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For the sake of persons of different types, scientific truth should

be presented in different forms, and should be regarded as equally

scientific, whether it appears in the robust form and the vivid coloring

of a physical illustration, or in the tenuity and paleness of a symbolic
expression. '

James Clerk Maxwell

Address to the Mathematics and Physical Section,

British Association of Sciences, 1870
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Preface

TEXT OVERVIEW

This text emphasizes the successful engineering design of digital devices and machines from
first principles. A special effort has been made not to “throw” logic circuits at the reader so
that questions remain as to how the circuits came about or whether or not they will function
correctly. An understanding of the intricacies of digital circuit design, particularly in the
area of sequential machines, is given the highest priority — the emphasis is on error-free
operation. From an engineering point of view, the design of a digital device or machine is
of little or no value unless it performs the intended operation(s) correctly and reliably.

Both the basics and background fundamentals are presented in this text. But it goes well
beyond the basics to provide significant intermediate-to-advanced coverage of digital design
material, some of which is covered by no other text. In fact, this text attempts to provide
course coverage at both the first and second levels— an ambitious undertaking. The aim
is to provide the reader with the tools necessary for the successful design of relatively
complex digital systems from first principles. In doing so, a firm foundation is laid for the
use of CAD methods that are necessary to the design of large systems. In a related sense,
VHDL behavioral and architectural descriptions of various machines, combinational and
sequential, are provided at various points in the text for those instructors and students who
wish to have or require a hardware description language in the study of digital design.

The text is divided into 16 relatively small chapters to provide maximum versatility in its
use. These chapters range from introductory remarks to advanced topics in asynchronous
systems. In these chapters an attempt is made to replace verbosity by illustration. Students
generally do not like to read lengthy verbal developments and explanations when simple
illustrations suffice. Well more than 600 figures and tables help to replace lengthy expla-
nations. More than 1000 examples, exercises, and problems (worked and unworked, single
and multiple part) are provided to enhance the learning process. They range in complex-
ity from simple algebraic manipulations to multipart system-level designs, each carefully
chosen with a specific purpose in mind. Annotated references appear at the end of each
chapter, and an appendix at the end of the text provides the details of subjects thought to
be peripheral to the main thrust of the text. Chapter 1 breaks with tradition in providing
a complete glossary of terms, expressions, and abbreviations that serves as a conspicuous
and useful source of information.

SUBJECT AREAS OF PARTICULAR STRENGTH IN THIS TEXT

Like others, this text has its subject areas of strengths — those that are uniquely presented in
sufficient detail as to stand out as significant didactic and edifying contributions. This text

xix



XX

PREFACE

breaks with tradition in providing unique coverage in several important areas. In addition to
the traditional coverage, the following 20 subject areas are of particular strength in this text:

wn

© o N o

10.

1.
2.
13.
14.
15.

16.
17.
18.
19.

20.

1. Thorough coverage of number systems, arithmetic methods and algorithms, and codes
2. Mixed logic notation and symbology used throughout the text

3.

4. Unique treatment of conventional Boolean algebra and XOR algebra as these subjects

Emphasis on CMOS logic circuits

relate to logic design

Entered variable mapping methods as applied throughout the text to combinational
and sequential logic design

Applications of Reed—Muller transformation forms to function minimization
Nonarithmetic combinational logic devices such as comparators, shifters, and FPGAs
Arithmetic devices such as carry-save adders, multipliers, and dividers

. Three uniquely different ALU designs, including an introduction to dual-rail systems

and ALUs with completion signal and carry look-ahead capability

Detection and elimination methods for static hazards in two-level and multilevel (e.g.,
XOR-type) circuits including the use of binary decision diagrams (BDDs)

Design and analysis of flip-flops provided in a simple, well organized fashion
Detection and elimination of timing defects in synchronous sequential circuits
Input synchronization and debouncing, and FSM initialization and reset methods
Use of unique modular methods in the design of shift registers and counters

Complete coverage of ripple counters, ring counters and linear feedback shift register
(LFSR and ALFSR) counters

Application of the array algebraic and one-hot approaches to synchronous FSM design
Detection and elimination of timing defects in asynchronous fundamental mode FSMs

Design and analysis of asynchronous FSMs including the nested cell approach, single
transition time (STT) machines by using array algebra, and the one-hot code method

High speed externally asynchronous/internally clocked systems, including an intro-
duction to dynamic domino logic applications

Programmable asynchronous sequencers

READERSHIP AND COURSE PREREQUISITES

No prior background in digital design is required to enter a first course of study by using
this text. It is written to accommodate both the first- and second-level user. What is required
is that the reader have sufficient maturity to grasp some of the more abstract concepts that
are unavoidable in any digital design course of study. It has been the author’s experience
that digital design makes an excellent introduction to electrical and computer engineering
because of the absolute and precise nature of the subjects —there are no approximation
signs. This text is designed to make first reading by a user a rewarding experience. However,
there is sufficient advanced material to satisfy the needs of the second level students and
professionals in the field. A first-level understanding of the subject matter is necessary
before entering a second-level course using this text.
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SUGGESTED TEXT USAGE

Perhaps the best advice that can be given to instructors on the use of this text is to study
the table of contents carefully and then decide what subject matter is essential to the course
under consideration. Once this is done the subject area and order of presentation will usually
become obvious. The following two course outlines are offered here as a starting point for
instructors in making decisions on course subject usage:

The Semester System

[1] First-Level Course — Combinational Logic Design

Block |

Introduction (Chapter 1)

Number systems, binary arithmetic and codes (Sections 2.1 through 2.5 or choice)

Binary state terminology, CMOS logic circuits, and mixed-logic symbology
(Sections 3.1 through 3.7)

Reading and construction of logic circuits (Section 3.8)

XOR and EQV operators and mixed-logic symbology (Section 3.9)

Laws of Boolean and XOR algebra (Sections 3.10 through 3.12)

Review

EXAM #1

Block If

Introduction; logic function representation (Sections 4.1 and 4.2)

Karnaugh map (K-map) function representation and minimization, don’t cares,
and multioutput optimization (Sections 4.3 through 4.5)

Entered variable mapping methods and function reduction of five or more variables
(Sections 4.6, 4.7 and 4.12)

Introduction to minimization algorithms (Section 4.8)

Factorization and resubstitution methods (Subsections 4.9.1 and 4.9.2)

Function minimization by using XOR K-map patterns (Sections 5.1 through 5.4)

Review

EXAM #2

Block Il

Introduction to combinational logic design (Section 6.1)

Multiplexers, decoders, priority encoders, and code converters (Sections 6.2
through 6.5; Section 2.10)

Magnitude comparators, parity generators and shifters (Sections 6.6 through 6.8)

Programmable logic devices — ROMs, PLAs and PALs (Sections 7.1 through 7.6)
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Adders, subtractors, multipliers, and dividers (Section 2.6 and Subsections 2.9.1
through 2.9.5 or choice; Sections 8.1 through 8.7 or choice)

Arithmetic and logic units — ALUs (Section 8.8) — may be omitted if time-limited

Static hazards in combinational logic devices (Sections 9.1 and 9.2)

Review

EXAM #3 and/or FINAL

[2] Second-Level Course — State Machine Design and Analysis

Block IV

Introduction; models, the state diagram, and heuristic development of the basic
memory cells (Sections 10.1 through 10.4)

Design and analysis of flip-flops, flip-flop conversion; timing problems; asyn-
chronous overrides; setup and hold time requirements (Sections 10.5 through
10.11)

Design of simple synchronous finite state machines; K-map conversion; analysis
of synchronous FSMs (Sections 10.12 and 10.13)

Review

EXAM #1
Block vV

Introduction; detection and elimination of timing defects in synchronous state
machines (Sections 11.1 through 11.3)

Synchronizing and stretching of asynchronous inputs; metastability; clock skew
and clock sources (Sections 11.4 through 11.6)

Initialization and reset of FSMs, and debouncing circuits (Sections11.7 and 11.8)

Applications to the design and analysis of more complex synchronous FSMs; ASM
charts and state assignment rules; array algebraic approach to FSM design; state
minimization (Sections 11.9 through 11.12)

Review

EXAM #2
Block viI

Introduction; design of shift registers and synchronous counters; synchronous vs
asynchronous parallel loading (Sections 12.1 through 12.3)

Shift register counters and ripple counters; special purpose counters (Sections 12.4
through 12.5)

Alternative architecture — use of MUXs, decoders, PLDs, counters and shift reg-
isters; the one-hot design method (Sections 13.1 through 13.5)

The controller, data path, functional partition, and system-level design (Sections
13.6 and 13.7)

Introduction to asynchronous sequential machines — fundamental mode FSMs
(Sections 14.1 through 14.9)
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Pulse mode approach to asynchronous FSM design (Sections 15.1 through 15.6)
Selected topics in Chapter 16
Review

EXAM #3 and/or FINAL

The choice of course content is subject to so many variables that no one course outline will
suffice even within a single institution where several instructors may teach a given course.
It is for this reason that the text is divided up into 16 relatively small chapters. This offers
the instructor somewhat more flexibility in the choice of subject matter. For example, if it is
desirable to offer a single (combined) semester course in digital design, it might be desirable
to offer both combinational and sequential (synchronous FSM) logic design. Such a course
might include the following subject areas taken from Blocks I through VI in sample course
outlines [1] and [2]:

[3] Single (Combined) Semester Course in Digital Design

Binary state terminology, and mixed-logic symbology (Sections 3.1 through 3.7)
Reading and construction of logic circuits (Section 3.8)

XOR and EQV operators and mixed-logic symbology (Section 3.9)

Laws of Boolean and XOR algebra (Sections 3.10 through 3.12)

Review

EXAM #1

Logic function representation (Sections 4.1 and 4.2)

K-map function representation and minimization, don’t cares and multioutput
optimization (Sections 4.3 through 4.5)

Entered variable mapping methods and function reduction of five or more variables
(Sections 4.6, 4.7 and 4.12)

Multiplexers, decoders, priority encoders, and code converters (Sections 6.2
through 6.5)

Comparators, parity generators, and shifters or choice (Sections 6.6 through 6.8)

Adders, subtractors, and multipliers (Sections 8.1 through 8.3; Section 8.6)

Static hazards in combinational logic devices (Sections 9.1 and 9.2)

Review

EXAM #2

Heuristic development of the basic memory cells (Sections 10.1 through 10.4)

Design and analysis of flip-flops, flip-flop conversion (Sections 10.5 through 10.8)

Asynchronous overrides; setup and hold time requirements; design and analysis
of simple synchronous state machines (Sections 10.10 through 10.13)

Detection and elimination of timing defects in synchronous state machines
(Sections 11.1 through 11.3)

Synchronizing of asynchronous inputs (Section 11.4)

Initialization and reset of FSMs; debouncing circuits (Sections 11.7 and 11.8)

Shift registers and counters (Sections 12.1 through 12.3)
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Alternative architecture — use of MUXSs, decoders, PLDs; the one-hot method
(Sections 13.1 through 13.3, Section 13.5)

The controller, data path, and functional partition and system-level design
(Sections 13.6 and 13.7)

Review

EXAM #3 and/or FINAL

Though the subject coverage for EXAM #3 in course sample outline [3] seems large in
proportion to those required for EXAM #2, a close inspection will indicate that the number
of sections are the same. The sections required for EXAM #1 number about half that of the
other two.

The Quarter System

Not all courses at colleges and universities are operated on a semester basis. Some are
operated on the quarter system. This requires that the course subject areas be divided up
in some logical and effective manner, which may require that both combinational and
sequential machines be covered within a given quarter course. As a guide to subject area
planning on the quarter system when using this text, the following quarter system may be
considered (refer to sample course outlines [1] and [2]):

First Quarter

Block I
EXAM #1

Block II
EXAM #2

Second Quarter

Block III
EXAM #1

Block IV
EXAM #2

Third Quarter

Block V
EXAM #1

Block VI
EXAM #2

Fourth Quarter (if applicable)

Chapters 14 and 15
EXAM #1
Chapter 16
PROIJECT and/or EXAM #2
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Certainly, there are an endless number of ways in which the subject areas can be divided up
to meet the requirements of digital design courses that are offered on the basis of a semester,
quarter, or trimester system. The presence of 16 relatively small chapters should make the
decision process less complicated and lead to a meaningful and productive treatment of
digital logic design.

INSTRUCTIONAL SUPPORT SOFTWARE AND MATERIALS

For the Student

Bundled with this text on CD-ROM are five important software programs: a logic simulator
called EXL-Sim2002; two logic minimizers, BOOZER and ESPRESSO II;, and two advanced
CAD programs called ADAM and A-OPS. Complete instructions are included with each
software program. The following is a short description of each software program. More
detail descriptions are available in Appendix B.

EXL-Sim2002 is a gate-level, interactive, schematic-capture and simulation program that
is ideally suited for use with this text at either the entry or advanced-level of logic design. Its
many features include drag-and-drop capability, rubber banding, mixed logic and positive
logic simulations, macro generation, individual and global delay assignments, connection
features that eliminate the need for wire connections, schematic page sizing and zooming,
waveform zooming and scrolling, and a variety of printout capabilities.

BOOZER is a software minimization tool that is recommended for use with this text. It
accepts entered variable (EV) or canonical (1’s and 0’s) data from K-maps or truth tables,
with or without don’t cares, and returns an optimal or near optimal single or multi-output
solution. It can handle up to 12 Boolean functions and as many inputs when used on modern
computers.

ESPRESSO Il is another software minimization tool that is in wide use in schools and in-
dustry. It supports advanced algorithms for minimization of two-level, multi-output Boolean
functions but does not accept entered variables.

ADAM (for Automated Design of Asynchronous Machines) is a very powerful software
tool that permits the automated design of very complex asynchronous and synchronous
state machines, all free of timing defects. The input files are state tables for the desired
state machines. The output files are given in the Berkeley format appropriate for directly
programming PLAs.

A-OPS stands for Asynchronous One-hot Programmable Sequencer designs of asyn-
chronous and synchronous state machines. A-OPS generates output files and VHDL code
for the automated timing-defect-free design of 1-Hot sequencers and state machines that
can be driven by either PLAs or RAM. This software tool can be used to design systems
that permit instant switching between radically different timing-defect-free controllers on
a time-shared basis.

For the Instructor

An instructor’s manual is placed on CD-ROM together with all five software programs
given in the previous paragraphs. The instructor’s manual contains the statement of and
the detailed solutions for all problems presented in the text, all in PDF format. All figures
(also in PDF format) are provided separately in the manual for selective use in creating
transparencies or hard copies. Acrobat Reader 5.0, required for reading these files, is free
from the Adobe web site htp://www.adobe.com.
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ERRORS

Any text of this size and complexity is bound to contain errors and omissions that have
been overlooked throughout the extensive review and editing process. Identification of any
error or omission would be greatly appreciated by the editors of Academic Press and by the
author. Constructive comments regarding matters of clarity, organization and coverage of
subject matter are also valued. Such information should be directed to the author:

Professor Richard F. Tinder

School of Electrical Engineering and Computer Science

Washington State University

Pullman, WA 99164-2752

e-mail address: rtinder@eecs.wsu.edu
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CHAPTER 1
I

Introductory Remarks
and Glossary

1.1 WHAT IS SO SPECIAL ABOUT DIGITAL SYSTEMS?

No area of technology has had or is likely to continue to have more of a profound impact on
our lives than digital system development. That’s quite a statement, but its truth is obvious
when one considers the many ways we have become dependent on “digitized” technology.
To put this in perspective, let us review the various areas in which digital systems play
an important role in our lives. As this is done, keep in mind that there is significant, if
not necessary, overlap in the digital system technologies that make possible those areas we
have come to take for granted: computing, information retrieval, communication, automatic
control systems, entertainment, and instrumentation.

Computing: A computer, like the telephone and television, has become almost an es-
sential part of every household. Word processing, information retrieval, communication,
finance and business management, entertainment, art and graphics — these are but a few
of the functions performed by our beloved computers. In the span of a little more than
10 years, computers in the home and in small businesses have advanced from what was
termed microcomputers to the present computers with nearly mainframe capability. Home
computers can now perform relatively sophisticated operations in the areas just mentioned.
Of course, vastly improved computer speed and memory, together with powerful software
development, are primarily responsible for the rapid rise in personal computer capabilities.
In addition to the digital computer itself, there are other digital devices or peripherals that are
normally part of a computer system. These include disk drives, CD-ROM drives, modems,
CRT and LCD monitors, sound cards, scanners, and printers. Then there are the hand-held
calculators that now have nearly microcomputer capability and are quite inexpensive. All of
these things have been made possible because of the advances in digital system technology.
But this is just the beginning.

Information Retrieval: The ability to consult one’s favorite encyclopedia via CD-ROM or
surf (browse) the World Wide Web (WWW) has become a very important part of computer
use in the home, at school, and in business. The use of CD-ROM:s also permits access to
information in the specialized areas of literature, music, religion, health, geography, math,

1
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physical science, biology, and medicine, to name a few. But information retrieval is not
limited to these functions. Network communication between computers and our ability to
tap into huge university libraries are other important sources of information. Think of where
businesses would be without access to data-base information that is critical to day-to-day
operation. Local and national security operations depend heavily on data-base information
stored on computers that are most likely part of a network. Yes, and then there is education.
What an invaluable source of information the computer has become both in the classroom
and in the home.

Communications: It would be hard to imagine what our world would be like without the
ability to send facsimile (fax) communications or e-mail. These are digital transmission
methods that were developed to a high degree of sophistication over a period of about
10 years. Of course, the modem, another digital device, has made this possible. Digital
communication is hardly limited to fax and e-mail. One’s home phone or cellular phone
is likely to be digital, permitting a variety of features that were difficult if not impossible
to provide by means of an analog transmission device. Scientific data, national security
information, and international communications, all of which are collected and transmitted
back to earth by satellite, are accomplished by digital transmission methods with accuracy
not possible otherwise.

Automatic Control Systems: Digital automatic control systems have replaced the old ana-
log methods in almost all areas of industry, the home, and transportation. Typical examples
include rapid transit systems, integrated circuit fabrication systems, robot systems of all
types in assembly-line production, space vehicle operations, a variety of automobile asso-
ciated operations, guidance systems, home security systems, heating and air-conditioning
systems, many home appliances, and a host of medical systems.

Entertainment: Who cannot help but be awed by the impressive computer generated
graphics that have become commonplace in movies and in games produced on CDs. Movies
such as Jurassic Park and the new Star Wars series will perhaps be remembered as having
established a new era in the art of make-believe. The games that are available on the
home computer include everything from chess and casino-type games to complex and
challenging animated aircraft operations and adventure/fantasy games. Then add to these
the high-quality sound that CDs and the Internet produce, and one has a full entertainment
center as part of the personal computer. Of course, the incursion of digital systems into
the world of entertainment extends well beyond movies and games. For example, one has
only to listen to digitally recorded or remastered CDs (from the original analog recordings)
to enjoy their clear, noise-free character. Also, don’t forget the presence of electronic
keyboard instruments ranging from synthesizers to Clavinovas and the like. Then for those
who consider photography as entertainment, digital cameras and camcorders fall into this
category. And the list goes on and on.

Instrumentation: A listing of the many ways in which digital system technology has af-
fected our lives would not be complete without mentioning the myriad of measurement and
sensing instruments that have become digitized. Well known examples of electronic labora-
tory testing equipment include digital voltmeters, ammeters, oscilloscopes, and waveform
generators and analyzers. Then there are the sophisticated medical instruments that include
MRI and CAT scan devices. Vital signs monitoring equipment, oximeters, 1V pumps, pa-
tient controlled analgesia (PCA) pumps, digital ear thermometers, and telemetry equipment
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are typical examples of the many other ways the medical industry has made use of digital
systems technology.

1.2 THE YEAR 2002 AND BEYOND?

If one considers what has happened in, say, the past 15 years, the path of future techno-
logical development in the field of digital systems would seem to be limited only by one’s
imagination. It is difficult to know where to begin and where to end the task of forecasting
digital system development, but here are a few examples in an attempt to accomplish this:

Computer power will continue to increase as the industry moves to 0.10x (and below)
CMOS technology with speeds into the terahertz range and with a demand for more efficient
ways to sink the heat generated by billions of transistors per processor operated with supply
voltages of one volt or below. There will be dramatic changes in the peripherals that are
now viewed as part of the computer systems. For example, vacuum (CRT) monitors will
eventually be replaced by picture-frame style LCD monitors, or by micropanel displays
using either DLP (Digital Light Processing) or FED (field emission display) technologies.
Digitized high-definition TV (HDTV) will eventually replace all conventional TV sets, and
the World Wide Web (WWW) will be viewed on HDTV via special dedicated computers.
In all, larger, sharper, brighter, and clearer computer and TV displays are to be expected,
together with a fast-growing and impressive assortment of wireless hand-held and wrist-
bound devices.

Expect that the mechanically operated magnetic storage systems (disk drives) of today
will soon be replaced by a MR (magneto-resistive) technology that will increase the areal
storage density (gigabits per square inch) by a factor of 100 to 200, or by OAWD (optically
assisted Winchestor drive) and MO (magneto-optical) technologies that are expected to
increase the areal density even further. Eventually, a holographic storage technology or
a proximal probe technology that uses a scanning tunneling microscopic technique may
provide capabilities that will take mass storage to near its theoretical limit. Thus, expect
storage systems to be much smaller with enormously increased storage capacity.

Expect that long-distance video conferencing viacomputer will become as commonplace
as the telephone is today. Education will be a major beneficiary of the burgeoning digital
age with schools (K-12, and universities and colleges both public and private) being piped
into major university libraries and data banks, and with access to the ever-growing WWW.
Look for the common film cameras of today to be replaced by digital cameras having
megapixel resolution, audio capability, and with the capability to store a large number of
pictures that can be reviewed on camera and later presented on screen by any computer.
Expect that certain aspects of laser surgery will be microprocessor controlled and that X-ray
imaging methods (e.g., mammography) and radiology generally will be digitally enhanced
as a common practice. Also, health facilities and hospitals will be linked for immediate
remote site consultation and for specialized robotics surgery.

Expect digital systems to become much more sophisticated and pervasive in our lives.
Interconnectivity between “smart” electrically powered systems of all types in the home,
automobile, and workplace could be linked to the web together with sophisticated fail-safe
and backup systems to prevent large-scale malfunction and possible chaos. Such inter-
connected systems are expected to have a profound effect on all aspects of our lives —
what and when we eat, our exercise habits, comfort and entertainment needs, shopping
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activities, medical requirements, routine business transactions, appointment schedules, and
many others imaginable.

Optical recognition technology will improve dramatically in the fields of robotics, vehi-
cular operation, and security systems. For example, expect that iris and retinal pattern
recognition will eventually be used to limit access to certain protected systems and areas,
and may even replace digital combination locks, IDs, and licenses for such purposes.
Taxation, marketing, and purchasing methods will undergo dramatic changes as digital
systems become commonplace in the world of government, commerce, and finance. Even
the world of politics, as we now know it, will undergo dramatic change with the use of new
and more efficient voting and voter sampling methods. Mass production line manufacturing
methods by using robots and other digitally automated mechanical devices will continue to
evolve at a rapid pace as dictated by domestic and world market forces. Expect that logic
minimization tools and automated digital design tools will become more commonplace
and sophisticated, permitting designers with little practical experience to design relatively
complex systems.

Business networking will undergo dramatic improvements with the continued devel-
opment of gigabit Ethernet links and high-speed switching technology. Home connectiv-
ity will see vast improvements in satellite data service downloading (up to 400 kbps),
56-kbps (and higher) modems that need high-quality digital connections between phones
and destination, improved satellite data service with bidirectional data transmission, and
DSL (digital subscriber line) cable modem systems.

Finally, there are some really exciting areas to watch. Look for speech recognition, speech
synthesis, and handwriting and pattern recognition to dramatically change the manner in
which we communicate with and make use of the computer both in business and in the
home. Somewhere in the future the computer will be equipped with speech understanding
capability that allows the computer to build ideas from a series of spoken words — perhaps
like HAL 9000 in the film 2001: A Space Odyssey. Built-in automatic learning capability
may yet prove to be the most challenging undertaking facing computer designers of the
future. Thus, expect to see diminished use of the computer keyboard with time as these
technologies evolve into common usage.

Revolutionary computer breakthroughs may come with the development of radically
different technologies. Carbon nanotube technology, for example, has the potential to
propel computer speeds well into the gigahertz range together with greatly reduced power
dissipation. The creation of carbon nanotube transistors could signal the dawn of a new
revolution in chip development. Then there is the specter of the quantum computer, whose
advent may lead to computing capabilities that are trillions of times faster than those of
conventional supercomputers. All of this is expected to be only the beginning of a new
millennium of invention limited only by imagination. Remember that radically different
technological breakthroughs can appear at any time, even without warning, and can have a
dramatic affect on our lives, hopefully for the better.

To accomplish all of the preceding, a new generation of people, technically oriented to
cope with the rapidly changing digital systems technology, will result as it must. This new
generation of people will have a dramatic impact on education, labor, politics, transportation,
and communications, and will most certainly affect domestic and global economies. Thus,
expect that more pressure and responsibility will be placed on universities to produce the
quality training that can match up to this challenge, not just over a short period but also in
the long term.
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1.3 A WORD OF WARNING

Not yet mentioned are the changes that must take place in the universities and colleges
to deal with this rapidly evolving technology. It is fair to say that computer aided design
(CAD) or automated design of digital systems is on the upswing. Those who work in the
areas of digital system design are familiar with such hardware description languages as
VHDL or Verilog, and the means to “download” design data to program PLAs or FPGAs
(field programmable gate arrays). It is possible to generate a high-level hardware description
of a digital system and introduce that hardware description into circuit layout tools such
as Mentor Graphics. The end result would be a transistor-level representation of a CMOS
digital system that could be simulated by one of several simulation tools such as HSPICE
and subsequently be sent to the foundry for chip creation. The problem with this approach to
digital system design is that it bypasses the need to fully understand the intricacies of design
that ensure proper and reliable system operation. As is well known, a successful HSPICE
simulation does not necessarily ensure a successful design. In the hands of a skilled and
experienced designer this approach may lead to success without complications. On the
other hand, if care is not taken at the early stages of the design process and if the designer
has only a limited knowledge of design fundamentals, the project may fail at one point
or another. Thus, as the use of automated (CAD) designs become more attractive to those
who lack design detail fundamentals, the chance for design error at the system, device,
gate, or transistor level increases. The word of warning: Automated design should never
be undertaken without a sufficient knowledge of the field and a thorough understanding of
the digital system under consideration — a little knowledge can be dangerous! This text is
written with this warning in mind. The trend toward increasing CAD use is not bad, but
automated design methods must be used cautiously with sufficient background knowledge
to carry out predictably successful designs. Computer automated design should be used
to remove the tedium from the design process and, in many cases, make tractable certain
designs that would otherwise not be possible. But CAD is not a replacement for the details
and background fundamentals required for successful digital system design. It is the goal
of this text to provide the reader with the necessary details and background fundamentals
S0 as to permit a successful transition into the CAD domain.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS

Upon entering any new field, there is always the problem of dealing with the “jargon” that
is peculiar or unique to that field. Conspicuously absent in most texts on digital design is a
glossary of terms, expressions, and abbreviations that are used — yes, and even overused —
in presenting the subject matter. Readers of these texts are often left leafing through back
pages and chapters in search of the meaning of a given term, expression or abbreviation.
In breaking with tradition, this text provides an extensive glossary, and does so here at the
beginning of the text where it can be used —not at the end of the text where it may go
unnoticed. In doing this, Chapter 1 serves as a useful source of information.

ABEL: advanced Boolean expression language.
Accumulator: an adder/register combination used to store arithmetic results.
Activate: to assert or make active.
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Activation level: the logic state of a signal designated to be active or inactive.

Activation level indicator: a symbol, (H) or (L), that is attached to a signal name to
indicate positive logic or negative logic, respectively.

Active: a descriptor that denotes an action condition and that implies logic 1.

Active device: any device that provides current (or voltage) gain.

Active high (H): indicates a positive logic source or signal.

Active low (L): indicates a negative logic source.

Active state: the logic 1 state of a logic device.

Active transition point: the point in a voltage waveform where a digital device passes
from the inactive state to the active state.

Addend: an operand to which the augend is added.

Adder: a digital device that adds two binary operands to give a sum and a carry.

Adder/subtractor: acombinational logic device that can perform either addition or sub-
traction.

Adjacent cell: a K-map cell whose coordinates differ from that of another cell by only
one bit.

Adjacent pattern: an XOR pattern involving an uncomplemented function in one cell of
a K-map and the same function complemented in an adjacent cell.

ALFSR: autonomous linear feedback shift register.

ALFSR counter: acounter, consisting of an ALFSR, that can sequence through a unique
set of pseudo-random states that can be used for test vectors.

Algorithm: any special step-by-step procedure for accomplishing a task or solving a
problem.

Alternative race path: one of two or more transit paths an FSM can take during a race
condition.

ALU: arithmetic and logic unit.

Amplify: the ability of an active device to provide current or voltage gain.

Analog: refers to continuous signals such as voltages and current, in contrast to digital
or discrete signals.

AND: anoperator requiring that all inputs to an AND logic circuit symbol be active before
the output of that symbol is active — also, Boolean product or intersection.

AND function: the function that derives from the definition of AND.

AND gate: aphysical device that performs the electrical equivalent of the AND function.

AND laws: a set of Boolean identities based on the AND function.

AND-OR-Invert (AOI) gate: a physical device, usually consisting of two AND gates
and one NOR gate, that performs the electrical equivalent of SOP with an active low
output.

AND plane: the ANDing stage or matrix of a PLD such as a ROM, PLA, or PAL.
Antiphase: as used in clock-driven machines to mean complemented triggering of a
device relative to a reference system, such as, an FET input device to an RET FSM.
Apolar input: an input, such as CK, that requires no activation level indicator to be

associated with it.

Arbiter module: a device that is designed to control access to a protected system by
arbitration of contending signals.

Arithmetic and logic unit (ALU): a physical device that performs either arithmetic or
logic operations.
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Arithmetic shifter: a combinational shifter that is capable of generating and preserving
a sign bit.

Array algebra: the algebra of Boolean arrays and matrices associated with the automated
design of synchronous and STT machines.

Array logic: any of a variety of logic devices, such as ROMs, PLLAs or PALs, that are
composed of an AND array and an OR array (see Programmable logic device or PLD).

ASIC: application-specific IC.

ASM: algorithmic state machine.

Assert: activate.

Assertion level: activation level.

Associative law: a law of Boolean algebra that states that the operational sequence as
indicated by the location of parentheses in a p-term or s-term does not matter.

Associative pattern: an XOR pattern in a K-map that allows a term or variable in an
XOR or EQV function to be looped out (associated) with the same term or variable in
an adjacent cell provided that the XOR or EQV connective is preserved in the process.

Asynchronous: clock-independent or self-timed — having no fixed time relationship.

Asynchronous input: an input that can change at any time, particularly during the sam-
pling interval of the enabling input.

Asynchronous override: an input such as preset or clear that, when activated, interrupts
the normal operation of a flip-flop.

Asynchronous parallel load: the parallel loading of a register or counter by means of
the asynchronous PR and CL overrides of the flip-flops.

Augend: an operand that is added to the addend in an addition operation.

Barrel shifter: a combinational shifter that only rotates word bits.

Base: radix. Also, one of three regions in a BIT.

Basic cell: a basic memory cell, composed of either cross-coupled NAND gates or cross-
coupled NOR gates, used in the design of other asynchronous FSMs including flip-flops.

BCD: binary coded decimal.

BCH: binary coded hexadecimal.

BCO: binary coded octal.

BDD: binary decision diagram.

Bidirectional counter: a counter that can count up or down.

Binary: anumber system of radix 2; having two values or states.

Binary code: a combination of bits that represent alphanumeric and arithmetic informa-
tion.

Binary coded decimal (BCD): a 4-bit, 10-word decimal code that is weighted 8, 4, 2, 1
and that is used to represent decimal digits as binary numbers.

Binary coded hexadecimal (BCH): the hexadecimal number system used to represent
bit patterns in binary.

Binary coded octal (BCO): the octal number system used to represent bit patterns in
binary.

Binary decision diagram (BDD): a graphical representation of a set of binary-valued
decisions, beginning with an input variable and proceeding down paths that end in either
logic 1 or logic 0.

Binary word: a linear array of juxtaposed bits that represents a number or that conveys
an item of information.
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Bipolar junction transistor (BJT): an npn or pnp transistor.

Bipolar PROM: a PROM that uses diodes as fusible links.

BIST: built-in-self-test.

Bit: abinary digit.

Bitslice: partitioned into identical parts such that each part operates on one bitin a multibit
word — part of a cascaded system of identical parts.

BJT: bipolar junction transistor.

BO: borrow-out.

Bond set: in the CRMT method, a disjoint set of bond variables.

Bond variable: one of two or more variables that form the axes of an EV K-map used in
the CRMT method of function minimization.

Boolean algebra: the mathematics of logic attributed to the mathematician George Boole
(1815-1864).

Boolean product: AND or intersection operation.

Boolean sum: OR or union operation.

BOOZER: Boolean ZEro-one Reduction — a multioutput logic minimizer that accepts
entered variables.

Borrow-in: the borrow input to a subtractor.

Borrow-out: the borrow output from a subtractor.

Boundary: the separation of logic domains in a K-map.

Bounded pulse: a pulse with both lower and upper limits to its width.

Branching condition (BC): the input requirements that control a state-to-state transition
in an FSM.

Branching path: a state-to-state transition path in a state diagram.

Buffer: aline driver.

Bufferstate: astate (in a state diagram) whose only purpose is to remove a race condition.

Bus: acollection of signal lines that operate together to transmit a group of related signals.

Byte: a group of eight bits.

C: carry. Also, the collector terminal in a BJT.

CAD: computer-aided design.

CAE: computer-aided engineering.

Call module: a module designed to control access to a protected system by issuing a
request for access to the system and then granting access after receiving acknowledgment
of that request.

Canonical: made up of terms that are either all minterms or all maxterms.

Canonical truth table: a 1’s and 0’s truth table consisting exclusively of minterms or
maxterms.

Capacitance, C: the constant of proportionality between total charge on a capacitor and
the voltage across it, 0 = CV, where C is given in farads (F) when charge Q is given in
coulombs and V in volts.

Capacitor: a two-terminal energy storing element for which the current through it is
determined by the time-rate of change of voltage across it.

Cardinality: the number of prime implements (p-term or s-term cover) representing a
function.

Carry generate: a function that is used in a carry look-ahead (CLA) adder.

Carry-in: the carry input to a binary adder.

Carry look-ahead (CLA): same as look-ahead-carry.
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Carry-out: the carry output from an Adder.

Carry propagate: a function that is used in a CLA adder.

Carry save (CS): a fast addition method for three or more binary numbers where the
carries are saved and added to the final sum.

Cascade: to combine identical devices in series such that any one device drives another;
to bit-slice.

Cell: the intersection of all possible domains of a K-map.

Central processing unit (CPU): a processor that contains the necessary logic hardware
to fetch and execute instructions.

CGP: carry generate/propagate.

CI: carry-in.

Circuit: a combination of elements (e.g., logic devices) that are connected together to
perform a specific operation.

CK: clock.

CL or CLR: clear.

CLA: carry look-ahead.

CLB: configurable logic block. Also, a logic cell (LC).

Clear: an asynchronous input used in flip-flops, registers, counters and other sequential
devices, that, when activated, forces the internal state of the device to logic 0.

Clock: a regular source of pulses that control the timing operations of a synchronous
sequential machine.

Clock skew: a phenomenon that is generally associated with high frequency clock dis-
tribution problems in synchronous sequential systems.

C-module: an RMOD.

CMOS: complementary configured MOSFET in which both NMOS and PMOS are used.

CNT: mnemonic for count.

CO: carry-out.

Code: a system of binary words used to represent decimal or alphanumeric information.

Code converter: a device designed to convert one binary code to another.

Collapsed truth table: a truth table containing irrelevant inputs.

Collector: one of three regions in a BIT.

Combinational hazard: a hazard that is produced within a combinational logic circuit.

Combinational logic: a configuration of logic devices in which the outputs occur in
direct, immediate response to the inputs without feedback.

Commutative law: the Boolean law that states that the order in which variables are
represented in a p-term or s-term does not matter.

Comparator: acombinational logic device that compares the values of two binary num-
bers and issues one of three outputs indicative of their relative magnitudes.

Compatibility: a condition where the input to a logic device and the input requirement
of the device are of the same activation level, that is, are in logic agreement.

Compiler: converts high-level language statements into typically a machine-coded or
assembly language form.

Complement: the value obtained by logically inverting the state of a binary digit; the
relationship between numbers that allows numerical subtraction to be performed by an
addition operation.

Complementary metal oxide semiconductor (CMOS): a form of MOS that uses both
p- and n-channel transistors (in pairs) to form logic gates.
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Complementation: a condition that results from logic incompatibility; the mixed-logic
equivalent of the NOT operation.

Complex PLD: an on-chip array of PAL-like PLDs with I/O blocks and a programmable
interconnect structure.

Composite output map: a K-map that contains entries representing multiple outputs.

Computer: a digital device that can be programmed to perform a variety of tasks (e.g.,
computations) at extremely high speed.

Concatenation: act of linking together or being linked together in a series.

Conditional branching: state-to-state transitions that depend on the input status of the
FSM.

Conditional output: an output that depends on one or more external inputs.

Conjugate gate forms: a pair of logic circuit symbols that derive from the same physical
gate and that satisfy the DeMorgan relations.

Connective: a Boolean operator symbol (e.g., +, &, N).

Consensus law: a law in Boolean algebra that allows simplification by removal of a
redundant term.

Consensus term: the redundant term that appears in a function obeying the consensus
law.

Controlled inverter: an XOR gate that is used in either the inverter or transfer mode.

Controller: that part of a digital system that controls the data path.

Conventional K-map: a K-map whose cell entries are exclusively I's and 0’s.

Counter: a sequential logic circuit designed to count through a particular sequence of
states.

Counteracting delay: a delay placed on an external feedback path to eliminate an E-
hazard or d-trio.

Count sequence: a repeating sequence of binary numbers that appears on the outputs of
a counter.

Coupled term: one of two terms containing only one coupled variable.

Coupled variable: a variable that appears complemented in one term of an expression
(SOP or POS) and that also appears uncomplemented in another term of the same ex-
pression.

Cover: a set of terms that covers all minterms or maxterms of a function.

CPLD: complex PLD.

CPU: central processing unit.

Creeping code: any code whose bit positions fill with 1’s beginning at one end, and then
fill with 0’s beginning at the same end.

Critical race: a race condition in an asynchronous FSM that can result in transition to
and stable residence in an erroneous state.

CRMT: contracted Reed—Muller transformation.

Cross branching: multiple transition paths from one or more states in the state diagram
(or state table) of a sequential machine whereby unit distance coding of states is not
possible.

CU: control unit.

Current, I: the flow or transfer of charged matter (e.g., electrons) given in amperes (A).

Cutoff mode: the physical state of a BIT in which no significant collector current is
permitted to flow.

Cycle: two or more successive and uninterrupted state-to-state transitions in an asyn-
chronous sequential machine.
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Data bus: a parallel set of conductors which are capable of transmitting or receiving data
between two parts of a system.

Datalockout: the property of a flip-flop that permits the data inputs to change immediately
following a reset or set operation without affecting the flip-flop output.

Data lockout flip-flop: a one-bit memory device which has the combined properties of a
master/slave flip-flop and an edge triggered flip-flop.

Data path: the part of a digital system that is controlled by the controller.

Data path unit: the group of logic devices that comprise the data path.

Data selector: a multiplexer.

Data-triggered: referring to flip-flops triggered by external inputs (no clock) as in the
pulse mode.

DCL: digital combination lock.

Deactivate: to make inactive.

Deassert: deactivate.

Debounce: to remove the noise that is produced by a mechanical switch.

Debouncing circuit: a circuit that is used to debounce a switch.

Decade: a quantity of 10.

Decoder: acombinational logic device that will activate a particular minterm code output
line determined by the binary code input. A demultiplexer.

Decrement: reduction of a value by some amount (usually by 1).

Delay: the time elapsing between related events in process.

Delay circuit: a circuit whose purpose it is to delay a signal for a specified period of
time.

Delimiter: a character used to separate lexical elements and has a specific meaning in a
given language. Examples are @, #, +,/,7, >.

DeMorgan relations: mixed logic expressions of DeMorgan’s laws.

DeMorgan’s laws: a property that states that the complement of the Boolean product of
terms is equal to the Boolean sum of their complements; or that states that the complement
of the Boolean sum of terms is the Boolean product of their complements.

Demultiplexer: acombinational logic device in which a single input is selectively steered
to one of a number of output lines. A decoder.

Depletion mode: a normally ON NMOS that has a conducting n-type drain-to-source
channel in the absence of a gate voltage but that looses its conducting state when the
gate voltage reaches some negative value.

D flip-flop: a one-bit memory device whose output value is set to the D input value on
the triggering edge of the clock signal.

D-flop module: a memory element that is used in an EAIC system and that has charac-
teristics similar to that of a D flip-flop.

Diagonal pattern: an XOR pattern formed by identical EV subfunctions in any two
diagonally located cells of a K-map whose coordinates differ by two bits.

Difference: the result of a subtraction operation.

Digit: a single symbol in a number system.

Digital: related to discrete quantities.

Digital combination lock: a sequence recognizer that can be used to unlock or lock
something.

Digital engineering design: the design and analysis of digital devices.

Digital signal: a logic waveform composed of discrete logic levels (e.g., a binary digital
signal).
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Diode: atwo-terminal passive device consisting of a p—n junction that permits significant
current to flow only in one direction.

Diode-transistor logic: logic circuits consisting mainly of diodes and BJTs.

Direct address approach: an alternative approach to FSM design where PS feedback is
direct to the NS logic.

Disjoint: as used in “mutually disjoint” to mean a set of p-terms whose ANDed values
taken two at a time are always logic zero; or a set of s-terms whose ORed values taken
two at a time are always logic one.

Distributed path delays: a notation in which a path delay is assigned to each gate or
inverter of a logic circuit.

Distributive law: The dual of the factoring law.

Divide-by-r counter: a binary counter of n states whose MSB output divides the clock
input frequency by n.

Dividend: the quantity that is being divided by the divisor in a division operation.

Divider: acombinational logic device that performs the binary division operation.

Divisor: the quantity that is divided into the dividend.

DLP: digital light processing.

DMUX: demultiplexer (see decoder).

Domain: a range of logic influence or control.

Domain boundary: the vertical or horizontal line or edge of a K-map.

Don’t care: anon-essential minterm or maxterm, denoted by the symbol ¢, that can take
either a logic 1 or logic 0 value. Also, a delimiter ¢ that, when attached to a variable or
term, renders that variable or term nonessential to the parent function.

DPU: data path unit; also data processing unit.

Drain: one of three terminals of a MOSFET.

DRAM: dynamic RAM.

Driver: aone-input device whose output can drive substantially more inputs than a stan-
dard gate. A buffer.

DTL: diode-transistor logic.

D-trio: a type of essential hazard that causes a fundamental mode machine to transit to
the correct state via an unauthorized path.

Duality: a property of Boolean algebra that results when the AND and OR operators (or
XOR and EQV operators) are interchanged simultaneously with the interchange of 1’s
and O’s.

Dual-rail systems: as used in this text, a system of split signals in an ALU configuration
that permits a completion signal to be issued at the end of each process, be it arithmetic
or logic.

Dualrelations: two Boolean expressions that can be derived one from the other by duality.

Duty cycle: in a periodic waveform, the percentage of time the waveform is active.

Dyad: a grouping of two logically adjacent minterms or maxterms.

Dynamic domino logic: buffered CMOS logic that requires complementary precharge
and evaluate transistors for proper operation.

Dynamic hazard: multiple glitches that occur in the output from a multilevel circuit
because of a change in an input for which there are three or more asymmetric paths
(delay-wise) of that input to the output.

Dynamic RAM: a volatile RAM memory that requires periodic refreshing to sustain its
memory.
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EAIC system: externally asynchronous/internally clocked system.

ECL: emitter-coupled logic.

Edge-triggered flip-flop: a flip-flop that is triggered on either the rising edge or falling
edge of the clock waveform and that exhibits the data-lock-out feature.

EEPROM: clectrically erasable PROM.

E-hazard: essential hazard.

EI: enable-in.

Electron: the majority carrier in an n-type conducting semiconductor.

Electronic switch: a voltage or current controlled switching device.

Emitter: one of three terminals of a BJT.

Emitter-coupled logic (ECL): a high-speed nonsaturating logic family.

EN: enable.

Enable: an input that is used to enable (or disable) a logic device, or that permits the
device to operate normally.

Encoder: a digital device that converts digital signals into coded form.

Endless cycle: an oscillation that occurs in asynchronous FSMs.

Enhancement mode: anormally OFF NMOS that develops an n-channel drain-to-source
conducting path (i.e., turns ON) with application of a sufficiently large positive gate
voltage.

Entered variable (EV): a vanable entered in a K-map.

EO: enable-out.

EPI: essential prime implicant.

EPLD: erasable PLD.

EPROM: erasable programmable read-only memory.

EQPOS: EQV-product-of-sums.

Equivalence: the output of a two-input logic gate that is active if, and only if, its inputs
are logically equivalent (i.e., both active or both inactive).

EQV: equivalence.

EQYV function: the function that derives from the definition of equivalence.

EQYV gate: a physical device that performs the electrical equivalent of the EQV function.

EQV laws: a set of Boolean identities based on the EQV function.

Erasable programmable read-only memory (EPROM): a ROM that can be program-
med many times.

Error catching: a serious problem in a JK master/slave flip-flop where a 1 or 0 is caught
in the master cell when clock is active and is issued to the slave cell output when clock
goes inactive.

Essential hazard: adisruptive sequential hazard that can occur as a result of an explicitly
located delay in an asynchronous FSM that has at least three states and that is operated
in the fundamental mode.

Essential prime implicant (EPI): a prime implicant that must be used to achieve mini-
mum cover.

EU: execution unit.

EV: entered variable.

EV K-map: a K-map that contains EVs.

EV truth table: a truth table containing EVs.

Even parity: an even number of 1I’s (or 0’s) in a binary word depending on how even
parity is defined.
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EVM: entered variable K-map.

Excess 3 BCD (XS3) code: BCD plus three.

Excitation table: a state transition table relating the branching paths to the branching
condition values given in the state diagram for a flip-flop.

Exclusive OR: a two-variable function that is active if only one of the two variables is
active.

EXOP: XOR-sum-of-products.

Expansion of states: opposite of merging of states.

Extender: a circuit or gate that is designed to be connected to a digital device to increase
its fan-in capability — also called an expander.

Factoring law: the Boolean law that permits a variable to be factored out of two or more
p-terms that contain the variable in an SOP or XOR expression.

Fall time: the period of time it takes a voltage signal to change from 90% to 10% of its
high value.

Falling edge-triggered (FET): activation of a device on the falling edge of the triggering
(sampling) variable.

False carry rejection: the feature in an ALU where all carry-outs are disabled for all
nonarithmetic operations.

False data rejection (FDR): the feature of a code converter that indicates when unau-
thonized data has been issued to the converter.

Fan-in: the maximum number of inputs a gate may have.

Fan-out: the maximum number of equivalent gate inputs that a logic gate output can
drive.

FDR: false data rejection.

FDS diagram: fully documented state diagram.

FED: field emission display.

Feedback path: a signal path of a PS variable from the memory output to the NS input.

FET: (falling edge-triggered. Also, field effect transistor.

Fetch: thatpartof an instruction cycle in which the instruction is brought from the memory
to the CPU.

FF: flip-flop.

Field programmable gate array (FPGA): acomplex PLD that may contain a variety of
primitive devices such as discrete gates, MUXs and flip-flops.

Field programmable logic array (FPLA): one-time user programmable PLA.

FIFO: first-in-first-out memory register.

Fill bit: the bit of a combinational shifter that receives the fill logic value in a shifting
operation.

Finite state machine (FSM): a sequential machine that has a finite number of states in
which it can reside.

Flag: ahardware or software “marker” used to indicate the status of a machine.

Flip-flop (FF): a one-bit memory element that exhibits sequential behavior controlled
exclusively by a clock input.

Floating-gate NMOS: special NMOS used in erasable PROMs.

Floating point number (FPN) system: a binary number system expressed in two parts,
as a fraction and exponential, and that is used in computers to arithmetically manipulate
large numbers.

Flow chart: a chart that is made up of an interconnection of action and decision symbols
for the purpose of representing the sequential nature of something.
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Flow table: a tabular realization of a state diagram representing the sequential nature of
an FSM.

Fly state: a state (in a state diagram) whose only purpose is to remove a race condition.
A buffer state.

Forward bias: a voltage applied to a p—n junction diode in a direction as to cause the
diode to conduct (turn ON).

FPGA: field programmable gate array.

FPLA: field programmable logic array.

FPLS: field programmable logic sequencer.

Free set: variables of a function not used as the bond set in CRMT forms.

Frequency, f: the number of waveform cycles per unit time in Hz or s™!.

Frequency division: the reduction of frequency by a factor of f/n usually by means of
a binary counter, where #n is the number of states in the counter.

FSM: finite state machine, either synchronous or asynchronous.

Full adder (FA): a combinational logic device that adds two binary bits to a carry-in bit
and issues a SUM bit and a carry-out bit.

Full subtractor (FS): a combinational logic device that subtracts a subtrahend bit and a
borrow-in bit from a minuend bit, and issues a difference bit and a borrow-out bit.

Fully documented state diagram: a state diagram that specifies all input branching
conditions and output conditions in literal or mnemonic form, that satisfies the sum
rule and mutually exclusive requirement, and that has been given a proper state code
assignment.

Function: a Boolean expression representing a specific binary operation.

Functional partition: adiagram that gives the division of device responsibility in a digital
system.

Function generator: acombinational logic device that generates logic functions (usually
via a MUX).

Function hazard: a hazard that is produced when two or more coupled variables change
in near proximity to each other.

Fundamental mode: the operational condition for an asynchronous FSM in which no
input change is permitted to occur until the FSM has stabilized following any previous
input change.

Fusible link: an element in a PLD memory bit location that can be “blown” to store a
logic 1 or logic O depending on how the PLD is designed.

Gain element: a device, such as a buffer, used to boost a signal.

GAL: general array logic.

Gate: aphysical device (circuit) that performs the electrical equivalent of a logic function.
Also, one of three terminals of a MOSFET.

Gated basic cell: a basic cell that responds to its $ and R input commands only on the
triggering edge of a gate or clock signal.

Gate/input tally: the gate and input count associated with a given logic expression — the
gate tally may or may not include inverters, but the input count must include both external
and internal inputs.

Gate-minimum logic: logic requiring a minimum number of gates; may include XOR
and EQV gates in addition to two-level logic.

Gate path delay: the interval of time required for the output of a gate to respond to an
input signal change.

Glitch: an unwanted transient in an otherwise steady-state signal.
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Go/No-Go configuration: a single input controlling the hold and exit conditions of a
state in a state diagram.

Gray code: areflective unit distance code.

Ground: areference voltage level usually taken to be zero volts.

GS: group signal.

Half adder (HA): a combinational logic device that adds two binary bits and issues a
sum bit and a carry-out bit.

Half subtractor: acombinational logic device that subtracts one binary bit from another
and issues a difference bit and a borrow-out bit.

Hamming distance: as used in this text, the number of state variables required to change
during a given state-to-state transition in an FSM.

Handshake interface: a configuration between two devices whereby the outputs of one
device are the inputs to the other and vice versa.

Hang state: an isolated state in which an FSM can reside stably but which is not part of
the authorized routine.

Hardware description language (HDL): a high-level programming language with spe-
cialized structures for modeling hardware.

Hazard: a glitch or unauthorized transition that is caused by an asymmetric path delay
via an inverter, gate, or lead during a logic operation.

Hazard cover: the redundant cover that removes a static hazard.

HDL: hardware description language.

Heuristic: by empirical means or by discovery.

Hexadecimal (hex): a base 16 number system in which alphanumeric symbols are
used to represent 4-bit binary numbers 0000 through 1111. (See Binary coded
hexadecimal.)

Hold condition: branching from a given state back into itself or the input requirements
necessary to effect such branching action.

Holding register; a PIPO (storage) register that is used to filter output signals.

Hold time: the interval of time immediately following the transition point during which
the data inputs must remain logically stable to ensure that the intended transition of the
FSM will be successfully completed.

Hole: the absence of a valence electron— the majority carrier in a p-type conducting
semiconductor.

HYV: high voltage.

Hybrid function: any function containing both SOP and POS terms.

IC: integrated circuit.

ICS: iterated carry-save.

Implicant: aterm in a reduced or minimized expression.

Inactive: not active and implying logic 0.

Inactive state: the logic O state of a logic device.

Inactive transition point: the point in a voltage waveform where a digital device passes
from the active state to the inactive state.

Incompatibility: a condition where the input to a logic device and the input requirement
of that device are of opposite activation levels.

Incompletely specified function: a function that contains nonessential minterms or max-
terms (see Don’t care).

Increment: to increase usually by 1.
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Indirect address approach: an alternative approach to FSM design where PS feedback
to the NS logic is by way of a converter for the purpose of reducing MUX or PLD
size.

Inertial delay element: a delay circuit based mainly on an R—C component.

Initialize: to drive a logic circuit into a beginning or reference state.

Input: asignal or line into a logic device that controls the operation of that device.

Input/state map: a K-map, with inputs as the axes and state identifiers as cell entries,
that can be used to determine if the sum rule and the mutually exclusive requirement of
any state in an FSM have been violated.

Integrated circuit (IC): an electronic circuit that is usually constructed entirely on a
single small semiconductor chip called a monolith.

Intersection: AND operation.

Inversion: the inverting of a signal from HV to LV or vice versa.

Inverter: a physical device that performs inversion.

Involution: double complementation of a variable or function.

VO: input/output.

10B: 1/O block.

Irredundant: not redundant, as applied to an absolute minimum Boolean expression.

Irrelevant input: an input whose presence in a function is nonessential.

Island: a K-map entry that must be looped out of a single cell.

Iterative: repeated many times to achieve a specific goal.

JEDEC: Joint Electron Device Engineering Council as it pertains to PLD programming
format.

JK flip-flop: a type of flip-flop that can perform the set, reset, hold, and toggle operations.

Juxtapose: to place side by side.

Karnaugh map (K-map): graphical representation of a logic function named after M.
Karnaugh (1953).

Keyword: a word specific to a given HDL.

Kirchhoff’s current law: the algebraic sum of all currents into a circuit element or circuit
section must be zero.

Kirchhoff’s voltage law: the algebraic sum of all voltages around a closed loop must be
zZero.

K-map: Karnaugh map.

LAC: look-ahead-carry (see also CLA).

Large-scale integrated circuits (LSI): IC chips that contain 200 to thousands of gates.

Latch: aname given to certain types of memory elements as, for example, the D latch.

Latency: the time (usually in clock cycles) required to complete an operation in a se-
quential machine.

LCA: logic cell array.

LD: mnemonic for load.

Least significant bit (LSB): the bit (usually at the extreme right) of a binary word that
has the lowest positional weight.

LED: light-emitting diode.

Level: aterm used when specifying to the number of gate path delays of a logic function
(from input to output) usually exclusive of inverters. See, for example, two-level logic.

Level triggered: rising edge triggered (RET) or falling edge triggered (FET).

Linear state machine: an FSM with a linear array of states.
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Line driver: a device whose purpose it is to boost and sharpen a signal so as to avoid
fan-out problems.

LFSR: linear feedback shift register.

LFSR counter: acounter, consisting of an LFSR, that can sequence through a unique set
of pseudorandom states controlled by external inputs.

Logic: the computational capability of a digital device that is interpreted as either a logic
1 or logic 0.

Logic adjacency: two logic states whose state variables differ from each other by only
one bit.

Logic cell: a configurable logic block (CLB).

Logic circuit: a digital circuit that performs the electrical equivalent of some logic func-
tion or process.

Logic diagram: a digital circuit schematic consisting of an interconnection of logic sym-
bols.

Logicfamily: aparticular technology such as TTL or CMOS that is used in the production
of ICs.

Logic instability: the inability of a logic circuit to maintain a stable logic condition. Also,
an oscillatory condition in an asynchronous FSM.

Logic level: logic status indicating either positive logic or negative logic.

Logic level conversion: the act of converting from positive logic to negative logic or
vice versa.

Logic map: any of a variety of graphical representations of a logic function.

Logic noise: undesirable signal fluctuations produced within a logic circuit following
input changes.

Logic state: a unique set of binary values that characterize the logic status of a machine
at some point in time.

Logic waveform: a rectangular waveform between active and inactive states.

Look-ahead-carry (LAC): the feature of a “‘fast” adder that anticipates the need for a
carry and then generates and propagates it more directly than does a parallel adder (see
also carry look-ahead).

Loop-out: the action that identifies a prime implicant in a K-map.

Loop-out protocol: a minimization procedure whereby the largest 2 group of logically
adjacent minterms or maxterms are looped out in the order of increasing n(n =0, 1, 2,
3,00,

LPD: lumped path delay.

LPDD: lumped path delay diagram.

LSB: least significant bit.

LSD: least significant digit.

LSI: large-scale integration.

Lumped path delay diagram (LPDD): a diagram that replaces discrete gates with other
logic symbols for the purpose of comparing path delays from input to output.

Lumped path delay (LPD) model: a model, applicable to FSMs that operate in the
fundamental mode, that is characterized by a lumped memory element for each state
variable/feedback path.

LV: low voltage.

Magnitude comparator: comparator.
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Majority function: afunction thatbecomes active when a majority of its variables become
active.

Majority gate: a logic gate that yields a majority function.

Mantissa: the fraction part of a floating point number.

Map: usually a Karmmaugh map.

Map compression: a reduction in the order of a K-map.

Map key: the order of K-map compression; hence, 2N=" where N is the number of
variables in the function to be mapped and n is the order of the K-map to be used.

Mapping algorithm: In FSM design, the procedure to obtain the NS functions by ANDing
the memory input logic value in the excitation table with the corresponding branching
condition in the state diagram for the FSM to be designed, and entering the result in the
appropriate cell of the NS K-map.

Master/slave (MS) flip-flop: a flip-flop characterized by a master (input) stage and a
slave (output) stage that are triggered by clock antiphase to each other.

Mask: to prevent information from passing a certain point in a given process.

Mask programmed: refers to the bit patterns produced in a PLD chip at the foundry.

Maxterm: aPOS term that contains all the variables of the function.

Maxterm code: a code in which complemented variables are assigned logic 1 and un-
complemented variables are assigned logic 0 — the opposite of minterm code.

Mealy machine: an FSM that conforms to the Mealy model.

Mealy model: the general model for a sequential machine where the output state depends
on the input state as well as the present state.

Mealy output: a conditional output.

Medium-scale integrated circuits (MSI): IC chips that contain 20 to 200 gates according
to one convention.

Memory: the ability of a digital device to store and retrieve binary words on command.

Memory element: adevice for storing and retrieving one bit of information on command.
In asynchronous FSM terminology, a fictitious lumped path delay.

Merge: the concatenation of buses to form a larger bus.

Merging of states: in a state diagram, the act of combining states to produce fewer states.

Metal-oxide-semiconductor: the material constitution of an important logic family
(MOS) used in IC construction.

Metastability: an unresolved state of an FSM that resides between a Set and a Reset
condition or that is logically unstable.

Metastable exit time: the time interval between entrance into and exit from the metastable
state.

MEYV: Map entered variable.

Minimization: the process of reducing a logic function to its simplest form.

Minimum cover: the optimally reduced representation of a logic expression.

Minterm: a term in an SOP expression where all variables of the expression are repre-
sented in either complemented or uncomplemented form.

Minterm code: a logic variable code in which complemented variables are assigned
logic 0 while uncomplemented variables are assigned logic 1 — the opposite of maxterm
code.

Minuend: the operand from which the subtrahend is subtracted in a subtraction operation.

Mixed logic: the combined use of the positive and negative logic systems.
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Mixed-rail output: dual, logically equal outputs of a device (e.g., a flip-flop) where one
output is issued active high while the other is issued active low, but the two are not issued
simultaneously.

Mnemonic: a short single group of symbols (usually letters) that are used to convey a
meaning.

Mnemonic state diagram: a fully documented state diagram.

Model: the means by which the major components and their interconnections are repre-
sented for a digital machine or system.

Module: a device that performs a specific function and that can be added to or removed
from a system to alter the system’s capability. A common example is a full adder.

Modulus-n counter: (see divide-by-n counter)

Monad: a minterm (or maxterm) that is not logically adjacent to any other minterm (or
maxterm).

Moore machine: a sequential machine that conforms to the Moore model.

Moore model: a degenerate form of the Mealy (general) model in which the output state
depends only on the present state.

Moore output: an unconditional output.

MOS: metal-oxide-semiconductor.

MOSFET: metal-oxide-semiconductor field effect transistor.

Most significant bit (MSB): the extreme left bit of a binary word that has the highest
positional weight.

MSB: most significant bit.

MSD: most significant digit.

MSI: medium scale integration.

MTBF: mean time between failures.

Muller C module: arendezvous module (RMOD).

Multilevel logic minimization: minimization involving more than two levels of path
delay as, for example, that resulting from XOR-type patterns in K-maps.

Multiple-output minimization: optimization of more than one output expression from
the same logic device.

Multiplex: to select or gate (on a time-shared basis) data from two or more sources onto
a single line or transmission path.

Multiplexer: a device that multiplexes data.

Multiplicand: the number being multiplied by the multiplier.

Multiplier: a combinational logic device that will multiply two binary numbers. Also,
the number being used to multiply the multiplicand.

Mutually exclusive requirement: a requirement in state diagram construction that for-
bids overlapping branching conditions (BCs)—i.e., it forbids the use of BCs shared
between two or more branching paths.

MUX: multiplexer.

NAND-centered basic cell: cross-coupled NAND gates forming a basic cell.

NAND gate: a physical device that performs the electrical equivalent of the NOT AND
function.

NAND/INV logic: combinational logic consisting exclusively of NAND gates and in-
verters.

Natural binary code: a code for which the bits are positioned in a binary word according
to their positional weight in polynomial notation.
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Natural binary coded decimal: a 4-bit, 10-word code that is weighted 8, 4, 2, 1 and that
is used to represent decimal numbers. Same as binary code.

NBCD: natural binary coded decimal. Same as binary coded decimal (BCD).

n-channel: an n-type conducting region in a p-type substrate.

Negative logic: a logic system in which high voltage (HV) corresponds to logic 0 and
low voltage (LV) corresponds to logic 1. The opposite of positive logic.

Negative pulse: a 1-0-1 pulse.

Nested cell: a basic cell that is used as the memory in an asynchronous FSM design.

Nested machine: any asynchronous machine that serves as the memory in the design of
a larger sequential machine. Any FSM that is embedded within another.

Next state (NS): a state that follows the present state in a sequence of states.

Next state forming logic: the logic hardware in a sequential machine whose purpose it
is to generate the next state function input to the memory.

Next state function: the logic function that defines the next state of an FSM given the
present state.

Next state map: a composite K-map where the entries for each cell are the next state
functions for the present state represented by the coordinates of that cell (see flow
table).

