

Engineering
Digital Design
Second Edition, Revised

This page intentionally left blank

Engineering
Digital Design
Second Edition, Revised

by

RICHARD F. TINDER
School of Electrical Engineering and Computer Science
Washington State University
Pullman, Washington

ACADEMIC PRESS
A Harcourt Science and Technology Company

SAN DIEGO/SAN FRANCISCO/NEW YORK/BOSTON/LONDON/SYDNEY/TOKYO

J.

Copyright ©2000, Elsevier Science (USA).

All Rights Reserved.
No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to:
Permissions Department, Academic Press, 6277 Sea Harbor Drive,
Orlando, Florida 32887-6777

Academic Press
An imprint of Elsevier Science
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
http://www.academicpress.com

Academic Press
84 Theobalds Road, London WC1X 8RR, UK
http://www.academicpress.com

Library of Congress Catalog Card Number: 99-066780

International Standard Book Number: 0-12-691295-5

PRINTED IN THE UNITED STATES OF AMERICA
02 03 04 05 06 07 MV 9 8 7 6 5 4 3 2

Disclaimer:
This eBook does not include the ancillary media that was
packaged with the original printed version of the book.

This book is lovingly dedicated to my partner in life, Gloria

This page intentionally left blank

For the sake of persons of different types, scientific truth should
be presented in different forms, and should be regarded as equally
scientific, whether it appears in the robust form and the vivid coloring
of a physical illustration, or in the tenuity and paleness of a symbolic
expression.

James Clerk Maxwell
Address to the Mathematics and Physical Section,

British Association of Sciences, 1870

This page intentionally left blank

Contents

Preface xix

1. Introductory Remarks and Glossary 1

1.1 What Is So Special about Digital Systems? 1
1.2 The Year 2000 and Beyond? 3
1.3 A Word of Warning 5
1.4 Glossary of Terms, Expressions, and Abbreviations 5

2. Number Systems, Binary Arithmetic, and Codes 31

2.1 Introduction 31
2.2 Positional and Polynomial Representations 32
2.3 Unsigned Binary Number System 33
2.4 Unsigned Binary Coded Decimal, Hexadecimal, and Octal 34

2.4.1 The BCD Representation 34
2.4.2 The Hexadecimal and Octal Systems 36

2.5 Conversion between Number Systems 37
2.5.1 Conversion of Integers 38
2.5.2 Conversion of Fractions 40

2.6 Signed Binary Numbers 43
2.6.1 Signed-Magnitude Representation 44
2.6.2 Radix Complement Representation 45
2.6.3 Diminished Radix Complement Representation 48

2.7 Excess (Offset) Representations 49
2.8 Floating-Point Number Systems 49
2.9 Binary Arithmetic 52

2.9.1 Direct Addition and Subtraction of Binary Numbers 52
2.9.2 Two's Complement Subtraction 53
2.9.3 One's Complement Subtraction 54
2.9.4 Binary Multiplication 55
2.9.5 Binary Division 58
2.9.6 BCD Addition and Subtraction 62
2.9.7 Floating-Point Arithmetic 64
2.9.8 Perspective on Arithmetic Codes 67

2.10 Other Codes 68
2.10.1 The Decimal Codes 68
2.10.2 Error Detection Codes 69
2.10.3 Unit Distance Codes 70
2.10.4 Character Codes 70
Further Reading 72
Problems 72

ix

CONTENTS

3. Background for Digital Design 79

3.1 Introduction 79
3.2 Binary State Terminology and Mixed Logic Notation 79

3.2.1 Binary State Terminology 79
3.3 Introduction to CMOS Terminology and Symbology 82
3.4 Logic Level Conversion: The Inverter 83
3.5 Transmission Gates and Tri-State Drivers 84
3.6 AND and OR Operators and Their Mixed-Logic Circuit Symbology 87

3.6.1 Logic Circuit Symbology for AND and OR 87
3.6.2 NAND Gate Realization of Logic AND and OR 88
3.6.3 NOR Gate Realization of Logic AND and OR 89
3.6.4 NAND and NOR Gate Realization of Logic Level Conversion 90
3.6.5 The AND and OR Gates and Their Realization of Logic

AND and OR 92
3.6.6 Summary of Logic Circuit Symbols for the AND and OR Functions

and Logic Level Conversion 94
3.7 Logic Level Incompatibility: Complementation 95
3.8 Reading and Construction of Mixed-Logic Circuits 97
3.9 XOR and EQV Operators and Their Mixed-Logic Circuit Symbology 98

3.9.1 The XOR and EQV Functions of the XOR Gate 100
3.9.2 The XOR and EQV Functions of the EQV Gate 100
3.9.3 Multiple Gate Realizations of the XOR and EQV Functions 101
3.9.4 The Effect of Active Low Inputs to the XOR and EQV Circuit Symbols 102
3.9.5 Summary of Conjugate Logic Circuit Symbols for XOR and EQV Gates 103
3.9.6 Controlled Logic Level Conversion 103
3.9.7 Construction and Waveform Analysis of Logic Circuits Containing

XOR-Type Functions 104
3.10 Laws of B oolean Algebra 105

3.10.1 NOT, AND, and OR Laws 106
3.10.2 The Concept of Duality 107
3.10.3 Associative, Commutative, Distributive, Absorptive, and

Consensus Laws 108
3.10.4 DeMorgan's Laws 110

3.11 Laws of XOR Algebra 111
3.11.1 Two Useful Corollaries 114
3.11.2 Summary of Useful Identities 115

3.12 Worked Examples 116
Further Reading 120
Problems 121

4. Logic Function Representation and Minimization 131

4.1 Introduction 131
4.2 SOP and POS Forms 131

4.2.1 The SOP Representation 131
4.2.2 The POS Representation 134

4.3 Introduction to Logic Function Graphics 137
4.3.1 First-Order K-maps 138
4.3.2 Second-Order K-maps 138
4.3.3 Third-Order K-maps 140
4.3.4 Fourth-Order K-maps 143

CONTENTS xi

4.4 Karnaugh Map Function Minimization 144
4.4.1 Examples of Function Minimization 146
4.4.2 Prime Implicants 148
4.4.3 Incompletely Specified Functions: Don't Cares 150

4.5 Multiple Output Optimization 152
4.6 Entered Variable K-map Minimization 158

4.6.1 Incompletely Specified Functions 162
4.7 Function Reduction of Five or More Variables 165
4.8 Minimization Algorithms and Application 169

4.8.1 The Quine-McCluskey Algorithm 169
4.8.2 Cube Representation and Function Reduction 173
4.8.3 Qualitative Description of the Espresso Algorithm 173

4.9 Factorization, Resubstitution, and Decomposition Methods 174
4.9.1 Factorization 175
4.9.2 Resubstitution Method 176
4.9.3 Decomposition by Using Shannon's Expansion Theorem 177

4.10 Design Area vs Performance 180
4.11 Perspective on Logic Minimization and Optimization 181
4.12 Worked EV K-map Examples 181

Further Reading 188
Problems 189

5. Function Minimization by Using K-map XOR Patterns and Reed-Muller
Transformation Forms 197

5.1 Introduction 197
5.2 XOR-Type Patterns and Extraction of Gate-Minimum Cover from

EV K-maps 198
5.2.1 Extraction Procedure and Examples 200

5.3 Algebraic Verification of Optimal XOR Function Extraction from
K-maps 204

5.4 K-map Plotting and Entered Variable XOR Patterns 205
5.5 The SOP-to-EXSOP Reed-Muller Transformation 207
5.6 The POS-to-EQPOS Reed-Muller Transformation 208
5.7 Examples of Minimum Function Extraction 209
5.8 Heuristics for CRMT Minimization 217
5.9 Incompletely Specified Functions 218
5.10 Multiple Output Functions with Don't Cares 222
5.11 K-map Subfunction Partitioning for Combined CRMT and Two-Level

Minimization 225
5.12 Perspective on the CRMT and CRMT/Two-Level Minimization Methods 229

Further Reading 229
Problems 230

6. Nonarithmetic Combinational Logic Devices 237

6.1 Introduction and Background 237
6.1.1 The Building Blocks 237
6.1.2 Classification of Chips 238
6.1.3 Performance Characteristics and Other Practical Matters 238
6.1.4 Part Numbering Systems 241
6.1.5 Design Procedure 241

xii CONTENTS

6.2 Multiplexers 242
6.2.1 Multiplexer Design 242
6.2.2 Combinational Logic Design with MUXs 245

6.3 Decoders/Demultiplexers 248
6.3.1 Decoder Design 248
6.3.2 Combinational Logic Design with Decoders 251

6.4 Encoders 254
6.5 Code Converters 257

6.5.1 Procedure for Code Converter Design 257
6.5.2 Examples of Code Converter Design 257

6.6 Magnitude Comparators 265
6.7 Parity Generators and Error Checking Systems 273
6.8 Combinational Shifters 275
6.9 Steering Logic and Tri-State Gate Applications 278
6.10 Introduction to VHDL Description of Combinational Primitives 279

Further Reading 287
Problems 288

7. Programmable Logic Devices 295

7.1 Introduction 295
7.2 Read-Only Memories 295

7.2.1 PROM Applications 299
7.3 Programmable Logic Arrays 301

7.3.1 PLA Applications 302
7.4 Programmable Array Logic Devices 307
7.5 Mixed-Logic Inputs to and Outputs from ROMs, PLAs, and PAL Devices 310
7.6 Multiple PLD Schemes for Augmenting Input and Output Capability 312
7.7 Introduction to FPGAs and Other General-Purpose Devices 317

7.7.1 AND-OR-Invert and OR-AND-Invert Building Blocks 317
7.7.2 Actel Field Programmable Gate Arrays 319
7.7.3 Xilinx FPGAs 321
7.7.4 Other Classes of General-Purpose PLDs 328

7.8 CAD Help in Programming PLD Devices 328
Further Reading 330
Problems 331

8. Arithmetic Devices and Arithmetic Logic Units (ALUs) 335

8.1 Introduction 335
8.2 Binary Adders 335

8.2.1 The Half Adder 336
8.2.2 The Full Adder 337
8.2.3 Ripple-Carry Adders 338

8.3 Binary Subtracters 340
8.3.1 Adder/Subtractors 342
8.3.2 Sign-Bit Error Detection 343

8.4 The Carry Look-Ahead Adder 345
8.5 Multiple-Number Addition and the Carry-Save Adder 349
8.6 Multipliers 350
8.7 Parallel Dividers 353

CONTENTS xiii

8.8 Arithmetic and Logic Units 357
8.8.1 Dedicated ALU Design Featuring R-C and CLA Capability 358
8.8.2 The MUX Approach to ALU Design 363

8.9 Dual-Rail Systems and ALUs with Completion Signals 369
8.9.1 Carry Look-Ahead Configuration 378

8.10 VHDL Description of Arithmetic Devices 380
Further Reading 383
Problems 385

9. Propagation Delay and Timing Defects in Combinational Logic 391

9.1 Introduction 391
9.2 Static Hazards in Two-Level Combinational Logic Circuits 392
9.3 Detection and Elimination Hazards in Multilevel XOR-Type Functions 399

9.3.1 XOP and EOS Functions 400
9.3.2 Methods for the Detection and Elimination of Static Hazards in

Complex Multilevel XOR-type Functions 403
9.3.3 General Procedure for the Detection and Elimination of Static Hazards

in Complex Multilevel XOR-Type Functions 408
9.3.4 Detection of Dynamic Hazards in Complex Multilevel XOR-Type

Functions 409
9.4 Function Hazards 412
9.5 Stuck-at Faults and the Effect of Hazard Cover on Fault Testability 412

Further Reading 413
Problems 415

10. Introduction to Synchronous State Machine Design and Analysis 419

10.1 Introduction 419
10.1.1 A Sequence of Logic States 420

10.2 Models for Sequential Machines 421
10.3 The Fully Documented State Diagram: The Sum Rule 424
10.4 The Basic Memory Cells 428

10.4.1 The Set-Dominant Basic Cell 428
10.4.2 The Reset-Dominant Basic Cell 431
10.4.3 Combined Form of the Excitation Table 433
10.4.4 Mixed-Rail Outputs of the Basic Cells 434
10.4.5 Mixed-Rail Output Response of the Basic Cells 435

10.5 Introduction to Flip-Flops 436
10.5.1 Triggering Mechanisms 437
10.5.2 Types of Flip-Flops 438
10.5.3 Hierarchical Flow Chart and Model for Flip-Flop Design 438

10.6 Procedure for FSM (Flip-Flop) Design and the Mapping Algorithm 440
10.7 The D Flip-Flops: General 440

10.7.1 TheD-Latch 441
10.7.2 The RET D Flip-Flop 444
10.7.3 The Master-Slave D Flip-Flop 448

10.8 Flip-Flop Conversion: The T, JK Flip-Flops and Miscellaneous Flip-Flops 450
10.8.1 The T Flip-Flops and Their Design from D Flip-Flops 451
10.8.2 The JK Flip-Flops and Their Design from D Flip-Flops 453
10.8.3 Design of T and D Flip-Flops from JK Flip-Flops 455

xiv CONTENTS

10.8.4 Review of Excitation Tables 457
10.8.5 Design of Special-Purpose Flip-Flops and Latches 459

10.9 Latches and Flip-Flops with Serious Timing Problems: A Warning 461
10.10 Asynchronous Preset and Clear Overrides 463
10.11 Setup and Hold-Time Requirements of Flip-Flops 465
10.12 Design of Simple Synchronous State Machines with Edge-Triggered Flip-

Flops: Map Conversion 466
10.12.1 Design of a Three-Bit Binary Up/Down Counter: D-to-T K-map

Conversion 466
10.12.2 Design of a Sequence Recognizer: D-to-JK K-map Conversion 471

10.13 Analysis of Simple State Machines 476
10.14 VHDL Description of Simple State Machines 480

10.14.1 The VHDL Behavorial Description of the RET D Flip-flop 480
10.14.2 The VHDL Behavioral Description of a Simple FSM 481
Further Reading 482
Problems 483

11. Synchronous FSM Design Considerations and Applications 491

11.1 Introduction 491
11.2 Detection and Elimination of Output Race Glitches 491

11.2.1 ORG Analysis Procedure Involving Two Race Paths 496
11.2.2 Elimination of ORGs 496

11.3 Detection and Elimination of Static Hazards in the Output Logic 499
11.3.1 Externally Initiated Static Hazards in the Output Logic 500
11.3.2 Internally Initiated Static Hazards in the Output of Mealy and

Moore FSMs 502
11.3.3 Perspective on Static Hazards in the Output Logic of FSMs 509

11.4 Asynchronous Inputs: Rules and Caveats 510
11.4.1 Rules Associated with Asynchronous Inputs 510
11.4.2 Synchronizing the Input 511
11.4.3 Stretching and Synchronizing the Input 512
11.4.4 Metastability and the Synchronizer 514

11.5 Clock Skew 517
11.6 Clock Sources and Clock Signal Specifications 520

11.6.1 Clock-Generating Circuitry 520
11.6.2 Clock Signal Specifications 521
11.6.3 Buffering and Gating the Clock 522

11.7 Initialization and Reset of the FSM: Sanity Circuits 522
11.7.1 Sanity Circuits 523

11.8 Switch Debouncing Circuits 526
11.8.1 The Single-Pole/Single-Throw Switch 526
11.8.2 The Single-Pole/Double-Throw Switch 528
11.8.3 The Rotary Selector Switch 529

11.9 Applications to the Design of More Complex State Machines 530
11.9.1 Design Procedure 530
11.9.2 Design Example: The One- to Three-Pulse Generator 532

11.10 Algorithmic State Machine Charts and State Tables 536
11.10.1 ASM Charts 537
11.10.2 State Tables and State Assignment Rules 539

11.11 Array Algebraic Approach to Logic Design 542

CONTENTS XV

11.12 State Minimization 547
Further Reading 549
Problems 551

12. Module and Bit-Slice Devices 561

12.1 Introduction 561
12.2 Registers 561

12.2.1 The Storage (Holding) Register 562
12.2.2 The Right Shift Register with Synchronous Parallel Load 562
12.2.3 Universal Shift Registers with Synchronous Parallel Load 565
12.2.4 Universal Shift Registers with Asynchronous Parallel Load 568
12.2.5 Branching Action of a 4-Bit USR 570

12.3 Synchronous Binary Counters 572
12.3.1 Simple Divide-by-TV Binary Counters 573
12.3.2 Cascadable BCD Up-Counters 575
12.3.3 Cascadable Up/Down Binary Counters with Asynchronous

Parallel Load 579
12.3.4 Binary Up/Down Counters with Synchronous Parallel Load and True

Hold Capability 581
12.3.5 One-B it Modular Design of Parallel Loadable Up/Down Counters with

True Hold 584
12.3.6 Perspective on Parallel Loading of Counters and Registers:

Asynchronous vs Synchronous 588
12.3.7 Branching Action of a 4-Bit Parallel Loadable Up/Down Counter 589

12.4 Shift-Register Counters 590
12.4.1 Ring Counters 590
12.4.2 Twisted Ring Counters 593
12.4.3 Linear Feedback Shift Register Counters 594

12.5 Asynchronous (Ripple) Counters 600
Further Reading 605
Problems 606

13. Alternative Synchronous FSM Architectures and Systems-Level Design 613

13.1 Introduction 613
13.1.1 Choice of Components to be Considered 613

13.2 Architecture Centered around Nonregistered PLDs 614
13.2.1 Design of the One- to Three-Pulse Generator by Using a PLA 615
13.2.2 Design of the One- to Three-Pulse Generator by Using a PAL 617
13.2.3 Design of the One- to Three-Pulse Generator by Using a ROM 618
13.2.4 Design of a More Complex FSM by Using a ROM as the PLD 622

13.3 State Machine Designs Centered around a Shift Register 626
13.4 State Machine Designs Centered around a Parallel Loadable Up/Down

Counter 632
13.5 The One-Hot Design Method 636

13.5.1 Use of ASMs in One-Hot Designs 640
13.5.2 Application of the One-Hot Method to a Serial 2's Complementer 643
13.5.3 One-Hot Design of a Parallel-to-Serial Adder/Subtractor Controller 645
13.5.4 Perspective on the Use of the One-Hot Method: Logic Noise and Use

of Registered PLDs 647

xvi CONTENTS

13.6 System-Level Design: Controller, Data Path, and Functional Partition 649
13.6.1 Design of a Parallel-to-Serial Adder/Subtractor Control System 651
13.6.2 Design of a Stepping Motor Control System 655
13.6.3 Perspective on System-Level Design in This Text 666

13.7 Dealing with Unusually Large Controller and System-Level Designs 666
Further Reading 668
Problems 670

14. Asynchronous State Machine Design and Analysis: Basic Concepts 683

14.1 Introduction 683
14.1.1 Features of Asynchronous FSMs 684
14.1.2 Need for Asynchronous FSMs 685

14.2 The Lumped Path Delay Models for Asynchronous FSMs 685
14.3 Functional Relationships and the Stability Criteria 687
14.4 The Excitation Table for the LPD Model 688
14.5 State Diagrams, K-maps, and State Tables for Asynchronous FSMs 689

14.5.1 The Fully Documented State Diagram 689
14.5.2 Next-State and Output K-maps 690
14.5.3 State Tables 691

14.6 Design of the Basic Cells by Using the LPD Model 692
14.6.1 The Set-Dominant Basic Cell 692
14.6.2 The Reset-Dominant Basic Cell 694

14.7 Design of the Rendezvous Modules by Using the Nested Cell Model 695
14.8 Design of the RET D Flip-Flop by Using the LPD Model 698
14.9 Design of the RET JK Flip-Flop by Flip-Flop Conversion 700
14.10 Detection and Elimination of Timing Defects in Asynchronous FSMs 701

14.10.1 Endless Cycles 702
14.10.2 Races and Critical Races 703
14.10.3 Static Hazards in the NS and Output Functions 705
14.10.4 Essential Hazards in Asynchronous FSMs 711
14.10.5 Perspective on Static Hazards and E-hazards in

Asynchronous FSMs 718
14.11 Initialization and Reset of Asynchronous FSMs 719
14.12 Single-Transition-Time Machines and the Array Algebraic Approach 720
14.13 Hazard-Free Design of Fundamental Mode State Machines by Using the Nested

Cell Approach 730
14.14 One-Hot Design of Asynchronous State Machines 734
14.15 Perspective on State Code Assignments of Fundamental Mode FSMs 738
14.16 Design of Fundamental Mode FSMs by Using PLDs 740
14.17 Analysis of Fundamental Mode State Machines 741

Further Reading 758
Problems 759

15. The Pulse Mode Approach to Asynchronous FSM Design 773

15.1 Introduction 773
15.2 Pulse Mode Models and System Requirements 773

15.2.1 Choice of Memory Elements 774
15.3 Other Characteristics of Pulse Mode FSMs 777
15.4 Design Examples 779
15.5 Analysis of Pulse Mode FSMs 788

CONTENTS xvn

15.6 Perspective on the Pulse Mode Approach to FSM Design 795
Further Reading 796
Problems 797

16. Externally Asynchronous/Internally Clocked (Pausable) Systems
and Programmable Asynchronous Sequencers 805

16.1 Introduction 805
16.2 Externally Asynchronous/Internally Clocked Systems and Applications 806

16.2.1 Static Logic DFLOP Design 807
16.2.2 Domino Logic DFLOP Design 812
16.2.3 Introduction to CMOS Dynamic Domino Logic 814
16.2.4 EAIC System Design 816
16.2.5 System Simulations and Real-Time Tests 817
16.2.6 Variations on the Theme 820
16.2.7 How EAIC FSMs Differ from Conventional Synchronous FSMs 821
16.2.8 Perspective on EAIC Systems as an Alternative Approach to FSM

Design 822
16.3 Asynchronous Programmable Sequencers 823

16.3.1 Microprogrammable Asynchronous Controller Modules and
System Architecture 823

16.3.2 Architecture and Operation of the MAC Module 824
16.3.3 Design of the MAC Module 827
16.3.4 MAC Module Design of a Simple FSM 830
16.3.5 Cascading the MAC Module 832
16.3.6 Programming the MAC Module 833
16.3.7 Metastability and the MAC Module: The Final Issue 834
16.3.8 Perspective on MAC Module FSM Design 834

16.4 One-Hot Programmable Asynchronous Sequencers 835
16.4.1 Architecture for One-Hot Asynchronous Programmable

Sequencers 835
16.4.2 Design of a Four-State Asynchronous One-Hot Sequencer 837
16.4.3 Design and Operation of a Simple FSM by Using a Four-State

One-Hot Sequencer 838
16.4.4 Perspective on Programmable Sequencer Design and

Application 839
16.5 Epilogue to Chapter 16 842

Further Reading 842
Problems 844

A Other Transistor Logic Families 849

A. 1 Introduction to the Standard NMOS Logic Family 849
A.2 Introduction to the TTL Logic Family 850
A.3 Performance Characteristics of Important 1C Logic Families 852

Further Reading 852

B Computer-Aided Engineering Tools 855

B.I Productivity Tools Bundled with this Text 855
B.2 Other Productivity Tools 855

Further Reading 857

xviii CONTENTS

C IEEE Standard Symbols 859

C.I Gates 859
C.2 Combinational Logic Devices 859
C.3 Flip-Flops, Registers, and Counters 860

Further Reading 862

Index 863

Preface

TEXT OVERVIEW

This text emphasizes the successful engineering design of digital devices and machines from
first principles. A special effort has been made not to "throw" logic circuits at the reader so
that questions remain as to how the circuits came about or whether or not they will function
correctly. An understanding of the intricacies of digital circuit design, particularly in the
area of sequential machines, is given the highest priority — the emphasis is on error-free
operation. From an engineering point of view, the design of a digital device or machine is
of little or no value unless it performs the intended operation(s) correctly and reliably.

Both the basics and background fundamentals are presented in this text. But it goes well
beyond the basics to provide significant intermediate-to-advanced coverage of digital design
material, some of which is covered by no other text. In fact, this text attempts to provide
course coverage at both the first and second levels — an ambitious undertaking. The aim
is to provide the reader with the tools necessary for the successful design of relatively
complex digital systems from first principles. In doing so, a firm foundation is laid for the
use of CAD methods that are necessary to the design of large systems. In a related sense,
VHDL behavioral and architectural descriptions of various machines, combinational and
sequential, are provided at various points in the text for those instructors and students who
wish to have or require a hardware description language in the study of digital design.

The text is divided into 16 relatively small chapters to provide maximum versatility in its
use. These chapters range from introductory remarks to advanced topics in asynchronous
systems. In these chapters an attempt is made to replace verbosity by illustration. Students
generally do not like to read lengthy verbal developments and explanations when simple
illustrations suffice. Well more than 600 figures and tables help to replace lengthy expla-
nations. More than 1000 examples, exercises, and problems (worked and unworked, single
and multiple part) are provided to enhance the learning process. They range in complex-
ity from simple algebraic manipulations to multipart system-level designs, each carefully
chosen with a specific purpose in mind. Annotated references appear at the end of each
chapter, and an appendix at the end of the text provides the details of subjects thought to
be peripheral to the main thrust of the text. Chapter 1 breaks with tradition in providing
a complete glossary of terms, expressions, and abbreviations that serves as a conspicuous
and useful source of information.

SUBJECT AREAS OF PARTICULAR STRENGTH IN THIS TEXT

Like others, this text has its subject areas of strengths — those that are uniquely presented in
sufficient detail as to stand out as significant didactic and edifying contributions. This text

xix

XX PREFACE

breaks with tradition in providing unique coverage in several important areas. In addition to
the traditional coverage, the following 20 subject areas are of particular strength in this text:

1. Thorough coverage of number systems, arithmetic methods and algorithms, and codes

2. Mixed logic notation and symbology used throughout the text

3. Emphasis on CMOS logic circuits
4. Unique treatment of conventional Boolean algebra and XOR algebra as these subjects

relate to logic design
5. Entered variable mapping methods as applied throughout the text to combinational

and sequential logic design
6. Applications of Reed-Muller transformation forms to function minimization

7. Nonarithmetic combinational logic devices such as comparators, shifters, and FPGAs

8. Arithmetic devices such as carry-save adders, multipliers, and dividers

9. Three uniquely different ALU designs, including an introduction to dual-rail systems
and ALUs with completion signal and carry look-ahead capability

10. Detection and elimination methods for static hazards in two-level and multilevel (e.g.,
XOR-type) circuits including the use of binary decision diagrams (BDDs)

11. Design and analysis of flip-flops provided in a simple, well organized fashion
12. Detection and elimination of timing defects in synchronous sequential circuits

13. Input synchronization and debouncing, and FSM initialization and reset methods

14. Use of unique modular methods in the design of shift registers and counters

15. Complete coverage of ripple counters, ring counters and linear feedback shift register
(LFSR and ALFSR) counters

16. Application of the array algebraic and one-hot approaches to synchronous FSM design
17. Detection and elimination of timing defects in asynchronous fundamental mode FSMs
18. Design and analysis of asynchronous FSMs including the nested cell approach, single

transition time (STT) machines by using array algebra, and the one-hot code method

19. High speed externally asynchronous/internally clocked systems, including an intro-
duction to dynamic domino logic applications

20. Programmable asynchronous sequencers

READERSHIP AND COURSE PREREQUISITES

No prior background in digital design is required to enter a first course of study by using
this text. It is written to accommodate both the first- and second-level user. What is required
is that the reader have sufficient maturity to grasp some of the more abstract concepts that
are unavoidable in any digital design course of study. It has been the author's experience
that digital design makes an excellent introduction to electrical and computer engineering
because of the absolute and precise nature of the subjects — there are no approximation
signs. This text is designed to make first reading by a user a rewarding experience. However,
there is sufficient advanced material to satisfy the needs of the second level students and
professionals in the field. A first-level understanding of the subject matter is necessary
before entering a second-level course using this text.

PREFACE xxi

SUGGESTED TEXT USAGE

Perhaps the best advice that can be given to instructors on the use of this text is to study
the table of contents carefully and then decide what subject matter is essential to the course
under consideration. Once this is done the subject area and order of presentation will usually
become obvious. The following two course outlines are offered here as a starting point for
instructors in making decisions on course subject usage:

The Semester System

[1] First-Level Course—Combinational Logic Design

Block I

Introduction (Chapter 1)
Number systems, binary arithmetic and codes (Sections 2.1 through 2.5 or choice)
Binary state terminology, CMOS logic circuits, and mixed-logic symbology

(Sections 3.1 through 3.7)
Reading and construction of logic circuits (Section 3.8)
XOR and EQV operators and mixed-logic symbology (Section 3.9)
Laws of Boolean and XOR algebra (Sections 3.10 through 3.12)
Review

EXAM #1

Block II

Introduction; logic function representation (Sections 4.1 and 4.2)
Karnaugh map (K-map) function representation and minimization, don't cares,

and multioutput optimization (Sections 4.3 through 4.5)
Entered variable mapping methods and function reduction of five or more variables

(Sections 4.6, 4.7 and 4.12)
Introduction to minimization algorithms (Section 4.8)
Factorization and resubstitution methods (Subsections 4.9.1 and 4.9.2)
Function minimization by using XOR K-map patterns (Sections 5.1 through 5.4)
Review

EXAM #2

Block III

Introduction to combinational logic design (Section 6.1)
Multiplexers, decoders, priority encoders, and code converters (Sections 6.2

through 6.5; Section 2.10)
Magnitude comparators, parity generators and shifters (Sections 6.6 through 6.8)
Programmable logic devices — ROMs, PLAs and PALs (Sections 7.1 through 7.6)

xxn PREFACE

Adders, subtracters, multipliers, and dividers (Section 2.6 and Subsections 2.9.1
through 2.9.5 or choice; Sections 8.1 through 8.7 or choice)

Arithmetic and logic units — ALUs (Section 8.8) — may be omitted if time-limited
Static hazards in combinational logic devices (Sections 9.1 and 9.2)
Review

EXAM #3 and/or FINAL

[2] Second-Level Course—State Machine Design and Analysis

Block IV

Introduction; models, the state diagram, and heuristic development of the basic
memory cells (Sections 10.1 through 10.4)

Design and analysis of flip-flops, flip-flop conversion; timing problems; asyn-
chronous overrides; setup and hold time requirements (Sections 10.5 through
10.11)

Design of simple synchronous finite state machines; K-map conversion; analysis
of synchronous FSMs (Sections 10.12 and 10.13)

Review

EXAM #1

Block V

Introduction; detection and elimination of timing defects in synchronous state
machines (Sections 11.1 through 11.3)

Synchronizing and stretching of asynchronous inputs; metastability; clock skew
and clock sources (Sections 11.4 through 11.6)

Initialization and reset of FSMs, and debouncing circuits (Sections 11.7 and 11.8)
Applications to the design and analysis of more complex synchronous FSMs; ASM

charts and state assignment rules; array algebraic approach to FSM design; state
minimization (Sections 11.9 through 11.12)

Review

EXAM #2

Block VI

Introduction; design of shift registers and synchronous counters; synchronous vs
asynchronous parallel loading (Sections 12.1 through 12.3)

Shift register counters and ripple counters; special purpose counters (Sections 12.4
through 12.5)

Alternative architecture — use of MUXs, decoders, PLDs, counters and shift reg-
isters; the one-hot design method (Sections 13.1 through 13.5)

The controller, data path, functional partition, and system-level design (Sections
13.6 and 13.7)

Introduction to asynchronous sequential machines — fundamental mode FSMs
(Sections 14.1 through 14.9)

PREFACE xxiii

Pulse mode approach to asynchronous FSM design (Sections 15.1 through 15.6)
Selected topics in Chapter 16

Review

EXAM #3 and/or FINAL

The choice of course content is subject to so many variables that no one course outline will
suffice even within a single institution where several instructors may teach a given course.
It is for this reason that the text is divided up into 16 relatively small chapters. This offers
the instructor somewhat more flexibility in the choice of subject matter. For example, if it is
desirable to offer a single (combined) semester course in digital design, it might be desirable
to offer both combinational and sequential (synchronous FSM) logic design. Such a course
might include the following subject areas taken from Blocks I through VI in sample course
outlines [1] and [2]:

[3] Single (Combined) Semester Course in Digital Design

Binary state terminology, and mixed-logic symbology (Sections 3.1 through 3.7)
Reading and construction of logic circuits (Section 3.8)
XOR and EQV operators and mixed-logic symbology (Section 3.9)
Laws of Boolean and XOR algebra (Sections 3.10 through 3.12)
Review

EXAM #1

Logic function representation (Sections 4.1 and 4.2)
K-map function representation and minimization, don't cares and multioutput

optimization (Sections 4.3 through 4.5)
Entered variable mapping methods and function reduction of five or more variables

(Sections 4.6, 4.7 and 4.12)
Multiplexers, decoders, priority encoders, and code converters (Sections 6.2

through 6.5)
Comparators, parity generators, and shifters or choice (Sections 6.6 through 6.8)
Adders, subtractors, and multipliers (Sections 8.1 through 8.3; Section 8.6)
Static hazards in combinational logic devices (Sections 9.1 and 9.2)
Review

EXAM #2

Heuristic development of the basic memory cells (Sections 10.1 through 10.4)
Design and analysis of flip-flops, flip-flop conversion (Sections 10.5 through 10.8)
Asynchronous overrides; setup and hold time requirements; design and analysis

of simple synchronous state machines (Sections 10.10 through 10.13)
Detection and elimination of timing defects in synchronous state machines

(Sections 11.1 through 11.3)
Synchronizing of asynchronous inputs (Section 11.4)
Initialization and reset of FSMs; debouncing circuits (Sections 11.7 and 11.8)
Shift registers and counters (Sections 12.1 through 12.3)

xxiv PREFACE

Alternative architecture — use of MUXs, decoders, PLDs; the one-hot method
(Sections 13.1 through 13.3, Section 13.5)

The controller, data path, and functional partition and system-level design
(Sections 13.6 and 13.7)

Review

EXAM #3 and/or FINAL

Though the subject coverage for EXAM #3 in course sample outline [3] seems large in
proportion to those required for EXAM #2, a close inspection will indicate that the number
of sections are the same. The sections required for EXAM #1 number about half that of the
other two.

The Quarter System

Not all courses at colleges and universities are operated on a semester basis. Some are
operated on the quarter system. This requires that the course subject areas be divided up
in some logical and effective manner, which may require that both combinational and
sequential machines be covered within a given quarter course. As a guide to subject area
planning on the quarter system when using this text, the following quarter system may be
considered (refer to sample course outlines [1] and [2]):

First Quarter

Block I
EXAM#1

Block II
EXAM #2

Second Quarter

Block III
EXAM #1

Block IV
EXAM #2

Third Quarter

Block V
EXAM #1

Block VI
EXAM #2

Fourth Quarter (if applicable)

Chapters 14 and 15
EXAM #1

Chapter 16
PROJECT and/or EXAM #2

PREFACE xxv

Certainly, there are an endless number of ways in which the subject areas can be divided up
to meet the requirements of digital design courses that are offered on the basis of a semester,
quarter, or trimester system. The presence of 16 relatively small chapters should make the
decision process less complicated and lead to a meaningful and productive treatment of
digital logic design.

INSTRUCTIONAL SUPPORT SOFTWARE AND MATERIALS

For the Student

Bundled with this text on CD-ROM are five important software programs: a logic simulator
called EXL-Sim2002; two logic minimizers, BOOZER and ESPRESSO II; and two advanced
CAD programs called ADAM and A-OPS. Complete instructions are included with each
software program. The following is a short description of each software program. More
detail descriptions are available in Appendix B.

EXL-Sim2002 is a gate-level, interactive, schematic-capture and simulation program that
is ideally suited for use with this text at either the entry or advanced-level of logic design. Its
many features include drag-and-drop capability, rubber banding, mixed logic and positive
logic simulations, macro generation, individual and global delay assignments, connection
features that eliminate the need for wire connections, schematic page sizing and zooming,
waveform zooming and scrolling, and a variety of printout capabilities.

BOOZER is a software minimization tool that is recommended for use with this text. It
accepts entered variable (EV) or canonical (1's and O's) data from K-maps or truth tables,
with or without don't cares, and returns an optimal or near optimal single or multi-output
solution. It can handle up to 12 Boolean functions and as many inputs when used on modern
computers.

ESPRESSO II is another software minimization tool that is in wide use in schools and in-
dustry. It supports advanced algorithms for minimization of two-level, multi-output Boolean
functions but does not accept entered variables.

ADAM (for Automated Design of Asynchronous Machines} is a very powerful software
tool that permits the automated design of very complex asynchronous and synchronous
state machines, all free of timing defects. The input files are state tables for the desired
state machines. The output files are given in the Berkeley format appropriate for directly
programming PL As.

A-OPS stands for Asynchronous One-hot Programmable Sequencer designs of asyn-
chronous and synchronous state machines. A-OPS generates output files and VHDL code
for the automated timing-defect-free design of 1-Hot sequencers and state machines that
can be driven by either PLAs or RAM. This software tool can be used to design systems
that permit instant switching between radically different timing-defect-free controllers on
a time-shared basis.

For the Instructor

An instructor's manual is placed on CD-ROM together with all five software programs
given in the previous paragraphs. The instructor's manual contains the statement of and
the detailed solutions for all problems presented in the text, all in PDF format. All figures
(also in PDF format) are provided separately in the manual for selective use in creating
transparencies or hard copies. Acrobat Reader 5.0, required for reading these files, is free
from the Adobe web site http://www.adobe.com.

xxvi PREFACE

ERRORS

Any text of this size and complexity is bound to contain errors and omissions that have
been overlooked throughout the extensive review and editing process. Identification of any
error or omission would be greatly appreciated by the editors of Academic Press and by the
author. Constructive comments regarding matters of clarity, organization and coverage of
subject matter are also valued. Such information should be directed to the author:

Professor Richard F. Tinder
School of Electrical Engineering and Computer Science
Washington State University
Pullman, WA 99164-2752
e-mail address: rtinder@eecs.wsu.edu

ACKNOWLEDGMENTS

Of the many people who have contributed to the completion of this project, certain individ-
uals stand out as having played very significant roles. First, my sincere thanks go to the five
reviewers of portions of this text: Professors Ward D. Getty of the University of Michigan,
James C. Harden of Mississippi State University, John P. Robinson of the University of Iowa,
Harpreet Singh of Wayne State University, and Murali Varanasi of the University of South
Florida. Three other persons are here acknowledged for many helpful conversations and
suggestions. These are professors Mark Manwaring, Jack Meador, and Mircea Dabacan,
all of the School of EECS at Washington State University and friends and colleagues of
the author. Special thanks is owed to Professor Manwaring, author of the logic minimizer
called BOOZER, for permitting BOOZER to be bundled with this text on CD ROM. A
debt of gratitude also goes to Professor Marek Perkowski of Portland State University for
his help and suggestions regarding material on Reed-Muller transformation forms covered
in Chapter 5. Finally, of great importance to this text is the work of Bob McCurdy, who,
with only sketchy ideas from the author, is responsible for the student-friendly but powerful
logic simulator, called EXL-Sim2002, that is bundled with this text on CD-ROM.

Four students are gratefully acknowledged for their work in proofing portions of the
manuscript: Ryan O'Fallon, Becky Richardson, Rebecca Sheats, and Parag Upadhyaya.
Finally, sincere thanks go to the hundreds of students that have over several years made
many helpful suggestions and who have helped identify and eliminate many errors and
omissions. Furthermore, it must be acknowledged that the students, more than anyone else,
have played an essential role in shaping the pedagogical content of this text.

These acknowledgments would not be complete without recognizing the encouragement
of and many helpful conversations with Joel Claypool, Executive Editor of Academic Press,
a Division of Harcourt, Inc. Most importantly, the person to whom the author owes much
more than just a statement of gratitude is his loving wife, his friend and confidant, Gloria.

Richard F. Tinder
Pullman, Washington

Engineering
Digital Design
Second Edition

This page intentionally left blank

CHAPTER ?

Introductory Remarks
and Glossary

1.1 WHAT IS SO SPECIAL ABOUT DIGITAL SYSTEMS?

No area of technology has had or is likely to continue to have more of a profound impact on
our lives than digital system development. That's quite a statement, but its truth is obvious
when one considers the many ways we have become dependent on "digitized" technology.
To put this in perspective, let us review the various areas in which digital systems play
an important role in our lives. As this is done, keep in mind that there is significant, if
not necessary, overlap in the digital system technologies that make possible those areas we
have come to take for granted: computing, information retrieval, communication, automatic
control systems, entertainment, and instrumentation.

Computing: A computer, like the telephone and television, has become almost an es-
sential part of every household. Word processing, information retrieval, communication,
finance and business management, entertainment, art and graphics — these are but a few
of the functions performed by our beloved computers. In the span of a little more than
10 years, computers in the home and in small businesses have advanced from what was
termed microcomputers to the present computers with nearly mainframe capability. Home
computers can now perform relatively sophisticated operations in the areas just mentioned.
Of course, vastly improved computer speed and memory, together with powerful software
development, are primarily responsible for the rapid rise in personal computer capabilities.
In addition to the digital computer itself, there are other digital devices or peripherals that are
normally part of a computer system. These include disk drives, CD-ROM drives, modems,
CRT and LCD monitors, sound cards, scanners, and printers. Then there are the hand-held
calculators that now have nearly microcomputer capability and are quite inexpensive. All of
these things have been made possible because of the advances in digital system technology.
But this is just the beginning.

Information Retrieval: The ability to consult one's favorite encyclopedia via CD-ROM or
surf (browse) the World Wide Web (WWW) has become a very important part of computer
use in the home, at school, and in business. The use of CD-ROMs also permits access to
information in the specialized areas of literature, music, religion, health, geography, math,

1

CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

physical science, biology, and medicine, to name a few. But information retrieval is not
limited to these functions. Network communication between computers and our ability to
tap into huge university libraries are other important sources of information. Think of where
businesses would be without access to data-base information that is critical to day-to-day
operation. Local and national security operations depend heavily on data-base information
stored on computers that are most likely part of a network. Yes, and then there is education.
What an invaluable source of information the computer has become both in the classroom
and in the home.

Communications: It would be hard to imagine what our world would be like without the
ability to send facsimile (fax) communications or e-mail. These are digital transmission
methods that were developed to a high degree of sophistication over a period of about
10 years. Of course, the modem, another digital device, has made this possible. Digital
communication is hardly limited to fax and e-mail. One's home phone or cellular phone
is likely to be digital, permitting a variety of features that were difficult if not impossible
to provide by means of an analog transmission device. Scientific data, national security
information, and international communications, all of which are collected and transmitted
back to earth by satellite, are accomplished by digital transmission methods with accuracy
not possible otherwise.

Automatic Control Systems: Digital automatic control systems have replaced the old ana-
log methods in almost all areas of industry, the home, and transportation. Typical examples
include rapid transit systems, integrated circuit fabrication systems, robot systems of all
types in assembly-line production, space vehicle operations, a variety of automobile asso-
ciated operations, guidance systems, home security systems, heating and air-conditioning
systems, many home appliances, and a host of medical systems.

Entertainment: Who cannot help but be awed by the impressive computer generated
graphics that have become commonplace in movies and in games produced on CDs. Movies
such as Jurassic Park and the new Star Wars series will perhaps be remembered as having
established a new era in the art of make-believe. The games that are available on the
home computer include everything from chess and casino-type games to complex and
challenging animated aircraft operations and adventure/fantasy games. Then add to these
the high-quality sound that CDs and the Internet produce, and one has a full entertainment
center as part of the personal computer. Of course, the incursion of digital systems into
the world of entertainment extends well beyond movies and games. For example, one has
only to listen to digitally recorded or remastered CDs (from the original analog recordings)
to enjoy their clear, noise-free character. Also, don't forget the presence of electronic
keyboard instruments ranging from synthesizers to Clavinovas and the like. Then for those
who consider photography as entertainment, digital cameras and camcorders fall into this
category. And the list goes on and on.

Instrumentation: A listing of the many ways in which digital system technology has af-
fected our lives would not be complete without mentioning the myriad of measurement and
sensing instruments that have become digitized. Well known examples of electronic labora-
tory testing equipment include digital voltmeters, ammeters, oscilloscopes, and waveform
generators and analyzers. Then there are the sophisticated medical instruments that include
MRI and CAT scan devices. Vital signs monitoring equipment, oximeters, IV pumps, pa-
tient controlled analgesia (PCA) pumps, digital ear thermometers, and telemetry equipment

1.2 THE YEAR 2002 AND BEYOND?

are typical examples of the many other ways the medical industry has made use of digital
systems technology.

1.2 THE YEAR 2002 AND BEYOND?

If one considers what has happened in, say, the past 15 years, the path of future techno-
logical development in the field of digital systems would seem to be limited only by one's
imagination. It is difficult to know where to begin and where to end the task of forecasting
digital system development, but here are a few examples in an attempt to accomplish this:

Computer power will continue to increase as the industry moves to 0.10/x (and below)
CMOS technology with speeds into the terahertz range and with a demand for more efficient
ways to sink the heat generated by billions of transistors per processor operated with supply
voltages of one volt or below. There will be dramatic changes in the peripherals that are
now viewed as part of the computer systems. For example, vacuum (CRT) monitors will
eventually be replaced by picture-frame style LCD monitors, or by micropanel displays
using either DLP (Digital Light Processing) or FED (field emission display) technologies.
Digitized high-definition TV (HDTV) will eventually replace all conventional TV sets, and
the World Wide Web (WWW) will be viewed on HDTV via special dedicated computers.
In all, larger, sharper, brighter, and clearer computer and TV displays are to be expected,
together with a fast-growing and impressive assortment of wireless hand-held and wrist-
bound devices.

Expect that the mechanically operated magnetic storage systems (disk drives) of today
will soon be replaced by a MR (magneto-resistive) technology that will increase the areal
storage density (gigabits per square inch) by a factor of 100 to 200, or by OAWD (optically
assisted Winchester drive) and MO (magneto-optical) technologies that are expected to
increase the areal density even further. Eventually, a holographic storage technology or
a proximal probe technology that uses a scanning tunneling microscopic technique may
provide capabilities that will take mass storage to near its theoretical limit. Thus, expect
storage systems to be much smaller with enormously increased storage capacity.

Expect that long-distance video conferencing via computer will become as commonplace
as the telephone is today. Education will be a major beneficiary of the burgeoning digital
age with schools (K-12, and universities and colleges both public and private) being piped
into major university libraries and data banks, and with access to the ever-growing WWW.
Look for the common film cameras of today to be replaced by digital cameras having
megapixel resolution, audio capability, and with the capability to store a large number of
pictures that can be reviewed on camera and later presented on screen by any computer.
Expect that certain aspects of laser surgery will be microprocessor controlled and that X-ray
imaging methods (e.g., mammography) and radiology generally will be digitally enhanced
as a common practice. Also, health facilities and hospitals will be linked for immediate
remote site consultation and for specialized robotics surgery.

Expect digital systems to become much more sophisticated and pervasive in our lives.
Interconnectivity between "smart" electrically powered systems of all types in the home,
automobile, and workplace could be linked to the web together with sophisticated fail-safe
and backup systems to prevent large-scale malfunction and possible chaos. Such inter-
connected systems are expected to have a profound effect on all aspects of our lives —
what and when we eat, our exercise habits, comfort and entertainment needs, shopping

CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

activities, medical requirements, routine business transactions, appointment schedules, and
many others imaginable.

Optical recognition technology will improve dramatically in the fields of robotics, vehi-
cular operation, and security systems. For example, expect that iris and retinal pattern
recognition will eventually be used to limit access to certain protected systems and areas,
and may even replace digital combination locks, IDs, and licenses for such purposes.
Taxation, marketing, and purchasing methods will undergo dramatic changes as digital
systems become commonplace in the world of government, commerce, and finance. Even
the world of politics, as we now know it, will undergo dramatic change with the use of new
and more efficient voting and voter sampling methods. Mass production line manufacturing
methods by using robots and other digitally automated mechanical devices will continue to
evolve at a rapid pace as dictated by domestic and world market forces. Expect that logic
minimization tools and automated digital design tools will become more commonplace
and sophisticated, permitting designers with little practical experience to design relatively
complex systems.

Business networking will undergo dramatic improvements with the continued devel-
opment of gigabit Ethernet links and high-speed switching technology. Home connectiv-
ity will see vast improvements in satellite data service downloading (up to 400 kbps),
56-kbps (and higher) modems that need high-quality digital connections between phones
and destination, improved satellite data service with bidirectional data transmission, and
DSL (digital subscriber line) cable modem systems.

Finally, there are some really exciting areas to watch. Look for speech recognition, speech
synthesis, and handwriting and pattern recognition to dramatically change the manner in
which we communicate with and make use of the computer both in business and in the
home. Somewhere in the future the computer will be equipped with speech understanding
capability that allows the computer to build ideas from a series of spoken words — perhaps
like HAL 9000 in the film 2001: A Space Odyssey. Built-in automatic learning capability
may yet prove to be the most challenging undertaking facing computer designers of the
future. Thus, expect to see diminished use of the computer keyboard with time as these
technologies evolve into common usage.

Revolutionary computer breakthroughs may come with the development of radically
different technologies. Carbon nanotube technology, for example, has the potential to
propel computer speeds well into the gigahertz range together with greatly reduced power
dissipation. The creation of carbon nanotube transistors could signal the dawn of a new
revolution in chip development. Then there is the specter of the quantum computer, whose
advent may lead to computing capabilities that are trillions of times faster than those of
conventional supercomputers. All of this is expected to be only the beginning of a new
millennium of invention limited only by imagination. Remember that radically different
technological breakthroughs can appear at any time, even without warning, and can have a
dramatic affect on our lives, hopefully for the better.

To accomplish all of the preceding, a new generation of people, technically oriented to
cope with the rapidly changing digital systems technology, will result as it must. This new
generation of people will have a dramatic impact on education, labor, politics, transportation,
and communications, and will most certainly affect domestic and global economies. Thus,
expect that more pressure and responsibility will be placed on universities to produce the
quality training that can match up to this challenge, not just over a short period but also in
the long term.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS

1.3 A WORD OF WARNING

Not yet mentioned are the changes that must take place in the universities and colleges
to deal with this rapidly evolving technology. It is fair to say that computer aided design
(CAD) or automated design of digital systems is on the upswing. Those who work in the
areas of digital system design are familiar with such hardware description languages as
VHDL or Verilog, and the means to "download" design data to program PLAs or FPGAs
(field programmable gate arrays). It is possible to generate a high-level hardware description
of a digital system and introduce that hardware description into circuit layout tools such
as Mentor Graphics. The end result would be a transistor-level representation of a CMOS
digital system that could be simulated by one of several simulation tools such as HSPICE
and subsequently be sent to the foundry for chip creation. The problem with this approach to
digital system design is that it bypasses the need to fully understand the intricacies of design
that ensure proper and reliable system operation. As is well known, a successful HSPICE
simulation does not necessarily ensure a successful design. In the hands of a skilled and
experienced designer this approach may lead to success without complications. On the
other hand, if care is not taken at the early stages of the design process and if the designer
has only a limited knowledge of design fundamentals, the project may fail at one point
or another. Thus, as the use of automated (CAD) designs become more attractive to those
who lack design detail fundamentals, the chance for design error at the system, device,
gate, or transistor level increases. The word of warning: Automated design should never
be undertaken without a sufficient knowledge of the field and a thorough understanding of
the digital system under consideration — a little knowledge can be dangerousl This text is
written with this warning in mind. The trend toward increasing CAD use is not bad, but
automated design methods must be used cautiously with sufficient background knowledge
to carry out predictably successful designs. Computer automated design should be used
to remove the tedium from the design process and, in many cases, make tractable certain
designs that would otherwise not be possible. But CAD is not a replacement for the details
and background fundamentals required for successful digital system design. It is the goal
of this text to provide the reader with the necessary details and background fundamentals
so as to permit a successful transition into the CAD domain.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS

Upon entering any new field, there is always the problem of dealing with the "jargon" that
is peculiar or unique to that field. Conspicuously absent in most texts on digital design is a
glossary of terms, expressions, and abbreviations that are used — yes, and even overused —
in presenting the subject matter. Readers of these texts are often left leafing through back
pages and chapters in search of the meaning of a given term, expression or abbreviation.
In breaking with tradition, this text provides an extensive glossary, and does so here at the
beginning of the text where it can be used — not at the end of the text where it may go
unnoticed. In doing this, Chapter 1 serves as a useful source of information.

ABEL: advanced Boolean expression language.
Accumulator: an adder/register combination used to store arithmetic results.
Activate: to assert or make active.

CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

Activation level: the logic state of a signal designated to be active or inactive.
Activation level indicator: a symbol, (H) or (L), that is attached to a signal name to

indicate positive logic or negative logic, respectively.
Active: a descriptor that denotes an action condition and that implies logic 1.
Active device: any device that provides current (or voltage) gain.
Active high (H): indicates a positive logic source or signal.
Active low (L): indicates a negative logic source.
Active state: the logic 1 state of a logic device.
Active transition point: the point in a voltage waveform where a digital device passes

from the inactive state to the active state.
Addend: an operand to which the augend is added.
Adder: a digital device that adds two binary operands to give a sum and a carry.
Adder/sub tractor: a combinational logic device that can perform either addition or sub-

traction.
Adjacent cell: a K-map cell whose coordinates differ from that of another cell by only

one bit.
Adjacent pattern: an XOR pattern involving an uncomplemented function in one cell of

a K-map and the same function complemented in an adjacent cell.
ALFSR: autonomous linear feedback shift register.
ALFSR counter: a counter, consisting of an ALFSR, that can sequence through a unique

set of pseudo-random states that can be used for test vectors.
Algorithm: any special step-by-step procedure for accomplishing a task or solving a

problem.
Alternative race path: one of two or more transit paths an FSM can take during a race

condition.
ALU: arithmetic and logic unit.
Amplify: the ability of an active device to provide current or voltage gain.
Analog: refers to continuous signals such as voltages and current, in contrast to digital

or discrete signals.
AND: an operator requiring that all inputs to an AND logic circuit symbol be active before

the output of that symbol is active — also, Boolean product or intersection.
AND function: the function that derives from the definition of AND.
AND gate: a physical device that performs the electrical equivalent of the AND function.
AND laws: a set of Boolean identities based on the AND function.
AND-OR-Invert (AOI) gate: a physical device, usually consisting of two AND gates

and one NOR gate, that performs the electrical equivalent of SOP with an active low
output.

AND plane: the ANDing stage or matrix of a PLD such as a ROM, PLA, or PAL.
Antiphase: as used in clock-driven machines to mean complemented triggering of a

device relative to a reference system, such as, an FET input device to an RET FSM.
Apolar input: an input, such as CK, that requires no activation level indicator to be

associated with it.
Arbiter module: a device that is designed to control access to a protected system by

arbitration of contending signals.
Arithmetic and logic unit (ALU): a physical device that performs either arithmetic or

logic operations.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS

Arithmetic shifter: a combinational shifter that is capable of generating and preserving
a sign bit.

Array algebra: the algebra of Boolean arrays and matrices associated with the automated
design of synchronous and STT machines.

Array logic: any of a variety of logic devices, such as ROMs, PLAs or PALs, that are
composed of an AND array and an OR array (see Programmable logic device or PLD).

ASIC: application-specific 1C.
ASM: algorithmic state machine.
Assert: activate.
Assertion level: activation level.
Associative law: a law of Boolean algebra that states that the operational sequence as

indicated by the location of parentheses in a p-term or s-term does not matter.
Associative pattern: an XOR pattern in a K-map that allows a term or variable in an

XOR or EQV function to be looped out (associated) with the same term or variable in
an adjacent cell provided that the XOR or EQV connective is preserved in the process.

Asynchronous: clock-independent or self-timed — having no fixed time relationship.
Asynchronous input: an input that can change at any time, particularly during the sam-

pling interval of the enabling input.
Asynchronous override: an input such as preset or clear that, when activated, interrupts

the normal operation of a flip-flop.
Asynchronous parallel load: the parallel loading of a register or counter by means of

the asynchronous PR and CL overrides of the flip-flops.
Augend: an operand that is added to the addend in an addition operation.
Barrel shifter: a combinational shifter that only rotates word bits.
Base: radix. Also, one of three regions in a BIT.
Basic cell: a basic memory cell, composed of either cross-coupled NAND gates or cross-

coupled NOR gates, used in the design of other asynchronous FSMs including flip-flops.
BCD: binary coded decimal.
BCH: binary coded hexadecimal.
BCO: binary coded octal.
BDD: binary decision diagram.
Bidirectional counter: a counter that can count up or down.
Binary: a number system of radix 2; having two values or states.
Binary code: a combination of bits that represent alphanumeric and arithmetic informa-

tion.
Binary coded decimal (BCD): a 4-bit, 10-word decimal code that is weighted 8, 4, 2, 1

and that is used to represent decimal digits as binary numbers.
Binary coded hexadecimal (BCH): the hexadecimal number system used to represent

bit patterns in binary.
Binary coded octal (BCO): the octal number system used to represent bit patterns in

binary.
Binary decision diagram (BDD): a graphical representation of a set of binary-valued

decisions, beginning with an input variable and proceeding down paths that end in either
logic 1 or logic 0.

Binary word: a linear array of juxtaposed bits that represents a number or that conveys
an item of information.

CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

Bipolar junction transistor (BJT): an npn or pnp transistor.
Bipolar PROM: a PROM that uses diodes as fusible links.
BIST: built-in-self-test.
Bit: a binary digit.
Bit slice: partitioned into identical parts such that each part operates on one bit in a multibit

word — part of a cascaded system of identical parts.
BJT: bipolar junction transistor.
BO: borrow-out.
Bond set: in the CRMT method, a disjoint set of bond variables.
Bond variable: one of two or more variables that form the axes of an EV K-map used in

the CRMT method of function minimization.
Boolean algebra: the mathematics of logic attributed to the mathematician George Boole

(1815-1864).
Boolean product: AND or intersection operation.
Boolean sum: OR or union operation.
BOOZER: Boolean ZEro-one Reduction — a multioutput logic minimizer that accepts

entered variables.
Borrow-in: the borrow input to a subtracter.
Borrow-out: the borrow output from a subtracter.
Boundary: the separation of logic domains in a K-map.
Bounded pulse: a pulse with both lower and upper limits to its width.
Branching condition (BC): the input requirements that control a state-to-state transition

in an FSM.
Branching path: a state-to-state transition path in a state diagram.
Buffer: a line driver.
Buffer state: a state (in a state diagram) whose only purpose is to remove a race condition.
Bus: a collection of signal lines that operate together to transmit a group of related signals.
Byte: a group of eight bits.
C: carry. Also, the collector terminal in a BJT.
CAD: computer-aided design.
CAE: computer-aided engineering.
Call module: a module designed to control access to a protected system by issuing a

request for access to the system and then granting access after receiving acknowledgment
of that request.

Canonical: made up of terms that are either all minterms or all maxterms.
Canonical truth table: a 1's and O's truth table consisting exclusively of minterms or

maxterms.
Capacitance, C: the constant of proportionality between total charge on a capacitor and

the voltage across it, Q = CV, where C is given in farads (F) when charge Q is given in
coulombs and V in volts.

Capacitor: a two-terminal energy storing element for which the current through it is
determined by the time-rate of change of voltage across it.

Cardinality: the number of prime implements (p-term or s-term cover) representing a
function.

Carry generate: a function that is used in a carry look-ahead (CLA) adder.
Carry-in: the carry input to a binary adder.
Carry look-ahead (CLA): same as look-ahead-carry.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS

Carry-out: the carry output from an Adder.
Carry propagate: a function that is used in a CLA adder.
Carry save (CS): a fast addition method for three or more binary numbers where the

carries are saved and added to the final sum.
Cascade: to combine identical devices in series such that any one device drives another;

to bit-slice.
Cell: the intersection of all possible domains of a K-map.
Central processing unit (CPU): a processor that contains the necessary logic hardware

to fetch and execute instructions.
CGP: carry generate/propagate.
CI: carry-in.
Circuit: a combination of elements (e.g., logic devices) that are connected together to

perform a specific operation.
CK: clock.
CL or CLR: clear.
CLA: carry look-ahead.
CLB: configurable logic block. Also, a logic cell (LC).
Clear: an asynchronous input used in flip-flops, registers, counters and other sequential

devices, that, when activated, forces the internal state of the device to logic 0.
Clock: a regular source of pulses that control the timing operations of a synchronous

sequential machine.
Clock skew: a phenomenon that is generally associated with high frequency clock dis-

tribution problems in synchronous sequential systems.
C-module: an RMOD.
CMOS: complementary configured MOSFET in which both NMOS and PMOS are used.
CNT: mnemonic for count.
CO: carry-out.
Code: a system of binary words used to represent decimal or alphanumeric information.
Code converter: a device designed to convert one binary code to another.
Collapsed truth table: a truth table containing irrelevant inputs.
Collector: one of three regions in a BIT.
Combinational hazard: a hazard that is produced within a combinational logic circuit.
Combinational logic: a configuration of logic devices in which the outputs occur in

direct, immediate response to the inputs without feedback.
Commutative law: the Boolean law that states that the order in which variables are

represented in a p-term or s-term does not matter.
Comparator: a combinational logic device that compares the values of two binary num-

bers and issues one of three outputs indicative of their relative magnitudes.
Compatibility: a condition where the input to a logic device and the input requirement

of the device are of the same activation level, that is, are in logic agreement.
Compiler: converts high-level language statements into typically a machine-coded or

assembly language form.
Complement: the value obtained by logically inverting the state of a binary digit; the

relationship between numbers that allows numerical subtraction to be performed by an
addition operation.

Complementary metal oxide semiconductor (CMOS): a form of MOS that uses both
p- and n-channel transistors (in pairs) to form logic gates.

10 CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

Complementation: a condition that results from logic incompatibility; the mixed-logic
equivalent of the NOT operation.

Complex PLD: an on-chip array of PAL-like PLDs with I/O blocks and a programmable
interconnect structure.

Composite output map: a K-map that contains entries representing multiple outputs.
Computer: a digital device that can be programmed to perform a variety of tasks (e.g.,

computations) at extremely high speed.
Concatenation: act of linking together or being linked together in a series.
Conditional branching: state-to-state transitions that depend on the input status of the

FSM.
Conditional output: an output that depends on one or more external inputs.
Conjugate gate forms: a pair of logic circuit symbols that derive from the same physical

gate and that satisfy the DeMorgan relations.
Connective: a Boolean operator symbol (e.g., +, ®, n).
Consensus law: a law in Boolean algebra that allows simplification by removal of a

redundant term.
Consensus term: the redundant term that appears in a function obeying the consensus

law.
Controlled inverter: an XOR gate that is used in either the inverter or transfer mode.
Controller: that part of a digital system that controls the data path.
Conventional K-map: a K-map whose cell entries are exclusively 1's and O's.
Counter: a sequential logic circuit designed to count through a particular sequence of

states.
Counteracting delay: a delay placed on an external feedback path to eliminate an E-

hazard or d-trio.
Count sequence: a repeating sequence of binary numbers that appears on the outputs of

a counter.
Coupled term: one of two terms containing only one coupled variable.
Coupled variable: a variable that appears complemented in one term of an expression

(SOP or POS) and that also appears uncomplemented in another term of the same ex-
pression.

Cover: a set of terms that covers all minterms or maxterms of a function.
CPLD: complex PLD.
CPU: central processing unit.
Creeping code: any code whose bit positions fill with 1 's beginning at one end, and then

fill with O's beginning at the same end.
Critical race: a race condition in an asynchronous FSM that can result in transition to

and stable residence in an erroneous state.
CRMT: contracted Reed-Muller transformation.
Cross branching: multiple transition paths from one or more states in the state diagram

(or state table) of a sequential machine whereby unit distance coding of states is not
possible.

CU: control unit.
Current, /: the flow or transfer of charged matter (e.g., electrons) given in amperes (A).
Cutoff mode: the physical state of a BIT in which no significant collector current is

permitted to flow.
Cycle: two or more successive and uninterrupted state-to-state transitions in an asyn-

chronous sequential machine.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 11

Data bus: a parallel set of conductors which are capable of transmitting or receiving data
between two parts of a system.

Data lockout: the property of a flip-flop that permits the data inputs to change immediately
following a reset or set operation without affecting the flip-flop output.

Data lockout flip-flop: a one-bit memory device which has the combined properties of a
master/slave flip-flop and an edge triggered flip-flop.

Data path: the part of a digital system that is controlled by the controller.
Data path unit: the group of logic devices that comprise the data path.
Data selector: a multiplexer.
Data-triggered: referring to flip-flops triggered by external inputs (no clock) as in the

pulse mode.
DCL: digital combination lock.
Deactivate: to make inactive.
Deassert: deactivate.
Debounce: to remove the noise that is produced by a mechanical switch.
Debouncing circuit: a circuit that is used to debounce a switch.
Decade: a quantity of 10.
Decoder: a combinational logic device that will activate a particular minterm code output

line determined by the binary code input. A demultiplexer.
Decrement: reduction of a value by some amount (usually by 1).
Delay: the time elapsing between related events in process.
Delay circuit: a circuit whose purpose it is to delay a signal for a specified period of

time.
Delimiter: a character used to separate lexical elements and has a specific meaning in a

given language. Examples are @, #, +, /,', >.
DeMorgan relations: mixed logic expressions of DeMorgan's laws.
DeMorgan's laws: a property that states that the complement of the Boolean product of

terms is equal to the Boolean sum of their complements; or that states that the complement
of the Boolean sum of terms is the Boolean product of their complements.

Demultiplexer: a combinational logic device in which a single input is selectively steered
to one of a number of output lines. A decoder.

Depletion mode: a normally ON NMOS that has a conducting n-type drain-to-source
channel in the absence of a gate voltage but that looses its conducting state when the
gate voltage reaches some negative value.

D flip-flop: a one-bit memory device whose output value is set to the D input value on
the triggering edge of the clock signal.

D-flop module: a memory element that is used in an EAIC system and that has charac-
teristics similar to that of a D flip-flop.

Diagonal pattern: an XOR pattern formed by identical EV subfunctions in any two
diagonally located cells of a K-map whose coordinates differ by two bits.

Difference: the result of a subtraction operation.
Digit: a single symbol in a number system.
Digital: related to discrete quantities.
Digital combination lock: a sequence recognizer that can be used to unlock or lock

something.
Digital engineering design: the design and analysis of digital devices.
Digital signal: a logic waveform composed of discrete logic levels (e.g., a binary digital

signal).

12 CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

Diode: a two-terminal passive device consisting of a p-n junction that permits significant
current to flow only in one direction.

Diode-transistor logic: logic circuits consisting mainly of diodes and BJTs.
Direct address approach: an alternative approach to FSM design where PS feedback is

direct to the NS logic.
Disjoint: as used in "mutually disjoint" to mean a set of p-terms whose ANDed values

taken two at a time are always logic zero; or a set of s-terms whose ORed values taken
two at a time are always logic one.

Distributed path delays: a notation in which a path delay is assigned to each gate or
inverter of a logic circuit.

Distributive law: The dual of the factoring law.
Divide-by-w counter: a binary counter of n states whose MSB output divides the clock

input frequency by n.
Dividend: the quantity that is being divided by the divisor in a division operation.
Divider: a combinational logic device that performs the binary division operation.
Divisor: the quantity that is divided into the dividend.
DLP: digital light processing.
DMUX: demultiplexer (see decoder).
Domain: a range of logic influence or control.
Domain boundary: the vertical or horizontal line or edge of a K-map.
Don't care: a non-essential minterm or maxterm, denoted by the symbol 0, that can take

either a logic 1 or logic 0 value. Also, a delimiter 0 that, when attached to a variable or
term, renders that variable or term nonessential to the parent function.

DPU: data path unit; also data processing unit.
Drain: one of three terminals of a MOSFET.
DRAM: dynamic RAM.
Driver: a one-input device whose output can drive substantially more inputs than a stan-

dard gate. A buffer.
DTL: diode-transistor logic.
D-trio: a type of essential hazard that causes a fundamental mode machine to transit to

the correct state via an unauthorized path.
Duality: a property of Boolean algebra that results when the AND and OR operators (or

XOR and EQV operators) are interchanged simultaneously with the interchange of 1's
and O's.

Dual-rail systems: as used in this text, a system of split signals in an ALU configuration
that permits a completion signal to be issued at the end of each process, be it arithmetic
or logic.

Dual relations: two Boolean expressions that can be derived one from the other by duality.
Duty cycle: in a periodic waveform, the percentage of time the waveform is active.
Dyad: a grouping of two logically adjacent minterms or maxterms.
Dynamic domino logic: buffered CMOS logic that requires complementary precharge

and evaluate transistors for proper operation.
Dynamic hazard: multiple glitches that occur in the output from a multilevel circuit

because of a change in an input for which there are three or more asymmetric paths
(delay-wise) of that input to the output.

Dynamic RAM: a volatile RAM memory that requires periodic refreshing to sustain its
memory.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 13

EAIC system: externally asynchronous/internally clocked system.
ECL: emitter-coupled logic.
Edge-triggered flip-flop: a flip-flop that is triggered on either the rising edge or falling

edge of the clock waveform and that exhibits the data-lock-out feature.
EEPROM: electrically erasable PROM.
E-hazard: essential hazard.
El: enable-in.
Electron: the majority carrier in an n-type conducting semiconductor.
Electronic switch: a voltage or current controlled switching device.
Emitter: one of three terminals of a BIT.
Emitter-coupled logic (ECL): a high-speed nonsaturating logic family.
EN: enable.
Enable: an input that is used to enable (or disable) a logic device, or that permits the

device to operate normally.
Encoder: a digital device that converts digital signals into coded form.
Endless cycle: an oscillation that occurs in asynchronous FSMs.
Enhancement mode: a normally OFF NMOS that develops an n-channel drain-to-source

conducting path (i.e., turns ON) with application of a sufficiently large positive gate
voltage.

Entered variable (EV): a variable entered in a K-map.
EO: enable-out.
EPI: essential prime implicant.
EPLD: erasable PLD.
EPROM: erasable programmable read-only memory.
EQPOS: EQV-product-of-sums.
Equivalence: the output of a two-input logic gate that is active if, and only if, its inputs

are logically equivalent (i.e., both active or both inactive).
EQV: equivalence.
EQV function: the function that derives from the definition of equivalence.
EQV gate: a physical device that performs the electrical equivalent of the EQV function.
EQV laws: a set of Boolean identities based on the EQV function.
Erasable programmable read-only memory (EPROM): a ROM that can be program-

med many times.
Error catching: a serious problem in a JK master/slave flip-flop where a 1 or 0 is caught

in the master cell when clock is active and is issued to the slave cell output when clock
goes inactive.

Essential hazard: a disruptive sequential hazard that can occur as a result of an explicitly
located delay in an asynchronous FSM that has at least three states and that is operated
in the fundamental mode.

Essential prime implicant (EPI): a prime implicant that must be used to achieve mini-
mum cover.

EU: execution unit.
EV: entered variable.
EV K-map: a K-map that contains EVs.
EV truth table: a truth table containing EVs.
Even parity: an even number of 1's (or O's) in a binary word depending on how even

parity is defined.

14 CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

EVM: entered variable K-map.
Excess 3 BCD (XS3) code: BCD plus three.
Excitation table: a state transition table relating the branching paths to the branching

condition values given in the state diagram for a flip-flop.
Exclusive OR: a two-variable function that is active if only one of the two variables is

active.
EXOP: XOR-sum-of-products.
Expansion of states: opposite of merging of states.
Extender: a circuit or gate that is designed to be connected to a digital device to increase

its fan-in capability — also called an expander.
Factoring law: the Boolean law that permits a variable to be factored out of two or more

p-terms that contain the variable in an SOP or XOR expression.
Fall time: the period of time it takes a voltage signal to change from 90% to 10% of its

high value.
Falling edge-triggered (FET): activation of a device on the falling edge of the triggering

(sampling) variable.
False carry rejection: the feature in an ALU where all carry-outs are disabled for all

nonarithmetic operations.
False data rejection (FDR): the feature of a code converter that indicates when unau-

thorized data has been issued to the converter.
Fan-in: the maximum number of inputs a gate may have.
Fan-out: the maximum number of equivalent gate inputs that a logic gate output can

drive.
FDR: false data rejection.
FDS diagram: fully documented state diagram.
FED: field emission display.
Feedback path: a signal path of a PS variable from the memory output to the NS input.
FET: falling edge-triggered. Also, field effect transistor.
Fetch: that part of an instruction cycle in which the instruction is brought from the memory

to the CPU.
FF: flip-flop.
Field programmable gate array (FPGA): a complex PLD that may contain a variety of

primitive devices such as discrete gates, MUXs and flip-flops.
Field programmable logic array (FPLA): one-time user programmable PL A.
FIFO: first-in-first-out memory register.
Fill bit: the bit of a combinational shifter that receives the fill logic value in a shifting

operation.
Finite state machine (FSM): a sequential machine that has a finite number of states in

which it can reside.
Flag: a hardware or software "marker" used to indicate the status of a machine.
Flip-flop (FF): a one-bit memory element that exhibits sequential behavior controlled

exclusively by a clock input.
Floating-gate NMOS: special NMOS used in erasable PROMs.
Floating point number (FPN) system: a binary number system expressed in two parts,

as a fraction and exponential, and that is used in computers to arithmetically manipulate
large numbers.

Flow chart: a chart that is made up of an interconnection of action and decision symbols
for the purpose of representing the sequential nature of something.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 15

Flow table: a tabular realization of a state diagram representing the sequential nature of
an FSM.

Fly state: a state (in a state diagram) whose only purpose is to remove a race condition.
A buffer state.

Forward bias: a voltage applied to a p-n junction diode in a direction as to cause the
diode to conduct (turn ON).

FPGA: field programmable gate array.
FPL A: field programmable logic array.
FPLS: field programmable logic sequencer.
Free set: variables of a function not used as the bond set in CRMT forms.
Frequency, f: the number of waveform cycles per unit time in Hz or s~'.
Frequency division: the reduction of frequency by a factor of f/n usually by means of

a binary counter, where n is the number of states in the counter.
FSM: finite state machine, either synchronous or asynchronous.
Full adder (FA): a combinational logic device that adds two binary bits to a carry-in bit

and issues a SUM bit and a carry-out bit.
Full subtracter (FS): a combinational logic device that subtracts a subtrahend bit and a

borrow-in bit from a minuend bit, and issues a difference bit and a borrow-out bit.
Fully documented state diagram: a state diagram that specifies all input branching

conditions and output conditions in literal or mnemonic form, that satisfies the sum
rule and mutually exclusive requirement, and that has been given a proper state code
assignment.

Function: a Boolean expression representing a specific binary operation.
Functional partition: a diagram that gives the division of device responsibility in a digital

system.
Function generator: a combinational logic device that generates logic functions (usually

via a MUX).
Function hazard: a hazard that is produced when two or more coupled variables change

in near proximity to each other.
Fundamental mode: the operational condition for an asynchronous FSM in which no

input change is permitted to occur until the FSM has stabilized following any previous
input change.

Fusible link: an element in a PLD memory bit location that can be "blown" to store a
logic 1 or logic 0 depending on how the PLD is designed.

Gain element: a device, such as a buffer, used to boost a signal.
GAL: general array logic.
Gate: a physical device (circuit) that performs the electrical equivalent of a logic function.

Also, one of three terminals of a MOSFET.
Gated basic cell: a basic cell that responds to its S and R input commands only on the

triggering edge of a gate or clock signal.
Gate/input tally: the gate and input count associated with a given logic expression — the

gate tally may or may not include inverters, but the input count must include both external
and internal inputs.

Gate-minimum logic: logic requiring a minimum number of gates; may include XOR
and EQV gates in addition to two-level logic.

Gate path delay: the interval of time required for the output of a gate to respond to an
input signal change.

Glitch: an unwanted transient in an otherwise steady-state signal.

16 CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

Go/No-Go configuration: a single input controlling the hold and exit conditions of a
state in a state diagram.

Gray code: a reflective unit distance code.
Ground: a reference voltage level usually taken to be zero volts.
GS: group signal.
Half adder (HA): a combinational logic device that adds two binary bits and issues a

sum bit and a carry-out bit.
Half subtracter: a combinational logic device that subtracts one binary bit from another

and issues a difference bit and a borrow-out bit.
Hamming distance: as used in this text, the number of state variables required to change

during a given state-to-state transition in an FSM.
Handshake interface: a configuration between two devices whereby the outputs of one

device are the inputs to the other and vice versa.
Hang state: an isolated state in which an FSM can reside stably but which is not part of

the authorized routine.
Hardware description language (HDL): a high-level programming language with spe-

cialized structures for modeling hardware.
Hazard: a glitch or unauthorized transition that is caused by an asymmetric path delay

via an inverter, gate, or lead during a logic operation.
Hazard cover: the redundant cover that removes a static hazard.
HDL: hardware description language.
Heuristic: by empirical means or by discovery.
Hexadecimal (hex): a base 16 number system in which alphanumeric symbols are

used to represent 4-bit binary numbers 0000 through 1111. (See Binary coded
hexadecimal.)

Hold condition: branching from a given state back into itself or the input requirements
necessary to effect such branching action.

Holding register: a PIPO (storage) register that is used to filter output signals.
Hold time: the interval of time immediately following the transition point during which

the data inputs must remain logically stable to ensure that the intended transition of the
FSM will be successfully completed.

Hole: the absence of a valence electron — the majority carrier in a p-type conducting
semiconductor.

HV: high voltage.
Hybrid function: any function containing both SOP and POS terms.
1C: integrated circuit.
ICS: iterated carry-save.
Implicant: a term in a reduced or minimized expression.
Inactive: not active and implying logic 0.
Inactive state: the logic 0 state of a logic device.
Inactive transition point: the point in a voltage waveform where a digital device passes

from the active state to the inactive state.
Incompatibility: a condition where the input to a logic device and the input requirement

of that device are of opposite activation levels.
Incompletely specified function: a function that contains nonessential minterms or max-

terms (see Don't care).
Increment: to increase usually by 1.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 17

Indirect address approach: an alternative approach to FSM design where PS feedback
to the NS logic is by way of a converter for the purpose of reducing MUX or PLD
size.

Inertial delay element: a delay circuit based mainly on an R-C component.
Initialize: to drive a logic circuit into a beginning or reference state.
Input: a signal or line into a logic device that controls the operation of that device.
Input/state map: a K-map, with inputs as the axes and state identifiers as cell entries,

that can be used to determine if the sum rule and the mutually exclusive requirement of
any state in an FSM have been violated.

Integrated circuit (1C): an electronic circuit that is usually constructed entirely on a
single small semiconductor chip called a monolith.

Intersection: AND operation.
Inversion: the inverting of a signal from HV to LV or vice versa.
Inverter: a physical device that performs inversion.
Involution: double complementation of a variable or function.
I/O: input/output.
IOB: I/O block.
Irredundant: not redundant, as applied to an absolute minimum Boolean expression.
Irrelevant input: an input whose presence in a function is nonessential.
Island: a K-map entry that must be looped out of a single cell.
Iterative: repeated many times to achieve a specific goal.
JEDEC: Joint Electron Device Engineering Council as it pertains to PLD programming

format.
JK flip-flop: a type of flip-flop that can perform the set, reset, hold, and toggle operations.
Juxtapose: to place side by side.
Karnaugh map (K-map): graphical representation of a logic function named after M.

Karnaugh (1953).
Keyword: a word specific to a given HDL.
Kirchhoff's current law: the algebraic sum of all currents into a circuit element or circuit

section must be zero.
Kirchhoff s voltage law: the algebraic sum of all voltages around a closed loop must be

zero.
K-map: Karnaugh map.
LAC: look-ahead-carry (see also CLA).
Large-scale integrated circuits (LSI): 1C chips that contain 200 to thousands of gates.
Latch: a name given to certain types of memory elements as, for example, the D latch.
Latency: the time (usually in clock cycles) required to complete an operation in a se-

quential machine.
LCA: logic cell array.
LD: mnemonic for load.
Least significant bit (LSB): the bit (usually at the extreme right) of a binary word that

has the lowest positional weight.
LED: light-emitting diode.
Level: a term used when specifying to the number of gate path delays of a logic function

(from input to output) usually exclusive of inverters. See, for example, two-level logic.
Level triggered: rising edge triggered (RET) or falling edge triggered (FET).
Linear state machine: an FSM with a linear array of states.

18 CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

Line driver: a device whose purpose it is to boost and sharpen a signal so as to avoid
fan-out problems.

LFSR: linear feedback shift register.
LFSR counter: a counter, consisting of an LFSR, that can sequence through a unique set

of pseudorandom states controlled by external inputs.
Logic: the computational capability of a digital device that is interpreted as either a logic

1 or logic 0.
Logic adjacency: two logic states whose state variables differ from each other by only

one bit.
Logic cell: a configurable logic block (CLB).
Logic circuit: a digital circuit that performs the electrical equivalent of some logic func-

tion or process.
Logic diagram: a digital circuit schematic consisting of an interconnection of logic sym-

bols.
Logic family: a particular technology such as TTL or CMOS that is used in the production

oflCs.
Logic instability: the inability of a logic circuit to maintain a stable logic condition. Also,

an oscillatory condition in an asynchronous FSM.
Logic level: logic status indicating either positive logic or negative logic.
Logic level conversion: the act of converting from positive logic to negative logic or

vice versa.
Logic map: any of a variety of graphical representations of a logic function.
Logic noise: undesirable signal fluctuations produced within a logic circuit following

input changes.
Logic state: a unique set of binary values that characterize the logic status of a machine

at some point in time.
Logic waveform: a rectangular waveform between active and inactive states.
Look-ahead-carry (LAC): the feature of a "fast" adder that anticipates the need for a

carry and then generates and propagates it more directly than does a parallel adder (see
also carry look-ahead).

Loop-out: the action that identifies a prime implicant in a K-map.
Loop-out protocol: a minimization procedure whereby the largest 2 group of logically

adjacent minterms or maxterms are looped out in the order of increasing n (n = 0, 1,2,
3, . . .) .

LPD: lumped path delay.
LPDD: lumped path delay diagram.
LSB: least significant bit.
LSD: least significant digit.
LSI: large-scale integration.
Lumped path delay diagram (LPDD): a diagram that replaces discrete gates with other

logic symbols for the purpose of comparing path delays from input to output.
Lumped path delay (LPD) model: a model, applicable to FSMs that operate in the

fundamental mode, that is characterized by a lumped memory element for each state
variable/feedback path.

LV: low voltage.
Magnitude comparator: comparator.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 19

Majority function: a function that becomes active when a majority of its variables become
active.

Majority gate: a logic gate that yields a majority function.
Mantissa: the fraction part of a floating point number.
Map: usually a Karnaugh map.
Map compression: a reduction in the order of a K-map.
Map key: the order of K-map compression; hence, 2N~n, where N is the number of

variables in the function to be mapped and n is the order of the K-map to be used.
Mapping algorithm: In FSM design, the procedure to obtain the NS functions by ANDing

the memory input logic value in the excitation table with the corresponding branching
condition in the state diagram for the FSM to be designed, and entering the result in the
appropriate cell of the NS K-map.

Master/slave (MS) flip-flop: a flip-flop characterized by a master (input) stage and a
slave (output) stage that are triggered by clock antiphase to each other.

Mask: to prevent information from passing a certain point in a given process.
Mask programmed: refers to the bit patterns produced in a PLD chip at the foundry.
Maxterm: a POS term that contains all the variables of the function.
Maxterm code: a code in which complemented variables are assigned logic 1 and un-

complemented variables are assigned logic 0 — the opposite of minterm code.
Mealy machine: an FSM that conforms to the Mealy model.
Mealy model: the general model for a sequential machine where the output state depends

on the input state as well as the present state.
Mealy output: a conditional output.
Medium-scale integrated circuits (MSI): 1C chips that contain 20 to 200 gates according

to one convention.
Memory: the ability of a digital device to store and retrieve binary words on command.
Memory element: a device for storing and retrieving one bit of information on command.

In asynchronous FSM terminology, a fictitious lumped path delay.
Merge: the concatenation of buses to form a larger bus.
Merging of states: in a state diagram, the act of combining states to produce fewer states.
Metal-oxide-semiconductor: the material constitution of an important logic family

(MOS) used in 1C construction.
Metastability: an unresolved state of an FSM that resides between a Set and a Reset

condition or that is logically unstable.
Metastable exit time: the time interval between entrance into and exit from the metastable

state.
MEV: Map entered variable.
Minimization: the process of reducing a logic function to its simplest form.
Minimum cover: the optimally reduced representation of a logic expression.
Minterm: a term in an SOP expression where all variables of the expression are repre-

sented in either complemented or uncomplemented form.
Minterm code: a logic variable code in which complemented variables are assigned

logic 0 while uncomplemented variables are assigned logic 1 —the opposite of maxterm
code.

Minuend: the operand from which the subtrahend is subtracted in a subtraction operation.
Mixed logic: the combined use of the positive and negative logic systems.

20 CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

Mixed-rail output: dual, logically equal outputs of a device (e.g., a flip-flop) where one
output is issued active high while the other is issued active low, but the two are not issued
simultaneously.

Mnemonic: a short single group of symbols (usually letters) that are used to convey a
meaning.

Mnemonic state diagram: a fully documented state diagram.
Model: the means by which the major components and their interconnections are repre-

sented for a digital machine or system.
Module: a device that performs a specific function and that can be added to or removed

from a system to alter the system's capability. A common example is a full adder.
Modulus-n counter: (see divide-by-n counter)
Monad: a minterm (or maxterm) that is not logically adjacent to any other minterm (or

maxterm).
Moore machine: a sequential machine that conforms to the Moore model.
Moore model: a degenerate form of the Mealy (general) model in which the output state

depends only on the present state.
Moore output: an unconditional output.
MOS: metal-oxide-semiconductor.
MOSFET: metal-oxide-semiconductor field effect transistor.
Most significant bit (MSB): the extreme left bit of a binary word that has the highest

positional weight.
MSB: most significant bit.
MSD: most significant digit.
MSI: medium scale integration.
MTBF: mean time between failures.
Muller C module: a rendezvous module (RMOD).
Multilevel logic minimization: minimization involving more than two levels of path

delay as, for example, that resulting from XOR-type patterns in K-maps.
Multiple-output minimization: optimization of more than one output expression from

the same logic device.
Multiplex: to select or gate (on a time-shared basis) data from two or more sources onto

a single line or transmission path.
Multiplexer: a device that multiplexes data.
Multiplicand: the number being multiplied by the multiplier.
Multiplier: a combinational logic device that will multiply two binary numbers. Also,

the number being used to multiply the multiplicand.
Mutually exclusive requirement: a requirement in state diagram construction that for-

bids overlapping branching conditions (BCs) — i.e., it forbids the use of BCs shared
between two or more branching paths.

MUX: multiplexer.
NAND-centered basic cell: cross-coupled NAND gates forming a basic cell.
NAND gate: a physical device that performs the electrical equivalent of the NOT AND

function.
NAND/INV logic: combinational logic consisting exclusively of NAND gates and in-

verters.
Natural binary code: a code for which the bits are positioned in a binary word according

to their positional weight in polynomial notation.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 21

Natural binary coded decimal: a 4-bit, 10-word code that is weighted 8,4, 2,1 and that
is used to represent decimal numbers. Same as binary code.

NBCD: natural binary coded decimal. Same as binary coded decimal (BCD).
n-channel: an n-type conducting region in a p-type substrate.
Negative logic: a logic system in which high voltage (HV) corresponds to logic 0 and

low voltage (LV) corresponds to logic 1. The opposite of positive logic.
Negative pulse: a 1-0-1 pulse.
Nested cell: a basic cell that is used as the memory in an asynchronous FSM design.
Nested machine: any asynchronous machine that serves as the memory in the design of

a larger sequential machine. Any FSM that is embedded within another.
Next state (NS): a state that follows the present state in a sequence of states.
Next state forming logic: the logic hardware in a sequential machine whose purpose it

is to generate the next state function input to the memory.
Next state function: the logic function that defines the next state of an FSM given the

present state.
Next state map: a composite K-map where the entries for each cell are the next state

functions for the present state represented by the coordinates of that cell (see flow
table).

Next state variable: the variable representing the next state function.
Nibble: a group of four bits.
NMH: noise margin high — the lower voltage limit of logic 1 and the upper boundary of

the uncertainty region.
NML: noise margin low — the upper voltage limit of logic 0 and the lower boundary of

the uncertainty region.
NMOS: an n-channel MOSFET.
Noise immunity: the ability of a logic circuit to reject unwanted signals.
Noise margin: the maximum voltage fluctuation that can be tolerated in a digital signal

without crossing the switching threshold of the switching device.
Non-restoring logic: logic that consists of passive switching devices such as diodes or

transmission gates that cannot amplify but that dissipate power.
Nonvolatile: refers to memory devices that require no power supply to retain information

in memory.
NOR-centered basic cell: cross-coupled NOR gates forming a basic cell.
NOR gate: a physical device that performs the electrical equivalent of the NOT OR

function.
NOR/INV logic: combinational logic consisting exclusively of NOR gates and inverters.
NOT function: an operation that is the logic equivalent of complementation.
NOT laws: a set of Boolean identities based on the NOT function.
npn: refers to a BIT having a p-type semiconductor base and an n-type semiconductor

collector and emitter.
NS: next state.
Octad: a grouping of eight logically adjacent minterms or maxterms.
Octal: a base 8 number system in which numbers 1 through 7 are used to represent 3-bit

binary numbers 000 through 111. (See Binary coded octal.)
Odd parity: an odd number of 1's or O's depending on how odd parity is defined.
Offset pattern: an XOR pattern in a K-map in which identical subfunctions are located

in two nondiagonal cells that differ in cell coordinates by two bits.

22 CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

Ohm's law: voltage is linearly proportional to current, V = RI, where R is the constant
of proportionality called the resistance (in ohms).

One-hot code: a nonweighted code in which there exists only one 1 in each word of the
code.

One-hot design method: use of the one-hot code for synchronous and asynchronous
FSM design.

One-hot-plus-zero: one-hot code plus the all-zero state.
One's complement: a system of binary arithmetic in which a negative number is repre-

sented by complementing each bit of its positive equivalent.
Operand: a number or quantity that is to be operated on.
Operation table: a table that defines the functionality of a flip-flop or some other device.
Operator: a Boolean connective.
OPI: optional prime implicant.
Optional prime implicant (OPI): a prime implicant whose presence in a minimum

function produces alternative minimum cover.
OR: an operator requiring that the output of an OR gate be active if one or more of its

inputs are active.
OR-AND-Invert gate: a physical device, usually consisting of two OR gates and one

NAND gate, that performs the electrical equivalent of POS with an active low output.
Order: refers to the number of variables on the axes of a K-map.
OR function: a function that derives from the definition of OR.
ORG: output race glitch.
OR gate: a physical device that performs the electrical equivalent of the OR function.
OR laws: a set of Boolean identities based on the OR function.
OR plane: the ORing stage of a PLD.
Outbranching: branching from a state exclusive of the hold branching condition.
Output: a concluding signal issued by a digital device.
Output forming logic: the logic hardware in a sequential machine whose purpose it is to

generate the output signals.
Output holding register: a register, consisting of D flip-flops, that is used to filter out

output logic noise.
Output race glitch (ORG): an internally initiated function hazard that is produced by a

race condition in a sequential machine.
Overflow error: a false magnitude or sign that results from a left shift in a shifter when

there are insufficient word bit positions at the spill end.
Packing density: the practical limit to which switches of the same logic family can be

packed in an 1C chip.
PAL: programmable array logic (registered trademark of Advanced Micro Devices, Inc.).
PALU: programmable arithmetic and logic unit.
Parallel adder: a cascaded array of full adders where the carry-out of a given full adder

is the carry-in to the next most significant stage full adder.
Parallel load: the simultaneous loading of data inputs to devices such as registers and

counters.
Parity: related to the existence of an even or odd number of 1 's or O's in a binary word.
Parity bit: a bit appended to a binary word to detect, create, or remove even or odd parity.
Parity detector: a combinational logic device that will detect an even (or odd) number

of 1's (or O's) in a binary word.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 23

Parity generator: a combinational logic device that will append a logic 1 (or logic 0) to
a binary word so as to generate an even (or odd) number of 1 's (or O's).

Passive device: any device that is incapable of producing voltage or current gain and,
thus, only dissipates power.

Pass transistor switch: a MOS transistor switch that functions as a nonrestoring switch-
ing device and that does not invert a voltage signal. A transmission gate.

PCB: printed circuit board.
p-channel: a p-type conducting region in an n-type substrate.
PDF: portable document format.
PDP: power-delay product.
PE: priority encoder.
Period: the time in seconds (s) between repeating portions of a waveform; hence, the

inverse of the frequency.
Physical truth table: an I/O specification table based on a physically measurable quantity

such as voltage.
PI: prime implicant.
Pipeline: a processing scheme where each task is allocated to specific hardware (joined

in a line) and to a specific time slot.
PIPO: parallel-in/parallel-out operation mode of a register.
PISO: parallel-in/serial-out operation mode of a register.
PL A: programmable logic array.
Planar format: a two-dimensional K-map array used to minimize functions of more than

four variables.
PLD: programmable logic device.
PLS: programmable logic sequencer.
PMOS: a p-channel MOSFET.
p-n junction diode: (see Diode)
pnp: refers to a BJT having an n-type semiconductor base and a p-type semiconductor

emitter and collector.
Polarized mnemonic: a contracted signal name onto which is attached an activation level

indicator.
Port: an entry or exit element to an entity (e.g., the name given to an input signal in a

VHDL declaration).
POS: product-of-sums.
POS hazard: a static 0-hazard.
Positional weighting: a system in which the weight of a bit in a binary word is determined

by its polynomial representation.
Positive logic: the logic system in which HV corresponds to logic 1 and LV corresponds

to logic 0.
Positive pulse: a 0-1-0 pulse.
Power, P: the product of voltage, V, and current, /, given in units of watts (W).
Power-delay product (PDP): the average power dissipated by a logic device multiplied

by its propagation delay time.
PR or PRE: preset.
Present state (PS): the logic state of an FSM at a given instant.
Present state/next state (PS/NS) table: a table that is produced from the next state

K-maps and that is used to construct a fully documented state diagram in an FSM analysis.

24 CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

Preset: an asynchronous input that is used in flip-flops to set them to a logic 1 condition.
Prime implicant (PI): a group of adjacent minterms or maxterms that are sufficiently

large that they cannot be combined with other groups in any way to produce terms of
fewer variables.

Primitive: a discrete logic device such as a gate, MUX, or decoder.
Priority encoder: a logic device that generates a coded output based on a set of prioritized

data inputs.
Product-of-sums (POS): the ANDing of ORed terms in a Boolean expression.
Programmable logic array (PLA): any PLD that can be programmed in both the AND

and OR planes.
Programmable logic device (PLD): any two-level, combinational array logic device

from the families of ROMs, PLAs, PALs or FPGAs, etc.
Programmable read-only memory (PROM): a once-only user-programmable ROM.
PROM: programmable read-only memory.
Propagation delay: in a logic device, the time interval of an output response to an input

signal.
PS: present state.
PS/NS: present state/next state.
P-term: a Boolean product term-one consisting only of ANDed literals.
P-term table: a table that consists of p-terms, inputs, and outputs and that is used to

program PLA-type devices.
Pull-down resistor: a resistor that causes a signal on a line to remain at low voltage.
Pull-up resistor: a resistor that causes a signal on a line to remain at high voltage.
Pulse: an abrupt change from one level to another followed by an opposite abrupt change.
Pulse mode: an operational condition for an asynchronous FSM where the inputs are

required to be nonoverlapping pulse signals.
Pulse width: the active duration of a positive pulse or the inactive duration of a negative

pulse.
Quad: a grouping of four logically adjacent minterms or maxterms.
Quadratic convergence: a process as in "fast division" whereby the error per iteration

decreases according to the inverse square law.
Quotient: the result of a division operation.
R: reset.
Race condition: a condition in a sequential circuit where the transition from one state to

another involves two or more alternative paths.
Race gate: the gate to which two or more input signals are in race contention.
Race path: any path that can be taken in a race condition.
Race state: any state through which an FSM may transit during a race condition.
Radix: the number of unique symbols in a number system — same as the base of a number

system.
RAM: random access memory.
Random access memory (RAM): a read/write memory system in which all memory

locations can be accessed directly independent of other memory locations.
R-C: resistance/capacitance or resistor/capacitor.
Read only memory (ROM): a PLD that can be mask programmed only in the OR

plane.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 25

Read/write memory (RWM): a memory array (e.g., RAM) that can be used to store and
retrieve information at any time.

Redundant cover: nonessential and nonoptional cover in a function representation.
Redundant prime implicant: a prime implicant that yields redundant cover.
Reflective code: a code that has a reflection (mirror) plane midway through the code.
Register: a digital device, configured with flip-flops and other logic, that is capable of

storing and shifting data on command.
Remainder: in division, the dividend minus the product of the divisor and the quotient.
Rendezvous module: an asynchronous state machine whose output becomes active when

all external inputs become active and becomes inactive when all external inputs become
inactive.

Reset: a logic 0 condition or an input to a logic device that sets it to a logic 0 condition.
Residue: the part of term that remains when the coupled variable is removed (see con-

sensus term).
Resistance, R: the voltage drop across a conducting element divided by current through

the element (in ohms).
Resistor-transistor logic: a logic family that consists of BJTs and resistors.
Restoring logic: logic consisting of switching devices such as BJTs and MOSFETs that

can amplify.
RET: rising edge triggered.
Reverse bias: a voltage applied to a p—n junction diode in a direction that minimizes

conduction across the junction.
Reverse saturation current: the current through a p-n junction diode under reverse bias.
Ring counter: a configuration of shift registers that generates a one-hot code output.
Ripple carry (R-C): the process by which a parallel adder transfers the carry from one

full adder to another.
Ripple counter: a counter whose flip-flops are each triggered by the output of the next

LSB flip-flop.
Rise time: he period of time it takes a voltage (or current) signal to change from 10% to

90% of its high value.
Rising edge triggered (RET): activation of a logic device on the rising edge of the

triggering variable.
RMOD: rendezvous module.
ROM: read-only memory.
Round-off error: the amount by which a magnitude is diminished due to an underflow

or spill-off in a shifter undergoing a right shift.
RPI: redundant prime implicant.
RTL: resistor-transistor logic.
Runt pulse: any pulse that barely reaches the switching threshold of a device into which

it is introduced.
S: set. Also, the source terminal of a MOSFET.
Sampling interval: sum of the setup and hold times.
Sampling variable: the last variable to change in initiating a state-to-state transition in

an FSM.
Sanity circuit: a circuit that is used to initialize an FSM into a particular state, usually a

resistor/capacitor (R-C) type circuit.

26 CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

Saturation mode: the physical state of a BIT in which collector current is permitted to
flow.

Schmitt trigger: an electronic gate with hysteresis and high noise immunity that is used
to "square up" pulses.

Selector module: a device whose function it is to steer one of two input signals to either
one of two outputs depending on whether a specific input is active or inactive.

Self-correcting counter: a counter for which all states lead into the main count sequence
or routine.

Sequence detector (recognizer): a sequential machine that is designed to recognize a
particular sequence of input signals.

Sequential machine: any digital machine with feedback paths whose operation is a func-
tion of both its history and its present input data.

Set: a logic 1 condition or an input to a logic device that sets it to a logic 1 condition.
Setup time: the interval of time prior to the transition point during which all data inputs

must remain stable at their proper logic level to ensure that the intended transition will
be initiated.

S-hazard: a static hazard.
Shift register: a register that is capable of shifting operations.
Shift: the movement of binary words to the left or right in a shifter or shift register.
Shifter: a combinational logic device that will shift or rotate data asynchronously upon

presentation.
Sign bit: a bit appended to a binary number (usually in the MSB position) for the purpose

of indicating its sign.
Sign-complement arithmetic: 1's or 2's complement arithmetic.
Sign-magnitude representation: a means of identifying positive and negative binary

numbers by a sign and magnitude.
Single transition time (STT): a state-to-state transition in an asynchronous FSM that

occurs in the shortest possible time, that is, without passing through a race state.
SIPO: serial-in/parallel-out operation mode of a register.
SISO: serial-in/serial-out operation mode of a register.
Slice: that part of a circuit or device that can be cascaded to produce a larger circuit or

device.
Small-scale integration: 1C chips that, by one convention, contain up to 20 gates.
SOP: sum-of-products.
SOP hazard: a static 1-hazard.
Source: one of three terminals of a MOSFET. The origin of a digital signal.
Spill bit: the bit in a shifter or shift register that is spilled off (lost) in a shifting operation.
SPDT switch: single-pole/double-throw switch.
SPST switch: single-pole/single-throw switch.
Square wave: a rectangular waveform.
SRAM: static RAM.
SSI: small-scale integration.
Stability criteria: the requirements that determine if an asynchronous FSM, operated in

the fundamental mode, is stable or unstable in a given state.
Stable state: any logic state of an asynchronous FSM that satisfies the stability criteria.
Stack format: a three-dimensional array of conventional fourth-order K-maps used for

function minimization of more than four variables.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 27

State: a unique set of binary values that characterize the logic status of a machine at some
point in time.

State adjacency set: any 2" set of logically adjacent states of an FSM.
State code assignment: unique set of code words that are assigned to an FSM to charac-

terize its logic status.
State diagram: the diagram or chart of an FSM that shows the state sequence, branching

conditions, and output information necessary to describe its sequential behavior.
State machine: a finite state machine (FSM). A sequential machine.
State identifier: any symbol (e.g., alphabetical) that is used to represent or identify a

state in a state diagram.
State table: tabular representation of a state diagram.
State transition table: (see excitation table).
State variable: any variable whose logic value contributes to the logic status of a machine

at any point in time. Any bit in the state code assignment of a state diagram.
Static hazard: an unwanted glitch in an otherwise steady-state signal that is produced by

an input change propagating along asymmetric path delays through inverters or gates.
Static-1 hazard: a glitch that occurs in an otherwise steady-state 1 output signal from SOP

logic due to a change in an input for which there are two asymmetric paths (delay-wise)
to the output.

Static-0 hazard: a glitch that occurs in an otherwise steady-state 0 output signal from POS
logic due to a change in an input for which there are two asymmetric paths (delay-wise)
to the output.

Static RAM: a nonvolatile form of RAM — does not need periodic refreshing to hold its
information.

Steering logic: logic based primarily on transmission gate switches.
S-term: a Boolean sum term — one containing only ORed literals.
Stretcher: an input conditioning device that catches a short input signal and stretches it.
STT: single transition time.
Stuck-at fault: an input to a logic gate that is permanently stuck at logic 0 or logic 1

because of a shorted connection, an open connection, or a connection to either ground
or a voltage supply.

Substrate: the supporting or foundation material in and on which a semiconductor device
is constructed.

Subtracter: a digital device that subtracts one binary word from another to give a differ-
ence and borrow.

Subtrahend: the operand being subtracted from the minuend in a subtraction operation.
Sum-of-products (SOP): the ORing of ANDed terms in a Boolean expression.
Sum rule: a rule in state diagram construction that requires that all possible branching

conditions be accounted for.
Switching speed: a device parameter that is related to its propagation delay time.
Synchronizer circuit: a logic circuit (usually a D flip-flop) that is used to synchronize

an input with respect to a clock signal.
Synchronous machine: a sequential machine that is clock driven.
Synchronous parallel load: parallel loading of a register or counter via a clock signal to

the flip-flops.
System level design: a design that includes controller and data path sections.
Tabular minimization: a minimization procedure that uses tables exclusively.

28 CHAPTER 1 / INTRODUCTORY REMARKS AND GLOSSARY

T flip-flop: a flip-flop that operates in either the toggle or hold mode.
TG: transmission gate.
Throughput: the time required to produce an output response due to an input change.
Time constant: the product of resistance and capacitance given in units of seconds (s) — a

measure of the recovery time of an R-C circuit.
Timing diagram: a set of logic waveforms showing the time relationships between two

or more logic signals.
Toggle: repeated but controlled transitions between any two states, as between the Set

and Reset states.
Toggle module: a flip-flop that is configured to toggle only. Also, a divide-by-2 counter.
Transfer characteristic: for a transistor switch, a plot of current (7) vs voltage (V).
Trans-HI module: a transparent high (RET) D latch.
Trans-LO module: a transparent low (FET) D latch.
Transistor: a three-terminal switching device that exhibits current or voltage gain.
Transistor-transistor logic: a logic family in which bipolar junction transistors provide

both logic decision and current gain.
Transition: in a digital machine, a change from one state (or level) to another.
Transmission gate: a pass transistor switch.
Transparent D latch: a two-state D flip-flop in which the output, Q, tracks the input, D,

when clock is active if RET or when clock is inactive if FET.
Tree: combining of like gates, usually to overcome fan-in limitations.
Triggering threshold: the point beyond which a transition takes place.
Triggering variable: sampling (enabling) variable.
Tri-state bus: as used in this text, the wire-ORed output lines from a multiplexed scheme

of PLDs having tri-state enables. Note: tri-state is a registered trademark of NSC.
Tri-state driver: an active logic device that operates in either a disconnect mode or an

inverting (or noninverting) mode. Also, three-state driver. Note: tri-state is a registered
trademark of NSC.

True hold: the condition whereby a device can sustain the same logic output values over
any number of clock cycles independent of its input logic status.

Truth table: a table that provides an output value for each possible input condition to a
combinational logic device.

TTL: transistor-transistor (BJT) logic.
Twisted ring counter: a configuration of shift registers that generates a creeping code

output.
Two-level logic: logic consisting of only one ANDing and one ORing stage.
Two-phase clocking: two synchronized clock signals that have nonoverlapping active or

nonoverlapping inactive waveforms.
Two's complement: one's complement plus one added to the LSB.
Unconditional branching: state-to-state transitions that take place independent of the

input status of the FSM.
Unconditional output: an output of an FSM that does not depend on an input signal.
Union: OR operation.
Unit distance code: a code in which each state in the code is surrounded by logically

adjacent states.
Universal flip-flop: a JK flip-flop.
Universal gate: a NAND or NOR gate.

1.4 GLOSSARY OF TERMS, EXPRESSIONS, AND ABBREVIATIONS 29

Universal shift register: a shift register capable of performing PIPO, PISO, SIPO, and
SISO operations in addition to being capable of performing the true hold condition.

