que Corporation

© 1997, ISBN 0-7897-1399-3.
5. Ease Excel Input, Helen Bradley, PC Magazine, March 12, 2001.
6. Create Your Own Excel Add-In, Helen Bradley, PC Magazine, December 24, 2001.
7. Microsoft Excel Tips, PC Magazine, April 9, 2002.
8. Excel Offers Painless LCD Initialization, Alberto Ricci Bitti, Design Ideas, EDN,

September 20, 2001.
9. Tricks Improve on Excel LCD Initialization, Aubrey Kagan, Design Ideas, EDN, April 11, 2002.
10. Driving the NKK Smartswitch, Aubrey Kagan, Circuit Cellar, July/August 2002.
11. Serial Port Complete, Jan Axelson, Lakeview Research, ©1998,

ISBN 0-9650819-2-3.
12. Visual Basic Programmer’s Guide to Serial Communications, Richard Grier, Mabry Software Inc.,

©1997-8, ISBN 1-890422-25-8.
13. Microsoft Excel 2000 Power Programming with VBA, John Walkenbach, IDG Books

Worldwide Inc., ©1999, ISBN 0-7645-3263-4.
14. Excel Programming, Jinjer Simon, Wiley Publishing, ©2002, ISBN 0-7645-3646-X.
15. Writing Excel Macros with VBA, Steven Roman, O’Reilly & Associates, Inc., ©2002,

ISBN 0-596-00359-5.
16. Excel Charts, John Walkenbach, Wiley Publishing, Inc., ©2003, ISBN 0-7645-1764-3.
17. Microsoft Excel: Tips, Techniques and Shortcuts, Rockhurst University Continuing

Education Center, Inc., ©2001.
18. Advanced Microsoft Excel for the Power User, Rockhurst University Continuing

Education Center, Inc., ©2000.

355

References

19. Quick Reference Software Guide: Visual Basic 6.0, Bar Charts Inc., ©2000, ISBN 157222374-X.
20. Using Visual Basic 6, Brian Siler and Jeff Spotts, Que Corporation, ©1998, ISBN 0-7897-1542-2.
21. The Beginner’s Guide to Visual Basic 4.0, Peter Wright, Wrox Press Ltd, ©1995,

ISBN 1-874416-55-9.
22. Handle File I/O, Ron Schwarz, Visual Basic Programmers Journal, December 2000.
23. Programmer’s Guide to Microsoft Visual Basic, Programming System for Windows, Version 4.0,

Microsoft Corporation, ©1995.
24. Word97 Macro and VBA Handbook, Guy Hart-Davis, Sybex Inc., ©1997, ISBN 0-7821-1962-X.
25. Visual Basic 5 Developer’s Handbook, Evangelos Petroutsos and Kevin Hough, Sybex Inc.,

©1998, ISBN 0-7821-1985-9.
26. Visual Basic 5: Object Oriented Programming, Gene Swartzfager, The Coriolis Group, ©1997,

ISBN 1-57610-106-1.
27. Programming Microsoft Visual Basic 6.0, Francesco Balena, Microsoft Press, ©1999,

ISBN 0-7356-0558-0.
28. Visual Basic 5 Superbible, Eric Winemiller et al., The Waite Group, ©1997,

ISBN 1-57169-102-2.
29. Circuit Puts Analog Data into Excel, Clayton B. Grantham, Test and Measurement World,

September 1996.
30. Add Voice Command to Virtual Instrumentation, Alexander Bell, Design Idea, EDN,

May 30, 2002.
31. Add Voice Command to Your CAD System, Alexander Bell, Design Idea, EDN, May 2, 2002.
32. Design Low-Duty-Cycle Timer Circuits, Phil Rogers, Design Idea, EDN, August 22, 2002.
33. Voice Feedback Enhances Engineering Calculator, Alexander Bell, Design Idea, EDN,

July 11, 2002.
34. Automate Immunity Tests with Excel, Ken Hall, Test and Measurement World,

November 1, 2002.
35. Trace Voltage-Current Curves On Your PC, Clayton Grantham, Test and Measurement World,

October 11, 2001.
36. Track Multisite Temperatures On Your PC, Clayton Grantham, Design Idea, EDN,

April 18, 2002.
37. Excel 2002 For Windows, Global Reference Guides Inc., ISBN 1-55353-028-4.
38. Conditional Formatting in Excel, Neil J. Rubenking, PC Magazine, April 8. 2003.
39. Reliability Prediction Procedure for Electronic Equipment, Bellcore Technical Reference

TR-NWT-000332, September 1990.
40. An Elementary Guide to Reliability, Second Edition, G.W.A. Dummer and R.C. Winton,

Pergammon Press, ISBN 0-08-017821-9, 1974.
41. MCS-51 Macro Assembly Language Pocket Reference for DOS Systems, Intel Corporation,

122755-001, 1986.
42. Fine-Tune Your Office XP Settings, www.zdnetindia.com/help/howto/stories/24577.html,

Gregg Keizer, June 4, 2001.
43. Customize Speech Recognition Voice Commands in Office XP, Microsoft Office Assistance

Center, http://office.microsoft.com/assistance/2002/articles/
oWebCustomizeSpeechVoiceComm.aspx.

44. XL2000: Macro to Import a Text File into an Existing Worksheet, Microsoft
Knowledge Base Article 213816, http://support.microsoft.com.

356

Excel by Example

45. Managing Macros with the Visual Basic Editor, Paul Cornell, http://office.microsoft.com/
assistance/2002/articles/pwUsingTheVBE.aspx.