Next state variable: the variable representing the next state function.

Nibble: a group of four bits.

NMH: noise margin high — the lower voltage limit of logic 1 and the upper boundary of
the uncertainty region.

NML: noise margin low — the upper voltage limit of logic O and the lower boundary of
the uncertainty region.

NMOS: an n-channel MOSFET.

Noise immunity: the ability of a logic circuit to reject unwanted signals.

Noise margin: the maximum voltage fluctuation that can be tolerated in a digital signal
without crossing the switching threshold of the switching device.

Non-restoring logic: logic that consists of passive switching devices such as diodes or
transmission gates that cannot amplify but that dissipate power.

Nonvolatile: refers to memory devices that require no power supply to retain information
in memory.

NOR-centered basic cell: cross-coupled NOR gates forming a basic cell.

NOR gate: a physical device that performs the electrical equivalent of the NOT OR
function.

NOR/INYV logic: combinational logic consisting exclusively of NOR gates and inverters.

NOT function: an operation that is the logic equivalent of complementation.

NOT laws: a set of Boolean identities based on the NOT function.

npn: refers to a BJT having a p-type semiconductor base and an n-type semiconductor
collector and emitter.

NS: next state.

Octad: a grouping of eight logically adjacent minterms or maxterms.

Octal: a base 8 number system in which numbers 1 through 7 are used to represent 3-bit
binary numbers 000 through 111. (See Binary coded octal.)

Odd parity: an odd number of I’s or 0’s depending on how odd parity is defined.

Offset pattern: an XOR pattern in a K-map in which identical subfunctions are located
in two nondiagonal cells that differ in cell coordinates by two bits.
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Ohm’s law: voltage is linearly proportional to current, V = RI, where R is the constant
of proportionality called the resistance (in ohms).

One-hot code: a nonweighted code in which there exists only one 1 in each word of the
code.

One-hot design method: use of the one-hot code for synchronous and asynchronous
FSM design.

One-hot-plus-zero: one-hot code plus the all-zero state.

One’s complement: a system of binary arithmetic in which a negative number is repre-
sented by complementing each bit of its positive equivalent.

Operand: a number or quantity that is to be operated on.

Operation table: a table that defines the functionality of a flip-flop or some other device.

Operator: a Boolean connective.

OPI: optional prime implicant.

Optional prime implicant (OPI): a prime implicant whose presence in a minimum
function produces alternative minimum cover.

OR: an operator requiring that the output of an OR gate be active if one or more of its
inputs are active.

OR-AND-Invert gate: a physical device, usually consisting of two OR gates and one
NAND gate, that performs the electrical equivalent of POS with an active low output.

Order: refers to the number of variables on the axes of a K-map.

OR function: a function that derives from the definition of OR.

ORG: output race glitch.

OR gate: a physical device that performs the electrical equivalent of the OR function.

OR laws: a set of Boolean identities based on the OR function.

OR plane: the ORing stage of a PLD.

Outbranching: branching from a state exclusive of the hold branching condition.

Output: a concluding signal issued by a digital device.

Output forming logic: the logic hardware in a sequential machine whose purpose it is to
generate the output signals.

Output holding register: a register, consisting of D flip-flops, that is used to filter out
output logic noise.

Output race glitch (ORG): an internally initiated function hazard that is produced by a
race condition in a sequential machine.

Overflow error: a false magnitude or sign that results from a left shift in a shifter when
there are insufficient word bit positions at the spill end.

Packing density: the practical limit to which switches of the same logic family can be
packed in an IC chip.

PAL: programmable array logic (registered trademark of Advanced Micro Devices, Inc.).

PALU: programmable arithmetic and logic unit.

Parallel adder: a cascaded array of full adders where the carry-out of a given full adder
is the carry-in to the next most significant stage full adder.

Parallel load: the simultaneous loading of data inputs to devices such as registers and
counters.

Parity: related to the existence of an even or odd number of 1’s or (’s in a binary word.

Parity bit: a bit appended to a binary word to detect, create, or remove even or odd parity.

Parity detector: a combinational logic device that will detect an even (or odd) number
of Is (or (’s) in a binary word.
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Parity generator: a combinational logic device that will append a logic 1 (or logic 0) to
a binary word so as to generate an even (or odd) number of 1’s (or 0’s).

Passive device: any device that is incapable of producing voltage or current gain and,
thus, only dissipates power.

Pass transistor switch: a MOS transistor switch that functions as a nonrestoring switch-
ing device and that does not invert a voltage signal. A transmission gate.

PCB: printed circuit board.

p-channel: a p-type conducting region in an n-type substrate.

PDF: portable document format.

FDP: power—delay product.

PE: priority encoder.

Period: the time in seconds (s) between repeating portions of a waveform; hence, the
inverse of the frequency.

Physical truth table: an I/O specification table based on a physically measurable quantity
such as voltage.

PI: prime implicant.

Pipeline: a processing scheme where each task is allocated to specific hardware (joined
in a line) and to a specific time slot.

PIPO: parallel-in/parallel-out operation mode of a register.

PISO: parallel-in/serial-out operation mode of a register.

PLA: programmable logic array.

Planar format: atwo-dimensional K-map array used to minimize functions of more than
four variables.

PLD: programmable logic device.

PLS: programmable logic sequencer.

PMOS: ap-channel MOSFET.

p—n junction diode: (see Diode)

pnp: refers to a BJT having an n-type semiconductor base and a p-type semiconductor
emitter and collector.

Polarized mnemonic: a contracted signal name onto which is attached an activation level
indicator.

Port: an entry or exit element to an entity (e.g., the name given to an input signal in a
VHDL declaration).

POS: product-of-sums.

POS hazard: a static O-hazard.

Positional weighting: a system in which the weight of a bit in a binary word is determined
by its polynomial representation.

Positive logic: the logic system in which HV corresponds to logic 1 and LV corresponds
to logic 0.

Positive pulse: a 0-1-0 pulse.

Power, P: the product of voltage, V, and current, 7, given in units of watts (W).

Power-delay product (PDP): the average power dissipated by a logic device multiplied
by its propagation delay time.

PR or PRE: preset.

Present state (PS): the logic state of an FSM at a given instant.

Present state/next state (PS/NS) table: a table that is produced from the next state
K-maps and that is used to construct a fully documented state diagram in an FSM analysis.
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Preset: an asynchronous input that is used in flip-flops to set them to a logic 1 condition.

Prime implicant (PI): a group of adjacent minterms or maxterms that are sufficiently
large that they cannot be combined with other groups in any way to produce terms of
fewer variables.

Primitive: a discrete logic device such as a gate, MUX, or decoder.

Priority encoder: alogicdevice that generates a coded output based on a set of prioritized
data inputs.

Product-of-sums (POS): the ANDing of ORed terms in a Boolean expression.

Programmable logic array (PLA): any PLD that can be programmed in both the AND
and OR planes.

Programmable logic device (PLD): any two-level, combinational array logic device
from the families of ROMs, PLAs, PALs or FPGAs, etc.

Programmable read-only memory (PROM): a once-only user-programmable ROM.

PROM: programmable read-only memory.

Propagation delay: in a logic device, the time interval of an output response to an input
signal.

PS: present state.

PS/NS: present state/next state.

P-term: a Boolean product term-one consisting only of ANDed literals.

P-term table: a table that consists of p-terms, inputs, and outputs and that is used to
program PLA-type devices.

Pull-down resistor: a resistor that causes a signal on a line to remain at low voltage.

Pull-up resistor: a resistor that causes a signal on a line to remain at high voltage.

Pulse: an abrupt change from one level to another followed by an opposite abrupt change.

Pulse mode: an operational condition for an asynchronous FSM where the inputs are
required to be nonoverlapping pulse signals.

Pulse width: the active duration of a positive pulse or the inactive duration of a negative
pulse.

Quad: a grouping of four logically adjacent minterms or maxterms.

Quadratic convergence: a process as in “fast division” whereby the error per iteration
decreases according to the inverse square law.

Quotient: the result of a division operation.

R: reset.

Race condition: a condition in a sequential circuit where the transition from one state to
another involves two or more alternative paths.

Race gate: the gate to which two or more input signals are in race contention.

Race path: any path that can be taken in a race condition.

Race state: any state through which an FSM may transit during a race condition.

Radix: the number of unique symbols in a number system — same as the base of a number
system.

RAM: random access memory.

Random access memory (RAM): a read/write memory system in which all memory
locations can be accessed directly independent of other memory locations.

R-C: resistance/capacitance or resistor/capacitor.

Read only memory (ROM): a PLD that can be mask programmed only in the OR
plane.
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Read/write memory (RWM): a memory array (e.g., RAM) that can be used to store and
retrieve information at any time.

Redundant cover: nonessential and nonoptional cover in a function representation.

Redundant prime implicant: a prime implicant that yields redundant cover.

Reflective code: a code that has a reflection (mirror) plane midway through the code.

Register: a digital device, configured with flip-flops and other logic, that is capable of
storing and shifting data on command.

Remainder: in division, the dividend minus the product of the divisor and the quotient.

Rendezvous module: an asynchronous state machine whose output becomes active when
all external inputs become active and becomes inactive when all external inputs become
inactive.

Reset: alogic 0 condition or an input to a logic device that sets it to a logic 0 condition.

Residue: the part of term that remains when the coupled variable is removed (see con-
sensus term).

Resistance, R: the voltage drop across a conducting element divided by current through
the element (in ohms).

Resistor-transistor logic:  a logic family that consists of BJTs and resistors.

Restoring logic: logic consisting of switching devices such as BJTs and MOSFETS that
can amplify.

RET: rising edge triggered.

Reverse bias: a voltage applied to a p—n junction diode in a direction that minimizes
conduction across the junction.

Reverse saturation current: the current through a p—n junction diode under reverse bias.

Ring counter: a configuration of shift registers that generates a one-hot code output.

Ripple carry (R-C): the process by which a parallel adder transfers the carry from one
full adder to another.

Ripple counter: a counter whose flip-flops are each triggered by the output of the next
LSB flip-flop.

Rise time: he period of time it takes a voltage (or current) signal to change from 10% to
90% of its high value.

Rising edge triggered (RET): activation of a logic device on the rising edge of the
triggering variable.

RMOD: rendezvous module.

ROM: read-only memory.

Round-off error: the amount by which a magnitude is diminished due to an underflow
or spill-off in a shifter undergoing a right shift.

RPI: redundant prime implicant.

RTL: resistor-transistor logic.

Runt pulse: any pulse that barely reaches the switching threshold of a device into which
it is introduced.

S: set. Also, the source terminal of a MOSFET.

Sampling interval: sum of the setup and hold times.

Sampling variable: the last variable to change in initiating a state-to-state transition in
an FSM.

Sanity circuit: a circuit that is used to initialize an FSM into a particular state, usually a
resistor/capacitor (R—C) type circuit.
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Saturation mode: the physical state of a BIT in which collector current is permitted to
flow.

Schmitt trigger: an electronic gate with hysteresis and high noise immunity that is used
to “square up” pulses.

Selector module: a device whose function it is to steer one of two input signals to either
one of two outputs depending on whether a specific input is active or inactive.

Self-correcting counter: a counter for which all states lead into the main count sequence
or routine.

Sequence detector (recognizer): a sequential machine that is designed to recognize a
particular sequence of input signals.

Sequential machine: any digital machine with feedback paths whose operation is a func-
tion of both its history and its present input data.

Set: alogic 1 condition or an input to a logic device that sets it to a logic 1 condition.

Setup time: the interval of time prior to the transition point during which all data inputs
must remain stable at their proper logic level to ensure that the intended transition will
be initiated.

S-hazard: a static hazard.

Shift register: a register that is capable of shifting operations.

Shift: the movement of binary words to the left or right in a shifter or shift register.

Shifter: a combinational logic device that will shift or rotate data asynchronously upon
presentation.

Sign bit:  a bit appended to a binary number (usually in the MSB position) for the purpose
of indicating its sign.

Sign-complement arithmetic: 1’s or 2’s complement arithmetic.

Sign-magnitude representation: a means of identifying positive and negative binary
numbers by a sign and magnitude.

Single transition time (STT): a state-to-state transition in an asynchronous FSM that
occurs in the shortest possible time, that is, without passing through a race state.

SIPO: serial-in/parallel-out operation mode of a register.

SISO: serial-in/serial-out operation mode of a register.

Slice: that part of a circuit or device that can be cascaded to produce a larger circuit or
device.

Small-scale integration: IC chips that, by one convention, contain up to 20 gates.

SOP: sum-of-products.

SOP hazard: a static 1-hazard.

Source: one of three terminals of a MOSFET. The origin of a digital signal.

Spill bit: the bit in a shifter or shift register that is spilled off (lost) in a shifting operation.

SPDT switch: single-pole/double-throw switch.

SPST switch: single-pole/single-throw switch.

Square wave: a rectangular waveform.

SRAM: static RAM.

SSI: small-scale integration.

Stability criteria: the requirements that determine if an asynchronous FSM, operated in
the fundamental mode, is stable or unstable in a given state.

Stable state: any logic state of an asynchronous FSM that satisfies the stability criteria.

Stack format: a three-dimensional array of conventional fourth-order K-maps used for
function minimization of more than four variables.
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State: aunique set of binary values that characterize the logic status of a machine at some
point in time. '

State adjacency set: any 2" set of logically adjacent states of an FSM.

State code assignment: unique set of code words that are assigned to an FSM to charac-
terize its logic status.

State diagram: the diagram or chart of an FSM that shows the state sequence, branching
conditions, and output information necessary to describe its sequential behavior.

State machine: a finite state machine (FSM). A sequential machine.

State identifier: any symbol (e.g., alphabetical) that is used to represent or identify a
state in a state diagram.

State table: tabular representation of a state diagram.

State transition table: (see excitation table).

State variable: any variable whose logic value contributes to the logic status of a machine
at any point in time. Any bit in the state code assignment of a state diagram.

Static hazard: anunwanted glitch in an otherwise steady-state signal that is produced by
an input change propagating along asymmetric path delays through inverters or gates.

Static-1hazard: a glitch that occurs in an otherwise steady-state 1 output signal from SOP
logic due to a change in an input for which there are two asymmetric paths (delay-wise)
to the output.

Static-0 hazard: aglitch that occurs in an otherwise steady-state O output signal from POS
logic due to a change in an input for which there are two asymmetric paths (delay-wise)
to the output.

Static RAM: anonvolatile form of RAM — does not need periodic refreshing to hold its
information.

Steering logic: logic based primarily on transmission gate switches.

S-term: a Boolean sum term — one containing only ORed literals.

Stretcher: an input conditioning device that catches a short input signal and stretches it.

STT: single transition time.

Stuck-at fault: an input to a logic gate that is permanently stuck at logic O or logic 1
because of a shorted connection, an open connection, or a connection to either ground
or a voltage supply.

Substrate: the supporting or foundation material in and on which a semiconductor device
is constructed.

Subtractor: a digital device that subtracts one binary word from another to give a differ-
ence and borrow.

Subtrahend: the operand being subtracted from the minuend in a subtraction operation.

Sum-of-products (SOP): the ORing of ANDed terms in a Boolean expression.

Sum rule: a rule in state diagram construction that requires that all possible branching
conditions be accounted for.

Switching speed: a device parameter that is related to its propagation delay time.

Synchronizer circuit: a logic circuit (usually a D flip-flop) that is used to synchronize
an input with respect to a clock signal.

Synchronous machine: a sequential machine that is clock driven.

Synchronous parallel load: parallel loading of a register or counter via a clock signal to
the flip-flops.

System level design: a design that includes controller and data path sections.

Tabular minimization: a minimization procedure that uses tables exclusively.
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T flip-flop:  a flip-flop that operates in either the toggle or hold mode.

TG: transmission gate.

Throughput: the time required to produce an output response due to an input change.

Time constant: the product of resistance and capacitance given in units of seconds (s) —a
measure of the recovery time of an R—C circuit.

Timing diagram: a set of logic waveforms showing the time relationships between two
or more logic signals.

Toggle: repeated but controlled transitions between any two states, as between the Set
and Reset states.

Toggle module: a flip-flop that is configured to toggle only. Also, a divide-by-2 counter.

Transfer characteristic: for a transistor switch, a plot of current (7) vs voltage (V).

Trans-HI module: a transparent high (RET) D latch.

Trans-LO module: a transparent low (FET) D latch.

Transistor: a three-terminal switching device that exhibits current or voltage gain.

Transistor—transistor logic: a logic family in which bipolar junction transistors provide
both logic decision and current gain.

Transition: in a digital machine, a change from one state (or level) to another.

Transmission gate: a pass transistor switch.

Transparent D latch: a two-state D flip-flop in which the output, Q, tracks the input, D,
when clock is active if RET or when clock is inactive if FET.

Tree: combining of like gates, usually to overcome fan-in limitations.

Triggering threshold: the point beyond which a transition takes place.

Triggering variable: sampling (enabling) variable.

Tri-state bus: as used in this text, the wire-ORed output lines from a multiplexed scheme
of PLDs having tri-state enables. Note: tri-state is a registered trademark of NSC.

Tri-state driver: an active logic device that operates in either a disconnect mode or an
inverting (or noninverting) mode. Also, three-state driver. Note: tri-state is a registered
trademark of NSC.

True hold: the condition whereby a device can sustain the same logic output values over
any number of clock cycles independent of its input logic status.

Truth table: a table that provides an output value for each possible input condition to a
combinational logic device.

TTL: transistor—transistor (BJT) logic.

Twisted ring counter: a configuration of shift registers that generates a creeping code
output.

Two-level logic: logic consisting of only one ANDing and one ORing stage.

Two-phase clocking: two synchronized clock signals that have nonoverlapping active or
nonoverlapping inactive waveforms.

Two’s complement: one’s complement plus one added to the LSB.

Unconditional branching: state-to-state transitions that take place independent of the
input status of the FSM.

Unconditional output: an output of an FSM that does not depend on an input signal.

Union: OR operation.

Unit distance code: a code in which each state in the code is surrounded by logically
adjacent states.

Universal flip-flop: a JK flip-flop.

Universal gate: a NAND or NOR gate.
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Universal shift register: a shift register capable of performing PIPO, PISO, SIPO, and
SISO operations in addition to being capable of performing the true hold condition.
Unstable state: any logic state in an asynchronous FSM that does not satisfy the stability
criteria.

Unweighted code: a code that cannot be constructed by any mathematical weighting
procedure.

USR: universal shift register.

UVEPROM: ultraviolet erasable PROM.

VEM: variable entered map.

Very large scale integrated circuits: IC chips that contain thousands to millions of gates.

VHDL: VHSIC hardware description language.

VHSIC: very high speed integrated circuit.

VLSI: very large scale integrated circuits.

Voltage, V: the potential difference between two points, in units of volts (V). Also, the
work required to move a positive charge against an electric field.

Voltage waveform: a voltage waveform in which rise and fall times exist.

Weighted code: a binary code in which the bit positions are weighted with different
mathematically determined values.

Wired logic: an arrangement of logic circuits in which the outputs are physically con-
nected to form an “implied” AND or OR function.

WSI circuits:  wafer-scale integrated circuits.

XNOR: (see Equivalence and EQV)

XOR: exclusive OR.

XOR function: the function that derives from the definition of exclusive OR.

XOR gate: a physical device that performs the electrical equivalent of the XOR function.

XOR laws: a set of Boolean identities that are based on the XOR function.

XOR pattern: any of four possible K-map patterns that result in XOR type functions.

XS3 code: BCD code plus three.

ZBI: zero-blanking input.

ZBO: zero-blanking output.

Zerobanking: afeature of a BCD-to-seven-segment conversion that blanks out the seven-
segment display if all inputs are zero.
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CHAPTER 2
I

Number Systems, Binary
Arithmetic, and Codes

2.1 INTRODUCTION

Number systems provide the basis for conveying and quantifying information. Weather
data, stocks, pagination of books, weights and measures — these are just a few examples
of the use of numbers that affect our daily lives. For this purpose we find the decimal (or
Arabic) number system to be reliable and easy to use. This system evolved presumably
because early humans were equipped with a crude type of calculator, their 10 fingers. But a
number system that is appropriate for humans may be intractable for use by a machine such
as a computer. Likewise, a number system appropriate for a machine may not be suitable
for human use.

Before concentrating on those number systems that are useful in computers, it will be
helpful to review those characteristics that are desirable in any number system. There are
Sfour important characteristics in all:

* Distinguishability of symbols

* Arithmetic operations capability
* Error control capability

* Tractability and speed

To one degree or another the decimal system of numbers satisfies these characteristics
for hard-copy transfer of information between humans. Roman numerals and binary are
examples of number systems that do not satisfy all four characteristics for human use. On
the other hand, the binary number system is preferable for use in digital computers. The
reason is simply put: current digital electronic machines recognize only two identifiable
states, physically represented by a high voltage level and a low voltage level. These two
physical states are logically interpreted as binary symbols 1 and 0.

A fifth desirable characteristic of a number system to be used in a computer should be
that it have a minimum number of easily identifiable states. The binary number system
satisfies this condition. However, the digital computer must still interface with humankind.
This is done by converting the binary data to a decimal and character-based form that can

31
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be readily understood by humans. A minimum number of identifiable characters (say 1 and
0, or true and false) is not practical or desirable for direct human use. If this is difficult
to understand, imagine trying to complete a tax form in binary or in any number system
other than decimal. On the other hand, use of a computer for this purpose would not only
be practical but, in many cases, highly desirable.

2.2 POSITIONAL AND POLYNOMIAL REPRESENTATIONS

The positional form of a number is a set of side-by-side (juxtaposed) digits given generally
in fixed-point form as

Radix
MSD Point LSD
Ny = (Gpr---maay + A_10203-0_p)r
nteger Fraction

where the radix (or base), r, is the total number of digits in the number system, and a is
a digit in the set defined for radix r. Here, the radix point separates n integer digits on the
left from m fraction digits on the right. Notice that a,_, is the most significant (highest
order) digit called MSD, and that a_,, is the least significant (lowest order) digit denoted
by LSD.

The value of the number in Eq. (2.1) is given in polynomial form by

n—1
N, = Z air' =@, """+ ar? v ar' +agr® +a !
i=—m
+a-2r_2 +-+ a—mr—m)ry (22)

where a; is the digit in the ith position with a weight r'.

Applications of Egs. (2.1) and (2.2) follow directly. For the decimal system r = 10,
indicating that there are 10 distinguishable characters recognized as decimal numerals
0,1,2,...,r — 1(=9). Examples of the positional and polynomial representations for the
decimal system are

Nio=(dsdad dy - d_1d_>d_3)10

=3017.528

and

Nijg= i d;10!

i==3
=3x10040x10°+1x10"' +7x10°+5x 107" 4+2x 107248 x 107°
=3000 + 10+ 7 + 0.5 + 0.02 + 0.008,
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where d; is the decimal digit in the ith position. Exclusive of possible leading and trailing
zeros, the MSD and LSD for this number are 3 and 8, respectively. This number could have
been written in a form such as Nyp = 03017.52800 without altering its value but implying
greater accuracy of the fraction portion.

2.3 UNSIGNED BINARY NUMBER SYSTEM

Applying Egs. (2.1) and (2.2) to the binary system requires that » = 2, indicating that there
are two distinguishable characters, typically 0 and (» — 1) = 1, that are used. In positional
representation these characters (numbers) are called binary digits or bits. Examples of the
positional and polynomial notations for a binary number are

No=(by—1 - b3bsbiby-b_1b_sb.3- -b_p)
=101101.101
t t
MSB LSB

and

n—1

N=> b2

i=-—m

=1x24+0x2'+1x22+1x224+0x2!
+1x20+1x2'+0x2 241 x273

=32484+44+1405+0.125

=45.6250,

where n = 6 and m = 3, and b; is the bit in the ith position. Thus, the bit positions are
weighted,. . .16, 8,4, 2,1, 172, 1/4, 1/8,. . .for any number consisting of integer and fraction
portions. Binary numbers, so represented, are sometimes referred to as natural binary. In
positional representation, the bit on the extreme left and extreme right are called the MSB
{most significant bit) and LSB (least significant bit), respectively. Notice that by obtaining
the value of a binary number, a conversion from binary to decimal has been performed. The
subject of radix (base) conversion will be dealt with more extensively in a later section.

For reference purposes, Table 2.1 provides the binary-to-decimal conversion for two-,
three-, four-, five-, and six-bit binary. The six-bit binary column is only halfway completed
for brevity.

In the natural binary system the number of bits in a unit of data is commonly assigned a
name. Examples are:

4 data-bit unit— nibble (or half byte)

8 data-bit unit— byte

16 data-bit unit — two bytes (or half word)
32 data-bit unit — word (or four bytes)

64 data-bit unit — double-word
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Table 2.1 Binary-to-decimal conversion

Two-Bit Decimal Three-Bit Decimal Four-Bit Decimal Five-Bit Decimal Six-Bit Decimal
Binary  Value Binary Value Binary Value Binary Value Binary Value

00 0 000 0 0000 0 10000 16 100000 32
01 1 001 1 0001 1 10001 17 100001 33
10 2 010 2 0010 2 10010 18 100010 34
11 3 011 3 0011 3 10011 19 100011 35
100 4 0100 4 10100 20 100100 36

101 5 0101 5 10101 21 100101 37

110 6 0110 6 10110 22 100110 38

111 7 0111 7 10111 23 100111 39

1000 8 11000 24 101000 40

1001 9 11001 25 101001 41

1010 10 11010 26 101010 42

1011 11 11011 27 101011 43

1100 12 11100 28 101100 44

1101 13 11101 29 101101 45

1110 14 11110 30 101110 46

1111 15 11111 31 101111 47

The word size for a computer is determined by the number of bits that can be manipu-
lated and stored in registers. The foregoing list of names would be applicable to a 32-bit
computer.

2.4 UNSIGNED BINARY CODED DECIMAL, HEXADECIMAL, AND OCTAL

Although the binary system of numbers is most appropriate for use in computers, this
system has several disadvantages when used by humans who have become accustomed to
the decimal system. For example, binary machine code is long, difficult to assimilate, and
tedious to convert to decimal. But there exist simpler ways to represent binary numbers for
conversion to decimal representation. Three examples, commonly used, are natural binary
coded decimal (BCD), binary coded hexadecimal (BCH), and binary coded octal (BCO).
These number systems are useful in applications where a digital device, such as a computer,
must interface with humans. The BCD code representation is also useful in carrying out
computer arithmetic.

2.4.1 The BCD Representation

The BCD system is an 8, 4, 2, 1 weighted code. This system uses patterns of four bits to
represent each decimal position of a number and is converted to its decimal equivalent by



2.4 UNSIGNED BINARY CODED DECIMAL, HEXADECIMAL, AND OCTAL 35

Table 2.2 BCD bit patterns and decimal equivalent

BCD BCD
Bit Pattern Decimal Bit Pattern Decimal

0000 0 1000 8
0001 1 1001 9
0010 2 1010 NA
0011 3 1011 NA
0100 4 1100 NA
0101 5 1101 NA
0110 6 1110 NA
o111 7 1111 NA

NA = not applicable (code words not valid)

polynomials of the form

Nig=b3 x 22 +by x 22 +b; x 2! + by x 2°
=byx8+br xd+b; x2+byx 1

for any bsb, b by code integer. Thus, decimal 6 is represented as (0 x 8) +- (1 x 4) + (1 x
2)4(0 x 1) or 0110 in BCD code. As in binary, the bit positional weights of the BCD code
are derived from integer powers of 2". Table 2.2 shows the BCD bit patterns for decimal
integers 0 through 9.

Decimal numbers greater than nine or less than one can be represented by the BCD code
if each digit is given in that code and if the results are combined. For example, the number
63.98 is represented by (or converted to) the BCD code

6 3 .9 8
63.981p = (0110 0011 . 1001 1000)pcp
= 1100011.1001gcp

Here, the code weights are 80, 40, 20, 10; 8, 4, 2, 1; 0.8, 0.4, 0.2, 0.1; and 0.08, 0.04, 0.02,
0.01 for the tens, units, tenths, and hundredths digits, respectively, representing four decades.
Notice that the leading and trailing 0’s can be dropped. Pencil-and-paper conversion between
binary and BCD requires conversion to decimal as an intermediate step. For example, to
convert from BCD to binary requires that groups of four bits be selected in both directions
from the radix point to form the decimal number. If necessary, leading and trailing zeros
are added to the leftmost or rightmost ends to complete the groups of four bits as in the
example above. Negative BCD numbers are coded by using 10°s complement notation as
discussed in a later section.

Another code that is used for number representation and manipulation is called Excess
3 BCD (or XS3 BCD or simply XS3). XS3 is an example of a biased-weighted code (a bias
of 3). This code is formed by adding 0011, (= 3y) to the BCD bit patterns in Table 2.2.
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Thus,
XS83 =BCD + 0011.

For example, the number 63.98 is represented in XS3 code as 1001 0110 . 1100 1011xs3.
To convert XS3 to BCD code, 0011 must be subtracted from XS3 code. In 4-bit quan-
tities the XS3 code has the useful feature that when two numbers are added together in
XS83 notation, a carry will result and yield the correct value any time a carry results in
decimal (i.e., when 9 is exceeded). This feature is not shared by either binary or BCD
addition.

2.4.2 The Hexadecimal and Octal Systems

The hexadecimal number system requires that r = 16 in Egs. (2.1) and (2.2), indicating
that there are 16 distinguishable characters in the system. By convention, the permissible
hexadecimal digits are 0, 1, 2, 3, 4,5,6,7,8,9, A, B, C, D, E, and F for decimals 0
through 15, respectively. Examples of the positional and polynomial representations for a
hexadecimal number are

Nig=(hy_1---hstohihg-h th_oh_3---h_ )6
— (AF3 - C8)

with a decimal value of

n—1

N= Z hil6

i=—m

=10x 16" +15x 16" +3x 16°+ 12 x 167" +8 x 16>
= 2803.78125)¢.
Here, it is seen that a hexadecimal number has been converted to decimal by using Eq. (2.2).
The octal number system requires that r = 8 in Eqs. (2.1) and (2.2), indicating that there
are eight distinguishable characters in this system. The permissible octal digits are 0, 1, 2,
3,4,5,6,and 7, as one might expect. Examples of the application of Eqs. (2.1) and (2.2) are
Ng = (0n~1 020100 0-1020_3 - 0_p)3

= 501.74s,

with a decimal value of
n—1

N = Z 0,'8i

i=—m

=5x8+0x8 +1x8 +7x8"'+4x82
=321.9375,,.



2.5 CONVERSION BETWEEN NUMBER SYSTEMS 37

Table 2.3 The BCH and BCO number systems

Binary BCH BCO Decimal Binary BCH BCO Decimal
0000 0 0 0 1010 A 12 10
0001 1 1 1 1011 B 13 11
0010 2 2 2 1100 C 14 12
0011 3 3 3 1101 D 15 13
0100 4 4 4 1110 E 16 14
0101 5 5 5 11 F 17 15
0110 6 6 6 10000 10 20 16
0111 7 7 7 11011 1B 33 27
1000 8 10 8 110001 31 61 49
1001 9 11 9 1001110 4E 116 78

When the hexadecimal and octal number systems are used to represent bit patterns in
binary, they are called binary coded hexadecimal (BCH) and binary coded octal (BCO),
respectively. These two number systems are examples of binary-derived radices. Table 2.3
lists several selected examples showing the relationships between BCH, BCO, binary and
decimal.

What emerges on close inspection of Table 2.3 is that each hexadecimal digit corresponds
to four binary digits, and that each octal digit corresponds to three binary digits. The
following example illustrate the relationships between these number systems:

5 B F .D 8
10110111111.11011, =0101 1011 1111.1101 1000
= 5BF.D8;
2 6 7 7 .6 6
=010 110 111 111 . 110 110
=2677.663
= 1471.843751.

To separate the binary digits into groups of four (for BCH) or groups of three (for BCO),
counting must begin from the radix point and continue outward in both directions. Then,
where needed, zeros are added to the leading and trailing ends of the binary representation
to complete the MSDs and LSDs for the BCH and BCO forms.

2.5 CONVERSION BETWEEN NUMBER SYSTEMS

It is not the intent of this section to cover all methods for radix (base) conversion. Rather,
the plan is to provide general approaches, separately applicable to the integer and fraction
portions, followed by specific examples.
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2.5.1 Conversion of Integers

Since the polynomial form of Eq. (2.2} is a geometrical progression, the integer portion can
be represented in nested radix form. In source radix s, the nested representation is

N, =(tp 15" +ap28" > - +ars' +aps?),

=apg+s(a +s(a+---+ap-1)) )
n—I1

=qay+3 (Z a;s*'"') (2.3)
=

for digits a; having integer values from 0 to n — L. The nested radix form not only suggests
a conversion process, but also forms the basis for computerized conversion.
Consider that the number in Eq. (2.3) is to be represented in nested radix » form,

N*’ =b0 +!”{b| +!’(b2 = b B +bm—|))' ! ')r
m—|
=by+r (Zb;rf_') , (2.4)
=]

where, in general, m % n. Then, if the source number N, is divided by r, the results are of
the form

N, R
ALY, (2.5)
r r

where @ is the integer quotient rearranged as Qg = by +r(by+ -+ b, 1) -+-)and R is
the remainder Ry = by. A second division by r yields Qu/r = Q| + R\ /r, where Q| is
arranged as Q) = by +r(bs+ -+ + byy) - +), and R) = b). Thus, by repeated division
of the integer result Q; by r, the remainders yield (by, &), b2, .. .. b,,_,), in that order.
The conversion method just described, called the radix divide method. can be used to
convert between any two integers of different radices. However, the requirement is:

The arithmetic required by N,[r must be carried out in source radix, s.
|

Except for source radices 10 and 2, this creates a problem for humans.

Table 2.4 provides the recommended procedures for integer conversion by noncomputer
means. The radix divide method is suitable for use in computers only if they are programmed
to carry out the arithmetic in different radices. Notice the partitioning required for conversion
between binary and BCH and BCO integers.

The following two algorithms offer noncomputer metheds for integer conversion:

Algorithm 2.1: N, < N, Positive Integer Conversion

Use Eq. (2.2) and the substitution method with base 10 arithmetic to convert N, to Nyg,
then use the radix divide method and base 10 arithmetic to convert Nig to N,.
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Table 2.4 Summary of recommended methods for integer conversion
by noncomputer means

Integer Conversion
Conversion Method
Nip — N, Radix division by radix r using Eq. (2.5)
N, = Ny Eq. (2.2) or (2.3)

Nedez1o = Nedpzio Ns — Ny by Eq. (2.2) or (2.3)
Nyio — N, radix division by r using Eq. (2.5)

Special Cases for Binary Forms

N> — Ny Positional weighting

Na — Npcy Partition N3 into groups of four bits starting from
radix point, then apply Table 2.3

N2 — Neco Partition &> into groups of three bits starting from
radix point, then apply Table 2.3

Npcy — Na Reverse of No» — Npey

Neco — N> Reverse of N2 — Ngco

Npcw — Nsco Npcy — N2 — Npco

Neco — Nacu Ngco — N2 — Nacy

Necp — Nxs; Add 00112 (=30) 10 Npcp

Nyes = Npep Subtract 00113 (=3 p) from Nyg;

Algorithm 2.2: Ny < N Positive Integer Conversion

To convert numbers Na to Now, where n and & are integers, convert the groups of n
digits in Ny to Ns, then reorganize the result in groups of k beginning with the LSB and
proceeding toward the MSB.' Finally, replace each group of k, reading from the LSB,
with the digit appropriate for number system No:.

The integer conversion methods of Table 2.4 and Algorithms 2.1 and 2.2 are illustrated
by the following simple examples:

ExampPLE 2.1 139,y — N2

N/r Q R
1392 = 69 1
692 = 34 |
342 = 17 0
172 = 8 |
82 = 4 0
42 = 2 0
22 = 1 0
12 = 0 1 139,5= 10001011,

ExampLE 2.2 10001011, — Ny
By positional weights Njg = 128 +8 + 2 + 1 = 139),.

I Note that leading 0's may be needed to complete the groups of k.
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ExampLE 2.3 139, — N;

N/r g R
139/8 = 17 3
17/8 = 2 1
28 = 0 2 139,=213
ExampPLE 2.4 10001011, — Npco
2 1 3

010 001 011 = 213gco

ExamMpPLE 2.5 213gco — Npcu

2 1 3 8 B
213gco =010 001 011 = 10001011, = 1000 1011 = 8B¢

EXAMPLE 2.6 2133 — N5

2133 =2 x 82 + 1 x 8' +3 x 89 = 139y,

N, 0 R
139/5 = 27 4
215 = 5 2
555 = 1 0
/5 = 0 1 2135=1024s

Check: 1 x 2 +0x524+2x5" +4 x50 =12540+10+4 = 139

2.5.2 Conversion of Fractions

By extracting the fraction portion from Eq. (2.2) one can write
N=( s "+aos 2+ Fa s ™
=s"a | +s a2+ Fa )

=s—‘<a_, + Za_,-s"'“) (2.6)
i=2

s

in source radix s. This is called the nested inverse radix form and provides the basis for
computerized conversion.
If the fraction in Eq. (2.6) is represented in nested inverse radix r form, then

N = (b_lr‘l + b_zr_2 + o+ b_I,SAF),-
=r7 b+ b+ b)),
P
=r'<b1 +Zb,-r-"+'> (2.7)
i=2 r

for any fraction represented in radix r. Now, if source N is multiplied by r, the result is of
the form

Ny xr=1I1+F, 2.8)



2.5 CONVERSION BETWEEN NUMBER SYSTEMS 41

where / 1s the product integer, /1 = b_,, and Fj is the product fraction arranged as F| =
rl\ b r b+ - +b_,)) ). By repeated multiplication by r of the remaining
fractions Fj, the resulting integers yield (b_y, b_2, b_3.... b_,,), in that order.

The conversion just described is called the radix multiply method and is perfectly general
for converting between fractions of different radices. However, as in the case of integer
conversion, the requirement is that the arithmeric required by -N; x r must be carried out
in source radix, s. For noncomputer use by humans, this procedure is usually limited to
fraction conversions Ny — N,, where the source radix is 10 (decimal). Algorithm 2.3
gives the recommended methods for converting between fractions of different radices. The
radix multiply method is well suited to computer use.

Algorithm 2.3: -N,, < -N; Fraction Conversion

(1) Use Eq. (2.2) and the substitulion_ method with base s arithmetic, or
(2) Use the radix multiply method of Eq. (2.8) with source radix s arithmetic.

In either case for noncomputer means, if the source radix is other than 2 or 10, convert
the fraction as follows: -N, — Na v — -N, so that base 2 or 10 arithmetic can be
applied.

Shown in Table 2.5 are the recommended methods given in some detail for fraction
conversion by noncomputer means. Notice again the partitioning that is now required for
conversion between binary fractions and those for BCH and BCO.

For any integer of source radix s, there exists an exact representation in radix r. This is not
the case for a fraction whose conversion is a geometrical progression that never converges.

Table 2.5 Summary of recommended methods for fraction conversion
by noncomputer means

Fraction Conversion
Conversion Method
Nip — -N, Radix multiplication by using Eq. (2.8)
Ny — -Nyp Eq. (2.2) or (2.6)
Nidegio = Nedrzio ‘Ng — Ny by Eq. (2.2) or (2.6)

-Nyg — -N, radix multiplication by Eq. (2.5)

Special Cases for Binary Forms

Nz — Ny Positional weighting

No = Npey Partition - N> into groups of four bits starting from
radix point, then apply Table 2.3

N2 — -Npco Partition - N> into groups of three bits starting from
radix point, then apply Table 2.3

“Npcy — N2 Reverse of Ny = Npcy

Npeo — -Na Reverse of ‘N2 — Npco

‘Npcw — “Nyco -Ngcy — N2 — -Nyco

‘Naco — -Ngcn -Ngco — -N2 — -Npcn

-Neco — -Nxs3 Add 00112 (= 310) to Nacp

‘Nxs3 — Npep Subtract 00112 (=3g) from Ny
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Terminating a fraction conversion at n digits (to the right of the radix point) results in an
error or uncertainty. This error is given by

—in+ —in+2
in n+a_m+2,!' R

&
e —(ni)
=r a-, + a_jni)¥ .
=1 5

where the quantity in brackets is less than (a_, + 1). Therefore, terminating a fraction
conversion at n digits from the radix point results in an error with bounds

—n
e=a_y,r "+ d_pipt

0<e = r—”(a—n + ]) {2‘9)

Equation (2.9) is useful in deciding when to terminate a fraction conversion.
Often, it is desirable to terminate a fraction conversion at 7 + | digits and then round off
to n from the radix point. A suitable method for rounding to » digits in radix r is:

Algorithm 2.4: Rounding Off to n Digits for Fraction Conversion in Radix r

Perform the fraction conversion to (#n — 1) digits from the radix point, then drop the
(n — 1) digit if @ g1y < r/2; add r~"=" to the result if a_g,—;, > r/2.

After rounding off to n digits, the maximum error becomes the difference between the
rounded result and the smallest value possible. By using Eq. (2.9), this difference is

= = A_(p41y
Emax=F Ha_,+1)—r ”(a_,, +—"
v

r /

Then, by rounding to »n digits, there results an error with bounds

0 < e gr-"(l ﬁ““&'ﬂ)‘ (2.10)
r
If a_+1y < /2 and the (n + 1) digit is dropped, the maximum error is » ~". Note that for
N; = Njg — N, type conversions, the bounds of errors aggregate.

The fraction conversion methods given in Table 2.5 and Algorithms 2.3 and 2.4 are
illustrated by the following examples:

ExampLE 2.7 0.654,; — N> rounded to 8 bits:

Ny xr F
0.654 x2 0.308
0.308 x2 0.616
0.616 x2 0.232
0.232 x2 0.464

o= D
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0464 x2 0.928
0.928 x2 0.856
0.856 x2 0.712
0.712 x2 0424 1 0.654,5 =0.10100111,
0424 x2 0848 0 epp=2"°

— e O

ExAMPLE 2.8 0.654)) — Ng terminated at 4 digits:

Ny xr F
0.654 x 8 0.232
0.232x8 0.856
0.856 x 8 0.848 with error bounds
0.848 x 8 0.784 0<e<7x8*=1.71x 107 by Eq. (2.9)

ExaMPLE2.9 Let(0.51665 — N, beroundedto 8 bits and let0.5166g — N be rounded
to 4 decimal places:

0.6541p = 0.51663

AN = W~

0.51665=5x8"'+1x82+6x8°+6x8*
=0.625000 + 0.015625 + 0.011718 + 0.001465

=0.6538; rounded to 4 decimal places; gy < 107

Ny Xr F
0.6538 x 2 0.3076
0.3076 x 2 0.6152
0.6152 x 2 0.2304
0.2304 x 2 0.4608
0.4608 x 2 09216
0.9216 x 2 0.8432
0.8432 x 2 0.6864
0.6864 x 2 0.3728 1 0.5166g = 0.10100111; (compare with Example 2.7)
03728 x 2 0.7457 0 &9 <107* 4278 =0.0040

ExampLE 2.10 0.10100111; — Ngcu

_ = O O = O =~

AT
0.10100111, =0.1010 0111 = 0.A7gcy

2.6 SIGNED BINARY NUMBERS

To this point only unsigned numbers (assumed to be positive) have been considered. How-
ever, both positive and negative numbers must be used in computers. Several schemes have
been devised for dealing with negative numbers in computers, but only four are commonly
used:

» Signed-magnitude representation
* Radix complement representation
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» Diminished radix complement representation
* Excess (offset) code representation

Of these, the radix 2 complement representation, called 2’s complement, is the most widely

used system in computers.

2.6.1 Signed-Magnitude Representation

A signed-magnitude number in radix r consists of a magnitude |N| together with a symbol
indicating its sign (positive or negative) as follows:

Integer Fraction

Nesy= | an-1 Gpz2-maiag-a_1a2a_3---a , (2.11)
——

Sign Magnitude |N | M

where the subscript rSM refers to signed-magnitude in radix r. Such a number lies in the
decimal range of —(r"~' — 1) through +(r"~! — 1) for n integer digits in radix r. The
fraction portion, if it exists, consists of m digits to the right of the radix point.

The most common examples of signed-magnitude numbers are those in the decimal and
binary systems. The sign symbols for.decimal (+ or —) are well known. In binary it is
established practice to use the following convention:

0 denotes a positive number

1 denotes a negative number.
One of these (0 or 1) is placed at the MSB position of each SM number. Four examples in
8-bit binary are:

EXAMPLE 2.11

Magnitude

p——
+45.5,0 = 0 101101.1;5,
T

Sign
Bir

EXAMPLE 2.12
40,9 = 0 000000055
ExampLE 2.13

Magnitude

——
—123;0= 1 111101 135p
T

Sign
Bit
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ExaMPLE 2.14
—0;0 = 1 000000025

Although the sign-magnitude system is used in computers, it has two drawbacks. There
is no unique zero, as indicated by the previous examples, and addition and subtraction
calculations require time-consuming decisions regarding operation and sign, for example,
(—7) minus (—4). Even so, the sign-magnitude representation is commonly used in floating-
point number systems as discussed in Section 2.8.

2.6.2 Radix Complement Representation

The radix complement N,¢ of an n-digit number N, is obtained by subtracting N, from ",
that is,

NrC =r" — Nr
=N, + l5p (2.12)

where
N, = Digit complementation in radix r

This operation is equivalent to that of replacing each digit ¢; in N, by (r — 1) — a; and
adding 1 to the LSD of the result as indicated by Algorithm 2.5. The digit complements
N, for three commonly used number systems are given in Table 2.6. Notice that the digit
complement of a binary is formed simply by replacing the 1’s with 0’s and 0’s with 1’s
required by 2" — N, — 1 = N, as discussed in Subsection 2.6.3. The range of representable
numbers is —("~') through +(»"~' — 1).

Application of Eq. (2.12) or Algorithm 2.5 to the binary and decimal number systems
requires that for 2’s complement representation Noc = N, + 1,55 and for 10’s complement
Nioc =N + 1.5p, where N, and Ny are the binary and decimal digit complements

given in Table 2.6.

Table 2.6 Digit complements for three
commonly used number systems

Complement (N,)

Digit Binary Decimal Hexadecimal
0 1 9 F
1 0 8 E
2 7 D
3 6 C
4 5 B
S 4 A
6 3 9
7 2 8
8 1 7
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Algorithm 2.5: N < N,
Replace each digit ¢, in N, by (r — 1) — @, and then add 1 to the LSD of the resultant.

A simpler, “pencil-and-paper” method exists for the 2's complement of a number N
and is expressed by Algorithm 2.6:

Algorithm 2.6: Noe < N>

For any binary number N, and beginning with the LSB, proceed toward the MSB until
the first 1 bit has been reached. Retain that | bit and complement the remainder of the
bits toward and including the MSB.

With reference to Table 2.6, Eq. (2.12), and Algorithm 2.5 or 2.6, the following examples
of radix complement representation are provided:

EXAMPLE 2.15 The L0’s complement of 47.83 is N ¢ + lzsp = 52.17.
EXAMPLE 2.16 The 2's complement of 0101101.101 is N3 + I 55 = 1010010.011.
ExaMpPLE 2,17 The 16's complement of A3D is N g + l sp = 5C2 + 1 = 5C3.

The decimal value of Eq. (2.12) can be found from the polynomial expression as

n—2

Neohio = —(@r" )+ Y ar! (2.13)

f=—m

for any n-digit number of radix r. In Egs. (2.12) and (2.13) the MSD is taken to be the
position of the sign symbol.

2’s Complement Representation The radix complement for binary is the 2’s comple-
ment (2C) representation. In 2's complement the MSB is the sign bit. | indicating a negative
number and ( a positive one. The decimal range of representation for n integer bits in 2’s
complement is from —(2" ") through (2"~ — 1). From Eq. (2.12), the 2's complement is
formed by

Nye=2"=No=Na+ s (2.14)

for any binary number A of n integer bits. Or by Algorithm 2.5, the 2’s complement of
a binary number N is obtained by replacing each bit a; in N> by (1 — a;) and adding |
to the LSB of the result. The simpler pencil-and-paper method, often used to generate 2°s
complement from a binary number N, . results from application of Algorithm 2.6. In this
case N, is the bit complement of the number as given in Table 2.6. A few examples of 8-bit
2’s complement numbers are shown in Table 2.7. Notice that application of Eq. (2.14) or
Algorithm 2.6 changes the sign of the decimal value of a binary number (+ to — and vice
versa), and that only one zero representation exists.

Application of Eq. (2.13) gives the decimal value of any 2's complement number, in-
cluding those containing a radix point. For example, the pattern Mo = 11010010.011 has
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Table 2.7 Examples of eight-bit 2’s and 1’s
complement representations (MSB = sign bit)

Decimal 2’s I’s
Value Complement Complement
—128 10000000
—127 10000001 10000000
—31 11100001 11100000
—16 11110000 11101111
—15 11110001 11110000

-3 11111101 11111100
-0 00000000 11111111
+0 00000000 00000000
+3 00000011 00000011
+15 00001111 00001111
+16 00010000 00010000
+31 00011111 00011111
+127 01111111 01111111
+128

a decimal value of

(Nocdio=—1x274+1x20+1x2" +1x2'+1x272+1x273
=—128 464+ 16+ 2+ 0.25+0.125
= —45.625.

But the same result could have easily been obtained by negation of N, followed by the
use of positional weighting to obtain the decimal value. Negation is the reapplication of
Eq. (2.12) or Algorithms 2.5 or 2.6 to any 2’s complement number N;¢ to obtain its true
value. Thus, from the forgoing example the negation of Na¢ is given by

Noc)oc =00101101.101
=32+8+5+0.5+0.125
=45.625),
which is known to be a negative number, —45.625,.
Negative BCD numbers are commonly represented in 10’s complement notation with

consideration of how BCD is formed from binary. As an example, —59.24,5 = 40.76 is
represented in BCD 10’s complement (BCD,10C) by

—0101 1001.0010 0100)gcy, = 0100 0000.0111 0110)gcp,10¢,
where application of Eq. (2.12), or Algorithm 2.5 or 2.6, has been applied in radix 10 fol-

lowed by the BCD representation as in Subsections 2.4.1. Alternatively, the sign-magnitude
(SM) representation of a negative BCD number simply requires the addition of a sign bit
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to the BCD magnitude according to Eq. (2.11). Thus,

—0101 1001.0010 010055 = (1 01011001.0010 0100z 2541-

2.6.3 Diminished Radix Complement Representation

The diminished radix complement Ni,_ ¢ of a number N, having n digits is obtained by
Np-ye=r"=N,—1, (2.15)
where, according to Eq. (2.12), N, _i,c + 1 = N,¢. Therefore, it follows that
Niy—ije = N,

This means the diminished radix complement of a number is the digits complement of
that number as expressed by Algorithm 2.7. The range of representable n digit numbers in
diminished radix complement is —(r"~' — 1) through +("~' — 1) for radix r.

Algorilhm i N{r-l)C <~ N,

(1) Replace each digita; of N, by r — 1 —a; or
(2) Complement each digit by N, as in Table 2.6.

In the binary and decimal number systems the diminished radix complement represen-
tations are the 1's complement and 9's complement, respectively. Thus, 1's complement is
the binary digits complement given by N, = N5, while the 9°’s complement is the decimal
digits complement expressed as Noc = N jp. Examples of eight-bit 1's complements are
shown in Table 2.7 together with their corresponding 2's complement representation for
comparison. Notice that in 1's complement there are two representations for zero, one for
-++0 and the other for —0. This fact limits the usefulness of the 1's complement representation
for computer arithmetic.

Shown in Table 2.8 are examples of 10’s and 9’s complement representations in n digits
numbering from 3 to 8. Notice that leading 0’s are added to the number on the left to meet
the n digit requirement.

Table 2.8 Examples of 10s and 9’s complement
representation

Number n 1(¥’s Complement 9’s Complement
0 5 [ 1100000 99999
3 3 997 996
14.59 6 9985.41 9985.40
225 4 9775 9774
21.456 5 78.544 78.543
1827 8 99998173 99998172
4300.50 7 95699.50 95699.49
69.100 6 330.900 930.899
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2.7 EXCESS (OFFSET) REPRESENTATIONS

Other systems for representing negative numbers use excess or offset (biased) codes. Here,
a bias B is added to the true value N, of the number to produce an excess number, N,
given by

When B = r"! exceeds the usable bounds of negative numbers, N,, remains positive.
Perhaps the most common use of the excess representation is in floating-point number sys-
tems — the subject of the next section. The biased-weighted BCD code, XS3, was discussed
in Subsection 2.4.1.

Two examples of excess 127 representation are given below.

EXAMPLE 2.18

—4319 11010101 No compr.
+127,0 01111111 B
8410 01010100 N, = —43}¢ in excess 127 representation

ExamMPLE 2.19

2710 00011011 Nz comp
+127, 01111111 B
154, 10011010 N, = 27,y in excess 127 representation

The representable decimal range for an excess 2"~ number system is —2"~! through
+(2"~! — 1) for an n-bit binary number. However, if N, + B > 2"~! — 1, overflow occurs
and 2"~! must be subtracted from (N, + B) to give the correct result in excess 2"~ code.

2.8 FLOATING-POINT NUMBER SYSTEMS

In fixed-point representation [Eq. (2.1)], the radix point is assumed to lie immediately to the
right of the integer field and at the left end of the fraction field. The fixed-point system is the
most commonly used system for representing bounded orders of magnitude. For example,
with 32 bits a binary number could represent decimal numbers with upper and lower bounds
of the order of £10'% and 107!, However, for greatly expanded bounds of representation,
as in scientific notation, the floating-point representation is needed. This form of number
representation is commonly used in computers.
A floating-point number (FPN) in radix r has the general form

FPN), = M x r%, 2.17)

where M is the fraction (or mantissa) and E is the exponent. Only fraction digits are used
for the mantissa! Take, for example, Planck’s constant # = 6.625 x 10™** J s. This number
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can be represented many different ways in floating-point notation:

Planck’s constant, # = 0.6625 x 107
=0.06625 x 10+
= 0.006625 x 1073,

All three adhere to the form of Eq. (2.17) and are, therefore, legitimate floating-point
numbers in radix 10. Thus, as the radix point floats to the left, the exponent is scaled
accordingly. The first form for / is said to be normalized because the most significant digit
(MSD) of M is nonzero, a means of standardizing the radix point position. Notice that the
sign for M is positive while that for E is negative.

In computers the FPN is represented in binary where the normalized representation
requires that the MSB for M always be 1. Thus, the range in M in decimal is

05=M <1

Also, the fraction (mantissa) M is represented in sign-magnitude from. The normalized
format for a 32-bit floating-point number in binary, which agrees with the 1EEE standard
{31, is shown in Fig. 2.1. Here, the sign bit (1 if negative or 0 if positive) is placed at bit
position () to indicate the sign of the fraction. Notice that the radix point is assumed to lie
between bit positions 8 and 9 to separate the E bit-field from the M bit-field.

Before two FPNs can be added or subtracted in a computer, the £ fields must be compared
and equalized, and the M fields adjusted. The decision-making process can be simplified
if all exponents are converted to positive numbers by using the excess representation given
by Eq. (2.16). For a g-digit number in radix r, the exponent in Eq. (2.17) becomes

Es=E + rq—l' (2.18)

where E is the actual exponent augmented by a bias of B = r?~'. The range in the actual
exponent E, is usually taken to be

—(r ! )< E = 4+¢ - D).

Sign Exponent E Fraction F
Bit  (radix 2, bias 127) (Mantissa)
Assumed
position of
radix poinl

FIGURE 2.1
IEEE standard bit format for 32-bit normalized floating-point representation.
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In the binary system, required for computer calculations, Eq. (2.18) becomes
Ey=E; +211717 (2.19)

with a range in actual exponent of —Q247' — 1) < E; < 42771 — 1). In 32-bit normalized
floating-point form, the exponent in Eq. (2.19) is stored in either excess 127 or excess 128
code (depending on the FPN system used) while the mantissa is stored in sign-magnitude
form.

There still remains the question of how the number zero is to be represented. If the M
field is zero, then the exponent can be anything and the number will be zero. However,
in computers the normalized FPN; limits M to (0.5 < M < 1) since the MSB for M is
always 1. The solution to this problem is to assume that the number is zero if the exponent
bits are all zero regardless of the value of the mantissa. But this leads to a discontinuity in
normalized FPN, representation at the low end.

The IEEE standard for normalized FPN, representation attempts to remove the problem
just described. The IEEE system stores the exponent in excess 27! — 1 code and limits the
decimal range of the actual exponent to

—27 - < B <+ - D).

For 32-bit FPN single precision representation, the exponent is stored in excess 127 code
as indicated in Fig. 2.1. Thus, the allowable range of representable exponents is from

—126;p = 00000001, through +127,p = 11111110,.

This system reserves the use of all 0’s or all 1’s in the exponent for special conditions [3].
So that the M field magnitude can diminish linearly to zero when E = —126, the MSB = 1
for M is not specifically represented in the IEEE system, but is implied.

The following example attempts to illustrate the somewhat confusing aspects of the IEEE
normalized representation:

ExaMPLE 2.20 The number 101101.11001; is to be represented in IEEE normalized
FPN, notation:

101101.11001, = .10110111001 x 2° Sign bit = 0 (positive)
where

E.,=6+4 127 = 133,; = 10000101,
M =0110111001. .. 00 (the MSB = 1 is not shown).

Therefore, the IEEE normalized FPN is
FPN, = 0 10000101 0110111001 ...0.

Still, other forms of FPNs are in use. In addition to the IEEE system, there are the IBM,
Cray, and DEC systems of representation, each with their own single- and double-precision
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forms. For example, the IEEE double-precision FPN system requires an exponent of 11 bits
in excess 1023 code and a mantissa (in sign-magnitude) of 53 bits for a total 64 bits.

2.9 BINARY ARITHMETIC

There are many ways in which to manipulate data for the purpose of computation. It is
not the intent of this section to discuss all these methods. Rather, the emphasis will be
on the basic addition, subtraction, multiplication, and division methods for binary number
manipulation as a foundation for the design of the arithmetic units featured in Chapter 8. The
coverage will include the basic heuristics involved in fixed-point binary arithmetic together
with simple examples. Advanced methods applicable to computer arithmetic operations
are provided as needed for the device design. A limited treatment of floating-point binary
arithmetic will be given in a later section.

2.9.1 Direct Addition and Subtraction of Binary Numbers

The addition of any two positive binary numbers is accomplished in a manner similar to
that of two radix (base) 10 numbers. When the addition of two binary bits exceeds 01,, a
carry bit is added to the next MSB, and this process is continued until all bits of the addend
and augend have been added together. As an example consider the addition of the following
two B-bit numbers:

ExampLE 2.21

—  Carres

UG I S
590 00111011, = Augend

+122)p 401111010, = Addend
181p 10110101, = Sum

Notice that in binary addition the carry is rippled to the left in much the same manner as
in base 10 addition. The binary numbers are easily converted to base 10 by the method of
positional weight described in Section 2.3.

Algorithm 2.8: A> + B>

(1) Set operands A; = a,,—(ay—2 - - ~@yag and By = by _1b,—1 - - - b1 by, and their sum

A: E= B} — S,,S,|_| ALy S]S[) — Sz.

(2)Seti =0and §; = 0.

(3) Ifag+by < 105, 8 = ay+ by and a carry C; = 0 is generated for position i + 1 = 1.
If ag+by = 105, then Sy = ay+by— 105 and a carry C;.y = 1 is generated into position
i+1=1

(4) Continue steps (2) and (3) in the orderi = 1,2, 3, ..., n — 1 with carries generated
into position i + 1.

(5) The most significant sum bit is S, = C,,, where C, is the carry resulting from the
addition of @y, ;. by_j.and C,_j.
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Direct subtraction of two binary numbers also parallels that for base 10 subtraction.
Now however, when the subtrahend bit is 1 when the minuend bit is 0, a borrow is required
from the next MSB. Thus, the borrowing process begins at the MSB and ends with the
LSB — the opposite of the carry process for addition. Remember that a borrow of 1, from
the next MSB, creates a 10, in the column being subtracted. The following 8-bit example
illustrates the subtraction process in base 2:

ExXAMPLE 2.22

10 1

O & 110 0 10 <« Borrows
101 011@3@10 1, = Minuend
—58; —00111010, = Subtrahend
439 0010101 1 = Difference

Here, the notation @ or 1 represents denial of the 0 or 1 when a borrow is indicated. Notice,
as in the example just given, that the borrowing process may involve more than one level
of borrowing as the process proceeds from right to left.

2.9.2 Two's Complement Subtraction

Computer calculations rarely involve direct subtraction of binary numbers. Much more
commonly, the subtraction process is accomplished by 2’s complement arithmetic —a con-
siderable savings in hardware. Here, subtraction involves converting the subtrahend to 2’s
complement by using Eq. (2.14) in the form N, + 1 and then adding the result directly to
the minuend. For an a-bit operand subtraction, n + 1 bits are used where the MSB bit is
designated the sign bit. Also, the carry overflow is discarded in 2’s complement arithmetic.
The following example illustrates the process for two four-bit numbers, A and B:

EXAMPLE 2.23

A 0:1101 0:1101 =+13,,
: —_ :
-B -0:0111 41000 =-7,
00110 = +6,,
Discard Sign bit positive
overflow

Further illustration continues by interchanging the minuend and subtrahend so as to yield
a negative number:

EXAMPLE 2.24

A 00111 0:0111 = +7,
-B -0:1101 +1:0011 =-13,,
1:1010 = -6

10

Discard LSign Bit negative
overflow
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In this case, the difference 1: 1010 is given in 2’s complement. The answer in true form
is the 2's complement (negation) of this result given by 1:1010 — 0:0110; or 69
which is negative. Algorithm 2.9 summarizes the steps required for the 2’s complement
subtraction.

Algorithm 2.9: {As + (—Ba) — As + By} or [—As + (—Ba) — Ase + Boe)

(1) Set n-bit operands A = a, a4, <= - wjagand B = b,b, -+ - by by, where the MSB «,
and b, are reserved as sign bits, initially both 0.

(2) Generate By by applying Eq. (2.14).

(3) Add operands A, + B»e according to Algorithm 2.8,

(4)If|Az| > | B2, thenthe sum (85 > 0) is the true value with the sign bit 0. 1f | A>| < |Bs|.
then the sum (S < 0) is given in 2's complement with sign bit equal to 1.

(5) The true value of a 2's complement sum is obtained by negation, S>¢)ac.

(6) If A5 and B> are both negative numbers, the sum (S3¢- < 0) is obtained by steps (2),
(3), and (5).

2.9.3 One’s Complement Subtraction

Somewhat less common is the 1's complement subtraction of two binary numbers. In this
case the subtrahend is converted to 1's complement by using Eq. (2.15) in the form N.
The result is then added to the minuend with the carry overflow carried-end-around and
added to the LSB. Clearly, this is a more complex process than that for 2's complement.
The following two examples illustrate the subtraction process:

ExaMPLE 2.25
A 0:1101 0:1101 =+13w
i e .
-B -0:0111 +1:1000 =710
|[| 0:0101
1
0:0110 = +6,,

Sign Bit ——1

Again, the minuend and subtrahend are interchanged for comparison purposes, yielding a
negative difference as follows:

EXAMPLE 2.26

A 0:0111 0:0111 =47,
: — :
-B  -0:1101 +1:0010 =-13,,
|_|&[ 1:1001
1:1001 = -6,

Sign Bit _ ¢
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In this latter case the result is given in 1’s complement. The true value for the difference is
obtained by negation and is 1 : 1001 — 0:0110; = 6,9, which is known to be negative.