Unstable state: any logic state in an asynchronous FSM that does not satisfy the stability
criteria.

Unweighted code: a code that cannot be constructed by any mathematical weighting
procedure.

USR: universal shift register.
UVEPROM: ultraviolet erasable PROM.
VEM: variable entered map.
Very large scale integrated circuits: 1C chips that contain thousands to millions of gates.
VHDL: VHSIC hardware description language.
VHSIC: very high speed integrated circuit.
VLSI: very large scale integrated circuits.
Voltage, V: the potential difference between two points, in units of volts (V). Also, the

work required to move a positive charge against an electric field.
Voltage waveform: a voltage waveform in which rise and fall times exist.
Weighted code: a binary code in which the bit positions are weighted with different

mathematically determined values.
Wired logic: an arrangement of logic circuits in which the outputs are physically con-

nected to form an "implied" AND or OR function.
WSI circuits: wafer-scale integrated circuits.
XNOR: (see Equivalence and EQV)
XOR: exclusive OR.
XOR function: the function that derives from the definition of exclusive OR.
XOR gate: a physical device that performs the electrical equivalent of the XOR function.
XOR laws: a set of Boolean identities that are based on the XOR function.
XOR pattern: any of four possible K-map patterns that result in XOR type functions.
XS3 code: BCD code plus three.
ZBI: zero-blanking input.
ZBO: zero-blanking output.
Zero banking: a feature of a BCD-to-seven-segment conversion that blanks out the seven-

segment display if all inputs are zero.

This page intentionally left blank

CHAPTER 2

Number Systems, Binary
Arithmetic, and Codes

2.1 INTRODUCTION

Number systems provide the basis for conveying and quantifying information. Weather
data, stocks, pagination of books, weights and measures — these are just a few examples
of the use of numbers that affect our daily lives. For this purpose we find the decimal (or
Arabic) number system to be reliable and easy to use. This system evolved presumably
because early humans were equipped with a crude type of calculator, their 10 fingers. But a
number system that is appropriate for humans may be intractable for use by a machine such
as a computer. Likewise, a number system appropriate for a machine may not be suitable
for human use.

Before concentrating on those number systems that are useful in computers, it will be
helpful to review those characteristics that are desirable in any number system. There are
four important characteristics in all:

• Distinguishability of symbols
• Arithmetic operations capability

• Error control capability

• Tractability and speed

To one degree or another the decimal system of numbers satisfies these characteristics
for hard-copy transfer of information between humans. Roman numerals and binary are
examples of number systems that do not satisfy all four characteristics for human use. On
the other hand, the binary number system is preferable for use in digital computers. The
reason is simply put: current digital electronic machines recognize only two identifiable
states, physically represented by a high voltage level and a low voltage level. These two
physical states are logically interpreted as binary symbols 1 and 0.

A fifth desirable characteristic of a number system to be used in a computer should be
that it have a minimum number of easily identifiable states. The binary number system
satisfies this condition. However, the digital computer must still interface with humankind.
This is done by converting the binary data to a decimal and character-based form that can

31

32 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

be readily understood by humans. A minimum number of identifiable characters (say 1 and
0, or true and false) is not practical or desirable for direct human use. If this is difficult
to understand, imagine trying to complete a tax form in binary or in any number system
other than decimal. On the other hand, use of a computer for this purpose would not only
be practical but, in many cases, highly desirable.

2.2 POSITIONAL AND POLYNOMIAL REPRESENTATIONS

The positional form of a number is a set of side-by-side (juxtaposed) digits given generally
in fixed-point form as

Radix

MSD Point LSD

I I I

Nr = (an-\-

Integer Fraction

where the radix (or base), r, is the total number of digits in the number system, and a is
a digit in the set defined for radix r. Here, the radix point separates n integer digits on the
left from m fraction digits on the right. Notice that an-\ is the most significant (highest
order) digit called MSD, and that a_OT is the least significant (lowest order) digit denoted
by LSD.

The value of the number in Eq. (2.1) is given in polynomial form by

n-\

Nr=^ fl,-r' = (an-ir
tt~l H ----- h a2r

2 + a,r ' + aor° + a-\r~l

i=—m

+ a-2r~2 + "'+a-mr-m)r, (2.2)

where at is the digit in the z'th position with a weight r' .
Applications of Eqs. (2.1) and (2.2) follow directly. For the decimal system r = 10,

indicating that there are 10 distinguishable characters recognized as decimal numerals
0, 1, 2, . . . , r — \(= 9). Examples of the positional and polynomial representations for the
decimal system are

= 3017.528

and

n-l

#,<,= £) <// iff
(=-3

= 3 x 103 + 0 x 102 + 1 x 10' + 7 x 10° + 5 x 10'1 + 2 x 10"2 + 8 x 10

= 3000 + 10 + 7 + 0.5 + 0.02 + 0.008,

2.3 UNSIGNED BINARY NUMBER SYSTEM 33

where d/ is the decimal digit in the z'th position. Exclusive of possible leading and trailing
zeros, the MSD and LSD for this number are 3 and 8, respectively. This number could have
been written in a form such as N\Q = 03017.52800 without altering its value but implying
greater accuracy of the fraction portion.

2.3 UNSIGNED BINARY NUMBER SYSTEM

Applying Eqs. (2.1) and (2.2) to the binary system requires that r = 2, indicating that there
are two distinguishable characters, typically 0 and (r — 1) = 1, that are used. In positional
representation these characters (numbers) are called binary digits or bits. Examples of the
positional and polynomial notations for a binary number are

= (bn-i • • • b3b2b\b0 • b-\b-2b-3 • • • b-m)2

= 1 0 1 1 0 1 . 1 0 12

t t
MSB LSB

and

= 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21

+ 1 x 2° + 1 x 2~' + 0 x 2~2 + 1 x 2~3

= 32 + 8 + 4+1+0.5 + 0.125

= 45.625,0,

where n = 6 and m = 3, and £, is the bit in the z'th position. Thus, the bit positions are
weighted,... 16, 8, 4, 2, 1, 1/2, 1/4, 1/8,.. .for any number consisting of integer and fraction
portions. Binary numbers, so represented, are sometimes referred to as natural binary. In
positional representation, the bit on the extreme left and extreme right are called the MSB
(most significant bit) and LSB (least significant bit), respectively. Notice that by obtaining
the value of a binary number, a conversion from binary to decimal has been performed. The
subject of radix (base) conversion will be dealt with more extensively in a later section.

For reference purposes, Table 2.1 provides the binary-to-decimal conversion for two-,
three-, four-, five-, and six-bit binary. The six-bit binary column is only halfway completed
for brevity.

In the natural binary system the number of bits in a unit of data is commonly assigned a
name. Examples are:

4 data-bit unit — nibble (or half byte)
8 data-bit unit — byte
16 data-bit unit — two bytes (or half word)
32 data-bit unit — word (or four bytes)
64 data-bit unit — double-word

34 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

Table 2.1 Binary-to-decimal conversion

Two-Bit Decimal Three-Bit Decimal Four-Bit Decimal Five-Bit Decimal Six-Bit Decimal
Binary Value Binary Value Binary Value Binary Value Binary Value

00 0 000 0 0000 0 10000 16 100000 32
01 1 001 1 0001 1 10001 17 100001 33
10 2 010 2 0010 2 10010 18 100010 34
11 3 Oil 3 0011 3 10011 19 100011 35

100 4 0100 4 10100 20 100100 36
101 5 0101 5 10101 21 100101 37
110 6 0110 6 10110 22 100110 38
111 7 0111 7 10111 23 100111 39

1000 8 11000 24 101000 40
1001 9 11001 25 101001 41
1010 10 11010 26 101010 42
1011 11 11011 27 101011 43
1100 12 11100 28 101100 44
1101 13 11101 29 101101 45
1110 14 11110 30 101110 46
1111 15 11111 31 101111 47

The word size for a computer is determined by the number of bits that can be manipu-
lated and stored in registers. The foregoing list of names would be applicable to a 32-bit
computer.

2.4 UNSIGNED BINARY CODED DECIMAL, HEXADECIMAL, AND OCTAL

Although the binary system of numbers is most appropriate for use in computers, this
system has several disadvantages when used by humans who have become accustomed to
the decimal system. For example, binary machine code is long, difficult to assimilate, and
tedious to convert to decimal. But there exist simpler ways to represent binary numbers for
conversion to decimal representation. Three examples, commonly used, are natural binary
coded decimal (BCD), binary coded hexadecimal (BCH), and binary coded octal (BCO).
These number systems are useful in applications where a digital device, such as a computer,
must interface with humans. The BCD code representation is also useful in carrying out
computer arithmetic.

2.4.1 The BCD Representation

The BCD system is an 8, 4, 2, 1 weighted code. This system uses patterns of four bits to
represent each decimal position of a number and is converted to its decimal equivalent by

2.4 UNSIGNED BINARY CODED DECIMAL, HEXADECIMAL, AND OCTAL 35

Table 2.2 BCD bit patterns and decimal equivalent

BCD
Bit Pattern

0000
0001
0010
0011
0100
0101
0110
0111

Decimal

0
1
2
3
4
5
6
7

BCD
Bit Pattern

1000
1001
1010
1011
1100
1101
1110
1111

Decimal

8
9

NA
NA
NA
NA
NA
NA

NA = not applicable (code words not valid)

polynomials of the form

#10 = b3 x 23 + b2 x 22 + b\ x 21 + b0 x 2°

= &3 x 8 + £2 x 4 + b, x 2 + £0 x 1

for any b^bibo code integer. Thus, decimal 6 is represented as (0 x 8) + (1 x 4) + (1 x
2) + (0 x 1) or 0110 in BCD code. As in binary, the bit positional weights of the BCD code
are derived from integer powers of 2". Table 2.2 shows the BCD bit patterns for decimal
integers 0 through 9.

Decimal numbers greater than nine or less than one can be represented by the BCD code
if each digit is given in that code and if the results are combined. For example, the number
63.98 is represented by (or converted to) the BCD code

6 3 . 9 8

63.98io = (01100011 . 1001 1000)BCD

= 1100011.1001IBCD

Here, the code weights are 80, 40, 20, 10; 8, 4, 2, 1; 0.8, 0.4, 0.2, 0.1; and 0.08, 0.04, 0.02,
0.01 for the tens, units, tenths, and hundredths digits, respectively, representing four decades.
Notice that the leading and trailing O's can be dropped. Pencil-and-paper conversion between
binary and BCD requires conversion to decimal as an intermediate step. For example, to
convert from BCD to binary requires that groups of four bits be selected in both directions
from the radix point to form the decimal number. If necessary, leading and trailing zeros
are added to the leftmost or rightmost ends to complete the groups of four bits as in the
example above. Negative BCD numbers are coded by using 10's complement notation as
discussed in a later section.

Another code that is used for number representation and manipulation is called Excess
3 BCD (or XS3 BCD or simply XS3). XS3 is an example of a biased-weighted code (a bias
of 3). This code is formed by adding 001 b (= 3io) to the BCD bit patterns in Table 2.2.

36 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

Thus,

XS3 = BCD + 0011.

For example, the number 63.98io is represented in XS3 code as 1001 0110. 1 100 101 1\S3-
To convert XS3 to BCD code, 0011 must be subtracted from XS3 code. In 4-bit quan-
tities the XS3 code has the useful feature that when two numbers are added together in
XS3 notation, a carry will result and yield the correct value any time a carry results in
decimal (i.e., when 9 is exceeded). This feature is not shared by either binary or BCD
addition.

2.4.2 The Hexadecimal and Octal Systems

The hexadecimal number system requires that r = 16 in Eqs. (2.1) and (2.2), indicating
that there are 16 distinguishable characters in the system. By convention, the permissible
hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F for decimals 0
through 15, respectively. Examples of the positional and polynomial representations for a
hexadecimal number are

= (AF3-C8)1 6

with a decimal value of

= 10 x 162 + 15 x 16' + 3 x 16° + 12 x 16"' + 8 x 16~2

= 2803.7812510.

Here, it is seen that a hexadecimal number has been converted to decimal by using Eq. (2.2).
The octal number system requires that r = 8 in Eqs. (2.1) and (2.2), indicating that there

are eight distinguishable characters in this system. The permissible octal digits are 0, 1,2,
3, 4, 5, 6, and 7, as one might expect. Examples of the application of Eqs. (2.1) and (2.2) are

N8 = (<?„_, • --020100 -O-iQ-20-3 • • -0_m)8

= 501.748,

with a decimal value of

5 x 82 + 0 x 81 + 1 x 8° + 7 x 8"1 + 4 x 8~2

321.9375,0-

2.5 CONVERSION BETWEEN NUMBER SYSTEMS 37

Table 2.3 The BCH and BCO number systems

Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

BCH

0
1
2
3
4
5
6
7
8
9

BCO

0
1
2
3
4
5
6
7
10
11

Decimal

0
1
2
3
4
5
6
7
8
9

Binary

1010
1011
1100
1101
1110
1111
10000
11011
110001
1001110

BCH

A
B
C
D
E
F
10
IB
31
4E

BCO

12
13
14
15
16
17
20
33
61
116

Decimal

10
11
12
13
14
15
16
27
49
78

When the hexadecimal and octal number systems are used to represent bit patterns in
binary, they are called binary coded hexadecimal (BCH) and binary coded octal (BCO),
respectively. These two number systems are examples of binary-derived radices. Table 2.3
lists several selected examples showing the relationships between BCH, BCO, binary and
decimal.

What emerges on close inspection of Table 2.3 is that each hexadecimal digit corresponds
to four binary digits, and that each octal digit corresponds to three binary digits. The
following example illustrate the relationships between these number systems:

5 B F . D 8

10110111111.110112=0101 1011 1111.1101 1000

= 5BF.D816

2 6 7 7 . 6 6

= 010 110 111 111 . 110 110

= 2677.668

= 1471.84375i0.

To separate the binary digits into groups of four (for BCH) or groups of three (for BCO),
counting must begin from the radix point and continue outward in both directions. Then,
where needed, zeros are added to the leading and trailing ends of the binary representation
to complete the MSDs and LSDs for the BCH and BCO forms.

2.5 CONVERSION BETWEEN NUMBER SYSTEMS

It is not the intent of this section to cover all methods for radix (base) conversion. Rather,
the plan is to provide general approaches, separately applicable to the integer and fraction
portions, followed by specific examples.

38 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

2.5.1 Conversion of Integers

Since the polynomial form of Eq. (2.2) is a geometrical progression, the integer portion can
be represented in nested radix form. In source radix s, the nested representation is

Ns = (an-{s
n^ + an-2s"-2 + • • • + a,*1 + a0s°)s

(2.3)

for digits a, having integer values from 0 to n — 1. The nested radix form not only suggests
a conversion process, but also forms the basis for computerized conversion.

Consider that the number in Eq. (2.3) is to be represented in nested radix r form,

Nr =

/m-l \

(2.4)

where, in general, m =£ n. Then, if the source number Ns is divided by r, the results are of
the form

where Q is the integer quotient rearranged as (?o = b\ + r(b2 + • • • + bm^\) • • •) and R is
the remainder RQ = bo. A second division by r yields Qo/r = Q\ + R\/r, where Q\ is
arranged as Q\ = b2 + r(£3 + • • • + bm_\) • • -)r and R\ = b\. Thus, by repeated division
of the integer result Q{ by r, the remainders yield (bo,b\,b2, . . . ,bm_\}r in that order.

The conversion method just described, called the radix divide method, can be used to
convert between any two integers of different radices. However, the requirement is:

The arithmetic required by Ns/r must be carried out in source radix, s.

Except for source radices 10 and 2, this creates a problem for humans.
Table 2.4 provides the recommended procedures for integer conversion by noncomputer

means. The radix divide method is suitable for use in computers only if they are programmed
to carry out the arithmetic in different radices. Notice the partitioning required for conversion
between binary and BCH and BCO integers.

The following two algorithms offer noncomputer methods for integer conversion:

Algorithm 2.1: Nr *- Ns Positive Integer Conversion

Use Eq. (2.2) and the substitution method with base 10 arithmetic to convert Ns to #10,
then use the radix divide method and base 10 arithmetic to convert NIQ to Nr.

2.5 CONVERSION BETWEEN NUMBER SYSTEMS 39

Table 2.4 Summary of recommended methods for integer conversion
by noncomputer means

Integer
Conversion

N10 -> Nr

Ns -^ NIO
Ns).v^]0 -+ NrWic

Conversion
Method

Radix division by radix r using Eq. (2.5)
Eq. (2.2) or (2.3)

, N, -+ JVio by Eq. (2.2) or (2.3)
NIO —* Nr radix division by r using Eq. (2.5)

Special Cases for Binary Forms

N2 -» NIO
N2 -> NBCH

N2 — > NBCO

NBCH -> N2

NBCO -* N2

NBCH -> NBCO
NBCO -» NBCH
Nfio) -> %55

NXS^ -> NBCD

Positional weighting
Partition N2 into groups of four bits starting from

radix point, then apply Table 2.3
Partition A^ into groups of three bits starting from

radix point, then apply Table 2.3
Reverse of N2 — > NBCH
Reverse of N2 —> NBCO
NBCH -> N2 -+ NBCO
NBCO -+ N2 -+ NBCH
Add00112(=3i0)toNBCD
Subtract 001 12 (= 3 10) from NXSB

Algorithm 2.2: #2* •«- N%> Positive Integer Conversion

To convert numbers A/2« to N2k, where n and k are integers, convert the groups of n
digits in A^2« to A^, then reorganize the result in groups of k beginning with the LSB and
proceeding toward the MSB.1 Finally, replace each group of k, reading from the LSB,
with the digit appropriate for number system #2* •

The integer conversion methods of Table 2.4 and Algorithms 2.1 and 2.2 are illustrated
by the following simple examples:

EXAMPLE 2.1 139,0 -+ N2

N/r Q R
139/2 = 69 1
69/2 = 34 1
34/2 = 17 0
17/2 = 8 1
8 / 2 = 4 0
4 / 2 = 2 0
2 / 2 = 1 0
1/2 = 0 1 139i0= 100010112

EXAMPLE 2.2 100010112 -> N\ 0

By positional weights N[0 = 128 + 8 + 2 + 1 = 139i0.

Note that leading O's may be needed to complete the groups of k.

40 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

EXAMPLE 2.3 139]0 -» Wg
N/r Q R
139/8 = 17 3
17/8 = 2 1
2 / 8 = 0 2 139io =

EXAMPLE 2.4 1 000 1 0 1 1 2

2 1 3
010001 Oil = 213BCo

EXAMPLE 2.5 213Bco -»• WBCH

2 1 3 8 B
213BCo =010 001 Oil = 1000101 12 = 1000 1011 = 8B16

EXAMPLE 2.6 2138 -» N5

2138 = 2 x 8 2 + l x 8 1 + 3 x 8 ° = 139,0
Nr Q R

139/5 = 27 4
27/5 = 5 2
5 / 5 = 1 0
1 / 5 = 0 1 2138 = 10245

Check: 1 x 53 + 0 x 52 + 2 x 51 + 4 x 5° = 125 + 0 + 10 + 4 = 139i0

2.5.2 Conversion of Fractions

By extracting the fraction portion from Eq. (2.2) one can write

•N = (a-is~l + a-2s~2 + ••• + a-ms-'n)s

= 5 - l f l _ , + f l - / 5 - / + 1 (2.6)
V '=2 /,

in source radix s. This is called the nested inverse radix form and provides the basis for
computerized conversion.

If the fraction in Eq. (2.6) is represented in nested inverse radix r form, then

•N = (fc-ir-1 + b-2r~2 + •••+ b^s-p}r

(2-7)

for any fraction represented in radix r. Now, if source Ns is multiplied by r, the result is of
the form

•Nsxr = I + F, (2.8)

2.5 CONVERSION BETWEEN NUMBER SYSTEMS 41

where / is the product integer, /] = b-\, and FQ is the product fraction arranged as F\ =
r~\b-2 + r~ '(&_3 + • • • + b-p)) • • -)r- By repeated multiplication by r of the remaining
fractions F,, the resulting integers yield (b-\, b-2, £ -3 . . . , b-m\ in that order.

The conversion just described is called the radix multiply method and is perfectly general
for converting between fractions of different radices. However, as in the case of integer
conversion, the requirement is that the arithmetic required by -Ns x r must be carried out
in source radix, s. For noncomputer use by humans, this procedure is usually limited to
fraction conversions A/io —>• Nr, where the source radix is 10 (decimal). Algorithm 2.3
gives the recommended methods for converting between fractions of different radices. The
radix multiply method is well suited to computer use.

Algorithm 2.3: -Nr +~ >NS Fraction Conversion

(1) Use Eq, (2.2) and the substitution method with base s arithmetic, or
(2) Use the radix multiply method of Eq. (2.8) with source radix s arithmetic.

In either case for noncomputer means, if the source radix is other than 2 or 10, convert
the fraction as follows: -Ns -> -N2 or 10 -> -Nr so that base 2 or 10 arithmetic can be
applied.

Shown in Table 2.5 are the recommended methods given in some detail for fraction
conversion by noncomputer means. Notice again the partitioning that is now required for
conversion between binary fractions and those for BCH and BCO.

For any integer of source radix s, there exists an exact representation in radix r. This is not
the case for a fraction whose conversion is a geometrical progression that never converges.

Table 2.5 Summary of recommended methods for fraction conversion
by noncomputer means

Fraction
Conversion

•#io-
•#*->
•#sW

> -Nr

•NiQ

10 -+ '#r)r^l

Conversion
Method

Radix multiplication by using Eq. (2.8)
Eq. (2.2) or (2.6)

o •#, -+ -#io by Eq. (2.2) or (2.6)
•#io —*• -Nr radix multiplication by Eq. (2.5)

Special Cases for Binary Forms

•#2^
•#2 ->

•#2 ->

•NBCH
•NBCO
•NBCH
•NBCO
•NBCD
•NXS3 -

•#io
•NBCH

•NBCO

-> -#2

^•#2

->• -#sco
-* -#fic//
-> -#x«
-+ "#5CD

Positional weighting
Partition • A^ into groups of four bits starting from

radix point, then apply Table 2.3
Partition -A^ into groups of three bits starting from

radix point, then apply Table 2.3
Reverse of -A^ — ̂ -#sc//
Reverse of -A^ —>• -#sco
•NBCH ~^ -#2 ~^ ~NBCO
•NBCO — >• -#2 — > -NBCH
Add00112(=3io)to#BCD
Subtract 001 12 (= 3 JQ) from NXSS

42 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

Terminating a fraction conversion at n digits (to the right of the radix point) results in an
error or uncertainty. This error is given by

= r , <2-(n+/)r

where the quantity in brackets is less than (a-n + 1). Therefore, terminating a fraction
conversion at n digits from the radix point results in an error with bounds

0 < e < r-n(a-n + 1). (2.9)

Equation (2.9) is useful in deciding when to terminate a fraction conversion.
Often, it is desirable to terminate a fraction conversion at n + 1 digits and then round off

to n from the radix point. A suitable method for rounding to n digits in radix r is:

Algorithm 2.4: Rounding Off to n Digits for Fraction Conversion in Radix r

Perform the fraction conversion to (n — 1) digits from the radix point, then drop the
(n — 1) digit if «_(K+1) < r/2; add r~<M~'1) to the result if #_(w_i) > r/2.

After rounding off to n digits, the maximum error becomes the difference between the
rounded result and the smallest value possible. By using Eq. (2.9), this difference is

nax = r n(a_n + l)-r "(a_,

= r-"|l-

Then, by rounding to n digits, there results an error with bounds

If a-(n+\) < r/2 and the (n + 1) digit is dropped, the maximum error is r n. Note that for
Ns —> NIQ —>• Nr type conversions, the bounds of errors aggregate.

The fraction conversion methods given in Table 2.5 and Algorithms 2.3 and 2.4 are
illustrated by the following examples:

EXAMPLE 2.7 0.65410 -> 7V2 rounded to 8 bits:

•Ns x r F I
0.654 x 2 0.308 1
0.308 x 2 0.616 0
0.616 x 2 0.232 1
0.232 x 2 0.464 0

2.6 SIGNED BINARY NUMBERS 43

0.464 x 2 0.928 0
0.928 x 2 0.856 1
0.856x2 0.712 1
0.712x2 0.424 1 0.65410 = 0.101001112

0.424 x 2 0.848 0 £max = 2~8

EXAMPLE 2.8 0.654i0 ->• W8 terminated at 4 digits:

•Ns xr F I
0.654 x 8 0.232 5
0.232 x 8 0.856 1 0.65410 = 0.51668

0.856x8 0.848 6 with error bounds
0.848 x 8 0.784 6 0 < e < 7 x 8~4 = 1.71 x 10~3 by Eq. (2.9)

EXAMPLE 2.9 Let 0.51668 -»• N2 be rounded to 8 bits and let 0.51668 ->• N\Q be rounded
to 4 decimal places:

0.51668 = 5 x 8"1 + 1 x 8~2 + 6 x 8~3 + 6 x 8~4

= 0.625000 + 0.015625 + 0.011718 + 0.001465

= 0.6538io rounded to 4 decimal places; e10 < 10~4

•Ns x r F I
0.6538 x 2 0.3076 1
0.3076 x 2 0.6152 0
0.6152 x 2 0.2304 1
0.2304 x 2 0.4608 0
0.4608 x 2 0.9216 0
0.9216 x 2 0.8432 1
0.8432 x 2 0.6864 1
0.6864 x 2 0.3728 1 0.51668 = 0.101001112 (compare with Example 2.7)
0.3728 x 2 0.7457 0 e10 < 10~4 + 2~8 = 0.0040

EXAMPLE 2.10 0.101001112 -» WBCH

•A 1

0.101001112 =0.1010 0111 =O.A7BCH

2.6 SIGNED BINARY NUMBERS

To this point only unsigned numbers (assumed to be positive) have been considered. How-
ever, both positive and negative numbers must be used in computers. Several schemes have
been devised for dealing with negative numbers in computers, but only four are commonly
used:

• Signed-magnitude representation

• Radix complement representation

44 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

• Diminished radix complement representation

• Excess (offset) code representation

Of these, the radix 2 complement representation, called 2's complement, is the most widely
used system in computers.

2.6.1 Signed-Magnitude Representation

A signed-magnitude number in radix r consists of a magnitude \N\ together with a symbol
indicating its sign (positive or negative) as follows:

(2.11)

where the subscript rSM refers to signed-magnitude in radix r. Such a number lies in the
decimal range of — (r""1 — 1) through +(rn~l — 1) for n integer digits in radix r. The
fraction portion, if it exists, consists of m digits to the right of the radix point.

The most common examples of signed-magnitude numbers are those in the decimal and
binary systems. The sign symbols for. decimal (+ or —) are well known. In binary it is
established practice to use the following convention:

0 denotes a positive number

1 denotes a negative number.

One of these (0 or 1) is placed at the MSB position of each SM number. Four examples in
8-bit binary are:

EXAMPLE 2.11

Magnitude

EXAMPLE 2.12

+010 = 0 00000002sM

EXAMPLE 2.13

Magnitude

-i2310=
t

Sign

Bit

2.6 SIGNED BINARY NUMBERS 45

EXAMPLE 2.14

-010 = 1 000000025M

Although the sign-magnitude system is used in computers, it has two drawbacks. There
is no unique zero, as indicated by the previous examples, and addition and subtraction
calculations require time-consuming decisions regarding operation and sign, for example,
(—7) minus (—4). Even so, the sign-magnitude representation is commonly used in floating-
point number systems as discussed in Section 2.8.

2.6.2 Radix Complement Representation

The radix complement Nrc of an n-digit number Nr is obtained by subtracting Nr from rn,
that is,

NrC = rn -Nr

= Nr + \LSD (2.12)

where

Nr = Digit complementation in radix r

This operation is equivalent to that of replacing each digit a, in Nr by (r — 1) — a, and
adding 1 to the LSD of the result as indicated by Algorithm 2.5. The digit complements
Nr for three commonly used number systems are given in Table 2.6. Notice that the digit
complement of a binary is formed simply by replacing the 1's with O's and O's with 1's
required by 2" — N2 — 1 = W2 as discussed in Subsection 2.6.3. The range of representable
numbers is —(r""1) through +(r"~] — 1).

Application of Eq. (2.12) or Algorithm 2.5 to the binary and decimal number systems
requires that for 2's complement representation NIC = N^ + ILSB and for 10's complement
N[QC = N\Q + I LSD, where A^ and N\Q are the binary and decimal digit complements
given in Table 2.6.

Table 2.6 Digit complements for three
commonly used number systems

Complement (Nr)

Digit Binary Decimal Hexadecimal

0 1 9 F
1 0 8 E
2 7 D
3 6 C
4 5 B
5 4 A
6 3 9
7 2 8
8 1 7

46 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

Algorithm 2.5: NrC <«- Nr

Replace each digit a, in Nr by (r — 1) — a/ and then add 1 to the LSD of the resultant

A simpler, "pencil-and-paper" method exists for the 2's complement of a number A^
and is expressed by Algorithm 2.6:

Algorithm 2.6: N^c *~ ^2

For any binary number A^ and beginning with the LSB, proceed toward the MSB until
the first 1 bit has been reached^ Retain that 1 bit and complement the remainder of the
bits toward and including the MSB.

With reference to Table 2.6, Eq. (2.12), and Algorithm 2.5 or 2.6, the following examples
of radix complement representation are provided:

EXAMPLE 2.15 The 10's complement of 47.83 is A^io + ILSD = 52.17.

EXAMPLE 2.16 The 2's complement of 0101101.101 is N2 + ILSB = 1010010.011.

EXAMPLE 2.17 The 16's complement of A3D is N16 + 1LSD = 5C2 + 1 = 5C3.

The decimal value of Eq. (2.12) can be found from the polynomial expression as

n-2
tt-= -(aa-ir
tt-) + fl/r1 (2.13)

for any n-digit number of radix r. In Eqs. (2.12) and (2.13) the MSD is taken to be the
position of the sign symbol.

2's Complement Representation The radix complement for binary is the 2's comple-
ment (2C) representation. In 2's complement the MSB is the sign bit, 1 indicating a negative
number and 0 a positive one. The decimal range of representation for n integer bits in 2's
complement is from —(2n~') through +(2"~l — 1). From Eq. (2.12), the 2's complement is
formed by

N2C = T - N2 = N2 + ILSB (2.14)

for any binary number A^ of n integer bits. Or by Algorithm 2.5, the 2's complement of
a binary number A^ is obtained by replacing each bit a, in A^ by (1 — a,) and adding 1
to the LSB of the result. The simpler pencil-and-paper method, often used to generate 2's
complement from a binary number Nr, results from application of Algorithm 2.6. In this
case A^2 is the bit complement of the number as given in Table 2.6. A few examples of 8-bit
2's complement numbers are shown in Table 2.7. Notice that application of Eq. (2.14) or
Algorithm 2.6 changes the sign of the decimal value of a binary number (+ to — and vice
versa), and that only one zero representation exists.

Application of Eq. (2.13) gives the decimal value of any 2's complement number, in-
cluding those containing a radix point. For example, the pattern A^c. = 11010010.011 has

2.6 SIGNED BINARY NUMBERS 47

Table 2.7 Examples of eight-bit 2's and 1 's
complement representations (MSB = sign bit)

Decimal
Value

-128
-127
-31
-16
-15
_3

-0
+o
+3
+ 15
+ 16
+31
+ 127
+ 128

2's
Complement

10000000
10000001
11100001
11110000
11110001
11111101
00000000
00000000
00000011
00001111
00010000
00011111
01111111

1's
Complement

10000000
11100000
11101111
11110000
11111100
11111111
00000000
00000011
00001111
00010000
00011111
01111111

a decimal value of

(Af2c)io = -1 x 27 + 1 x 26 + 1 x 24 + 1 x 2' + 1 x 2~2 + 1 x 2~3

= -128 + 64 + 16 + 2 + 0.25 + 0.125

= -45.625i0.

But the same result could have easily been obtained by negation of A^c followed by the
use of positional weighting to obtain the decimal value. Negation is the reapplication of
Eq. (2.12) or Algorithms 2.5 or 2.6 to any 2's complement number A^c to obtain its true
value. Thus, from the forgoing example the negation of NIC is given by

Akc)2C= 00101101.101

= 32 + 8 + 5 + 0.5 + 0.125

= 45.62510,

which is known to be a negative number, —45.625i0.
Negative BCD numbers are commonly represented in 10's complement notation with

consideration of how BCD is formed from binary. As an example, — 59.24io = 40.76io is
represented in BCD 10's complement (BCD,IOC) by

-0101 1001.0010 0100)BCD = 0100 0000.0111 0110)BCD,ioc,

where application of Eq. (2.12), or Algorithm 2.5 or 2.6, has been applied in radix 10 fol-
lowed by the BCD representation as in Subsections 2.4.1. Alternatively, the sign-magnitude
(SM) representation of a negative BCD number simply requires the addition of a sign bit

48 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

to the BCD magnitude according to Eq. (2.11). Thus,

-0101 1001.0010 0100)BCD = (1 01011001.0010 0100)5CD,25M.

2.6.3 Diminished Radix Complement Representation

The diminished radix complement N(r-\)c of a number Nr having n digits is obtained by

N(r-i)C=rn-Nr-l, (2.15)

where, according to Eq. (2.12), A^(r_1)C + 1 = NrC. Therefore, it follows that

N(r-i)C = Nr.

This means the diminished radix complement of a number is the digits complement of
that number as expressed by Algorithm 2.7. The range of representable n digit numbers in
diminished radix complement is —(rn~l — 1) through +(r"~1 — 1) for radix r.

Algorithm 2.7: A^-nc «~ Nr

(1) Replace each Uigit a-t of Nr by r — 1 — at or
(2) Complement each digit by Nr as in Table 2.6.

In the binary and decimal number systems the diminished radix complement represen-
tations are the 1's complement and 9's complement, respectively. Thus, 1's complement is
the binary digits complement given by A^c = $2, while the 9's complement is the decimal
digits complement expressed as N$c = N\Q. Examples of eight-bit 1's complements are
shown in Table 2.7 together with their corresponding 2's complement representation for
comparison. Notice that in 1 's complement there are two representations for zero, one for
+0 and the other for —0. This fact limits the usefulness of the 1 's complement representation
for computer arithmetic.

Shown in Table 2.8 are examples of 10's and 9's complement representations in n digits
numbering from 3 to 8. Notice that leading O's are added to the number on the left to meet
the n digit requirement.

Table 2.8 Examples of 10's and 9's complement
representation

Number n 10's Complement 9's Complement

0 5 [1JOOOOO 99999
3 3 997 996

14.59 6 9985.41 9985.40
225 4 9775 9774

21.456 5 78.544 78.543
1827 8 99998173 99998172

4300.50 7 95699.50 95699.49
69.100 6 930.900 930.899

2.8 FLOATING-POINT NUMBER SYSTEMS 49

2.7 EXCESS (OFFSET) REPRESENTATIONS

Other systems for representing negative numbers use excess or offset (biased) codes. Here,
a bias B is added to the true value Nr of the number to produce an excess number, Nxs,
given by

N^^Nr + B. (2.16)

When B = rn~} exceeds the usable bounds of negative numbers, Nxs remains positive.
Perhaps the most common use of the excess representation is in floating-point number sys-
tems — the subject of the next section. The biased-weighted BCD code, XS3, was discussed
in Subsection 2.4.1.

Two examples of excess 127 representation are given below.

EXAMPLE 2.18

-4310 11010101 Nrscompi.
+ 127ip 01111111 B

84io 01010100 Nxs = —4310 in excess 127 representation

EXAMPLE 2.19

2710 00011011 NrsCompl

01111111 B
154)0 10011010 NXS = 27io in excess 127 representation

The representable decimal range for an excess 2n~l number system is — 2"~' through
+(2"~l — 1) for an n-bit binary number. However, if Af2 + B > 2"~[— 1, overflow occurs
and 2""1 must be subtracted from (AT2 + B) to give the correct result in excess 2""1 code.

2.8 FLOATING-POINT NUMBER SYSTEMS

In fixed-point representation [Eq. (2. 1)], the radix point is assumed to lie immediately to the
right of the integer field and at the left end of the fraction field. The fixed-point system is the
most commonly used system for representing bounded orders of magnitude. For example,
with 32 bits a binary number could represent decimal numbers with upper and lower bounds
of the order of ± 1 0] ° and ± 1 0" ' ° . However, for greatly expanded bounds of representation,
as in scientific notation, the floating-point representation is needed. This form of number
representation is commonly used in computers.

A floating-point number (FPN) in radix r has the general form

FPN)r = M x rE, (2.17)

where M is the fraction (or mantissa) and E is the exponent. Only fraction digits are used
for the mantissa! Take, for example, Planck's constant h = 6.625 x 10~34 J s. This number

50 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

can be represented many different ways in floating-point notation:

Planck's constant, h = 0.6625 x 10~33

= 0.06625 x 10~32

= 0.006625 x 10"31.

All three adhere to the form of Eq. (2.17) and are, therefore, legitimate floating-point
numbers in radix 10. Thus, as the radix point floats to the left, the exponent is scaled
accordingly. The first form for h is said to be normalized because the most significant digit
(MSD) of M is nonzero, a means of standardizing the radix point position. Notice that the
sign for M is positive while that for E is negative.

In computers the FPN is represented in binary where the normalized representation
requires that the MSB for M always be 1. Thus, the range in M in decimal is

0.5 < M < 1.

Also, the fraction (mantissa) M is represented in sign-magnitude from. The normalized
format for a 32-bit floating-point number in binary, which agrees with the IEEE standard
[3], is shown in Fig. 2.1. Here, the sign bit (1 if negative or 0 if positive) is placed at bit
position 0 to indicate the sign of the fraction. Notice that the radix point is assumed to lie
between bit positions 8 and 9 to separate the E bit-field from the M bit-field.

Before two FPNs can be added or subtracted in a computer, the E fields must be compared
and equalized, and the M fields adjusted. The decision-making process can be simplified
if all exponents are converted to positive numbers by using the excess representation given
by Eq. (2.16). For a #-digit number in radix r, the exponent in Eq. (2.17) becomes

Exs = Er+r(i~l, (2.18)

where E is the actual exponent augmented by a bias of B = rq^. The range in the actual
exponent Er is usually taken to be

-(rq~l - 1) < Er < +(/•*-' - 1).

Sign Exponent E
Bit (radix 2, bias 127)

Fraction F
(Mantissa)

Assumed
position of
radix point

FIGURE 2.1
IEEE standard bit format for 32-bit normalized floating-point representation.

2.8 FLOATING-POINT NUMBER SYSTEMS 51

In the binary system, required for computer calculations, Eq. (2.18) becomes

Exs = E2+2«-\ (2.19)

with a range in actual exponent of -(29"1 - 1) < £2 < +(2q~{ — 1). In 32-bit normalized
floating-point form, the exponent in Eq. (2.19) is stored in either excess 127 or excess 128
code (depending on the FPN system used) while the mantissa is stored in sign-magnitude
form.

There still remains the question of how the number zero is to be represented. If the M
field is zero, then the exponent can be anything and the number will be zero. However,
in computers the normalized FPN2 limits M to (0.5 < M < 1) since the MSB for M is
always 1. The solution to this problem is to assume that the number is zero if the exponent
bits are all zero regardless of the value of the mantissa. But this leads to a discontinuity in
normalized FPN2 representation at the low end.

The IEEE standard for normalized FPN2 representation attempts to remove the problem
just described. The IEEE system stores the exponent in excess 2q~{ — 1 code and limits the
decimal range of the actual exponent to

_(2<?- _ 2) < E2 < +(2q- - 1).

For 32-bit FPN single precision representation, the exponent is stored in excess 127 code
as indicated in Fig. 2.1. Thus, the allowable range of representable exponents is from

-126i0 = 000000012 through +12710 = 111111102.

This system reserves the use of all O's or all 1's in the exponent for special conditions [3].
So that the M field magnitude can diminish linearly to zero when E = — 126, the MSB = 1
for M is not specifically represented in the IEEE system, but is implied.

The following example attempts to illustrate the somewhat confusing aspects of the IEEE
normalized representation:

EXAMPLE 2.20 The number 101101.110012 is to be represented in IEEE normalized
FPN2 notation:

101101.110012 = .10110111001 x 26 Sign bit = 0 (positive)

where

Exs = 6+127 = 133,0 = 100001012

M = 01101 1 1001 ... 00 (the MSB = 1 is not shown).

Therefore, the IEEE normalized FPN is

FPN2 = 0 10000101 01 1011 1001 . . . 0.

Still, other forms of FPNs are in use. In addition to the IEEE system, there are the IBM,
Cray, and DEC systems of representation, each with their own single- and double-precision

52 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

forms. For example, the IEEE double-precision FPN system requires an exponent of 11 bits
in excess 1023 code and a mantissa (in sign-magnitude) of 53 bits for a total 64 bits.

2.9 BINARY ARITHMETIC

There are many ways in which to manipulate data for the purpose of computation. It is
not the intent of this section to discuss all these methods. Rather, the emphasis will be
on the basic addition, subtraction, multiplication, and division methods for binary number
manipulation as a foundation for the design of the arithmetic units featured in Chapter 8. The
coverage will include the basic heuristics involved in fixed-point binary arithmetic together
with simple examples. Advanced methods applicable to computer arithmetic operations
are provided as needed for the device design. A limited treatment of floating-point binary
arithmetic will be given in a later section.

2.9.1 Direct Addition and Subtraction of Binary Numbers

The addition of any two positive binary numbers is accomplished in a manner similar to
that of two radix (base) 10 numbers. When the addition of two binary bits exceeds 01 2, a
carry bit is added to the next MSB, and this process is continued until all bits of the addend
and augend have been added together. As an example consider the addition of the following
two 8-bit numbers:

EXAMPLE 2.21

1 1 1 1 1 <- Carries

59io 0 0 1 1 1 0 1 12 = Augend
+ 122ip +0 1 1 1 1 0 1 02 = Addend

181,0 1 0 1 1 0 1 0 12 = Sum

Notice that in binary addition the carry is rippled to the left in much the same manner as
in base 10 addition. The binary numbers are easily converted to base 10 by the method of
positional weight described in Section 2.3.

Algorithm 2.8: A2 + B2

(1) Set operands A2 = an-ian-2 • • • a\aQ and B2 = bn-.\bn-i • • • b\b<y, and their sum
A2 + B2 = SnSn~i - • - S\ SQ = $2-

(2) Set i = 0 and S2 - 0.
(3)Ifflo+&o < lOa* SQ — ao+^oandacarry C\ = 0 is generated for position i + 1 = 1,

>; 102. then So = «o +&o ~~ 1^2 and a carry C/+i = 1 is generated into position

(4) Continue steps (2) and (3) in the order i = 1, 2, 3, ...,« — 1 with carries generated
into position i + 1.
(5) The most significant sum bit is Sn = Cn, where Cn is the carry resulting from the
addition of «„_! , bn~i , and Cn-\ .

2.9 BINARY ARITHMETIC 53

Direct subtraction of two binary numbers also parallels that for base 10 subtraction.
Now however, when the subtrahend bit is 1 when the minuend bit is 0, a borrow is required
from the next MSB. Thus, the borrowing process begins at the MSB and ends with the
LSB — the opposite of the carry process for addition. Remember that a borrow of \2 from
the next MSB, creates a 102 in the column being subtracted. The following 8-bit example
illustrates the subtraction process in base 2:

EXAMPLE 2.22

10 i
0 0 f0 10 0 10 f- Borrows

101,o 0 I Z 0 0 1 0 12 = Minuend
-58|0 - 0 0 1 1 1 0 1 02 = Subtrahend

43m 0 0 1 0 1 0 1 1 = Difference

Here, the notation 0 or I represents denial of the 0 or 1 when a borrow is indicated. Notice,
as in the example just given, that the borrowing process may involve more than one level
of borrowing as the process proceeds from right to left.

2.9.2 Two's Complement Subtraction

Computer calculations rarely involve direct subtraction of binary numbers. Much more
commonly, the subtraction process is accomplished by 2's complement arithmetic — a con-
siderable savings in hardware. Here, subtraction involves converting the subtrahend to 2's
complement by using Eq. (2.14) in the form $2 + 1 and then adding the result directly to
the minuend. For an n-bit operand subtraction, n + 1 bits are used where the MSB bit is
designated the sign bit. Also, the carry overflow is discarded in 2's complement arithmetic.
The following example illustrates the process for two four-bit numbers, A and B:

EXAMPLE 2.23

A o;noi o;iioi =+is10
-B -0:0111 +i:i001 = -710

r-Q] 0:0110 = +6,0

Discard L~ Sign bit positive
overflow

Further illustration continues by interchanging the minuend and subtrahend so as to yield
a negative number:

EXAMPLE 2.24

A O i O l l l O i O l l l = +710

-B - O i l l O l

]0

Discard ~—Sign Bit negative
overflow

54 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

In this case, the difference 1:1010 is given in 2's complement. The answer in true form
is the 2's complement (negation) of this result given by 1:1010 -»• 0;01102 or 6\Q

which is negative. Algorithm 2.9 summarizes the steps required for the 2's complement
subtraction.

Algorithm 2.9: {A2 -f (-B2) -» A2 + B2C] or {-A2 + (~B2) ~» A2C + B2C}

(1) Set n-bit operands A = awan_i • • • a\a§ and JS = bnbn-\ • < - b\b$, where the MSB an

and bn are reserved as sign bits, initially both 0.
(2) Generate B2C by applying Eq. (2.14).
(3) Add operands A2 + B2c according to Algorithm 2.8.
(4)If|A2| > IB21, then the sum (S2>0) is the true value with the sign bit 0. If \A2\ < |B2|,
then the sum (S < 0) is given in 2's complement with sign bit equal to 1.
(5) The true value of a 2's complement sum is obtained by negation, S2c)ic-
(6) If A 2 and B2 are both negative numbers, the sum (S2c < 0) is obtained by steps (2),
(3),and<5).

2.9.3 One's Complement Subtraction

Somewhat less common is the 1's complement subtraction of two binary numbers. In this
case the subtrahend is converted to 1's complement by using Eq. (2.15) in the form N2.
The result is then added to the minuend with the carry overflow carried-end-around and
added to the LSB. Clearly, this is a more complex process than that for 2's complement.
The following two examples illustrate the subtraction process:

EXAMPLE 2.25

A O i l l O l O i l l O l =+1310

-B -o;om +1:1000 =-7lft
H OiOlOl

O i O l l O = +610

Sign Bit

Again, the minuend and subtrahend are interchanged for comparison purposes, yielding a
negative difference as follows:

EXAMPLE 2.26

A o;oin o;oin = +710
-B -oil 101 * +i;ooio =-isI f t

l i l O O l

l i l O O l = -6,0

Sign Bit

2.9 BINARY ARITHMETIC 55

In this latter case the result is given in 1's complement. The true value for the difference is
obtained by negation and is 1-1001 -> 0:01102 = 610, which is known to be negative.

2.9.4 Binary Multiplication

Like binary addition and subtraction, binary multiplication closely follows base 10 multi-
plication. Consider two n-bit binary integers A2 = (a,,-i • • • aia\a$) and 82 = (bn-\ • • • bi
b\bo)2- Their product A2 x 5? is expressed in n-bits assuming that both numbers are ex-
pressible in n/2 bits excluding leading zeros. Under this assumption the product is

/^ \
aP = A x B = (> at•• 2' I • B

\f=t I

meaning that if B = bn-\ • • • b2b\bQ, the product 2' x B is

2! x B = bn-\ •••b2b]b0 0 0 - - - 0 .
/ zeros

Thus, the product A x B is expressed as the sum of the partial products /?, in the form

Therefore it should seem clear that binary multiplication requires addition of all terms
of the form 2' x B for all i for which a, = 1. The following example illustrates this
process.

EXAMPLE 2.27

A 00001111 = Multiplicand
xB xOOOOlOll = Multiplier

00001111 2° x B
000011110 21 x B

0000000000
00001111000 23 x B

111011 Level 1 Carries
1 Level 2 Carries

000 10100101 = Product P2

Notice that the carry process may involve more than one level of carry as is true in this
example. The following algorithm avoids multiple levels of carry by adding each product
to P as it is formed.

56 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

Algorithm 2.10: A2 x B2

(1) Set n = 2k, where k is the number of bits of the larger number exclusive of leading
zeros.
(2) Set A = an-i • • • a2a\aQ and B = bn~\ • • • b2bib® for an n-bit multiplier and an n-bit
multiplicand, respectively.
(3) Set p = 0 and i = 0.
(4) If a, = 1, calculate 2' x ,8 = (bn^i • • • b\bQ 00--0) and add it to P.

I zeros

(5) Increment i by 1.
(6) Repeat steps (3) and (4) for all 0 < i < (n — 1) ending with a product P2 of n bits
or less.

If Ak
2 and B™ represent operands expressible by a different number of bits, k and ra,

exclusive of leading zeros, then their product is P2" = A2 x fi™ given in n < (k+m) bits. For
numbers containing both integers and fractions, k and m must each include all bits exclusive
of leading integer zeros. For example, if B™ = 1101.11 (m = 6) and A2 = 110.1 (k = 4),
their product P% will be given inn = 6 + 4= 10 bits. The following example illustrates
the multiplication process for these two operands.

EXAMPLE 2.28

1101.11 Multiplicand fl
xllO.l Multiplier Ak

2

110111 2° x B
0000000

11011100 22 x B
110111000 23 x B
111011 Level 1 Carries

1 Level 2 Carries
1011001.011 Product P2"

10-bit representation

2's Complement Multiplication To understand 2's complement multiplication it is help-
ful to introduce the concept of modulo 2" (Mod 2") arithmetic. In Mod 2" arithmetic multipli-
cation is carried out in 2's complement numbers (if negative) ignoring the overflow beyond
n bits. For example, 24 x 1111 (Mod 24) = 10000 = 24 or generally, for number B of n bits,

2" x B (Mod 2") = 2".

Consider the n-bit integer operands A2 = an-\ • • • a\a^ and BI = bn_\ • • • b\b0. Then, if
the product isP = A x (— B) , there results, after converting B to 2's complement,

P2 = A2 x (B2C)

= A2x (2" - B) Mod 2"

= A2x 2n -A2xB2 Mod 2"

or P2 = T - A2 x B2 Mod 2" (2.22)

2.9 BINARY ARITHMETIC 57

Thus, PI = A 2 x (Z?2c) generates the 2's complement of A2 x ,62 — the form in which a
computer stores the results. The "true" value of PI can be obtained by negation, which is
the 2's complement of the result, that is, P2)2c = (2" — A2 x B2)2C.

Likewise, if both A2 and B2 are negative n-bit operands, then the product (— A2) x (— B2)
becomes, after conversion to 2's complement by Eq. (2.14),

P2 = A2C x

= (2" - A2) x (2" - B) Mod 2n

= 2" x 2" - 2"A2 - 2nB2 + A2 x £2 Mod 2

= 22n - 2n - 2n + A2 x B2 Mod 2"

or P2 = A2 x B2, (2.23)

where 22" — 2" — 2" (Mod 2") = 0. Thus, the product of two negative binary numbers
in 2's complement notation is the positive product of the two numbers. In dealing with
numbers whose bit representations are, say, k > m, excluding leading zeros for both, the
2's complement product P^ must be given in n — 2k bits. This count for k must include
fraction bits, if present, but exclude both leading and trailing zeros.

The following example illustrates 2's complement multiplication of two numbers with
fractions each of k = m = 4 bits and represented as k + m = 8-bit operands:

EXAMPLE 2.29

-2.25 -000010.01 111101.11 Multiplicand, B2C

x6.5 xOOOOllO.l * xOOOOllO.l Multiplier, A2

-14.625 11110111 2° x B
000000000

1111011100 22 x B
11110111000 23 x B
1010101100 Level 1 Carries
10101 Level 2 Carries

1 1001000101 1 Product, P2C Mod 28

8-bit representation

The true value of the 8-bit representation is obtained by negation,

10001. 01 12C)2C = 01110.1012 = 14.625,

which, of course, is a negative number. This example illustrates what is called Booth 's
algorithm for fast signed multiplication, and is expressed as follows:

Algorithm 2.11: A2 x B2c or A2c x

(1) Set n = 2k, where k(>m) is the larger of two numbers2 counting both integer and
fraction bits in k but excluding leading and trailing zeros.

The two numbers are initially | A£ I of k bits and | B^ \ of m bits or vice versa.

58 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

(2) Generate the 2's complement of the negative number(s) by applying Eq. (2.14).
(3) Cany out steps (3) through (6) of Algorithm 2.10 applied to operands A2 and
or AIC and B2c-> represented as n-bit operands, to generate the product P2"c

 or ^2 •
Mod 2" arithmetic where applicable.

2.9.5 Binary Division

The division operation is generally more complex than that for multiplication. This is so
because the result is often not an integer, though the dividend and divisor may be. Consider
that A 2 and 62 are binary operands each of n bits and that

A + B = Qi? + R/B, (2-24)
7=0

where A is the dividend, B is the divisor, Q is the quotient, and R is the remainder such
that 0 < R < B. An integer quotient is expressed as the binary number Qn-\ • • • Q\ <2o-
From Eq. (2.24) there results the expression

(2.25)

which forms the basis for a restoring type of binary division procedure:
Begin with n — 1 for a k-bit divisor and a (k + «)-bit dividend to yield an n-bit quotient

and a k-bit remainder. If

A-2"~1B = A-bn-i •••bibo 0 0 - - - 0 > 0 ,
n — 1 zeros

Qn-\ = 1 or otherwise Qn-\ — 0. If Qn-\ = 1, the remaining quotient bits Qn-\ • • • QiQo
are found beginning with A' = A-2n~[B.Then,ifA'-2n~2B > 0, Qn-2 = lorotherwise
Qn_2 = 0. Consequently, if Qn-2 = 1, the remaining quotients <2«-3 • • • Q\ Qo are found
beginning with A" = A' — 2"~2B, etc. The procedure just described mimics the familiar
pencil-and-paper division method.

As an example, consider the following division operation A -=- B with 5-bit operands:

EXAMPLE 2.30

00000101 = Q

fl=010lV00011011 = A

-00010100 = 22 • B

00000111 = A '= A-2 2 f i

-00000101= 2° • B

0010 =/? = A/-2°5

2.9 BINARY ARITHMETIC 59

In this example, not all steps are shown, but the implied division process is

A - 24B = A - 01010000 < 0, Q4 = 0

A -23£ = A -00101000 < 0, Q3 = 0

A - 22B = A - 00010100 > 0,

= 00111 = A', 02 = 1

A' - 2]B = A'- 00001010 > 0, Q\ - 0

A' - 2°B = A' - 00000101 > 0, Q0 = 1

= 00000010 = A" = R,

where A - 25B < 0, A - 26B < 0, A - 27#, etc., all yield quotients bits 0 = 0.
Notice that the subtractions can be carried out with 2's complement arithmetic according
to Algorithm 2.9.

The following algorithm generalizes the binary division process as just presented:

Algorithm 2.12: A2 -=- B2

(1) Set B to fc-bits and A to (k + n)-bits.
(2) Set i = n — 1 and the remainder = A.
(3) Set Q,; = 1 if R - 2*B > 0 and subtract 2'B from A; otherwise set Qt = 0 if
fl-2''B<0.
(4) Repeat step (2) for i = n — 2, n — 3 , . . . , 1,0 to generate quotient bits Qn-2,
Qn-3, * . . , 0i, 0o ending with the final w-bit quotient 0 = Qn-\... 0i 0o-

Binary division involving numbers with fractions is handled in a manner similar to that
for decimals. The bit position of the radix point measured from the LSB in the dividend is
the same for the quotient. If a fraction exists in the divisor, the radix point of the quotient
is that of the dividend minus that of the divisor all taken from the LSB.

Division involving negative numbers is most easily carried out as unsigned division with
the result determined by the normal laws of algebra—that is, operands of like sign produce
a positive quotient, while those of unlike sign produce a negative quotient. The remainder
is given the same sign as the dividend. Signed division can be performed directly by using
2's complement, but the process requires many decision-making steps and, for this reason,
is rarely used.

High-Speed Division by Direct Quadratic Convergence A great deal of effort has
gone into making multiplication as fast and efficient as possible for use in high-speed
computers. So it is only logical that use be made of this fact in generating suitable algorithms
for high-speed division. Such methods, commonly used in modern computers, involve
iterative divide algorithms and are nonrestoring. One such method features a system that
operates on both the dividend DD and the divisor D$ with equal multipliers so as to cause
the divisor to converge quadratically on unity, thereby yielding the dividend as the quotient.
This requires that at least the divisor DS be represented as a fraction. Therefore, in binary

60 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

the divisor must be represented in the decimal range 0.5 < operand < 1. If both operands
are so represented, the direct quadratic convergence method is ideally suited for use with
the mantissas in normalized FPN notation described in Section 2.8.

For this approach the quotient is given by

_ DIVIDEND DD

DIVISOR Ds

DD'kQ'kl'k2-" Q
Ds-ko-ki'k2"- ^ 1

(2.26)

The process begins with Ds = 1 — a, where a = 1 — Ds. But since Ds < 1, it follows that
a < 1 . Next choose

fco = 1 + a

giving the updated product

which is closer to 1 than DS- Now set

giving the updated product

Ds • k0 • ki = (1 - <x2)(l + a2) = 1 - a4.

Continuing, set

so that the updated product becomes

Ds • k0 • ki • k2 = (1 - c*4)(l + a4) = 1 - or8, etc.

This process continues until the desired number of iterations has been reached or until the
updated product Ds • k0 • k\ • k2 • • • = 1.

Notice that each kj is 1 plus the radix complement of the product of Ds and all the k
factors to that point. This can be generalized mathematically as

Ds
(2-27)

rC

2.9 BINARY ARITHMETIC 61

Consider the following simple example for the division operation, which will be carried
out in both decimal and binary:

DD_ _ r0.375"| _ ro.011"|~ ~

EXAMPLE 2.31 In decimal:

a = 1 - Ds = 0.5

kQ = 1 +a = 1.5

DskQ = 0.75

*i = l + (0.75)ioc = 1.25

Dskoki = 0.9375.

k2 = 1 + (0.9375) ioc = 1-0625

Dsk0kik2 = 0.99609375

fc3 = 1 + (0.99609375) 10C = 1.00390625

Dsk0kik2k3 = 0.999984741.

Therefore, after four iterations the quotient becomes

Q = DDk0kik2ki =0.749988556
~6

= 0.749989 rounded to six places (10~).

Note that a fifth iteration with Jk4 = 1.000015259 produces Q = 0.750000 rounded to
six places.
In binary:

a = l -D5 = 0.1

kQ = l+a = 1.1

1+(0.11)2C = 1.01

=0.1111

= 1-0001

= 1.00000001

= 0.1111111111111111.

62 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

Therefore, at the end of four iterations the quotient is

Q = DDk0kik2k3 =0.10111111111111110102

= 0.7510 after rounding.

In 32-bit FPN notation the quotient Q would be given as

^01111111 011111111111111010- • • 00,
S E M

where the most significant 1 bit in the mantissa M has been omitted in agreement the IEEE
normalized FPN notation discussed in Section 2.8.

In the simple example just given the value of a was determined by the value of Ds.
Because this is a quadratic convergence algorithm, the process starts off slowly, particu-
larly if the divisor is close to |. The division calculations in computers can be speeded
up by using ROM look-up tables to determine a based on the divisor value. Further-
more, it is common practice to fix the number of iterations and then deal with rounding
problem.

With some simplifying assumptions the following algorithm generalizes the quadratic
convergence process for iterative division:

Algorithm 2.13: Q = DD ~ Ds

(1) Set DS to normalized FPN form, retain the MSB 1 in the mantissa, and adjust the
exponent as required by the FPN notation.
(2) Calculate a = 1 — DS by using Algorithm 2.9.
(3) Set fco = 1 + a and calculate (D$&o)2c by using Algorithms 2.10 and 2.6.
(4) Set k\ = 1 + (Dsko)2c and calculate (Dskoki^c as in step (3).

(5) Repeat steps (1) through (4) for kj ~ 1 + Ds for all j = 2, 3,....

j » j *
(6) Calculate Q = DD J~| k{ when Ds]~[kt< — 1.

i=0

2.9.6 BCD Addition and Subtraction

Compared to binary arithmetic, BCD arithmetic is more complex, particularly with regard
to hardware implementation. This is true since not all possible four-bit binary number states
correspond to the BCD number system. The six number patterns 1010, 1011, 1100, 1101,
1110, and 1111 are not valid BCD states, as is indicated in Table 2.2.

BCD Addition BCD addition is similar to unsigned binary addition, except that a correc-
tion must be made any time a sum exceeds 9io = 10012. Summation begins with the least
significant digit (LSD) and ends with the most significant digit (MSD). If the sum exceeds
1001 for any given digit, that sum is corrected by adding 610 = 01102 with a carry of 0001
to the next MSD. The following example illustrates the addition process for two-decade
BCD integers ABCD = ^10^1 and BBCD — #10 #1 represented in three-decade form:

2.9 BINARY ARITHMETIC 63

EXAMPLE 2.32

056io -> 0000 0101 OllOfiCD Augend ABCD

+06910 -> +0000 0110 lOOlgcp Addend BBCD

125,0 0000 1011 1111 Sum
0110 0110 Correction

1 1111 110 Carries

0001 0010 0101BCD Result = 125 w
The following algorithm generalizes the process just given for operands having both

integers and fractions.

Algorithm 2.14: ABCD + BBCD

(1) Set BCD operands in descending decade order, ABCD = • • • AiooAioAjA.iA.oi • • •
and BBCD = • • • BmBiQB{ BA BM • • • such that the MSDs for A and B are 0000 (null).
(2) Set i = LSD for matching operand decades.
(3) If Af + Bi > 1001 by Algorithm 2,8, add 0110 to that result and carry 0001 over
to the next MSD. If A(+ B{ < 1001, add 0000 to the result and carry 0000 to the next
MSD.
(4) Repeat steps (2) and (3) for matching decades in the order of Wli, I02i, 103z,...,
MSD.

BCD Subtraction Negative BCD numbers are most conveniently represented in 10's
complement (IOC). This permits negative BCD numbers to be added according to Algo-
rithm 2.14. The result, if negative, will be represented in IOC form requiring negation to
obtain the true value.

EXAMPLE 2.33

08.25io -» 08.25,0 -> 0000 1000.0010 0101BCD
-13.52,0 -> +86.48|OC -> +1000 0110.0100 1000BCD)IOC

-05.27,0 94.73 ,oc 1000 1110.0110 1101 Sum
+ 0110 0110 Correction

1 11 1_J Carries

1001 0100.0111 0011BCD)10C Result

The true (absolute) value of the result is found by negation to be

94.73,oc)ioc = 05.27,0 or 0000 0101.0010 Oil 1BCD-

Note that to convert directly from the BCD form, flCD),0c = N2c + 1010 = N2 +
ILSB + 1010 for the LSD but thereafter is fiCD),oc = N2 + 1010 = N9C, discarding any
carry overflow in either case.

The following algorithm generalizes the process of BCD subtraction.

Algorithm 2.15: ABCD + BBCD)m or ABCD)10C + BBCD)m

(1) Convert any negative decimal number to its 10's complement (IOC) by Algorithm 2.5
with r = 10.

64 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

(2) Represent each operand in BCD form.
(3) Carry out steps (1) through (4) of Algorithm 2.14. If the result is negative, the true
value is found by negation: [(resM/OiocJioc = (resultJeco- If the result is positive, that
result is the true value,

2.9.7 Floating-Point Arithmetic

Up to this point the arithmetic operations have involved fixed-point representation in which
all bits of a binary number were represented. In many practical applications the numbers may
require many bits for their representation. In Section 2.8 the floating-point number (FPN)
system was discussed for just that reason. Now it is necessary to deal with the arithmetic
associated with the FPN system, namely addition, subtraction, multiplication, and division.

FPN Addition and Subtraction Before two numbers can be added or subtracted one from
the other, it is necessary that they have the same exponent. This is equivalent to aligning
their radix points. From Eq. (2.17) for radix 2, consider the following two FPNs:

X = Mx • 2Ex

and

Y = MY -2Ey.

Now, if for example Ex > EY, then Y is represented as M'Y • 2E'?, where

•/-„, and E'Y = EY + (Ex - EY) = Ex,

so that X + Y = (Mx + MY)- 2E* or X - Y = (Mx - M'Y)- 2Ex, etc. Here, MY =
.f-if-2 • • • f-m originally, but is now adjusted so that the exponents for both operands are
the same. The addition or subtraction of the fractions Mx and M'Y is carried out according
to Algorithm 2.8 or Algorithm 2.9, respectively.

Consider the following examples of FPN addition:

EXAMPLE 2.34 —Addition

145.500i0 10010001.1002 =X
+27.62510 ~* 00011000.1012 =Y
173.125,0

Comparing and equalizing the exponents Ex and EY gives

145.500,0 = .10010001100 x 28

27.625m = .00011011101 x 28.

2.9 BINARY ARITHMETIC 65

In FPN notation the addition operation becomes
S E M

145.500 -> 0 10000111 100100011000-•-00
+27.625 -» +0 10000111 000110111010-•-00 ,
173.125 0 10000111 101011010010-•-00

where the exponents given in excess 127 form are 127 + 8 = 135 as discussed in Section 2.7.
To represent the result in normalized FPN notation, the most significant 1 bit of the mantissa
is omitted, yielding the result 0 10000111 010110100100 ••• 00 for the sign, exponent, and
mantissa fields, respectively.

EXAMPLE 2.35 — Subtraction in 2's complement
S E M

-145.500 -> 0 10000111 011011101000-•-00
+27.625 -> +0 10000111 000110111010-•-00

-117.875 0 10000111 100010100010-•-00

The true value is obtained by negation of the mantissa (taking its 2's complement), giv-
ing the sign magnitude result 1 10000111 011101011110- • -00, which is -117.87510. In
normalized FPN notation the MSB 1 bit of the mantissa would be omitted, giving the 2's
complement result 1 10000111 00010100010 ••• 00.

FPN Multiplication and Division In some respects multiplication and division of FPNs
is simpler than addition and subtraction from the point of view of the decision-making
problem. Multiplication and division operations can be carried out by using the standard
methods for such operations without the need to compare and equalize the exponents of
the operands. The following generalizations of these processes illustrates the procedure
involved.

The product of two operands X and Y in radix r is represented as follows:

P = X x Y

= (MX -rEx) x (MY - r E y)

= (MX x MY)-r(Ex+Ey}

= MP -rEp,

where the exponents are added following Algorithm 2.8 while the mantissas are multiplied
by using Algorithm 2.10. The addition and multiplication of signed numbers is covered by
Algorithms 2.9 and 2.11, respectively.

Similarly, for division in radix r the quotient is given by

66 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

Here, the exponents are subtracted (added) in radix 2 (binary) by using the same algo-
rithms as for addition, namely Algorithms 2.8 and 2.9. The division of the mantissas, on
the other hand, is best accomplished by using the quadratic convergence iterative divide
method discussed in Subsection 2.9.5, since the mantissas are usually represented in nor-
malized FPN form. The following examples illustrate the multiplication and division of
FPNs.

EXAMPLE 2.36 — FPN signed-magnitude multiplication

-7.2510 -> 1 10000010 11101000---00
x4.50ip -> +0 +10000010 x 10010000-•-00

-32.625io 1 10000101 00000000 • • • 00
000000000•••00

0000000000•••00
00000000000•••00

111010000000-•• 00
0000000000000•••00

00000000000000•• • 00
111010000000000••-00

1000001010000000-•-00

23-bit representation

The result, given in normalized signed-magnitude 32-bit FPN form, is

1 10000101 000001010000000 • • • QFPN = -32.625,o,

where the MSB 1 bit of the mantissa is omitted. Note that the mantissa has a magnitude
. 10000010100-•• 00 x 26 = 100000.101.

EXAMPLE 2.37 — FPN signed-magnitude division

4.5 0.1001 x 23 _ X

-0.625 ̂ 0.1010 ~ 7

In FPN notation the operands are

X = 0 10000010 100100 • • • 00

7=1 01111111 101000-•• 00.

Division of the mantissas MX/'My = Dp/Ds by Algorithm 2.13:

a = l-Ds = l - . 101000- • • 00= .011000-•-00

k0 = l+a = 1.011000 • • - 0 0

Dsk0 = .11011100---00

2.9 BINARY ARITHMETIC 67

k{ = 1 + (Dsko)2c = 1.00100100 • • • 00

Dskoki =.1 111101011 1100- • -00

k2 = l+(Dsk0k])2C = 1.00000101000100- • -00

Dsk0kik2 = .11111111111001100101111

= 1.00000000000110011010001.

After four iterations the quotient is given by

Q = (DDk0k{k2k3) = .11100110011001100011000 x 23,

which is truncated to 23 bits. The quotient has a decimal value of

(0.899996755 x 23)10 = 7.1999740450,0.

In normalized FPN signed-magnitude 32 bit form the quotient is given by

Q= 1 10000010 11001100110011000110000,

where the MSB 1 bit of the mantissa has been omitted as discussed in Section 2.8. Note
that the subtraction of exponents Ex - EY is 130 - 127 = 003 10 or 1 00000 102 in excess
127 code. The sign bits are added in binary giving Sx + Sy = 0 + 1 = 1, where any carry
(in this case 0) is discarded.

Algorithm 2.16: Signed-Magnitude (X x Y)FPN or (X -f- Y)FPN

(1) Set operands X and F in IEEE normalized FPN form (see Section 2.7).
(2) Add the exponents EX and EY according to Algorithms 2.8 or 2.9,
(3) If X x 7, then multiply mantissa fractions according to Algorithm 2.10.
(4) If X ~ K, then divide mantissas according to Algorithm 2.13.
(5) Add the sign bits Sx + Sy and discard the carry.
(6) Set result in IEEE normalized FPN form.

2.9.8 Perspective on Arithmetic Codes

It should seem clear to the reader that certain arithmetic operations are more easily executed
than others, depending on whether or not the operands are signed and depending on the
number code used to carry out the operation. Table 2.9 is intended to show the general
degree of difficulty of certain arithmetic operations relative to the arithmetic code (signed-
magnitude, 2's complement, etc.) used.

Not indicated in Table 2.9 are the subdivisions within a given type of arithmetic operation.
For example, no distinction is made between a direct division (restoring) algorithm and an
iterative divide (nonrestoring) algorithm, which may differ significantly with regard to dif-
ficulty — the latter being easier for operands represented in FPN notation. As a general rule,

68 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

Table 2.9 Arithmetic codes vs the degree of difficulty of arithmetic operations

Arithmetic Operation

Unsigned addition
Signed

addition/subtraction
Unsigned multiplication

Signed multiplication
Unsigned division

Unsigned Numbers

Easy
—

Fairly difficult
—

Difficult

S igned-Magnitude

Easy
Difficult

Fairly difficult
Fairly difficult

Difficult

Two's Complement

Easy
Easy

Difficult
Difficult

Very difficult

addition/subtraction of signed numbers involves relatively simple arithmetic manipulations
of the operands compared to multiplication; and division requires more decision-making
steps than multiplication. Also not shown in Table 2.9 are the 1's complement, BCD, and
XS3 number codes, since they are not commonly used in computer numeric operations.
Finally, a direct correspondence is implied between degree of difficulty and the hardware
requirements to carry out a given arithmetic operation.

2.10 OTHER CODES

Most binary codes of value in digital design fall into one or more of the following ten
categories:

Weighted binary codes Unit distance codes
Unweighted binary codes Reflective codes
Biased codes Number codes
Decimal codes Alphanumeric codes
Self-complementing codes Error detecting codes

The previous sections have introduced examples of weighted binary codes, number codes,
biased codes, and decimal codes. Number codes are those such as 2's and 1's complement
that are used in addition/subtraction operations. Now, other codes (excluding alphanumeric
codes) will be briefly discussed so as to provide a foundation for the developments in later
chapters.

2.10.1 The Decimal Codes

Shown in Table 2.10 are seven decimal (10 state) codes that can be classified as either
weighted or unweighted codes. All but one of these codes is weighted as indicated in the
table. A weighted code can be converted to its decimal equivalent by using positional weights
in a polynomial series as was done for the BCD code (1) discussed in Subsection 2.4.1.
Code (2), the XS3 code, is a biased-weighted code considered in Subsection 2.4.1 and in
Section 2.7. An unweighted code, such as code (7), cannot be converted to its decimal
equivalent by any mathematical weighting procedure.

Not all weighted decimal codes are natural in the sense that their code weights cannot
be derived from positive powers of 2 as is done for codes (1) and (2). Codes (3) through (6)
in Table 2.10 are of this type. Code weights such as —1, —2, 5, and 6 cannot be generated

2.10 OTHER CODES 69

Table 2.10 Weighted and unweighted decimal codes

Weighted codes

Dec.
Value

0
1
2
3
4
5
6
7
8
9

(1)
(BCD)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

(2)
(XS3)

0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

(3)
2421

0000
0001
0010
0011
0100
1011
1100
1101
1110
1111

(4)
84-2-1

0000
0111
0110
0101
0100
1011
1010
1001
1000
mi

(5)
86421

00000
00001
00010
00011
00100
00101
01000
01001
10000
10001

(6)
51111

00000
00001
00011
00111
01111
10000
11000
11100
nno
11111

Unweighted

(7)
Creeping Code

00000
10000
11000
11100
11110
11111
01111
00111
00011
00001

by any positive integer power of 2, but they can still serve as code weights. As an example,
consider how decimal 5 is represented by code (4):

Decimal equivalent = 5

84-2-1 code representation = (1 x 8) + (0 x 4) + [1 x (-2)] + [1 x (-1)]

= 1011.

Note that there may be more than one combination of weighted bits that produce a given
state. When this happens, the procedure is usually to use the fewest I's. For example,
decimal 7 can be represented by 00111 in code (5), 86421 code, but 01001 is preferred. An
exception to this rule is the 2421 code discussed next.

Codes (2), (3), and (4) are examples of codes that have the unusual property of being self-
complementing. This means that the 1 's complement of the code number is the code for the
9's complement of the corresponding decimal number. In other words, the I's complement
of any state N (in decimal) is the same as the (9 — N) state in the same self-complementing
code. As an example, the I's complement of state 3 in XS3 (0110) is state 6 (1001) in that
same code. The I's and 9's complement number codes were discussed in Subsection 2.6.3
and are presented in Tables 2.7 and 2.8, respectively.

2.10.2 Error Detection Codes

There is another class of weighted or semiweighted codes with the special property that
their states contain either an even number or an odd number of logic I's (or O's). Shown
in Table 2.11 are four examples of such codes. This unique feature make these codes
attractive as error-detecting (parity-checking) codes. Notice that both the 2-out-of-5 code
(semiweighted) and the biquinary code (weighted 50 43210) must have two I's in each of
their 10 states and are, therefore, even-parity codes. In contrast, the one-hot code (weighted
9876543210) is an odd-parity code, since by definition it is allowed to have only a single
1 for any given state. Code (d) is no more than the BCD code with an attached odd parity-
generating bit, P.

70 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

Table 2.11 Error detection codes

Decimal
Value

0
1
2
3
4
5
6
7
8
9

(a)
Even Parity
2-out-of-5
(74210)

11000
00011
00101
00110
01001
01010
01100
10001
10010
10100

(b)
Even Parity
Biquinary
5043210

01 00001
01 00010
10 00100
10 01000
01 10000
1000001
1000010
1000100
1001000
10 10000

(c)
Odd Parity
One-Hot

9876543210

0000000001
0000000010
0000000100
0000001000
0000010000
0000100000
0001000000
0010000000
0100000000
1000000000

(d)
Odd Parity
BCD
P8421

10000
00001
00010
10011
00100
10101
10110
00111
01000
11001

The advantage of using an error-detecting code is that single-bit errors (those most likely
to occur) are easily detected by a parity detector placed at the receiving end of a data bus. If a
single error occurs, the parity is changed (odd-to-even or vice versa) and further processing
can be delayed until the error is corrected. On the other hand, if two errors occur, the error
cannot be detected by any simple means.

2.10.3 Unit Distance Codes

The last class of codes that will be discussed here are called unit distance codes, so called
because only one bit is permitted to change between any two of their states — recall that
in natural binary, adjacent states may differ by one or more bits. Three examples of unit
distance codes are given in Table 2.12: (1) a decimal code, (2) a reflective unit distance code
called Gray code, and (3) an XS3 decimal Gray code formed from the inner 10 states of
code (2). The reflective character of the Gray and XS3 Gray codes are easily revealed by the
fact that all bits except the MSB are mirrored across an imaginary plane located midway in
the 16 states and 10 states, respectively, as indicated by the dashed lines. The unit distance
property of the Gray code will be used in logic function graphics discussed at length in
Chapter 4. Also, the unit distance and reflective character of the Gray code make it uniquely
suitable as a position indicator code for rotating disks and shafts. Encoding errors produced
by rotational irregularities can be detected and corrected by the use of such a code.

Although only a 4-bit Gray code is represented in Table 2.12, it should be noted that a
Gray code of any number of bits is possible. Also, there are other unit distance codes that
can be generated with any number of bits but they will most likely not be reflective.

2.10.4 Character Codes

The most common character code is called ASCII (pronounced "as-key"), the acronym for
American Standard Code for Information and Interchange. ASCII code represents each
character as a 7-bit binary string, hence a total of 27 = 128 characters, and is given in
Table 2.13. This code encodes numerals, punctuation characters, all upper- and lowercase

Table 2.12 Unit distance codes: (1) a decimal code
(nonreflective); (2) four-bit Gray code (reflective);

(3) XS3 Gray decimal code (reflective)

Decimsl
Value

0
1
2
3
4

5
6
7

8
9

10
11
12
13
14
15

(D f (2) (3)
Decimal 4-Bit XS3 Gray

Code Gray Code Decimsl Code

0000 0000 0010
0001 0001 0110
0011 0011 0111
0010 0010 0101
0110 0110 0100

1110 0111 1100
mi i 0101 1101
1101 0100 mi
1100 1100 1110
0100 1101 1010
— mi —
— 1110 —
— 1010 —
— ion —
— 1001 —
— 1000 —

Table 2.13 ASCII character code

363534 (column)

3332313Q

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
mi

Row
(Hex)

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

000
0

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

001
1

OLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

010 on
2 3

SP 0
! 1

2
3
$ 4
% 5
& 6

7
(8
) 9
*

+ ;
<
=
>

/ ?

100
4

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

101
5

P

Q
R
S
T
U
V
w
X
Y
Z
[

\
]
A

-

no
6

'
3

b
C

d
e
f

g
h
i

J
k
1

m
n
o

111
7

P
q
r
s
t
u
V

w
X

y
Z

{
1
}
~

DEL

71

72 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

alphabet letters, and a variety of printer and typewriter control abbreviations. An eighth bit
(not shown) is often used with the ASCII code for error detection purposes.

Another common character code is known as EBCDIC (pronounced "ebb-see-dick"),
the acronym for extended BCD interchange code. It uses 8-bit BCD strings so as to encode
a 256-character set.

FURTHER READING

Literature on number systems and arithmetic is extensive. Many journal articles and most
texts on digital logic design cover these subjects to one extent or another. Portions of this
chapter regarding number systems are taken from contributions by Tinder to The Electrical
Engineering Handbook, cited here. Recognized classic treatments of number systems and
arithmetic include those of Gamer, Hwang, and Knuth. The IEEE publication on the standard
for floating-point arithmetic is also frequently cited. These references, together with recent
texts covering the subject areas, are cited here.

[1] H. L. Garner, "Number Systems and Arithmetic," in Advances in Computers, Vol. 6. Academic
Press, New York, 1965, pp. 131-194.

[2] K. Hwang, Computer Arithmetic. John Wiley & Sons, New York, 1978.
[3] IEEE, IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985) The

Institute of Electrical and Electronic Engineers, New York, 1985.
[4] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Vol. 2. Addison-

Wesley, Reading, MA, 1969.
[5] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and

Design. Prentice Hall, Englewood Cliffs, NJ, 1995.
[6] L. H. Pollard, Computer Design and Architecture. Prentice Hall, Englewood Cliffs, NJ, 1990.
[7] A. W. Shaw, Logic Circuit Design. Saunders College Publishing, Fort Worth, TX, 1993.
[8] R. F. Tinder, Digital Engineering Design: A Modern Approach, Prentice Hall, Englewood Cliffs,

NJ, 1991.
[9] R. F. Tinder, "Number Systems," in The Electrical Engineering Handbook, 2nd ed. (R. C. Dorf,

Ed.). CRC Press, 1997, pp. 1991-2006.
[10] C. Tung, "Arithmetic," Computer Science (A. F. Cardenas et al, Eds.), Chapter 3. Wiley-

Interscience, New York, 1972.
[11] J. F. Wakerly, Digital Design Principles and Practice, 2nd ed. Prentice Hall, Englewood Cliffs,

NJ, 1994.

PROBLEMS

Note: Use Tables P2.1, P2.2, and P2.3 as needed in working the following problems.

2.1 Convert the following decimal numbers to binary:
(a) 5
(b) 14

(c) 39
(d) 107.25
(e) 0.6875

PROBLEMS 73

2.2 Convert the following binary numbers to decimal by using the method of positional
weights:
(a) 0110

(b) 1011

(c) 11001

(d) 11011001.11
(e) 0.01011

2.3 Convert the decimal numbers of Problem 2.1 to BCD.

2.4 Convert the binary numbers of Problem 2.2 to BCD. To do this, add trailing and
leading O's as required.

2.5 Convert the following BCD numbers to binary:
(a) 00010011

(b) 01010111
(c) 0101000110
(d) 1001000.00100101

(e) 0.100001110101

2.6 Convert the decimal numbers in Problem 2.1 to XS3.

2.7 Convert the BCD numbers in Problem 2.5 to XS3.

2.8 Convert the binary numbers in Problem 2.2 to BCH.

2.9 Convert the BCD numbers in Problem 2.5 to BCD.

2.10 Convert the following numbers to binary:
(a) 6135208

(b) 2FD6A25B,6
(c) 11110011100.011xs3
(d) 6!

2.11 Convert the following fractions as indicated:
(a) 0.534io -» N2 rounded to 8 bits.
(b) 0.3DF2[6 -> 7V2 rounded to 8 bits.
(c) 0.534io —> N\(, terminated at 4 digits.

(d) 0.54278 -> N2 rounded to 8 bits.

2.12 Convert the following numbers to signed-magnitude binary form:
(a) +56.25,0

(b) -94.625,0
(c) -7m5,6
(d) +1258

(e) -0110101.1001 IBCD

2.13 Give the radix complement representation for the following numbers:
(a) The 10's complement of 47.63,o

74 CHAPTER 2 / NUMBER SYSTEMS, BINARY ARITHMETIC, AND CODES

(b) The 2's complement of 011011101.11012

(c) The 8's complement of 501.74s

(d) The 16's complement of AF3.C8i6

2.14 Represent the following numbers in IEEE normalized FPN2 form:
(a) 1101011.10112

(b) +27.6875,0
(c) -145.500,0

2.15 Add the following binary additions and verify in decimal:
(a) 10+11
(b) 101+011
(c) 10111+01110
(d) 101101.11+011010.10
(e) 0.1100+1.1101

2.16 Carry out the following binary subtraction operations in 2's complement and verify
in decimal:
(a) 01100-00101
(b) 0111011-0011001
(c) 01001000-01110101
(d) 010001.0101-011011.1010
(e) 00.011010-01.110001

2.17 Repeat Problem 2.16 in 1's complement.

2.18 Carry out the following binary multiplication operations and verify in decimal:
(a) 11 xOlOl
(b) 11101 x 1111011
(c) 1001.10 x 11101.11
(d) 110.011 x 1101.0101
(e) 0.1101 x 0.01 111

2.19 Carry out the following complement multiplications and verify in decimal:
(a) 00000111 x -00001101
(b) HOx -11101 (A: = 5)
(c) -11.01 x 101.11 (k = 5)
(d) 111.111 x -1.101 (k = 6)
(Hint: Consider switching minuend and subtrahend operands if it yields less work.)

2.20 Find the quotient for each of the following division operations by using the binary
equivalent of the familiar "pencil-and-paper" method used in long division of decimal
numbers. Show work details.
(a) 1100+100
(b) 111111 + 1001
(c) 11001.1 +011.11 (Carry out quotient to the 2~2 bit and give the remainder)
(d) 100 + 1010 (Carry out quotient to the 2~6 bit and give remainder)

PROBLEMS 75

2.21 Use the direct quadratic convergence method to obtain the quotient for the following
fractions. To do this, use Eqs. (2.26) and (2.27).
(a) (0.25 -^ 0.75)io in decimal. Find Q after three iterations and rounded to 10~5.
(b) (0.01 -^ 0.11)2 in binary. Compare Q after two iterations rounded to 2~8 with Q

after three iterations rounded to 2~16. For comparison, use decimal values derived
from the binary results.

2.22 Carry out the following hexadecimal operations and verify in decimal:
(a) 1A8 + 67B
(b) ACEF1 + 16B7D
(c) 1273i6-3A8
(d) 8916 x 1A3
(e) A2 x 15BE3
(f) 1EC87 -T- A5 (Hint: Use decimal *> hex methods with Table P2.3.)

2.23 Convert the following decimal numbers to BCD with the MSDs null (0000), then
carry out the indicated arithmetic in BCD by using Algorithms 2.14 and 2.15 in
Subsection 2.9.6:
(a) 049,0 + 078,0
(b) 168.6,0 + 057.5,0
(c) 093,0-067,0
(d) 034.79,o-156.23,o

2.24 Perform the FPN arithmetic indicated below. To do this follow the examples in Sub-
section 2.9.7.
(a) 135.25,0 + 54.625,0
(b) 54.625,0 - 135.25,o
(c) 3.75,o x 5.0625,0
(d) 4.50,0 x (-2.3125,o)
(e) 6.25 H-(-0.37510)
Note: Use the sign-magnitude FPN system for parts (d) and (e) following Exam-
ples 2.36 and 2.37.

2.25 To add XS3 numbers, a correction by either adding or subtracting 0011 is necessary
depending on whether or not a 1 carry is generated. Study, then write an algorithm
for the addition in XS3 numbers.

2.26 Prove that a self-complementing unit-distance code is not possible.

2.27 An inspection of the binary and Gray codes in Tables 2.1 and 2.12 indicates a unique
relationship between these codes. Examine these codes and devise a simple algorithm
that will permit direct "pencil-and-paper" conversion between them, binary-to-Gray
or vice versa.

2.28 Decipher the following ASCII code. It is given in hexadecimal, MSD first.

57 68 61 74 69 73 79 6F 75 72 6E 61 6D 65 3F

Table P2.1 Powers of 2

1
2
4

1
2
4
8
16
33
67
134
268
536
073
147
294

1
2
4
8
16
32
65
131
262
524
048
097
194
388
777
554
108
217
435
870
741
483
967

2n

1
2
4
8
16
32
64
128
256
512
024
048
096
192
384
768
536
072
144
288
576
152
304
608
216
432
864
728
456
912
824
648
296

n

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

2-n

1.0
0.5
0.25
0.125
0.062
0.031
0.015
0.007
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

5
25
625
812
906
953
976
488
244
122
061
030
015
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000

5
25
125
562
281
140
070
035
517
258
629
814
907
953
476
238
119
059
029
014
007
003
001
000
000
000

5
25
625
312
156
578
789
394
697
348
674
837
418
209
604
802
901
450
725
862
931
465
232

5
25
125
062
531
265
632
316
158
579
289
644
322
161
580
290
645
322
661
830

5
25
625
812
406
203
101
550
775
387
193
596
298
149
574
287
643

5
25
125
562
781
390
695
847
923
461
230
615
307
653

5
25
625
312
656
828
914
957
478
739
869

5
25
125
062
031
515
257
628

5
25
625
812 5
906 25

76

Table P2.2 Hexadecimal addition table

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

1

1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10

2

2
3
4
5
6
7
8
9
A
B
C
D
E
F
10
11

3

3
4
5
6
7
8
9
A
B
C
D
E
F
10
11
12

4

4
5
6
7
8
9
A
B
C
D
E
F
10
11
12
13

5

5
6
7
8
9
A
B
C
D
E
F
10
11
12
13
14

6

6
7
8
9
A
B
C
D
E
F
10
11
12
13
14
15

7

7
8
9
A
B
C
D
E
F
10
11
12
13
14
15
16

8

8
9
A
B
C
D
E
F
10
11
12
13
14
15
16
17

9

9
A
B
C
D
E
F
10
11
12
13
14
15
16
17
18

A

A
B
C
D
E
F
10
11
12
13
14
15
16
17
18
19

B

B
C
D
E
F
10
11
12
13
14
15
16
17
18
19
1A

C

C
D
E
F
10
11
12
13
14
15
16
17
18
19
1A
IB

D

D
E
F
10
11
12
13
14
15
16
17
18
19
1A
IB
1C

E

E
F
10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID

F

F
10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE

Table P2.3 Hexadecimal multiplication table

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

2

0
2
4
6
8

A
C
E

10
12
14
16
18
1A
1C
IE

3

0
3
6
9
C
F

12
15
18
IB
IE
21
24
27
2A
2D

4

0
4
8
C
10
14
18
1C
20
24
28
2C
30
34
38
3C

5

0
5
A
F

14
19
IE
23
28
2D
32
37
3C
41
46
4B

6

0
6
C
12
18
IE
24

2A
30
36
3C
42
48
4E
54
5A

7

0
7
E

15
1C
23
2A
31
38
3E
46
4D
54
5B
62
69

8

0
8

10
18
20
28
30
38
40
48
50
58
60
68
70
78

9

0
9

12
IB
24
2D
36
3E
48
51
5A
63
6C
75
7E
87

A

0
A
14
IE
28
32
3C
46
50
5A
64
6E
78
82
8C
96

B

0
B

16
21
2C
37
42
4D
58
63
6E
79
84
8F
9A
A5

C

0
C

18
24
30
3C
48
54
60
6C
78
84
90
9C
A8
B4

D

0
D

1A
27
34
41
4E
5B
68
75
82
8F
9C
A9
B6
C3

E

0
E

1C
2A
38
46
54
62
70
7E
8C
9A
A8
B6
C4
D2

F

0
F

IE
2D
3C
4B
5A
69
78
87
96
A5
B4
C3
D2
El

77

This page intentionally left blank

CHAPTER 3

3.1 INTRODUCTION

The contents of this chapter are considered all important to the reader's understanding of
the remainder of this text and, hence, to an understanding of modern digital design methods.
In this chapter the reader will learn mixed logic notation and symbology, Boolean algebra,
and the reading and construction of logic circuits. Besides becoming the industrial standard,
mixed logic notation and symbology, once learned, offers a remarkably simple, direct means
of reading and constructing logic circuits and timing diagrams. Use will be made of the
CMOS logic family to develop this symbology. Other logic families, such as NMOS and
TTL, are discussed in Appendix A.

This chapter goes beyond the usual treatment of Boolean algebra to present what is
called XOR algebra, an extension of Boolean algebra that deals with functions that have
become very important in circuit design, particularly in arithmetic circuit design. CMOS
realizations of XOR functions have, in a special sense, revolutionized thinking along these
lines, making the use of such functions much more appealing to the logic designer.

3.2 BINARY STATE TERMINOLOGY AND MIXED LOGIC NOTATION

Digital systems are switching devices that operate in only one of two possible states at any
given time, but that can be switched back and forth from one state to another at very high
speed (millions of times per second). The two states are high voltage (HV) and low voltage
(LV). The LV and HV levels are usually taken as 0 V and 2 to 5 V, respectively, for common
CMOS logic circuits.

To design a useful digital device, meaningful logic names must be assigned to the inputs
and outputs of a logic circuit so that their physical interpretation in terms of voltage levels
can be made unambiguously. This requires the use of a notation that can easily bridge the gap
between the logic domain in which the device is designed, and the physical domain in which
the device is to be operated. The following subsection defines this notation.

3.2.1 Binary State Terminology

A state is said to be active if it is the condition for causing something to happen. And for
every active state there must exist one that is inactive. In the binary (base 2) system of 1's

79

Background for Digital Design

80 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

and O's, these descriptors take the following meaning:

Logic 1 is the ACTIVE state
Logic 0 is the INACTIVE state

Thus, in the logic domain, logic 1 is assigned to the active condition while logic 0 is assigned
to the inactive condition. This will always be so.

A symbol that is attached to the name of a signal and that establishes which physical
state, HV or LV, is to be the active state for that signal, is called the activation level indicator.
The activation level indicators used in this text are

(/O meaning ACTIVE HIGH
(L) meaning ACTIVE LOW

Thus, a line signal LOAD(H) is one for which the active state occurs at high voltage
(HV), and LOAD(L) is one for which the active state occurs at low voltage (LV). This
is illustrated in Fig. 3.1. Here, the name LOAD is the physical waveform output of a
digital device, and LOAD(H) and LOAD(L) are equivalent logical interpretations of that
physical waveform. Notice that logic waveforms are rectangular (i.e., with zero rise and
fall times), whereas physical waveforms must have finite rise and fall times. Finite rise
and fall times are a consequence of the fact that changes in the physical state of any-
thing cannot occur instantaneously. Logic level transitions, on the other hand, are non-
physical and occur abruptly at the active and inactive transition points of the physical
waveform, as indicated by the vertical dotted lines in Fig. 3.1. Also, the physical wave-
forms in Fig. 3.1 have amplitudes measured in terms of voltage whereas logic wave-
forms have amplitudes indicated by the logic levels 0 and 1. Labels such as LOAD(H)
or LD(H) and LOAD(L) or LD(L) are commonly referred to as polarized mnemonics.
The word "polarized" refers to the use of activation level indicator symbols, (H) and (L).
Thus, LD(L) means LOAD active (or asserted) low, and LD(H) refers to LOAD active
(or asserted) high.

/— Physical Domain
HV / \ r\

Inputs < - ^™' h-*LOAD LV-^ > 1 > ->time

Logic Domain ^

LOAD(L) 1(L)

1(H) i 1 | 1 LOAD ACTIVE HIGH

LOAD(H) 0(H) |

LOAD ACTIVE LOW

FIGURE 3.1
Mixed logic interpretation of a physical waveform showing a digital device with its voltage waveform
and the positive and negative logic interpretations of the waveform.

3.2 BINARY STATE TERMINOLOGY AND MIXED LOGIC NOTATION 81

Voltage noise margins

NMH

Region of Uncertainty

NML H

Positive Logic Negative Logic
(a) (b)

FIGURE 3.2
Logic interpretation of voltage waveforms, (a) Positive logic, (b) Negative logic.

What results from an inspection of the physical and logic waveforms in Fig. 3.1 is the
important conclusion

HV corresponds to 1(H) = 0(L)
(3.1)

LV corresponds to 0(H) = 1(L).

Relations (3.1) represent the essence of mixed logic notation and are used throughout this
text for the purpose of converting from the logic domain to the physical domain or vice
versa. Thus, the physical state of HV is represented by either 1(H) or 0(L) in the logic
domain while the physical state of LV is represented by either 0(H) or 1(L) in the logic
domain. The expression "mixed logic" applies to the use of both the positive logic and
negative logic systems within a given application.

The positive and negative logic systems, which follow from Eqs. (3.1), are presented in
Fig. 3.2. Here, the two systems are shown on logic waveform pulses similar to those shown
in Fig. 3.1. The high noise margin (NMH) and low noise margin (NML) are included as a
reminder that their inner boundaries are also the inner limits of the logic states (1 and 0)
as well as the outer limits of the uncertainty region. A signal whose value lies in the
uncertainty region cannot be taken as either logic 1 or logic 0.

The digital device shown in Fig. 3.3 illustrates the use of polarized mnemonics in the
mixed logic digital system. Shown here are two inputs, LD(H) and CNT(L), and one out-
put, DONE(H). The input LD(H) is said to arrive from a positive logic source (active
high) while CNT(L) arrives from a negative logic source (hence, active low). The output
DONE(H) is delivered to the next stage as a positive logic source (active high). LD and CNT,

DONE(H)

FIGURE 3.3
Polarized mnemonics applied to a digital device.

82 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

which represent LOAD and COUNT, respectively, are meaningful abbreviations called
mnemonics.

3.3 INTRODUCTION TO CMOS TERMINOLOGY AND SYMBOLOGY

Complementary MOSFET (CMOS) switching circuits are composed of n-type MOSFETs
(NMOS for short) and p-type MOSFETs (PMOS). As a help in reading and constructing
CMOS switching circuits, the simplified symbols and ideal equivalent circuits for both
types are given in Fig. 3.4. Thus, for either, the OFF condition is always an open circuit
while the ON condition is always a short circuit. But the voltage levels causing the ON and
OFF conditions for NMOS and PMOS are opposite; hence, they are called complementary.
Notice that the voltage to produce the ON or OFF condition is always applied to the gate, G,
and that the drain-to-source is either nonconducting (lorain = 0) for the OFF condition or
conducting (VDS = 0) for the ON condition. Use of Fig. 3.4 makes reading and construction
of CMOS circuits very easy. However, knowledge of which terminal is the drain and which
is the source is important only when configuring at the transistor circuit layout level.

Proper CMOS circuit construction requires that the NMOS and PMOS sections be posi-
tioned as shown in Fig. 3.5. The reason for this particular configuration is that NMOS passes

Drain

D D D

(a) Gate, G —

D ~ u

,A Short Circuit
LV —• K£" HV

I
Circuit vDS =

s s s
Source

OFF ON

Gate, G -d I HV —. LV

D

0\ Short Circuit

"J V D S " °

S S

OFF ON
FIGURE 3.4
Symbols and ideal equivalent circuits for n and p MOSFETs: (a) NMOS. (b) PMOS.

3.4 LOGIC LEVEL CONVERSION: THE INVERTER 83

MOS Supply
+Vr

Passes HV well

Passes LV well

Ground
Symbol

FIGURE 3.5
Proper PMOS and NMOS placement for generalized CMOS gate configurations.

LV well but not HV. Conversely, PMOS passes HV well but not LV. The proper placement of
the NMOS and PMOS sections results in a sharp, relatively undistorted waveform. Inverting
this configuration would require that the NMOS and PMOS sections pass voltage levels
that they do not pass well, resulting in a distortion of the voltage waveform. Therefore, the
PMOS section is always placed on the HV end with the NMOS on the LV side, as in Fig. 3.5.

3.4 LOGIC LEVEL CONVERSION: THE INVERTER

When a positive logic source is converted to a negative logic source, or vice versa, logic
level conversion is said to occur. The physical device that performs logic level conversion
is called the inverter. Shown in Fig. 3.6a is the CMOS version of the inverter. It is a CMOS
inverter because it is composed of both NMOS and PMOS cast in the complementary con-
figuration of Fig. 3.5. The physical truth table, shown in Fig. 3.6b, is easily understood
by referring to Fig. 3.4. The logic interpretations and conjugate logic symbols that derive
from the physical truth table are shown in Figs. 3.6c and 3.6d. The conjugate logic circuit
symbols are used to indicate the logic level conversion X(H) —>• X(L) or X(L) —>• X(H)
depending on where the active low indicator bubble is located. The designation "conjugate"
indicates that the symbols are interchangeable, as they must be since they are derived from
the same physical device (the inverter).

The CMOS inverter is used here for the purpose of developing the concept of logic level
conversion. However, there are versions of the inverter that belong to logic families other
than the CMOS family. These include the NMOS and TTL families, all of which yield

84 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

Xin

Conversion

X(H)

HV

Xout
j_jy Conversion

LV

(b)

X(L) X(L)

0 0 1
1 1 0

Active Low
Indicator Bubble \

X(H)

_ X(L)A{>-X(H)

(a) (c) (d)

FIGURE 3.6
The inverter, its I/O behavior, and its two logic interpretations, (a) The CMOS transistor circuit,
(b) Physical truth table, (c) Active-high-to-active-low conversion and logic circuit symbol, (d) Active-
low-to-active-high conversion and logic circuit symbol.

the physical truth table and logic interpretations given in Figs. 3.6b, 3.6c, and 3.6d. More
detailed information on these logic families is presented in Appendix A.

3.5 TRANSMISSION GATES AND TRI-STATE DRIVERS

A MOS transistor switch that functions as a passive (non-amplifying) switching device
and that does not invert a voltage signal is called a transmission gate or pass transistor.
Logic circuits composed of transmission gates are called steering logic and are discussed in
Section 6.9. Shown in Fig. 3.7 are the circuit symbols and equivalent circuits for the NMOS,
PMOS, and CMOS transmission gates. Here, it can be seen that the ON condition in Fig. 3.7b
permits an input signal Xj to be transferred to the output; hence, X0 = X/. Conversely, the
OFF condition disconnects the output from the input, allowing no signal to be transferred.
Notice that the CMOS transmission gate requires complementary "enable" inputs, EN and
EN, to the NMOS and PMOS gates, respectively. This simply means that when one enable
input is at high voltage (HV) the other must be at low voltage (LV) and vice versa.

As indicated earlier, an NMOS switch passes LV well but not HV, the reverse being
true for a PMOS switch. Consequently, some distortion of the transmitted waveform is to
be expected in NMOS and PMOS transmission gates operated in the transfer mode (ON
condition). The CMOS switch, on the other hand, combines the best of both worlds, thereby
minimizing waveform distortion.

An active (restoring) switching device that operates in either a transfer or disconnect
mode is called a tri-state driver or tri-state buffer. If in the transfer mode it is designed to
invert, it is called an inverting tri-state driver. These devices are called "tri-state" or "three-
state" because they operate in one of three states — logic 0, logic 1, or high-impedance
(Hi-Z) state. In the Hi-Z or disconnect state the tri-state driver is functionally "floating," as
if it were not there. Tri-state drivers are used to interface various 1C devices to a common

3.5 TRANSMISSION GATES AND TRI-STATE DRIVERS 85

EN HV LV
J^ Passes LV well

X _ i — i x but not HV in ^ i t x =X X _ • « _ X
1 NMOS ° transfer (ON) mode j o i i o

ON OFF

LV HV
Passes HV well

Dut n°t LV in x „ „ y _ V Y
transfer (ON) mode ' °~ ']

EN _M HV LV
i EN
I I Passes both LV

— £gj — and HV well in X; — PI — X0=Xj X. — I I — X0

CMOS — transfer (ON) mode I

EN EN LV HV

ON OFF

(a) (b) (c)

FIGURE 3.7
Transmission gate circuit symbols and their idealized equivalent circuits, (a) Simplified circuit
symbols for NMOS, PMOS, and CMOS transmission gates, (b) ON (transfer) mode equivalent circuit.
(c) OFF (disconnect) mode equivalent circuit.

data bus so that the devices will not interfere with each other. By this means, tri-state drivers
permit multiple signal sources to share a single line if only one of the signals is active at any
given time. These drivers also serve as a controlled enable on the output of some devices.
Note that the term "tri-state" is a trademark of National Semiconductor Corporation. Thus,
the use of the term "tri-state" in this text acknowledges NSC's right of trademark. The terms
tri-state and three-state are often used interchangeably.

Shown in Fig. 3.8 are four types of CMOS tri-state drivers constructed from the equivalent
of two or three inverters. They differ in the activation levels of the control input, C, and the
output, X0, indicated by the logic circuit symbols. The choices are inverting or noninverting
tri-state drivers with active high or active low control inputs, as provided in Figs. 3.8a-d. The
buffering (driving) strength is the same for all tri-state drivers, however. This is so because
during the transfer stage the outputs X0 are connected to the supply +VDD depending on
the character of the driver and the X/ voltage level. For example, in the case of the inverting
tri-state driver of Fig. 3.8c, a control C = HV connects the output X0 to +VDD if the input
is Xf = LV or connects X0 to ground if X,• = HV. Thus, in the transfer mode, the transistors
of a tri-state driver serve as transmission gates, thereby permitting an input signal to be
enhanced (or refreshed); hence the meaning of the term driver. Of course, in the disconnect
mode the tri-state driver produces a very large impedance (Hi-Z) between its input and
output, virtually disconnecting the input from the output.

Note that the conjugate logic circuit symbols are provided for each tri-state driver shown
in Fig. 3.8 and that these symbols are interchangeable — as they must be, since they are
derived from the same physical device (the tri-state driver). The idea here parallels that of
the inverter and its conjugate logic circuit symbols shown in Fig. 3.6. Symbol X appearing

x; —

+VDn Control, C +Vnn Control, C

x: —

C(H) C(H) C(L)

X(L)-C| >0-X(L) X(H)-T>- X(H) X(L)

LV HV LV HV

x — — x . . x x^——x x— —
Disconnect Transfer Transfer Disconnect

(a) (b)

+VDD Control, C +Vnn Control, C

C(H) C(H) C(L) C(L)

X(H) -T/Q- X(L) X(L) -CT>- X(H) X(H) ~Oo- X(L) X(L) -cH>- X(H)

LV HV LV HV

X — * — X • . [>o- X X • • £>c- X X-1 -
Disconnect Inverting Inverting Disconnect

(0 (d)

FIGURE 3.8
CMOS tri-state drivers, conjugate circuit symbols, and ideal equivalent circuits, (a) Noninverting
tri-state driver with active high control, C. (b) Noninverting tri-state driver with active low control, (c)
Inverting tri-state driver with active high control, (d) Inverting tri-state driver with active low control.

86

3.6 AND AND OR OPERATORS AND THEIR MIXED-LOGIC CIRCUIT SYMBOLOGY 87

on the output of an inverting tri-state driver in the transfer mode indicates an inverted voltage
signal. Thus, if X is at LV, then X is at HV and vice versa.

Buffers, or line drivers as they are sometimes called, may be composed of a series of
inverters or gates used as inverters, or they may be simply a tri-state driver operated in the
transfer mode. Remember, it is the function of a line driver to boost and sharpen signals that
might otherwise degrade below switching levels or be distorted. The mixed logic circuit
symbols for buffers are given in Fig. 3.20a.

3.6 AND AND OR OPERATORS AND THEIR MIXED-LOGIC
CIRCUIT SYMBOLOGY

There are just two binary logic operations that underlie all of logic design and Boolean
algebra (after George Boole, 1815-1864, English mathematician). These are the AND and
OR operations. The following are the operator symbols (or connectives) that are used for
AND and OR:

(•) -> AND (+) -» OR

So, if one writes X • Y, XY, or (X)(F), it is read as X AND Y. Note that the AND operator (•) is
also called the Boolean product (or intersection) and may be represented by the alternative
symbol (A). Thus, X • Y = X A Y is the intersection or Boolean product of X and Y.
In contrast, X + Y is read as X OR Y. The operator (+) is often called the Boolean sum
(or union) and may be represented by the alternative symbol (v). Hence, X + Y = X v Y
is the union or Boolean sum of X and Y.