46. Leaded Fixed Linear Resistors, 1998/9 Data Handbook PA08b, Philips
Components.

47. RTD tables: Instrumentation.com, http://www.instrumentation.com.
48. Practical Temperature Measurements, Application Note 290, Hewlett-Packard.
49. XTR105 Data Sheet, SBOS061A- May 2003, Texas Instruments, www.ti.com.
50. LM117/LM317A/LM317 3-Terminal Adjustable Regulator Data Sheet, National Semiconductor,

May 2003, www.national.com.
51. Sil-Pad ® K-10 Data Sheet, PDS-0602-001-01; Rev 01, The Bergquist Company,

www.bergquistcompany.com.
52. Electrical Engineering Science, Preston R. Clement & Walter C. Johnson, McGraw-Hill Book

Company, Inc. Library of Congress Catalog Card Number 59-15457, 1960.
53. TL431, TL431A Adjustable Precision Shunt Regulators Data Sheet, Texas Instruments,

SLVS005U, July 1978, revised July 2003, www.ti.com.
54. www.frontsys.com, Frontline Systems, Inc. (Creator of Solver.)
55. Quattro Pro 10 Help File, Corel Corporation 2001, www.corel.com.
56. The 555 Timer © 119, 2000-2002 Ken Bigelow, http://www.play-hookey.com.
57. LM555 timer datasheet, February 2000, National Semiconductor Corporation,

www.national.com.
58. AN170 NE555 and NE556 Applications, December 1998, Philips

Semiconductors.
59. ICM7555, ICM7556 Data Sheet, November 2002, Intersil, www.intersil.com.
60. ICM7555/7556 data Sheet, November 1992, Maxim, www.maxim-ic.com.

TLC555 LinCMOS Timer, September 1983, revised March 2001, Texas Instruments,
www.ti.com.

62. MC1455, MC1455B, NCV1455B Timers Data Sheet, January 2003, ON Semiconductor,
http://onsemi.com.

63. LM555/NE555/SA555 Single Timer, 2002, Fairchild Semiconductor Coporation,
www.fairchildsemi.com.

64. Combo Boxes in Excel, Neil J. Rubenking, PC magazine, Aug 19, 2003
65. Implement a Nine-Data-Bit UART on a PC, Aubrey Kagan, Design Idea, EDN June 4, 1998.
66. Microsoft Visual Basic 4.0 Developer’s Workshop, John Clark Craig, Microsoft Press 1996,

ISBN 1-55615-664-2
67. Absolute and Relative References in Excel, PC Magazine, October 14, 2003, Neil J. Rubenking.
68. AD736 Data Sheet, Rev E, Analog Devices.
69. AD637 Data Sheet, Rev E Analog Devices.
70. RMS-to-DC Application Guide, Second Edition, Analog Devices.
71. Entering Nonstandard Characters, PC Magazine, August 19, 2003, Neil J. Rubenking.

About the Author

357

Born and raised in what is now Zimbabwe, Aubrey Kagan gained an electrical engineering
degree in Israel and an M.B.A. in South Africa. He has lived in Toronto, Canada for the past
15 years where he is a licensed professional engineer. His 25 years of experience in South
Africa and Canada encompass the use of electronics in industrial and mining applications,
although for a brief stint he worked on the requirements for the Canadian built robotic arm
now installed on the International Space Station.

He has had four design ideas and six articles published in technical and professional magazines.
Two of these were the seeds for this book.

Index

Numbers
4–20 mA current loop, 143
555 timer, 206
7-segment digit, 260
8051 microcomputer, 86
8052 microcomputer register setup, 86

spreadsheet, 86

A
absolute and relative reference, 340
absolute reference, 10, 13
accessing a function across workbook

boundaries, 335
accessing a procedure in a different

module, 343
accessing a procedure in a different

workbook, 343
accessing cells on a worksheet from

VBA, 249
accessing data off the current sheet, 343
access worksheet cells from a macro/

procedure, 78, 82
actions recorded during macro record,

339
activecell.value, 78, 82
add-in, 163, 168, 190, 200, 337

creation of, 158
installing the NearestValues add-in,

158, 168
NearestValues add-in, 190

adding columns/rows, 9
adding sound, 292
adding VBA controls, 305

ActiveX, 305
control toolbox, 305
frequency, 309
granularity, 305

additional controls, 245
add a chart, 319

chart wizard, 319
OFFSET, 320

scatter with data points connected
by lines
without markers, 319

SERIES, 321
show legend, 319
XY (scatter), 319

add image, 108
placing the image on a form, 108

adjustable voltage reference, 190
adjustable voltage regulator, 118
adjust column width, 5
Agilent, 240
ambient temperature, 46
ampersand, 65
amplitude, 331
analog meter, 260
analog meter chart, 260
Analysis ToolPak, xvi, 294
application.goto, 78, 82
Application.Quit, 237
Application.ScreenUpdating, 222
Application.WindowState, 235
Application.WorksheetFunction, 221
area under the curve, 185
arrays, 345
array formula, 295, 345
Astable, 223
astable multivibrator, 206
auditing formulas, 65
autofill, 5, 118

autofill of nonnumeric sequences, 7
dates, 7
days, 7
fill handle, 5
green triangle, 119
text entries, 7

autofilter, 280
automatic startup, 338
average voltage, 330

359

B
B&B Electronics, 240
baud, 241
baud rate selection, 26
Bellcore, 42
bell shape, 300
bill of material, 44

device failure rate, 45, 46
device quality factor, 45
electrical stress curve, 45, 46
initial setup, 47

actual electrical stress, 48
temp. above ambient, 48

maximum electrical stress, 45
temperature stress, 46
temperature stress curve, 45

bitwise AND, 260
bit manipulation, 323
blank workbook, 2
block conditional formatting, 125
borders, 15
bulk formatting, 5

decimal places, 7
format cells, 7
number, 7
row selection, 5

bump frequency, 313

C
cable pinout, 282
Caliper interface, 283

interconnection, 283
user electronics, 283

Caliper timing diagram, 283
Callendar-Van Dusen equation, 143
capacitance, 181
capacitor, 181
cells notation, 78
cell access, 341