2.9.4 Binary Multiplication

Like binary addition and subtraction, binary multiplication closely follows base 10 multi-
plication. Consider two rn-bit binary integers A> = (a,—; - - -axa1ay) and B, = (b, - - - by
bby),. Their product A; x Bj is expressed in n-bits assuming that both numbers are ex-
pressible in n/2 bits excluding leading zeros. Under this assumption the product is

n—1
uP:AxB:(Zai-Zi)-B
i=0
=a,_| x2"'B+---+a2'B+ayB, (2.20)

meaning that if B = b,_| - - - byb by, the product 2/ x B is

20X B=b,_y - babyby 00---0.
S——

i zeros
Thus, the product A x B is expressed as the sum of the partial products p; in the form

n— n—I

|
P=Y "pi=) ai(by_i- bbby 00---0). .21
i=0

i=0 izeros

Therefore it should seem clear that binary multiplication requires addition of all terms
of the form 2/ x B for all i for which &; = 1. The following example illustrates this
process.

EXAMPLE 2.27

A 00001111 = Multiplicand
x B x00001011 = Multiplier
00001111 2"x B
000011110 2! x B
0000000000
00001111000 2’ x B
111011 Level 1 Carries
1 Level 2 Carries
000 10100101 Product P
— e’
8-bit

representation

Notice that the carry process may involve more than one level of carry as is true in this
example. The following algorithm avoids multiple levels of carry by adding each product
to P as it is formed.
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Algorithm 2.10: A> x B>

(1) Set n = 2k, where k is the number of bits of the larger number exclusive of leading
Zeros.

(2) Set A = a1+~ drayay and B = b,_y+ -+ bsby by for an n-bit multiplier and an n-bit
multiplicand. respectively.

(3)Set P =0andi = 0.

(4) If q; = 1, calculate 2' x B = (by—-+byby 00---0)and add it to P.

f oeros

(5) Increment i by |.
(6) Repeat steps (3) and (4) forall 0 < i < (n — 1) ending with a product Ps of n bits
or less.

If A% and BJ' represent operands expressible by a different number of bits, k and m,
exclusive of leading zeros, then their productis Py’ = A5 X B3 giveninn < (k-+m) bits. For
numbers containing both integers and fractions, k and m must each include all bits exclusive
of leading integer zeros. For example, if B} = 1101.11 (m = 6) and A% = 110.1 (k = 4),
their product Py will be given in n = 6 + 4 = 10 bits. The following example illustrates
the multiplication process for these two operands.

ExamPLE 2.28

1101.11  Multiplicand B’
x110.1  Multiplier A
110111 2°x B
0000000
11011100 2 x B
110111000 2* x B
111011 Level 1 Carries
1 Level 2 Carries

1011001.01 1 Product P
— e’ L

10-bit representation

2’s Complement Multiplication To understand 2's complement multiplication it is help-
ful to introduce the concept of modulo 2" (Mod 2" ) arithmetic. In Mod 2* arithmetic multipli-
cation is carried out in 2's complement numbers (if negative) ignoring the overflow beyond
n bits. For example, 2¢ x 1111 (Mod 2%) = 10000 = 2* or generally, for number B of n bits,

2" x B(Mod 2"y =2".

Consider the n-bit integer operands A> = a,_ -+ a;ap and By = b, -+ b1 by. Then, if
the product is P = A x (—B), there results, after converting B to 2’s complement,
Py=A> x (Bac)
=A; x (2" - B) Mod 2"
=Ax2" - Ay x B> Mod?2"
or Pr=2"— A x B, Mod 2" (2.22)
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Thus, #» = A; % (Bac) generates the 2's complement of A x B; — the form in which a
computer stores the results. The “true” value of P, can be obtained by negation, which is
the 2’s complement of the result, that is, P2).c = (2" — Az x Ba)ac.

Likewise, if both A, and B, are negative n-bit operands, then the product {(—A») x (— B3}
becomes, after conversion to 2's complement by Eq. (2.14),

Py =Aye x (Bac)

=(2" - A) x (2" — B) Mod 2"
=2"x2"—2"A; —2"B;+ A> x B, Mod?2
=2 2" - 2"+ A> % By Mod 2"

or Py=A; x B, (2.23)

where 22" — 2" — 2" (Mod2") = 0. Thus, the product of two negative binary numbers
in 2’s complement notation is the positive product of the two numbers. In dealing with
numbers whose bit representations are, say, X > m. excluding leading zeros for both, the
2's complement product PJ. must be given in »n = 2k bits. This count for & must include
fraction bits, if present, but exclude both leading and trailing zeros.

The following example illustrates 2's complement multiplication of two numbers with
fractions each of £ = m = 4 bits and represented as k 4+ m = 8-bit operands:

ExampPLE 2.29

—225 —000010.01 LILIOLI1  Multiplicand, Bac
x6.5 x0000110.1 —~  x0000110.1 Multiplier, A»
—14.625 11110111 2°x B
000000000

1111011100 2? x B
11110111000 2° x B
1010101100  Level 1 Carries
10101 Level 2 Carries

110010001011  Product, P, Mod 2
— —
B=bit representation

The true value of the 8-bit representation is obtained by negation,
10001.0115¢)2c = 01110.101, = 14.625,

which, of course, 1s a negative number. This example illustrates what is called Booth’s
algorithm for fast signed multiplication, and is expressed as follows:

Algorithm 2.11: A» x Bye or Aze X Bac

(1) Set n = 2k, where k(>m) is the larger of two numbers® counting both integer and
fraction bits in & but excluding leading and trailing zeros.

2The two numbers are initially |A‘§| of k bits and |Bé"| of m bits or vice versu.



58 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

(2) Generate the 2's complement of the negative number(s) by applying Eq. (2.14).

(3) Carry out steps (3) through (6) of Algorithm 2.10 applied to operands A, and By
or Asc and Boc. represented as n-bit operands, to generate the product Ps. or Py, Use
Mod 2" arithmetic where applicable.

2.9.5 Binary Division

The division operation is generally more complex than that for multiplication, This is so
because the result is often not an integer, though the dividend and divisor may be. Consider
that A, and B, are binary operands each of n bits and that

a=1

A+B=Y Q2 +R/B, (2.24)
i=0

where A is the dividend, B is the divisor, Q is the quotient, and R is the remainder such
that 0 < R < B. An integer quotient is expressed as the binary number @, --- @, Q.
From Eq. (2.24) there results the expression

n—l|

A=B- Z 0:2' +R, (2.25)

=0

which forms the basis for a restoring type of binary division procedure:
Begin with n — 1 for a k-bit divisor and a (k + »)-bit dividend to yield an n-bit quotient
and a k-bit remainder. If

A-Z"_|B=A—bﬂ—|"‘blbﬂ 00.--0=0,
—_—

n—I zeros

0,1 = lorotherwise 0, = 0.If Q,_, = 1. the remaining quotient bits @,,_, - -- @, @q
are found beginning with A" = A—2""'B. Then,if A'=2" 2B > 0, 0, ; = | orotherwise
Q4-> = 0. Consequently, if O,_» = 1, the remaining quotients Q,_3 - @, @y are found
beginning with A” = A’ — 2"~? B, etc. The procedure just described mimics the familiar
pencil-and-paper division method.,

As an example, consider the following division operation A + B with 5-bit operands:

ExAMPLE 2.30

00000101 = Q0
B = 0101/00011011=A
—00010100=2- B
00000111=A"=A —2°B
—00000101=2". B
0010=R=A"—2"B
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In this example, not all steps are shown, but the implied division process is

A—2'"B=A-01010000 <0, Q=0
A-2’B=A—-00101000 <0, Q3;=0
A—=2"B=A—00010100 > 0,
=00111 = A/, Or=1
A'—=2'B=A"—00001010 >0, Q=0
A —=2B=A"—00000101 >0, Qu=1
=00000010 = A” = R,

where A — 2°B < 0, A — 2°B < 0. A — 27B, etc.. all yield quotients bits 0 = 0.
Notice that the subtractions can be carried out with 2's complement arithmetic according
to Algorithm 2.9.

The following algorithm generalizes the binary division process as just presented:

Algorithm 2.12: Ay + B>

(1) Set B to k-bits and A to (k + n)-bits.

(2) Set i = n — 1 and the remainder = A.

(3)Set Q, = 1 if R —2'B = 0 and subtract 2' B from A; otherwise set @; = 0 if
R—2'B < 0.

(4) Repeat step (2) fori = n —2.n = 3..... 1.0 to generate quotient bits O, o,
Oyl o, @), @y ending with the final n-bit quotient @ = @,y ... 0Oy

Binary division involving numbers with fractions is handled in 2 manner similar to that
for decimals. The bit position of the radix point measured from the LSB in the dividend is
the same for the quotient. If a fraction exists in the divisor, the radix point of the quotient
is that of the dividend minus that of the divisor all taken from the LSB.

Division involving negative numbers is most easily carried out as unsigned division with
the result determined by the normal laws of algebra— that is, operands of like sign produce
a positive quotient, while those of unlike sign produce a negative quotient. The remainder
is given the same sign as the dividend. Signed division can be performed directly by using
2's complement, but the process requires many decision-making steps and, for this reason,
is rarely used.

High-Speed Division by Direct Quadratic Convergence A great deal of effort has
gone into making multiplication as fast and efficient as possible for use in high-speed
computers. So it s only logical that use be made of this fact in generating suitable algorithms
for high-speed division. Such methods, commonly used in modern computers, involve
iterative divide algorithms and are nonrestoring. One such method features a system that
operates on both the dividend Dp and the divisor D with equal multipliers so as to cause
the divisor to converge quadratically on unity, thereby yielding the dividend as the quotient.
This requires that at least the divisor Dy be represented as a fraction. Therefore, in binary
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the divisor must be represented in the decimal range 0.5 < operand < 1. If both operands
are so represented, the direct quadratic convergence method is ideally suited for use with
the mantissas in normalized FPN notation described in Section 2.8.

For this approach the quotient is given by

_ DIVIDEND _ Dp
" DIVISOR =~ Dg
_D1)~ko'k1'kz-~

Dg ko ki - ky---

= % (2.26)

The process begins with Dg = 1 —«, where @ = 1 — Dg. But since Ds < 1, it follows that
o < 1. Next choose

k=14«
=14+ (1 - Ds)=2- Ds,

giving the updated product

Ds - kg=(1—-a)l+a)=1-—a?,
which is closer to 1 than Dg. Now set

ki =1+0a% =14+ — Dskp),
giving the updated product
Ds ko ki =(1—a®1+a®)=1—a"

Continuing, set

ky =1+ a* = 1 +(1 - Dskoky),
so that the updated product becomes

Dg ko ki -ky=(1—aH1 +a* =1-a?b etc.

This process continues until the desired number of iterations has been reached or until the
updated product Dg - ko - k| - kp--- = 1.

Notice that each k; is 1 plus the radix complement of the product of Dy and all the &
factors to that point. This can be generalized mathematically as

j-1
ki =1+ {DS : ]‘[k,} . (2:27)
rC

i=0
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Consider the following simple example for the division operation, which will be carried
out in both decimal and binary:

Dp [03757 _ [0.011
Ds  [0500],, L0.100 ],

ExAMPLE 2.31 In decimal:

a=1—-—Dg=05

kp=14+a=1.5
Dgsko = 0.75

ki =1+ (0.75)19c = 1.25
Dgkok) = 0.9375.

ky =14 (0.9375),0c = 1.0625
Dskok ks = 0.99609375

ks =14 (0.99609375)0c = 1.00390625
Dskokikaks = 0.999984741.

Therefore, after four iterations the quotient becomes

Q = Dpkokkoky =0.749988556
= 0.749989 rounded to six places (107%).

Note that a fifth iteration with k4 = 1.000015259 produces Q = 0.750000 rounded to
six places.
In binary:
a=1—-Ds=0.1
kp=14+a=1.1
Dgky = 0.11
k1 =14 (0.11);c = 1.01
Dgkok) = 0.1111
k> =14 (0.1111)¢ = 1.0001
Dgkok ks = 0.11111111
k3=14(0.11111111)¢ = 1.00000001
Dgkokikoks = 0.1111111111111111.
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Therefore, at the end of four iterations the quotient is
Q = Dpkok kok; =0.1011111111111111010
=0.75,y after rounding.
In 32-bit FPN notation the gquotient ¢ would be given as

0 01111111 011111111111111010---00,
et e !
5 £ M

where the most significant 1 bit in the mantissa M has been omitted in agreement the IEEE
normalized FPN notation discussed in Section 2.8,

In the simple example just given the value of « was determined by the value of Ds.
Because this is a quadratic convergence algorithm, the process starts off slowly, particu-
larly if the divisor is close to 3. The division calculations in computers can be speeded
up by using ROM look-up tables to determine o based on the divisor value. Further-
more, it is common practice to fix the number of iterations and then deal with rounding
problem,

With some simplifying assumptions the following algorithm generalizes the quadratic
convergence process for iterative division:

Algorithm 2.13: O = Dp + Dy

(1) Set Dy to normalized FPN form, retain the MSB | in the mantissa, and adjust the
exponent as required by the FPN notation.
(2) Calculate @ = | — Dy by using Algorithm 2.9.
(3) Set kg = | + & and calculate (Dgkg)oe by using Algorithms 2.10 and 2.6.
(4) Set ky = | + (Dgko)ae and calculate (Dgkok) )z as in step (3).
i~ 1

=
(5) Repeat steps (1) through (4) fork; = 1 + |:Ds : Hk,] forall j=2.,3.....
i=0
i=I

1=
(6) Calculate Q@ = Dp ]_[ k; when Dy l_[ ky= L.

i=0 i=0

2.9.6 BCD Addition and Subtraction

Compared 1o binary arithmetic, BCD arithmetic is more complex, particularly with regard
to hardware implementation. This is true since not all possible four-bit binary number states
correspond to the BCD number system. The six number patterns 1010, 1011, 1100. 1101,
1110, and 1111 are not valid BCD states, as is indicated in Table 2.2.

BCD Addition BCD addition is similar to unsigned binary addition, except that a correc-
tion must be made any time a sum exceeds 9,y = 1001;. Summation begins with the least
significant digit (LSD) and ends with the most significant digit (MSD). If the sum exceeds
1001 for any given digit, that sum is corrected by adding 6,5 = 0110, with a carry of 0001
to the next MSD. The following example illustrates the addition process for two-decade
BCD integers Agcp = ApA; and Bpcp = By B represented in three-decade form:
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ExAmPLE 2.32

05610 — 0000 0101 ol 103(?9 AugendABCD
4069y — 40000 0110 1001gcn Addend Bgep

l25|() 0000 l[]'ll 1111 Sum
0110 0110 Correction
1 1111 110 Carries

0001 0010 O010lgep Result=125y

The following algorithm generalizes the process just given for operands having both
integers and fractions.

Algorithm 2.14: Agep + Baep

(1) Set BCD operands in descending decade order, Apcp = -+ - AjgoA1pA 1A 1A - -+
and Byep = - - - BygoBio By By By - - such that the MSDs for A and B are 0000 (null).
(2) Set i = LSD for matching operand decades.

(3) If A; + B; > 1001 by Algorithm 2.8, add 0110 to that result and carry 0001 over
to the next MSD. If A, + B, < 1001, add 0000 1o the result and carry 0000 to the next
MSD.

(4) Repeat steps (2) and (3) for matching decades in the order of 10, 10%, 10%, .. .,
MSD.,

BCD Subtraction Negative BCD numbers are most conveniently represented in 10's
complement (10C). This permits negative BCD numbers to be added according to Algo-
rithm 2.14. The result, if negative, will be represented in 10C form requiring negation to
obtain the true value.

EXAMPLE 2.33

0825, — 0825, — 0000 1000.0010 0101z
—13.52 — +86.48 1 5c — +1000 0110, 0100 IOOOBCD!..K\

—05.274 94 730 1000 1110,0110 1101 Sum
+ 0110 0110 Correction
111 11 Carries

1001 0100 . 0111 001 Ig(_‘;))m[. Result

The true (absolute) value of the result is found by negation to be
94.7310¢)10c = 05.2719 or 0000 0101 .0010 011 1 5¢:p.

Note that to convert directly from the BCD form, BCD) g = Nac + 1010 = N> +
125 + 1010 for the LSD but thereafter is BCD)jpc = N2 + 1010 = Ny¢, discarding any
carry overflow in either case.

The following algorithm generalizes the process of BCD subtraction.

Algorithm 2.15: Apcp + Brenyae OF Asepyge T Bocny

(1) Convert any negative decimal number to its 10’s complement (10C) by Algorithm 2.5
with » = 10.
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(2) Represent each operand in BCD form.

(3) Carry out steps (1) through (4) of Algorithm 2.14. If the result is negative, the true
value is found by negation: [(result)jpe lioc = (result)sep. 1f the result is positive, that
result is the true value.

2.9.7 Floating-Point Arithmetic

Up to this point the arithmetic operations have involved fixed-point representation in which
all bits of a binary number were represented. In many practical applications the numbers may
require many bits for their representation. In Section 2.8 the floating-point number (FPN)
system was discussed for just that reason. Now it is necessary to deal with the arithmetic
associated with the FPN system, namely addition, subtraction, multiplication, and division,

FPN Addition and Subtraction Before two numbers can be added or subtracted one from
the other, it is necessary that they have the same exponent. This is equivalent to aligning
their radix points. From Eq. (2.17) for radix 2, consider the following two FPNs:

X =My 25
and
Y = My - 25,
Now, if for example £y > Ey, then ¥ is represented as M, - 2y where

M;='00"‘0f_1f_2-°-f_," and E;:Ey-l-(Ex——Ey):E'x,
Ex—Ey
zerns

sothat X +Y = (My + My)- 250 or X — ¥ = (My — M})- 25%, etc. Here, My =
o1 foa -+ fo, originally, but is now adjusted so that the exponents for both operands are
the same. The addition or subtraction of the fractions My and M, is carried out according
to Algorithm 2.8 or Algorithm 2.9, respectively.

Consider the following examples of FPN addition:

ExampLE 2.34 — Addition

145.500,¢ 5 10010001.100, =X
+27.625¢ 00011000.101, =Y
173.1254

Comparing and equalizing the exponents Ey and Ey gives

145.500,5 = .10010001100 x 28
27.625,0 =.00011011101 x 28,
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In FPN notation the addition operation becomes
s E M

-

— e
145500 — 0 10000111 100100011000---00
+27.625 — 40 10000111 000110111010--.00 ,
173.125 0 10000111 101011010010---00

where the exponents given in excess 127 form are 127 + 8 = 135 as discussed in Section 2.7.
To represent the result in normalized FPN notation, the most significant 1 bit of the mantissa
is omitted, yielding the result 0 10000111 010110100100 - - - 00 for the sign, exponent, and
mantissa fields, respectively.

EXAMPLE 2.35 — Subtraction in 2’s complement

N E M
—_

N
—145500 — 0 10000111 011011101000 --00
+27.625 — +0 10000111 000110111010---00
—117.875 0 10000111 100010100010---00

The true value is obtained by negation of the mantissa (taking its 2’s complement), giv-
ing the sign magnitude result 110000111 011101011110 - - 00, which is —117.875)¢. In
normalized FPN notation the MSB 1 bit of the mantissa would be omitted, giving the 2’s
complement result 1 10000111 00010100010 - - - 00.

FPN Multiplication and Division In some respects multiplication and division of FPNs
is simpler than addition and subtraction from the point of view of the decision-making
problem. Multiplication and division operations can be carried out by using the standard
methods for such operations without the need to compare and equalize the exponents of
the operands. The following generalizations of these processes illustrates the procedure
involved.

The product of two operands X and Y in radix r is represented as follows:

P=XxY
= (My - r) x (My - r®)
= (Mx x My) - rEerEn
=Mp-rr,
where the exponents are added following Algorithm 2.8 while the mantissas are multiplied
by using Algorithm 2.10. The addition and multiplication of signed numbers is covered by

Algorithms 2.9 and 2.11, respectively.
Similarly, for division in radix r the quotient is given by

g=X-=Y
=(My - r) = (My - r"7)
=(My + My) - r'ExE0,
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Here, the exponents are subtracted (added) in radix 2 (binary) by using the same algo-
rithms as for addition, namely Algorithms 2.8 and 2.9. The division of the mantissas, on
the other hand, is best accomplished by using the quadratic convergence iterative divide
method discussed in Subsection 2.9.5, since the mantissas are usually represented in nor-
malized FPN form. The following examples illustrate the multiplication and division of
FPNs.

ExAMPLE 2.36 — FPN signed-magnitude multiplication

s E M
— —_— e
=725 — 1 10000010 11101000 --00
x4.50,p, — +0 -+ 10000010 x 10010000 - - - 00
—32.625¢ 1 10000101 00000000 - - - 00

000000000 - - - 00
0000000000 - - - 00
00000000000 - - - 00
111010000000 - - - 00
0000000000000 - - - 00
00000000000000 - - - 060
111010000000000 - - - 00
1000001010000000 - - - 00

23-bit representation

The result, given in normalized signed-magnitude 32-bit FPN form, is
1 10000101 000001010000000 - « - Oppy = —32.625,p.

where the MSB 1 bit of the mantissa is omitted. Note that the mantissa has a magnitude
.10000010100 - - - 00 x 2% = 100000.101.

ExaMPLE 2.37 — FPN signed-magnitude division

45 0.1001 x 2 X
0625 01010 Y

In FPN notation the operands are
X =0 10000010 100100 - - - 00
Y=101111111 101000 - - - 00.

Division of the mantissas Mx/My = Dp/Dg by Algorithm 2.13:

a=1—Dg=1-.101000-.-00 =.011000---00
ko=1+4+«a = 1.011000---00
Dgky = 11011100 - - - 00
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k) =14 (Dskp)rc = 1.00100100 - - - 00
Dskok( = .11111010111100- - - 00

ks =1 4 (Dskok; )2c = 1.00000101000100- - - 00
Dskokiky = .11111111111001100101111

k3 =1+ (Dskok ka)sc = 1.000000000001 10011010001

After four iterations the quotient is given by
0 = (Dpkok kakz) = .11100110011001100011000 x 2°,

which is truncated to 23 bits. The quotient has a decimal value of
(0.899996755 x 2%)y = 7.1999740450,,.
In normalized FPN signed-magnitude 32 bit form the quotient is given by
¢ =1 10000010 1100110011001 1000110000,

where the MSB 1 bit of the mantissa has been omitted as discussed in Section 2.8. Note
that the subtraction of exponents Ey — Ey is 130 — 127 = 0034 or 10000010; in excess
127 code. The sign bits are added in binary giving Sy + §y =0+ | = 1, where any carry
{in this case ) is discarded.

Algorithm 2.16: Signed-Magnitude (X x Y)ppyor (X = Y )ppy

(1) Set operands X and Y in IEEE normalized FPN form (see Section 2.7).
(2) Add the exponents E'y and £y according to Algorithms 2.8 or 2.9.

(3) It X x Y, then multiply mantissa fractions according to Algorithm 2.10.
(4) If X = Y. then divide mantissas according to Algorithm 2.13.

(5) Add the sign bits Sy + Sy and discard the carry.

(6) Set result in IEEE normalized FPN form.

2.9.8 Perspective on Arithmetic Codes

It should seem clear to the reader that certain arithmetic operations are more easily executed
than others, depending on whether or not the operands are signed and depending on the
number code used to carry out the operation. Table 2.9 is intended to show the general
degree of difficulty of certain arithmetic operations relative to the arithmetic code (signed-
magnitude, 2's complement, etc.) used.

Notindicated in Table 2.9 are the subdivisions within a given type of arithmetic operation.
For example, no distinction is made between a direct division (restoring) algorithm and an
iterative divide (nonrestoring) algorithm, which may differ significantly with regard to dif-
ficulty — the latter being easier for operands represented in FPN notation. As a general rule,
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Table 2.9 Arithmetic codes vs the degree of difficulty of arithmetic operations

Arithmetic Operation Unsigned Numbers Signed-Magnitude Two’s Complement
Unsigned addition ‘ Easy Easy Easy
Signed — Difficult Easy
addition/subtraction
Unsigned multiplication Fairly difficult Fairly difficult Difficult
Signed multiplication — Fairly difficult Difficult
Unsigned division Difficult Difficult Very difficult

addition/subtraction of signed numbers involves relatively simple arithmetic manipulations
of the operands compared to multiplication; and division requires more decision-making
steps than multiplication. Also not shown in Table 2.9 are the 1°s complement, BCD, and
XS3 number codes, since they are not commonly used in computer numeric operations.
Finally, a direct correspondence is implied between degree of difficulty and the hardware
requirements to carry out a given arithmetic operation.

2.10 OTHER CODES

Most binary codes of value in digital design fall into one or more of the following ten
categories:

Weighted binary codes Unit distance codes
Unweighted binary codes Reflective codes
Biased codes Number codes
Decimal codes Alphanumeric codes
Self-complementing codes Error detecting codes

The previous sections have introduced examples of weighted binary codes, number codes,
biased codes, and decimal codes. Number codes are those such as 2’s and 1’s complement
that are used in addition/subtraction operations. Now, other codes (excluding alphanumeric
codes) will be briefly discussed so as to provide a foundation for the developments in later
chapters.

2.10.1 The Decimal Codes

Shown in Table 2.10 are seven decimal (10 state) codes that can be classified as either
weighted or unweighted codes. All but one of these codes is weighted as indicated in the
table. A weighted code can be converted to its decimal equivalent by using positional weights
in a polynomial series as was done for the BCD code (1) discussed in Subsection 2.4.1.
Code (2), the XS3 code, is a biased-weighted code considered in Subsection 2.4.1 and in
Section 2.7. An unweighted code, such as code (7), cannot be converted to its decimal
equivalent by any mathematical weighting procedure.

Not all weighted decimal codes are natural in the sense that their code weights cannot
be derived from positive powers of 2 as is done for codes (1) and (2). Codes (3) through (6)
in Table 2.10 are of this type. Code weights such as —1, —2, 5, and 6 cannot be generated



2.10 OTHER CODES 69

Table 2.10 Weighted and unweighted decimal codes

Weighted codes Unweighted

Dec. (M 3] (3) “) (5) (6) (7
Value (BCD) (XS3) 2421 84-2-1 86421 SI111 Creeping Code

0 0000 0011 0000 0000 00000 00000 00000

| 0001 0100 0001 0111 00001 00001 10000

2 0010 0101 0010 0110 00010 00011 11000

3 0011 0110 0011 0101 00011 00111 11100

4 0100 0111 0100 0100 00100 01111 11110

5 0101 1000 1011 1011 00101 10000 11111

6 0110 1001 1100 1010 01000 11000 01111

7 0111 1010 1101 1001 01001 11100 00111

8 1000 1011 1110 1000 10000 11110 00011

9 1001 1100 1111 1111 10001 11111 00001

by any positive integer power of 2, but they can still serve as code weights. As an example,
consider how decimal 5 is represented by code (4):

Decimal equivalent = 5
84-2-1 code representation = (1 x 8) + (0 x 4) + [1 x (=2)] +[1 x (=1)]
=1011.

Note that there may be more than one combination of weighted bits that produce a given
state. When this happens, the procedure is usually to use the fewest 1’s. For example,
decimal 7 can be represented by 00111 in code (5), 86421 code, but 01001 is preferred. An
exception to this rule is the 2421 code discussed next.

Codes (2), (3), and (4) are examples of codes that have the unusual property of being self-
complementing. This means that the 1’s complement of the code number is the code for the
9’s complement of the corresponding decimal number. In other words, the 1’s complement
of any state AV (in decimal) is the same as the (9 — N) state in the same self-complementing
code. As an example, the 1’s complement of state 3 in XS3 (0110) is state 6 (1001) in that
same code. The 1’s and 9’s complement number codes were discussed in Subsection 2.6.3
and are presented in Tables 2.7 and 2.8, respectively.

2.10.2 Error Detection Codes

There is another class of weighted or semiweighted codes with the special property that
their states contain either an even number or an odd number of logic 1°s (or 0’s). Shown
in Table 2.11 are four examples of such codes. This unique feature make these codes
attractive as error-detecting (parity-checking) codes. Notice that both the 2-out-of-5 code
(semiweighted) and the biquinary code (weighted 50 43210) must have two 1’s in each of
their 10 states and are, therefore, even-parity codes. In contrast, the one-hot code (weighted
9876543210) is an odd-parity code, since by definition it is allowed to have only a single
I for any given state. Code (d) is no more than the BCD code with an attached odd parity-
generating bit, P.
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Table 2.11 Error detection codes

(a) (b) (c) (d)

Even Parity Even Parity Odd Parity Odd Parity

Decimal 2-out-of-5 Biquinary One-Hot BCD
Value (74210 5043210 9876543210 P8421
0 11000 01 00001 0000000001 10000

1 00011 01 00010 0000000010 00001

2 00101 10 00100 0000000100 00010

3 00110 10 01000 0000001000 10011
4 01001 01 10000 0000010000 00100
5 01010 10 00001 0000100000 10101
6 01100 10 00010 0001000000 10110
7 10001 10 00100 0010000000 00111
8 10010 10 01000 0100000000 01000
9 10100 10 10000 1000000000 11001

The advantage of using an error-detecting code is that single-bit errors (those most likely
to occur) are easily detected by a parity detector placed at the receiving end of a data bus. If a
single error occurs, the parity is changed (odd-to-even or vice versa) and further processing
can be delayed until the error is corrected. On the other hand, if two errors occur, the error
cannot be detected by any simple means.

2.10.3 Unit Distance Codes

The last class of codes that will be discussed here are called unit distance codes, so called
because only one bit is permitted to change between any two of their states —recall that
in natural binary, adjacent states may differ by one or more bits. Three examples of unit
distance codes are given in Table 2.12: (1) a decimal code, (2) a reflective unit distance code
called Gray code, and (3) an XS3 decimal Gray code formed from the inner 10 states of
code (2). The reflective character of the Gray and XS3 Gray codes are easily revealed by the
fact that all bits except the MSB are mirrored across an imaginary plane located midway in
the 16 states and 10 states, respectively, as indicated by the dashed lines. The unit distance
property of the Gray code will be used in logic function graphics discussed at length in
Chapter 4. Also, the unit distance and reflective character of the Gray code make it uniquely
suitable as a position indicator code for rotating disks and shafts. Encoding errors produced
by rotational irregularities can be detected and corrected by the use of such a code.

Although only a 4-bit Gray code is represented in Table 2.12, it should be noted that a
Gray code of any number of bits is possible. Also, there are other unit distance codes that
can be generated with any number of bits but they will most likely not be reflective.

2.10.4 Character Codes

The most common character code is called ASCII (pronounced “as-key”), the acronym for
American Standard Code for Information and Interchange. ASCII code represents each
character as a 7-bit binary string, hence a total of 27 = 128 characters, and is given in
Table 2.13. This code encodes numerals, punctuation characters, all upper- and lowercase



Table 2,12 Unit distance codes: (1) a decimal code
(nonreflective); (2) four-bit Gray code (reflective);
(3) XS3 Gray decimal code (reflective)

1 I @) 3)
Decimal Decimal 4-Bit XS3 Gray
Value Code Gray Code Decimal Code
0 0000 0000 0010
1 0001 0001 0110
2 0011 0011 0111
3 0010 0010 0101
4 0110 0110 0100
5 1110 0111 1100
6 1111 0101 1101
7 1101 0100 1111
8 1100 1100 1110
9 0100 1101 1010
10 — 1111 —
11 — 1110 —
12 — 1010 —
13 — 1011 —
14 — 1001 —
15 — 1000 —
Table 2.13 ASCII character code
agasaq (column)
Row 000 001 010 o011 100 101 110 111
azaajag  (Hex) 0 1 2 3 4 5 6 7
0000 0 NUL DLE SP 0 @ P ’ p
0001 1 SOH DC1 ! 1 A Q a q
0010 2 STX DC2 ” 2 B R b r
0011 3 ETX DC3 # 3 C S c s
0100 4 EOT DC4 $ 4 D T d t
0101 5 ENQ NAK % 5 E 8] e u
0110 6 ACK SYN & 6 F v f v
0111 7 BEL ETB ’ 7 G w g w
1000 8 BS CAN ( 8 H X h X
1001 9 HT EM ) 9 1 Y i y
1010 A LF SUB * : J z j z
1011 B VT ESC + ; K [ k {
1100 C FF FS , < L \ 1 [
1101 D CR GS - = M ] m }
1110 E SO RS . > N A n ~
1111 F S1 us / ? (0] - 0 DEL
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alphabet letters, and a variety of printer and typewriter control abbreviations. An eighth bit
(not shown) is often used with the ASCII code for error detection purposes.

Another common character code is known as EBCDIC (pronounced “ebb-see-dick™),
the acronym for extended BCD interchange code. It uses 8-bit BCD strings so as to encode
a 256-character set.

FURTHER READING

Literature on number systems and arithmetic is extensive. Many journal articles and most
texts on digital logic design cover these subjects to one extent or another. Portions of this
chapter regarding number systems are taken from contributions by Tinder to The Electrical
Engineering Handbook, cited here. Recognized classic treatments of number systems and
arithmetic include those of Garner, Hwang, and Knuth. The IEEE publication on the standard
for floating-point arithmetic is also frequently cited. These references, together with recent
texts covering the subject areas, are cited here.
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PROBLEMS

Note: Use Tables P2.1, P2.2, and P2.3 as needed in working the following problems.

2.1 Convert the following decimal numbers to binary:
(@ 5
(b) 14
(c) 39
(d) 107.25
(e) 0.6875
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2.2 Convert the following binary numbers to decimal by using the method of positional
weights:
(a) 0110
(b) 1011
(c) 11001
(d) 11011001.11
(e) 0.01011

2.3 Convert the decimal numbers of Problem 2.1 to BCD.

2.4 Convert the binary numbers of Problem 2.2 to BCD. To do this, add trailing and
leading O’s as required.

2.5 Convert the following BCD numbers to binary:
(a) 00010011

(b) 01010111

(c) 0101000110

(d) 1001000.00100101
(e) 0.100001110101

2.6 Convert the decimal numbers in Problem 2.1 to XS3.
2.7 Convert the BCD numbers in Problem 2.5 to XS3.
2.8 Convert the binary numbers in Problem 2.2 to BCH.
2.9 Convert the BCD numbers in Problem 2.5 to BCO.

2.10 Convert the following numbers to binary:
(a) 6135204

(b) 2FD6A25B ¢
(c) 11110011100.011xs3
(d) 6!
2.11 Convert the following fractions as indicated:
(a) 0.534,0 — N, rounded to 8 bits.
(b) 0.3DF2,4 — N> rounded to 8 bits.
{¢) 0.534,0 —> N|¢ terminated at 4 digits.
(d) 0.54273 — N, rounded to 8 bits.

2.12 Convert the following numbers to signed-magnitude binary form:
(a) +56.259

(b) —94.625,0

(c) —7BD.56

(d) +125¢

(e) ~0110101.100115cp

2.13 Give the radix complement representation for the following numbers:
(a) The 10’s complement of 47.63 ¢
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2.14

2.15

2.16

2.17
2.18

2.19

2.20
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(b) The 2’s complement of 011011101.1101,

(c) The 8’s complement of 501.74¢

(d) The 16’s complement of AF3.C8¢

Represent the following numbers in IEEE normalized FPN; form:
(a) 1101011.1011,

(b) +27.6875

(c) —145.500¢

Add the following binary additions and verify in decimal:
(a) 10+ 11

(b) 101 4011

(c) 10111 401110

(d) 101101.11 +011010.10

(e) 0.1100 + 1.1101

Carry out the following binary subtraction operations in 2’s complement and verify
in decimal:
(a) 01100 — 00101

(b) 0111011 — 0011001

(c) 01001000 — 01110101

(d) 010001.0101 — 011011.1010

(e) 00.011010 — 01.110001

Repeat Problem 2.16 in 1’s complement.
Carry out the following binary multiplication operations and verify in decimal:
(a) 11 x 0101

(b) 11101 x 1111011

(c) 1001.10 x 11101.11

(d) 110.011 x 1101.0101

(e) 0.1101 x 0.01111

Carry out the following complement multiplications and verify in decimal:
(a) 00000111 x —00001101

(b) 110 x —11101 (k = 5)

(c) —11.01 x 101.11(k = 5)

(d) 111.111 x —1.101 (k = 6)

(Hint: Consider switching minuend and subtrahend operands if it yields less work.)

Find the quotient for each of the following division operations by using the binary
equivalent of the familiar “pencil-and-paper” method used in long division of decimal
numbers. Show work details.

(a) 1100 = 100

(b) 111111 + 1001

(c) 11001.1 = 011.11 (Carry out quotient to the 272 bit and give the remainder)
(d) 100 = 1010 (Carry out quotient to the 27° bit and give remainder)
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2.21

2.22

2.23

2.24

2.25

2.26
2.27

2.28

Use the direct quadratic convergence method to obtain the quotient for the following
fractions. To do this, use Eqgs. (2.26) and (2.27).
(a) (0.25 +0.75),p in decimal. Find Q after three iterations and rounded to 107°.

(b) (0.01 = 0.11); in binary. Compare Q after two iterations rounded to 278 with Q
after three iterations rounded to 2 !¢, For comparison, use decimal values derived
from the binary results.

Carry out the following hexadecimal operations and verify in decimal:
(a) 1A8+ 67B

(b) ACEF1 + 16B7D

(c) 1273, — 3A8

(d) 896 x 1A3

(e) A2 x 15BE3

(f) 1IEC87 +— A5 (Hint: Use decimal <> hex methods with Table P2.3.)

Convert the following decimal numbers to BCD with the MSDs null (0000), then
carry out the indicated arithmetic in BCD by using Algorithms 2.14 and 2.15 in
Subsection 2.9.6:
(a) 0491() + 07810

(b) 168.6(9p+057.59
(C) 09310—06710
(d) 034.79,p — 156.23,9

Perform the FPN arithmetic indicated below. To do this follow the examples in Sub-
section 2.9.7.
(8) 135.25,0 + 54.625)9

(b) 54.625,y — 135.25;

(c) 3.75)9p x 5.0625,9

(d) 4.50,0 x (—2.3125p)

(e) 6.25 = (-0.3751p)

Note: Use the sign-magnitude FPN system for parts (d) and (e) following Exam-
ples 2.36 and 2.37.

To add XS3 numbers, a correction by either adding or subtracting 0011 is necessary
depending on whether or not a 1 carry is generated. Study, then write an algorithm
for the addition in XS3 numbers.

Prove that a self-complementing unit-distance code is not possible.

An inspection of the binary and Gray codes in Tables 2.1 and 2.12 indicates a unique
relationship between these codes. Examine these codes and devise a simple algorithm
that will permit direct “pencil-and-paper” conversion between them, binary-to-Gray
or vice versa.

Decipher the following ASCII code. It is given in hexadecimal, MSD first.

57 68 61 74 69 73 79 6F 75 72 6E 61 6D 65 3F



Table P2.1 Powers of 2

20 n 2-n
1 0 10
2 1 05
4 2 025
8 3  0.125
16 4 0062 5
32 5 0031 25
64 6 0015 625
128 7 0007 812 5
256 8  0.003 906 25
512 9 0.001 953 125
1 024 10 0.000 976 562 5
2 048 11 0000 488 281 25
4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25
32 768 15 0000 030 517 578 125
65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5
1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0000 000 119 209 289 550 781 25
16 777 216 24 0000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25
134 217 728 27 0000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
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Table P2.2 Hexadecimal addition table

6 1 2 3 4 5 6 7 8 9 A B C D E F
6,0 1 2 3 4 5 6 7 8 9 A B C D E F
1)1 2 3 4 5 6 7 8 9 A B C D E F 10
22 3 4 5 6 7 8 9 A B C D E F 10 11
3/3 4 5 6 7 8 9 A B C D E F 10 11 12
414 5 6 7 8 9 A B C D E F 10 11 12 13
5! 6 7 8 9 A B C D E F 10 11 12 13 14
6/6 7 8 9 A B C D E F 10 11 12 13 14 15
777 8 9 A B C D E F 10 11 12 13 14 15 16
88 9 A B C D E F 10 11 12 13 14 15 16 17
9,9 A B C D E F 10 11 12 13 14 15 16 17 18
Al/A B C D E F 10 11 12 13 14 15 16 17 18 19
B|B C D E F 10 11 12 13 14 15 16 17 18 19 1A
c/cC D E F 10 11 12 13 14 15 16 17 18 19 1A 1B
D|D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E/E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
FI|F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D IE

Table P2.3 Hexadecimal multiplication table

0 1 2 3 4 5 6 7 8 9 A B C D E F
0|0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
170 1 2 3 4 5 6 7 8 9 A B C D E F
210 2 4 6 8§ A C E 10 12 14 16 18 1A 1C 1E
310 3 6 9 C F 12 15 18 1B 1E 21 24 27 2A 2D
410 4 8 C 10 14 18 1C 20 24 28 2C 30 34 38 3C
510 5 A F 14 19 1E 23 28 2D 32 37 3C 41 46 4B
610 6 C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
70 7 E 15 I1C 23 2A 31 38 3E 46 4D 54 5B 62 69
8/0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78
90 9 12 1B 24 2D 36 3E 48 51 SA 63 6C 75 7TE 87
Al0O A 14 1E 28 32 3C 46 50 5A 64 ©6E 78 82 B8C 96
B|O B 16 21 2C 37 42 4D 58 63 6E 79 84 8F O9A AS
C|0 C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4
D/ 0 D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C(C3
E|0 E 1C 2A 38 46 54 62 70 7E 8C OS9A A8 B6 C4 D2
F{0 F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 EI
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CHAPTER 3
|

Background for Digital Design

3.1 INTRODUCTION

The contents of this chapter are considered all important to the reader’s understanding of
the remainder of this text and, hence, to an understanding of modern digital design methods.
In this chapter the reader will learn mixed logic notation and symbology, Boolean algebra,
and the reading and construction of logic circuits. Besides becoming the industrial standard,
mixed logic notation and symbology, once learned, offers a remarkably simple, direct means
of reading and constructing logic circuits and timing diagrams. Use will be made of the
CMOS logic family to develop this symbology. Other logic families, such as NMOS and
TTL, are discussed in Appendix A.

This chapter goes beyond the usual treatment of Boolean algebra to present what is
called XOR algebra, an extension of Boolean algebra that deals with functions that have
become very important in circuit design, particularly in arithmetic circuit design. CMOS
realizations of XOR functions have, in a special sense, revolutionized thinking along these
lines, making the use of such functions much more appealing to the logic designer.

3.2 BINARY STATE TERMINOLOGY AND MIXED LOGIC NOTATION

Digital systems are switching devices that operate in only one of two possible states at any
given time, but that can be switched back and forth from one state to another at very high
speed (millions of times per second). The two states are high voltage (HV) and low voltage
(LV). The LV and BV levels are usually taken as 0 V and 2 to 5 V, respectively, for common
CMOS logic circuits.

To design a useful digital device, meaningful logic names must be assigned to the inputs
and outputs of a logic circuit so that their physical interpretation in terms of voltage levels
can be made unambiguously. This requires the use of a notation that can easily bridge the gap
between the logic domain in which the device is designed, and the physical domain in which
the device is to be operated. The following subsection defines this notation.

3.2.1 Binary State Terminology

A state is said to be active if it is the condition for causing something to happen. And for
every active state there must exist one that is inactive. In the binary (base 2) system of 1’s

79
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and 0’s, these descriptors take the following meaning:

Lagic 1 is the ACTIVE state
Logic O is the INACTIVE state

Thus, in the logic domain, logic | is assigned to the active condition while logic 0 is assigned
to the inactive condition. This will always be so.

A symbol that is attached to the name of a signal and that establishes which physical
state, HV or LV, is to be the active state for that signal, is called the activation level indicator.
The activation level indicators nsed in this text are

(H) meaning ACTIVE HIGH
(L) meaning ACTIVE LOW

Thus, a line signal LOAD(H) is one for which the active state occurs at high voltage
(HV), and LOAD(L) is one for which the active state occurs at low voltage (LV). This
is illustrated in Fig. 3.1. Here, the name LOAD is the physical waveform output of a
digital device, and LOAD(H) and LOAD(L) are equivalent logical interpretations of that
physical waveform. Notice that logic waveforms are rectangular (i.e., with zero rise and
fall times), whereas physical waveforms must have finite rise and fall times. Finite rise
and fall times are a consequence of the fact that changes in the physical state of any-
thing cannot occur instantaneously. Logic level transitions, on the other hand, are non-
physical and occur abruptly at the active and inactive transition points of the physical
waveform, as indicated by the vertical dotted lines in Fig. 3.1. Also, the physical wave-
forms in Fig. 3.1 have amplitudes measured in terms of voltage whereas logic wave-
forms have amplitudes indicated by the logic levels 0 and 1. Labels such as LOAD(H)
or LD(H) and LOAD(L) or LD(L) are commonly referred to as polarized mnemonics.
The word “polarized” refers to the use of activation level indicator symbols, (H) and (L).
Thus, LD(L) means LOAD active (or asserted) low, and LD(H) refers to LOAD active
(or asserted) high.

~~— Physical Domain

/
HV 5
LOAD Ly — \ / \

Iy

- p Digital .
puts = : Device —» time
\ > ; 1(H) |-—| ------ LOAD ACTIVE HIGH
i ‘ LOAD(H) O(H)
Logic Domain ¢ o)
L LOADI(L) 44, J | LOAD ACTIVE LOW
FIGURE 3.1

Mixed logic interpretation of a physical waveform showing a digital device with its voltage waveform
and the positive and negative logic interpretations of the waveform.
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Voltage noise margins

- %
HV  1(H) NMH o(L)
Region of Uncertainty
N N
LV o(H) \ NML N\
Positive Logic Negative Logic

(a) (b}

FIGURE 3.2
Logic interpretation of voltage waveforms. (a) Positive logic. (b) Negative logic.

What resuits from an inspection of the physical and logic waveforms in Fig. 3.1 is the
important conclusion

HYV corresponds to 1(H)=0(L)
LV corresponds to O(H) = I(L).

(3.1)

Relations (3.1) represent the essence of mixed logic noration and are used throughout this
text for the purpose of converting from the logic domain to the physical domain or vice
versa. Thus, the physical state of HV is represented by either 1(H) or O(L) in the logic
domain while the physical state of LV is represented by either O(H) or 1(L) in the logic
domain. The expression “mixed logic™ applies to the use of both the positive logic and
negative logic systems within a given application.

The positive and negative logic systems, which follow from Egs. (3.1), are presented in
Fig. 3.2. Here, the two systems are shown on logic waveform pulses similar to those shown
in Fig, 3.1. The high noise margin (NMH) and low noise margin (NML) are included as a
reminder that their inner boundaries are also the inner limits of the logic states (1 and 0)
as well as the outer limits of the uncertainty region. A signal whose value lies in the
uncertainty region cannot be taken as either logic 1 or logic 0.

The digital device shown in Fig. 3.3 illustrates the use of polarized mnemonics in the
mixed logic digital system. Shown here are two inputs, LD{H) and CNT(L), and one out-
put, DONE(H). The input LD(H) is said to arrive from a positive logic source (active
high) while CNT(L) arrives from a negative logic source (hence, active low). The output
DONE(H) is delivered to the next stage as a positive logic source (active high). LD and CNT,

LD(H}—»

Digital L, poNg(H)
Device

CNT{L)—»

FIGURE 3.3
Polarized mnemonics applied to a digital device.
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which represent LOAD and COUNT, respectively, are meaningful abbreviations called
mnemonics.

3.3 INTRODUCTION TO CMOS TERMINOLOGY AND SYMBOLOGY

Complementary MOSFET (CMOS) switching circuits are composed of n-type MOSFETs
(NMOS for short) and p-type MOSFETs (PMOS). As a help in reading and constructing
CMOS switching circuits, the simplified symbols and ideal equivalent circuits for both
types are given in Fig. 3.4. Thus, for either, the OFF condition is always an open circuit
while the ON condition is always a short circuit. But the voltage levels causing the ON and
OFF conditions for NMOS and PMOS are opposite; hence, they are called complementary.
Notice that the voltage to produce the ON or OFF condition is always applied to the gate, G,
and that the drain-to-source is either nonconducting (Ip,,, = 0) for the OFF condition or
conducting (Vps = 0) for the ON condition. Use of Fig. 3.4 makes reading and construction
of CMOS circuits very easy. However, knowledge of which terminal is the drain and which
is the source is important only when configuring at the transistor circuit layout level.
Proper CMOS circuit construction requires that the NMOS and PMOS sections be posi-
tioned as shown in Fig. 3.5. The reason for this particular configuration is that NMOS passes

Drain
D D D
fl
Short Circuit
(@  Gate, G —' LV —e I Spen HV —e Vps =0
S S S
Source
OFF ON
Drain
D D D
fl
Short Circuit
(b) Gate, G «Q‘ HV —e I gf:u’l‘t LV —e Vps = 0
S S S
Source OFF ON

FIGURE 3.4
Symbols and ideal equivalent circuits for n and p MOSFETs: (a) NMOS. (b) PMOS.
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MOS Supply
+\.-‘DD
—O
——O
: PMOS Passes HV well
_‘O
7
A
B
NMOS Passes LY wel|
Y
Ground
Symbol
FIGURE 3.5

Proper PMOS and NMOS placement for generalized CMOS gate configurations.

LV well but not HV. Conversely, PMOS passes HV well but not LV, The proper placement of
the NMOS and PMOS sections results in a sharp, relatively undistorted waveform. Inverting
this configuration would require that the NMOS and PMOS sections pass voltage levels
that they do not pass well, resulting in a distortion of the voltage waveform. Therefore, the
PMOS section is always placed on the HV end with the NMOS on the LV side, as in Fig. 3.5,

3.4 LOGIC LEVEL CONVERSION: THE INVERTER

When a positive logic source is converted to a negative logic source, or vice versa, logic
level conversion is said to occur. The physical device that performs logic level conversion
is called the inverrer. Shown in Fig. 3.6a is the CMOS version of the inverter. It is a CMOS
inverter because it is composed of both NMOS and PMOS cast in the complementary con-
figuration of Fig. 3.5. The physical truth table, shown in Fig. 3.6b, is easily understood
by referring to Fig. 3.4. The logic interpretations and conjugare logic symbols that derive
from the physical truth table are shown in Figs. 3.6¢ and 3.6d. The conjugate logic circuit
symbols are used to indicate the logic level conversion X(H) — X(L)or X(L) — X(H)
depending on where the active low indicator bubble is located. The designation “conjugate”
indicates that the symbols are interchangeable, as they must be since they are derived from
the same physical device (the inverter).

The CMOS inverter is used here for the purpose of developing the concept of logic level
conversion. However, there are versions of the inverter that belong to logic families other
than the CMOS family. These include the NMOS and TTL families, all of which yield
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+Vop
(H) —@L) (L) = (H)
Conversion Conversion
b
! v (b) v
Xin out X(H) | X(L) X(L) | X(H)
0 (0] 1 1
1 1 0 0
/__ Active Low __\
Indicator Bubble
X(H) —{>0— X(L) X(L)—>—X(H)
(a) () (d)
FIGURE 3.6

The inverter, its I/O behavior, and its two logic interpretations. (a) The CMOS transistor circuit.
(b) Physical truth table. (¢) Active-high-to-active-low conversion and logic circuit symbol. (d) Active-
low-to-active-high conversion and logic circuit symbol.

the physical truth table and logic interpretations given in Figs. 3.6b, 3.6c, and 3.6d. More
detailed information on these logic families is presented in Appendix A.

3.5 TRANSMISSION GATES AND TRI-STATE DRIVERS

A MOS transistor switch that functions as a passive (non-amplifying) switching device
and that does not invert a voltage signal is called a transmission gate or pass transistor.
Logic circuits composed of transmission gates are called steering logic and are discussed in
Section 6.9. Shown in Fig. 3.7 are the circuit symbols and equivalent circuits for the NMOS,
PMOS, and CMOS transmission gates. Here, it can be seen that the ON conditionin Fig. 3.7b
permits an input signal X; to be transferred to the output; hence, X, = X;. Conversely, the
OFF condition disconnects the output from the input, allowing no signal to be transferred.
Notice that the CMOS transmission gate requires complementary “enable” inputs, EN and
EN, to the NMOS and PMOS gates, respectively. This simply means that when one enable
input is at high voltage (HV) the other must be at low voltage (LV) and vice versa.

As indicated earlier, an NMOS switch passes LV well but not HV, the reverse being
true for a PMOS switch. Consequently, some distortion of the transmitted waveform is to
be expected in NMOS and PMOS transmission gates operated in the transfer mode (ON
condition). The CMOS switch, on the other hand, combines the best of both worlds, thereby
minimizing waveform distortion.

An active (restoring) switching device that operates in either a transfer or disconnect
mode is called a tri-state driver or tri-state buffer. If in the transfer mode it is designed to
invert, it is called an inverting tri-state driver. These devices are called “tri-state” or “three-
state” because they operate in one of three states —logic 0, logic 1, or high-impedance
(Hi-Z) state. In the Hi-Z or disconnect state the tri-state driver is functionally “floating,” as
if it were not there. Tri-state drivers are used to interface various IC devices to a common
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EN Y y
_l_ Passes LV well
X~ —X, but not HV in X=X L
transfer (ON) mode i o= X : g
NMOS (ON) o -
EN LV "
J& Passes HV well
but not LV i _
* _P’hI)lS— % translflern ?oh) r::ode i X=X, X— —X,
ON OFF
EN oy "

EN
__l_ Passes both LV ‘ |
—(— +— —%—— andHVwellin X —"}—X=X X—1 X,
T cmos transfer (ON) mode |
N

EN E LV HY
ON OFE

(a (b) (©

FIGURE 3.7

Transmission gate circuit symbols and their idealized equivalent circuits. (a) Simplified circuit
symbols for NMOS, PMOS, and CMOS transmission gates. (b) ON (transfer) mode equivalent circuit.
(c) OFF (disconnect) mode equivalent circuit.

data bus so that the devices will not interfere with each other. By this means, tri-state drivers
permit multiple signal sources to share a single line if only one of the signals is active at any
given time. These drivers also serve as a controlled enable on the output of some devices.
Note that the term “tri-state” is a trademark of National Semiconductor Corporation. Thus,
the use of the term “tri-state” in this text acknowledges NSC’s right of trademark. The terms
tri-state and three-state are often used interchangeably.

Shownin Fig. 3.8 are four types of CMOS tri-state drivers constructed from the equivalent
of two or three inverters. They differ in the activation levels of the control input, C, and the
output, X, indicated by the logic circuit symbols. The choices are inverting or noninverting
tri-state drivers with active high or active low control inputs, as provided in Figs. 3.8a—d. The
buffering (driving) strength is the same for all tri-state drivers, however. This is so because
during the transfer stage the outputs X, are connected to the supply + Vpp depending on
the character of the driver and the X; voltage level. For example, in the case of the inverting
tri-state driver of Fig. 3.8c, a control C = HV connects the output X, to + Vpp if the input
is X; = LV or connects X, to ground if X; = H V. Thus, in the transfer mode, the transistors
of a tri-state driver serve as transmission gates, thereby permitting an input signal to be
enhanced (or refreshed); hence the meaning of the term driver. Of course, in the disconnect
mode the tri-state driver produces a very large impedance (Hi-Z) between its input and
output, virtually disconnecting the input from the output.

Note that the conjugate logic circuit symbols are provided for each tri-state driver shown
in Fig. 3.8 and that these symbols are interchangeable — as they must be, since they are
derived from the same physical device (the tri-state driver). The idea here parallels that of
the inverter and its conjugate logic circuit symbols shown in Fig. 3.6. Symbol X appearing
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CMOS tri-state drivers, conjugate circuit symbols, and ideal equivalent circuits. (a) Noninverting
tri-state driver with active high control, C. (b) Noninverting tri-state driver with active low control. (c)
Inverting tri-state driver with active high control. (d) Inverting tri-state driver with active low control.
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on the output of an inverting tri-state driver in the transfer mode indicates an inverted voltage
signal. Thus, if X is at LV, then X is at HV and vice versa.

Buffers, or line drivers as they are sometimes called, may be composed of a series of
inverters or gates used as inverters, or they may be simply a tri-state driver operated in the
transfer mode. Remember, it is the function of a line driver to boost and sharpen signals that
might otherwise degrade below switching levels or be distorted. The mixed logic circuit
symbols for buffers are given in Fig. 3.20a.

3.6 AND AND OR OPERATORS AND THEIR MIXED-LOGIC
CIRCUIT SYMBOLOGY

There are just two binary logic operations that underlie all of logic design and Boolean
algebra (after George Boole, 1815-1864, English mathematician). These are the AND and
OR operations. The following are the operator symbols (or connectives) that are used for
AND and OR:

() > AND (+) »> OR

So, if one writes X - Y, XY, or (X)(Y), itisread as X AND Y. Note that the AND operator (-) is
also called the Boolean product (or intersection) and may be represented by the alternative
symbol (). Thus, X - Y = X A Y is the intersection or Boolean product of X and Y.
In contrast, X + Y is read as X OR Y. The operator (+) is often called the Boolean sum
(or union) and may be represented by the alternative symbol (V). Hence, X + Y = X vY
is the union or Boolean sum of X and Y.

By using the two Boolean operators, an endless variety of Boolean expressions can be
represented. Simple examples are expressions such as

F=X+Y .2 and G=X (Y +2Z).

The first is read as F equals X OR (Y AND Z). In this expression the Boolean quantity
Y . Z must first be evaluated before it is “ORed” with X. The second expression is read as
G equals X AND (Y OR Z). In this case the quantity (Y + Z) must first be evaluated before
it can be “ANDed” with X. Thus, the hierarchy of Boolean operation is similar to that of
Cartesian algebra for multiplication and addition.

3.6.1 Logic Circuit Symbology for AND and OR

The meanings of the AND and OR operators (functions) are best understood in terms of their
logic circuit symbols. Shown in Fig. 3.9 are the distinctively shaped logic circuit symbols
commonly used to represent the AND and OR operators, which may have multiple inputs
and a single output. The functional descriptions of these symbols are stated as follows:

The output of a logic AND circuit symbol is active if, and only if, all inputs are active.

The output of a logic OR circuit symbol is active if one or more of the inputs are
active.
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(a) (b)

FIGURE 3.9
Distinctive logic circuit symbols for the binary operators. (a) AND symbol. (b) OR symbol.

The functional descriptions may be taken as the definitions for AND and OR. Remember
that the term active implies logic 1.

The distinctively shaped symbols in Fig. 3.9 represent the functional descriptions for
AND and OR and provide the logical interpretation for a variety of physical devices
called gates. That is, each gate must satisfy the logical AND or logical OR functional
description. By definition: A gate is an interconnection of electronic switches and other
circuit elements arranged in such a way as to produce the electrical equivalent of a logic
operation. The inputs and outputs of a gate are measured in terms of voltages (LV or
HV), whereas the inputs and outputs of a logic symbol, as in Fig. 3.9, are expressed in
terms of logic 1 or logic 0 together with the appropriate activation level indicators, (H)
and (L).

3.6.2 NAND Gate Realization of Logic AND and OR

The physical device shown in Fig. 3.10a is a two-input NAND gate. NAND is short for
NOT-AND. Because this version of NAND gate complies with the generalized CMOS gate
configuration in Fig. 3.5, it is called a CMOS NAND gate. The physical truth table for this

Logic AND LV LV |HV  Logic OR

+Vop Interpretation LV HV | HV Interpretation
HV LV |[HV
] ‘ HV HV|LV
G X(H) Y(H) |Z(L) (b) XL YL |zZH)
+z o 0 |o 11 1
0 1 0 1 0 1
1 0 0 0 1 1
J 11 1 0 0 0
X(H) X(L)
Y(H):l:>%z(u i) @-—zm)
l Z{L) = (X-Y)(L) Z(H) = (X+Y){H)
(a) (c) (d)
FIGURE 3.10

The two-input NAND gate, its /O behavior, and its two logic interpretations. (a) CMOS transistor
circuit. (b) Physical truth table. (c) Logic AND interpretation and circuit symbol. (d) Logic OR
interpretation and circuit symbol.
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Multiple input NAND gates and logic circuit symbols. (a) CMOS logic circuit. (b) AND interpretation.
(c) OR interpretation.

or any NAND gate is given in Fig. 3.10b. It is easily generated by applying the ON and
OFF equivalent circuits for NMOS and PMOS given in Fig. 3.4.

The two logical AND and OR interpretations of the NAND gate and their mixed logic
circuit symbols are givenin Figs. 3.10c and 3.10d. They, too, apply to NAND gates belonging
to logic families other than CMOS, as explained further in Appendix A. Notice that by
applying Egs. (3.1) the truth tables for the AND and OR interpretations satisfy the definitions
for AND and OR given earlier in connection with Fig. 3.9—no other combination of
activation level symbols applied to inputs X and Y satisfies these definitions. But both logic
circuit symbols represent (in the logic domain) the physical NAND gate, since both are
derived from it. Thus, one symbol (c) performs the AND operation with active low output,
while the other symbol (d) performs the OR operation with active low inputs. The symbols
are interchangeable in a logic circuit and, for that reason, are called conjugate NAND gate
symbols even though, strictly speaking, they are only logic circuit symbols.

Multiple input CMOS NAND gates result by adding more PMOS in parallel and an equal
number of NMOS in series, as shown in Fig. 3.11. The logic circuit symbols and output
expressions shown in Figs. 3.11b and 3.1 1c¢ result. The number of inputs is usually limited
to eight or fewer, mainly because of an increase in resistance of the series N-MOSFETs,
each of which has a small ON channel resistance associated with it. Therefore, too many
inputs causes an increase in gate propagation delay and a degradation of the signal. The
number of inputs that a gate can have is called the fan-in. For example, a four-input NAND
gate would have a fan-in of 4.

3.6.3 NOR Gate Realization of Logic AND and OR

The transistor circuit for the two-input CMOS NOR gate is shown in Fig. 3.12a. NOR is
short for NOT-OR. The physical truth table and the AND and OR logical interpretations
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FIGURE 3.12

The two-input NOR gate, its /O behavior and its two logic interpretations. (a) CMOS transistor circuit.
(b) Physical truth table. (c) Logic AND interpretation and circuit symbol. (d) Logic OR interpretation
and circuit symbol.

that derive from it are given in Figs. 3.12b, 3.12c, and 3.12d, respectively, and these also
apply to NOR gates belonging to other logic families, as discussed in Appendix A. As
before, the physical truth table is obtained by applying the equivalent circuits given in
Fig. 3.4 to the transistors in Fig. 3.12a. The AND and OR logic interpretations in parts (c)
and (d) derive from the application of Egs. (3.1) to the physical truth table and are observed
to agree with the definitions of AND and OR given in connection with Fig. 3.9 —again,
no other combination of activation level symbols applied to inputs X and Y satisfies these
definitions. Thus, there results two logic circuit symbols, one performing the AND operation
with active low inputs (c) and the other performing the OR operation with active low output.
Since the logic symbols are interchangeable, they are called conjugate NOR gate symbols.