By using the two Boolean operators, an endless variety of Boolean expressions can be
represented. Simple examples are expressions such as

F = X + Y • Z and G = X • (Y + Z).

The first is read as F equals X OR (Y AND Z). In this expression the Boolean quantity
Y • Z must first be evaluated before it is "ORed" with X. The second expression is read as
G equals X AND (Y OR Z). In this case the quantity (Y + Z) must first be evaluated before
it can be "ANDed" with X. Thus, the hierarchy of Boolean operation is similar to that of
Cartesian algebra for multiplication and addition.

3.6.1 Logic Circuit Symbology for AND and OR

The meanings of the AND and OR operators (functions) are best understood in terms of their
logic circuit symbols. Shown in Fig. 3.9 are the distinctively shaped logic circuit symbols
commonly used to represent the AND and OR operators, which may have multiple inputs
and a single output. The functional descriptions of these symbols are stated as follows:

The output of a logic AND circuit symbol is active if, and only if, all inputs are active.

The output of a
active.

logic OR circuit symbol is active if one or more of the inputs are

88 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

(a) (b)

FIGURE 3.9
Distinctive logic circuit symbols for the binary operators, (a) AND symbol, (b) OR symbol.

The functional descriptions may be taken as the definitions for AND and OR. Remember
that the term active implies logic 1.

The distinctively shaped symbols in Fig. 3.9 represent the functional descriptions for
AND and OR and provide the logical interpretation for a variety of physical devices
called gates. That is, each gate must satisfy the logical AND or logical OR functional
description. By definition: A gate is an interconnection of electronic switches and other
circuit elements arranged in such a way as to produce the electrical equivalent of a logic
operation. The inputs and outputs of a gate are measured in terms of voltages (LV or
HV), whereas the inputs and outputs of a logic symbol, as in Fig. 3.9, are expressed in
terms of logic 1 or logic 0 together with the appropriate activation level indicators, (H)
and (L).

3.6.2 NAND Gate Realization of Logic AND and OR

The physical device shown in Fig. 3.10a is a two-input NAND gate. NAND is short for
NOT-AND. Because this version of NAND gate complies with the generalized CMOS gate
configuration in Fig. 3.5, it is called a CMOS NAND gate. The physical truth table for this

X(H)

0
0
1
1

Logic AND
Interpretation

i
Y(H)

0
1
0
1

Z(L)

0
0
0
1

LV
LV
HV
HV

LV
HV
LV
HV

HV
HV
HV
LV

(b)

Logic OR
Interpretation

X(L)

1
1
0
0

i
Y(L)

1
0
1
0

Z(H)

1
1
1
0

X (H) -
Y(H)

Z(L) = (X-Y)(L) Z(H) = (X+Y)(H)

(a) (c) (d)

FIGURE 3.10
The two-input NAND gate, its I/O behavior, and its two logic interpretations, (a) CMOS transistor
circuit, (b) Physical truth table, (c) Logic AND interpretation and circuit symbol, (d) Logic OR
interpretation and circuit symbol.

3.6 AND AND OR OPERATORS AND THEIR MIXED-LOGIC CIRCUIT SYMBOLOGY 89

A(H)-B(H)—r
v Z(L)

Y(H)

Z(L) = (A - B Y)(L)

(b)

Y)(H)

(c)

FIGURE 3.11
Multiple input NAND gates and logic circuit symbols, (a) CMOS logic circuit, (b) AND interpretation.
(c) OR interpretation.

or any NAND gate is given in Fig. 3.1 Ob. It is easily generated by applying the ON and
OFF equivalent circuits for NMOS and PMOS given in Fig. 3.4.

The two logical AND and OR interpretations of the NAND gate and their mixed logic
circuit symbols are given in Figs. 3.1 Oc and 3.1 Od. They, too, apply to NAND gates belonging
to logic families other than CMOS, as explained further in Appendix A. Notice that by
applying Eqs. (3.1) the truth tables for the AND and OR interpretations satisfy the definitions
for AND and OR given earlier in connection with Fig. 3.9 — no other combination of
activation level symbols applied to inputs X and Y satisfies these definitions. But both logic
circuit symbols represent (in the logic domain) the physical NAND gate, since both are
derived from it. Thus, one symbol (c) performs the AND operation with active low output,
while the other symbol (d) performs the OR operation with active low inputs. The symbols
are interchangeable in a logic circuit and, for that reason, are called conjugate NAND gate
symbols even though, strictly speaking, they are only logic circuit symbols.

Multiple input CMOS NAND gates result by adding more PMOS in parallel and an equal
number of NMOS in series, as shown in Fig. 3.11. The logic circuit symbols and output
expressions shown in Figs. 3.1 Ib and 3.1 Ic result. The number of inputs is usually limited
to eight or fewer, mainly because of an increase in resistance of the series N-MOSFETs,
each of which has a small ON channel resistance associated with it. Therefore, too many
inputs causes an increase in gate propagation delay and a degradation of the signal. The
number of inputs that a gate can have is called the/an-m. For example, a four-input NAND
gate would have a fan-in of 4.

3.6.3 NOR Gate Realization of Logic AND and OR

The transistor circuit for the two-input CMOS NOR gate is shown in Fig. 3.12a. NOR is
short for NOT-OR. The physical truth table and the AND and OR logical interpretations

90 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

Logic AND
Interpretation

1
1

X

LV
LV
HV
HV

Y

LV
HV
LV
HV

Z

HV
LV
LV
LV

Logic OR
Interpretation

1
1

X(L) Y(L)

1 1
1 0
0 1
0 0

Z(H) (0> X (H) Y (H)

1 0 0
0 0 1
0 1 0
0 1 1

Z(L)

X(L) •

Y;L;^i j—z<H) vim-j ;°-Z(L)
Z(H) = (X-Y)(H) Z(L) = (X+Y)(L)

(a) (c) (d)

FIGURE 3.12
The two-input NOR gate, its I/O behavior and its two logic interpretations, (a) CMOS transistor circuit,
(b) Physical truth table, (c) Logic AND interpretation and circuit symbol, (d) Logic OR interpretation
and circuit symbol.

that derive from it are given in Figs. 3.12b, 3.12c, and 3.12d, respectively, and these also
apply to NOR gates belonging to other logic families, as discussed in Appendix A. As
before, the physical truth table is obtained by applying the equivalent circuits given in
Fig. 3.4 to the transistors in Fig. 3.12a. The AND and OR logic interpretations in parts (c)
and (d) derive from the application of Eqs. (3.1) to the physical truth table and are observed
to agree with the definitions of AND and OR given in connection with Fig. 3.9 — again,
no other combination of activation level symbols applied to inputs X and Y satisfies these
definitions. Thus, there results two logic circuit symbols, one performing the AND operation
with active low inputs (c) and the other performing the OR operation with active low output.
Since the logic symbols are interchangeable, they are called conjugate NOR gate symbols.

Multiple input NOR gates are produced by adding more PMOS in series and an equal
number of NMOS in parallel, as indicated in Fig. 3.13a. The logic symbols for multiple
input NOR gates are shown in Figs. 3.13b and 3.13c. As in the case of multiple NAND
gates, there exists a practical limit to the number of NOR gate inputs (fan-in) because of
the channel resistance effect. Thus, too many inputs to a NOR gate will increase the gate
propagation delay and degrade the signal.

When fan-in restrictions become a problem, a gate tree structure (e.g., a NOR gate tree)
can be used. A gate tree is a combination of like gates that form a multilevel array (see
Fig. 4.49). Thus, a tree composed of OR gates and an inverter can replace a multiple-input
NOR gate when the number of inputs exceeds the fan-in limit for that gate.

3.6.4 NAND and NOR Gate Realization of Logic Level Conversion

Inherent in any NAND or NOR gate is the ability to function as an inverter. Thus, under
the proper conditions, the NAND or NOR gate can perform the equivalent of logic level
conversion as in Fig. 3.6. Shown in Figs. 3.14 and 3.15 are the various input connections

Z(H) = (A - B Y)(H)

(b)

A(H)-
B(H)-

'Z(L)
• L '

Y(H)-

Z(L) = (A + B+ ••• +Y)(L)

(c)

FIGURE 3.13
Multiple input NOR gates and logic circuit symbols, (a) CMOS logic circuit, (b) AND interpretation.
(c) OR interpretation.

X(H)

r* °
i — * °1
-U- 1

Y(H)

0

1

0

1

Z(L) V '^ — ' ^ ' X(L)

0 X(H)— f^yx(L)
o n — r-
0

1

r* 1

-+ 1
0

-+ 0
X(H)— |>o-X(L)

(a)

Y(L)

1

0

1

0

Z(H)

1

1

1

0

/M1-/ ^<;

X(L)-j
r*

0(L)

X(L)-<

(b)

X(H)

FIGURE 3.14
Nand gate realization of logic level conversion and equivalent symbology. (a) (H) —> (L) conversion.
(b) (L) — »• (H) conversion.

X(H) Y(H)

IT* ° °
0 1

--> 1 0

U- 1 1

Z(L) ^]^-L^r \ ' X(L) Y(L)

0 X(H}— PXx(L)
1 I — ̂
1 0(H)

1

-*1 1

1 0

-*0 1

U-0 0

Z(H) ^^

1 X(L)-H
o n
o 1^
0

X(H) —[>o- X(L) X(L) -<P- X(H)

(a) (b)

FIGURE 3.15
NOR gate realization of logic level conversion and equivalent symbology. (a) (H) -»• (L) conversion,
(b) (L) —»• (H) conversion.

91

x-

Y-

92 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

that permit this to happen. These input connections result directly from the logic truth
tables in Figs. 3.10 and 3.12. The arrows on the left side of each truth table are given
to draw attention to those portions of the table that dictate how the connections to the
NAND and NOR gates must be made. For example, the extreme upper and lower arrows
in Fig. 3.14a indicate that the two inputs to the NAND gate can be connected for the
X (H) -> Z(L) = X(L) conversion. The lower two arrows indicate that the same conversion
can be achieved by setting Y(H) = l(H). It is not likely that a NAND or NOR gate would
be used as a replacement for an inverter if the latter were available, but the substitution is
permissible if the need is there. Obviously, the NAND or NOR gate inverter is more costly
(spacewise) and is slower than the inverter in Fig. 3.6.

3.6.5 The AND and OR Gates and Their Realization of Logic AND and OR

NAND and NOR CMOS gates are natural electrical realizations of the AND and OR logic
operators, but the AND and OR CMOS gates are not. This can be understood if one recalls
that a transistor switch is, by its nature, an inverter. Thus, it might be expected that proper
CMOS realizations of NOT-AND and NOT-OR would be simpler (by transistor count) than
the equivalent CMOS realizations of AND and OR, and this is the case.

Shown in Fig. 3.16a is the transistor circuit for the CMOS version of the two-input AND
gate. It is seen to be composed of the NAND gate followed by an inverter, hence NAND-
NOT or NOT-AND-NOT. By application of Eqs. (3.1), the physical truth table for the AND
gate, given in Fig. 3.16b, yields the AND and OR interpretations shown in Figs. 3.16c,
and 3.16d. From these interpretations there results the two conjugate AND gate symbols,
one performing the AND operation with active high inputs and output (c) and the other
performing the OR operation with active low inputs and output as indicated by the active

+VDD

H H
Logic AND

Interpretation
i

i

X Y

LV LV
LV HV
HV LV
HV HV

Z'

HV
HV
HV
LV

Z

LV Logic OR
LV Interpretatio
LV
HV

^
X(H) Y(H)

0 0
0 1
1 0
1 1

Z(H) <D' X(L) Y(L)

0 1 1
0 1 0
0 0 1
1 0 0

Z(L)

X(H) —
Y(H) —

NAND INV Z(H) = (XY)(H) Z(L) = (X+Y)(L)

(a) (c) (d)

FIGURE 3.16
The two-input AND gate, its I/O behavior, and its two logic interpretations, (a) CMOS transistor
circuit, (b) Physical truth table, (c) Logic AND interpretation and circuit symbol, (d) Logic OR
interpretation and circuit symbol.

3.6 AND AND OR OPERATORS AND THEIR MIXED-LOGIC CIRCUIT SYMBOLOGY 93

Logic AND
Interpretation
1
1

X Y

LV LV
LV HV
HV LV
HV HV

ZT

HV
LV
LV
LV

Z

LV
HV
HV
HV

Logic OR
Interpretation

1
1

X(L) Y(L)

1 1
1 0
0 1
0 0

Z(L) v ' X(H) Y(H)

1 0 0
0 0 1
0 1 0
0 1 1

Z(H)

X(L}-0

Y(L)-0

NOR INV Z(L) = (X-Y)(L) Z(H) = (X+Y)(H)

(a) (c) (d)

FIGURE 3.17
The two-input OR gate, its I/O behavior, and its two logic interpretations, (a) CMOS transistor circuit,
(b) Physical truth table, (c) Logic AND interpretation and circuit symbol, (d) Logic OR interpretation
and circuit symbol.

low indicator bubbles. The logic interpretations and mixed logic circuit symbols also apply
to the AND gate of any logic family.

The CMOS version of the two-input OR gate, its physical truth table, and its two logic
interpretations are shown in Fig. 3.17. Again, Eqs. (3.1) and the functional descriptions
associated with Fig. 3.9 have been applied to the physical truth table, Fig. 3.17b, to yield
the AND and OR interpretations and the mixed logic circuit symbols presented in Figs. 3.17c
and 3.17d. The two logic circuit symbols are interchangeable and hence are conjugate OR
gate symbols. One symbol performs the AND operation and has active low inputs and
output, while the other performs the OR operation and has active high inputs and output.
As before, the truth table and logic AND and OR interpretations apply also to an OR gate
of any logic family.

Multiple input CMOS AND and OR gates are possible by combining the transistor circuit
in either Fig. 3.11 or Fig. 3.13 with an inverter. The conjugate gate symbols for AND and
OR that result are shown in Figs. 3.18 and 3.19. The same limitations on numbers of inputs
that apply to CMOS NAND and NOR gates also apply to CMOS AND and OR gates.

A(H) 1 A(L) q)
B(H) \ B(L}—$—^\

- N -z (H) : |y°~Z(L)

Y(L)—3

Y)(H) Z(L) = (A + B+ ... +Y)(L)

(b)

FIGURE 3.18
Logic symbols for multiple input AND gates, (a) AND interpretation, (b) OR interpretation.

94 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

A(H)
B(H) —

A(L)
B(L)

'Z(L)

Y(L)

Z(L) = (A - B Y)(L) Z(H) = (A + B + ••• + Y)(H)

(a) (b)

FIGURE 3.19
Logic circuit symbols for multiple input OR gates, (a) AND interpretation, (b) OR interpretation.

AND and OR gates can be configured by "flipping" end-for-end the NAND and NOR
gates shown in Figs. 3.10a and 3.12a, respectively, such that the NMOS occupy the HV end
while the PMOS reside at the LV end. However, to do this requires that the NMOS pass HV,
which they do not do well, and that the PMOS pass LV, which they do not do well. Thus,
although such flipped configurations logically satisfy the AND and OR interpretations for
the respective gates, their output signals would be somewhat distorted. For minimum output
signal distortion the PMOS and NMOS portions for any gate should be configured as in
Fig. 3.5.

3.6.6 Summary of Logic Circuit Symbols for the AND and OR Functions
and Logic Level Conversion

For reference purposes, a summary is now provided for the mixed logic symbology that
has been covered so far. Shown in Fig. 3.20 are the conjugate mixed logic circuit symbols
together with the physical gate names they represent. The conjugate mixed logic circuit
symbols for the inverter and buffer are given in Fig. 3.20a. Notice that the conjugate pairs of
logic circuit symbols in Fig. 3.20b are split into two groups, one group performing the AND
function and the other performing the OR function. The buffer, not previously discussed,
is included here for completeness. It functions as an amplifier to boost the signal to meet

AND OR
Function Function

Logic level conversion and buffer
symbols —| }*~ *~ NAND Gate

_ , NOR Gate
-po- -4— Inverter —> -cp>-

-D>- «- Buffer -* ^>o- ILJ- ^-AND Gate

— OR Gate —*

(b)

FIGURE 3.20
Summary of conjugate mixed logic circuit symbols and the gates they represent, (a) Logic level
conversion and buffer symbols, (b) AND and OR function symbols.

3.7 LOGIC LEVEL INCOMPATIBILITY: COMPLEMENTATION 95

fan-in requirements. For reference purposes, the ANSI/IEEE Standard logic symbols for
gates are provided in Appendix C.I.

3.7 LOGIC LEVEL INCOMPATIBILITY: COMPLEMENTATION

The eight conjugate gate symbols in Fig. 3.20b perform one of two logic operations, AND
or OR, regardless of the presence or absence of the active low indicator bubbles that serve
to associate the symbols to the physical gates from which they are derived. However, the
presence or absence of an active low indicator bubble on the input to a given circuit symbol
indicates the activation level of the input, (L) or (H), that is "required" by that gate. Thus,
the presence of active low indicator bubbles on the inputs to a logic symbol requires that
all inputs arrive from negative logic sources while the absence of bubbles requires that the
inputs arrive from positive logic sources. When these requirements are met the inputs are
said to have logic compatibility with the logic symbol.

But suppose an input signal arrives at the input to a logic symbol with an activation level
that is of opposite polarity to that required by the logic circuit symbol. When this happens a
condition of logic incompatibility exists, and this requires that the signal name in the output
be complemented.

The operation of complementation is defined by the following important relations applied
to a logic function a:

oe(L) = d(H) and a(H) = d(L) (3.2)

such that

(a-

(a • a)(L) = 0(L)
(3.3)

The overbar is read as "the complement of." Thus, in the logic domain a logic function
a ANDed with its complement a. is logic 0, or the function ORed with its complement is
logic 1.

In Fig. 3.21 are four typical examples of input logic level incompatibility each requiring
the complementation of the incompatible input name in the output expression. Note that
this is indicated in two ways. In Fig. 3.21a, Eqs. (3.2) are applied directly to satisfy the logic
level compatibility requirements of the logic symbol. In Fig. 3.21b, an incompatibility slash
"/" is placed on the input line containing the logic incompatibility as a visual reminder that
a logic level incompatibility exists and that the input name must be complemented in the
output expression.

The pairs of logic circuit symbols in Figs. 3.21a and 3.21b are conjugate symbol forms
as in Fig. 3.20. Because these conjugate circuit symbols are interchangeable, their output
expressions are equal and are representative of a set of such equations called the DeMorgan
relations. This subject will be considered further in Section 3.10.

96 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

(X-Y)(H) + > = - ' 1 *>- (X+Y)(L)

(X-Y)(H)=(X+Y)(L)

(a) Incompatability
/ slash

Incompatibility <*YXL> = <x*YXH)
slash (b)

FIGURE 3.21
Examples of logic level incompatibility, (a) Applications of Eqs. (3.2). (b) Use of the incompatibility
slash (/) as an alternative.

Earlier it was stated that the only logic function of the inverter is to perform logic level
conversion, (H) -> (L) or (L) —> (//), and this is true. But to what purpose? The answer
is simply stated:

The logical function of the inverter is to create or remove an input logic level incom-
patibility depending on the output function requirements of the logic symbol to which
the input is attached.

Consider two examples of logic level conversion in Figs. 3.22a and 3.22b. Here, NAND and
OR logic realizations of logic functions require the use of inverters to create and remove
logic level incompatibilities, respectively.

NAND/INV Logic
Desired Realization
Function

Z(H) = (X+Y)(H) - > Y(L)

HY(H) - ' < - Incompatibility
slash

(a)

OR/INV Logic
Desired Realization
Function

Z(L) = (X-Y)(L) — * Y(H) — QorJIn- 1 ' -

Z(L) = (X'Y)(L)

Y(L) - 1 ' - Logic compatibility

(b)

FIGURE 3.22
Examples of logic level conversion, (a) Creation of a logic incompatibility with active low inputs, (b)
Removal of a logic incompatibility with inputs X(L) and Y(H).

3.8 READING AND CONSTRUCTION OF MIXED-LOGIC CIRCUITS 97

3.8 READING AND CONSTRUCTION OF MIXED-LOGIC CIRCUITS

The very simple procedures that are necessary to construct and read mixed-logic circuits
are now demonstrated by more complex examples. Consider the function F(H):

/— OR output stage

F(H) = [A-B + B-C](H)
\ /

AND input stages

Notice that this function is formed by ORing together two ANDed terms and is read as F
equals A "bar" AND B ORed with B "bar" AND C, all active high. The logic circuit for this
function is shown in Fig. 3.23, where it is assumed that the inputs arrive active high (//), that
is, from positive logic sources. Two logic realizations are shown, one NAND/INV logic and
the other AND/OR/INV logic, both yielding the function F(H). Thus, by complementing
between the AND and OR stages (area enclosed by dotted lines), the physical realization
is altered but without changing the original function — logic level compatibility has been
preserved. Observe that an incompatibility slash ("/") is placed on a given symbol input as a
reminder that an input logic incompatibility requires complementation of the input name in
the output expression. In Figs. 3.23c and 3.23d are two additional means of representing the
function F — namely, the truth table and logic waveforms. Here, a binary input sequence
is assumed and no account is taken of the path delays through the gates and inverters.

A second more complex example is shown in Fig. 3.24, where a function Z(L) has
been implemented by using NAND/NOR/INV logic in (a) and by using AND/OR/INV

AB(L) /r-AB(H) A B C

0 0 0 0
0 0 1 1

C(H)— L^~V C(H) — \ _ _ J V 0 1 1 1
BC(L) ^BC(H) 1 0 0 0

F(H) = (AB + BC)(H) (b) 1 1 0 1

. _ _ 1 1 1 0

(c)

(d)

FIGURE 3.23
Examples of the reading, construction, and waveform analysis of a logic circuit, (a) NAND/INV and
(b) AND/OR/INV logic realizations of the function F(H) with active high inputs, (c) Truth table for
the function F. (d) Logic waveforms for the function F assuming a binary input pattern.

98 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

(A+B+C)(L) / (A+B+C)(H)

(D+E)(L)

FIGURE 3.24
Logic realizations of the function Z(L) with inputs A(H), 5(H), C(H), D(L), and £(L). (a) NAND/
NOR/INV logic, (b) AND/OR/INV.

logic in (b). In this example the ORing input stages receive inputs that are assumed to
arrive as A(H), 5(H), C(H), D(L), and E(L). Here again, by complementing between the
AND and OR stages (dotted boxes), the physical realization is changed without altering
the original function. Notice that incompatibilities exist on inputs and between ORing and
ANDing stages requiring (in each case) complementation of the signal name in the output
expression as indicated by the "/" symbol.

Reading vs Construction of Logic Circuits Implied by Figs. 3.23 and 3.24 is the pro-
cedure to be followed when reading or constructing a logic circuit:

The reading of a logic circuit always begins with the inputs and ends at the output,
hence "input-to-output."
Construction of a logic circuit begins at the output stage and continues to the inputs,
hence "top down."

One must not begin construction of a mixed-logic circuit until the activation levels of the
inputs and outputs are known and the output and input stage operators have been identified.
If a circuit has been presented in positive logic form (no mixed logic symbology), it is
advisable for the reader to convert the circuit to mixed logic form before reading it. This
will speed up the reading process and minimize the probability for error.

3.9 XOR AND EQV OPERATORS AND THEIR MIXED-LOGIC
CIRCUIT SYMBOLOGY

Certain functions consisting of AND and OR operations occur so often in digital logic
design that special names and operator symbols have been assigned to them. By far the most
common of these are the exclusive or (XOR) and equivalence (EQV) functions represented
by the following operator symbols:

© —> XOR, meaning "one or the other but not both equivalent."
O —> EQV, meaning "both the same (equivalent)."

3.9 XOR AND EQV OPERATORS 99

o o
(a) (b)

o-
..._£> ...JO

(c) (d)

FIGURE 3.25
Distinctive logic circuit symbols for XOR and EQV. (a) The XOR function circuit symbol, (b) The
EQV function circuit symbol, (c) and (d) illustrate the meaning of multiple input symbols.

Thus, if one writes X@Y, it is read as X XOR 7; XQY is read as X EQV Y. The EQV opera-
tor is also known as XNOR (for EXCLUSIVE NOR), a name that will not be used in this text.

Like the AND and OR functions, the XOR and EQV functions are best understood
in terms of the logic circuit symbols representing them. Figures 3.25a and 3.25b give
the commonly used XOR and EQV circuit symbols for which the following functional
descriptions apply:

The output of a logic XOR circuit symbol is active if one or the other of two inputs is
active but not both active or inactive — that is, if the inputs are not logically equivalent.

The output of a logic EQV circuit symbol is active if, and only if, both inputs are
active or both inputs are inactive — that is, if both inputs are logically equivalent.

A circuit symbol for either XOR or EQV consists of two and only two inputs. Multiple input
XOR or EQV circuit symbols are understood to have the meaning indicated in Figs. 3.25c
and 3.25d and are known as tree forms.

The defining relations for XOR and EQV are obtained from the functional descriptions
just given. In Boolean sum-of-products and Boolean product-of-sums form these defining
relations are

and

A Q B = A • B + A • B = (A + B) • (A + B). (3.5)

In words, the XOR function in Eq. (3.4) is active if only one of the two variables in its
defining relation is active but not both active or both inactive. Thus, A 0 B = 1 if only one

100 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

XOR
Interpretation

I
I

X Y

LV LV
LV HV
HV LV
HV HV

Z'

HV

LV
LV

HV

Z

LV EQV
HV Interpretation
HV I
LV I

X(H) Y(H)

0 0
0 1
1 0
1 1

X(H)
Y(H)

Z(H) (b) X(H) Y(H)

0 0 0
1 0 1
1 1 0
0 1 1

Z(L)

Z(L)

Z{H) = (X0Y)(H) Z(L) = (X0Y)(L)

(a) (c) (d)

FIGURE 3.26
The XOR gate, its I/O behavior, and its two logic interpretations, (a) A CMOS transistor circuit, (b)
Physical truth table, (c) Logic XOR interpretation, (d) Logic EQV interpretation.

of the two variables takes logic 1 at any given time. Conversely, the EQV function in Eq. (3.5)
is active only if both variables in its defining relation are active or both are inactive. In this
case A O B = 1 only if both variables are logically equivalent (both logic 1 or both logic 0).

3.9.1 The XOR and EQV Functions of the XOR Gate

Shown in Fig. 3.26a is one of several CMOS versions of the XOR gate. This version makes
rather clever use of NMOS and PMOS totaling six transistors. Notice that the output stage
is an inverter that acts not only to invert the signal, but also as a gain element to boost the
signal. This is important since the remainder of the circuit is composed of NMOS and PMOS
transmission gates (Fig. 3.7) that lack the ability to amplify. In Fig. 3.26b is the physical
truth table for the XOR gate. Observe that all but the X, Y = LV, LV input conditions
produce a Z' voltage that is the voltage level from one or both inputs. This is characteristic
of logic gates composed of pass transistors.

Presented in Figs. 3.26c and 3.26d are the XOR and EQV logic interpretations of the
XOR gate together with their distinctively shaped circuit symbols. The logic truth tables
for these interpretations derive from the defining relations given by Eqs. (3.4) and (3.5),
respectively, and from Eqs. (3.1). Observe that the XOR symbol with active high inputs and
output is interchangeable with an EQV symbol with active low output. Thus, it follows that
(X 0 Y)(H) = (XQ 7)(L).

3.9.2 The XOR and EQV Functions of the EQV Gate

A version of the CMOS EQV gate is shown in Fig. 3.27a. It is obtained from the XOR
version in Fig. 3.26a by "complementing" the MOS transistors in the Z' circuit to obtain
the Z" circuit in Fig. 3.27a. Notice that all input conditions except X, Y = HV, HV produce
a Z" output directly from one or both of the inputs. Also note that Z" is an XOR output,

3.9 XOR AND EQV OPERATORS 101

X Y

XOR LV LV
Interpretation LV HV

1 HV LV
1 HV HV

Z"

LV
HV
HV
LV

Z

HV EQV
LV Interpretation
LV 1
HV 1

X(H) Y(H)

0 0
0 1
1 0
1 1

Z(L) (b) X(H) Y(H)

0 0 0
1 0 1
1 1 0
0 1 1

Z(H)

Z(H)

Z(L) = (X®Y)(L) Z(H) = (X©Y)(H)

(a) (C) (d)

FIGURE 3.27
The EQV gate, its I/O behavior, and its two logic interpretations, (a) A CMOS transistor circuit,
(b) Physical truth table, (c) Logic XOR interpretation, (d) Logic EQV interpretation.

whereas Z' is an EQV output, and that they are the inverse of each other. In each case an
inverter is added to invert the signal as well as to buffer the output Z.

The physical truth table for the EQV gate and its two logic interpretations are given in
parts (b), (c), and (d) of Fig. 3.27. The same procedure used for the XOR gate is used here
to obtain the logic truth tables and circuit symbols for the EQV gate. In this case, the XOR
symbol with active low output is interchangeable with the EQV symbol with active high
inputs and output resulting in the relation (X 0 F)(L) = (X O Y)(H).

3.9.3 Multiple Gate Realizations of the XOR and EQV Functions

The CMOS transistor circuits for the XOR and EQV functions given in Figs. 3.26 and 3.27
represent the most efficient use of MOSFETs for such purposes. However, there are occa-
sions when such MOS implementations of these functions are not possible. One example
is the use of programmable logic arrays (PLAs), as discussed in Section 7.3, to implement
arithmetic-type circuits discussed in Chapter 8. PLAs are devices that must use two-level
gate forms to implement XOR or EQV functions — XOR or EQV gates are not commonly
part of the PLA architecture. Shown in Fig. 3.28 are four multiple-gate realizations of the
XOR and EQV functions. The circuits in Figs. 3.28a and 3.28b have been derived from the
defining relations for XOR and EQV given by Eqs. (3.4) and (3.5), respectively and are
suitable for two-level circuit design. The three-level circuits in Figs. 3.28c and 3.28d are
not suitable for two-level circuit design. These three-level circuits result from derivatives
of the defining relations:

A-(AB) + B(AB) = AB + AB XOR form (3.4a)

(A + AB)(B + AB) = (A + fi)(A + B) EQV form (3.4b)

The applications of CMOS AND-OR-invert and OR-AND-invert gates to the implemen-
tation of XOR and EQV functions are given later in Subsection 7.7.1. Such CMOS

102 CHAPTER 3/BACKGROUND FOR DIGITAL DESIGN

-(A©B)(H) | ̂ _ 33)_(A©B)(H)
L > ^ "~^B(H)

A(H)-

U—x r^l—^Lr-x L r̂-̂ rL^n^-N
-(A©B)(H)

(c) (d)

FIGURE 3.28
Multiple gate realizations of the XOR and EQV functions, (a, b) Two-level NAND implementations
of the XOR and EQV functions, (c, d) Three-level NAND and NOR implementations of the XOR
and EQV functions.

realizations of these functions are shown to be closer to a single level of path delay rather
than two levels, as is true for those in Figs. 3.26a and 3.27a.

3.9.4 The Effect of Active Low Inputs to the XOR and EQV Circuit Symbols

An interesting property of the XOR and EQV logic symbols is the fact that when the two
inputs are of opposite polarity the output function is complemented, but when the inputs are
of the same polarity (both active high or both active low) the function remains unchanged.
This is illustrated by the four examples in Fig. 3.29. Thus, a single incompatibility comple-
ments the function (changing an XOR output function to an EQV output function or vice
versa), whereas a double incompatibility or no incompatibility retains the output function.
These results may be proven by altering the appropriate logic truth table in Figs. 3.26 and
3.27 to agree with the input activation levels indicated for each logic circuit symbol.

$} ̂ 4) j—(X0Y)(H)

(a)

« I -**.

X(L)

(X0Y)(L)

Y(L) —/-U S~^ \™°' >^> Y(L)

(b)

(X©Y)(H)

FIGURE 3.29
Effect of active low inputs to XOR and EQV logic circuit symbols, (a) Single logic incompatibilities,
(b) Dual logic incompatibilities.

3.9 XOR AN D EQV OPERATORS 103

XOR gate performing the XOR gate performing the
XOR operation EQV operat ion

o«o <= £,:=» o-o
(a)

EQV gate performing the EQV gate performing the
XOR operation EQV operation

€> ^= £.v. => O « O
(b)

FIGURE 3.30
Summary of conjugate mixed logic circuit symbols for the XOR and EQV gates, (a) XOR gate
symbols, (b) EQV gate symbols.

3.9.5 Summary of Conjugate Logic Circuit Symbols for XOR and EQV Gates

For reference purposes the logic circuit symbols representing the XOR and EQV gates are
summarized here. Shown in Fig. 3.30a are the four conjugate forms for the XOR gate and in
(b) the four conjugate forms for the EQV gate. The conjugate logic circuit symbol forms are
interchangeable, as indicated by the two-way arrows. This information can be very useful
when synthesizing logic circuits containing XOR or EQV functions. Notice that dual logic
low indicator bubbles, representing double incompatibilities, have no effect on the logic
function. The reader is referred to Fig. 3.29b for reinforcement of this fact.

3.9.6 Controlled Logic Level Conversion

In Section 3.4 the concept of logic level conversion was introduced in connection with the
inverter. Here, the subject of logic level conversion is revisited as it relates to the XOR
or EQV gate. Another interesting and useful property of the XOR and EQV gates is that
they can be operated in either one of two modes: the inverter mode or the transfer mode.
These modes are illustrated in Fig. 3.31, where exclusive use is made of the XOR symbol to
represent the XOR and EQV gates. In Fig. 3.3 la the XOR interpretation of the EQV gate is
used for (//) —> (L) logic level conversion or for logic transfer depending on the logic level
of the controlling input. Notice that the buffer symbol is used to represent the transfer mode.
These two modes are easily deduced from the truth table given at left in Fig. 3.3 la. Similarly,
in Fig. 3.31b, the XOR interpretation of the XOR gate is used for the (L) -> (H) conversion
mode or for the logic transfer mode depending on the logic level of the controlling input.
Here again, these results are easily deduced from the truth table to the left in Fig. 3.31b,
which has been altered from that in Fig. 3.26c to account for the active low inputs.

The positive logic interpretation of an XOR gate used as a controlled inverter is given in
Fig. 3.3 Ic. This is included to add greater understanding of the XOR gate and its operation.
Although all three cases in Fig. 3.31 physically represent controlled inversion, it is common
to find controlled inverters represented as in Fig. 3.3 Ic. A typical example is in the design

104 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

X(H) Y(H)

0 0
0 1
1 0
1 1

Z(L)

0(H)

X(L)

= X(H) X(H) Y(H)

0 0
*(H)—b^X(H) 0 1

1 0
Active low output x(H) -> X(L) Transfer - I

interpretation (Inverter) (Buffer)

Z(H)

/a\ Positive logic interpretation

X(L) Y(L)

0(L)

1

*(H) 1(H) 0(H)
= X(L)

X(H)—ho-X(H) X(H)

0 X(L) -<f>- X(H) X(L) -<f>>- X(L) X(H) -» X(H) Transfer
^ IT /Inom-tnrl /Rl rff<ar\

1 1

1 0
0 1

(Inverter) (Buffer)
Active low input X(L) -> X(H) Transfer

interpretation (Inverter) (Buffer)

(b) (c)

FIGURE 3.31
Controlled logic level conversion, (a) The EQV gate used for (H) —>• (L) conversion and logic
transfer, (b) The XOR gate in mixed logic notation used for (L) —>> (H) conversion, (c) Positive logic
interpretation of the XOR gate used as a controlled inverter.

of the adder/subtractor featured in Fig. 8.9. In making the transition from Fig. 3.31b to
Fig. 3.31c, it should be recalled that complementation of both inputs to an XOR or EQV
circuit symbol leaves the output function unaltered. Notice that the inverter and buffer
symbols in Fig. 3.31 are the same as those given in Fig. 3.20a.

3.9.7 Construction and Waveform Analysis of Logic Circuits Containing
XOR-Type Functions

As an extension of Section 3.8, the reading and construction of a multilevel logic circuit
containing an XOR function is demonstrated by the NAND/XOR/NOR/INV circuit in
Fig. 3.32a representing the function Y = A © BC + BC. A multilevel logic function is one
that has more than two gate path delays from input to output. In this case there are three levels
of path delay. Here, an XOR gate performs the XOR operation to yield the (A © BC)(H)
input to the NOR output stage performing the OR operation. The waveform for BC(H) is
obtained by ANDing the complement of the B(H) waveform with the complement of the
C(H) waveform by using a NOR gate to perform the AND operation. Thus, there are three
logic incompatibilities, one for the A(H) input and the other two for the B(H) and C(H}
inputs, but inverters are not needed to create these logic level incompatibilities.

Presented in Figs. 3.32b and 3.32c are the truth table and logic waveforms for the circuit
in Fig. 3.32a. The inputs are arbitrarily given in binary sequence, and the output waveforms
from the intermediate stages are given to reveal the advantage of the mixed logic method.
No account is taken of the propagation delays of the gates and inverters. Notice that the
(A © BC)(H) and BC(H) logic signals are logically compatible with the requirements of
the ORing operation of the NOR gate output stage. If complementation is carried out within
the dashed box, the waveforms for the resulting (A © BC)(L) and BC(L) signals would

3.10 LAWS OF BOOLEAN ALGEBRA 105

A B C

B(H)—I V (B-C)(L) 0 0 0
C<H) -LJ:nl̂ r-x(AeBC)(H) 0 0 1

0 1 0
0 1 1
1 0 0
1 0 1

(B-C)(H) i 1 1 0

Y = (A0BC + BC)

(c)

FIGURE 3.32
(a) NAND/NOR/XOR/INV logic circuit, (b) truth table, and (c) logic waveforms for the function Y
with active high inputs and mixed logic outputs.

remain the same as those shown for the active high signals, but with opposite activation
levels. However, the physical nature of the devices required for implementation would now
become NAND/EQV/OR7AND/INV as taken from input to output.

Another interesting facet of the mixed logic method is the fact that an inverter on the
output stage permits the generation of mixed rail output signals. The Y(L) and Y (H) signals
constitute the mixed rail outputs and have waveforms that are identical if account is not
taken of the propagation delay through the inverter. In the physical domain, however, the
voltage waveforms represented by Y(L) and Y(H) would be the inverse of one another.

3.10 LAWS OF BOOLEAN ALGEBRA

To design a digital circuit that will perform a given function, it may be necessary to ma-
nipulate and combine the various switching variables in certain ways that are in agreement
with mathematical logic. Use of the laws of Boolean algebra makes these manipulations
and combinations relatively simple. This special mathematical logic, named in recognition
of the English mathematician George Boole, can be rigorously and eloquently presented
by using axioms, theorems, and corollaries. However, for our purposes there is no need for
such a formal approach. The laws of Boolean algebra are relatively few and can be deduced

106 CHAPTER 3/BACKGROUND FOR DIGITAL DESIGN

from the truth tables for NOT, AND, and OR. In this section these laws are developed
exclusively within the logic domain with only passing reference to activation levels.

3.10.1 NOT, AND, and OR Laws

NOT Laws The unary operator NOT is the logic equivalent of complementation and
connotes inversion in the sense of supplying the lack of something. Although NOT is
purely a logic concept and complementation arises more from a physical standpoint, the
two terms, NOT and complementation, will be used interchangeably following established
practice.

The truth table for NOT is the positive logic interpretation of the physical truth table
given in Fig. 3.6b. It is from this truth table that the NOT laws are derived.

NOT
Truth Table NOT Laws

0 = 1 (3-6>
> 1=0

X

0
1

X

1
0

The NOT operation, like complementation, is designated by the overscore (or "bar"). A
double bar (or double complementation) of a function, sometimes called involution, is the
function itself, as indicated in Eqs. (3.6).

As examples of the applications of the NOT laws, suppose that X = AB. Then the
function^ = A Bis read as A AND B bar the quantity complemented, and X = AB — AB.
Or, if Y = 0, then Y = 0 = 1, etc. Finally, notice that Eqs. (3.2) can be generated one from
the other by involution — even in mixed logic notation. Thus, ot(L) = a(H) = <x(H), and
soon.

AND Laws The AND laws are easily deduced by taking the rows two at a time from the
truth table representing the logic AND interpretation of the AND gate given in Fig. 3.16c.
Thus, by taking Y equal to logic values 0, 1, X , and X, the four AND laws result and are
given by Eqs. (3.7).

AND
Truth Table
X Y

0 0
0 1
1 0
1 1

X -Y

0
0
0
1

AND Laws

X
X

— > X
X

0
1
X
X

= 0
= x
-X
= 0

(3-7)

To illustrate the application of the AND laws, let X be the function X = A + B so that
(A+ 5)-0 = 0, (A + B) - 1 = A + B,(A + B) - (A + B) = A + B, and (A + B) - (A + B)
= 0. These laws are valid regardless of the complexity of the function X, which can represent
any multivariable function.

3.10 LAWS OF BOOLEAN ALGEBRA 107

OR Laws The four OR laws are deduced from the logic OR interpretation of the OR gate
given in Fig. 3.17d by assigning to Y the values 0, 1, X, and X and are given by Eqs. (3.8).
The OR laws are illustrated by letting X represent the function X — BC. Then, according
to the OR laws, BC + 0 = BC, BC + 1 = 1, BC + BC = BC, and BC + BC = 1. Here
again, use has been made of a multivariable function X to demonstrate the applicability of
a fundamental Boolean law, the OR law.

OR
Truth Table OR Laws
XYX+Y X + Q=x

0 X + 1 = 1 (3-8)0 0
0 1
1 0
1 1

1 * X + X = X
1 X+X=l
1

Notice that the AND and OR laws are easily verified by substituting 0 and 1 for the
multivariable function X in the examples just given, and then comparing the results with
the AND and OR truth tables.

3.10.2 The Concept of Duality

An inspection of the AND and OR laws reveals an interesting relationship that may not be
obvious at first glance. If the 1's and O's are interchanged while the AND and OR operators,
(•) and (+), are interchanged, the AND laws generate the OR laws and vice versa. For
reference purposes, the interchange of 1 's and O's simultaneously with the interchange of
operators is represented by the double arrows (<•») as follows:

0 *+ 1
(•) o (+)
o <+ e

This simultaneous interchange of logic values and operators is called logic duality. The
duality between the AND and OR laws is given by Eqs. (3.9).

AND Laws OR Laws

X . 0 = 0 By x + 0 =X
X • 1 = X + + X + 1 - 1 (3-9)
X • X = X Duality x + X = X
X - X = 0 X + X = l

Perhaps the best way to demonstrate duality is by the two dual sets

(A O B)[AB + AB] = 0 + > (A © B) + [(A + B) • (A + B)] = 1

and

X O (X + Y) = X • Y + > X 0 (X • Y) = X + Y,

108 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

where the double arrow (•< — >) again represents the duality relationship of the set. For each
dual set it can be seen that an operator in the left side equation has been replaced by its
dual in the right side while the logic 0 and 1 (in the first dual set) are interchanged. Note
that the two equations in a given set are not algebraically equal — they are duals of each
other. However, a dual set of equations are complementary if an equation is equal to logic
1 or logic 0 as in the first example. Such is not the case for the second set. The concept of
duality pervades the entire field of mathematical logic, as will become apparent with the
development of Boolean algebra.

3.10.3 Associative, Commutative, Distributive, Absorptive, and Consensus Laws

The associative, commutative, distributive, absorptive, and consensus laws are presented
straightforwardly in terms of the multivariable functions X, Y, and Z to emphasize their
generality, but the more formal axiomatic approach is avoided for the sake of simplicity.
These laws are given in a dual form that the reader may find useful as a mnemonic tool:

Associative Laws { > (3.10)
(X + 7) + Z = X + (Y + Z) = X + Y + Z

Commutative Laws { > (3.11)

(X - Y) + (X - Z) = X-(Y + Z) Factoring Law 1
Distributive Laws \ \ (3.12)

(X + Y) - (X + Z) = X + (Y • Z) Distributive Law

Absorptive Laws { [(3.13)H

Consensus Laws < _ } . (3.14)
\(X + Y) • (X + Z) • (7 + Z) = (X + Y) • (X + Z)J

Notice that for each of the five sets of laws, duality exists whereby the AND and OR
operators are simultaneously interchanged. The dual set of distributive laws in Eqs. (3.12)
occur so often that they are sometimes given the names factoring law and distributive law
for the first and second, respectively. The factoring law draws its name from its similarity
to the factoring law of Cartesian algebra.

Although rigorous proof of these laws will not be attempted, they are easily verified
by using truth tables. Shown in Figs. 3.33 and 3.34 are the truth table verifications for the
AND form of the associative law and the factoring law. Their dual forms can be verified in
a similar manner.

Proof of the commutative laws is obtained simply by assigning logic 0 and logic 1 to the
X's and F's in the two variable forms of these laws and then comparing the results with the
AND and OR truth tables given by Eqs. (3.7) and (3.8), respectively.

The distributive law can also be verified by using truth tables. However, having verified
the factoring law, it is simpler to prove this law with Boolean algebra by using the factoring

3.10 LAWS OF BOOLEAN ALGEBRA 109

Decimal
0
1
2
3
4
5
6
7

X Y Z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

X-Y
0
0
0
0
0
0
1
1

F - Z
0
0
0
1
0
0
0
1

(X - Y) - Z
0
0
0
0
0
0
0
1

X-(Y-Z)
0
0
0
0
0
0
0
1

X-Y -Z
0
0
0
0
0
0
0
1

FIGURE 3.33
Truth table for the AND form of the associative laws in Eqs. (3.10).

law together with the AND and OR laws. This is done in the following sequence of steps
by using square brackets to draw attention to those portions where the laws indicated on
the right are applied:

[(X + Y)(X + Z)] = [X • (X + Z)] + [Y • (X + Z)] Factoring law (applied twice)

= [X • X] + (X • Z) + (Y • X) + (Y • Z) AND law (X • X = X)

= [X + (X • Z) + (Y • X)] + (Y • Z) Factoring law

In similar fashion the second of the absorptive laws is proven as follows:

X + XY = [(X + X)(X + Y)] Distributive and OR laws

= 1 • (X + Y) AND law (1 • (X + Y) = X + Y)

= X + Y.

The remaining absorptive law is easily proved by first applying the factoring law followed
by the AND law X • X = 0. Duality can also be used as a validation of one form once its
dual is proven.

Decimal
0
1
2
3
4
5
6
7

X Y Z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

X • Y
0
0
0
0
0
0
1
1

X • Z
0
0
0
0
0
1
0
1

Y + Z
0
1
1
1
0
1
1
1

(X - F) + (X • Z)
0
0
0
0
0
1
1
1

X • (Y + Z)
0
0
0
0
0
1
1
1

FIGURE 3.34
Truth table for the factoring law given in Eqs. (3.12).

110 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

The first of the consensus laws in Eqs. (3.14) is proven by applying the OR and factoring
laws:

XY + XZ + YZ = XY + XZ + [(X + X)YZ] OR law and factoring law

= XY + XZ + [XYZ + XYZ] Factoring law

= [XY(l + Z)] + [XZ(1 + Y)] Factoring law (applied twice); OR law

= XY + XZ.

Proof of the second of the consensus laws follows by duality.

3.10.4 DeMorgan's Laws

In the latter half of the nineteenth century, the English logician and mathematician Augustus
DeMorgan proposed two theorems of mathematical logic that have since become known
as DeMorgan's theorems. The Boolean algebraic representations of these theorems are
commonly known as DeMorgan's laws. In terms of the two multivariable functions X and
7, these laws are given in dual form by

DeMorgan's Laws { _ _ _ > (3.15)6

More generally, for any number of functions, the DeMorgan laws take the following
form:

X-Y -Z N = X + Y + Z-{ [-N

and (3.15a)

X + Y + Z + - - - + N = X - Y - Z N.

DeMorgan's laws are easily verified by using truth tables. Shown in Fig. 3.35 is the truth
table for the first of Eqs. (3.15).

Application of DeMorgan's laws can be demonstrated by proving the absorptive law
X + XY = X + Y:

X + XY = X • (XY) = X - (X + Y) = X - X + X-Y = X-Y = X + Y.

Notice that the double bar over the term X + XY is a NOT law and does not alter the
term. Here, DeMorgan's laws are first applied by action of the "inner" bar followed by
simplification under the "outer" bar. Final application of DeMorgan's law by application

X Y
0 0
0 1
1 0
1 1

X-Y
0
0
0
1

X-Y
1
1
1
0

X
1
1
0
0

Y
1
0
1
0

X + Y
1
1
1
0

FIGURE 3.35
Truth table for DeMorgan's LawX • Y = X + Y.

3.11 LAWS OF XOR ALGEBRA 111

of the outer bar takes place only after simplification. As a general rule, DeMorgan's laws
should be applied to a function only after it has been sufficiently reduced so as to avoid
unnecessary Boolean manipulation.

3.11 LAWS OF XOR ALGEBRA

The laws of XOR algebra share many similarities with those of conventional Boolean
algebra discussed in the previous section and can be viewed as a natural extension of the
conventional laws. Just as the AND and OR laws are deduced from their respective truth
tables, the XOR and EQV laws are deduced from their respective truth tables in Figs. 3.26c
and 3.27d and are given by Eqs. (3.16) together with their truth tables:

XOR EQV
Truth Table Truth Table

X Y

0 0

0 1

1 0

1 1

X@Y X Y

0 0 0

1 0 11 \,—, I I / ' »
0 * XOR Laws EQV Laws * 1 1

XOY

(3.16)

Here, the dual relationship between the XOR and EQV laws is established by interchanging
the 1 's and O's while simultaneously interchanging the XOR and EQV operators, as indicated
by the double arrow.

The associative and commutative laws for EQV and XOR follow from the associative
and commutative laws for AND and OR given by Eqs. (3.10) and (3.11) by exchanging
operator symbols: O for (•) and © for (+). The distributive, absorptive, and consensus
laws of XOR algebra follow from their AND/OR counterparts in Eqs. (3.12), (3.13), and
(3.14) by replacing the appropriate (+) operator symbols with the © operator symbols,
and by replacing the appropriate (•) symbols with the O symbol, but not both in any given
expression. In similar fashion, DeMorgan's laws in XOR algebra are produced by substi-
tuting O for (•) and © for (+) in Eqs. (3.15). These laws are presented as follows in dual
form and in terms of variables X , F, and Z, which may represent single or multivariable
functions:

Associative Law { } (3.17)
\(X © Y) © Z = X © (Y © Z) = X © Y © ZJ

. ¥ \XQYOZ=XQZQY =ZQXQY =]
Commutative Laws { } (3.18)

112 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

(X - F) 0 (X - Z) = X . (r 0 Z) Factoring Law
Distributive Laws { } (3.19)

(X + Y)Q(X + Z) = X + (YQZ) Distributive Law

Absorptive Laws { _ [(3.20)

Consensus Laws { } (3.21)
\(X + Y) 0 (X + Z) • (7 + Z) = (X + F) O (X + Z)f

DeMorgan's Laws { _ \. (3.22)\x e y = x o F = x o n

Notice that each of the six sets of equations are presented in dual form. Thus, by interchang-
ing AND and OR operators while simultaneously interchanging EQV and XOR operators,
duality of the set is established. The first of the distributive laws given in Eqs. (3.19) can be
termed the factoring law of XOR algebra owing to its similarity with the factoring law of
Cartesian algebra and that of Eqs. (3.12).

Generalizations of DeMorgan's XOR laws follow from Eqs. (3.15a) and (3.22) and are
given by

and (3.22a)

Verification of the associative, commutative, and distributive laws is easily accomplished
by using truth tables. For example, the second of the distributive laws in Eqs. (3.19) is verified
by the truth table in Fig. 3.36. Here, Eq. (3.5) is used together with the OR laws [Eqs. (3.8)]
to show the identity of the terms (X + Y) O (X + Z) and X + (Y Q Z).

The distributive laws may also be proven by using Boolean algebra. For example, the
factoring law of Eqs. (3.19) is proven by applying the defining relation of the XOR function

X Y Z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

X + Y
0
0
1
1
1
1
1
1

x + z
0
1
0
1
1
1
1
1

YQZ
1
0
0
1
1
0
0
1

(X + F) 0 (X + Z)
1
0
0
1
1
1
1
1

X + (Y 0 Z)
1
0
0
1
1
1
1
1

FIGURE 3.36
Truth table for the XOR distributive law given in Eqs. (3.19).

3.11 LAWS OF XOR ALGEBRA 113

given by Eq. (3.4) and by using the AND and OR laws of Eqs. (3.9):

[(XY) 0 (XZ)] = [(XY)](XZ) + (XY)[(XZ)] Eq. (3.4) and Eq. (3.15)

= [(X + Y)(XZ)] + [(XY)(X + Z)] Factoring law [Eqs. (3.12)]

= [XXZ + XYZ] + [XXY + XYZ] AND and OR laws [Eqs. (3.9)]

= [XYZ + XYZ] Factoring law [Eqs. (3.12)]

= X[YZ + YZ] Eq. (3.4)
= X(Y © Z).

In these equations, the square brackets [] are used to draw attention to those portions where
the laws or equations indicated on the right are to be applied in going to the next step.
Equation (3.4) refers to the defining relation for XOR given by X ®7 = XY + XY.

The absorptive laws are also easily proven by using Boolean algebra. Beginning with
the first of Eqs. (3.20), there follows

X • [(X 0 Y)] = X • (XY + XY) Eq. (3.4)

= [X • (XY + XY)] Factoring law [Eqs. (3.12)]

= [X • XY + X • XY] AND and OR laws [Eqs. (3.9)]

= XY,

where the square brackets [] are again used to draw attention to those portions where the
laws or equations indicated on the right are to be applied. The second of Eqs. (3.20) is
proven by the following sequence of steps:

X + [(X O Y)] = X + (XY) + (XY) Eq. (3.5)

= [X + (XY)] + XY Factoring law [Eqs. (3.12)]

= [X(l + Y) + XY] OR and AND laws

= [X + XY] Absorptive law [Eqs. (3.13)]
-y i -y

Notice that in the foregoing proofs, use is tacitly made of the important dual relations

9 _ ~ 0 ~ ° (3.23)XQY = XQY=XQY = X@Y.

These relations are easily verified by replacing the variable (X or Y) by its complement
(X or Y) in the appropriate defining relation, (3.4) or (3.5).

An inspection of Eqs. (3.23) reveals what should already be understood — that comple-
menting one of the connecting variables complements the function, and that the complement
of an XOR function is the EQV function and vice versa. A generalization of this can be
stated as follows:

In any string of terms interconnected only with XOR and/or EQV operators, an odd
number of complementations (variable or operator complementations) complements
the function, whereas an even number of complementations preserves the function.

114 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

To illustrate, consider a function F consisting of a string of four multivariable terms W, X, Y,
and Z interconnected initially by XOR operators:

= W QX 07 @Z = W QXQY 0 Z = • • •
(3.24)

An examination of Eqs. (3.24) reveals that there are 64 possible expressions representing
F and 64 for F, all generated by repeated applications of Eqs. (3.23). The number 64 is
derived from combinations of seven different objects taken an even or odd number at a time
for F and F, respectively.

Application of Eqs. (3.24) is illustrated by

A O (A O D + C) Q B = A O [(A 0 D)C] Q B

= A 0 [(A 0 D)C] 0 B,

where the original function has been converted from one having only EQV operators and
two complemented variables to one having only XOR operators with no complemented
variables. The two alternative forms (right side) differ from each other by only two comple-
mentations. Notice also that the first alternative form involved applications of DeMorgan's
laws given by Eqs. (3.15) and (3.22).

3.11.1 Two Useful Corollaries

Interesting and useful relationships result between XOR algebra and conventional Boolean
algebra by recognition of the following two dual corollaries, which follow directly from the
definitions of the XOR and EQV operations:

COROLLARY I If two functions, a and ft, never take the logic 1 value at the
same time, then

a- ft =0 and a+ft=a®ft (3.25)

and the logic operators (+) and (0) are interchangeable.
COROLLARY II If two functions, a and ft, never take the logic 0 value at the

same time, then

a + ft = l and a - f t = (xOft (3.26)

and the logic operators (•) and (Q) are interchangeable.

Corollary I requires that a and ft each be terms consisting of ANDed variables called
product terms (p-terms) and that they be disjoint, meaning that the two terms never take logic
1 simultaneously. By duality, Corollary II requires that a and ft each be terms consisting of
ORed variables called sum terms (s-terms) and that they be disjoint, meaning that the two
terms never take logic 0 simultaneously. The subject of these corollaries will be revisited
in Section 5.5 where their generalizations will be discussed.

3.11 LAWS OF XOR ALGEBRA 115

The most obvious application of Corollaries I and II is in operator interchange as demon-
strated by the following four examples:

[1] AB + BC = (Afi)0(flC),

where a = AB, fi = BC, and a • ft = 0 by Corollary I.

[2] (A + B + X) • (A + B + C + Y) = (A + B + X) Q (A + B + C + Y),

where a = (A + B + X), ft = (A + B + C + 7) and a + ft = 1 according to Corollary II.

[3] a+b®bc = a + b + bc = a + b + c,

where Corollary I has been applied followed by the absorptive law in Eqs. (3.13).

[4] (Xf) 0 (X + Y + Z) = (XY)(X + Y + Z) = XYZ

Here, Corollary II is applicable since XY = X + 7, and the result follows by using the
AND and OR laws given by Eqs. (3.9).

3.11.2 Summary of Useful Identities

The laws of XOR algebra have been presented in the foregoing subsections. There are several
identities that follow directly or indirectly from these laws. These identities are useful for
function simplification and are presented here in dual form for reference purposes.

®x = x0x = n
QX = X0X = 0|XQX =

o x = *
oox = x

= Y = Y 1

(X + 7) O X = (X + Y) O Y = 0 0 (X +)

(X + Y)(Y + Z)(X + Z) = (X + 7) O (Y + Z) O (X + Z)

Note that in these identities, either X or Y or both may represent multivariable functions or
single variables of any polarity (i.e., either complemented or uncomplemented).

116 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

By applying the laws and corollaries previously given, the majority functions identity of
three variables expressed by Eqs. (3.33) is proven as follows:

XY + YZ + XZ = XY(Z + Z) + (X + X)YZ + X(Y + F)Z OR Laws
[Eqs. (3.8)]

= XYZ + XYZ + XYZ + XYZ + XYZ + XYZ Eqs. (3.19) and
OR Laws

= XYZ © XYZ © (XYZ + XYZ) Corollary I

= XY®(Y®X}Z Eqs. (3.19), OR
Law, Eq. (3.4)

= XY®YZ®XZ. Eq. (3.8)

Proof of the second identity of Eqs. (3.33) follows by duality, that is, simply by interchanging
all (+) with (•) operators while simultaneously interchanging all © with O operators. The
generalized majority function identity is given by

[WXY ••• + WXZ ••• + WYZ • • • + XYZ . . .+ ...]

= [WXY • • • © WXZ • • • © WYZ • • • © XYZ • • • © • • •] ,

which also has its dual formed by the simultaneous interchange of the operators.
This concludes the treatment of Boolean algebra. While not intended to be an exhaustive

coverage of the subject, it is adequate for the needs of digital design as presented in this
text. Additional references on Boolean algebra are available in the list of further reading
that follows.

3.12 WORKED EXAMPLES

EXAMPLE 3.1 Given the waveforms (heavy lines) at the top of Figs. 3.37a and 3.37b, draw
the two waveforms for the two terminals below each.

EXAMPLE 3.2 Complete the physical truth table in Fig. 3.38b for the CMOS logic circuit
given in Fig. 3.38a. Name the gate and give the two conjugate logic circuit symbols for this
gate in part (c).

EXAMPLE 3.3 The logic circuit in Fig. 3.39 is a redundant circuit, meaning that excessive
logic is used to implement the function Z(H). (a) Name the physical gates that are used in
the logic circuit in Fig. 3.39. (b) Read the circuit in mixed-logic notation and express the
results in reduced, polarized Boolean form at nodes W, X, Y, and Z.

(a) (1) NAND, (2) NOR, (3) NOR, (4) OR, (5) AND, (6) NOR
(b) W(H) = AB(H)

X(L)= BC(L)

Z(H) = WXY(H) = (AB)(BC)(C + D)(//) = (A + B}(BC}(C + D)(H)

= (A + B)(BC + BCD)(H)

= ABC(H)

Y

Digital
Device r-0»-|— X(Volts)

-X(H)

Lx(L)

LV

1
0

1
0

Given

Answer

Digital
Device X(H)

1 X(L)

X(Volts)

1
0

1
0

HV
LV

Given

Required
Answer

(b)

FIGURE 3.37
Physical (voltage) waveforms and mixed-logic notation, (a) Effect of logic level conversion, (b)
Absence of logic level conversion.

H

X Y

LV LV

LV HV

HV LV
HV HV

Z
LV

HV
HV
LV

o gate 4 >
Required Required
Answer AnswerGiven

T (a) (b) (c)

FIGURE 3.38
Physical truth table and logic circuit symbols for a CMOS logic gate, (a) Given logic circuit, (b)
Physical truth table for an XOR gate, (c) Conjugate logic circuit symbols for the XOR gate.

W(H)

_^ Z(H)

Y(L)
— \- -/ ' i * r s ~ ~i ^^

FIGURE 3.39
A redundant logic circuit.

117

118 CHAPTER 3/BACKGROUND FOR DIGITAL DESIGN

FIGURE 3.40
Logic circuit for the function given in Example 3.4.

EXAMPLE 3.4 Use three NAND gates and two EQV gates (nothing else) to implement the
following function exactly as written:

F(H) = [(W © Y) 0 (XZ) + WY](H)

The solution is shown in Fig. 3.40.

EXAMPLE 3.5 A simple function of three inputs is given by the following expression:

(a) Construct the logic circuit by using AND/NOR/INV logic. Assume that the
inputs arrive active high.

(b) Construct the CMOS circuit for the function given in Part (a).
(c) Obtain the physical truth table for the circuit of Part (b).

(d) Obtain the positive logic truth table for the circuit of Part (b).

The solutions to Example 3.5 are given in Fig. 3.41. Notice that PMOS and NMOS are
organized according to Fig. 3.5, and that the PMOS section generates the complement of
that of the NMOS section, hence the complementary MOS. Also note that the output of the
A inverter is connected to both the PMOS and NMOS inputs of the complementary sections
forF.

EXAMPLE 3.6 Use the laws of Boolean algebra, including XOR algebra and corollaries, to
reduce each of the following expressions to their simplest form. Name the law(s) in each step.

[1] A + ABC + (B + C) = A + ABC + BC DeMorgan's law [Eqs. (3.15)]

= A + BC + BC Absorptive law [Eqs. (3.13)]

- A + B(C + C) Factoring law [Eqs. (3.12)]

= A + B AND and Or laws [Eqs. (3.7) and (3.8)]

[2] (a + b}(a + c)(a + c) = (a + b)(a + c • c) Distributive law [Eqs. (3.12)]
= (a + b)a AND and OR laws [Eqs. (3.7) and (3.8)]
= aa + ab Factoring law [Eqs. (3.12)]
= ab AND and OR laws

3.12 WORKED EXAMPLES 119

(a)

A B C

L V 0 0 0

H V 0 0 1

H V 0 1 0

H V 0 1 1

L V 1 0 0

H V 1 0 1

L V 1 1 0

H V H V H V H V 1 1 1

(b) (c) (d)

FIGURE 3.41
Circuit and truth table representations for the function F of Example 3.5. (a) Logic circuit, (b) CMOS
circuit, (c) Physical truth table, (d) Logic truth table.

[3] (X + Y)(X + Z)[Y(X + Z) + Y] = (X + YZ)[Y(X + Z) + Y] Distributive law
[Eqs.(3.12)]

= (X + YZ)[X + Y + Z] Absorptive law
[Eqs.(3.13)]

= X + YZY + YZZ Distributive law
= X + YZ AND and OR laws

[4] (b 0 c) + (ab}(a + c} = (b 0 c) + (a + b)(ac) Eqs. (3.23); DeMorgan's laws
[Eqs. (3.15)]

= (b O c) + aac + abc} Factoring law [Eqs. (3.12)]

= (be + bc + abc} Eq. (3.5); AND and OR laws
= (be + be) Factoring law; AND and OR laws
= b 0 c Eqs. (3.5) and (3.23)

[5] (X + Y) O (X 0 F) = (X + 7) O (XY + XY] Eq. (3.4)

= (X + Y)(XY + X Y) Corollary II [Eq. (3.26)]
= XY + XY Factoring law; AND and OR laws

= XY OR laws

120 CHAPTER 3/BACKGROUND FOR DIGITAL DESIGN

[6] (A + B + AC) O(AB + C) = (A + B + AC)(AB + C) Corollary II
= (A + B + C)(AB + C) Absorption [Eqs. (3.13)]
= C + (A + B)(AB) Distributive law

[Eqs. (3.12)]
= C Factoring law; AND and

OR laws

[7] ac + (a + b} O (a + be) = ac + (ab) 0 (a + be) DeMorgan's law [Eqs. (3.15);
Eqs. (3.23)]

= ac + (ab) + (a + be) Corollary I [Eq. (3.25)]
= ab + a + be Factoring law; AND and OR laws
= a + b + be Absorption [Eqs. (3.13)]
= a + b + c Absorption

[8] wxy + wxz + wxz + wyz + xz = wxy + wxz + wxz Consensus law [Eqs. (3.14)]
= wxy + xz(w + w) Factoring law [Eqs. (3.12)]
= wxy + xz Or laws

[9] A 0 B 0 (A + B) = A 0 [B 0 (AB)] Eqs. (3.27)
= A 0 [B(l 0 A)] XOR Factoring law [Eqs. (3.19)]
= A 0 (AB) Eqs. (3.29)
= A(l 0 B) XOR Factoring law
= AB Eqs. (3.29)

[10] / = d 0 bed 0 abd 0 cd 0 ad 0 abed _
= [d® cd] 0 [abd 0 ad] 0 [bed 0 abed] Rearranging terms
= [d(l 0 c)] 0 [ad(b 0 1)] 0 [bcd(l 0 a)] XOR Factoring law [Eqs. (3.19)]
= cd 0 abd 0 abed Repeated applications of Eqs. (3.29)
= cd 0 [abd(1 0 c)] XOR Factoring law [Eqs. (3.19)]
= cd 0 abed Application of Eqs. (3.29)

Notice that the gate/input tally of / has been reduced from 10/24 to 3/8 in the final
expression. Application of Corollary I further reduces / to (abc + cd).

FURTHER READING

Additional reading on the subject of mixed logic notation and symbology can be found in
the texts of Comer, Fletcher, Shaw and Tinder.

[1] D. J. Comer, Digital Logic and State Machine Design, 3rd ed. Saunders College Publishing, Fort
Worth, TX, 1995.

PROBLEMS 121

[2] W. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs,
NJ, 1980.

[3] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993.
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,

NJ, 1991.

Virtually every text on digital or logic design provides some coverage of Boolean al-
gebra. The texts of McCluskey and Dietmeyer are noteworthy for their coverage of both
conventional Boolean algebra and XOR algebra including a very limited treatment of the
Reed-Muller expansion theorem.

[5] D. L. Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Boston, MA, 1978.
[6] E. J. McCluskey, Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986.

A more formal treatment of XOR algebra can be found in the work of Fisher.

[7] L. T. Fisher, "Unateness Properties of AND-EXCLUSIVE OR," IEEE Trans, on Computers
C-23, 166-172 (1974).

A brief history of Boolean algebra is provided in Chapter 2 of Hill and Peterson.

[8] F. J. Hill and G. R. Peterson, Digital Logic and Microprocessors, John Wiley, NY, 1984.

CMOS logic, which is emphasized in this text, is adequately covered by Weste and
Eshraghian in Chapter 1 and portions of Chapter 5. But an excellent coverage of experimen-
tal work on various XOR and EQV gates on the MOS transistor level is given by Wang et al.

[9] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley, Reading,
MA, 1985.

[10] J. Wang, S. Fang, and W. Feng, "New Efficient Designs for EXOR and XNOR Functions on the
Transistor Level," IEEE Journal of Solid-State Circuits 29(7), 780-786 (1994).

PROBLEMS

3.1 Define the following:
(a) Mixed logic
(b) Polarized mnemonic
(c) Logic level conversion
(d) Active and inactive states
(e) Inverter
(f) Gate

3.2 Identify the gate appropriate to each of the physical truth tables in Fig. P3.1. Note: It
may be necessary to search this chapter for the answers.

122 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

A B

LV LV

LV HV

HV LV

HV HV

Y A B

HV LV LV

HV LV HV

HV HV LV

LV HV HV

Y A B

LV LV LV

HV LV HV

HV HV LV

HV HV HV

Y A B

LV LV LV

LV LV HV

LV HV LV

HV HV HV

Y A B

HV LV LV

LV LV HV

LV HV LV

LV HV HV

Y

LV

HV

HV

LV

(a) (b) (c) (d) (e)

FIGURE P3.1

3.3 By using a sketch, indicate how the CMOS inverter of Fig. 3.6a can be converted to a
two-transistor noninverting switch. What would be the disadvantage (if any) of such
a device?

3.4 Given the waveforms from the two logic devices in Fig. P3.2, sketch the waveforms for
X(voltage), X(L), F(H), and 7 (voltage). Keep the logic and voltage levels as shown.

3.5 With reference to Problem 3.4, explain the differences between the logic levels for
the X(H) and X(L) waveforms and those for the Y(H) and Y(L) waveforms. Do these
differences represent a contradiction in the definition of positive and negative logic?
Explain.

3.6 Use the inverter, its I/O behavior, and the logic circuit symbols in Fig. 3.6 to explain
how the PMOS indicator bubble in the inverter circuit is related to the active low
indicator bubble appearing on the inverter symbols.

Digital
Device

#1
y/u\ 1(H)A^n;

0(H)

HU
X(volts) • • •

Digital
Device

#2
f Y(H) '^

0(H)

HV
Y from inverter (volts)

FIGURE P3.2

PROBLEMS 123

3.7 Use the definitions of positive and negative logic and Fig. 3.6 as a guide to construct
the physical truth table and its two mixed logic truth tables for each of the tri-state
drivers in Fig. 3.8 as listed below. Remember to include both inputs Xi and the control
C. Use the letter D to represent the disconnect mode.
(a) Noninverting tri-state driver with C(H).

(b) Noninverting tri-state driver with C(L).

(c) Inverting tri-state driver with C(H).
(d) Inverting tri-state driver with C(L).

3.8 By adding an inverter to each, reconfigure the tri-state drivers in Figs. 3.8c and 3.8d
so that they become noninverting tri-state enable switches with driver capability. Give
the circuit symbols and ideal equivalent circuits for these two reconfigured tri-state
switches.

3.9 Reconfigure the NAND gate in Fig. 3. lOa by flipping it end-for-end such that the two
series NMOS are on the +VDD (HV) end and the two parallel PMOS on the ground
(LV) end.
(a) Construct the physical and mixed logic truth tables for this reconfigured CMOS

circuit. Is this a valid gate form and, if so, what logic function does it perform?
(Hint: Compare with Fig. 3.16.)

(b) What, if any, are the disadvantages of this new configuration? Explain.

3.10 Repeat Problem 3.9 for the NOR gate in Fig. 3.12a, but with the two parallel NMOS
on the HV end and the series PMOS on the LV end. (Hint: Compare with
Fig. 3.17.)

3.11 Explain why the AND and OR gates of Figs. 3.16 and 3.17 cannot be used for
logic level conversion as is done for the NAND and NOR gates of Figs. 3.14 and
3.15.

3.12 Write the logic expressions for the action indicated by the situations given below. Use
mnemonics or abbreviations where appropriate.

(a) Bob will go fishing in a boat only if the boat does not leak and if it is not windy.
Otherwise, he will fish from the bank, but only if the fish are biting.

(b) A laboratory class consists of five students (A, B, C, D, and E) each from a dif-
ferent discipline. An experiment has been assigned that must be carried out with
any one of the following combinations of students:

A and C but not D
A or B but not both (see Section 3.9)
D but only if E is present

(c) A robot is activated only if a majority of its three switches (X, Y, and Z) are turned
ON and is deactivated if a majority of its three switches are turned OFF.

3.13 Archie (A), Betty (B), Cathy (C), and David (D) may attend a school dance, but will
dance only with the opposite sex and then only under the following conditions: Archie
will dance with either Betty or Cathy. However, Cathy will dance with Archie only

124 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

if Betty is not present at the dance. David will dance only with Betty. Obtain the logic
expression representing the active state of dancing for A, B, C, and D.

3.14 Use a minimum number of gates and inverters to implement the functions below
with NAND/INV logic. Give the gate/input tally for each logic circuit, excluding in-
verters. Implement the function exactly as presented — make no alterations. Assume
that all inputs arrive from positive logic sources. Use the inverters for logic level
conversion.

(a) Z(ff) = (XY

(b) F(H) = [AD + (B

(c) g(L) = (wy + x+ z)(L)
(d) G(L) = [(AB + C) £)] (L)

(e)

3.15 Repeat Problem 3.14 by using NOR/INV logic. Assume that all inputs arrive from
positive logic sources.

3.16 Repeat Problem 3. 14 by using AND/OR/INV logic. Assume that all inputs arrive from
positive logic sources.

3.17 Use three NOR gates (nothing else) to implement the function Y(H} below ex-
actly as written. Assume the inputs arrive as follow: A(H), B(H\ C(H), D(L),
and £(L).

Y(H) = [(AD) - (B + C + £)](//)

3.18 Use three NAND gates (nothing else) to implement the function Z(H) below ex-
actly as written. Assume the inputs arrive as follow: A(H\ B(H), C(H), D(L), and

Z(H) - [(A + D) + (BCE)](H)

3.19 Name the gates used in each of the logic circuits shown in Fig. P3.3 and give the
mixed logic expression at each node in mixed logic notation. Use Figs. 3.20, 3.23,
and 3.24 as a guide if needed.

3.20 The CMOS circuits in Fig. P3.4 perform specific logic functions. Construct the physi-
cal and mixed logic truth tables for each circuit, indicate what logic function it performs
and give its two conjugate logic circuit symbols. Note that B is the inverse voltage
o f B .

3.21 Use two NOR gates and one XOR gate (nothing else) to implement the function Y(H)
below exactly as written. Assume the inputs arrive as A(H), B(H\ C(//), D(L),
and E(L).

Y(H} = [(A®D)-(B + C + £)](#)

3.22 Use three NAND gates, one EQV gate, and one inverter (nothing else) to implement
the function G(H) below exactly as written. Assume the inputs all arrive from positive

PROBLEMS 125

A(H)
D(H)

1

y~* Z(H)
W(L)

~~^ 'Y(H)
(H)-^rr^ 1" ^-^

-v __n ^ j. x r̂ J y v / LJ \

C(H)-D

(a)

C(H)

(c) 0(L)

FIGURE P3.3

logic sources.

G(H) = [(X Y) ® Z +

3.23 Use three NAND gates and two EQV gates (nothing else) to implement the func-
tion F(H) below exactly as written. Assume the inputs arrive as W(L), X(L), Y(H),
and Z(H}.

F(H) = [(W 07)© (XZ) + WY](H)

3.24 Unused inputs must not be left dangling. Instead, they must be tied to other inputs,
or be connected to HV or LV depending on the logic operations involved. Implement
the following functions with the logic indicated.
(a) A four-input NOR gate performing the (AB)(H) operation with inputs A(L) and

B(H).
(b) A three-input NAND gate performing the X(H) — > X(L) logic level conversion

operation.
(c) An XOR gate performing the controlled X(L) —> X(H} logic level conversion

operation.
(d) A four-input AND gate performing the (A + fi)(L) operation with inputs A(H)

and

3.25 Construct the truth table and the mixed logic waveforms for the functions below by
using a binary input sequence in alphabetical order, all inputs active high. Use Ta-
ble 2.1 in Section 2.3 if needed, and follow the format of Fig. 3.32 in constructing
the waveforms. Do not take into account the propagation delays through gates and
inverters.

126 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

(b)

(c)

FIGURE P3.4

(a) Function Z(#) in Fig. P3.3a.
(b) Function G(H) in Problem 3.22.
(c) Function F(H) of Problem 3.23.

3.26 Reduce the following expressions to their simplest form and name the Boolean
laws used in each step. (Note: Follow the procedure of Examples 3.6 in Section
3.12.)

(a) ab(c + b) + ab
(b) (X + Y)(XZ + 7) (Hint: First use the distributive law.)

(c) A + AC +
(d) (x + y)(x
(e) AB + ACD + BC + AC

PROBLEMS 127

3.27 Reduce the following expressions to their simplest form, but do not name the Boolean
laws used in each step.

(a) A + AfiC + A + C
(b) (acd + ad)(ad + cd)
(c) (WX + Y + W)(WX + Y + WX)

(d) (x + y)(x + z)(y + z)

(e) (A + BC)(AB + ABQ (Hint: Simplify under short complementation bars first.)

(f) a + b + a(b + be} + (b + c) • abed
(g) (A + B + C + D)(A + C + D)(A + B + D) (Hint: First use consensus.)

3.28 Reduce the following expressions to their simplest form and name the Boolean laws
used in each step.

(a) (a 0 b + b)(a + b)

(b) (XY) 0 (X + Y)

(c) x O y O (xy)
(d) [(X + Y) O (X + Z)] + X

(e) [(A + B) • C] 0 [A + B + AC] (Hint: Find a way to use Corollary II.)

3.29 Reduce the following expressions to their simplest form, but do not name the Boolean
laws used in each step.

(a) A + A 0 B + AB

(b) [S + [S 0 (ST)]}(H) =
(c) (X + 7) O (X 0 7)

(d) (a O ft) 0 (ah)

(e) (* + y)(* 0 y + }0

(f) [1 0 (I+Ol) + 1 O 0](H) = [?](L)

3.30 Use the laws of Boolean algebra, including the XOR laws, identities, and corollaries
given by Eqs. (3.17) through (3.33), to prove whether the following equations are true
(T) or false (F). Do not name the laws used.
(a) X O (X + 7) = XY

(b) ab(b + be) + bc + abed = be
(c) A 0 B 0 (AB) = AB

(d) X 0 (XT) = X + (X Q Y)

(e) [(AB)(A O B)](L) = AB(H)
(f) AXY + AXY + AY = (AX) 0 Y (Hint: First apply Corollary I.)

3.31 Use whatever conjugate gate forms are necessary to obtain a gate-minimum imple-
mentation of the following functions exactly as written (do not alter the functions):
(a) F(H) = {[A 0 B] • [(BC) Q D]}(H) with inputs as A(H), B(H), C(L), and

D(L). _
(b) K(L) = [A 0 C 0 (BD) 0 (ABCD)](L) with inputs from negative logic

sources.

128 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

0(L)

B(H)

2
Y X(L) «J

S
(a) (b)

M

C(L)

FIGURE P3.5

3.32 Use NOR/XOR/INV logic to implement the function below exactly as written by
using the fewest number of gates and inverters possible, assuming the inputs A and
B arrive active low and inputs X and Y arrive active high.

Z(H) = {[X O (A + Y)] • B}(H)

3.33 A room has two doors and a light that is controlled by three switches, A, B, and C.
There is a switch beside each door and a third switch in another room. The light is
turned on (LTON) any time an odd number of switches are closed (active). Find the
function LTON(H) and implement it with a gate-minimum circuit. Assume that the
inputs are all active high.

3.34 The logic circuits shown in Fig. P3.5 are redundant circuits, meaning that they contain
more logic than is necessary to implement the output function. Identify each numbered
gate and give the simplest mixed logic result at each node indicated. To do this, it will
be necessary to use the various laws of Boolean algebra together with mixed logic
notation.

PROBLEMS 129

A(H)
B(H)

(a) (b)

FIGURE P3.6

3.35 By following Subsection 3.10.2, write the dual forms for the functions Y(H), G(H),
and Z(H) in Problems 3.21, 3.22, and 3.32.

3.36 Use the laws of XOR algebra and identities given in Eqs. (3.17) through (3.33) to
reduce the following function to its simplest (gate-minimum) form:

F = D 0 fl 0 #Z) 8 BCD 0 A 0 AD 0 AC 0 ACD 0 AB.

3.37 The mixed logic circuit for the multiple gate realization of the XOR function F(L) =
(AB + AB}(L) = (A O #)(£) = (A 0 #)(//) is shown in Fig. P3.6a, together
with its CMOS organization in Fig. P3.6b. It derives from the defining relations
given by Eqs. (3.4) and (3.5). Construct the CMOS circuit (excluding inverters) for
this function by using the proper placement of the PMOS and NMOS as indicated
in Figs. 3.5 and P3.6b. Also, construct the physical and logic truth tables for this
function.

3.38 The logic circuit for the function Y(H) = [A(B + CD)](H) is given in Fig. P3.7.
(a) Assuming that inputs A, B, C, and D arrive from positive logic sources, construct

the CMOS circuit for the function Y(H).
(b) Obtain the physical and positive logic truth table for this function.

3.39 Shown in Fig. P3.8 is a CMOS circuit having three inputs and one output.

B(H)-
C(H) —
D(H) —
A(H)-

FIGURE P3.7

130 CHAPTER 3 / BACKGROUND FOR DIGITAL DESIGN

FIGURE P3.8

(a) Construct the physical truth table for this circuit taking into account all possible
combinations of LV and HV inputs.

(b) If the inputs and outputs are all assumed to be active high, find the logic function
for Z(H) and its logic circuit.

3.40 The CMOS circuit in Fig. P3.9 is an example of a gate-matrix layout. The circuit
has four inputs, A, B, C, and D, and one output Z. Note that X indicates an internal
connection.
(a) Construct the physical truth table for this circuit taking into account all possible

combinations of LV and HV inputs.
(b) If the inputs and outputs are all assumed to be active high, find the logic function

for Z(H) and construct the logic circuit for Z(H).

FIGURE P3.9

CHAPTER 4

Logic Function Representation
and Minimization

4.1 INTRODUCTION

A given logic function can be represented in a variety of different forms, and often one
of these forms proves to be the best for the application under consideration. It is the purpose
of this chapter to consider the different forms of logic representation. It is also the purpose of
this chapter to consider the reduction and minimization of these different forms. Knowing
how to reduce or minimize a logic function is important so as to reduce design area, power
consumption, and cost by eliminating unnecessary hardware. Also, the minimized function
often reveals information that is not readily apparent from a nonminimized form. In short,
the information in this chapter is essential to good design practices and specifically to an
understanding of the remainder of this text.

4.2 SOP AND POS FORMS

Without specific mention of it, SOP and POS forms have already been used in the discussions
of Chapter 3. Typical examples are the defining relations for XOR and EQV given by
Eqs. (3.4) and (3.5) in Section 3.9, where each is given in both SOP and POS form. To
understand what is meant by SOP and POS, the AND operation is taken as the Boolean
product and the OR operation represents the Boolean sum. Thus, SOP means sum-of-
products while POS denotes product-of-sums. These definitions will be used throughout
the text.

4.2.1 The SOP Representation

Consider the function of three variables given by the Boolean expression

/(A, B, O = AB + BC + ABC . (4.1)
minterm

131

132 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

The function in Eq. (4.1) is written in sum-of-products (SOP) form, meaning ORing
of ANDed terms also called p-terms (product-terms). Although there are three p-terms
in this expression, only the term ABC is called a minterm. A minterm is defined as
follows:

Minterm: Any ANDed term containing all the variables of a function in complemented
or uncomplemented form.

Use will be made of the symbol

mt,=mi(A,B, C,...) (4.2)

to represent the /th minterm of a function. Notice that two of the three p-terms in Eq. (4.1)
cannot be minterms by this definition.

To simplify minterm representation, a shorthand notation is used and is based on the
following minterm code:

MINTERM CODE

Complmented variables: logic 0
Uncompleted variables: logic 1

Once the logic O's and 1 's have been assigned to all variables in a given minterm, a minterm
code is established where the subscript in m, becomes the decimal equivalent of the binary
code formed by the logic state assignments. For example, the minterm in Eq. (4. 1) is repre-
sented by

ABC = m4,
100

since the binary of 100 has a decimal value of 4. A complete minterm code table for four
variables is given in Fig. 4.1. A similar minterm code table can be constructed for any
number of variables.

A function composed completely of a logical sum of minterms is said to be in canonical
SOP form. A typical example is given by the following expressions, where use has been
made of the minterm code shorthand notation and the operator symbol £] to represent the
logical sum of minterms:

Y(A,B, O=
000 O i l 111 100 110

= ra0 + m3 + m-i + ra4 + ra6

A reduced SOP function such as that in Eq. (4.1) can be expanded to canonical form by
applying the factoring law and the AND and OR laws given in Section 3.10. This is

4.2 SOP ANDPOS FORMS 133

SOP Term

AB C D

A B C D

A B C D

A I C D

A B C D

A B C D

A B C D

A B C D

Binary

0000

0001

0010

0011

0100

0101

0110

0111

Decimal

0

1

2

3

4

5

6

7

mi

rr>0

mi
m2

m3

m4
ms
me

m?

SOP Term

AB C D

AB C D

AB C D

A B C D

AB C D

A B C D

A B C D

A B C D

Binary

1000

1001

1010

1011

1100

1101

1110

1111

Decimal

8

9

10

11

12

13

14

15

mi

m8

mg

mio
mn
mi2
mi3

mi4

m!5

FIGURE 4.1
Minterm code table for four variables.

demonstrated by expanding Eq. (4.1) as follows:

f(A, B, C)=AB + BC + ABC

= AB(C + O + (A + A)BC + ABC

= ABC + ABC + ABC + ABC + ABC

= ni2 + m?, + ms + mj + m^

,4,7). (4.3)

Note that the OR law X+X = 1 has been applied twice and that the two identical minterms
ABC are combined according to the OR law X + X = X.

The canonical truth table for Eqs. (4.3), shown in Fig. 4.2, is easily constructed from
the minterm code form. However, the truth table can also be constructed directly from the
original reduced form given by Eqs. (4.1). Notice that a logic 1 is placed in the / column
each time an AB = 01 occurs, each time a BC occurs, and for ABC. Thus, construction

AB

00

00

01

01

1 0
10

1 1
1 1

C

0

1
0

1
0

1
0

1

f

0

0

1
1
1
0

0

1

m2

m3

m.
4

m7

FIGURE 4.2
Truth table for Eq. (4.3).

134 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

of the truth table from a reduced form permits a simple means of obtaining the canonical
representation without having to use the Boolean manipulation given by Eqs. (4.3).

4.2.2 The POS Representation

An alternative means of representing a logic expression is to cast it in product-of-sums
(POS) form, meaning the ANDing of ORed terms, also called s-terms (sum-terms). An
example of POS representation is given by the function

f (A , B, C, D) = (A + B)(A + B + C + D)(B + C + D) (4.4)
Maxterm

where, of the three s-terms, only the term (A + B + C + D) is called a maxterm.
A maxterm is defined as follows:

Maxterm: Any ORed term containing all the variables of a function in complemented
or uncomplemented form.

The symbol

Mi = Mi(A,B, C,...) (4.5)

will be used to represent the /th maxterm of a function.
Maxterm representation can be simplified considerably by using the maxterm code:

MAXTERM CODE
Complemented variable: logic 1
Uncomplemented variable: logic 0

The assignment of the logic I's and O's in this manner to all variables in each maxterm
establishes the maxterm code, where the subscript in Af, is the decimal equivalent of the
binary number formed by the logic state assignments. The maxterm code table for four
variables is given in Fig. 4.3. Use of this table is illustrated by maxterm in Eq. (4.4),

1 1 0 1

where 11012 = 13 IQ.
A comparison of the minterm and maxterm code tables in Figs. 4. 1 and 4.3 indicates that

Mi = mi

and (4.6)

m, = MJ,

4.2 SOP AND POS FORMS 135

POS Term

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

Binary

0000

0001

0010

0011

0100
0101

0110

0111

Decimal

0

1

2

3

4

5

6

7

M,

Mo
M1

M2

M3

M4

M5

M6

M7

POS Term

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

Binary

1000

1001

1010

1011

1100

1101

1110

1111

Decimal

8

9

10

11

12

13

14

15

Mi

M8

M9

M10

Mn
M12

M13

M14

M1S

FIGURE 4.3
Maxterm code table for four variables.

revealing a complementary relationship between minterms and maxterms. The validity of
Eqs. (4.6) is easily demonstrated by the following examples:

m5 = ABC =

and

=A+B + C + D=ABCD = m]2,

where use has been made of DeMorgan's laws given by Eqs. (3.15a).
A function whose terms are all maxterms is said to be given in canonical POS form as

indicated next by using maxterm code.

C)-(A + B + C)-(A + B + C)
001 101 100 000

= M\ • MS • A/4 • MO

, 1,4,5)

Note that the operator symbol J~] is used to denote the ANDing (Boolean product) of max-
terms MO, MI , M4, and M5.

Expansion of a reduced POS function to canonical POS form can be accomplished as
indicated by the following example:

f (A , B,C) = (A + C)(B + C)(A + B + C)

= (A+BB + C)(AA + B + C)(A +B + C)

= (A + B + C)(A + B + C)(A +B + C)(A +B + C)(A + B + C)

M3 MI MI MI M4

,4,7). (4.7)

Here, use is made of multiple applications of the distributive, AND, and OR laws in the

136 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

A B C

00 0

00 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

1

0 -

1
0 -

0 -

1
1
0 -

mo

m2

M3

M7

FIGURE 4.4
Truth table for Eqs. (4.8).

form of (X + Y)(X + Y) = X. Notice that the AND law M3 • M3 = M3 is applied since
this maxterm occurs twice in the canonical expression.

The results expressed by Eq. (4.7) are represented by the truth table in Fig. 4.4, where
use is made of both minterm and maxterm codes. Function / values equal to logic 1 are
read as minterms, while function values equal to logic 0 are read as maxterms. From this
there emerges the result

f(A, B,C) = Y^, m(0, 2, 5, 6) =]~] M(l, 3, 4, 7), (4.8)

which shows that a given function can be represented in either canonical SOP or canonical
POS form. Moreover, this shows that if one form is known, the other is found simply by
using the missing code numbers from the former.

By applying DeMorgan's laws given by Eqs. (3.15a), it is easily shown that the comple-
ment of Eqs. (4.8) is

f(A, B,C) = Y[M(Q, 2, 5, 6) =]Tm(l, 3,4, 7). (4.9)

This follows from the result

, 2, 5, 6) = n

= ra0 • m2 • m5 • m6

= MO • A/2 • M5 • Me

=]~J Af(0, 2, 5, 6) = ^m(l, 3, 4, 7)

A similar set of equations exist for / = J~[M(l, 3, 4, 7). Equations (4.8) and (4.9), viewed
as a set, illustrate the type of interrelationship that always exists between canonical forms.

There is more information that can be gathered from the interrelationship between canon-
ical forms. By applying the OR law, X + X = 1, and the OR form of the commutative laws

4.3 INTRODUCTION TO LOGIC FUNCTION GRAPHICS 137

to Eqs. (4.8) and (4.9), there results

/ + / = y^m(0, 2, 5,6) + y~^w(l, 3,4,7)

= £m(0, 1 ,2 ,3 ,4 ,5 ,6 ,7)

= 1.

Generally, the Boolean sum of all 2" minterms of a function is logic 1 according to

^m/ = l. (4.10)
;=0

Similarly, by using the AND law, X • X = 0, and the AND form of the commutative laws,
there results

/ - / = f[M(l,3,4,7).]~[M(0,2,5,6)

=]~[M(0, 1 ,2 ,3 ,4 ,5 ,6 ,7)

= 0.

Or generally, the Boolean product of all 2" maxterms of a function is logic 0 according to

Equations (4.10) and (4.11) are dual relations by the definition of duality given in Subsection
3.10.2.

To summarize, the following may be stated:

Any function ORed with its complement is logic 1 definite, and any function ANDed
with its complement is logic 0 definite — the form of the function is irrelevant.

4.3 INTRODUCTION TO LOGIC FUNCTION GRAPHICS

Graphical representation of logic truth tables are called Karnaugh maps (K-maps) after M.
Karnaugh, who, in 1953, established the map method for combinational logic circuit syn-
thesis. K-maps are important for the following reasons: (1) K-maps offer a straightforward
method of identifying the minterms and maxterms inherent in relatively simple minimized
or reduced functions. (2) K-maps provide the designer with a relatively effortless means of
function minimization through pattern recognition for relatively simple functions. These
two advantages make K-maps extremely useful in logic circuit design. However, it must be
pointed out that the K-map method of minimization becomes intractable for very large com-
plex functions. Computer assisted minimization is available for logic systems too complex
for K-map use. The following is a systematic development of the K-map methods.

138 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

m;

Minterm code
v i numbers

A\ //

m0

mi

0

1

4
0

\
1

M/
0

0

1

1

\ /A = m

Minterm code
numbers

FIGURE 4.5
(a) Minterm code table for one variable and (b) its graphical equivalent, (c) Alternative formats for
first order K-maps showing minterm positions.

4.3.1 First-Order K-maps

A first-order K-map is the graphical representation of a truth table of one variable and is
developed from the minterm code table shown in Fig. 4.5a. The minterm positions in a
first-order K-map are shown in Fig. 4.5b, leading to the alternative formats for a first-order
K-map given in Fig. 4.5c. The number in the lower right-hand corner of a K-map in Fig. 4.5c
indicates the position into which a minterm with that code number must be placed.

Consider the three functions given by the truth tables in Fig. 4.6a. Notice that all in-
formation contained within a given truth table is present in the corresponding K-map in
Fig. 4.6b and that the functions are read as f\ = X, /2 = X, and /3 = 1 from either the
truth tables or K-maps. Thus, a logic 1 indicates presence of a minterm and a logic 0 (the
absence of a minterm) is a maxterm.

4.3.2 Second-Order K-maps

A second-order K-map is the graphical representation of a truth table for a function of two
variables and is developed from the minterm code table for two variables given in Fig. 4.7a.
The graphical equivalent of the minterm code table in Fig. 4.7a is given in Fig. 4.7b, where
the minterm code decimal for each of four m, is the binary equivalent of the cell coordinates

X

0
1

fl
0
1

fz
1
0

f3
1
1

r— All that is X

0
0

1
4 1

x\
0

1

/

1
0

0
1

' x\

0

1
/ -

1
0

1
1

"7f, = X ' 7f2 = X ' 7f3 = 1

<a> All that is X^ (b)

FIGURE 4.6
(a) Truth table and (b) first order K-maps for functions f\, />, and /3 of one variable X.

4.3 INTRODUCTION TO LOGIC FUNCTION GRAPHICS 139

A B

0 0
0 1
1 0
1 1

AB = m0

AB = m1

AB = m2

AB = m,

Minterm code
numbers

(a) (b) (c)

FIGURE 4.7
(a) Minterm code table for two variables and (b) its graphical equivalent, (c) Alternative formats for
second-order K-maps showing minterm positions.

(read in alphabetical order AB) of the cell into which that minterm is placed. From these
figures there result the two alternative K-map formats shown in Fig. 4.7c, where the number
in the lower right-hand corner of each cell is the decimal equivalent of the coordinates for
that cell given in binary.

As examples, functions f\ and /2 of two variables (X and Y) are represented by truth
tables in Fig. 4.8a and by K-maps in Fig. 4.8b. Function f\ is shown to have two minterms
and two maxterms while function /2 has three minterms and one maxterm. From the truth
tables the functions can be read in SOP form as

and (4.12)

f2(X, Y) = T m(0, 2,3) =

However, by combining ("looping out") adjacent minterms these results are immediately
obvious as indicated in Fig. 4.8b.

All that is Y All that is Y
\ Y /~~ \ Y /~~ r- All that is

X Y

0 0
0 1
1 0
1 1

fi

0
1
0
1

it xN
1 °
0
1 1
1

0

: 0:
•0

• o ;
^ • • • ' 2

1 /

S~t
1

1

1

^3

I X i
0

1
/

0 /
/Hf
n-0-T-T-

(^
C7I

1 /
. . •V:. o ;•. . i

O
^ 3

NOT X Y = (X+Y)

/ /t1 = Y / /t2 = X + Y

All that is NOT Y = Y All that is X
(a) (b)

FIGURE 4.8
(a) Truth tables for functions f\ and f i - (b) K-maps for functions f\ and /2, showing minimum SOP
cover (shaded) and POS cover (dashed loops).

140 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

The same results could have been obtained by reading the maxterms in the K-maps of
Fig. 4.8b. Thus, in maxterm code the canonical and minimum POS forms become

fi = M(0, 2) = (X + Y)(X + F) = Y

and (4.13)

where for f\ the distributive law in Eqs. (3.12) has been applied. Another way of looking
at the results given by Eqs. (4.13) is to read groups of adjacent maxterms. For f\ the two
adjacent maxterms (O's) are read as "all that is NOT ?" or Y = Y . Similarly, for function fa
the 0 in cell 1 is read as "all that is NOT XT" or simply XY = X + Y .

4.3.3 Third-Order K-maps

In dealing with functions of three variables, a suitable graphical representation and K-map
format must be decided. One choice would be to use a three-dimensional graphic having
one axis for each variable. However, such a graphical representation would be difficult to
construct and equally difficult to read. A much better choice would be to maintain the domain
concept in two dimensions. To do this requires the use of two variables for one axis. Shown
in Fig. 4.9a is the graphical representation for the minterm code table of three variables as
deduced from Fig. 4.1. Again, the minterm positions are those given by the coordinates of
the cells read in alphabetical order XYZ. From this there results the two alternative formats
for a third-order K-map given in Fig. 4.9b, where the minterm code numbers in decimal are
shown in the lower right-hand corners of the cells.

Notice that the two- variable axes in the third-order K-maps of Fig. 4.9b are laid out in
2-bit Gray code, a unit distant code featured in Subsection 2.10.3. This is important so that
each cell along the two- variable axis is surrounded by logically adjacent cells. The result is
that the Y and Z domains in Fig. 4.9 are maintained intact. Notice that in Fig. 4.9a the logic
adjacency along the two- variable axis is continuous as though the K-map were formed into
a cylinder about the X axis (orthogonal to the YZ axis). Had the YZ axis been laid out in
binary, the Z domain would be split into two separate sections, making map plotting and
reading difficult. For this reason all axes of two or more variables are laid out in Gray code
so as to maximize axis coherency.

Y

w/ : : 7

x^Zoo

0

X 1

m0

0

m4
4

01

m1

1

m5

5

11

m3
3

m7

7

10

rn2

2

m6

6

x^L,
0

X
/

1
0

4

01

1

5

11

3

7

10

2

6

zNv̂
0

I
0

1

01

2

3

11

6

7

10

4

5

Z Z Y

(a) (b)

FIGURE 4.9
(a) Minterm positions and (b) alternative formats for third-order K-maps.

4.3 INTRODUCTION TO LOGIC FUNCTION GRAPHICS 141

Y /— All that is Z

X Y Z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

\Yx\
0

xl,
1

Z oo

°1

o
0

4

01

1

1

,1
5

11 / 10
tf^f

1

1(

3

7

f°
2

oy
All that is

NOT Z = Z

0 I | /
1
1 All that is
1 NOTYZ = (Y+Z) / /-All that is XZ

Y

All that is Y

<a> X 1 ~ . .
Î UI ». 's| ?|

t y FO = xz + Y
All that is NOT XY = (X+Y)

(b)

2 _
= (Y+Z)(X+Y)

FIGURE 4.10
Truth tables for functions F\ and F2. (b) K-map representations for functions FI and FI showing
minimum SOP cover (shaded) and minimum POS cover (unshaded).

To illustrate the application of third-order K-maps, two simple functions are presented
in Fig. 4.10. Here, the truth tables for functions FI and F2 are presented in Fig. 4.10a and
their K-map representations together with minimum cover are given in Fig. 4.1 Ob. Notice
that the 1's and O's are placed at the proper coordinates within the K-maps, in agreement
with the truth table. From the K-maps, the canonical and minimum SOP forms for functions
FI and F2 are read as

Fj (x, y, z) = ̂ m(i, 3,5,7) = xyz + xyz + xfz + xyz
= z

^ _ _ _ (4.14)
F2(x, y, z) = 2^m(i, 2,3,6,7)=xyz + xyz + xyz+xyz + xyz

=xz + y.

By grouping minterms in Fig. 4. lOb, the minimum SOP expressions, F\=Z and F2 = XZ +
y, become immediately apparent.

The O's in the K-maps of Fig. 4. lOb can be given in canonical and minimum POS forms:

F](X, y, Z) = Y[M(°' 2' 4, 6)
= (x + y + z)(x + y + z)(x + y + z)(x + y + z>
= Z (4.15)

F2(x, y, z) = Ff M(0,4,5) = (x + y + zxx + y + zxx + y + z>

142 CHAPTER 4/LOG 1C FUNCTION REPRESENTATION AND MINIMIZATION

All that is AHthatis _
NOT AB = (A+B)

A 00 01 ' 11 / 10

D
eL/

All that is^' ' ' ' ' ' ' Y

AC ~~ " \-AllthatisABC All that is A -

(a) (b)

FIGURE 4.11
(a) K-map for the reduced function Y of Eq. (4.16). (b) K-map showing minimum SOP and POS
cover for function Y.

as read in maxterm code. The minimum POS results are easily read from the K-maps of
Fig. 4.10b by combining adjacent O's as indicated. Thus, F\ is read as "all that is NOT Z"
or Z = Z. Similarly, F2 can be read as "all that is NOT YZ + XY" or YZ + XY = (Y + Z)
(X+Y). Notice that the distributive law in Eqs. (3.12) is applied as (Y+Z)(X+ Y) = Y+XZ,
demonstrating that the SOP and POS forms for F2 are algebraically equal, as they must
be. The minimum POS results given by Eqs. (4.15) can also be obtained by applying the
Boolean laws given in Section 3.10, but with somewhat more effort. For example, F\ is
minimized to give the result Z after three applications of the distributive law in Eqs. (3.12)
together with the AND and OR laws.

The use of third-order K-maps is further illustrated by placing the reduced SOP function

Y =ABC + AC + BC + AB (4.16)

into the third-order K-map in Fig. 4.11 a. Then by grouping adjacent minterms (shaded
loops) as in Fig. 4.1 Ib, there results the minimum expression for Eq. (4.16),

Y=A+B. (4.17)

As expected, the same results could have been obtained by grouping the adjacent maxterms
(O's) in Fig. 4.1 Ib, which is equivalent to saying "all that is NOT AB" or AB = A + B.

Other information may be gleaned from Fig. 4.11. Extracting canonical information is
as easy as reading the minterm code numbers in the lower right-hand corner of each cell.
Thus, the canonical SOP and canonical POS forms for function Y are given by

Y = JT^m(Q, 1,4,5,6,7)

= ABC + ABC + ABC + ABC + ABC + ABC

or (4.18)

as read in minterm code and maxterm code, respectively.

4.3 INTRODUCTION TO LOGIC FUNCTION GRAPHICS 143

CD C \ AB
AB\ 00 01 ' 11 10 ' CD\ 00 01 ' 11 10\J\J \J 1

00

01

11

10

0

4

12

8

1

5

13

9

3

7

15

11

2

6

14

10

00

01

11

10

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

— ,

/

D B

FIGURE 4.12
Alternative formats for fourth-order K-maps.

4.3.4 Fourth-Order K-maps

At this point it is expected that the reader is familiar with the formats for first-, second-,
and third-order K-maps. Following the same development, two alternative formats for
fourth-order K-maps are presented in Fig. 4.12, where use of the minterm code table in
Fig. 4.1 is implied and where A is the MSB and D is the LSB. Here, both two-variable axes
have logic coordinates that are unfolded in Gray code order so that all juxtaposed minterms
(those separated by any single domain boundary) are logically adjacent. Notice that each
cell in the K-maps of Fig. 4.12 has a number assigned to it that is the decimal equivalent
of the binary coordinates for that cell (read in the order ABCD), and that each cell has four
other cells that are logically adjacent to it. For example, cell 5 has cells 1, 4, 7, and 13
logically adjacent to it.

Just as a third-order K-map forms an imaginary cylinder about its single variable axis,
a fourth-order K-map whose axes are laid out in Gray code will form an imaginary toroid
(doughnut-shaped figure), the result of trying to form two cylinders about perpendicular
axes. Thus, cells (0, 8) and (8, 10) and (1, 9) are examples of logically adjacent pairs, while
cells (0, 2, 8,10) and (0, 1, 4, 5) and (3, 7, 11, 15) are examples of logically adjacent groups
of four.

To illustrate the application of fourth-order K-maps, consider the reduced SOP function

F(A, B, C,D)=ACD + CD + ABCD + BCD + ABCD (4.19)

and its K-map representation in Fig. 4.13a. By grouping logically adjacent minterms as in
Fig. 4.13b, a minimum SOP result is found to be

FSOP=ABC+CD + BD. (4.20)

Notice that the original function in Eq. (4.19) requires six gates, whereas the minimum
result in Eq. (4.20) requires only four gates. In both cases the gate count includes the final
ORing operation of the p-terms. The minimum POS cover for function F is obtained by
grouping the logically adjacent O's as in Fig. 4.13c, giving

FpOS = (B + C + D)(A + B + C)(fi + C + D), (4.21)

144 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

All that is BD

CD C \CD C
AB\ 00 01\' Ti 10 ' - - AB\ 00 / 01 I 11 10

A

00

01

11

10

0

12

7
--- / -

-J

13

0

15

11

1

14

ACD _
All that

B

-ABCD
A

00

01

11

10

12

1
L L Xal <K9l 11! N

F

13 15
0

14

is ABC

SOP

D All that is CD —f D
BCD -J CD-

(a) (b)

\CD C
AB\ 00 01 ' 11 10 '

BCD = (B+C+D)-
00
\
01'

11

10

0

fol

0

4

V_x^2

8

1

5

13

9

w,
7

(o
15

fo)
J In

I ^

2

6
Jf

0
14

10

/

/

D \N— NOT B

(c)

All that is
/~~ NOT ABC = (ABC)
g =A+B+C

FIGURE 4.13
(a) K-map for the reduced SOP function in Eq. (4.19). (b) K-map showing minimum SOP cover for
the function F. (c) K-map showing minimum POS cover for the function F.

which is saying "all that is NOT (BCD +ABC + BCD)" as indicated in Fig. 4.13c. The gate
tally for Eq. (4.21) is four, including the final ANDing of s-terms, which is less than the
original function in Eq. (4.19). Canonical minterm and maxterm representations are easily
determined by reading the 1's and O's in the K-maps of Fig. 4.13 to give

F =]Tm(0, 1, 2, 5, 6, 7, 8, 9, 10, 13)

=]~]M(3,4, 11,12, 14, 15). (4.22)

4.4 KARNAUGH MAP FUNCTION MINIMIZATION

Use of the K-map offers a simple and reliable method of minimizing (or at least greatly
reducing) logic expressions. In fact, this is the most important application of K-maps. In

4.4 KARNAUGH MAP FUNCTION MINIMIZATION 145

Section 4.3, simple examples serve to demonstrate how K-maps can be used to extract both
canonical and minimum SOP and POS forms depending on whether 1's or O's are read.
Now it is necessary to present certain important information that was not explicitly stated
earlier, but was implied.