360

Excel by Example

cell format, 12
alignment, 12
format cells, 12
shrink to fit, 12
text control, 12

cell formatting, 28
cell names, 13

absolute reference, 13
GoTo box, 13
rules for naming cells, 13

cell protection, 77
Centronics printer interface, 284
change in time, 181
change in voltage, 181
change the name of a module, 333
change worksheets, 272
CHAR, 81
character generator, 69
charts, 17, 186

adding a chart, 17
adding effects, 17
adding new curve to the chart, 188
creating a chart, 186
selecting a chart type, 18

charts and hidden data, 188
CHOOSE, 96, 177
closed port, 257
code, 333
coefficient, 143
column is too narrow, 8, 75
column width, 8

#####, 8
too narrow, 8, 75

combo boxex, 71, 72, 95, 96, 213
combo box control, 307
command button, 78, 216
command buttons, 292
comma delimited, 44
comma delimited files, 45

.csv filetype, 45
delimiter, 45

comments, 46, 75
adding, 75
deleting, 75
editing, 75
insert comment, 46
viewing all comments

simultaneously, 75
CommEvent, 251
communicating custom lists between

different computers, 119
communications mode, 253
composite IF, 74
CONCATENATE function, 64, 92, 96,

260, 309
conditionally formatted, 225
conditional formatting, 33, 98
conditional IF and absolute value, 17

ABS, 17
IF, 17

continuously updating chart, 271

controls in Excel, 305
control toolbox, 305
data validate, 305
form control, 305
VBA Form, 305

control register, 285
control toolbox, 218
CONVERT, 154

convert measurements, 154
convert formula to value, 65
convert from a formula to text, 68
convert to a numeric value, 260
copying with and without format, 6

edit, 6
options, 6
tools, 6

copy a control, 176
COUNTA function, 275
COUNTBLANK function, 275
counting types, 97

conditional formatting, 98
option buttons, 97

COUNT function, 275
create a dynamically changing chart,

319
create a frame, 28
crest factor (CF), 331
current, 181
current through the device, 176
cursor movement on Enter, 4

edit, 4
options, 4
tools, 4

custom toolbar, 134
custom toolbar limitation, 257

D
data entry into a worksheet, 3

format, 3
formula, 3
string, 3
string manipulation, 3
text justification, 3

left justified, 3
right justified, 3

data entry termination, 4
direction arrows, 4
enter key, 4
tab key, 4

data plot, 271
timer, 271
Worksheets.Range.Cells, 271

data register, 285
data tables, 119, 120

list of values, 119
single dimension, 119

list of values, 119
single parameter data table, 119
two-dimensional data table, 119

data tables
autofill, 120

formula bar, 120
DCE, 253
DCOUNTA function, 275
DCOUNT function, 275
DDE, 350
DEC2HEX, 64, 91, 96
decimal point, 260
definition of linearity, 12
deleting columns/rows/cells, 10
delimiters, 58
descendents of cells, 98
detecting blank cells, 342
device failure rate, 52
device quality factor, 52
digital multimeter, 240
DLL, 349
DMM toolbar, 255
do/loop while loop, 289
DoEvents, 251, 286
dot matrix displays, 69
double-click macro, 76

BeforeDoubleClick, 76
shading a cell with a macro, 76
view code, 76
Visual Basic Editor, 76
worksheet, 76

download waveform, 322
And, 323
cells, 323
comInputModeBinary, 323
comInputModeText, 323
InputLen, 323
MsComm.Input, 323
MsComm.InputMode, 323
MsComm.Output, 323
Worksheet.Range.Cells, 323

drop-down control, 71
DS345, 301
DTE, 253
DTR, 241

E
editing data in a cell, 4

click in the cell, 4
click in the formula bar, 4
double-click, 4
truncation of the text, 4

electrical stress factor, 50, 52
else, 237
error bars, 20

Y error bars, 20
error handling procedure for in cell

validation, 214
error values, 347

CVErr function, 347
DIV/O!, 347
NA, 347
NAME?, 347
NULL, 347
NUM, 347
REF, 347

361

Index

return an error value, 347
VALUE, 347

event actions, 236
Application.Quit, 237
Else, 237
For, 237
general declarations, 238
IF, 237
illegal inputs, 238
isNumeric, 237
Me.Hide, 237
Next, 237
public variables, 238
Range.Value, 237
Round, 237

Excel, using special characters, 42
Excel warning detection, 99

green triangle, 99
exclamation point, 49
Exit statement, 289, 344
exponent, 331
exponent symbol, 112
exporting a toolbar, 136
extended range selection, 342
extracting op-code, 62

F
factors, 42

device quality factor, 43
electrical stress factors, 43
environmental condition factor, 46
environmental factors, 44
quality factor, 49
temperature factors, 44
VLOOKUP, 43

Fairchild GMA2875, 69
Fast Fourier Transforms, 316
fill, 319
FOR, 222
For, 237
force recalculation, 65
format cells, 4

alignment, 4
text control, 4
wrap text, 4

forms, 106, 333
adding a user form, 107

forms control, 87, 71, 72, 292
unprotecting the output from forms

controls, 95
forms folder, 235
formulas, 8

copying formulas, 9
copy and paste, 9
formula bar, 8

formula auditing, 66
Fourier analysis, 316
Fourier transform, 316
frequency distribution, 294
frequency distribution histogram, 294
Frequency distribution output, 295