Multiple input NOR gates are produced by adding more PMOS in series and an equal
number of NMOS in parallel, as indicated in Fig. 3.13a. The logic symbols for multiple
input NOR gates are shown in Figs. 3.13b and 3.13c. As in the case of multiple NAND
gates, there exists a practical limit to the number of NOR gate inputs (fan-in) because of
the channel resistance effect. Thus, too many inputs to a NOR gate will increase the gate
propagation delay and degrade the signal.

When fan-in restrictions become a problem, a gate rree structure (e.g., a NOR gate tree)
can be used. A gate tree is a combination of like gates that form a multilevel array (see
Fig. 4.49). Thus, a tree composed of OR gates and an inverter can replace a multiple-input
NOR gate when the number of inputs exceeds the fan-in limit for that gate.

3.6.4 NAND and NOR Gate Realization of Logic Level Conversion

Inherent in any NAND or NOR gate is the ability to function as an inverter. Thus, under
the proper conditions, the NAND or NOR gate can perform the equivalent of logic level
conversion as in Fig. 3.6. Shown in Figs. 3.14 and 3.15 are the various input connections
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Multiple input NOR gates and logic circuit symbols. (a) CMOS logic circuit. (b) AND interpretation.
(c) OR interpretation.

FIGURE 3.14

Nand gate realization of logic level conversion and equivalent symbology. (a) (H) — (L) conversion.
(b) (L) — (H) conversion.
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NOR gate realization of logic level conversion and equivalent symbology. (a) (H) — (L) conversion.
(b) (L) = (H) conversion.
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that permit this to happen. These input connections result directly from the logic truth
tables in Figs. 3.10 and 3.12. The arrows on the left side of each truth table are given
to draw attention to those portions of the table that dictate how the connections to the
NAND and NOR gates must be made. For example, the extreme upper and lower arrows
in Fig. 3.14a indicate that the two inputs to the NAND gate can be connected for the
X(H)— Z(L)= X (L) conversion. The lower two arrows indicate that the same conversion
can be achieved by setting ¥ (H) = 1(H). It is not likely that a NAND or NOR gate would
be used as a replacement for an inverter if the latter were available, but the substitution is
permissible if the need is there. Obviously, the NAND or NOR gate inverter is more costly
(spacewise) and is slower than the inverter in Fig. 3.6.

3.6.5 The AND and OR Gates and Their Realization of Logic AND and OR

NAND and NOR CMOS gates are natural electrical realizations of the AND and OR logic
operators, but the AND and OR CMOS gates are not. This can be understood if one recalls
that a transistor switch is, by its nature, an inverter. Thus, it might be expected that proper
CMOS realizations of NOT-AND and NOT-OR would be simpler (by transistor count) than
the equivalent CMOS realizations of AND and OR, and this is the case.

Shown in Fig. 3.16a is the transistor circuit for the CMOS version of the two-input AND
gate. It is seen to be composed of the NAND gate followed by an inverter, hence NAND-
NOT or NOT-AND-NOT. By application of Egs. (3.1), the physical truth table for the AND
gate, given in Fig. 3.16b, yields the AND and OR interpretations shown in Figs. 3.16c,
and 3.16d. From these interpretations there results the two conjugate AND gate symbols,
one performing the AND operation with active high inputs and output (c) and the other
performing the OR operation with active low inputs and output as indicated by the active

oo X Y |Z7]|z
Logic AND LV LV | HV|LV Logic OR

X(H) X(L
NAND INV Z(H) = (X-Y)(H) Z(L) = (X+Y)(L)

(a) (c) (d)

FIGURE 3.16

The two-input AND gate, its I/O behavior, and its two logic interpretations. (a) CMOS transistor
circuit. (b) Physical truth table. (c) Logic AND interpretation and circuit symbol. (d) Logic OR
interpretation and circuit symbol.
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FIGURE 3.17

The two-input OR gate, its I/O behavior, and its two logic interpretations. (a) CMOS transistor circuit.
(b) Physical truth table. (c) Logic AND interpretation and circuit symbol. (d) Logic OR interpretation
and circuit symbol.

low indicator bubbles. The logic interpretations and mixed logic circuit symbols also apply
to the AND gate of any logic family.

The CMOS version of the two-input OR gate, its physical truth table, and its two logic
interpretations are shown in Fig. 3.17. Again, Eqgs. (3.1) and the functional descriptions
associated with Fig. 3.9 have been applied to the physical truth table, Fig. 3.17b, to yield
the AND and OR interpretations and the mixed logic circuit symbols presented in Figs. 3.17¢c
and 3.17d. The two logic circuit symbols are interchangeable and hence are conjugate OR
gate symbols. One symbol performs the AND operation and has active low inputs and
output, while the other performs the OR operation and has active high inputs and output.
As before, the truth table and logic AND and OR interpretations apply also to an OR gate
of any logic family.

Multiple input CMOS AND and OR gates are possible by combining the transistor circuit
in either Fig. 3.11 or Fig. 3.13 with an inverter. The conjugate gate symbols for AND and
OR that result are shown in Figs. 3.18 and 3.19. The same limitations on numbers of inputs
that apply to CMOS NAND and NOR gates also apply to CMOS AND and OR gates.

AH) A(L)
B{L
8(H) : Z(H) Y : (L)
Y(H) YL
Z(H)= (A B~ - - Y)(H) Z(L)=(A+B+ - +Y)L)
(a) (b)

FIGURE 3.18
Logic symbols for multiple input AND gates. (a) AND interpretation. (b) OR interpretation.
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FIGURE 3.19
Logic circuit symbols for multiple input OR gates. (a) AND interpretation. (b) OR interpretation.

AND and OR gates can be configured by “flipping” end-for-end the NAND and NOR
gates shown in Figs. 3.10a and 3.12a, respectively, such that the NMOS occupy the HV end
while the PMOS reside at the LV end. However, to do this requires that the NMOS pass HV,
which they do not do well, and that the PMOS pass LV, which they do not do well. Thus,
although such flipped configurations logically satisfy the AND and OR interpretations for
the respective gates, their output signals would be somewhat distorted. For minimum output
signal distortion the PMOS and NMOS portions for any gate should be configured as in
Fig. 3.5.

3.6.6 Summary of Logic Circuit Symbols for the AND and OR Functions
and Logic Level Conversion

For reference purposes, a summary is now provided for the mixed logic symbology that
has been covered so far. Shown in Fig. 3.20 are the conjugate mixed logic circuit symbols
together with the physical gate names they represent. The conjugate mixed logic circuit
symbols for the inverter and buffer are given in Fig. 3.20a. Notice that the conjugate pairs of
logic circuit symbols in Fig. 3.20b are split into two groups, one group performing the AND
function and the other performing the OR function. The buffer, not previously discussed,
is included here for completeness. It functions as an amplifier to boost the signal to meet

AND OR
Function Function
——

Logic level conversion and buffer
symbols D’ <+— NAND Gate — :3:>_
' Y
'- <+— NOR Gate —» :) o~
Po-  « Inverter — > -

D>— <« Buffer — Do :D— <+— AND Gate —» :Do—
(@) ) «— orGate — T >~

FIGURE 3.20
Summary of conjugate mixed logic circuit symbols and the gates they represent. (a) Logic level
conversion and buffer symbols. (b) AND and OR function symbols.
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fan-in requirements. For reference purposes, the ANSI/IEEE Standard logic symbols for
gates are provided in Appendix C.1.

3.7 LOGIC LEVEL INCOMPATIBILITY: COMPLEMENTATION

The eight conjugate gate symbols in Fig. 3.20b perform one of two logic operations, AND
or OR, regardless of the presence or absence of the active low indicator bubbles that serve
to associate the symbols to the physical gates from which they are derived. However, the
presence or absence of an active low indicator bubble on the input to a given circuit symbol
indicates the activation level of the input, (L) or (H), that is “required” by that gate. Thus,
the presence of active low indicator bubbles on the inputs to a logic symbol requires that
all inputs arrive from negative logic sources while the absence of bubbles requires that the
inputs arrive from positive logic sources. When these requirements are met the inputs are
said to have logic compatibility with the logic symbol.

But suppose an input signal arrives at the input to a logic symbol with an activation level
that is of opposite polarity to that required by the logic circuit symbol. When this happens a
condition of logic incompatibility exists, and this requires that the signal name in the output
be complemented.

The operation of complementation is defined by the following important relations applied
to a logic function «:

a(l)=a@(H) and  a(H)=a(L) (3.2)

such that
(o - @)H)=0(H)
(o - @)(L)=0(L)
(¢ +a)}H)=1(H)
(¢ +a)L)=1(L).

(3.3)

The overbar is read as “the complement of.” Thus, in the logic domain a logic function
o ANDed with its complement & is logic O, or the function ORed with its complement is
logic 1.

In Fig. 3.21 are four typical examples of input logic level incompatibility each requiring
the complementation of the incompatible input name in the output expression. Note that
this is indicated in two ways. In Fig. 3.21a, Egs. (3.2) are applied directly to satisfy the logic
level compatibility requirements of the logic symbol. In Fig. 3.21b, an incompatibility slash
/" is placed on the input line containing the logic incompatibility as a visual reminder that
a logic level incompatibility exists and that the input name must be complemented in the
output expression.

The pairs of logic circuit symbols in Figs. 3.21a and 3.21b are conjugate symbol forms
as in Fig. 3.20. Because these conjugate circuit symbols are interchangeable, their output
expressions are equal and are representative of a set of such equations called the DeMorgan
relations. This subject will be considered further in Section 3.10.
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FIGURE 3.21
Examples of logic level incompatibility. (a) Applications of Egs. (3.2). (b) Use of the incompatibility
slash (/) as an alternative.

Earlier it was stated that the only logic function of the inverter is to perform logic level
conversion, (H) — (L) or (L) — (H), and this is true. But to what purpose? The answer
is simply stated:

The logical function of the inverter is to create or remove an input logic level incom-
patibility depending on the output function requirements of the logic symbol to which
the input is attached.

Consider two examples of logic level conversion in Figs. 3.22a and 3.22b. Here, NAND and
OR logic realizations of logic functions require the use of inverters to create and remove
logic level incompatibilities, respectively.

NAND/INV Logic
Desired Realization
Function

= X(L -
ZH) = (+(H)  —> YEL; m Z(H) = (X+V)(H)
Y(H)—T L Incompatibility

@) slash

OR/INV Logic
Desired Realization
Function

X(L
2060 — v m 2L =N
Y(L) »—j L Logic compatibility

(b)

FIGURE 3.22
Examples of logic level conversion. (a) Creation of a logic incompatibility with active low inputs. (b)
Removal of a logic incompatibility with inputs X(L) and Y (H).
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3.8 READING AND CONSTRUCTION OF MIXED-LOGIC CIRCUITS

The very simple procedures that are necessary to construct and read mixed-logic circuits
are now demonstrated by more complex examples. Consider the function F(H):

OR output stage
F(H)=[AB + BCl(H)

X\ 7

AND input stages

Notice that this function is formed by ORing together two ANDed terms and is read as F
equals A “bar” AND B ORed with B “bar” AND C, all active high. The logic circuit for this
function is shown in Fig. 3.23, where it is assumed that the inputs arrive active high ( /), that
is, from positive logic sources. Two logic realizations are shown, one NAND/INYV logic and
the other AND/OR/INYV logic, both yielding the function F(H). Thus, by complementing
between the AND and OR stages (area enclosed by dotted lines), the physical realization
is altered but without changing the original function—logic level compatibility has been
preserved. Observe that an incompatibility slash (**/”) is placed on a given symbol input as a
reminder that an input logic incompatibility requires complementation of the input name in
the output expression. In Figs. 3.23¢ and 3.23d are two additional means of representing the
function F — namely, the truth table and logic waveforms. Here, a binary input sequence
is assumed and no account is taken of the path delays through the gates and inverters.

A second more complex example is shown in Fig. 3.24, where a function Z(L) has
been implemented by using NAND/NOR/INYV logic in (a) and by using AND/OR/INV
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FIGURE 3.23
Examples of the reading, construction, and waveform analysis of a logic circuit. (a) NAND/INV and

(b) AND/OR/INV logic realizations of the function F(H) with active high inputs. (c) Truth table for
the function F. (d) Logic waveforms for the function F assuming a binary input pattern.
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B+C)(L) (A+B+C)(H)
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Z(L)=[(A+ B+C)D +E)J(L)

FIGURE 3.24
Logic realizations of the function Z(L) with inputs A(H), B(H), C(H), D(L), and E(L). (a) NAND/
NOR/INV logic. (b) AND/OR/INV.

logic in (b). In this example the ORing input stages receive inputs that are assumed to
arrive as A(H), B(H), C(H), D(L), and E(L). Here again, by complementing between the
AND and OR stages (dotted boxes), the physical realization is changed without altering
the original function. Notice that incompatibilities exist on inputs and between ORing and
ANDing stages requiring (in each case) complementation of the signal name in the output
expression as indicated by the “/” symbol.

Reading vs Construction of Logic Circuits Implied by Figs. 3.23 and 3.24 is the pro-
cedure to be followed when reading or constructing a logic circuit:

The reading of a logic circuit always begins with the inputs and ends at the output,
hence “input-to-output.”

Construction of a logic circuit begins at the output stage and continues to the inputs,
hence “top down.”

One must not begin construction of a mixed-logic circuit until the activation levels of the
inputs and outputs are known and the output and input stage operators have been identified.
If a circuit has been presented in positive logic form (no mixed logic symbology), it is
advisable for the reader to convert the circuit to mixed logic form before reading it. This
will speed up the reading process and minimize the probability for error.

3.9 XOR AND EQV OPERATORS AND THEIR MIXED-LOGIC
CIRCUIT SYMBOLOGY

Certain functions consisting of AND and OR operations occur so often in digital logic
design that special names and operator symbols have been assigned to them. By far the most
common of these are the exclusive or (XOR) and equivalence (EQV) functions represented
by the following operator symbols:

@ — XOR, meaning “one or the other but not both equivalent.”
O — EQV, meaning “both the same (equivalent).”
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(a) (b)

(c) (d)
FIGURE 3.25

Distinctive logic circuit symbols for XOR and EQV. (a) The XOR function circuit symbol. (b) The
EQV function circuit symbol. (c) and (d) illustrate the meaning of multiple input symbols.

Thus, if one writes X @ Y, itisread as X XORY; XY isreadas X EQV Y. The EQV opera-
toris also known as XINOR (for EXCLUSIVE NOR), a name that will nof be used in this text.

Like the AND and OR functions, the XOR and EQV functions are best understood
in terms of the logic circuit symbols representing them. Figures 3.25a and 3.25b give
the commonly used XOR and EQV circuit symbols for which the following functional
descriptions apply:

The output of a logic XOR circuit symbol is active if one or the other of two inputs is
active but not both active or inactive — that is, if the inputs are not logically equivalent.

The output of a logic EQV circuit symbol is active if, and only if, both inputs are
active or both inputs are inactive — that is, if both inputs are logically equivalent.

A circuit symbol for either XOR or EQV consists of two and only two inputs. Multiple input
XOR or EQV circuit symbols are understood to have the meaning indicated in Figs. 3.25¢
and 3.25d and are known as tree forms.

The defining relations for XOR and EQV are obtained from the functional descriptions
just given. In Boolean sum-of-products and Boolean product-of-sums form these defining
relations are

A®B=A-B+A-B=(A+B)-(A+B) 3.4
and
AOB=A-B+A-B=(A+B) (A+ B). 3.5)

In words, the XOR function in Eq. (3.4) is active if only one of the two variables in its
defining relation is active but not both active or both inactive, Thus, A & B = 1if only one
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FIGURE 3.26

The XOR gate, its I/O behavior, and its two logic interpretations. (a) A CMOS transistor circuit. (b)
Physical truth table. (c) Logic XOR interpretation. (d) Logic EQV interpretation.

of the two variables takes logic 1 at any given time. Conversely, the EQV function in Eq. (3.5)
is active only if both variables in its defining relation are active or both are inactive. In this
case A® B = 1 only if both variables are logically equivalent (both logic 1 or both logic 0).

3.9.1 The XOR and EQV Functions of the XOR Gate

Shown in Fig. 3.26a is one of several CMOS versions of the XOR gate. This version makes
rather clever use of NMOS and PMOS totaling six transistors. Notice that the output stage
is an inverter that acts not only to invert the signal, but also as a gain element to boost the
signal. This is important since the remainder of the circuit is composed of NMOS and PMOS
transmission gates (Fig. 3.7) that lack the ability to amplify. In Fig. 3.26b is the physical
truth table for the XOR gate. Observe that all but the X, Y = LV, LV input conditions
produce a Z’ voltage that is the voltage level from one or both inputs. This is characteristic
of logic gates composed of pass transistors.

Presented in Figs. 3.26c and 3.26d are the XOR and EQV logic interpretations of the
XOR gate together with their distinctively shaped circuit symbols. The logic truth tables
for these interpretations derive from the defining relations given by Eqs. (3.4) and (3.5),
respectively, and from Egs. (3.1). Observe that the XOR symbol with active high inputs and
output is interchangeable with an EQV symbol with active low output. Thus, it follows that
(XS Y)H)=(XOY)L).

3.9.2 The XOR and EQV Functions of the EQV Gate

A version of the CMOS EQV gate is shown in Fig. 3.27a. It is obtained from the XOR
version in Fig. 3.26a by “complementing” the MOS transistors in the Z’ circuit to obtain
the Z” circuit in Fig. 3.27a. Notice that all input conditions except X, Y = HV, HV produce
a Z" output directly from one or both of the inputs. Also note that Z” is an XOR output,
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FIGURE 3.27

The EQV gate, its I/O behavior, and its two logic interpretations. (a) A CMOS transistor circuit.
(b) Physical truth table. (c) Logic XOR interpretation. (d) Logic EQV interpretation.

whereas Z’ is an EQV output, and that they are the inverse of each other. In each case an
inverter is added to invert the signal as well as to buffer the output Z.

The physical truth table for the EQV gate and its two logic interpretations are given in
parts (b), (c), and (d) of Fig. 3.27. The same procedure used for the XOR gate is used here
to obtain the logic truth tables and circuit symbols for the EQV gate. In this case, the XOR
symbol with active low output is interchangeable with the EQV symbol with active high
inputs and output resulting in the relation (X & Y)(L) = (X © Y)(H).

3.9.3 Multiple Gate Realizations of the XOR and EQV Functions

The CMOS transistor circuits for the XOR and EQV functions given in Figs. 3.26 and 3.27
represent the most efficient use of MOSFETS for such purposes. However, there are occa-
sions when such MOS implementations of these functions are not possible. One example
1s the use of programmable logic arrays (PLAs), as discussed in Section 7.3, to implement
arithmetic-type circuits discussed in Chapter 8. PLAs are devices that must use two-level
gate forms to implement XOR or EQV functions — XOR or EQV gates are not commonly
part of the PLA architecture. Shown in Fig. 3.28 are four multiple-gate realizations of the
XOR and EQYV functions. The circuits in Figs. 3.28a and 3.28b have been derived from the
defining relations for XOR and EQV given by Egs. (3.4) and (3.5), respectively and are
suitable for two-level circuit design. The three-level circuits in Figs. 3.28c and 3.28d are
not suitable for two-level circuit design. These three-level circuits result from derivatives
of the defining relations:

A-(AB)+ B(AB)=AB + AB XOR form (3.4a)
(A+AB)YB + AB)=(A + B)XA + B) EQV form (3.4b)

The applications of CMOS AND-OR-invert and OR-AND-invert gates to the implemen-
tation of XOR and EQV functions are given later in Subsection 7.7.1. Such CMOS
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FIGURE 3.28

Multiple gate realizations of the XOR and EQV functions. (a, b) Two-level NAND implementations
of the XOR and EQV functions. (c, d) Three-level NAND and NOR implementations of the XOR
and EQV functions.

realizations of these functions are shown to be closer to a single level of path delay rather
than two levels, as is true for those in Figs. 3.26a and 3.27a.

3.9.4 The Effect of Active Low Inputs to the XOR and EQV Circuit Symbols

An interesting property of the XOR and EQV logic symbols is the fact that when the two
inputs are of opposite polarity the output function is complemented, but when the inputs are
of the same polarity (both active high or both active low) the function remains unchanged.
This is illustrated by the four examples in Fig. 3.29. Thus, a single incompatibility comple-
ments the function (changing an XOR output function to an EQV output function or vice
versa), whereas a double incompatibility or no incompatibility retains the output function.
These results may be proven by altering the appropriate logic truth table in Figs. 3.26 and
3.27 to agree with the input activation levels indicated for each logic circuit symbol.

X i‘):D— xonH N0 } Xev)(L)

(a)

0 :Z)IDO— xenw 02 :)— XOY)(H)

(b)

FIGURE 3.29
Effect of active low inputs to XOR and EQV logic circuit symbols. (a) Single logic incompatibilities.
(b) Dual logic incompatibilities.
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e « B <« o= B ~ 4D~
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FIGURE 3.30
Summary of conjugate mixed logic circuit symbols for the XOR and EQV gates. (a) XOR gate
symbols. (b) EQV gate symbols.

3.9.5 Summary of Conjugate Logic Circuit Symbols for XOR and EQV Gates

For reference purposes the logic circuit symbols representing the XOR and EQV gates are
summarized here. Shown in Fig. 3.30a are the four conjugate forms for the XOR gate and in
(b) the four conjugate forms for the EQV gate. The conjugate logic circuit symbol forms are
interchangeable, as indicated by the two-way arrows. This information can be very useful
when synthesizing logic circuits containing XOR or EQV functions. Notice that dual logic
low indicator bubbles, representing double incompatibilities. have no effect on the logic
function. The reader is referred to Fig. 3.29b for reinforcement of this fact.

3.9.6 Controlled Logic Level Conversion

In Section 3.4 the concept of logic level conversion was introduced in connection with the
inverter. Here, the subject of logic level conversion is revisited as it relates to the XOR
or EQV gate. Another interesting and useful property of the XOR and EQV gates is that
they can be operated in either one of two modes: the inverter made or the transfer mode.
These modes are illustrated in Fig. 3.31, where exclusive use is made of the XOR symbol to
represent the XOR and EQV gates. In Fig. 3.31a the XOR interpretation of the EQV gate is
used for (H) — (L) logic level conversion or for logic transfer depending on the logic level
of the controlling input. Notice that the buffer symbol is used te represent the transfer mode.
These two modes are easily deduced from the truth table given at left in Fig. 3.3 1a. Similarly,
in Fig. 3.31b, the XOR interpretation of the XOR gate is used for the (L) — (H) conversion
mode or for the logic transfer mode depending on the logic level of the controlling input.
Here again, these results are easily deduced from the truth table to the left in Fig. 3.31b,
which has been altered from that in Fig. 3.26c to account for the active low inputs.

The positive logic interpretation of an XOR gate used as a controlled inverter is given in
Fig. 3.31c. This is included to add greater understanding of the XOR gate and its operation.
Although all three cases in Fig. 3.31 physically represent controlled inversion, it is common
to find controlled inverters represented as in Fig. 3.31c. A typical example is in the design
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FIGURE 3.31

Controlled logic level conversion. (a) The EQV gate used for (H) — (L) conversion and logic
transfer. (b) The XOR gate in mixed logic notation used for (L) — (H) conversion. (¢) Positive logic
interpretation of the XOR gate used as a controlled inverter.

of the adder/subtractor featured in Fig. 8.9. In making the transition from Fig, 3.31b to
Fig. 3.31c, it should be recalled that complementation of both inputs to an XOR or EQV
circuit symbol leaves the output function unaltered. Notice that the inverter and buffer
symbols in Fig. 3.31 are the same as those given in Fig. 3.20a.

3.9.7 Construction and Waveform Analysis of Logic Circuits Containing
XOR-Type Functions

As an extension of Section 3.8, the reading and construction of a multilevel! logic circuit
containing an XOR function is demonstrated by the NAND/XOR/NOR/INV circuit in
Fig. 3.32a representing the function ¥ = A ® BC + BC. A multilevel logic function is one
that has more than two gate path delays from input to output. In this case there are three levels
of path delay. Here, an XOR gate performs the XOR operation to yield the (A ® BC)XH)
input to the NOR output stage performing the OR operation. The waveform for BC(H) is
obtained by ANDing the complement of the B(H) waveform with the complement of the
C(H) waveform by using a NOR gate to perform the AND operation. Thus, there are three
logic incompatibilities, one for the A(H) input and the other two for the B(/) and C(H)
inputs, but inverters are not needed to create these logic level incompatibilities.

Presented in Figs. 3.32b and 3.32c are the truth table and logic waveforms for the circuit
in Fig. 3.32a. The inputs are arbitrarily given in binary sequence, and the output waveforms
from the intermediate stages are given to reveal the advantage of the mixed logic method.
No account is taken of the propagation delays of the gates and inverters. Notice that the
(A @® BC)(H) and BC(H) logic signals are logically compatible with the requirements of
the ORing operation of the NOR gate output stage. If complementation is carried out within
the dashed box, the waveforms for the resulting (A @ BC)(L) and BC(L) signals would
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FIGURE 3.32
(a) NAND/NOR/XOR/INYV logic circuit, (b} truth table, and (c) logic waveforms for the function ¥
with active high inputs and mixed logic outputs.

remain the same as those shown for the active high signals, but with opposite activation
levels. However, the physical nature of the devices required for implementation would now
become NAND/EQV/OR/AND/INYV as taken from input to output.

Another interesting facet of the mixed logic method is the fact that an inverter on the
output stage permits the generation of mixed rail output signals. The Y (L) and Y (H ) signals
constitute the mixed rail outputs and have waveforms that are identical if account is not
taken of the propagation delay through the inverter. In the physical domain, however, the
voltage waveforms represented by ¥ (L) and Y (H) would be the inverse of one another.

3.10 LAWS OF BOOLEAN ALGEBRA

To design a digital circuit that will perform a given function, it may be necessary to ma-
nipulate and combine the various switching variables in certain ways that are in agreement
with mathematical logic. Use of the laws of Boolean algebra makes these manipulations
and combinations relatively simple. This special mathematical logic, named in recognition
of the English mathematician George Boole, can be rigorously and eloquently presented
by using axioms, theorems, and corollaries. However, for our purposes there is no need for
such a formal approach. The laws of Boolean algebra are relatively few and can be deduced
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from the truth tables for NOT, AND, and OR. In this section these laws are developed
exclusively within the logic domain with only passing reference to activation levels.

3.10.1 NOT, AND, and OR Laws

NOT Laws The unary operator NOT is the logic equivalent of complementation and
connotes inversion in the sense of supplying the lack of something. Although NOT is
purely a logic concept and complementation arises more from a physical standpoint, the
two terms, NOT and complementation, will be used interchangeably following established
practice.

The truth table for NOT is the positive logic interpretation of the physical truth table
given in Fig. 3.6b. It is from this truth table that the NOT laws are derived.

NOT
Truth Table NOT Laws
XX 0=1 (3.6)
0/ —  1=0
10 f=x

The NOT operation, like complementation, is designated by the overscore (or “bar”). A
double bar (or double complementation) of a function, sometimes called involution, is the
function itself, as indicated in Egs. (3.6).

As examples of the applications of the NOT laws, suppose that X = AB. Then the
function X = AB istead as A AND B bar the quantity complemented,and X = AB = AB.
Or,if Y = 0,then ¥ = 0 = 1, etc. Finally, notice that Eqgs. (3.2) can be generated one from
the other by involution — even in mixed logic notation. Thus, @(L) = &(H) = a(H), and
SO on.

AND Laws The AND laws are easily deduced by taking the rows two at a time from the
truth table representing the logic AND interpretation of the AND gate given in Fig. 3.16c.
Thus, by taking ¥ equal to logic values 0, 1, X, and X, the four AND laws result and are
given by Egs. (3.7).

AND
Truth Table AND Laws
X-0=0
00| 0 X-1=X 3.7
0 1 0 —» X X=X
10 0 X -X=0
1 1 1

To illustrate the application of the AND laws, let X be the function X = A + B so that
(A+B)-0=0,(A+B)- 1=A+B,(A+B)-(A+B)=A+B, and (A+B)-(A+B)
= 0. These laws are valid regardless of the complexity of the function X, which can represent
any multivariable function.
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OR Laws The four OR laws are deduced from the logic OR interpretation of the OR gate
given in Fig. 3.17d by assigning to Y the values 0, 1, X, and X and are given by Egs. (3.8).
The OR laws are illustrated by letting X represent the function X = BC. Then, according
to the OR laws, BC + 0= BC,BC+1=1,BC+ BC = BC,and BC + BC = 1. Here
again, use has been made of a multivariable function X to demonstrate the applicability of
a fundamental Boolean law, the OR law.

OR
Truth Table OR Laws
X+0=X
X+1=1 (3.8)
X+X=X
X+X=1

Notice that the AND and OR laws are easily verified by substituting 0 and 1 for the
multivariable function X in the examples just given, and then comparing the results with
the AND and OR truth tables.

3.10.2 The Concept of Duality

An inspection of the AND and OR laws reveals an interesting relationship that may not be
obvious at first glance. If the 1’s and 0’s are interchanged while the AND and OR operators,
(-) and (+), are interchanged, the AND laws generate the OR laws and vice versa. For
reference purposes, the interchange of 1’s and 0’s simultaneously with the interchange of
operators is represented by the double arrows (<) as follows:

0el
() < (+)
(O]

This simultaneous interchange of logic values and operators is called logic duality. The
duality between the AND and OR laws is given by Egs. (3.9).

AND Laws OR Laws
X-0=0 By X+0=X
X-1=x <+ —%» X41=1 (3.9
X X=X Duality X+Xx=X
X -X=0 X+X=1

Perhaps the best way to demonstrate duality is by the two dual sets

(AOB)AB+AB]=0 «——» (AGB+[A+B)-A+B)]=1
and

XOX+Y)=XY 4——>» XBX - Y)=X+7,
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where the double arrow («—) again represents the duality relationship of the set. For each
dual set it can be seen that an operator in the left side equation has been replaced by its
dual in the right side while the logic 0 and 1 (in the first dual set) are interchanged. Note
that the two equations in a given set are nor algebraically equal —they are duals of each
other. However, a dual set of equations are complementary if an equation is equal to logic
1 or logic O as in the first example. Such is not the case for the second set. The concept of
duality pervades the entire field of mathematical logic, as will become apparent with the
development of Boolean algebra.

3.10.3 Associative, Commutative, Distributive, Absorptive, and Consensus Laws

The associative, commutative, distributive, absorptive, and consensus laws are presented
straightforwardly in terms of the multivariable functions X, Y, and Z to emphasize their
generality, but the more formal axiomatic approach is avoided for the sake of simplicity.
These laws are given in a dual form that the reader may find useful as a mnemonic tool:

X W Z=X-(Y-Z)=X-Y-Z
Associative Laws (3.10)
X+ +Z=X+F+2)=X+Y+Z
XY Z=X-Z-Y=Z-XY=...
Commutative Laws (3.11)
X+Y+Z=X+Z+Y=Z4+X4+Y ="
e X -Y)+(X -Z)=X-(Y+Z) Factoring Law
Distributive Laws o (3.12)
X+Y) (X+2Z)=X+ (Y Z) Distributive Law
X - X+V)=X.Y
Absorptive Laws _ (3.13)
X+X -Y)=X+7Y
X-N+X-2)+Y-2)=X-V)+ X -Z
Consensus Laws ( ) (_ )+ )=( ) (_ ) . (3.14)
X+Y) X+2) ¥Y+2)=(X+Y)- X+ 2)

Notice that for each of the five sets of laws, duality exists whereby the AND and OR
operators are simultaneously interchanged. The dual set of distributive laws in Egs. (3.12)
occur so often that they are sometimes given the names factoring law and distributive law
for the first and second, respectively. The factoring law draws its name from its similarity
to the factoring law of Cartesian algebra.

Although rigorous proof of these laws will not be attempted, they are easily verified
by using truth tables. Shown in Figs. 3.33 and 3.34 are the truth table verifications for the
AND form of the associative law and the factoring law. Their dual forms can be verified in
a similar manner.

Proof of the commutative laws is obtained simply by assigning logic 0 and logic 1 to the
X’s and Y’s in the two variable forms of these laws and then comparing the results with the
AND and OR truth tables given by Eqgs. (3.7) and (3.8), respectively.

The distributive law can also be verified by using truth tables. However, having verified
the factoring law, it is simpler to prove this law with Boolean algebra by using the factoring



3.10 LAWS OF BOOLEAN ALGEBRA 109

Decimal | X ¥ Z | X-Y | Y-Z | X-¥)-Z | X-(¥-Z) | X-V-Z
0 0 0 0 0 0 0 0 0
i 0 0 1 0 0 0 0 0
2 01 0 0 0 0 0 0
3 0 1 1 0 i 0 0 0
4 1 0 0 0 0 0 0 0
5 1 0 1 0 0 0 0 0
6 1 10 1 0 0 0 0
7 111 i 1 i 1 1
FIGURE 3.33

Truth table for the AND form of the associative laws in Eqgs. (3.10).

law together with the AND and OR laws. This is done in the following sequence of steps
by using square brackets to draw attention to those portions where the laws indicated on
the right are applied:

(X+VX+D=X-X+D]+[Y - (X + D)] Factoring law (applied twice)
=X X]I+X-2)+ ¥ -X)+(¥ -Z) ANDlaw (X - X = X)
=[X+X-2)+F -X)]+ (Y -2Z) Factoring law
=X-1+Z4+Y]14+(¥-2) ORlaw(1+Z+Y =1)
=X+ -2).

In similar fashion the second of the absorptive laws is proven as follows:

X+ XY =[(X+X)XX+7Y)] Distributive and OR laws
—1-(X+7Y) ANDlaw (1 - (X +¥) = X + ¥)
=X+Y.

The remaining absorptive law is easily proved by first applying the factoring law followed
by the AND law X - X = 0. Duality can also be used as a validation of one form once its
dual is proven.

Decimal | X Y Z | X-Y | X-Z | Y+Z | X-D+X-2) | X-(Y+2)
0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 i 0 0
2 01 0 0 0 1 0 0
3 0 1 1 0 0 i 0 0
4 1 0 0 0 0 0 0 0
5 I 0 1 0 i i i 1
6 1 10 1 0 i i 1
7 P11 1 1 1 1 1
FIGURE 3.34

Truth table for the factoring law given in Eqgs. (3.12).



110 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

The first of the consensus laws in Egs. (3.14) is proven by applying the OR and factoring
laws:
XY+ XZ4+YZ=XY+XZ+[X+X)YZ] OR law and factoring law
=XY 4+ XZ+[XYZ+ XYZ] Factoring law
=[XY(1+ Z)]+[XZ(1+7Y)] Factoring law (applied twice); OR law
=XY+XZ.

Proof of the second of the consensus laws follows by duality.

3.10.4 DeMorgan’s Laws

In the latter half of the nineteenth century, the English logician and mathematician Augustus
DeMorgan proposed two theorems of mathematical logic that have since become known
as DeMorgan’s theorems. The Boolean algebraic representations of these theorems are
commonly known as DeMorgan’s laws. In terms of the two multivariable functions X and
Y, these laws are given in dual form by

(3.15)

X Y=X+7Y
DeMorgan’s Laws

More generally, for any number of functions, the DeMorgan laws take the following
form:

X-Y-Z--- - - N=X+4Y+Z+ ---+N
and (3.15a)

X+Y+Z+---+N=X-Y-Z--.--N.

DeMorgan’s laws are easily verified by using truth tables. Shown in Fig. 3.35 is the truth
table for the first of Egs. (3.15).

Application of DeMorgan’s laws can be demonstrated by proving the absorptive law
X+XY=X+7Y:

X+XY=%-EN=X-X+N=X-X+X-T=X-T=X+7.

Notice that the double bar over the term X + XY is a NOT law and does not alter the
term. Here, DeMorgan’s laws are first applied by action of the “inner” bar followed by
simplification under the “outer” bar. Final application of DeMorgan’s law by application

X Y XY XY X Y X+Y
0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

FIGURE 3.35
Truth table for DeMorgan’s LawX - ¥ = X + V.
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of the outer bar takes place only after simplification. As a general rule, DeMorgan’s laws
should be applied to a function only after it has been sufficiently reduced so as to avoid
unnecessary Boolean manipulation.

3.11 LAWS OF XOR ALGEBRA

The laws of XOR algebra share many similarities with those of conventional Boolean
algebra discussed in the previous section and can be viewed as a natural extension of the
conventional laws. Just as the AND and OR laws are deduced from their respective truth
tables, the XOR and EQV laws are deduced from their respective truth tables in Figs. 3.26¢
and 3.27d and are given by Eqgs. (3.16) together with their truth tables:

XOR EQV
Truth Table Truth Table
X Y |xor X Y xor
00 0 0o ol 1
0 1] 1 01| o
1 of 1 \ / 1 0] o0
X®0=X XOl=X
X01=-% <> x00-X (3.16)
X®x=0 Duality yoy-;
XoXx=1 XO0X=0

Here, the dual relationship between the XOR and EQV laws is established by interchanging
the 1’s and 0’s while simultaneously interchanging the XOR and EQV operators, as indicated
by the double arrow.

The associative and commutative laws for EQV and XOR follow from the associative
and commutative laws for AND and OR given by Eqs. (3.10) and (3.11) by exchanging
operator symbols: © for () and @ for (+). The distributive, absorptive, and consensus
laws of XOR algebra follow from their AND/OR counterparts in Egs. (3.12), (3.13), and
(3.14) by replacing the appropriate (+) operator symbols with the @ operator symbols,
and by replacing the appropriate (-) symbols with the ® symbol, but not both in any given
expression. In similar fashion, DeMorgan’s laws in XOR algebra are produced by substi-
tuting © for (-) and @ for (4) in Eqs. (3.15). These laws are presented as follows in dual
form and in terms of variables X, Y, and Z, which may represent single or multivariable
functions:

e XOYOZ=X0Y0O0Z)=X0YOZ
Associative Law 3.17)
XeNeZ=Xp(YoZ)=XdYOZ
XOYOZ=X0ZOY=2Z0X0Y=---
Commutative Laws © © © (3.18)
XY Z=XZPpY=ZXPY =---
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e X-VO(X-Z)y=X.-(Y®Z) Factoring Law
Distributive Laws (3.19)
X+Y)OX+Z)=X+ (Y ®©Z) Distbutive Law
. X- XY=
Absorptive Laws (3.20)
X+Xo=X+Y
X.Y X-2)+¥-Z)=(X-Y X Z
Consensus Laws ¢ )& ( )+ ( )= )& ( ) 3.21)
X+NO0X+2) Y+2)=X+Y)0X+2)
XoY=X@V=XoY
DeMorgan’s Laws © . (3.22)
XoY=X0YVY=X0Y

Notice that each of the six sets of equations are presented in dual form. Thus, by interchang-
ing AND and OR operators while simultaneously interchanging EQV and XOR operators,
duality of the set is established. The first of the distributive laws given in Egs. (3.19) can be
termed the factoring law of XOR algebra owing to its similarity with the factoring law of
Cartesian algebra and that of Egs. (3.12).

Generalizations of DeMorgan’s XOR laws follow from Eqs. (3.15a) and (3.22) and are
given by

XOYo0Zo --ON=X0Y®Z® ---®N
and " (3.22a)
XoYPZE - -&N=X0OYOCZO---ON.

Verification of the associative, commutative, and distributive laws is easily accomplished
by using truth tables. For example, the second of the distributive laws in Egs. (3.19) is verified
by the truth table in Fig. 3.36. Here, Eq. (3.5) is used together with the OR laws [Egs. (3.8)}]
to show the identity of the terms (X + V) O (X + Z)and X + (Y © Z).

The distributive laws may also be proven by using Boolean algebra. For example, the
factoring law of Egs. (3.19) is proven by applying the defining relation of the XOR function

X Y Z X+Y X+Z YOZ | X+Y)OX+2) X+Y0oZ)
0 0 0 0 0 1 1 1
0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1
FIGURE 3.36

Truth table for the XOR distributive law given in Egs. (3.19).
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given by Eq. (3.4) and by using the AND and OR laws of Egs. (3.9):

(XY)& (X2)]=[(XDIXZ)+ (XV)[(XZ)] Eq. (3.4) and Eq. (3.15)
=X+ V)XZ)]+[(XY)X + Z)] Factoring law [Egs. (3.12)]
=[XXZ+ XYZ]+[XXY + XYZ] AND and OR laws [Eqs. (3.9)]

=[XYZ+ XYZ] Factoring law [Egs. (3.12)]
=X[YZ+Y2Z) Eq. (3.4)
=XY®2).

In these equations, the square brackets [ ] are used to draw attention to those portions where
the laws or equations indicated on the right are to be applied in going to the next step.
Equation (3.4) refers to the defining relation for XOR givenby X ® Y = XY + XY.

The absorptive laws are also easily proven by using Boolean algebra. Beginning with
the first of Eqgs. (3.20), there follows

X [X®V]=X- (XY +XY) Eq. (3.4)
=[X (XY + XY)] Factoring law [Eqgs. (3.12)]
=[X-XY+ X -XY] AND and OR laws [Egs. (3.9)]
= XY,

where the square brackets [ ] are again used to draw attention to those portions where the
laws or equations indicated on the right are to be applied. The second of Egs. (3.20) is
proven by the following sequence of steps:

X+[(XOY)]=X+(XY)+(XY) Eq. (3.5
=[X + (XY)] + XY Factoring law [Egs. (3.12)]
=[X(1+Y)+ XY] ORand AND laws
=[X+ XY] Absorptive law [Egs. (3.13)]
=X+Y.

Notice that in the foregoing proofs, use is tacitly made of the important dual relations

XeY=X0Y=X0Y=X0Y 3.23)

X0Y=X0¥=X0r=XoV. '
These relations are easily verified by replacing the variable (X or Y) by its complement
(X or Y) in the appropriate defining relation, (3.4) or (3.5).

An inspection of Eqgs. (3.23) reveals what should already be understood — that comple-
menting one of the connecting variables complements the function, and that the complement
of an XOR function is the EQV function and vice versa. A generalization of this can be
stated as follows:

In any string of terms interconnected only with XOR and/or EQV operators, an odd
number of complementations (variable or operator complementations) complements
the function, whereas an even number of complementations preserves the function.
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Toillustrate, consider a function F consisting of a string of four multivariable terms W, X, Y,
and Z interconnected initially by XOR operators:

F=WeXaeYeZ=WoXeY0OZ
=WoXel/eZ=WOoXQOY®Z=":.-

F=WoX®YRZ=WoXpYoZ
=WoXQYQoZ=WoXapYpZ=---

(3.24)

An examination of Eqs. (3.24) reveals that there are 64 possible expressions representing
F and 64 for F, all generated by repeated applications of Egs. (3.23). The number 64 is
derived from combinations of seven different objects taken an even or odd number at a time
for F and F, respectively.

Application of Egs. (3.24) is illustrated by

AQ(AOD+C)OB=A0[(A® D)CIOB
=AG[(A® D) B,

where the original function has been converted from one having only EQV operators and
two complemented variables to one having only XOR operators with no complemented
variables. The two alternative forms (right side) differ from each other by only two comple-
mentations. Notice also that the first alternative form involved applications of DeMorgan’s
laws given by Eqgs. (3.15) and (3.22).

3.11.1 Two Useful Corollaries

Interesting and useful relationships result between XOR algebra and conventional Boolean
algebra by recognition of the following two dual corollaries, which follow directly from the
definitions of the XOR and EQV operations:

COROLLARY 1  Iftwo functions, o and B, never take the logic I value at the
same time, then

a-=0 and a+B=adf (3.25)

and the logic operators (4-) and (@) are interchangeable.

COROLLARY II  If two functions, o and B, never take the logic 0 value at the
same time, then

a+B=1 and a-B=a0p (3.26)

and the logic operators () and (©) are interchangeable.

Corollary I requires that & and 8 each be terms consisting of ANDed variables called
product terms (p-terms) and that they be disjoint, meaning that the two terms never take logic
1 simultaneously. By duality, Corollary Il requires that o and § each be terms consisting of
ORed variables called sum terms (s-terms) and that they be disjoint, meaning that the two
terms never take logic 0 simultaneously. The subject of these corollaries will be revisited
in Section 5.5 where their generalizations will be discussed.
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The most obvious application of Corollaries I and I is in operator interchange as demon-
strated by the following four examples:

[1] AB+ BC =(AB)® (BC),
where o = AB, 8 = BC,and a - B = 0 by Corollary I.

21 A+B+X) (A+B+C+Y)=A+B+X)O(A+B+C+Y),
wherea =(A+B+X),=(A+ B+ C+Y)anda + B = 1 according to Corollary II.
Bla+b®bc=a+b+bc=a+b+c,

where Corollary I has been applied followed by the absorptive law in Eqs. (3.13).

[4] XDNOX+Y+2)=XX+Y+2)=XYZ

Here, Corollary 11 is applicable since XY = X + Y, and the result follows by using the
AND and OR laws given by Egs. (3.9).

3.11.2 Summary of Useful Identities

The laws of XOR algebra have been presented in the foregoing subsections. There are several
identities that follow directly or indirectly from these laws. These identities are useful for
function simplification and are presented here in dual form for reference purposes.

XeY=X®Y=XaY=X0Y=X0Y 3.27)
X0Y=X0¥V=X0Y=XgY=XaY ’
XpX=X0X=1

® X © (3.28)
XO0X=X®X=0
leXx=X 0eX=X
® _ ® (3.29)
00Xx=X loX=X

XYOX=XY®DY =XY (3.30)
X+DoX=X+Y)OY=X+Y :

XY®dX=XYBY=1XY 3.31)
X+YV0X=X+NOY=00X+Y) '
XY Y) =
XY)e(X+Y)=XdY (3.32)
X+7NoXY)=X0Y

XY+YZ+XZ=XYDBYZDXZ } (3.33)

X+ +ZXX+2)=(X+YV)OXY+2)O(X+2) )

Note that in these identities, either X or Y or both may represent multivariable functions or
single variables of any polarity (i.e., either complemented or uncomplemented).
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By applying the laws and corollaries previously given, the majority functions identity of
three variables expressed by Eqs. (3.33) is proven as follows:

XY+YZ+XZ=XYZ+2D)+X+X)YZ+X{Y +Y)Z OR Laws
i i i [Egs. (3.8)]

=XYZ+XYZ+XYZ+XYZ+XYZ+XYZ Egs. (3.19) and
OR Laws

=XYZSXYZ®(XYZ+XYZ) Corollary I

=XY® Y ®X)Z Egs. (3.19), OR
Law, Eq. (34)

=XY®YZDXZ. Eq. (3.8)

Proof of the second identity of Eqs. (3.33) follows by duality, thatis, simply by interchanging
all (+) with (-) operators while simultaneously interchanging all & with © operators. The
generalized majority function identity is given by

(WXY - 4+ WXZ- A WYZ- -+ XYZ ot -]
=[WXY - - ®WXZ---®@WYZ - - ®XYZ & -],

which also has its dual formed by the simultaneous interchange of the operators.

This concludes the treatment of Boolean algebra. While not intended to be an exhaustive
coverage of the subject, it is adequate for the needs of digital design as presented in this
text. Additional references on Boolean algebra are available in the list of further reading
that follows.

3.12 WORKED EXAMPLES

ExampLE 3.1 Given the waveforms (heavy lines) at the top of Figs. 3.37a and 3.37b, draw
the two waveforms for the two terminals below each.

ExampLE 3.2 Complete the physical truth table in Fig. 3.38b for the CMOS logic circuit
given in Fig. 3.38a. Name the gate and give the two conjugate logic circuit symbols for this
gate in part (c).

ExaMpPLE 3.3 The logic circuit in Fig. 3.39 is a redundant circuit, meaning that excessive
logic is used to implement the function Z(H). (a) Name the physical gates that are used in
the logic circuit in Fig. 3.39. (b) Read the circuit in mixed-logic notation and express the
results in reduced, polarized Boolean form at nodes W, X, Y, and Z.

(a) (1) NAND, (2) NOR, (3) NOR, (4) OR, (5) AND, (6) NOR
(b) W(H)= AB(H)

X(L)= BC(L)

Y(L)=(C + DXL)

Z(H)= WXY(H) = (AB)(BC)C + D)(H) = (A + BXBC)C + D)(H)
= (A + B)BC + BCD)(H)
= ABC(H)
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Device >0 X(voits) ¥ /\ < Given
1
R
X(H) 0 - Required
Answer
L X(L) $ [ L]
(@)
Diltal ‘ (AU p IR e B
Device X(H) 0 < Given
. |
XL 0 — Required
Answer
L X(voits) 1V S\ /T
(b)

FIGURE 3.37

Physical (voltage) waveforms and mixed-logic notation. (a) Effect of logic level conversion. (b)

Absence of logic level conversion.

Voo

4

XOR
Fgate_—’ D

i Required Required
A’B' Given Answer Answer
= (a) (b) (c)

FIGURE 3.38

Physical truth table and logic circuit symbols for a CMOS logic gate. (a) Given logic circuit. {b)
Physical truth table for an XOR gate. (¢) Conjugate logic circuit symbols for the XOR gate.

FIGURE 3.39
A redundant logic circuit.

117



118 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

W(L)
Y(H)
X(L)
Z(H} F(H)
W(L)
Y(H)

FIGURE 3.40
Logic circuit for the function given in Example 3.4.

ExXAMPLE 3.4 Use three NAND gates and two EQV gates (nothing else) to implement the
following function exactly as written:

FH)=[(WaY)8(XZ)+ WYI(H)

The solution is shown in Fig. 3.40.

ExAMPLE 3.5 A simple function of three inputs is given by the following expression:
F(H)=(AB + C)(H).

(a) Construct the logic circuit by using AND/NOR/INV logic. Assume that the
inputs arrive active high.

(b) Construct the CMOS circuit for the function given in Part (a).

(c) Obtain the physical truth table for the circuit of Part (b).

(d) Obtain the positive logic truth table for the circuit of Part (b).

The solutions to Example 3.5 are given in Fig. 3.41. Notice that PMOS and NMOS are
organized according to Fig. 3.5, and that the PMOS section generates the complement of
that of the NMOS section, hence the complementary MOS. Also note that the output of the
A inverter is connected to both the PMOS and NMOS inputs of the complementary sections
for F.

ExAMPLE 3.6 Use the laws of Boolean algebra, including XOR algebra and corollaries, to
reduce each of the following expressions to their simplest form. Name the law(s) ineach step.

[11 A+ ABC+(B+C)=A+ ABC + BC DeMorgan’s law [Egs. (3.15)]
=A+BC+ BC  Absorptive law [Egs. (3.13)]
=A+ B(C +C) Factoring law [Egs. (3.12)]
=A+B AND and Or laws [Egs. (3.7) and (3.8)]

[2] (@ +b)a+c)a+¢)=(a+b)a+c-c) Distributive law [Egs. (3.12)]
=(a+ b)a AND and OR laws [Egs. (3.7) and (3.8)]
=aa +ab Factoring law [Eqgs. (3.12)]
=ab AND and OR laws
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AH) >0
B(H) —<——
C(H) FiH)

(a)
c&’
Wy A B C F
PMOS I"—B —[I" LV LV LV | LV
|—G| LV LV HV | HV
LV HVY LV | HV
EIL LV HY HV | HV
HV LV LV | LV
NWDS HV LV HV | HV
B—| HV HV LV | LV
HVY HV HV | HV
(b} (c)

FIGURE 3.41

N = I = = = A

—_ - O O = = O O |
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- O = O = O = O |

(d)

Circuit and truth table representations for the function F of Example 3.5. (a) Logic circnit. (by CMOS

circuit. (¢) Physical truth table. (d) Logic truth table.

BIX+NX+DYX+Z2)+Y]=(X+YZNY(X +2Z)+ T

Distributive law

[Egs. (3.12)]
Absomptive law

(Egs. (3.13)]

Distributive law
AND and OR laws

[4] (b @ &)+ (@b)@+c)=(b®c)+(a+ b)ac) Egs. (3.23); DeMorgan’s laws
(Egs. (3.15)]
= (b ® c) + aat +abe) Factoring law [Egs. (3.12)]

= (be + bE + abe)

Eq. (3.5); AND and OR laws

= (bc + b¢) Factoring law; AND and OR laws

=b®c Egs. (3.5) and (3.23)

Bl X+YVoXeY)=X+Y)O(XY+X¥] Eq(3
=(X+Y}XY +XP)
=XY+ XY

4)

=Xy OR laws

Corollary II [Eq. (3.26)]
Factoring law; AND and OR laws

—‘c—"o—"—"—"ol"n
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61 (A+B+AC)O(AB+C)=(A+ B+ ACYAB +C) Corollary II
=(A+ B+ C)YAB+C) Absorption [Egs. (3.13)]

=C+(A+ B)XAB) Distributive law
[Egs. (3.12)]

=C Factoring law; AND and
OR laws

[71 @c + (@ + b) © (@ + bc) = ac + (ab) ® (@ + bc) DeMorgan’s law [Egs. (3.15);

Egs. (3.23)]
= dc + (ab) + (@ + bc) Corollary I [Eq. (3.25)]
=ab+a+ bc Factoring law; AND and OR laws
=a+b+bc Absorption [Egs. (3.13)]
=a+b+c Absorption

[8] wxy + wxZ + WxZ 4+ wyz + xZ = wxy + wxz + wxZz Consensus law [Egs. (3.14)]
=wxy + xZ(w + w) Factoring law [Egs. (3.12)]
= wXy +x2 Or laws

O AGBOA+B)=Ad[B®(AB)] Egs. (3.27)
= A®[B(1® A)] XOR Factoring law [Egs. (3.19)]

=A®(AB) Egs. (3.29)
=A(l® B XOR Factoring law
= AB Eqgs. (3.29)

[10] f =d @ bcd ® abd ® cd ® ad & abed
=[d @ c¢d] ® [abd ® ad) ® [bed ® abed] Rearranging terms
=[d(1® )] P [adb ® 1)] @ [bcd(1 ® a)] XOR Factoring law [Egs. (3.19)]

=¢d ® abd & abcd Repeated applications of Egs. (3.29)
=&d @ [abd(1 & ©)] XOR Factoring law [Egs. (3.19)]
=¢d @ abed Application of Egs. (3.29)

Notice that the gate/input tally of f has been reduced from 10/24 to 3/8 in the final
expression. Application of Corollary I further reduces f to (abc + ¢d).
FURTHER READING

Additional reading on the subject of mixed logic notation and symbology can be found in
the texts of Comer, Fletcher, Shaw and Tinder.

[1] D.J. Comer, Digital Logic and State Machine Design, 3rd ed. Saunders College Publishing, Fort
Worth, TX, 1995.
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[2]1 W. L. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs,
NJ, 1980.

[3] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993.

[4] R.F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,
NJ, 1991.

Virtually every text on digital or logic design provides some coverage of Boolean al-
gebra. The texts of McCluskey and Dietmeyer are noteworthy for their coverage of both
conventional Boolean algebra and XOR algebra including a very limited treatment of the
Reed—Muller expansion theorem.

[5] D. L. Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Boston, MA, 19738.
[6] E.J. McCluskey, Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986.

A more formal treatment of XOR algebra can be found in the work of Fisher.

[71 L. T. Fisher, “Unateness Properties of AND-EXCLUSIVE OR,” IEEE Trans. on Computers
C-23, 166-172 (1974).

A brief history of Boolean algebra is provided in Chapter 2 of Hill and Peterson.
[8] F. J. Hill and G. R. Peterson, Digital Logic and Microprocessors, John Wiley, NY, 1984,

CMOS logic, which is emphasized in this text, is adequately covered by Weste and
Eshraghian in Chapter 1 and portions of Chapter 5. But an excellent coverage of experimen-
tal work on various XOR and EQV gates on the MOS transistor level is given by Wang et al.

[9] N. H.E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley, Reading,
MA, 1985.
[10] J. Wang, S. Fang, and W. Feng, “New Efficient Designs for EXOR and XNOR Functions on the
Transistor Level.” IEEE Journal of Solid-State Circuits 29(7), 780—786 (1994).

PROBLEMS

3.1 Define the following:
(a) Mixed logic
(b) Polarized mnemonic
(c) Logic level conversion
(d) Active and inactive states
(e) Inverter
) Gate

3.2 Identify the gate appropriate to each of the physical truth tables in Fig. P3.1. Note: It
may be necessary to search this chapter for the answers.
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ABIY AB|Y AB|Y ABlY AB|Y
LV LV |HV LV LV LV LV LVILY LV LV |RV LV LV|LV
LV HV|HV LV HV[HV LV HV|LV LV HV|LV LV HVHV
HV LV [HV HV LV |HV HV LV |LV HV LV LV HV LV [HV
HY HV|LV HY HV{HV HV HV[HV HV HV|LV HV HV|LV

(@) (b) (© (d) (e)
FIGURE P3.1

3.3 By using a sketch, indicate how the CMOS inverter of Fig. 3.6a can be converted to a
two-transistor noninverting switch. What would be the disadvantage (if any) of such
a device?

3.4 Given the waveforms from the two logic devices in Fig. P3.2, sketch the waveforms for
X(voltage), X(L), ¥ (H), and Y (voltage). Keep the logic and voltage levels as shown.

3.5 With reference to Problem 3.4, explain the differences between the logic levels for
the X{H) and X (L) waveforms and those for the ¥ (H) and Y (L) waveforms. Do these
differences represent a contradiction in the definition of positive and negative logic?
Explain.

3.6 Use the inverter, its I/O behavior, and the logic circuit symbols in Fig. 3.6 to explain
how the PMOS indicator bubble in the inverter circuit is related to the active low
indicator bubble appearing on the inverter symbols.

Digital
Device y 1A ] |
#1 O(H)
HV
X(volts) i
(L)
XL (L)
Digital
Device y(H) 1)
#2 0(H)

by | 1
O(L)

Y from inverter (volts)

FIGURE P3.2
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3.7

3.8

3.9

3.10

3.11

3.12

3.13

Use the definitions of positive and negative logic and Fig. 3.6 as a guide to construct
the physical truth table and its two mixed logic truth tables for each of the tri-state
drivers in Fig. 3.8 as listed below. Remember to include both inputs X, and the control
C. Use the letter D to represent the disconnect mode.

(a) Noninverting tri-state driver with C(H).

(b) Noninverting tri-state driver with C(L).

(c) Inverting tri-state driver with C(H).

(d) Inverting tri-state driver with C(L).

By adding an inverter to each, reconfigure the tri-state drivers in Figs. 3.8c and 3.8d
so that they become noninverting tri-state enable switches with driver capability. Give
the circuit symbols and ideal equivalent circuits for these two reconfigured tri-state
switches.

Reconfigure the NAND gate in Fig. 3.10a by flipping it end-for-end such that the two
series NMOS are on the +Vpp (HV) end and the two parallel PMOS on the ground
(LV) end.

(a) Construct the physical and mixed logic truth tables for this reconfigured CMOS
circuit. Is this a valid gate form and, if so, what logic function does it perform?
(Hint: Compare with Fig. 3.16.)

(b) What, if any, are the disadvantages of this new configuration? Explain.

Repeat Problem 3.9 for the NOR gate in Fig. 3.12a, but with the two parallel NMOS
on the HV end and the series PMOS on the LV end. (Hint: Compare with
Fig. 3.17.)

Explain why the AND and OR gates of Figs. 3.16 and 3.17 cannot be used for
logic level conversion as is done for the NAND and NOR gates of Figs. 3.14 and
3.15.

Write the logic expressions for the action indicated by the situations given below. Use

mnemonics or abbreviations where appropriate.

(a) Bob will go fishing in a boat only if the boat does not leak and if it is not windy.
Otherwise, he will fish from the bank, but only if the fish are biting.

(b) A laboratory class consists of five students (A, B, C, D, and E) each from a dif-
ferent discipline. An experiment has been assigned that must be carried out with
any one of the following combinations of students:

A and C but not D
A or B but not both (see Section 3.9)
D but only if E is present

(c) Arobot is activated only if a majority of its three switches (X, Y, and Z) are turned
ON and is deactivated if a majority of its three switches are turned OFF.

Archie (A), Betty (B), Cathy (C), and David (D) may attend a school dance, but will
dance only with the opposite sex and then only under the following conditions: Archie
will dance with either Betty or Cathy. However, Cathy will dance with Archie only
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3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22
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if Betty is not present at the dance. David will dance only with Betty. Obtain the logic
expression representing the active state of dancing for A, B, C, and D.

Use a minimum number of gates and inverters to implement the functions below
with NAND/INV logic. Give the gate/input tally for each logic circuit, excluding in-
verters. Implement the function exactly as presented — make no alterations. Assume
that all inputs arrive from positive logic sources. Use the inverters for logic level
conversion.

(a) Z(H) = (XY + W)(H)

(b) F(H) =[AD + (B + E)I(H)

(c) g(L)=(wy+x+ z)(L)

(d) G(L)=[(AB+ C)XD + E)I(L)

(e) Y(H) =@+ bc)-(d+ e)I(H)

Repeat Problem 3.14 by using NOR/INV logic. Assume that all inputs arrive from
positive logic sources.

Repeat Problem 3.14 by using AND/OR/INV logic. Assume that all inputs arrive from
positive logic sources.

Use three NOR gates (nothing else) to implement the function Y(H) below ex-
actly as written. Assume the inputs arrive as follow: A(H), B(H), C(H), D(L),
and E(L).

Y(H) = [(AD) - (B + C + E)I(H)

Use three NAND gates (nothing else) to implement the function Z(H) below ex-
actly as written. Assume the inputs arrive as follow: A(H), B(H), C(H), D(L), and
E(L).

Z(H) = [(A + D)+ (BCE)|(H)

Name the gates used in each of the logic circuits shown in Fig. P3.3 and give the
mixed logic expression at each node in mixed logic notation. Use Figs. 3.20, 3.23,
and 3.24 as a guide if needed.

The CMOS circuits in Fig. P3.4 perform specific logic functions. Construct the physi-
cal and mixed logic truth tables for each circuit, indicate whatlogic function it performs
and give its two conjugate logic circuit symbols. Note that B is the inverse voltage
of B.

Use two NOR gates and one XOR gate (nothing else) to implement the function Y (H)
below exactly as written. Assume the inputs arrive as A(H), B(H), C(H), D(L),
and E(L).

Y(H)=[(A® D) - (B+C+ E)I(H)

Use three NAND gates, one EQV gate, and one inverter (nothing else) to implement
the function G(H ) below exactly as written. Assume the inputs all arrive from positive
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AH) s(U)
C(H) @L
DIL) T(H)

e0— 2 ) E)D*V(L)

FIGURE P3.3

logic sources.
GH)=[XY)®Z+ XYZIH)

3.23 Use three NAND gates and two EQV gates (nothing else) to implement the func-
tion F(H) below exactly as written. Assume the inputs arrive as W(L), X(L), Y(H),
and Z(H).

F(HY=[(W®Y)® (XZ)+ WYI(H)

3.24 Unused inputs must not be left dangling. Instead, they must be tied to other inputs,
or be connected to HV or LV depending on the logic operations involved. Implement
the following functions with the logic indicated.

(a) A four-input NOR gate performing the (A B)(H) operation with inputs A(Z) and
B(H).

(b) A three-input NAND gate performing the X(H)— X(L) logic level conversion
operation.