It should be clear from Section 4.3 that each line or edge of a K-map forms the boundary
between two complementary domains. As a result, minterms or maxterms that are separated
by a line or edge are logically adjacent and can be combined to form a reduced function.
The following rule generalizes this point:

Reduction Rule

Each variable domain boundary crossed in an adjacent group (looping) requires the
absence of that variable in the reduced term.

Thus, a pair of logically adjacent minterms or maxterms crosses one domain boundary and
eliminates the domain variable in the reduced term; a grouping of four logically adjacencies
crosses two domain boundaries and eliminates the two domain variables in the reduced
function. In this way 2" logic adjacencies (n = 1, 2, 3, . . .) can be extracted (looped out)
to produce a reduced (N — n)-variable term of an TV-variable function.

To help ensure a minimized result from K-map extraction, thereby avoiding possible
costly redundancies, the following loop-out protocol is recommended but not required:

Loop-out Protocol

Loop out the largest 2" group of logically adjacent minterms or maxterms in the order
of increasing n = 0, 1, 2, 3,

When following this protocol, single isolated minterms or maxterms (monads), if present,
should be looped out first. This should be followed by looping out groups of any two logically
adjacent minterms or maxterms (dyads or duads) that cannot be looped out in any other
way. The process continues with groups of four logic adjacencies (quads), then groups of
eight (octads), etc. — always in groups of 2" logic adjacencies.

As an example of the pitfalls that can result from failure to follow the loop-out protocol,
consider the function represented in the K-map of Fig. 4.14. Instinctively, one may be
tempted to loop out the quad (dashed loop) because it is so conspicuous. However, to do
so creates a redundancy, since all minterms of that grouping are covered by the four dyads
shown by the shaded loops.

Since K-maps are minterm-code based, minimum POS cover can be extracted directly,
avoiding the "NOT" step indicated in Figs. 4.8,4.10,4.11, and 4.13, by using the following
procedure:

Simplified POS Extraction Procedure

Take the union (ORing) of the complemented domains in which the 2" groups of
logically adjacent maxterms exist.

Groups of minterms or maxterms other than 2" groups (e.g., groups of three, five, six,
and seven) are forbidden since such groups are not continuously adjacent. Examples of such

146 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

\CD
AB\ 00 01 11 10

00

01

11

10

/^— —(—
:U
X ̂

n

(... i
r^1

<-*<>

\

)

FIGURE 4.14
Minimum cover (shaded) by using the loop-out protocol avoids the redundant quad (dashed loop).

forbidden groups are presented in Fig. 4.15, which has been "crossed out" to indicate that
such groupings are not allowed.

4.4.1 Examples of Function Minimization

Just as canonical forms can be read from a K-map in two ways (SOP and POS), so also can
a function be read from a K-map in either minimum SOP form or minimum POS form. To
illustrate, consider the function

G(A, X , Y) = ^2 m(0, 3, 5, 7), (4.23)

which is mapped and minimized in Fig. 4.16. Noting that the I's are looped out as two
dyads and a monad as are the O's, there results

GSOP = AXY + XY + AY (minimum SOP cover)

\\

/
/

/.
//

/

\
\

\
\

. . . ^_A.
L/^

FIGURE 4.15
Examples of forbidden (non-2") groupings of minterms and maxterms.

4.4 KARNAUGH MAP FUNCTION MINIMIZATION 147

A\ 00 01 / ' 11 10

FIGURE 4.16
K-maps for Eq. (4.23). (a) Minimum SOP cover, (b) Minimum POS cover.

and

= (A + X + Y)(X + Y)(A + Y) (minimum POS cover).

Application of the laws of Boolean algebra shows that the SOP and POS minima are alge-
braically equal:

(A + X + Y)(X + 7)(A + 7) = (A + X + Y)(AX + XY + AY + Y)

= (A + X + Y)(AX + Y)

As a second example, consider the reduced function given in POS form:

Y(A, £, C, D) = (A + # + D)(B + C)(A + C + D)(A + B + C + D). (4.24)

To map this function, one simply maps the O's in maxterm code, as indicated in Fig. 4.17a.
The representation in Fig. 4.17a is not minimum. However, after the maxterms are re-
grouped, a minimum POS representation is shown in Fig. 4.17b. Notice that the dyad
M(5, 13) crosses the A boundary, permitting (AA + B + C + D) = (B + C + D) as the re-
duced s-term. Similarly, the quad M(2, 3, 6, 7) crosses the B and D boundaries to yield
(A + BB + C + DD = (A + C). Also, the quad Af (2, 3, 10, 1 1) crosses the A and D bound-
aries, eliminating these variables to give (B + C) as the reduced s-term.

The minimum SOP cover for the function Y of Eq. (4.24) is shown in Fig. 4.17c and
consists of one dyad and two quads. The dyad m(14, 15) crosses the D boundary, permitting
ABC(D + D)=ABC, while the quad ra(0, 4, 8, 12) crosses the A and B boundaries, yielding
(A + A)(B + B)CD = CD. Likewise, the quad m(0, 1,8,9) crosses the A and D boundaries
to give BC as the reduced p-term. The minimized results that are extracted from Figs. 4. 17b
and 4.17c are now presented as

Ypos = (B + C + D)(A + C)(B + C) Minimum POS cover

and

YSOp = ABC + CD + B C, Minimum SOP cover

148 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

(A+B+D)
C

(B+C)

(A+C)

A B \ 00 01 ' 11 10AB\ 00 \ 01 ' 11 10

_ _ POS
(A+B+C+D)

BC

AB\ 00 \01 ' 11 10

00

01

^CD

11
A

10

n
w 1

1

r ,

0

4

2

JL_J

>
1

5

13

1
9

3

7

(1
15

11

2

6

1)
^S^ 14

10

ABC

' S O P
D

(C)

FIGURE 4.17
(a) K-map representing the cover as given by Eq. (4.24). (b) Minimum POS cover, (c) Minimum SOP

which are shown to be algebraically equal if one carries out the required algebraic manip-
ulations.

4.4.2 Prime Implicants

Groups of 2" minterms or maxterms that cannot be combined with other 2" groups in any
way to produce terms of fewer variables are called prime implicants (Pis). The loop-out
protocol described in the previous section offers a procedure for achieving minimum cover
by systematically extracting Pis in the order of increasing n(n = 0, 1 ,2,3. . .) . But the task
of achieving minimum cover following the loop-out protocol (or any procedure for that
matter) is not quite as straightforward as one might believe. Difficulties can arise when
optional and redundant groupings of adjacent minterms or maxterms are present. To deal

4.4 KARNAUGH MAP FUNCTION MINIMIZATION 149

with these problems, it will be helpful to identify the following three subsets of Pis:

• Essential Prime Implicants (EPIs): Single-way Pis that must be used to achieve
minimum cover

• Optional Prime Implicants (OPIs): Optional-way Pis that are used for alterna-
tive minimum cover

• Redundant Prime Implicants (RPIs): Superfluous Pis that cannot be used if mi-
nimum cover is to result.

Any grouping of 2" adjacencies is an implicant, including a single minterm or maxterm,
but it may not be a PI. For example, a solitary quad EPI contains eight RPIs, four monads,
and four dyads, none of which are Pis.

To illustrate a simple mapping problem with optional coverage, consider the function

Z(A, B,C, D) = ^m(2,4,6, 8,9, 10, 11, 15), (4.25)

which is mapped in Fig. 4.18a. Noting first the minterm adjacencies that form the three
dyads (no monads exist) and the single quad, there results the SOP minimum expression

_ _ \ACD\ZSOP=ACD+ABD + { _ _ } +AB, (4.26)
I BCD I

which has three EPI p-terms (two dyads and one quad), and two OPI dyads indicated in
braces. The minterm m^ can be covered in two ways to form the OPI dyads m(2, 6) and
m(2, 10) shown with dashed loops in Fig. 4.18a. Remember that when one OPI is selected

/

A+B+C (EPI)

C
A B X 00 01 ' 1 1 10 '

00

AB X 00 / 01 • 11 10

io|X.
\ I / ZPOS

°_ VB+C+D(EPI)

A+B+C (OPI)

FIGURE 4.18
K-maps showing EPIs and OPIs for the function Z in Eq. (4.25). (a) SOP minimum cover, (b) POS
minimum cover.

150 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

to be an EPI, the other OPI becomes redundant (an RPI). In similar fashion a minimum
POS cover is extracted as shown in Fig. 4.18b, giving the result

- - - - f (A + B + C))
ZpOS = (A + B + CKB + C + D)(A+B + D~)\ (A + D), (4.27)

^ (B + L + D) J

which is seen to have four dyads (including one of two OPIs) and one quad. The maxterm
MO can be looped out in two ways (dashed loops in Fig. 4.18b) to form the OPI dyads
A/(12, 13) and Af (5, 13) represented by the bracketed s-terms in Eq. (4.27).

4.4.3 Incompletely Specified Functions: Don't Cares

In the design of logic circuits nonessential minterms or maxterms may be introduced so as
to simplify the circuit. Such nonessential minterms or maxterms are called don 't cares and
are represented by the symbol

0 = Min/Max = don't care.

Thus, the don't care can be taken as logic 0 or logic 1, take your choice. The symbol 0 can
be thought of as a logic 0 with a logic 1 superimposed on it.

Don't cares can arise under the following two conditions:

• When certain combinations of input logic variables can never occur, the output
functions for such combinations are nonessential and are assigned don't cares.

• When all combinations of input logic variables occur but certain combinations
of these variables are irrelevant, the output functions for such combinations are
assigned don't cares.

As an example of the second condition, the BCD number system discussed in Subsection
2.4.1 has 10 4-bit binary patterns for decimal integers 0 through 9. Thus, there are six 4-bit
patterns, representing decimal integers 10 through 15 that are never used — that is, we
"don't care" about them. Accordingly, the don't care symbol 0 can be assigned to any
output generated by one of the six nonessential 4-bit patterns. This will be demonstrated in
Subsection 6.5.2 for conversion from BCD to XS3 decimal codes.

Consider the three- variable function

/(A, fi, C)= ^m(l,3,4,7) + 0(2,5)

Nonessential
minterms

(don't cares)

(4-28)

written in canonical SOP form showing essential minterms and nonessential minterms (don't
cares). The K-maps representing minimum SOP and POS cover are shown in Figs. 4.19a
and 4.19b, giving the results

FSOP=AB + C
(4.29)

4.4 KARNAUGH MAP FUNCTION MINIMIZATION 151

B r00"''03'6 /"'MC) B
>^C 00/01 r-Ti ^-l\BC

A\

0

00

0
0

1 1
f 4

/

01

1

1

^)
5

/

1
3

T(1
\ 7

\

10/

$
2

0

6 /

•̂ ^SOP

B^ C ̂ c

~o*)
0

1
4

1

1

^ 5

1

3

1
7

<T~
2

0
j — '^e

^'POS

(B+C)

(a) (b)

FIGURE 4.19
K-maps for Eq. (4.28) showing EPIs containing don't cares, (a) Minimum SOP cover, (b) Minimum
POS cover.

Notice that the don't cares 02 and 05 are purposely used differently to obtain the minimum
SOP and POS expressions of Eqs. (4.29). The result is that the FSQP and FPQS expressions
are algebraically equal since there is no shared use of don't cares between the two functions
(05 = 1 and 02 = 0 in both cases). Thus, FSOp can be produced by algebraically manipu-
lating FPOS- Had no use been made of the two don't cares in Fig. 4. 19, the results would be
quite different, namely FSOP = ABC + AC + BC and FPOS = (A + B + C)(A + B + C),
which are logically equivalent but not algebraically equal.

As a second example consider the four- variable function given in canonical POS form
showing essential and nonessential maxterms:

Y(A,B,C,D)= f~[M(0, 1,2,4,6,9, 11, 15) • 0(3,8, 10, 12).
7 v .. , Nonessential
Essential maxterms
"Wrms (don't cares)

In Fig. 4.20 the O's and 0's of Eq. (4.30) are mapped in maxterm code, and the mini-
mum covers for YPOs and YSOP are shown by the shaded loops in Figs. 4.20a and 4.20b,
respectively. The resulting minimum POS and SOP expressions for Eq. (4.30) are

(4.31)
YSOP = ABD + BCD + AD

Again it is noted that these expressions are logically equivalent. However, they are alge-
braically unequal because of the shared use of don't cares (0g and 0io) in the loop-out
process. Notice also that YSOP contains OPIs BCD and ABC with ABD as an EPI, since
minterm m13 can be looped out in two ways (with m*, or with 0)2). Similarly, OPIs ABD
and A CD result if BCD is an EPI, since minterm ra7 can be looped out in two ways (with
ra5 and with 03). No OPIs exist for YPOs-

The Gate/Input Tally vs Cardinality of a Function Throughout this text use will be
made of the ratio of the gate tally to the input tally (gate/input tally) as a measure of function
complexity in terms of hardware cost. Input tallies include both external and internal inputs

152 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

, -A+D _ _
CD / C \ CD C

00 / 01 ^ 11 10 ' AB \ 00 01 ' 1 1 10 '
— ABD

A

0

0

i

0

4

0
12

J0
f 8

0
1

1
5

1

13

0
9

0
3

1

7

0

0
Hi

15

C11

]
0

2

0
6

1

14

"7|

10

00 0 0 0 U 00

01

11

10 (b n 0 (b 10

0 0

14

_M/
\l ' POS \ I I SOP

D Wc+5 VA5 D

(a) (b)

FIGURE 4.20
K-maps for Eq. (4.30) containing don't cares showing (a) minimum POS cover and (b) minimum
SOP cover containing OPIs for minterms in cells 7 and 13 but not shown.

(connections) to gates. Gate tallies are weighted more heavily than input tallies. Inverters
can be included in the gate/input tally of a given function only if the activation levels of the
inputs are known. Unless otherwise stated, the gate/input tallies will be given exclusive of
inverters. An inverter is considered to be a gate with one input.

The number of p-terms or s-terms representing a function is called the cardinality of
the function. Thus, the cardinality of a cover represents the number of prime implicants of
the function, and a minimum cardinality (or cover) consists only of EPIs. When significant
numbers of don't cares are present in a function, there may exist several alternative covers
of minimum cardinality that may differ in gate/input tally.

As an example of the use of the gate/input tally and cardinality, consider the minimized
expressions in Eqs. (4.29). Here, FSOp has a gate/input tally of 2/4, whereas the gate/input
tally for FPOs is 3/6, both exclusive of inverters and both with a minimum cardinality of 2.
Thus, the SOP expression is the simpler of the two. However, this may not always be true.
Taking a gate and input count of Eqs. (4.31) reveals that the gate/input tally for YPOs is 3/8
while that for YSOp is 4/11, again both exclusive of possible inverters. Thus, in this case,
the POS expression is the simpler hardware-wise, but both expressions have a minimum
cardinality of 3. Notice that a single variable EPI contributes to the cardinality count of the
function but not to the gate tally.

4.5 MULTIPLE OUTPUT OPTIMIZATION

Frequently, logic system design problems require optimization of multiple output functions,
all of which are functions of the same input variables. For complex systems this is generally
regarded as a tedious task to accomplish without the aid of a computer, and for this reason
computer programs have been written to obtain the optimum cover for multioutput functions
of many variables. Examples of such computer programs are discussed in Appendix B.I.
In this section a simple approach to this process will be presented but limited to two or

4.5 MULTIPLE OUTPUT OPTIMIZATION 153

Combinational
Logic

System
m-1

FIGURE 4.21
Block diagram for an n-input/m-output combinational logic system.

three outputs, each output being limited to four variables or less. Beyond these limitations,
computer-aided optimization is recommended.

Consider the n-input/m-output system illustrated by the block diagram in Fig. 4.21.
Suppose the object is to minimize each of the m output functions in such a way as to
make use of as many of the shared terms between them as possible, thus optimizing the
combinational logic of this system. The recommended procedure is given in four steps that
follow.

Multiple-Output Minimization Procedure

Step 1. Obtain the canonical SOP or POS forms. If necessary, K-maps can be used
for this purpose.

Step 2. AND the canonical SOP forms or OR the canonical POS forms in some
systematic way (for example, f} • f2, /2 • /3, h • /4, • - • , or /i + /2, /2 + /3,
/3 + /4, . . .) and map each ANDed or ORed expression separately, looping out
all shared Pis (common terms).

Minterm ANDing rules:

nij • mi = m,

m / - m / = 0 (i ̂ j)

m, • (j>j = m\ (4.32)

m/ • (f)j = fa • (j)j = 0 (i ^ j)

Maxterm ORing rules:

MI + Mi = MI

Mi + Mj = l (i^j}

Mi + 0,- = MI (4.33)

</>/ + 0, = 0/

Mi +0;=0, +0./ = 1 (i^j)

Step 3. Make a table of the results of step 2 giving all shared Pis in literal form.
Step 4. From K-maps of the original functions, loop out the shared Pis given in

step 3, then loop out the remaining EPIs following the loop-out protocol with

154 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

BC i 1 s

;\ oo 01

0

1

0

~T)
4

1

5

11 10 ' £

3

7

2

(T~
6

A
/

/fx'f.

C

f^2 = Im(4,6)

.BC i H 1 N\; oo 01

o

1

0

^>
4

(D
1

5

.BC i E 1
11 10 A\ °0 01

3

7

2

(T~
6

A
/

/ f,'f,

c

f2-f3 = Sm(1,4,6)

0

1

0

(1)
4

1

1J

5

11 10

(D
3

7

I

2

01
6 /
/fvf

C

f3-f1 = 2m(3,4,5,6)

FIGURE 4.22
ANDed functions, their K-maps, and minimum cover for Eqs. (4.34).

one exception. If the adjacencies of the shared Pis are part of a larger 2" grouping
of adjacencies, use the larger grouping, but only if it leads to simpler form.

For simple systems the four-step procedure just given can be shortened considerably
by simply comparing the K-maps of the functions. Often the adjacency patterns lead to an
immediate recognition of the shared Pis that should be included for optimum cover.

To illustrate the four-step procedure given previously, consider the system of three out-
puts, each a function of three variables:

,C) = £>(0,3,4,5,6)

,C) = £m(l ,2 ,4,6,7)

f3(A, fl, C) = £ w(l, 3, 4, 5, 6)

(4.34)

Equations (4.34) satisfy step 1 of the multiple-output minimization procedure. Then, mov-
ing on to step 2, the ANDed functions are given in Fig. 4.22, together with their respective
K-maps and minimum cover. The minimum cover in each ANDed K-map indicates the com-
mon terms that must be included in the optimized expressions for the three-output system.

The table of shared Pis for each of the ANDed forms and the appropriate transfer of these
shared Pis into the K-maps of the original functions are given in Fig. 4.23, in agreement
with steps 3 and 4 of the multiple-output minimization procedure. Notice that the dyad
AC is common to all three ANDed functions, as is evident from the ANDed function
/i • /2 • /3 = m(4, 6) indicated in the table of shared Pis of Fig. 4.23.

By looping out the shared Pis first in Fig. 4.23 followed by the remaining EPIs, there
result the optimal expressions

/i = ABC + AC + AB + BC

/3 = ABC + ABC + AC + AB

(4.35)

Notice that the dyad m(l, 3) in the /3 K-map is avoided, hence also an individual minimum
for /3, so that the expression for /3 can be completely generated from the terms in f\ and
/2, the optimal solution. The optimum gate/input tally is 10/28 for this system of three
outputs, each output having a cardinality of 4.

4.5 MULTIPLE OUTPUT OPTIMIZATION 155

BC
\ 00

o [7

1 Q_
-^=3

ANDed function

fl*2

f2'f3

¥l

M2*3

Shared Pis

AC

ABC, AC

ABC, AC, AB

AC

i B 1 \BC i B 1 \BC i B 1
01 11 10 A\ °° 01 11 10 A\ °° 01 11 10

0

4

1

1 }
5

©3

7

2

(i

6

0
0I —

A^T)
/ 4

A

©,
5

3

rr~
7

IT)
2

1)

t=Tg

0
0

(1
4

/T2

©,
1)

5

©3

7

2

(1
6
/

FIGURE 4.23
Table of shared Pis and the K-maps for the functions f\, fa, and /3, showing optimal cover for the
three-output system of Eqs. (4.34).

As a second example, consider the output functions for the four-input/two-output logic
system represented by Eqs. (4.36) and by the block diagram in Fig. 4.24. It is required that
this system be optimized with respect to both POS cover and SOP cover following the four-
step multiple output minimization procedure and that the results be compared to determine
which, if either, is the more optimum. The optimized system is to be implemented with
either NOR/INV logic or NAND/INV logic.

/i (A, B,C, D) = M(l,2, 3,4, 5,9, 10) • 0(6, 11,13)

= Vkm(0, 7, 8, 12, 14, 15) + 0(6, 11, 13)
T^ (4.36)

/2(A, fi,C, D) = J J M (2 , 5,9, 10, 11, 15) • 0(3, 4, 13, 14)

(°> 1» 6> 7- 8' 12> + <K3> 4, 13, 14)

Optimized POS Cover. ORing of the canonical forms of Eqs. (4.36) yields

/i + h = n M(2' 3' 4' 5' 9' io' 1 1} • ̂ (13)'
where use has been made of the ORing rules given by Eqs. (4.33) at the beginning of this

A(H) >

B(H) >

C(H) >
D(H) >

Combinational
Logic

FIGURE 4.24
Block diagram for a four-input/two-output combinational logic system represented by Eqs. (4.36).

156 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

CD
AB\ 00 01 ' 11 10

00

A

01

11

10

12 15 14

ho/

Table of
Shared Plsforf1+f2

A+B+C

A+C+D

B+C

(a)

(b)

FIGURE 4.25
Multioutput POS optimization for the system represented by Eqs. (4.36) and Fig. (4.24). (a) K-map
and shared Pis for (/] + /2). (b) K-maps showing optimal POS cover for functions f\ and /2.

section. Figure 4.25a gives the K-map and table of shared s-term Pis for f\ + /2. The final
step involves looping out the individual functions by following the loop-out protocol in
such a manner as to incorporate as many shared Pis as necessary to achieve optimum cover
for the two outputs. Reading the K-maps in Fig. 4.25b for f\ and /2 produces the results

|/, = (A +B + CKB + C)(C +D)|

/2 = (A + B + C)(B + C)(A + D) '

which yields a combined gate/input tally of 6/15 exclusive of possible inverters. Notice
that the shared PI dyad (A + C + D) is covered by the quads (C + D) and (A + D) in
the expressions for /] and /2, respectively. Thus, the optimum coverage for both f\ and
/2 is, in this case, that of the individual minimum forms. This is not usually the case, as
is demonstrated next for the optimum SOP results. Note that if strict use had been made
of all the shared Pis in the table of Fig. 4. 25 a together with a required dyad for each
output, the combined gate/input tally would become 7/22, significantly greater than that of
Eqs. (4.37).

4.5 MULTIPLE OUTPUT OPTIMIZATION 157

CD
AB\ 00 01 ' 11 10

00

01

A

10

12 13 15

11 10/

BCD
11

Shared Plsfor1yf2

ABD

ABC

(a)

CD C \ CD
IAB\ 00 01 ' 1 1 10 ' AB\ 00 01 ' 11 10

00

01

11

10

w
0

4

(1
12

n,

1
5

' * 13

9

3

(1
7

1
15

*
11

2

T)
6

O
14

10

00
0

01

/f,

11

10

12 13 15

11 10/

(b)

FIGURE 4.26
Multioutput SOP optimization for the system represented by Eqs. (4.36) and Fig. 4.24. (a) K-map
and shared Pis for f\ - f a . (b) K-maps showing optimal SOP cover for functions f\ and fi.

Optimized SOP Cover. ANDing the canonical SOP forms of Eqs. (4.36) by using the
ANDing rules given by Eqs. (4.32) produces

/, • /2 = X!m(0' 6, 1, 8, 12, 14) + 0(13).

The K-map for /i • /2 and the table of shared p-term Pis is given in Fig. 4.26a. The K-maps
in Fig. 4.26b show the optimized cover for the two-function system. The results are

f2=ABC + ABC

which represent a combined gate/input tally of 1 / 19 making use of only one of the three
shared Pis. Here, shared PI dyads ABD and BCD are rejected in favor of quads AB and CD
in the f\ and /2 K-maps, respectively. Notice that function f\ is not an individual minimum,
but combined with the individual minimum for function /2 results in an optimized system.
An individual minimum for function f\ is achieved by replacing the shared PI m(6, 1) with
the quad m(6, 1, 14, 15) in Fig. 4.26b. When combined with the individual minimum for
function /2, there results a gate/input tally of 8/21, which is not optimal. Also, note that

158 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

A(H
BH
CH

C(H
D(H

A(H)

FIGURE 4.27
NOR/INV logic circuit for the optimized POS system of Fig. 4.25.

making use of all shared Pis in the table of Fig. 4.26a together with the required additional
p-term cover yields a combined gate/input tally of 7/22.

Comparing the POS and SOP results with optimum system covers of cardinality 4 and
5, respectively, it is clear that the POS result is the more optimum (gate/input tally of
6/15 or 10/19 including inverters). Shown in Fig. 4.27 is the optimal NOR/INV logic
implementation of the POS results given by Eqs. (4.37).

The simple search method used here to obtain optimum results becomes quite tedious
when applied to multiple output systems more complicated than those just described. For
example, a four-input/four-output SOP optimization problem would require at least 10
ANDed fourth-order K-maps, including one for each of six ANDed pairs. For systems this
large and larger it is recommended that a computer optimization program (Appendix B) be
used, particularly if a guaranteed optimum cover is sought. Optimum cover, as used here,
means the least number of gates required for implementation of the multiple output system.
Obviously, the number of inverters required and fan-in considerations must also be taken
into account when appraising the total hardware cost.

4.6 ENTERED VARIABLE K-MAP MINIMIZATION

Conspicuously absent in the foregoing discussions on K-map function minimization is the
treatment of function minimization in K-maps of lesser order than the number of variables of
the function. An example of this would be the function reduction of five or more variables in
a fourth-order K-map. In this section these problems are discussed by the subject of entered
variable (EV) mapping, which is a "logical" and very useful extension of the conventional
(1's and O's) mapping methods developed previously.

Properly used, EV K-maps can significantly facilitate the function reduction process.
But function reduction is not the only use to which EV K-maps can be put advantageously.
Frequently, the specifications of a logic design problem lend themselves quite naturally
to EV map representation from which useful information can be obtained directly. Many
examples of this are provided in subsequent chapters. In fact, EV (entered variable) K-maps
are the most common form of graphical representation used in this text.

If N is the number of variables in the function, then map entered variables originate
when a conventional Af th-order K-map is compressed into a K-map of order n < N with
terms of (N — n) variables entered into the appropriate cells of the nth-order K-map. Thus,

4.6 ENTERED VARIABLE K-MAP MINIMIZATION 159

A B

/Cell 0

AC + AB

FIGURE 4.28
(a) Truth table for function Y in Eq. (4.39) showing subfunctions for a first-order map compression,
(b), (c) Second and first-order EV K-maps showing submaps and minimum SOP cover extracted in
minterm code.

each cell of the nth-order K-map becomes a submap of order (N — n), hence K-maps within
K-maps.

To illustrate, consider the three-variable function

y(A,f i ,C) = ^m(l,3,4,5,6), (4.39)

which has been placed in a truth table and mapped into a second-order EV K-map, as shown
in Figs. 4.28a and 4.28b. The subfunctions indicated to the right of the truth table are also
represented as first-order submaps corresponding to the cells 0, 1,2, and 3 in the EV K-map
of Fig. 4.28b. The minimum cover is then obtained by looping out the cell entries, as shown
by the shaded loops, giving the minimum result

YSOP = AC + AC + AB. (4.40)

Notice that the term AC covers only the C in the 1 = C + C of cell 2. This requires that
the C in the 1 be covered by one of the two OPIs, AB or BC, and the former is chosen.

The same result can be obtained from a second-order compression if the expression of
Eq. (4.39) is compressed into a first-order K-map. This is done in Fig. 4.28c, where B
and C are now the EVs. The minimum cover is indicated by the shaded loops, yielding

160 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

the expression in Eq. (4.40). The OPI BC is not easily seen in the first-order EV K-map,
but can be found by observing the 1's representing BC in the two submaps shown in
Fig. 4.28c.

Map Key It has already been pointed out that each cell of the compressed nth-order
K-map represents a submap of order (N — n) for an N > n variable function. Thus, each
submap covers 2N~n possible minterms or maxterms. This leads to the conclusion that any
compressed nth-order K-map, representing a function of N >n variables, has a Map Key
defined by

Map Key = 2N~n N >n (4.41)

The Map Key has the special property that when multiplied by a cell code number of
the compressed nth-order K-map there results the code number of the first minterm or
maxterm possible for that cell. Furthermore, the Map Key also gives the maximum number
of minterms or maxterms that can be represented by a given cell of the compressed nth-order
K-map. These facts may be summarized as follows:

Conventional K-map: Map Key = 1 (no EVs, 1's and O's only)
First-order compression K-map: Map Key = 2 (one EV)
Second-order compression K-map: Map Key = 4 (two EVs)
Third-order compression K-map: Map Key = 8 (three EVs), etc.

As an example, the first-order compressed K-map in Fig. 4.28b has a Map Key of
23~2 = 2. So each of its cells represents two possible minterms (first-order submaps) begin-
ning with minterm code number equal to (Map Key = 2) x (Cell Number). This is evident
from an inspection of the truth table in Fig. 4.28a. Similarly, the second-order compression in
Fig. 4.28c has a Map Key of 23~' =4. Therefore, each cell represents four possible minterms
represented by the conventional second-order submaps shown to the sides of Fig. 4.28c.

The compressed K-maps in Fig. 4.28 can also be read in maxterm code as indicated by
the shaded loops in Fig. 4.29. In this case the logic 1 in cell 2 must be excluded. The result
for either the first-order or second-order compressed K-maps is

= (A+B + C)(A + C). (4.42)

(A+C)

(A+B+C) (A+B+C)

FIGURE 4.29
Second- and first-order EV K-maps showing minimum POS cover for function Y extracted in maxterm
code.

4.6 ENTERED VARIABLE K-MAP MINIMIZATION 161

\BC
A\ 00 01

C

(a) (b)

FIGURE 4.30
(a) Conventional K-map for function Y of Eq. (4.39). (b) Second-order EV K-map with entered
variable A showing minimum cover for Y as extracted in minterm code.

That YPOS in Eq. (4.40) and YSOp in Eq. (4.42) are algebraically equal is made evident by
carrying out the following Boolean manipulation:

(A + B + C)(A + O = AC + AC + [AB + BC],

where the two p-terms in brackets are OPIs, thereby rendering one to be redundant.
In the second-order K-maps of Figs. 4.28 and 4.29, C is taken to be the EV. However,

any of the three variables could have been chosen as the EV in the first-order compres-
sion K-maps. As an example, variable A is the EV in Fig. 4.30, where the columns in
the conventional K-map of (a) form the submaps of the cells in the compressed K-map
of Fig. 4.30b. Minimum cover extracted in minterm code then yields the same result as
Eq. (4.40). Or, if extracted in maxterm code, Eq. (4.42) would result. Thus, one concludes
that the choice of EVs in a compressed K-map does not affect the extracted minimum result.

Reduced but nonminimum functions can be easily compressed into EV K-maps. This is
demonstrated by mapping the four- variable function

X = BCD+AB+ACD+ABCD + ABC (4.43)

into the third-order EV K-maps shown in Fig. 4.31, where the Map Key is 2. Here, D is
the EV and 1 = (D + D). Figure 4.3 la shows the p-terms (loops) exactly as presented in
Eq. (4.43). However, regrouping of the logic adjacencies permits minimum SOP and POS
cover to be extracted. This is done in Figs. 4.3 Ib and 4.3 Ic, yielding

(4.44)

where the expressions for XSOP and XPOs represent gate/input tallies of 4/9 and 3/7, res-
pectively, excluding possible inverters.

The four- variable function X in Eq. (4.43) can also be minimized in a second-order EV
K-map. Shown in Fig. 4.32 is the second-order compression and minimum SOP and POS
cover for this function, giving the same results as in Eqs. (4.44). Notice that after covering
the D in cell 1 of Fig. 4.32a, it is necessary to cover all that remains in cell 0 by looping
out the 1 as an island to give AB. In this case the 1 has the value 1 — C + C = D + D.
Clearly, the 1 in cell 0 cannot be used in extracting minimum cover in maxterm code.

162 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

AB -^ /- ABCD /— AB
B

A\ oo \ 01 ' 11 /10 ' B C D A\ 0 0 / 0 1 ' 11 10

0 1

. D/4D

T)

A 1
I r> ^-Tk. U 1 V 1 | , ^ V_ y

__ / I \ I x ~ / I I ' XSOP
ACD -/ _ \ C AC -> C

ABC—^

(a) (b)

01

1
0

1
4

1

1

(o
f 5

(°
3

o)
7

DJ
2

1

6

Ah . , ^
A 4 * l 7 fil

A,POS

c

(C)

FIGURE 4.31
(a) First-order compression plot of the function X in Eq. (4.43) showing original p-terms. (b) Minimum
SOP cover, (c) Minimum POS cover.

4.6.1 Incompletely Specified Functions

The EV mapping method is further illustrated by compressing the incompletely specified
function

/(A, B, C, £>) = m(3, 6, 9, 10, 11) + 0(0, 1, 4, 7, 8) (4.45)

-A+B+D

r AB

B / i 1 \B i 1v °y
0 ((j)

b

, (e
^ 2

1

N<
D)

1

O
3

/-AD A\

0

A [^£ L

0

1
0

(c
f 2

1

(S^
1

O
3

7
~/ y ^^—/— / v
/ ASOP / / *pos

A+C^

(a) (b)

FIGURE 4.32
Second-order compressions of the function X showing (a) minimum SOP cover and (b) minimum
POS cover.

4.6 ENTERED VARIABLE K-MAP MINIMIZATION 163

BD -v r- ABC

BC / / \BC \ I ^-f- 1
00 01 11/ 10 / /\\ QQ\ 01 ' 1 1 / 1 0

0

*R
0

1

n\
0

1

$
0

^ + D
^ 4/

0
1

D
1

1
5

*</> + D
3

0
7

*<^D
2

0
6
/

(a)

v RP.

*
J l

0

4

\ D

->

1

l)
5

prf
3

0

7

0

2

0

6

'SOP

A 1

(*
0

1
4

D)

1

1

5

D

fo
*

I
C

(c)

3

' 7

\

*/
2

~^]
6
/

\ - -
^-A+B

B+D

FIGURE 4.33
(a) First-order compression plot and submaps for the function / in Eq. (4.45). (b) Minimum SOP
cover and (c) minimum POS cover.

into the third-order K-map in Fig. 4.33a, a first-order compression with a Map Key of 2.
Here, the subfimctions are presented in their simplest form yet preserving all canonical
information. In Figs. 4.33b and 4.33c are shown the minimum SOP and POS covers for this
function, which produce the expressions

(4.46)
fpos = (A + B+ D}(B + D)(A + fi),

both of which have a gate/input tally of 4/10. In extracting the minimum expressions of
Eqs. (4.46), the loop-out protocol is first applied to the entered variable D and then applied
to the 1's or O's.

Some observations are necessary with regard to Fig. 4.33 and Eqs. (4.46). First, these
expressions are logically equivalent but are not algebraically equal. The reason is that the
don't cares 04 and 07 in cells 2 and 3 are used differently for the fsop and fpos- For
example, (07 + D)SOp = 1 for </>7 = 1 but (</>7 + D)Pos = D, since, in this case, 07 = 0.
Second, the extraction process involved some techniques in dealing with </>'s that have
not been discussed heretofore. These techniques are set off for reference purposes by the
following:

164 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

Remember:

• Treat the don't care (0) as an entered variable — which it is.

• In simplifying incompletely specified subfunctions, apply the absorptive laws:

X + <pX = X + 0

X • (0 + X) = <f>X.

• Subfunctions of the type (0 + X) have an essential SOP component but no
essential POS component. (Proved by substituting the set {0, 1} for 0.)

• Subfunctions of the type (f>X have an essential POS component but no essential
SOP component. (Proved by substituting the set {0, 1} for 0.)

Concluding this section is the function

Z(A, B, C, D) = Y\M(2,4,1, 11,12, 14, 15)

= £ m(0, 1,3,5, 6, 8, 9, 10,13), (4.47)

which is represented by the second-order EV K-maps in Fig. 4.34, where C and D are the
EVs and the Map Key is 4. This example is interesting because of the XOR function in
cell 1, which must be represented by both the SOP and POS defining relations, given in
Eqs. (3.4), so as to extract minimum SOP and POS cover. To assist the reader in identifying
the subfunctions, second-order conventional submaps in C and D axes are shown for each
cell. Thus, the subfunction for cell 0 is Y"m(0, 1, 3) = C + D, while that for cell 1 is

A+C+D
A+B+D

(b)

FIGURE 4.34
Second-order EV K-maps and submaps for Eqs. (4.47) showing (a) minimum SOP cover and (b)
minimum POS cover.

4.7 FUNCTION REDUCTION OF FIVE OR MORE VARIABLES 165

£ m(5, 6) = C 0 D = CD + CD = (C + D)(C + D). The minimum SOP and POS results
are given by

ZSOP = ABCD + ABD + ABD + CD + BC
(4.48)

(A + B + C + D}(B + C + D)(B + C + D)(A + B + D)(A + C + D).

From the results depicted in Fig. 4.34, certain conclusions are worth remembering and are
set off by the following:

• In minterm code, subfunctions of the type XY are subsets of forms of the type
X + Y.

• In maxterm code, subfunctions of the type X + Y are subsets of forms of the
type XY.

What this means is that subfunctions of the type XY can be looped out from terms of the
type X + Y to produce reduced SOP cover. For reduced POS cover, subfunctions of the
type X + Y can be looped out from terms of the type XY (there are more O's in XY than in
X + Y). For example, in Fig. 4.34 CD is looped out of both C + D_and C + D to contribute
to minimum SOP cover. However, in Fig. 4.34b both C + D and C + D are looped out of
CD, leaving C + D to be covered by A + B + D.

4.7 FUNCTION REDUCTION OF FIVE OR MORE VARIABLES

Perhaps the most powerful application of the EV mapping method is the minimization or
reduction of functions having five or more variables. However, beyond eight variables the
EV method could become too tedious to be of value, given the computer methods available.
The subject of computer-aided minimization tools is covered in Appendix B.

Consider the function

F(A, B, C, D, E} = £]m(3, 11, 12, 19, 24, 25, 26, 27, 28, 30), (4.49)

which is to be compressed into a fourth-order K-map. Shown in Fig. 4.35 is the first-order
compression (Map Key = 2) and minimum SOP and POS cover for the five variable function
in Eqs. (4.49). The minimized results are

FSOP = BCDE + CDE + ABE + ABC
_ _ (4.50)

(A + D + E}(C + E}(B + E}(A + C + D)(fl + D),

which have gate input tallies of 5/ 17 and 6/17, respectively. Thus, the SOP result is the sim-
pler of the two. Also, since there are no don't cares involved, the two expressions are algebrai-
cally equal. Thus, one expression can be derived from the other by Boolean manipulation.

A more complex example is presented in Fig. 4.36, where the six-variable function

Z(A, B, C, D, E, F)

=]T m(0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 23, 32, 34, 36, 38, 40,

42, 44, 45, 46, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63) (4.51)

166 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

l~ CDE (A+D+E) -^
\ CD / C \ CD

AB\

00

01

A

11

10

00

0

4

[C.i
r 12
/
/
/ 8

°V,-r
E'

E

1

5

1]
r

fc
9

11

3

7

E

15

11

/ i .

10 I

2

/*"=•>*
E

E

^
6

1
~L_j14-

10

AB\.

00

-î — BCDE
X

r\

01,

B (A+C+D) — "̂

^ A
^- ABE

/

11

10

h

^

>
/

00
V

\NO;

u

1

\

0

4

12

'o)
8

^SOP

°\

E^
1

E

1

fp
/

5

13

9

J

C
11

0

0

E

0

3

7

15

11

-|/
(£/J

2

_
b/
^ 6

E

14

70\!

^

x

\ioV

(B+D)

(C+E)

- / D / D
ABC-' (B+EH

FIGURE 4.35
Minimum SOP and POS cover for the five-variable function given by Eq. (4.49).

is compressed into a fourth-order K-map, a second-order compression (Map Key = 4). The
minimum SOP and POS cover is indicated by the shaded loops in Figs. 4.36a and 4.36b
and yield the following minimum expressions for function Z:

ZSQP = B CDEF + A CEF + ACDE + ADEF + ABF + BF

(A+B+E+F)(A + E+F)(A + D + F)(A+B + C + E + F) (4.52)

• (A + B + D + F}(B + D + F)(B +E + F)(B + C + F}(A + B + C).

(B+D+F)

FIGURE 4.36
Fourth-order EV K-maps for the six-variable function Z in Eq. (4.51), showing (a) minimum SOP
cover and (b) minimum POS cover.

4.7 FUNCTION REDUCTION OF FIVE OR MORE VARIABLES 167

ACEF

BCDEF

FIGURE 4.37
An A/B|| CD/EF format for the six-variable function of Eq. (4.51) and Fig. 4.36a, showing minimum
SOP cover.

Notice that the SOP form of the equivalence function, EQF = EF + EF given by Eq. (3.5),
is used in cell 5 to extract minimum cover in minterm code and that the POS form (E + F}
• (E + F) is required for extraction of minimum cover in max term code. Note also that the
loop-out protocol is applied first to the EVs and then to the 1's (in minterm code) and O's
(in maxterm code) as "clean-up" operations. This protocol procedure is recommended to
avoid possible redundancy.

There are other K-map formats that can be used to extract reduced or minimum cover
for a given function. Consider again the six-variable function given in Eq. (4.51). Presented
in Fig. 4.37 is the A/B \\ CD/EF format for the conventional (1's and O's) mapping of this
function where only minterm code extraction is considered. Observe that extraction of the
EPIs takes on a three-dimensional (3-D) character in a 2-D layout, which can be somewhat
perplexing.

As a final example, the format of Fig. 4.37 is used to deal with the following incompletely
specified function of eight variables:

Z(a, b, c, d, e, /, S, T} = ̂ ™(16, 18, 20, 22, 24, 26, 28, 30, 48, 50, 52, 54, 56, 58, 60,
62, 98,99, 102, 103, 106, 107, 110, 111, 160-191,
225-227, 229-231, 233-235, 237-239,
241, 243, 245-247, 248, 250, 252,254, 255)

+ 0(0-15, 32-47, 64-79, 112-159, 192-207). (4.53)

cd \ oo\ 01 ' 11 10

FIGURE 4.38
An a/b\\cd/ef EV format for an eight-variable function Z given by Eq. (4.53).

/- cdeT

/- dS c /
00 / 01 ' 1 1 / 1 0

00

01

11

10

A
f
f

(f

/o
*

4

12

/

T
1

0
5

0
13

**

f
3

$
7

eT + eT + fs
(Is

t
2

S

6

S + f^
14

adT

I /
V_ aceT + acfS

FIGURE 4.39
ab/cd EV K-map showing minimum SOP cover for the eight-variable function represented in Fig. 4.38
and by Eq. (4.53).

168

4.8 MINIMIZATION ALGORITHMS AND APPLICATION 169

ST
ef \ oo 01 ' 11 10

00

01

11

10

240

244

1

1

252

248

f t
241

J
245

253

249

11
243

ij-

I 247

I
255

251

242

~ TJ
246

!/-
254

1

250 X
Cell 15

T

Cell 15 = Zm(241, 243, 245-7, 248, 250, 252, 254, 255)

FIGURE 4.40
Submap for Cell 15 of Fig. 4.39 showing minimum subfunction cover.

Presented in Fig. 4.38 is the second-order compression of this function (Map Key = 4) by
using the format a/b \\cd/ef, where S and T are the EVs. The minimized result, as extracted
from Fig. 4.38, is given by

ZSOP = cdef+aceT+acfS+adT + dS + bf +ab, (4.54)

where, for clarity's sake, only the loopings for the first three and sixth p-terms are shown.
Here again the p-terms are given in the order determined by the loop-out protocol first for
the EVs then for the 1's as a "clean-up" operation. Note that the term ab covers all the 1's
and don't cares in cells 32 through 47 of Fig. 4.38, but is not shown.

Next, the function of Eq. (4.53) is compressed into the fourth-order K-map of Fig. 4.39,
a fourth-order compression (Map Key = 16). The same minimum result given by Eq. (4.54)
is easily obtained from Fig. 4.39 as indicated by the shaded loopings and verified by Boozer.
To understand the entry in Cell 15 of Fig. 4.39, a submap for this cell is provided in Fig. 4.40.
The last line of essential minterms in Eq. (4.53) pertains to Fig. 4.40.

4.8 MINIMIZATION ALGORITHMS AND APPLICATION

Tabular methods for function minimization have been devised that can be implemented by
a computer and can therefore be used to minimize functions having a large number of input
variables. One such method has become known as the Quine-McCluskey (Q-M) algorithm.
Typical of these methods, the Q-M algorithm first finds the prime implicants (Pis) and then
generates the minimum cover. Another important minimization algorithm is a heuristic-type
algorithm called Espresso. This section will provide a description of these two algorithms
together with simple illustrative applications.

4.8.1 The Quine-McCluskey Algorithm

To understand the Q-M algorithm, it is helpful to review the tabular format and notation that
is unique to it. In Fig. 4.41 is shown the Q-M notation that will be used in the two examples

170 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

Adjacent minterm
code numbers

Positional weight of variable
removed (6 - 2 = 4 or B)

-- i

Dash indicates variable
(B) removed

Logically adjacent minterms in minterm
code

Boundary line

FIGURE 4.41
Quine-McCluskey (Q-M) notation for PI determination.

that follow. Notice that the Q-M notation uses minterm code, minterm code numbers, and
positional weights for PI determination.

EXAMPLE 1 Consider the minimization of the incompletely specified function

Y(A, B, C,D) = Y^ m(0, 1, 4, 6, 8, 14, 15) + 0(2, 3, 9). (4.55)

In the Q-M algorithm the 0's are treated as essential minterms, and minterm sets k are
compared with sets (k + 1) in a linear and exhaustive manner. The first step in the application
of the Q-M algorithm is presented in Fig. 4.42. Here, a check mark (^/) indicates that an
implicant is covered by a PI in the column to the right and, therefore, cannot itself be a PI.
Thus, unchecked terms in columns 4 and 6 are the indicated Pis and those that are lined out
are redundant.

The second step in the application of the Q-M method is the identification of the essential
prime implicants (EPIs). Presented in Fig. 4.43 is a table of the Pis (taken from Fig. 4.42)
vs the essential minterms in Eq. (4.55). The check mark (^/) within the table indicates that
a given minterm is covered by a PI. The EPIs are selected from a minimum set of Pis that
cover all of the essential minterms of the function Y in Eq. (4.55) and are presented in
Eq. (4.56):

Y=ABC + BC + AD. (4.56)

This result can be easily verified by the conventional K-map extraction method described
in Section 4.4.

EXAMPLE 2 In this example a minimum POS result is required for the incompletely
specified function

F(W, X, Y, Z) = £m(0, 1, 4, 5, 11, 12, 13, 14, 15) + 0(2, 7, 9) (4.57)

= J~jM(3, 6, 8, 10)-0(2, 7, 9). (4.58)

4.8 MINIMIZATION ALGORITHMS AND APPLICATION 171

A B C - - / 0,1,2,3 A B - - 0 0 - - -

A B - - D / 0,1,8,9 -1 C - - -- 0 0 --

A - - C D / 0,2,1,3 A D —

- B C D / 0,2,4,6 A - - - 6 0 - - - 0

A B - D / 0,4,2,6 A -- - D

- B C D / 0,0,1,9 - D C - -

A B C " /

A - C D /

A B - - D /

A B C - /

6,14(8) - B C D 6,14 - B C D

14,15(1) A B C - 14,15 A B C -

/ Indicates that an implicant is covered by a Prime Implicant in the columns to the right.

FIGURE 4.42
Determination of Pis for the 1's in the function Y of Eq. (4.55).

To do this, the O's of Eq. (4.58) will be treated as 1's, as required by the Q-M algorithm,
to yield Fpos in minimum SOP form. Then, application of DeMorgan's law, given by
Eqs. (3.15), yields the results FPQS = FPOS by involution. Here, the 0's in Eq. (4.58) are
treated as essential minterms, not as nonessential maxterms. Shown in Fig. 4.44 is the tabu-
lar determination of Pis for the O's, treated as 1 's, in the maxterm form of function F given
by Eq. (4.58).

The final step is to tabulate the Pis of Fig. 4.44 with the maxterms (now treated as
minterms) in Eq. (4.58) to obtain the EPIs for the function FPOs- This is done in Fig. 4.45,

Essential Pis\ °
Els

0,1,2,3

0,1,8,9

0,2,4,6

6,14

14,15

/

/

/

1

/

/

4

/

6

/

/

8

/

14

/

/

15

/

-- B C -- = B C

A - - - - D = A D

A B C - = A B C

FIGURE 4.43
Table of Pis (from Fig. 4.42) vs minterms for the function Y of Eq. (4.55) showing the resulting EPIs.

172 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

2,3,6,7 W -- Y --

2,0,3,7 W - Y -

2,10 - - X Y Z

8 , 9 W X Y - -

^___ 8,10 W X - - Z

10 3,7(4) W " - - Y Z /

3 •{ 0111 7

/ Indicates that an implicant is covered by a Prime Implicant in the columns to the right.

FIGURE 4.44
Tabular determination of Pis for the O's (treated as 1's) in function F of Eq. (4.58).

giving the final results

FPOS = WY+WXZ

hos = FPOS = (W + Y)(W + X + Z). (4.59)

Notice that the PI (2, 3,6,1) is the EPI WY and that the remaining maxterms (treated as
minterms) are covered by the PI (8,10), the minimum set of Pis covering all minterms.

Had the Q-M algorithm been applied to Eq. (4.57), the minimum SOP result would be

FSOp = WY+WX+WZ, (4.60)

which is algebraically equal to the POS result of Eq. (4.59). The reason for this is that the
application of the Q-M algorithm uses the three 0's in the same way for the two cases,
a feature of the Q-M method. As a general rule, this is rarely the case for SOP and POS
minimized forms of incompletely specified functions obtained by other methods.

Essential Pis\ 3
Pis

2,3,6,7

2,10

8,9

8,10

/

6

/

8

/

/

10

/

/

W -- Y -- = W Y

• W X - - Z = W X Z

FIGURE 4.45
Table of Pis (from Fig. 4.44) vs maxterms treated as minterms for function F of Eq. (4.58) showing
the essential Pis.

4.8 MINIMIZATION ALGORITHMS AND APPLICATION, 173

4.8.2 Cube Representation and Function Reduction

The cube notation is commonly used in CAD programs and, in fact, is the notation that is
used in the computer implementation of the Q-M algorithm described in Subsection 4.8.1.
In this notation an n-dimensional cube has 2" vertices formed by the intersection of n
dimensional lines. Most commonly one thinks of a cube as three-dimensional (a 3-cube)
having 23 = 8 vertices. But the concept is much more general, extending to n dimensions
that generally cannot be easily visualized by a geometrical figure.

Cube representation is usually based on minterm code. Thus, the minterms of a switching
function can be mapped onto the 2" vertices of an n-dimensional cube such that each pair
of adjacent vertices differ by exactly one bit position. As an example, consider implicants
(2, 3) and (6, 7) listed in the Q-M example of Fig. 4.44. In minterm code cube notation, these
implicants would be represented as (0010, 001 1) and (01 10, 01 1 1), respectively. Reduction
of these implicants to PI (r-cube) form occurs between adjacencies (adjacent vertices) as
follows:

0010 + 0011 =001- = WXY and 0110 + 0111 = Oil- = WXY

or, finally,

-) = 0- l- = WY,

where 0 represents the complemented variable, 1 is the uncomplemented variable, and the
"— " symbol represents an irrelevant input variable (representing both 1 and 0). Thus, in gen-
eral, an r-cube of an n-variable function is produced by combining 2r adjacent minterms,
thereby eliminating r variables in a function reduction process.

4.8.3 Qualitative Description of the Espresso Algorithm

The two-level minimization algorithm called Espresso belongs to a class of minimization
algorithms that use heuristic logic methods as opposed to the linear exhaustive PI search
of the Q-M method. In effect, all heuristic methods group, expand and regroup adjacent
minterms over a number of iterations until an optimal or near-optimal grouping, called the
irredundant set, is found. The exact strategies used and the order in which they are used
depends on the particular algorithm.

Though a detailed description of the Espresso algorithm is beyond the scope of this text,
the principal steps involved can be qualitatively understood by the K-maps in Fig. 4.46. Here,
the four basic steps of the Espresso algorithm are represented by four fourth-order K-maps
labeled ORIGINAL, REDUCE, EXPAND and IRREDUNDANT. The ORIGINAL function,
plotted in Figure 4.46a, is the graphical equivalent to the PI table of the Q-M method since
it represents the largest number of prime implicants, that is, six Pis. The original function
is then regrouped to form a smaller (REDUCED) number of prime implicants (four Pis)
in Fig. 4.46b and then EXPANDED (RESHAPED) to form four Pis by eliminating two
Pis. Notice that the cardinality is preserved in the REDUCE-to-EXPAND step. Finally, an
IRREDUNDANT set is found by regrouping and eliminating yet another PI, resulting in only
three EPIs. This irredundant set is said to have minimum cardinality, that is, minimum cover.

The Espresso algorithm just described qualitatively is usually called Espresso-II. Since its
inception, various improvements have been made, adding to the speed and multiple-output

174 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

CD C \CD
AB\ 00 01 ' 1 1 10 ' AB\ 00 01 ' 11 10

1 I I I I I
00 [[11 1J ^ 00

A

01

11

10

I

<f)

1
-

f 1

0

4

12

|^— ' 8

1

1

1

5

13

~$\

9

^

1

1

3

7

15

11

2

^1
6

V
W

10/
/ Y

A

01

11

10

13

D D
ORIGINAL largest grouping of Pis REDUCE - 4 Pis

(Similar to Q-M PI table).
(a) (b)

\CD
AB\ 00

00

01

._

A

11

10

(7|

Y

1

1

0

4

12

\ f s

— J

C \CD
01

1
1

11 10

<t>
3 2

1 1 1)
5

13

^ 9

1

(1
15

11

6

O
14

10

AB\ 00 01

00

n

01

B p -

A

/

11

10

1

^

1

1

0

4

12

8
/ Y

~H

^

D

C

1

5

13

9

11 10

(f)
3

/•
1

7

J_

15

11

2

— \

5

__J
14

10 /
/ *

D

EXPAND - 4 Pis IRREDUNDANT COVER
(Eliminates ABC, ACD) (Eliminates ABC)

(c) (d)

FIGURE 4.46
Four-variable K-maps for function Y illustrating four steps of the Espresso algorithm: (a) ORIGINAL,
(b) REDUCE, (c) EXPAND, and (d) IRREDUNDANT COVER.

capability. These improved Espresso algorithms include the two referred to as Espresso-
EXACT and Espresso-MV. A detailed description of these and other closely related algo-
rithms can be found in references cited at the end of this chapter.

4.9 FACTORIZATION, RESUBSTITUTION, AND DECOMPOSITION METHODS

Beyond the SOP or POS minimum result, it is possible to further reduce the gate/input tally,
reduce the number of inverters, and reduce the gate fan-in requirements for some functions
by using a technique called factoring or factorization. The results of factorization lead to
multilevel forms that are hybrids, since they cannot be classified as either purely SOP or
POS. A multilevel logic realization of a function is one involving more than two levels of

4.9 FACTORIZATION, RESUBSTITUTION, AND DECOMPOSITION METHODS 175

gate path delay excluding possible inverters. The logic circuits considered to this point are
classified as two-level.

4.9.1 Factorization

The method of factorization is illustrated by using a simple example. Consider the minimum
SOP function

F = ABC + AD + BD + CD, (4.61)

which requires a gate/input tally of 5/13 excluding inverters. This requires four ANDing
operations with a maximum of three inputs per gate, and one ORing operation requiring four
inputs. Also, if it is assumed that the inputs arrive active high, two inverters are required,
bringing the total gate/input tally to 7/15. Now suppose that it is desirable to limit the
fan-in to a maximum of three inputs per gate and to eliminate the need to use inverters in
generating the complements of B and C variables. This can be accomplished by factorization
of Eq. (4.61) in the following manner:

F = ABC + AD + BD + CD

= AB(B + C) + AD + (B + C}D

= AB(BC) +AD + (BC)D. (4.62)

The term ABC is factored as ABC = AB(B + C). Notice that if the function of Eq. (4.62) is
implemented as a NAND circuit, a gate/input tally of 5/12 would result with a maximum
fan-in of 3 with no inverters.

An interesting feature of the factorization method is that there is usually more than one
way in which to factor a given function. So it is with Eq. (4.61), which can be factored as a
three-level hybrid form in the following alternative way:

F = ABC + AD + BD + CD

If implemented with NAND gates, the gate/input becomes 4/10 plus two inverters, assuming
that the inputs arrive active high.

The factorization method can be extended to multioutput systems of the type considered
in Section 4.5. The process is illustrated by the following simple example where three
optimized functions are factored as indicated:

fi = A

/2 = ABC + BC+AB = B(A + C)+AB = B(AC) + AB (4.63)

/3 = BC + ABC + BC = C(B + C) + B(A + C) = C(BC) + B(AC).

Here, terms in expressions for /2 and /3 are factored as ABC + BC = B(AC + C) =
B(A + C) = B(AC) and BC = C(B + C) = C(BC). With NAND logic and assuming the
inputs arrive active high, the total gate/input tally for the factored expressions is 12/20,
including one inverter, with fan-in requirements of two inputs per gate. In comparison, the

176 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

original optimized SOP expressions require a gate/input tally of 14/30, including three
inverters, and have a maximum fan-in requirement of 3.

The factorized expressions of Eqs. (4.63) are three-level functions, whereas the original
SOP expressions are two-level. This brings up other aspects of the optimization problem,
namely the design area (real estate usage) vs delay (performance), as discussed in Section
4.10.

4.9.2 Resubstitution Method

The Boolean resubstitution method possesses a close resemblance to polynomial division
and works to generate multilevel functions that have improved fan-in (hence improved area)
requirements. The process of resubstitution begins by finding a good, if not optimal, divisor
P in the expression

F = PQ + R, (4.64)

where F is the dividend, Q is the quotient, and R is the remainder. Heuristic algorithms
exist that can accomplish this, but they are complex and fall outside the scope of this text.
However, an attempt will be made to illustrate the resubstitution method with a simple
example. Consider the minimized SOP five-variable function

F = ABE + ABCD + CDE + ACE + ABCD + ABE + CDE. (4.65)

Noting the appearance ofAB, AB, CD, CD, E, and E in six of the seven p-terms, the divisor
is chosen to be P = AB + CD + E. The process continues by repeating three steps for each
of the seven p-terms:

Step 1. Select term ABE.
Step 2. AND (Boolean multiply) ABE • P = ABE + ABCDE + ABEE = ABE.
Step 3. Delete AB in ABE • P to yield term E • P.

Step 1. Select term ABCD.
Step 2. AND ABCD • P = ABCD + ABCDE = ABCD.
Step 3. Delete AB in ABCD • P to yield term CD • P.

Repeat Steps 1, 2, and 3 for the remaining five terms in the order given by Eq. (4.65):

CDE • P = ABCDE + CDE = CDE. Delete CD in CDE • P to yield E • P.
ACE • P = 0. Thus, no literals can be deleted in ACE • P.
ABCD • P = ABCD + ABCDE = ABCD. Delete CD in ABCD • P yield AB • P.
ABE • P = ABCDE + ABE = ABE. Delete E in ABE • P to yield AB • P.
CDE • P = ABCDE + CDE = CDE. Delete E in CDE • P to yield CD- P.

In the preceding set of steps it should be observed that the only literals that can be deleted
are those that appear as p-terms in the divisor P. Also, it should be noted that the choice
of divisor P is somewhat arbitrary, since there are other combination of terms that can be
used in the resubstitution process.

The final results of resubstitution are expressed by the partition

F = A BP + CDP + EP + A CE

= PQ + R, (4.66)

4.9 FACTORIZATION, RESUBSTITUTION, AND DECOMPOSITION METHODS 177

A(H)
B(H)

C(H) —
D(H) —

E(H)

FIGURE 4.47
NAND/NOR/INV realization of the partitioned function given by Eq. (4.66).

where P = AB + CD + E, Q = AB + CD + E and R = ACE. Function F, expressed by
Eqs. (4.66), represents four levels of path delay, as shown implemented by NAND/NOR/INV
logic in Fig. 4.47 where it is assumed that all inputs arrive active high. Notice that the
gate/input tally is now 11/25, including three inverters, and that only one gate has a fan-in
of 4. If a fan-in limitation of 4 is also applied to the original two-level SOP expression in
Eq. (4.65), a three-level circuit results having a gate/input tally of 14/35, including five
inverters, and four gates with a fan-in of 4. Thus, the partitioned function of Fig. 4.47 has
an improved design area factor but not necessarily an improved performance. A discussion
of the design area vs performance factors is given in Section 4.10.

The resubstitution method just described bears similarity to portions of some heuristic
two-level minimization algorithms such as Espresso II, qualitatively described in Subsection
4.8.3. In particular, the introduction of a new literal, divisor term P in step 2 and the subse-
quent deletion of literals in step 3 of resubstitution is a generalization of the REDUCE and
EXPAND processes in Espresso II. In these processes, Espresso seeks to add literals existing
in one product term of the original expression to other candidate terms so that implicants
covered by a given expanded implicant can be deleted. Thus, by repeated introduction of
divisor P followed by deletions of redundant terms, the resubstitution process seeks a more
optimum result, not unlike the heuristic processes in Espresso.

4.9.3 Decomposition by Using Shannon's Expansion Theorem

Shannon' s expansion theorem states that any Boolean function of n variables f(xn-\ , . . . X2,
X\,XQ) can be decomposed into the SOP form

/- l , ...,X2,Xi,XQ)

(4.67)

178 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

or into its dual POS form

/(*„-!, ...,X2,X\,Xo)=[Xi + /(*„-!, . . . , * , - + ! , l,Xi-i, ...,X2,Xi,XQJ\

•[Xf + /(*„_!, . . . , * / + i , 0 , */-!, ...,X2,X\,X0)]

= \Xi + f-. \ • \Xj + fx I, (4.68)

where fj°p and f£op are the cofactors for x; and ;c, in Eq. (4.67), and fp°s and fpos are
the cofactors for jc, and xi in Eq. (4.68).

Proof of Eqs. (4.67) and (4.68) is easily obtained by setting ;c, = 1 and then jt/ = 0 and
observing that in each case the surviving cofactors are identical to the left side of the
respective equation. For example, setting jc,- = 1 in Eq. (4.67) leads to

since f , = 0 when A;/ = 1.
Multiple applications of Eqs. (4.67) and (4.68) are possible. For example, if decompo-

sition is carried out with respect to two variables, x\ and XQ, Eq. (4.67) becomes

or generally for decomposition with respect to (xyt-i » • • • , -^2, -fi » ^o),

2*-l

/(*„_!, . . . , X2, X] , X0) = J2 mi(xn-\, . . . , X 2 , X) , XQ) • f(xn-\ , . . . , X k , m/_). (4.69)
(=0

Here, m/ are the canonical ANDed forms of variables Xj taken in ascending minterm code
order from / = 0 to (2k — 1), and m, represents their corresponding minterm code. As an
example, decomposition with respect to variables (x2,X], XQ) gives

n-i, . . . , X3,0, 0, 0)

(xn-i, . . . , j f 3 , 0 , 0, 1)H ----

for k = 3.
In similar fashion, the dual of Eq. (4.69) is the generalization of Eq. (4.68) given by

2*-l

Mi(xn-i, . . . , X 2 , X i , X o) + f(xn-l, ...,Xk,Mi, (4.70)

where now M / represents the canonical ORed forms of variables Xj and Mj_ represents their
corresponding maxterm code.

4.9 FACTORIZATION, RESUBSTITUTION, AND DECOMPOSITION METHODS 179

As a practical example of the application of Shannon's expansion theorem, consider the
function

F(A, B, C, D) = ^m(l, 3, 4, 5, 9, 10, 13, 14,15), (4.71)

which is represented in the truth table of Fig. 4.48a and in the K-map of Fig. 4.48b. Applying
Eq. (4.69) for decomposition with respect to variables C and D gives the cofactors

F0 = (A, B,Q,Q)=AB

F) = (A, 5,0, 1)= 1
F2 = (A, B, 1,0) = A

F3 = (A,B,l,l)=AQB\

from which the function F can be written as

FCD(A, B, C, D) = CD(AB) + CD(1) + CD(A) + CD(A Q B)

= ABCD + CD + ACD + (A 0 B)CD,

which could have been deduced directly from an inspection of the truth table or K-map in
Fig. 4.48.

But the variables about which the function is to be decomposed are a matter of choice.
If it is required that the function F be decomposed with respect to variables A and B, the
result would be

FAB(A, B, C, D) = AB(D)+AB(C)+AB(C 0 D) + AB(C + D),

which, like the previous result, can be read directly from either the truth table or the K-map.
Note that decompositions of the type just described can be very useful in implementing

VCD °

A B C D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

F A B C D

0 1 0 0 0

1 1 0 0 1

0 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

0 1 1 1 0

0 1 1 1 1

F AB\

0 00

1
1 01

0

0

1 A

1

1

11

10

00

1

01

1

1

1

1

11

1

1

10

1

1
/

/ F

(a) (b)

FIGURE 4.48
Truth table (a) and K-map (b) for the function F given by Eq. (4.71).

180 CHAPTER 4 /LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

functions of a large number of variables by using devices with lesser input capability. The
use of multiplexers discussed in Section 6.2 offers a good example of this fact.

The process of decomposition can be reversed to yield a purely SOP or purely POS
expression from the decomposed expression. This is illustrated by factoring out A, A, B,
and B in turn from FAB to yield the SOP expression

FAB = AB(D) + A B(C) + AB(C 0 £>) + AB(C + D)

= A [BD + BC] + A[B(C 0 D) + B(C + D)]

= AB[D]+AB[C] +AB[CD + CD] + AB[C + D]

= ABD+ABC+ABCD

where C © D = CD + CD follows from Eq. (3.4). A cursory inspection of the SOP form
of FAB verifies its agreement with Fig. 4.48.

4.10 DESIGN AREA VS PERFORMANCE

It is common to observe an inverse relationship between design area and performance
(delay). That is, circuit realizations with improved design area commonly suffer from
poorer performance and vice versa. It is known that CMOS gate performance decreases
(i.e., delay increases) with increasing numbers of inputs (fan-in). The larger the fan-in,
the greater is the path delay through the gate. As an example, consider the function of
Eq. (4.65). It has a cardinality of 7 that must be ORed. Shown in Fig. 4.49a are four alter-
native ORing configurations for seven inputs. It is expected that there exists a trade-off
between design area and delay for these four configurations, as illustrated in Fig. 4.49b.

(I) Fan-in 7 (II) Fan-in 4

Delay

(IV)

(I)
(II)

Design Area

(III) Fan-in 3 (IV) Fan-in 3

(a) (b)

FIGURE 4.49
Area/delay trade-off for the seven-input function of Eq. (4.65). (a) Four alternative ORing configu-
rations, (b) Possible area/delay trade-off points for configurations (I), (II), (III), and (IV), showing
effect of treeing and cascading configurations.

4.12 WORKED EV K-MAP EXAMPLES 181

Here, tree configuration (III) is expected to show the least delay, but at the cost of greater
design area. Tree configuration (II) would seem to have the most favorable area/delay trade-
off, while gate (I) and cascade configuration (IV) are expected to have the least favorable
trade-off. A dual set of ANDing operations would show the same area/delay trade-offs.

4.11 PERSPECTIVE ON LOGIC MINIMIZATION AND OPTIMIZATION

The EV mapping methods described in Sections 4.6 and 4.7 are useful up to three or
four orders of map compression. However, with increasing compression order beyond
third order, the gap usually widens between the reduced forms obtained and the absolute
minimum result. This is especially true if reduced or minimized subfunctions are used to
extract cover from such EV K-maps. For this reason a practical limit of four orders of K-map
compression (eight variables) is set, and use of reduced or minimum subfunctions is highly
recommended. The use of submaps can narrow the gap between a reduced result and one
that is an absolute or exact minimum. This fact is implied by the simple examples given in
the sections on EV mapping methods.

Beyond four orders of compression in fourth-order K-maps, the use of computer algorith-
mic methods for logic minimization becomes necessary. But even these computer programs
have their limitations, particularly with regard to multiple output systems having a large
number of input variables. It is an established fact that the generalized optimal solution for an
n-variable function is impossible. The reason for this is that 2" minterms must be dealt with
in some manner or another. Minimization problems in the class referred to as P are called
tractable problems — those for which an optimum or near-optimum solution is possible.
Those that are intractable belong to the class of problems referred to as A/^P-complete. The
search for faster, more robust algorithms to optimize very large multiple output systems
continues. These algorithms are most likely to be of the heuristic type. Though the Q-M
linear tabular method is useful in introducing readers to the subject of logic minimization,
it is of little practical importance given the much-improved heuristic methods now in use.

Finally, it must be said that the SOP (or POS) minimization of a function may not be an end
in itself. Section 4.9 demonstrates that optimization may continue beyond minimization by
techniques such as factorization and resubstitution that generate multilevel functions. To do
this, however, brings into play other factors such as area/delay trade-offs. Thus, there emerge
two approaches to function optimization from which the designer must choose: Optimize
design area under delay constraints or optimize delay under design area constraints. It is
unlikely that a system can be optimized with respect to both design area and delay, although
it may be possible to come close to this for some systems.

4.12 WORKED EV K-MAP EXAMPLES

EXAMPLE 4.1 Compress the following four-variable function into a third-order K-map
and extract minimum SOP and minimum POS cover from it.

f(A, B, C, S) = ^m(2, 3, 5, 6, 7, 10, 12, 13, 15)

=]~[Af(0, 1,4, 8,9, 11,14). (4.72)

182 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

VBC
A\ oo 01 ' 11 10

•E
1

1

c c
(a) SOP Cover (b) POS Cover

FIGURE 4.50
(a) Minimum SOP cover and (b) minimum POS cover for the function /.

The compressed third-order K-maps representing SOP and POS cover are shown in
Fig. 4.50. Applying the loop-out protocol first to the EV and then to the 1's and O's gives

fsop = BCS +BS+ ABC + AC

B + S)(A + C + S)(B + C)

EXAMPLE 4.2 A four-variable function Z containing don't cares is shown in the com-
pressed third-order K-map of Fig. 4.51. Two first-order submaps for cells 4 and 6 are also
shown to demonstrate that the don't care (0) is treated as an EV, which it is.

(a) Represent the function Z in canonical SOP and POS form by using coded notation.
Noting that the Map Key is 24~3 = 2, the results can be written directly in canonical SOP

and POS form by counting by 2's or by making use of first-order submaps in D, and by
applying the minterm and maxterm codes, respectively. For example, cell 3 represents m^
or M-j, cell 4 represents (0m 8 + mg) or 0Mg, and so on. Proceeding in this manner, the
results are given by

Z(A, B, C, D) = ^m(0, 1,5,6,9, 10, 11) + 0(2, 3, 8, 13)

= Y[M(4, 7, 12, 14, 15) • 0(2, 3, 8, 13), (4.73)

where knowing one canonical form yields the other through observation of the missing
numbers in the former.

vBC
00 01 ' 11 10

f
1

0

^+D
4

*
1

1
5

D
3

0
7

D
2

*D 6

Cell 4 Cell 6

FIGURE 4.51
Compressed K-map for Example 4.2 showing sample first-order submaps.

4.12 WORKED EV K-MAP EXAMPLES 183

\DO rA\ oo 01 ' 11 10

o

1
4

I

1
0

1
4

$
1

1
5

(

D

0

3

^ — f 7

"ol
2

0)
~~V — /'s

c c
(a) SOP cover (b) POS cover

FIGURE 4.52
(a) Minimum SOP cover and (b) minimum POS cover for function Z of Example 4.2.

(b) Extract minimum SOP and minimum POS cover for the function Z.
In Fig. 4.52 are the third-order K-maps showing the minimum SOP and minimum POS

cover for the function Z. Notice that the subfunction in cell 6 is interpreted differently in
the SOP and POS K-maps.

From reading this cover, the results are

ZSOP=ACD + C
ZPOS = (B + C + D}(B + C + D)(A + B),

which are seen to be logically equivalent but not algebraically equal. Notice that the 1's in
the SOP K-map are looped out as the octad B by using 08 = 1 in cell 4 of Fig. 4.5 1 to give
08 + D = 1 . Also, note that the 0 in cell 6 of the POS K-map in Fig. 4.5 1 is looped out as
the quad A + B by using 0]3 = 0 to give 0nD = 0. Thus, 0n is used as a 1 for minimum
SOP extraction but as a 0 for minimum POS extraction, meaning that the SOP and POS
expressions cannot be algebraically equal.

EXAMPLE 4.3 A four- variable function F(A, B, C, D) containing don't cares is com-
pressed into the truth table given in Fig. 4.53.

(a) Represent the function F in a second-order K-map, and express F in canonical SOP
and POS form by using coded notation.

(b) By proper interpretations of the don't care subfunctions, loop out the minimum SOP
and POS cover from the second-order K-map and give the gate/input tallies for each.

A B

0 0

0 1

1 0

1 1

C-D

D)

+ D)

FIGURE 4.53
Compressed truth table for a function F of four variables.

184 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

C - D
D>1

+ C + D
"-F \°F cv

CelM

Cell 2 Cell 3

(a) (b)

FIGURE 4.54
(a) Second-order compressed K-map and its submaps for the four-variable function given in the EV
truth table of Fig. 4.53. (b) EV K-maps showing minimum SOP cover and minimum POS cover.

(a) The simplest means of obtaining the canonical forms from Fig. 4.53 is to use a
second-order K-map. Shown in Fig. 4.54a is the second-order compressed K-map together
with its submaps for a Map Key of 24~2 = 4. By reading the submaps directly, the canonical
forms become

F = £] m(3, 6, 9, 10, 1 1) + 0(7, 8)

' 2< 4> 5' 12> 13< 14> 15> ' 0(7. 8). (4.74)

(b) The compressed second-order K-maps for the function F are given in Fig. 4.54b.
From these K-maps the minimum SOP and minimum POS expressions are found to be

FSOp = BCD + ABC + AB

FPOS = (A + B + D)(A + C}(A + B),

with gate/input tallies of 4/1 1 and 4/10, respectively, excluding possible inverters. Notice
that the minimum SOP and POS cover results from these K-maps by taking 07 = 1 to give
C(0 7 +D) = C in cell 1 , and by taking 0 g = 1 to give (0 8 + C + D) = 1 in cell 2. Because the
don't cares, 07 and 0 g , are used in the same way (no shared use) in both K-maps of Fig. 4.54b,
the minimum SOP and POS expressions are algebraically equal.

EXAMPLE 4.4 A five-variable function / is given in the canonical form:

/(A, B, C, D, E) = J]fn(3, 9, 10, 12, 13, 16, 17, 24, 25, 26, 27, 29, 31). (4.75)

(a) Use a fourth-order EV K-map to minimize this function in both SOP and POS form.
A compression of one order requires that the Map Key be 2. Therefore, each cell of

the fourth-order EV map represents a first-order submap covering two possible minterm or

4.12 WORKED EV K-MAP EXAMPLES 185

VCD C \ CD
AB \ 00 01 ' 11 10 '

00

01

11

A 15 -44

J\ 00

00

01

11

10

0)

E
v — J

1

01

0

4

12

1

8

E
1

fi~
5

1

13

11

0

0
~t — >

E

— 1
[0 0

10

)
7

,4
(0

2

1

6

E
15] 14

T
9l I 11

I

D

(b)

0
lie

R

/
' TPOS

10

1̂
I I / TSOP

D

(a)

FIGURE 4.55
Fourth-order EV K-maps for the five-variable function / in Eq. (4.75). (a) Minimum SOP cover and
(b) minimum POS cover.

maxterm positions. In Fig. 4.55 are the fourth-order EV K-maps showing minimum SOP
and minimum POS cover for which the expression are

fsop = ABCDE + BCDE + BDE + ABE + ABCD + ACD

• (A + C + D)(A + B + D}(B + C).

Notice that the loop-out protocol is applied first to the EVs and then to the 1's or O's as
a "cleanup" operation, a practice that should always be followed. Also, notice that for the
POS result, the term (B + D + E) is an OPI for the term (A + B + E).

(b) Find the minimum SOP cover for the five-variable function in Eq. (4.75) by using
conventional (1's and O's) A\\BC/DE format K-map similar to that used for a six-variable
function in Fig. 4.37.

Shown in Fig. 4.56 is the conventional (1's and O's) K-map indicating minimum SOP
cover.

EXAMPLE 4.5 Map the reduced function in Eq. (4.76) into a fourth-order K-map and
extract minimum SOP and POS cover. Give the gate/input tally for each result, exclusive
of possible inverters.

Y = ABCDE + ABCD + ABDE + BCDE + ABCDE + ABDE + ABCE
- _ _ (4.76)

+ BCDE + A CDE + ABCE

The function of Eq. (4.76) is mapped into the fourth-order K-map shown in Fig. 4.57,
and the minimum SOP and minimum POS covers are indicated with shaded loops. The
resulting minimum expressions are given by

YSOP = ABDE + ABDE + BCE + BDE + BCE

YPOS = (B + D + E}(C +D + E)(B + E)(A + C + E}(B + C + D}(A + B + C),

186 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

\l DE D \ DE

BC\ 00 01

00

01

B

11

10

0
0

0
4

(1
12

0
8

0

0

(— ̂

1
•4-
bl

1

5.

)

13

9

11 10 ' BC\ 00 01

(T|
3

0
^-~~~7

0
15

0
11

0
2

0
6

0
14

^4

00

BDE 01

C j_

B

^^

11

10

1
16

0
~^^c

0
28

1
24

1

0

Ny— -,

1

D
1 11 10

17

21

|
2E

b,
E ^~ r-r

0
19

0
23

1
31

1

27

^

0
18

0
22

0
3C

^^^
" E

BCDE

FIGURE 4.56
Conventional (1 's and O's) format of the type A \\BC/DE for the function / in Eq. (4.75).

which represent gate/input tallies of 6/22 and 7/23, respectively, for the YSOp and YPOs
results, exclusive of inverters. Notice that the I's in the SOP K-map are covered by the
quads BCE and BDE,and that the 0 in cell 12 of the POS K-map is covered by the quads
(B + D + E) and (A + C + E).

EXAMPLE 4.6 Compress the following function into a second-order K-map and extract
minimum SOP and POS cover:

Z(A, B, C, D) = M(2, 4, 7, 11, 12, 14, 15)

=]Tm(0, 1,3,5,6, 8, 9, 10, 13). (4.77)

In Fig. 4.58 are the second-order EV K-maps and submaps showing minimum SOP and

CD C \CD
AB\ 00 01 ' 11 1 0 1 AB\ 00 01 1 1 1 10

A

00

01

11

10

12 13 15

E
11

14

00

01

11

10

12 13 15

11 O/
J ^Y

D D

(a) (b)

FIGURE 4.57
(a) Minimum SOP cover and (b) minimum POS cover for the function Y in Eq. (4.76).

4.12 WORKED EV K-MAP EXAMPLES 187

o i X? o
0

1

1
0

0
2

1
1

1
3

0

A^ 0 1 <\
/

'0 o

\cc\
0

0

1
8

1
10

1

1
9

0
11

1

.. ^ __

C

JL

+IEJ(6- CD +[CD 1

-^ CD
3

n
4

1
6

1
5

0
7 ^ 0/

'1 0

°1

' ^SOP .

/

0
12

n
14

1
— 12

n
15

1

f II II ^

[C * DJ

[c + D

(C+D)

©

/

1

[6+D)

5) . /
^2-POS

(a) 'd (b)

FIGURE 4.58
Second-order EV K-maps and submaps for the function Z in Eq. (4.77) showing (a) minimum SOP
cover and (b) minimum POS cover.

minimum POS cover for the function Z with the results given by

ZSOP = ABCD + ABD + ABD + BC + CD

Zpos = (A + B + C + D)(B + C + D)(B + C + D)(A + B + D)(A + C + D)

Notice how easy it is to read a subfunction when accompanied by a submap. Thus, the
SOP term CD is easily observed to be present in each of the four submaps of Fig. 4.58a.
Similarly, CD, read as a POS term in Fig. 4.58b, is seen to contain both the (C + D) and
(C + D) terms by a cursory inspection of the submaps.

EXAMPLE 4.7 Compress the following six-variable function into a fourth-order EV
K-map and extract minimum SOP and minimum POS cover for it:

W(A,B,C,D,E,F) = Y^™(4,6,&,9, 10, 11, 12, 13, 14, 15,20,22,26,27,30,31,

36, 38, 39, 52, 54, 56, 57, 60, 61). (4.78)

Compressing a six-variable function into a fourth-order K-map requires a Map Key of
26~4 = 4, hence four possible minterms per K-map cell. This is a second-order compression
meaning that each cell of the K-map contains subfunctions from a second-order K-map.
Shown in Fig. 4.59 are the fourth-order K-maps for the function W in Eq. (4.78) where the
EVs are E and F. The minimum covers for the SOP and POS functions are indicated by
shaded loops and yield

WSOP = ABCDE + ABCE + CDF + ACE + ABC

WPOS = (A + B + C + E)(C + E + F)(B + C + F)(A + C + F)(A + C + E)

• (A + B + C)(C + D),

which represent gate/input tallies of 6/23 and 8/28, respectively. Note that the loop-out
protocol is applied first to the EVs and then to the 1 's and O's as cleanup operations, a proce-
dure that should always be followed. Observe also that these expressions are algebraically
equal since no don't cares are involved.

188 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

\ CD C \ CD
AB\ 00 01 I 11 lo""1

00

01

11

10

13 15

11

1J
14

1C/

1\
00

01

11

10

00

fo

0

0

0

0_

4

12

^ 8-

01

F

F

F
1

E + F
J

1

5

3

9

11

1
3

IE
7

E
(15

fo
11

I

10

1
2

E)
6

E
"~1 14

~ o)
10

—

R

/
/Wpos

D D
(a) (b)

FIGURE 4.59
Fourth-order EV K-maps for the six-variable function W in Eq. (4.78) showing (a) minimum SOP
cover and (b) minimum POS cover.

FURTHER READING

Nearly every text on digital or logic design provides some coverage of conventional (1 's and
O's) K-map methods. Typical among these are texts of Hill and Peterson; Nelson, Nagle,
Carroll and Irwin; and Roth.

[1] F. J. Hill and G. R. Peterson, Digital Logic and Microprocessors. John Wiley & Sons, New York,
1984.

[2] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and
Design. Prentice Hall, Englewood Cliffs, NJ, 1995.

[3] C. H. Roth, Fundamentals of Logic Design, 4th ed., West, St. Paul, MN, 1992.

References on entered variable (EV) K-map methods are limited to only a few texts. The
best sources appear to be the texts of Comer, Shaw, and Tinder.

[4] D. J. Comer, Digital Logic and State Machine Design, 3rd ed., Sanders College Publishing, Fort
Worth, TX, 1995.

[5] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993.
[6] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,

NJ, 1991.

A classic contribution to logic minimization generally, is found in the text of Kohavi.
There, can be found early treatment of the algebraic, tabular, and mapping methods. Entered
variable K-map methods are not treated in this text.

[7] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, New York, 1978.

The two logic minimization algorithms briefly discussed in this chapter, the Quinn-
McCluskey method and the Espresso approach (which is a heuristic algorithm), have been

PROBLEMS 189

cited in countless publications. A few representative sources of these methods are presented
here. Included are some of the original references as well as some of the more current ones,
which often provide useful summaries of the methods.

[8] E. J. McCluskey, Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986.
[9] E. J. McCluskey, "Minimization of Boolean Functions," Bell Syst. Tech. J. 35(5), 1417-1444

(1956).
[10] W. V. Quine, "The Problem of Simplifying Truth Functions," Am. Math Monthly 59(8), 521-531

(1952).
[11] R. K. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic Minimization

Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston, 1984.
[12] R. Rudell and A. Sangiovanni-Vincentelli, "Multiple-valued Minimization for PLA Optimiza-

tion," IEEE Transactions on CAD/CAS CAD-6(5), 727-750 (1987).
[13] R. K. Brayton, P. C. McGeer, J. V. Sanghavi, and A. L. Sangiovanni-Vincentelli, "A New Exact

Minimizer for Two-Level Logic Synthesis," in Logic Synthesis and Optimization (T. Sasao, Ed.).
Kluwer Academic Publishers, Boston, 1993.

References on the factorization, resubstitution, and decomposition methods of optimiza-
tion of multilevel circuits are fairly numerous but are set in fairly advanced notation. Perhaps
the most useful are those found in texts by De Micheli, Kohavi, and Dietmeyer, and in the
reference book edited by Sasao. Advanced preparation by the reader is recommended for
use of these references. The text of De Micheli also has useful discussions of the area/delay
trade-off factors.

[14] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York, 1994.
[15] D. L. Dietmeyer, Logic Design of Digital Systems, 2nd ed., Allyn and Bacon, Boston, 1971.
[16] M. Fujita, Y. Matsunaga, Y. Tamiya, and K.-C. Chen, "Multi-Level Logic Minimization of Large

Combinational Circuits by Partitioning," in Logic Synthesis and Optimization (T. Sasao, Ed.).
Kluwer Academic Publishers, Boston, 1993.

[17] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, New York, 1978.

PROBLEMS

4.1 Expand each of the following expressions into canonical (literal) form by using the
appropriate Boolean laws:
(a) e(a,b) = a + b
(b) f (x , y) = x+xy
(c) g(A,B, C) = ABC+ABC+AB+BC + ABC
(d) h(X, Y, Z) = (X + Y)(X + Y + Z)(F + Z)(X + Y + Z)
(e) E(A, B, C, D) = (A + BQ(B + D)(A +C + D)(A + B + C + D)(B + D}
(f) F(w, x, y, z) = wxyz + wxz + xyz + wxyz + xz + wxyz + wxyz
(g) G(a, b, c, d,) = (a + b + c + d)(b + c + d)(d + b)(b + d)(d + c + d}
(h) H(V, W, X, Y) = VWXY + XY + WXY + VWXY + VXY+ VWXY + WXY

4.2 Place each of the three-variable functions below in a canonical truth table and in a
conventional (1 's and O's) K-map. Place the variables on the K-map axes in alphabetical

190 CHAPTER 4 /LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

order beginning with the ordinate (vertical) axis, as has been done throughout this text.
(a) P(A, B,C) = (A + B + C)(A + B + C)(A + B + C)(A + B + C)(A + B + C)

(b) 0(a,fc, c) = £>(!, 2, 4, 5, 6)
(c) W(a, b, c) = abc + abc + abc + abc + abc

(d) X(A, B,C) = Y\M(0,l ,2, 6,7)
(e) Y(w, x, y) = wx + xy + w(x © y) + wy (Hint: Expand first.)

(f) Z(A, 5, C) = (A + £) Q (A Q + AB (Hint: First construct a truth table
with input A.)

(g) F(X, Y, Z) = XY®YZ®XZ + XY [Hint: See Eq. (3.33).]

4.3 Place each of the four-variable functions below in a canonical truth table and in a
conventional (1 's and O's) K-map. Place the variables on the K-map axes in alphabetical
order beginning with the ordinate (vertical) axis, as has been done throughout this text.
(a) R(u, v, w, x) = £ m(0, 2, 3, 7, 8, 9, 10, 11, 13)
(b) S(a, b, c, d) = (a + b}(d + bc)(b + c)(a + b + c)
(c) T(W, X, Y, Z) = YZ + WXY + WXYZ + XYZ + WYZ + WXYZ + XYZ

(d) U(A,B,C,D) = Y\ M(0,5,8,9, 11, 12, 15)

(e) V(a, b, c,d) = J2 m(0, 4, 5, 7, 8, 9, 13, 15)
(f) W(u, v, w, x) = [(v + w) O x](u + w}(u + v)(u + x)

(g) X(A, B, C, D) = (A 0 B)CD + BCD + BCD + (A + B)CD + AB(C Q D)
(Hint: First construct a truth table for CD, then map the result into a 1's and O's
K-map.)

(h) F(W, x, Y, z) = (x e z) e [W(Y e z>] + XYZ
(Hint: First construct a truth table for WX, then map the result into a 1's and O's
K-map.)

4.4 Place each function of Problem 4. 1 into a conventional (1's and O's) K-map and extract
canonical (coded) SOP and POS expressions from that K-map.

4.5 Minimize each function of Problem 4.2 in both SOP and POS form with a third-order
K-map. By using the gate/input tally (exclusive of possible inverters) determine which
is simpler, the SOP or POS expression. Do not implement with logic gates.

4.6 Minimize each function of Problem 4.3 in both SOP and POS form with a fourth-
order K-map. By using the gate/input tally (exclusive of possible inverters), determine
which is simpler, the SOP or POS expression. Do not implement with logic gates.

4.7 The following three-variable functions are incompletely specified functions, that is,
they contain don't cares. By using a third-order K-map, minimize each function in
both SOP and POS form with and without the use of the don't cares in each case.
Identify any OPIs that may be present.
(a) <? (A, f l ,C) = £>(0, 1,2, 7) + 0(3, 5)
(b) f (X , Y, Z) = 0 M(3, 4, 6) - 0(0, 2)
(c) g(f l ,£>,c) = £>(0,l,5,7) + 0(2,4)

(d) h(x, y,z) = U M(3, 4, 5) - 0(0, 1, 2)
(e)

PROBLEMS 191

A(H)

B(H)

C(H)

D(H)

Combinational
Logic

f,(H)

FIGURE P.4.1

4.8 The following four- variable functions are incompletely specified functions — they
contain don't cares. Use a conventional (1 's and O's) K-map to minimize each function
in both SOP and POS form and, with the help of the gate/input tally (exclusive of pos-
sible inverters), indicate which is simpler. Also, identify any OPIs that may be present.
(a) E(a,b,c,d) = ^m(6, 11,12, 13, 14) + 0(0, 1, 2, 3, 4, 5)
(b) F(A,B,C, D) = Y[M(0,3,6, 11, 13, 15) • 0(5, 8, 10, 14)
(c) G(W, X, Y, Z) = £>(0, 4, 6, 8, 9, 10, 11, 14, 15) + 0(1, 5)
(d) H(w, x, v, z) = PI M(l, 2- 3, 9, 10, 14) • 0(11, 13)
(e) I(A, B, C, D) = £ m(4, 5, 7, 12, 14, 15) + 0(3, 8, 10)
(f) J(a, b, c,d} =]\ M(0, 1, 2, 5, 7, 9) • 0(4, 6, 10, 13)

4.9 Find the optimum cover (either SOP or POS) for the following four-input/two-output
system (see Fig. P4.1). Base your choice on the total gate/input tally (including in-
verters) for the system. Assume the inputs and outputs are all active high. Do not
construct the logic circuit.

fi=2_; m(Q, 2, 4, 5, 9, 10, 11, 13, 15)

/2 = J^m(2, 5, 10, 11, 12, 13, 14, 15)

4.10 Three functions, each of three inputs, are given in canonical SOP form. Follow the
discussion in Section 4.5 and find the optimized SOP minimum for the three func-
tions taken as a system. Give the total gate/input tally for the system, exclusive of
inverters.

/ i (A,B,C) = y^m(l ,3,5,6,7)

(0, 1,3,6)

4.11 Two functions, each of four variables, are given in canonical SOP form. Follow the
discussion in Section 4.5 and find the optimized SOP and POS minima for the two
functions taken as a system. By using the gate/input tally, exclusive of inverters,
indicate which is simpler, the SOP result or the POS result.

F,(A, B, C, D) = £ m<7' 8' 10' 14' 15) + #(!' 2' 5' 6)

F2(A, fl, C, D) = /n(l, 5, 7, 8, 11, 14, 15) + 0(2, 3, 10)

192 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

4.12 The two four-variable functions shown are presented in canonical POS form. Follow
the discussion in Section 4.5 and find the optimized SOP and POS minima for the two
functions taken as a system. Use the gate/input tally, including inverters, to determine
which is simpler, the SOP result or the POS result. Implement the simpler of the two
forms in either NAND/INV or NOR/INV logic. Assume that the inputs and outputs
are all active high.

gi(A, B, C, D} = Y\M(0, 3, 4,11, 12, 13, 15) • 0(2, 5, 6)

g2(A, B, C,D) = Y\ M(0, 1, 9, 12, 13) • 0(2, 3, 4, 10)

4.13 Given below is a set of three functions, each of four variables. Follow the discussion
in Section 4.5 and find the optimized SOP and POS minima for the three functions
taken as a system. Use the gate/input tally, excluding inverters, to determine which is
simpler, the SOP result or the POS result. [Hint: In determining the shared Pis, don't
forget to include the ANDed and ORed functions (y\ • y^ • ys) and (yi + y2 + ys).]

yi(a, b, c,d) = ̂ m(0, 1,2,5,1, 8, 10, 14, 15)

y2(a, b, c, d) = £/n(0, 2, 4, 5, 6,1, 10, 12)

y3(a, b, c,d) = J2™(°' !> 2> 3' 4> 6> 8> 9> 10> !!)

4.14 Extract minimum SOP and POS expressions (cover) from the K-maps shown in
Fig. P4.2. Where appropriate, application of the loop-out protocol discussed in Section
4.4 will help to avoid redundancy.

4.15 Following the discussion in Section 4.6, compress each function in Problem 4.2 into
a second-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use
the LSB variable as the entered variable (EV).

4.16 Following the discussion in Section 4.6, compress each function in Problem 4.3 into
a third-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use
the LSB variable as the entered variable (EV).

4.17 Following the discussion in Section 4.6, compress each function in Problem 4.7 into
a second-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use
the LSB variable as the entered variable (EV).

AB\ oo 01 11 10

A\
0

1

1

B

\B
A I

0

1

0

1

X

1

X

0

\BC
A\ °°

0

1
/_

D

D

01

1

1

11

D

0

10

1

D

00

01

11

' h1 ' h2 ' h3
10

E

E

1

1

0

0

0

E

1

E

0

0

0

E

1

0

(a) (b) (c) (d)

FIGURE P.4.2

PROBLEMS 193

4.18 Following the discussion in Section 4.6, compress each function in Problem 4.8 into
a third-order K-map (Map Key = 2) and extract minimum SOP and POS cover. Use
the LSB variable as the entered variable (EV).

4.19 Following the discussion in Section 4.7, compress each of the following five-variable
functions into a fourth-order K-map (Map Key = 2) and extract minimum SOP and
POS cover. Use the LSB variable as the entered variable (EV).
(a) q(A, B, C, D, E) = 0 M(0, 1, 2, 5, 14, 16, 17, 18, 19, 21, 26, 27, 30)

(b) r(A, B, C, D, E) = ABCE + ACDE + BCDE + ABCE + ABDE
+ A BCDE + BCDE + ABD + BCD + ABCDE

(c) s(A, B, C, D, E) = £m(0, 2, 4, 5, 7, 10, 13, 15, 21, 23, 24, 25, 28, 29, 30)
(d) t(A,B,C, D) = (A + B+_D+E)(B + C + D + E)(A+B+E)(A + C + D+E)

•(B + C + D)(B + C+D + E)(A +B+C+D+ E\B + C + D + E)
• (A + B + C)(B + C + D}(B + C + D + E)

4.20 Minimize each function of Problem 4.19 in both SOP and POS by using a conventional
(1's and O's) K-map. To do this follow the example in Fig. 4.56.

4.21 Following the discussion in Section 4.6, compress each function in Problem 4.2 into
a first-order K-map (Map Key = 4) and extract a minimum SOP and POS expression
for each. Use the last two significant bit variables as EVs.

4.22 Following the discussion in Section 4.6, compress each function in Problem 4.3 into a
second-order K-map (Map Key = 4) and extract a minimum SOP and POS expression
for each. Use the last two significant bit variables as EVs.

4.23 Following the discussion in Section 4.6, compress each function in Problem 4.7 into
a first-order K-map (Map Key = 4) and extract a minimum SOP and POS expression
for each. Use the last two significant bit variables as EVs.

4.24 Following the discussion in Section 4.6, compress each function in Problem 4.8 into a
second-order K-map (Map Key = 4) and extract a minimum SOP and POS expression
for each. Use the last two significant bit variables as EVs.

4.25 Compress each function in Problem 4.19 into a third-order K-map (Map Key = 4) and
extract a minimum SOP and POS expression for each. Use the last two significant bit
variables as EVs.

4.26 Shown in Fig. P4.3 are two functions, F and Z, each of four variables, that have
been compressed into third-order K-maps. (Hint: It will help to first simplify the

\BC \BC
A\ oo 01 11 10 AX °° 01 11 10

*5

0

0

1

D

W

*

D

0

1
/

0

D(*D)

1

^

D

^D+D

fflD

(h

(a) (b)

FIGURE P.4.3

194 CHAPTER 4 / LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

\CD
AB\ 00 01 11 10

00

01

11

10

1

1

0

1

0

1

1

0

0

0

1

0

1

0

0

1
/F

FIGURE P.4.4

subfunctions in cells 4 and 7 of function Z by applying the laws of Boolean algebra
while treating the 0 as an entered variable.)
(1) By following the example in Fig. 4.33a, construct the first-order submap for each

of the eight cells in each K-map.
(2) Give the canonical SOP and POS expressions in code form for each function.
(3) Extract the minimum SOP and POS forms from each third-order K-map, keeping

in mind the discussion on the use of don't cares in Subsection 4.6.1.

4.27 Compress the fourth-order K-map in Fig. P4.4 into a second-order K-map (Map
Key = 4) and loop out minimum SOP and POS expressions according to the follow-
ing format:
(a) Set A, B as the axis variables.
(b) Set B, C as the axis variables.
(c) Set A, C as the axis variables.

4.28 Compress the following function into a fourth-order K-map (Map Key = 4) and extract
minimum SOP and POS forms. By using the gate/input tally (exclusive of inverters),
indicate which form is simpler.

Y(A, B, C, D, E,F) = M(0, 1, 5, 7, 9, 15, 16, 18, 21, 24, 29, 31, 35, 37, 39,

40,45,49,50,56,58,60,61,63)

4.29 Shown in Fig. P4.5 is a function of six variables that has been compressed into a
third-order K-map, hence a third-order compression (Map Key = 8).

\BC
A\ 00 01 11 10

1

1

X+Y

XT

X-Y

0

Z

Z

/F

FIGURE P.4.5

PROBLEMS 195

(a) From the third-order K-map, write the canonical coded SOP and POS for this
function.

(b) Use this K-map to extract the minimum SOP and POS expressions for this function.

4.30 Find the minimum SOP and POS expressions (cover) for each of the following
sub-functions and give the cell location of each sub-function in the fourth-order
K-map.
(a) P(A, B, C, D, E, F, G) = £ m(33, 34, 36, 38) + 0(32, 29)
(b) Q(a, b, c, d, e, /, g, h} = £>(114, 116, 118, 122, 124, 126)
(c) R(A, B, C, D, E, F, G) = H Af(105, 107, 108, 109, 110)
(d) S(a, b, c, d, e, f, g, h) = FJ M(176, 181, 182, 183, 184, 189, 191)

• 0(177, 185, 190)

4.31 Minimize each of the following functions in both SOP and POS form by using the
Quine-McCluskey (Q-M) algorithm discussed in Section 4.8.
(a) /(«;,*, ;y) = J>(0,l, 3, 5, 7)
(b) g(a,b,c) = 0^(2,3,4,6)
(c) F(W, X, 7, Z) = £>(0, 2,4,5,6, 8, 10,11,13, 14)
(d) G(A,B,C, D) = Y\M(l,2,3,5,l,9, 11,12, 14)

4.32 Minimize each of the functions of Problem 4.7 in both SOP and POS form by using
the Quine-McCluskey (Q-M) algorithm discussed in Section 4.8. Keep in mind the
manner in which the Q-M algorithm treats don't cares.

4.33 Minimize each of the functions of Problem 4.8 in both SOP and POS form by using
the Quine-McCluskey (Q-M) algorithm discussed in Section 4.8. Keep in mind the
manner in which the Q-M algorithm treats don't cares.

4.34 Use the method of factorization to obtain a gate-minimum SOP and POS result for
the following two-level functions. Find the gate/input tally (including inverters) for
each and compare the results with the two-level minimum forms. Assume the inputs
all arrive from positive logic sources. (Hint: First minimize the functions in two-level
form and then apply the_ factorization method.)
(a) Y = AB + BD + AC+ABC + ACD

(b) F = ABDE + ABCE + CDE + BCDE + ABCD + (A O C)(B + D)

4.35 Use the resubstitution method discussed in Subsection 4.9.2 to obtain a gate mini-
mum for each of the following functions. Compare the gate/input tally (excluding
inverters) of the result with that for the two-level minimum. Also, comment on fan-in
and inverter requirements for each, and on the gate propagation delay level for each.
Assume that all inputs are active high. (Hint: First obtain the two-level SOP minimum
expression, then plan to use the suggested divisor given for each.)
(a) F(W, X, Y, Z) = £ m(0, 4, 5, 7, 10, 13, 14, 15) (Use divisor X + Z)
(b) G(A,B,C, D) = £>(0, 1,2,3,4,9, 10,11, 13, 14,15)

(Use divisor A + C + D)
(c) H(W, X, Y, Z) = f] M(0, 2, 4, 6, 9) (Your choice of divisor)

4.36 Decompose each function in Problem 4.3 1 by applying Shannon 's expansion theorem
discussed in Subsection 4.9.3. Try at least two sets of two- variable axes about which

196 CHAPTER 4/LOGIC FUNCTION REPRESENTATION AND MINIMIZATION

each expansion is to be performed. Compare the best expansion result for each with
its two-level K-map minimum result.

4.37 Use BOOZER, the logic minimizer bundled with this text, to verify or compare (if ap-
plicable) the results with any of the previously stated problems. For example, Problem
4.37/4.6c would require use of BOOZER to minimize Problem 4.3c, since Problem
4.6 refers to Problem 4.3. [Hint: To obtain a minimum POS result by using BOOZER,
map the function, complement each cell of the K-map, enter the results into BOOZER
and minimize as an SOP function, and then complement the BOOZER result. Note
that either entered variables (EVs) or I's and O's can be entered into the BOOZER
algorithm — your choice.] Follow the entry protocol contained in the Readme.doc
accompanying the BOOZER software.

4.38 Repeat Problem 4.37 by using the ESPRESSO logic minimizer bundled with this text.
For example, Problem 4.38/4.19b would require the use of ESPRESSO to minimize
the function r after it has been properly expressed in minterm code form.

CHAPTER 5

Function Minimization
by Using K-map XOR Patterns
and Reed-Muller
Transformation Forms

5.1 INTRODUCTION

In this chapter it will be shown how simple "pencil-and-paper" methods can be used to
extract gate-minimum multilevel logic designs not yet possible by any conventional method,
including the use of CAD techniques. The methods described here make possible multilevel
1C designs that occupy much less real estate than would be possible for an equivalent two-
level design, and often with little or no sacrifice in speed—an advantage for VLSI design.

There are a variety of approaches to logic function minimization, which can be divided
into two main categories: two-level and multilevel approaches. Chapter 4 was devoted
primarily to the two-level approach to minimization. Combining entered variable (EV) sub-
functions and the XOR patterns (described in the following section) in a K-map extraction
process is a special and powerful form of multilevel function minimization. Used with two-
level logic forms (AND and OR functions) this multilevel minimization approach leads
to XOR/SOP, EQV/POS, and hybrid forms that can represent a substantial reduction in
the hardware not possible otherwise. XOR/SOP and EQV/POS forms are those connecting
p-terms (product terms) with XOR operators or s-terms (sum-terms) with EQV operators,
respectively. Hybrid forms are those containing a mixture of these.

Another approach to multilevel logic minimization involves the use of Reed-Muller
transformation forms (discussed in Sections 5.5 through 5.12) that are partitioned (broken
up) into tractable parts with the assistance of entered variable Karnaugh maps (EV K-maps).
The process is called the contracted Reed-Muller transformation (CRMT) minimization
method and is expressly amenable to classroom (or pencil-and-paper) application. General
information covering the subjects associated with Reed-Muller minimized logic synthesis
are cited in Further Reading at the end of this chapter.

The word level (meaning level of a function) refers to the number of gate path delays
from input to output. In the past the XOR gate (or EQV gate) has been viewed as a two-level

197

198 CHAPTER 5 / FUNCTION MINIMIZATION

device, meaning two units of path delay as implied by the defining relations for XOR and
EQV given by Eqs. (3.4) and (3.5). But the emergence of CMOS 1C technology has moved
the XOR and EQV gates close to single-level gates with respect to compactness and speed,
as is evident from Figs. 3.26 and 3.27. The term multilevel, as used in this text, means the
use of XOR and/or EQV gates together with two-level logic to form multiple levels of path
delay as measured from input to output.