FREQUENCY function, 295, 296
Frontline Systems, 205
function

accessing a function, 150
adding a help description to a func-

tion, 152
creating a function, 149
creating the model in Excel, 152
LookupStandardResB, 155
NearestPot, 155
NearestValueA, 155
NearestValueB, 155
view formalas, 153

functions, 333
function generator, 301

G
geek hideout, 284
generating frequency tables, 315

cells, 317
If, 317
Mid, 317
Range, 317
Range.Cells, 317
Round, 317
Sin, 317
using VGA to enter a formula into a

cell, 317
Worksheets.Activate, 319

goal seek, 170, 182, 183, 191
GoTo, 289
GPIB interface, 240

H
half-wave rectification, 179
half-wave rectifier, 181
handshaking, 241
hardware interface, 281
heat sink, 174, 176
height of rows, 4

columns, 4
height, 4
rows, 4
size the column, 4
width, 4

hex2dec, 62
hexadecimal, 28

autofill, 29
concatenate, 29
dec2hex, 29
hexadecimal conversion, 29
scientific notation, 30

hexadecimal numbers, 62
hiding cells, 15

hide, 15
unhide, 15

Hitachi, 69

I
IF, 67, 71, 74, 91, 100, 222, 237
IF ABS, 32

image control, 208
in-cell validation, 215
INDEX function, 49, 52, 124, 148, 150,

184
INDIRECT function, 115
initialize values, 116
initializing the serial port, 248
In Parenthesis Sidebars

Adding Columns/Rows, 9
Additional Controls, 245
Autofill of Nonnumeric Sequences, 7
Calling an Excel Function from

VBA, 221
Cell Names, 13
Cell Protection, 77
Cells Notation Versus String

Manipulation, 78
CHOOSE, 177
Combo Box Control, 307
Comma Delimited Files, 45
Comments, 46
Communicating Custom Lists Between

Different Computers, 119
Conditional Formatting, 34
Control Toolbox, 218
Controls in Excel, 305
CONVERT, 154
Copying With and Without Format,

6
COUNTA/COUNT/DCOUNT/

DCOUNTA/COUNTBLANK,
275

Custom Toolbar Limitation, 257
Data Tables, 119
Deleting Columns/Rows/Cells, 10
DoEvents, 251
Excel Warning Detection, 99
Exporting a Toolbar, 136
Fill, 319
Forms Control, 87
Forms Controls in a Different Version

of Excel, 72
Fourier Analysis, 316
FREQUENCY, 296
INDEX, 49, 124
InputBox, 162
Installing Speech Recognition, 129
Lookup, 31
MATCH, 123
Merge Cells, 28
MessageBox, 163
More on Combo Boxes, 213
MSComm Properties, 246
Multiple Selections, 8
Multiple Worksheets, 42
NORMDIST, 297
Number Base Conversion, 29
OFFSET, 275
OnComm Event, 252
Recalculation and Auditing

Formulas, 65

362

Excel by Example

ROUND, 101
SERIES Function, 276
Solver Options, 197
SolverSolve Function, 221
Speech Recognition, 129
Split Screen, 30
String Functions, 309
Table Functions, 51
Timer, 250
Transposing Data, 121
Use of Constraints, 198
VBA and Bit Manipulation, 323
Worksheet Navigation, 14
Zoom, 20

InputBox function, 162, 171
insert picture, 28
installing the NearestValues add-In,

190
integer arithmetic, 323
interrupt control sheet, 113
IO.DLL, 284
isNumeric, 237

L
Labview, 260
language bar, 129
LEFT function, 62
LEN, 71
linear displacement, 281
list box, 87
list data, 215
LM317, 167, 176
logical, 260
lookup, 31

FALSE, 31
HLOOKUP, 31
lookup_value, 31
range_lookup, 31
row_index_num, 31
table_array, 31
TRUE, 31
VLOOKUP, 31

lookup tables, 28, 30, 58
lookup table of failure rates, 45

LP2951, 118
LSB, 284

M
machine cycles, 58
macro, 22, 35, 130, 199, 333

adding, 199
ActiveCell.Column, 142
ActiveCell.Formula, 132
ActiveCell.FormulaR1C1, 132, 137
ActiveCell.Offset, 132, 133, 137
ActiveCell.Row, 142
active cell in macros, 38
as integer, 38
backup macro, 133
change active cell, 132, 133, 137
change background color, 132, 133, 137

color palette, 133
conditional IF, 38
dim, 38
EndIf, 137
ExitFor, 137
find the active cell location within a

procedure, 142
for statement, 38
If, 137
macro learn feature, 35
new procedure, 38
Range.Select, 132, 133, 137
range selection in macros, 38
record new macro, 36
running a macro, 25
Selection.Clearcontents, 132, 133
selection.clearcontents, 137
setting up, 25
Visual Basic for Applications (VBA),

35
macros to hide and unhide, 102

macro toolbar, 102
MATCH function, 123, 184
MAX, 331
maximum ambient temperature, 176
MDETERM (matrix determinant), 122
Me.Hide, 237
mean time between failures (MTBF), 41

Bellcore, 42
environment factor, 42
generic failure rate, 41
quality factor, 41
reliability, 41
steady-state failure rate, 41
stress factor, 41
temperature factor, 41

merge cells, 28
MessageBox function, 163
microcontrollers, 26
MINVERSE (inverse matrix), 122
Min function, 123
Mitutoyo Corporation, 281
MMULT (product of two arrays), 122
mode combo box, 111

modify text in combo box, 111
module, 333
module view, 333
MOD function, 150, 279
monostable mulitivibrator, 206
monostable operation, 206
monostable pulse width entry, 214
moving cell selection relative to current

cell, 340
MSComm, 303
MSComm32, 243
MSCOMM driver, 240
MSComm Properties, 246

CommEvent, 248
CommPort, 246
DTREnable, 247

Handshaking, 247
InBufferCount, 247
Input, 248
InputLen, 247
InputMode, 248
Output, 248
PortOpen, 246
RThreshold, 247
RTSEnable, 248
Settings, 247
SThreshold, 248

MTBF, 53
multidrop network, 240
multiple instruments, 240
multiple selections, 8
multiple serial ports, 240
multiple worksheets, 42

change the color of the tab, 42
change the name of the worksheet,

42
insert or delete a tab, 42
move a worksheet tab, 42
reordering or copying tabs, 42
template, 42
worksheets, 42