(c) An XOR gate performing the controlled X(L)— X(H) logic level conversion
operation.

(d) A four-input AND gate performing the (A + B)(L) operation with inputs A(H)
and B(L).

3.25 Construct the truth table and the mixed logic waveforms for the functions below by
using a binary input sequence in alphabetical order, all inputs active high. Use Ta-
ble 2.1 in Section 2.3 if needed, and follow the format of Fig. 3.32 in constructing
the waveforms. Do not take into account the propagation delays through gates and
inverters.
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B
B
(a) (b)
A
8 +Viop
E z
ialy 1
(c)
FIGURE P3.4

(a) Function Z(H) in Fig. P3.3a.
(b) Function G(H ) in Problem 3.22.
(c) Function F(H) of Problem 3.23.

3.26 Reduce the following expressions to their simplest form and name the Boolean
laws used in each step. (Note: Follow the procedure of Examples 3.6 in Section
3.12)

(a) ab(c +b)+ ab

() (X +YXXZ+Y) (Hint: First use the distributive law.)
(c) A+ AC+B

d) (x +y)x+Dlylx+2)+¥]

(€) AB+ ACD+ BC + AC
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3.27

3.28

3.29

3.30

331

Reduce the following expressions to their simplest form, but do not name the Boolean
laws used in each step.

(@ A+ ABC+A+C

(b) (aéd + ad)(ad + &d)

© WX+Y+WYWX+Y+WX)

(d) x+y)NX+2)(y+2)

(e) (A + BC)YAB + ABC) (Hint: Simplify under short complementation bars first.)
(f) @+ b+ a(b + bc) + (b + ©) - abed

(&) (A+ B+ C+ D)YA+C+ D)A+ B+ D) (Hint: First use consensus.)

Reduce the following expressions to their simplest form and name the Boolean laws
used in each step.

(@) (a® b+ b)a+b)

(b) XS (X +7Y)

(©) xOy O (xy)

@ X+NOEX+2D)]+X

() (A+B)-C]l®[A+ B+AC] (Hint: Find a way to use Corollary II.)

Reduce the following expressions to their simplest form, but do not name the Boolean
laws used in each step.

() A+A® B+ AB

(b) {S+[S & (STINH) = [7UL)

©X+HoXer

(d) (a ©b)® (ab)

e E+NaBy+Y)

® e d+0.0+100H) =[1(L)

Use the laws of Boolean algebra, including the XOR laws, identities, and corollaries

given by Egs. (3.17) through (3.33), to prove whether the following equations are true
(T) or false (F). Do not name the laws used.

@ XO0X+Y)=XY

(b) ab(b + bc) + bt + abed = be

(c) A B®(AB) = AB

@ XeXY)=X+XoY)

(e) [(AB)(A © B)(L) = AB(H)

(f) AXY + AXY + AY =(AX)®Y (Hint: First apply Corollary I.)

Use whatever conjugate gate forms are necessary to obtain a gate-minimum imple-

mentation of the following functions exactly as written (do not alter the functions):

(a) F(H)={[A® B] - [(BC) ® DI}(H) with inputs as A(H), B(H), C(L), and
D(L).

(b) K(L) = [A® C @ (BD) ® (ABCD))(L) with inputs from negative logic
sources.
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FIGURE P3.5

3.32 Use NOR/XOR/INV logic to implement the function below exactly as written by

3.33

3.34

using the fewest number of gates and inverters possible, assuming the inputs A and
B arrive active low and inputs X and Y arrive active high.

ZH)={[X ©(A+Y)]- BKH)

A room has two doors and a light that is controlled by three switches, A, B, and C.
There is a switch beside each door and a third switch in another room. The light is
turned on (LTON) any time an odd number of switches are closed (active). Find the
function LTON(H) and implement it with a gate-minimum circuit. Assume that the
inputs are all active high.

The logic circuits shown in Fig. P3.5 are redundant circuits, meaning that they contain
more logic than is necessary to implement the output function. Identify each numbered
gate and give the simplest mixed logic result at each node indicated. To do this, it will
be necessary to use the various laws of Boolean algebra together with mixed logic
notation.
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- Gin
A(L)
B(L)—“
F(L)
A(H)— .
B(H)— F = (AB)+(AB)
@) (b)
FIGURE P3.6

3.35 By following Subsection 3.10.2, write the dual forms for the functions Y(H), G(H),
and Z(H) in Problems 3.21, 3.22, and 3.32.

3.36 Use the laws of XOR algebra and identities given in Egs. (3.17) through (3.33) to
reduce the following function to its simplest (gate-minimum) form:

F=D@B®BDOBCDOAGADGACHACD D AB,

3.37 The mixed logic circuit for the multiple gate realization of the XOR function F(L) =
(AB + AB)L) = (A @ B)L) = (A & B)H) is shown in Fig. P3.6a, together
with its CMOS organization in Fig. P3.6b. It derives from the defining relations
given by Egs. (3.4) and (3.5). Construct the CMOS circuit (excluding inverters) for
this function by using the proper placement of the PMOS and NMOS as indicated
in Figs. 3.5 and P3.6b. Also, construct the physical and logic truth tables for this
function.

3.38 The logic circuit for the function Y(H) = [A(B + CD)J(H) is given in Fig. P3.7.
(a) Assuming thatinputs A, B, C, and D arrive from positive logic sources, construct
the CMOS circuit for the function Y (H).
(b) Obtain the physical and positive logic truth table for this function.

3.39 Shown in Fig. P3.8 is a CMOS circuit having three inputs and one output.

B{H)
D(H)

A(H)

FIGURE P3.7
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1

o

FIGURE P3.8

(a) Construct the physical truth table for this circuit taking into account all possible
combinations of LV and HV inputs.

(b) If the inputs and outputs are all assumed to be active high, find the logic function
for Z(H) and its logic circuit.

3.40 The CMOS circuit in Fig. P3.9 is an example of a gate-matrix layout. The circuit
has four inputs, A, B, C, and D, and one output Z. Note that X indicates an internal
connection.

(a) Construct the physical truth table for this circuit taking into account all possible
combinations of LV and HV inputs.

(b) If the inputs and outputs are all assumed to be active high, find the logic function
for Z(H) and construct the logic circuit for Z(H).

+Vop

e

‘EA# e
R N S
B S
| L

FIGURE P3.9



CHAPTER 4
L

Logic Function Representation
and Minimization

4.1 INTRODUCTION

A given logic function can be represented in a variety of different forms, and often one
of these forms proves to be the best for the application under consideration. It is the purpose
of this chapter to consider the different forms of logic representation. It is also the purpose of
this chapter to consider the reduction and minimization of these different forms. Knowing
how to reduce or minimize a logic function is important so as to reduce design area, power
consumption, and cost by eliminating unnecessary hardware. Also, the minimized function
often reveals information that is not readily apparent from a nonminimized form. In short,
the information in this chapter is essential to good design practices and specifically to an
understanding of the remainder of this text.

4.2 SOP AND POS FORMS

Without specific mention of it, SOP and POS forms have already been used in the discussions
of Chapter 3. Typical examples are the defining relations for XOR and EQV given by
Eqgs. (3.4) and (3.5) in Section 3.9, where each is given in both SOP and POS form. To
understand what is meant by SOP and POS, the AND operation is taken as the Boolean
product and the OR operation represents the Boolear sum. Thus, SOP means sum-of-
products while POS denotes product-of-sums. These definitions will be used throughout
the text.

4.2.1 The SOP Representation

Consider the function of three variables given by the Boolean expression

f(A,B,C)=AB+BC+ ABC . “.1)

minterm

131
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The function in Eq. (4.1) is written in sum-of-products (SOP) form, meaning ORing
of ANDed terms also called p-terms (product-terms). Although there are three p-terms
in this expression, only the term ABC is called a minterm. A minterm is defined as
follows:

Minterm: Any ANDed term containing all the variables of a function in complemented
or uncomplemented form.

Use will be made of the symbol
m; =m;A,B,C,..) (4.2)

to represent the ith minterm of a function. Notice that two of the three p-terms in Eq. (4.1)
cannot be minterms by this definition.

To simplify minterm representation, a shorthand notation is used and is based on the
following minterm code:

MINTERM CODE

Complmented variables:  logic 0
Uncomplented variables: logic 1

Once the logic 0’s and 1’s have been assigned to all variables in a given minterm, a minterm
code is established where the subscript in m; becomes the decimal equivalent of the binary
code formed by the logic state assignments. For example, the minterm in Eq. (4.1) is repre-
sented by

ABC = My,
100

since the binary of 100 has a decimal value of 4. A complete minterm code table for four
variables is given in Fig. 4.1. A similar minterm code table can be constructed for any
number of variables.

A function composed completely of a logical sum of minterms is said to be in canonical
SOP form. A typical example is given by the following expressions, where use has been
made of the minterm code shorthand notation and the operator symbol ) to represent the
logical sum of minterms:

Y(A, B, C)=ABC +ABC +ABC+ ABC + ABC
—_—— —— e e =
000 011 L1t 100 110
=moy+ m3 +m7+ my+ mg
=Y m,3,4,6,7).

A reduced SOP function such as that in Eq. (4.1) can be expanded to canonical form by
applying the factoring law and the AND and OR laws given in Section 3.10. This is
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SOP Term Binary Decimal m, SOP Term Binary Decimal mi
ABCD 0000 0 m, ABCD 1000 8 m,
ABCD 0001 1 m, ABCD 1001 9 m,
ABCD 0010 2 m, ABCD 1010 10 m,
ABCD 0011 3 m, ABCD 1011 11 m,
ABCD 0100 4 m, ABCD 1100 12 m,
ABCD 0101 5 m, ABCD 1101 13 m,
ABCD 0110 6 m, ABCD 1110 14 m,
ABCD 0111 7 m, ABCD 1111 15 m,
FIGURE 4.1
Minterm code table for four variables.
demonstrated by expanding Eq. (4.1) as follows:
f(A,B,C)=AB+ BC+ABC
=AB(C + C) + (A + A)BC + ABC
=ABC + ABC + ABC + ABC + ABC
=my tmy+mz+my+my
=Y m2,3,4,7. (4.3)

Note that the OR law X+ X = 1 has been applied twice and that the two identical minterms
ABC are combined according to the OR law X + X = X.

The canonical truth table for Egs. (4.3), shown in Fig. 4.2, is easily constructed from
the minterm code form. However, the truth table can also be constructed directly from the
original reduced form given by Egs. (4.1). Notice that a logic 1 is placed in the f column
each time an AB = 0l occurs, each time a BC occurs, and for ABC. Thus, construction

-h

ABC

0o
0o
01
01
10
10
11
11

[ o T G o TG o S )
A O D0 A a9 a0 0
3
w

FIGURE 4.2
Truth table for Eq. (4.3).
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of the truth table from a reduced form permits a simple means of obtaining the canonical
representation without having to use the Boolean manipulation given by Egs. (4.3).

4.2.2 The POS Representation

An alternative means of representing a logic expression is to cast it in product-of-sums
(POS) form, meaning the ANDing of ORed terms, also called s-terms (sum-terms). An
example of POS representation is given by the function

fA,B,C,D)=(A+BXA+B+C+D)B+C+D) 4.4)
D —— ——

Maxterm

where, of the three s-terms, only the term (A + B + C + D) is called a maxterm.
A maxterm is defined as follows:

Maxterm: Any ORed term containing all the variables of a function in complemented
or uncomplemented form.

The symbol
M, =M{,B,C,..) (4.5)

will be used to represent the ith maxterm of a function.
Maxterm representation can be simplified considerably by using the maxterm code:

MAXTERM CODE

Complemented variable: logic 1
Uncomplemented variable: logic O

The assignment of the logic 1’s and 0’s in this manner to all variables in each maxterm
establishes the maxterm code, where the subscript in M; is the decimal equivalent of the
binary number formed by the logic state assignments. The maxterm code table for four
variables is given in Fig. 4.3. Use of this table is illustrated by maxterm in Eq. (4.4),

A+B+C+D=M;
1 1 0 1

where 1101, = 134¢.
A comparison of the minterm and maxterm code tables in Figs. 4.1 and 4.3 indicates that

M,'=7;’l,'

and (4.6)
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POS Term Binary Decimal M, POS Term Binary Decimal M,
A+B+C+D 0000 0 M, A+B+C+D 1000 8 M,
A+B+C+D 0001 1 M, A+B+C+D 1001 9 M,
A+B+C+D 0010 2 M, A+B+C+D 1010 10 M,
A+B+C+D 0011 3 M, A+B+C+D 1011 11 M,
A+B+C+D 0100 4 M, A+B+C+D 1100 12 M,
A+B+C+D 0101 5 M, A+B+C+D 1101 13 M,
A+B+C+D 0110 6 M, A+B+C+D 1110 14 M.,
A+B+C+D 0111 7 M, A+B+C+D 1111 15 M,

FIGURE 4.3
Maxterm code table for four variables.

revealing a complementary relationship between minterms and maxterms. The validity of
Eqgs. (4.6) is easily demonstrated by the following examples:

ms =ABC=A +B+C=M5
and
M]z =A +B+C+D=ABCD=WL|2,

where use has been made of DeMorgan’s laws given by Eqgs. (3.152).
A function whose terms are all maxterms is said to be given in canonical POS form as
indicated next by using maxterm code.

fA,B,C)=A+B+C)-(A+B+C)-A+B+C)-(A+B+C)
001 101 100 000
=M -Ms My M

=nM(0,1,4,5)

Note that the operator symbol [ is used to denote the ANDing (Boolean product) of max-

terms My, M|, M4, and Ms.
Expansion of a reduced POS function to canonical POS form can be accomplished as

indicated by the following example:

fABO=A+C)B+COA+B+0)
=(A+BB+CYAA+B+C)YA+B+C)
=A+B+CA+B+CYA+B+CYA+B+O@A+B+0)
M M, M, M My
:ﬂM(1,3,4,7). 4.7

Here, use is made of multiple applications of the distributive, AND, and OR laws in the
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ABC | f

000 | 1 m,
001 | 0— M,
010 | 1 m,
011 ] 0— M,
100 | 0= M,
101 | 1 m,
110 [ 1 m,
11110 M

~

FIGURE 4.4
Truth table for Eqgs. (4.8).

form of (X + ¥Y)(X + ¥) = X. Notice that the AND law M3 - M5 = M; is applied since
this maxterm occurs twice in the canonical expression.

The results expressed by Eq. (4.7) are represented by the truth table in Fig. 4.4, where
use is made of both minterm and maxterm codes. Function f values equal to logic 1 are
read as minterms, while function values equal to logic O are read as maxterms. From this
there emerges the result

fA.B,C)=> "m(0,2,56) =]]m1,347), (4.8)

which shows that a given function can be represented in either canonical SOP or canonical
POS form. Moreover, this shows that if one form is known, the other is found simply by
using the missing code numbers from the former.

By applying DeMorgan’s laws given by Eqgs. (3.15a), it is easily shown that the comple-
ment of Egs. (4.8) is

fAB O =]]M0.2,56)=> m@1,3.4,7. 4.9)

This follows from the result

f‘:i:mzmo+mz+m5+m6
=mg- My ms- Mg
=My My Ms- M
=[[M©.2.5.6)=> m(1,3,4.7)

A similar set of equations exist for f = 1M, 3. 4,7). Equations (4.8) and (4.9), viewed
as a set, illustrate the type of interrelationship that always exists between canonical forms.

There is more information that can be gathered from the interrelationship between canon-
ical forms. By applying the OR law, X + X = 1, and the OR form of the commutative laws
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to Egs. (4.8) and (4.9), there results

fHF=)"m0,2,56+> m1,3,47
=Zm(0,1,2,3,4,5,6,7)
=1.

Generally, the Boolean sum of all 2* minterms of a function is logic 1 according to

20|

Z m; = 1. (4.10)
=0

Similarly, by using the AND law, X . X = 0, and the AND form of the commutative laws,
there results

f-f=[]Mma.3,4,7) - [[M0,256)
=[[M©,1.2,3,4,5,6,7)
=0.

Or generally, the Boolean product of all 2" maxterms of a function is logic 0 according to

[[™ =o. (4.11)

i=0

Equations (4.10) and (4.11) are dual relations by the definition of duality given in Subsection
3.10.2.
To summarize, the following may be stated:

Any function ORed with its complement is logic 1 definite, and any function ANDed
with its complement is logic 0 definite — the form of the function is irrelevant.

4.3 INTRODUCTION TO LOGIC FUNCTION GRAPHICS

Graphical representation of logic truth tables are called Karnaugh maps (K-maps) after M.
Karnaugh, who, in 1953, established the map method for combinational logic circuit syn-
thesis. K-maps are important for the following reasons: (1) K-maps offer a straightforward
method of identifying the minterms and maxterms inherent in relatively simple minimized
or reduced functions. (2) K-maps provide the designer with a relatively effortless means of
function minimization through pattern recognition for relatively simple functions. These
two advantages make K-maps extremely useful in logic circuit design. However, it must be
pointed out that the K-map method of minimization becomes intractable for very large com-
plex functions. Computer assisted minimization is available for logic systems too complex
for K-map use. The following is a systematic development of the K-map methods.
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Minterm code

numbers
A A
A
1
0| m, 0 ‘ 0
0
1] m, 1 \ 0 !
1 \/
(a) (b) (c) Minterm code
numbers

FIGURE 4.5
(a) Minterm code table for one variable and (b) its graphical equivalent. (c) Alternative formats for
first order K-maps showing minterm positions.

4.3.1 First-Order K-maps

A first-order K-map is the graphical representation of a truth table of one variable and is
developed from the minterm code table shown in Fig. 4.5a. The minterm positions in a
first-order K-map are shown in Fig. 4.5b, leading to the alternative formats for a first-order
K-map given in Fig. 4.5c. The number in the lower right-hand corner of a K-map in Fig. 4.5¢
indicates the position into which a minterm with that code number must be placed.

Consider the three functions given by the truth tables in Fig. 4.6a. Notice that all in-
formation contained within a given truth table is present in the corresponding K-map in
Fig. 4.6b and that the functions are read as f| = X, f» = X, and f; = 1 from either the
truth tables or K-maps. Thus, a logic 1 indicates presence of a minterm and a logic O (the
absence of a minterm) is a maxterm.

4.3.2 Second-Order K-maps

A second-order K-map is the graphical representation of a truth table for a function of two
variables and is developed from the minterm code table for two variables given in Fig. 4.7a.
The graphical equivalent of the minterm code table in Fig. 4.7a is given in Fig. 4.7b, where
the minterm code decimal for each of four #; is the binary equivalent of the cell coordinates

All that is X
X X /x

¥
o| O 0 1 0} 1
0 0 0
1] 1 10 0 1] 1
4 1 1 - 1
f, =X f, =X F, =1
/ b
@ Anthatis X ®)

FIGURE 4.6
(a) Truth table and (b) first order K-maps for functions f1, f2, and f3 of one variable X.
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B B A
1l Bo 1I A0|1|
A B

m, 0 0
o] 1 ] 2

Bl 1
L,
\Z Minterm code M

numbers

(a) (b) (c)

FIGURE 4.7
{a) Minterm code table for two variables and (b) its graphical equivalent. (¢) Alternative formats for
second-order K-maps showing minterm positions.

3

[

>
I - |
i)
o

{read in alphabetical order AB) of the cell into which that minterm is placed. From these
figures there result the two alternative K-map formats shown in Fig. 4.7¢, where the number
in the lower right-hand comner of each cell is the decimal equivalent of the coordinates for
that cell given in binary.

As examples, functions f; and f; of two variables (X and Y) are represented by truth
tables in Fig. 4.8a and by K-maps in Fig. 4.8b. Function f is shown to have two minterms
and two maxterms while function f5 has three minterms and one maxterm. From the truth
tables the functions can be read in SOP form as

[XY)=)"m1.3)=XY + XY=V
and (4.12)
LXY)=) "m©0,2.3) =XV + XV + XY =X +T.

However, by combining (“'looping out”) adjacent minterms these results are immediately
obvious as indicated in Fig. 4.8h.

All that is Y All that is ¥
Y /_ Y / All thatis
xN\_0 1 XN_0 / 1/ NoTXy=(xsY)
i ~ET ¥
ol 0 |[1 of[1]|:0°
11:0: U 111 1)
o 2 3 2 3 =

All that is NOT ¥ = Y All that is X
(a) (b)

FIGURE 4.8
{a) Truth tables for tunctions f; and #>. (b) K-maps for functions £ and £, showing minimum SOP
cover (shaded) and POS cover (dashed loops).
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The same results could have been obtained by reading the maxterms in the K-maps of
Fig. 4.8b. Thus, in maxterm code the canonical and minimum POS forms become

A=[{MO.=x+X+1)=Y
and (4.13)
=MD =X +1),

where for f; the distributive law in Egs. (3.12) has been applied. Another way of looking
at the results given by Eqs. (4.13) is to read groups of adjacent maxterms. For fi the two
adjacent maxterms (0’s) are read as “all that is NOT ¥” or ¥ =Y. Similarly, for function f,
the 0 in cell 1 is read as “all that is NOT XY or simply XY = X + Y.

4.3.3 Third-Order K-maps

In dealing with functions of three variables, a suitable graphical representation and K-map
format must be decided. One choice would be to use a three-dimensional graphic having
one axis for each variable. However, such a graphical representation would be difficult to
construct and equally difficult to read. A much better choice would be to maintain the domain
concept in two dimensions. To do this requires the use of two variables for one axis. Shown
in Fig. 4.9a is the graphical representation for the minterm code table of three variables as
deduced from Fig. 4.1. Again, the minterm positions are those given by the coordinates of
the cells read in alphabetical order XYZ. From this there results the two alternative formats
for a third-order K-map given in Fig. 4.9b, where the minterm code numbers in decimal are
shown in the lower right-hand corners of the cells.

Notice that the two-variable axes in the third-order K-maps of Fig. 4.9b are laid out in
2-bit Gray code, a unit distant code featured in Subsection 2.10.3. This is important so that
each cell along the two-variable axis is surrounded by logically adjacent cells. The result is
that the Y and Z domains in Fig. 4.9 are maintained intact. Notice that in Fig. 4.9a the logic
adjacency along the two-variable axis is continuous as though the K-map were formed into
a cylinder about the X axis (orthogonal to the YZ axis). Had the YZ axis been laid out in
binary, the Z domain would be split into two separate sections, making map plotting and
reading difficult. For this reason all axes of two or more variables are laid out in Gray code
$O as to maximize axis coherency.

Y Y X
Yz TR Yz M7 an ] o an ]
XN"00 01 ' 11 10 XN_00 01 ' 11 10 ZXYOO 01 " 11 10
O mg| my | my | m, 0
0 1 3 2 0 1 3 2 0 2 6
X[1 m, | Mg | m; | myg X@ z':1
4 5 7 6 4 5 7 6 1 3 7
I I I
Z z Y

(a) (b)

FIGURE 4.9
(a) Minterm positions and (b) alternative formats for third-order K-maps.
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All that is Z
Y
YZ
XN 00 o1 ' 1 10

OW F?T (0
0 1 3 2 All that is
14| ol /" NOTZ=2
%Y Z|F,|F; 1 ’ 1 - 1 e
000 |olo <2
001 [1]1 e
01001 All that is )
011 |1(1 NOT YZ = (Y+2) All that is XZ
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FIGURE 4.10

Truth tables for functions F| and F». (b) K-map representations for functions F; and F> showing
minimum SOP cover (shaded) and minimum POS cover (unshaded).

To illustrate the application of third-order K-maps, two simple functions are presented
in Fig. 4.10. Here, the truth tables for functions F; and F> are presented in Fig. 4.10a and
their K-map representations together with minimum cover are given in Fig. 4.10b. Notice
that the 1’s and 0's are placed at the proper coordinates within the K-maps, in agreement
with the truth table. From the K-maps, the canonical and minimum SOP forms for functions
F| and F; are read as

Fl(X.Y, Z)=Zm(l.3,5, N=XYZ+XYZ+ XYZ +XYZ
=7
FXX.Y,Z)=) m(1,2,3,6,7)=XVZ + XYZ + XYZ+ XYZ + XYZ
=XZ+Y.

(4.14)

By grouping minterms in Fig. 4.10b, the minimum SOP expressions, Fy = Z and F, =XZ+
Y, become immediately apparent.
The 0's in the K-maps of Fig. 4.10b can be given in canonical and minimum POS forms:

Fi(X, Y. 2)=[ | M(@©.2,4.6)
=(X+Y+Z2UX+TV+2)X+Y+DX+T+2)
=7 4.15)

Fy (X, Y, Z)=“M(O.4.S}:(X+ Y+Z2XX+ Y+ 20X +Y +2)
=(Y + Z)X +Y)
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FIGURE 4.11

(ay K-map for the reduced function ¥ of Eq. (4.16). (b) K-map showing minimum SOP and POS
cover for function ¥.

as read in maxterm code. The minimum POS results are easily read from the K-maps of
Fig. 4.10b by combining adjacent 0's as indicated. Thus, F is read as “all that is NOT Z”
or Z = Z. Similarly, F; can be read as “all that is NOT ¥Z + XY or YZ + XV = (Y + Z)
(X4Y). Notice that the distributive law in Eqs. (3.12) isapplied as (Y + Z)(X+Y) = Y +XZ,
demonstrating that the SOP and POS forms for F» are algebraically equal, as they must
be. The minimum POS results given by Egs. (4.15) can also be obtained by applying the
Boolean laws given in Section 3.10, but with somewhat more effort. For example, F) is
minimized to give the result Z after three applications of the distributive law in Eqgs. (3.12)
together with the AND and OR laws,

The use of third-order K-maps is further illustrated by placing the reduced SOP function

Y =ABC+AC+BC+AB (4.16)

into the third-order K-map in Fig. 4.1a. Then by grouping adjacent minterms (shaded
loops) as in Fig. 4.11b. there results the minimum expression for Eq. (4.16),

Y =A-+8. (4.17)

As expected, the same results could have been obtained by grouping the adjacent maxterms
(0°s) in Fig. 4.11b, which is equivalent to saying “all that is NOT AB” or AB = A + B.

Other information may be gleaned from Fig. 4.11. Extracting canonical information is
as easy as reading the minterm code numbers in the lower right-hand corner of each cell.
Thus, the canonical SOP and canonical POS forms for function ¥ are given by

Y=Y m0,1,4,56.7
=ABC +ABC+ ABC + ABC+ ABC + ABC
ot (4.18)
y=[]me.3
=A+B+OA+B+O)

as read in minterm code and maxterm code, respectively.
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FIGURE 4.12

Alternative formats for fourth-order K-maps.

4.3.4 Fourth-Order K-maps

At this point it is expected that the reader is familiar with the formats for first-, second-,
and third-order K-maps. Following the same development, two alternative formats for
fourth-order K-maps are presented in Fig. 4.12, where use of the minterm code table in
Fig. 4.1 is implied and where A is the MSB and D is the LLSB. Here, both two-variable axes
have logic coordinates that are unfolded in Gray code order so that all juxtaposed minterms
(those separated by any single domain boundary) are logically adjacent. Notice that each
cell in the K-maps of Fig. 4.12 has a number assigned to it that is the decimal equivalent
of the binary coordinates for that cell (read in the order ABCD), and that each cell has four
other cells that are logically adjacent to it. For example, cell 5 has cells 1, 4, 7, and 13
logically adjacent to it.

Just as a third-order K-map forms an imaginary cylinder about its single variable axis,
a fourth-order K-map whose axes are laid out in Gray code will form an imaginary toroid
{doughnut-shaped figure), the result of trying to form two cylinders about perpendicular
axes. Thus, cells (0, 8) and (8, 10) and (1, 9) are examples of logically adjacent pairs, while
cells (0,2, 8,10)and (0, 1,4, 5) and (3, 7, 11, 15) are examples of logically adjacent groups
of four.

To illustrate the application of fourth-order K-maps, consider the reduced SOP function

F(A,B,C,D)=ACD + CD+ ABCD + BCD + ABCD 4.19)

and its K-map representation in Fig. 4.13a. By grouping logically adjacent minterms as in
Fig. 4.13b, a minimum SOP result is found to be

Fsop = ABC+ CD + BD. 4.20)

Notice that the original function in Eq. (4.19) requires six gates, whereas the minimum
result in Eq. (4.20) requires only four gates. In both cases the gate count includes the final
ORing operation of the p-terms. The minimum POS cover for function F is obtained by
grouping the logically adjacent 0’s as in Fig. 4.13c, giving

Fpos =B+ C+ DYA +B+C)YB+ C+ D), (4.21)
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which is saying *“all that is NOT (BCD +ABC + BCD)" as indicated in Fig. 4.13¢, The gate
tally for Eq. (4.21) is four, including the final ANDing of s-terms, which is less than the
original function in Eq. (4.19). Canonical minterm and maxterm representations are easily
determined by reading the 1's and 0’s in the K-maps of Fig. 4.13 to give

F= Zm({], 1,2.5,6,7,8.9, 10, 13)
=]‘[M(3,4, 11,12, 14, 15). (4.22)

4.4 KARNAUGH MAP FUNCTION MINIMIZATION

Use of the K-map offers a simple and reliable method of minimizing (or at least greatly
reducing) logic expressions. In fact, this is the most important application of K-maps. In
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Section 4.3, simple examples serve to demonstrate how K-maps can be used to extract both
canonical and minimum SOP and POS forms depending on whether 1’s or 0’s are read.
Now it is necessary to present certain important information that was not explicitly stated
earlier, but was implied.

It should be clear from Section 4.3 that each line or edge of a K-map forms the boundary
between two complementary domains. As a result, minterms or maxterms that are separated
by a line or edge are logically adjacent and can be combined to form a reduced function.
The following rule generalizes this point:

Reduction Rule

Each variable domain boundary crossed in an adjacent group (looping) requires the
absence of that variable in the reduced term.

Thus, a pair of logically adjacent minterms or maxterms crosses one domain boundary and
eliminates the domain variable in the reduced term; a grouping of four logically adjacencies
crosses two domain boundaries and eliminates the two domain variables in the reduced
function. In this way 2" logic adjacencies (n = 1, 2, 3, ...) can be extracted (looped out)
to produce a reduced (N — n)-variable term of an N -variable function.

To help ensure a minimized result from K-map extraction, thereby avoiding possible
costly redundancies, the following loop-out protocol is recommended but not required:

Loop-out Protocol

Loop out the largest 2" group of logically adjacent minterms or maxterms in the order
of increasingn =0,1,2,3,....

When following this protocol, single isolated minterms or maxterms (monads), if present,
should be looped out first. This should be followed by looping out groups of any two logically
adjacent minterms or maxterms (dyads or duads) that cannot be looped out in any other
way. The process continues with groups of four logic adjacencies (guads), then groups of
eight (octads), etc. — always in groups of 2" logic adjacencies.

As an example of the pitfalls that can result from failure to follow the loop-out protocol,
consider the function represented in the K-map of Fig. 4.14. Instinctively, one may be
tempted to loop out the quad (dashed loop) because it is so conspicuous. However, to do
so creates a redundancy, since all minterms of that grouping are covered by the four dyads
shown by the shaded loops.

Since K-maps are minterm-code based, minimum POS cover can be extracted directly,
avoiding the “NOT” step indicated in Figs. 4.8,4.10,4.11, and 4.13, by using the following
procedure:

Simplified POS Extraction Procedure

Take the union (ORing) of the complemented domains in which the 2" groups of
logically adjacent maxterms exist.

Groups of minterms or maxterms other than 2" groups (e.g., groups of three, five, six,
and seven) are forbidden since such groups are not continuously adjacent. Examples of such
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FIGURE 4.14
Minimum cover (shaded) by using the loop-out protocol avoids the redundant quad (dashed loop).

forbidden groups are presented in Fig. 4.15, which has been “crossed out” to indicate that
such groupings are not allowed.

4.4.1 Examples of Function Minimization

Just as canonical forms can be read from a K-map in two ways (SOP and POS), so also can
a function be read from a K-map in either minimum SOP form or minimum POS form. To
illustrate, consider the function

G@A, X, ¥)=) m(0.3,57), (4.23)

which is mapped and minimized in Fig. 4.16. Noting that the 1's are looped out as two
dyads and a monad as are the ('s, there results

Gsop = AXY + XY + AY {minimum SOP cover)
\\ .
N Ay
Wl
)‘/\\ 7T
N //
7 A
et b
-
UL
FIGURE 4.15

Exarnples of forbidden (non-2") groupings of minterms and maxterms.
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FIGURE 4.16

K-maps for Eq. (4.23). (a) Minimum SOP cover. (b) Minimum POS cover.

and
Gros =(A+ X+ VXX +YNALY) (minimum POS cover).

Application of the laws of Boolean algebra shows that the SOP and POS minima are alge-
braically equal:

A+EX+NX+YVA+)=A+ X +DAX XY LAY +7)
=A+X+AX+7Y)
=AXY + XY 4+ AY.
As a second example, consider the reduced function given in POS form:
Y(A,B,C,D)=(A+B+D)B+CYA+C+DYA+B+C+D). (4.24)

To map this function, one simply maps the 0's in maxterm code, as indicated in Fig. 4.17a.
The representation in Fig. 4.17a is not minimum. However, after the maxterms are re-
grouped, a minimum POS representation is shown in Fig. 4.17b. Notice that the dyad
M5, 13) crosses the A boundary, permitting {Aﬁ +B+C+D)=(B+C+D)as the re-
duced s-term. Similarly, the quad M (2, 3, 6, 7) crosses the B and D boundaries to yield
(A+BB +C+ DD =(A+ C). Also, the quad M{(2, 3. 10. 11) crosses the A and D bound-
aries. eliminating these variables to give (B + C) as the reduced s-term.

The minimum SOP cover for the function ¥ of Eq. (4.24) is shown in Fig. 4.17c and
consists of one dyad and two quads. The dyad m(14, 15) crosses the D boundary. permitting
ABC(D+ D)= ABC. while the quad (0, 4, 8, 12) crosses the 4 and B boundaries, yielding
(A+A)B+B)CD =CD. Likewise, the quad m(0, 1, 8, 9) crosses the A and D boundaries
to give BC as the reduced p-term. The minimized results that are extracted from Figs. 4.17b
and 4.17c¢ are now presented as

Ypos = (B +C + D)A + CNB + C) Minimum POS cover
and

Ysop =ABRC+ CD + BC, Minimum SOP cover
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FIGURE 4.17
(a) K-map representing the cover as given by Eq. (4.24), (b) Minimum POS cover. (¢) Minimum SOP

cover.

which are shown to be algebraically equal if one carries out the required algebraic manip-
ulations.

4.4.2 Prime Implicants

Groups of 2" minterms or maxterms that cannot be combined with other 2" groups in any
way to produce terms of fewer variables are called prime implicants (Pls). The loop-out
protocol described in the previous section offers a procedure for achieving minimum cover
by systematically extracting PIs in the order of increasing n(n =0, 1, 2,3 .. .). But the task
of achieving minimum cover following the loop-out protocol (or any procedure for that
matter) is not quite as straightforward as one might believe. Difficulties can arise when
optional and redundant groupings of adjacent minterms or maxterms are present. To deal
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with these problems, it will be helpful to identify the following three subsets of Pls:

» Essential Prime Implicants (EPIs); Single-way Pls that must be used to achieve
minimum cover

* Optional Prime Implicants (OPls): Optional-way Pls that are used for alterna-
tive minimum cover

* Redundant Prime Implicants (RPIs): Superfluous Pls that cannot be used if mi-
nimum cover is to result.

Any grouping of 2" adjacencies is an implicant, including a single minterm or maxterm,
but it may not be a PI. For example, a solitary quad EPI contains eight RPIs, four monads,
and four dyads, none of which are PIs.

To illustrate a simple mapping problem with optional coverage, consider the function

Z(A,B,C. D)= Z m(2,4,6.8,9, 10,11, 15), (4.25)

which is mapped in Fig, 4.18a. Noting first the minterm adjacencies that form the three
dyads (no monads exist) and the single quad, there results the SOP minimum expression

Zsop = ACD+ABD + + AB, (4.26)

ACD
BCD

which has three EPI p-terms (two dyads and one quad), and two OPI dyads indicated in
braces. The minterm m- can be covered in two ways to form the OPI dyads m(2, 6) and
m(2, 10) shown with dashed loops in Fig. 4.18a. Remember that when one OP1 is selected

A+B+C (EPI)
CcD c CcD c
AB 00 01 ‘ 11 10 I _ AB 00 01 | 11 10 |
n|, ACD
_ 00 1) (OPI) -~ oof|lo0 0 0
ABD 0 1 3 :l‘“}g B+C+D 0 [1 1‘/3 2
(EP1) T\ 1 CE (OP1) N /_‘}__J
01 ; ) 1 01 \Ir 1o
4 5 7l ~“%8 B | 15 7 [
— e I
1 1 1] L0 L_O I 0
A 12 13 5 14 Beh A }" 13 74
o GO s [EA o™ 10 / \ Q
8] A 1] | 10 10

ZSOP .
= D A+B+D e
AB (EPI) ACD (EPI) (EP1) R JLB+C+D (EPI)
A+B+C (OPI)

(@) (b)

FIGURE 4.18
K-maps showing EPls and OPIs for the function Z in Eq. (4.25). (a) SOP minimum cover, (b) POS
minimum cover.

zPOS
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to be an EPI, the other OPI becomes redundant (an RPI). In similar fashion a minimum
POS cover is extracted as shown in Fig. 4.18b, giving the result

A+B+0C)

=(A C+D)A+B _ _
Zpos = ( +B+C)(B+C+D)(A+B+D){(B+C+D)

]m+m, (4.27)

which is seen to have four dyads (including one of two OPIs) and one quad. The maxterm
M3 can be looped out in two ways (dashed loops in Fig. 4.18b) to form the OPI dyads
M(12, 13) and M (5, 13) represented by the bracketed s-terms in Eq. (4.27).

4.4.3 Incompletely Specified Functions: Don’t Cares

In the design of logic circuits nonessential minterms or maxterms may be introduced so as
to simplify the circuit. Such nonessential minterms or maxterms are called don't cares and
are represented by the symbol

¢ = Min/Max = don’t care.

Thus, the don’t care can be taken as logic O or logic 1, take your choice. The symbol ¢ can
be thought of as a logic 0 with a logic 1 superimposed on it.
Don’t cares can arise under the following two conditions:

* When certain combinations of input logic variables can never occur, the output
functions for such combinations are nonessential and are assigned don’t cares.

* When all combinations of input logic variables occur but certain combinations
of these variables are irrelevant, the output functions for such combinations are
assigned don’t cares.

As an example of the second condition, the BCD number system discussed in Subsection
2.4.1 has 10 4-bit binary patterns for decimal integers O through 9. Thus, there are six 4-bit
patterns, representing decimal integers 10 through 15 that are never used — that is, we
“don’t care” about them. Accordingly, the don’t care symbol ¢ can be assigned to any
output generated by one of the six nonessential 4-bit patterns. This will be demonstrated in
Subsection 6.5.2 for conversion from BCD to XS3 decimal codes.

Consider the three-variable function

fA,B,C)= Zm(1,3,4, D+ ¢2,5)
e —r’

Nonessential
minferms
(don't cares)

4.28)
Essential
minterms

written in canonical SOP form showing essential minterms and nonessential minterms (don’t
cares). The K-maps representing minimum SOP and POS cover are shown in Figs. 4.19a
and 4.19b, giving the results

Fsop =AB +C

) (4.29)
Fros=(A+ C)B + C).
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FIGURE 4.19
K-maps for Eq. (4.28) showing EPIs containing don't cares. {(a) Minimum SOP cover. (b) Minimum
POS cover,

Notice that the don’t cares ¢, and ¢ are purposely used differently to obtain the minimum
SOP and POS expressions of Eqs. (4.29). The result is that the Fspp and Fpoy expressions
are algebraically equal since there is no shared use of don't cares between the two functions
{¢s = 1 and ¢ = 0 in both cases). Thus, Fsop can be produced by algebraically manipu-
lating Fpos. Had no use been made of the two don’t cares in Fig. 4.19, the results would be
quite different, namely Fsop = ABC + AC + BC and Fpps = (A+ B+ CYA + B + C),
which are logically equivalent but not algebraically equal.

As a second example consider the four-variable function given in canonical POS form
showing essential and nonessential maxterms:

Y(A, B,C.D)=[]M(0.1,2.4,6,9.11,15) - (3.8, 10, 12).
; — ————

£ :n' if Nanessential (430)
A REXrerms

meLtlerims {don't cares)

In Fig. 4.20 the 0’s and ¢'s of Eq. (4.30) are mapped in maxterm code, and the mini-
mum covers for ¥pos and Yggp are shown by the shaded loops in Figs. 4.20a and 4.20b,
respectively. The resulting minimum POS and SOP expressions for Eq. (4.30) are

Ypos =(A + C + DYA + D)B

- . _ (4.31)
Ysop=ABD + BCD + AD

Again it is noted that these expressions are logically equivalent. However, they are alge-
braically unequal because of the shared use of don't cares (¢g and ¢yy) in the loop-out
process. Notice also that ¥spp contains OPIs BCD and ABC with ABD as an EPL since
minterm m 3 can be looped out in two ways (with ms or with ¢2). Similarly, OPIs ABD
and ACD result if BCD is an EPL since minterm 17 can be looped out in two ways (with
mts and with ¢3). No OPIs exist for Ypgs.

The Gate/Input Tally vs Cardinality of a Function Throughout this text use will be
made of the ratio of the gate tally to the input tally (gare/input tally) as a measure of function
complexity in terms of hardware cost. Input tallies include both external and internal inputs
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FIGURE 4.20
K-maps for Eq. (4.30) containing don’t cares showing (a) minimum POS cover and (b) minimum
SOP cover containing OPIs for minterms in cells 7 and 13 but not shown.

(connections) to gates. Gate tallies are weighted more heavily than input tallies, Inverters
can be included in the gate/input tally of a given function only if the activation levels of the
inputs are known. Unless otherwise stated, the gate/input tallies will be given exclusive of
inverters. An inverter is considered to be a gate with one input.

The number of p-terms or s-terms representing a function is called the cardinality of
the function. Thus, the cardinality of a cover represents the number of prime implicants of
the function, and a minimum cardinality (or cover) consists only of EPIs. When significant
numbers of don’t cares are present in a function, there may exist several alternative covers
of minimum cardinality that may differ in gate/input tally.

As an example of the use of the gate/input tally and cardinality, consider the minimized
expressions in Eqs. (4.29). Here, Fgop has a gate/input tally of 2/4, whereas the gate/input
tally for Fpgs is 3/6, both exclusive of inverters and both with a minimum cardinality of 2.
Thus, the SOP expression is the simpler of the two, However, this may not always be true.
Taking a gate and input count of Egs. (4.31) reveals that the gate/input tally for Ypps is 3/8
while that for Ysop is 4/11, again both exclusive of possible inverters. Thus, in this case,
the POS expression is the simpler hardware-wise, but both expressions have a minimum
cardinality of 3. Notice that a single variable EPI contributes to the cardinality count of the
function but not to the gate tally.

4.5 MULTIPLE OUTPUT OPTIMIZATION

Frequently, logic system design problems require optimization of multiple output functions,
all of which are functions of the same input variables. For complex systems this is generally
regarded as a tedious task to accomplish withcat the aid of a computer, and for this reason
computer programs have been written to obtain the optimum cover for multioutput functions
of many variables. Examples of such computer programs are discussed in Appendix B.l.
In this section a simple approach to this process will be presented but limited to two or
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FIGURE 4.21
Block diagram for an n-input/m-output combinational logic system.

three outputs, each output being limited to four variables or less. Beyond these limitations,
compuiter-aided optimization is recommended.

Consider the n-input/m-output system illustrated by the block diagram in Fig. 4.21.
Suppose the object is to minimize each of the m output functions in such a way as to
make use of as many of the shared terms between them as possible, thus optimizing the
combinational logic of this system. The recommended procedure is given in four steps that
follow.

Multiple-Output Minimization Procedure

Step 1. Obtain the canonical SOP or POS forms. If necessary, K-maps can be used
for this purpose.

Step 2. AND the canonical SOP forms or OR the canonical POS forms in some
systematic way (for example, f - f>. fr f5, fi+ fao .00 fi + foo fo+ [,
fi+ fi, ...y and map each ANDed or ORed expression separately, looping out
all shared PIs (common terms).

Minterm ANDing rules:
mymyp=m;
mi-m;=0 (i#])
m; -y =m; (4.32)

¢i’ L =y
mid; = ¢, =0 (i#J)

Maxterm ORing rules:

M;+ M, =M,

Mi+M;=1 (i#))

M+ ¢ =M, (4.33)
¢ +di=¢

Mi+¢, = +¢;,=1 (#))

Step 3. Make a table of the results of step 2 giving all shared PlIs in literal form.
Step 4. From K-maps of the original functions, loop out the shared Pls given in
step 3. then loop out the remaining EPIs following the loop-out protocol with
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I—C—J f1 fz ’—C_l fz f3 L__C—J
f1'f2 = Zm(4,6) fz'f3 = Zm(1,4,6) f3'f1 = Zm(3,4,5,6)
FIGURE 4.22

ANDed functions, their K-maps, and minimum cover for Eqgs. (4.34).

one exception. If the adjacencies of the shared PlIs are part of alarger 2” grouping
of adjacencies, use the larger grouping, but only if it leads to simpler form.

For simple systems the four-step procedure just given can be shortened considerably
by simply comparing the K-maps of the functions. Often the adjacency patterns lead to an
immediate recognition of the shared PIs that should be included for optimum cover.

To illustrate the four-step procedure given previously, consider the system of three out-
puts, each a function of three variables:

fiA,B,C)=>_m(0,3,4,5,6)
HAB,C)=Ym(1,2,4,6,7) ¢ . (4.34)
f3(A, B,C)=>Y"m(1,3,4,5,6)

Equations (4.34) satisfy step 1 of the multiple-output minimization procedure. Then, mov-
ing on to step 2, the ANDed functions are given in Fig. 4.22, together with their respective
K-maps and minimum cover. The minimum cover in each ANDed K-map indicates the com-
mon terms that must be included in the optimized expressions for the three-output system.

The table of shared Pls for each of the ANDed forms and the appropriate transfer of these
shared PIs into the K-maps of the original functions are given in Fig. 4.23, in agreement
with steps 3 and 4 of the multiple-output minimization procedure. Notice that the dyad
AC is common to all three ANDed functions, as is evident from the ANDed function
N - f2- f =m(4, 6) indicated in the table of shared PIs of Fig. 4.23.

By looping out the shared PIs first in Fig. 4.23 followed by the remaining EPIs, there
result the optimal expressions

fi=ABC+AC +AB +BC
f»=ABC+AC+AB+ BC ;. 4.35)
f;=ABC+ABC+AC + AB

Notice that the dyad m(1, 3) in the f3 K-map is avoided, hence also an individual minimum
for f3, so that the expression for f3 can be completely generated from the terms in f; and
f2., the optimal solution. The optimum gate/input tally is 10/28 for this system of three
outputs, each output having a cardinality of 4.

ff
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ANDed function | Shared Pls

f,1, AC
il ABC, AC
ot ABC, AC, AB
f4,6, | AC
B B B
\?_(‘ ge o1 a1 10 ! BCow ot T11 10 A BCw ot M1 10
—
ol |1 0 1 0 1
_ a 1 ®3 2 - 0 ®‘ 3 ﬂz 0 ®1 Oa 2
Al [CE A (1 AI|1 1) ] 12 AE@E 1
=4 5 7 L 4 5 7 4 5 4 S
— fy L f, e f;
FIGURE 4.23

Table of shared Pls and the K-maps for the functions [}, f, and f3, showing optimal cover for the
three-output system of Eqs. (4.34).

As a second example, consider the output functions for the four-input/two-output logic
system represented by Eqs. (4.36) and by the block diagram in Fig. 4.24. It is required that
this system be optimized with respect to both POS cover and SOP cover following the four-
step multiple output minimization procedure and that the results be compared to determine
which, if either, is the more optimum. The optimized system is to be implemented with
either NOR/INV logic or NAND/INYV logic.

A B, C.Dy=]]M(1,2,3,4,59.10)- 4(6, 11, 13)
=Y "m(0,7,8,12,14,15) + ¢(6, 11,13)

f(A. B, C,Dy=[]M(259,10.11,15) - $(3,4, 13, 14)
=) m(0,1,6,7,8,12)+ (3, 4,13, 14)

(4.36)

Optimized POS Cover. ORing of the canonical forms of Eqs. (4.36) yields
fi+ fr=T]M2.3.4,509,1011)- $(13).

where use has been made of the ORing rules given by Eqgs. (4.33) at the beginning of this

AtH) ’ L f (H)
B(H)—»{ Combinational :
C(H) —>»f Logic

> f,(H)
D(H) —» 2

FIGURE 4.24
Block diagram for a four-input/two-output combinational logic system represented by Eqgs. (4.36).
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FIGURE 4.25

Multioutput POS optimization for the system represented by Eqs. (4.36) and Fig. (4.24), (a) K-map
and shared PIs for (f; + f3). (b) K-maps showing optimal POS cover for functions f and f2.

section. Figure 4.25a gives the K-map and table of shared s-term Pls for fj 4+ f. The final
step involves looping out the individual functions by following the loop-out protocol in
such a manner as to incorporate as many shared Pls as necessary to achieve optimum cover
for the two outputs. Reading the K-maps in Fig. 4.25b for f, and f> produces the results

- kil 1 (4.37)
L=A+B+CYB+C)YA+D)

{fl =(A+B+CYB+C)C+D)
which yields a combined gate/input tally of 6/15 exclusive of possible inverters. Notice
that the shared Pl dyad (A + C + D) is covered by the quads (C + D) and (A + D) in
the expressions for f; and f. respectively. Thus, the optimum coverage for both f; and
f> is, in this case, that of the individual minimum forms. This is not usvally the case, as
is demonstrated next for the optimum SOP results, Note that if strict use had been made
of all the shared Pls in the table of Fig. 4.25a together with a required dyad for each
output, the combined gatefinput tally would become 7/22, significantly greater than that of

Egs. (4.37).
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FIGURE 4.26

Multioutput SOP optimization for the system represented by Eqgs. (4.36) and Fig. 4.24. (a) K-map
and shared PIs for fj - f2. (b) K-maps showing optimal SOP cover for functions f) and f;.

Optimized SOP Cover. ANDing the canonical SOP forms of Eqgs. (4.36) by using the
ANDing rules given by Egs. (4.32) produces

fir =7 m(0,6,7.8,12, 14) + $(13).

The K-map for fj - f> and the table of shared p-term PIs 1s given in Fig. 4.26a. The K-maps
in Fig. 4.26b show the optimized cover for the two-function system. The results are

fi=ABC+BCD + AR 438)
fr=ABC+ABC +CD|’ '

which represent a combined gatefinput tally of 7/19 making use of only one of the three
shared Pls. Here, shared PI dyads ABD and BCD are rejected in favor of quads AB and CD
inthe f, and f> K-maps, respectively. Notice that function fi is not an individual minimum,
but combined with the individual minimum for function f5 results in an optimized system.
An individual minimum for functioa f is achieved by replacing the shared PI m(6, 7) with
the quad »1(6, 7, 14, 15) in Fig. 4,26b. When combined with the individual minimum for
function f5, there results a gate/input tally of 8/21, which is not optimal. Also, note that
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FIGURE 4.27
NOR/INV logic circuit for the optimized POS system of Fig. 4.25.

making use of all shared Pls in the table of Fig. 4.26a together with the required additional
p-term cover yields a combined gate/input tally of 7/22.

Comparing the POS and SOP results with optimum system covers of cardinality 4 and
5, respectively, it is clear that the POS result is the more optimum (gate/input tally of
6/15 or 10/19 including inverters). Shown in Fig. 4.27 is the optimal NOR/INV logic
implementation of the POS results given by Eqgs. (4.37).

The simple search method used here to obtain optimum results becomes quite tedious
when applied to multiple output systems more complicated than those just described. For
example, a four-input/four-output SOP optimization problem would require at least 10
ANDed fourth-order K-maps, including one for each of six ANDed pairs. For systems this
large and larger it is recommended that a computer optimization program (Appendix B) be
used, particularly if a guaranteed optimum cover is sought. Optimum cover, as used here,
means the least number of gates required for implementation of the multiple output system.
Obviously, the number of inverters required and fan-in considerations must also be taken
into account when appraising the total hardware cost.

4.6 ENTERED VARIABLE K-MAP MINIMIZATION

Conspicuously absent in the foregoing discussions on K-map function minimization is the
treatment of function minimization in K-maps of lesser order than the number of variables of
the function. An example of this would be the function reduction of five or more variables in
a fourth-order K-map. In this section these problems are discussed by the subject of entered
variable (EV) mapping, which is a “logical” and very useful extension of the conventional
(1’s and 0’s) mapping methods developed previously.

Properly used, EV K-maps can significantly facilitate the function reduction process.
But function reduction is not the only use to which EV K-maps can be put advantageously.
Frequently, the specifications of a logic design problem lend themselves quite naturally
to EV map representation from which useful information can be obtained directly. Many
examples of this are provided in subsequent chapters. In fact, EV (entered variable) K-maps
are the most common form of graphical representation used in this text.

If N is the number of variables in the function, then map entered variables originate
when a conventional Nth-order K-map is compressed into a K-map of order n < N with
terms of (N — n) variables entered into the appropriate cells of the nth-order K-map. Thus,
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(a} Truth table for function ¥ in Eq. (4.39) showing subfunctions for a first-order map compression.
(b), (c) Second and first-order EV K-maps showing submaps and minimum SOP cover extracted in
minterm code.

each cell of the nth-order K-map becomes a submap of order (N — ), hence K-maps within
K-maps.
To illustrate, consider the three-variable function

YA, B,C)= Zm(l,3,4,5,6}. (4.39)

which has been placed in a truth table and mapped into a second-order EV K-map, as shown
in Figs. 4.28a and 4.28b. The subfunctions indicated to the right of the truth table are also
represented as first-order submaps corresponding to the cells 0, 1. 2, and 3 in the EV K-map
of Fig. 4.28b. The minimum cover is then obtained by looping out the cell entries, as shown
by the shaded loops, giving the minimum result

Yiap = AC+AC + AB. (4.40)

Notice that the term AC covers only the € in the 1 = C + C of cell 2. This requires that
the C in the 1 be covered by one of the two OPIs, AB or BC, and the former is chosen.
The same result can be obtained from a second-order compression if the expression of
Eq. (4.39) is compressed into a first-order K-map. This is done in Fig. 4.28¢c, where B
and C are now the EVs. The minimum cover is indicated by the shaded loops, yielding
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the expression in Eq. (4.40). The OPI BC is not easily seen in the first-order EV K-map,
but can be found by observing the 1's representing BC in the two submaps shown in
Fig. 4.28c¢.

Map Key Tt has already been pointed out that each cell of the compressed nth-order
K-map represents a submap of order (N —n) for an N > n variable function. Thus, each
submap covers 2% " possible minterms or maxterms, This leads to the conclusion that any
compressed nth-order K-map, representing a function of N > n variables, has a Map Key
defined by

MapKey =2 N >n (4.41)

The Map Key has the special property that when multiplied by a cell code number of
the compressed nth-order K-map there results the code number of the first minterm or
maxterm possible for that cell. Furthermore, the Map Key also gives the maximum number
of minterms or maxterms that can be represented by a given cell of the compressed nth-order
K-map. These facts may be summarized as follows:

Conventional K-map: Map Key =1 (no EVs. 1's and 0’s only)
First-order compression K-map: Map Key =2 (one EV)
Second-order compression K-map: Map Key =4 {two EVs)
Third-order compression K-map: Map Key =8 (three EVs), etc.

As an example, the first-order compressed K-map in Fig. 4.28b has a Map Key of
23-2 =2, So each of its cells represents two possible minterms (first-order submaps) begin-
ning with minterm code number equal to (Map Key =2) x (Cell Number). This is evident
from an inspection of the truth table in Fig, 4.28a. Similarly, the second-order compression in
Fig.4.28¢ has a Map Key of 2°~! = 4. Therefore, each cell represents four possible minterms
represented by the conventional second-order submaps shown to the sides of Fig. 4.28c.

The compressed K-maps in Fig. 4.28 can also be read in maxterm code as indicated by
the shaded loops in Fig. 4.29. In this case the logic | in cell 2 must be excluded. The result
for either the first-order or second-order compressed K-maps is

Ypos = (A + B+ C)A + C). (4.42)
B b (A+0)
A o [ |~ i) A /_
| NG

1]
AE 1 @ AE B0
2 3 1
(A+

Y Y
B*C}_/ [E+E+E} J
FIGURE 4.29

Second- and first-order EV K-maps showing minimum POS cover for function ¥ extracted in maxterm
code.
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FIGURE 4.30

{a) Conventional K-map for function ¥ of Eq. (4.39). (b) Second-order EV K-map with entered
variable A showing minimum cover for ¥ as extracted in minterm code.

That Ypps in Eq. (4.40) and ¥spp in Eq. (4.42) are algebraically equal is made evident by
carrying out the following Boolean manipulation:

(A+B+C)XA+C)=AC+AC+[AB + B(].

where the two p-terms in brackets are OPls, thereby rendering one to be redundant.

In the second-order K-maps of Figs. 4.28 and 4.29, C is taken to be the EV. However,
any of the three variables could have been chosen as the EV in the first-order compres-
sion K-maps. As an example, variable A is the EV in Fig. 4.30, where the columns in
the conventional K-map of (a) form the submaps of the cells in the compressed K-map
of Fig. 4.30b. Minimum cover extracted in minterm code then yields the same result as
Eq. (4.40). Or, if extracted in maxterm code, Eq. (4.42) would result. Thus, one concludes
that the choice of EVs in a compressed K-map does not affect the extracted minimum resuit.

Reduced but nonminimum functions can be easily compressed into EV K-maps. This is
demonstrated by mapping the four-variable function

X =BCD+ AB +ACD +ARBCD + ABC {4.43)

into the third-order EV K-maps shown in Fig. 4.31, where the Map Key is 2. Here, D is
the EV and | = (D + D). Figure 4.31a shows the p-terms (loops) exactly as presented in
Eq. (4.43). However, regrouping of the logic adjacencies permits minimum SOP and POS
cover to be extracted. This is done in Figs. 4.31b and 4.31c, yielding

X‘g(_}p:fiD‘i‘AC_"}'}IB

- L. (4.44)
Xpos =(A+ B+ DXA + (),
where the expressions for Xgop and X pog represent gate/input tallies of 4/9 and 3/7, res-
pectively, excluding possible inverters.

The four-variable function X in Eq. (4.43) can also be minimized in a second-order EV
K-map. Shown in Fig. 4.32 is the second-order compression and minimum SOP and POS
cover for this function, giving the same results as in Eqgs. (4.44). Notice that after covering
the D in cell 1 of Fig. 4.32a, it is necessary to cover all that remains in cell 0 by looping
out the 1 as an island to give AB. In this case the 1 has the value | = C+ C = D+ D.
Clearly, the 1 in cell 0 cannot be used in extracting minimum cover in maxterm code.



162 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION
AB ABCD
BC b BC B
A 00 o1 [ 11 10 _—BED AN 00 o1 I 1 10
15)|[=SD

1 ]

X X
a5t Aé% AT /St o

-

Ig
U‘
@
)

1=
M= 1
L il=]

+
o Y
/v‘\_/
0
-~

o
a| ©!

b3
=
Y
()
-4

m U
@ m"ﬂ

>
I -
N

o
LAl

L”J

-

—
o

FIGURE 4.31
(a) First-order compression plot of the function X in Eq. (4.43) showing original p-terms. (b) Minimum
SOP cover. (¢) Minimum POS cover.

4.6.1 Incompletely Specified Functions

The EV mapping method is further illustrated by compressing the incompletely specified
function

fA.B.C.D)= m(3.6,9,10, 1)+ ¢(0, 1,4.7,8) (4.45)
AB
B B )
A of M1 '/—AD A K I/—A+B+D
| @) of
1 8] 1
A|E ¢ ¢ ) a1l € G
2 3 2 3

7 X
4B _/ SOP e _/ Xpos
(@) (b)

FIGURE 4.32
Second-order compressions of the function X showing (a) minimum SOP cover and (b) minimum
POS cover.
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(a) First-order compression plot and submaps for the function f in Eq. (4.45). (b) Minimum SOP
cover and (¢) minimum POS cover.

into the third-order K-map in Fig. 4.33a, a first-order compression with a Map Key of 2.
Here, the subfunctions are presented in their simplest form yet preserving all canonical
information. In Figs. 4.33b and 4.33¢ are shown the minimum SOP and POS covers for this
function, which produce the expressions

fsop = ED + A_BC + AE

N R m (4.46)
fros=(A+ B+ D)B+ D)A + B),
both of which have a gatef/input tally of 4/10. In extracting the minimum expressions of
Eqgs. (4.46), the loop-out protocol is first applied to the entered variable D and then applied
tothe 1's or 0's.

Some observations are necessary with regard to Fig. 4.33 and Eqgs. (4.46). First, these
expressions are logically equivalent but are not algebraically equal. The reason is that the
don’t cares ¢4 and ¢+ in cells 2 and 3 are used dlfferently for the fspop and fpyy. For
example, (¢ + D)sop = 1 for ¢p3 = 1 but (¢ + D)pos = D, since, in this case, ¢7 = 0.
Second, the extraction process involved some techniques in dealing with ¢’s that have
not been discussed heretofore. These techniques are set off for reference purposes by the
following:
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Remember;

= Treat the don’t care (¢) as an entered variable — which it is.
¢ In simplifying incompletely specified subfunctions, apply the absorptive laws:

X+¢X=X-+¢
X -(p+X)=

* Subfunctions of the type (¢ + X) have an essential SOP component but no
essential POS component. (Proved by substituting the set {0, 1] for ¢.)
» Subfunctions of the type ¢ X have an essential POS component but no essential
SOP component. (Proved by substituting the set {0, 1} for ¢.)

Concluding this section is the function

Z(A.B.C,D)=]]M(2.4,7.11,12,14,15)

=Zm(0, 1,3.5,6,8,9. 10, 13),

(4.
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47)

which is represented by the second-order EV K-maps in Fig. 4.34, where C and D are the
EVs and the Map Key is 4. This example is interesting because of the XOR function in
cell 1, which must be represented by both the SOP and POS defining relations, given in
Eqs. (3.4), so as to extract minimum SOP and POS cover. To assist the reader in identifying
the subfunctions, second-order conventional submaps in C and D axes are shown for each
cell. Thus, the subfunction for cell 0 is 3 m(0. 1, 3)= C + D, while that for cell 1 is

c 0 1 CDO 1
o 1] 1 0 1
1Mo 11 o}
0 P
ABD A8CE
B AB
A 0 / v/
13
0 F]+ CD +CD.
E_ﬁ
35/1']5| 4\ &
2
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FIGURE 4.34
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Second-order EV K-maps and submaps for Egs. (4.47) showing (a) minimum SOP cover and (b)

minimum POS cover,
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Y m(5,6) = C®D = CD+ CD = (C+ D)(C + D). The minimum SOP and POS results
are given by

Zsor =ABCD + ABD + ABD + CD + BC

_ o . - (4.48)
Zpos=A+B+C+DYB+C+D)YB+C+DYA+B+D)YA+CH+D).