The concept of minimization, as used in this text, is presented in terms of three degrees.
A minimum result is one that yields the lowest gate/input tally for a particular method used,
for example, a two-level minimum result, but may not be the lowest possible. An exact
minimization designates a result that has the fewest p-terms possible in an expression or
the fewest s-terms possible in an expression. An absolute minimum expression is one that
has the lowest possible gate/input tally considering all possible methods of minimization.
Thus, an absolute minimum is a gate/input-tally minimum (or simply gate-minimum) and
is usually the result of a specific or unique method of minimization. As a reminder, the
gate/input tally (defined in Subsection 4.4.3) will usually be given exclusive of possible
inverters. Only when the input activation levels are known can the gate/input tally include
the inverter count.

Where appropriate to do so, reference will be made to the defining relations for XOR
and EQV given by Eqs. (3.4) and (3.5) and to the XOR and EQV laws, corollaries, and
identities presented in Section 3.10. Reference will also be made to minterm code (logic 0 for
a complemented variable and logic 1 for an uncomplemented variable), and to maxterm code
which is the dual of minterm code as discussed in Section 4.2. The EV K-map methods used
in this chapter may be considered as an extension of the conventional methods discussed in
Sections 4.6 and 4.7.

5.2 XOR-TYPE PATTERNS AND EXTRACTION OF GATE-MINIMUM COVER
FROM EV K-MAPS

There are four types of XOR patterns that can be easily identified in EV K-maps:

1. Diagonal patterns
2. Adjacent patterns
3. Offset patterns
4. Associative patterns

References will frequently be made to the so-called XOR-type patterns in EV K-maps.
These are references to the diagonal, adjacent, offset, and associative patterns listed above
and are found only in compressed K-maps. A Mi-order K-map compression results when
an W-variable function is represented in an nth-order K-map — that is, k = N — n. Of the
XOR-type patterns, only the offset pattern requires third and higher order K-maps for its
appearance. K-maps used in the following discussions are all minterm code based, but are
used to extract gate-minimum functions in both minterm code and maxterm code.

Simple examples of the first three patterns are shown in Fig. 5. la, where a six-variable
function has been compressed into a third-order EV K-map. Empty cells 0 and 2 in Fig. 5. la
are to be disregarded so as to focus attention on the patterns: The diagonal pattern formed by
cells 1 and 4 is read in minterm code as BX(A © C) or in maxterm code asB + X + AQC.

5.2 XOR-TYPE PATTERNS 199

\BC I
A_ oo 01 ' 11 10

C

(a)

A\ 00 01 ' 11 10

(c)

FIGURE 5.1
Examples of XOR patterns in compressed K-maps. (a) Diagonal, adjacent, and offset patterns, (b),
(c), (d) Associate patterns.

Notice that the diagonal pattern lies in the B domain (B domain in maxterm code) "for all
that is X," and that the defining relations for XOR and EQV, Eqs. (3.4) and (3.5), are used
for cells 1 and 4 to give A®C and A O C, respectively, for minterm code and maxterm code.
The adjacent pattern is formed by cells 3 and 7 and is read BC(A O Z) in minterm code or as
fi+C+AOZin maxterm code. Here, the adj acent pattern lies at the intersection of domains
B and C in minterm code (B + C in maxterm code), and again the defining relations for
XOR and EQV are used to obtain the minterm and maxterm extraction, respectively. The
offset pattern is formed by cells 5 and 6 and is read in minterm code as AY(B © C) and in
maxterm code asA + 7 + 5OC.In this case, the offset pattern lies in the A domain (A in
maxterm code) "for all that is Y," and the defining relations, Eqs. (3.4) and (3.5), are used
for cells 5 and 6 to obtain B © C and B O C, respectively. Throughout this discussion it is
assumed that any entered variable, for example X, Y, or Z, may represent a single variable
or a multivariable function of any complexity.

Each of the three XOR-type patterns extracted from Fig. 5. la has a gate/input tally of
2/5 (excluding inverters). The gate/input tally is a measure of logic circuit cost (in hardware
and real estate) and is defined in Subsection 4.4.3. The gate count is, of course, the more
significant of the two tallies and the input tally includes the inputs to all gates in the logic
circuit. Unless stated otherwise, the gate/input tally will exclude inverters and their inputs.
By comparison, the two-level logic gate/input tally for each of the patterns in Fig. 5. la is
3/8.

The associative patterns shown in Figs. 5.1b, 5.1c, and 5.Id may combine with any or
all of the other three patterns to form compound patterns. For this reason the associative
patterns require special consideration and will be dealt with separately in the following
subsection.

200 CHAPTER 5 / FUNCTION MINIMIZATION

5.2.1 Extraction Procedure and Examples

Before illustrating the extraction process by example, it will be instructive to outline the
extraction procedure. In this procedure, reference will be made to minterm and maxterm
codes for clarification purposes. Since all K-maps are minterm code based, extraction of
EQV/POS cover from them requires that the K-map domains be complemented, but not
the entered variables. Extraction of XOR/SOP cover follows conventional procedure. The
following six-step extraction procedure applies generally to all four types of XOR-type
patterns.

Extraction Procedure

Step I. Identify the type of EV XOR pattern that exists in the K-map. A diagonal pat-
tern requires identical K-map cell entries in diagonally located cells. An adjacent pattern
requires complementary K-map cell entries in logically adjacent cells. An offset pattern
requires identical cell entries in cells whose coordinates differ by two bits (a Hamming
distance of 2). Associative patterns require terms associated by an XOR or EQV connective
in at least one cell.

Step II. Write down the K-map domains in which the XOR pattern exists and any
subfunctions that are the same in the pattern. Remember that in maxterm code the domains
are complemented, whereas in minterm code they are not.

Step III. Extract the XOR pattern of type 1, 2, or 3 that exists by using the defining SOP
or POS relations for XOR and EQV given by Eqs. (3.4) and (3.5). Associative patterns,
of type 4, are extracted in a manner similar to the extraction of EV s- and p-terms as
discussed in Section 4.6. Thus, associative patterns with XOR connectives are extracted in
minterm code while those with EQV connectives are extracted in maxterm code. Compound
associative patterns involve some combination of associative pattern with one or more of
the other three patterns. They may also include the intersection (ANDing) of patterns or
the union (ORing) of patterns. In all cases involving an associative pattern, the associating
connective must be preserved in the resulting expression.

Step IV. Extract any remaining two-level SOP or POS cover that may exist.
Step V. Combine into SOP or POS form the results of steps I through IV. The resulting

expression may be altered as follows: Single complementation of an XOR/EQV-associated
term complements the XOR or EQV connective while double complementation of the asso-
ciated terms retains the original connective.

Step VI. If necessary, test the validity of the extraction process. This can be done by
introducing the K-map cell coordinates into the resulting expression. Generation of each
cell subfunction of the K-map validates the extraction procedure.

Examples The simplest associative patterns are formed between XOR-associated or EQV-
associated variables and like variables in adjacent cells. Three examples are presented in
Figs. 5.1b, 5.1c, and 5. Id, all representing second-order K-map compressions (two EVs).
For the first-order EV K-map, shown in Fig. 5.1b, the function E is read in minterm
code as

EXOVSOP = (A-X)®Y = (A + X)QY (5.1)

5.2 XOR-TYPE PATTERNS 201

and is seen to be a two-level function. Here, according to step III of the extraction procedure,
the associative XOR pattern is extracted in minterm code in SOP form with X located in
the A domain, hence A • X . The EXOR/SOP form can be converted to the EEQV/POS form by
double complementation as required by Eqs. (3.24), or can be read in maxterm code directly
from the K-map.

The function F in the second-order K-map of Fig. 5. Ic is read in maxterm code, accord-
ing to step III and is given by

FEQV/POS = [(B + f) 0 X] • A, (5.2)

which is a three-level function. In this case the EQV connective associates the Y in cells
0 and 2 (hence B + Y in maxterm code) with the X in all four cells. The remaining POS
cover in cell 0 is extracted with the don't care (</>) in cell 1 by ANDing the previous result
with A as required by step IV in the extraction procedure.

The function G in the third-order EV K-map, shown in Fig. 5. Id, is also read in maxterm
code. Here, the EQV connective associates the X's in cells 0, 1,4, and 5 (thus, B + X in
maxterm code) with the F's in cells 5 and 7 (hence, A + C + F), giving the result

GEQV/POS = [(B + X)Q(A+C + Y)](A + C + X), (5.3)

which is also a three-level function. The term (A + C + X) removes the remaining POS
cover in cells 4 and 6, as required by step IV.

For comparison purposes the two-level minimum results for ESOP> FPQ$, and GPOS are

(5.4)
Y)(B + X + Y)(B + X)A (5.5)

X + Y)(A + C + X + Y)(A + C + X)
B+X + Y). (5.6)

The use of associative patterns often leads to significant reduction in hardware compared
to the two-level SOP and POS forms. For example, function EXOR/SOP has a minimum
gate/input tally of 2/4 compared to 4/10 for ESOP, the two-level SOP minimum form. The
gate/input tally for FEQV/POS is 3/6 compared to 4/11 for the FPOS expression, and function
GEQV/POS has a minimum gate/input tally of 4/12 compared to 6/22 for GPOS, the two-level
POS minimum result, all excluding inverters.

XOR patterns may be combined very effectively to yield gate-minimum results. Shown
in Fig. 5.2a is a second-order compression where diagonal, adjacent, and offset patterns are
associated in minterm code by the XOR operator in cell 1. Here, the defining relation for
XOR, given in Eqs. (3.4), is applied to the diagonal pattern (cells 1 and 4) in the B domain
for all that is X to yield BX(A © C). This pattern is then associated with the intersection
(ANDing) of the adjacent pattern (A O Y) and the offset pattern (B © C) in cells 1, 2, 5,
and 6 to give the gate-minimum, three-level result

HXOR/SOP = [BX(A © C)] © [(A O Y)(B © C)] (5.7)

with a gate/input tally of 6/13. The defining relation for EQV, given in Eqs. (3.5), is used

202 CHAPTER 5 / FUNCTION MINIMIZATION

B
C ' '

00 01

0 ,
/o

/

(X/
4

^X)©Y
7P 1

/
[Y

5

11 10

0
3

0
7

Y
2

Y
6
/

C

(a) (b)

AB \ 00 01 ' 11 10

00

01

10

z")
/ o

^/©/x
/ 4

/x
12

0
8

0
1

0
5

0
13

0
9

Y
3

X,
/

x/©

7

VY
15

0
11

Y
2

Y,

0
6

e/z^
/ 14

\
\ 10,

D

(C)

FIGURE 5.2
Examples of complex XOR patterns, (a) Combined XOR-type patterns, (b), (c) Compound associative
patterns.

for the adjacent pattern (Y in the A domain and Y in the A domain), while Eqs. (3.4) are
applied to the offset pattern (Yand Y in the BC domain, and Yand Y in the BCdomain).
Notice that the O's in cells 3 and 7 play no role in this offset/adjacent pattern even though
they are included in the shaded loop covering this pattern.

For comparison purposes, the two-level minimum result is

HSOP = ABCXY + ABCX + ABCY + BCXY + ABCY + ABCY, (5.8)

which has a gate/input tally of 7/31. Comparison with Eq. (5.7) makes it clear that the three-
level result provides a better gate-minimum result but not necessarily a better performance.
To evaluate the relative performance of the two approaches, fan-in restrictions and gate
propagation delays would have to be established.

Compound (interconnected) associative patterns are also possible and may lead to gate-
minimum functions, although often of a higher level (hence slower) than those where there
is no interconnection between associative patterns. Two examples are given in Figs. 5.2b and
5.2c, both third-order compressions (hence three EVs). Function / is extracted in maxterm
code, yielding the four-level, gate-minimum result

IEQV/POS = [B + (A © X)] Q [Y + (A © 5)] O [A + Z], (5.9)

5.2 XOR-TYPE PATTERNS 203

which has a gate/input tally of 7/14. Extraction involves the association of an adjacent
pattern and a diagonal pattern with the three EQV connectives. The adjacent pattern in
domain B (cells 0 and 2) requires the use of Eqs. (3.5) to give [B + (A 0 X)]. This is
associated with the diagonal pattern in cells 0 and 3, by using Eqs. (3.5), "for all that is
Y" to give [Y + (A 0 #)], but is also associated with the cell 3 connective in domain A
for all that is Z. Notice that the terms in square brackets are commutative. For comparison
purposes the two-level POS result for function / is given by

IPOS = (A + B + X + f)(A + B + X + Y}(A +B + X + Z)(A + B + X + Z)

x(A + B + Y + Z)(A + B + Y + Z) (5.10)

and has a gate/input tally of 7/30.
The function J in Fig. 5.2c is extracted in minterm code, giving the four-level, gate-

minimum result

JXOR/SOP = [D(B O Z)(A O C)] 0 [B(A 0 X)(C O D)] 0 [C(D O Y)(A O B)] (5.11)

with a gate/input tally of 11/25. This function is extracted as three sets of two intersecting
patterns, all associated by the three XOR connectives. The "Z" set consists of adjacent and
diagonal patterns where application of Eqs. (3.5) yields (B O Z) and (A O C), respectively,
which intersect (AND) in the D domain. The "X" set consists of adjacent and offset patterns
that are read as (A 0X) and (C O D), by application of Eqs. (3.4) and (3.5), and that intersect
in the B domain. Here, as in Fig 5.2a, the O's (now in cells 5 and 13) are disregarded in
the development of the offset/adjacent pattern. Finally, the "7" set also consists of adjacent
and offset patterns such that the application of Eqs. (3.5) yields (D O Y) and (A O B),
respectively, which intersect in the C domain. As in the previous example, the terms in
square brackets of Eq. (5.11) are commutative. In comparison, the two-level SOP minimum
for function J is given by

JSOP = ABCDXY + ABCDYZ + ABCDZ + ABCDY + ABCDY + ABCDX + ABCDX

+ AB CDZ + A CDXZ + BCDXZ + BCDXY + ACD YZ (5.12)

and has a gate/input tally of 13/74. Again, the gate/minimum advantage of the multilevel
function over its two-level counterpart in Eq. (5.12) is evident.

Both four-level functions, IEQV/POS and JXOR/SOP, are easily verified by introducing in
turn the coordinates for each cell into the particular expression. For example, if one sets
ABCD = 1111 in Eq. (5.11), the subfuction X 0 Y is generated for cell 15 as required by
Fig. 5.2c. Generation of the subfunctions in each cell validates the extraction process.

The gate/input tallies for all six functions represented previously are given exclusive
of inverters. When account is taken of the inverters required for inputs assumed to arrive
active high, the gate/input tally differentials between the multilevel results and the two-
level results increases significantly. These gate/input tallies from previous examples are
compared in Table 5.1, where all inputs are assumed to arrive active high.

There are other factors that may significantly increase the gate/input tally and throughput
time differentials between multilevel and standard two-level SOP and POS minimum forms.
These include gate fan-in restrictions and static hazard cover considerations. Static hazards

204 CHAPTER 5 / FUNCTION MINIMIZATION

Table 5.1 Gate/input tallies including inverters for functions E, F, G, H, I,
and / represented as multilevel logic forms and as two-level logic forms

Function E F G H I J
Multilevel 2/4 4/7 5/13 7/14 8/15 12/36
Two-level 7/13 7/14 11/21 12/36 12/35 20/81

are a type of timing defect that will be discussed at length in Chapter 9. The term fan-in
refers to the number of inputs required by a given gate. For logic families such as CMOS,
propagation delay is increased significantly with increasing numbers of gate inputs, and it
is here where the multilevel XOR forms often have a distinct advantage over their two-level
counterparts. For example, the largest number of inputs to any gate in the implementation of
function JXOR/SOP is 3, whereas for the two-level function JSOP it is 12. Thus, depending on
how such a function is implemented, the gate/input tally and throughput time differentials
between the multilevel and two-level results could increase significantly. An example of
how multiple output optimization considerations may further increase the gate/input tally
differential between the multilevel and two-level approaches to design is given in Section 8.8.

5.3 ALGEBRAIC VERIFICATION OF OPTIMAL XOR FUNCTION
EXTRACTION FROM K-MAPS

Verification of the multilevel XOR forms begins by direct K-map extraction of the function
in SOP or POS form by using minterm code for XOR connectives and maxterm code for
EQV connectives. It then proceeds by applying Corollary I [Eq. (3.25)] or Corollary II
[Eq. (3.26)] together with commutivity, distributivity, and the defining relations for XOR
and EQV given by Eqs. (3.18), (3.19), (3.4), and (3.5).

As an example, consider the function H in Fig. 5.2a, which is extracted in minterm code.
Verification of this function is accomplished in six steps:

H = ABC(X ® Y) + ABCX + ABCY + ABCY + ABCY (1) From K-map

= [ABC(X 0 7)] 0 (ABCX) 0 (ABCY)
0 (ABCY) 0 (ABCY) (2) By Eq. (3.25)

= (ABCX) 0 (ABCY) 0 (ABCX) 0 (ABCY)
0 (ABCY) 0 (ABCY) (3) By Eqs. (3.19)

= [BX{(AQ 0 (AC)}] 0 [BC{(AY) 0 (AY)}]
®[BC{(AY)@(AY)}] (4) By Eqs. (3.19)

= [BX(A 0 C)] 0 [BC(A O F)] 0 [BC(A O Y)] (5) By Eqs. (3.25),
(3.19), (3.4), and (3.5)

= [BX(A 0 C)] 0 [(A O Y)(B 0 C)] (6) By Eqs. (3.19)
and (3.4)

Notice that in going from step 3 to step 4 the commutative law of XOR algebra is used.

5.4 K-MAP PLOTTING AND ENTERED VARIABLE XOR PATTERNS 205

As a second example, consider function / in Fig. 5.2b, which has been extracted in
maxterm code. Verification of this function is also accomplished in six steps:

I = (A + B + XQ Y)(A + B + X O Z)(A + B + Y O Z) (1) From K-map

== (A + B + X O Y) O (A + B + X O Z) O (A + B + Y O Z) (2) By Eq. (3.26)

= (A + B + X) O (A + B + 7) O (A + B + X) 0 (A + 5 + Z)
O (A + B + Y) O (A + B + Z) (3) By Eqs. (3.19)

= [B + (A + X) O (A + X)] O [Y + (A + B) O (A + B)]
O [A + Z + (B O B)] (4) By Eqs. (3.19)

= [B + (A + X)(A + X)] O [7 + (A + B)(A + B)] O [A + Z] (5) By Eq. (3.26)

= [B + (A © X)] O [Y + (A © 5)] O [A + Z] (6) By Eqs. (3.4)

In going from step 3 to step 4, commutivity was applied before application of Eqs. (3.19).
Also, in step 4, B Q B = 0.

5.4 K-MAP PLOTTING AND ENTERED VARIABLE XOR PATTERNS

At the onset let it be understood that one does not usually hunt for applications of the
XOR pattern minimization methods described here. It is possible to do this, as the example
in this section illustrates, but it is more likely that such methods would be applied to
EV XOR patterns that occur naturally in the design of a variety of combinational logic
devices. Examples of these include a 2 x 2 bit "fast" multiplier, comparator design, Gray-
to-binary code conversion, XS3-to-BCD code conversion, dedicated ALU design, binary-
to-2's complement conversion, and BCD to 84-2-1 code conversion, to name but a few, most
covered in later chapters. EV XOR patterns may also occur quite naturally in the design of
some state machines as, for example, the linear feedback shift register counters discussed
in Subsection 12.4.3.

EV K-map plotting for the purpose of extracting a gate-minimum cover by using XOR
patterns is not an exact science, and it is often difficult to find the optimum K-map com-
pression involving specific EVs, hence specific K-map axis variables. However, for some
functions it is possible to plot the map directly from the canonical form, as illustrated by
the example that follows. For some relatively simple functions, the K-map plotting process
can be deduced directly from the canonical expression. Consider the simple function given
in canonical code form:

f(W, X, Y, Z) = Em(l, 2, 3, 6, 7, 8, 11, 12, 13). (5.13)

Shown in Fig. 5.3 are the conventional (1's and O's) K-map and the second-order compres-
sion (two EVs) K-map derived directly from the conventional K-map. The two-level SOP
minimum and the multilevel XOR/SOP gate-minimum forms are

fSOP = WXZ + WXY + WYZ + XYZ + WY (5.14)

206 CHAPTER 5 / FUNCTION MINIMIZATION

(w

[w

w

w)

©

+
Tl

X

(b)

]zj©
/• —
w

wv_

W

w

+£

(c)

FIGURE 5.3
Compressed K-maps for extraction of gate-minimum XOR forms, (a) Conventional K-map for func-
tion / in Eq. (5.13). Second-order compression K-map deduced from K-map in (a) showing XOR
patterns, (c) Alternative second-order K-map.

and

fxoR/sor = ((Y © W)] 0 (XZ) + WY, (5.15)

which have gate/input tallies of 6/19 and 5/10, respectively. The second-order K-map in
Fig. 5.3b is deduced from the K-map in Fig. 5.3a by observing that W O X exists in the
YZ = 01 column, with W and W located in adjacent YZ columns. Thus, by taking Y and Z
as the axis variables and W and X as the EVs for the compressed K-map, the XOR patterns
appear, allowing one to easily extract gate-minimum results.

Notice that the W in the EV K-map of Fig. 5.3b must be looped out a second time to
give the WY term in Eq. (5.15). This is necessary because cover remains in W + X after
the associative pattern involving W and X in cell 1 has been extracted. That is, only W © X
has been looped out of W + X, making it necessary to cover either W or X a second time.
This is easily verified by introducing the coordinates of the cell 3 (7 = 1, Z = 1) into
Eq. (5.15). Without the term W Y the subfunction W + X cannot be generated. The residual
cover in W + X can also be looped out of cell 3 by extracting XYZ and using it in place
of W Fin Eq. (5.15).

Only in one other compressed K-map are the gate-minimum XOR patterns and Eq. (5.15)
results obvious, and that is shown in Fig. 5.3c. In all four other compressed K-map possibil-
ities, those having axes W/X, X/Z, W/Z, and W/ Y, the XOR patterns shown in Figs. 5.3b
and 5.3c disappear, making a gate-minimum extraction without extensive Boolean manip-
ulation very difficult if not impossible. Notice that the compressed K-map in Fig. 5.3c is

5.5 THE SOP-TO-EXSOP REED-MULLER TRANSFORMATION 207

easily obtained from that of Fig. 5.3a by introducing the coordinate values for X and Y into
Fig. 5.3b to obtain the subfunctions in terms of W and Z.

For complex functions involving five or more variables, the process of generating a
gate-minimum result by using XOR EV patterns becomes increasingly more a matter of
trial and error as the number of variables increases. Again, the application of the EV XOR
pattern approach to design is left more to the natural occurrence of such patterns than
it is to the hunt-and-choose method. However, if it is known that XOR patterns occur
naturally in some functions and if one is familiar with conventional (1's and O's) K-map
methods for five or more variables, it is possible to deduce a compressed K-map that will
yield XOR/SOP or EQV/POS forms, but that may not necessarily represent gate-minimum
results.

To overcome the obvious problem of dealing with complex K-map XOR patterns in
functions having more the five variables, an algebraic approach can be used, a subject that
is discussed at length in the remaining sections of this chapter.

5.5 THE SOP-TO-EXSOP REED-MULLER TRANSFORMATION

A generalization of Corollary I (Subsection 3.11.1) can be expressed in canonical form as

(/«/ ' fi)
i=0

= (mofo) © (m,/,) © (m2/2) 0 • • • 0 (m2-_i/2«-i), (5.16)

where the 2" m/ represent minterms read in minterm code, and the ft represent their
respective coefficients whose values derive from the binary set {0, 1}. The m, symbols
represent minterms that are, by definition, mutually disjoint, since only one minterm can be
active (logic 1) for the same values of inputs. For this reason, it is permissible to interchange
the OR and XOR operators as in Eq. (5.16). Thus, Eq. (5.16) expresses a transformation of
an SOP expression to an EXSOP (Exclusive OR-sum-of-products) expression. Notice that
if all fj are logic 1 , then Fn = 1 .

By setting jc/ = jc,- 0 1, all Jt, are eliminated from the EXSOP form of Eq. (5.16) and a
function of positive polarity results. Then after considerable Boolean manipulation involving
multiple applications of the XOR form of the distributive law given by Eqs. (3.19), the
EXSOP expression of Eq. (5.16) is recast as the Reed-Muller expansion in the EXSOP
form

Fn(XQ,X\, . . . ,*„_!) = go 0 g\Xn-\ © g2*n-2 0 £3*n-2*n-l

0 g4*n-3 ' ' ' © g2"-lX0Xi • • • Xn-], (5.17)

where the g, are called the Reed-Muller (R-M) coefficients for a positive polarity

208 CHAPTER 5 / FUNCTION MINIMIZATION

(uncomplemented /•) R-M expansion (PPRME). Each R-M coefficient is the set

(5-18)

obtained from the subnumbers of / by replacing m 1 's with O's in 2m possible ways in the
binary number corresponding to decimal i :

go = fo • • •000

gi = e/(i, o) = /, e f0 ... 001 ... ooo
§2 = e/(2, 0) = h e /o ... 010 ... ooo
£3 = e/(3, 2, i, o) = /3 e /2 e /i e /o • • • 01 1 • • • 010 • • • 001 • • • ooo
84 = 0/(4, 0) = /4 © /o . . . 100 ... 000

g5 = e/(5, 4, i, o) = /5 e /4 e /i e /0 • • • 101 • • • 100 • • • 001 • • • ooo

= ©/•

Note that any g, in Eq. (5.18) is 1 if an odd number of / coefficients are logic 1, but is
0 if an even number of / coefficients are logic 1. If a Karnaugh map (K-map) of Fn is
available, the values for the g, are easily determined by counting the 1 's in the map domains
defined by the O's in the binary number representing / in g/. For example, the value of #5
is found by counting the 1's present in the *o*2 domain for a function FA, = (*o*i*2*3).
Thus, gs = 1 if an odd number of 1 's exists or g5 = 0 otherwise. Similarly, to determine
the logic value for g§ one would count the number of 1's present in the x 1*2*3 domain for
the same function, etc. All terms in the PPRME expansion whose g coefficients are logic 0
are disregarded.

5.6 THE POS-TO-EQPOS REED-MULLER TRANSFORMATION

The dual of Eqs. (5.16) is the generalization of Corollary II (Subsection 3.11.1) and is
expressed as

2"-l

Fn(xo, x\, *2 , . . . , *H-I) = 1 \(Mi + fi)
i=0

i=0

= (M0 + /o) O (Mi + /i) O (M2 + /2)
0 - - -0 (M 2 -_ ,+ /2 . - i) , (5.19)

5.7 EXAMPLES OF MINIMUM FUNCTION EXTRACTION 209

where the 2"M, in Eq. (5.19) represent maxterms read in maxterm code, and the f{ repre-
sent their respective coefficients whose values derive from the binary set {0, 1}. The 2"M,
maxterms are mutually disjoint since only one maxterm can be inactive (logic 0) for the
same values of inputs. For this reason it is permissible to interchange the AND and EQV
operators in Eq. (5.19). Thus, Eq. (5.19) expresses the transformation of a POS expres-
sion to an EQV-product-of-sums (EQPOS) expression. Note that if all ff are logic 0, then
Fn = 0.

Setting Xj=Xi 00 eliminates all Jt, from Eq. (5.19), resulting in a negative polarity
expression for the function Fn , which is simplified by multiple applications of the EQV
form of the distributive law given by Eqs. (3.19). The result is the Reed-Muller expansion
in the EQPOS form

Fn(XQ,Xi,X2, • . . ,*n-l) = goO(g l + * K - l) O (

O(g4 +^-3)O • • • O(g2"-l

(5.20)

where the g, are now the R-M coefficients for an EQPOS (negative polarity) R-M expansion.
Each EQPOS R-M coefficient is the set

8, = Qfj (5-21)

obtained from the subnumbers of / by replacing m 1's with O's in 2m possible ways in the
binary number corresponding to decimal i, as in Eq. (5.18). Thus, the array of g, for an
EQPOS expansion is the same as that for an EXSOP expansion except that the © operator
is replaced by the O operator. In Eq. (5.21) any g,- is 0 if an odd number of / coefficients are
logic 0, but is 1 otherwise. Again, the use of a K-map can be helpful in obtaining the values
by counting the O's within a given domain similar to the procedure explained earlier for the
case of the EXSOP expansion. Thus, any g/ is 0 if an odd number of O's exist within a given
domain defined by the O's in the binary number. All terms in the R-M EQPOS expansion
whose g coefficients are logic 1 are ignored.

5.7 EXAMPLES OF MINIMUM FUNCTION EXTRACTION

In this section two examples of minimum function extraction are presented that bear the
same relationship to each other as do the conventional and EV K-map methods — that is,
one is based on canonical forms (conventional method) while the other is equivalent to the
use of entered variables in K-maps (called the CRMT method).

A SIMPLE EXSOP EXAMPLE Consider the function

F3 = ABC + AB + AC = £m(3, 4, 5, 6)

= £fW3,4,5,6), (5.22)

210 CHAPTER 5 / FUNCTION MINIMIZATION

where, for this example, f3 = f4 = f5 = f6 = l and /> = f\ = /2 = fi = 0. Therefore,
the gi are found as follows:

go = fo = 0 84 = 0/4(4, 0) = 1

gi - e/id, 0) = o §5 = e/5(5,4, i, o) = o
£2 = ®/2(2, 0) = 0 g(, = 0/6(6, 4, 2, 0) = 0

83 = 0/3(3, 2, 1, 0) = 1 gl = 0/7(7-0) = 0.

Here, the notation (7-0) means (7, 6, 5, 4, 3, 2, 1, 0). From Eq. (5.17) the result is an exact
minimum given directly as

F3 = BCg3®Ag4 = BC® A, (5.23)

which is a much simplified result compared to the original function and has a gate/input
tally of 2/4. This function is said to be a positive polarity R-M expression or PPRME.

The same result is achieved, but with less effort, if the variables of function F3 are
partitioned into two distinct sets: a disjoint set of bond variables (called the bond set) and
a free set of variables (called the free set), both chosen from the set (A, B, C] and recast
into a contracted (reduced) form for application of Eqs. (5.16) and (5.17). Here, {A, B}
is chosen as the bond set to be coupled with the remaining (orthogonal) free set, {C}. In
this particular case, any combination of bond and free sets would achieve the same desired
result with equal ease. When a function is recast into bond and free sets it is said to be in a
contracted Reed-Muller transformation (CRMT) form. For this example, the CRMT form of
function F^ is

FAB = (AB)C + (AB) + (AB)C = (AB)C © (AB) 0 (AB)C

= (AB)f0 0 (AB)f{ 0 (AB)f2 0 (AB)/3

= go 0 Bgi 0 Ag2 0 ABg3, (5.24)

where the subscript in FAB identifies the bond set (A, B}. Notice that use was made of
ABC + ABC = AB and that all terms of the bond set are mutually disjoint. Now, the
/ coefficients are /o = 0, f\ = C, /2 = 1, and f$ = C. Therefore, the resulting CRMT
coefficients become

£0 = /O = 0 g2 = h 0 /O = 1

g\=fi®fo = C g3 = h 0 /2 0 / 0 /o = C 0 1 0 C 0 0 = 0.

Introducing these coefficients into the CRMT expression gives the result

F2 = go 0 Bg{ 0 Ag2 0 ABg3

= 0 0 # C 0 A © 0

= BC 0 A (5.25)

as before.
This simple example has been given to illustrate the application of the CRMT method of

function minimization. The examples that follow are designed to establish the foundation

5.7 EXAMPLES OF MINIMUM FUNCTION EXTRACTION 211

CD
AB\ 00 01 11 10

00

01

t\
11

10

1

1

1

1

1

1

1

1

1

C ® D

(b)

0 1

B« D i D1+ B

D© B
D . . ,

/'Z

(a) (c)

FIGURE 5.4
(a) Conventional K-map for function Z. (b), (c) Compressed EV K-maps for function Z representing
bond sets {A, B} and (A, C} showing minimum cover by using XOR-type patterns.

for a tractable CRMT minimization procedure, one that is suitable for classroom (or pencil-
and-paper) application.

A MORE COMPLEX EXSOP EXAMPLE Consider the function and its canonical R-M
transformation

Z4(A, B, C, D) = ^m(l, 2, 4, 6, 7, 8, 9, 10, 15)

= 0m(l,2,4,6,7,8, 9, 10, 15). (5.26)

In Fig. 5.4a is shown the conventional K-map for function Z. In Figs. 5.4b and 5.4c are
shown the second-order compressed K-maps of function Z for bond sets {A, B} and {A, C},
respectively, which are representative of the six possible bond sets for two variables.

Considering first the bond set (A, B}, as depicted in Fig. 5.4b, and noting that the cell
entries are the / coefficients, the function Z4 is recast into the following CRMT form:

ZAB = (AB)f0 0 (AB)fi

= (AB)(C 8 D) © (AB)(C + D)® (AB)(C + D) © (AB)CD

= go@ Bgi © Ag2 0 ABgi (5.27)

for which the CRMT coefficients are

go = fo = C © D

g2 - 0/(2, 0) = (C + D)eC0£)

g3 = e/(3, 2, 1, 0) = CD © (C + D) © 1 © CD = CD © CD © 0 © CD = CD,

212 CHAPTER 5 / FUNCTION MINIMIZATION

where use has been made of the XOR form of Eqs. (3.31), and the XOR DeMorgan identities
given in Eqs. (3.27) from which, for example, there results (C + D) 0 C = CD 0 C in
g\. Introducing these coefficients into Eq. (5.27) and simplifying by using the XOR form
of Eqs. (3.30) gives the minimum result

ZAB = C 0 D 0 B 0 BCD 0 ACD 0 ABCD

= B 0 C 0 D 0 ACD 0 ABCD, (5.28)

which is a three-level function with a gate/input tally of 6/15.
Repeating the same procedure for Fig. 5.4c and bond set {A, C}, the function Z is recast

into the CRMT form

ZAC = (AC)/0 0 (AC)/, 0 (AC)/2 0 (AQ/3

= (AC)(B 0 D) 0 (AQ(B + D) 0 (AC)fi 0 (AQ(B 0 D)

)g2A®g3AC, (5.29)

where the g coefficients become

go = B 0 D

g i= (£ + Z)) 0 f l 0 D = .eZ)0fl0D=:f lD

g2 = B ®B@D = D

D®BD = BD.

Then by introducing these g coefficients into Eq. (5.29) and simplifying with the XOR form
of Eqs. (3.30), there results the exact minimum

ZAC = B 0 D 0 BCD 0 CD 0 AD 0 ABCD

(5.30)

which is a three-level function with a gate/input tally of 6/14 excluding possible inverters.
The results for ZAB and ZAC are typical of the results for the remaining four two- variable

bond sets {C, D}, {B, D}, {A, D}, and {B, C}. All yield gate/input tallies of 6/14 or 6/15 and
are three-level functions. Thus, in this case, the choice of bond set does not significantly
affect the outcome, but the effort required in achieving an exact minimum may vary with
the choice of the bond set. No attempt is made to use single- or three- variable bond sets for
function Z.

A comparison is now made between the CRMT minimization method and other ap-
proaches to the minimization of function Z. Beginning with the canonical R-M approach
and from Fig. 5.4a, the / coefficients easily seen to be

/I = /2 = /4 = /6 = /7 = /8 = /9 = /10 = /1 1 = /14 = /15 = 1 and

/O = h = f5 = f\2 = /13 = 0.

5.7 EXAMPLES OF MINIMUM FUNCTION EXTRACTION 213

Then from Eq. (5.16) the R-M g/ coefficients are evaluated as follows:

So = /o = 0 g8 =e/(8,0)=l

gi = e/d, o) = i g9 = e/(9, s, i, o) - i
§2 = e/(2, 0) = 1 glo = e/(io, 8, 2, o) = i
g3 = 0/(3, 2, 1, 0) = 0 gn = ©/(1 1 - 8, 3 - 0) = 1

g4 = 0/(4, 0) =1 gn = ©/(12, 8, 4, 0) = 0

g5 = 0/(5, 4, 1, 0) = 0 gi3 = 0/(13, 12, 9, 8, 5, 4, 1, 0) = 0

g6 = 0/(6, 4, 2, 0) = 1 g,4 = 0/(14, 12, 10, 8, 6, 4, 2, 0) = 1

gi = ®/(7 - o) - i g15 = e/d5 - o) = i.

Note that the g{ coefficients are immediately realized by counting 1 's within the domains
of the conventional K-map shown in Fig. 5.4a. Thus, g13 = 0 since an even number of 1's
exist in the C domain (determined from 1101), or #9 = 1 because an odd number of 1's
exist in the BC domain (from 1001). Disregarding the g = 0 coefficients, there results the
positive polarity R-M expression and its simplified mixed polarity form

Z4 = Dgi © Cg2 © Bg4 © BCg6 © BCDgl © Ag& © ADg9 © ACg]Q © ACDg} ,
©AflCg,4©AflCDg,5

= D © C © f l © f l C © BCD © A © AD © AC © ACD © ABC © ABCD

= D © C © B © BCD © AD © ACD © AflCD

= # © C © D © A C D © A f l C D , (5.31)

which is a three-level function having a gate/input tally of 6/ 1 5 excluding possible inverters.
The function in Eq. (5.31) is seen to be the same as that in Eq. (5.28), but it is not an exact
minimum. Here, multiple applications of the XOR identities in Eqs. (3.30) have been applied
to excise terms.

Other comparisons are now made between the CRMT method and the EV K-map and
conventional K-map methods presented in Sections 4.6 and 4.4. From Figs. 5.4b and 5.4c,
the minimum cover extraction by using XOR type patterns (shown by loops) gives

Z K-map AB = B(C © D) + D(A © fl) + .BCD (5.32)

and

© (AD) + C(B © D) (5.33)

representing three-level functions with gate/input tallies of 6/14 and 6/12, respectively,
excluding possible inverters. The function Z K-map AC is a gate/input-tally minimum for
function Z. The results in Eqs. (5.32) and (5.33) are hybrid forms classified as mixed
AND/OR/EXSOP expressions. The two-level SOP minimum, obtained from Fig. 5.4a,

214 CHAPTER 5 / FUNCTION MINIMIZATION

offers another comparison and is

Z = BCD + ABD + BCD + BCD + ABC (5.34)

with a gate/input tally of 6/20, again excluding inverters.
Comparing the results for the four methods used to minimize function Z given by

Eqs. (5.28) through (5.34), it is clear that the CRMT results in Eqs. (5.28) and (5.30) are
competitive with the other methods. However, only the CRMT result in Eq. (5.30) is an exact
EXSOP minimum result. As will be demonstrated further by other examples, the CRMT
and EV K-map methods of minimization tend to yield results that are typically competitive
with or more optimum than those obtained by the other methods, including computerized
two-level results. These observations are valid for relatively simple expressions amenable to
classroom methods. No means are yet available for making a fair comparison of the CRMT
approach with related computer algorithmic methods.

AN EQPOS EXAMPLE Consider the four variable function G and its canonical R-M
transformation

G(W, X, Y, Z) = [~J M(0, 1, 6, 7, 8, 10, 13, 15) = Q M(0, 1, 6, 7, 8, 10, 13, 15),

(5.35)

which follows from Eqs. (5.19). The conventional (1's and O's) K-map for this function
is shown in Fig. 5.5a. Begin with the CRMT minimization method applied to bond set
{W, X} as depicted in Fig. 5.5b, which is a second-order compression of the function G.
From Eqs. (5.20) and (5.21) and for bond set {W, X}, this function is represented in the

\YZ
WX\ 00 01 11 10

00

01

11

10

0

0

0

0

0

0

0

0

(v

(z

Y)
z)

(b)

(a)

FIGURE 5.5
(a) Conventional K-map for function G. (b), (c) Compressed EV K-maps of function for bond sets
{W, X} and {Y, Z} showing minimum cover by using XOR-type patterns.

5.7 EXAMPLES OF MINIMUM FUNCTION EXTRACTION 215

negative-polarity CRMT form

Gwx = (W + X + f0')0(W + X + fi)0(W + X + f2)Q(W + X + f3)

= (W + X + Y) 0 (W + X + Y) O (W + X + Z) 0 (W + X + Z)

= go O (X + gi) O (W + g2) O (W + X + g3), (5-36)

which are read in maxterm code. From Eq. (5.21) the g coefficients become

Introducing these coefficients into Eq. (5.36) yields the absolute minimum EQPOS
expression

GWX = YQXQ(W + Z Q F)

= Y O X O (W + Y) Q (W + Z)

= X O (W + Y) O (W + Z) (5.37)

that is seen to be a three-level function with a gate/input tally of 4/8.
The CRMT minimization process is repeated for the bond set {Y, Z} as depicted in

Fig. 5.5c. The CRMT expression now becomes

GYZ = (Y + Z + go) O (Y + Z + gl) Q (Y + Z + g2) O (Y + Z + g3)

= (Y + Z + X -) Q (Y + Z + WO X)Q(Y + Z + W O X) O (Y + Z + X)

= goQ(Z+ gl)(Y + 82)(Y + Z + g3) (5.38)

for which the g coefficients are found to be

go = /o = X

gi = Qf (1,0) =WQX QX = W

g2 = Q/(2, 0) = W Q X O X = W

g3 = Q/(3, 2, 1, 0) = X O W Q X Q W = 1,

where use is made of g\ = Of (I, 0) = W in the last term for g3. Then, introducing these
coefficients into Eq. (5.38) gives the absolute minimum result

GYZ = X O (W + Z) O (W + F), (5.39)

which is again a three-level function with a gate/input tally of 4/8, inverters excluded.
The same result is, in this case, obtained by minimizing a canonical R-M expansion of

Eq. (5.35), which becomes

G4(W, X, Y, Z) = Q M(0, 1, 6, 7, 8, 10, 13, 15)

= go O (Af, + gi) O (M2 + g2) O (M3 + g3) O • • • O (M)5 +

216 CHAPTER 5 / FUNCTION MINIMIZATION

From the conventional K-map in Fig. 5.5a and counting O's within a given domain, the g
coefficients are found to be go = g2 = g4 = gv = gio = 0 with all the rest being logic 1.
Introducing these values in the R-M expansion gives the minimum result

G4 = 0 O Y O X Q (W + Z) O (W + Y)

= 0 O X O (W + Z) O (W + Y)

= XQ(W + Z)Q(W + Y), (5.40)

as before in Eq. (5.39).
The result previously obtained for G YZ can also be obtained by using the CRMT approach

in a somewhat different way. The plan is to obtain the result for the SOP CRMT expansion
("for the O's") and then complement that result to produce the EQPOS CRMT expansion
form. Complementing each of the four EV cell entries in Fig. 5.5b gives

GyZ(EPOS) = (YZ)X + (YZ)(W © X) + (YZ)(W 0 X} + (YZ)X

= go © Zgi © Yg2 © YZg3, (5.41)

with g values

go = /o = X g2 = 0/(2, 0)=W®X®X = W

) = w®x@x = w #3 = e/(3 -O) = X®W®X®W = Q,

where use is made of g\ = ©/(I, 0) = W in the last term for g3. Introducing these values
into Eq. (5.41) gives

GYZ(EPOS) = X 0 ZW® YW,

resulting in the EQPOS expression

= XQ(W + Z)Q(W + Y), (5.42)

where an odd number of complementations (operators and operands) have been performed
to complement the function. Notice that the / coefficients are also the complements of
those required for the EQPOS expansion, as they must be, since the cells of the EV K-map
in Fig. 5.5b were complemented.

It is interesting to compare the results just obtained for G with those read from the EV
K-maps in Figs. 5.5b and c, and with two-level POS minimization. Following the procedure
given by [3, 4], the results for GWX and Gyz are read directly in maxterm code from the
K-maps (see K-map loopings) as

GK.map wx = [W + (X® Y)][(W + (X © Z)] (5.43)

5.8 HEURISTICS FOR CRMT MINIMIZATION 217

and

GK.map YZ = [W + (Y Q Z)] Q(X® Z)] (5.44)

with gate/input tallies of 5/10 and 4/8, respectively. Note that reading a K-map in maxterm
code requires that the domains (not the entered variables) be complemented, since the
K-maps are minterm-code based [3]. In comparison, the two-level minimum result from
Fig. 5.5ais

G = (W + X + Y)(W + X + Y)(W + X + Z)(W + X + Z), (5.45)

which has a gate/input tally of 5/16 excluding possible inverters.
Notice that all CRMT minimization results, the canonical R-M minimization result, and

one EV K-map result for G all represent three-level functions with minimum gate/input
tallies of 4/8 (excluding possible inverters). In comparison, the best two-level result that can
be obtained for G yields a gate/input tally of 5/16, again excluding inverters. Notice also
that the two-level result requires that four s-terms be ANDed in the output stage, whereas
all other results mentioned earlier have a fan-in limit of two. Increased fan-in can slow the
throughput of a circuit, particularly in CMOS, as was discussed in Subsections 3.6.2 and
3.6.3, and in Section 4.10.

5.8 HEURISTICS FOR CRMT MINIMIZATION

A given minimization method can yield a guaranteed exact minimum for a function if, and
only if, an exhaustive search is carried out. Applied to the CRMT method this involves
finding the optimum (bond set)/(free set) combination for the optimal reduction process
of minimization required by the CRMT method. As the number of inputs to a function
increases, the task of performing an exhaustive search becomes more difficult, eventually
requiring computer algorithmic means. Even then, an intractable problem eventually ensues
when the number of inputs becomes excessively large for the minimization algorithm used.
When this happens, the minimization problem is known to be A/^P-complete (see Section
4.11).

Fortunately, variation in the choice of bond set for CRMT minimization often results in
little or no difference in minimum gate/input tally for a minimized function. However, the
effort required to achieve a minimum result may vary considerably with bond set choice.
Thus, if a guaranteed absolute minimum is not required, alternative choices of bond set
should yield an acceptable minimum, but with some limits placed on the number of bond set
variables. By the pencil-and-paper method this means that for practical reasons the number
of bond set variables should not exceed four for most applications of the CRMT method.
The limit on the total number of variables is placed between eight and twelve depending on
one's ability to use entered variables. In any case, experience in the application of the laws
and identities of XOR algebra is an invaluable asset in achieving a minimized result.

Given these preliminary comments, the following procedure should be helpful in apply-
ing the CRMT "hand" minimization method to functions of 12 variables or less:

Step 1. Choose a bond set and construct an entered variable (EV) K-map with the K-
map axes as the bond set. The starting point in this process can be a canonical SOP or

218 CHAPTER 5 / FUNCTION MINIMIZATION

POS expression, a conventional (1's and O's) K-map, or a truth table. The cell subfunctions
of the EV K-map become the // coefficients in the CRMT form of Eq. (5.16) or (5.19).
Thus, the entered variables make up the free set. As a caveat, try to avoid bond sets that
generate / coefficients like • • • Z(X + F) • • •, since such coefficients do not produce simple
g coefficients. Note that an EV truth table, such as that in Fig. 8.26, will also suffice for the
purpose of the CRMT minimization method if the table-heading variables are taken as the
bond set variables.

Step 2. For the choice of bond set used, obtain a set of minimum CRMT g, coefficients
from Eq. (5.18) or (5.21) by using the EV K-map cell entries as the /} coefficients and by
applying Eqs. (3.19). If alternative minimum expressions exist for a given g coefficient,
choose among these for the "best" one in consideration of steps 3 and 4 that follow. Thus,
if an exact minimum result is required for a given bond set, an exhaustive search for an
optimum g set must be carried out.

Step 3. Recast the function in positive or negative CRMT form by using the g set from
step 2 in Eq. (5.17) or (5.20).

Step 4. Reduce the results of STEP (3) by applying the laws and identities given by
Eqs. (3.19) and (3.27)-(3.33). Keep in mind that identical EXSOP terms in the form • • • ©
X © X © • • • or EQPOS terms in the form • • • O X O X O • • • can be excised immediately
in their respective CRMT expressions.

Step 5. If an exact minimum result is required, an exhaustive search must be carried
out by repeating Steps (1) through (4) for all possible bond sets. As a practical matter for
pencil-and-paper application of the CRMT method, the exhaustive search process should not
be conducted on functions exceeding five variables. For example, a five-variable function
would have to be partitioned into 10 two- or 10 three-variable bond sets in addition to the
partitioning for the remaining bond sets. Of course, if an exact minimum is not required,
most any choice of CRMT bond set will yield an acceptable minimum for many applica-
tions — one that may even be a near-exact minimum.

Step 6. Don't cares, if present, must be considered during the bond set selection process.
This is usually done with the intent of reducing the complexity of the CRMT g coefficients,
if not optimizing them. It is often the case that simple / coefficients (EV K-map cell entries
such as 0, 1, X, or X © F) yield simple g coefficients that lead to near-exact minimizations.
In any case, the presence of don't cares will complicate considerably an exhaustive search
process.

Step 7. If more than one function is to be optimized, the procedure is to set up the
CRMT forms separately as in steps 1-5 and then follow a systematic reduction process for
each, taking care to use shared terms in an optimal fashion.

5.9 INCOMPLETELY SPECIFIED FUNCTIONS

Consider the five- variable function

(l,3,4,6, 9, 10, 12,13, 18,21,23,25)

+ 0(0,8,11,14,15, 16,24,26,27,29,30,31), (5.46)

where 0 is the symbol representing don't cares (nonessential minterms). Shown in Fig. 5.6a
is the conventional K-map for this function and in Fig. 5.6b its second-order EV K-map

5.9 INCOMPLETELY SPECIFIED FUNCTIONS 219

c^
0

1

c^
0

1

eoo

^
1

e oo

<
0

01

1

0

01

0

1

11

1

0

11

0

1

10

0

1

10

1

0

\de
r\ 00i

0

1

c^
0

1

*
1

eoo

^
0

01

1

1

01

1

*

11

t>

*
11

**

10

1

*
10

*
<

(a)

^ o
0

1

c@e

c© e

1

®

(b)

FIGURE 5.6
K-maps for the five-variable function / given in Eq. (5.46). (a) Conventional K-map array for bond
set {a, b}. (b) Third-order compression of function / for bond set [a, b] showing minimum cover by
using the adjacent XOR pattern in maxterm code.

(third-order compression) for bond set {a, b}. Recasting this function into the CRMT form
of Eqs. (5.16) and (5.17) gives

fab = abf0 0 dbfi © ab/2 © abf3

= db(c ®e)®ab<$> ab(c ®e}® abe

= gQ®bgl®ag2®abgi (5.47)

with g values

Here, don't cares are set as 0o = 024 = 026 = 030 = 0 with the remainder equal to
logic 1. Introducing the values into Eq. (5.47) and simplifying yields the mixed polarity
result

fab = c © e © be © be © a 0 abe

= a®e®c®bc® abe

= a<$>e@(b + c)® abe

= a®e @bc @dbe, (5.48)

220 CHAPTER 5 / FUNCTION MINIMIZATION

which is a three-level minimum with a gate/input tally of 5/ 1 1 excluding possible inverters.
No attempt is made to examine bond sets other than [a, b}. Consequently, Eq. (5.48) cannot
necessarily be regarded as an exact minimum.

The EQPOS CRMT form for bond set {a, b] is obtained from Eqs. (5.20) and (5.21) and is

fab = So O (£ + £i) O (a + £2) O (« + & + g3), (5.49)

for which the g coefficients are

gQ = c®e = cQe gi = c © e Q c ® e = 0

After introducing these coefficients into Eq. (5.49) there results the mixed polarity CRMT
result

fab = c O e O (b + c O <?) O a O (a + b + e)

= dOeOcO(b+c)O(b+e)Q(a+b+e)

= dQeO(b + c)O(a + b + e). (5.50)

This is a three-level EQPOS minimum with a gate/input tally of 5/1 1.
Now it is desirable to compare the CRMT minimum forms of Eqs. (5.48) and (5.50)

with the EV K-map and two-level results. Reading the loops of Fig. 5.6b in maxterm code
(or the submaps in Fig. 5.6a) gives

f K-map = (b + a®c® e)(a + b + e), (5.51)

which is a four-level function having a gate/input tally of 5/ 1 1 excluding possible inverters.
By comparison, the computer-minimized two-level POS minimum result is

fpos = (a+b + c + e)(a +b + c + e)(a + c + e}(a + b + c + e) (5.52)

and has a gate/input tally of 5/19. The SOP minimum result (not shown) has a gate/input
tally of 7/22. No attempt is made to minimize function / by the EXSOP minimization
approach, which is best accomplished by computer algorithmic means.

Figure 5.6 illustrates how the CRMT method can be applied to a five- variable function
having a two- variable bond set, {a, b} in this case. Shown in Fig. 5.7a is the conventional
K-map array suitable for an eight variable function F having the bond set {w, x, y, z}, and in
Fig. 5.7b its fourth-order compression, also for bond set {w, x, y, z}. These K-map formats
also suggest a means by which functions with more than eight variables can be minimized
by the CRMT method, providing one can deal with EV K-maps within EV K-maps. Large
numbers of don't cares would greatly reduce the complexity of the K-map cell entries (and
hence / coefficients) in Fig. 5.7b.

(a)

\yz
WX\ 00 01 11 10

(b)

FIGURE 5.7
(a) K-map array for an eight variable function F having a bond set [w, x, y, z}. (b) K-map required for
a fourth-order compression of function F having a bond set {w, x, y, z}.

221

222 CHAPTER 5 / FUNCTION MINIMIZATION

5.10 MULTIPLE OUTPUT FUNCTIONS WITH DON'T CARES

The problem of selecting an optimum bond set is further complicated by the presence of
don't cares in multiple output systems. Application of the CRMT minimization procedure
given earlier to such systems is illustrated by minimizing the following two four-variable
functions containing don't cares:

F(A, B, C, D) = y^ra(3,6, 8,9, 12, 15) + 0(1, 4, 5, 11)

and (5.53)

H(A, B, C, D) = ̂ m(l, 4, 7, 10, 12, 13) + 0(2, 5,6, 8, 11, 15).

The conventional fourth-order K-maps for functions F and H are shown in Fig. 5.8a.
The don't cares are so chosen as to best meet the requirements of the CRMT minimization
procedure for both functions, but with no guarantee of a two-function optimal result. The
bond sets are arbitrarily chosen to be {C, D} and {A, B}, respectively, for functions F and

\CD
AB\ 00 01 11 10

0

</>

1

1

#

4>

0

1

1

0

1

*

0

1

0

0

\CD
AB\ 00 01 11 10

00 0 1 0 $ \B
A\ 0

01

11

0

1

1

t

1

t
1

0

0

1

#
#

m

m

0

1

D WC

/

10

ZH

(a) (b)

FIGURE 5.8
(a) Conventional K-maps for functions F and H of Eqs. (5.53) and (b) their second-order compressions
for bond sets {C, D} and {A, B} showing minimum cover for each by using XOR-type patterns.

5.10 MULTIPLE OUTPUT FUNCTIONS WITH DON'T CARES 223

H , and their canonical SOP/EXSOP transformations now become

F = m(3, 5, 6, 8, 9, 12, 15) = (3, 5, 6, 8, 9, 12, 15)

and (5.54)

H = m(l, 2, 4, 7, 10, 11, 12, 13) = m(l, 2, 4, 7, 10, 11, 12, 13).

Here, for function F, the don't cares are choosen to be 0] = 04 = 0n = 0 and 05 = 1.
For function H the don't cares are assigned the values 05 = 06 = 08 = 015 = 0 and
02 = 0i i = 1 . The don't-care values are chosen in agreement with STEP (6) of the heuristics
for CRMT minimization given previously. Thus, the CD columns and the AB rows have
simple subfunctions of the type X and X © Y to improve chances for an optimum result.

Function F in Eqs. (5.53) is now recast as the contracted CRMT form

FCD = (CDfo) © (CZ>/0 © (CA/2) © (CD/3)

= (CD) A 0 (CD)(A © 5) © (CD)AB © (CD)(A © fl)

= So 0 £>gi 0 Cg2 © CDg3 (5.55)

for bond set {C, D] and with CRMT coefficients

B = AB.

Introducing these coefficients into Eq. (5.55) gives the minimized result for FCD

FCD = A ®BD © C ®ABC@ABCD

= A®C@BD@ABCD. (5.56)

Following the same procedure for function HAB, there results

HAB = (Afi/o) © (AB/,) © (ABfz) © (AB/3)

= (AB)(C © D) © (AB)(C © D) © (Afl)C © (Afl)C

= go © figi © Ag2 © A5g3 (5.57)

for bond set {A, B}. From Fig. 5.8b and Eq. (5.18), the CRMT g coefficients become

which, when introduced into Eq. (5.57), give the absolute minimum result

HAB = C © D © f l © A D

(5.58)

224 CHAPTER 5 / FUNCTION MINIMIZATION

The two CRMT optimized functions are now expressed together as

= A 0 C © BD ® ABCD]
\ , (5.59)

=C®B®AD

representing a three-level system with a combined gate/input tally of 8/18, but with no
shared terms.

A comparison is now made with other approaches to the minimization of these functions.
The EV K-map minimum results read directly from the cover (shown by the loopings) in
Figs. 5.8b are

f FK.map = [AQCQ(B + D)](B + C + D)}
} > (5.60)

representing a three-level system having a gate/input tally of 8/17 with no shared terms.
Notice that function F is extracted (looped out) in maxterm code, whereas function H is
extracted in minterm code. The computer-optimized two-level SOP result is

f F = ACD + ABD + ACD + BD\
{ _ _ __ _ _ }, (5.61)

H=BCD+ACD+AB

with a total gate/input tally of 10/29 excluding possible inverters.
For further comparison, these two functions are minimized together as a system by using

canonical R-M forms. As a practical matter, an exhaustive search is not carried out on the
choice of don't cares and, consequently, an exact EXSOP result cannot be guaranteed.
However, a few trial-and-error attempts at minimization indicate that an exact or near-exact
result is obtained for function F if all 0's are taken as logic 1, but that for function H the
don't-care values are taken to be the same as those used by the CRMT method. Therefore,
from the conventional K-maps in Fig. 5.8a there result the following canonical R-M forms:
For F the R-M coefficients are

g\ = g4 = g5 = gl = gS = g9 = g\0 = gl\ = g\2 = 1,

and for H they are

gl = g2 = 84 = g9 = I-

Introducing the g values for functions F and H into Equation (5.17) separately gives

F = D®B®BD® BCD ® A® AD® AC® ACD ® AB

= AD®ACD®BCD®A®AB®B

= AD®ACD®BCD®AB®B (5.62)

5.11 K-MAP SUBFUNCTION PARTITIONING FOR COMBINED CRMT 225

for function F and

A D 0 C e S (5.63)

for function H. Then, combining an optimum set of shared EXSOP terms results in the
expressions

F = [B ©AD] 0 AB ©ACD ®BCD\

This is a four-level system having a total gate/input tally of 9/20, including shared term
50 AD.

Comparing results in Eqs. (5.60), (5.61), and (5.64) with those for the minimized CRMT
forms in Eqs. (5.59) clearly shows that the CRMT method is competitive with the K-map and
two-level minimization methods and illustrates the advantage of simplicity that the CRMT
minimization approach has over that of the EXSOP minimization as a pencil-and-paper
method.

5.11 K-MAP SUBFUNCTION PARTITIONING FOR COMBINED CRMT
AND TWO-LEVEL MINIMIZATION

Any function can be partitioned in a manner that permits it to be minimized by a combination
of the CRMT and two-level methods. Function partitioning for this purpose is best carried out
within an EV K-map, hence subfunction partitioning. This partitioning process is significant
because with K-map assistance it makes possible the selection of the most tractable (if not
optimal) parts of a function for the combined two methods of minimization. This can be
of great advantage for a multioutput function where shared term usage is important. There
still remains the problem of knowing what is the "best" choice of function partitioning for
optimal results. An absolute minimum result in the CRMT approach not only would require
an exhaustive search of the best CRMT bond set minimum, but must be accompanied by
an exhaustive two-level search. This is no easy task except for, perhaps, relatively simple
functions. However, if an absolute minimum result is not sought, there may exist a variety
of ways in which a given function can be partitioned without significant change in the
cost (complexity) of the resulting minimized function. In any case, the combined minimum
forms are classified as partitioned EXSOP/SOP forms or their dual EQPOS/POS.

As a simple example of K-map function partitioning, consider function ZAC in Fig. 5.4c.
Here, the literal D in cell 1 (see dashed loop in domain AC) is separated out to be later
ORed to the CRMT solution as the EPI ACD. After removal of the literal D, the CRMT g
coefficients become

= B® D 2 = B ®B®D = D

Introducing these coefficients into Eq. (5.29) and adding the two level result ACD yields

226 CHAPTER 5 / FUNCTION MINIMIZATION

\B(
A \

0

1

•N

00

x ez

i x

01

x ez

x

11

xeY©z

X+Y

10

X0Y0Z

X+Y :

(a)

\BC
AX oo 01 11 / 10 •-..

0

1

XZ

u.
XZ

*
Z(XeY) + i X Y i

' *
Z(x©Y) + ; X Y ;

>j
/ h2

(b)

FIGURE 5.9
Combined CRMT and two-level minimization of a two-output system of six variables, (a) Third-order
compression of function FI, (b) third-order compression of function FI.

the minimum result

ZAC = [B © D © CD © AD] + A CD,
= [f l©CD©AD]+ACD, (5.65)

where ZAc is now a four-level function with a gate/input tally of 6/13. Recall that the CRMT
result in Eq. (5.30) is only a three-level function. The extra level in Eq. (5.65) compared to
Eq. (5.30) is due to the OR operator of the mixed form.

A more interesting example is the EXSOP/SOP partitioning of the two function system
shown in Figs. 5.9a and 5.9b. In this case, all entries in cells 100, 101, 111, and 110 for
function F\ are partitioned out (set to logic 0) for CRMT minimization, but are extracted
optimally as shown by the two-level minimum cover. Similarly, for function FI, terms XY
and XY in cells Oil and 010 are partitioned out of the CRMT minimization but are extracted
optimally in SOP logic. Also, the don't cares in the F^ K-map are set to logic 0 for both the
CRMT and two-level minimizations.

The minimization process is now carried out on both the function FI and F^ in such a
manner as to make effective use of any shared terms that may occur. By using Figs. 5.9a
and 5.9b, the function FI and F2 are cast in the form of Eq. (5.17) to give

F\, F2 = go 0 Cgi © Bg2 © BCg3 © Ag4 0 ACss © A£g6 © ABCgj. (5.66)

5.11 K-MAP SUBFUNCTION PARTITIONING FOR COMBINED CRMT 227

After partitioning, CRMT coefficients for function F\ become

g0 = X®Z g4 = X®Z

g\ = 1 g5 = 1

82 = Y g(, = Y
£3=0 g7=0.

The two-level minimization result for cells 100, 101, 111, and 1 10 is simply

ACX + ACX + ABY = A(X @ C + BY). (5.67)

Introducing the g coefficients into Eq. (5.66) and adding the two-level result gives the mixed
minimum result

FI = x © z © c © BY © AX © AZ © AC © ABY + A(x © c + BY)
= (x © o e AZ © Afly © A(x © c) + A(X © c + BY)

(5.68)

Applying the same procedure to the partitioned F2 function gives the CRMT g coeffi-
cients

go = g4 = XZ g2 = g6 = YZ
g{ = g5 = Z £3 = £7 = 0.

From the K-map for p2, the two-level minimum result is easily seen to be

ABCXY + ABCXY = ABY(X © C). (5.69)

Now introducing the g coefficients into Eq. (5.66) and adding the two-level result yields an
EXSOP/SOP minimum,

F2 = XZ © CZ © BYZ © AXZ © ACZ © AfiFZ + Afi7(X © C)

= AXZ © ACZ © ABYZ + ABY(X © C)

= AZ[(X © C) © (BY)] + A(BY)(X © C). (5.70)

The combined two-function minimum result is now given by

f FI = A[Z © (X © C) © (BY)] + A(X © C + BY)]
\ - - \ , (5.71)
(F2 = AZ[(X © C) © (BY)] + A(BY)(X © C)]

which represents a five-level system with a combined gate/input tally of 11/24 excluding
possible inverters.

228 CHAPTER 5 / FUNCTION MINIMIZATION

The OR operators in Eqs. (5.71) add an extra level of path delay compared to forms
that are exclusively EXSOP/SOP. This can be demonstrated by avoiding the partitioning of
function F\ . When this is done the CRMT g coefficients become

go = x © z g4 = z
gl=l g5=0

1©F = Y.

Introducing these g coefficients into Eq. (5.66) gives the EXSOP/SOP result

F 1 = X © Z © C © £ 7 © AZ ®ABXY® ABCY

= (X e C) ©AZ© BY @ABY(X © C)

= [ABY(X © C)] © (AZ) © (BY), (5.72)

which is a four-level function with a gate/input tally of 7/15, exclusive of inverters. This
compares to the mixed five-level function FI in Eqs. (5.71), which has a gate/input tally of
8/16.

Subfunction partitioning in maxterm code is equally effective in facilitating the min-
imization process. As a simple example, consider the function FCD in Fig. 5.8b and the
EQPOS CRMT form

FCD = go O (D + £,) O (C + #2) O (C + D + g3), (5.73)

which follows Eq. (5.20). Proceeding with the CRMT minimization, with B partitioned out
of the term A • B in cell 10, gives the CRMT g coefficients

go = A #2 = A O A = 0

gl=AQBQA = B g3 = AOBQAQB = l.

Introducing these coefficients into Eq. (5.73) and adding the two-level result gives

FCD = [A O (B + D) O C] • (B + C + D), (5.74)

which is exactly the same as the K-map minimum result in Eqs. (5.60).
Notice that the mixed CRMT/two-level method requires that the partitioning be carried

out in either minterm or maxterm code form. Thus, if subfunctions of the type X + Y are
partitioned, the entire minimization process must be carried out in minterm code. Or, if terms
such as X • Y are partitioned, the minimization process must be carried out in maxterm code.
Note that either X or Y or both may represent multivariable functions or single literals of
any polarity.

FURTHER READING 229

5.12 PERSPECTIVE ON THE CRMT AND CRMT/TWO-LEVEL
MINIMIZATION METHODS

The main advantage of the CRMT method of function minimization lies in the fact that
it breaks up the minimization process into tractable parts that are amenable to pencil-
and-paper or classroom application. The CRMT minimization process can be thought of
as consisting of three stages: the selection of a suitable bond set, the optimization of the
CRMT g coefficients (for the chosen bond set), and the final minimization stage once
the g coefficients have been introduced into the CRMT form. If an exact minimum is
not required, a suitable bond set can be easily found, permitting the CRMT method to be
applied to functions of as many as eight variables or more. Knowledge of the use of EV
K-maps and familiarity with XOR algebra are skills essential to this process. A properly
conducted CRMT minimization can yield results competitive with or more optimum than
those obtained by other means.

It has been shown that minimization by the CRMT method yields results that are often
similar to those obtained by the EV K-map method described in Section 5.4. This is partic-
ularly true when the EV K-map subfunctions are partitioned so as to take advantage of both
the CRMT and two-level (SOP or POS) minimization methods. In fact, when subfunction
partitioning is carried out in agreement with the minimum K-map cover (as indicated by
loopings), the CRMT/two-level result is often the same as that obtained from the K-map.
It is also true that when a function is partitioned for CRMT and two-level minimizations,
an extra level results because of the OR (or AND) operator(s) that must be present in the
resulting expression. Thus, a CRMT/two-level (mixed) result can be more optimum than
the CRMT method (alone) only if the reduction in the gate/input tally of the CRMT portion
of the mixed result more than compensates for the addition of the two-level part. At this
point, this can be known only by a trial-and-error-method that is tantamount to an exhaustive
search.

If an exact or absolute minimum CRMT result is sought, an exhaustive search must
be undertaken for an optimum bond set. Without computer assistance this can be a te-
dious task even for functions of four variables, particularly if the function contains don't
cares. Multiple-output systems further complicate the exhaustive search process and make
computer assistance all the more necessary. One advantage of the mixed CRMT/two-level
approach to function minimization is that each method can be carried out independently on
more tractable parts.

FURTHER READING

Additional information on XOR algebra, XOR function extraction from K-maps, and logic
synthesis with XOR and EQV gates can be found in the texts of Roth, Sasao (Ed.), and
Tinder.

[1] C. H. Roth, Fundamentals of Logic Design, 4th ed. West, St. Paul, MN 1992 (Chapter 3).
[2] T. Sasao, "Logic Synthesis with XOR Gates," in Logic Synthesis and Optimization (T. Sasao,

Ed). Kluwer, 1993 (see, e.g., Chapter 12).
[3] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, 1991 (see, e.g.,

Chapter 3).

230 CHAPTER 5 / FUNCTION MINIMIZATION

[4] R. F. Tinder, "Multilevel Logic Minimization by Using K-map XOR Patterns," IEEE Trans, on
Ed. 38(4), 370-375 (1995).

Earlier work on Reed-Muller expansions and the use of conventional K-map methods
to obtain Reed-Muller coefficient values can be found in the work of Dietmeyer and Wu
et al.

[5] D. L. Dietmeyer, Logic Design of Digital Systems. Allyn and Bacon, 1978 (Chapter 2).
[6] X. Wu, X. Chen, and S. L. Hurst, "Mapping of Reed-Muller Coefficients and the Minimization

of Exclusive-OR Switching Functions," Proc. IEE, Part E, 129, 15-20 (1982).

An excellent experimental study of the various XOR and EQV (XNOR) CMOS gate
configurations can be found in the work of Wang, Fang, and Feng.

[7] J. Wang, S. Fang, and W. Feng, "New Efficient Designs for XOR and XNOR Functions on the
Transistor Level," IEEE Journal of Solid-State Circuits 29(7), 780-786 (1994).

Many approaches to the decomposition and minimization of multilevel (Reed-Muller)
forms can be found in literature. A few representative works are cited below:

[8] D. Bochman, F. Dresig, and B. Steinbach, "A New Decomposition Method for Multilevel Circuit
Design," The European Conference on Design Automation, Amsterdam, The Netherlands, 25-28
Feb. 1991, pp. 374-377.

[9] H. M. Fleisher and J. Yeager, "A Computer Algorithm for Minimizing Reed-Muller Canonical
Forms," IEEE Trans. Comput. 36(2), 247-250 (1987).

[10] J. M. Saul, "An Algorithm for the Multi-level Minimization of Reed-Muller Representations,"
IEEE Int. Conf.on Computer Design:VLSlin ComputersandProcessors (Cat. No. 91CH3040-3),
pp. 634-637. IEEE Computer Soc. Press, Los Alamitos, CA, 1991.

[11] T. Sasao, "Logic Synthesis with XOR Gates," in Logic Synthesis and Optimization (T. Sasao,
Ed.), Kluwer, 1993, pp. 259-285.

[12] N. Song and M. A. Perkowski, "EXORCISM-MV-2: Minimization of Exclusive Sum of Products
Expressions for Multiple-valued Input Incompletely Specified Functions," Proc. of the 23rd
International Symposium on Multiple-Valued Logic, ISMVL '93, Sacramento, CA, May 24—27,
1993, pp. 132-137.

[13] W. Wan and M. A. Perkowski, "A New Approach to the Decomposition of Incompletely Spe-
cified Functions Based on Graph-Coloring and Local Transformations and its Application to
FPGA Mapping," Proc. of the IEEE EURO-DAC '92 European Design Automation Conference,
Hamburg, Sept. 7-10, Hamburg, 1992, pp. 230-235.

PROBLEMS

Note: Most K-map minimization results of problems that follow can be verified by intro-
ducing the binary coordinates of each K-map cell into the resulting expression. Generation
of each cell sub/unction by this means validates the extraction results. In some cases, it
may be necessary to construct a suitable EV K-map for this purpose. Also, to obtain correct
answers for these problems, the reader will be required to make frequent use of the laws,
corollaries, and identities of XOR algebra given in Section 3.11.

PROBLEMS 231

5.1 Compress the following function into a first-order K-map of axis A, and loop out a
gate minimum expression by using XOR-type patterns in minterm code. Next, obtain
the SOP minimum from the same K-map and compare the gate/input tallies for both
the XOR and SOP forms. Finally, construct the logic circuits for the XOR and SOP
results assuming that the inputs and output are all active high. What do you conclude
from these comparisons?

E = AXY + AXY + AY

5.2 The output F of a logic circuit is a function of three inputs A, B, and C. The output
goes active under any of the following conditions as read in the order ABC:

All inputs are logic 1
An odd number of inputs are logic 1
None of the inputs are logic 1

(a) Construct a truth table for output function F and inputs ABC.
(b) Map the result in a second-order K-map and extract a gate-minimum expression

by using XOR-type patterns.
(c) Further compress this function into a first-order K-map of axis A and again extract

a gate-minimum expression by using XOR-type patterns. Compare the result with
that of (b).

(d) Finally, place this function in a conventional (1's and O's) K-map and extract
minimum two-level SOP and POS logic expressions. By using the gate/input tally
(exclusive of inverters), compare the results with those of (b) and (c). What do
you conclude from this comparison?

5.3 Compress the following function into a second-order K-map with axes as indicated
and extract a gate-minimum expression for each set of axes by using XOR patterns.
Use the gate/input tally, exclusive of possible inverters, to compare this result with the
minimum expressions for the two-level SOP and POS results. What do you conclude
from this comparison? What is the gate delay level for the XOR pattern results? (Hint:
It will be helpful to first plot this function into a conventional 1's and O's K-map.)

F(W, X, Y, Z) = J^m(0, 2, 5, 7, 9, 11, 12)

(a) Axes W, X
(b) Axes 7, Z
(c) Axes X, Y

5.4 Shown in Fig. P5.1 are six EV K-maps that contain XOR-type patterns and that
represent two and three levels of compression. Use minterm code to loop out a gate-
minimum cover for each by using XOR patterns (where appropriate). For comparison,
loop out a minimum two-level SOP cover for each and compare their relative com-
plexity by using the gate/input tally exclusive of possible inverters. Also, as part of
the comparison, comment on the fan-in requirements for each.

232 CHAPTER 5 / FUNCTION MINIMIZATION

\BC \BC
A\ oo 01 11 10 A \ o o o i i i 10

0

Y+Z

X

Z

0

0

X+Y

0 Y+Z X+Y
y

-ft./ \n / lo

(b) (c)

\BC \BC
A\ 00 01 11 10 AX °° 01 11 10

X©Y 0

X©Y

(d) (e) (f)

FIGURE P5.1

"A

5.5 Use maxterm code and XOR-type patterns to loop out a gate-minimum expression
for each of the five functions represented in Fig. P5.2. Give the gate/input tally for
each and compare that value with the gate/input tallies for the two-level SOP and POS
minimum expressions obtained from the same K-maps. [Hint: To obtain the two-level
expressions from the K-maps in Figs. 5.2d and 5.2e, it will be necessary to expand
the XOR and EQV subfunctions by using their defining relations given by Eqs. (3.4)
and (3.5).]

5.6 Compress each of the following functions into a second-order K-map with axes A, B
and loop out a gate-minimum expression for each by using XOR-type patterns where
appropriate. Obtain the two-level SOP and POS minimum result and use the gate/input
tally (exclusive of possible inverters) to compare the multi-level result. (Hint: Consider
both minterm and maxterm codes when looping out XOR-type patterns for gate-
minimum results.)

\BC \BC
0 1 A\ 0° 01 11 10 A\

XY 0 0 D 0 D-E E 0

X+Y $ 1 1 0 E E 1

00

0

1

01

1

XY

11 10

X 0

0 X-Y

/ f1 / f2 /

(a) (b) (c)

\B \BCA\ o 1 A\ oo 01
0 C-D 0 0 0 X

1 C©D D 1 0 X

/f4

11

xeY

^

10

Y

Y

)
*6

(d) (e)

FIGURE P5.2

PROBLEMS 233

(a) W(A, £, C, D) = £m(3, 6, 9, 12)

(b) X(A, B, C, D) = H M(2> 3, 4, 5, 7, 8, 9, 11, 14, 15)
(c) F(A, 5,C, D) = £>(1,2,4,7, 11, 13, 14)
(d) Z(A, 5, C, D) = n Af(0, 3, 4, 6, 9, 10, 13)

5.7 The following incompletely specified function contains XOR-type patterns:

G(A, B, C, D) =]~| M(0, 1, 2, 3, 8, 11, 12, 13) • 0(4, 5, 6,7).

(a) Compress the following function into a second-order K-map of axes A, B and loop
out a gate-minimum expression by using XOR-type patterns where appropriate.
(Hint: Consider both minterm and maxterm codes and the best use of the don't
cares when looping out XOR-type patterns for a gate-minimum result.)

(b) Use the same K-map to extract minimum SOP and POS expressions for this
function. Compare the gate/input tallies (exclusive of possible inverters) for the
XOR result with those for the SOP and POS results. What do you conclude from
these comparisons?

(c) Construct the logic circuit for both the XOR result and the SOP result, assuming
that the inputs and output are all active high.

5.8 Use XOR-type patterns to extract a gate-minimum expression for each of the three
functions represented in Fig. P5.3. Use the gate/input tally (exclusive of inverters)
to compare the multilevel result with that for the two-level SOP and POS minimum
result. Note that compound XOR-type patterns may exist. [Hint: For /2 and /?, it will
be necessary to make use of Eqs. (3.27).]

5.9 A computer program has been written that will yield a minimum solution to a combi-
national logic function, but only in SOP form. It accepts the data in either conventional
(1's and O's) form or in two-level EV SOP form—it does not recognize the XOR or
EQV operators.

(1) Given the functions FI and F? represented by the EV K-maps in Fig. P5.4, extract
a gate-minimum expression from each in maxterm code by using the pencil-and-
paper method and XOR-type patterns.

(2) By following Example 2 in Section 4.8, outline the procedure required to "trick"
the computer program into yielding a two-level minimum expression from the
K-maps in Fig. P5.4, that can be easily converted to minimum POS form. (Hint:
It will be necessary to complement the subfunction in each cell of the K-map and
represent it in SOP form.)

\BC \ BC \ BC
AX °° 01 11 10

0

1

X

X

X®Y

x+y *
Y

0

tf

/

A\ 00 01 11 10 A\ °° 01 11 10

0

1

ti

0

Y

X

X

0

0

X®Y

X

/

0

1
f

z®x

X

0

0

X

X®Y

0

Y©Z

/
(a) ' (b) - (c)

FIGURE P5.3

234 CHAPTER 5 / FUNCTION MINIMIZATION

00 01 11 10

0

1

0

X

X0Y

XY

Y

*

0

1

(b)

FIGURE P5.4

(3) Use the procedure in part 2 to obtain the two-level POS expression for function F\
in Fig. P5.4a. Next, convert each cell of the original K-map to two-level POS sub-
function form and extract a two-level POS minimum expression from it by using
maxterm code. Should it agree with the results obtained by using the procedure
of part 2? Explain.

(4) Repeat part 3 for function F2 in Fig. P5.4b.

5.10 Repeat Problem 5.3 by using the CRMT method, taking each bond set as the axis
indicated in the problem. Use the gate/input tally (exclusive of possible inverters) to
compare the CRMT results with the two-level SOP minimum in each case.

5.11 Use the canonical Reed-Muller (R-M) approach to obtain an absolute minimum for
the function F given in Problem 5.3. Compare the results with the two-level SOP
minimum result by using the gate/input tally (exclusive of possible inverters).

5.12 Use the CRMT method to obtain an absolute minimum for the function G in Problem
5.7 by taking axes A, B as the bond set. Use the gate/input tally (exclusive of possible
inverters) to compare the CRMT result with the two-level SOP minimum result.

5.13 Use the CRMT method to obtain an absolute minimum for each of the four functions
given in Problem 5.6. Take axes A, B as the bond set for each. Construct the logic
circuit for each CRMT minimum function assuming that all inputs and outputs are
active high. Also, for comparison, construct the logic circuit for the minimum two-
level SOP or POS minimum result, whichever is the simpler in each case.

5.14 Use the canonical R-M approach to obtain a gate-minimum for the four functions given
in Problem 5.6. Then, by using the gate/input tally (exclusive of possible inverters),
compare these results with the two-level SOP or POS minimum results, whichever is
the simpler in each case.

5.15 (a) The following two functions are to be optimized together as a system by using
the multiple-output CRMT method discussed in Section 5.10. To do this, collapse
each function into a third-order K-map with axes A, B, C and then use the CRMT
approach in minterm code to minimize each function while making the best use
possible of shared terms. Plan to use {A, B, C} as the bond set.

Fj(A, B, C, D, E) = m(2, 3, 4-1, 9, 11, 12, 15, 21, 23, 25, 21)

F2(A, fi, C, D, £) = £]m(4, 5, 10, 11, 13, 15-17, 20, 23-25, 30, 31)

PROBLEMS 235

(b) Obtain the optimized two-level SOP results for the two functions and compare
them with the results of part (a) by using the gate/input tally (including inverters)
assuming that the inputs and outputs are all active high.

(c) Construct the logic circuits for the circuits of parts (a) and (b).

5.16 (a) Use subfunction partitioning of the following function for CRMT/two-level min-
imization in minterm code. To do this, collapse this function into a third-order
K-map of axes A, B, C and follow the discussion given in Section 5.11. Choose
{A, B, C} as the bond set for the CRMT portion.

F(A, B, C, D, E) = ̂ m(4, 7,10-12,14, 16-19, 21, 23, 24-27, 28, 30)

(b) Without partitioning, use the CRMT method to obtain a gate-minimum for this
function. Compare this result with that of (a) by using the gate/input tally exclusive
of inverters.

5.17 A function F is to be activated by the use of three switches, A, B, and C. It is required
that the function F be active iff a single switch is active. Thus, if any two or three of the
switches are active the function must be inactive. Design a gate minimum circuit for
the function F consisting of three XOR gates and an AND gate (nothing else). Assume
that the inputs and output are all active high. (Hint: Apply the CRMT method.)

This page intentionally left blank

CHAPTER 6

Nonarithmetic Combinational
Logic Devices

6.1 INTRODUCTION AND BACKGROUND

It is the purpose of combinational logic design to build larger, more sophisticated logic
circuits by using the most adaptable and versatile building blocks available. The choice of
discrete gates as the building blocks is not always a good one, owing to the complex nature
of the circuits that must be designed and to the fact that there are integrated circuit (1C)
packages available that are much more adaptable. It is the plan of this chapter to develop
these building blocks and demonstrate their use in construction of larger combinational
logic systems. Brief discussions of the various device performance characteristics and a
design procedure are provided in advance of the logic device development.

6.1.1 The Building Blocks

It is well understood that the digital designer must be able to create combinational circuits
that will perform a large variety of tasks. Typical examples of these tasks include the
following:

Data manipulation (logically and arithmetically)
Code conversion
Combinational logic design
Data selection from various sources
Data busing and distribution to various destinations
Error detection

To implement circuits that will perform tasks of the type listed, the logic designer can
draw upon an impressive and growing list of combinational logic devices that are com-
mercially available in the form of 1C packages called chips. Shown in Fig. 6.1 is a partial
listing of the combinational logic chips, those that are of a nonarithmetic type (a) and those
that are arithmetic in character (b). Only the devices in Fig. 6.la will be considered in this
chapter.

237

238 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

(a) (b)
Non-Arithmetic Combinational Logic Arithmetic-Type Combinational Logic

Devices Circuits

Multiplexers (Data Selectors)
Decoders/Demultiplexers Adders

Priority Encoders Subtractors
Code Converters Arithmetic and Logic Units

Comparators Multipliers
Parity Detectors Dividers

Combinational Shifters

FIGURE 6.1
Partial lists of available nonarithmetic 1C devices and arithmetic 1C devices.

6.1.2 Classification of Chips

1C chips for the devices of the type listed in Fig. 6.1 can be classified as small-scale integrated
(SSI) circuits, medium-scale integrated (MSI) circuits, large-scale integrated (LSI) circuits,
very-large-scale integrated (VLSI) circuits, and wafer-scale integrated (WSI) circuits. It has
become customary to assign one of the preceding acronyms to a given 1C circuit on the
basis of the number of equivalent fundamental gates (meaning AND, OR, Inverter or NAND,
NOR, Inverter) that are required to implement it. By one convention, these acronyms may
be assigned the following gate count ranges:

SSI circuits: up to 20 gates
MSI circuits: 20 to about 200 gates
LSI circuits: 200 to thousands of gates
VLSI circuits: thousands to millions of gates

WSI chips might contain tens to hundreds of VLSI circuits. This classification scheme is
obviously ineffective in revealing the true complexity of a given 1C relative to the digital
system in which it operates. For example, an LSI chip might be a 64-bit adder or it might
be a moderately complex microprocessor. Thus, the reader should exercise caution when
evaluating the complexity of a chip based on some count system. Finally, it is now common
practice for logic designers to design chips for a limited, specific application. Such chips are
called application-specific ICs, or ASICs, and may differ greatly from the usual commercial
chips. ASICs can reduce total manufacturing costs and can often provide higher performance
than is possible by combining commercially available devices.

6.1.3 Performance Characteristics and Other Practical Matters

The most desirable features a designer would want in a switching device, say, for integrated
circuit applications are as follows:

• Fast switching speed

• Low power dissipation

• Wide noise margins

6.1 INTRODUCTION AND BACKGROUND 239

50%

FIGURE 6.2
Voltage waveforms showing propagation delays and rise and fall times for a 2-input NAND gate with
output Z as in Fig. 3.10.

• High fan-out capability
• High packing density

• Low cost

Although no single family or technology has all these desirable features, some may come
close, at least for most of those listed above. A summary of these and other practical matters
now follows.

Propagation Delay (Switching Speed) and Rise and Fall Times The propagation delay
or switching speed of a device is the measured output response to an input change. Typically,
a given logic circuit will have many outputs and many inputs with various input-to-output
paths, each with a different path delay. Furthermore, propagation delays usually differ for
output changes that are low-to-high (tpih) compared to those that are high-to-low (tphi\ but
both of which are measured from the 50% point of the input signal to the 50% point of the
output response signal as illustrated in Fig. 6.2. The average propagation delay for a given
input-to-output path is then given by

where, typically, tpih > tpM . Since several input-to-output paths may be involved, the timing
specifications given by manufacturers often include typical extremes in propagation delay
data. A minimum value for rp is the smallest propagation delay that the logic device will
ever exhibit; the maximum value is the delay that will "never" be exceeded. The maximum
value is the one of most interest to designers since it is used to determine useful factors
of safety. For modern CMOS, these values lie in the range of 0.1 to 10 ns. Also shown in
Fig. 6.2 are the rise and fall times, tr and tf, as measured between the 10% and 90% marks
of a given waveform.

Power Dissipation Logic devices consume power when they perform their tasks, and
this power is dissipated in the form of heat, Joule heat. Of the various logic families,

240 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

CMOS devices consume the least power and then only during switching intervals — that
is, dynamic power dissipation. Thus, CMOS power consumption is frequency dependent
and may become quite large at very high frequencies. The bipolar families of devices (see
Appendix A) consume the most power, mainly due to leakage current, but are much faster
than CMOS. Other logic families tend to fall in between these two extremes.

A useful figure of merit for logic devices is called the power-delay product (PDF) given
by

i L* r = r Consumption X fp(avg)i (O.2.)

which is the product of the power consumed by the device and its average propagation delay
given by Eq. (6.1). The PDF of a device is sometimes called the speed-power product and is
usually expressed in picojoules(l mW x 1 ns = 1 pJ = 10~12 joules). Since it is desirable
for a given logic device to have both a low power consumption and a small propagation
delay, a low PDF is also desirable.

Noise Margins The noise margin of a logic device is the largest voltage that can be added
to or subtracted from the logic voltage and still maintain the required logic level. The noise
margins are defined as

NML = VILmaK - VoL max

and are shown in Fig. 3.2. The voltage parameters defined by manufacturers are expressed
as follows:

V/Lmax Maximum input voltage guaranteed to be recognized as LOW level.

VOL ma\ Maximum output voltage guaranteed to be recognized as LOW level.

VoHmin Minimum output voltage guaranteed to be recognized as HIGH level.

Minimum input voltage guaranteed to be recognized as HIGH level.

As an example, typical values for high speed (HC) CMOS are V//,max = 0.3 VDD,
0.7 Vbo, with VOL max being slightly above zero voltage and Vowmin being slightly below the
supply level VDD.

CMOS logic has always been considered as having good noise margins. However, in the
low submicron ranges, CMOS noise margins have been reduced to relatively low values.
The bipolar families are usually considered to have good noise margins. It is important that
the noise margins of logic devices be wider than any noise transients that may occur so as
to prevent unrecoverable errors in the output signals. Thus, noise margins may be regarded
as the margins of safety within which digital systems must be operated if their behavior is
to be predictable.

Fan-out and Fan-in Since the output from a switching device (for example, a gate) has a
definite limit to the amount of current it can supply or absorb, there is a definite limit to the
number of other switching devices that can be driven by a single output from that switch.

6.1 INTRODUCTION AND BACKGROUND 241

This limit is called the fan-out of a given device and is, in effect, the worst-case loading
specification for that device. The fan-out limit is usually given in microamps (juA). If the
fan-out limit of a device is exceeded, the signal can be degraded. MOS circuits are least
affected by fan-out restrictions, whereas members of the bipolar families are dramatically
affected by such restrictions. Propagation delay is essentially unaffected by fan-out limita-
tions.

The maximum number of inputs permitted to control the operation of a digital device
(usually a gate) is called the fan-in. Thus, a gate with four inputs has a fan-in of 4. In
general for CMOS gates propagation delay increases with increasing fan-in. Fan-in and its
consequences are discussed in Subsections 3.6.2 and 3.6.3 and in Section 4.10.

Cost The cardinality or cover of a function is a measure of the cost of that function.
Design area is also a measure of the cost of a function and is called area cost. Thus, the
cardinality or design area of a function can be given a monetary value, and this is what
is of particular interest to manufacturers of digital devices. But there are more factors that
contribute to the monetary cost of an 1C. To one extent or another all of the factors previously
mentioned directly or indirectly affect the cost of an 1C. Appendix A gives qualitatively the
performance characteristics as a measure of cost for commonly used 1C logic families.

6.1.4 Part Numbering Systems

Typically, parts in data books are given specific part numbers indicative of the logic func-
tion they perform and the logic family to which they belong. Commercially available digital
devices belonging to the CMOS and TTL (transistor-transistor logic} families are given
the part prefix "74xnnn", where the "x" represents a string of literals indicating the logic
family or subfamily and "nnn" is the part number. To understand this nomenclature the
following literals are defined: H = High-speed, L = Low-power, A = Advanced, F = Fast,
C = CMOS, and S = Schottky. For example, 74HCOO is a two-input high-speed CMOS
NAND gate and a 74AS27 is a three-input advanced Schottky NOR gate. To avoid referring
to any specific logic family or subfamily, the "x" descriptor is used along with the part
number. For example, a 74x151 is an 8-to-l multiplexer of a generic type, meaning that it
belongs to any of the families for which the prefix "74 • • •" is applicable. The TTL subfam-
ilies designated 74nnn, 74Lnnn, and 74Hnnn have been made obsolete by the presence of
modern Schottky subfamilies.

Another member of the bipolar family is called ECL for emitter-coupled logic. The
ECL family is currently the fastest of the logic families but has an extremely high power
consumption and high PDF. ECL parts are named either with a 5-digit number system
(lOnnn) or a 6-digit system (lOOnnn), depending on which subfamily is being referenced.
In either case all part numbers "nnn" are always three digits in length, unlike those for
CMOS and TTL families, which can be two or three digits in length. Appendix A quali-
tatively summarizes the performance characteristics of TTL, ECL, NMOS, and CMOS
families.

6.1.5 Design Procedure

The design of any combinational logic device generally begins with the description of
and specifications for the device and ends with a suitable logic implementation. To

242 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

assist the reader in developing good design practices, the following six-step sequence is
recommended:

Step 1: Understand the device. Describe the function of the device; then clearly
indicate its input/output (I/O) specifications and timing constraints, and con-
struct its block diagram(s).

Step 2: State any relevant algorithms. State all algorithms and/or binary ma-
nipulations necessary for the design. Include a general operations format if
necessary.

Step 3: Construct the truth tables. From step 2, construct the truth tables that
detail the I/O relationships. Truth tables are usually presented in positive logic
form.

Step 4: Obtain the output functions. Map or use a minimization program to
obtain any minimum or reduced expressions that may be required for the output
functions.

Step 5: Construct the logic diagrams. Use either a gate or modular level ap-
proach (or both) to implement the logic expressions obtained in step 4. Imple-
ment from output to input, taking into account any mixed logic I/O conditions
and timing constraints that may be required.

Step 6: Check the results. Check the final logic circuit by simulation before
implementation as a physical device. Real-time tests of the physical device
should be the final test stage.

This text follows the six-step sequence where appropriate and does so without specifically
mentioning each step.

6.2 MULTIPLEXERS

There is a type of device that performs the function of selecting one of many data input
lines for transmission to some destination. This device is called a multiplexer (MUX for
short) or data selector. It requires n data select lines to control 2" data input lines. Thus,
a MUX is a 2" -input/ 1 -output device (excluding the n data select inputs) identified by the
block diagram in Fig. 6.3a. Shown in Fig. 6.3b is the mechanical switch equivalent of the
MUX. Notice that the function of the enable (EN = G) is to provide a disable capability to
the device. Commercial MUX ICs usually come with active low enable, EN(L).

The general logic equation for the MUX of Fig. 6.3 can be expressed as

2"-l

Y = (m,- • /,) - EN, (6.4)

where w/ represents the ith minterm of the data select inputs (e.g., m^ — Sn-\ •
The validity of this equation will be verified in the following subsection on multiplexer
design.

6.2.1 Multiplexer Design

The easiest and most "logical" way to design a MUX is to represent the MUX by a com-
pressed, entered variable (EV) truth table. This is illustrated by the design of a 4-to-l

6.2 MULTIPLEXERS 243

EN(L)

Lo

f-
2, -

Data <J
Inputs]

[_

G

0

1

'2 2n-to-1 Y
: MUX

'2"-!

Sn-1 •" S1 SQ

Data | .
Output

'1 *^\̂̂

I •'2

n Data Select
Inputs

(a) (b)

FIGURE 6.3
A 2'!-to-l multiplexer (MUX) or data selector, (a) Block diagram symbol, (b) Mechanical switch
equivalent.

(22-to-l) MUX with active low enable. Shown in Fig. 6.4 are the logic symbol, EV truth
table, and K-map for the 4-to-l MUX. From the K-map there result the output expressions
given by

Y = SiS0I0EN + SiSQIiEN + S{SQI2EN

= m0I0EN + mil\ EN

(m, - /,-) • EN, (6.5)
i=0

representing four data input lines, two data select lines, and one output. The circuit for the
4-to-l MUX is obtained directly from Eq. (6.5) and is presented in Fig. 6.4d, together with
its shorthand circuit symbol given in Fig. 6.4e.

An m x 2" input MUX can be produced by stacking m 2"-to-l MUXs with outputs to an
m-to-1 MUX output stage. This is illustrated in Fig. 6.5, where four 8-to-l (74x151) MUXs
are stacked to produce a 32-to-l MUX. Notice that this MUX can be disabled simply by
using the EN(L) line to the output stage MUX. For an explanation of the part identification
notation (e.g., 74x- • •), see Subsection 6.1.4.

Many variations of the stacked MUX configuration are possible, limited only by the
availability of different MUX sizes. For example, two 16-to-l MUXs combine to form a
32-to-l MUX or four 4-to-l MUXs combine to produce a 16-to-l MUX. In the former case
a 2-to-l MUX must be used to complete the stack configuration, whereas in the latter case
a 4-to-l MUX is required. There are other ways in which to stack and package MUXs. One
variation is illustrated in the discussion that follows.

More than one MUX can be packaged in an 1C, and this can be done in a variety of
ways. One configuration is illustrated by the design of the 74x153 4-input/2-bit MUX

244 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

EN(L)

Output

2 Data Select
Inputs

(a)

EN S, Sn1 0

0 X X

1 0 0

1 0 1

1 1 0

1 1 1

Y

0

'o S^v0 0 1

'1 ° V

'2 1 I2E

'3

X = Irrelevant Input

(b)

EN Î N

EN I3EN

/

(c)

— c

Y(H) —
Y(L) —

\

^
I3(H) _

(e)

S,(H) S0(H)

(d)

FIGURE 6.4
Design of a 4-to-l MUX or data selector, (a) Block diagram symbol, (b) Compressed EV truth table.
(c) MUX EV K-map. (d) Logic circuit for a 4-to-l MUX with active low enable and mixed logic
output, (e) Shorthand 4-to-l MUX circuit symbol.

shown in Fig. 6.6. Reading directly from the EV truth table in Fig. 6.6a yields the output
expressions

17= SiSol/o- IG + SiSolIi • lG + SiSol/2 • IG + S1S0II3 • 1G
(6.6)

27 = SiS02I0 • 2G + SiSQ2Ii • 2G + S}S02I2 • 2G + 5i502/3 • 2G,

which are implemented with NAND/INV logic in Fig. 6.6c.
The traditional logic symbol for the '153 MUX is given in Fig. 6.6b. Notice that there

are two data select inputs that simultaneously control data selection to both outputs, and

6.2 MULTIPLEXERS 245

S2.i.o(H)

EN(L)

S43(H)

Y(L) Y(H)

FIGURE 6.5
Four 8-to-l MUXs and a 4-to-l MUX combine to produce a 32-to-l MUX having five data select
inputs 84, 83, 82, S], and SQ and an active low enable.

that there are two independently operated enable inputs, \G and 2G, that enable or disable
either or both of the MUXs.

6.2.2 Combinational Logic Design with MUXs

A MUX is a function generator and can be used to implement a function in canonical form
or in compressed (reduced or minimum) form. To understand this, consider the function

Y(A,B,C, D) =]Tm(3,4, 5,6,7, 9, 10, 12, 14, 15)

= ["[M(0, 1,2, 8, 11,13). (6.7)

If this function is implemented with a 16-to-l MUX, then all inputs representing minterms
in Eq. (6.7) are connected to logic 1 (HV) while all maxterms are connected to logic 0 (LV).
In this case the data select variables are the four function variables. But if it is desirable to
implement Eq. (6.7) with a 4-to-l MUX, two levels of K-map compression are needed, as
in Fig. 6.7b.

Notice that the data select variables, S\ — A and SQ = B, form the axes of the MUX
K-map in Fig. 6.7b and that the functions generated by the 4-to-l MUX in Fig. 6.7 are

246 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

S0(H)
bl £>U

0

0
1
1

0
1
0
1

i y

11 -1G0
11,-IG
1I2-1G
1I3-1G

ZY

2L-2G0
21^20
2I2-2G
2I3-2G

(a)

___ 1Y(H)
T i l I I M -^

74x153

EN^L)-

EN2(L)

1G

I'o
11, 1Y

1I2

11,

2G

2I2

213

2Y(H)
rrcn—\ i HdK^

2Y

(b) (c)

FIGURE 6.6
Design of the 74x153 4-input/2-bit MUX. (a) EV truth table, (b) Traditional logic symbol, (c) Logic
diagram.

given by

Y = [ABCD + AB + AB(C 0 D) + AB(C + D)]
or

Y = [(A + B + CD)(A + B + C® D)(A + B + C + D)]
(6.8)

both of which are three-level hybrid forms that are generated (H) or (L) from the Y(H) and
Y(L) outputs of the MUX. The latter of the two may not seem obvious but is easily verified
by extracting cover in maxterm code from the second-order K-map in Fig. 6.7b. Note also
that if an 8-to-l MUX is used to implement the function in Eq. (6.7), the K-map in Fig. 6.7a
applies, where the data select variables are now A, B, and C. In this case inputs I\ and /4

6.2 MULTIPLEXERS 247

KL)

BC
0 0 0 1 11 10

D

C D

C © D

1
1

C + D

u<) (H) L-C

\= H
1(H)

— \T~X-— }l^~
rX^-s^ y 1 _/""""

^~\srj''] ^/

G

'o

I,1 4-to-l V
MUXi

'2

'3

Y(H)

O-Y(L)

Y

(b) (c)
A(H) B(H)

FIGURE 6.7
Implementation of the function in Eq. (6.7) by using a 4-to-l MUX. (a), (b) First- and second-order
K-map compressions for the function Y. (c) Logic circuit.

are connected to D(H), inputs /5 and /6 are connected to D(L), inputs /2, h, and 77 connect
to !(//), and /o goes to ground 0(//).

There still remains the problem of dealing with active low inputs to a MUX. The rules
are simply stated:

For Active Low Data Select Inputs to MUXs

(1) Complement the MUX K-map axis of any active low data select input and
renumber the K-map cells. The new cell numbers identify the MUX inputs to which
they must be connected.

or

(2) Use an inverter on the input of an active low data select input and do not
complement the MUX K-map axis.

For All Other Active Low Inputs

Active low nondata select inputs are dealt with as any combinational logic problem
with mixed-logic inputs (see, e.g., Section 3.7). Therefore, do not complement any
EV subfunction in a MUX K-map.

To illustrate the problem of mixed-logic inputs to a MUX, consider the function of
Eq. (6.7) with inputs that arrive as A(/f), B(L), C(H), and D(L). Implementation with a
4-to-l MUX follows as in Fig. 6.8, where the B axis of the MUX K-map is complemented
since no inverter is used on the B(L} data select input line. Notice that no additional inverters
are required when compared to the implementation of Fig. 6.7, and that the resulting outputs
are identical to those of Eqs. (6.8). The use of an EQV gate in place of an XOR gate is a
consequence of the D(L) and the fact that only one inverter is used.

248 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

KL)

C - D

Ceo

1

C + D

Y

(a)

; [
i) (i U

^~i>
r̂ N

—^L^~

-+- H

G

1 4-10-1 V
MUX

2

'3

Si So

(b) 1 \
A(H) B(L)

Y(H)

O-Y(L)

FIGURE 6.8
Implementation of the function in Eq. (6.7) with mixed-logic inputs by using a 4-to-l MUX. (a)
Second-order K-map compressions for the function Y showing the renumbered cells due to 5(L). (b)
Logic circuit.

6.3 DECODERS/DEMULTIPLEXERS

A decoder is an n -input/2" -output combinational logic device that has the function of
activating one of the 2" outputs for every unique binary input pattern of n bits. The circuit
symbol for an n-to-2" decoder is shown in Fig. 6.9a, where In-\ — IQ are the data inputs,
72" -i — YQ are the outputs, and G is the enable. Each output is identified by the minterm
code m(of the binary input pattern it represents and can be represented, generally, as

Yi = mi • EN, (6.9)

where mo = ln-\ • • • hlilo, m\ = In-\ • • • /2/i/o, ̂ 2 = In-\ • • • 72/i/o, and so on. For
this reason a decoder can be called a minterm code generator. Commercial decoders are
available in a variety of sizes and packaged configurations, but most all feature active low
outputs and an active low enable.

Shown in Fig. 6.9b is the same decoder used as a demultiplexer (DMUX). Now, the
active low enable EN(L) to the decoder becomes the single data input iData(L) to the
DMUX, and the data inputs 70, I\, /2, . . . , 7n_i for the decoder become the data select inputs
SQ, S\ , $2, . . . , Sn-i for the DMUX. The outputs for the decoder and DMUX are the same
if it is understood that 7, is replaced by Sj in Eq. (6.9). The active low outputs and active low
enable are of particular importance when a decoder is used as a DMUX, since the DMUX
is often paired with a MUX for data routing as explained later.

6.3.1 Decoder Design

Decoder design is illustrated by the design of a 3-to-8 decoder. Shown in Fig. 6.10 is the
collapsed canonical I/O truth table for the enable input (EN), the three data inputs (72, I\,

6.3 DECODERS/DEMULTIPLEXERS 249

EN(L)

u G

Y

Y1*1
, n-tO-2" Y2 p-Y2(L) = m2EN(L)

Decoder

Y2n-1

D—Y0(L) = m0EN(L)

— Y1(L) = m1EN(L)

D—Y2n.1(L) = m2n.1EN(L)

YO

^
1-to-2" Y2

G DMUX :
(Decoder) '

^2"1

O .. . C O 0an-l °2 Gl ^0

3— Y0(L) = m0EN(L)

D— Y1(L) = m1EN(L)

D—Y2(L) = m2EN(L)

D— Y2n_1(L) = m2n.1EN(L)

(a)
n Data-Select

Inputs

(b)

FIGURE 6.9
Generalization of a decoder/demultiplexer (DMUX). (a) An «-to-2" decoder with an active low enable,
(b) The decoder of (a) used as a l-to-2w DMUX with data input loata(L).

and /o) and the eight outputs Y-j, ..., ¥2, Y\, and YQ. The truth table is termed a collapsed
truth table because of the irrelevant input symbol X used to represent either logic 0 or logic
1. Thus, X X X in the first row of the table represents eight minterms in variables //. Notice
that only one minterm code line is activated for each corresponding three-bit binary pattern
that appears on the input with active EN.

Each output (Y/) column in Fig. 6.10 represents a third-order K-map containing a single
minterm ANDed with EN. However, it is not necessary to construct eight EV K-maps to
obtain the eight output expression for 7,, since this information can be read directly from

EN

0
1
1
1
1
1
1
1
1

h /i
X X
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

/o

X
0
1
0
1
0
1
0
1

Yl
0
0
0
0
0
0
0
0
1

Y6

0
0
0
0
0
0
0
1
0

Y5

0
0
0
0
0
0
1
0
0

*4

0
0
0
0
0
1
0
0
0

Yl

0
0
0
0
1
0
0
0
0

Y2

0
0
0
1
0
0
0
0
0

Y\

0
0
1
0
0
0
0
0
0

Yo

0
1
0
0
0
0
0
0
0

YQ = /2/1/0 -EN

YI = I2i \IO-EN
Y2 = l2I\h-EN
Y3 = I2IiIo-EN
Y4 = i2i \IO-EN
Y5 = i2i \IO-EN
Y6 = I2lJ0-EN
Y1 = hhh-EN

X indicates an irrelevant input and represents either logic 0 or logic 1.

FIGURE 6.10
Collapsed truth table for a 3-to-8 decoder/demultiplexer with enable showing output expressions that
derived directly from the truth table.