N
named cell, 185
naming cells, 12

absolute reference, 12
name box, 12
remove a name, 12

naming constants, 339
naming formulas, 340
naming objects, 339
NearestResistorB function, 170, 199
NearestValues add-in, 168
nested IFs, 67

CHOOSE function, 67
IFs, 67

new worksheet, 184
Next, 237
nibble, 284
NKK Smartswitch, 69
normal distribution, 296
NORMDIST, 297
null modem cable, 253
number base conversion, 29

bin2dec, 29
bin2hex, 29
bin2oct, 29
dec2bin, 29
dec2hex, 29
dec2oct, 29
hex2bin, 29
hex2dec, 29
hex2oct, 29
oct2bin, 29
oct2dec, 29
oct2hex, 29

363

Index

O
object, 333
object box, 333
OFFSET, 279, 331
OFFSET function, 275
OnComm event, 251, 252, 254

comEvCD, 252
comEvCTS, 252
comEvDSR, 252
comEventBreak, 252
comEventDCB, 252
comEventFrame, 252
comEventOverrun, 252
comEventRxOver, 252
comEventRxParity, 252
comEventTxOver, 252
comEvEOF, 252
comEvReceive, 252
comEvRing, 252
comEvSend, 252

open port, 257
open workbooks at startup, 335

P
parallel (printer) port, 351
parallel i/o, 349
parity, 241
parts & vendors, 44, 45
PC interfaces, 281
PC parallel port, 281, 284

control panel, 285
device manager, 285
system properties, 285

personal macro workbook, 335
pinout, 282
pixels, 69
platinum wire, 143
PortIn, 286
PortOpen, 253, 258
PortOut, 286
power dissipation, 176
POWER function, 112
precedents of cells, 98
printer port base addresses, 285
printout, 162
print macro, 231
private, 338
procedures, 333
procedure box, 333
programmable system-on-chip (PSoC), 26

baud rate generator, 26
overflow, 26
prescalers, 26

pulse width modulation (PWM), 301
purchase order generator, 229

create, 229
running PurchaseOrder, 239

Q
quality factor, 49
quality level, 46

R
Radio Shack, 240
Range.Value, 78, 82, 104, 237
ratio of two resistors, 118
recalculation, 65, 344
recalculation inhibit, 65
record macro, 130
relative and absolute references, 10

absolute reference, 10
prefix “$”, 10

copy and paste, 10
relative reference, 10

report generation, 202
answer report, 202
Legrange multipliers, 202
reduced gradient, 202
sensitivity, 202
slack, 202

resistance temperature detector (RTD),
143

resistor color code decoder, 127
RMS value, 331
RMS voltage, 181, 330
ROUND, 101, 237
RS-232 interface, 240, 253, 281, 301
RS-485, 240
RTD, 350
RTD tables, 144
RThreshold, 253
RTS, 241
running a macro, 338
running macros when the workbook is

started, 163
Workbooks.Activate, 165
workbook startup event, 163

S
save to data file, 81
scenario, 54

add scenarios, 56
changing cells, 54, 55
collapse button, 56
expand button, 54
named scenario, 57
name the scenario, 55
scenario manager, 54

screen update, 344
scroll bar, 87, 89
select case, 259
sendkeys, 349
serial I/O, 349
serial interface, 302

*RST, 302
ASCII, 302
baud rate, 302
binary, 302
carriage return, 302
custom waveforms, 302
data bits, 302
DB25, 302
DB9, 302

FSMP, 302
FUNC, 302
line feed, 302
LWDF, 302
RS-232 interface connector, 302
serial protocol, 302
stop bits, 302

serial interface, 241
serial port, 250, 351
serial port expander, 240
serial port sheet, 113
SERIES function, 276
SetFocus, 235
setting the amplitude, 326

Range, 326
Str, 326
Value, 326
Worksheets.Range, 326

shading a cell with a macro, 76
sheet, 333

sheet name explicitly included, 272
sheet reference, 185

show, 235
sine wave, 180
single-byte reception, 250
skew, 327

controls are made invisible, 327
Round, 327
square wave, 330
toggle button, 327
Value, 327
Visible, 327
Worksheet.Activate, 327
Worksheets.Range.Cells, 327

smoothing capacitor, 181
solver, 191, 192, 219, 221
SolverOK, 219, 222
SolverSolve, 219, 220, 221, 222
SolverSolve function, 221
solver options, 197
solver parameters, 195
special characters in Excel, 42
speech input, 127
speech recognition, 129

adding speech, 137
building a custom toolbar, 129
command mode, 129
create voice commands, 129
dictation, 129
implementing speech recognition,

129
installing speech recognition, 129
voice command, 137

spinner, 88
split screen, 30

freeze, 30
horizontal split, 30
lock a pane, 30
remove, 30
split, 30
unfreezing, 30

364

Excel by Example

unsplitting, 30
square root, 185
standard capacitance value, 184
standard capacitor values, 221
standard resistor values, 155, 199
standard values, 220
Stanford Research Systems, 301
starting Excel

blank workbook, 2
chart wizard, 3
column select button, 3
formatting controls, 3
formula bar, 3
name box, 3
new file button, 3
row select button, 3
sheet selection tab, 3

files, 2
new, 2
open, 2
options, 2
startup task pane, 2
tools, 2
view, 2
workbook, 2
worksheets, 2

statistical analysis, 294
status register, 285
steady state failure rate, 52

total steady-state failure rate, 52
stop bit, 241
stop recording macro toolbar, 339
straight through cable, 253
string functions, 309