From the results depicted in Fig. 4.34, certain conclusions are worth remembering and are
set off by the following:

* In minterm code, subfunctions of the type XY are subsets of forms of the type
X+7Y.

* In maxterm code, subfunctions of the type X + Y are subsets of forms of the
type XY.

What this means is that subfunctions of the type XY can be looped out from terms of the
type X + Y to produce reduced SOP cover. For reduced POS cover, subfunctions of the
type X + Y can be looped out from terms of the type XY (there are more 0’s in XY than in
X +Y). For example, in Fig. 4.34 CD is looped out of both C + D and C + D to contribute
to minimum SOP cover. However, in Fig. 4.34b both C + D and C + D are looped out of
CD, leaving C + D to be covered by A + B + D.

4.7 FUNCTION REDUCTION OF FIVE OR MORE VARIABLES

Perhaps the most powerful application of the EV mapping method is the minimization or
reduction of functions having five or more variables. However, beyond eight variables the
EV method could become too tedious to be of value, given the computer methods available.
The subject of computer-aided minimization tools is covered in Appendix B.

Consider the function

FA B,C,D,E)= Zm(f‘}, 11,12,19,24, 25, 26, 27, 28, 30), (4.49)

which is to be compressed into a fourth-order K-map. Shown in Fig. 4.35 is the first-order
compression (Map Key = 2) and minimum SOP and POS cover for the five variable function
in Eqs. (4.49). The minimized results are

Fsop = BCDE + CDE + ABE + ABC

_ - (4.50)
Fpos=A+ D+ EXC+ EXB+ EYA+ C+ DYB+ D),

which have gate input tallies of 5/17 and 6/17, respectively. Thus, the SOP resuit is the sim-
pler of the two. Also, since there are no don’t cares involved, the two expressions are algebrai-
cally equal. Thus, one expression can be derived from the other by Boolean manipulation.
A more complex example is presented in Fig. 4.36, where the six-variable function
Z(A,B,C,D,E, F)

= Zm(O, 2,4.6,8,10,12, 14, 16, 20, 23, 32, 34, 36, 38, 40,

42,44, 45, 46, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63) 4.51)
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Minimum SOP and POS cover for the five-variable function given by Eq. (4.49).

1s compressed into a fourth-order K-map, a second-order compression (Map Key = 4). The
minimum SOP and POS cover is indicated by the shaded loops in Figs. 4.36a and 4.36b
and yield the following minimum expressions for function Z:

Z¢op = BCDEF + ACEF + ACDE + ADEF + ABF + BF

Zeos=A+B+E+FYA+E+FXA+D+FYA+B+C+E+F) (4.52)
(A+B+D+F)B+D+F)YB+E+FNB+C+FA+B+C).
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’ (A+D+F)—y o (EfF} — B
1| [F & DB E T [ @ 1 F (A+B+C)
A A 12 13 15] 14
N
ABF—"110 10/ F F E+F G’\\“(A*B*D*F)
4 R0
ADE{: _ SOP B"’C'FF}—/ ZPOS
(A+B+C+E+F} B+E+F
(a)
FIGURE 4.36

Fourth-order EV K-maps for the six-variable function Z in Eq. (4.51), showing (a) minimum SOP
cover and (b) minimum POS cover.
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FIGURE 4.37

An A/B||CD/EF format for the six-variable function of Eq. (4.51) and Fig. 4.36a, showing minimum
SOP cover.

Notice that the SOP form of the equivalence function, E @ F = EF + EF givenby Eq. (3.5),
is used in cell 5 to extract minimum cover in minterm code and that the POS form (E + F)
(E+F)is required for extraction of minimum cover in maxterm code. Note also that the
loop-out protocol is applied first to the EVs and then to the 1’s (in minterm code) and (s
(in maxterm code) as “clean-up” operations. This protocol procedure is recommended to
avoid possible redundancy.

There are other K-map formats that can be used to extract reduced or minimum cover
for a given function. Consider again the six-variable function given in Eq. (4.51). Presented
in Fig. 437 is the A/B| CD/EF format for the conventional (1's and 0’s) mapping of this
function where only minterm code extraction is considered. Observe that extraction of the
EPIs takes on a three-dimensional (3-D) character in a 2-D layout, which can be somewhat
perplexing,

As afinal example, the format of Fig. 4.37 is used to deal with the following incompletely
specified function of eight variables:

Zla, b, c.d,e, .5, T)= Z m(16, 18, 20, 22, 24, 26, 28, 30, 48, 50, 52, 54, 56, 58, 60,
62,98,99, 102, 103, 106, 107, 110, 111, 160—191,
225-227,229-231,233-235,237-239,

241, 243, 245247, 248, 250, 252, 254, 255)
+(0—15,32—47, 6479, 112—159, 192-207). (4.53)
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FIGURE 4.38
Ana/bllcd/ef EV format for an eight-variable function Z given by Eq. (4.53).

cdeT
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--/ —_/ d \ 2
bT ab aceT + acfS
FIGURE 4.39

ab/ed EV K-map showing minimum SOP cover for the eight-variable function represented in Fig. 4.38
and by Eq. (4.53).

168



4.8 MINIMIZATION ALGORITHMS AND APPLICATION 169

ST S
=
ef 00 01 1 10 !
00 1 1
240 241 243 242
01 L1 1) q
244 24! 247 2464 f
1 1 | \1 1J
e 252 253 255 254}

24| 249) 251 — 20~
Cell 15
T

Cell 15 = 2m(241, 243, 245-7, 248, 250, 252, 254, 255)

FIGURE 4.40
Submap for Cell 15 of Fig. 4,39 showing minimum subfunction cover.

Presented in Fig. 4.38 is the second-order compression of this function (Map Key = 4) by
using the format a /b||cd /ef, where S and T are the EVs, The minimized result, as extracted
from Fig. 4.38, is given by

Zsop = cdeT +acéT+acfS+adT + dS + bT + ab, (4.54)

where, for clarity’s sake, only the loopings for the first three and sixth p-terms are shown.
Here again the p-terms are given in the order determined by the loop-out protocol first for
the EVs then for the 1's as 2 “clean-up” operation. Note that the term @b covers all the 17s
and don't cares in cells 32 through 47 of Fig. 4.38, but is not shown.

Next, the function of Eq. (4.53) is compressed into the fourth-order K-map of Fig. 4.39,
a fourth-order compression (Map Key = 16). The same minimum result given by Eq. (4.54)
is easily obtained from Fig. 4.39 as indicated by the shaded loopings and verified by Boozer.
To understand the entry in Cell 15 of Fig. 4.39, a submap for this cell is provided in Fig. 4.40.
The last line of essential minterms in Eq. (4.53) pertains to Fig. 4.40.

4.8 MINIMIZATION ALGORITHMS AND APPLICATION

Tabular methods for function minimization have been devised that can be implemented by
a computer and can therefore be used to minimize functions having a large number of input
variables. One such method has become known as the Quine-MeCluskey (Q-M) algorithm.
Typical of these methods, the Q-M algorithm first finds the prime implicants (Pls) and then
generates the mimmum cover, Another important minirmization algorithm is a heunistic-type
algorithm called Espresso. This section will provide a description of these two algorithms
together with simple illustrative applications.

4.8.1 The Quine-McCluskey Algorithm

To understand the Q-M algorithm, 1t is helpful to review the tabular format and notation that
is unique to it. In Fig. 4.41 is shown the Q-M notation that will be used in the two examples
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Adjacent minterm
code numbers

Positional weight of variable

ABCD Decimal /removed (6-2=4 or B)
0010 2 2 6 --
\ Dash indicates variable
(B) removed
0110 6
. Logically adjacent minterms in minterm
code

Boundary line

FIGURE 4.41
Quine-McCluskey (Q-M) notation for PI determination.

that follow. Notice that the Q-M notation uses minterm code, minterm code numbers, and
positional weights for PI determination.

ExampLE 1 Consider the minimization of the incompletely specified function
YA,B,C, D)= Zm(O, 1,4,6,8,14,15) + ¢(2,3,9). (4.55)

In the Q-M algorithm the ¢’s are treated as essential minterms, and minterm sets k are
compared with sets (k + 1) in a linear and exhaustive manner. The first step in the application
of the Q-M algorithm is presented in Fig. 4.42. Here, a check mark (/) indicates that an
implicant is covered by a PI in the column to the right and, therefore, cannot itself be a PL.
Thus, unchecked terms in columns 4 and 6 are the indicated PIs and those that are lined out
are redundant.

The second step in the application of the Q-M method is the identification of the essential
prime implicants (EPIs). Presented in Fig. 4.43 is a table of the PIs (taken from Fig. 4.42)
vs the essential minterms in Eq. (4.55). The check mark (/) within the table indicates that
a given minterm is covered by a PI. The EPIs are selected from a minimum set of Pls that
cover all of the essential minterms of the function Y in Eq. (4.55) and are presented in
Eq. (4.56):

Y = ABC + BC + AD. (4.56)

This result can be easily verified by the conventional K-map extraction method described
in Section 4.4.

EXAMPLE 2 In this example a minimum POS result is required for the incompletely
specified function

F(W,X,Y,Z)= Zm(O, 1,4,5,11,12, 13,14, 15) + ¢(2,7,9) (4.57)
= HM(3, 6,8,10)- ¢(2,7,9). (4.58)
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No. of
1's
o { o000 0 011 ABC-- V 0,1,2,3 AB---  00---
(0001 1 02(2) AB--D V 0,1,8,9 “BC-  -00-
,J o002 04 K_?E) v ﬁ—2—1—3—§—§*-—=_—
0100 4 0,8 (8) BCD V 0,2,4,6 A----D 0----0
1000 8 1,3(2) AB--D V Gt A — D
(0011 3 1.9(8) BCD v 68,49 —BE—
249 0110 8  2,3(1) ABC- V
[ 1001 9 2,6(4) A--CD V
34 1110 14 452 AB--D V
4{ 1111 15 8,9 (1) ABC--
6,14(8) --BCD 6,14 ~BCD
1415 (1)  ABC - 14,15 ABC-

V' Indicates that an implicant is covered by a Prime Implicant in the columns to the right.

FIGURE 4.42
Determination of PIs for the 1’s in the function Y of Eq. (4.55).

To do this, the 0’s of Eq. (4.58) will be treated as 1’s, as required by the Q-M algorithm,
to yield Fpos in minimum SOP form. Then, application of DeMorgan’s law, given by
Egs. (3.15), yields the results F pps = Fpos by involution. Here, the ¢’s in Eq. (4.58) are
treated as essential minterms, not as nonessential maxterms. Shown in Fig. 4.44 is the tabu-
lar determination of PIs for the 0’s, treated as 1’s, in the maxterm form of function F given
by Eq. (4.58).

The final step is to tabulate the PIs of Fig. 4.44 with the maxterms (now treated as
minterms) in Eq. (4.58) to obtain the EPIs for the function Fpos. This is done in Fig. 4.45,

0 1 4 6 8 14 15 Essential Pls
Pls
01,23 | v
0189 | v | v v — -BC-=BC
0,246 | V v |V —> A----D=AD
6,14 v v
14,15 v Y — ABC-- = ABC

FIGURE 4.43
Table of Pls (from Fig. 4.42) vs minterms for the function ¥ of Eq. (4.55) showing the resulting EPIs.
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No.
of 's
0010 2 2,3 (1) WXY- 2.3,6,7 Wy
1{ 1000 8 2,6 (4) W--YZ ¢ 26,37 WY
0011 3 2,10 (8) XYZ 2,10 XYz
, J 0106 8o WXY-- v 8,9 WXY
1001 9 810(2) WX--Z V 8,10 WX--2Z
1010 10 3,7 (4) wW--Yz ¥
3{ 0111 7 8,7(1) WXY- V
V¥ Indicates that an implicant is covered by a Prime Implicant in the columns to the right.
FIGURE 4.44

Tabular determination of PIs for the s (treated as 1’s) in function F of Eq. (4.58).

giving the final results

Fpos=WY+ WXZ
Fpos = Fpos = (W + 1YW + X + 2). (4.59)

Notice that the PI (2, 3, 6, 7) is the EPI WY and that the remaining maxterms (treated as
minterms) are covered by the PI (8,10), the minimum set of PIs covering all minterms.
Had the Q-M algorithm been applied to Eq. (4.57), the minimum SOP result would be

Fsop = WY + WX + WZ, (4.60)

which is algebraically equal to the POS result of Eq. (4.59). The reason for this is that the
application of the Q-M algorithm uses the three ¢’s in the same way for the two cases,
a feature of the Q-M method. As a general rule, this is rarely the case for SOP and POS
minimized forms of incompletely specified functions obtained by other methods.

3 6 8 10 Essential Pls
Pls
2367 | v | ¢ s WeYe oWy
2,10 v
8,9
8,10 V| v — WX-Z=WXZ

FIGURE 4.45
Table of PIs (from Fig. 4.44) vs maxterms treated as minterms for function F of Eq. (4.58) showing

the essential Pls.
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4.8.2 Cube Representation and Function Reduction

The cube notation is commonly used in CAD programs and, in fact, is the notation that is
used in the computer implementation of the Q-M algorithm described in Subsection 4.8.1.
In this notation an n-dimensional cube has 2" vertices formed by the intersection of n
dimensional lines. Most commonly one thinks of a cube as three-dimensional (a 3-cube)
having 2* = 8 vertices. But the concept is much more general, extending to n dimensions
that generally cannot be easily visualized by a geometrical figure.

Cube representation is usually based on minterm code. Thus, the minterms of a switching
function can be mapped onto the 2" vertices of an r-dimensional cube such that each pair
of adjacent vertices differ by exactly one bit position. As an example, consider implicants
(2, 3) and (6, 7) listed in the Q-M example of Fig. 4.44. In minterm code cube notation, these
implicants would be represented as (0010, 0011) and (0110, 0111), respectively. Reduction
of these implicants to PI (r-cube) form occurs between adjacencies (adjacent vertices) as
follows:

0010+ 0011 =001— = WXY and 0110+ 0111 =011— = WXY
or, finally,
(001—=)+ (011—=) =0 — 1 — = WY,

where 0 represents the complemented variable, 1 is the uncomplemented variable, and the
“—" symbol represents an irrelevant input variable (representing both 1 and 0). Thus, in gen-
eral, an r-cube of an n-variable function is produced by combining 2" adjacent minterms,
thereby eliminating r variables in a function reduction process.

4.8.3 Qualitative Description of the Espresso Algorithm

The two-level minimization algorithm called Espresso belongs to a class of minimization
algorithms that use heuristic logic methods as opposed to the linear exhaustive PI search
of the Q-M method. In effect, all heuristic methods group, expand and regroup adjacent
minterms over a number of iterations until an optimal or near-optimal grouping, called the
irredundant set, is found. The exact strategies used and the order in which they are used
depends on the particular algorithm.

Though a detailed description of the Espresso algorithm is beyond the scope of this text,
the principal steps involved can be qualitatively understood by the K-maps in Fig. 4.46. Here,
the four basic steps of the Espresso algorithm are represented by four fourth-order K-maps
labeled ORIGINAL, REDUCE, EXPAND and IRREDUNDANT. The ORIGINAL function,
plotted in Figure 4.464, is the graphical equivalent to the PI table of the Q-M method since
it represents the largest number of prime implicants, that is, six PIs. The original function
is then regrouped to form a smaller (REDUCED) number of prime implicants (four PIs)
in Fig. 4.46b and then EXPANDED (RESHAPED) to form four PlIs by eliminating two
PIs. Notice that the cardinality is preserved in the REDUCE-to-EXPAND step. Finally, an
IRREDUNDANT setis found by regrouping and eliminating yet another PI, resulting in only
three EPIs. This irredundant set is said to have minimum cardinality, that is, minimum cover.

The Espresso algorithm just described qualitatively is usually called Espresso-II. Since its
inception, various improvements have been made, adding to the speed and multiple-output
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FIGURE 4.46
Four-variable K-maps for function ¥ illustrating four steps of the Espresso algorithm: (a) ORIGINAL,
(b)Y REDUCE. (¢) EXPAND, and (d) IRREDUNDANT COVER.

capability. These improved Espresso algorithms include the two referred to as Espresso-
EXACT and Espresso-MV. A detailed description of these and other closely related algo-
rithms can be found in references cited at the end of this chapter.

4.9 FACTORIZATION, RESUBSTITUTION, AND DECOMPOSITION METHODS

Beyond the SOP or POS minimum result, it is possible to further reduce the gate/input tally,
reduce the number of inverters, and reduce the gate fan-in requirements for some functions
by using a technique called factoring or facrorization. The results of factorization lead to
multilevel forms that are hiybrids, since they cannot be classified as either purely SOP or
POS. A multilevel logic realization of a function is one involving more than two levels of
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gate path delay excluding possible inverters. The logic circuits considered to this point are
classified as two-level.

4.9.1 Factorization

The method of factorization is illustrated by using a simple example. Consider the minimum
SOP function

F =ABC+ AD+BD+CD, 4.61)

which requires a gate/input tally of 5/13 excluding inverters. This requires four ANDing
operations with a maximum of three inputs per gate, and one ORing operation requiring four
inputs. Also, if it is assumed that the inputs arrive active high, two inverters are required,
bringing the total gate/input tally to 7/15. Now suppose that it is desirable to limit the
fan-in to a maximum of three inputs per gate and to eliminate the need to use inverters in
generating the complements of B and C variables. This can be accomplished by factorization
of Eq. (4.61) in the following manner:

F=ABC+AD+BD+CD
=ABB+ C)+AD+ B+ C)D
=ABBC) + AD + (BO)D. 4.62)

The term ABC is factored as ABC = AB(B + C). Notice that if the function of Eq. (4.62)is
implemented as a NAND circuit, a gate/input tally of 5/12 would result with a maximum
fan-in of 3 with no inverters.

An interesting feature of the factorization method is that there is usually more than one
way in which to factor a given function. So it is with Eq. (4.61), which can be factored as a
three-level hybrid form in the following alternative way:

F=ABC+AD + BD+ CD
=ABC+ DA+ B+ 0).
If implemented with NAND gates, the gate/input becomes 4/10 plus two inverters, assuming
that the inputs arrive active high.
The factorization method can be extended to multioutput systems of the type considered

in Section 4.5. The process is illustrated by the following simple example where three
optimized functions are factored as indicated:

fi=AB+AC+AB=A(B+ C)+ AB = A(BC) + AB
f>=ABC+BC +AB=B(A + C)+AB = B(AC)+ AB (4.63)
fi=BC+ABC+ BC =CB+C)+ B(A+ C) = C(BC) + B(AC).
Here, terms in expressions for f, and f3 are factored as ABC + BC = B(AC+ C) =
B(A + C) = B(AC) and BC = C(B + C) = C(BC). With NAND logic and assuming the

inputs arrive active high, the total gate/input tally for the factored expressions is 12/20,
including one inverter, with fan-in requirements of two inputs per gate. In comparison, the
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original optimized SOP expressions require a gate/input tally of 14/30, including three
inverters, and have a maximum fan-in requirement of 3.

The factorized expressions of Eqs. (4.63) are three-level functions, whereas the original
SOP expressions are two-level. This brings up other aspects of the optimization problem,
namely the design area (real estate usage) vs delay (performance), as discussed in Section
4.10.

4.9.2 Resubstitution Method

The Boolean resubstitution method possesses a close resemblance to polynomial division
and works to generate multilevel functions that have improved fan-in (hence improved area)
requirements. The process of resubstitution begins by finding a good, if not optimal, divisor
P in the expression

F=PQ+R, (4.64)

where F is the dividend, Q is the quotient, and R is the remainder. Heuristic algorithms
exist that can accomplish this, but they are complex and fall outside the scope of this text.
However, an attempt will be made to illustrate the resubstitution method with a simple
example. Consider the minimized SOP five-variable function

F = ABE + ABCD + CDE + ACE + ABCD + ABE + CDE. (4.65)
Noting the appearance of AB, AB, CD, CD, E, and E in six of the seven p-terms, the divisor

is chosen to be P = AB + CD + E. The process continues by repeating three steps for each
of the seven p-terms:

Step 1. Select term ABE. ) . ) i )
Step 2. AND (Boolean multiply) ABE - P :_ABE + ABCDE + ABEE=ABE.
Step 3. Delete ABin ABE - P toyield term E - P.

Step 1. Select term ABCD. - .
Step 2. AND ABCD - P = ABCD + ABCDE = ABCD.
Step 3. Delete ABin ABCD - P to yield term CD - P.

Repeat Steps 1, 2, and 3 for the remaining five terms in the order given by Eq. (4.65):

CDE - P = ABCDE + CDE = CDE. Delete CD in CDE - P to yield E - P.

ACE - P = (. Thus, no literals can be deleted in ACE - P.

ABCD - P = ABCD +ABCDE = ABCD. Delete CDin ABCD - P yield AB - P.

ABE. P = ABCDE + ABE = ABE. Delete E in ABE - P to yield AB - P.

CDE - P = ABCDE + CDE = CDE. Delete E in CDE - P to yield CD - P.
In the preceding set of steps it should be observed that the only literals that can be deleted
are those that appear as p-terms in the divisor P. Also, it should be noted that the choice
of divisor P is somewhat arbitrary, since there are other combination of terms that can be

used in the resubstitution process.
The final results of resubstitution are expressed by the partition

F=ABP+CDP+EP+ACE
=PQ +R, (4.66)
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F(H)

R(H)

FIGURE 4.47
NAND/NOR/INYV realization of the partitioned function given by Eq. (4.66).

where P = AB+ CD+ E, Q = AB + CD + E and R = ACE. Function F, expressed by
Eqgs. (4.66), represents four levels of path delay, as shown implemented by NAND/NOR/INV
logic in Fig. 4.47 where it is assumed that all inputs arrive active high. Notice that the
gate/input tally is now 11/25, including three inverters, and that only one gate has a fan-in
of 4. If a fan-in limitation of 4 is also applied to the original two-level SOP expression in
Eq. (4.65), a three-level circuit results having a gate/input tally of 14/35, including five
inverters, and four gates with a fan-in of 4. Thus, the partitioned function of Fig. 4.47 has
an improved design area factor but not necessarily an improved performance. A discussion
of the design area vs performance factors is given in Section 4.10.

The resubstitution method just described bears similarity to portions of some heuristic
two-level minimization algorithms such as Espresso I, qualitatively described in Subsection
4.8.3. In particular, the introduction of a new literal, divisor term P in step 2 and the subse-
quent deletion of literals in step 3 of resubstitution is a generalization of the REDUCE and
EXPAND processes in Espresso II. In these processes, Espresso seeks to add literals existing
in one product term of the original expression to other candidate terms so that implicants
covered by a given expanded implicant can be deleted. Thus, by repeated introduction of
divisor P followed by deletions of redundant terms, the resubstitution process seeks a more
optimum result, not unlike the heuristic processes in Espresso.

4.9.3 Decomposition by Using Shannon’s Expansion Theorem

Shannon’s expansion theorem states that any Boolean function of n variables f(x,_j, ... x3,
X1, Xg) can be decomposed into the SOP form

f(xll—11 ...,x;;_,x],x()):.f,-f(x,,,l, -~'vxi+|’07xi—17 "-1x2,x|ax0)
+xif(xrl—ly s Xigls l’xi—li ---5x2’xlax0)

=X + x f5OF 4.67)
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or into its dual POS form

S, ox, xn xo) =%+ fGer, o X, 1 Xiz1, o0, X2, X, Xp)]
x4+ fOy, o i1, 0, x4, 0, X2, X, X0)]
=[5 + L] [+ £, (4.68)

where f3°% and f3°F are the cofactors for %, and x; in Eq. (4.67). and f%° and f0° are
the cofactors for x; and x; in Eq. (4.68).

Proof of Eqs. (4.67) and (4.68) is easily obtained by setting x;, = 1 and then x; =0 and
observing that in each case the surviving cofactors are identical to the left side of the
respective equation. For example, setting x; = 1 in Eq. (4.67) leads to

f(xll—la°"’xi+lr lsx[—ls'-~7x2axl,x0)= f(xll—h ~~-,xi+l5 l’xi—lv ...,x2,x1,x0),

since x; = 0 when x; = 1.
Multiple applications of Eqs. (4.67) and (4.68) are possible. For example, if decompo-
sition is carried out with respect to two variables, x| and xy, Eq. (4.67) becomes

S, x, X, x0) =X Xof (=1, -0, x2,0,0) + X1 x0 f(X—1, ..., X2,0,1)
+x1X0f Xn—ts ., X2, L)+ xyx0 f (X1, .-, x2, 1, 1)
=mof(Xn—t1, ..., %2, mg) +my fXp-1, ..., X2,m1)
+maf(xXn_1, ..., X2, ma) +m3 f(xy-1, ..., X2, m3),

or generally for decomposition with respect to (xx—_y, ..., X2, X1, Xg),

261

f(xn~], . .,XQ,X],X()) = me(xllfla AR ,XQ,X],X()) : f(xll—h vy X ﬁ)' (4'69)
i=0

Here, m; are the canonical ANDed forms of variables x; taken in ascending minterm code
order from i = 0 to (2* — 1), and m; represents their corresponding minterm code. As an
example, decomposition with respect to variables (xz, x;, xp) gives

SGoat, oo X2, X1, X0) = Xo X Xo f(Xumy, ..., %3,0,0,0)
+xoxix0 f (Xuety oo, x3,0,0, D+ - -

for k = 3.
In similar fashion, the dual of Eq. (4.69) is the generalization of Eq. (4.68) given by

26—

fGors e x, 21, x0) = [ [ i, .o %2, %0, %0) + fGnmts - X0, M), (4.70)
i=0

where now M, represents the canonical ORed forms of variables x; and M; represents their
corresponding maxterm code.
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As a practical example of the application of Shannon’s expansion theorem, consider the
function

F,B,C,D)= Zm(l, 3,4,5,9,10,13, 14, 15), (4.71)

which is represented in the truth table of Fig. 4.48a and in the K-map of Fig. 4.48b. Applying
Eq. (4.69) for decomposition with respect to variables C and D gives the cofactors

Fo=(A, B,0,0)=AB
Fi=(A,B,0,1)=1
F,=(A,B,1,00=4
F,=@A,B,1,1)=A0B

from which the function F can be written as

Fcp(A, B, C, D)= CD(AB) + CD(1) + CD(A) + CD(A © B)
=ABCD +CD + ACD + (A ® B)CD,

which could have been deduced directly from an inspection of the truth table or K-map in
Fig. 4.48.

But the variables about which the function is to be decomposed are a matter of choice.
If it is required that the function F be decomposed with respect to variables A and B, the
result would be

Fup(A, B, C, D)= AB(D)+ AB(C) + AB(C & D) + AB(C + D),

which, like the previous result, can be read directly from either the truth table or the K-map.
Note that decompositions of the type just described can be very useful in implementing

cD ¢
M7 5 |
ABCDI|F ABGCTODI|F ABN 0 o1 1 10
5 000]0 1 000]0 00 1]
000 1]t 100 1]1
00100 101 01 ol 1|1
001 1|1 101 1]0 B
o1 001 11000 ’ 11 |
01 011 110 1]1 A
611000 1110/ 10 1 1
0011110 111 1]1
L F
D
(a) (b)
FIGURE 4.48

Truth table (a) and K-map (b) for the function F given by Eq. (4.71).
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functions of a large number of variables by using devices with lesser input capability. The
use of multiplexers discussed in Section 6.2 offers a good example of this fact.

The process of decomposition can be reversed to yield a purely SOP or purely POS
expression from the decomposed expression. This is illustrated by factoring out A, A, B,
and B in turn from Fjp to yield the SOP expression

Fip =AB(D)+ AB(C)+ AB(C & D)+ AB(C + D)
=A[BD + BC] + A[B(C @ D) + B(C + D)]
=AB[D]+ AB[C] + AB[CD + CD] + AB[C + D]
=ABD +ABC + ABCD + ABCD + ABC + ABD,

where C @ D = CD + CD follows from Eq. (3.4). A cursory inspection of the SOP form
of F4p verifies its agreement with Fig. 4.48.

4.10 DESIGN AREA VS PERFORMANCE

It is common to observe an inverse relationship between design area and performance
(delay). That is, circuit realizations with improved design area commonly suffer from
poorer performance and vice versa. It is known that CMOS gate performance decreases
(i.e., delay increases) with increasing numbers of inputs (fan-in). The larger the fan-in,
the greater is the path delay through the gate. As an example, consider the function of
Eq. (4.65). It has a cardinality of 7 that must be ORed. Shown in Fig. 4.49a are four alter-
native ORing configurations for seven inputs. It is expected that there exists a trade-off
between design area and delay for these four configurations, as illustrated in Fig. 4.49b.

A
() Fan-in 7 (I} Fan-in 4 (V)
Delay U
0 (1
Design Area >
(L) Fan-in 3 (IV) Fan-in 3
(a) (b)
FIGURE 4.49

Area/delay trade-oft for the seven-input function of Eq. (4.65). (a) Four alternative ORing configu-
rations. (b) Possible area/delay trade-off points for configurations (1), (1), (IIT), and (IV), showing
effect of treeing and cascading configurations.
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Here, tree configuration (IIT) is expected to show the least delay, but at the cost of greater
design area. Tree configuration (II) would seem to have the most favorable area/delay trade-
off, while gate (I) and cascade configuration (IV) are expected to have the least favorable
trade-off. A dual set of ANDing operations would show the same area/delay trade-offs.

4.11 PERSPECTIVE ON LOGIC MINIMIZATION AND OPTIMIZATION

The EV mapping methods described in Sections 4.6 and 4.7 are useful up to three or
four orders of map compression. However, with increasing compression order beyond
third order, the gap usually widens between the reduced forms obtained and the absolute
minimum result. This is especially true if reduced or minimized subfunctions are used to
extract cover from such EV K-maps. For this reason a practical limit of four orders of K-map
compression (eight variables) is set, and use of reduced or minimum subfunctions is highly
recommended. The use of submaps can narrow the gap between a reduced result and one
that is an absolute or exact minimum. This fact is implied by the simple examples given in
the sections on EV mapping methods.

Beyond four orders of compression in fourth-order K-maps, the use of computer algorith-
mic methods for logic minimization becomes necessary. But even these computer programs
have their limitations, particularly with regard to multiple output systems having a large
number of input variables. Itis an established fact that the generalized optimal solution for an
n-variable function is impossible. The reason for this is that 2” minterms must be dealt with
in some manner or another. Minimization problems in the class referred to as P are called
tractable problems — those for which an optimum or near-optimum solution is possible.
Those that are intractable belong to the class of problems referred to as AP-complete, The
search for faster, more robust algorithms to optimize very large multiple output systems
continues. These algorithms are most likely to be of the heuristic type. Though the Q-M
linear tabular method is useful in introducing readers to the subject of logic minimization,
it is of little practical importance given the much-improved heuristic methods now in use.

Finally, it must be said that the SOP (or POS) minimization of a function may not be an end
in itself. Section 4.9 demonstrates that optimization may continue beyond minimization by
techniques such as factorization and resubstitution that generate multilevel functions. To do
this, however, brings into play other factors such as area/delay trade-offs. Thus, there emerge
two approaches to function optimization from which the designer must choose: Optimize
design area under delay constraints or optimize delay under design area constraints. It is
unlikely that a system can be optimized with respect to both design area and delay, although
it may be possible to come close to this for some systems.

4.12 WORKED EV K-MAP EXAMPLES

ExaMPLE 4.1 Compress the following four-variable function into a third-order K-map
and extract minimum SOP and minimum POS cover from it.

f4,B.C,8)= m(2,3,5.6,7,10,12,13,15)
=[] Mm©.1,4.8.9.11,14). (4.72)
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FIGURE 4.50
(a) Minimum SOP cover and (b) minimum POS cover for the function f.

The compressed third-order K-maps representing SOP and POS cover are shown in
Fig. 4.50. Applying the loop-out protocol first to the EV and then to the 1'’s and 0's gives

fsop =BCS + BS + ABC +AC
fros=A+B+C+SHA+B+SHA+C+SHB+C)

ExampLE 4.2 A four-variable function Z containing don’t cares is shown in the com-
pressed third-order K-map of Fig. 4.51. Two first-order submaps for cells 4 and 6 are also
shown to demonstrate that the don’t care (¢) is treated as an EV, which it is.

(a) Represent the function Z in canonical SOP and POS form by using coded notation.

Noting that the Map Key is 2*— = 2, the results can be written directly in canonical SOP
and POS form by counting by 2’s or by making use of first-order submaps in D, and by
applying the minterm and maxterm codes, respectively. For example, cell 3 represents mg
or M, cell 4 represents (¢mg + my) or ¢pMy. and so on. Proceeding in this manner, the
results are given by

Z(A.B.C. D)= m(0,1.5,6,9,10, 11)+$(2,3.8,13)
=[]M4.7.12,14,15)- (2, 3.8, 13), 4.73)

where knowing one canonical form yields the other through observation of the missing
numbers in the former.

B
ABC oo [} 11 10
of 1 D | D
D 0 # 1 3 2l P\
of ¢4 Al1fgeD| 1 | 0 | gD ol 0
5 [ ¢+ 4 5 7 ¢ & 12
1 | 7Z 4 ¢
c
Cell 4 Cell 6

FIGURE 4.51
Compressed K-map for Example 4.2 showing sample first-order submaps.
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f

FIGURE 4.52
(a) Minimum SOP cover and (b) minimum POS cover for function Z of Example 4.2.

c ‘ Cc ‘
(a) SOP cover (b) POS cover

(b) Extract minimum SOP and minimum POS cover for the function Z.

In Fig. 4.52 are the third-order K-maps showing the minimum SOP and minimum POS
cover for the function Z. Notice that the subfunction in cell 6 is interpreted differently in
the SOP and POS K-maps.

From reading this cover, the results are

Zsop =ACD -+ C-'D-i-g'
Zpos=(B + C+ D)YB+C + D)A + B).

which are seen to be logically equivalent but not algebraically equal. Notice that the 1's in
the SOP K-map are looped out as the octad B by using ¢s = 1 in cell 4 of Fig. 4.51 to give
¢g+ D = 1. Also, note that the 0 in cell 6 of the POS K-map in Fig. 4.51 is looped out as
the quad A + B by using ¢35 = 0 1o give ¢ 3D = 0. Thus, ¢,3 is used as a | for minimum
SOP extraction but as a 0 for minimum POS extraction, meaning that the SOP and POS
expressions cannot be algebraically equal.

ExampLE 4.3 A four-variable function F(A. B. C. D) containing don’t cares is com-
pressed into the truth table given in Fig. 4,53,

(a) Represent the function F in a second-order K-map, and express £ in canonical SOP
and POS form by using coded notation.

(b) By proper interpretations of the don't care subfunctions, loop out the minimum SOP
and POS cover from the second-order K-map and give the gate/input tallies for each.

AB | F

00 cD _
ot C(¢+ D)
10 (¢+C+D)
11 [t}

FIGURE 4.53
Compressed truth table for a function F of four variables.
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FIGURE 4.54

{a) Second-order compressed K-map and its submaps for the four-variable function given in the EV
truth table of Fig. 4.53. (b) EV K-maps showing minimum SOP cover and minimum POS cover.

(a) The simplest means of obtaining the canonical forms from Fig. 4.53 is to use a
second-order K-map. Shown in Fig. 4.54a is the second-order compressed K-map together
with its submaps for a Map Key of 2°~* = 4. By reading the submaps directly, the canonical
forms become

F= Zm(3, 6,9, 10, 11)+¢(7.8)
=]_[M(0, 1.2,4,5,12, 13,14, 15) - ¢(7. 8). (4.74)

(b) The compressed second-order K-maps for the function F are given in Fig. 4.54b.
From these K-maps the minimum SOP and minimum POS expressions are found to be

Fsop =BCD + ABC + AB
Fros=(A+ B + D)YA + C)XA + B),

with gate/input tallies of 4/11 and 4/10, respectively, excluding possible inverters. Notice
that the minimum SOP and POS cover results from these K-maps by taking ¢7 =1 to give
Cl¢7+D)=Cincell 1, and by taking ¢¢ = 1 to give (¢ +C + D)= l in cell 2. Because the
don’tcares, ¢; and by, are used in the same way (no shared use) in both K-maps of Fig. 4.54b,
the minimum SOP and POS expressions are algebraically equal.

EXAMPLE 4.4 A five-variable function f is given in the canonical form:
flA,B,C.D,E)= Zm(?s, 9,10, 12,13, 16, 17, 24, 25, 26, 27, 29, 31). (4.75)

(a) Use a fourth-order EV K-map to minimize this function in both SOP and POS form.
A compression of one order requires that the Map Key be 2. Therefore. each cell of
the fourth-order EV map represents a first-order submap covering two possible minterm or



4.12 WORKED EV K-MAP EXAMPLES 185

\.CD c cD C
AB o o1t 41 10! AB oo ot 11 10
o @ § 8 — — |
oo col_0)| E 0 0
0 1 3 2 0 1 g’? "
o1] E|||E|] © ol |E||LE £ﬁ 1
4 5 7 E]a B »-Ja L 5 7 8 g
1 9’1‘ 1 | E | E) Ml 1|1 | E|E
A Pzl —g ER—" A 12 1w fi5 14
1
10 ll 0 0 0 0 1 0 0 0
8 g 1 10 8 g ul o
;D_l fsop b = foos
D
(a) (b)

FIGURE 4.55
Fourth-order EV K-maps for the five-variable function f in Eq, (4.75). (2) Minimum SOP cover and
(b) minimum POS cover.

maxterm positions, In Fig. 4.55 are the fourth-order EV K-maps showing minimum SOP
and minimum POS cover for which the expression are

fsop =ABCDE + BCDE + BDE + ABE + ABCD + ACD
fros=(A+C+D+ENA+B+D+EXA+CH+EXA+B+EXA+B+D)
(A+C+DYA+B+D)B+C).

Notice that the loop-out protocol is applied first to the EVs and then to the 1's or 0's as
a “‘cleanup” operation, a practice that should always be followed. Also, notice that for the
POS result, the term (B + D + E) is an OPI for the term (A + B + E).

(b} Find the minimum SOP cover for the five-variable function in Eq. (4.75) by using
conventional (1's and 0’s) A||BC/DE format K-map similar to that used for a six-variable
function in Fig. 4.37.

Shown in Fig. 4.56 is the conventional (1’s and 0’s) K-map indicating minimum SOP
cover.

ExampLE 4.5 Map the reduced function in Eq. (4.76) into a fourth-order K-map and
extract minimum SOP and POS cover. Give the gatefinput tally for each result, exclusive
of possible inverters.

Y =ABCDE + ABCD + ABDE + BCDE + ABCDE + ABDE + ABCE

A - (4.76)
+ BCDE + ACDE + ABCE

The function of Eq. (4.76) is mapped into the fourth-order K-map shown in Fig. 4.57,
and the minimum SOP and minimum POS covers are indicated with shaded loops. The
resulting minimum expressions are given by

Ysop =ABDE + ABDE + BCE + BDE + BCE

Yros=(B+ D+ EXC + D+ EXB+ E)A + C + EXB+C +D)A+ B+C),
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FIGURE 4.56
Conventional (1's and 0's) format of the type A||BC/DE for the function f in Eq. (4.75).

which represent gate/input tallies of 6/22 and 7/23, respectively, for the Yspp and Vpos
results, exclusive of inverters. Notice that the 1's in the SOP K-map are covered by the
quads BCE and BDE,and that the 0 in cell 12 of the POS K-map is covered by the quads
(B+D+E)and (A + C+E).

ExampLE 4.6 Compress the following function into a second-order K-map and extract
minimum SOP and POS cover:

Z(A. B, C, D):l_[ M(2,4,7.11, 12, 14, 15)
=Y m(0,1,3.5.6,8,9. 10, 13). (4.77)

In Fig. 4.58 are the second-order EV K-maps and submaps showing minimum SOP and

cD c cD c
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:]B g 11 8 J 11 Q)
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FIGURE 4.57
{a) Minimum SOP cover and (b) minimum POS cover for the function ¥ in Eq. (4,76).
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Second-order EV K-maps and submaps for the function Z in Eq. (4.77) showing (a) minimum SOP
cover and (b) minimum POS cover.

minimum POS cover for the function Z with the results given by
Zsop =ABCD + ABD + ABD + BC + CD
Zpos=(A+ B+ C+ DXB+C+D)YB+C+ D)A+B+D)YA+C+D)

Notice how easy it is to read a subfunction when accompanied by a submap. Thus, the
SOP term CD is easily observed to be present in each of the four submaps of Fig. 4.58a.
Similarly, CD. read as a POS term in Fig. 4.58b, is seen to contain both the (C + D) and
(C + D) terms by a cursory inspection of the submaps.

ExampLE 4.7 Compress the following six-variable function into a fourth-order EV
K-map and extract minimum SOP and minimum POS cover for it:

WA.B,C.D, E.F)= Zm(4, 6,8.9.10, 11,12, 13, 14, 15, 20, 22, 26, 27, 30, 31,
36, 38, 39, 52, 54, 56, 57, 60, 61). (4.78)

Compressing a six-variable function into a fourth-order K-map requires a Map Key of
26-4 = 4, hence four possible minterms per K-map cell. This is a second-order compression
meaning that each cell of the K-map contains subfunctions from a second-order K-map.
Shown in Fig. 4.59 are the fourth-order K-maps for the function W in Eq. (4.78) where the
EVs are E and F. The minimum covers for the SOP and POS functions are indicated by
shaded loops and yield

Wsop = ABCDE + ABCE + CDF + ACE + ABC
Woos=A+B+CH+ENCH+E+FB+C+FYA+C+F)A+C+E)
(A + B +C)C+ D),

which represent gatefinput tallies of 6/23 and 8/28, respectively. Note that the loop-out
protocol is applied first to the EVs and then to the 1's and 0's as cleanup operations, a proce-
dure that should always be followed. Observe also that these expressions are algebraically
equal since no don’t cares are involved.
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Fourth-order EV K-maps for the six-variable function W in Eq. (4.78) showing {a) minimum SOP
cover and (b) minirnum POS cover.
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0’s) K-map methods. Typical among these are texts of Hill and Peterson: Nelson, Nagle,
Carroll and Irwin; and Roth,
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References on entered variable (EV) K-map methods are limited to only a few texts. The
best sources appear to be the texts of Comer, Shaw, and Tinder.
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variable K-map methods are not treated in this text,

[7] Z. Kohavi, Swirciung and Finite Auromata Theory. McGraw-Hill, New York, 1978,

The two logic minimization algorithms briefly discussed in this chapter, the Quinn—
McCluskey method and the Espresso approach (which is a heuristic algorithm), have been



PROBLEMS 189

cited in countless publications. A few representative sources of these methods are presented
here. Included are some of the original references as well as some of the more current ones,
which often provide useful summaries of the methods.

[8] E. J. McCluskey, Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986.
[9] E. J. McCluskey, “Minimization of Boolean Functions,” Bell Syst. Tech. J. 35(5), 1417-1444
(1956).
[10] W. V. Quine, “The Problem of Simplifying Truth Functions,” Am. Math Monthly 59(8), 521-531
(1952).
[11] R. K. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic Minimization
Algorithms for VLSI Synthesis. Klawer Academic Publishers, Boston, 1984.
[12] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued Minimization for PLA Optimiza-
tion,” IEEE Transactions on CAD/CAS CAD-6(5), 727-750 (1987).
[13] R. K. Brayton, P. C. McGeer, J. V. Sanghavi, and A. L. Sangiovanni-Vincentelli, “A New Exact
Minimizer for Two-Level Logic Synthesis,” in Logic Synthesis and Optimization (T. Sasao, Ed.).
Kluwer Academic Publishers, Boston, 1993.
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tion of multilevel circuits are fairly numerous but are set in fairly advanced notation. Perhaps
the most useful are those found in texts by De Micheli, Kohavi, and Dietmeyer, and in the
reference book edited by Sasao. Advanced preparation by the reader is recommended for
use of these references. The text of De Micheli also has useful discussions of the area/delay
trade-off factors.
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PROBLEMS

4.1 Expand each of the following expressions into canonical (literal) form by using the
appropriate Boolean laws:
(a) ela,b)=a+ b
®) flx,y)=x+xy
(c) g(A,B,C)= ABC+ ABC+ AB + BC+ ABC
X, Y, D) =X+ VNE+T+ 20 Y +2)X+Y +2)
(e) E(A,B,C,D)=(A+BC)YB+ D)YA +C+ D)YA+B+C+D)B+ D)
) Flw,x,y,2) = wxyZ + wxz +xyz+ wxyz+x2+ wxyZ + wxyz
(®) Ga,b,c,dY=(a+b+c+d)b+c+d)a+bb+dya+c+d)
(hy H(V, W, X,Y) = VWXY + XY + WXY + VWXY + VXY + V WXY + WXY
4.2 Place each of the three-variable functions below in a canonical truth table and in a
conventional (1’s and 0’s) K-map. Place the variables on the K-map axes in alphabetical
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4.5

4.6

4.7
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order beginning with the ordinate (vertical) axis, as has been done throughout this text.
(a) P(A,B,C)=(A+B+C)YA+B+CYA+B+CYA+B+CYA+B+0)
(b) Qa,b,c)y=>m(1,2,4,5,6)

(c) W(a, b, ¢) = abc + abé + abé + abc + abe

(d) X(A,B,C)=]]M(©0,1,2,6,7)

@@ Yw,x,y=wx+xy+wkx @y +wy (Hint: Expand first.)

(f) Z(A,B,C)=(A+ B)O(AC) + AB (Hint: First construct a truth table
with input A.)
(g FIX,Y,Z)=XY®YZBXZ+ XY [Hint: See Eq. (3.33).]

Place each of the four-variable functions below in a canonical truth table and in a

conventional (1’s and 0’s) K-map. Place the variables on the K-map axes in alphabetical

order beginning with the ordinate (vertical) axis, as has been done throughout this text.

(@ Ru,v,w,x)=> m(0,2,3,7,8,9,10, 11, 13)

() S(a,b,c.d)=(a+b)Ya+be)b+eE)Na+b+c)

©) TW.X,Y,Z)=YZ+WXY + WXYZ+XYZ +WYZ + WXYZ + X¥YZ

(dy U(A, B,C,D)=]]M(,5,8,9,11,12,15)

(e) V(a,b,c,d)=> m(0,4,5,7,8,9,13,15)

® Wu,v,w,x)=[(v+ w)OxHu + w)u + v)(u + x)

(g) X(A,B,C,D)=(A® B)CD+BCD+BCD+(A+B)CD+ AB(C ® D)
(Hint: First construct a truth table for CD, then map the result into a 1’s and 0’s
K-map.)

(h) FW,X.Y,Z)=(X®Z)® WY & )] + XYZ
(Hint: First construct a truth table for WX, then map the result into a 1’s and 0’s
K-map.)

Place each function of Problem 4.1 into a conventional (1’s and 0’s) K-map and extract

canonical (coded) SOP and POS expressions from that K-map.

Minimize each function of Problem 4.2 in both SOP and POS form with a third-order
K-map. By using the gate/input tally (exclusive of possible inverters) determine which
is simpler, the SOP or POS expression. Do not implement with logic gates.

Minimize each function of Problem 4.3 in both SOP and POS form with a fourth-
order K-map. By using the gate/input tally (exclusive of possible inverters), determine
which is simpler, the SOP or POS expression. Do not implement with logic gates.

The following three-variable functions are incompletely specified functions, that is,
they contain don’t cares. By using a third-order K-map, minimize each function in
both SOP and POS form with and without the use of the don’t cares in each case.
Identify any OPIs that may be present.

(a) e(A,B,C)=>_m(0,1,2,7)+ ¢(3,5)

) f(X,Y,Z)=]]M3,4,6) ¢(0,2)

(©) gla,b,c)=>Y"m©0,1,5, )+ ¢(2,4)

(d h(x,y,2) =TI M3,4,5)-¢0,1,2)

© iX,Y,2)=>> m0,5+¢(1,2,3,7)
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A(H) —— £ (H)
B(H) —— Combinational
C(H) —— Logic
D{H) —— fa(H)

FIGURE P.4.1

4.8 The following four-variable functions are incompletely specified functions — they

4.9

4.10

4.11

contain don’t cares. Use a conventional (1°s and 0’s) K-map to minimize each function
in both SOP and POS form and, with the help of the gate/input tally (exclusive of pos-
sible inverters), indicate which is simpler. Also, identify any OPls that may be present.
(a) E(a.b,e,d)y=3 m(6,11,12,13. 14)+¢(0.1,2,3,4,5)

(b) F(A,B.C,D)=[[M(0,3,6,11, 13, 15) - ¢(5, 8, 10, 14)

(©) GIW. X, Y, Z)= 3 m(0,4,6,8,9,10,11, 14, 15) + ¢(1,5)

(d) Hw,x,y,2) =[] M(1,2,3,9,10,14) - (11, 13)

(e) I(A.B,C.D)=) m(4.5.7,12. 14, 15) + ¢(3, 8, 10)

) Ja, b,e,d)=[]M(0.1,2,5,7,9) - ¢(4,6, 10, 13)

Find the optimum cover (either SOP or POS) for the following four-input/two-output
system (see Fig. P4.1). Base your choice on the total gatefinput tally (including in-
verters) for the system. Assume the inputs and outputs are all active high. Do not
construct the logic circuit.

fi=) m©,2,4,5.9,10,11,13,15)

=) m2,5,10,11,12,13, 14, 15)
Three functions, each of three inputs, are given in canonical SOP form. Follow the
discussion in Section 4.5 and find the optimized SOP minimum for the three func-

tions taken as a system. Give the total gate/input tally for the system, exclusive of
inverters.

fiA.B.C)= m(1,3,5.6.7)

F(A,B.CY=) m(0,1.3.6)

f(A,B,C)=Y) " m(0.5,7)
Two functions, each of four variables, are given in canonical SOP form. Follow the
discussion in Section 4.5 and find the optimized SOP and POS minima for the two

functions taken as a system. By using the gate/input tally, exclusive of inverters,
indicate which is simpler, the SOP result or the POS result.

Fi(A, B.C, D):Zm('?. 8. 10, 14. 15) + ¢(1. 2,5, 6)
F(A, B.C, D)= Z m(1,5,7,8. 11, 14, 15) + ¢(2, 3, 10)



192

4.12

4.13

4.14

4.15

4.16

4.17

CHAPTER 4/ LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

The two four-variable functions shown are presented in canonical POS form. Follow
the discussion in Section 4.5 and find the optimized SOP and POS minima for the two
functions taken as a system. Use the gate/input tally, including inverters, to determine
which is simpler, the SOP result or the POS result. Implement the simpler of the two
forms in either NAND/INV or NOR/INV logic. Assume that the inputs and outputs
are all active high.

gi1(A, B, C, D):H M@©,3,4,11,12,13,15)- ¢(2, 5, 6)
£2A, B,C, D)=[]M(0,1,9,12,13)- 4(2,3,4, 10)

Given below is a set of three functions, each of four variables. Follow the discussion
in Section 4.5 and find the optimized SOP and POS minima for the three functions
taken as a system. Use the gate/input tally, excluding inverters, to determine which is
simpler, the SOP result or the POS result. [Hint: In determining the shared PIs, don’t
forget to include the ANDed and ORed functions (yy - ¥, - y3) and (y; + y2 + y3).]

yi(a,b,c,d)= m0,1,2,57,8,10, 14, 15)
yaa, b,c,d)=Y m(0,2,4,5,6,7,10,12)
ys(a, be,d)=Y m(,1,2,3,4,6,8,9,10, 11)

Extract minimum SOP and POS expressions (cover) from the K-maps shown in
Fig. P4.2. Where appropriate, application of the loop-out protocol discussed in Section
4.4 will help to avoid redundancy.

Following the discussion in Section 4.6, compress each function in Problem 4.2 into
a second-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use
the LSB variable as the entered variable (EV).

Following the discussion in Section 4.6, compress each function in Problem 4.3 into
a third-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use
the LSB variable as the entered variable (EV).

Following the discussion in Section 4.6, compress each function in Problem 4.7 into
a second-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use
the LSB variable as the entered variable (EV).

(a)

AB CDoo 01 11 10
AB 01 ABCoo 01 1110 WIE[OfT]0
ot X AN olefofeleE
1Ix|o i|lp|l1]|o]D 1 Tolo [

F1 FZ FS -
10] 1 E 0 0

FIGURE P.4.2
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4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

Following the discussion in Section 4.6, compress each function in Problem 4.8 into
a third-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use
the LSB variable as the entered variable (EV).

Following the discussion in Section 4.7, compress each of the following five-variable

functions into a fourth-order K-map (Map Key =2) and extract minimum SOP and

POS cover. Use the LSB variable as the entered variable (EV).

(a) g(A,B,C,D,E)=]] M, 1,2,5,14, 16,17, 18, 19, 21, 26, 27, 30)

(b) r(A, B,C, D, E) = ABCE + ACDE + BCDE + ABCE + ABDE
+ ABCDE + BCDE + ABD + BCD + ABCDE

(¢) s(A,B,C,D,E)=>"m(0,2,4,5,7,10, 13, 15, 21, 23, 24, 25, 28, 29, 30)

(d) t(A,B,C,D)=(A+B+D+E)YB+C+D+EYA+B+EXA+C+D+E)
“B+C+DYB+C+D+E)NA+B+C+D+EB+C+D+E)
(A+B+C)YB+C+DXB+C+D+E)

Minimize each function of Problem 4.19 in both SOP and POS by using a conventionat
(I’s and 0’s) K-map. To do this follow the example in Fig. 4.56.

Following the discussion in Section 4.6, compress each function in Problem 4.2 into
a first-order K-map (Map Key =4) and extract a minimum SOP and POS expression
for each. Use the last two significant bit variables as EVs.

Following the discussion in Section 4.6, compress each function in Problem 4.3 into a
second-order K-map (Map Key =4) and extract a minimum SOP and POS expression
for each. Use the last two significant bit variables as EVs.

Following the discussion in Section 4.6, compress each function in Problem 4.7 into
a first-order K-map (Map Key =4) and extract a minimum SOP and POS expression
for each. Use the last two significant bit variables as EVs.

Following the discussion in Section 4.6, compress each function in Problem 4.8 into a
second-order K-map (Map Key = 4) and extract a minimum SOP and POS expression
for each. Use the last two significant bit variables as EVs.

Compress each function in Problem 4.19 into a third-order K-map (Map Key = 4) and
extract a minimum SOP and POS expression for each. Use the last two significant bit
variables as EVs.

Shown in Fig. P4.3 are two functions, F and Z, each of four variables, that have
been compressed into third-order K-maps. (Hint: It will help to first simplify the

BC BC
A 00 01 1 10 A 00 01 11 10
o| ¢+D 0 D é ol o 1 D #D
1 o 1 #D D 1|D(g+D)| ¢+D | 9D+D | ¢
F z

FIGURE P.4.3
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CcD
AB 00 01 11 10

00 1 0 0 1

01| 1 1 0 0

111 0 1 1 0

FIGURE P.4.4

subfunctions in cells 4 and 7 of function Z by applying the laws of Boolean algebra

while treating the ¢ as an entered variable.)

(1) By following the example in Fig. 4.33a, construct the first-order submap for each
of the eight cells in each K-map.

(2) Give the canonical SOP and POS expressions in code form for each function.

(3) Extract the minimum SOP and POS forms from each third-order K-map, keeping
in mind the discussion on the use of don’t cares in Subsection 4.6.1.

4.27 Compress the fourth-order K-map in Fig. P4.4 into a second-order K-map (Map
Key =4) and loop out minimum SOP and POS expressions according to the follow-
ing format:

(a) Set A, B as the axis variables.
(b) Set B, C as the axis variables.
{c) Set A, C as the axis variables.

4.28 Compress the following function into a fourth-order K-map (Map Key = 4) and extract
minimum SOP and POS forms. By using the gate/input tally (exclusive of inverters),
indicate which form is simpler.

Y(A,B,C,D,E, F):l_[M(O, 1,5,7,9,15,16, 18, 21, 24,29, 31, 35,37, 39,
40, 45, 49, 50, 56, 58, 60, 61, 63)

4.29 Shown in Fig. P4.5 is a function of six variables that has been compressed into a
third-order K-map, hence a third-order compression (Map Key = 8).

FIGURE P.4.5



PROBLEMS 195

4.30

4.31

4.32

4.33

4.34

4.35

(a) From the third-order K-map, write the canonical coded SOP and POS for this
function.

(b) Usethis K-map to extract the minimum SOP and POS expressions for this function.

Find the minimum SOP and POS expressions (cover) for each of the following
sub-functions and give the cell location of each sub-function in the fourth-order
K-map.
(a) P(A,B,C,D,E,F,G)=> m(33,34,36,38) + ¢(32,29)
(b) Qa,b,c,d,e, f, g, h)=> m(114,116, 118, 122, 124, 126)
(c) R(A,B,C,D,E,F,G)=[[M(105, 107, 108, 109, 110)
(d) S(a,b,c,d.e, f.g, h) =] M(176, 181, 182, 183, 184, 189, 191)
- (177, 185, 190)

Minimize each of the following functions in both SOP and POS form by using the
Quine~-McCluskey (Q-M) algorithm discussed in Section 4.8.

(@ flw,x,y)=> m(0,1,3,5,7)

(b) gla,b,c)=[[M(2.3,4,6)

() FW,X,Y,Z)=>"m(0,2,4,5,6,8,10, 11,13, 14)

(d) G(A,B,C,D)=][M(1,2,3,5,7,9,11,12,14)

Minimize each of the functions of Problem 4.7 in both SOP and POS form by using
the Quine—McCluskey (Q-M) algorithm discussed in Section 4.8. Keep in mind the
manner in which the Q-M algorithm treats don’t cares.

Minimize each of the functions of Problem 4.8 in both SOP and POS form by using
the Quine—McCluskey (Q-M) algorithm discussed in Section 4.8. Keep in mind the
manner in which the Q-M algorithm treats don’t cares.

Use the method of factorization to oblain a gate-minimum SOP and POS result for
the following two-level functions. Find the gate/input tally (including inverters) for
each and compare the results with the two-level minimum forms. Assume the inputs
all arrive from positive logic sources. (Hint: First minimize the functions in two-level
form and then apply the factorization method.)

(@) Y =AB + BD + AC+ ABC+ ACD

(b) F = ABDE + ABCE + CDE+ BCDE + ABCD + (A ® C)B + D)

Use the resubstitution method discussed in Subsection 4.9.2 to obtain a gate mini-
mum for each of the following functions. Compare the gate/input tally (excluding
invertors) of the result with that for the two-level minimum. Also, comment on fan-in
and inverter requirements for each, and on the gate propagation delay level for each.
Assume that all inputs are active high. (Hint: First obtain the two-level SOP minimum
expression, then plan to use the suggested divisor given for each.) ~
(@ F(W,X,Y,Z)=>_m(0.4,5,7,10,13, 14, 15) (Use divisor X + Z)
(b) G(A,B,C,D)=>"m(0,1,2,3,4,9,10, 11, 13, 14, 15)

(Use divisor A + C + D)

() HW,X,Y,Z)=][M(,2,4,6,9) (Your choice of divisor)

4.36 Decompose each function in Problem 4.31 by applying Shannon's expansion theorem

discussed in Subsection 4.9.3. Try at least two sets of two-variable axes about which
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4.37

4.38
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each expansion is to be performed. Compare the best expansion result for each with
its two-level K-map minimum result.

Use BOOZER, the logic minimizer bundled with this text, to verify or compare (if ap-
plicable) the results with any of the previously stated problems. For example, Problem
4.37/4.6c would require use of BOOZER to minimize Problem 4.3c, since Problem
4.6 refers to Problem 4.3. [Hint: To obtain a minimum POS result by using BOOZER,
map the function, complement each cell of the K-map, enter the results into BOOZER
and minimize as an SOP function, and then complement the BOOZER result. Note
that either entered variables (EVs) or 1’s and 0’s can be entered into the BOOZER
algorithm — your choice.] Follow the entry protocol contained in the Readme.doc
accompanying the BOOZER software.

Repeat Problem 4.37 by using the ESPRESSO logic minimizer bundled with this text.
For example, Problem 4.38/4.19b would require the use of ESPRESSO to minimize
the function r after it has been properly expressed in minterm code form.



CHAPTER 5
I

Function Minimization
by Using K-map XOR Patterns
and Reed-Muller

Transformation Forms

5.1 INTRODUCTION

In this chapter it will be shown how simple “pencil-and-paper” methods can be used to
extract gate-minimum multilevel logic designs not yet possible by any conventional method,
including the use of CAD techniques. The methods described here make possible multilevel
IC designs that occupy much less real estate than would be possible for an equivalent two-
level design, and often with little or no sacrifice in speed — an advantage for VLSI design.

There are a variety of approaches to logic function minimization, which can be divided
into two main categories: two-level and multilevel approaches. Chapter 4 was devoted
primarily to the two-level approach to minimization. Combining entered variable (EV) sub-
functions and the XOR patterns (described in the following section) in a K-map extraction
process is a special and powerful form of multilevel function minimization. Used with two-
level logic forms (AND and OR functions) this multilevel minimization approach leads
to XOR/SOP, EQV/POS, and hybrid forms that can represent a substantial reduction in
the hardware not possible otherwise. XOR/SOP and EQV/POS forms are those connecting
p-terms (product terms) with XOR operators or s-terms (sum-terms) with EQV operators,
respectively. Hybrid forms are those containing a mixture of these.

Another approach to multilevel logic minimization involves the use of Reed—Muller
transformation forms (discussed in Sections 5.5 through 5.12) that are partitioned (broken
up) into tractable parts with the assistance of entered variable Karnaugh maps (EV K-maps).
The process is called the contracted Reed—Muller transformation (CRMT) minimization
method and is expressly amenable to classroom (or pencil-and-paper) application. General
information covering the subjects associated with Reed—Muller minimized logic synthesis
are cited in Further Reading at the end of this chapter.

The word leve! (meaning level of a function) refers to the number of gate path delays
from input to output. In the past the XOR gate (or EQV gate) has been viewed as a two-level
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device, meaning two units of path delay as implied by the defining relations for XOR and
EQV given by Egs. (3.4) and (3.5). But the emergence of CMOS IC technology has moved
the XOR and EQV gates close to single-level gates with respect to compactness and speed,
as is evident from Figs. 3.26 and 3.27. The term multilevel, as used in this text, means the
use of XOR and/or EQV gates together with two-level logic to form multiple levels of path
delay as measured from input to output.

The concept of minimization, as used in this text, is presented in terms of three degrees.
A minimum result is one that yields the lowest gate/input tally for a particular method used,
for example, a two-level minimum result, but may not be the lowest possible. An exact
minimization designates a result that has the fewest p-terms possible in an expression or
the fewest s-terms possible in an expression. An absolute minimum expression is one that
has the lowest possible gate/input tally considering all possible methods of minimization.
Thus, an absolute minimum is a gate/input-tally minimum (or simply gate-minimum) and
is usually the result of a specific or unique method of minimization. As a reminder, the
gate/input tally (defined in Subsection 4.4.3) will usually be given exclusive of possible
inverters. Only when the input activation levels are known can the gate/input tally include
the inverter count.