250 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

EN(L)-c[>

EN(L)

u
—

G Y0

1° 3-to-8 Y3

, Decoder y

(b)
I I "—I 1 1—7*—\ V V /I \

'o(H)-

EN(H)
i—ft ^/

Y7(L)

(a) (c)

FIGURE 6.11
Implementation of the 3-to-8 decoder/demultiplexer in Fig. 6.10. (a) Logic circuit with active low
outputs and active low enable, (b) Logic symbol, (c) An alternative three-enable configuration used
by the commercial 74x138 decoder.

the truth table and is provided in the third column of Fig. 6.10. When the requirements of
active low outputs and active low enable are introduced, the 7, expressions for the 3-to-8
decoder/demultiplexer in Fig. 6.10 are implemented with NAND/INV logic as shown in
Fig. 6.1 la. Its logic symbol is given in Fig. 6.1 l(b).

A single enable input is used to enable or disable the decoder of Fig. 6.11. But other
enable configurations are common. For example, a commercially available 3-to-8 decoder,
the 74x138, has the same decoder logic as in Fig. 6.1 la, except the commercial unit fea-
tures three enable inputs as indicated in Fig. 6.1 Ic. Multiple enable inputs permit greater
versatility when controlling a given decoder from various sources.

Decoders can be stacked (cascaded) in hierarchical configurations to produce much larger
decoders. This requires that the 2m outputs of one decoder drive the EN controls of 2" other
decoders, assuming that all outputs of the leading decoders are used. As an example, four
3-to-8 decoders are enable/selected by a 2-to-4 decoder in Fig. 6.12 to produce a 5-to-32
decoder. Similarly, two 4-to-16 decoders can be stacked to produce a 5-to-32 decoder when
enable/selected by a single inverter. Or cascading four 4-to-16 decoders produces a 6-to-64
decoder when enable/selected by a 2-to-4 decoder. Note that stacking any two decoders
requires only an inverter acting as a l-to-2 enable/select decoder.

6.3 DECODERS/DEMULTIPLEXERS 251

'o(H)
" -Y0-Y7(L)

»;l̂ _
I2(H)

I4(H)

(L

G 0
0 2-to-4 1
1 Dec 2

3

3 - - - - -

•"\

D 1

D)

O

l_

— O

G 0
1

0 2
3-to-8 3

1 Dec 4
5

2 6
7

G 0
1

0 2
3-tO-8 3

1 Dec 4
5

2 6
7

D-
3 —
D-

D-
3 —
>-
D-

D-
3 —

^ —3—
D-
J-
D-
D-

— c

— o

G 0
1

0 2
3-to-8 3

1 Dec 4
5

2 6
7

G 0
1

0 2
3-tO-8 3

1 Dec 4
5

2 Q
7

D-
3 —

D̂-
0-
Q^

0-
o-

D-
D-
2
D-
D-
D-
D-
3-

•Y8-Y15(L)

Y16-Y23(L)

•Y24-Y31(L)

FIGURE 6.12
Stacking of four 3-to-8 decoders to produce a 5-to-32 decoder.

Decoders can be packaged in pairs such as the dual 2-to-4 74x139 decoder. Such a dual
set will have two independent enable inputs, one for each or the two 2-to-4 decoders. The
2-to-4 decoder in Fig. 6.12 is actually one half of the 74x139, indicated as \74x139.

6.3.2 Combinational Logic Design with Decoders

Decoders can be used effectively to implement any function represented in canonical form.
All that is needed is the external logic required to OR minterms for SOP representation or
to AND maxterms for POS representation. As a simple example, consider the two functions
in canonical form:

,C) = y / n (l , 3 , 4 , 7) SOP
£^ (6.10)

G(A, B,C) = M(2, 3,5,6) POS.

Assuming that the inputs arrive asA(//), B(H), C(H), and that the outputs are delivered

252 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

C(H)

B(H)

A(H)-

3-to-8 Y
, Decoder

F(H) = Im(1,3,4,7) (H)

G(H) = nM(2,3,5,6) (H)

FIGURE 6.13
Decoder implementations of Eqs. (6.10) assuming inputs and outputs are all active high.

active high, these two functions are implemented as given in Fig. 6.13. To understand why
function G is implemented with an AND gate, consider what is generated by the ANDing
operation:

G = m2-m3-m5-m6 = M2- M2- M5-M6 = Y\ M(2, 3, 5, 6).

If it is desirable to issue G active low, a NAND gate would be used in place of the AND
gate. Or if F is to be issued active low, an AND would be needed in place of the NAND.
Actually, to fully understand the versatile nature of function implementation with decoders,
the reader should experiment by replacing the NAND and AND gates in Fig. 6.13 with a
variety of gates, including treed XOR and EQV gates.

The problem of mixed-logic inputs can be dealt with in a manner similar to those issued
to MUXs. The rules are similar to those for MUXs and are stated as follows:

For Mixed-Logic Data Inputs to Decoders

(1) Complement the bit of any active low input to a decoder and renumber the
minterms accordingly.

or

(2) Use an inverter on the input line of an active low input and do not complement
the bit.

Consider, as an example, the two functions of Eqs. (6.10) with inputs that arrive as
A(H), B(L}, and C(L). Functionally, the mixed-logic forms of Eqs. (6.10) become

), B(L), C(L}} = FSOp[A, B, C](H)

and (6.11)

) , B(L), C(L)] = GPOS[A, B,

6.3 DECODERS/DEMULTIPLEXERS 253

Then by Eqs. (6.11) and if inverters are not to be used, the B and C bits must be comple-
mented:

mo = 000^011 =m 3 ra4 = 100^ 111 = m7

m, = 001^010 = m2 ra5 = 101 -> 110 = m6

m2 =010-^001 = mi m6 = 110-> 101 = m5

m3=011-»000 = roo m7 = 111 -> 100 = m4.

Thus, to accommodate the mixed-logic inputs, the two functions in Eqs. (6.10) must be
connected to the decoder according to the renumbered functions

F[A(H), B(L), C(L)] = J2 m(°' 2' 4> 7> and

G[A(H),B(L),C(L)] = Y\M(Q, 1,5,6).

Of course, if inverters are used on the B(L) and C(L) inputs, no complementation is
necessary and the functions are implemented according to Eqs. (6.10).

Decoders, used as demultiplexers (DMUXs), are simply reoriented so that the active
low enable is the only data input. Now the // inputs become the data select inputs 5, as
in Fig. 6.9b. Used in conjunction with MUXs, the MUX/DMUX system offers a means
of time-shared bussing of multiple-line data Xt on a single line as illustrated in Fig. 6.14.
Bussing data over large distances by using this system results in a significant savings on
hardware, but is a relatively slow process.

Source Destination

X0(H)

X,(H)

X2(H)

_1<H) —

ID

"1
'2 2n-to-1
: MUX Y

•

'2M

o o o o
^n-1 '" *z *1 ^0

ff so

Y0
Y1

1-to-2n Y2

G DMUX :
(Decoder) '

Y

sn,-s2Sl s0

3— X0(L) = X0(H)

3— X1(L) = X1(H)

3— X2(L) = X2(H)

3-X2n.1(L) = X2n

n Data-Select Inputs

FIGURE 6.14
Generalization of a MUX/DMUX system for bussing data on 2" — 1 lines over a single time-shared
line from the MUX source to the DMUX destination.

254 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

6.4 ENCODERS

By definition an encoder performs an operation that is the opposite to that of a decoder.
That is, an encoder must generate a different output bit pattern (code) for each input line
that becomes active. For a binary encoder, this requirement can be enforced only if one
output binary word of n bits is associated with only one of 2n "decimal" input lines
(0, 1, 2, 3 , . . . , 2" — 1). Obviously, if more than one input line is active, the output be-
comes ambiguous in such an encoder. The ambiguity problem is overcome by prioritizing
the input. When this is done the result is called a priority encoder (PE), which assigns a
priority to each input according to a PE schedule for that encoder. Most encoders are PEs.

A priority encoder is generally an n-input/m-output (n <2m) device as indicated by the
circuit symbol in Fig. 6.15. In addition to the n address inputs and m outputs, a commercial
PE will usually have three other input and output lines that are used to cascade (stack)
PEs: an enable-in input (El), an enable-out output (EO), and a group signal output (GS).
The purpose of the GS output is to indicate any legitimate encoding condition, meaning that
El is active concurrently with a single active address input. All inputs and outputs of a PE
are active low as shown.

The design of a simple 3-input/2-output PE with cascading capability is illustrated in
Fig. 6.16. Shown in Fig. 6.16a is the priority schedule and the collapsed I/O truth table
for this encoder. The EV K-maps in Fig. 6.16b are plotted from the truth table, and the
minimum cover yields the following output expressions:

7i = I2EI + 7, El FO = I\ loEI + I2EI
_ (6.12)

EO = 72/i I0EI GS = (I2 + /i + Io)EI = EO • EL

These expressions are implemented with minimum logic in Fig. 6.16c for active low inputs
and outputs as required in Fig. 6.15. Notice that this circuit represents a simple multioutput
optimization, which is deduced by inspection of expressions for EO and GS.

The outputs EO and GS require special attention since their logic values have been
specifically chosen to make cascading of PEs possible. When the address inputs for the nth
stage are all inactive (logic 0), it is the function of EOn to activate the (n — l)th stage. This
assumes that prioritization is assigned from highest active input (decimal-wise) to lowest.
Therefore, EO can be active only for inactive address inputs and active El. It is the function

A A A A

n-to-m
Priority Encoder (PE)

EO Ym_, — Y2 Y, Y0 Gs

7 r
FIGURE 6.15
Logic symbol for an n-to-m priority encoder with cascading capability.

Priority Schedule

Null state
I2 (highest) -- encoded as 11
I, (middle) -- encoded as 10
I0 (lowest) -- encoded as 01
Inactive state -- encoded 00

El

0
1
1
1
1

"2

X
1
0
0
0

"l
X
X
1
0
0

"o

X
X
X
1
0

GS

0
1
1
1
0

Y1

0
1
1
0
0

YO

0
1
0
1
0

EO

0
0
0
0
1

(a)

vro vi 'o
|\ 00 01 11 10 |\ 00 01 11 10

<L

0

1

N[I

0

(£_

0

El

El

El

El

•̂ 1

0
NV' 00 01 11 10

0

1

(IT)

0

0

0

0

0

0

0

0

[EI

El

El

0

El

0

|\ ° 00 01 11 10
'2 N

0 0

(a
El

El

*̂"~

El
— v

bl

El
"*™*\

JE,J

(b)

I2(L) I^L) I0(L) EI(L)

Y
EO(L) ~\-GS(L)

' i (D

(c)

FIGURE 6.16
Design of a three-input priority encoder with cascading capability, (a) Priority schedule and collapsed
truth table, (b) EV K-maps. (c) Minimized logic circuit.

255

256 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

(GS,)

EI1 EI0 I5 I4 I3 I2 I, I0

0 O X X X X X X

1 0 1 X X X X X

1 0 0 1 X X X X

1 0 0 0 1 X X X

1 1 0 0 0 1 X X

1 1 0 0 0 0 1 X

1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 0

Y -T IrrtalAvant innnt (\r\

Y2 Y, Y0 E01 E00 EI(L) -c

o o o o o i5_3(L)-4-c
1 1 1 0 0

1 1 0 0 0

El, GS,

PE/1Yo

K>i

D

D

>-|

1

1 0 1 0 0 | 1

0 1 1 1 0
L-c

0 1 0 1 0

0 0 1 1 0 I2.0(L)^-C

0 0 0 1 1

nir fl r»r Innir 1^

EL GSn•_ig "̂-'Q

PEoY'°YO

EOO

0

-4~X^
—q_^

—<sr~^
-d j°-

T '

D~

(a) (b)

FIGURE 6.17
Two 3-to-2 PEs in cascade to produce a 6-to-3 PE. (a) Collapsed truth table, (b) Logic circuit.

of the GS output to go active for any valid encoding condition for that stage, meaning El
active concurrently with a single active address input, and to provide an additional output
bit (MSB) for each stage added in cascade fashion.

Two 3-to-2 PEs of the type in Fig. 6. 16 are shown stacked in Fig. 6. 17 to form a 6-to-3 PE.
The truth table for the two PE combination is given in Fig. 6. 17a and includes the cascading
bits El, EO, and GS for PE] and PE0. From Eqs. (6.12) and Fig. 6. 17, the cascading bits for
the system are expressed as

EOi = /574/3^/i = EI0 (6.13)

E00 = I2I J0EI0.

Notice that GS\ = Y2 indicates a valid encoding condition only for active inputs I5 , 74, and
/3, while GSo (not shown) indicates a valid encoding condition only for active inputs /2 , /i ,
and IQ. Output state 100 cannot occur according to Eqs. (6.12) and (6.13) and Fig. 6.17a.

Priority encoders of the type represented in Fig. 6.15 are commercially available as 1C
chips. Typically, they are produced in the 8-to-3 line size, such as the 74x148, which can
be stacked to produce 16-to-4 line and 32-to-5 line PEs. Their applications include code
conversion, code generation, and n-bit encoding in digital systems having a hierarchy of
subsystems that must be prioritized.

Those PEs that do not have EO and GS outputs, and hence cannot be stacked, are also
available commercially as ICs. Their design closely follows the design of PEs of the type in
Fig. 6. 16. They are commonly produced in 9-to-4 line size for use as BCD priority encoding,
keyboard encoding, and range selection.

Y2(L)

Y0(D

6.5 CODE CONVERTERS 257

6.5 CODE CONVERTERS

Various codes are discussed at length in Section 2.10. On occasion it is necessary to convert
one code to another. Devices that are designed to execute a code conversion are called code
converters. Considering the many codes that are currently in use, it follows that there are
a very large number of converters possible. Not taking into account any particular area of
specialty, a few of the more common code conversions are as follows:

Binary-to-Gray conversion and vice versa
BCD-to-XS3 conversion and vice versa
Binary-to-BCD conversion and vice versa

6.5.1 Procedure for Code Converter Design

The following is a simple three-step procedure that will be followed in this text, often
without reference to this subsection:

1. Generally, follow the design procedure in Subsection 6.1.5.
2. If conversion involves any of the decimal code input (e.g., BCD), only 10 states can

be used. The six unused input states are called false data inputs. For these six states
the outputs must be represented either by don't cares (0's) or by some unused output
state, for example all 1's. That is, if the requirement is for false data rejection (FDR),
then the output states must correspond to at least one unused output state; if not,
0's are entered for the output states. Thus, FDR means that the outputs must never
correspond to a used output state when any one of the six unused states arrive at the
input terminals. If false data is not rejected, then the outputs corresponding to the six
unused states can take on any logic values, including those of used output states.

3. If the input code is any other than binary or BCD and if EV K-maps are to be used in
minimizing the logic, it is recommended that the input code be arranged in the order
of ascending binary, taking care to match each output state with its corresponding
input state.

6.5.2 Examples of Code Converter Design

To illustrate the code converter design process, four examples are presented. These examples
are quite adequate since the conversion procedure varies only slightly from one conversion
to another. The four examples are Gray-to-binary conversion, BCD-to-XS3 conversion,
BCD-to-binary conversion, and BCD-to-seven-segment-display conversion. Of these, the
last two are by far the most complex and perhaps the most important considering that binary,
BCD, and the seven-segment display are commonly used in digital design and computer
technology.

Gray-to-Binary Con version The Gray-to-binary conversion table for 4-bit codes is given
in Fig. 6.18a. Here, for convenience of plotting EV K-maps, the input Gray code and
the corresponding output binary code have been rearranged such that the Gray code is
given in ascending minterm code (compare Tables 2.1 and 2.12). The second-order EV

258 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

Gray
A B

0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1

C

0
0
1
1
0
0
1
1

D

0
1
0
1
0
1
0
1

A1

0
0
0
0
0
0
0
0

Binary
B1

0
0
0
0
1
1
1
1

C'

0
0
1
1
1
1
0
0

D1

0
1
1
0
1
0
0
1

Gray
A B C

1 0 0
1 0 0
1 0 1
1 0 1
1 1 0
1 1 0
1 1 1
1 1 1

Binary
D

0
1
0
1
0
1
0
1

A1

1
1
1
1
1
1
1
1

B'

1
1
1
1
0
0
0
0

C' D'

1 1
1 0
0 0
0 1
0 0
0 1
1 1
1 0

(a)

By inspection
A' =

(b) (c)

FIGURE 6.18
Design of a 4-bit Gray-to-binary converter, (a) I/O truth table, (b) Output EV K-maps plotted from
(a) showing minimum cover, (c) Resulting logic circuit according to Eqs. (6.14).

K-maps, shown in Fig. 6. 18b, are plotted directly from the truth table and yield the minimum
cover,

A' = A

B' = A®B
(6.14)c = A e B e c

from which the logic circuit of Fig. 6. 1 8c results. Noticing the trend in Eqs. (6. 14), it is clear
that an XOR gate is added in series fashion with each additional bit of the Gray-to-binary
conversion. With this trend in mind any size Gray-to-binary converter can be implemented
without the need to repeat the steps indicated in Fig. 6.18.

BCD-to-XS3 Conversion As a second example, consider the conversion between two
decimal codes, BCD and XS3. Shown in Fig. 6.19a is the truth table for the BCD-to-XS3
conversion where, for this design, false data is not rejected. Thus, 0's become the output

6.5 CODE CONVERTERS 259

BCD
A

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

c

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

XS3
A1

0
0
0
0
0
1
1
1
1
1

B'

0
1
1
1
1
0
0
0
0
1

1
^
1

C'

1
0
0
1
1
0
0
1
1
0

L

s

D1

1
0
1
0
1
0
1
0
1
0

C+D

C+D

C+D

D1

(a)

B(H)
BCD;
Inpur XS3

Output

D(H)-

FIGURE 6.19
Design of the BCD-to-XS3 converter without FDR. (a) Truth table, (b) EV K-maps showing minimum
cover, (c) Logic circuit according to Eqs. (6.15).

XS3 code patterns corresponding to the six unused input BCD states. The resulting EV
K-maps for the output functions are given in Fig. 6.19b, from which the gate-minimum
cover is extracted as

A' =

B' = B 0 (C + D)

C' = CQD

D' = D

(6.15)

representing a gate/input tally of 5/10, excluding inverters. The subfunctions for cell 2 in
Fig. 6.19b result from an appropriate use of the 0's. Shown in Fig. 6.19c is the three-level
logic circuit for this converter implemented with NOR/XOR/INV logic assuming that the
inputs and outputs are all active high. The subject of mixed logic inputs to an XOR gate is
discussed at length in Subsection 3.9.4.

Had FDR been a design objective for the BCD-to-XS3 converter, the 0's in Fig. 6.19a
would have to be replaced by an unused (FDR) output state. If the FDR state is taken to
be 1111, the K-maps of Fig. 6.19b are altered accordingly, and the resulting gate-minimum

260 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

output expressions become

A' = B(C + £>) + A

B' = B®(C + D) + AB

C' = COD + AC + AB (6.16)

now representing a gate/input tally of 10/22, excluding an inverter but including three shared
Pis. Clearly, the FDR feature comes at a significant price in terms of hardware. FDR states
other than the 1111 can be used, as for example the 0000 state, but all increase the cost in
hardware even further.

Conversion between BCD and Binary The BCD and binary codes are two of the most
widely used codes in digital design, so it is fitting that conversion between them be consid-
ered. The simplest approach is to establish workable algorithms to produce an expandable
modular design. Even so, such tasks rank among the more difficult conversion problems.
Consider, for example, that a two-digit BCD word converts to an 8-bit binary number,
whereas an 8-bit binary word converts to a three-digit BCD representation.

Two algorithms will now be considered that make conversion between these two codes
tractable and that lead to modular designs. In these algorithms shifting right by one bit
is equivalent to dividing by 2 (srl = -^2) and shifting left by one bit is equivalent to
multiplying by 2 (sll = x2). Also, LSD and MSD refer to the least significant digit and
most significant digit, respectively, for the BCD number. A detailed treatment of the bi-
nary and BCD number systems is provided in Sections 2.3 and 2.4, and the pencil-and-
paper conversion method between the binary and BCD number systems is discussed in
Subsection 2.4.1.

The first of the two algorithms, the BCD-to-binary conversion, requires that the BCD
number first be placed in imaginary storage cells. For example, a two-decade BCD number
will occupy eight imaginary storage cells. After this has been done, then the algorithm
proceeds as follows:

Algorithm 6. 1 BCD-to-Binary Conversion by the (-~2)/(— 3) Process

(1) Shift the BCD number to the right by one bit into the new LSD position, but keeping
account of the bits shifted out of the LSD.
(2) Subtract 001 1 from the LSD (or add 1101 to the LSD if in 2's complement) iff the
new LSD number is greater than 7 (0111). After subtracting 3, shift right immediately
even if the new LSD is greater than 7.
(3) Repeat steps (1) and (2) until the final LSD number can no longer be greater than
decimal 7. The answer is now in binary.

Algorithm 6.1 is sometimes referred to as the shift-right/subtract 3 [or (-f 2)/(— 3)] algo-
rithm. The algorithm for binary-to-BCD conversion can be thought of as the mathematical
dual of Algorithm 6. 1 . In this case the process could be called the shift-left/add 3 [or (x 2)/
(+3)] algorithm. Begin by placing the binary number outside and to the right of the LSD
positions, then proceed as follows:

6.5 CODE CONVERTERS 261

Algorithm 6.2 Binary-to-BCD Conversion by the (x2)/(4-3) Process

(1) Shift the binary number to the left by one bit into the new LSD position.
(2) Add 001 1 to the new LSD iff the new LSD number is greater than 4 (0100), After
adding 3, shift left immediately.
(3) Repeat steps (1) and (2). When all binary bits have been shifted into digit positions,
the process ceases and the answer is in BCD.

To design converters by either Algorithm 6.1 or 6.2, it is not necessary to resort to
arithmetic means as implied by the algorithms. Rather, a modular approach is easily estab-
lished by constructing a relatively simple truth table followed by appropriate minimization
methods. The process is now illustrated by designing an 8-bit BCD-to-binary converter.

BCD-to-Binary Conversion A truth table matching BCD with the corresponding binary
from 0 to 19 is given in Fig. 6.20a. Inherent in this truth table is the shift-right/subtract-3
Algorithm 6.1. The decimal range 0 to 19 is chosen to illustrate the process but is easily
extended to 39, 79, or 99, etc. This truth table will be used to design a BCD-to-binary
module that can be cascaded to produce any size converter. It is possible to use a decimal
range of 0 to 99 for this purpose, but the size of the module is considered too large to be of
value for this example.

Shown in Fig. 6.20b are the K-maps and minimum cover for four of the five output
functions of the 2-digit BCD-to-binary module. The two-level minimum expressions for
the BCD-to-binary module, as read from the K-maps and truth table, are

B4 = D4D2Di + D4D3

#3 = D4D3Di + D4D2D] + D4D3

B2 = D4D2Di + D4D2 + D2D\ (6.17)

BI = D4£>i + D4Di = D4 © DI

BQ = DO by inspection,

which represent a gate/input tally of 1 1/27 excluding inverters but including one shared PI.
The logic circuit for this module is given in Fig. 6.21 a and is cascaded in Fig. 6.2 Ib to produce
the 8-bit BCD-to-binary converter. Notice that the four modules are cascaded in such a way
as to satisfy the right-shift requirement of Algorithm 6.1. If expansion beyond 8 bits is
needed, each additional bit requires that an additional module be added in cascade fashion.

BCD-to-Seven-Segment Display No discussion of code conversion is complete without
including the BCD-to-seven-segment decoder (converter). Light-emitting diodes (LEDs)
and liquid crystal displays (LCDs) are used extensively to produce the familiar Arabic
numerals. The use of the BCD-to-seven-segment decoder is an important means of accom-
plishing this.

Shown in Fig. 6.22a is the seven-segment display format and the ten decimal digits that
are produced by the decoder/display. The truth table for the converter is given in Fig. 6.22b
and features a blanking input BI, but lacks FDR since 0's are assigned to the six unused
input states.

The EV K-maps for the seven segment outputs are shown in Fig. 6.22c, where a
near-minimum POS cover for each has been looped out. This results in the following

262 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

BCD Binary
—\
».| BO Dec. \D2D1 \D2D

P4D\ 00 01 11 10 D4D\ 00 01 11 10

[)
4

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1

D33

0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1

D22

0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0

D
'

0
0
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
0

Dou

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

B

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1

B
»

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0

B
2

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0

B11
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

B
"

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Dec.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

00

01

11

10

0

0

00

01

11

10

d

B4 /B

4

00

01

11

10

1
4^3

00

01

11

10

(a) (b)

FIGURE 6.20
Design of an 8-bit BCD-to-binary converter, (a) Truth table for a 2-digit BCD-to-binary module, (b)
K-maps plotted directly from the truth table showing minimum cover.

expressions

a = (A + B + C + D)(B + D)

b=B+CQD=B+C®D

= (B + C + D}(B + C + D)

C®D} (6.18)

= (B + C + D)(B + C + D)(B + C + D)

/ = (C + D)(A + B + D)(B + C)

g = (A + B + C)(B + C + D),

D4DX 00 01 11 10 DD\ 00 01 11 10

6.5 CODE CONVERTERS 263

D4(H) D3(H) D2(H) Dl(H) MSD LSD

D_ D_ D_ D_ D,. D, D- D

B3(H)
r1
U4

C
>4

I

£

[

BCD-to-Binary Module

BCD-to-Binary Module

J4 i

I

3?

\

I

I

BCD-to-Binary Module

E

r

\A

}

E

L

\

"\u2

i

L

^

1

BCD-to-Binary Module

B4 B3

B128 B64
V

B2

B32

B1

B16

I

^

B8

i
31

B4
Lj tj

B
4(H)

8-bit Binary

(a) (b)

FIGURE 6.21
Implementation of the BCD-to-binary module and the 8-bit BCD-to-binary converter, (a) Logic
circuit for the 2-digit module according to Eqs. (6.17). (b) Cascaded modules to produce the 8-bit
converter.

which represent a POS gate/input tally of 19/50, excluding inverters. Notice that two of
these seven expressions are also presented in hybrid (POS/XOR) form and that one, d, is a
three-level expression if the XOR term is considered one level as in Fig. 3.26a.

A BCD-to-seven-segment converter uses either a common cathode or common anode
LED display as shown in Fig. 6.23, but where the individual LEDs are arranged as in
Fig. 6.22a. The common anode configuration requires that the outputs in Eqs. (6.18) be
active low while the common cathode configuration requires that they be active high. For
this example the common cathode configuration of LEDs is chosen, requiring that the
expressions in Eqs. (6.18) be complemented and active low. When this is done, the resulting
two-level SOP (active low) expressions become Eqs. (6.19),

264 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

n H D D u c L i o o
U i L J I J IJ I U 1

(a)

Inputs Segment Outputs

Bl A B C D

0 X X X X
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1

a b c d e f g

0 0 0 0 0 0 0
1 1 1 1 1 1 0
0 1 1 0 0 0 0
1 1 0 1 1 0 1
1 1 1 1 0 0 1
0 1 1 0 0 1 1
1 0 1 1 0 1 1
0 0 1 1 1 1 1
1 1 1 0 0 0 0
1 1 1 1 1 1 1
1 1 1 0 0 1 1

1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 6"0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

(b) (c)

FIGURE 6.22
Near-minimum design of a BCD-to-seven-segment converter, (a) Display format and the ten decimal
digits, (b) Truth table with a blanking input and without FDR. (c) EV K-niaps for the seven-segment
outputs showing near-minimum POS cover as given by Eqs. (6.18).

c(L) = [BCD](L)

BCD](L) (6.19)

f(L) = [CD + ABD + BC](L)

and are implemented in Fig. 6.24, where the active low blanking input BI(L) is realized by
using inverting tri-state drivers with active low controls as in Fig. 3.8d. Thus, Bl serves to

6.6 MAGNITUDE COMPARATORS 265

Supply
a b c d e f g

(b)

FIGURE 6.23
LED configurations for the BCD-to-seven-segment display converter, (a) Common anode, (b) Com-
mon cathode.

enable the decoder if BI(L) = 1(L), or disable it if BI(L) = 0(L). Notice that the common
cathode configuration of LEDs in Fig. 6.23b requires the inputs to be 1(H) = HV to force
the diode into forward bias (conducting mode). Thus, a 0(L) for any output in Eqs. (6.19)
is a 1(H), which is the same as a 1 in the positive logic truth table of Fig. 6.22b. Coupling
the decoder of Fig. 6.24 with the common anode configuration requires the use of nonin-
verting tri-state drivers with active low controls as in Fig. 3.8b. In this case, each output
in Eqs. (6.19) would be issued active high such that any 0(H) output (to the LED) forces a
diode in Fig. 6.23a into forward bias. A commercial 1C chip with logic suitable for coupling
with the common anode LED configuration of Fig. 6.23a is the 74x49. Its logic differs
somewhat from that of Fig. 6.24 because it generates the blanking condition in a differ-
ent way — it uses a form of FDR — and it reverses the input lettering from MSB (D) to
LSB (A).

The blanking feature shown in Fig. 6.25 is useful in removing leading zeros in integer
displays and trailing zeros in fixed-point decimal displays. When the blanking feature is
used in this way it is called zero-blanking. For example, 036.70 would appear if no zeros are
blanked but would be 36.7 after zero-blanking. To accomplish the zero-blanking capability
requires that additional logic be connected to the BI input. The idea here is that when the
inputs to an MSD stage are zero, the zero-blanking logic must deactivate BI [BI(L) = 0(L)]
but must not do so for intermediate zeros as, for example, in 40.7. ICs with this capability
are designed with a zero-blanking input (ZBI) and a zero-blanking output (ZBO) so that
when the decade stages are connected together, ZBO-to-ZBI, zero blanking can ripple
in the direction of the radix point terminal. This is easily accomplished as illustrated in
Fig. 6.25 for an integer display, where external logic is connected to the BI inputs of the
BCD-to-seven-segment decoders of Fig. 6.24 such that only leading zeros are blanked in
ripple fashion from MSD-to-LSD.

6.6 MAGNITUDE COMPARATORS

A device that determines which of two binary numbers is larger or if they are equal is called
a magnitude comparator or simply comparator. A vending machine, for example, must en-
gage a comparator each time a coin is inserted into the coin slot so that the desired item can be
dispensed when the correct change has been inserted. The block diagram symbol for an n-bit
comparator with cascading capability is given in Fig. 6.26. Here, it is to be understood that
gt and (A > B) represent A greater than B; eq and (A = B) represent A equal to B; It and

266 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

MSB LSB

BI(L) A(H) B(H) C(H) D(H)

Bl: A B C D

Pecoder

a b c <J e f g

Y Y Y Y Y Y Y
(b)

g(L)

FIGURE 6.24
Logic circuit (a) and circuit symbol (b) for the BCD-to-seven-segment decoder according to Eqs. (6.19)
and Fig. 6.22, featuring an active low blanking input BI implemented by using inverting three-state
drivers with active low controls.

(A < B) represent A less than B. For cascading purposes, the inputs gt, eq, and It to the &th
stage are the outputs (A > B, A = B, and A < B) from the next least significant (k — l)th
stage, while the corresponding outputs of the kth stage are the inputs (gt, eq, and It) to the next
most significant (k + l)th stage. Thus, the magnitudes of the kth stage are more significant
than those of the (k — 1)th stage, as the magnitudes of the (k -f 1)th stage are more significant

6.6 MAGNITUDE COMPARATORS 267

c(>— ZBO(H)

I I I I

BCD-tQ*Seven-Segment
Decoder [ZBI

a b c d e f
a b Q d e f g T Y Y Y Y Y Yn rr nr T

(a) (b)

I I I I I I I
_ g Q p I I A

0(H) ZBI (MSD) ZBO
a b c d e f g

A B C D
ZBI ZBO —

a b c d e f <

A B C D

ZBi (LSD)

a b c d e f

Y Y T T Y Y Y Y Y Y Y Y Y Y ^ f Y Y Y Y Y Y
(c)

FIGURE 6.25
BCD-to-seven-segment decoding with zero-blanking capability, (a) External logic required for zero
blanking, (b) Circuit symbol for zero-blanking decoder module, (c) Cascaded modules for integer
representation showing rippled zero blanking of leading zeros from MSD-to-LSD stages.

than those of the fcth stage, etc. Though seemingly trivial, these facts are important in estab-
lishing the proper truth table entries for comparator design, as the following examples will
illustrate.

The design of a useful cascadable comparator begins with the 1-bit design. Shown in
Fig. 6.27 are the EV truth table and EV K-maps for a cascadable 1-bit comparator. The

(A>B)

ivBit Comparator (A=B)

(A<8)

FIGURE 6.26
Circuit symbol for an n-bit comparator with cascading capability.

268 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

A B

0 0
0 1
1 0
1 1

A>B A=B A<B

gt eq It
0 0 1
1 0 0
gt eq It I ^2! ^alx

X(A>B)

FIGURE 6.27
Design of a cascadable 1-bit comparator, (a) EV truth table, (b) Output EV K-maps showing minimum
cover with XOR-type functions.

gate-minimum cover for each of the three outputs, as extracted from the K-maps, is

(A > B) = gt(AOB) + AB
(A = B) = eq(AOB)
(A < B) = lt(A QB) + AB

(6.20)

as given in three-level form. These represent a gate/input tally of 8/16, excluding inverters.
Notice that in the truth table of Fig. 6.27a all three inputs, gt, eq, and It, appear only when
A and B are of equal magnitude and that logic 1 appears when one, A or B, dominates in
magnitude.

In order to establish an important trend in the output expressions, one that can be used
to establish the logic for any size comparator, it is helpful to construct the truth table and
EV K-maps for a cascadable 2-bit comparator. These are provided in Fig. 6.28. As in the
1-bit comparator design, the EVs (gt, eq, and If) in the truth table of Fig. 6.28a are the
outputs from the next least significant stage, which explains why they appear only when A
and B are of equal magnitude. The gate-minimum output cover given in Fig. 6.28b yields
the following expressions in three-level form:

(A > B)

= gt(A{ O Bi)(A0 O BQ) + A0B0(A] O

(A = B) = eqA0Bo(A1 O B{) + eqA0B0(Al Q B
(6.21)

(A < B) = A0(lt+B0)(Al O 50 + ltA0B0(Al

O B{)(A0 O B0) + Aoflo(Ai O

These represent a gate/input tally of 1 1/29 (excluding inverters) with a maximum fan-in of
4. Notice that in arriving at the second equation for each of the outputs, use is made of the
absorptive law, Eqs. (3.13), in the form gt+ B0 = gtB0 + BQ and It + B0 = ltB0 + BQ. In
comparison, a two-level optimization of this comparator gives a gate/input tally of 21/60,

6.6 MAGNITUDE COMPARATORS 269

Dec.
AB

00
01
02
03
10
11
12
13
20
21
22
23
30
31
32
33

A .

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A0

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

B.

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

Bn0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

A>B

gt
0
0
0
1
gt
0
0
1
1
gt
0
1
1
1

1 gt

A-B

eq
0
0
0
0
eq
0
0
0
0
eq
0
0
0
0
eq

A<B

It
1
1
1
0
It
1
1
0
0
It
1
0
0
0
It

(A>B)

AX 00 01 11 10
1

feqB,

eqBc eqBc

eqBc

/
(A=B)

A0B1
\ °0 01 11 10

0
/"N
(lt+B,

0\

.
\ll —

s î)

...

— y/
<*y

/"\"Bo)

/„

(b)

FIGURE 6.28
Design of a cascadable 2-bit comparator, (a) Compressed truth table, (b) EV K-maps plotted from (a)
showing minimum cover involving XOR-type functions.

excluding inverters, and has a maximum fan-in of 7. Thus, the advantage of the multilevel
gate-minimum form over that of the two-level implementation is evident. This is especially
true if CMOS is used in the design of the comparator. Recall that the CMOS EQV gate in
Fig. 3.27a has about the same gate path delay as a two-input NAND gate.

If A = B in Eqs. (6.20) and (6.21), there results (A > B) = gt and (A < B) = It, each
of which must be logic 0 for the A = B condition from the next least significant stage.
Therefore, it follows generally that

(A = B) = (A > B) • (A < B), (6.22)

which yields (A = B) = 0 for any condition other than A = B.
The trend that emerges in the output expressions is easily deduced from an inspection of

Eqs. (6.20) and (6.21), thereby permitting the three output expressions to be written for any

270 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

number of bits. As an example, the output expressions for a cascadable 4-bit comparator
become

i=0 i = l i=2

_ _

= B} = eq- f~[(A, Q B/) = (A^B) • (A < B) (6.23)
i=0
3 3 3

(A < B) = It • JT(A,- O B{) + Aofio] | (A» O #/) + A\B\ T|(A,- O B{]
i=0 i=l i=2

where

3

i=0

and

3

^

[~[(A(O B,-) = (A0 O Bo)(Ai O B,)(A2 O fl2)(A3 O

Ai O £,) = (A2 O fl2)(A3 O 53), etc.
(=2

Implementation of Eqs. (6.23) is given in Fig. 6.29, using three-level NAND/NOR/EQV
logic and limiting fan-in to 5. Here, the gate/input tally is 23/67, excluding inverters.

The commercial chip that is equivalent to the cascadable 4-bit comparator of Fig. 6.29 is
the 74xx85. Though the two differ somewhat in the logic circuit makeup, they function in
exactly the same way. Either can be cascaded to form a comparator of any number of bits in
multiples of four bits. Shown in Fig. 6.30 is an 8-bit comparator formed by cascading two
4-bit comparators in series. Notice that the inputs to the least significant stage are required
to be at the fixed logic levels shown.

Combining three or more comparators in series suffers significantly in propagation delay.
Much better is the series/parallel arrangement shown in Fig. 6.31. Here, six 4-bit compara-
tors are combined to form a 24-bit comparator where no more than two comparators are
placed in series and all inputs and outputs are active high. In this case, a dominant A or
B word is picked up by one of the five stages in ascending order of significance and is is-
sued as either (A > B), (A = B), or (A < B) from the MSB stage of the output comparator.
Words A and B of equal magnitude are picked up by the least significant stage and issued by
the output comparator as (A = B). The series/parallel comparator arrangement in Fig. 6.31
is justifiable on the basis of path delay arguments when the alternative is considered —
namely, the series configuration of six 4-bit comparators. Notice that not all of the 24 bits
of the comparator need be used. Any size A, B words up to 24 bits can be compared by
using the comparator of Fig. 6.31. The only requirement is that words A and B be of equal
length and that MSB inputs not in use be held at 0(H).

A3 AS A, A0 B3 B2 B, B0

(H) (H) (H) (H) (H) (H) (H) (H)

gt(H)

(A>B)(H)

eq(H) - - P > - (A=B)(H)

(A<B)(H)

FIGURE 6.29
Three-level logic circuit for the cascadable 4-bit comparator by using NAND/NOR/EQV logic with
a fan-in limit of 5.

271

A3-A0(H) B3-B0(H) A7-A4(H) B7-B4(H)

0(H)
A I I I \I ^ n^ """

0(H)

\

X

4 >

\ I

A N

3
gt A>B
eq 4-bit Comparator A=B
It A<B

*>

>

*>

{•

4 v

^ 1

4

3
gt A>B
eq 4-bit Comparator A=B
It A<B

(A>B)(H)
(A=B)(H)
(A<B)(H)

FIGURE 6.30
A cascadable 8-bit comparator created by combining two 4-bit comparators.

A23~A20 B23~B20 A18~A15 B18~B15 A13~A10 B13~B10 A8~A5 B8~B5

4

A19
0(H)-

gt
eq
it

4-bit
Comparator

> = <

A14-
0(H)-
o*. —'14

gt

It

A B

4-bit
Comparator

> = <

A3-A0(H) B3-B0(H)

u >u
0(H) —

0(H) —

gt
A B

4-bit
Comparator

-fr-

A9~

0(H)-
B0-

gt

it

A B

4-bit
Comparator

A.-
0(H)-

B,-

gt
eq
it

A B

4-bit
Comparator

gt

It

A3 A2 A, AO B3 B2 B, B0

4-bit
Comparator

24-Bit Comparator
output

FIGURE 6.31
Speed-optimized series/parallel arrangement for a 24-bit comparator composed of six 4-bit compara-
tors.

272

6.7 PARITY GENERATORS AND ERROR CHECKING SYSTEMS 273

6.7 PARITY GENERATORS AND ERROR CHECKING SYSTEMS

A parity bit can be appended to any word of n bits to generate an even or an odd number
of 1's (or O's). A combinational logic device that generates even or odd parity is called a
parity generator. A device that is used to detect even or odd parity is called aparity detector.
To understand the concept of parity generation and detection, consider the following 8-bit
words to which a ninth parity bit is appended as the LSB shown in brackets:

1 1 0 1 0 1 0 1 [1]: Even parity generation — Odd parity detection

1 1 0 1 0 1 0 1 [0]: Odd parity generation = Even parity detection

or

1 1 0 1 0 0 0 1 [1]: Odd parity generation = Even parity detection

1 1 0 1 0 0 0 1 [0]: Even parity generation = Odd parity detection.

Thus, parity generation includes the parity bit in the count of 1's, whereas parity detection
excludes the parity bit in the count but uses the parity bit to identify the parity status (even
or odd) of the word. The parity bit may be appended either at the LSB position, as in the
examples just given, or at the MSB position.

XOR gates can be combined to produce rc-bit parity circuits. As an example, consider
the design of a 4-bit even-parity generator module shown in Fig. 6.32. The second-order
EV K-maps in Fig. 6.32b follow directly from the truth table in Fig. 6.32a and yield the
output expression

PEven Gen = A®B@C®D, (6.24)

which is implemented in Fig. 6.32c.

AB CD

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

p
Even Gen

0
1
1
0
1
0
0
1

AB CD

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

p
Even Gen

1

0
0
1
0
1
1
0

Even Gen

B(H)

D(H)

(a) (c)

FIGURE 6.32
Design of the 4-bit even parity generator module, (a) Truth table, (b) EV K-map. (c) Logic circuit
according to Eq. (6.24).

Source

274 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

8-bit Parity Module

P(H)

Control
0(H) - Even Parity Generation
1(H) -- Odd Parity Generation

FIGURE 6.33
An 8-bit even/odd parity generator circuit with a control input.

This 4-bit parity generator module of Fig. 6.32 can be combined with another to form
the 8-bit parity generator module shown in Fig. 6.33. Here, an additional XOR gate is
added as a control to generate either an even or odd parity generate output. Notice that two
8-bit parity generator modules can be cascaded to produce a 16-bit module, and two 16-bit
modules can be cascaded to produce a 32-bit module, etc., each with a control XOR gate
to produce either an even or odd parity generation output. Note also that any 2"-bit parity
module is an n-level XOR circuit, excluding any control XOR gate. Thus, a 32-bit parity
module represents a 5-level XOR circuit, a 64-bit module is a 6-level circuit, etc.

Error Checking Systems Errors occur in digital systems for a variety of reasons. These
reasons include logic noise, power supply surges, electromagnetic interference, and crosstalk
due to physically close signals. Single-error detection in a digital system usually amounts to
a parity checking system where the parities at the source and destination sites are compared.
A typical single-error checking system for an 8-bit data bus is illustrated in Fig. 6.34. In
this case an 8-bit parity generator of the type in Fig. 6.33 is used at the source to generate
either an even or odd parity bit. The 9-bit parity detector at the destination is the 8-bit parity

e ^Tap 8-bit .rMerge
8 / Data Bus / 9

^ \ t . :. P
V i\
w

8-bit
Parity

Generator

/ '7 'O'1

xP
/

Error-Prone
Transport and/or

Data Storage
Subsystem

^Tap 8-bit Destination
v y & vO fc^ i i /i i\
-^-r z: ^ — ̂ WH)

V\
-J \—+

9-bit
Parity

Detector
D — ̂ Error Check

0(L) - Data valid
1(L) - Data error

FIGURE 6.34
Error checking system for an 8-bit data bus by using an 8-bit parity generator at the source and a 9-bit
parity detector at the destination site.

6.8 COMBINATIONAL SHIFTERS 275

generator module of Fig. 6.33 with an XOR gate and inverter as the output stage, hence an
EQV gate, as implied in Fig. 6.34.

The parity checking scheme illustrated in Fig. 6.34 is valid for the detection of a single
error in the 8-bit word. Actually, it is valid for any odd number of errors, but the probability
that three or more errors will occur in a given word is near zero. What a single-bit parity
checking system cannot do is detect an even number of errors (e.g., two errors). It is also true
that the error checking system of Fig. 6.34 cannot correct any single error it detects. To do
so would require detecting its location, which is no trivial task. To identify the location of an
error bit requires multiple parity detection units on the submodular level down on the bit
level, a significant cost in hardware. However, when this is done, an erroneous bit can be cor-
rected. Memory systems in modern computers have such single-error correction capability.

6.8 COMBINATIONAL SHIFTERS

Shifting or rotating of word bits to the right or left can be accomplished by using combina-
tional logic. Devices that can accomplish this are called combinational shifters, or barrel
shifters if their function is only to rotate word bits. Shifters are used for bit extraction op-
erations, transport, editing, data modification, and arithmetic manipulation, among other
applications.

A general n-bit shifter is an (n + m + 3)-input/n-output device represented by the logic
symbol in Fig. 6.35a, with the interpretations of the control inputs given in Fig. 6.35b.
A shifter of this type accepts n data input bits (In-\ — /o) and either passes these values
straight through to the data outputs (F,7_i — YQ), or shifts or rotates them by one or more bit
positions to the right or left with 0 or 1 fill on command of the m + 3 control inputs. The
control inputs consist of a rotate control (/?), fill control (F), direction control (D), and m
inputs (Am_ i — AQ) to control the number of bit positions to be shifted or rotated — usually
binary encoded to 0, 1, 2, 3, . . . , / ? bit positions. For the shifter of Fig. 6.35, the control

Data Inputs

ln-r'o

Control Variable Operation

R = 0 Shift
R = 1 Rotate

F = 0 0-Fill
F = 1 1-Fill

D = 0 Left
D = 1 Right

Y -YTn-1 T0 (b)
Data Outputs

(a)

FIGURE 6.35
A general «-bit shifter, (a) Block diagram symbol, (b) Interpretation of the control inputs R, F, and D.

,3
Control] R'F'D'

'"P"ts \Am,-An-^ Sh«er

General
n-Bit

276 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1
R = 0
F = 0
D = 0

Y Y Y YT3 T2 T1 T0

0 0 1 1 0 1

R =

D= 1

1 1 1 1
.j

0_FilIbits / (b) Spill bits

1 1 0 1 1 1 0 1

1 1 1 I 1 1 1 1
3 12 '1 '0!1 Jc

Y Y Y YT3 T2 T1 T<

R = 1

D = 0
Y Y Y YT3 T2 T1 T0

i r i i \ \ \ \
1 1 1 0 0 1 1 1

(c) (d)

FIGURE 6.36
Examples of shift and rotation operations by using a general 4-bit shifter, (a) Shift left one bit (sll)
with 0-fill. (b) Shift right 2 bits (sr2) with 0-Fill. (c) Rotate right one bit (rrl). (d) Rotate left two bits

input word is given the positional weights RFDAm-\ • • • AQ and is sometimes represented
as Sk-\ • • • S\ SQ, where k = m + 3.

The control variable (R = 0) causes the shifter in Fig. 6.35 to shift the input word (right
or left) by p bits while, at the same time, causes Spill and 0- or 1-Fill by p bits. The control
variable (/? = !) rotates the input word (right or left) by p bits with no Spill or Fill. These
operations are illustrated in Fig. 6.36 for a 4-bit shifter with input word 1101. In Figs. 6.36a
and 6.36b, the shifter is set for shifting operations, first shift left by one bit (s€l) and then
shift right by two bits (sr2) with spill and 0-fill bits equal to the number of bits shifted. Note
that the spill bits are always lost. In Figs. 6.36c and 6.36d, the shifter is set for rotation with
settings for 1-bit right rotation (rrl) and 2-bits left rotation (r£2), respectively. Notice that
rotation requires that end bits, normally spilled (discarded) in a shift operation, be rotated
around to the opposite end of the shifter. The rotation mode could be called the barrel shifter
mode, the word barrel implying "shift around."

The design of a 4-bit shifter capable of left shifting or rotation by up to three bits is shown
in Fig. 6.37. To reduce the size of the table, the fill bit F is included as an entered variable in

6.8 COMBINATIONAL SHIFTERS 277

RNy 00 01 11 10 R\ 00 01 11 10

R A, A0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Y Y Y YT 3 T 2 T1 T0 n

I3 I2 I1 I0 Transfer

I2 I, I0 F s!1 1

I, I0 F F s!2

'3

'3

'2

'2

'o

'o

"1

"1
1 7!

0

1
/

'2

'2
"1

"1

F

>3

'o

'o
' 71

0 A A AA
\n 0 Nv 1 0

I3 I2 I., I0 Transfer R\ oo 01 11 10 R\ oo 01 11 10

I2 IT I0 I3 r!1

L L L I, r!2

ID '3 "2 "1 rl3 i

(a)

I,

"i

L

'o

F

'2

F

'3

0

1
/

L

'o

F

'3

F

'1

F

'2

/ Y1 /

(b)

FIGURE 6.37
Design of a 4-bit general shifter that can shift or rotate left up to three bits with F fill, (a) EV Truth
table, (b) Output K-maps suitable for 8-to-l MUX implementation.

the truth table of Fig. 6.37a, and the absence of the direction variable D implies that D = 0
for left shift/rotate. Thus, there are four control variables /?, F, A\, and AQ, as indicated in
Fig. 6.37a. The EV K-maps in Fig. 6.37b are plotted directly from the truth table.

The four outputs represented by the K-maps in Fig. 6.37b can be implemented in a
variety of ways, including discrete logic. However, their form suggests an 8-to-l MUX
approach, which is the approach of choice for this example. Shown in Fig. 6.38 is the MUX
implementation of the general 4-bit left shifter/rotator represented by Fig. 6.37.

L(H) L(H) L(H) I0(H)

F(H)

/
/

x :

R(

_ p
- 1
- 0

J

H)

7 (5 ,5 4 3 :> 1 0

8-to-1 MUX

\r'

^_
/-
r-

7 (
2
1
0

Y3(H)

3 5 *» 3 :> i <)
8-to-1 MUX

\f

^
/r-

/-

7
1
0

7 e !5 ** 3 2 1 0 7 6 5 4 3 2 1 0
s- 2

8-to-1 MUX r 1 8-to-1 MUX

Y2(H) >

/- 0
Y Y

'i(H) Y0(H)

A,(H)
A0(H)

FIGURE 6.38
MUX implementation of the general 4-bit left shifter/rotator with F (0 or 1) fill. The MUX select
inputs are weighted RA\ AQ for 52Si So, respectively.

278 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

Notice that in Fig. 6.38 the control variable D is missing, meaning that D = 0 for left
shifting. Had the variable D been included for left or right shifting/rotating, fourth-order
EV K-maps and 16-to-l MUXs would have to be used if the architecture of Fig. 6.38 were
to be retained. Also note that this shifter can be cascaded by connecting 73 (H) of one stage
to F(H) of the next most significant stage, etc.

6.9 STEERING LOGIC AND TRI-STATE GATE APPLICATIONS

Any of the combinational logic devices discussed to this point can be designed by using
transmission gates together with inverters. When this is done the devices are classified
as steering logic. A transmission gate lacks logic function capability by itself, but can be
configured with other transmission gates to steer the logic signals in a manner that carries out
a logic function. Inverters are necessarily included in most steering logic designs because
transmission gates are passive and noninverting, as explained in Section 3.5.

As a simple example, consider a 4-to-l MUX defined by the truth table in Fig. 6.39a.
This device can be implemented easily with CMOS transmission gates and inverters and at

AND plane

EN

0

1

1

1

1

s,
X

0

0

1

1

So

X

0

1

0

1

Y

--

i.
i,

'a
I

X = Irrelevant Input

(a)
S,(H) S0(H)

(b)

FIGURE 6.39
Transmission gate implementation of the 4-to-l MUX. (a) Truth table, (b) Logic circuit with a tri-state
buffered/enabled output.

6.10 INTRODUCTION TO VHDL DESCRIPTION OF COMBINATIONAL PRIMITIVES 279

a considerable savings in transistor count and design area, as indicated in Fig. 6.39b. Here,
the MUX is enabled and buffered by using a tri-state driver with an active low control input.
Thus, the disable condition [EN(L') = 0(L)] is actually a disconnect state as indicated in
Fig. 3.8b and is represented by the dash in the truth table of Fig. 6.39a. Notice that the AND
plane, equivalent to the four four-input NAND gates in Fig. 6.4d, is constructed with only
eight transmission gates, and that the OR operation is "wired" to the tri-state driver since
only one line can be active at any given time. Consequently, the transmission gate design
represents a significant savings in hardware cost and will be faster (shorter throughput)
compared to the NAND gate design in Fig. 6.4d.

An important aspect of steering logic designs is that the transmission gates are non-
restoring devices and must be buffered to prevent degradation of the signal. The following
is offered as a "rule of thumb" in dealing with transmission gate designs:

For signal-restoring purposes in logic designs that use transmission gates, plan to
buffer each signal for every four transmission gates through which the signal must
pass. CMOS transmission gates should be counted as two pass transistors.

The design of a 2-to-4 decoder is used here as another simple example of a CMOS
transmission gate (TG) implementation of a combinational logic device. Shown in Fig. 6.40a
is the truth table for this decoder and in Fig. 6.40b is the TG implementation of the decoder
taken directly from the truth table. The outputs are shown enabled and buffered with inverting
tri-state drivers having an active low control input as in Fig. 3.8d. If active high outputs are
required, noninverting tri-state drivers of the type shown in Fig. 3.8b can be used. Notice
that each "1" CMOS TG leading to a Y output must have a "0" TG associated with it and
that all TGs have complementary EN inputs connected to them from an inverter. Thus, since
there is a series of two "1" TGs per Y output, there are two "0" TGs for each output, making
a total of 16 TGs or a total of 60 transistors, including inverters and tri-state buffer/enables.
In comparison, the gatewise CMOS NAND implementation of the same decoder yields a
transistor count of only 34. Though the transistor count for the TG design is greater than
that for the gatewise implementation, the speed (throughput) should be comparable and
perhaps a little faster for the TG design.

6.10 INTRODUCTION TO VHDL DESCRIPTION
OF COMBINATIONAL PRIMITIVES

With ever-increasing complexity of digital systems, there comes a greater need for simu-
lation, modeling, testing, automated design, and documentation of these systems. The
challenge here is to make the English language readable by a computer for computer-aided
design (CAD) purposes. Hardware description languages (HDLs) satisfy these require-
ments. VHSIC (for very high speed integrated circuit) is such an HDL. It was funded by the
Department of Defense in the late 1970s and early 1980s to deal with the complex circuits of
the time. However, the capabilities of the VHSIC language soon reached their limit, giving
way to more advanced HDLs that could meet the challenges of the future. One important
language that has emerged is known as VHSIC Hardware Description Language or simply
VHDL. VHDL was first proposed in 1981 as a standard for dealing with very complex

280 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

EN(L)

EN

0
1
1
1
1

'1

X
0
0
1
1

'o

X
0
1
0
1

Y3

..

0
0
0
1

Y2

..

0
0
1
0

Y1

..

0
1
0
0

Y0

..

1
0
0
0

X = Irrelevant input

(a)

Y3(L)

(b)

FIGURE 6.40
Transmission gate implementation of the 2-to-4 decoder, (a) Truth table, (b) Logic circuit with active
low outputs produced by tri-state buffer/enables.

circuits. It has since gone through several revisions and in 1987 and 1993 was adopted as
the IEEE 1076-1987 and 1076-1993 standards, respectively. The examples given in this
section will use these standards.

VHDL is a powerful tool capable of top-down design descriptions covering various
levels of abstraction ranging from the behavior level, to the dataflow level, to the structural

6.10 INTRODUCTION TO VHDL DESCRIPTION OF COMBINATIONAL PRIMITIVES 281

level. Examples of the behavior level of representation are truth tables and algorithmic
descriptions. The structural level of representation typically includes various primitives
together with the interconnections required to make a circuit. The primitives covered in this
chapter include discrete gates, decoders, encoders, MUXs, comparators, parity generators,
and combinational shifters. Other primitives, including those associated with arithmetic
circuits, PLDs, and sequential circuits, will be considered in subsequent chapters.

Before illustrating the use of VHDL for some well known combinational primitives, it
will be helpful to review some assignment statements relevant to behavioral modeling. For
example,

a <=b;

is read as "a is assigned the value of b." As a second example,

Y <= 12 after 10 ns;

is interpreted as follows: "Y is assigned the value of 12 after 10 nanoseconds have elapsed."
In these two examples, "<=" is an assignment operator that assigns a value to a sig-
nal. Another assignment operator is the ":=" operator. It is used to assign a value to a
variable:

result := X; or delay := 4 ns;

Here, result and delay are variables and are assigned the values of X and 4 ns, respectively.
To illustrate, consider the VHDL behavioral description of the two-input NOR gate

primitive given in Fig. 6.4la. In this case the entity is called nor2 with inputs il and i2,
and output, ol, as indicated in Fig. 6.4Ib. The architecture for nor2 is arbitrarily called
nor2.behavior and provides that "ol is assigned the value il nor i2 [or not(il or i2)] after
5 nanoseconds." Thus, 5 ns is the propagation delay of the gate. Notice that all VHDL
keywords, such as entity, port, and end, and the VHDL logical "or" are highlighted in bold
for visual effect. Also, note that the entries are case insensitive. The keyword port is used
to identify the input and output ports of the entity.

As a second example consider the VHDL behavioral description for a 4-to-1 MUX prim-
itive given in Fig. 6.42. For this example an arbitrary delay is assigned (to the data selection
process) the keywords generic (del:time), meaning that time delay (del) is determined by

entity nor2 is
port (11, i2: in bit; o1: out bit);

end nor2;

architecture nor2_behavior of nor2 is
begin

o1 <= not (11 or i2) after 5 ns;
end nor2_behavior;

(a) (b)

FIGURE 6.41
Behavioral model for a 2-input NOR gate, (a) VHDL entity declaration and behavioral description,
(b) NOR gate circuit symbol with inputs, il and i2, and output, ol.

282 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

entity mux4 is
generic (del: time);
port (10, i1, i2, i3: in bit_vector (0 to 3);

o1: out bit_vector (0 to 3));
group sel is (s1,sO);

end mux4;

architecture mux4_behavior of mux4 is
begin

o1 <= iO after del when s1 = '0' and sO = '0' else
11 after del when s1 = '0' and sO = '1' else
12 after del when s1 = '1' and sO = '0' else
13 after del when s1 = '1' and sO = 'V;

end mux4_behavior;

(a)

FIGURE 6.42
Behavioral model for a 4-to-l MUX. (a) Entity declaration and behavioral description, (b) Logic
symbol.

the logic and the environment and, therefore, is not given a specific value for any of the
behavioral events. Again, as in Fig. 6.41, the VHDL keywords are highlighted as a visual
effect for the reader. The logic symbol for the 4-to-l MUX is given in Fig. 6.42b and indi-
cates four data inputs (i3, i2, il, iO), two data select inputs (si and sO), and a single output,
ol, all active high.

Notice that the VHDL language grammar is to some extent intuitive. For example, group
sel is (si, sO) identifies a collection of named entities (si, sO) as belonging to the group
name "sel." Or, the third line under architecture / begin has the following meaning: Output
ol is assigned the value i2 after an arbitrary delay when the select inputs, si and sO, are
1 and 0, respectively, or else The behavioral model in Fig. 6.42 is but one of several
VHDL description formats that could be used. The reader should experiment with others
to gain experience in behavioral modeling.

The complete VHDL gate-level description of the 1-bit comparator is next offered as the
final example in this chapter. In Figs. 6.43a and 6.43b are given the truth table and logic
circuit symbol for the 1-bit comparator. The K-maps and gate-minimum cover for the bit
comparator were given previously in Fig. 6.27b, resulting in the output expressions given
by Eqs. (6.20). By using the factorization method presented in Subsection 4.9.1, Eqs. (6.20)
are converted to two-level minimum form as follows:

a-gtJb = gt(a O b) + ab = gta + gtb + ab
a.eqJb = eq(a O b} = eqdb + eqab (6.25)
a JtJb = lt(a Q b) + ab = ltd + lib + db.

Here, gt, eq, and It have the same meaning as is used in Section 6.6.
The logic circuit representing Eqs. (6.25) is shown in Fig. 6.43c, where the gate numbers

and intermediate output functions, /ml, im2, im3,... are specified for each inverter and
NAND gate. This is done for tracking purposes during the VHDL description that follows.

The VHDL gate-level description of the bit-comparator is divided into three parts: entity
declaration, behavioral description, and the structural description. The average primitive

6.10 INTRODUCTION TO VHDL DESCRIPTION OF COMBINATIONAL PRIMITIVES 283

a b a_gt_b a_eq_b a_lt_b a(H)-t — 1

o n . u b(H)-t— —0 0 gt eq It L_J\oim2
0 1 0 0 1 ^2
1 0 1 0 0
1 1 gt eq It

(a)

—

-

a

b a_gt_b

1-Bit b
gt Comparator a— e"—

eq a_lt_b
It

gt(H)

eq(H)

I lt(H)

— ̂

V*

f

'

1—

f

rr~v im3
3 b— —

T)> î

_ A im55 b— —

TV^
J

8 V .̂
i___y

vyn±-j
n V=?-

X

.^A im10
12 b— —

a_gt_b(H)

a_lt_b(H)

(b) (c)

FIGURE 6.43
Design of the cascadable bit-comparator, (a) Truth table, (b) Logic circuit symbol, (c) Circuit diagram
in NAND/INV logic according to Eqs. (6.25).

propagation delay, denoted as avgjdelay, is computed in each gate model at the end of the
VHDL description by using (tplh+tphl)/2, which is Eq. (6.1) discussed in Subsection 6.1.3.
The propagation delays are defined in Fig. 6.2. As in the two previous examples, the VHDL
keywords and logic operators are indicated in bold for visual effect. Two new keywords have
been added: generic map associates constants within a portion of the VHDL description
to constants defined outside that portion; port map associates port signals within a portion
of the VHDL description to ports outside of that portion.

The following is the complete gate-level VHDL description of the 1-bit comparator given
the name bit-compare:

entity bit_compare is

generic (tplhl, tphll, tplh2, tph!2, tplh3, tph!3: time);

port (a, b, gt, eq, It: in bit; a_gt_b, a_eq_b, a_lt_b: out bit);

end bit-compare;

architecture behave_comp of bit-compare is

begin

a_gt_b <= T when a > b else '0';

a_lt_b <= T when a < b else '0';

a_eq_b <= gt if gt <= T else
eqif eq <= T else
It if It <='!';

end behave _comp;

284 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

architecture structure_comp of bit-compare is
component inv

generic (tplh, tphl: time); port (il: in bit; ol: out bit);

end component;
component nand2

generic (tplh, tphl: time); port (il, i2: in bit; ol: out bit);

end component;
component nancB

generic (tplh, tphl: time); port (il, i2, i3: in bit; ol: out bit);

end component;
for all: inv use entity avg_delay_inv;

for all: nand2 use entity avg_delay_nand2;

for all: nand3 use entity avg_delay_nand3;

— Intermediate signals must be declared:

signal iml, im2, im3, im4, im5, im6, im7, im8, im9, imlO: bit;

begin
a_gt_b output

gatel: inv generic map (tplh, tphl) port map (a, iml);

gate2: inv generic map (tplh, tphl) port map (b, im2);

gate3: nand2 generic map (tplh, tphl) port map (gt, a, im3);

gate4: nand2 generic map (tplh, tphl) port map (gt, im2, im4);

gate5: nand2 generic map (tplh, tphl) port map (a, im2, im5);

gate6: nand3 generic map (tplh, tphl) port map (im3, im4, im5, a_gt_b);

a_eq_b output

gate?: nand3 generic map (tplh, tphl) port map (eq, iml, im2, im6);

gateS: nand3 generic map (tplh, tphl) port map (eq, a, b, im7);

gate9: nand2 generic map (tplh, tphl) port map (im6, im7, a_eq_b);

a_lt_b output

gate 10: nand2 generic map (tplh, tphl) port map (It, iml, im8);

gatel 1: nand2 generic map (tplh, tphl) port map (It, b, im9);

gate 12: nand2 generic map (tplh, tphl) port map (iml, b, imlO);

gate!3: nand3 generic map (tplh, tphl) port map (im8, im9, imlO, a_lt_b);

end structure_comp;

The following are the gate model descriptions for inv, nand2 and nand3:

entity inv is
generic (tplh: time := 4ns; tphl: time := 2 ns);

port (il: in bit; ol: out bit);

end inv;

6.10 INTRODUCTION TO VHDL DESCRIPTION OF COMBINATIONAL PRIMITIVES 285

architecture avg_delay_inv of inv is
begin

ol <= not il after (tplh + tphl)/2;

end avg_delayl;

entity nand2 is

generic (tplh: time := 6ns; tphl: time := 4 ns);

port (il, i2: in bit; ol: out bit);

end nandl;

architecture avg_delay_nand2 of nand2 is
begin

ol <= il nand i2 after (tplh + tphl)/2;

end avg_delay2;

entity nand3 is

generic (tplh: time := 7ns; tphl: time := 5 ns);

port (il, i2, i3: in bit; ol: out bit);

end nand3;

architecture avg_delay_nand3 of nand3 is
begin

ol <= not (il and i2 and i3) after (tplh + tphl)/2;

end avg_delay3;

In the preceding examples VHDL syntax has been applied sometimes without comment.
There are relatively few syntax rules that need be followed to create proper VHDL descrip-
tions of devices. The following are some of the more important examples of these syntax
rules:

• VHDL is not case sensitive. Upper- or lowercase characters can be used as
desired.

• Identifiers must begin with a letter and subsequent characters must be alphanu-
meric but may contain the underscore "_". For example, in Fig. 6.42 the identi-
fiers are mux4 and mux4-behavior.

• The semicolon ";" is used to indicate the termination of a statement. For example:
"end nand3;".

• Two dashes "--" are used to indicate the beginning of a comment. A comment
in VHDL is not read by the compiler but serves as a message or reminder to the
reader.

An interesting and useful feature of VHDL is that it supports what is called operator
overloading. This feature permits custom operations to be defined. The following example
illustrates how operator overloading can be used to define a new data type:

function "and" (l,r: std_logic_1164) return UX01 is

286 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

begin

return((and_table)(l,r));

end "and";

architecture example of and_operation is

signal Y,A,B: std_logic_1164;

begin
Y <= A and B;

end example;

Here, std_logic_1164 refers to an IEEE standard logic package within which UX01 is a
subtype for 4-valued logic systems. Thus, the operation "and" takes on the new meaning
"and_table" contained in the standard package. Also, 1 and r (in line 1) are two of a class of
value kind attributes that return the leftmost element index (1) or rightmost element index
(r) of a given type or subtype.

Several operators, or constructs as they are sometimes called, have been used in the
examples given previously. Although it is true that the VHDL language contains a large
number of these constructs, only a few are necessary for most logic synthesis purposes. The
most important of these are given in Fig. 6.44. Included are assignment, relational, logical,

Assignment Operators:
<= Signal assignment := Variable assignment

Relational Operators:
= Equality /= Inequality > Greater than
< Less than <= Less than or equal >= Greater than or equal

Logical Operators:
and AND or OR nand NAND nor NOR
xor XOR xnor EQV not Logical negation

Arithmetic Operators:
+ Addition - Subtraction * Multiplication / Division

Shift Operators:
sll Shift left logical srl Shift right logical
rol Rotate left logical ror Rotate right logical

Miscellaneous Operators:
** Exponentiation abs Absolute value & Concatenation

FIGURE 6.44
Partial listing of important VHDL operators supported by the IEEE 1076-1993 standard.

6.11 FURTHER READING 287

Value

'U1

'0'
1'

Description Value

Uninitialized 'X'
Logic 0 (driven) 'V
Logic 0 (read) 'H'
Don't care 'Z'

Description

Unknown
Logic 1 (driven)
Logic 1 (read)
High impedance

FIGURE 6.45
Eight logic data types supported by the IEEE 1076-1164 standard.

arithmetic, shift, and miscellaneous operators. Be aware that some of the operators have
different meanings depending on the synthesis tool used.

The IEEE standard 1164 supports standard data types that allow multiple I/O values
to be represented. As an example, the standard data type having eight values permit the
accurate modeling of a digital circuit during simulation and is presented in Fig. 6.45. The
word "driven" used in the description of data type characters '0' and ' 1' indicates that these
logic values are assigned (or forced) to a signal (e.g., an output). The word "read" would
apply to input logic values that must be read by a device. Note that each data type character
must be enclosed in single quotes as, for example, 'X'.

VHDL is a large and complex language that is easy to learn at the beginning but difficult
to master. It is particularly well suited to the design of very large systems, perhaps more so
than any other HDL. Libraries of circuit elements can be easily built, used, and reused in a
very effective and efficient manner, and this can be done at different levels of abstraction
ranging from the block diagram level to the transistor level. In fact, one of VHDL's strengths
is that it offers nearly unlimited use of reusable components and access to standard libraries
such as the built-in IEEE 1076-1993 Standard and the IEEE 1076-1164 Standard. Used in
the hands of a skilled designer, VHDL can greatly increase productivity as well as facilitate
the move into more advanced tools (for example, simulators) and advanced target systems.
Further Reading contains essential references for continued development in VHDL.

6.11 FURTHER READING

Most textbooks on digital design cover one or more of the performance characteristics re-
lated to digital design. Typical among these are the texts by Comer, McCluskey, Tinder,
and Wakerly. The text by Wakerly covers these subjects in considerable detail and consid-
ers various logic families. The performance characteristics covering several of the more
common logic families can be found in the Electrical Engineering Handbook (R. C. Dorf,
Editor-in-Chief).

[1] D. J. Comer, Digital Logic and State Machine Design, 3rd ed. Sanders College Publishing, Fort
Worth, TX, 1995.

[2] R. C. Dorf, Editor-inChief, Electrical Engineering Handbook, 2nd ed., CRC Press, Boca Raton,
FL, 1997, pp. 1769-1790.

[3] E. J. McCluskey, Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986.
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice-Hall, Englewood Cliffs,

NJ, 1991.

288 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

[5] J. F. Wakerly, Digital Design Principles and Practices, 2nd ed. Prentice-Hall, Englewood Cliffs,
NJ, 1994.

The usual combinational logic devices such as MUXs, decoders, code converters, and
comparators are covered adequately by most texts, including those just cited, but the texts
by Tinder and Wakerly provide what is perhaps the best coverage of the group.

Steering logic seems to be covered adequately in only a few texts, among which are
those of Hayes and Katz.

[6] J. P Hayes, Introduction to Digital Logic Design. Addison Wesley, Reading, MA, 1993.
[7] R. H. Katz, Contemporary Logic Design. Benjamin/Commings Publishing, Redwood City, CA,

1994.

There are numerous texts and reference books on VHDL. For instructional purposes the
texts of Dewey, Navabi, Pellerin and Taylor, Perry, Roth, and Skahill are good choices. The
texts by Pellerin and Taylor and by Skahill include CD-ROMs containing fully functional
VHDL compilers. The text by Dewey is somewhat unusual in that it nicely combines digital
design and analysis with VHDL.

[8] A. M. Dewey, Analysis and Design of Digital Systems with VHDL. PWS Publishint Co., Boston,
1997.

[9] Z. Navabi, VHDL Analysis and Modeling of Digital Systems. McGraw-Hill, New York, 1993.
[10] D. Pellerin and D. Taylor, VHDL Made Easy. Prentice Hall PTR, Upper Shaddle River, NJ, 1997.
[11] P. J. Ashenden, The Designer's Guide to VHDL, Morgan Kaufmann Publishers, San Francisco,

CA, 1996.
[12] C. H. Roth, Jr., Digital Systems Design Using VHDL. PWS Publishing Co., Boston, 1998.
[13] K. Skahill, VHDL for Programmable Logic. Addison-Wesley, Reading, MA, 1996.

The latest VHDL IEEE standard is the 1076-1993 standard. Standard 1076 has been
augmented by standards 1164, 1076.3 and 1076.4. These latest standards are identified as
follows:

Standard 1076-1993, IEEE Standard VHDL Language Reference Manual, IEEE,
1994.

Standard 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model
Interoperability, IEEE, 1993.

Standard 1076.3, VHDL Synthesis Packages, IEEE, 1995.
Standard 1076.4, VITAL ASIC Modeling Specification, IEEE, 1995.

These IEEE documents can be obtained from IEEE at the following address: IEEE Service
Center, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331 (Phone: 1-800-678-
IEEE).

PROBLEMS

6.1 The propagation delays for a state-of-the-art CMOS logic gate are calculated to be
Tpih = 0.25 ns and TPM = 0.35 ns with a power dissipation of 0.47 mW. Calculate the
power-delay product (PDP) in picojoules predicted for this gate.

PROBLEMS 289

6.2 The voltage parameters for a high-speed CMOS (HC) gate are measured to be VIL max =
0.23VDD and V[Hmn = G.59VDD with VOLmax = 0.08VDD and Vo//min = 0.90VDD for
a supply of 2.8 V.
(a) Calculate the noise margins for this gate.
(b) Use the values calculated in part (a) to explain what they mean in relationship to

the interpretation of logic 1 and logic 0 for this gate.

6.3 Construct a logic circuit that combines two 16-to-l MUXs to form a 32-to-l MUX.
(Hint: Use an inverter to select the appropriate MUX.)

6.4 Use an 8-to-l MUX to implement each of the following functions, assuming that all
inputs and outputs are active high.
(a) W(A, B, C) = £>(!, 2, 4, 5, 6)
(b) X (A , B, C) = ABC + ABC + ABC + ABC + ABC
(c) Y(A, B, C) = H M(Q, 1,2,6, 7)
(d) Z(A, B, C) = (A + B) O (AC) + AB

6.5 Repeat Problem 6.4 but instead use a 4-to-1 MUX to implement each function. To do
this use minimum external logic and the two most significant inputs as the data select
variables.

6.6 Repeat Problem 6.5 assuming that only input B arrives from a negative logic source
and that one inverter is permitted to be used on a data select input.

6.7 Use a 4-to-l MUX to implement each of the following functions, assuming that all
inputs and outputs are active high. It is required that minimum external logic to the
MUX be used in each case, and that the data select inputs be A and B.
(a) U(A, B, C, D) = £ m(0, 4, 5, 7, 8, 9, 13, 15)
(b) V(A,B,C, D) = Y\M(0,5,S, 9, 11,12,15)
(c) W(A, B, C, D) = £>(4, 5, 7, 12, 14, 15) + 0(3, 8, 10)
(d) X(A, B, C, D) = 0 M(0, 1, 2, 5, 7, 9) • 0(4, 6, 10, 13)

6.8 Implement the following function by using the hardware indicated (nothing else).
Assume that the inputs arrive as A(H\ B(L), C(H), and D(L), and that the output is
issued active high.

F(A, B, C, D) = J^m(0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 15)

Permitted hardware: One 4-to-l MUX; one NAND gate; one XOR gate.

6.9 Implement the following function by using the hardware indicated (nothing else).
Assume that the inputs arrive as A(L), B(H), C(H), and D(H), that the output is
issued active high. (Hint: First find the absolute minimum expression for Z.)

Z = ACD + ABCD + (A + B)CD + (A O B)CD

Permitted hardware: One 2-to-l MUX; one NAND gate; one AND gate.

6.10 (a) Configure a 6-to-64 decoder by using only 3-to-8 decoders.
(b) Configure a 6-to-64 decoder by using only 4-to-16 and 2-to-4 decoders.

290 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

6.11 Implement the function in Problem 4.28 by using a 16-to-l MUX assuming that all
inputs and the output are active high.

6.12 Repeat Problem 6.11 if only the B input is active low and no additional hardware
(e.g., an inverter) is permitted.

6.13 Design a bitwise logic function generator that will generate any of the 16 possible
logic functions. End with a single expression F that represents the 16 bitwise logic
functions. To do this use a 4-to-1 MUX and nothing else. (Hint: Interchange the names
for the data and data-select inputs to the MUX.)

6.14 Implement each function in Problem 6.4 by using a 3-to-8 decoder and the necessary
external hardware, assuming that all inputs and outputs are active high.

6.15 Implement function F in Problem 6.8 by using a 4-to-16 decoder, one OR gate, and
two NAND gates (maximum fan-in of 6), taking the input activation levels as given
in Problem 6.8.

6.16 Repeat Problem 6.15 by replacing the 4-to-16 decoder with two 3-to-8 decoders and
one inverter.

6.17 The function below is to have inputs that arrive as A(H), B(L), and C(H), with an
output F(L).

, 1,6,7)

(a) Implement this function by using a 3-to-8 decoder and one NAND gate (nothing
else). Assume that the decoder has active low outputs. (Hint: Use the AND form
of the two conjugate NAND gate circuit symbols to meet the requirement of an
active low output.)

(b) Repeat part (a) by using two 2-to-4 decoders, a NAND gate, and one inverter
(nothing else).

6.18 The circuit shown in Fig. P6.1 connects a decoder to a MUX. Analyze this circuit by
finding Y(H) in terms of inputs A, B, C, and D.

B(H)
Y0

° 2-to-4 Y,
I Decoder v
'1 T 2

Y3

>^

D 7*-

>-*-
>~^

I0

'1 4-to-1 Y
1 MUX v
'2 Y

!3
S, S0

Y(H)

3— Y(L)

C(H) D(H)

FIGURE P6.1

PROBLEMS 291

A(L) B(H)

FIGURE P6.2

6.19 Analyze the network in Fig. P6.2 by obtaining the output logic expressions for Yo(L),
Fi(L), Y2(L\ and 73(L) in terms of inputs A, B, C, and D. Assume that the DMUX
is enabled if EN(L) = 1(L).

6.20 Design an 8-input (/7-/0), noncascadable priority encoder (PE) that will issue all 2"
binary states. Thus, include an EN input but do not include the cascading bits El, EO,
and GS.

(a) Construct the collapsed priority schedule table for this PE by using X as the
irrelevant input symbol. Assume that the logic value EN = 1 enables the PE.
(Hint: There are three outputs.)

(b) Map the output functions into fourth-order EV K-maps with axes 77, /6, /s, /4 and
extract minimum SOP expressions for these functions.

(c) Implement the results of part (b) by using NAND/INV logic assuming that all
inputs and outputs are active low.

6.21 Repeat Problem 6.20 but with cascading bits El, EO, and GS, all of which must be
active low.

6.22 Use NOR/INV logic to design a noncascadable three-input priority encoder that will
operate according to the following priority schedule:

Input C — Highest priority encoded as 10
Input A —Middle priority encoded as 01
Input B —Lowest priority encoded as 00
Assign 11 to the inactive state.

Assume that all inputs arrive active high and that the outputs are issued active low.

6.23 Design a Gray-to-BCD code converter by using four 4-to-l MUXs and a gate-
minimum external logic. The inputs arrive as A(H), B(L), C(H), and D(H), and
the outputs are all active high.

6.24 Use three XOR gates and two OR gates (nothing else) to design a gate-minimum
circuit for a 4-bit binary-to-2's complement (or vice versa) converter. Let #3, 62, B\,
BQ and T^,T2,T\, T0 represent the 4-bit binary and 2's complement words, respectively,

292 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

and assume that all inputs and outputs are active high. (Hint: Use second-order EV
K-maps, constructed from the truth table, and XOR patterns. Factor Bj, from the SOP
minimum expression and then apply the defining relation for XOR.)

6.25 Design a gate-minimum circuit for a BCD-to-creeping code converter assuming that all
inputs and outputs are active high and that the inputs are restricted to the ten BCD states.
To do this refer to Table 2.10 and plan to use second-order EV K-maps for convenience.

6.26 (a) Design an 8-bit binary-to-BCD converter based on Algorithm 6.2 in Subsection
6.5.2. To do this, first design the minimum NAND/INV logic for the converter
module required to convert to BCD the binary numbers equivalent of decimal 0
through 19. Note that the shift-left/add-3 algorithm is inherent in the truth table
for the converter module and that the LSB in binary is the same as the LSB in
BCD. Next, cascade the modules as in Fig. P6.3 to carry out Algorithm 6.2 for
the 8-bit converter. All inputs and outputs are assumed to be active high,

(b) Use the converter module of part (a) together with Fig. P6.3 to find the BCD for
a binary number equivalent to 159io-

6.27 Analyze the logic circuit for the BCD-to-seven-segment decoder in Fig. 6.24 by con-
structing a mixed-logic truth table for active high binary inputs equivalent to decimals
210 and 9io- Thus, the seven outputs must all be active low, suitable to drive the
common cathode LED display in Fig. 6.23b.

6.28 (a) Following Fig. 6.28a, construct the truth table for a cascadable 3-bit comparator,
but do not map it.

(b) By using only Eqs. (6.23), write the three output expressions for the 3-bit com-
parator.

M28 '64 '32 '16 's '4 '2

i i i i
B4 B3 B2 8,

D4 D3 D2 D,

Binary-to-BCD
Converter -^

Module

0(H)

B4 B3 B2 B,

D4 D3 D2 D,

i
3 2 ,

D3 D2 D,

B4 B3 B

D4 D3 D2 0,

B3 2

D4 D3 D2

I I I T J I I I
Y Y Y Y Y Y Y Y YT100 T80 T40 T20 '10 T 8 T 4 T 2 T 1

MSD LSD

FIGURE P6.3

PROBLEMS 293

(c) Implement the results of part (b) by making use of Eq. (6.22). Is an eq input
necessary?

6.29 Given the block symbol for a 4-bit cascadable comparator in Fig. 6.30 and with the
appropriate gate-minimum NAND/EQV/INV external logic, design a 5-bit cascadable
comparator. (Hint: Use the 1-bit comparator as the output (MSB) stage.)

6.30 Design a 4-bit even-parity detector with respect to logic 1 by using only XOR gates
(nothing else). Show how this result can be used to produce a 4-bit odd-parity detector
without adding additional hardware.

6.31 (a) Design a logic circuit that will detect a majority of seven inputs A, B, C, D, E,
F, and G that are active at any one time, and this under the following conditions:
Circuits 1 and 2 represent majority functions that must each detect a majority of its
three inputs that are active. Thus, if any four or more of all seven inputs are active,
the output Majority Detect will be active; otherwise the output will be inactive. To
do this, use the "divide-and-conquer" approach. Referring to Fig. P6.4, construct
truth tables for identical circuits 1 and 2 such that their outputs are active any
time two or three of their inputs are active. Inputs A and D are the MSB inputs
for each of the two circuits. Next, map each majority function (actually, one will
do) from the truth tables and extract a gate-minimum cover. Finally, introduce the
input G = Z into the logic for circuit 3 such that the output, Majority Detect, is
active iff the input conditions are met. End with a gate-minimum logic circuit that
will contain XOR functions.

(Hints: Properly done, the output Majority Detect can be obtained directly
without the use of a truth table. Note that if G is inactive, the output of circuit 3
can detect a majority of 4, 5, or 6 active inputs. However, with input G active, the
output of circuit 3 can detect a majority of only 5 or 7 active inputs. To obtain a
gate-minimum circuit for Majority Detect (seven gates and one inverter for Circuit
3, 15 total), it will be necessary to plot a fourth-order K-map with input G as the
entered variable.)

(b) Repeat part (a) but without circuits 1 and 2. Thus, find the optimum two-level
logic expression for the output Majority Detect with the seven inputs presented
directly to circuit 3. To do this, plot a fourth-order EV K-map with EVs £, F, and
G (a third-order compression with a Map Key of 8), then use the logic minimizer
(e.g., BOOZER software bundled with this text) to obtain the result. Do not

A(H)

B(H)

C(H)

Circuit 1 X(H)

G(H)

D(H)

E(H)

F(H)

Circuit 2 Y(H)

X

Z Circuit 3

Y

Majority Detect(H)

FIGURE P6.4

294 CHAPTER 6 / NONARITHMETIC COMBINATIONAL LOGIC DEVICES

implement the function. [Hint: The easiest approach is to count the number of
inputs (A, 5, C, and D) that are active for each cell of the fourth-order K-map.
Then enter the three EVs (in minimum subfunction form with the aid of a third-
order K-map) in those cells as needed to bring the count of active inputs to four
or more. If this is correctly done, 35 EPIs and no inverters will be required.]

(c) From the K-map in part (b), extract a gate-minimum expression by using XOR
patterns. If this is correctly done, the gate count will be reduced to 18 (a four-level
function) with no inverters required.

6.32 Design a 4-bit general shifter that can shift or rotate, right or left, up to three bits with
F fill. To do this, do the following:
(a) Construct the truth table for this shifter.
(b) Use the truth table of part (a) to plot the fourth-order K-map for each of the four

outputs.
(c) From the results of part (b), write the expression for each output in a form suitable

for a 4-to-l MUX implementation by taking the data select inputs as A\ and AQ.
Do not implement.

6.33 Find the gate-minimum external logic for a 4-bit shifter that will cause it to operate
according to the following table. To do this, make use of XOR patterns. Show the
resulting logic circuit required to be connected to the shifter assuming that all inputs
and outputs are active high.

Shifter input Action

Even 1 parity Shift right 1 position with 0 fill
Odd 1 parity Shift left 2 positions with 1 fill
1111 (Exception) Transfer

(Hint: It is only necessary to know the logic for F, D, A\, and AQ, which are the
outputs for the truth table. Properly done, the minimum external circuitry will consist
of three XOR gates, two NAND gates, and two inverters. Note that maxterm code
must be used to extract AQ from the K-map).

6.34 Combine two 4-to-l steering logic MUXs, shown in Fig. 6.39b, to produce an 8-to-l
line MUX. To do this you are permitted to use a single additional CMOS inverter and
a CMOS OR gate.

6.35 Write the VHDL behavioral description for the majority function F = AB + BC +
AC. To do this, use the keywords that are defined in Section 6.10.

6.36 Write the VHDL behavioral and structural descriptions for a 2-to-4 decoder with
active high outputs. To do this follow the examples in Section 6.10.

6.37 At the discretion of the instructor, write the VHDL behavioral description for any
device featured in this chapter. Note that more than one correct approach may exist
in writing the behavioral description of a given device.

6.38 At the discretion of the instructor, write the VHDL structural description of any device
for which Problem 6.37 has been assigned. Note that correct approaches often vary
in writing structural descriptions of devices.

CHAPTER 7

Programmable Logic
Devices

7.1 INTRODUCTION

A class of devices called programmable logic devices (or PLDs) can be thought of as
universal logic implementers in the sense that they can be configured (actually programmed)
by the user to perform a variety of specific logic functions. So useful and versatile are these
PLDs that one might question why any other means of design would ever be considered.
Well, the answer is, of course, that there is a time and place for a variety of approaches to
design — that is, no one single approach to design satisfies all possible problem situations.
However, the option to use PLDs offers the logic designer a wide range of versatile devices
that are commercially available for design purposes.

Some PLDs are made to perform only combinational logic functions; others can per-
form both combinational and sequential logic functions. This chapter will consider those
PLDs capable of performing both combinational and sequential logic functions, but the
exemplar applications will be limited to combinational logic design. Four commonly used
PLDs considered here are the read-only memory (ROM) devices and their subgroups, the
field programmable logic array (FPLA) devices, the programmable array logic (PAL) de-
vices and their subgroups, and field programmable gate arrays (FPGAs) and subgroups.
Other PLDs include erasable programmable logic devices (EPLDs), including erasable
programmable ROMs, generic array logic (GAL) devices, and field programmable logic
sequencers (FPLSs). Except for FPGAs, most of the PLDs mentioned have some com-
monality, namely a two-level AND/OR configuration. What is connected to the AND/OR
network distinguishes one PLD from another. The development that follows attempts to
illustrate the differences between these various PLDs and to provide a few useful examples
of their application to combinational logic design.

7.2 READ-ONLY MEMORIES

A ROM is an n-input/m-output device composed of a nonprogrammable decoder (ANDing)
stage and a programmable (OR) stage as illustrated in Fig. 7.1. Bit combinations of the n

295

296 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

'o ^ n-to-2n ^ l~* °o— »
— +

—>

n-to-2n
Address
Decoder

(non-

> r

— *

-

OR Memory
Array

(programmable)

!

. > m Outputsn Address
Inputs

nrnnrammahlfi^
Om-i/

2n x m ROM

FIGURE 7.1
Block diagram showing the fixed address decoder (AND) stage and the programmable OR memory
stage for a ROM of size 2" words x m bits.

input variables are called addresses, and in ROMs there are 2" minterm code lines, each
representing a coded minterm on the output side of the decoder stage. Therefore, since
there are n possible addresses to a ROM, there are 2" possible words that can be stored
in the ROM, each word being m bits in size. Any m-bit output word programmed into the
ROM can be selected by the appropriate input address and is nonvolatile — it is stored
permanently in the ROM.

The dimensions and size of an n-input/m-ouptut ROM are given by

2" xm = (2n)(m)bits
Dimensions §jze

meaning that 2" words, each of m bits, produce a total of (2")(m) bits. The size of a ROM
may be rounded off to the nearest integer power of 2 in K (103) bits of ROM. For example,
an 8-input/4-output ROM is represented as a 28 x 4 = 256 x 4 bit = 1,024 bit or IKbit
ROM. The problem with the bit-roundoff form of representation is that knowledge of the
dimensions is lost. Thus, a IKbit ROM could be any of the following: 27 x 8 = 26 x 16,
etc. This can be avoided by giving the ROM size in dimension (2" x m) form, which clearly
specifies the number of inputs and outputs.

ROMs may differ in a variety of ways, but the main differences center about the manner
in which they are programmed, and on whether or not they can be erased and reprogrammed
and how this is accomplished. Members of the ROM family of PLDs may be divided into
three main categories:

• Read-only memories (ROMs) — Mask programmable OR stage only

• Programmable ROMs (PROMs) — User programmable once

• Erasable PROMs (EPROMs) — User erasable many times

7.2 READ-ONLY MEMORIES 297

Mask-programmable ROMs are programmed during the fabrication process by selec-
tively including or omitting the switching elements (transistors or diodes) that form
the memory array stage of the ROM. Because the masking process is expensive, the use of
mask-programmable ROMs is economically justifiable only if large numbers are produced
to perform the same function.

When one or a few ROM-type devices are needed to perform certain functions, PROMs
can be very useful. Most PROMs are fabricated with fusible links on all transistors (or
diodes) in the OR memory stage, thereby permitting user programming of the ROM — a
write-once capability. Shown in Fig. 7.2 is the circuit for an unprogrammed 2" x m PROM

Programmable OR Stage

Programmable J / ^
Fusible Link * ? |—"A Vnn Pull-up

Ground Symbol Jr fc 1 I/

DP
Resistor

ln.

n«to-2n

AND Stage
(nonprogrammable)

—^m1

km,

k

k

• k
k

: ^

k* * * w

k
k
k

k

k
k
k

k
EN(L)

Memory Bit Position

FIGURE 7.2
Logic circuit for an unprogrammed 2" x m PROM showing the nonprogrammable decoder (AND)
section and programmable NMOS connections (fusible links) for each normally active bit location in
the OR (memory) section. Tri-state drivers provide an enable capability.

298 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

consisting of a nonprogrammable decoder (AND) section and NMOS programmable con-
nections (fusible links) on every memory bit location to form the programmable OR section.
Also shown are inverting tri-state drivers (see Fig. 3.8d) on the PROM outputs to provide
an active low enable control capability. The PROM chip is produced with all transistors
"connected" such that each memory bit position is normally active high. Thus, when a
decoder output line becomes active, all connected NMOS are turned ON, pulling those
bit positions to 0(H), resulting in a 1(H) from each tri-state driver. A bit position is pro-
grammed when a fusible link is "blown," disconnecting that bit position. Disconnected
bit positions cannot be pulled low and therefore, must remain at 1(H). If all bit positions
on an OR column are disconnected by programming, the output is 0(H) from the tri-state
driver. Or, if one or more OR column bit positions are left connected, the output will be
a 1(H) if a decoder line to one of those bit positions becomes active — the OR function.
The PROM of Fig. 7.2 is programmed (one time only permitted) with a PROM program-
mer by applying voltage pulses to target fusible links, causing disconnection of these bit
positions.

The masking process of a mask-programmable ROM places NMOS connections at pre-
determined (programmed) memory bit positions. The positioned NMOS connections would
look similar to those in Fig. 7.2, except their fusible links would be missing. Because the
masking process is expensive, mask-programmable ROMs are used only for high-volume
commercial applications.

Much more useful, generally, are the EPROMs, since they can be programmed, erased,
and reprogrammed many times. These devices fall into two main categories: ultraviolet
erasable PROMs (UVEPROMs) and electrically erasable PROMs (EEPROMs). In either
case the technology is similar — use is made of floating-gate NMOS transistors at each
memory bit location, as illustrated by the OR memory stage in Fig. 7.3.

Each transistor in Fig. 7.3 has two gates, a connected outer gate and an inner floating
(unconnected) gate that is surrounded by a highly insulating material. Programming occurs
when a high positive voltage is applied to the connected gate inducing a negative charge on
the floating gate which remains after the high voltage is removed. Then, when a decoder
line becomes active (HV), the negative charge prevents the NMOS from being turned ON,
thereby maintaining a 1(H) at the memory bit position. This is equivalent to blowing a
fusible link in Fig. 7.2. If all floating-gate NMOS in an OR column are so programmed,
the output from the inverter is 0(H). But if a decoder line is active to any unprogrammed
floating-gate NMOS, that bit position will be pulled to ground 0(H), causing the output to
be 1(H) from the inverter — again, the OR function.

Erasure of a programmed floating-gate NMOS occurs by removing the negative charge
on its floating gate. This charge can remain on the gate nearly indefinitely, but if the floating
gate in a UVEPROM is exposed (through a "window") to ultraviolet light of a certain
frequency, the negative charge on the floating gate is removed and erasure occurs. Similarly,
if a voltage of negative potential is applied to the outer connected gate of an EEPROM,
removal of the negative charge occurs. The technology for the UVEPROMs and EEPROMs
differ somewhat as to the manner in which the floating gate is insulated; otherwise, they
share much in common.

Technologies other than those just described are used to manufacture PROMs. For ex-
ample, in bipolar PROMs, diodes with fusible links replace the NMOS in Fig. 7.2 with each
diode conducting in the A -> B direction (see blowup of the fusible link). Now, however,

7.2 READ-ONLY MEMORIES 299

H

i

km, >

m2M

k

k
k
_

k
.
*

...k

k
k̂
kj

k

k
k
k
.X

•r

k

Memory Bit
^~ Position

Floating Gate

O^H) 02(H) 0,(H) 00(H)

FIGURE 7.3
Logic circuit for an unprogrammed OR (memory) section of an EPROM illustrating the floating-gate
NMOS transistor technology required for a program/erase/program cycle.

the decoder has active low outputs. Then, when a decoder output becomes active, 1(L) =
0(H), a bit position for a connected diode is pulled low, 0(H). A disconnected (programmed)
diode maintains a 1(H) at the bit position when selected. If all diode bit positions in an OR
column are disconnected, then the output for that column must be 0(H) from the inverting
tri-state driver. However, if one (or more) of the bit position diodes in an OR column is
left connected and is selected by an active low decoder line, the output will be 1(H) from
the tri-state driver. The diode technology, used extensively in the early stages of ROM
development, is now in less common use than MOS technology.

7.2.1 PROM Applications

The AND section of any ROM device is a nonprogrammable decoder, and since a decoder is
a minterm code generator the following requirement must be met for ROM programming:

To program a ROM, all input and output data must be represented in canonical form.

300 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

Symbolic
OR Matrix

AB

00

01

02

03
10
11
12
13

20
21
22

23
30
31
32
33

A1 A0 B, B0

0

0

0

0
0
0
0
0
1
1
1

1
1
1
1
1

0

0

0
0
1
1
1
1

0

0
0

0
1
1
1
1

0

0

1
1
0
0
1
1
0

0
1
1
0
0
1
1

0
1
0

1
0
1
0
1
0
1
0
1
0
1
0
1

A>B

0

0

0

0
1
0
0
0
1
1
0

0
1
1
1
0

A=B

1

0

0

0
0
1
0
0
0
0
1
0
0
0
0
1

A<B

0
1

1

1

0
0
1
1

0
0

0
1
0
0
0
0

Stores a
0(L)

Stores a

(a) EN(L)

A>B A=B A<B
(H) (H) (H)

(b)

FIGURE 7.4
PROM implementation of a noncascadable 2-bit comparator, (a) Canonical truth table, (b) Decoder
and symbolic representation of fusible bit position patterns in the OR memory section.

This fact is illustrated by considering the noncascadable 2-bit comparator represented by
the canonical truth table in Fig. 7.4a. This truth table has been constructed from Fig. 6.28 by
setting gt = 1 when A > B, eq = 1 when A = B, and It = 1 when A < B, or by setting these
inputs to zero otherwise. Shown in Fig. 7.4b is a 24 x 4 PROM that has been programmed to
function as the 4-input/3-output noncascadable 2-bit comparator. Here, a symbolic notation
is used so as to avoid the need to exhibit the details of the logic circuit, including the
output inverters. For consistency with Fig. 7.2, tri-state drivers are added to the output with
the understanding that a filled square (•) represents the storage of 1(L) and that an open
circle (o) represents the storage of 0(L). Notice that one of the four output lines is left
unused.

Programming a PROM that functions as the cascadable 2-bit comparator of Fig. 6.28
would require a PROM of dimensions 27 x 3, a significant increase in hardware. In fact,
to do so might seem to be hardware overkill, considering that a 7-to-128 line decoder

7.3 PROGRAMMABLE LOGIC ARRAYS 301

section would be required. Recall that the three-level logic circuit for the cascadable 2-bit
comparator in Fig. 6.28 has a gate/input tally of only 23/67.

7.3 PROGRAMMABLE LOGIC ARRAYS

Like the ROM, the PLA is an n-input/ra-output device composed of an input ANDing stage
and a memory (ORing) output stage. Unlike the ROM, however, both stages of the PLA
are programmable, as indicated by the block diagram in Fig. 7.5. The AND matrix (array)
generates the product terms (p-terms), while the OR matrix ORs the appropriate product
terms together to produce the required SOP functions.

The dimensions of a PLA are specified by using three numbers:

n x p x m
t t t

No. of No. of No. of
inputs product outputs

terms

The number p gives the maximum number of product terms (p-terms) permitted by the
PLA. The magnitude of p is set by the PLA manufacturer based on expected user needs
and is usually much less than 2", the decoder output of a ROM. For example, a PLA
specified by dimensions 16 x 48 x 8 would have 16 possible inputs and could gener-
ate 8 different outputs (representing 8 different SOP expressions) composed of up to 48
unique ORed p-terms. A p-term may or may not be a minterm. In contrast, a 16-input
ROM could generate the specified number of outputs with up to 216 = 65,536 minterms.

n Inputs <

—>
->

— >

n-lnput
AND Array

(programmable)

1
F

p product term (P-term) lines

|r

-^

•

•

P

OR Memory
Array

(programmable)
.
•

o. x

> m Outputs

om.

n x p x m PLA

FIGURE 7.5
Block diagram for an n-input/m -output PLA showing the programmable AND and OR array stages
and the p product-term lines.

302 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

The comparison here is 48 p-terms and 48 ORing connections for the unprogrammed PLA
vs 65,536 minterms and 65,536 ORing connections for the unprogrammed ROM, a vast
difference in hardware. Typically, commercial PLAs have inputs ranging in number from
8 to 16, with 20 to 60 addressable p-terms and up to 10 outputs that may or may not
have controlled polarity by using XOR gates on the output lines (see Subsection 3.9.6).
PLA 1C chips of most any n x p x m dimensions can be manufactured to user specifi-
cations.

PLAs, like ROMs, are constructed of interconnecting arrays of switching elements that
perform the AND and OR operations. Members of the PLA family fall generally into two
classes:

• Programmable logic arrays (PLAs) — Mask programmable AND and OR stages
• Field programmable logic arrays (FPLAs) — One-time programmable AND

and OR stages

Thus, PLAs are programmed during fabrication in a manner similar to ROMs, while FPLAs
are write-once programmed by the user.

Shown in Fig. 7.6 is the MOS version for an unprogrammed n x p x m FPLA illustrating
the programmable bit connections in both the AND and OR array sections. A given p-term
row can become active, P/(//) = 1(#), iff all of the NMOS switches on the AND side are
either disconnected or turned OFF. If any one of the NMOS in a p-term row is turned ON,
then that row is pulled low, 0(H). An active p-term line causes a connected OR bit position
in its path to be pulled low, resulting in a 1(H) from the output tri-state inverter. The buffer
between the AND and OR stages is necessary to boost and sharpen the signal. Such a buffer
could consist of two CMOS inverters. Notice that tri-state drivers provide an active low
enable control on the OR stage.

The programming of a PLA is best understood by considering the 3-input/2-output FPLA
segment in Fig. 7.7. Here, the single p-term line is programmed to generate O\ (H) = !(//)
and Oo(H) = 0(//) any time the p-term I\ • IQ becomes active. Notice that both NMOS bit
positions for 72 are disconnected together with those for the I\(L) and /o(#) lines. Thus, if
/i is 0(H) and /o is 1(H), the p-term line Pj(H) is forced active which, in turn, causes output
O\(H) to become !(//), but not output Oo(H), whose bit position has been disconnected,
causing it to become 0(/f). In effect, disconnection (blowing) of a fusible link in the AND
plane actually "makes the connection" of the p-term input (// or 7;), and disconnection
of a fusible link in the OR plane stores a l(H) = 0(L). These facts may make it easier to
understand the symbolic representations illustrated in Subsection 7.3.1.

7.3.1 PLA Applications

Unlike the programming of ROMs which require canonical data, PLAs require minimum
or reduced SOP data. Thus, the most efficient application of an FPLA would be one for
which the needed product terms fit within the FPLA's limited p-term capability. A good
example is the FPLA implementation of the 4-bit combinational shifter of Fig. 6.37. Shown
in Fig. 7.8 is the truth table (reproduced from Fig. 6.37a) and the EV K-maps and minimum
cover for this shifter. The minimum output expressions for this shifter are obtained directly

7.3 PROGRAMMABLE LOGIC ARRAYS 303

^AAA£1

or ^ o or

Programmable OR Stage

'o(H) ' ^
_JDD

Buffer

-WSA^L

^AAA£1

^^
kl

L-v\AA ^y ^ T ^ T ^ T ^ T ^ T ^ p
P-i(H)

ln-l(H) 'n.l(L) !l(H) 'l(L) '0(H) 'o(L)
\ /

Programmable AND Stage

02(H) O^H) 00(H)

FIGURE 7.6
MOS version of an unprogrammed nx pxm FPLA showing the programmable NMOS connections
for normally active bit locations in the AND and OR (memory) sections, and showing tri-state outputs
with active low enable controls.

from the K-maps and are given as follows:

+A1A0/0

Y2 = A,Ao/2 + A, AO/I + A,Ao/0 + /?Ai A0/3
_ _ _ _ _ (7.1)

Yl = A j AO/I + AjAo/o + /?A,A0/3 + /?A, A0/2

304 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

1 \+\

I2(H) Î H) I0(H) Disconnected
1 i î ----"*' fusible links

/ i-A -̂! rAA-, /-A£-n \
'DD

X "

A A A 1

X ~

^1

:

x^

^^

X ""

^~^

•

i
> J- -

^T

j-vA-

/~1T

•

\ i

D> Pi(H)

k
s. ,

DD

^
<

h

O^H) 00(H)

FIGURE 7.7
Portion of a 3-input/2-output FPLA programmed for a single p-term showing connected and discon-
nected NMOS bit positions in both AND and OR planes.

Having obtained the minimum expressions for the four outputs given by Eqs. (7.1), all
that remains is to construct the p-term table from which the FPLA can be programmed. In
this case an FPLA having minimum dimensions of 8 x 1 9 x 4 will be required. Note that
there are 20 p-terms but one (RFA\) is a shared PI. Presented in Fig. 7.9 is the p-term table
for the 4-bit shifter. Notice that uncomplemented input variables are indicated by logic 1

A A A AKM o vi o

R A, A0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Y Y Y YT 3 T 2 T 1 T 0

R\

0

1

00

Is

I3
\^s

01

/̂ >L

'»]
'2̂̂

11

f'°)
1
\y

10

K
I,

_x

R\

0

1
/

00

''21
If

VJ/

01

fit"
(1

VJ/

11

0
QD

10

k
\^s

Y2

(a) (b)

FIGURE 7.8
Design of a 4-bit general shifter that can shift or rotate left up to three bits with F fill, (a) EV truth
table, (b) Output EV K-maps showing minimum two-level cover suitable for FPLA implementation.

7.3 PROGRAMMABLE LOGIC ARRAYS 305

p-Term

AiAoIj,

AiAoh

A\AQ!\
A\AQ!O
A\A0h

AiAoI\

A\AQ!Q
RA\Avh

RFAiAo

A]AoI\

A}AoIo

RAiAoh

RAiA0l2

RFAi

AiAoIo

RAiAoh

RA^h

RAiAoIi

RFAo

Inputs

R F Ai AQ h h h /o

- - 0 0 1 - - -

- - 0 1 - 1 - -

- - 1 o - - 1 -

- - 1 1 - - - 1

- - 0 o - 1 - -

- - 0 1 - - 1 -

- - 1 0 - - - 1

1 - 1 1 1 - _ -
0 1 1 i _ _ _ -

- _ 0 0 - - 1 -

- - 0 1 - - - 1

1 1 0 1 - - -

1 - 1 1 - 1 - -
0 1 1 - - - - -

- - 0 0 - - - 1

1 - 0 1 i - - -

1 - 1 o - 1 - -

1 - 1 1 - - 1 -
0 1 - 1 - - - -

Outputs

Y3 Y2 Y, Y0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

FIGURE 7.9
P-term table for the 4-bit shifter represented in Fig. 7.8 and by Eq. (7.1).

and complemented input variables by logic 0, and the absence of an input to a p-term is
indicated by a dash.