InStr, 309
InStrRev, 309
StrComp, 309

string manipulation, 78
SUM, 52, 331

T
table functions, 51

ADDRESS, 51
CHOOSE, 51
COLUMN, 51
COLUMNS, 51
HLOOKUP, 51
INDEX, 51
INDIRECT, 51
LOOKUP, 51
MATCH, 51
OFFSET, 51
ROW, 51
ROWS, 51
TRANSPOSE, 51
VLOOKUP, 51

table header, 28
temperature stress curve, 52

temperature stress factor, 52
template, 336
Texas Instruments/Burr-Brown, 143
text file, 58
text import wizard, 59
text orientation, 75
text to speech, 141
thermal analysis, 173
thermal conductivity, 176
timer, 100

cannot access a cell on a different
worksheet, 101

conditionally formatted, 100
timer, 249
timer/counter 1 sheet, 111
timer/counter 2 sheet, 112
timer function, 250
timer macro, 22

creating, 22
VtoI.xls, 25

timing relationship, 284
TL431, 190
TO-220, 176
toggle grid, 92, 93
trace error, 66
TRANSPOSE function, 120
transposing data, 121
trapezium, 330
trapezoid, 185
trendline, 21

add trendline, 21
display equation on chart, 22
equation, 22
linear regression, 21

turning forms on (and off), 210
type conversion functions, 323

U
universal asynchronous receiver/trans-

mitter (UART), 26
baud rate, 26
tolerance, 26

USB-to-serial port adapters, 240
user form, 207, 233

create, 233
modal, 234
modeless, 234

use of constraints, 198
using an Excel function in VBA, 345
using a macro, 334

V
VALUE, 98
VBA, 200
VBA (Project) Explorer, 333
VBA and Bit Manipulation, 323
VBA and Excel, 333
VBA editor, 200

VBA Explorer, 235
venerable 4 to 20 mA current loop, 1
Vernier Caliper interface, 281
Visual Basic Editor, 76, 106
Visual Basic for Applications (VBA),

35
VLOOKUP, 50, 52, 53, 67

apostrophe, 53
FALSE, 53
MTBF, 53
turning the formulas into text, 53

vlookup, 184
voltage-to-current converter, 1
voltage regulator, 167

W
waveform sampling frequency, 311

MsComm.Output, 312
Range, 312
Round, 312
Val, 312
vbYes, 312
Worksheets.Range, 312

while/wend loop, 289
while statement, 288
width of columns, 4

columns, 4
height, 4
rows, 4
size the column, 4
width, 4

windows component objects, 350
windows metafile (.wmf), 106
With statement, 345
workbook, 2

comInputModeText, 303
CommPort, 303
DTREnable, 303
InputMode, 303
MSComm.PortOpen, 303
output, 303
RTSEnable, 303
Settings, 303
workbook open, 304
workbook open, activation, 344
workbook open and close, 302

workbook startup event, 163
worksheets, 2
worksheet navigation, 14, 16
worst case analysis, 172

X
x1ErrValue, 156

Z
zone identification, 267
zoom, 20

ELSEVIER SCIENCE CD-ROM LICENSE AGREEMENT
PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY BEFORE USING THIS CD-ROM PRODUCT. THIS
CD-ROM PRODUCT IS LICENSED UNDER THE TERMS CONTAINED IN THIS CD-ROM LICENSE AGREE-
MENT (“Agreement”). BY USING THIS CD-ROM PRODUCT, YOU, AN INDIVIDUAL OR ENTITY INCLUDING
EMPLOYEES, AGENTS AND REPRESENTATIVES (“You” or “Your”), ACKNOWLEDGE THAT YOU HAVE READ
THIS AGREEMENT, THAT YOU UNDERSTAND IT, AND THAT YOU AGREE TO BE BOUND BY THE TERMS
AND CONDITIONS OF THIS AGREEMENT. ELSEVIER SCIENCE INC. (“Elsevier Science”) EXPRESSLY DOES NOT
AGREE TO LICENSE THIS CD-ROM PRODUCT TO YOU UNLESS YOU ASSENT TO THIS AGREEMENT. IF YOU
DO NOT AGREE WITH ANY OF THE FOLLOWING TERMS, YOU MAY, WITHIN THIRTY (30) DAYS AFTER YOUR
RECEIPT OF THIS CD-ROM PRODUCT RETURN THE UNUSED CD-ROM PRODUCT AND ALL ACCOMPANY-
ING DOCUMENTATION TO ELSEVIER SCIENCE FOR A FULL REFUND.

DEFINITIONS
As used in this Agreement, these terms shall have the following meanings:

“Proprietary Material” means the valuable and proprietary information content of this CD-ROM Product including all indexes
and graphic materials and software used to access, index, search and retrieve the information content from this CD-ROM
Product developed or licensed by Elsevier Science and/or its affiliates, suppliers and licensors.

“CD-ROM Product” means the copy of the Proprietary Material and any other material delivered on CD-ROM and any other
human-readable or machine-readable materials enclosed with this Agreement, including without limitation documentation
relating to the same.

OWNERSHIP
This CD-ROM Product has been supplied by and is proprietary to Elsevier Science and/or its affiliates, suppliers and licen-
sors. The copyright in the CD-ROM Product belongs to Elsevier Science and/or its affiliates, suppliers and licensors and is
protected by the national and state copyright, trademark, trade secret and other intellectual property laws of the United
States and international treaty provisions, including without limitation the Universal Copyright Convention and the Berne
Copyright Convention. You have no ownership rights in this CD-ROM Product. Except as expressly set forth herein, no part
of this CD-ROM Product, including without limitation the Proprietary Material, may be modified, copied or distributed in
hardcopy or machine-readable form without prior written consent from Elsevier Science. All rights not expressly granted to
You herein are expressly reserved. Any other use of this CD-ROM Product by any person or entity is strictly prohibited and
a violation of this Agreement.

SCOPE OF RIGHTS LICENSED (PERMITTED USES)

Elsevier Science is granting to You a limited, non-exclusive, non-transferable license to use this CD-ROM Product in ac-
cordance with the terms of this Agreement. You may use or provide access to this CD-ROM Product on a single computer or
terminal physically located at Your premises and in a secure network or move this CD-ROM Product to and use it on another
single computer or terminal at the same location for personal use only, but under no circumstances may You use or provide
access to any part or parts of this CD-ROM Product on more than one computer or terminal simultaneously.