Where appropriate to do so, reference will be made to the defining relations for XOR
and EQV given by Egs. (3.4) and (3.5) and to the XOR and EQV laws, corollaries, and
identities presented in Section 3.10. Reference will also be made to minterm code (logic O for
acomplemented variable and logic 1 for an uncomplemented variable), and to maxterm code
which is the dual of minterm code as discussed in Section 4.2. The EV K-map methods used
in this chapter may be considered as an extension of the conventional methods discussed in
Sections 4.6 and 4.7.

5.2 XOR-TYPE PATTERNS AND EXTRACTION OF GATE-MINIMUM COVER
FROM EV K-MAPS

There are four types of XOR patterns that can be easily identified in EV K-maps:

1. Diagonal patterns
2. Adjacent patterns
3. Offset patterns

4. Associative patterns

References will frequently be made to the so-called XOR-type patterns in EV K-maps.
These are references to the diagonal, adjacent, offset, and associative patterns listed above
and are found only in compressed K-maps. A kth-order K-map compression results when
an N-variable function is represented in an nth-order K-map — that is, k = N — n. Of the
XOR-type patterns, only the offset pattern requires third and higher order K-maps for its
appearance. K-maps used in the following discussions are all minterm code based, but are
used to extract gate-minimum functions in both minterm code and maxterm code.

Simple examples of the first three patterns are shown in Fig. 5.1a, where a six-variable
function has been compressed into a third-order EV K-map. Empty cells 0 and 2 in Fig. 5.1a
are to be disregarded so as to focus attention on the patterns: The diagonal pattern formed by
cells 1 and 4 is read in minterm code as BX(A @ C) or in maxterm code as B+ X + A QO C.
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FIGURE 5.1
Examples of XOR patterns in compressed K-maps. (a) Diagonal, adjacent, and offset patterns. (b),
(c), (d) Associate patterns.

Notice that the diagonal pattern lies in the B domain (B domain in maxterm code) “for all
that is X" and that the defining relations for XOR and EQV, Eqgs. (3.4) and (3.5), are used
forcells 1 and 4 to give A® C and A ® C, respectively, for minterm code and maxterm code.
The adjacent pattern is formed by cells 3 and 7 and is read BC(A © Z) in minterm code or as
B+C +A®Z in maxterm code. Here, the adjacent pattern lies at the intersection of domains
B and C in minterm code (B + C in maxterm code), and again the defining relations for
XOR and EQV are used to obtain the minterm and maxterm extraction, respectively. The
offset pattern is formed by cells 5 and 6 and is read in minterm code as AY (B @ C) and in
maxterm code as A + ¥ + B @ C. In this case, the offset pattern lies in the A domain (A in
maxterm code) “for all that is Y." and the defining relations, Egs. (3.4) and (3.5), are used
for cells 5 and 6 to obtain B @ C and B © C, respectively. Throughout this discussion it is
assumed that any entered variable, for example X, Y. or Z, may represent a single variable
or a multivariable function of any complexity.

Each of the three XOR-type patterns extracted from Fig. 5.1a has a gate/input tally of
2/5 (excluding inverters). The gare/input tally is a measure of logic circuit cost (in hardware
and real estate) and is defined in Subsection 4.4.3. The gate count is, of course, the more
significant of the two tallies and the input tally includes the inputs to all gates in the logic
circuit. Unless stated otherwise, the gate/input tally will exclude inverters and their inputs.
By comparison, the two-level logic gatefinput tally for each of the patterns in Fig. 5.1a is
3/8.

The associative patterns shown in Figs. 5.1b, 5.1c¢, and 5.1d may combine with any or
all of the other three patterns to form compound patterns. For this reason the associative
patterns require special consideration and will be dealt with separately in the following
subsection.
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5.2.1 Extraction Procedure and Examples

Before illustrating the extraction process by example, it will be instructive to outline the
extraction procedure. In this procedure, reference will be made to minterm and maxterm
codes for clarification purposes. Since all K-maps are minterm code based, extraction of
EQV/POS cover from them requires that the K-map domains be complemented, but not
the entered variables. Extraction of XOR/SOP cover follows conventional procedure. The
following six-step extraction procedure applies generally to all four types of XOR-type
patterns.

Extraction Procedure

Step 1. Identify the type of EV XOR pattern that exists in the K-map. A diagonal pat-
tern requires identical K-map cell entries in diagonally located cells. An adjacent pattern
requires complementary K-map cell entries in logically adjacent cells. An offset pattern
requires identical cell entries in cells whose coordinates differ by two bits (a Hamming
distance of 2). Associative patterns require terms associated by an XOR or EQV connective
in at least one cell.

Step 1I. Write down the K-map domains in which the XOR pattern exists and any
subfunctions that are the same in the pattern. Remember that in maxterm code the domains
are complemented, whereas in minterm code they are not.

Step I11. Extract the XOR pattern of type 1, 2, or 3 that exists by using the defining SOP
or POS relations for XOR and EQV given by Egs. (3.4) and (3.5). Associative patterns,
of type 4, are extracted in a manner similar to the extraction of EV s- and p-terms as
discussed in Section 4.6. Thus, associative patterns with XOR connectives are extracted in
minterm code while those with EQV connectives are extracted in maxterm code. Compound
associative patterns involve some combination of associative pattern with one or more of
the other three patterns. They may also include the intersection (ANDing) of patterns or
the union (ORing) of patterns. In all cases involving an associative pattern, the associating
connective must be preserved in the resulting expression.

Step IV. Extract any remaining two-level SOP or POS cover that may exist.

Step V. Combine into SOP or POS form the results of steps I through IV. The resulting
expression may be altered as follows: Single complementation of an XOR/EQV-associated
term complements the XOR or EQV connective while double complementation of the asso-
ciated terms retains the original connective.

Step VI. If necessary, test the validity of the extraction process. This can be done by
introducing the K-map cell coordinates into the resulting expression. Generation of each
cell subfunction of the K-map validates the extraction procedure.

Examples The simplest associative patterns are formed between XOR-associated or EQV-
associated variables and like variables in adjacent cells. Three examples are presented in
Figs. 5.1b, 5.1c, and 5.1d, all representing second-order K-map compressions (two EVs).
For the first-order EV K-map, shown in Fig. 5.1b, the function E is read in minterm
code as

Exorsor =(A-X)®Y =(A+X)OY (5.1
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and is seen to be a two-level function. Here, according to step III of the extraction procedure,
the associative XOR pattern is extracted in minterm code in SOP form with X located in
the A domain, hence A - X. The Exogssop form can be converted to the Exgy/pos form by
double complementation as required by Egs. (3.24), or can be read in maxterm code directly
from the K-map.

The function F in the second-order K-map of Fig. 5.1c¢ is read in maxterm code, accord-
ing to step III and is given by

Frovpos =[(B+Y)® X]- A, (5.2)

which is a three-level function. In this case the EQV connective associates the ¥ in cells
0 and 2 (hence B + Y in maxterm code) with the X in all four cells. The remaining POS
cover in cell 0 is extracted with the don’t care (¢) in cell 1 by ANDing the previous result
with A as required by step IV in the extraction procedure.

The function G in the third-order EV K-map, shown in Fig. 5.1d, is also read in maxterm
code. Here, the EQV connective associates the X’s in cells 0, 1, 4, and 5 (thus, B + X in
maxterm code) with the Y’s in cells 5 and 7 (hence, A+C+Y ), giving the result

Grovwos =[(B+X)O(A+C +Y)I(A +C + X), (5.3)
which is also a three-level function. The term (A + C + X) removes the remaining POS

cover in cells 4 and 6, as required by step IV.
For comparison purposes the two-level minimum results for Esop, Fpos, and Gpps are

Esop=XY + AXY + AY (5.4)

Fros=(X+Y)YB+X+Y)B+ XA (5.5)

Gpos=(B+X+YVNA+C+X+TV)A+C+X)
“(A+B+X)A+B+X+7). (5.6)

The use of associative patterns often leads to significant reduction in hardware compared
to the two-level SOP and POS forms. For example, function Eyorsop has a minimum
gate/input tally of 2/4 compared to 4/10 for Egop, the two-level SOP minimum form. The
gate/input tally for Fgov/pes is 3/6 compared to 4/11 for the Fpps expression, and function
G rgvpos has a minimum gate/input tally of 4/12 compared to 6/22 for G pps, the two-level
POS minimum result, all excluding inverters.

XOR patterns may be combined very effectively to yield gate-minimum results. Shown
in Fig. 5.2a is a second-order compression where diagonal, adjacent, and offset patterns are
associated in minterm code by the XOR operator in cell 1. Here, the defining relation for
XOR, given in Egs. (3.4), is applied to the diagonal pattern (cells 1 and 4) in the B domain
for all that is X to yield BX(A @ C). This pattern is then associated with the intersection
(ANDing) of the adjacent pattern (A © Y) and the offset pattern (B @ C) incells 1, 2, 5,
and 6 to give the gate-minimum, three-level result

Hyorsor = [BX(A® O ®(AQYXB & ()] (5.7)

with a gate/input tally of 6/13. The defining relation for EQV, given in Egs. (3.5), is used
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FIGURE 5.2
Examples of complex XOR patierns. (a) Combined XOR-type patierns. (b}, (¢c) Compound associative
patterns.

for the adjacent pattern (¥ in the A domain and Y in the A domain), while Eqgs. (3.4) are
applied to the offset pattern (Y and Y in the BC domain, and Yand Y in the BC domain).
Notice that the 0's in cells 3 and 7 play no role in this offset/adjacent pattern even though
they are included in the shaded loop covering this pattern.

For comparison purposes, the two-level minimum result is

Hsop = ABCXY + ABCX + ABCY + BCXY + ABCY + ABCY. (5.8)

which has a gate/input tally of 7/31. Comparison with Eq. (5.7) makes it clear that the three-
level result provides a better gate-minimum result but not necessarily a better performance.
To evaluate the relative performance of the two approaches, fan-in restrictions and gate
propagation delays would have to be established.

Compound (interconnected) associative patterns are also possible and may lead to gate-
minimum functions, although often of a higher level (hence slower) than those where there
is no interconnection between associative patterns. Two examples are given in Figs. 5.2b and
5.2¢. both third-order compressions (hence three EVs). Function I is extracted in maxterm
code, yielding the four-level, gate-minimum result

Irovros = B+ (ADX)OY +(A@ BOI[A +Z], (5.9)
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which has a gate/input tally of 7/14. Extraction involves the association of an adjacent
pattern and a diagonal pattern with the three EQV connectives. The adjacent pattern in
domain B (cells 0 and 2) requires the use of Egs. (3.5) to give [B + (A @ X)]. This is
associated with the diagonal pattern in cells 0 and 3, by using Egs. (3.5), “for all that is
Y” to give [Y + (A @ B)], but is also associated with the cell 3 connective in domain A
for all that is Z. Notice that the terms in square brackets are commutative. For comparison
purposes the two-level POS result for function 7 is given by

Ipos=(A+B+X+Y)YA+B+X+YYXA+B+X+Z)YA+B+X+2)
X(A+B+Y+ZYA+B+Y +2) (5.10)

and has a gate/input tally of 7/30.
The function J in Fig. 5.2c¢ is extracted in minterm code, giving the four-level, gate-
minimum result

Jxorsor = [D(BOZNAQ O ®[BA®X)COD)NSIC(DOYNAOB)  (5.11)

with a gate/input tally of 11/25. This function is extracted as three sets of two intersecting
patterns, all associated by the three XOR connectives. The “Z” set consists of adjacent and
diagonal patterns where application of Egs. (3.5) yields (B © Z) and (A © C), respectively,
which intersect (AND) in the D domain. The “X” set consists of adjacent and offset patterns
that are read as (A @ X) and (C ® D), by application of Egs. (3.4) and (3.5), and that intersect
in the B domain. Here, as in Fig 5.2a, the 0’s (now in cells 5 and 13) are disregarded in
the development of the offset/adjacent pattern. Finally, the “Y” set also consists of adjacent
and offset patterns such that the application of Egs. (3.5) yields (D ®Y) and (A © B),
respectively, which intersect in the C domain. As in the previous example, the terms in
square brackets of Eq. (5.11) are commutative. In comparison, the two-level SOP minimum
for function J is given by

+ABCDZ + ACDXZ + BCDXZ + BCDXY + ACDYZ (5.12)

and has a gate/input tally of 13/74. Again, the gate/minimum advantage of the multilevel
function over its two-level counterpart in Eq. (5.12) is evident.

Both four-level functions, Irgvros and Jxorsop. are easily verified by introducing in
turn the coordinates for each cell into the particular expression. For example, if one sets
ABCD = 1111 in Eq. (5.11), the subfuction X@Yis generated for cell 15 as required by
Fig. 5.2c. Generation of the subfunctions in each cell validates the extraction process.

The gate/input tallies for all six functions represented previously are given exclusive
of inverters. When account is taken of the inverters required for inputs assumed to arrive
active high, the gate/input tally differentials between the multilevel results and the two-
level results increases significantly. These gate/input tallies from previous examples are
compared in Table 5.1, where all inputs are assumed to arrive active high.

There are other factors that may significantly increase the gate/input tally and throughput
time differentials between multilevel and standard two-level SOP and POS minimum forms.
These include gate fan-in restrictions and static hazard cover considerations. Static hazards
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Table 5.1 Gate/input tallies including inverters for functions E, F, G, H, I,
and J represented as multilevel logic forms and as two-level logic forms

Function E F G H 1 J
Multilevel 2/4 4/7 5/13 7/14 8/15 12/36
Two-level 7/13 7/14 11/21 12/36 12/35 20/81

are a type of timing defect that will be discussed at length in Chapter 9. The term fan-in
refers to the number of inputs required by a given gate. For logic families such as CMOS,
propagation delay is increased significantly with increasing numbers of gate inputs, and it
is here where the multilevel XOR forms often have a distinct advantage over their two-level
counterparts. For example, the largest number of inputs to any gate in the implementation of
function Jyogr/sop is 3, whereas for the two-level function Jsop it is 12. Thus, depending on
how such a function is implemented, the gate/input tally and throughput time differentials
between the multilevel and two-level results could increase significantly. An example of
how multiple output optimization considerations may further increase the gate/input tally
differential between the multilevel and two-level approaches todesign is givenin Section 8.8.

5.3 ALGEBRAIC VERIFICATION OF OPTIMAL XOR FUNCTION
EXTRACTION FROM K-MAPS

Verification of the multilevel XOR forms begins by direct K-map extraction of the function
in SOP or POS form by using minterm code for XOR connectives and maxterm code for
EQV connectives. It then proceeds by applying Corollary I [Eq. (3.25)] or Corollary II
[Eq. (3.26)] together with commutivity, distributivity, and the defining relations for XOR
and EQYV given by Egs. (3.18), (3.19), (3.4), and (3.5).

As an example, consider the function H inFig. 5.2a, which is extracted in minterm code.
Verification of this function is accomplished in six steps:

H=ABC(X®Y)+ABCX+ ABCY + ABCY + ABCY (1) From K-map
=[ABC(X ® Y)] ® (ABCX) & (ABCY)

® (ABCY) @ (ABCY) (2) By Eq. (3.25)
= (ABCX) ® (ABCY) ® (ABCX) ® (ABCY)

@ (ABCY) ® (ABCY) (3) By Egs. (3.19)
= [BX{(AC) & (AC)}] @ [BC{(AY) ® (AV)}]

®© [BC{(AY) ® (AD)}] (4) By Egs. (3.19)

=[BX(A® C)®[BC(AOY)|®[BC(AOY)] (5) By Egs. (3.25),
(3.19), (3.4), and (3.5)

=[BX(A®C)®[(AQY)B & C)] (6) By Egs. (3.19)
and (3.4)

Notice that in going from step 3 to step 4 the commutative law of XOR algebra is used.
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As a second example, consider function 7 in Fig. 5.2b, which has been extracted in
maxterm code. Verification of this function is also accomplished in six steps:

I=(A+B+XOYNA+B+XOZXA+B+Y®2Z) (1) From K-map
=(A+B+X0OY)O(A+B+X0Z)O(A+B+Y©®Z) (2)ByEq. (3.26)
=(A+B+X)O(A+B+Y)O@A+B+X)O(A+B+2)

OUA+B+Y)O(A+B+2) (3) By Egs. (3.19)
=[B+(A+X)O(A+X)|O[Y +(A+B)O(A+ B)]

OIA+Z+(BOB)] (4) By Egs. (3.19)
=[B+(A+ XA+ X)NO[Y +(A+BXA+B)]O[A+Z] (5 ByEq.(3.26)
=[B+(A®X)]O[Y+(AdBIOIA + Z] (6) By Eqgs. (3.4)

In going from step 3 to step 4, commutivity was applied before application of Eqs. (3.19).
Also, instep4, BO B =0.

5.4 K-MAP PLOTTING AND ENTERED VARIABLE XOR PATTERNS

At the onset let it be understood that one does not usually hunt for applications of the
XOR pattern minimization methods described here. It is possible to do this, as the example
in this section illustrates, but it is more likely that such methods would be applied to
EV XOR patterns that occur naturally in the design of a variety of combinational logic
devices. Examples of these include a 2 x 2 bit “fast” multiplier, comparator design, Gray-
to-binary code conversion, XS3-to-BCD code conversion, dedicated ALU design, binary-
to-2’s complement conversion, and BCD to 84-2-1 code conversion, to name but a few, most
covered in later chapters. EV XOR patterns may also occur quite naturally in the design of
some state machines as, for example, the linear feedback shift register counters discussed
in Subsection 12.4.3.

EV K-map plotting for the purpose of extracting a gate-minimum cover by using XOR
patterns is not an exact science, and it is often difficult to find the optimum K-map com-
pression involving specific EVs, hence specific K-map axis variables. However, for some
functions it is possible to plot the map directly from the canonical form, as illustrated by
the example that follows. For some relatively simple functions, the K-map plotting process
can be deduced directly from the canonical expression. Consider the simple function given
in canonical code form:

fW, X, Y, Z)=XEm(1,2,3,6,7,8, 11,12, 13). (5.13)

Shown in Fig. 5.3 are the conventional (1’s and 0’s) K-map and the second-order compres-
sion (two EVs) K-map derived directly from the conventional K-map. The two-level SOP
minimum and the multilevel XOR/SOP gate-minimum forms are

fsor=WXZ+WXY +WYZ+XYZ+ WY (5.14)
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FIGURE 5.3
Compressed K-maps for extraction of gate-minimum XOR forms. (a) Conventional K-map for func-
tion f in Eq. (5.13). Second-order compression K-map deduced from K-map in (a) showing XOR
patterns. (c) Alternative second-order K-map.

and
fxowsor =[(Y @W)) @ (XZ)+ WY, (5.15)

which have gate/input tallies of 6/19 and 5/10, respectively. The second-order K-map in
Fig. 5.3b is deduced from the K-map in Fig. 5.3a by observing that W © X exists in the
Y Z = 01 column, with W and W located in adjacent ¥ Z columns. Thus, by taking ¥ and Z
as the axis variables and W and X as the EVs for the compressed K-map, the XOR patterns
appear, allowing one to easily extract gate-minimum results.

Notice that the W in the EV K-map of Fig. 5.3b must be looped out a second time to
give the WY term in Eq. (5.15). This is necessary because cover remains in W + X after
the associative pattern involving W and X in cell 1 has been extracted. That is, only W & X
has been looped out of W + X, making it necessary to cover either W or X a second time.
This is easily verified by introducing the coordinates of the cell 3 (Y = 1,Z = 1) into
Eq. (5.15). Without the term W'Y the subfunction W + X cannot be generated. The residual
cover in W + X can also be looped out of cell 3 by extracting X Y Z and using it in place
of WY in Eq. (5.15).

Only in one other compressed K-map are the gate-minimum XOR patterns and Eq. (5.15)
results obvious, and that is shown in Fig. 5.3¢. In all four other compressed K-map possibil-
ities, those having axes W/ X, X/Z, W/Z, and W/ Y. the XOR patterns shown in Figs. 5.3b
and 5.3c disappear, making a gate-minimum extraction without extensive Boolean manip-
ulation very difficult if not impossible. Notice that the compressed K-map in Fig. 5.3¢ is
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easily obtained from that of Fig. 5.3a by introducing the coordinate values for X and Y into
Fig. 5.3b to obtain the subfunctions in terms of W and Z.

For complex functions involving five or more variables, the process of generating a
gate-minimum result by using XOR EV patterns becomes increasingly more a matter of
trial and error as the number of variables increases. Again, the application of the EV XOR
pattern approach to design is left more to the natural occurrence of such patterns than
it is to the hunt-and-choose method. However, if it is known that XOR patterns occur
naturally in some functions and if one is familiar with conventional (1’s and (’s) K-map
methods for five or more variables, it is possible to deduce a compressed K-map that will
yield XOR/SOP or EQV/POS forms, but that may not necessarily represent gate-minimum
results.

To overcome the obvious problem of dealing with complex K-map XOR patterns in
functions having more the five variables, an algebraic approach can be used, a subject that
is discussed at length in the remaining sections of this chapter.

5.5 THE SOP-TO-EXSOP REED-MULLER TRANSFORMATION
A generalization of Corollary I (Subsection 3.11.1) can be expressed in canonical form as

M|

Fy(xp, xp, ..., Xpo1)= Z(ml : fl)
i=0

21—
=Pm; - £
i=0

=mofo) ®(m B M2 fr) B ®(mu_) fauy), (5.16)

where the 2" m; represent minterms read in minterm code, and the f; represent their
respective coefficients whose values derive from the binary set {0, 1}. The m; symbols
represent minterms that are, by definition, mutually disjoint, since only one minterm can be
active (logic 1) for the same values of inputs. For this reason, it is permissible to interchange
the OR and XOR operators as in Eq. (5.16). Thus, Eq. (5.16) expresses a transformation of
an SOP expression to an EXSOP (EXclusive OR-sum-of-products) expression. Notice that
if all f; are logic 1, then F, = |.

By setting x; = x; @ 1, all x; are eliminated from the EXSOP form of Eq. (5.16) and a
function of positive polarity results. Then after considerable Boolean manipulation involving
multiple applications of the XOR form of the distributive law given by Egs. (3.19), the
EXSOP expression of Eq. (5.16) is recast as the Reed—-Muller expansion in the EXSOP
form

Fo(xo, X1, .0, X0-1) =80 D g1X—1 © g2Xn-2 D §3Xn2Xn-1
D gaxn 3D g1 XXt~ Xy—1, (5.17)

where the g; are called the Reed-Muller (R-M) coefficients for a positive polarity
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(uncomplemented f;) R-M expansion (PPRME). Each R-M coefficient is the set

g =EPrs (5.18)

J<i

obtained from the subnumbers of i by replacing m 1’s with 0’s in 2" possible ways in the
binary number corresponding to decimal i:

go=fo ...000
gsi=8f1,00=fi® fo ---001 - - - 000
D=0f2,00= £ fo ...010-.-000
©=0f321,0=£6L&fi®fy - -011---010---001---000
g=0f4.0)=f1® fo ...100 - - - 000

g=0f5.41,00=fs®s®fi®fp - -101...100-.-001---000

]

g1 = @f:‘-
i=0

Note that any g; in Eq. (5.18) is 1 if an odd number of f coefficients are logic 1, but is
0 if an even number of f coefficients are logic 1. If a Karnaugh map (K-map) of F, is
available, the values for the g; are easily determined by counting the 1’s in the map domains
defined by the 0’s in the binary number representing i in g;. For example, the value of gs
is found by counting the 1’s present in the x¢x, domain for a function Fi, = (xpx x2x3).
Thus, g5 = 1 if an odd number of 1°s exists or g5 = 0 otherwise. Similarly, to determine
the logic value for gg one would count the number of 1’s present in the x,X2X3 domain for
the same function, etc. All terms in the PPRME expansion whose g coefficients are logic 0
are disregarded.

5.6 THE POS-TO-EQPOS REED-MULLER TRANSFORMATION

The dual of Egs. (5.16) is the generalization of Corollary II (Subsection 3.11.1) and is
expressed as

21
Fn(x()rxl,xz, L 7xll—l) = 1-[(Ml + _fl)
i=0

21
=M + )
i=0

=M+ fo O(M + fU)O (M2 + f2)
Q- QM+ frr), (5.19)
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where the 2" M; in Eq. (5.19) represent maxterms read in maxterm code, and the f; repre-
sent their respective coefficients whose values derive from the binary set {0, 1}. The 2" M;
maxterms are mutually disjoint since only one maxterm can be inactive (logic 0) for the
same values of inputs. For this reason it is permissible to interchange the AND and EQV
operators in Eq. (5.19). Thus, Eq. (5.19) expresses the transformation of a POS expres-
sion to an EQV-product-of-sums (EQPOS) expression. Note that if all f; are logic 0, then
F, =0.

Setting x; =x; © O eliminates all x; from Eq. (5.19), resulting in a negative polarity
expression for the function F,, which is simplified by multiple applications of the EQV
form of the distributive law given by Egs. (3.19). The result is the Reed—Muller expansion
in the EQPOS form

Fn(x(), X1, X2, ...,x”,]):go © (gl +X‘,1,|)® (gZ +i;1—2)®(g3 +i"—2 +x”"l)
O(g4 +%,-3)© -+ Ogrt + R0+ X1+ - +3,0)

(5.20)

where the g; are now the R-M coefficients for an EQPOS (negative polarity) R-M expansion.
Each EQPOS R-M coefficient is the set

gi=C)fs (5.21)

icj

obtained from the subnumbers of i by replacing m 1’s with 0’s in 2" possible ways in the
binary number corresponding to decimal #, as in Eq. (5.18). Thus, the array of g; for an
EQPOS expansion is the same as that for an EXSOP expansion except that the & operator
is replaced by the © operator. In Eq. (5.21) any g, is 0if an odd number of f coefficients are
logic 0, but is | otherwise. Again, the use of a K-map can be helpful in obtaining the values
by counting the 0’s within a given domain similar to the procedure explained earlier for the
case of the EXSOP expansion. Thus, any g; is 0 if an odd number of 0’s exist within a given
domain defined by the O’s in the binary number. All terms in the R-M EQPOS expansion
whose g coefficients are logic 1 are ignored.

5.7 EXAMPLES OF MINIMUM FUNCTION EXTRACTION

In this section two examples of minimum function extraction are presented that bear the
same relationship to each other as do the conventional and EV K-map methods — that is,
one is based on canonical forms (conventional method) while the other is equivalent to the
use of entered variables in K-maps (called the CRMT method).

A SiMpLE EXSOP ExampPLE Consider the function

Fy=ABC+AB+AC=Y m@3,4,5,6)
=P m3.4.5.6), (5.22)
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where, for this example, f3 = fu = fs = fo = l and fy = fi = f» = f7 = 0. Therefore,
the g; are found as follows:

g=Jfo=0 ga=0A40=1
& =&fi(1,0)=0 g =®f(54,1,0=0
2=0,2,0=0 8 =B f6(6,4,2,0) =0

53=03(3,2,1,0=1 g1 =0 f(7-0)=0.

Here, the notation (7-0) means (7, 6, 5, 4, 3, 2, 1, 0). From Eq. (5.17) the result is an exact
minimum given directly as

F3=BCgys ® Agas = BC @ A, (5.23)

which is a much simplified result compared to the original function and has a gate/input
tally of 2/4. This function is said to be a positive polarity R-M expression or PPRME.

The same result is achieved, but with less effort, if the variables of function F; are
partitioned into two distinct sets: a disjoint set of bond variables (called the bond set) and
a free set of variables (called the free set), both chosen from the set {4, B, C} and recast
into a contracted (reduced) form for application of Eqgs. (5.16) and (5.17). Here, {A, B}
is chosen as the bond set to be coupled with the remaining (orthogonal) free set, {C}. In
this particular case, any combination of bond and free sets would achieve the same desired
result with equal ease. When a function is recast into bond and free sets it is said to be in a
contracted Reed—Muller transformation (CRMT) form. For this example, the CRMT form of
function Fj is

Fiz=(AB)C + (AB)+ (AB)C = (AB)C & (AB)® (AB)C
=(AB)fo ®(AB)fi ® (AB) & (AB) f3
=go D Bg ® Ag>» ® ABgs, (5.24)
where the subscript in F,p identifies the bond set {4, B}. Notice that use was made of
ABC+ ABC=AB and that all terms of the bond set are mutually disjoint. Now, the

f coefficients are fy = 0, fi=C, =1, and f3 = C. Therefore, the resulting CRMT
coefficients become

go=/fo=0 =L fo=1
g8 =L® fo=C H=L0LDHDH=COIOCHO=0.

Introducing these coefficients into the CRMT expression gives the result

Fy=g0® Bg| & Ag, ® ABgs
=0BCHADO
=BCOA (5.25)
as before.

This simple example has been given to illustrate the application of the CRMT method of
function minimization. The examples that follow are designed to establish the foundation
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FIGURE 5.4
(a) Conventional K-map for function Z. (b). (¢) Compressed EV K-maps for function Z representing
bond sets {4, 8] and {4, ] showing minimum cover by using XOR-type paiterns.

for a tractable CRMT minimization procedure, one that 1s suitable for classroom (or pencil-
and-paper) application.

A More CompPLEX EXSOP ExampLE Consider the function and its canonical R-M
transformation
Zy(A,B.C, D)= m(1,2,4,6,7.8,9,10, 15)
=P m(1.2,4,6,7,8,9,10.15). (5.26)
In Fig. 5.4a is shown the conventional K-map for function Z. In Figs, 5.4b and 5.4c are
shown the second-order compressed K-maps of function Z for bond sets {4, B} and {A, C},
respectively, which are representative of the six possible bond sets for two variables.
Considering first the bond set {A, B}, as depicted in Fig. 5.4b, and noting that the cell
entries are the f coefficients, the function Zy is recast into the following CRMT form:
Zu=(AB)f, ® (AB)fi @ (AB)f, & (AB) f3
=(AB)C @ D) ® (AB)(C + D) ® (AB)(C + D) & (AB)CD
=g ® Bg) © Ag: ® ABgy (5.27)

for which the CRMT coefficients are

go=fo=ChHD

g =8f1,0)=(C+D)@CH&D=CDBCH®D=CDHD=C&CD=1@CD
2=8f2.00=(C+D)&CdD=CDBC®D=CD®D=CD
83=8f(3,2,1,00=CDS(CC+D)@1®CD=CDSCDH 0 CD = CD,



212 CHAPTER 5 / FUNCTION MINIMIZATION

where use has been made of the XOR form of Egs. (3.31), and the XOR DeMorgan identities
given in Egs. (3.27) from which, for example, there results (C + D) ®C=CD®C in
g:. Introducing these coefficients into Eq. (5.27) and simplifying by using the XOR form
of Egs. (3.30) gives the minimum result

Zus=C@®D®B@BCD$®ACD © ABCD
=B®C®DDACD  ABCD, (5.28)

which is a three-level function with a gate/input tally of 6/15.
Repeating the same procedure for Fig. 5.4c and bond set {4, C}, the function Z is recast
into the CRMT form

Zic=A0) fu ® A0 [ & (AD) f> ®(AO) f3
=ACYB® D)® (ACKB + D)® (AC)B @ (AC)(B ® D)
=g ® g1C D g2A ® g3AC, (5.29)

where the g coefficients become

go=B&D

g1 =(B+D)®B®D=BD®B®D=BD®D=B®BD=1& BD
g2=B®B®D=D

$3=B®D®B®1®BD =D @ BD =BD.

Then by introducing these g coefficients into Eq. (5.29) and simplifying with the XOR form
of Egs. (3.30), there results the exact minimum

Ziac=B&DHBCD & CD&AD & ABCD
=B&®AD & CD®ABCD, (5.30)

which is a three-level function with a gate/input tally of 6/14 excluding possible inverters.

The results for Zap and Z are typical of the results for the remaining four two-variable
bond sets {C, D}, {B, D}, {A, D}, and {B, C}. All yield gate/input tallies of 6/14 or 6/15 and
are three-level functions. Thus, in this case, the choice of bond set does not significantly
affect the outcome, but the effort required in achieving an exact minimum may vary with
the choice of the bond set. No attempt is made to use single- or three-variable bond sets for
function Z.

A comparison is now made between the CRMT minimization method and other ap-
proaches to the minimization of function Z. Beginning with the canonical R-M approach
and from Fig. 5.4a, the f coefficients easily seen to be

h=h=fi=fs=fi=fi=f=fio=/ii=hHa=fis=1 and
fo=f=fi=fiz=fiz=0.
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Then from Eq. (5.16) the R-M g; coefficients are evaluated as follows:

go=/fo=0 g =f(8,0)=1
gr=&f(1,0=1 g =0f9,8 1,0=1
&=&f2,0=1 g=e/(10,8,2,0)=1
&=®f3,2,1,00=0 gu=&f11-83-0=1
ga=0f4,0=1 g2=®(12,8,4,00=0

8 =0f(5,4100=0 g3=0f1312,9,8,54,1,00=0
g=®f(6,4,2,0)=1 g14=0f(14,12,10,8,6,4,2,0)=1
gr=8f7-0=1 gis=@f(15-0)=1.

Note that the g; coefficients are immediately realized by counting 1°s within the domains
of the conventional K-map shown in Fig. 5.4a. Thus, g3 = 0 since an even number of 1’s
exist in the C domain (determined from 1101), or gy = 1 because an odd number of 1’s
exist in the BC domain (from 1001). Disregarding the g = 0 coefficients, there results the
positive polarity R-M expression and its simplified mixed polarity form

Zy=Dg & Cg® Bgs ® BCg ® BCDg7 & Ags ® ADgo ® ACg10 ® ACDg),
@® ABCg4 ® ABCDg s

=D®CHBPBCHBCD® ADAD ®AC D ACD ® ABC ® ABCD
=Da®CP®BPBCD®AD @ ACD ® ABCD
=B®C®D®ACD & ABCD, (5.3

which is a three-level function having a gate/input tally of 6/15 excluding possible inverters.
The function in Eq. (5.31) is seen to be the same as that in Eq. (5.28), but it is not an exact
minimum. Here, multiple applications of the XOR identities in Egs. (3.30) have been applied
to excise terms.

Other comparisons are now made between the CRMT method and the EV K-map and
conventional K-map methods presented in Sections 4.6 and 4.4. From Figs. 5.4b and 5.4c,
the minimum cover extraction by using XOR type patterns (shown by loops) gives

Zk mapap = B(C @ D)+ D(A @ B)+ BCD (5.32)
and
Ziyapac = (BC) ® (AD)+ C(B @ D) (5.33)

representing three-level functions with gate/input tallies of 6/14 and 6/12, respectively,
excluding possible inverters. The function Zy.,., ac is a gate/input-tally minimum for
function Z. The results in Eqs. (5.32) and (5.33) are hybrid forms classified as mixed
AND/OR/EXSOP expressions. The two-level SOP minimum, obtained from Fig. 5.4a,
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offers another comparison and is
Z =BCD+ABD + BCD + BCD + ABC (5.34)

with a gate/input tally of 6/20, again excluding inverters.

Comparing the results for the four methods used to minimize function Z given by
Eqgs. (5.28) through (5.34), it is clear that the CRMT results in Eqgs. (5.28) and (5.30) are
competitive with the other methods. However, only the CRMT result in Eq. (5.30) is an exact
EXSOP minimum result. As will be demonstrated further by other examples, the CRMT
and EV K-map methods of minimization tend to yield results that are typically competitive
with or more optimum than those obtained by the other methods, including computerized
two-level results, These observations are valid for relatively simple expressions amenable to
classroom methods. No means are yet available for making a fair comparison of the CRMT
approach with related computer algorithmic methods.

AN EQPOS ExampLe Consider the four variable function G and its canonical R-M
transformation

G(W,X,Y,Z)=[][M(©.1,6,7.8,10,13,15) = () M(0,1,6.7.8, 10, 13, 15),
(5.35)

which follows from Eqgs. (5.19). The conventional (1's and 0's) K-map for this function
is shown in Fig. 5.5a Begin with the CRMT minimization method applied to bond set
{W, X} as depicted in Fig. 5.5b, which is a second-order compression of the function G.
From Egs. (5.20) and (5.21) and for bond set {W, X}. this function is represented in the

1
WXYZ 00 01 " 10 ¢ EE
2

01 0] 0 (b)

)
&

(a)

FIGURE 5.5
(a) Conventional K-map for function G. (b), (c) Compressed EV K-maps of function for bond sets
{W, X} and {Y, Z} showing minimum cover by using XOR-type patterns.
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negative-polarity CRMT form

Gux=(W+X+ ) 0W+X+HoW+X+ L)OW+X+ f)
=WH+HX+VNOW+X+VNOWH+X+2)OW+X+2Z)
=200 (X +2)0O W +2) 0 (W + X +g3), (5.36)
which are read in maxterm code. From Eq. (5.21) the g coefficients become
go=Y H=20Y
g§i=YoY=0 $B=Z0Z0o0=1.

Introducing these coefficients into Eq. (5.36) yields the absolute minimum EQPOS
expression

Gux=YOXOW+Z0Y)
=YOXOW4+Y)O(W+2)
=XOW+Y)0(W+2) (5.37)
that is seen to be a three-level function with a gate/input tally of 4/8.
The CRMT minimization process is repeated for the bond set {¥, Z} as depicted in
Fig. 5.5¢c. The CRMT expression now becomes
Grz=(Y+Z+g)0¥ +Z+g)0(F +Z+g)0(F +Z+g;)
=V +Z+X)0(Y+Z+WOo X))oV +Z+WOoX) 0 +Z+X)
=200 (Z + )Y +g)(¥ +Z +g3) (5.38)

for which the g coefficients are found to be

go=fo=X
a=0f1,00=WOoX0X=W
£=0f20=WOoXoX=W
8$3=0f3,2,1,0=XOWOoXOW=1,

where use is made of g = ® f(1,0) = W in the last term for g3. Then, introducing these
coefficients into Eq. (5.38) gives the absolute minimum result

Gyz=X0W+Z)O(WH+Y), (5.39)

which is again a three-level function with a gate/input tally of 4/8, inverters excluded.
The same result is, in this case, obtained by minimizing a canonical R-M expansion of
Eq. (5.35), which becomes

GyW., X, Y, Z)=()M(.1,6,7,8,10, 13, 15)
=gOM +8)O M2+ £)O(M3+g3)0 -+ O M5+ gis)-
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From the conventional K-map in Fig. 5.5a and counting 0’s within a given domain, the g
coefficients are found to be gy = g2 = g4 = gy = g10 = 0 with all the rest being logic 1.
Introducing these values in the R-M expansion gives the minimum result

Gi=00YOXOW+2Z)O(W+7Y)
=00X0OW+2)O0(W+Y)
=XOW+Z)O(W+7Y), (5.40)

as before in Eq. (5.39).

The result previously obtained for G yz can also be obtained by using the CRMT approach
in a somewhat different way. The plan is to obtain the result for the SOP CRMT expansion
(“for the 0’s”) and then complement that result to produce the EQPOS CRMT expansion
form. Complementing each of the four EV cell entries in Fig. 5.5b gives

G yz(EPOS) = (YZ2)X + (YZ)W @ X) + (YZ)(W & X) + (Y2)X
=go D Zg ®Yg & Yigs, (5.41)

with g values

go=fo=X H=0fR,0=WeXeX=W
g =0f1,O)=WaXeX=W Hn=0f3-0=XoWoXxXdpW=0,

where use is made of g; = @ f(1, 0) = W in the last term for gs. Introducing these values
into Eq. (5.41) gives

Gy/EPOS)=X @ ZW D YW,
resulting in the EQPOS expression

Gyz=X®IWS YW
=XOW+2Z)oW+Y), (5.42)

where an odd number of complementations (operators and operands) have been performed
to complement the function. Notice that the f coefficients are also the complements of
those required for the EQPOS expansion, as they must be, since the cells of the EV K-map
in Fig. 5.5b were complemented.

It is interesting to compare the results just obtained for G with those read from the EV
K-maps in Figs. 5.5b and ¢, and with two-level POS minimization. Following the procedure
given by (3, 4], the results for Gy and Gy, are read directly in maxterm code from the
K-maps (see K-map loopings) as

Gimapwx = [W + (X ® DIIW + (X & 2)] (5.43)
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and
GK-map YZ = [W + (Y © Z)] © (X ©® Z)] (544)

with gate/input tallies of 5/10 and 4/8, respectively. Note that reading a K-map in maxterm
code requires that the domains (not the entered variables) be complemented, since the
K-maps are minterm-code based [3]. In comparison, the two-level minimum result from
Fig. 5.5a s

C=(W+X+YW+X+DW+X+2)XW+X+2), (5.45)

which has a gate/input tally of 5/16 excluding possible inverters.

Notice that all CRMT minimization results, the canonical R-M minimization result, and
one EV K-map result for G all represent three-level functions with minimum gate/input
tallies of 4/8 (excluding possible inverters). In comparison, the best two-level result that can
be obtained for G yields a gate/input tally of 5/16, again excluding inverters. Notice also
that the two-level result requires that four s-terms be ANDed in the output stage, whereas
all other results mentioned earlier have a fan-in limit of two. Increased fan-in can slow the
throughput of a circuit, particularly in CMOS, as was discussed in Subsections 3.6.2 and
3.6.3, and in Section 4.10.

5.8 HEURISTICS FOR CRMT MINIMIZATION

A given minimization method can yield a guaranteed exact minimum for a function if, and
only if, an exhaustive search is carried out. Applied to the CRMT method this involves
finding the optimum (bond set)/(free set) combination for the optimal reduction process
of minimization required by the CRMT method. As the number of inputs to a function
increases, the task of performing an exhaustive search becomes more difficult, eventually
requiring computer algorithmic means. Even then, an intractable problem eventually ensues
when the number of inputs becomes excessively large for the minimization algorithm used.
When this happens, the minimization problem is known to be A/P-complete (see Section
4.11).

Fortunately, variation in the choice of bond set for CRMT minimization often results in
little or no difference in minimum gate/input tally for a minimized function. However, the
effort required to achieve a minimum result may vary considerably with bond set choice.
Thus, if a guaranteed absolute minimum is not required, alternative choices of bond set
should yield an acceptable minimum, but with some limits placed on the number of bond set
variables. By the pencil-and-paper method this means that for practical reasons the number
of bond set variables should not exceed four for most applications of the CRMT method.
The limit on the total number of variables is placed between eight and twelve depending on
one’s ability to use entered variables. In any case, experience in the application of the laws
and identities of XOR algebra is an invaluable asset in achieving a minimized result.

Given these preliminary comments, the following procedure should be helpful in apply-
ing the CRMT “hand” minimization method to functions of 12 variables or less:

Step 1. Choose a bond set and construct an entered variable (EV) K-map with the K-
map axes as the bond set. The starting point in this process can be a canonical SOP or
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POS expression, a conventional (1’s and 0’s) K-map, or a truth table. The cell subfunctions
of the EV K-map become the f; coefficients in the CRMT form of Eq. (5.16) or (5.19).
Thus, the entered variables make up the free set. As a caveat, try to avoid bond sets that
generate f coefficients like - - - Z(X 4+ Y) - - -, since such coefficients do not produce simple
g coefficients. Note that an EV truth table, such as that in Fig. 8.26, will also suffice for the
purpose of the CRMT minimization method if the table-heading variables are taken as the
bond set variables.

Step 2. For the choice of bond set used, obtain a set of minimum CRMT g; coefficients
from Eq. (5.18) or (5.21) by using the EV K-map cell entries as the f; coefficients and by
applying Eqs. (3.19). If alternative minimum expressions exist for a given g coefficient,
choose among these for the “best” one in consideration of steps 3 and 4 that follow. Thus,
if an exact minimum result is required for a given bond set, an exhaustive search for an
optimum g set must be carried out. ‘

Step 3. Recast the function in positive or negative CRMT form by using the g set from
step 2 in Eq. (5.17) or (5.20).

Step 4. Reduce the results of STEP (3) by applying the laws and identities given by
Eqgs. (3.19) and (3.27)—(3.33). Keep in mind that identical EXSOP terms in the form - - - @
X®& X G- or EQPOS terms in the form - - - © X © X © - - - can be excised immediately
in their respective CRMT expressions.

Step 5. If an exact minimum result is required, an exhaustive search must be carried
out by repeating Steps (1) through (4) for all possible bond sets. As a practical matter for
pencil-and-paper application of the CRMT method, the exhaustive search process should not
be conducted on functions exceeding five variables. For example, a five-variable function
would have to be partitioned into 10 two- or 10 three-variable bond sets in addition to the
partitioning for the remaining bond sets. Of course, if an exact minimum is not required,
most any choice of CRMT bond set will yield an acceptable minimum for many applica-
tions — one that may even be a near-exact minimum.

Step 6. Don’t cares, if present, must be considered during the bond set selection process.
This is usually done with the intent of reducing the complexity of the CRMT g coefficients,
if not optimizing them. It is often the case that simple f coefficients (EV K-map cell entries
suchas 0, 1, X, or X @ Y) yield simple g coefficients that lead to near-exact minimizations.
In any case, the presence of don’t cares will complicate considerably an exhaustive search
process.

Step 7. If more than one function is to be optimized, the procedure is to set up the
CRMT forms separately as in steps 1-5 and then follow a systematic reduction process for
each, taking care to use shared terms in an optimal fashion.

5.9 INCOMPLETELY SPECIFIED FUNCTIONS

Consider the five-variable function

fla,b,c,d, e)= Zm(l, 3,4,6,9,10, 12, 13, 18, 21, 23, 25)
+¢(0, 8, 11, 14, 15, 16, 24, 26, 27, 29, 30, 31), (5.46)

where ¢ is the symbol representing don’t cares (nonessential minterms). Shown in Fig. 5.6a
is the conventional K-map for this function and in Fig. 5.6b its second-order EV K-map
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FIGURE 5.6

K-maps for the five-variable function f given in Eq. (5.46). (a) Conventional K-map array for bond
set (a, b}. (b) Third-order compression of function f for bond set {q, &} showing minimum cover by
using the adjacent XOR pattern in maxterm code.

(third-order compression) for bond set {a, b}. Recasting this function into the CRMT form
of Egs. (5.16) and (5.17) gives
Jap= 56f0 @abf @ af;fg G abf
=db(c ®e) D ab @ ab(c @ é) ® abe
=go D bg1 B ag) ® abgs (5.47)

with g values

go=cde gr=cPe@che=1
gi=l®che=che=cPhe gi=eDcBedodé=e.
Here, don't cares are set as ¢g = ¢ = @26 = ¢y = 0 with the remainder equal to

logic 1. Introducing the values into Eq. (5.47) and simplifying yields the mixed polarity
result

fas=cDe®bc ®bedadabe
=aBe®cd b dabe
=aBeBH(b+c)Dabe
=a®ed®bc@®abe, (5.48)
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which is a three-level minimum with a gate/input tally of 5/11 excluding possible inverters.
No attempt is made to examine bond sets other than {a, b}. Consequently, Eq. (5.48) cannot
necessarily be regarded as an exact minimum.

The EQPOS CRMT form for bond set {4, b} is obtained from Eqs. (5.20) and (5.21) and is

fr =8O B +8)0@+8g)0@@+b+g), (5.49)
for which the g coefficients are

go=cPe=cQOe H=CPhe®che=0
21=10(c0eée)=cOeé=cOe g3=e@Qe®cOcOQe=e.-

After introducing these coefficients into Eq. (5.49) there results the mixed polarity CRMT
result

fo=cQéO(b+c0é)Oa®@+b+eé)
=4d0eOcOb+)0b+)0W@+b+e)
aQeéOkh+cO@+b+eé). (5.50)

This is a three-level EQPOS minimum with a gate/input tally of 5/11.

Now it is desirable to compare the CRMT minimum forms of Egs. (5.48) and (5.50)
with the EV K-map and two-level results. Reading the loops of Fig. 5.6b in maxterm code
(or the submaps in Fig. 5.6a) gives

fimp =GB +a®cDeNa+b+e), (5.51)

which is a four-level function having a gate/input tally of 5/11 excluding possible inverters.
By comparison, the computer-minimized two-level POS minimum result is

fros=(a+b+c+eéea+b+ct+eéea+ct+elat+b+c+e) (5.52)

and has a gate/input tally of 5/19. The SOP minimum result (not shown) has a gate/input
tally of 7/22. No attempt is made to minimize function f by the EXSOP minimization
approach, which is best accomplished by computer algorithmic means.

Figure 5.6 illustrates how the CRMT method can be applied to a five-variable function
having a two-variable bond set, {a, b} in this case. Shown in Fig. 5.7a is the conventional
K-map array suitable for an eight variable function F having the bond set {w, x, ¥, z}, and in
Fig. 5.7b its fourth-order compression, also for bond set {w, x, ¥, z}. These K-map formats
also suggest a means by which functions with more than eight variables can be minimized
by the CRMT method, providing one can deal with EV K-maps within EV K-maps. Large
numbers of don’t cares would greatly reduce the complexity of the K-map cell entries (and
hence f coefficients) in Fig. 5.7b.
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(a) K-map array for an eight variable function F having a bond set {w, x, y, z}. (b) K-map required for
a fourth-order compression of function F having a bond set {w, x, y, z}.
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5.10 MULTIPLE OUTPUT FUNCTIONS WITH DON'T CARES

The problem of selecting an optimum bond set is further complicated by the presence of
don’t cares in multiple output systems. Application of the CRMT minimization procedure
given earlier to such systems is illustrated by minimizing the following two four-variable
functions containing don’t cares:

F(A. B, C, D)=Zm(3, 6,8,9,12, 15) + (1, 4,5, 11)
and (5.53)
H(A,B,C,D)= Zm{l,4. 7,10,12, 13) + ¢(2, 5,6, 8, 11, 15).

The conventional fourth-order K-maps for functions F and H are shown in Fig. 5.8a.
The don’t cares are so chosen as to best meet the requirements of the CRMT minimization
procedure for both functions, but with no guarantee of a two-function optimal result. The
bond sets are arbitrarily chosen to be {C, D} and {4, B}, respectively, for functions F and

CcD
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FIGURE 5.8
(a) Conventional K-maps for functions F and H of Egs. (5.53) and (b) their second-order compressions
for bond sets (C, D} and {A, B} showing minimum cover for each by using XOR-type patterns.
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H, and their canonical SOP/EXSOP transformations now become

F=) m3,56,8,91215=)3.56,8,9,12,15)
and (5.54)
H=Y m,24,710,11,12,13) = @Pm(1,2,4,7,10,11, 12, 13).
Here, for function F, the don’t cares are choosen to be ¢ = ¢4 = ¢ = 0 and ¢5 = 1.
For function H the don’t cares are assigned the values ¢s = ¢ = ¢pg = ¢5 = 0 and
¢, = ¢11 = 1. The don’t-care values are chosen in agreement with STEP (6) of the heuristics
for CRMT minimization given previously. Thus, the CD columns and the AB rows have

simple subfunctions of the type X and X @ Y to improve chances for an optimum result.
Function F in Egs. (5.53) is now recast as the contracted CRMT form

Fep=(CDfo) ® (CDf) & (CDf2) ® (CDf3)
=(CD)A ® (CD)(A @ B) ® (CD)AB @© (CDXA & B)
=go® Dg| & Cg: ® CDgs (5.55)

for bond set {C, D} and with CRMT coefficients

g=A gz=AB®A=1@AB
g1 =A®PB®A=B $3=A®B®AB® B = AB.

Introducing these coefficients into Eq. (5.55) gives the minimized result for Fep

Fop=A®BD&®C ®ABC® ABCD
=A®C ®BD®ABCD. (5.56)

Following the same procedure for function Hyg, there results

His=(AB fo) ® (ABf\) ® (ABf,) ® (ABf3)
=(AB)(C ® D)® (ABXC & D) ® (AB)C ® (AB)C
=goD Bg D Ag: D ABgs (5.57)

for bond set {A, B}. From Fig. 5.8b and Eq. (5.18), the CRMT g coefficients become

g0=C&®D g=Ce®Ce®D=D
g=CoDOCO®D=1 g=CHCH1=0,

which, when introduced into Eq. (5.57), give the absolute minimum result

Hyy=C®D®B®AD
=C®BDAD. (5.58)



224 CHAPTER 5 / FUNCTION MINIMIZATION
The two CRMT optimized functions are now expressed together as

Fop=A®C®BD®ABCD
, (5.59)

Hiyzy=C® B®AD

representing a three-level system with a combined gate/input tally of 8/18, but with no
shared terms.

A comparison is now made with other approaches to the minimization of these functions.
The EV K-map minimum results read directly from the cover (shown by the loopings) in
Figs. 5.8b are

Fxman=[AOQC QOB +DIB+C+D
{K ,=[A0C OB+ DB+ +)}, (5.60)

Hgmap =B ® C @ AD

representing a three-level system having a gate/input tally of 8/17 with no shared terms.
Notice that function F is extracted (looped out) in maxterm code, whereas function H is
extracted in minterm code. The computer-optimized two-level SOP result is

F =ACD + ABD + ACD + BD
(5.61)

H=BCD+ACD+AB+ BC

with a total gate/input tally of 10/29 excluding possible inverters.

For further comparison, these two functions are minimized together as a system by using
canonical R-M forms. As a practical matter, an exhaustive search is not carried out on the
choice of don’t cares and, consequently, an exact EXSOP result cannot be guaranteed.
However, a few trial-and-error attempts at minimization indicate that an exact or near-exact
result is obtained for function F if all ¢’s are taken as logic 1, but that for function H the
don’t-care values are taken to be the same as those used by the CRMT method. Therefore,

from the conventional K-maps in Fig. 5.8a there result the following canonical R-M forms:
For F the R-M coefficients are

B1=8 =g =g =& =8 =go=g&n=gn=1,
and for H they are
g1 =g =g =g =1
Introducing the g values for functions F and H into Equation (5.17) separately gives

F=D®B®BD®BCD® A DAD ® AC & ACD ® AB
=AD®ACD ®BCDH ADABD B
=AD®ACD ®BCD®AB® B (5.62)
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for function F and
H=D@®C@®BOAD=ADPCG B (5.63)

for function H. Then, combining an optimum set of shared EXSOP terms results in the
expressions

- (5.64)
H=[B®AD]®C

{ F=[B®AD]®AB ® ACD @BC‘D}

This is a four-level system having a total gate/input tally of 9/20, including shared term
B @ AD.

Comparing results in Egs. (5.60), (5.61), and (5.64) with those for the minimized CRMT

forms in Egs. (5.59) clearly shows that the CRMT method is competitive with the K-map and

two-level minimization methods and illustrates the advantage of simplicity that the CRMT

minimization approach has over that of the EXSOP minimization as a pencil-and-paper
method.

5.11 K-MAP SUBFUNCTION PARTITIONING FOR COMBINED CRMT
AND TWO-LEVEL MINIMIZATION

Any function can be partitioned in a manner that permits it to be minimized by a combination
of the CRMT and two-level methods. Function partitioning for this purpose is best carried out
within an EV K-map, hence subfunction partitioning. This partitioning process is significant
because with K-map assistance it makes possible the selection of the most tractable (if not
optimal) parts of a function for the combined two methods of minimization. This can be
of great advantage for a multioutput function where shared term usage is important. There
still remains the problem of knowing what is the “best” choice of function partitioning for
optimal results. An absolute minimum result in the CRMT approach not only would require
an exhaustive search of the best CRMT bond set minimum, but must be accompanied by
an exhaustive two-level search. This is no easy task except for, perhaps, relatively simple
functions. However, if an absolute minimum result is not sought, there may exist a variety
of ways in which a given function can be partitioned without significant change in the
cost (complexity) of the resulting minimized function. In any case, the combined minimum
forms are classified as partitioned EXSOP/SOP forms or their dual EQPOS/POS.

As a simple example of K-map function partitioning, consider function Z4¢ in Fig. 5.4c.
Here, the literal D in cell 1 (see dashed loop in domain AC) is separated out to be later
ORed to the CRMT solution as the EPI ACD. After removal of the literal D, the CRMT g
coefficients become

g=B&D ©=B®B®D=D
gi5=B®B®D=D g3=B®D®B®D=0.

Introducing these coefficients into Eg. (5.29) and adding the two level result ACD yields
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Combined CRMT and two-level minimization of a two-output system of six variables. (a) Third-order
compression of function F, (b) third-order compression of function F».

the minimum result

Zac=[B®D®CD®AD]+ACD,
=[B & CD ®AD1+ ACD, (5.65)

where Z¢ is now a four-level function with a gatefinput tally of 6/13. Recall that the CRMT
result in Eq. (5.30) is only a three-level function. The extra level in Eq. (5.65) compared to
Eq. (5.30) is due to the OR operator of the mixed form.

A more interesting example is the EXSOP/SOP partitioning of the two function system
shown in Figs. 5.9a and 5.9b. In this case, all entries in cells 100, 101, 111, and 110 for
function F) are partitioned out (set to logic 0) for CRMT minimization, but are extracted
optimally as shown by the two-level minimum cover. Similarly, for function F», terms XY
and XY incells 011 and 010 are partitioned out of the CRMT minimization but are extracted
optimally in SOP logic. Also, the don’t cares in the F> K-map are set to logic 0 for both the
CRMT and two-level minimizations.

The minimization process is now carried out on both the function F| and F; in such a
manner as to make effective use of any shared terms that may occur. By using Figs. 5.9a
and 5.9, the function F| and F, are cast in the form of Eq. (5.17) to give

Fi,.Fb=g,®Cg & Bg: @ BCg: @ Ag4 @ ACgs D ABge d ABCg. (5.66)
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After partitioning, CRMT coefficients for function F| become

g=X&Z u=X0Z

gr=1 g =1
H=Y gs=Y
g:=0 g7=0.

The two-level minimization result for cells 100, 101, 111, and 110 is simply
ACX +ACX + ABY = A(X ® C + BY). (5.67)

Introducing the g coefficients into Eq. (5.66) and adding the two-level result gives the mixed
minimum result

FI=X®Z®COBY DPAXPAZSACE ABY + A(X ® C + BY)
=X®O)PAZHABY DAX D C)+ AX & C + BY)
=A[Z®(X®C)P BY]+ AX & C + BY). (5.68)

Applying the same procedure to the partitioned F; function gives the CRMT g coeffi-
cients

go=g4=XZ g=g=YZ
§1=g =2 g =g=0.

From the K-map for F5, the two-level minimum result is easily seen to be
ABCXY + ABCXY = ABY(X & C). (5.69)

Now introducing the g coefficients into Eq. (5.66) and adding the two-level result yields an
EXSOP/SOP minimum,
F=XZ®CZOBYZOAXZ®ACZS ABYZ+ ABY(X®C)
=AXZHACZ®ABYZ+ ABY(X ® C)
=AZ[(X ® C) & (BY)]| + ABY)(X & O). (5.70)

The combined two-function minimum result is now given by

=4 AXeC
FI=A[Z®&(XdCO)®(BY)]+ AX & +BY)} (5.71)

FE=AZ[(X®C)® (BY)]+ ABY)X & C)

which represents a five-level system with a comnbined gate/input tally of 11/24 excluding
possible inverters.
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The OR operators in Egs. (5.71) add an extra level of path delay compared to forms
that are exclusively EXSOP/SOP. This can be demonstrated by avoiding the partitioning of
function F;. When this is done the CRMT g coefficients become

80=X®Z g=Z72

gi=1 g =0
e=Y G6=YOdX+VNOX=YDXYoX =Y DXY=XY
g =0 g7:0€BI€BXI7€BX'I7=l€Bf=Y.

Introducing these g coefficients into Eq. (5.66) gives the EXSOP/SOP result

FF=X®Z®C®BY ® AZ D ABXY ® ABCY
=(X®C)®AZ® BY ®ABY(X & C)
=[ABY(X ® C)] ® (AZ) ® (BY), (5.72)

which is a four-level function with a gate/input tally of 7/15, exclusive of inverters. This
compares to the mixed five-level function F; in Eqgs. (5.71), which has a gate/input tally of
8/16.

Subfunction partitioning in maxterm code is equally effective in facilitating the min-
imization process. As a simple example, consider the function F¢p in Fig. 5.8b and the
EQPOS CRMT form

Fop=80@ (D +g)0(C +g)0(C +D+gs) (5.73)

which follows Eq. (5.20). Proceeding with the CRMT minimization, with B partitioned out
of the term A - B in cell 10, gives the CRMT g coefficients

1

go=A & OA=0

§i=AOBOA=B §=A0 OB =1.

=11
O]
=

Introducing these coefficients into Eq. (5.73) and adding the two-level result gives
Fop=[A®B+D)OCl-(B+C + D), (5.74)

which is exactly the same as the K-map minimum result in Egs. (5.60).

Notice that the mixed CRMT/two-level method requires that the partitioning be carried
out in either minterm or maxterm code form. Thus, if subfunctions of the type X + Y are
partitioned, the entire minimization process must be carried out in minterm code. Or, if terms
such as X - Y are partitioned, the minimization process must be carried out in maxterm code.
Note that either X or Y or both may represent multivariable functions or single literals of
any polarity.
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5.12 PERSPECTIVE ON THE CRMT AND CRMT/TWO-LEVEL
MINIMIZATION METHODS

The main advantage of the CRMT method of function minimization lies in the fact that
it breaks up the minimization process into tractable parts that are amenable to pencil-
and-paper or classroom application. The CRMT minimization process can be thought of
as consisting of three stages: the selection of a suitable bond set, the optimization of the
CRMT g coefficients (for the chosen bond set), and the final minimization stage once
the g coefficients have been introduced into the CRMT form. If an exact minimum is
not required, a suitable bond set can be easily found, permitting the CRMT method to be
applied to functions of as many as eight variables or more. Knowledge of the use of EV
K-maps and familiarity with XOR algebra are skills essential to this process. A properly
conducted CRMT minimization can yield results competitive with or more optimum than
those obtained by other means.

It has been shown that minimization by the CRMT method yields results that are often
similar to those obtained by the EV K-map method described in Section 5.4. This is partic-
ularly true when the EV K-map subfunctions are partitioned so as to take advantage of both
the CRMT and two-level (SOP or POS) minimization methods. In fact, when subfunction
partitioning is carried out in agreement with the minimum K-map cover (as indicated by
loopings), the CRMT/two-level result is often the same as that obtained from the K-map.
It is also true that when a function is partitioned for CRMT and two-level minimizations,
an extra level results because of the OR (or AND) operator(s) that must be present in the
resulting expression. Thus, a CRMT/two-level (mixed) result can be more optimum than
the CRMT method (alone) only if the reduction in the gate/input tally of the CRMT portion
of the mixed result more than compensates for the addition of the two-level part. At this
point, this can be known only by a trial-and-error-method that is tantamount to an exhaustive
search.

If an exact or absolute minimum CRMT result is sought, an exhaustive search must
be undertaken for an optimum bond set. Without computer assistance this can be a te-
dious task even for functions of four variables, particularly if the function contains don’t
cares. Multiple-output systems further complicate the exhaustive search process and make
computer assistance all the more necessary. One advantage of the mixed CRMT/two-level
approach to function minimization is that each method can be carried out independently on
more tractable parts.