Presented in Fig. 7.10 is the symbolic representation of an 8 x 20 x 4 FPLA programmed
according to the p-term table in Fig. 7.9. The symbolism that is used avoids the need to
provide details of the specific technology used in the FPLA. However, reference to Figs. 7.6
and 7.7 permits one to associate the symbolism of Fig. 7.10 with FPLA MOS technology.
Notice the existence of the shared PI, RFA i, in the Y\ and YQ output columns.

The symbolism of Fig. 7.10 is meant to be easily understood. The x in the AND plane
signifies an input to a p-term and represents a disconnected fusible NMOS link in the
sense of Fig. 7.7. The filled square (•) in the OR plane represents the programmed stor-
age of 1(L) created by a connected fusible NMOS link in the sense of Fig. 7.7, and the
open circle (o) in the OR plane indicates the programmed storage of 0(L) created by a
disconnected fusible NMOS link. To assist the reader in deciphering this notation, repre-
sentative p-terms are provided in Fig. 7.10 at the left and adjacent to their respective p-term
lines.

A A In1rt0'3

A A I"irto'2

"i"o'o

RFA0

or ^ 0 or

R(H)/F(H) A,(H) A0(H) I3(H) I2(H) I,(H) I0(H)

-K

$e-*
-*•

RFA

-**

^

— 5

— 1

-\

e — Input to

i — Stores

) — Stores

p-term

a1(L)

aO(L)

EN(D-

Y3(H) Y2(H) Y,(H) Y0(H)

FIGURE 7.10
Symbolic representation of an 8 x 20 x 4 FPLA programmed according to the p-term table in Fig. 7.9
and showing the fusible bit position patterns in both the AND and OR planes. Representative p-terms
are given to the left of their respective p-term lines.

306

7.4 PROGRAMMABLE ARRAY LOGIC DEVICES 307

7.4 PROGRAMMABLE ARRAY LOGIC DEVICES

Perhaps the most widely used PLD is the programmable array logic (PAL) device. The
PAL device can be programmed only in the AND plane. For reference purposes the main
differences between ROMs, PLAs and PAL devices may be stated as follows:

ROM devices — Programmable in the OR plane only
PLA devices — Programmable in both AND and OR planes
PAL devices — Programmable in the AND plane only

Thus, a PLA device may be thought of as a combination of ROM and PAL device pro-
gramming characteristics. PAL devices, like PLAs, commonly include a variety of devices
external to their OR planes, including XOR gates, AND-OR-invert logic, and registered
outputs.

The acronym PAL is a registered trademark of Advanced Micro Devices, Inc. Therefore,
hereafter it will be understood that use of the name PAL will acknowledge AMD's right of
trademark for all devices that carry the name PAL.

PAL devices characteristically provide a fixed number of p-terms per output and cannot
take advantage of shared Pis. This is illustrated by the unprogrammed 8 x 20 x 4 PAL
device shown in Fig. 7.11, which allows up to five p-terms per output. If the number of
p-terms for a given output exceeds the number provided by the PAL device, the remaining
p-terms can be given to another column output line, and the two ORed external to the OR
plane. Thus, in the case of the 4-bit shifter, the YQ(H) output, requiring six p-terms, would
have to have one or more of its p-terms given to a fifth output line (not shown) and the two
lines ORed external to the OR plane. The MOS version of a basic PAL device would look
like that for the PLA in Fig. 7.6, except that the NMOS bit positions in the OR stage would
be permanently connected — no fusible links.

The basic PAL device simply employs an AND and OR section either in the form of
AND/OR or AND/NOR as in Fig. 7.12a. However, the output logic of most PAL devices
goes beyond the basic PAL. Shown in Fig. 7.12b is a segment of a PAL device that supports
an L-type (logic-type) macrocell consisting of a controlled inverter (XOR gate), an AND-
controlled output enable, and a feedback path. The feedback path is useful for cascading
combinational logic functions, or for the design of asynchronous (self-timed) sequential
machines covered in Chapter 14. In either case, one output function is fed back to become
the input in the generation of another output function.

Macrocells containing on-chip flip-flops are also found in PAL devices, as illustrated in
Fig. 7.12c. These are called R-type (registered-type) macrocells; they support feedback from
a flip-flop output and a controlled tri-state driver/enable. Both the clock signal and the output
enable signal can be supplied externally or can be generated from within the PAL device.
PAL devices with R-type macrocells are useful in the design of synchronous (clock-driven)
sequential machines, which are discussed at length in Chapters 10 through 13. The descrip-
tion of flip-flops and the details of their design and operation are presented in Chapter 10.

The versatility of PAL devices is improved significantly by the use of V-type (variable-
type) macrocells such as that illustrated in Fig. 7.13. Now, the output signal generated from
a 4-to-l MUX can be combinational or registered depending on the data select inputs Si
and So whose logic values are set by programming fusible links. Thus, data select inputs

'o(H)

I2(H)

.(H)

I7(H)

—^— Programmed Input to p-term

p-term lines

\

\

•0 0 (H)

AND
Plane

03(H)

Logic 1 stored 1 Logic 0 stored
for valid p-term y permanently

i I

FIGURE 7.11
Symbolic representation of a basic unprogrammed 8 x 20 x 4 PAL with five p-term capability
(unalterable) for each of the four outputs.

308

7.4 PROGRAMMABLE ARRAY LOGIC DEVICES 309

AND plane
representation

Programmed input
to XOR gate

(a) (b)

Output
Clock enable

0,(L)

(c)

FIGURE 7.12
Logic equivalent segments of real PAL devices showing macrocell logic, (a) Basic I/O PAL. (b) L-type
macrocell for a programmable I/O PAL device with controlled inverter output, feedback capability,
and AND-controlled enable, (c) Macrocell for a registered (R-type) I/O PAL device with feedback
from a flip-flop and with a controlled enable.

of Si, So = 00 or S\, SQ = 01 generate an active low or active high output (from the
tri-state driver), respectively, directly from the AND/OR sections of the PAL device —
hence, combinational. For data select inputs of S\, SQ = 10 or Si, SQ = 11, registered (flip-
flop) outputs are generated active low or active high, respectively, from the inverting tri-
state driver. Thus, the V-type macrocell combines the capabilities of the L-type and R-type
macrocells of Fig. 7.12. But the V-type macrocell goes well beyond these capabilities and
offers even more flexibility. A 2-to-l MUX permits the active high and active low feedback
signals to be generated either by the 4-to-l MUX with its four options or directly by the
active low output of the flip-flop. The data select input S to the 2-to-l MUX is taken from
the programmed data select input S\ to the 4-to-l MUX, as shown in Fig. 7.13. Because
of the flexibility they offer, PAL devices with V-type macrocells are a popular choice for
designers of both combinational logic or sequential machine design.

0,(L)

310 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

Output MUX

Programmed
fusible links

Clock ^-Feedback MUX

FIGURE 7.13
Output macrocell for V-type PAL devices showing I/O connections and cell logic. Source: PAL Device
Data Book, Advanced Micro Devices, Inc., Sunnyvale, CA, 1992.

7.5 MIXED-LOGIC INPUTS TO AND OUTPUTS FROM
ROMs, PLAs, AND PAL DEVICES

The subject of mixed-logic inputs to decoders was discussed in Subsection 6.3.2. There,
two options were given for dealing with inputs that arrive both from positive and negative
logic sources. These input rules are necessary since the decoder is normally an 1C chip with
no user access to its internal structure. Because ROMs, PLAs, and PALs also exist as 1C
chips, the same input rules also apply to them. For reference purposes, these input rules are
stated as follows:

For Mixed-Logic Inputs to ROMs, PLAs, and PALs

(1) In the program table for a ROM, PLA or PAL device, complement each bit in the
column of an active low input

or

(2) Use an inverter on the input line of an active low input to one of these PLDs and
do not complement the bits in that column of the program table.

0,(L)

Clearly, these mixed-logic input rules are basically the same as those stated in Subsection
6.3.2 for decoders.

7.5 ROMs, PLAs, AND PAL DEVICES 311

The mixed-logic output rules for ROMs, PLAs, and PALs differ somewhat depending
on the PLD in question. The mixed-logic output rules for ROMs are as follows:

For Mixed-Logic Outputs from ROMs

(1) In the ROM program table complement each bit in the column of any output from
a ROM that is required to be active low,

or

(2) Use the inverter capability of the ROM, or add one externally, on that output line to
generate the active low output and do not complement the bits in the output column.

Since ROMs accept only canonical (minterm) data, it is permissible, as an option, to
complement the output column for an active low output. This is equivalent to complementing
the conventional (1's and O's) K-map for the active low output to yield

YSOP(L) = YSOp(H\ (7.2)

which follows from the definition of complementation given by Eq. (3.2). But this is only
possible for canonical data as in the case of a ROM. For example, suppose it is required
that the output (A = B) in Fig. 7.4 be generated active low. To do this, the (A = B) output
column can be complemented, interchanging the (o) and (•) symbols, or an inverter can be
connected to the (A = B) output line from the PROM.

The situation for PLA and PAL devices is much different from that for ROMs relative
to active low outputs. Now, reduced or minimum forms constitute the output functions,
and complementation of the output columns of active low outputs would result in radically
different functions. Equation (7.2) does not apply to output column complementation for
these PLDs. The rule for dealing with active low outputs from PLA and PAL devices is
stated in the following way:

For Active Low Outputs from PLA and PAL Devices

If a given output line from a PLA or PAL device must be generated with an activation
level different from that provided internally by the PLD, use must be made of an
inverter added externally to that line. Complementation of an output column in the
p-term table is not permitted.

As an example, consider the FPLA in Fig. 7.10, which has been programmed to function
as a 4-bit shifter with F fill. Suppose that R arrives active low and that all outputs must
be delivered to the next stage active low. To achieve this objective with minimum exter-
nal logic, the R column is complemented and, if mixed logic outputs are not provided
internal to the FPLA, inverters are placed on the output lines for Y^,Y2,Y\, and YQ. Com-
plementation of the R column in the p-term table of Fig. 7.9 requires that the 1's and O's
be interchanged but leaving all dashes unaltered. Thus, the x 's in the two R columns in
Fig. 7.10 will be moved from the active high column to the active low column and vice
versa. The meaning of the x's was explained previously in discussing the symbolism of
Fig. 7.10.

312 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

7.6 MULTIPLE PLD SCHEMES FOR AUGMENTING INPUT
AND OUTPUT CAPABILITY

Occasions arise when the I/O requirements of a design exceed the capabilities of the available
PLD. When this happens the designer may have no alternative but to combine PLDs in some
suitable fashion to meet the design requirements. To accomplish this requires the combined
use of tri-state driver and wired-OR technologies, which permit nearly an unlimited number
of outputs from different PLDs to be ORed together. The use of OR gates to accomplish
this task would suffer the disadvantage of fan-in limitations and speed reduction.

Figures 7.2 and 7.6 illustrate the use of inverting tri-state drivers (see Fig. 3.8) with ac-
tive low enable control EN(L) on the output lines from the PROM and FPLA, respectively.
These tri-state drivers not only function to satisfy the logic level requirements of the device
outputs, but also permit a type of PLD multiplexing based on the transfer and disconnect
(high Z) modes of the tri-state drivers. The two principal modes of tri-state driver operation
are illustrated in Figs. 7.14a and 7.14b, and the block diagrams for PLDs with active high
tri-state driver outputs controlled by active high and active low enable controls are shown
in Fig. 7.14c.

By using a multiplexed scheme involving a decoder and PLDs with active low tri-state
enable controls, it is possible to increase the input capability beyond that of the stand-alone
PLDs. Such a scheme is shown in Fig. 7.15, where a (k — n)-to-2(*~w) line decoder is used
to select 2(k~n^ n-input PLDs, each with m outputs. The use of active low tri-state enables,

Y(H)

Inverter Disconnect

Mode Mode

(a) (b)

EN(H)—EN EN(L)

(c)

FIGURE 7.14
Tri-state driver/enables used in PLDs. (a) Transfer and (b) disconnect modes of operation for active
high and active low tri-state drivers, (c) Block diagrams for a PLD with active high and active low
tri-state driver/enables, and active high outputs.

7.6 MULTIPLE PLD SCHEMES FOR AUGMENTING INPUT AND OUTPUT 313

EN(L)
k-n i

T

<n

EN
PLD

m-1 • • • 1 0

k = Number of variables
Decoder n = Number of PLD inputs

m = Number of PLD outputs

<n

PLD
1

m-1 ••• 1 0

<n

EN
PLD

0

m-1 * • * 1 0

Y^H) Y^H) Y0(H)

FIGURE 7.15
Multiplexed scheme by using a decoder and n-input PLDs to increase input variable capability from
n to k > n.

as in Fig. 7.14, makes possible the wire-ORed connection of outputs shown in Fig. 7.15.
This is so because the most significant 4 _ i , . . . , /„ input bits activate only one of the 2(fc~n)

n-input PLDs at any given time. As indicated in Fig. 7.15 by the notation <«, not all the
available inputs to a given PLD need be used. Also, each PLD output need not be connected
(wire-ORed) with the corresponding outputs from other PLDs to form tri-state bus lines.

Although Fig. 7.15 satisfies the need to augment the input capability of PLDs, it does
not address the problem of limited output capability. When the number of output functions
of a design exceeds the output capability of the PLDs in use, a parallel arrangement of
the type shown in Fig. 7.16 can be used. This scheme is applicable to any stage of the
multiplexed configuration of Fig. 7.15. It indicates that p PLDs, each ofm outputs, yield a
maximum of (p x m) possible outputs per stage, thereby increasing the output capability
from m to (p x m). However, it is important to understand that these outputs must not
be wire-ORed together, since they are from PLDs that are activated by the same decoder
output — the PLDs in Fig. 7.16 are not multiplexed. Note that the PLDs need not have the
same number of inputs or outputs, but the number of inputs is limited to n or less.

EXAMPLE 7.1 Suppose it is required to generate three output functions of 10 variables
by using 28 x 4 PROMs. Since the number of input variables exceeds the number of PLD

314 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

To decoder
output (L)

EN PLD.

m-1 ••• 1 0

p = Number of combined PLDs

n = Max. number of inputs per PLD

m = Number of outputs per PLD

EN PLD

m-1 • • • 1 0

<n

EN PLD

m-1 • • • 1 o

\ k . /
V

(p x m) possible outputs

FIGURE 7.16
Scheme for increasing the output function capability from m to (p x m) for any stage of the PLD
configuration shown in Fig. 7.15.

inputs by 2, a 2-to-4 decoder is required to selectively activate the four PROMs one at a
time. Presented in Fig. 7.17 is the ROM program table that satisfies the requirements of this
example. Since four PROMs are required (2(k~n) = 4), the program table must be partitioned
into four parts, each part being a program for a single PROM. Once programmed, the four
PROMs are configured with the 2-to-4 decoder as illustrated in Fig. 7.18. The outputs are
wire-ORed together as shown to generate the three outputs of 10 variables.

EXAMPLE 7.2 Augmentation of the input, output, and p-term capability of the PLDs in
use is illustrated by the following example. Consider the implementation of 16 functions of
10 variables by using 8 x 20 x 4 FPLAs subject to the following p-term constraints dictated
by the function makeup:

Eight of the functions each require that 20 < p < 40, while the remaining 8
require that p < 20. Here, p is the number of p-terms per function.

The p-term program table format for this system is given in Fig. 7.19. The p-terms are listed
on the left side of the table, and the 10 FPL A inputs to the p-terms are indicated by using
the notation given in Fig. 7.19. It is implied by the program table of Fig. 7.19 that two inputs,
/9 and /8, to a 2-to-4 decoder are to be used to determine the FPLA assignment. With this in
mind, one possible assignment scheme is as follows: The eight functions requiring 20 to 40
p-terms take decoder addresses of 00 or 01, while functions requiring 20 or fewer p-terms
take decoder addresses of 10 or 11.

Implementation of the 16 functions of 10 variables, according to the decoder assignments
just given, requires that six 8 x 20 x 4 FPLAs be selected by the 2-to-4 decoder as shown
in Fig. 7.20. Here, four of the functions, ¥3, Y2, Y\, and YQ, are assigned to FPLAoand

PROM

'9
0

0

0

0
1

1
1

1

"e

0

0

1

1
0

0

1

1

'7
0

1
0

1
0

1
0

1

»e

0

1
0

1
0

1
0

1

'5
0

1
0

1
0

1
0

1

Inputs

>4

0

•
1
0

•
1
0

•
1
0

•
1

"3
0

1
0

1
0

1
0

1

>2

0

1
0

1
0

1
0

1

»1
0

1
0

1
0

1
0

1

"o

0

1
0

1
0

1
0

1

PROM Outputs

Y Y Y' 2 ' 1 '

PROM

PROM

PROM

PROM

0

0

1

2

3

FIGURE 7.17
Partitioned PROM program table required to generate three output functions of 10 variables by usin§
four 28 x 4 PROMs.

I9,I8(H)

PR DM

EN

? I
\

1 (

3

p

/ '2
V

2-to-4 Decoder

>-c

3
u

2 1
(J (

I

PROM2

EN

LT
2 1 0

J

L-C

0

L

!
PROM.,

EN

^

2 1 0

L-C

/

PR(

8

DM0

EN

M
1 0

Y2(H) Y^H) Y0(H)

FIGURE 7.18
Multiplexed scheme required by the program table of Fig. 7.17 to generate three functions of 10
variables by using four 28 x 4 PROMs.

315

316 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

P-terms
FPLA Inputs

"9 "a '7 'e "s '4 '3 '2 ', >o

FPLA Outputs
Y ... V Y Y YT 15 T 3 T 2 T 1 T 0

FPLA
Assigment

FIGURE 7.19
P-term table format for a multiple FPLA scheme to generate 16 functions of 10 variables by using six
8 x 20 x 4 FPLAs subject to the p-term conditions stated in Example 7.2.

FPLA2; the remaining four, Y-j, Yf,, Y5, and ¥4, are assigned to FPLA] and FPLAs. Notice
that the active low tri-state enables for FPLAo and FPLAi are connected together and to a
single decoder output, as are those for FPLA2 and FPLA3. By wire-ORing the outputs in
this manner, eight of the 16 output functions are each permitted to have up to 40 p-terms
with the remaining eight functions limited to 20 p-terms.

WH)
f

'2

2-to-4 Decoder
3 2 1 0

Y15,...,Y12(H) Yn Y8(H) Y7,..,Y4(H) Y3>...,Y0(H)

FIGURE 7.20
Scheme to generate 16 functions of 10 variables by using 8 x 20 x 4 FPLAs subject to p-term re-
quirements: 8 functions for which 20 < p < 40, and 8 functions for which p < 20.

7.7 INTRODUCTION TO FPGAS AND OTHER GENERAL-PURPOSE DEVICES 317

7.7 INTRODUCTION TO FPGAs AND OTHER GENERAL-PURPOSE DEVICES

The devices briefly discussed in this section vary in size from SSI to LSI circuit modules and
range greatly in complexity from simple gate-level modules to those having a multiplicity of
components, including flip-flops. Of the general purpose devices, the simplest are the AND-
OR-invert or OR-AND-invert type devices with logic equivalent gate counts numbering
typically in the three to five range. These SSI circuits are often used as building blocks in
complex logic devices. Then, within the PLD spectrum of devices, the most complex class
belongs to the field programmable gate array (FPGA) devices, which may contain a variety
of primitive components, including discrete gates, MUXs, and flip-flops. Since this chapter
deals only with combinational logic devices, the treatment here will deal mostly with those
PLDs and general-purpose devices that are combinational in character.

The discussions to this point in the text have dealt only with combinational logic, con-
sequently, the reader is not expected to grasp the significance of flip-flop operation in the
output logic stage to some PLDs. The use of these "registered" PLDs will become evident in
later chapters when sequential machines are discussed in detail. Treatment here will begin
with simple general-purpose building block devices and will end with an introduction to
the complex FPGAs.

7.7.1 AND-OR-lnvert and OR-AND-lnvert Building Blocks

Just as the XOR and EQV functions can be implemented by what amounts to one gate
level of MOS transistors as in Figs. 3.26 and 3.27, so also can the AND-OR-invert and
OR-AND-invert functions be implemented with just one gate level of transistors. Shown
in Fig. 7.21a is the CMOS realization of the AND-OR-invert (AOI) gate. It is called a
gate since it is a CMOS SSI circuit and has a propagation delay equivalent to that of a
single NAND or NOR gate. There are many useful applications of this basic building block,
including integration with much larger PLD logic blocks. The physical truth table and its
mixed-logic interpretation are presented in Figs. 7.21b and 7.21c, respectively. The output
logic expression can be read directly from the mixed-logic truth table and is

F(L) = [AB + CD](L), (7.3)

which results in the logic equivalent circuit for the AOI gate shown in Fig. 7.2Id.
As a simple example of the use of the AOI gate, consider the two-level active low EQV

function given by

F(L) = (AB+AB)(L).

This function can be implemented in Fig. 7.2Id by connecting A to C and B to D via two
inverters, a transistor count of 12. In comparison, the EQV gate of Fig. 3.27a requires only
six transistors.

The CMOS realization of the OR-AND-invert (OAI) gate is the dual of that for the AND-
OR-invert gate and is easily obtained by flipping the latter end-for-end while interchanging
all NMOS with PMOS and vice versa. This is done in Fig. 7.22a. The same duality exists
between the truth tables of Figs. 7.21 and 7.22, where H's and Us are interchange between
physical truth tables and 1's and O's are interchanged between mixed-logic truth tables. The
output expression for the OAI gate is obtained directly from Fig. 7.22c by reading the O's

318 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

A B C D

L X L X

L X X L

X L L X

X L X L

X X H H

H H X X

F

H

H

H

H

L

L

A(H) B(H) C(H) D(H)

0 X 0 X

0 X X 0

X 0 0 X

X 0 X 0

X X 1 1

1 1 X X

F(L)

0

0

0

0

1
1

X = Irrelevant input
(b) L = LV (c)

H = HV

C(H) —
D(H) —

(d)

(a)

FIGURE 7.21
The AND-OR-invert (AOI) gate, (a) CMOS circuit, (b) Physical truth table, (c) Mixed-logic inter-
pretation of the physical truth table, (d) Logic equivalent circuit for the AOI gate.

in the F column and complementing the results to give

F(L) = [(A + B)(C + D)](L), (7.4)

which yields the logic equivalent circuit for the OAI gate shown in Fig. 7.22d.
As a simple example of the use of the OAI gate, consider the two-level active low XOR

function given by

F(L) = (A + B)(A + B)(L).

This function can be implemented in Fig. 7.22d by connecting A to C and B to D via two
inverters for a total of 12 transistors, twice the transistor count of the XOR gate of Fig. 3.26a.

There are several variations on the AOI and OAI gate themes of Figs. 7.21 and 7.22. For
example, adding an inverter to the output of each of these gates makes them AND-OR and
OR-AND gates. More input stages can also be added to the AOI or OAI gates. Shown in
Fig. 7.23 is the logic equivalent circuit for the 74x54, a 10-input AOI circuit. Clearly, the
additional input capability adds to the versatility of the device.

7.7 INTRODUCTION TO FPGAs AND OTHER GENERAL-PURPOSE DEVICES 319

A

H

H

X

X

X

H

B

X

X

H

H

X

H

C

H

X

H

X

H

X

(b)

D

X

H

X

H

H

X

F

L

L

L

L

H

H

X =
L =
H =

A(H)

1

1

X

X

X

0

Irrelevant
LV
HV

B(H)

X

X

1

1

X

0

input

C(H)

1

X

1

X

0

X

(c)

D(H)

X

1

X

1

0

X

F(L)

1

1

1

1

0

0

A(H)
B(H)

JO— F(L)
C(H)- x ^ ' ' /

D(H)-

(d)

FIGURE 7.22
The OR-AND-invert (OAI) gate, (a) CMOS circuit, (b) Physical truth table, (c) Mixed-logic inter-
pretation of the physical truth table, (d) Logic equivalent circuit for the OAI gate.

7.7.2 Actel Field Programmable Gate Arrays

As indicated previously, the architectures of FPGAs can be very complex and, in fact, are
generally regarded as being at the high end in complexity of the programmable gate ar-
ray (PGA) spectrum. The ACT-1 family of FPGAs (from Actel Corp.) discussed in this

FIGURE 7.23
Logic equivalent circuit for the 10-input 74x54 AOI circuit.

320 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

SA(H) S,(H) S0(H)

I M
A0(H) *

A,(H) »

S

° MUX Y
A

1

\ j
SC{H)

Cfl(H) Si — a— — 0

' MUX Y

B /H) ^
0

B,(H) >

0
MUX

B Y

1
S

r

C^H) 1 C

""""•*

SB(H)

Y(H)

FIGURE 7.24
An ACT-1 family logic module. Source: ACT Family Field Programmable Gate Array Databook,
Actel Corp., Sunnyvale, CA, 1991.

subsection are programmable by the end user. They represent some of the simpler PGAs in
the sense that the logic components of these devices consist of relatively simple combina-
tional structures. However, the programmable switching matrices required to interconnect
the ACT-1 logic cells are relatively complex and cannot be reprogrammed.

Shown in Fig. 7.24 is an ACT-1 logic module consisting of three 2-to-l MUXs and a
2-input OR gate for a total of eight inputs and one output. The output logic function is easily
deduced from Fig. 7.24 to be

Y = (5, + S0)Co + (5,

= (S, + S0)(SAA0 + SAA,) + (Sl + SQ)(SBB0 + SBBi). (7.5)

To achieve the status of an FPGA, Actel enmeshes hundreds of these modules in a ma-
trix of programmable interconnections. A segment of the ACT-1 interconnect architecture
is illustrated in Fig. 7.25, courtesy of the Actel Corporation. Here, dedicated vertical track-
ing lines connect with each input to and output from a logic module, while other vertical
tracking lines function as feedthrough between channels. Connections between horizontal
and vertical tracking lines are made by "blowing" the cross fuses at intersections in ac-
cordance with the required fuse pattern program. Since some wire tracks may be blocked
by previously allocated tracks, a sequence of jogs from horizontal to vertical tracks and
vice versa can be used to circumvent the blockage, thereby permitting connection to an
appropriate logic module. Because of the versatility jog programming provides, the ACT-1
family of FPGAs achieves a gate-equivalence capability several times the number of logic
modules. For example, the ACT-1 A1010, which has 295 logic modules, purports to have
a gate equivalency of 1200.

7.7 INTRODUCTION TO FPGAs AND OTHER GENERAL-PURPOSE DEVICES 321

Horizontal Control

Vert ical Control

Logic module
connection

Horizontal
Tracks

Module

Horizontal
Tracks

Logic "-̂

Vert icle Tracks Cross Fuse

FIGURE 7.25
Interconnect architecture for ACT-1 family of FPGAs. Source: ACT Family Field Programmable Gate
Array Databook, Actel Corp., Sunnyvale, CA, 1991.

7.7.3 Xilinx FPGAs

Field programmable gate arrays (FPGAs) offer the most design versatility of the PLDs
considered so far, and their architecture differs markedly from those of PALs and Actel
PLDs. The Xilinx FPGA family of 1C devices consists of an array of configurable logic
blocks (CLBs), I/O blocks (lOBs), and a switching interconnect matrix, as illustrated in
Fig. 7.26. The low-end FPGAs support three kinds of interconnects: direct, general-purpose,
and long-line interconnections. The direct interconnects (not shown in Fig. 7.26) connect
CLBs to adjacent CLBs for localized applications with minimum propagation delay. The
general-purpose interconnects connect CLBs to other CLBs via the horizontal and vertical
interconnect lines and switching matrices. Finally, the long-line interconnects are reserved
for signals that must be distributed to numerous CLBs and/or lOBs with minimum time-
delay distribution (time skew) problems. The programming of sophisticated devices such as
Xilinx FPGAs requires the use of dedicated software such as XACT by Xilinx, Inc. FPGAs

322 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

I/O
Pin " \̂

N»V

Interconnect ^^
Lines

D-

Horizontal
long line

I/O
Block ^\

n-

Configurable
Logic — ̂
Block

Ur-

ea
O

-

s

\~
^\-

CO
O

—

—

4

CD
0 —

r̂

^

CQ
O

-*

->

->

-*

-^

?
1

IOB

1 1

1
A

8

c CLB

K
0

t

I

CLB

t

X

91
IOB

_+.
^

•>
_^

v

Switching
Matrix

Switching
Matrix

Switching
Matrix

I. in/

*
— *

^

— *

—

/

n
1
IOB

Ml

1
CLB

t

|

CLB

t

— i

— l

— «

D
1
108 ;

»•

>•

L_J IK

Switching
Matrix

Switching
Matrix

Switching
Matrix

Interconnect _/ Two vertical / \^ Global long
'ines long lines line

FIGURE 7.26
Segment of a Xilinx 2000 series logic cell architecture showing configurable logic blocks (CLBs),
I/O blocks (lOBs), switching matrices, and vertical and horizontal interconnect lines. Source: The
Programmable Logic Data Book, 1994. Xilinx Inc., San Jose, CA 95124.

by other manufacturers, which differ significantly from those of Xilinx, require their own
dedicated software.

Though Xilinx no longer produces the series 2000 FPGAs, a general description of these
devices is useful to introduce the subject of FPGAs. Shown in Fig. 7.27 is the Xilinx series
2000 FPGA logic cell, which consists of a combinational logic section, six MUXs, and
a memory element (flip-flop). (Note: The reader is not expected to have a knowledge of
flip-flops, which are covered at length in Chapter 10.) The combinational logic section
can generate any single function of four variables, F = G, or any two functions, each of

7.7 INTRODUCTION TO FPGAs AND OTHER GENERAL-PURPOSE DEVICES 323

Inputs

Flip-flop memory
Clock element

FIGURE 7.27
Logic structure for a Xilinx series 2000 logic cell block (LCB) with four data inputs, a clock input,
and two outputs. Figure courtesy of Xilinx Inc., San Jose, CA.

three or fewer variables with separate F and G outputs. The functions are generated by
a 16-bit programmable lookup table based on static RAM technology, thereby making
reprogramming possible.

The simplest Xilinx IOB belongs to the 2000 series and is one consisting of two MUXs,
a tri-state driver/enable, a noninverting buffer, and a flip-flop, as shown in Fig. 7.28. The I/O
pin can function as either a dedicated input or a dedicated output, or it can be switched dy-
namically between the two. When the tri-state driver is disabled (disconnect mode), the I/O
pin performs as a dedicated input. In this mode the 2-to-1MUX selects either a buffered input
from the flip-flop or one directly from the buffered input and delivers that input to the logic
cell. When the tri-state driver is enabled (transfer mode), the I/O pin functions as a dedicated
output from the logic cell. However, in this mode the 2-to-l MUX can select the logic cell
output via the buffer and return it to the logic cell as feedback, a bi-directional I/O condition.

The size and capability of the Xilinx FPGAs vary dramatically depending on the series
and family to which the FPGA belongs. Shown in Table 7.1 are a few specifications for
representative FPGAs of three families belonging to the XC4000 series. They range in CLB
numbers from 100 for the XC4003E to 8464 for the XC40250XV. The XC40250XV features
a gate range up to 500,000 (including RAM), has more than 100,000,000 transistors, and
can operate at over 100 MHz. In comparison, the Pentium II microprocessor has 7,500,000
transistors but can operate at higher speeds.

Presented in Fig. 7.29 is the simplified architecture for the Xilinx XC4000 family of
CLBs. Each CLB contains three function generators and two independent memory elements
(flip-flops) that are triggered on either the rising edge or falling edge of the clock signal,
depending on the logic level from the 2-to-l MUXs. Multiplexers in the CLB map the four
control inputs Cl, C2, C3, and C4 into the internal control signals HI, Din, S/R, and
CKEN in any required manner. Combinational logic can be extracted directly from the three

324 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

To lOBs

Tri-state
driver

I/O Pin

Buffer

Flip-flop memory / I/O Clock
element

FIGURE 7.28
Logic structure for a relatively simple Xilinx I/O block (IOB). Figure courtesy of Xilinx Inc., San
Jose, CA.

function generators at the X and Y outputs via the G', ¥' MUXs. By this means the CLB
can implement any two functions of up to four variables, any function of five variables, or
even some functions of up to nine variables. As an added advantage of the XC4000 series
CLBs, function generators F' and G' contain dedicated arithmetic logic to increase the
performance of the basic arithmetic and comparator operations.

The flip-flops generate outputs QX and Q Y from programmable data inputs via the 4-to-1
MUXs. The S/R control logic either presets (PR=l,CL = 0) or clears (CL=l,PR = 0)
the flip-flops, depending on the logic level of the S/R input. A clock enable CKEN input to
the flip-flops permits the CLB to hold (store) data for an indefinite period of time. Again,
it should be understood that the reader need not have a knowledge of flip-flops to obtain
useful information from this subsection. The subject of flip-flops is covered at length in
Chapter 10.

Table 7.1 Range of Xilinx FPGAs Belonging to the XC4000 CMOS Series

Technology
(supply/scale

factor — maximum
frequency)

5 V/0.5 ̂ -66 MHz
3.3 V/0.3 /i-80 MHz

2.5 V/0.25 M-100 MHz

Product
name

XC4003E
XC4085XL
XC40250XV

Maximum
logic gates
(no RAM)

3K
85 K

250 K

Maximum
RAM bits
(no logic)

3.2 K
100 K
271 K

CLB
matrix array

10 x 10 = 100
56 x 56 = 3,136
92 x 92 = 8,464

Number
of flip-flops

360
7,168

18,400

Maximum
user I/O

80
448
448

7.7 INTRODUCTION TO FPGAs AND OTHER GENERAL-PURPOSE DEVICES 325

Control Inputs

C1 C2 C3 C4

i i 1 i
H1 Din S/R CK C

G4-

G3-

G1

Function
generator r,

of b

G1 to G4

Function
generator

of
F1 to F4

Function
generator

and
H1

-

I—

H'

EN

CL
G1"

F4

Function UDin

H Generator _.
F'

G'

- H'
•-DH

P

D

t>

CKC

PR

Q •QY(H)

P

PR

Q

EN

CL

• Q X (H)

(clock)

MUXs control led by
configuration program

FIGURE 7.29
Simplified block diagram for the Xilinx XC4000 family of CLBs. Source: The Programmable Logic
Data Book, Xilinx, Inc., 1994.

As expected, the I/O blocks (lOBs) for the XC4000 families of FPGAs are user-configur-
able, relatively complex, and versatile, just as are the CLBs. Shown in Fig. 7.30 is the
simplified block diagram representing this family of lOBs. The buffered input signals from
the I/O pin either are issued directly to the CLB (see inputs labeled I\ and /2), or are issued
to the CLB from the flip-flop output Q after an optional delay, all determined by 2-to-l
MUXs. The delay can be used to eliminate the need for a data hold-time requirement at the
external pin.

The output signals from the CLB can be inverted or not inverted and can either pass
directly to the I/O pad or be stored in the memory element (flip-flop). The output enable OE
signal acts on the tri-state driver/buffer to produce either a bidirectional I/O capability or a

326 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

Output
Clock

Passive Pull-Up/
Pull-Down

Input
Clock C|6ar

MUXs
controlled by
configuration

Program

FIGURE 7.30
Simplified block diagram for the XC4000 series input/output block (IOB). Source: The Programmable
Logic Data Book, Xilinx, Inc., 1994.

monodirectional input capability by imposing a high-impedance condition on the tri-state
driver. The slew-rate control can also act on the tri-state driver, but does so to minimize the
power consumption from bus transients when switching noncritical signals.

There are many other features and programmable options of the IOB. These include
programmable pull-up and pull-down resistors that connect unused I/O pins (via NMOS)
to either VDD or ground to minimize power consumption. Separate input and output clock
signals can be inverted or not inverted to produce rising- or falling-edge triggering of the
flip-flops. Also, the flip-flops can be globally preset or cleared as is the case for the CLBs.
Other characteristics of the lOBs, as well as those of the CLBs, are best understood by
consulting Xilinx's Programmable Logic Data Book (see Further Reading at the end of this
chapter).

The matrix of programmable interconnects for the Xilinx XC4000 families of FPGAs
are significantly different from and more complex than those of the discontinued XC2000
series. For the XC4000 series there are three main types of interconnects: single-length
lines, double-length lines, and longlines. A typical routing scheme for CLB connections
to adjacent single-length lines is illustrated in Fig. 7.31. The switch matrix consists of six
programmable transmission gates at the intersection of each single-length line as shown
in the figure. The transmission gate configuration permits a given line signal to be routed

7.7 INTRODUCTION TO FPGAs AND OTHER GENERAL-PURPOSE DEVICES 327

CLB
connection
with routing \ I interconnect point

channel \ F4 C4 G4 QY
G1

Y
C1

G3
CK CLB

C3
F1

F3
X

QX F2 C2 G2

Six programmable
transmission gates

per matrix

Switch
Matrix

FIGURE 7.31
Interconnect scheme between CLB and routing channels consisting of single-length lines. Also shown
are the six programmable transmission gate positions per interconnect point within each switch matrix.
Source: The Programmable Logic Data Book, Xilinx, Inc., 1994.

in any one of three directions, in one of two transverse directions or on the same line, or
along any combination of these. The single-length lines are used primarily for local network
branching with fan-out greater than 1. The routing channels are designed to minimize path
delay and power consumption, and their number between switch matrices varies with the
size of the matrix.

Double-length lines (not shown) are those that interconnect every other switch matrix
and are, therefore, twice as long as the single-length lines shown in Fig. 7.31. The double-
length lines, which pass by two CLBs before entering a switch matrix, are grouped in pairs
and offer the most efficient implementation of point-to-point interconnections of interme-
diate length. Any CLB input, except CK, can be driven from adjacent double-length lines,
and the CLB outputs can be routed to nearby double-length lines in either horizontal and
vertical directions.

The longlines (also not shown in Fig. 7.31) run the length of the array in both vertical and
horizontal directions. They are designed to distribute signals of various types throughout
the array with minimum time delay (skew) problems. Networks with high fan-out and time-
critical signals are ideally suited for longline usage. A programmable switch located at
the center of each intersecting longline permits a signal to be split into two independent
signals, both traveling half the vertical or horizontal length of the array. Inputs to the CLB
can be driven by adjacent longlines, but outputs from the CLB can be routed to adjacent

328 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

longlines only via tri-state drivers. Programmable interconnect points between longlines
and single-length lines are available. However, no interconnect points are provided between
double-length lines and others.

Logic cell arrays (LCAs), such as the XC4000 series FPGAs, have the unique property
that they can be reconfigured within a system and can even be dynamically altered to perform
different functions at different times in a process. This family of devices contain 16x1 and
32x1 static RAM primitives that are user-configurable via look-up tables. Self-diagnosis,
hardware for different environments, or dual-purpose applications — these exemplify the
versatility that is inherent in reconfigurable LCAs. Properly used, such devices can minimize
design effort and reduce costs. However, all of the above are possible only with the use of
CAD help, the topic of Section 7.8. For much more complete information on Xilinx FPGAs,
the reader is referred to Further Reading at the end of this chapter.

7.7.4 Other Classes of General-Purpose PLDs

To provide the reader with an overall perspective on the diversity of general-purpose PLDs
and for reference purposes, the following additional classes of complex PLDs (CPLDs) are
offered as an extension of the devices discussed in the previous two subsections:

Generic Array Logic (GAL) Devices: Erasable MSI PLDs that may contain
AOIs, XOR gates, and registers in the output stage for sequential machine
design. GAL is a registered trademark of Lattice Semiconductor, Hillsboro,
OR 97124.

Erasable programmable logic devices (EPLDs): Erasable CMOS-based de-
vices whose macrocells typically contain discrete gates, MUXs, and registers
(flip-flops) for sequential machine design. Some EPLDs may contain arithmetic
logic units (ALUs). Both Altera and Xilinx Corporation offer EPLDs of vari-
ous complexity. Detailed information on EPLDs are available from the Altera
Data Book, Altera Corporation, and from The Programmable Logic Data Book,
Xilinx Corporation, 1994.

Field programmable logic sequencers (FPLS): Similar to PAL and GAL de-
vices that have output logic consisting of discrete gates and flip-flops. Detailed
information on these devices is available from Phillips, Programmable Logic
Devices (PLD) Handbook, Phillips Semiconductor, Sunnyvale, CA, 1994; and
Programmable Logic Data Handbook, Signetics Co., Sunnyvale, CA, 1992.

7.8 CAD HELP IN PROGRAMMING PLD DEVICES

The programming of a PAL 1C device, like that of a ROM or PLA, can be accomplished by
a physical device (a programmer) that applies voltage pulses to target fusible links, causing
disconnection of the bit positions as discussed in Section 7.2. The programmer may be a
dedicated device or one of universal capability for ROMs, PLAs, and PAL devices, and it
may even have erasure capability. In any case, the difficult part of the programming process
is providing the instructions required to fit the Boolean expressions into the capability of
the specific PLD device, for example, a PAL device, that may support an L-, R-, or V-type

7.8 CAD HELP IN PROGRAMMING PLD DEVICES 329

macrocell structure. This difficulty is overcome by proprietary software from manufacturers
of PLD devices and PLD device programmers. A commonly used CAD package for this
purpose is called ABEL (for Advanced Boolean Expression Language, a product of DATA
I/O Corp., Redmond, WA). The ABEL compiler accepts I/O data in tabular form, minimizes
it by using algorithms based on Espresso (discussed in Section 4.8), and generates a fuse
map that can be read in one of several standard formats by the programming device: JEDEC
(Joint Electron Device Engineering Council) format, ASCII hex format, Intel Hex format,
etc. As the name implies, the fuse map (pattern) targets those fusible links that must be
disconnected.

ABEL is not the only PLD programming compiler that is currently in use for PAL devices.
A CAD software called PALASM (for PAL assembler) is commonly used to convert SOP
Boolean expressions or truth tables into fuse maps for PAL devices. I/O pin specifications on
the chip are required. Like ABEL, the PALASM compiler generates a fuse map in JEDEC
format that can be read by the PAL programming device. PALASM is available without
cost from AMD Inc. (Advanced Micro Devices, Inc.).

For Xilinx FPGA devices, dedicated and sophisticated CAE (computer-aided engineer-
ing) software called XACT (for Xilinx automated CAE tools) is available from the Xilinx
Corp. XACT uses a three-step interrelated and iterative design process: design entry, design
implementation, and design verification. For design entry at the gate level, the designer
may begin with a schematic capture and labeling of the circuit to be implemented. To do
this the designer can choose Viewlogic's Viewdraw, Mentor Graphics' Design Architect, or
OrCAD's SDT, since these are all supported by the XACT development system. Design en-
try at the behavioral level (for example, Boolean equations or state machine descriptions) is
best accomplished by the Xilinx-ABEL and X-BLOX products of Xilinx and other products
by CAE vendors. Also, for complex systems, the use of high-level hardware description
languages such as VHDL is recommended. Xilinx offers HDL interfaces for synthesis tools
from synopsis and Viewlogic Systems. Mentor Graphics, Cadence Design Systems, and
Exemplar Logic also offer HDL synthesis tools fashioned for Xilinx FPGAs.

One advantage of the Xilinx design environment is that the designers can combine
schematic, text, gate-level, and behavioral-level descriptions at the design entry stage and
then reuse such descriptions within the same system or in other systems at some future time.
This is called mix-mode design entry and can be carried out by using different design entry
tools, allowing the designer to choose the most effective and efficient design tool for each
portion of the design.

Following the design entry comes the design implementation. Here, the FPGA design
entry tools are mapped into the resources of the target device architecture, optimally select-
ing the routing channels that connect the CLBs and lOBs of the logic cell array. Although
this can be accomplished automatically, the designer can and should exert control over the
implementation process to minimize potential problems. For this purpose the Xilinx design
environment provides an interactive, graphics-based editor that permits user manipulation
of the logic and routing schemes for the FPGA device.

The design verification is the last part of the design process and necessarily follows
the implementation stage. In-circuit testing, simulation at various levels, and static timing
analysis are involved in the verification stage. This is accomplished by use of timing cal-
culators, back-annotation capability, and static timing analyzers, which are available from
Xilinx Corp. and various third-party vendors.

330 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

FURTHER READING

Any recent text will have some coverage of the basic PLDs: ROMs, PLAs, and PAL devices.
However, there are a few texts that appear to cover these subjects better than most. The text
by Nelson, Nagle, Carroll, and Irwin and that by Yarbrough appear to cover the basics
rather well and extend their coverage into the industrial level. Other important books that
deal strictly with digital design with PLDs are those of Pellerin and Holley, Lala, Bolton, and
Carter. The text by Tinder appears to be the only one dealing with mixed logic inputs to and
outputs from PLDs. For multiple PLD schemes for augmenting input and output capability,
the text by Tinder and that by Ercegovac and Lang are recommended. Data handbooks are
often a necessary source for detailed current information, and none is better than that for
PAL devices by Advanced Micro Devices.

[1] M. Bolton, Digital Systems Design with Programmable Logic. Addison-Wesley, Reading, MA,
1990.

[2] J. W. Carter, Digital Designing with Programmable Logic Devices. Prentice Hall, Upper Saddle
River, NJ, 1997.

[3] M. D. Ercegovac and T. Lang, Digital Systems and Hardware/Firmware Algorithms. John Wiley,
New York, 1985.

[4] P. K. Lala, Digital System Design Using Programmable Logic Devices. Prentice Hall, Englewood
Cliffs, NJ, 1990.

[5] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and
Design. Prentice Hall, Englewood Cliffs, NJ, 1995.

[6] D. Pellerin and M. Holley, Practical Design Using Programmable Logic. Prentice Hall,
Englewood Cliffs, NJ, 1991.

[7] PAL Device Data Book. Advanced Micro Devices, Inc., Sunnyvale, CA, 1992.
[8] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,

NJ, 1991.
[9] J. M. Yarbrough, Digital Logic: Applications and Design. West Puglishing Co., Minneapolis/St.

Paul, 1997.

The subject of FPGAs is covered adequately by several recent texts and more extensively
by the device manufacturers of these devices. For introductory material on FPGAs, the
texts by Katz and Yarbrough (previously cited) are adequate. However, for current detailed
information, no sources are better than the recent data books from Xilinx, Actel, and Altera.
For the most recent information on the Xilinx CX4000XV family of FPGAs, the world
wide web is perhaps the best source. GAL devices are covered by Lattice Semiconductor's
data book. For EPLD component specifications and applications, the reader will find Intel's
data book useful.

[10] ACT Family Field Programmable Gate Array Databook. Actel Corp., Sunnyvale, CA, 1991.
[11] Altera Data Book. Altera Corp., San Jose, CA, 1995.
[12] GAL Data Book. Lattice Semiconductor, Hillsboro, OR, 1992.
[13] http://www.xilinx.com/spot/virtexspot.htm
[14] R. H. Katz, Contempory Logic Design. TheBenjamin/Commings Publishing Co., Inc., Redwood

City, CA, 1994.
[15] Programmable Gate Array Data Book. Xilinx, Inc., San Jose, CA, 1995.
[16] Programmable Logic Data Book. Intel Corp., Santa Clara, CA, 1994.

PROBLEMS 331

[17] The Programmable Logic Data Book. Xilinx, Inc., San Jose, CA, 1996.
[18] XACT, Logic Cell Array Macro Library. Xilinx, Inc., San Jose, CA, 1992.

PROBLEMS

7.1 A 24 x 4 ROM is to be used to implement the following system of three functions,
assuming that all inputs and outputs are active high.

yi(a,b,c,d) = ̂ m(Q, 1,2,5,7,8, 10, 14, 15)

y2(a, b, c,d) = Y^ m(Q, 2, 4, 5, 6, 7, 8, 10, 12)

y3(a,b, c,</) = Vm(0, 1,2,3,4,6,8,9, 10, 11)

(a) Construct the ROM program table for this system of three functions.
(b) From the program table of part (a), construct the symbolic representation of fusible

links by following the example in Fig. 7.4.

7.2 A 24 x 4 ROM is to be used to design and implement a BCD-to-binary module that
can be cascaded to produce any size of a BCD-to-binary converter (e.g., see Fig. 6.21).

(a) Construct the ROM program table for this module following Fig. 6.20.

(b) From the program table in part (a), construct a symbolic representation of the
fusible links by referring to the example in Fig. 7.4.

7.3 A 24 x 4 PROM is to be used to implement the following system of three functions:

Fi(A,B,C) = Y[M(Q, 2,4)

F2(A, B, C, D) = l~f Af(3-12)

i, 3,5,7)

(a) Construct the program table for this ROM if the inputs arrive as A(//), B(H),
C(L), and D(H), and the outputs are FI(#), F2(L), and F3(//). Use of inverters
is not permitted.

(b) From the program table in part (a), construct a symbolic representation of the
fusible links following the example in Fig. 7.4.

7.4 A multiplexed scheme of 26 x 4 EPROMs is to be used to design and implement a
circuit that will convert 8-bit one-hot code (see Table 2.11) to 4-bit binary. Assume
that all false data are rejected and indicated by binary 1000.
(a) In place of a ROM program table, give the coded canonical SOP forms for each

binary output.
(b) Illustrate with a block diagram how the outputs of the multiplexed scheme must

be wired-ORed to produce the four binary outputs of the converter. (Refer to
Section 7.6 and Figs. 7.14 and 7.15 for a discussion of multiplexed schemes and
wired-ORed connections.)

332 CHAPTER 7 / PROGRAMMABLE LOGIC DEVICES

7.5 Design an XS3-to-Gray code converter by using a 4 x 8 x 4 FPLA. Assume that all
inputs and outputs are active high and that false data are not rejected.
(a) Construct the minimized p-term table for this converter.
(b) From the p-term table in part (a), construct the symbolic representation for the

fusible links following the example in Fig. 7.10.

7.6 The following three functions are to be implemented by using a 4 x 8 x 4 FPLA.

FI = AB + ABC + BC + AC

F2 = A® (BC}

(a) Construct the minimized p-term table for the three functions. Assume that the in-
puts arrive as A(H), B(H\ and C(L) and that the outputs are issued as FI (//), F2(L),
and F3(H).

(b) From the p-term table in part (a), construct the symbolic representation for the
fusible links following the example in Fig. 7.10. An inverter is permitted on the
active low input.

7.7 A BCD-to-XS3 code converter is to be designed by using a 4 x 1 2 x 4 PAL.
(a) Construct the minimized p-term table for this converter. Assume that the inputs

and outputs are all active low, and that all false data are encoded as 0000. Keep in
mind that PALs cannot take advantage of shared Pis as can PLAs.

(b) From the p-term table of part (a), construct the symbolic representation for the
fusible links following the example in Fig. 7.11. Inverters may be used on the
inputs.

7.8 A cascadable 2-bit comparator is to be designed by using a PAL.
(a) Given the compressed truth table and EV K-maps in Fig. 6.28, find the minimum

SOP logic expressions for the three outputs and construct the minimum p-term
table from these expressions. Assume that all inputs and outputs are active high.

(b) From the p-term table in part (a), determine the minimum size PAL that can be
used and then construct the symbolic representation of the fusible links for this
comparator. Include tri-state enables.

7.9 The three functions in Problem 7.1 are to be designed by using a 4 x 16x4 PAL.
(a) Construct the minimized p-term table for these three functions keeping in mind

that a PAL cannot take advantage of shared Pis as can PLAs. Assume that the
inputs arrive as a(L), b(L), c(H), and d(H), and that the outputs must be issued
as y\ (H), j2(L\ and yi(H}. Note that inverters are not permitted on the inputs.

(b) From the program table of part (a), construct the symbolic representation of fusible
links by following a form similar to that of Fig. 7.1 1, but with tri-state enables on
the outputs.

7.10 The Actel (ACT-1) logic module, shown in Fig. 7.24, is embedded by the hundreds
in Actel's FPGAs. This module is remarkably versatile in its ability to implement a
large number of simple SOP functions active high, or POS functions active low. As

PROBLEMS 333

examples, implement each of the following logic functions by using a single ACT-1
module assuming all inputs are active high: [Hint: Use Fig. 7.24, not Eq. (7.5), and
plan to include O's and 1's as inputs where needed.]

(a) Y(H) = (A + B)(H) = A • B(L) A two-input NAND gate
(b) Y(H) = ABC(H} = (A + B + C)(L) A p-term (or s-term)
(c) Y(H) = (AB + A £)(//) = [(A + E)(A + B)](L) Defining relations for XOR
(d) Y(A, B, C)(H) = Sm(2, 3, 5, 7)(tf) Canonical SOP function

7.11 The AOI and OAI gates in Figs. 7.21, 7.22, and 7.23 are versatile building blocks that
can be used in the implementation of a variety of logic functions. Simple examples
are given in Subsection 7.7.1. With a minimum of external logic, apply these AOI and
OAI gates in creative ways to implement the following functions:
(a) Use one AOI gate (nothing else) to implement the expression for (A = B)(H)

given by Eq. (6.22).
(b) Use a minimum number of AOI gates to implement the three-function system in

Problem 7.6 with input and output activation levels as stated. (Hint: For F\, use
Fig. 7.23)

(c) Use a minimum number of OAI gates to implement the three-function system in
Problem 7.3 with input and output activation levels as stated. (Hint: For F2, use
the dual of Fig. 7.23.)

This page intentionally left blank

CHAPTER 8

Arithmetic Devices
and Arithmetic Logic Units (ALUs)

8.1 INTRODUCTION

In this chapter digital circuits will be designed with electrical capabilities that can be
interpreted as performing the basic arithmetic operations of binary numbers. The basic
operations include

• Addition

• Subtraction
• Multiplication
• Division

Now, Boolean equations are uniquely defined so as to perform specific arithmetic operations,
and the 1's and O's, which have previously been used only as logic levels, must take on a
numerical significance. The reader must keep in mind that an arithmetic circuit is only the
electrical analog of the arithmetic operation it represents. In fact, it is the interpretation of
the electrical circuit's behavior that bridges the gap between physical and logic domains.

The treatment of arithmetic circuits presented in this text is not intended to be a treatise
on the subject. Rather, the intent is to introduce the subjects at both the beginning and
intermediate-to-advanced levels utilizing, where necessary, appropriate algorithms for the
basic operations in question. The subjects of arithmetic logic units (ALUs) and the applica-
tion of dual-rail methods, which are covered in later sections, fall within the intermediate-
to-advanced level of coverage and may not be expected to be part of a first-level course in
digital design.

8.2 BINARY ADDERS

Because of the nature of binary and the requirements for arithmetic manipulation, ap-
proaches to basic adder design vary considerably depending on the form the manipulation
takes. There are ripple-carry adders, carry-save, carry select, and carry-look-ahead adders,

335

336 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

the last three being classified as "high-speed" adders. This list of four does not nearly cover
the scope of adder design, nor does it establish the general character of these arithmetic
devices. It does introduce the concept of computational speed as it relates to the addition
process, however that is characterized.

8.2.1 The Half Adder

The half adder (HA) is the simplest of all the arithmetic circuits and may be regarded as
the smallest building block for modular design of arithmetic circuits. The HA consists of
two inputs, A and B, and two outputs, sum S and carry C, as indicated by the logic circuit
symbol in Fig. 8.la. The operation format and truth table for the HA are given in Fig. 8.1b
and 8.1c. Here, A plus B yields the result CS, where carry is the MSB and sum is the LSB.
When mapped as in Fig. 8. Id, the results for sum and carry are read directly as

(8.1)

The logic circuit for the HA is implemented by using Eqs. (8.1) and is given in Fig. 8. le.
Here, the choice is made to use the XOR gate in the implementation of the HA. However,
use could have been made of the two- or three-level XOR realizations given in Fig. 3.28,
or the transmission gate approach by using AOI or OAI gates as in Fig. 7.21 and 7.22. The
XOR gate, given in Fig. 3.26, is the simplest CMOS design possible.

Bit A —

BitB —

A Augend A B C S

—Sum + B Addend 0 0
C S 0 1

0 0

0 1

Sum S, LSB i u 0 1
Carry C , M S B 1 1 1 0

(b) (c)

\BA\

0

1

0

0 /
/

^y

1

/~\
/

/
' 0

\B
A\

0

1

S

0

0

0

1

0

--I-,.,-,-.

1

A(H)
B(H) =» >-

HA

i V

S(H)

C(H)

(d) (e)

FIGURE 8.1
Design of the half adder (HA), (a) Block diagram for the HA. (b) Operation format, (c) Truth table
for A plus B, showing carry C, and sum S. (d) K-maps for sum and carry, (e) Logic circuit for the
HA.

8.2 BINARY ADDERS 337

A B C,

0 0 0
Carry-in . ~ Q 1^in Carry-in 0 0 1

A Augend 0 1 0

1 0
0 1B!!B-A FA si~sum + B Addend ° 1 1

Sum, LSB

1 0 0
1 0 1

Carry-out I Carry-out, MSB 1 1 0

1 1 1

C_,,S
'out

0 0

0 1
1 0
1 0
1 1

(a) (b) (c)

(d)

FIGURE 8.2
Design of the full adder (FA), (a) Block diagram for the FA. (b) Operation format for the FA. (c)
Truth table for A plus B plus C\n, showing carry-out Cout, and sum S. (d) EV K-maps for sum and
carry-out.

8.2.2 The Full Adder

The half adder (HA) just designed has severe limitations in modular design applications
because it cannot accept a carry-in from the previous stage. Thus, the HA cannot be used for
multiple bit addition operations. The limitations of the HA are easily overcome by using the
full adder (FA) presented in Fig. 8.2. The FA features three inputs, A, B, and carry-in Cin,
and two outputs, sum S and carry-out Cour, as indicated by the logic symbol and operation
format in Figs. 8.2a and 8.2b. The truth table for A plus B plus Cin is given in Fig. 8.2c with
outputs Cout and S indicated in the two columns on the right. As in the case of the HA, the
inputs are given in ascending binary order. EV K-maps for sum and carry-out in Fig. 8.2d,
showing diagonal XOR patterns, are plotted directly from the truth table and give the
results

S = Cin(A ®B) + Cin(A 0 B)

= A 0 B 0 cin (8.2)

Here, multioutput optimization has been used to the extent that the term (A © B) is used by
both the S and Cmi, expressions. Recall that A 0 B © Cin = (A 0 B) 0 Cin.

338 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

A(H) ;^O—s(H)

HA

FA

FIGURE 8.3
Logic circuit for the full adder (FA) showing it to be composed of two HAs and a NAND gate.

The output expressions in Eqs. (8.2) are used to implement the FA shown in Fig. 8.3. As
indicated, the FA is composed of two HAs and a NAND gate. The nodes P(H) and G(L) are
indicated for later reference in Section 8.4. Notice that the NAND logic in Fig. 8.3 can be
replaced by AND/OR logic but, for reasons to be discussed in Section 8.5, are kept as NAND.

8.2.3 Ripple-Carry Adders

The full adder (FA) can now be used to design a ripple-carry adder, sometimes called a
pseudoparallel adder or simply parallel adder. An n-bit ripple-carry (R-C) adder is a (2n +
l)-input/(n + l)-output combinational logic device that can add two n-bit binary numbers.
The block diagram symbol and general operation format for this adder are presented in
Figs. 8.4a and 8.4b, together with an illustration of the ripple-carry effect in Fig. 8.4c. The
general operation format represents the familiar addition algorithm used in conventional
arithmetic where carry from an addition operation is always to the next most significant
stage. Notice that the subscripts are consistent with the powers of 2 to the left of the radix
point in polynomial notion as is discussed in Section 2.3. Thus, the bits of each word re-
presenting a number are written in ascending order of positional weight from right to left.
The addition process follows Algorithm 2.8 given in Section 2.9. Actually, the position of
the radix point in the two numbers is arbitrary, since the adder has no means of sensing
these positions. The only requirement is that the user of this adder make certain the radix
points "line up" just as in conventional arithmetic. Thus, if significant bit positions exist to
the right of the radix point for augend A and addend B, meaning that these numbers have
a fraction component, then there must be an equal number of such positions for the two
numbers, each of n bits total.

The modular design of the n-bit ripple-carry adder follows directly from Fig. 8.4. All
that is required is that a series array of n FAs designated MO, FA\, ..., FAn-i, one for

8.2 BINARY ADDERS 339

An.r... ,A1,A0

n-Bit
Ripple-Carry

Adder 0 = 0(H)

^n-1

An,

+B,,,
P Qw O 1

I ^2

.!. A2

LCS*
3 2

^1

A1

+ B,
l_p q

2 1

A0

. C* o
[^ . O n

(c)

(a)

A • • • A A Artn-1 rt2 rt1 M0
. D • • • Q D Q

n-1 2 1 0

q Q ... c q q
^n^n-l ^2 G1 ^O

(b)

FIGURE 8.4
The n-bit ripple-carry adder, (a) Block diagram circuit symbol, (b) Operation format, (c) Ripple carry
effect.

each bit, be connected such that the carry-out of one stage is the carry-in to the next most
significant stage. This connection is shown in Fig. 8.5 where it is assumed that all inputs
arrive active high. Notice that the condition of no carry to the initial stage (M0) is satisfied
by Q = 0(H) (ground) or by using a HA for this stage.

Bn.,(H) A^H) B2(H) A2(H) B^H) A,(H) B0(H) A0(H)

[3 /
^

FA2

c

I3 /k

FA,

cV

B A

FA0

ou, s
0(H)

Sn(H) S.^H) S2(H) S^H) S0(H)

FIGURE 8.5
An n-bit ripple-carry adder implemented with n full adders.

340 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

R A R AD15-12 "15-12 D11-8 "1

B A

4-Bit R-C
Adder

Cout 0
 Cin

o
•4

B A

4-Bit R-C
Adder

Cout Cin
o

<

B A

4-Bit R-C
Adder

Cout g Cin
4

B A

4-Bit R-C
Adder

COUt Cin
o

4L 4| 4 4

I I I I
1C S .,-.,, S.,., o ^7-4 ^3-0

-0(H)

FIGURE 8.6
A 16-bit ripple-carry adder implemented with four 4-bit ripple-carry (R-C) adders.

An n-bit ripple-carry adder is more likely to be designed by using n m-bit adder modules
rather than individual FAs. One example, represented in Fig. 8.6, features four 4-bit ripple-
carry (R-C) adders in ripple-carry fashion to produce a 16-bit adder. Other examples include
a 16-bit R-C adder composed of two 8-bit R-C adders, or a 32-bit implemented with four
8-bit R-C adders.

There are practical limitations associated with the operation of an R-C adder of the type
presented in Figs. 8.5 and 8.6. To operate an R-C adder correctly, all input bits, for augend
A and addend B, must be presented stably to the adders for a time equal to or greater than
the time it takes for the carry signal to ripple from stage to stage across the entire adder.
Thus, this ripple time determines the maximum frequency of input data presentation (to the
adder stages) for a series of addition operations. Remember that an addition operation in
an R-C adder is not complete until the carry signal passes through the last (MSB) stage of
the adder. Discussions of ways to speed up the addition process will be considered later in
Sections 8.4 and 8.5.

8.3 BINARY SUBTRACTORS

The electrical equivalent of the binary subtraction operation can be carried out by using
full subtracters, just as the electrical equivalent of binary addition can be accomplished by
using full adders. Although this is rarely done, the design of the/w// subtractor provides a
good introduction to the more useful subject of adder/subtractors (devices that can serve in
either capacity) and to the subject of parallel dividers considered in Section 8.7.

The design of the full subtractor (FS) follows in a manner similar to the design of the
FA with, of course, some important differences. The inputs now become the minuend A,
subtrahend B, and borrow-in Bin, and the outputs become the difference D and borrow-out
Bout, which are shown by the block symbol in Fig. 8.7a. The operation format for the FS
and truth table for A — (B plus Bin) are given in Figs. 8.7b and 8.7c. Notice that Bout = 1
any time that (B plus Bin) > A, and that the difference D = 1 any time the three inputs
exhibit odd parity (odd number of 1's) — the same as for sum S in Fig. 8.2c.

8.3 BINARY SUBTRACTORS 341

A B B,

Borrow-in

Bit A—

0 0 0
- Bin Borrow-in Q 0 1

A Minuend 0 1 0

— Difference ~ B Subtrahend 0 1 1
D;+ D DBltB~lB R BoutD 1 0 0

Difference, LSB 1 0 1
Borrow-out ' Borrow-out, MSB 1 1 0

1 1 1

(a) (b) (c)

0 0
1 1
1 1
1 0
0 1
0 0
0 0
1 1

(d)

FIGURE 8.7
Design of the full subtracter (FS). (a) Block diagram for the FS. (b) Operation format, (c) Truth
table for A — (B plus Bjn), showing outputs borrow-out fiout and difference D. (d) EV K-maps for
difference and borrow-out.

The EV K-maps for difference and borrow-out are plotted directly from the truth table in
Fig. 8.7c and are given in Fig. 8.7d, where again XOR diagonal patterns exist. The outputs,
as read from the K-maps, are

D = A®*_®*, 1

where it is recalled from Eqs. (3.23) that A O B = A © B. The FS can now be implemented
from Eqs. (8.3) with the results shown in Fig. 8.8. Observe that the FS consists of two half
subtractors (HSs) and that the only difference between a HS and a HA is the presence of
two inverters in the NAND portion of the FS circuit. Use will be made of this fact in the
next section dealing with the subject of adder/subtractors, devices that can perform either
addition or sign-complement subtraction.

Full subtractors can be cascaded in series such that the borrow-out of one stage is the
borrow-in to the next most significant stage. When this is done, a ripple-borrow subtracter
results, similar to the ripple-carry adders of Figs. 8.5 and 8.6. However, the ripple-borrow
subtractor suffers from the same practical limitation as does the ripple-carry adder—
namely, that the subtraction process is not complete until the borrow signal completes

342 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

D(H)

FS

FIGURE 8.8
Logic circuit for the full subtractor (FS) showing it to be composed of two half subtracters (HSs) and
a NAND gate.

its ripple path across the entire subtractor. As with the ripple-carry adder, the ripple-borrow
subtractor is limited to applications not requiring high-speed calculations.

8.3.1 Adder/Subtractors

The adder/subtractor approach to arithmetic circuit design permits the use of one set of
hardware to accomplish both addition- and subtraction-type operations. One means to
accomplish this becomes evident from an inspection of the FA and FS circuits of Figs. 8.3
and 8.8. As was pointed out previously, the FA and FS differ only by two inverters in the
AND/OR part of the circuit. If the inverters are replaced by a controlled inverters (XOR
gates as in Fig. 3.3 Ic), an adder/subtractor results. Thus, when the control input to the XOR
gate is 1(H) the XOR gate functions as an inverter, creating an FS, or when the control input
is 0(H) the device functions as an FA. When such FA/FS modules are connected in series
as in Figs. 8.5 and 8.6, the result is a parallel adder/subtractor.

Another approach to adder/subtractor design makes use of 2's complement arithmetic
as discussed in Subsection 2.9.2. The design of the adder/subtractor now follows by using
the ripple-carry adder hardware of Fig. 8.5 together with XOR gates used as controlled
inverters on the #,(//) inputs. The result is the n-bit adder/subtractor shown in Fig. 8.9. If
the mode control input is set A/S(H} = !(//), the operation is subtraction [A, plus (—/?,-)]
in 2's complement and the final carry-out is discarded. However, if the add/subtract control
is set A/S(H) = 0(//), the operation is addition and the final carry-out becomes the most
significant sum bit Sn. For subtraction the final sum bit, Sn-\, is the sign bit, which can be
positive (if 0) or negative (if 1) depending on the outcome. Notice that for subtraction a
1(H) is introduced into FAo as the initial carry-in Co, a requirement of Eq. (2.14). Also, note

8.3 BINARY SUBTRACTORS 343

B2(H) B^H) B0(H)

-A/S(H)J_L J_L JLn n nW A2(H) \ J A,(H) \ J A0(H)

i —

1
B /

^

FA2

Cout c <v cin

1
B /

FA,

Gout g

^

cifl

I
B A

FA0

Cout - Cin
o

«-J

Add

Sn(H) SM(H) S2(H) S^H) S0(H)

"— Sign bit if subtraction

FIGURE 8.9
An n-bit adder/subtractor with ripple/carry implemented with full adders and XOR gates.

that if only subtraction is required, the XOR gates can be replaced by inverters. Remem-
ber, if the subtraction results in a negative number, that number is in 2's complement (see
Algorithm 2.9).

8.3.2 Sign-Bit Error Detection

In Subsection 2.6.2 it is stated that the decimal range of representation for n integer bits in
2's complement is

-(r"-1) < #10 < (r71'1 - 1) for r = 2.

Table 2.7 illustrates this fact with a few examples in 8-bit binary, where the sign bit is the
MSB. What this means with regard to 2's complement arithmetic is as follows: If any two
positive numbers sum to a decimal value N\Q > (2"~! — 1), the sign bit will be in error (thus
negative). Similarly, if any two negative numbers sum to a decimal value N\Q < —(2'7"1),
the sign bit will again be in error (thus positive). If number A is positive and number B
is negative, the sign bit will always be correct, assuming that both numbers are properly
represented such that Sn-\ is the sign bit for each. Now, with reference to Fig. 8.9, two
negative numbers cannot be properly represented in 2's complement, so that leaves two
positive numbers as the only possibility for sign-bit error in this adder/subtractor or in any
ripple-carry adder. Two examples of 8-bit addition of positive numbers are illustrated in
Fig. 8.10. In Fig. 8. lOa the two numbers sum to decimal 128, resulting in a sign-bit overflow
error because 128 > (28~' — 1) = 127. The sign bit "1" indicates a negative number, which
is an error. In Fig. 8.10b, the two numbers sum to a decimal value of 127, which is within
the acceptable limit, and no sign-bit overflow error occurs.

It is useful to be able to detect a sign-bit overflow error in a ripple-carry adder or
adder/subtractor so that corrective steps can take place. An inspection of Fig. 8.10 and the
truth table for an FA in Fig. 8.2c indicates that a sign-bit overflow error can occur in the

Sign-bit carry

1

5 3 0 0 1 1 0 1 0 1
+ 7 5 0 1 0 0 1 0 1 1

+ 1 2 8 , 0 1 0 0 0 0 0 0 0

' Sign-bit overflow error

L

0 0 1 1 0 1 0 1

0 1

Sign bit '—Sign bit

(a) (b)

FIGURE 8.10
Eight-bit additions showing sign bits and final two carries, (a) Sign-bit overflow error created for sum
exceeding decimal 127. (b) Correct sign bit for sum equal to 127.

Cn.,

0 0 1

1 1 0

n wn-1s. Bn-i(H)
0 1 I A/S(H)

1 0

a

Bn.,(H)
A/S(H)

k

JL

9-
B /

C A

\

)

SErrorDet(H) S^H)

(b)

(C)

FIGURE 8.11
Overflow error detection circuits for sign-bit stage, (a) Truth table for overflow error in the sign-
bit stage, (b) Overflow error detection circuit by using external data inputs and the sum output, (c)
Alternative overflow error detection circuit by using input and output carries.

8.4 THE CARRY LOOK-AHEAD ADDER 345

sum of two positive numbers only if Cn ^ Cn-\. Thus, a sign-bit overflow error detector
can be implemented by

SError Det = Cn ®Cn-\, (8.4)

requiring that the sign-bit carry-in Cn-\ be accessible, which it may not be for 1C chips.
Another approach permits a detector to be designed that depends only on the external
inputs to and sum bit from the sign-bit stage. A further inspection of truth table for an FA
in Fig. 8.2c indicates that a sign-bit overflow error can occur only if A = B when Cout / S
for the (n — l)th stage. Shown in Fig. 8.1 la is the truth table for the sign-bit overflow error
conditions based on this fact. From this truth table there results the expression

^ErrorDet = Sn-\(An-\Bn-\) + £„_! (An_i Bn-\), (8.5)

which permits the use of the 2-to-l MUX implementation shown in Fig. 8.1 Ib. For purposes
of comparison, the implementation of Eq. (8.4) is given in Fig. 8. lie.

8.4 THE CARRY LOOK-AHEAD ADDER

The ripple-carry (R-C) adder discussed in Section 8.3 is satisfactory for most applications
up to 16 bits at moderate speeds. Where larger numbers of bits must be added together at
high speeds, fast adder configurations must be used. One clever, if not also intuitive, design
makes use of the modular approach while reducing the propagation time of the R-C effect.
The approach has become known as the carry look-ahead (CLA) adder. In effect, the CLA
adder "anticipates" the need for a carry and then generates and propagates it more directly
than does a standard R-C adder.

The design of the CLA adder begins with a generalization of Eqs. (8.2). For the zth stage
of the ripple-carry adder, the sum and carry-out expressions are

C. — A • ffi /?• £F> C-Oj — r\i d7 Ui \X? *si

= Sum of the i th stage
(8.6)

= Carry-out of the zth stage

From the expression for Ci+\ it is concluded that Ci+\ = 1 is assured if (A, 0 5/) = 1 and
Ci = l .orif AiB{ = 1.

Next, it is desirable to expand Eqs. (8.6) for each of n stages, beginning with the
1st (first) stage. To accomplish this, it is convenient to define two quantities for the zth
stage,

(Pi = Aj 0 Bj = Carry Propagate]y , (8.7)
G,^ = A,• • Bt: = Carry Generate I

which are shown in Fig. 8.3 to be the intermediate functions P(H) and G(L) in the full

346 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

adder. Introducing these equation into an expansion of Eqs. (8.6) gives

[So = P0 © Co 1
1st stage

1<-1 = -M)<-0 + CrOJ

2nd stage

s2 = ^2 e c2
3rd stage \C3 = P2C2 + G2

== P2P\PQ^Q + P2P\GQ + P2Gi -f- G2

: (8.8)
C D m /^
O^ —— i /| 1̂7 ^77

* — P C -\~ G,1 . \^-«7_|_| — * n^n \^ ^-'wnth stage •
D D D D /"* I D D D

— rnrn-\ rn-2 ' ' ' M)^0 " ^n^n-\ ̂ n-2

To implement Eqs. (8.8), use is made of the carry look-ahead module shown in Fig. 8.12,
which is deduced from Fig. 8.3 and Eqs. (8.7). Notice that the CLA module has but one
half adder but has two additional outputs, carry generate G and carry propagate P. Whereas
the Si terms are produced within the each FA, the Ci+\ terms must be formed externally
by what is called the carry generate/propagate (CGP) network. It is the CGP network to
which G(L) and F(H) must be connected in accordance with Eqs. (8.8).

Construction of an n-bit CLA adder requires the use of n CLA modules together with the
CGP network according to Eqs. (8.8). This is done in Fig. 8.13 for the three least significant

B(H) A(H)

Cln(H)

P(H) S(H)

(a) (b)

FIGURE 8.12
The carry-look-ahead (CLA) module, (a) Logic circuit deduced from Fig. 8.3 and Eqs. (8.7). (b) Logic
circuit symbol.

8.4 THE CARRY LOOK-AHEAD ADDER 347

Bl(H) A,(H) B0(H) A0(H)

Carry
Generate/Propagate

Network

S2(H) S,(H) S0(H)

FIGURE 8.13
The three least significant stages of an n-bit carry look-ahead (CLA) adder showing the carry generate/
propagate network.

bit stages of an n-bit CLA adder. Each of the CLA modules are of the type given in Fig. 8.12
and the shaded portion below the CLAs in Fig. 8.13 represents the CGP network as required
by Eqs. (8.8). Notice that for Co(H) = 0(//), a requirement for proper operation of the
adder, one NAND gate in each stage is disabled. This does not mean that such disabled
NAND gates should be eliminated from the CGP network. All NAND gates shown in the
CGP network become necessary if m-bit CLA adder modules are to be cascaded to form m
n-bit CLA adders. It is also interesting to note that the CLAQ module together with its CGP
logic is exactly the same as an FA in Fig. 8.3. Furthermore, if the extra hardware is of no
concern, all CLA modules can be replaced by FAs with G and P outputs.

An inspection of Fig. 8.13 makes it clear that the hardware requirement for the CGP
network increases significantly as the number of stages increases. The gate count for the
CLA adder in Fig. 8.13 is 5, 11, and 18 for the three stages 0, 1, and 2 as shown. A fourth
stage would have a total gate count of 26 and a fifth stage would be 35, etc. In fact, the total
number of gates required for an n-bit CLA is given by

Total gate count = (n2 + 3n)/2 + 3n^ = (n2 + 9»)/2

CGP network CLA modules

C0(H)

348 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

B7.4(H) A7.4(H) B3.0(H) A3.0(H)

\l 4\, 4l 4J, 4J, 4l

1 1 1 1 1 f

Carry to
n-1

stage

S,,.«(H) S7.4(H)

G2 P2 C2 G, P, Ct G0 P0 C0

CGP Network of Figure 8.13

FIGURE 8.14
The three least significant stages of a carry look-ahead (CLA) adder showing the carry gener-
ate/propagate network between 4-bit modules.

This count is to be compared to 5n for a ripple-carry (R-C) adder of the type shown in
Fig. 8.5. For example, an 8-bit CLA adder requires 68 gates, compared to 40 for the R-C
adder, but the CLA adder is more than twice as fast. Furthermore, as the number of stages
increases, so does the maximum fan-in requirement. For the CLA adder, the maximum
fan-in is (n + 1), compared to 2 for the R-C adder. The possibility of additional hardware
to compensate for fan-in and fan-out limitations of the CLA adder must be weighed against
the fact that the maximum propagation delay for the n-bit CLA adder of Fig. 8.13 is 4 gate
delays, compared to 2n for the R-C adder.

The modular approach to CLA adder design can be taken one step further by using the
CGP network for n-bit CLA adder modules to create a larger adder. To do this, one simply
cascades m n-bit CLA modules in series to create an adder of k = m x n bits in size. This
is demonstrated in Fig. 8.14, where 4-bit CLA adder modules are cascaded by using the
CGP network shown in Fig. 8.13. The adder in Fig. 8.14 is called a group CLA adder. This
group CLA adder configuration saves hardware, but at the expense of increased propagation
delay. For example, a 16-bit CLA adder with 1-bit CLA modules requires 200 gates with 4
gate-levels of delay, 2 for generation of G and P and 2 for carry generation. In comparison,
a 16-bit group CLA adder with 4-bit CLA modules requires 118 gates but has 6 gate-levels
of delay (2 extra gate delays for carry). Note that the comparisons just made do not take
into account any additional gates required to deal with fan-in and fan-out limitations.

The foregoing discussion suggests that there is a practical limit to the number of CLA
adder stages that can be used without creating excessive amounts of hardware with the
accompanying fan-in and fan-out restrictions and path delay problems. To overcome this
limitation the concept of the group CLA adder configuration can again be used, but in a
rather different way. For example, each 4-bit CLA stage in Fig. 8.14 can be replaced by
4-bit R-C FA stages or by 4-bit adder/subtractors stages as in Fig. 8.9 such that the MSB
module of each stage is equipped with G and P outputs or is a CLA module of the type in

8.5 MULTIPLE-NUMBER ADDITION AND THE CARRY-SAVE ADDER 349

Fig. 8.12. In fact, the nature of the adder stage to be cascaded in CLA form is immaterial
as long as the MSB module of each stage has G and P outputs to be connected to the CGP
network. In any case combining R-C and CLA technologies reduces hardware requirements
but, of course, does so at the expense of increasing path delay.

8.5 MULTIPLE-NUMBER ADDITION AND THE CARRY-SAVE ADDER

To add more than two binary numbers by the "conventional" methods discussed in Sections
8.3 and 8.4 requires that the addition process be carried out in stages, meaning that k
operands are added in k — 1 two-operand additions, each addition (following the first) being
that of the accumulated sum with a operand. This staged addition operation is relatively
slow since carries are propagated in each stage. However, addition of binary numbers is
not limited to two number addition stages. Actually, many binary numbers can be added
together in ways that reduces the total addition time. One way to accomplish this is to use a
type of "fast" adder called an iterative carry-save (ICS) adder. The algorithm for iterative
CS addition of more than two operands is stated as follows:

Algorithm 8.1: Sum S=*A + B + C + £> + £ - - - b y Carry-Save Method

(l)Setmtegers A=*An_iAn-2-
Ci C0, etc.

(2) Sum SQ = A + R + C = Sj_,'Sj_2 • • • S?Sj exclusive of all carries-out CJ .
(3) Sum Sl = 5° + D + C] = S,J_ { S

l
n_2 • • • S\ S^ exclusive of all carries-out C2

0 , but with
carries Cj shifted left by one bit,

(4) Sum S2 = Sl + M -f Cj^ S^S*^ ' ' ' tfsl exclusive of all carries Cl but with
carries C^ shifted left by one bit,

(5) Continue process until last integer has been added and only two resultant operands
remain: pseudosuin S! and final CS carries C' '.

(6) End with final sum S = S' + C' = SnSn-i - • • SiS0 by using either R-C or CLA
addition,

The carry-save process described in Algorithm 8.1 applies to m integer operands and
involves m — 2 CS additions resulting in two operands: a pseudosum S' and the final CS
carries C'. The final step (step 6 in Algorithm 8.1) adds the two operands S' and C' by using
either a R-C adder or a CLA adder. The CS process (steps 1 through 5 in Algorithm 8.1)
avoids the ripple-carry problem of R-C adders, resulting in a savings of addition time. For
R-C adders of the type in Figs. 8.5 and 8.6, a time (m — l)tR-C would be required to add
m integer operands. However, for addition of m integer operands by the CS method, a time
(m — 2)tCs + tR-c is required, which represents a significant savings of time for m > 3,
since tcs < tR-c for a given number of addition operations. If CLA addition is involved, the
time tR-C can be replaced by tciA with less savings in time between the two methods.

The iterative CS process just described in Algorithm 8. 1 is illustrated in Fig. 8. 15a where
four 4-bit integers, A, B, C, and D, are added. The ICS adder required for this process is
shown in Fig. 8.15b, where use is made of FAs, a HA, and either a R-C adder or a CLA
adder for the final sum operation.

350 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

0 1 1 1
1 0 1 0 B ^ Three operands for 1st CS sum

1 1 1 1

0 0 1 0

1 1 1 1 C1
n)> Three operands for 2nd CS sum

1 0 1 1

, .j.̂ operands for final sum
1 0 1 0 C2 = Final CS carries, C1

1 0 1 0 1 1 SUM, S

(a)

A3 B3 C3 A2 B2 C2 A1 B1 C1 A0 B0 C0
(H) (H) (H) (H) (H) (H) (H) (H) (H) (H) (H) (H)

S5(H) S4(H) S3(H) S2(H) S^H) S0(H)

(b)

FIGURE 8.15
The carry-save (CS) method of addition, (a) CS addition of four 4-bit numbers, (b) The CS adder
designed to add four 4-bit operands by using FAs a HA and a 4-bit R-C or CLA adder.

8.6 MULTIPLIERS

An n x m multiplier is an (n + w)—input/(n + m)—output device that performs the
logic equivalent of an n-bitxw-bit binary multiplication. Shown in Fig. 8.16a is the block
circuit symbol, and in Fig. 8.16b the operation format for a 4-bit x 4-bit multiplier that
follows Algorithm 2.10, given in Subsection 2.9.4. As indicated in the operation format the

8.6 MULTIPLIERS 351

B3.0(H) A3.0(H)
A2 A1 A0 Multiplicand A:

4x4 bit
Multiplier

x B3 B2 B, B0 Multiplier B,

Partial Products P.,

P P P Pr 03 02 01 00

P P P P
' 1 3 12 11 10

P P P P
23 r 22 21 r 20

P P P P
' 3 3 32 r 31 30

P P P P P P P Pr7 r6 r5 r4 F3 r2 rl r O

(a) (b)

FIGURE 8.16
Characteristics of the 4x4 bit multiplier, (a) Block circuit symbol, (b) Operation format showing
partial products and final product bits.

multiplication process consists of four multiplicand bits Aj, four multiplier bits Bf, partial
product bits Ptj, and the final eight product bits Pk.

The 4 x 4 bit multiplication process, represented in Fig. 8.16b and by Example 2.27 in
Subsection 2.9.4, can be implemented at the modular level by using HAs and FAs to perform
the summation between the partial products and carries. Note that the partial products are
generated by AND operations Py = B, • A;, and that the product bits in each column of
Fig. 8.16 are the sums of these partial products and the carries between stages as indicated
by the XOR operations in Fig. 8.17.

Some explanation of Fig. 8.17 may be helpful. Recalling the sum expression for an FA
in Eq. (8.2), it follows that k FAs can accommodate 2k XOR operators or 2k + 1 variables
in an XOR string such as that of Eq. (5.16). For 2k — I XOR operators in the string, use
can be made of one HA. Note that the C// symbols in Fig. 8.17 refer to carries from the zth
to the jth sum stage.

The product bits P, indicated in Fig. 8.17 can be computed by first generating the partial
products followed by a summation of these partial products with the appropriate carries.
This is done in Fig. 8.18, where six of the eight sum stages are shown separated by dotted

P = Pr 0 00

p — p (ft pri - roi * rio
P — p ff> p f f tp ff>n
" 2 ~ 02 w 11 ** ' 2 0 W 12

P3 = P 0 3 ® p
1 2 e P 2 1 e P 3 0 © [C 2 3 e c 2 3 ']

P4 = P13 © P22 e P31 e [C34 e c3;© c34"]
p s = P 2 3 eP 3 2 © [C 4 5 ec 4 5 ' ec 4 5 "]
P6 = P33 ® [^56® ^Se'l

FIGURE 8.1 7
The summations of partial products and carries required to produce the product bits for the multipli-
cation of two 4-bit operands shown in Fig. 8. 16b.

352 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

B3 A3 B2 A3 B3 A2 B, A3 B2 A2 B3 A, B0 A3 B, A2 B2 A, B3 A0 B0 A2 B, A, B2 A0 B0 A, B, AQ B0 AQ

P P P P P P P P P P P P P P P Pr33 r23 ^32 r13 r22 r31 r03 r12 r21 r30 r02 r11 r20 ~01 rlO rOO

P P Pr01 r10 rOO

P Pr1 rO

(b)

FIGURE 8.18
Implementation of the 4x4 bit multiplier of Fig. 8.17. (a) Generation of the partial products, (b) Use
of FAs and HAs to sum the partial products and carries.

lines, the final stage being the carry Ce? = PI and the initial stage being PQQ = PQ. Although
the string of XOR operations in each product expression of Fig. 8.17 can be computed in
any arbitrary order, the carry configurations of Fig. 8.18 are so chosen as to make use of
standard 4-bit R-C adders with HAs as initial stages. Now it is possible to replace the 4-bit
R-C adders with 4-bit CLA adders at a significant savings in calculation time. Note that the
number of carries C// for each stage in Fig. 8.17 agrees with those in Fig. 8.18.

The multiplication process can also be carried out by using the carry-save (CS) method of
summing the partial products and carries in a manner similar to that of Fig. 8.15. However, in
this case the operands must be summed by the iterative CS method expressed by Algorithm
8.1. Such a CS scheme, shown in Fig. 8.19, is a type of array multiplier called an iterative
CS multiplier. Here, a 4-bit CLA adder is used for the final sum of the two operands, Sl

and CQ, as in Fig. 8.15.

8.7 PARALLEL DIVIDERS 353

FIGURE 8.19
The iterative carry-save (ICS) method with FAs, HAs, and a 4-bit CLA adder used to multiply two
4-bit operands. Partial products P,j are generated as in Fig. 8.18.

The iterative CS multiplier of Fig. 8.19 has the advantage of reduced computation time
compared to the R-C approach illustrated in Fig. 8.18. For n rows and 2n — 1 columns of
partial products, the summation time for an iterative CS (ICS) multiplier is

tics = (n- 2}tFA + tR^c, (8.10)

where tpA is the delay of a FA and tR-C is the time required for the R-C adder to complete
the summation. In comparison, the summation time required for a multiplier that uses only
R-C adders (as in Fig. 8.18), is

tRCA = 2(n - l)tFA + tR-c (8.11)

Thus for large n, the iterative CS multiplier is about twice as fast as the one that uses only
R-C adders. If CLA adders are used for both types of multipliers, the difference in speed
between the two is reduced and may even shrink to near zero for certain values of n.

8.7 PARALLEL DIVIDERS

An n -=r m parallel divider is an (n + m)-bit/variable-bit output device that performs the
electrical equivalent of the binary operation symbolized by A -r B = Q with remainder
R. As used here, A and B are, the dividend and divisor operands, respectively, and Q is

oo

P P P P P P P Pr7 ~6 r5 r4 r3 r2 r1 r 0

354 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

Dividend, A

Divisor, B m

A/B
Parallel
Divider

Remainder, R

ki
Quotient, Q

FIGURE 8.20
Block diagram symbol for an nlm parallel divider.

the quotient. The block diagram symbol for this divider is given in Fig. 8.20, where it is
understood that m < n for the binary integers of these operands.

The details of the logic circuitry for a divider depend on the algorithm used to execute
the division operation. Recall that in Subsection 2.9.5, Algorithm 2.12 presented a division
procedure that is close to the familiar subtract-and-shift procedure used in decimal long
division. It is this same procedure that is used to design a parallel divider, but modified in
the following way to accommodate hardware application:

1. Successively subtract the subtrahend B from the minuend A by starting from the
MSB end of A and shifting 1 bit toward the LSB after each subtraction stage:

(a) When the most significant (MS) borrow bit for the present stage is 0, the minuend
for the next stage (remainder from the present stage) is the difference of the
present stage.

(b) When the MS borrow for the present stage is 1, the minuend for the next stage is
the minuend of the present stage.

2. Complement the MS borrow bit for each stage and let it become the quotient bit for
that stage.

3. Repeat steps 1 and 2 until the subtrahend B has been shifted to the LSB end of the
minuend A. The final remainder R will be determined by the logic level of the MS
borrow as in step la or Ib.

The procedure just described, a modification of Algorithm 2.12, is illustrated in Fig. 8.21 a
for a 5-bit dividend, A = 10001 and a 3-bit divisor B = 011. The result is A -=- B = Q with
remainder /?, where the 3-bit quotient is Q — 101 and the 5-bit remainder is R = 00010.
Thus, in decimal 17 -^ 3 = 5 with remainder 2, which would be written as 17 and 2/3 or
17.66666 Similarly, in Fig. 8.21b, A = 110112 (27,0), B = 1002 (4i0) with the result
Q = 001102 (610) and R = 000112 (310).

To design a parallel divider, the requirements of the subtract-and-shift process, illus-
trated in Fig. 8.21, must be met. First, the subtrahend must be successively subtracted from
the minuend, and then shifted from the MSB end of the minuend toward its LSB end by
one bit after each subtraction stage. This is easily accomplished by shifting the subtrahend
presentation to an array of full subtracters (FSs). Second, the remainder R must be properly
gated. Taking BOM to mean the MS borrow for a given stage, the division process requires
that R = D when Bout = 0 and R = A for Bout = 1, where D and A are the difference and
minuend, respectively, for the present stage. Shown in Fig. 8.22 are the truth table (a), EV
K-map (b), and the subtracter module (c), together with its block symbol (d), that meet the

8.7 PARALLEL DIVIDERS 355

Minuend, A 1 0 0 0 1 .—> 0 0 1 0 1 >> 0 0 1 0 1

Subtrahend, B 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1

0 0 0 1 0 1 — ' 1 1 1 1 1 1 0 0 0 0 1 0 —*> Remainder, R

IN xiT MS borrow T MS borrow
1 bit ° bit • } Quotient, Q

Q2 Q, ~

(a)

Minuend, A 1 1 0 1 1

Subtrahend, B 1 0 0 0 0

0 0 1 0 1 1—1

0 1 0 1 1 |—> 0 0 0 1 1 —> Remainder, R

0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 1 — 1 1 1 1 1 1 1

ivT MS borrow T MS borrow
1 bit 1 bit - >> Quotient, Q

Q2 Q, -

(b)

FIGURE 8.21
Two illustrations of the subtract-and-shift method of binary division for 5-bit dividends and 3-
bit divisors, (a) The result is Q =00101 (5io) with R =00010(2]0) when A = 10001 (17i0) and
B = 011 (3i0). (b) The result is Q =00110(610) with R = 00011 (3i0) when A = 11011 (2?i0) and
fl = 100(4i0).

remainder requirements just given. Notice that the expression R = BOU,A + BOU,D applies
to a 2-to-l MUX with inputs A and D and output R when Bout is the data select input.

All that remains is to construct an array of subtracter modules for the subtract-and-shift
process required for the parallel divider. This is done in Fig. 8.23a for a dividend (minuend)
of 5 bits and a divisor (subtrahend) of 3 bits. Here, the quotient outputs £2(H), Q \ (H), and
<2o(#) are issued complemented from the active low outputs of inverter symbols defined
in Fig. 7.6. The truth table for a full subtracter is given in Fig. 8.23b to assist the reader in
analyzing this divider circuit.

D

A _ t

Subtracter Module

(C)

FIGURE 8.22
Design of the subtractor module for use in the design of a parallel divider, (a) Truth table for remainder
R and final borrow-out, (b) EV K-map and gating logic for R. (c) The subtractor module by using a
FS and a 2-to-l MUX. (d) Circuit block symbol for the subtractor module in (c).

356 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

Ro(H)

0(H) 0(H) 0(H)

A0(H)

0(H)

Mm
0(H) -

A2(H)-

B0(H)~

A3(H)-

B,(H)-

A4(H)-

B2(H)-

4

A Bm R

B

S E

i

A £

'out

r

!Jn R

B

S E

A E

v_
r

'm R

B

S E

T

A E

out

r

B

S E

A E

out

r

in R

B

s BOHl

tf?

>

0(H)

B0(H)~

B,(H)-

I

B2(H)-

i

0(H)-

<

^

.

.

,

A Bin R

B

S £

1

A E

r

B

S t

i

A E

'out

r

'fci R

B

S E

i

A E

o*_

r

}[n R

B

S £

A E

u
r

B

S Bout

ife

>

B0(H)

B,(H)-

B2(H)-

0(H)-

0(H)-

1

„

>

„

„

A Bin R

B

S £

i

A £

B

S E

i

A E

B

S E

A E

B

S E

A fi

B

*

oul

m R

out

r

'in R

oul

r

m R

out

'

n R

?

— R2(H)

J J J
Q2(L) = Q2(H) Q1(L) = Q,(H) Q0(L) = Q0(H)

A B B;

0 0 0
0 0 1
0 1 0

— R4(H) 0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

(b)

0 0

1 1

1 1

1 0

0 1

0 0

0 0

1 1

FIGURE 8.23
(a) Parallel divider for a 5-bit dividend, A, 3-bit divisor, B, a 3-bit quotient, Q, and a 5-bit remainder,
R, designed with an array of 15 subtracter modules of the type shown in Fig. 8.22. (b) Truth table for
a full subtracter.

The divider in Fig. 8.23 can be expanded to accommodate larger dividends and quotients
by adding subtracter modules in both the 7- and X-directions, respectively. Referring to
Fig. 8.20, the relationship between n, m, and k is given by

k = n-m + l (8.12)

for full usage of an n x k array of subtracter modules. For example, a 16-bit dividend
(n = 16) and an 8-bit divisor (m = 8) can be used to generate a 9-bit quotient (k = 9) in a
16x9 array of subtracter modules. Or a 32-bit dividend and a 24-bit divisor can be used
to generate a 9-bit quotient in a 32 x 9 array of subtracter modules. In all such cases the
remainder is of n bits. It is also acceptable to use any lesser portion of a given array of
subtracter modules to carry out a divide operation, but Eq. (8.12) must still apply to that

8.8 ARITHMETIC AND LOGIC UNITS 357

portion of the array that is used. However, to do this requires proper placement of O's on
modules that are not used. For example, if m = n, only one quotient bit is generated and
O's must be placed on all open inputs to the right of the MSB column of the array.

Dividers of the type shown in Fig. 8.23 can be classified as "fast" dividers. This is because
they are asynchronous in nature, meaning that the results are generated as fast as the logic
permits. However, it is characteristic of such circuits that with increasing operand size the
hardware requirements increase rapidly making them impractical for many applications
where space requirements are important. There are other methods of achieving the division
operation with less hardware but at the expense of operation time, as expected. These
methods require storage elements such as registers and fall outside the treatment of this text.

8.8 ARITHMETIC AND LOGIC UNITS

As the name implies, the arithmetic and logic unit (ALU) is a universal combinational
logic device capable of performing both arithmetic and logic operations. It is this versatility
that makes the ALU an attractive building block in the central processing unit (CPU) of
a computer or microprocessor. It is the object of this section to develop the techniques
required to design and cascade ALU devices following three very different approaches: the
dedicated ALU approach, the MUX approach, and the dual-rail approach with completion
signals.

The number and complexity of the operations that a given ALU can perform is a matter
of the designer's choice and may vary widely from ALU to ALU, as will be demonstrated
in this section. However, the choice of operations is usually drawn from the list in Fig. 8.24.
Other possible operations include zero, unity, sign-complement, magnitude comparison,
parity generation, multiplication, division, powers, and shifting. Multiplication, division,
and related operations such as arithmetic shifting are complex and are found only in the
most sophisticated ALU chips. Also, the AND, OR, and XOR operations are often applied
to complemented and uncomplemented operands, making possible a wide assortment of
such operations.

Presented in Fig. 8.25 is the block diagram symbol for a general n-bit slice ALU. This
ALU accepts two n-bit input operands, Bn-\ • • • B\BQ and An-\ • • • A\AQ, and a carry-in
bit, Cin, and operates with them in some predetermined way to output an n-bit function,
F,,_i • • • F\FQ and a carry-out bit, Cout. Here, the term n-bit slice indicates a partition of
identical n-bit modules of stages that can be cascaded in parallel. Thus, an FA in an n-bit
R-C adder could be called a 1-bit slice for that adder. Also, use of sign-complement arith-
metic avoids the need for both carry and borrow parameters.

Arithmetic Operations
Negation
Increment
Decrement
Addition

Subtraction

Logic Operations
Transfer

Complementation
AND
OR

XOR (EQV)

FIGURE 8.24
Arithmetic and logic operations common to ALUs.

358 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

^ .

ny ny my

I I I
B A

:M n-bit Slice ALU Cf j

G P F

FIGURE 8.25
Block diagram symbol for a general 1-bit slice ALU with CLA capability.

The choice of operation between the two operands, A and B, is determined by the m
mode/select inputs, M, Sm-2 • • • S\ SQ, shown in Fig. 8.25. The mode input M sets the ALU
for either an arithmetic or logic operation, and the function select inputs, Sm_2 • •• S\ SQ, de-
termine which particular operation, within the arithmetic or logic mode, is to be performed.
Just as the carry-out bit Cout is required for cascading standard R-C arithmetic units, as in
Fig. 8.5, the carry propagate and carry generate bits, P and G, are required for cascading
carry look-ahead (CLA) units. In this section, ALUs with R-C and CLA capabilities are
designed. Commercial ALU chips are available that have both of these features.

8.8.1 Dedicated ALU Design Featuring R-C and CLA Capability

The EV operation table in Fig. 8.26 represents a simple 1-bit slice ALU capable of perform-
ing four specific arithmetic functions and four specific logic functions, all on command of

1
Arithmetic J
Operations j

1

|
Logic J

Operations]

I

M

' 0

0

0

x °

' 1

1

1

x 1

s,

0

0

1

1

0

0

1

1

S0

0

1

0

1

0

1

0

1

F

Aecin

A©Cin

A©B©C.in

A©B©Qn

A

A

A + B

A + B

Operation*

Transfer (LSB Cin = 0) or increment (LSB Cin = 1) of A

1 's (LSB Cjn = 0) or 2's (LSB Cin = 1) complement of A

A plus B if LSB Cin = 0 or A plus B plus 1 if LSB Cjn = 1

B minus A if LSB Cin = 1 or A plus B if LSB Cin - 0

Transfer A

Complement of A

A ORB

A complement OR A

Cout

A-Cin

A'Cin

Cin(A©B)

Cin(A©B)

0

0

0

0

+ A-B

+ A-B

* Subtraction operations assume 2's complement arithmetic.

FIGURE 8.26
Operation table for a simple 1-bit slice ALU showing output functions, F and Cout, for four arithmetic
operations (M = 0) and four logic operations (M =1).

8.8 ARITHMETIC AND LOGIC UNITS 359

the three mode/select inputs M, S\, and SQ. On the right side of the table are the function
expressions F, a brief description of each function operation, and carry-out expressions,
Cou!. The expressions for F and C(mt are deduced from Eqs. (8.2) for the full adder (FA)
together with Eqs. (3.23). Note that false carry rejection during the logic mode is realized
by placing zeros in the Cout column for the four logic operations — the carry-out function
has no relevance in a logic operation. Notice further that the two possible logic states for
Cin lead to different interpretations for each of the four arithmetic operations. For example,
A © Cin is the transfer of A if C-m = 0, but represents the increment of A if the LSB Cin = 1
(B = 0 is implied). Or, A © Cm represents the 1's complement of A if LSB Cin = 0 but is
the 2's complement of A if LSB C-m = 1 (B = 1 is implied). Subtraction operations by this
ALU are carried out by 2's complement arithmetic as discussed in Subsection 2.9.2.

The dedicated ALU of Fig. 8.26 is now designed by using the EV K-map methods with
XOR patterns as discussed in Section 5.2. Shown in Figs. 8.27a and 8.27b are the third-
order EV K-maps for F and Cout, which are plotted directly from the operation table in
Fig. 8.26 by using the mode/select inputs as the K-map axes. These third-order EV K-maps
represent three orders of map compression because there are three EVs. By compressing the
third-order K-maps by one additional order (hence now four orders of K-map compression),
there results the second-order EV K-maps shown in Figs. 8.27c and 8.27d. Optimum cover
is then extracted from these second-order K-maps by using associative XOR-type patterns,
as indicated by the shaded loops. (See Section 5.2 for a discussion of associative patterns).
From these K-maps there results

}, (o.lj)
Cout = (MCln)[(A © So) © (S, B)] + M(Si B)(A © S0) J

which represent four-level logic with a collective gate/input tally of 10/22 excluding any
inverters that may be required. Notice that several terms in Eqs. (8.13) are shared between

M\ 00 01 11 10 M\ 00 01 11

0

1

(b)

iviV

A®Cin

A

A©Cin

A

A©B©Cjn

A + B

A®B©Cin

A + B

AC,n

0

ACIn

0

Cin(A©B) + AB

0

Cin(A®B) + AB

0

(Cin(A©S0)

0

Cin(A©S0)]©(c~B) +(B{A©S0j)

0

(d)

FIGURE 8.27
K-map representations for function F and carry-out Cout given in the operation table of Fig. 8.26 for a
1-bit slice ALU. (a), (b) Third-order EV K-maps plotted directly from Fig. 8.26 (c), (d) Second-order
EV K-maps showing optimum cover for the two-output system.

360 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

M(H)
Cln(H)

A(H)
S0(H) _

C011,(H)

i i
M, S,, Sn

' °

B A

1-bit c
ALU tn

r
(b)

FIGURE 8.28
(a) Optimum gate-level implementation of the 1-bit slice ALU represented by the operation table of
Fig. 8.26 and by Eqs. 8.13. (b) Block diagram symbol for the 1-bit ALU in (a).

the two functions, a result of the optimal organization of the operations in the table of
Fig. 8.26.

Some explanation of Eqs. (8.13) is necessary. Referring to function F, the separate
"island" loop for operand B in cell 3 of Fig. 8.27c is necessary to complete the cover for
that cell. This is so because after (A 0 So) and B have been used to loop out the associative
patterns, cover still remains in cell 3, as explained for a similar case in Section 5.4. The
residual cover is extracted either by looping out operand B as an island to give the term
MS\ B, or by looping out (A 0 So) in the M domain to give the term M(A 0 So). It is the
former that is chosen for this design example.

Equations (8.13) can be implemented in a number of ways by using discrete logic. One
means of accomplishing this is shown in Fig. 8.28, where use is made of NAND/NOR/EQV
logic, assuming that all inputs and outputs are active high. Notice that this is a four-level
circuit with a maximum fan-in of 3. Also, the reader is reminded that two active low inputs
to an XOR gate or EQV gate retains the function, as discussed in Subsection 3.9.4.

An n-bit ripple-carry (R-C) ALU can be produced by cascading the 1-bit slice ALU of
Fig. 8.28 in a manner similar to that used to produce an n-bit R-C adder from n FAs in
Fig. 8.5. This is done in Fig. 8.29, but with the added requirement of connecting the three
mode/select input to all stages as shown. It is also possible to construct an n-bit R-C ALU
by cascading w-bit ALU modules in a manner similar to cascading configuration of R-C
adders in Fig. 8.6.

The two functions in Eqs. (8.13) are not the only expressions that can be derived from
the operation table for F and Cout in Fig. 8.26. Referring to Fig. 5.9, it can be seen that
the functions F\ and F^ are exactly those for F and Cout, respectively, if the appropri-
ate substitutions are made and if the don't cares in the FZ K-map are each set to logic
zero. Thus, from Eqs. (5.71) and (5.72) the two outputs for the 1-bit ALU now become
either

F = M[Cin © (A 0 So) 0 (5, B)] + M(A 0 S0 + S, B) j

Coul = Md [(A 0 S0) 0 (S, B)] + M(Si B)(A 0 S0) I

8.8 ARITHMETIC AND LOGIC UNITS 361

Bn.,(H) A^H) B2(H) A2(H) B,(H) A,(H) B0(H) A0(H)

1 1 .
B A

1-bit
OU1 ALU

F

r

Ci"
« +—

T T ^

B A

1-bit
out ALU

F

r

Uh *

I i;
B A

1-bit
oul ALU

F

r

t)0 *

* ¥ ^

B A

1-bit
°out ALU

F

r

u* 4-

Fn.,(H) F2(H) F,(H) F0(H)

FIGURE 8.29
An n-bit R-C ALU produced by cascading n 1-bit slice ALUs of the type shown in Fig. 8.28.

or

I , . - /C D\ 1

- l ° - [, (8.15)
Cout = MQ [(A 0 S0) © (Si B)] + M(Si B}(A 0 S0) J

depending on whether or not subfunction partitioning is used for a combined CRMT and
two-level result for function F. The two outputs in Eqs. (8.14) represent a five-level system
with a combined gate/input tally of 11/24, and those in Eqs. (8.15) represent a four-level
system with a total gate/input tally of 11/25, both excluding possible inverters. Thus, the
CRMT results in Section 5.11 are comparable but somewhat less optimal than those of
Eqs. (8.13) extracted from K-maps.