You shall not (a) copy, download, or otherwise reproduce the CD-ROM Product in any medium, including, without limitation,
online transmissions, local area networks, wide area networks, intranets, extranets and the Internet, or in any way, in whole
or in part, except that You may print or download limited portions of the Proprietary Material that are the results of discrete
searches; (b) alter, modify, or adapt the CD-ROM Product, including but not limited to decompiling, disassembling, reverse
engineering, or creating derivative works, without the prior written approval of Elsevier Science; (c) sell, license or otherwise
distribute to third parties the CD-ROM Product or any part or parts thereof; or (d) alter, remove, obscure or obstruct the
display of any copyright, trademark or other proprietary notice on or in the CD-ROM Product or on any printout or download
of portions of the Proprietary Materials.

RESTRICTIONS ON TRANSFER
This License is personal to You, and neither Your rights hereunder nor the tangible embodiments of this CD-ROM Product,
including without limitation the Proprietary Material, may be sold, assigned, transferred or sub-licensed to any other person,
including without limitation by operation of law, without the prior written consent of Elsevier Science. Any purported sale,
assignment, transfer or sublicense without the prior written consent of Elsevier Science will be void and will automatically
terminate the License granted hereunder.

TERM
This Agreement will remain in effect until terminated pursuant to the terms of this Agreement. You may terminate this
Agreement at any time by removing from Your system and destroying the CD-ROM Product. Unauthorized copying of the
CD-ROM Product, including without limitation, the Proprietary Material and documentation, or otherwise failing to comply
with the terms and conditions of this Agreement shall result in automatic termination of this license and will make available
to Elsevier Science legal remedies. Upon termination of this Agreement, the license granted herein will terminate and You
must immediately destroy the CD-ROM Product and accompanying documentation. All provisions relating to proprietary
rights shall survive termination of this Agreement.

LIMITED WARRANTY AND LIMITATION OF LIABILITY
NEITHER ELSEVIER SCIENCE NOR ITS LICENSORS REPRESENT OR WARRANT THAT THE INFORMATION
CONTAINED IN THE PROPRIETARY MATERIALS IS COMPLETE OR FREE FROM ERROR, AND NEITHER AS-
SUMES, AND BOTH EXPRESSLY DISCLAIM, ANY LIABILITY TO ANY PERSON FOR ANY LOSS OR DAMAGE
CAUSED BY ERRORS OR OMISSIONS IN THE PROPRIETARY MATERIAL, WHETHER SUCH ERRORS OR OMIS-
SIONS RESULT FROM NEGLIGENCE, ACCIDENT, OR ANY OTHER CAUSE. IN ADDITION, NEITHER ELSEVIER
SCIENCE NOR ITS LICENSORS MAKE ANY REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, REGARDING THE PERFORMANCE OF YOUR NETWORK OR COMPUTER SYSTEM WHEN USED IN
CONJUNCTION WITH THE CD-ROM PRODUCT.

If this CD-ROM Product is defective, Elsevier Science will replace it at no charge if the defective CD-ROM Product is returned
to Elsevier Science within sixty (60) days (or the greatest period allowable by applicable law) from the date of shipment.

Elsevier Science warrants that the software embodied in this CD-ROM Product will perform in substantial compliance with
the documentation supplied in this CD-ROM Product. If You report significant defect in performance in writing to Elsevier
Science, and Elsevier Science is not able to correct same within sixty (60) days after its receipt of Your notification, You may
return this CD-ROM Product, including all copies and documentation, to Elsevier Science and Elsevier Science will refund
Your money.

YOU UNDERSTAND THAT, EXCEPT FOR THE 60-DAY LIMITED WARRANTY RECITED ABOVE, ELSEVIER
SCIENCE, ITS AFFILIATES, LICENSORS, SUPPLIERS AND AGENTS, MAKE NO WARRANTIES, EXPRESSED
OR IMPLIED, WITH RESPECT TO THE CD-ROM PRODUCT, INCLUDING, WITHOUT LIMITATION THE
PROPRIETARY MATERIAL, AN SPECIFICALLY DISCLAIM ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.
If the information provided on this CD-ROM contains medical or health sciences information, it is intended for professional
use within the medical field. Information about medical treatment or drug dosages is intended strictly for professional use, and
because of rapid advances in the medical sciences, independent verification f diagnosis and drug dosages should be made.

IN NO EVENT WILL ELSEVIER SCIENCE, ITS AFFILIATES, LICENSORS, SUPPLIERS OR AGENTS, BE LIABLE TO
YOU FOR ANY DAMAGES, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, LOST SAVINGS OR
OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF YOUR USE OR INABILITY TO USE
THE CD-ROM PRODUCT REGARDLESS OF WHETHER SUCH DAMAGES ARE FORESEEABLE OR WHETHER
SUCH DAMAGES ARE DEEMED TO RESULT FROM THE FAILURE OR INADEQUACY OF ANY EXCLUSIVE OR
OTHER REMEDY.

U.S. GOVERNMENT RESTRICTED RIGHTS
The CD-ROM Product and documentation are provided with restricted rights. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Commercial Computer Restricted
Rights clause at FAR 52.22719 or in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.2277013, or at 252.2117015, as applicable. Contractor/Manufacturer is Elsevier Science Inc., 655 Avenue of
the Americas, New York, NY 10010-5107 USA.

GOVERNING LAW
This Agreement shall be governed by the laws of the State of New York, USA. In any dispute arising out of this Agreement,
you and Elsevier Science each consent to the exclusive personal jurisdiction and venue in the state and federal courts within
New York County, New York, USA.

	Cover
	Frontmatter
	Half Title Page
	Title Page
	Copyright
	Dedication Page
	Contents
	Acknowlegments
	Introduction
	Rules of Engagement
	What’s on the CD-ROM?