FURTHER READING
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synthesis with XOR and EQV gates can be found in the texts of Roth, Sasao (Ed.), and
Tinder.
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PROBLEMS

Note: Most K-map minimization results of problems that follow can be verified by intro-
ducing the binary coordinates of each K-map cell into the resulting expression. Generation
of each cell subfunction by this means validates the extraction results. In some cases, it
may be necessary to construct a suitable EV K-map for this purpose. Also, to obtain correct
answers for these problems, the reader will be required to make frequent use of the laws,
corollaries, and identities of XOR algebra given in Section 3.11.
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5.1

5.2

5.3

54

Compress the following function into a first-order K-map of axis A, and loop out a
gate minimum expression by using XOR-type patterns in minterm code. Next, obtain
the SOP minimum from the same K-map and compare the gate/input tallies for both
the XOR and SOP forms. Finally, construct the logic circuits for the XOR and SOP
results assuming that the inputs and output are all active high. What do you conclude
from these comparisons?

E=AXY + AXY + AY

The output F of a logic circuit is a function of three inputs A, B, and C. The output
goes active under any of the following conditions as read in the order ABC:

All inputs are logic 1
An odd number of inputs are logic 1
None of the inputs are logic 1

(a) Construct a truth table for output function # and inputs ABC.

(b) Map the result in a second-order K-map and extract a gate-minimum expression
by using XOR-type patterns.

(c) Further compress this function into a first-order K-map of axis A and again extract
a gate-minimum expression by using XOR-type patterns. Compare the result with
that of (b).

(d) Finally, place this function in a conventional (1’s and 0’s) K-map and extract
minimum two-level SOP and POS logic expressions. By using the gate/input tally
(exclusive of inverters), compare the results with those of (b) and (c). What do
you conclude from this comparison?

Compress the following function into a second-order K-map with axes as indicated
and extract a gate-minimum expression for each set of axes by using XOR patterns.
Use the gate/input tally, exclusive of possible inverters, to compare this result with the
minimum expressions for the two-level SOP and POS results. What do you conclude
from this comparison? What is the gate delay level for the XOR pattern results? (Hint:
It will be helpful to first plot this function into a conventional 1’s and 0’s K-map.)

FW,X,Y,Z)= Zm(O, 2,5,7,9,11, 12)

(a) Axes W, X
(b) Axes?Y, Z
(c) Axes X, Y

Shown in Fig. P5.1 are six EV K-maps that contain XOR-type patterns and that
represent two and three levels of compression. Use minterm code to loop out a gate-
minimum cover for each by using XOR patterns (where appropriate). For comparison,
loop out a minimum two-level SOP cover for each and compare their relative com-
plexity by using the gate/input tally exclusive of possible inverters. Also, as part of
the comparison, comment on the fan-in requirements for each.
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FIGURE P5.1
5.5 Use maxterm code and XOR-type patterns to loop out a gate-minimum expression

5.6

for each of the five functions represented in Fig. P5.2. Give the gate/input tally for
each and compare that value with the gate/input tallies for the two-level SOP and POS
minimum expressions obtained from the same K-maps. [Hint: To obtain the two-level
expressions from the K-maps in Figs. 5.2d and 5.2e, it will be necessary to expand
the XOR and EQV subfunctions by using their defining relations given by Egs. (3.4)
and (3.5).]

Compress each of the following functions into a second-order K-map with axes A, B
and loop out a gate-minimum expression for each by using XOR-type patterns where
appropriate. Obtain the two-level SOP and POS minimum result and use the gate/input
tally (exclusive of possible inverters) to compare the multi-level result. (Hint: Consider
both minterm and maxterm codes when looping out XOR-type patterns for gate-
minimum results.)
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5.7

5.8

5.9

BC

(a) W(A, B,C,D)=Y"m(3,6,9, 12)

(b) X(A, B,C,D)=[[M2,3,4,5,7,8,9,11, 14, 15)
©) Y(A,B,C,D)=Y m(1,2,4,7,11, 13, 14)

) Z(A,B,C,D) =[] M(©,3,4,6,9, 10, 13)

The following incompletely specified function contains XOR-type patterns:
G(A,B,C,D)= I_[M(O, 1,2,3,8,11,12,13) - (4, 5,6, 7).

(a) Compress the following function into a second-order K-map of axes A, B and loop
out a gate-minimum expression by using XOR-type patterns where appropriate.
(Hint: Consider both minterm and maxterm codes and the best use of the don’t
cares when looping out XOR-type patterns for a gate-minimum result.)

(b) Use the same K-map to extract minimum SOP and POS expressions for this
function. Compare the gate/input tallies (exclusive of possible inverters) for the
XOR result with those for the SOP and POS results. What do you conclude from
these comparisons?

(c) Construct the logic circuit for both the XOR result and the SOP result, assuming
that the inputs and output are all active high.

Use XOR-type patterns to extract a gate-minimum expression for each of the three
functions represented in Fig. P5.3. Use the gate/input tally (exclusive of inverters)
to compare the multilevel result with that for the two-level SOP and POS minimum
result. Note that compound XOR-type patterns may exist. [Hint: For f> and f3, it will
be necessary to make use of Egs. (3.27).]

A computer program has been written that will yield a minimum solution to a combi-
national logic function, but only in SOP form. It accepts the data in either conventional
(1’s and 0’s) form or in two-level EV SOP form — it does not recognize the XOR or
EQV operators.

(1) Given the functions F| and F; represented by the EV K-maps in Fig. P5.4, extract
a gate-minimum expression from each in maxterm code by using the pencil-and-
paper method and XOR-type patterns.

(2) By following Example 2 in Section 4.8, outline the procedure required to “trick”
the computer program into yielding a two-level minimum expression from the
K-maps in Fig. P5.4, that can be easily converted to minimum POS form. (Hint:
It will be necessary to complement the subfunction in each cell of the K-map and
represent it in SOP form.)
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FIGURE P5.3
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5.10

5.11

5.12

5.13

5.14

5.15

(3) Use the procedure in part 2 to obtain the two-level POS expression for function F;
in Fig. P5.4a. Next, convert each cell of the original K-map to two-level POS sub-
function form and extract a two-level POS minimum expression from it by using
maxterm code. Should it agree with the results obtained by using the procedure
of part 2?7 Explain.

(4) Repeat part 3 for function F in Fig. P5.4b.

Repeat Problem 5.3 by using the CRMT method, taking each bond set as the axis
indicated in the problem. Use the gate/input tally (exclusive of possible inverters) to
compare the CRMT results with the two-level SOP minimum in each case.

Use the canonical Reed-Muller (R-M) approach to obtain an absolute minimum for
the function F given in Problem 5.3. Compare the results with the two-level SOP
minimum result by using the gate/input tally (exclusive of possible inverters).

Use the CRMT method to obtain an absolute minimum for the function G in Problem
5.7 by taking axes A, B as the bond set. Use the gate/input tally (exclusive of possible
inverters) to compare the CRMT result with the two-level SOP minimum result.

Use the CRMT method to obtain an absolute minimum for each of the four functions
given in Problem 5.6. Take axes A, B as the bond set for each. Construct the logic
circuit for each CRMT minimum function assuming that all inputs and outputs are
active high. Also, for comparison, construct the logic circuit for the minimum two-
level SOP or POS minimum result, whichever is the simpler in each case.

Use the canonical R-M approach to obtain a gate-minimum for the four functions given
in Problem 5.6. Then, by using the gate/input tally (exclusive of possible inverters),
compare these results with the two-level SOP or POS minimum results, whichever is
the simpler in each case.

(a) The following two functions are to be optimized together as a system by using
the multiple-output CRMT method discussed in Section 5.10. To do this, collapse
each function into a third-order K-map with axes A, B, C and then use the CRMT
approach in minterm code to minimize each function while making the best use
possible of shared terms. Plan to use {A, B, C} as the bond set.

Fi(A,B,C,D,E)= Zm(2, 3,4-7,9,11, 12,15, 21, 23, 25, 27)

F(A,B,C,D,E)= Zm(4, 5,10, 11, 13, 15-17, 20, 23--25, 30, 31)
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(b) Obtain the optimized two-level SOP results for the two functions and compare
them with the results of part (a) by using the gate/input tally (including inverters)
assuming that the inputs and outputs are all active high.

(c) Construct the logic circuits for the circuits of parts (a) and (b).

5.16 (a) Use subfunction partitioning of the following function for CRMT/two-level min-
imization in minterm code. To do this, collapse this function into a third-order
K-map of axes A, B, C and follow the discussion given in Section 5.11. Choose
{A, B, C} as the bond set for the CRMT portion.

F(A,B,C,D,E)= Zm(4, 7,10-12,14,16-19, 21, 23, 24-27, 28, 30)

(b) Without partitioning, use the CRMT method to obtain a gate-minimum for this
function. Compare this result with that of (a) by using the gate/input tally exclusive
of inverters.

5.17 A function F is to be activated by the use of three switches, A, B, and C. It is required
that the function & be active iff a single switch is active. Thus, if any two or three of the
switches are active the function must be inactive. Design a gate minimum circuit for
the function F consisting of three XOR gates and an AND gate (nothing else). Assume
that the inputs and output are all active high. (Hint: Apply the CRMT method.)
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CHAPTER 6
I

Nonarithmetic Combinational
Logic Devices

6.1 INTRODUCTION AND BACKGROUND

It is the purpose of combinational logic design to build larger, more sophisticated logic
circuits by using the most adaptable and versatile building blocks available. The choice of
discrete gates as the building blocks is not always a good one, owing to the complex nature
of the circuits that must be designed and to the fact that there are integrated circuit (IC)
packages available that are much more adaptable. It is the plan of this chapter to develop
these building blocks and demonstrate their use in construction of larger combinational
logic systems. Brief discussions of the various device performance characteristics and a
design procedure are provided in advance of the logic device development.

6.1.1  The Building Blocks

It is well understood that the digital designer must be able to create combinational circuits
that will perform a large variety of tasks. Typical examples of these tasks include the
following:

Data manipulation (logically and arithmetically)
Code conversion

Combinational logic design

Data selection from various sources

Data busing and distribution to various destinations
Error detection

To implement circuits that will perform tasks of the type listed, the logic designer can
draw upon an impressive and growing list of combinational logic devices that are com-
mercially available in the form of IC packages called chips. Shown in Fig. 6.1 is a partial
listing of the combinational logic chips, those that are of a nonarithmetic type (a) and those
that are arithmetic in character (b). Only the devices in Fig. 6.1a will be considered in this
chapter.

237
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(a) (b)
Non-Arithmetic Combinational Logic Arithmetic-Type Combinational Logic
Devices Circuits
Multiplexers (Data Selectors)
Decoders/Demultiplexers Adders
Priority Encoders Subtractors
Code Converters Arithmetic and Logic Units
Comparators Multipliers
Parity Detectors Dividers

Combinational Shifters

FIGURE 6.1
Partial lists of available nonarithmetic IC devices and arithmetic IC devices.

6.1.2 Classification of Chips

IC chips for the devices of the type listed in Fig. 6.1 can be classified as small-scale integrated
(SS]) circuits, medium-scale integrated (MSI) circuits, large-scale integrated (LSI) circuits,
very-large-scale integrated (VLSI) circuits, and wafer-scale integrated (W SI) circuits. It has
become customary to assign one of the preceding acronyms to a given IC circuit on the
basis of the number of equivalent fundamental gates (meaning AND, OR, Inverter or NAND,
NOR, Inverter) that are required to implement it. By one convention, these acronyms may
be assigned the following gate count ranges:

SSI circuits: up to 20 gates

MSI circuits: 20 to about 200 gates

LSI circuits: 200 to thousands of gates

VLSI circuits: thousands to millions of gates

WSI chips might contain tens to hundreds of VLSI circuits. This classification scheme is
obviously ineffective in revealing the true complexity of a given IC relative to the digital
system in which it operates. For example, an LSI chip might be a 64-bit adder or it might
be a moderately complex microprocessor. Thus, the reader should exercise caution when
evaluating the complexity of a chip based on some count system. Finally, it is now common
practice for logic designers to design chips for a limited, specific application. Such chips are
called application-specific ICs, or ASICs, and may differ greatly from the usual commercial
chips. ASICs can reduce total manufacturing costs and can often provide higher performance
than is possible by combining commercially available devices.

6.1.3 Performance Characteristics and Other Practical Matters

The most desirable features a designer would want in a switching device, say, for integrated
circuit applications are as follows:

* Fast switching speed
» Low power dissipation
* Wide noise margins
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FIGURE 6.2
Voltage waveforms showing propagation delays and rise and fall times for a 2-input NAND gate with
output Z as in Fig. 3.10.

» High fan-out capability
» High packing density
» Low cost

Although no single family or technology has all these desirable features, some may come
close, at least for most of those listed above. A summary of these and other practical matters
now follows.

Propagation Delay (Switching Speed) and Rise and Fall Times The propagation delay
or switching speed of a device is the measured output response to aninput change. Typically,
a given logic circuit will have many outputs and many inputs with various input-to-output
paths, each with a different path delay. Furthermore, propagation delays usually differ for
output changes that are low-to-high (¢,,) compared to those that are high-to-low (z;), but
both of which are measured from the 50% point of the input signal to the 50% point of the
output response signal as illustrated in Fig. 6.2. The average propagation delay for a given
input-to-output path is then given by

toin + ot
Tplavg) — L_zp_» (61)

where, typically, t,;, > f,. Since several input-to-output paths may be involved, the timing
specifications given by manufacturers often include typical extremes in propagation delay
data. A minimum value for 7, is the smallest propagation delay that the logic device will
ever exhibit; the maximum value is the delay that will “never” be exceeded. The maximum
value is the one of most interest to designers since it is used to determine useful factors
of safety. For modern CMOS, these values lie in the range of 0.1 to 10 ns. Also shown in
Fig. 6.2 are the rise and fall times, ¢, and 1, as measured between the 10% and 90% marks
of a given waveform.

Power Dissipation Logic devices consume power when they perform their tasks, and
this power is dissipated in the form of heat, Joule heat. Of the various logic families,
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CMOS devices consume the least power and then only during switching intervals — that
is, dynamic power dissipation. Thus, CMOS power consumption is frequency dependent
and may become quite large at very high frequencies. The bipolar families of devices (see
Appendix A) consume the most power, mainly due to leakage current, but are much faster
than CMOS. Other logic families tend to fall in between these two extremes.

A useful figure of merit for logic devices is called the power—delay product (PDP) given

by
PDP = PConsumprion X Tp(avg)s (6.2)

which is the product of the power consumed by the device and its average propagation delay
given by Eq. (6.1). The PDP of a device is sometimes called the speed—power product and is
usually expressed in picojoules (I mW x 1 ns = 1 pJ = 107!2 joules). Since it is desirable
for a given logic device to have both a low power consumption and a small propagation
delay, a low PDP is also desirable.

Noise Margins The noise margin of a logic device is the largest voltage that can be added
to or subtracted from the logic voltage and still maintain the required logic level. The noise
margins are defined as

{ NML = Vleax - VOLmax (63)

NMH = VOHmin - VIHmin

and are shown in Fig. 3.2. The voltage parameters defined by manufacturers are expressed
as follows:

ViLmex ~Maximum input voltage guaranteed to be recognized as LOW level.
Vormax Maximum output voltage guaranteed to be recognized as LOW level.
Vormin Minimum output voltage guaranteed to be recognized as HIGH level.

Vigmin  Minimum input voltage guaranteed to be recognized as HIGH level.

As an example, typical values for high speed (HC) CMOS are Vi max = 0.3Vpp, Vigmin =
0.7Vpp, with Vg, max being slightly above zero voltage and Voy min being slightly below the
supply level Vpp.

CMOS logic has always been considered as having good noise margins. However, in the
low submicron ranges, CMOS noise margins have been reduced to relatively low values.
The bipolar families are usually considered to have good noise margins. It is important that
the noise margins of logic devices be wider than any noise transients that may occur so as
to prevent unrecoverable errors in the output signals. Thus, noise margins may be regarded
as the margins of safety within which digital systems must be operated if their behavior is
to be predictable.

Fan-out and Fan-in  Since the output from a switching device (for example, a gate) has a
definite limit to the amount of current it can supply or absorb, there is a definite limit to the
number of other switching devices that can be driven by a single output from that switch.
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This limit is called the fan-our of a given device and is, in effect, the worst-case loading
specification for that device. The fan-out limit is usually given in microamps (¢ A). If the
fan-out limit of a device is exceeded, the signal can be degraded. MOS circuits are least
affected by fan-out restrictions, whereas members of the bipolar families are dramatically
affected by such restrictions. Propagation delay is essentially unaffected by fan-out limita-
tions.

The maximum number of inputs permitted to control the operation of a digital device
(usually a gate) is called the fan-in. Thus, a gate with four inputs has a fan-in of 4. In
general for CMOS gates propagation delay increases with increasing fan-in. Fan-in and its
consequences are discussed in Subsections 3.6.2 and 3.6.3 and in Section 4.10.

Cost The cardinality or cover of a function is a measure of the cost of that function.
Design area is also a measure of the cost of a function and is called area cost. Thus, the
cardinality or design area of a function can be given a monetary value, and this is what
is of particular interest to manufacturers of digital devices. But there are more factors that
contribute to the monetary cost of an IC. To one extent or another all of the factors previously
mentioned directly or indirectly affect the cost of an IC. Appendix A gives qualitatively the
performance characteristics as a measure of cost for commonly used IC logic families.

6.1.4 Part Numbering Systems

Typically, parts in data books are given specific part numbers indicative of the logic func-
tion they perform and the logic family to which they belong. Commercially available digital
devices belonging to the CMOS and TTL (transistor—transistor logic) families are given
the part prefix “74xnnn”, where the “x” represents a string of literals indicating the logic
family or subfamily and “nnn” is the part number. To understand this nomenclature the
following literals are defined: H= High-speed, L = Low-power, A = Advanced, F = Fast,
C=CMOS, and S = Schottky. For example, 74HCO0O0 is a two-input high-speed CMOS
NAND gate and a 74AS27 is a three-input advanced Schottky NOR gate. To avoid referring
to any specific logic family or subfamily, the “x” descriptor is used along with the part
number. For example, a 74x151 is an 8-to-1 multiplexer of a generic type, meaning that it
belongs to any of the families for which the prefix “74 - - -” is applicable. The TTL subfam-
ilies designated 74nnn, 74Lnnn, and 74Hnnn have been made obsolete by the presence of
modemn Schottky subfamilies.

Another member of the bipolar family is called ECL for emitter-coupled logic. The
ECL family is currently the fastest of the logic families but has an extremely high power
consumption and high PDP. ECL parts are named either with a 5-digit number system
(10nnn) or a 6-digit system (100nnn), depending on which subfamily is being referenced.
In either case all part numbers “nnn” are always three digits in length, unlike those for
CMOS and TTL families, which can be two or three digits in length. Appendix A quali-
tatively summarizes the performance characteristics of TTL, ECL, NMOS, and CMOS
families.

6.1.5 Design Procedure

The design of any combinational logic device generally begins with the description of
and specifications for the device and ends with a suitable logic implementation. To
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assist the reader in developing good design practices, the following six-step sequence is
recommended:

Step 1: Understand the device. Describe the function of the device; then clearly
indicate its input/output (I/O) specifications and timing constraints, and con-
struct its block diagram(s).

Step 2: State any relevant algorithms. State all algorithms and/or binary ma-
nipulations necessary for the design. Include a general operations format if
necessary.

Step 3: Construct the truth tables. From step 2, construct the truth tables that
detail the I/O relationships. Truth tables are usually presented in positive logic
form.

Step 4: Obtain the output functions. Map or use a minimization program to
obtain any minimum or reduced expressions that may be required for the output
functions.

Step 5: Construct the logic diagrams. Use either a gate or modular level ap-
proach (or both) to implement the logic expressions obtained in step 4. Imple-
ment from output to input, taking into account any mixed logic I/O conditions
and timing constraints that may be required.

Step 6: Check the results. Check the final logic circuit by simulation before
implementation as a physical device. Real-time tests of the physical device
should be the final test stage.

This text follows the six-step sequence where appropriate and does so without specifically
mentioning each step.

6.2 MULTIPLEXERS

There is a type of device that performs the function of selecting one of many data input
lines for transmission to some destination. This device is called a multiplexer (MUX for
short) or data selector. It requires n data select lines to control 2" data input lines. Thus,
a MUX is a 2"-input/l-output device (excluding the n data select inputs) identified by the
block diagram in Fig. 6.3a. Shown in Fig. 6.3b is the mechanical switch equivalent of the
MUX. Notice that the function of the enable (EN = G) is to provide a disable capability to
the device. Commercial MUX ICs usually come with active low enable, EN(L).
The general logic equation for the MUX of Fig. 6.3 can be expressed as

-]

Y = Z(mi .1,)- EN, (6.4)
i—0

where m; represents the ith minterm of the data select inputs (e.g., m; = S 1 -+ 8525.5)).
The validity of this equation will be verified in the following subsection on multiplexer
design.

6.2.1 Multiplexer Design

The easiest and most “logical” way to design a MUX is to represent the MUX by a com-
pressed, entered variable (EV) truth table. This is illustrated by the design of a 4-to-1
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FIGURE 6.3

A 2"-t0-1 multiplexer (MUX) or data selector. (a) Block diagram symbol. (b) Mechanical switch
equivalent.

(22-to-1) MUX with active low enable. Shown in Fig. 6.4 are the logic symbol, EV truth
table, and K-map for the 4-to-1 MUX. From the K-map there result the output expressions
given by

Y =$,SoloEN + S50/, EN + S, S41-EN + 8§,S01:EN
=molo EN +m L EN +niyLEN + mylsEN

2|
=Y (mi - 1)-EN, (6.5)

(=0

representing four data input lines, two data select lines, and one output. The circuit for the
4-to-1 MUX is obtained directly from Eq. (6.5) and is presented in Fig. 6.4d, together with
its shorthand circuit symbel given in Fig. 6.4¢.

An m x 2" input MUX can be produced by stacking m 2"-10-1 MUXs with outputs to an
m-to-1 MUX output stage. This is illustrated in Fig. 6.5, where four 8-to-1 (74x151) MUXs
are stacked to produce a 32-10-1 MUX. Notice that this MUX can be disabled simply by
using the EN(L) line to the output stage MUX. For an explanation of the part identification
notation (e.g., 74x- - -), see Subsection 6.1.4.

Many variations of the stacked MUX configuration are possible, limited only by the
availability of different MUX sizes. For example, two 16-to-1 MUXs combine to form a
32-to-1 MUX or four 4-to-1 MUXs combine to produce a 16-t0-1 MUX. In the former case
a 2-to-1 MUX must be used to complete the stack configuration, whereas in the latter case
a 4-to-1 MUX is required. There are other ways in which to stack and package MUXs. One
variation is illustrated in the discussion that follows.

More than one MUX can be packaged in an IC, and this can be done in a variety of
ways. One configuration is illustrated by the design of the 74x153 4-input/2-bit MUX
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FIGURE 6.4

Design of a 4-to-1 MUX or data selector. (a) Block diagram symbol. (b) Compressed EV truth table.
(c) MUX EV K-map. {d) Logic circuit for a 4-to-1 MUX with active low enable and mixed logic
output. (e) Shorthand 4-10-1 MUX circuit symbol,

shown in Fig. 6.6. Reading directly from the EV truth table in Fig. 6.6a yields the output
expressions

I¥= S‘lgulf(]- 1G +S|Sulf| . |G+S|§U]!2 NG+ 5851+ 1G

o » _ (6.6)
2Y = 8518020 - 2G + 8185021 - 2G + 518025 - 2G + 5150215 - 2G,
which are implemented with NAND/INV logic in Fig. 6.6c¢.
The traditional logic symbol for the "153 MUX is given in Fig. 6.6b. Notice that there
are two data select inputs that simultaneously control data selection to both outputs, and
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FIGURE 6.5
Four 8-to-1 MUXs and a 4-10-1 MUX combine 1o produce a 32-to-1 MUX having five data select
inputs S4, S1. 82, 8y, and Sy and an active low enable.

that there are two independently operated enable inputs, 1G and 2G, that enable or disable
either or both of the MUXs.

6.2.2 Combinational Logic Design with MUXs

A MUX is a function generator and can be used to implement a function in canonical form
or in compressed (reduced or minimum) form. To understand this, consider the function

YA B.C D)=Zm(3, 4,5,6,7,9,10, 12, 14, 15)
=]‘[ M(0,1,2,8.11,13). 6.7)

If this function is implemented with a 16-to-1 MUX, then all inputs representing minterms
in Eq. (6.7) are connected to logic 1 (HV) while all maxterms are connected to logic 0 (LV).
In this case the data select variables are the four function variables. But if it is desirable to
implement Eq. (6.7) with a 4-to-1 MUX, two levels of K-map compression are needed. as
in Fig. 6.7b.

Notice that the data select variables, §5; = A and Sy = B, form the axes of the MUX
K-map in Fig. 6.7b and that the functions generated by the 4-to-1 MUX in Fig. 6.7 are
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FIGURE 6.6
Design of the 74x153 4-input/2-bit MUX. (a) EV truth table. (b) Traditional logic symbol. {¢) Logic
diagram.
given by

Y =[ABCD + AB + AB(C ® D)+ AB(C + D))
or ; (6.8)
Y=[(A+B+CDYA+B+C® DA+ B+C+ D))

both of which are three-level hybrid forms that are generated (H) or (L) from the Y () and
Y (L) outputs of the MUX. The latter of the two may not seem obvious but is easily verified
by extracting cover in maxterm code from the second-order K-map in Fig. 6.7b. Note also
that if an 8-to-1 MUX is used to implement the function in Eq. (6.7), the K-map in Fig. 6.7a
applies, where the data select variables are now A, B, and C. In this case inputs [, and I,
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FIGURE 6.7

Implementation of the function in Eq. (6.7) by using a 4-to-1 MUX. (a), (b) First- and second-order
K-map compressions for the function Y. (c) Logic circuit.

are connected to D(H), inputs /5 and [ are connected to D(L), inputs /5, I3, and /5 connect
to 1{H), and 7y goes to ground O(H).

There still remains the problem of dealing with active low inputs to a MUX. The rules
are simply stated:

For Active Low Data Select Inputs 1o MUXs

(1) Complement the MUX K-map axis of any active low data select input and
renumber the K-map cells. The new cell numbers identify the MUX inputs to which
they must be connected.

or

(2) Use an inverter on the input of an active low data select input and do not
complement the MUX K-map axis.

For All Other Active Low Inputs

Active low nondata select inputs are dealt with as any combinational logic problem
with mixed-logic inputs (see, e.g., Section 3.7). Therefore, do nor complement any
EV subfunction in a MUX K-map.

To illustrate the problem of mixed-logic inputs to a MUX, consider the function of
Eq. (6.7) with inputs that arrive as A(#), B(L), C(H), and D(L). Implementation with a
4-to-1 MUX follows as in Fig. 6.8, where the B axis of the MUX K-map is complemented
since no inverter is used on the B(L) data select input line, Notice that no additional inverters
are required when compared to the implementation of Fig. 6.7, and that the resulting outputs
are identical to those of Eqs. (6.8). The use of an EQV gate in place of an XOR gate is a
consequence of the D(L) and the fact that only one inverter is used.
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FIGURE 6.8
Implementation of the function in Eq. {6.7) with mixed-logic inputs by using a 4-to-1 MUX. (a)
Second-order K-map compressions for the function ¥ showing the renumbered cells due to B(L). (b)
Logic circuit.

6.3 DECODERS/DEMULTIPLEXERS

A decoder is an n-input/2”"-output combinational logic device that has the function of
activating one of the 2" outputs for every unique binary input pattern of » bits. The circuit
symbol for an n-to-2" decoder is shown in Fig. 6.9a, where [,_; — I are the data inputs,
Yai_y — Yy are the outputs, and G is the enable. Each output is identified by the minterm
code m; of the binary input pattern it represents and can be represented, generally, as

¥ =m;  EN, (6.9)

whcrcm;, = in_| f3f|f-[;.m| = f,,_| igﬂf@,mz = iﬂ_| i f-zhf-u. and so on. For
this reason a decoder can be called a minterm code generator, Commercial decoders are
available in a variety of sizes and packaged configurations, but most all feature active low
outputs and an active low enable.

Shown in Fig. 6.9b is the same decoder used as a demultiplexer (DMUX). Now. the
active low enable EN(L) to the decoder becomes the single data input Ip.(L) to the
DMUX, and the datainputs fy. Ty, 1. ... 1, for the decoder become the data select inputs
So. 81, 82, ..., Sy for the DMUX. The outputs for the decoder and DMUX are the same
if it is understood that f; is replaced by §; in Eq. (6.9). The active low outputs and active low
enable are of particular importance when a decoder is used as a DMUX, since the DMUX
is often paired with a MUX for data routing as explained later.

6.3.1 Decoder Design

Decoder design is illustrated by the design of a 3-to-8 decoder. Shown in Fig. 6.10 is the
collapsed canonical YO truth table for the enable input (EN), the three data inputs (I3, /;,
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Generalization of a decoder/demultiplexer (DMUX). (a) An n-t0-2" decoder with an active low enable.
(b) The decoder of (a) used as a 1-10-2" DMUX with data input Tpu.(L).

and /) and the eight outputs Y7, ..

., Y2, ¥}, and ¥,. The truth table is termed a collapsed

truth table because of the irrefevant input symbol X used to represent either logic 0 or logic
L. Thus, X X X in the first row of the table represents eight minterms in variables /;. Notice
that only one minterm code line is activated for each corresponding three-bit binary pattern
that appears on the input with active EN.

Each output (¥;) column in Fig. 6.10 represents a third-order K-map containing a single
minterm ANDed with EN. However, it is not necessary to construct eight EV K-maps to
obtain the eight output expression for ¥;, since this information can be read directly from

EN hHh &L h|Y¥, Yo ¥s Y4» ¥v Yo ¥i Yo
0 X X X 0 0 0 0 4] 0 0 0
1 0 0 0 0 0 0 0 [} 0 0 1
1 0 0 1 0 0 0 0 4] 0 1 0
I 0 I 0 0 0 0 0 0 | 0 0
1 0 | 1 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
1 | 0 1 0 0 1 0 0 0 0 0
i 1 I () 0 1 0 0 0 0 0 0
I I 1 1 | 0 0 0 0 0 0 0

Yo=I,11Iy-EN
¥y =II Iy EN
Ya=Dhio- EN
Ys=1I:IIy- EN
Y=Ly EN
Ys = bl ly- EN
Yo = LI Ty-EN
YVo=h0LhLTy- EN

X indicates an irrelevant input and represents either logic 0 or logic 1.

FIGURE 6.10

Collapsed truth table for a 3-to-8 decoder/demultiplexer with enable showing output expressions that
derived directly from the truth table.
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FIGURE 6.11
Implementation of the 3-10-8 decoder/demultiplexer in Fig. 6.10. (a) Logic circuit with active low

outputs and active low enable. (b) Logic symbol. (¢) An alternative three-enable configuration used
by the commercial 74x138 decoder.

the truth table and is provided in the third column of Fig. 6.10. When the requirements of
active low outputs and active low enable are introduced, the ¥; expressions for the 3-to-8
decoder/demultiplexer in Fig. 6.10 are implemented with NAND/INV logic as shown in
Fig. 6.11a. Its logic symbol is given in Fig. 6.11(b).

A single enable input is used to enable or disable the decoder of Fig. 6.11. But other
enable configurations are common. For example, a commercially available 3-to-8 decoder,
the 74x138, has the same decoder logic as in Fig. 6.11a, except the commercial unit fea-
tures three enable inputs as indicated in Fig. 6.11c. Multiple enable inputs permit greater
versatility when controlling a given decoder from vartous sources.

Decoders can be stacked (cascaded) in hierarchical configurations to produce much larger
decoders. This requires that the 2™ outputs of one decoder drive the EN controls of 2" other
decoders, assuming that all outputs of the leading decoders are used, As an example, four
3-to-8 decoders are enable/selected by a 2-to-4 decoder in Fig. 6.12 to produce a 5-to-32
decoder. Similarly. two 4-10-16 decoders can be stacked to produce a 5-to-32 decoder when
enable/selected by a single inverter. Or cascading four 4-to-16 decoders produces a 6-to-64
decoder when enable/selected by a 2-to-4 decoder. Note that stacking any two decoders
requires only an inverter acting as a |-to-2 enable/select decoder.
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FIGURE 6.12
Stacking of four 3-to-8 decoders to produce a 5-to-32 decoder.

Decoders can be packaged in pairs such as the dual 2-to-4 74x139 decoder. Such a dual
set will have two independent enable inputs, one for each or the two 2-to-4 decoders. The
2-to-4 decoder in Fig. 6.12 is actually one half of the 74x139, indicated as %?4:{ 139.

6.3.2 Combinational Logic Design with Decoders

Decoders can be used effectively to implement any function represented in canonical form.
All that is needed is the external logic required to OR minterms for SOP representation or
to AND maxterms for POS representation. As a simple example, consider the two functions
in canonical form:

F(A.B,C):Zm(l.3,4.?) SopP

(6.10)
G(A, B, C)=[]M(2.3,5,6) POS.

Assuming that the inputs arrive as A(H ), B(H), C(H), and that the outputs are delivered
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Decoder implementations of Eqs. (6.10) assuming inputs and outputs are all active high.

active high, these two functions are implemented as given in Fig. 6.13. To understand why
function G is implemented with an AND gate, consider what is generated by the ANDing
operation;

G=rﬁg-rﬁg-rﬁ5-:ﬁ.ﬁ=M2-M3-Mg-M5=nM{2,3,S,6).

If it is desirable to issue G active low, a NAND gate would be used mn place of the AND
gate, Or if F is to be issued active low, an AND would be needed in place of the NAND.
Actually. to fully understand the versatile nature of function implementation with decoders,
the reader should experiment by replacing the NAND and AND gates in Fig. 6.13 with a
variety of gates, including treed XOR and EQV gates.

The problem of mixed-logic inputs can be dealt with in a manner similar to those issued
to MUXs. The rules are similar to those for MUXSs and are stated as follows:

For Mixed-Logic Data Inputs to Decoders
(1) Complement the bit of any active low input to a decoder and renumber the
minterms accordingly.
or

(2) Use an inverter on the input line of an active low input and do not complement
the bit.

Consider, as an example, the two functions of Egs. (6.10) with inputs that amrive as
A(H), B(L), and C(L). Functionally, the mixed-logic forms of Egs. (6.10) become

FeoplA(H), B(L), C(L)] = FsoplA, B, CI(H)
and (6.11)
G poslA(H), B(L), C(L)]=GproslA, B, CI(H).
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Then by Eqgs. (6.11) and if inverters are not to be used, the B and C bits must be comple-

mented:

my = 000 — 011 = m;
m; =001 — 010 = m,
my =010— 001 =m,
m3y = 011 — 000 = my

ngy = 100— 111 = m>
ms = 101 — 110 = m,
me = 110 — 101 = ms

= 111 — 100 = ma.

Thus, to accommodate the mixed-logic inputs, the two functions in Egs. (6.10) must be
connected to the decoder according to the renumbered functions

FIA(H), B(L). C(L)] =) _m(0,2,4,7) and
GIA(H), B(L), CAN =] M(0,1,5.6).

Of course, if inverters are used on the B(L) and C(L) inputs. no complementation is
necessary and the functions are implemented according to Eqs. (6.10).

Decoders, used as demultiplexers (DMUXs), are simply reoriented so that the active
low enable is the only data input. Now the f; inputs become the data select inputs §; as
in Fig. 6.9b. Used in conjunction with MUXs, the MUX/DMUX system offers a means
of time-shared bussing of multiple-line data X; on a single line as illustrated in Fig, 6.14.
Bussing data over large distances by using this system results in a significant savings on

hardware, but is a relatively slow process.

Source Destination
Xo(H — 1, Yo P— Xy(L) = X,(H)
Xy(H)— 1 Y, P— X.(L)=X,(H)
e e R 1-to 2" Y, P— X, (L) = X,(H)
MUX Y 96  pMuUX
(Decoder)
Xong(H) — by Yor 4 P— Xpn (L) = X504 (H)
Sn-‘i =i Sz 81 Sc Sn»‘l S, S_‘ Sy
I [ ] |1
\—v__/ \___\/_/
S, .. 5,5,S,(H) =2 / /
;_\/‘_}
n Data-Select Inputs
FIGURE 6.14

Generalization of a MUX/DMUX system for bussing data on 2" — 1 lines over a single time-shared
line from the MUX source to the DMUX destination.
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6.4 ENCODERS

By definition an encoder performs an operation that is the opposite to that of a decoder.
That is, an encoder must generate a different output bit pattern (code) for each input line
that becomes active. For a binary encoder, this requirement can be enforced only if one
output binary word of n bits is associated with only one of 2" “decimal” input lines
(0,1,2,3,...,2" — 1). Obviously, if more than one input line is active, the output be-
comes ambiguous in such an encoder. The ambiguity problem is overcome by prioritizing
the input. When this is done the result is called a priority encoder (PE), which assigns a
priority to each input according to a PE schedule for that encoder. Most encoders are PEs.

A priority encoder is generally an a-input/m-output (n < 2"} device as indicated by the
circuit symbol in Fig. 6.15, In addition to the n address inputs and m outputs, a commercial
PE will usually have three other input and output lines that are used to cascade (stack)
PEs: an enable-in input (E), an enable-out output (EQ), and a group signal output (GS).
The purpose of the GS output is to indicate any legitimate encoding condition, meaning that
El is active concurrently with a single active address input. All inputs and outputs of a PE
are active low as shown.

The design of a simple 3-input/2-output PE with cascading capability is illustrated in
Fig. 6.16. Shown in Fig. 6.16a is the priority schedule and the collapsed I/O truth table
for this encoder. The EV K-maps in Fig. 6.16b are plotted from the truth table, and the
minimum cover yields the following output expressions:

Y|=[2EI+]|EI H):ﬂan]—i-ngI

6.12
EO=51,1,EI GS=(L+ I, + Iy)EI = EO - EI. 1
These expressions are implemented with minimum logic in Fig. 6.16¢ for active low inputs
and outputs as required in Fig. 6.15. Notice that this circuit represents a simple multioutput
optimization, which is deduced by inspection of expressions for £EO and GS.

The outputs EQ and GS require special attention since their logic values have been
specifically chosen to make cascading of PEs possible. When the address inputs for the nth
stage are all inactive (logic 0), it is the function of EQ, to activate the (n — 1)th stage. This
assumes that prioritization is assigned from highest active input (decimal-wise) to lowest.
Therefore, EQ can be active only for inactive address inputs and active £1. It is the function

b b b &

I e U e SRl
n-to-m
Priority Encoder (PE)

EO Yma =t Yo Yy Yo GS

7T 7 TTT T
FIGURE 6.15

Logic symbol for an n-to-m priority encoder with cascading capability.




Priority Schedule El L, I, I, | GS Y1 Y0 EO
Null state 0 X X X 0 0 0 0
, (highest) -- encoded as 11 T 1 X X 1 11 0
I, (middle) -- encoded as 10 10 1 X 1 1 0 0
l, (lowest) -- encoded as 01 1T 0 0 1 10 1 0
Inactive state -- encoded 00 1T 0 0 0 0o 0 0 1
(@)

|1|D |1|0

N0 01 11 10 I,N_00 o1 11 10
G
0| 0 0 El El ol o El 0 0
N
.
(B Bl El __'EI| (e |ei| B E)
I [ Y, | [ | ¢,

b s
[,N_00 ot 1t 10 ;N0 ot 11 10

0 0 0 0 o] o El | EI | EI

® dhech
1| o 0 | o 0 NEE JE{“‘E]l
£0 : Gs
(b)

(L) (L) dgll)  ENL)

¢

EO(L) +D_ 6s(L)

Yy(L)

Yoll)

;ﬁ 3}— EO(L)

(c)
FIGURE 6.16

Design of a three-input priority encoder with cascading capability. (a} Priority schedule and collapsed

truth table. (b) EV K-maps. (¢) Minimized logic circuit.
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(GS,)
ELElGls I, 1y L 1 1, |Y,Y, Y, EO,E0, EIL)—dE, @8,b
Y
0 0 X X X X X000 0 0 I )—%d PE '
Yy P—
1 0 1 X X X X111 0 o
EO,
100 1 X X X X|[110 0 o0 D_I
10001 X X X|101 0 0 :
11700 01 X X |01 1 1 0 L
1100001 X010 1 0 El,  GS,p—
Y
1100000 1|00 1 1 0 Ll —%g PE;
11000000000 1 1 i
EO, b—
X = Irrelevant input (logic 0 or logic 1)
(a) (b)

FIGURE 6.17
Two 3-to-2 PEs in cascade to produce a 6-to-3 PE. (a) Collapsed truth table. (b) Logic circuit.

of the GS output to go active for any valid encoding condition for that stage, meaning EI
active concurrently with a single active address input, and to provide an additional output
bit (MSB) for each stage added in cascade fashion.

Two 3-to-2 PEs of the type in Fig. 6.16 are shown stacked in Fig. 6.17 to form a 6-to-3 PE.
The truth table for the two PE combination is given in Fig. 6.17a and includes the cascading
bits £/, EO, and GS for PE, and PE;;. From Egs. (6.12) and Fig. 6.17, the cascading bits for
the system are expressed as

GS,=EO,El,
EO, ‘:fsf,;fg.Efi = FEl (6.13)
EQ¢=L,1,1oEl.

Notice that S| = V> indicates a valid encoding condition only for active inputs /5, /4, and
I3, while GSy (not shown) indicates a valid encoding condition only for active inputs /5, {,
and fy. Output state 100 cannot occur according to Eqs. (6.12) and (6.13) and Fig. 6.17a.

Priority encoders of the type represented in Fig. 6.15 are commercially available as 1C
chips. Typically, they are produced in the 8-to-3 line size, such as the 74x148, which can
be stacked to produce 16-to-4 line and 32-10-5 line PEs. Their applications include code
conversion, code generation, and n-bit encoding in digital systems having a hierarchy of
subsystems that must be prioritized.

Those PEs that do not have EO and GS outputs, and hence cannot be stacked, are also
available commercially as ICs. Their design closely follows the design of PEs of the type in
Fig. 6.16. They are commonly produced in 9-to-4 line size for use as BCD priority enceding,
keyboard encoding, and range selection.

Ya(L)

Y, (L)

Yo(b)
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6.5 CODE CONVERTERS

Various codes are discussed at length in Section 2.10. On occasion it is necessary to convert
one code to another. Devices that are designed to execute a code conversion are called code
converters. Considering the many codes that are currently in use, it follows that there are
a very large number of converters possible. Not taking into account any particular area of
specialty, a few of the more common code conversions are as follows:

Binary-to-Gray conversion and vice versa
BCD-to-XS3 conversion and vice versa
Binary-to-BCD conversion and vice versa

6.5.1 Procedure for Code Converter Design

The following is a simple three-step procedure that will be followed in this text, often
without reference to this subsection:

1. Generally, follow the design procedure in Subsection 6.1.5.

2. 1f conversion involves any of the decimal code input (e.g., BCD), only 10 states can
be used. The six unused input states are called false data inputs. For these six states
the outputs must be represented either by don’t cares (¢’s) or by some unused output
state, for example all 1’s. That is, if the requirement is for false data rejection (FDR),
then the output states must correspond to at least one unused output state; if not,
¢’s are entered for the output states. Thus, FDR means that the outputs must never
correspond to a used output state when any one of the six unused states arrive at the
input terminals. If false data is not rejected, then the outputs corresponding to the six
unused states can take on any logic values, including those of used output states.

3. If the input code is any other than binary or BCD and if EV K-maps are to be used in
minimizing the logic, it is recommended that the input code be arranged in the order
of ascending binary, taking care to match each output state with its corresponding
input state.

6.5.2 Examples of Code Converter Design

Toillustrate the code converter design process, four examples are presented. These examples
are quite adequate since the conversion procedure varies only slightly from one conversion
to another. The four examples are Gray-to-binary conversion, BCD-to-XS3 conversion,
BCD-to-binary conversion, and BCD-to-seven-segment-display conversion. Of these, the
last two are by far the most complex and perhaps the most important considering that binary,
BCD, and the seven-segment display are commonly used in digital design and computer
technology.

Gray-to-Binary Conversion The Gray-to-binary conversion table for 4-bit codes is given
in Fig. 6.18a. Here, for convenience of plotting EV K-maps, the input Gray code and
the corresponding output binary code have been rearranged such that the Gray code is
given in ascending minterm code (compare Tables 2.1 and 2.12). The second-order EV
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Gray Binary Gray Binary
ABCD AB CD ABCD A'B CD
0000 0 000 1000 1T 111
00 01 0 00 1 10 01 1 110
0010 0 011 1010 1 100
00 11 0 0120 10 11 1 101
0100 0111 1100 1 000
0101 0110 1101 1001
0110 0 100 1110 1011
o1 11 0 101 T 111 1 010
(@)
B
A 0 1
By inspection 0 0 /0 AH) AH)
A=A 7
100 B'(H)
B{H
& (H)
B{J . B0 p
A - A C(H) C(H)
[efD] -[erfe
SRS [Shey| owdD—ow
c )

(b) (c)

FIGURE 6.18
Design of a 4-bit Gray-to-binary converter. (a) /O truth table. (b) Output EV K-maps plotted from
(a) showing minimum cover. (¢) Resulting logic circuit according to Eqs. (6.14).

K-maps, shown in Fig. 6. 18b, are plotted directly from the truth table and yield the minimum
cover,

A=A
B=A®B

(6.14)
C=ApBaC

D=AGBdCaeD,

from which the logic circuit of Fig. 6.18c¢ results. Noticing the trend in Eqgs. (6.14), it is clear
that an XOR gate is added in series fashion with each additional bit of the Gray-to-binary
conversion. With this trend in mind any size Gray-to-binary converter can be implemented
without the need to repeat the steps indicated in Fig. 6.18.

BCD-to-X53 Conversion As a second example, consider the conversion between two
decimal codes, BCD and XS3. Shown in Fig. 6.19a is the truth table for the BCD-10-X83
conversion where, for this design, false data is nor rejected. Thus, ¢'s become the output
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B B
A 0 1 A 0 4 —
0 0 c+D 0| C+D C+D
BCD XS3 Ej
ABCD|AB CD 1 (1 ¢-|) 1| C+D ¢
0000|0 0 11 5 A . B
0001|0100 A b . s o §
00100 1 01 = =
0011|0110 0| C&D | c@D 0 D D
01000 1 11 B 1N
0101|1000 1C=DJ¢ 1 [—)L—J{ﬁ
01101 0 01
0111|1010 (& D'
10001 0 11
10011 1 00 (b)
1010 T
1011
1100 d's
1101 A(H) A'(H)\
1110 B(H) —>o—
11 11 BCD, C(H) .
(@) Input D(H)@O—-— D_ BY(H) XS3
Qutput
C(H) e P
D(H)—
D'(H)
(c)
FIGURE 6.19

Design of the BCD-to- X583 converter without FDR. (a) Truth table. (b) EV K-maps showing minimum
cover. (c) Logic circuit according to Egs. (6.15).

XS$3 code patterns corresponding to the six unused input BCD states. The resulting EV
K-maps for the output functions are given in Fig. 6.19b, from which the gate-minimum
cover is extracted as

A=B(C+D)+ A
B'=B®(C+ D)
C'=CcobD
D'=D

(6.15)

representing a gate/input tally of 5/10, excluding inverters. The subfunctions for cell 2 in
Fig. 6.19b result from an appropriate use of the ¢'s. Shown in Fig. 6.19¢ is the three-level
logic circuit for this converter implemented with NOR/XOR/INV logic assuming that the
inputs and outputs are all active high. The subject of mixed logic inputs to an XOR gate is
discussed at length in Subsection 3.9.4.

Had FDR been a design objective for the BCD-t0-X53 converter, the ¢’s in Fig. 6.19a
would have to be replaced by an unused (FDR) output state. If the FDR state is taken to
be 1111, the K-maps of Fig. 6.19b are altered accordingly, and the resulting gate-minimum
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output expressions become

A'=B(C+D)+A
B'=B&(C+D)+ AB

C'=COD+ AC + AR (6.16)
=C® D+ AC+ AB
D'=D+ AC + AB,

now representing a gate/input tally of 10/22, excluding an inverter but including three shared
PIs. Clearly, the FDR feature comes at a significant price in terms of hardware. FDR states
other than the 1111 can be used, as for example the 0000 state, but all increase the cost in
hardware even further.

Conversion between BCD and Binary The BCD and binary codes are two of the most
widely used codes in digital design, so it is fitting that conversion between them be consid-
ered. The simplest approach is to establish workable algorithms to produce an expandable
modular design. Even so, such tasks rank among the more difficult conversion problems.
Consider, for example, that a two-digit BCD word converts to an 8-bit hinary number,
whereas an 8-bit binary word converts to a three-digit BCD representation.

Two algorithms will now be considered that make conversion between these two cades
tractable and that lead to modular designs. In these algorithms shifting right by one bit
is equivalent to dividing by 2 (sr]l = =-2) and shifting left by one bit is equivalent to
multiplying by 2 (s{1 = x2). Also, LSD and MSD refer to the least significant digit and
most significant digit, respectively, for the BCD number. A detailed treatment of the bi-
nary and BCD number systems is provided in Sections 2.3 and 2.4, and the pencil-and-
paper conversion method between the binary and BCD number systems is discussed in
Subsection 2.4.1.

The first of the two algorithms, the BCD-to-binary conversion, requires that the BCD
number first be placed in imaginary storage cells. For example, a two-decade BCD number
will occupy eight imaginary storage cells. After this has been done, then the algorithm
proceeds as follows:

Algorithm 6.1 BCD-to-Binary Conversion by the (=-2)/(—3) Process

(1) Shift the BCD number to the right by one bit into the new LSD position, but keeping
account of the bits shifted out of the LSD.

(2) Subtract 0011 from the LSD (or add 1101 to the LSD if in 2's complement) iff the
new LSD number is greater than 7 (0111). After subtracting 3, shift right immediately
even if the new LSD is greater than 7.

(3) Repeat steps (1) and (2) until the final LSD number can no longer be greater than
decimal 7. The answer is now in binary. '

Algorithm 6.1 is sometimes referred to as the shift-right/subtract 3 [or (+2)/(—3)] algo-
rithm. The algorithm for binary-to-BCD conversion can be thought of as the mathematical
dual of Algorithm 6.1. In this case the process could be called the shift-left/add 3 [or (x2)/
(+3)] algorithm. Begin by placing the binary number outside and to the right of the LSD
positiens, then proceed as follows:



6.5 CODE CONVERTERS 261

Algorithm 6.2 Binary-to-BCD Conversion by the (x2)/(+3) Process

(1) Shift the binary number to the left by one bit into the new LSD position.

(2) Add 0011 to the new LSD iff the new LSD number is greater than 4 (0100). After
adding 3, shift left immediately.

(3) Repeat steps (1) and (2). When all binary bits have been shifted into digit positions,
the process ceases and the answer is in BCD.

To design converters by either Algorithm 6.1 or 6.2, it is not necessary to resort to
arithmetic means as implied by the algorithms. Rather, 4 modular approach is easily estab-
lished by constructing a relatively simple truth table followed by appropriate minimization
methods. The process is now illustrated by designing an 8-bit BCD-to-binary converter.

BCD-to-Binary Conversion A truth table matching BCD with the corresponding binary
from O to 19 is given in Fig. 6.20a. Inherent in this truth table is the shift-right/subtract-3
Algorithm 6.1. The decimal range () to 19 is chosen to illustrate the process but is easily
extended to 39, 79, or 99, etc. This truth table will be used to design a BCD-to-binary
module that can be cascaded to produce any size converter. It is possible to use a decimal
range of 0 to 99 for this purpose. but the size of the module is considered too large to be of
value for this example.

Shown in Fig. 6.20b are the K-maps and minimum cover for four of the five output
functions of the 2-digit BCD-to-binary module. The two-level minimum expressions for
the BCD-to-binary module, as read from the K-maps and truth table, are

By=DyD>D| + Dy D;

By=DyD:Dy 4+ DyD;D, + DyDs

By =DyD->D)+ DsDs + DDy 6.17)
B =D;D,+ DDy =D, ® D,

By= Dy by inspection,

which represent a gate/input tally of 11/27 excluding inverters but including one shared PL
The logic circuit for this module is given in Fig. 6.21aand is cascaded in Fig. 6.2 1b to produce
the 8-bit BCD-to-binary converter. Notice that the four modules are cascaded in such a way
as to satisfy the right-shift requirement of Algorithm 6.1. If expansion beyond 8 bits is
needed, each additional bit requires that an additional module be added in cascade fashion.

BCD-to-Seven-Segment Display No discussion of code conversion is complete without
including the BCD-to-seven-segment decoder (converter). Light-emitting diodes (LEDs)
and liquid crystal displays (LCDs) are used extensively to produce the familiar Arabic
numerals. The use of the BCD-to-seven-segment decoder is an important means of accom-
plishing this.

Shown in Fig. 6.22a is the seven-segment display format and the ten decimal digits that
are produced by the decoder/display. The truth table for the converter is given in Fig. 6.22b
and features a blanking input BI, but lacks FDR since ¢'s are assigned to the six unused
input states.

The EV K-maps for the seven segment outputs are shown in Fig. 6.22c, where a
near-minimum POS cover for each has been looped out. This results in the following
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BCD Binary

A T L A A
b, D, D, D, D,| B,B;B, B;B, Dec. D,D, D,D,

DON_ 00 01 11 10 DDN_ 00 01 11 10
g gg 8 ? g 83 g? ? ool o |o|o]o ol ool o] o
00010[00010 2 o1| 0| ¢ | ¢ | |Gl e] ]9
00011/ 00011 3
00100[00100 4 W@l I@ALD| njo|[R] 4] ¢
00101] 00101 5
0 0
00110/ 00110 6 b e Y oD W] o |@]
00111 00111 7 B, B,
o1 000| 01000 8
01001/ 01001 9 - 6.0
21

:II g g g ? gjl g ‘11 ? 1? DLON 00 01 1110 DN 00 01 1110
1 0010| 01100 12 o 0|0 | 14N ool 0| 1110
00 1 1] 01101 13 orf o | ¢ | 4979 o1 o ¢ ¢ | ¢
1 0100| 01110 14
1010 1] 01111 15 1l o [@)] ¢ || ¢ 1 q ¢ | ¢ |(
101 10| 10000 16 ﬂ
1011 1] 1000 1 17 10 olﬂ 0 |\ m_ﬂ o [ o[
11000/ 10010 18 B, B,
1 17001 1001 1 19

(a) (b)

FIGURE 6.20
Design of an 8-bit BCD-10-binary converter. (a) Truth table for a 2-digit BCD-to-binary module. (b)
K-maps plotted directly from the truth table showing minimum cover.

expressions

a=(A+ B+ C+ D)B + D)

hb=B+COD=B+CaoD

=(B+C+DXB+C+D)

c=(B+C+D)

d=(B+C+ D)B+C & D) (6.18)
=(B+C+DXB+C+ D)B+C +D)

e=D(B +C)

f=(C +DXA+B+D)B+C)
g=(A+B+CYB+C+D),
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D,(H) DyH) D,H) D,H) MSD LSD
- i ~ -
Dg Dy Dy Dy Dy Dy D,
| | | |
D‘ D3 Dz D1
\ BCD-to-Binary Module
- D, D, D, D,
P BCD-to-Binary Module
& B,(H
2 ) B, B, B, B,
’ b, D D, D
BCD-to-Binary Module
:, B, B, B, B
7 B,(H)
b, Db, D, D
7 BCD-to-Binary Module
B, B, B, B
T | |
B‘JZB BS4 BﬁE B’IE BB Bd BZ
B4(H) \ v
8-bit Binary
(@) (b)
FIGURE 6.21

Implementation of the BCD-to-binary module and the 8-bit BCD-to-binary converter. (a) Logic
circuit for the 2-digit module according to Egs. (6.17). (b) Cascaded modules to produce the 8-bit
converter.

which represent a POS gate/input tally of 19/50, excluding inverters. Notice that two of
these seven expressions are also presented in hybrid (POS/XOR) form and that one, d, is a
three-level expression if the XOR term is considered one level as in Fig. 3.26a.

A BCD-to-seven-segment converter uses either a common cathode or common anode
LED display as shown in Fig. 6.23, but where the individual LEDs are arranged as in
Fig. 6.22a. The common anode configuration requires that the outputs in Egs. (6.18) be
active low while the common cathode configuration requires that they be active high. For
this example the common cathode configuration of LEDs is chosen, requiring that the
expressions in Egs. (6.18) be complemented and active low. When this is done, the resulting
two-level SOP (active low) expressions become Egs. (6.19),
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11000 [ 11711111 E_J 'I__J
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FIGURE 6.22

Near-minimum design of a BCD-to-seven-segment converter. (a) Display format and the ten decimal
digits. (b) Truth table with a blanking input and without FDR. {¢) EV K-maps for the seven-segment
outputs showing near-minimum POS cover as given by Eqgs. (6.18).

a(L)=[ABCD + BD)(L)

b(L)=[BCD + BCD](L)

c(L)=[BCDKL)

d(L)=[BCD + BCD + BCD\L) {6.19)
e(Ly=[D 4+ BC|(L)

f(LYy=[CD+ ABD + BCI(L)

g(L)=[ABC + BCD)(L)

and are implemented in Fig. 6.24, where the active low blanking input BI(L) is realized by
using inverting tri-state drivers with active low controls as in Fig. 3.8d. Thus, B! serves to
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Ry dhbid

(a) (b)

FIGURE 6.23
LED configurations for the BCD-to-seven-segment display converter. (a) Common anode. (b) Com-
mon cathode.

enable the decoder if BI(L) = 1(L), or disable it if BI(L) =0(L). Notice that the common
cathode configuration of LEDs in Fig. 6.23b requires the inputs to be 1(H) =HV to force
the diode into forward bias (conducting mode). Thus, a O(L) for any output in Eqs. (6.19)
is a 1(H), which is the same as a 1 in the positive logic truth table of Fig. 6.22b. Coupling
the decoder of Fig. 6.24 with the common anode configuration requires the use of nonin-
verting tri-state drivers with active low controls as in Fig. 3.8b. In this case, each output
in Egs. (6.19) would be issued active high such that any O(H) output (to the LED) forces a
diode in Fig. 6.23a into forward bias. A commercial IC chip with logic suitable for coupling
with the common anode LED configuration of Fig. 6.23a is the 74x49. Its logic differs
somewhat from that of Fig. 6.24 because it generates the blanking condition in a differ-
ent way — it uses a form of FDR — and it reverses the input lettering from MSB (D) to
LSB (A).

The blanking feature shown in Fig. 6.25 is useful in removing leading zeros in integer
displays and trailing zeros in fixed-point decimal displays. When the blanking feature is
used in this way it is called zero-blanking. For example, 036.70 would appear if no zeros are
blanked but would be 36.7 after zero-blanking. To accomplish the zero-blanking capability
requires that additional logic be connected to the BI input. The idea here is that when the
inputs to an MSD stage are zero, the zero-blanking logic must deactivate BI [BI(L) = 0(L)]
but must not do so for intermediate zeros as, for example, in 40.7. ICs with this capability
are designed with a zero-blanking input (ZBI) and a zero-blanking output (ZBO) so that
when the decade stages are connected together, ZBO-to-ZBI, zero blanking can ripple
in the direction of the radix point terminal. This is easily accomplished as illustrated in
Fig. 6.25 for an integer display, where external logic is connected to the B[ inputs of the
BCD-to-seven-segment decoders of Fig. 6.24 such that only leading zeros are blanked in
ripple fashion from MSD-to-LSD.

6.6 MAGNITUDE COMPARATORS

A device that determines which of two binary numbers is larger or if they are equal is called
a magnitude comparator or simply comparator. A vending machine, for example, must en-
gage a comparator each time a coin is inserted into the coin slot so that the desired item can be
dispensed when the correct change has been inserted. The block diagram symbol for an n-bit
comparator with cascading capability is given in Fig. 6.26. Here, it is to be understood that
grand (A > B)represent A greater than B; eq and (A = B) represent A equal to B; If and
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FIGURE 6.24

Logic circuit {a}and circuit symbol (b) for the BCD-to-seven-segment decoder according to Egs. (6.19)
and Fig. 6.22, featuring an active low blanking input B/ implemented by using inverting three-state
drivers with active low controls.

(A < B)represent A less than B. For cascading purposes, the inputs gz, eq, and Ir to the kth
stage are the outputs (A > B, A = B, and A < B) from the next least significant (k — 1)th
stage, while the corresponding outputs of the kth stage are the inputs (gt, eq, and /1) to the next
most significant (k + 1)th stage. Thus, the magnitudes of the kth stage are more significant
than those of the (k — 1)th stage, as the magnitudes of the (k + 1)th stage are more significant

g(L)
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FIGURE 6.25

BCD-to-seven-segment decoding with zero-blanking capability. (a) External logic required for zero
blanking. (b) Circuit symbol for zero-blanking decoder module. (¢) Cascaded modules for integer
representation showing rippled zero blanking of leading zeros from MSD-to-LSD stages.

than those of the kth stage, etc. Though seemingly trivial, these facts are important in estab-
lishing the proper truth table entries for comparator design, as the following examples will
illustrate.

The design of a useful cascadable comparator begins with the 1-bit design. Shown in
Fig. 6.27 are the EV truth table and EV K-maps for a cascadable 1-bit comparator. The

r Y

An-i'At} ani'BO
—»ql {A>B) |
—ieq n-Bit Comparator (A=B)[—»>
—» It (A<B){—>

FIGURE 6.26
Circuit symbol for an n-bit comparator with cascading capability.
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FIGURE 6.27

Design of a cascadable 1-bit comparator. (a) EV truth table. (b) Output EV K-maps showing minimum
cover with XOR-type functions.

gate-minimum cover for each of the three outputs, as extracted from the K-maps, is

(A> B)=g{AO B)+ AB
(A= B)=eq(AG B) , (6.20)
(A< B)=I{A® B)+ AB

as given in three-level form. These represent a gate/input tally of 8/16, excluding inverters.
Notice that in the truth table of Fig. 6.27a all three inputs, gt, eqg, and /t, appear only when
A and B are of equal magnitude and that logic 1 appears when one, A or B, dominates in
magnitude.

In order to establish an important trend in the output expressions, one that can be used
to establish the logic for any size comparator, it is helpful to construct the truth table and
EV K-maps for a cascadable 2-bit comparator. These are provided in Fig. 6.28. As in the
1-bit comparator design, the EVs (g1, eg, and 1) in the truth table of Fig. 6.28a are the
outputs from the next least significant stage, which explains why they appear only when A
and B are of equal magnitude. The gate-minimum output cover given in Fig. 6.28b yields
the following expressions in three-level form:

(A > B)=gtABy(A, © B)) + Av(gt + By)(A, © B)) + A, B,
= gt(A| © Bi)(Ap © Bo) + AeBo(A| © B)) + A B

| (A4 = B)=eqAsBo(A) @ Bi) + eqAoBo(A| © By) ’ 621)
=eq(A| © B1)(Ay © By)

(A < BY=Ap(lt + ByX(A, ® B))+ ItAuBy(A, © By)+ A, B,

=I(A; © B|)(Ay © By) + AgBy(A, © B)) + A B,

These represent a gate/input tally of 11/29 (excluding inverters) with a maximum fan-in of
4. Notice that in arriving at the second equation for each of the outputs, use is made of the
absorptive law, Eqgs. (3.13), in the form gt + Bo = gtBy + By and It + By = [tBy + By. In
comparison, a two-level optimization of this comparator gives a gate/input tally of 21/60,
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