	1. Voltage-to-Current Converter
	Model Description
	Starting Excel
	Data Entry into a Worksheet
	Autofill
	Bulk Formatting
	Formulas
	Copying Formulas
	Relative and Absolute References
	Naming Cells
	Hiding Cells
	Borders
	Bells and Whistles
	Conditional IF and Absolute Value
	Chart
	Error Bars
	Adding a Trendline
	Macro: Timer

	2. Baud Rate Selection
	Model Description
	Setup Workbook
	Hexadecimal
	Lookup Tables
	Conditional Formatting
	Macro

	3. Mean Time Between Failures (MTBF)
	Model Description
	Factors
	Bill of Material
	Calculating the Quality Factor
	Calculate Electrical Stress Factor
	Calculation of λG
	Scenario

	4. Counting Machine Cycles
	Model Description
	Importing the File
	Extracting Op-code
	Opening a Second Workbook
	Cross Workbook Reference
	Easing the Pain of Nested IFs

	5. Character Generator
	Model Description
	Creating the Basic Workbook
	LEN Function
	Forms Controls
	Text Orientation
	Comments
	Double-Click Macro
	Macro Activation by the Command Button
	Save to Data File
	Usage

	6. 8052 Microcomputer Register Setup
	Model Description
	Spreadsheet Concept
	Counter/Timer 0 Sheet
	Timer Counter Control Register TCON
	Counting Types
	Count
	Timer
	Macros to Hide and Unhide
	Adding Forms
	Add Image Control
	Timer/Counter 1 Sheet
	Timer/Counter 2 Sheet
	Serial Port Sheet
	Interrupt Control Sheet
	Summary Sheet
	Initialize Values
	Conclusion

	7. Finding the Optimal Resistor Combination: LP 2951
	Model Description
	Custom Autofill
	Data Tables
	Min Function
	MATCH Function
	INDEX Function
	Block Conditional Formatting

	8. Resistor Color Code Decoder Using Speech Input
	Model Description
	Implementing Speech Recognition
	Viewing and Hiding the Language Bar
	Worksheet Setup
	Macros
	Custom Toolbar
	Adding Speech
	Evaluate the Color Code
	Text to Speech
	Conclusion

	9. RTD to 4–20 mA Converter: XTR105
	Model Description
	Acquiring RTD Tables
	Lookup RTD Value
	Creating a Function
	Accessing a Function
	Adding a Help Description to a Function
	Creating the Model in Excel
	Standard Resistor Values
	Creation of Add-In
	Installing the NearestValues Add-In
	Back to the Project At Hand
	Prompting for User Input
	Printout
	Running Macros when the Workbook is Started
	Running from the Desktop

	10. Voltage Regulator: LM317
	Model Description
	Installing the NearestValues Add-In
	Initial Model
	Goal Seek
	Worst Case Analysis
	Thermal Analysis
	Half-Wave Rectification
	True RMS and Integration
	More Preparation
	Standard Capacitance Value
	Chart
	Conclusion

	11. TL431 Adjustable Voltage Reference
	Model Description
	Installing the NearestValues Add-In
	Initial Model
	Solver
	Standard Resistor Values
	Adding a Macro
	Report Generation
	Limitations

	12. 555 Timer
	Model Description
	Monostable Operation
	Setup
	Add User Form
	Add Image Control
	Second Image
	Modifying Form Location
	Monostable Pulse Width Entry
	Command Button
	Solver
	Standard Values
	SolverSolve
	Using Standard Capacitor Values
	Tidying Up
	Astable Operation
	Worksheet Setup

	13. Purchase Order Generator
	Model Description
	Create a Purchase Order
	Print Macro
	User Form
	Initial Procedure
	Event Actions
	Auto Startup
	Running PurchaseOrder

	14. Interface to a Digital Multimeter Using a Serial Port
	Model Description
	DMM Interface Protocol
	MSComm32
	Initializing the Serial Port
	Conversion of DMM Display to Data
	Analog Meter Chart
	Zone Identification
	Data Plot—Chart Recorder
	Food For Thought

	15. Vernier Caliper Interface
	Model Description
	Pinout
	Hardware Interface
	Timing Diagram
	Installing IO.DLL
	PC Parallel Port
	First Steps
	Actual Interface
	Acquiring Data
	Adding Sound
	Thoughts on Improvement
	Statistics

	16. Function Generator Interface
	Model Description
	Serial Interface
	Workbook Open and Close
	Adding VBA Controls: Granularity
	Adding VBA Controls: Frequency
	Waveform Sampling Frequency
	Bump Frequency
	Generating Frequency Tables
	Add a Chart
	Download Waveform
	Setting the Amplitude
	Skew
	Average Voltage, RMS Voltage

	Appendix A: VBA and Excel
	Where Do Macros, Procedures and Functions Get Stored?
	Using a Macro
	Personal Macro Workbook
	Open Workbooks at Startup
	Accessing a Function Across Workbook Boundaries
	Template
	Add-Ins
	Automatic Startup
	Private
	Running a Macro
	Finding the Stop Recording Macro Toolbar
	Actions Recorded During Macro Record
	Names
	Naming Objects
	Naming Constants
	Naming Formulas
	Absolute and Relative Reference
	Moving Cell Selection Relative to Current Cell
	Cell Access
	Detecting Blank Cells
	Extended Range Selection
	Accessing Data off the Current Sheet
	Accessing a Procedure in a Different Module
	Accessing a Procedure in a Different Workbook
	Recalculate
	Screen Update
	Exit
	Workbook Open, Activation
	Multiple Actions on an Object: With Statement
	Using an Excel Function in VBA
	Arrays
	Array Formula
	Returning an Array from a Function
	Error Values
	Useful Functions
	Web Resources

	Appendix B: Parallel and Serial I/O
	Parallel (Printer) Port
	Serial Port
	Possible Hardware Sources

	References
	About the Author
	Index
	CD-ROM License Agrement