The n-bit R-C ALU of Fig. 8.29, like the R-C adder, suffers a size limitation due to
the ripple-carry effect, as discussed in Subsection 8.2.3. To overcome this limitation the
carry look-ahead (CLA) feature can be coupled with the ALU design. (See Section 8.4 for a
discussion of the CLA adder.) In Fig. 8.30 is the I/O table for the 1-bit slice ALU with CLA

[
Arithmetic J
Operations j

I
r

Logic J
Operations |

I

M

0

0

0

0
v
f

1

1

1

1

s,

0

0

1
1
0

0

1
1

So

0

1

0

1
0

1

0

1

F

A0Cm

A0Cin

A©B0Cin

A0B©Cjn

A

A

A + B

A + B

P

A

A

(A©B)

(A0B)

0

0

0

0

G

0

A

A-B

A-B

0

0

0

0

* Subtraction operations assume 2's complement arithmetic.

FIGURE 8.30
Operation table for the simple 1-bit slice ALU of Fig. 8.26 showing CLA output functions P and G
based on Eqs. (8.7).

362 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

\S1
MV 0 1

0

1

(A©SO

0

A©s0]e[i j

0

MV 0 1

0

1

©
0

(B(AeSo)]

0

FIGURE 8.31
EV K-maps and minimum cover for carry propagate (P) and carry generate (G) parameters given in
Fig. 8.30.

capability. Here, the Cou[functions of Fig. 8.26 are replaced with those for carry propagate,
P, and carry generate, G, which are derived from Eqs. (8.2) and (8.7). Logic O's are placed
in the P and G columns for the logic operations to indicate false carry rejection, as was
done in the operation table of Fig. 8.26.

The design of the 1-bit slice ALU of Fig. 8.30 continues by plotting the P and G outputs in
second-order K-maps as was the case for Cout in Fig. 8.27d. This is done in Fig. 8.31, where
optimum cover is indicated with shaded loops for each of the outputs, yielding the results

_ — > . (8.16)
G = M(S1B}(A 0 S0) + MSiS0A J

Notice that a single associative pattern is used to extract optimum cover for output, P.
In completing the design of the 1-bit slice ALU with CLA capability, it must be remem-

bered that it is the carry parameters in Eqs. (8.16) that take the place of the Cou, expression
in Eqs. (8.13). This is done by combining the carry expressions of Eqs. (8.16) with the
expression for function F in Eqs. (8.13). The result is the logic circuit in Fig. 8.32a and its
block diagram symbol in Fig. 8.32b for a 1-bit slice ALU with CLA capability.

M(H).
S^H) —

B(H)—I ' LdpN Rm M,S 1 ,S D

M(H)_bo^| V ,\r-^ PLX (} - |

B

1 -bit CLA
ALU

FIGURE 8.32
(a) Optimum gate-level implementation of the 1-bit slice ALU with CLA capability represented by
the operation table of Fig. 8.30 and by Eqs. (8.16). (b) Block diagram symbol for the 1-bit ALU in (a).

8.8 ARITHMETIC AND LOGIC UNITS 363

Carry
ton-1
stage

B2(H) A2(H) B^H) A^H) B0(H) A0(H)

2 C2 G1 Pt C, G0 P0 C0

CGP Network of Figure 8.13

FIGURE 8.33
The three least significant stages of an n-bit carry look-ahead (CLA) ALU showing the block symbol
for the carry generate/propagate network used between 1-bit modules.

The 1-bit slice ALU module in Fig. 8.32 can be cascaded by using the CLA carry
generate/propagate (CGP) network given in Fig. 8.13. This is accomplished in Fig. 8.33,
where the three least significant 1-bit stages are shown connected to the CGP network.
Cascadable units of this type can be cascaded as groups to produce even larger units. This
is done by connecting the carry-out of one n-bit stage to the carry-in of another, etc., with
the mode/select inputs connected to all stages.

8.8.2 The MUX Approach to ALU Design

There are occasions when a designer requires an ALU that is fully programmable, that will
perform a wide variety of tasks both arithmetic and logic, and that can be put to a circuit
board with off-the-shelf components, or that can be designed for VLSI circuit applications.
The MUX approach to ALU design can provide this versatility and computational power,
which are difficult to achieve otherwise. In this subsection a programmable ALU (PALU)
will be designed by the MUX approach that can perform the following operations on two
n-bit operands:

1. Arithmetic operations
(a) Add with carry, or increment

(b) Subtract with borrow, or decrement

(c) Partial multiply or divide steps

(d) One's or 2's complement
2. Comparator operations

(a) Equal
3. Bitwise logic operations

(a) AND, OR, XOR, and EQV

(b) Logic-level conversion

(c) Transmit or complement data bit

364 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

Cin(L)-^-i p«-Cin(L]
From J+1 stage 11 From J-1 stage1 1 Cin(L)
C r rt m Ij-l cto/io I I Cri

D3-D0(H)

i EN(L)

A(H)

B(H)

M(L)-C

3 2 1

J*

0

Y
EN MUX-D Y

s, sfl

J(L)-C

I

P(L)
i '

s, s0

EN

3

jm

MUX-E

2 1

Y

Y

0

E(H)

*\

i — \ n ^
— ^

Jth AOI Gate

0-

A

>>-|

(

— ̂

EN

S Y1 Jm

MUX-R
S0 Y

3 2 1 0

t'
R3-R0(H)

3
EN
Ith

— F(H)

O-F(L)

L/R(H) -

E3-E0(H)

DMUX

0 1

Cout(L)<«— I L- -*Cout(L)
To J+1 stage To J-1 stage

FIGURE 8.34
Implementation of the 7th 1-bit slice PALU with shift left and shift right capability by using three
4-to-l MUXs, a DMUX, a NAND gate, and an AOI gate.

4. Shift operations

(a) Shift or rotate left or right by one bit

It is required that each 1-bit slice of the PALU have a resulting output function F and
that the PALU be cascaded with respect to the carry-in and carry-out parameters, Cin and
Cout. Also, it is required that the PALU operate with/a/se carry rejection, that is, that COM

be disabled for all nonarithmetic operations.
The logic circuit diagram for the Jth 1-bit slice PALU and its block diagram symbol are

presented in Figs. 8.34 and 8.35. As can be seen, the PALU consists of three 4-to-l MUXs,
a l-to-2 DMUX, a NAND gate, and an AOI gate (see Subsection 7.7.1 for a discussion of
AOI gates). For reference purposes the MUXs are named

MUX-D => Disable Carry MUX — Output D
MUX-E => Extend Carry MUX — Output E
MUX-R => Result MUX — Output F

To help understand how the PALU is able to perform such a variety of tasks as listed earlier,
it useful to write the Boolean expressions for the outputs from the three MUXs and from

8.8 ARITHMETIC AND LOGIC UNITS 365

4

To J+1 stage « C

From J+1 stage — XI

c

R

COUl

ciB

EN

4 4
E D B A

1-Bit PALU
Mudule

F F

Dft

c!n

^Oul

«—

>« — From J-1 stage

3 — > To J-1 stage

T

(8.17)

FIGURE 8.35
Block diagram symbol for the 7th 1-bit PALU module of Fig. 8.34.

the AOI gate. Referring to Fig. 8.34, these outputs are

o
F = R = £ = Ritrii = R^CinE + R2CinE + RiCinE + R0CinE

(=3
0

E = Y< = EM = EiAB + E2AB + E{AB + E0AB
i=3
0

D =]T = D,m/ = D3AB + D2AB + D]AB + DQAB
i=3

and

Cout = C,nE + D, (8.18)

where the control address inputs /?/, £,-, and D,- are the coefficients of m, that represent the
canonical forms of input sets Cin, E or A, B. Thus, R2 m2 = R2CinE or EQWQ = EoAB, etc.

Notice that Eqs. (8.17) derive directly from Eq. (6.5), but where now the data select
and data inputs are interchanged—that is, there are now four data select inputs (control
address inputs) each for /?/, E, and D/, two data inputs, A and B. Referring to the K-map
in Fig. 6.4c for a 4-to-l MUX, it is easy to see that 16 possible functions in data variables
S\ and SQ result by assigning 1's and O's to the four variables IT,, I2, I\, and /o in the
K-map, taking EN= 1. Thus, for programming purposes, the four components for each of
the control address inputs (coefficients of m,), /?,-, £/, and D,, are encoded in the order of
descending positional weight, but are given in decimal equivalent to represent any one of the
16 possible logic functions in variables, A and B. As examples, D = A + B is represented
as D = 11012 = 13io, E = AB if E = 01002 = 410, or F = E O Cin is represented as
R = 10012 = 9io and F = E © Cin when R = 01102 = 610, etc.

In Fig. 8.34 it can be seen that the MUX output signals, D(L) and E(H), together with
carry-in C-m, drive the AOI gate, but that only the MUX output E(H) combines with Cin(H)
in MUX-R to produce the resultant function F. The carry-out Cout(L) from the AOI gate, on
the other hand, is a function of E, D, and the carry-in input, C,n, as indicated in Eq. (8.18).
This is necessary for the arithmetic operations that the PALU must perform. The D in
Eq. (8.18) is used to disable Cout for nonarithmetic operations. If D is set equal to 0 for

366 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

a given nonarithmetic operation, it follows that D = \ and Cout(L) = l(L) = 0(//), which
is interpreted as a carry-out disable for that operation. Thus, the carry-out disable feature
of the PALU is equivalent to the false carry rejection used in the ALU operation tables of
Figs. 8.26 and 8.30. In a sense, the output of MUX-D performs the same mode control
operation as does M in the ALU of Figs. 8.28 and 8.29.

The operation of the PALU is illustrated by 12 examples in the operation table of Fig. 8.36
with the help of the n-bit PALU shown in Fig. 8.37. The first five operations in Fig. 8.36
are arithmetic while the last seven are logic. To understand the entries in this table, some
explanation is necessary. The control address inputs, R, E, and D, are the binary coefficients
in Eqs. (8.17) represented in decimal. Operations (1) through (4) are arithmetic operations
that follow directly from Eqs. (8.2) for the FA and require specific values for the Cin to
the LSB stage of the n-bit PALU in Fig. 8.37. For these arithmetic operations, the carry
must propagate from LSB-to-MSB (left), which requires that the direction input be set to
L/R = 0. Note that this PALU cannot support CLA capability since not all carry operations
are based on Eqs. (8.2).

Operation (1) requires that the operand magnitudes fall within the limits set in Subsec-
tion 8.3.1. Operation (2), A minus B, adds A to the 2's complement of B and requires

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Operation *

A plus B (LSB Cjn = 0)

A minus B (LSB Cin = 1)

Increment B (LSB Cin = 1)

2' complement of A (LSB Cin = 1)

A = B (LSB Cin = 0)

A©B

A - B

A~+B

Complement A

Transfer B

Shift A left 1 bit (Fill = LSB Cin)

Shift B right 1 bit (Fill = MSB CJ

F

A0B©Cin

A0BeCin

Becin

A©Cin

(A®B)Cin

AeB

A -B

A + B

A

B

cin

Cin

Cout

Cin(A©B) + AB

Cin(AeB) + AB

C i n ' B

C i n + A

Cin + AeB

1

1

1

1

1

A

B

L/R

0

0

0

0

0

*
</>

t

*
<{>

0

1

R

6

6

6

6

2

10

10

10

10

10

12

12

E

6

9

10

3

9

6

8

11

3

10

0

0

D

7

11

15

3

9

0

0

0

0

0

3

5

Subtraction operations assume 2's complement arithmetic with LSB Cin .= 1.

FIGURE 8.36
Twelve sample operations generated by the 1-bit slice PALU in Fig. 8.34 showing the shift direction
input and the decimal values for the data select variables, R, E, and D.

8.8 ARITHMETIC AND LOGIC UNITS 367

1 /P/U|\

D(H)-4<
rr/Lj\ 4xc-\n) — / '

4 ' \

Cnout(L) <-C

MSB C ->C
(L) '"

-C

t
R

Bn-1 An-1 . . .
(H) (H)

-\ '

: D B A

L/R

'-'out ""*• un-i * în

cin
EN

EN(L) 1

Cout

Y Y
<f

—I

4X ' 4,

...

o+- «:
D->- ->C

-C

E
R

Co,,<

Cm

EN

F,i(H)

B2 A2

(H) (H)

' 4,' t

: D B A

L/R

PALU2 Cjn

cout

Y Y

Y

—I

«,- \

O«-C

D->C

rC

E

R

Cm))

cfn

EN

F2(H)

B1 A1

(H) (H)

' 4,'

E D B A

L/R

PALU, Cjn

cou,

Y Y
<P

—I

4 4/

I—

cx-c
D-̂ C

-C

E
R

EN

-4,

: [

Bo Ao
(H) (H)

'

) B A

UR

Cout PALU0 Ctn

cin
EN

F^H)

cout

Y Y

Y

—I

LSB
r^^t p
J^~ ,.~m

(L)

F0(H)

FIGURE 8.37
An rc-bit PALU with operational characteristics given by Figs. 8.34, 8.35, and 8.36, and by Eqs. (8.17).
and (8.18).

that LSB Cin = 1 in Fig. 8.37 and that the MSB be reserved for the sign bit as dis-
cussed in Section 8.3. For operation (2), the requirements of F and Collt are that R =
E © Cin = 01102 = 610, E = A®B = AQB = 10012 = 9i0, and that D =
A + B = 1011 = 1110. Operation (3) simply requires that LSB Cin = I when A = 0,
for which the requirements of function F are that R = E © C-m = 01102 = 610,
E = B = 10102 = lOio, and D = 1 = 1111 = 15i0 so that D = 0 in Eq. (8.18).
The 2's complement of operation (4) follows Algorithm 2.5 represented by Eq. (2.14).
The 2's complement operation sets LSB C-m = 1, then with B = 1 and A is comple-
mented, R = E © Cin = 01102 = 610, E = A = 00112 = 3m and D = A =
00112 = 310- Operations (6) through (10) are simple bitwise logic operations for which
F = R = E when R = 10102 = lOio, and Cout = 1 and L/R = 0 for false carry rejection
when D = 0.

Operation (5) is the comparator operation, A = B, considered either an arithmetic or
logic operation. The requirement for this operation is as follows: If the two operands, A
and B, are equal on a bitwise comparison basis, then F,,_i = 1 for an n-bit PALU with
its LSB Cin(L) = 0(L). Or if the operands are not equal, Fn-\ = 0. Thus, Cout = 0 will
ripple from the LSB stage to the MSB stage and all outputs will be F{ = 1. However, if
any one of the bitwise comparisons yields an inequality, the carry Cout = 1 will ripple
from that stage to the MSB stage and generate Fn-\ = 0 at the MSB stage. Therefore,
operation (5) requires that R = CinE = 00102 = 2i0, E = A O B = 10012 = 9io, and
D = A Q B = 1001, which, when introduced into Eqs. (8.17) and (8.18), yields the results

368 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

given in Fig. 8.36.

F = (AQB)Cin

C0ut — Cjn E -j- D

= Cin(A O 5) + A 0 B

By comparing the result F = (A Q B)Cin with Eqs. (6.20) for a 1-bit comparator, it becomes
evident that Cin = eq is the (A = B) output from the next least significant stage.

The remaining two operations, (11) and (12), are shift operations that can be considered
both arithmetic and logic in nature. For example, operation (11) shifts word A by one bit
to the left, which can be interpreted as a x 2 operation, and hence a partial multiplication
step. Referring to Section 8.6 and Algorithm 2.10, it is clear that a bit-by-bit left shift is
a partial step used to execute the multiplication of two operands. This requires that the
7th function bit Fj receive the Cjn from the (/ — l)th stage, and that the Cout of the
Jth stage be the A input to that stage, for which F = R = C-m = 11002 = 12io and
D = A = 00112 = 3,0.

There are many other operations possible by the PALU that are not listed in the operation
table of Fig. 8.36. As examples, operation (9) can be interpreted as the 1's complement of
A according to Algorithm 2.7 as applied to binary, and operation (7) can be considered as a
partial product required in the multiplication of two operands. Also, arithmetic operations
other than the operations (1), (2), and (3) are possible.

There are a total of 16 bitwise logic operations that can be generated by the PALU,
but only five are listed in Fig. 8.36. For reference purposes, the 16 logic functions in two
operands, A and B, that can be generated by Eqs. (8.17) are summarized by

F = Finn = F3AB + F2AB + F1AB + F0AB (8.19)
i=3

F3 F2

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

F, F0

0 0

0 1

1 0

1 1
0 0

0 1

1 0

1 1

F

0

A-B

A-B

A

A-B

B

A0B

A+B

F3 F2

1 0

1 0

1 0

1 0

1 1
1 1
1 1
1 1

F, F0

0 0

0 1

1 0

1 1
0 0

0 1

1 0

1 1

F

A-B

A0B

B

A+B

A

A+B

A + B

1

(a) (b)

FIGURE 8.38
The 16 possible bitwise logic functions for operands A and B according to Eq. (8.19) (a) K-map
representation, (b) Tabular representation.

8.9 DUAL-RAIL SYSTEMS AND ALUs WITH COMPLETION SIGNALS 369

and can be represented either by the K-map in Fig. 8.38a or by the table in Fig. 8.38b.
The table is generated by asigning 1's and O's to the four coefficients, /% F2, F\, and FQ.
These functions will again be used by an even more versatile ALU, which is designed in the
following section.

8.9 DUAL-RAIL SYSTEMS AND ALUs WITH COMPLETION SIGNALS

As implied in Section 8.8, ALUs are important because they make possible the use of
the same device to perform many different operations, thereby increasing versatility while
minimizing the need to combine different modules for those operations. Because of these
advantages, ALUs are commonly found in processors where the specific operations are
performed on command from the controller in the processor. Although these ALUs support
a variety of arithmetic and logic operations and may include CLA capability, they typically
have single rail carries (like those treated in Section 8.8) and cannot communicate to the
processor when a given operation has been completed. To remedy this situation, completion
signals are issued following worst-case delays that are associated with the various ALU
operations.

This section features a programmable ALU (PALU) that will issue a final completion
(DONE) signal immediately following the completion of any operation, no matter how
complex or simple it is. This is a significant feature for an ALU, since arithmetic op-
erations require more time to complete (because of the carry problem) than do bitwise
logic operations. Used in a microprocessor, PALUs with DONE signals avoid the need
to assign worst-case delays to the various ALU operations. Thus, whenever an operation
(logic or arithmetic) is completed, a DONE signal is sent to the CPU (central process-
ing unit), thereby permitting immediate execution of the next process without unnecessary
delay.

Listed in Fig. 8.39 are the four modes of operation that the PALU can perform. As
indicated, the PALU can perform bitwise logic operations (M\ MQ = 01), or it can perform
left or right shift operations (M[Mo = 11) on operand B. But it can also perform arithmetic
operations on the result of either a logic or a shift operation, as indicated by mode controls
MI MO = 00 and MI MO = 10, respectively. For example, any logic operation in Fig. 8.38
(e.g., A 0 B) or shift in operand B can be added to or subtracted from operand A. With
DONE signals issued following the completion of each process, it is clear that this PALU
offers a higher degree of versatility than is available from the ALUs in Section 8.8.

An ALU will now be designed that is even more versatile than that of the MUX ap-
proach in Subsection 8.8.2. In addition, it is the goal of this section to develop the concepts

M, M0

0 0

0 1

1 0

1 1

MODE

Arithmetic on Logic
Logic

Arithmetic on B-Shift
B-Shift (right or left)

FIGURE 8.39
Modes of PALU operation.

370 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

M0 GO Ad ' CjnO Cin1

Bj-i

L/R

Jth

Logic
Module X

Jth

Arithmetic
Module

Jth

Output
Logic

I
Done, R , CoutO Cout1j

i
Bj Aj F Bj., BJ+1 M, M0 GO

L/R Add/Sub

Jth 1-Bit PALU Module

Add/Sub

FIGURE 8.40
Block diagram structure (a) and block circuit symbol (b) for the Jth 1-bit PALU module capable of
performing the modes of operation listed in Fig. 8.39 with completion (Done) signals.

of dual-rail systems and completion signals, and apply them to the design of a PALU with
operational capability defined by Fig. 8.39. Also, both ripple-carry (R-C) and carry look-
ahead (CLA) designs will be considered. The following develops the details of this unusual
but versatile PALU.

Shown in Figs. 8.40a and 8.40b are the block diagram and logic circuit symbol for a 1-bit
slice PALU that can perform the operations represented in Fig. 8.39 and issue a Done signal
following the completion of each operation. An inspection of Fig. 8.40 indicates that there

8.9 DUAL-RAIL SYSTEMS AND ALUs WITH COMPLETION SIGNALS 371

are inputs specific to the 7th module and those that are global (applied to all modules in a
cascaded system). Specific to the 7th PALU module are the operands inputs Aj, Bj, Bj^\,
and Bj-\. The Bj_i input arrives from the B input to the next LSB stage in a cascaded
configuration and is necessary for left shifting. Similarly, the Bj+\ input arrives from the B
input to the next MSB stage to permit right shifting. The input and output dual-rail carries
shown in Fig. 8.40 are also specific to the 7th module and are defined as follows:

C,,,0 = carry-in 0 to stage 7 from stage J — I

Cin 1 = carry-in 1 to stage J from stage 7 — 1

Cou!Q = carry-out 0 to stage 7 + 1 from stage J

Cout 1 = carry-out 1 to stage 7 + 1 from stage 7

(8.20)

The meaning here is that C/nO = 1 when the carry-in to the 7th stage is logic 0, and C\n 1 = 1
when the carry-in to the 7th is logic 1. Thus, both carry-in parameters cannot be active at
the same time. Similarly, CoutO = 1 when carry-out to the (J + l)th is logic 0, or COM\ = I
when the carry to the (7 + l)th is logic 1, where again only one carry parameter can be
active at any given time.

The global inputs to the PALU include the two mode control inputs, MI and MO, the
function generate signals, F3, F2, F\, and FQ, a shift-direction input L/R (meaning right,
"not left" when active), an add/subtract input Add/Sub (meaning subtract, not add when
active), and a start signal called GO. The add/subtract control input operates the same as
that use for the adder/subtractor design in Subsection 8.3.1, but only if the mode control
MQ = 0 according to Fig. 8.39. Also, the shift-direction control L/R is operational only if
mode control M\ = 1, as indicated in Fig. 8.39.

The two outputs, Donej and Rj, are specific to the 7th PALU mudule. When the 7th
stage result of a bitwise logic operation or arithmetic operation is indicated by the output
Rj, a completion signal Donej is issued. However, it is the requirement of an n-bit PALU
design that a final (overall) completion signal, DONE, will not be issued until the Done
signals from all n stages have become active. Thus, the results from those n stages must not
be read until the final DONE has emerged.

Logic Module The logic module is responsible for carrying out both the 16 bitwise logic
operations given by Eq. (8.19) and the shift left or right operation with 0 or 1 fill. (See Section
6.8 for details of a combinational shifter.) Presented in Fig. 8.41 are the output parameters,
Xj,T\, and TO, for the 7th PALU logic module. The output function X j , representing the
mode control settings for logic and shift operations (according to Fig. 8.39), is given by the
truth table and EV K-map in Figs. 8.4la and 8.41b. The dual-rail outputs from the logic
module, T\ and TO, are defined in the truth table of Fig. 8.41c and represent only logic and
shift modes — arithmetic operations are excluded.

The output function Xj is read directly from the EV K-map in Fig. 8.41b and is

M,(L/R • £,_, + L/R • fi/+1), (8.21)

where the quantity (L/R • Bj-\ + L/R • BJ+\] represents the shift left or right operation
but only when mode control M\ = 1, as required by the mode control table in Fig. 8.39.
Thus, right shift by one bit occurs when L/R = 1 and left shift by one bit occurs when
L/R = 0. Function Fj represents the 16 possible bitwise logic operations, as in Eq. (8.19),

372 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

M 1 M 0

0 0

0 1

1 0

XJ

J I Logic
p I operations

J s

OR*,, + U/R.BJ4,

\MnM\° 0 1

0

1

(FJ

L/H*tJ » 4 + L/R'Bi,4
t J- * J-r (

FJ

UR'Bj., t L/R-Bj.,)

1 1 L/R-Bj., + L/R-BJ+1

(a) (b)

Xj

0

1

L

0

GO-MO

TO

G0-M0

0

(c)

FIGURE 8.41
Requirements of output parameters for the 7th PALU logic module according to Fig. 8.39. (a) Truth
table showing mode settings for logic and shift operations, (b) EV K-map for (a), (c) Dual-rail outputs
representing only logic and shift operations from logic module.

and is given here for reference purposes:

Fj = F3AB + F2AB + F]AB + F0AB. (8.22)

The dual-rail outputs from the Jth logic module, defined in Fig. 8.41c, are read directly
from the truth table and are

f r, = GO • MQ • X]
{ -\ (8-23)

The meaning of these dual-rail parameters is as follows: For logic or shift operations, the
mode control requirement is M0 = 1 according to Fig. 8.39. Thus, for GO = 1 (start active),
TI = I and TQ = 0 if Xj = 1, or T\ = 0 and T0 = 1 if Xj = 0 . The dual-rail outputs are
necessary to generate completion signals following logic and shift operations.

Presented in Fig. 8.42 is the logic circuit for the 7th PALU logic module as required by
Eqs. (8.21)-(8.23). The 4-to-l MUX provides the 16 possible bitwise logic functions of the
two operands, Aj and B j , as represented by Eq. (8.22), but only if the mode control setting
is MI = 0. The shift right/left portion of the circuit is activated when the mode setting is
M\ = 1. Then when L/R = 1, Bj+\ is received from the next MSB stage producing a 1-bit
right shift, or if L/R = 0, Bj-\ is received from the next LSB stage, forcing a 1-bit left shift.

Arithmetic Module To design an arithmetic module with completion signal capability,
it is necessary to first establish the concept of dual-rail carries. This is accomplished by
rewriting the equations for a full adder as they pertain to the 7th 1-bit PALU arithmetic

8.9 DUAL-RAIL SYSTEMS AND ALUs WITH COMPLETION SIGNALS 373

Dual-rail output section
' 3 *"2 ' 1 ""0
(H) (H) (H) (H) M

I I I A GO(H) -

Aj(H) 1

Bj(H)

4-to-1 MUX
(Bit-wise logic section)

M0(H).

Fj(L)

UR(H) . r — Shift section

BJ+,(H)

JTo Bj of Arithmetic
^ Module

FIGURE 8.42
Logic circuit for the 7th PALU logic module based on Eqs. (8.21)-(8.23).

module. The sum expression from Eqs. (8.2) is restated here as

S = A 0 B © Cin

and is partitioned into the following two parts with respect to logic 1 and logic 0:

Si = (A 0 B)Cin + (AQ B)Cin

= (A 0 B)CinO + (A O B)Cinl

and (8.24)

SQ = (A © B)Cin + (A O B)dn

= (A®B)dnl+(AQB)CinQ

Here, use has been made of Eq. (3.4) in the form 5 = xy + xy, where x = A 0 B and
y = Cin. Thus, for Si, carry-in is represented as C/n = C/,,0, and d,, = Cin 1 whereas for So
the carry-in is represented as Cin = Cin\ and Cin = C/,,0. The split-rail sums, Si and S0, in
Eqs. (8.24), are summarized in Fig. 8.43a together with the dual-rail carry-outs, Coutl and
COM,0, as they are affected by the operands, A and B, and the dual-rail carry-ins, C/nl and
C,;,0. Here, Si is active if the sum is logic 1 otherwise inactive, or So is active if the sum is
logic 0 otherwise inactive.

The carries have a similar meaning. An active Cin/olltl implies a carry (in or out) of logic
1, and an active C/,^,0 implies a carry (in or out) of logic 0. Thus, Cin/outl and C,vowfO
cannot both be active (take logic 1) at the same time. Also, C-injoM\ = C,vOM,0 = 0 is an
indeterminate state of no carry. In effect, a three-state code representation is used for carry-
in {C/,,1, C/,,0}, carry-out {Coutl, Cou,0}, and sums (Si, S0}. This means that each of these
three dual-rail pairs can assume one of the three state values taken from the set (00, 01, 10}.
All three pairs are required to be set initially in logic state (00) and then transit to either
state (01) or (10) following the activation of the start signal GO shown in Fig. 8.40. State
(11) is not permitted.

374 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

A B

0 0

0 1

1 0

1 1

Cout1

0

CJ
C. 1in

1

Cou.°

1
cino
cinoin

0

s,
Cin1

clo
c.oin

C. 1

So

cino
Cin1

C 1in

c. o

\B \B
A\

0

1

0

C. 1in

cino

1

C 0in

CJ

A\

0

1

0

CiM0

cj

1

C 1in

c,no
/b1 /

\B \B
A\

0

1

0

0

CJ

1

CJ

1

A\

0

1

0

1

cino

1

c.o

0

(a) (b)

FIGURE 8.43
Requirements of a split-rail sum and carry system, (a) Truth table for sum and carry partitions, (b)
EV K-maps plotted from the truth table in (a).

With these definitions in mind and by referring to Subsection 8.2.2 for the full adder,
the carry partitions in the truth table of Fig. 8.43 can be understood. The dual-rail sum and
carry-outs in Fig. 8.43a are plotted in the EV K-maps of Fig. 8.43b. From these K-maps
there results the dual-rail carry-out expressions for the /th stage,

\Cout\ = (A © B)Cinl + AB\

Now, it is necessary to introduce the mode control MQ (consistent with Fig. 8.39) and
start input GO together with an add/subtract parameter a = B © (Add/Sub) that replaces
operand B in Eqs. (8.24) and (8.25). When this is done the dual-rail sum and carry-out
parameters for /th the module become

Si = GO • M0[(A © a)CinO + (AQ a)Cinl]

S0 = GO- M0[(A © aXV + (A 0 a)CinO]
(8.26)

COM\ = GO • MQ[(A © a)Cin 1 + Aa]

CoutO = GO • M0[(A © a)CinO + Aa]

Use of the mode control MQ avoids issuing a false sum from the arithmetic module and
acts as a false data rejection feature during nonarithmetic operations. The XOR function
a = B © (Add/Sub) that replaces operand B permits the subtraction operation by using 2's
complement arithmetic as is done for the adder/subtractor in Subsection 8.3.1. For addition,
Add/Sub = 0 passes operand B, but for subtraction Add/Sub = 1 complements operand B,
as required in 2's complement arithmetic.

8.9 DUAL-RAIL SYSTEMS AND ALUs WITH COMPLETION SIGNALS 375

Dual-rail carry-out
logic

Completion and result logic

Aj(H)

AdaYSub(H)

Bj(H)
From Logic
Module in

Figure 8.43

FIGURE 8.44
Logic circuit for the 7th arithmetic module represented by Eqs. (8.26) and (8.27), showing the
completion (Donej) and result (Ry) output logic that includes the dual-rail inputs T\ and TI from the
logic module and the dual-rail carry-out logic.

Shown in Fig. 8.44 is the logic circuit for the 7th arithmetic module as represented
by Eqs. (8.26). In addition, there is included the completion (Donej) and result (Rj)
logic section that derives from equations that combine the results from the logic mod-
ule with those from the arithmetic module. For the 7th PALU module, these equations are
given by

RI = T\ + 5]

RQ = TQ + So

and

R = R] • RQ

Done = RI + R0

(8.27)

Notice that the result R — R\ RQ is a resolved result required to issue a logic 1 when R\ = 1
or a logic 0 when RQ = 1 according to the definitions of the dual-rail components of R.
However, a completion signal Done = 1 is issued in either case to indicate that a valid result
is present. Thus, except for the initialization state GO = 0, for which R\ = RQ = 0, one or
the other of R\ or RQ will be active, indicating a valid result, but they will never both be
active simultaneously.

The cascading of 1-bit modules to form an n-bit PALU is easily accomplished as illus-
trated in Fig. 8.45. All that is required is to connect each set of dual-rail carry-outs from one
stage to the next MSB stage and all global inputs to all stages. The shift inputs, Bj-\ and

Bo

Ao

B
_,

A
H

H
/^

u
h

T
/R

1

mMM
i

FS-FO
4
y

«
—

*

—
 H4

B

A

F

DR

''
B

j-t
B

J
+
i M

i
M

o
G

O

A
dd/S

ub

1
-b

itP
A

L
U

n
1

D
one

1)
R

in

_
...„

_
^

D

D

0
4

4

B

A

F

DR

':

B•
M

*U
^
l

^

G
0

A
dd/S

ub

1 -bit P
A

L
U

.
C

^

r*
•i

out 1
C
in

'

D
one

]

1
a

a

a

t

J, A
Rnn

-1
n-input

N
O

R
 gate

f

R

'"

« —^

4

B
A

F

DR

/:

BJ-1
 EJ

^
 M

t
M

0 G
O

A
dd/S

ub

1
-b

itP
A

L
U

n
C

1

P

1

w
o
u
t 1

°
in

'

D
one

)

D
1

f

„

c«° ̂
^

p
0

D
O

N
E

F
IG

U
R

E

8.45
L

ogic circuit for an «-bit PA
L

U
 w

ith com
pletion signal capability consisting of cascaded 1-bit m

odules of the type show
n in Fig. 8.40. N

ote that all inputs
and outputs are assum

ed to be active high and that the rc-input N
O

R
 gate is of C

M
O

S construction as illustrated in Fig. 8.46.

8.9 DUAL-RAIL SYSTEMS AND ALUs WITH COMPLETION SIGNALS 377

BJ+I, must be connected appropriately for left and right shifting as shown. Barrel shifting
(rotation) right can be accomplished by connecting the RQ output to the Bn input. Similarly,
barrel shifting left results if the Rn~\ output is connected to the B_i input. Notice that
the carry-in inputs, Cinl and C,nO, to the LSB (PALU0) stage are correctly initialized
for add or 2's complement arithmetic (see Subsection 8.3.1 regarding adder/subtractors).
Thus, if Add/Sub = 1, required for subtraction by 2's complement, a logic 1 is carried in to
the LSB stage (Cin\ = 1). Conversely, if Add/Sub = 0 for addition, a logic 0 is carried in
(Cft,0=l).

The n-input NOR gate in Fig. 8.45 requires special consideration. This gate must AND
the individual Done(L) signals to produce the final DONE(H) represented by the expression

n-\

DONE = Y\ (Done)i. (8.28)
i=Q

Thus, the conjugate gate form shown in Fig. 3.13b must be used. With inputs to such a gate
numbering more that four, there is the problem of fan-in as discussed in Section 4.10. The
larger the fan-in, the greater is the path delay through the gate. In fact, there is a definite
limit as to the number of inputs available in commercial NOR gate chips.

The fan-in problem is effectively eliminated by using the CMOS NOR gate construction
shown in Fig. 8.46a. Here, the number of permissible inputs up to about eight will have
negligible effect on the path delay through the gate, which is essentially that of a two-input
NOR gate. All Done inputs must go to LV before the output DONE can go to HV. So if one

Specially
built PMOS

DONE

Done0

Done,

Done2

D°nen-1

H(-H H(H(

(a) (b)

FIGURE 8.46
Multiple input NOR gate specifically designed to minimize fan-in-limitations. (a) CMOS circuit
required for Fig. 8.45. (b) Generalized NOR gate symbol for this circuit.

378 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

or more of the inputs are at HV, the output is pulled low (to LV). Thus, the PMOS must be
specially designed so that the Drain-to-Source resistance remains sufficiently high so as to
minimize Drain current when one or more of the NMOS are turned ON. Here, the PMOS
serves the same function as the depletion-mode NMOS in Fig. A.I of Appendix A. Both
function as pull-up transistors. Hence, the CMOS NOR gate of Fig. 8.46 could be replaced
by the NMOS technology of Figure A. 1. In any case, the NOR gate logic symbol for this
circuit is given in Fig. 8.46b, which is the same as that in Fig. 3.13b.

8.9.1 Carry Look-Ahead Configuration

Like the R-C adder of Fig. 8.5, the PALU just described suffers a size limitation due to the
ripple-carry effect. The carry propagation time increases with increase in the size of the
PALU. To reduce significantly the propagation time, carry look-ahead (CLA) capabilities
can be incorporated into a dual-rail PALU design. From Eqs. (8.7) the following definitions
can be applied to the /th 1-bit PALU module:

P = A 0 a = Carry propagate

P' = GOMo • P = Modified carry propagate
(8.29)

= GOMo • Act = Carry generate w/r to logic 1

GO = GOMo • Act = Carry generate w/r to logic 0

Here, G\ and GO are the dual-rail carry generate parameters, and a = B © (Add/Sub)
is the add/subtract parameter that replaces operand B in Eqs. (8.7). Introducing Eqs. (8.29)
into the sum and carry-out expressions of Eqs. (8.26) yields

= (GOMo)PCinO + (GOM0)PCin 1

- (GOM0)PCinl + (GOMo)PCinO

Coutl = GOMoPdn 1 + GOMoAa
(o.JO)

CoutO = GOMoPdnO + GOMoAa

which are applied to the /th 1-bit PALU module with CLA capability. As in Eqs. (8.26),
the appearance of the mode control MQ in Eqs. (8.29) and (8.30) avoids issuing a false sum
from the arithmetic module and acts as a false carry rejection feature during nonarithmetic
operations. The carry-out expressions COM\ = P'Cin\ + GI and CoutO = P'CinO + GO
can be expanded as in Eqs. (8.8) and, therefore, constitute the CGP network similar to
that in Fig. 8.13 with P' replacing P in that network. Thus, all that remains in the design
of the dual-rail PALU with CLA capability is to implement Eqs. (8.29) together with
the sum expressions in Eqs. (8.30). Presented in Fig. 8.47a is the logic circuit for the
arithmetic module of a 1 -bit PALU with completion signal and CLA capability as required by
Eqs. (8.27), (8.29), and (8.30). Remember that it is the modified carry propagate parameter
P', not P, that combines with the dual-rail carry generate parameters, GI and GO, to form
the CGP network as in Fig. 8.13. The logic circuit symbol for this arithmetic module is
given in Fig. 8.47b.

8.9 DUAL-RAIL SYSTEMS AND ALUs WITH COMPLETION SIGNALS 379

G,(L)

C,nO(H)-

GO(H)

Aj(H)

Add/Sub(H) li "X

Bj(H) from logic
module ^

IYI /|_|\ fXo
N

£

?
^ N

1
1

i
-A5~X P(H)

7
s ~N

• r1—^

i C
C KM) ^

C,n1(H) .

£ 1

ISo-yt.
GO(H) ." i—

v y cino(H) — •

G°(L) (a)

Ri(H)

V-P'(H)

R0(H)

G, B A M0 GO

Add/Sub
Jth1-Bit

Arithmetic CLA
Module in1

CinO
R1 R0

T

R,(H) ~_ J^O-Donej.(L)

Completion/Result logic

(b) (c)

FIGURE 8.47
The Jth 1-bit arithmetic module for a PALU with completion signal and CLA capability according to
Eqs. (8.29) and (8.30). (a) Logic circuit showing carry propagate, and dual-rail carry generate, carry
inputs and result signals, (b) Block circuit symbol for the logic circuit in (a), (c) Completion/result
logic circuit for combined logic and arithmetic modules.

The PALU can be completed by combining the logic module in Fig. 8.42 with the arith-
metic module of Fig. 8.47. This requires that the completion signals from the logic module,
T\ and TQ, be combined with the completion/result signals from the arithmetic module, Si
and So, to yield the Done and R signals as indicated in Fig. 8.47c. Further modifications and
a significant increase in hardware are required to make the PALU symmetric with respect
to both operands. In this case either an A or B shift would be possible with arithmetic
operations performed on either.

The 1-bit PALU must now be cascaded in a manner similar to the CLA adder in Fig. 8.13,
except that now one CGP network is needed for logic 1 (G\ , P'} and another is needed for

380

M0, GO.
•Add/Sub

A, B

CGP Network of Figure £

Cn t « " * o p (

j

X

\

2"

rries to
O D D

stage
.4 — .

i

k C^

(!

\

3
L

)

C D f5
2 Kl "1

G, B A

P'
1-Bit

cj
PALU, „

înU

GO RI Rfl

,)
CR t n n n Pg (j

)

L

ijr

j

^

^

1

J.13

G! P0 G0 C0

k gL i

0

Gt B A

1-BM '"
P PALU, „ ^

GO H,

'0

R

J

C2 P, G,

CGP Network of Figure

î,

0

8

u

^

^

^

i

k Ci

(I

k̂

i
G} E

H'

G

r {

j

\ A

1-Bit
ctai

PALLto „ _

p

>

r
>

^,

1

u«««

*0\r

^— J

L

- s\^ —

i

^sr

r

G! P0 G0 C0

.13

FIGURE 8.48
The three least significant bit stages of an n-bit arithmetic module for a PALU with CLA and comple-
tion signal capability showing the carry generate/propagate (CGP) network required for the dual-rail
carries and carry generate parameters.

logic 0 (Go, P'), as required for dual-rail carries. This is demonstrated in Fig. 8.48, where
for simplicity only the arithmetic module is featured. Notice that the carry-in's for the
LSB stage are properly initialized for addition or 2's complement arithmetic. Hence, for
subtraction, Add/Sub = I introduces a logic 1 into C,-n 1 and a logic 0 into C/nO, as required
by Eq. (2.14). But for addition, Add/Sub = 0 introduces a logic 0 into carry-in C,nl and
a logic 1 into C/nO (meaning 0 carry-in). To complete the PALU design, it is necessary to
include the logic module in Fig. 8.42 with the arithmetic module in Fig. 8.48 and combine
the completion and result signals as indicated in Fig. 8.47c. It is also necessary to connect
the Xj output from the logic module to the Bj input of the arithmetic module for each stage.

Clearly, the hardware commitment for the dual-rail CLA PALU increases considerably as
the number of stages increases. For this reason it is recommended that the group CLA method
be used on, say, 4-bit stages. For example, each of the 1-bit PALUs in Fig. 8.48 would be
replaced by four 1-bit stages of a "conventional" type (i.e., without CLA capability) and then
cascaded with the dual-rail CPG networks as in Fig. 8.48. This requires that only the MSB
stage of each group of four need be altered, as in Fig. 8.47, to accommodate the CLA feature.

8.10 VHDL DESCRIPTION OF ARITHMETIC DEVICES

To recap what was stated or intimated in Section 6.10, the VHDL model of a circuit is
called its entity, which consists of an interface description and an architectural description.

8.10 VHDL DESCRIPTION OF ARITHMETIC DEVICES 381

FIGURE 8.49
Logic circuit for the full adder showing inputs, outputs, and intermediate connection labels required
for the VHDL description.

The interface of an entity specifies its circuit ports (inputs and outputs) and the architecture
gives its contents (e.g., its interconnections). The architecture of an entity is divided into
different levels of abstraction, which include its structure, dataflow, and behavior, the
behavior description being the most abstract. The following VHDL description of the full
adder, shown in Fig. 8.49, illustrates these three levels of abstraction (refer to Section 6.10
for a description of the key words used):

-- Declare entity:

entity fulLadder_example is
port (a, b, ci: in bit; s, co: out bit);

end full_adder_example;

-- Declare architecture beginning with structure:

architecture structure of full_adder_example is
component XOR2

port (x, y: in bit; z: out bit); — declares XOR gate

component NAND2

port (x, y: in bit; z: out bit); -- declares NAND gate

end component;

signal iml, im2, im3: bit; -- declares intermediate signals

-- Declare interconnections between component gates:

begin
Gl: xor2 port map (a, b, iml);

G2: xor2 port map (iml, ci, s);

382 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

G3: nand2 port map (a, b, im2);

G4: nand2 port map (iml, ci, im3);
G5: nand2 port map (im2, im3, co);

end full_adder_example;

— Declare dataflow:

architecture dataflow of full_adder_example is
begin

s <= a xor b xor ci after 12 ns;

co <= (a and b) after 10 ns or (iml and ci) after 16 ns;

-- 16 ns is worst case delay

end dataflow;

-- Declare behavior:

architecture behavior of fulLadder_example is
begin

process (a, b, ci)
variable a, b, ci, s: integer;

begin
if a = '0' then a := 0; else a := 1; — converts a to integer

end if
if b = '0' then b := 0; else b := 1; — converts b to integer

end if

if ci = '0' then ci = 0; else ci := 1; -- converts ci to integer

s:=a + b + ci; -- computes sum of inputs

case s is
whenO=> s <= '0'; co <= '0';
when 1 => s <= T; co <= '0';
when 2 => s <= '0'; co <= T;
when 3 => s <= T; co <= T;

end case;

end process;
end full_adder_example;

In the full adder example just given, notice that all keywords are presented in bold type
and that the symbol "=>" is read as "is the value of." Also note that the operators that
are used are those listed in Fig. 6.44 of Section 6.10 and that the double dash "--" is used
to indicate the beginning of a comment. The delay times given for s and co are based on
average gate path delays of 6 ns for the XOR gate and 5 ns for the two-input NAND gate,
as expressed in Eq. (6.1).

An important feature of VHDL is its modularity capability, which allows models to be
reused in the description of other larger entities. A good example is the VHDL structural

8.10 VHDL DESCRIPTION OF ARITHMETIC DEVICES 383

description of a four-bit adder composed of four full adders described in the previous
example. If Fig. 8.49 is used with reference to Figs. 8.4 and 8.5, the structure of the four-bit
adder is given as follows:

entity four_bit_adder is
port (aO, al, a2, a3, bO, bl, b2, b3, ci: in bit; sO, si, s2, s3, co: out bit;

end four_bit_adder;

architecture connectJour of four_bit_adder is

component fulLadder

port (a, b, ci: in bit; s, co: out bit);

end component;

for all: fulLadder use entity fulLadder_example;

signal cl,c2, c3: bit

begin
FAO: fulLadder port map (aO, bO, ci, sO, cl);

FA1: fulLadder port map (al, bl, cl, si, c2);

FA2: fulLadder port map (a2, b2, c2, s2, c3);

FA3: fulLadder port map (a3, b3, c3, s3, co);

end connect_four;

end four_bit_adder;

Just given is an architectural description for the full-adder primitive, followed by that for
a four-bit adder formed by cascading four full-adder primitives. However, within VHDL
compilers, encapsulations of such primitives are provided so that they can be easily re-
trieved and used in the architectural descriptions of larger systems. Thus, for well-known
primitives like those just considered, there is no need to construct the detailed architec-
tural descriptions — this has already been accomplished for the convenience of the user.
These primitives exist within standard logic packages. The IEEE 1164 standard library is
an example, and its contents are made available by making the statements

library ieee

use std_logic_1164.all

Once a standard library is made available in the design description, use can be made of data
types, functions, and operators provided by that standard. Standard data types include bit,
bit-vector, integer, time, and others, and the operators are of the type given in Fig. 6.44.
The standard package defined by the IEEE 1076 standard includes declarations for all the
standard data types. For detailed information on these and other subjects related to standard
libraries and packages the reader is referred to Further Reading.

FURTHER READING

Most recent texts give a fair account of the basic arithmetic devices, including the full
adder, parallel adders, subtractors, adder/subtractors, and carry look-ahead adders. Typical

384 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

examples are the texts of Comer, Ercegovac and Lang, Hayes, Katz, Pollard, Sandige,
Tinder, Wakerly, and Yarbrough. The subject of multiple operand addition and the carry-
save adder appears to be covered adequately only in texts by Ercegovac and Lang and by
Tinder. Note that some of the listed devices may or may not be the strength of a text.

[1] D. J. Comer, Digital Logic and State Machine Design, 3rd. ed., Sanders College Publishing, Fort
Worth, TX, 1995.

[2] M. D. Ercegovac and T. Lang, Digital Systems and Hardware/Firmware Algorithms. John Wiley
& Sons, New York, 1985.

[3] J. P Hayes, Introduction to Digital Logic Design. Addison Wesley, Reading, MA, 1993.
[4] R. H. Katz, Contemporary Logic Design. Benjamin/Commings Publishing, Redwood City, CA,

1994.
[5] L. H. Pollard, Computer Design and Architecture. Prentice Hall, Englewood Cliffs, NJ, 1990.
[6] R. S. Sandige, Modern Digital Design. McGraw-Hill, New York, 1990.
[7] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice-Hall, Englewood Cliffs,

NJ, 1991.
[8] J. F. Wakerly, Digital Design Principles and Practices, 2nd ed., Prentice-Hall, Englewood Cliffs,

NJ, 1994.
[9] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/St.

Paul, 1997.

A few books adequately cover combinational multipliers. These include the texts by
Ercegovac and Lang, Katz, Pollard, and Tinder, all previously cited. Of these, only the text
by Tinder appears to cover combinational dividers.

A somewhat older text by Kostopoulos covers a rather broad range of subjects relative
to arithmetic methods and circuits, including a good treatment of combinational multipliers
and dividers. A recent text by Parhami provides an exhaustive treatment of the subject and
is highly recommended.

[10] G. K. Kostopoulos, Digital Engineering. John Wiley & Sons, New York, 1975.
[11] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press,

New York, 2000.

The subject of arithmetic and logic units (ALUs) is somewhat esoteric. Nevertheless,
it is covered to one extent or another by a few well-known texts. These include those by
Ercegovac and Lang, Hayes, Katz, Tinder, and Yarbrough, all previously cited. In addition,
the text of Mead and Conway discusses an ALU suitable for processor application that is
the starting point for the ALU treated in Subsection 8.8.2 of this text. Apparently, only the
text by Tinder develops the dedicated multilevel ALU by using XOR/SOP logic. Coverage
of dual-rail arithmetic systems, particularly ALUs, is difficult if not impossible to find in
any text. The source on which this text is based is the thesis of Amar cited next. Here,
dual-rail ALUs, multipliers, and dividers, all with completion signals, are discussed in
detail.

[12] A. Amar, "ALUs, Multipliers and Dividers with Completion Signals," M.S. Thesis. School of
Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 1994.

[13] C. Mead and L. Conway, Introduction to VLSI Systems. Addison-Wesley, Reading, MA, 1980.

PROBLEMS 385

A(H).
B(H) -

C,n(H)-
F,(H)

FIGURE P8.1

PROBLEMS

8.1 Use one half adder, one NOR gate, and one inverter (nothing else) to implement a
circuit that will indicate the product of a positive 2-bit binary number and 3. Assume
all inputs and outputs are active high. (Hint: Construct a truth table with A B as the
inputs and Y^, ¥2, Y\, YQ as the outputs.)

8.2 Use a full adder (nothing else) to implement a circuit that will indicate the binary
equivalent of (jc2 4- x + 1), where x = AB is a 2-bit binary word (number). Assume
that the inputs and outputs are all active high. (Hint: Construct a truth table with AB
as the inputs and ¥3, ¥2, Y\, YQ as the outputs.)

8.3 Design a three-input logic circuit that will cause an output F to go active under the
following conditions:

All inputs are logic 1
An odd number of inputs are logic 1
None of the inputs are logic 1

To do this use one full adder and two NOR gates (nothing else). Assume that the inputs
arrive active high and that the output is active low.

8.4 Prove that the logic circuit in Fig. P8.1 is that of a full adder. Also, prove that Cou, is
the majority function AB + BC + AC. (Hint: Make use of K-maps or truth tables to
solve this problem.)

8.5 Use the logic circuit in Fig. P8.1 (exactly as it is given) to construct a staged CMOS
implementation of the full adder. Refer to Fig. 3.41 for assistance if needed.

8.6 Use the symbol for a 3-to-8 decoder and two NAND gates (nothing else) to implement
the full adder. Assume that the inputs arrive as A(H), B(H), and Cin(L) and that the
outputs are issued active high. (Hint: First construct the truth table for the full adder,
taking into account the activation levels of the inputs and outputs.)

8.7 Without working too hard, design a 4-bit binary-to-2' s complement converter by using
half adders and inverters (nothing else). Use block symbols for the half adders and
assume that the inputs and outputs are all active high.

386 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

8.8 Without working too hard, use four full adders (nothing else) to design a circuit that
will convert XS3 to BCD. Assume that all inputs and outputs are active high. (Hint:
Use 2's complement arithmetic.)

8.9 Analyze the adder/subtractor in Fig. 8.9 in 4 bits by adding or subtracting the binary
equivalent of the numbers listed below. To do this, give the sum (or difference) and
carry logic values at each stage.

(a) A = 1101; B = 0111 if A/S(H) = 0(//)
(b) A = 1101; B = 0111 if A/S(H) = l(H)
(c) A = 0110; B = 1101 if A/S(H) = l(H)

8.10 Analyze the 3-bit carry look-ahead adder (CLA) in Fig. 8.13 by introducing the number
given below. To do this, give the G(L) and P(H) logic values in addition to the sum
and carry values.
(a) A = 011; B = 110
(b) A = 111; B = 101

8.11 (a) By using Algorithm 2.14 in Subsection 2.9.6 and two 4-bit ripple/carry adders,
complete the design of the single-digit BCD adder in Fig. P8.2a, one that can be
bit-sliced (cascaded) to produce an n -digit BCD adder. To do this, first find the
minimum logic for the correction parameter X that will indicate when the sum is

BCD Operands

,B0 A3A2A,A0

Carry in
from next
LSD stage

tnp— -N from next

Cmi, 4-Bit Adder'out

S3 S2 St S

0(H)

tl- 4*4
L

1-Digit BCD p
001 Adder °ir»

Spill

FIGURE P8.2

PROBLEMS 387

greater than 9 but less than 19. Then use one of two 4-bit adders (as shown) to add
01 10 to the sum conditionally on X. Note the logic symbol for the 1 -digit BCD
adder in Fig. P8.2b. What restrictions, if any, are placed on the operands?

(b) Test the design of a two-digit BCD adder by adding the following two BCD
numbers:

Test#l A = 9i0;£ = 7,0
Test #2 A = 34i0;5 = 1910

To do this, indicate the logic values for each sum, carry, and correction parameter
X .

8.12 (a) Alter the design of Problem 8.11 with the appropriate external logic so as to
create a one-digit BCD adder/subtractor that can be bit-sliced to form an n-digit
BCD adder/subtractor, all with B as the subtrahend. (Hint: Add an enable EN(H)
= A/S(H) mode control to the correction logic of Problem 8.11 and use 10's
complement arithmetic to perform BCD subtraction operations. To do this, fol-
low Fig. 8.9 with the appropriate external logic on the input for cascading pur-
poses. Also, remember that a 1 carry cannot be generated in BCD subtraction.
It is important to note that, in this case, the negative number is not converted to
10's complement as in Algorithm 2.15, which is an alternative means of BCD
subtraction.)

(b) Test the design of a two-digit BCD adder/subtractor by introducing the following
numbers and mode control:

Test #1 A = 610, B = 29io, and A/S(H) =
Test #2 A = 6,0, B = 29,0, and A/S(H) = l(H)

To do this, indicate the logic values for each operand, sum, carry, mode control, and
correction parameter. Note that if the result of a subtraction is a negative number,
it will be represented in 10's complement, and that its true value can be found by
negation of each digit separately.

8.13 Use two 4-bit binary adders and the necessary correction and external logic to design
a one-digit XS3 adder (similar to BCD adder in Fig. P8.2) that can be cascaded to
form an n-digit XS3 adder. To do this, use the following algorithm:

Add XS3 numbers by using binary addition: If there is no 1 carry from the 4-bit sum,
correct that sum by subtracting 0011 (3io). If a 1 carry is generated from the 4-bit
sum, correct that sum by adding 0011. Remember that XS3 numbers less than 3 or
greater than 12 are not used and that the sum of two XS3 numbers cannot exceed 24 10.

[Hint: First, find the minimum logic for the correction parameter X that will indicate
when the sum is greater than 12 but less than 25, the range over which a 1 carry is
generated. Also, controlled inverters (XOR gates) must be used for the addition or
subtraction of SIQ.] What restrictions, if any, are placed on the operands?

8.14 (a) Alter the design of Problem 8.13 so as to create a one-digit XS3 adder/subtractor
that can be cascaded to form an n-digit XS3 adder/subtractor, all with B as the

388 CHAPTER 8/ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

subtrahend. Note that a 1 carry cannot be generated in XS3 subtraction. (Hint: An
additional four controlled inverters are needed for the add/subtract operations.)

(b) Test the design of a two-digit XS3 adder/subtractor by introducing the following
numbers and mode control:

Test #1 A = 610, B = 29io, and A/S(H) =
Test #2 A = 610, B = 2910, and A/S(H) = \(H)

To do this indicate the logic values for each operand, sum, carry, mode control, and
correction parameter. Note that the decimal value of a negative XS3 number is found
by subtracting . . .001 1 from the negated number and reading it as a BCD number.

8.15 In Fig. P8.3a is shown a network containing several combinational logic devices
including a 4-bit ripple/carry adder.
(a) Complete the truth table in Fig. P8.3b.
(b) Use a decoder and a single OR gate to accomplish the result given in part (a).

Assume that the decoder has active high outputs.

8.16 (a) Design a 4-bit noncascadable comparator by using two 4-bit subtracters and one
NOR gate (nothing else). [Hint: It will be necessary to switch operands on one
of the two subtracters. Also, in a subtracter, a final borrow-out of 1 indicates
(minuend) < (subtrahend), but a final borrow-out of 0 indicates (minuend) >
(subtrahend). Thus, if both borrow-outs are logic 0, then the two numbers are
equal. Note that a negative difference is given in 2's complement but taking into
account Bin)LSB = 0.]

(b) Test the design in part (a) by using the following operands:

Test#l A = 1101; B =0110
Test #2 A = 01 10; B = 1101
Test #3 A = 1010; B = 1010

(c) Show that the difference of the two operands can also be read from the circuit.

8.17 (a) By using Eqs. (8.8), complete the carry look-ahead adder (CLA) circuit in Fig. 8.13
for a cascadable 4-bit CLA adder unit. Thus, include the carry generate/propagate
logic from the fourth stage.

(b) Test the results by adding the following numbers:

Test #1 A = 01 11; 5=0110
Test #2 A = 1101; B = 1010

8.18 Analyze the carry-save circuit of Fig. 8.15b by introducing the three operands given
in Fig. 8.15a into the circuit. To do this, give the logic values for each operand, sum,
and carry.

8.19 Analyze the 4 x 4 binary multiplier in Fig. 8. 1 8 by introducing the following operands
into the circuit:
(a)A = 1101; 5 = 0110
(b)A = 1001; B = 1011

PROBLEMS 389

0 Binary-to-Gray
1 Converter

S0 4-to-1
MUX

(a)

A B , S0

S0(H)

S,(H)

S2(H)

S3(H)

0 0

0 1

1 0

1 1

(b)

FIGURE P8.3

To do this, list all partial products, indicate the sum and carry values at each stage,
and end with the final product values.

8.20 (a) Combine the 4 x 4 binary multiplier in Fig. 8.18 with the 8-bit binary-to-BCD
converter in Fig. P6.3 to produce a one-digit BCD multiplier that can be bit-
sliced to form an n-digit BCD multiplier. What restrictions must be placed on the
operands?

(b) Test the results of part (a) by introducing the following operands into the resulting
circuit of part (a):

Testtfl A = 0111; B = 1000
Test #2 A = 1001; B =0011

390 CHAPTER 8 / ARITHMETIC DEVICES AND ARITHMETIC LOGIC UNITS (ALUs)

M S1 S0

{
0 0 0

0 0 1

0 1 0

0 1 1

{
1 0 0

1 0 1

1 1 0

1 1 1

F

A©B©Cin

A©B©Cin

(A+B)©Cin

(AB)©Cin

A©B

A0B

A + B

A - B

Cout

Cin(A©B) + A-B

Cin(A©B) + A-B

Cin-(A+B)

Cin-B + A

(f)

<!>

*</>

Operation*

A plus B

A minus B*

A plus AB

A plus (A+B)

A XOR B

A EQV B

A OR B

A AND B

* Subtraction operations assume 2's complement arithmetic.

FIGURE P8.4

(c) Use a block symbol for the 1-digit BCD multiplier together with the block symbol
for the binary-to-BCD converter of Fig. P6.3 to design a 2 x 2 BCD multiplier. To
do this, form a array of 1-digit multipliers and connect them properly to a 4-digit
BCD adder. Indicate the digit orders of magnitude (10°, 101, 102, and 103) at all
stages of the multiplier.

8.21 By using the results shown in Fig. 6.19, alter the design of the BCD multiplier of
Problem 8.20 so as to produce a cascadable one-digit XS3 multiplier. (Hint: It will
be necessary to design an XS3-to-BCD converter as an output device.)

8.22 With reference to Fig. 8.22, analyze the parallel divider shown in Fig. 8.23. To do this,
introduce the operands A = 11010 and 5 = 110 and indicate on the logic circuit the
logic value for each operand, borrow, remainder, and quotient.

8.23 Shown in Fig. P8.4 is the operation table for a cascadable one-bit arithmetic and logic
unit (ALU) that has three mode/select inputs that control four arithmetic operations
and four bitwise logic operations.
(a) Design this ALU by using a gate-minimum logic. Note that this design includes

the use of compound XOR-type patterns similar to those used in Fig. 8.27. End
with a logic circuit for both function F and Cout.

(b) Test the design of part (a) by introducing the following operands with (Cjn)LSB —
Add/Sub. for arithmetic operations:

Tests #1 A-10; B = ll 2-Bit ALU; MS\S0 =

Tests #2 A = 0100; 5 = 0111 4-Bit ALU; MSiS0 =

_ f 0001
-jioij

fooil
1100}

CHAPTER 9

Propagation Delay and Timing
Defects in Combinational Logic

9.1 INTRODUCTION

To this point in the text, combinational logic circuits have been treated as though they
were composed of "ideal" gates in the sense of having no propagation delay. Now it is
necessary to take a step into the real world and consider that each gate has associated
with it a propagation time delay and that, as a result of this delay, undesirable effects may
occur.

Under certain conditions unwanted transients can occur in otherwise steady-state signals.
These transients have become known as glitches, a term that derives from the German
glitsche, meaning a "slip" (hence, the slang, error or mishap). A glitch is a type of logic
noise that is undesirable because its presence in an output may initiate an unwanted process
in a next-stage switching device to which that output is an input. In some circuits glitches
can be avoided through good design practices; in other circuits they are unavoidable and
must be dealt with accordingly.

There are three kinds of logic noise that occur in combinational logic circuits and that
are classified as hazards.

Static hazards:
Static 1-hazard (also called SOP hazard) — A glitch that occurs in an otherwise

steady-state 1 output signal from SOP logic because of a change in an input
for which there are two asymmetric paths (delay-wise) to the output.

Static 0-hazard (also called POS hazard) — A glitch that occurs in an otherwise
steady-state 0 output signal from POS logic because of a change in an input
for which there are two asymmetric paths (delay-wise) to the output.

Static 1-Hazard Static 0-Hazard

391

392 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

Dynamic hazards: Multiple glitches that occur in the outputs from multilevel
circuits because of a change in an input for which there are three or more
asymmetric paths (delay-wise) of that input to the output.

Dynamic 0-»1 -»0-»1 Dynamic 1 -»0-»1 ->0
Hazard Hazard

Function hazards: A type of logic noise that is produced when two or more
inputs to a gate are caused to change in close proximity to each other.

In this chapter the discussion will center on how these hazards occur and how they can be
avoided or eliminated. Since the subject of hazards is also of considerable importance to
sequential machine design, it with be revisited in subsequent chapters.

9.2 STATIC HAZARDS IN TWO-LEVEL COMBINATIONAL LOGIC CIRCUITS

A single glitch that is produced as a result of an asymmetric path delay through an inverter
(or gate) is called a static hazard. The term "static" is used to indicate that the hazard
appears in an otherwise steady-state output signal. Thus, a static hazard is not "stationary"
or "motionless," as implied by the usual usage of the word static, but is quite unstationary
and transient.

The best way to introduce static hazard detection and elimination in combinational logic
is by means of simple examples. However, before proceeding further it will be helpful to
define certain terms that are used in identifying static hazards in SOP or POS combinational
logic circuits, and to provide a simple procedure for their elimination:

Coupled variable: An input variable that is complemented in one term of an
output expression and uncomplemented in another term.

Coupled term: One of two terms containing only one coupled variable.
Residue: That part of a coupled term that remains after removing the coupled

variable.
Hazard cover (or consensus term): The RPI required to eliminate the static

hazard:
AND the residues of coupled p-term to obtain the SOP hazard cover, or
OR the residues of coupled s-terms to obtain the POS hazard cover.

Note that in either case the RPI (redundant prime implicant) is a result of the application of
a consensus law given by Eqs. (3.14).

Static Hazard Detection and Elimination Static hazard detection involves identifying
the coupled terms in an logic expression. Static hazard elimination occurs when the con-
sensus p-term RPI is ORed to the SOP expression containing the static hazard, or when the
consensus s-term RPI is ANDed to the POS expression containing the static hazard. Note
that if the RPI is contained in a more minimum term, that term should be used.

9.2 STATIC HAZARDS IN TWO-LEVEL COMBINATIONAL LOGIC CIRCUITS 393

Q1 ^ 1Q

0
0

0
4

0
1

h
5

(VT 3

1')
7

1)
2

0

6

(a) AB<L)

AC(L)

Y(H)

= gate path delay

•Y(H) ^ Static 1-hazard

Small region of. . %
logic 0

(b)

FIGURE 9.1
A static 1-hazard produced by a 1 -» 0 change in input A. (a) K-map for Equation (9.1) showing
loops for coupled terms and transition from state 111 to state 011. (b) Logic circuit for Equation (9.1)
showing asymmetric paths for A. (c) Timing diagram for the circuit in (b) illustrating the production
of the static 1-hazard after two gate path delays (2r) following the change in A.

Consider the SOP function given by

(9.1)

Here, A is the coupled variable, AB and AC are the coupled terms, and the hazardous
transition read in minterm code is 111—> Oil as indicated by the coupled terms in Eq.
(9.1) and by the K-map in Fig. 9.la. The logic circuit for Eq. (9.1) is given in Fig. 9.1b,
where the two asymmetric paths of input A to the output are indicated by the heavier
lines. With all inputs active high, the transition 111 —>• Oil produces a static 1-hazard
after a 1 -> 0 change in input A, as illustrated by the logic timing diagram in Fig. 9.1c.
Thus, when the coupled terms are ORed, a small region of logic 0 (shaded region) creates
the SOP hazard of magnitude equal to that through the inverter. The path delay through
a NAND gate is designated by r with input leads assumed to be ideal with zero path
delay.

The ANDed residues of Eq. (9.1) is the RPI BC. When this is added to Eq. (9.1) there
results

Y = AB + AC + BC , (9.2)
Hazard
cover

which eliminates the hazard. This is demonstrated by the K-map, logic circuit, and timing
diagram in Fig. 9.2. Notice that the hazard cover BC in the K-map of Fig. 9.2a is an RPI
and that it covers the hazardous transition 111 -> Oil indicated by the arrow. When this
RPI is added to the original expression, as in Eq. (9.2), the result is the logic circuit in

394 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

Hazard Cover
BC

10

A(H)

AB(L) I

AC(L) J

BC(L)

(b) (c)

FIGURE 9.2
Elimination of the static 1-hazard by adding hazard cover, (a) K-map showing RPI that covers the
hazardous transition 111 —*• 011. (b) Logic circuit that includes the shaded hazard cover gate BC(L).
(c) Timing diagram showing the elimination of the static hazard in Fig. 9.1 due to presence of the
hazard cover term BC(L).

Fig. 9.2b, which completely eliminates the static 1-hazard as illustrated in Fig. 9.2c. In fact,
the hazard is eliminated regardless of the magnitude of the delay through the inverter — the
hazard cannot form even if, for example, the delay is a ridiculous thousand times that of
a NAND gate. It is also true that the results shown in Fig. 9.2 are valid if AND/OR/INV
logic replaces the NAND/INV logic shown. In this case the coupled terms and hazard cover
RPI would all be active high, but the waveforms would remain the same, the benefit of
mixed-logic notation.

There is the question of how the activation level of the coupled variable A affects the
results illustrated in Figs. 9.1 and 9.2. If A arrives active low, A(L), then the inverter must
be placed on the A line to the AC gate. The static 1-hazard is still formed, but as a result
o f a O l l —> 111 transition following a 0 -> 1 change in input A. This is illustrated in
Fig. 9.3 for purposes of comparison with Figs. 9.1 and 9.2. Nevertheless, the static 1-hazard
is eliminated by the hazard cover BC as shown in Fig. 9.3. Again, replacing the NAND/INV
logic by AND/OR/INV logic would not alter the waveforms but would change the activation
levels of the coupled terms and hazard cover to active high.

The forgoing discussion dealt with static hazards in SOP logic. The detection and elim-
ination of static 0-hazards in POS combinational logic follows in similar but dual fashion.
Consider the function

Y = (A + B)(A + C), (9.3)

000 100

where A is again the coupled variable but now (A + B) and (A + (7) are the coupled terms.

9.2 STATIC HAZARDS IN TWO-LEVEL COMBINATIONAL LOGIC CIRCUITS 395

Hazard Cover
BC

10

C(H)
F^ I

BC(L)
Small region of logic 0

(b) (c)

FIGURE 9.3
Elimination of the static 1-hazard for the case of an active low coupled variable, (a) K-map showing
RPI that covers the hazardous transition Oil —>• 111. (b) Logic circuit that includes the shaded hazard
cover gate BC(L). (c) Timing diagram showing the elimination of the static 1-hazard due to presence
of the hazard cover term fiC(L).

Read in maxterm code, assuming NOR/INV logic and active high inputs, the hazardous
transition is 000 —»• 100 following a 0 -> 1 change in A as shown in Fig. 9.4a. The logic
circuit for Eq. (9.3) is given in Fig. 9.4b, where the two asymmetric paths for input A to
the output are indicated by heavy lines. The static 0-hazard is formed as a result of the two

I \

— »
0

0

4

o)
1

1
5

1

3

1

7

1

2

fT~
6

A(H) 1

B(H)

C(H)

«— r = gate path delay

o

(a) Y (A+BXL> i

Y(H)
Y(H)

(A+C)(L) i

A
Static 0-hazard

Small region of
Iog|c1 — , N V

(b) (c)

FIGURE 9.4
A static 0-hazard produced by a 0 —>• 1 change in input A. (a) K-map for Eq. (9.3) showing loops
for coupled terms and transition from state 000 to state 100. (b) Logic circuit for Eq. (9.3) showing
asymmetric paths for A. (c) Timing diagram for the circuit in (b) illustrating the production of the
static 0-hazard after two gate path delays 2r following the change in A.

396 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

Hazard cover
(B+C) fj->1 change in A

A(H)

(A+B)(L) J LT

(A+C)(L) J I

B(H,-n 1^'\ (B+C)(L) i /
A(H)

-rl 1̂_I r^ s\—*\ "-Q—N
-Y(H)

C(H) L _,, , y(H)

Small region of

(b) 'Ogic1 (c)

FIGURE 9.5
Elimination of the static-0 hazard by adding hazard cover, (a) K-map showing RPI that covers the
hazardous transition 000 -+ 100. (b) Logic circuit that includes the shaded hazard cover gate (B +
C)(L). (c) Timing diagram showing the elimination of the static 0-hazard due to presence of the hazard
cover term (B + C)(L).

asymmetric paths (delay-wise) such that a small region of logic 1 exists when the waveforms
for the coupled terms are ANDed as illustrated in Fig. 9.4c.

The static 0-hazard shown in Fig. 9.4c is eliminated by adding hazard cover to the
function of Eq. (9.3). The ORed residues for function Y in Eq. (9.3) is (B + C). When this
is added (ANDed) to Eq. (9.3), there results

Y = (A + B)(A + C)-(B + C), (9.4)

Hazard
cover

which eliminates the static 0-hazard as illustrated in Fig. 9.5. Notice that (B + C) covers the
transition 000 -* 100 as indicated by the arrow in the K-map of Fig. 9.5a, and that it is by
definition an RPI. The logic circuit for Eq. (9.4) is given in Fig. 9.5b and is now hazard-free
as illustrated in Fig. 9.5c. Here, it is seen that the small region of logic 1 that caused the static
0-hazard in Fig. 9.4 has been rendered ineffectual because of the ANDed RPI (B + C)(L),
which remains at 0(L) during the hazardous transition. Note that if only input A arrives
active low A(L), the static 0-hazard still forms, but as result of a 100 —*• 000 transition
following a 1 -> 0 change in A. Changing from NOR/INV logic to OR/AND/INV logic
in Figs. 9.4 and 9.5 does not alter any of the conclusions drawn to this point. However, the
activation levels of the coupled terms and hazard cover must be changed to active high in
Fig. 9.5c, but leaving their waveforms unaltered.

Detection and elimination of static hazards in two-level combinational logic circuits is
actually much simpler than would seem evident from the foregoing discussion. Actually,
all that is necessary is to follow the simple procedure given next.

9.2 STATIC HAZARDS IN TWO-LEVEL COMBINATIONAL LOGIC CIRCUITS 397

Procedure for Detection and Elimination of Static Hazards in Combinational Logic
Circuits

1. Identify the couple terms in an SOP or POS expression.
2. OR their consensus (RPI) P-terms to the SOP expression, or AND their consensus

s-terms to the POS expression.
3. Reject any set of two terms containing more than one couple variable. Remember:

Only one variable is allowed to change in a static hazard transition. All other variables
must be constant.

4. Read the initial and final states from the coupled terms in a hazardous transition by
using minterm code for SOP and maxterm code for POS.

As an example, consider the following minimum SOP function of four variables showing
two hazard transitions together with the corresponding hazard cover for each:

0001 0011

~^ ABC. (9.5)

Hazard cover
0100 0101

In this expression, NAND/INV logic is assumed with inputs that arrive active high. Here,
the hazard cover ABC is the ANDed residues (consensus p-term) of coupled terms BCD and
A CD, where D is the coupled variable. And hazard cover ABD is the ANDed residues of
couple terms A CD andfiC, where C is the coupled variable. These static 1-hazard transitions
are illustrated in the K-map of Fig. 9.6a by using arrows indicating a 1 —> 0 change in the
couple variable. The consensus terms can be seen to cover the hazard transitions (arrows).

CD C
AB\ 00 01 ' 11 10

00

01

11

A

10
8 9 I lo /

^^SOP
D

(a)

FIGURE 9.6
K-map representation of static hazards in the function F represented by Eq. (9.5) and by Eq. (9.6).
(a) Static 1 hazard transitions, (b) Static 0 hazard transitions.

398 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

Terms BCD and BC cannot be coupled terms and cannot produce a static hazard, since they
contain more than one couple variable-they have no consensus term. These terms form
what is called a function hazard, a subject that is discussed in a later section.

The procedure for detection and elimination of static 0-hazards in POS logic is the dual
of that for the detection and elimination of static 1 hazards in SOP logic. As an example,
consider the minimum POS representation of the function F together with the hazard
transitions and hazard cover given in Eq. (9.6):

1101
i t

= (B + C + D)(A + C + D)(B + C) • (A + B + C)(A + B + D}

1000 1001

}
(9.6)

Hazard cover

Here again, inputs C and D are the coupled variables where the inputs are assumed to
arrive active high but with NOR/INV logic. Notice that the initial and final states are read
from the coupled terms by using maxterm code and are exactly those shown by arrows
in Fig. 9.6b, indicating a 0 —>> 1 change in the coupled variable. The hazard covers are
the ORed residues (consensus s-terms) of the coupled terms and are ANDed to the orig-
inal expression in Eq. (9.6). Note also that the s-terms (B + C + D) and (B + (7) are
not coupled terms and cannot produce a static 0-hazard since they contain two coupled
variables — remember, only one variable is allowed to change in the production of a static
hazard. Also, if a coupled variable arrives active low with all other inputs active high, then
the arrow indicating the hazard transition for that coupled variable must be reversed in
Eq. (9.6).

As a final example, consider the function Z of five variables,

11100 11101

J ~ I
Z = BCD + CDE + ADE + ABE + ABC + ABCE + ABCD, (9.7)

01010 01000
Hazard cover

where the coupled variables are easily seen to be D and E. Assuming NAND/INV or
AND/OR/INV logic and that all inputs arrive active high, the two hazard transitions are
indicated by arrows in Eq. (9.7). Thus, read in minterm code, coupled terms BCD and
ADE produce a static 1-hazard during the transition 01010-* 01000 following a 1 —> 0
change in D, while terms ABE and CDE generate a static 1-hazard during the transition
11101 -> 111 00 following a 1 -»• 0 change in E. Adding the ANDed residues of the coupled
terms for each hazard transition gives the hazard-free expression in Eq. (9.7).

It should be clear to the reader that the detection and elimination of static hazards can be
conducted without the aid of K-maps or logic circuits simply by following the four steps
given previously. Exceptions to this rule are discussed in the next section, where diagrams
of a rather different sort are used to simplify the process of identifying and eliminating
static hazards in multilevel XOR-type functions.

9.3 DETECTION AND ELIMINATION HAZARDS 399

9.3 DETECTION AND ELIMINATION HAZARDS IN MULTILEVEL
XOR-TYPE FUNCTIONS

Conventional static hazard analysis used in two-level logic does not address the problem
of hazards in multilevel XOR-type functions. This section presents a simple but general
procedure for the detection and elimination of static hazards in these functions. It is shown
that all static hazards can be eliminated with redundant cover derived by using a method
based on lumped path delay diagrams (LPDDs), and that this method is of unrestricted
applicability. The problems associated with dynamic hazards, as they relate to static hazard
cover, are also considered.

Multilevel XOR-type functions of the type considered in this section find use in arithmetic
circuits, such as dedicated arithmetic logic units, and in error detection circuits. These
functions can be obtained from logic synthesis algorithms or from K-map extraction as was
demonstrated in Chapter 5. If steady, clean outputs from these functions are required, it is
necessary to remove any logic (hazard) noise that may be present.

Modern CMOS 1C technology has produced XOR and EQV gates whose speed and
compactness are close to those of other two-input gates (see, e.g., Figs. 3.26 and 3.27). This
has made the use of XOR and EQV gates more practical and has led to the development
of various methods of multilevel function implementation that take advantage of these
gates. These implementations can produce gate-minimum results not possible with two-
level logic. When fan-in restrictions on two-level implementations are considered, multilevel
implementations become even more attractive.

The simpler multilevel functions include the XOR/SOP and EQV/POS forms. The
XOR/SOP form connects p-terms with OR and XOR operators, while the EQV/POS form
connects s-terms with AND and EQV operators. XOP and EOS forms are special cases of
XOR/SOP and EQV/POS, respectively, and are considered to be special two-level forms
of representation. The XOP form connects p-terms only with XOR operators, and the EOS
form connects s-terms only with EQV operators. Multilevel functions more complex than
XOR/SOP and EQV/POS are classified simply as compound multilevel forms for lack of a
practical classification scheme.

As was stated in Section 9.2, a static hazard is a glitch in an otherwise steady-state
output signal and is produced by two asymmetric paths from a single input. Figure 9.7 is
a generalization of the condition that allows the static hazard to form in multilevel circuits.
The coupled variable must be an input to the initial gate in each path (Gates 1 and 3 in

Path 1

| t | Path 2

FIGURE 9.7
Alternative paths of the coupled variable to the hazard gate that is necessary for static hazard formation
in a multilevel logic circuit.

400 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

Fig. 9.7). The signal must propagate through each path until both paths reach a single gate,
called the hazard gate. If, for example, the signal requires more time to propagate through
Path 1 than through Path 2, the signal from Path 2 will reach the hazard gate before the
signal from Path 1. This asymmetry in path delay may cause a static hazard, depending on
the nature of the hazard gate and the gates in the two paths. Here, an inverter is considered to
be a gate and the hazard gate may or may not be the output gate. Also, lead delays are treated
as ideal with negligible path delay, and each gate has an inherent delay associated with it
that depends on its type, the number of inputs, and the technology used to implement it.

Static hazard analysis in multilevel functions is more complicated than in two-level logic.
Nevertheless, the static hazard is formed in agreement with the requirements of Fig. 9.7.
Each path may consist of any number of gates, and the gates in Path 1 may differ in several
respects from those in Path 2. Thus, if

(S Path 1 delays) ^ (E Path 2 delays), (9.8)

hazard formation is possible according to Fig. 9.7. Furthermore, in multilevel functions of
the type considered in this section, the difference between the Path 1 and Path 2 delays may
range from that of an inverter to one or more gate delays. Thus, the size (or strength) of
the static hazard glitch in a multilevel logic circuit may be considerable. Whereas the static
hazard glitch in two-level logic caused by an inverter may or may not cross the switching
threshold, a static hazard glitch in a multilevel XOR-type circuit may be quite large and
may easily cross the switching threshold.

9.3.1 XOP and EOS Functions

The simplest XOR/SOP or EQV/POS functions that produce static hazards are very similar
to conventional two-level functions. If no more than one term in an SOP function can be
active at any given time, the terms are mutually disjoint and the OR operators can be replaced
with XOR operators as indicated by Corollary I in Subsection 3.11.1. The result is an XOP
function. Hazards in an XOP function can be detected and eliminated by a method parallel
to that described for SOP functions in Section 9.2.

As an example, consider the reduced function N in SOP and XOP form:

(9.9)
NXOP=ABC@ABD@ABCD®ABCD. (9.10)

The p-terms are mutually disjoint, so the direct conversion from SOP to XOP is permitted.
It follows from the conventional methods discussed in Section 9.2_that two static hazards
will occur in N$OP of Eq. (9.9): between coupled terms ABD and ABC ona l l l l ->0111
transition following a 1 — >• 0 change in A, and between coupled terms ABD and A BCD
o n a (l l l l — > 1011) transition following a 1 -> 0 change in B. Each hazard is caused by
an inverter through which the coupled variable must pass. This inverter makes the two path
delays (Fig. 9.7) unequal, allowing the hazards to form following a change in each coupled
variable. Each hazard is eliminated by adding a consensus p-term consisting of the ANDed

9.3 DETECTION AND ELIMINATION HAZARDS 401

residues, giving the result

NSOP = ABC + ABD + ABCD + ABCD + (BCD+ACD) (9.11)

Hazard cover

The method of hazard detection and elimination for NXOP in Eq. (9.10) is quite similar
to that of NSOP in Eq. (9.11). However, a hazard can now occur in either direction between
the coupled terms. Thus, for coupled terms ABD and ABC a static 1-hazard is produced on
either a l l l l —>• 0111 or 0111 -> 1111 transition following a l — » - O o r O — » - l change in
couple variable A. Similarly, for coupled terms ABD and AB CD a static 1-hazard can occur
on either a l l l l -> 1011 or 1011 -»• 1111 transition following a 1 -> 0 or 0 —> 1 change in
coupled variable B. The complete details of these events are provided in Eq. (9.12), where
the two hazards have been eliminated by the adding hazard cover. Note that each cover
term is added to the function with an OR operator and not with an XOR operator. This is
important because after hazard cover is added, the terms are no longer mutually disjoint.
Therefore, adding the hazard cover by using an XOR operator would fundamentally alter
the function.

ion

= ABC 0 ABD © ABCD © ABCD + (BCD + ACD) (9.12)

I J Hazard cover
0111 1111

The bidirectionality of the XOP hazard production in Eq. (9.12) is due to the nature of
the XOR gate. Unlike an OR gate or an AND gate, an XOR gate will produce an output
change with any single input change. Furthermore, if both inputs to an XOR gate change
simultaneously, the final output will be the same as the initial output. Therefore, if the two
inputs change at different times but in close proximity to one another, a short glitch will
occur, regardless of the state transition involved or the order in which the inputs change.
However, on a 01 —> 10 change in the two inputs to an OR gate, for example, the order
in which the inputs change will determine whether or not a hazard occurs. This difference
between XOR gates and OR gates is the reason a static hazard can be caused by a coupled
variable change in either direction for an XOP function but in only one direction for an SOP
function.

The timing diagram in Fig. 9.8 illustrates the behavior of NSOP and NXOP without and
with hazard cover. At least one hazard cover signal is active during each hazard to prevent
it from propagating to the final output signal. Note that hazards occur in NSOP only on the
falling edge of the coupled variable, but occur in NXOP on both the rising and falling edge
of the coupled variable.

A relationship similar to that between SOP and XOP functions exists between POS and
EOS functions. If no more than one term in a POS function can be inactive at any given
time, the terms are mutually conjoint and the AND operators can be replaced with EQV
operators to form an EOS function. Hazards in the EOS function will be identical to those
in POS, except that hazards in EOS will occur in both transitional directions. Hazard cover
is formed by ORing the residues of the two coupled terms. An AND operator must be used
to connect each hazard cover term to the original function.

402 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

A(H)

oB(H) 1

NSOP(H) J u
u u

u
u u

Bco(H) ;
ACD(H) 1

NXOp(Hr 1
* Indicates with hazard cover

FIGURE 9.8
Timing diagram for functions N$QP and N\OP without and with (*) hazard cover in accordance with
Eqs. (9.11) and (9.12).

As an example, consider the reduced POS and EOS forms of function L, which are the
complements of function N in Eqs. (9.11) and (9.12), i.e., L = N. These POS and EOS
functions are represented by the following expressions, together with the hazard transitions
and hazard cover for each:

1011
__

= (A+B + C}(A + B + D)(A + B + C + D}(A + B + C + D)

0111 1111
'(B + C + D)(A + C + D) (9.13)

Hazard cover

1111 1011

LEOS = (A

{
0111 1111

.(B + C + DKA + C + D). (9.14)

Hazard cover

The coupled variables are A and B, and the coupled terms and hazard transitions are indi-
cated by arrows. The hazard cover terms for both the POS and EOS forms are (B + C + D)
and (A + C + D), each of which is the ORed residues of the respective coupled terms.
Notice that in both cases the hazard cover terms are ANDed to the original expressions.

The timing diagram in Fig. 9.9 illustrates the behavior of LPOs and LEOs without and
with hazard cover. This behavior is similar to that of NSOP and NXOP in Fig. 9.8, but static

9.3 DETECTION AND ELIMINATION HAZARDS 403

A(H)

B(H) J

C(H) J

D(H)

(B+C+D)(H)

(A+C+D)(H)

n
n n

n
n n
i 1

LEOS(H)* o
* Indicates with hazard cover

FIGURE 9.9
Timing diagram for functions Lpos and LEGS without and with (*) hazard cover in accordance with
Eqs. (9.13) and (9.14).

hazards are static 0 hazards in LPOs and LEos rather than the static 1 hazards as in NSOP and
NXOP- Again notice that the static hazards in LEOS, like those in NXQR, are formed following
both a 0 —>• 1 and 1 —»• 0 change in the coupled variable. It is this characteristic that
distinguishes SOP and POS forms from XOP and EOS forms. The former types generate
static hazards on a single change of the coupled variable, whereas the latter types generate
static hazards on both 1 -> 0 and 0 —>• 1 changes in the coupled variable.

9.3.2 Methods for the Detection and Elimination of Static Hazards in Complex
Multilevel XOR-type Functions

Function minimization methods involving K-map XOR-type patterns and Reed-Muller
transformation forms are considered in detail in Chapter 5. For certain functions these
methods lead to gate-minimum forms that cannot be achieved by any other means. An
inspection of these forms reveals that they are of the general form

(9.15)

where a, ft, and F can be composed of SOP, POS, XOP, or EOS terms or some combination
of these. The XOP and EOS functions discussed in Subsection 9.3.1 are a special case of
Eq. (9.15), and the methods used there for the detection and elimination of static hazards
parallel those used for two-level logic discussed in Section 9.2. However, these simple
methods cannot be applied to the more complex functions considered in this subsection.
Now, use must be made of special graphic methods to assist in the determination of path
delay asymmetry according to Fig. 9.1.

404 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

(a) (b)

FIGURE 9.10
Hazard detection and hazard cover for function Q in Eq. (9.15). (a) LPDD showing two paths for
input 7. (b) Path requirements of input Y to produce an active Q output and the hazard cover for the
static 1 hazard.

Consider the five-variable function

Q = (AY) 0 (XB) + CY, (9.16)

which is a relatively simple form of Eq. (9.15). This function has a static 1 -hazard for which
the hazard cover cannot be readily identified by the standard methods used in Subsection
9.3.1. Other means must be used to identify the conditions for hazard formation and the
cover that is necessary to eliminate it.

Shown in Fig. 9.10a is the lumped path delay diagram (LPDD) that is a graphical
equivalent of the logic circuit for function Q in Eq. (9.16). Use of the LPDD makes possible
a simple means of detecting and eliminating the static 1-hazard. However, some explanation
of the use of this diagram is needed. The inputs are assumed to be active high, and inputs
such as B and C imply the use of an inverter that is not shown. Two paths, Y[l] and Y[2],
for variable 7 are shown from input to output Q. The path requirements for input Y and
Y that cause the output Q to be active are given in Fig. 9.1 Ob. Thus, for Y inactive (Y),
path Y[l] is enabled to cause Q = 1 if both A and XB are active. And for Y active,
path Y[2] is enabled to cause Q = 1 if C active (C = 0). The hazard cover is found by
ANDing both enabling path requirements to give (AXBC) as indicated in Fig. 9.10b. But
for Y inactive, input A is irrelevant to path K[l]. Thus, the final result for function Q is
given by

Q = (AY) 0 (XB) + CY + AXB C

= (AY)®(XB)+CY+XBC. (9.17)

The timing diagram for function Q in Fig. 9.11 confirms the results presented in Fig. 9.10
and in Eq. (9.17). Notice that the hazard cover BCXremoves the static 1-hazard as indicated
by Q(H)*. The size (strength) of the static hazard, indicated by Af, is the difference in path

9.3 DETECTION AND ELIMINATION HAZARDS 405

A(H) i

B(H) J

C(H) ;

Y(H) J

Q(H) ; u
BCX(H) J I

Q(H)* ; ^
* Indicates with hazard cover

FIGURE 9.11
Timing diagram for functions Q without and with (*) hazard cover in agreement with Eq. (9.17).

delays F[l] and Y[2] in Fig. 9.10a as it relates to Fig. 9.1. This path delay asymmetry may
be expressed as

A? = (tAND + IXOR) — (IAND) = txoR,

which is easily ascertained from an inspection of Fig. 9.10a.
That the hazard cover for Eq. (9.16) is B CX and is independent of input A can be easily

demonstrated by the use of a binary decision diagram (BDD) constructed from an inspection
of Eq. (9.16). This BDD is given in Fig. 9.12, where the binary decisions begin with variable
Y and end with an output (for Q) that is either logic 0 or logic 1. The requirement for static
1-hazard cover is that the decisions must lead to an active output Q. Thus, for 7 = 0 the
path to Q = Us enabled if X = 1 and B = 0 or XB and is enabled for Y = 1 if C = 0

0 0 0 0 111 *~Q O u tPu t

FIGURE 9.12
BDD for function Q in Eq. (9.16) showing the binary decisions required for an active output inde-
pendent of input A.

406 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

•\A[2]

A[1,2] BCD < _) > BCD ^ _
" ' , A J O

^"'lA Bi2i//^' • / A /gN -t fa} Q

B[1,2] ACD 4 _ > NA* ACD < _ > NA*
\B/1 \B/0

* Not applicable if equal B paths are assumed

(b)

FIGURE 9.13
Hazard detection and hazard cover for function JV in Eq. (9.18). (a) LPDD showing two paths for
input A and two paths for input B. (b) Path requirements for inputs A and B required to produce an
active W output, and the hazard covers necessary to eliminate the static 1 hazards.

or C, all read in positive logic. ANDing the two enabling conditions gives the hazard cover
XB • C. Clearly, the binary decisions involving input A (dashed lines) are irrelevant to the
enabling path conditions for an active output Q.

A BDD is a graphical representation of a set of binary-valued decisions, each of which
ends with a result that is either logic 1 or logic 0. Thus, the BDD allows one to easily
determine the output for any possible combination of input values. The BDD is used by
starting with an input variable (top of the BDD) and proceeding in a downward path to an
output logic value that corresponds to the value of the last input in that path. Thus, the final
element, usually presented in a rectangle, is the logic value of the function (e.g., output Q
in Fig. 9.12) for the input values used.

As a second and more complex example, consider the four-variable function

N = [(A © B)C] 0 [(B O D)A], (9.18)

which is a three-level form of Eqs. (9.9) and (9.10) obtained by the CRMT method discussed
in Section 5.7 taking [A, C} as the bond set. The LPDD, shown in Fig. 9.13, indicates that
there is at least one static 1-hazard and one static 0-hazard associated with this function.
Input A has two paths to the output Z, A[l] and A[2]. Path A[l] to output N is enabled if C
is active, with B active or inactive depending on input A. Path A[2] to output N is enabled
if B and D are logically equivalent (via the EQV operator). Therefore, for input conditions
BCD, output N is active for A = 1 via path A [2] only and is active for A = 0 via path
A[l] only, indicating a static 1-hazard. However, for input conditions BCD the output N is
inactive for both A and A: For A = 1 the output N = 1 © 1 = 0, and for A = 0 the output
N = 0 © 0 = 0. When the output is inactive for both input conditions, a static 0-hazard is
indicated. The result of this static hazard analysis is that BCD becomes the static 1-hazard
cover that must be ORed to Eq. (9.18), and that BCD = (B + C + D) is the static 0-hazard
cover that must be ANDed to Eq. (9.18). When hazard cover is added, the final expression

9.3 DETECTION AND ELIMINATION HAZARDS 407

A(H) J

B(H) 5

N(H)*

cates with hazard cover \

,

V Static 1
hazard

\
\At Static 0 __\

hazard

FIGURE 9.14
Timing diagram for function N in Eq. (9.18) showing static 1 and static 0 hazards and showing the
result of adding hazard cover according to Eq. (9.19).

for N becomes

N = {[(A 0 fi)C] © [(B O D)A] + BCD} • (B + C + D). (9.19)

Hazard cover

which is now a five-level function. Note that the order in which the hazard cover is added
is immaterial. Thus, Eq. (9.19) could have been completed by first ANDing (B + C + D)
to the original expression followed by ORing BCD to the result.

The paths B[l] and B[2] are not expected to create static hazards, assuming that the
XOR and EQV gates have nearly the same path delays. This is a good assumption if CMOS
technology is used for their implementation as in Figs. 3.26 and 3.27. However, if the two
B path delays are significantly asymmetric, then both static 1 and static 0 hazards would
exist and would be eliminated by adding hazard covers in addition to those for the path A
hazards (see Fig. 9.13b).

The timing diagram in Fig. 9.14 illustrates the results expressed by Eqs. (9.18) and (9.19)
and by Fig. 9.13. The static 1-hazard occurs with changes in A under input conditions BCD,
and static 0 hazards occur with changes in A under input conditions BCD. But when BCD
is ORed to the_expression in Eq. (9.18), the static 1-hazard disappears. Similarly, when
BCD = (B + C + D) is ANDed to function N in Eq. (9.18), the static 0 hazards disappear.
Notice that the strength of either type of static hazard in Fig. 9.14 is the difference in delay
between the two paths expressed by

At = (txoR + tANo) — IAND = txoR>

where each hazard is initiated after a delay of (?XOR + ?AND) following a change in input A.
This information is easily deduced from an inspection of Fig. 9.13.

The BDD for function N in Eq. (9.18) is given in Fig. 9.15. Once the coupled variables
have been identified by the LPDD, the BDD can be used to obtain the hazard cover for
both the static 1-hazard and static 0-hazard. An inspection of the binary decisions required
to render N = 1 indicate a path BC for input condition A = 0 and a path BD for A = 1.
When these two input paths are ANDed together the result is BCD, the enabling condition

408 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

f- N Output

FIGURE 9.15
BDD for function N in Eq. (9.18) showing binary decisions required for static 1 and static 0 hazard
formation.

for the static 1-hazard to form and, hence, also the hazard cover for that hazard. There are
no other valid input paths for output N = I , since their ANDing (intersection) is logic 0.
In a similar fashion, the binary decisions required to produce N = 0 indicate a path B for
A = 0 and DEC for input condition A = 1. When these input path conditions are ANDed
the result is BCD, which when complemented yields (B + C + D), the hazard cover for
the static 0-hazard. All other ANDed input path combinations for A — I result in logic 0
and hence are invalid.

BDDs can be very useful in identifying the hazard cover(s) for a given coupled variable,
which is best identified by first by using an LPDD. The difficulty is not in the reading of
the BDD to obtain the hazard cover, but in its construction. The reader should appreciate
the fact that constructing of a BDD from a Boolean expression of the type considered in
this section is no trivial task. In contrast, the LPDD, which is essentially a logic circuit, is
easily constructed from the Boolean expression. For this reason, LPDDs should be used for
most hazard analyses, reserving the use of BDDs for the difficult cases where the hazard
cover is not easily revealed by an inspection of the LPDD.

9.3.3 General Procedure for the Detection and Elimination of Static Hazards in
Complex Multilevel XOR-Type Functions

The static 1 and static 0 hazards in TV were detected and eliminated by following a procedure
that is applicable to any function. The procedure consists of the following three steps:

Step I: Use an LPDD to identify the two paths for each coupled variable whose path
delays to the output differ according to Fig. 9.1. A determination of the path delays is not
always a straightforward task, since the technology used for the individual gates may not
be known. Worse yet, integrated circuits may make such determination nearly impossible
without empirical data.

Step II: Find the hazard conditions and hazard cover for each coupled input variable
in the LPDD by ANDing the variables that enable the two paths from the coupled variable
to the output with those variables required to block (disable) all other paths. The gates

9.3 DETECTION AND ELIMINATION HAZARDS 409

in the two enabling paths must not prevent the propagation of the coupled variable to the
output stage. To accomplish this, other noncoupled variable inputs to AND operators must
be active (logic 1), and other noncoupled variable inputs to OR operators must be inactive
(logic 0). All other paths to the output stage must be blocked by proper selection of input
activation levels. The use of a BDD is quite suitable for the purpose of finding hazard cover.
Moreover, the BDD can also be used to simplify separately static 1-hazard cover and static
0-hazard cover. Note that static 1 and static 0 covers must never be simplified together.

For NXOP, the LPDD (Fig. 9.13a) shows that C must be logic 1 so that the AND operator
does not block path A[l]. The output from the EQV operator, which becomes an input to
the AND operator in path A [2], must also be logic 1. Inputs B and D must therefore be
logically equivalent so as to enable path A [2] to the output. There are no other paths to
consider. Thus, the hazard cover is BCD for the static 1-hazard and BCD = (B + C + D).

Step III: Add the hazard cover to the original function by using an OR operator for
static 1-hazard cover and by using an AND operator for a static 0-hazard cover. The
1-hazard cover and the 0-hazard cover must be added separately but may be added in
either order. In Eq. (9.19) the static 1-hazard cover is added to N before the static 0-hazard
cover. If the 0-hazard cover were added to Eq. (9.19) before the 1-hazard cover, the result
would be

N = {[(A 0 fl)C] © [(B O D)A] • (B + C + D)} + BCD (9.20)

Hazard cover

Eqs. (9.19) and (9.20) have gate/input tallies of 9/20, excluding inverters. There is often
little advantage of one implementation over the other.

9.3.4 Detection of Dynamic Hazards in Complex Multilevel XOR-Type Functions

Up to this point the discussion has centered around the detection and elimination of static
hazards in multilevel XOR-type functions. As it turns out these functions also have a
propensity to form dynamic hazards, and there may or may not be a means of eliminating
these defects. One example is the five-variable, four-level function given by

K = [B + (A®X)]Q {[Y + (A 0 #)] O [A + Z]}. (9.21)

The LPDD for this function, presented in Fig. 9.16a, reveals both static and dynamic
hazards as indicated in Figs. 9.16b and 9.16c. The enabling path conditions for inputs A
and B required to produce the static 1 and static 0 hazards are found in the same manner as
for function N in Fig. 9.13. Obviously, static hazard analysis is considerably more involved
than the analysis for function N. Furthermore, the additional logic required to eliminate
all static hazards in function K is considerable. To eliminate both static 1 and 0 hazards
requires that four p-terms be ORed to function K in Eq. (9.21) and by the ORing of three
s-terms to that result, as required by Fig. 9.16b. The order in which the ORed and ANDed
terms are added is immaterial.

The input conditions required to produce dynamic hazards in function K are given in
Fig. 9.16c. Remember: Dynamic hazards can exist in a given function only if there are
three or more paths of an input to the output. This condition is satisfied for input A as
indicated. Notice that a dynamic hazard is identified in an LPDD when the enabling paths

410 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

Static 1 Static 0
Hazards Hazards

A\1
A[1,2] BXYZ < > BXYZ

N A Jl I A |0

__ r
A[2,3] BYZ

_ - J A }1 f A 10
A[1,3] BXYZ < > BXYZ

A / 1

, , - f ' 8 ! 0
B[1,2] AXYZ < > AXYZ

^ B/1 [B |0

(b)

Dynamic Hazards

/ A \ 0 / A \ 1
A[1,2,3] BXYZ < > BXYZ < >

\A /1 \A /0

(C)

FIGURE 9.16
Hazard analysis of function K in Eq. (9.21). (a) LPDD showing three paths for input A and two paths
for input B. (b) Path enabling requirements for A and B to produce static 1 and static 0 hazards,
(c) Path A enabling requirements for the production of dynamic hazards in function K.

of the coupled variable to the output yield both a logic 1 and logic 0 as in Fig. 9.16c. This
same information can be gleaned from a BDD, but, because of the difficulty in constructing
the BDD, the LPDD approach is preferred.

The timing diagram for Eq. (9.21) is shown in Fig. 9.17, where dynamic hazards of the
1-0-1-0 and 0-1-0-1 types occur following 1 —> 0 and 0 -> 1 changes in coupled variable

K(H) J - LJI _ TU - 1 _ (1 - Ul

K*(H) J - Ul _ n - 1 _ (1

* Indicates with static hazard cover

FIGURE 9.17
Timing diagram for function K in Eq. (9.21), showing dynamic hazards produced without and with
static hazard cover under input conditions given in Fig. 9.16c.

9.3 DETECTION AND ELIMINATION HAZARDS 411

K Output

FIGURE 9.18
BDD for function K in Eq. (9.21) that can be used to show enabling paths of input A to output K as
in Figs. 9.16band9.16c.

A, respectively. Notice that the dynamic hazards continue to occur even after input X is
changed from logic 1 to logic 0. This is predictable from Fig. 9.16c, since the enabling paths
for input A, BXYZ and BXYZ, are satisfied in both cases. Input conditions other than these
enabling paths for A would not allow production of the dynamic hazards. As indicated by
the K* waveform in Fig. 9.17, static hazard cover cannot be used to eliminate a dynamic
hazard.

The enabling paths for input A, shown in Figs. 9.16b and 9.16c, can also be deduced
from the BDD in Fig. 9.18 for function K in Eq. (9.21). However, somewhat greater effort
is needed to obtain this information from the BDD owing to its nature. For example, the
enabling paths of A required to produce the dynamic hazards are seen to be ABXYZ and
ABXYZ, yielding K = 0 and K = 1, respectively, with active X. Similarly, for X the enabling
paths of A are observed to be ABXYZ and ABXYZ for K = 1 and K = 0, respectively. The
static 1 and static 0 hazards due to coupled variable A are deduced from the BDD in a
similar manner.

A few points need to be remembered when using LPDD and/or BDD graphical means
to obtain the enabling paths of coupled variables.

• The LPDD should be used to identify the coupled variable and any asymmetry
that may exist in the alternative paths.

• The LPDD or a BDD can be used to deduce the enabling paths for that coupled
variable.

• A BDD must be constructed for each coupled variable, whereas a single LPDD
can be used for all coupled variables.

• Both logic values of the coupled variable must be considered when using either
the LPDD or BDD, but only for the LPDD must account be taken of blocked
paths.

412 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

B(H) J

Function
Hazard

(a) (b)

FIGURE 9.19
Demonstration of function hazard formation, (a) An XOR gate, (b) Timing diagram showing produc-
tion of a function hazard when inputs A and B are changed in close proximity to each other.

9.4 FUNCTION HAZARDS

In the expression for ZSQP given by Eq. (9.7), it is observed that pairs of terms such as
BCD and CDE or ADE and ABE each contain two couple variables. These pairs of terms
are not coupled terms and cannot produce static hazards in the sense of Section 9.2. Also,
their ANDed residues are always logic 0 — as are the ORed residues logic 1 for pairs of
s-terms containing two (or more) coupled variables in a POS expression. But these pairs of
terms can produce another type of hazard called a function hazard, which is also static in
the sense that it occurs in an otherwise steady-state signal. Function hazards result when
an attempt is made to change two or more coupled variables in close proximity to each
other. Potential hazards of this type are very common. In fact, any two (or more) input gate
can produce a function hazard if the two inputs are caused to change in close proximity to
each other. As an example, consider a simple XOR gate in Fig. 9.19a. If the two inputs are
changed close together as shown in Fig. 9.19b, a function hazard results. In effect, function
hazards in most circuits can be avoided if care is taken not to permit the inputs to change
too close together in time.

9.5 STUCK-AT FAULTS AND THE EFFECT OF HAZARD COVER
ON FAULT TESTABILITY

If, by some means, an input to a logic gate becomes permanently stuck at logic 0 or logic 1,
a single stuck-at fault is said to exist. Inadvertent shorted connections, open connections, or
connections to the voltage supply can take place during the manufacture of a given device
such as a gate. When this happens the device fails to operate correctly. Models have been
created to test specifically for stuck-at faults in various logic devices. One such model has
become known as the single stuck-at fault model and is regarded as the simplest and most
reliable model to use. Here, exactly one line, say to a gate, is assumed to be fixed at a logic
1 or logic 0 and, therefore, cannot respond to an input signal. Testing for such faults in a
complex combinational logic circuit is often complicated and may involve the application
of elaborate testing procedures, the subject of which is beyond the scope of this text. For the
reader wishing more information on fault models, test sets, design testability, and related
subject matter, references are given in Further Reading at the end of this chapter.

Because a single input change to an XOR or EQV operator produces an output change,
multilevel functions containing these operators can be more easily tested than their

9.5 STUCK-AT FAULTS AND THE EFFECT OF HAZARD COVER 413

A(H)

B(H) J

C(H) 1

D(H) 1

1NXOP(H) ; LJ- u i
o ^^ f n

InP^C Nxop(H)* J \ / T
Stuck-at 0 xup ^^ Fail,t \

* With hazard cover static -^
masking fault error 1-Hazards ^rror

(a) (b)

FIGURE 9.20
Effect of stuck-at fault on function NXOP in Eq. (9.12). (a) AND representing the ABCD term and
showing a stuck-at fault on input C. (b) Timing diagram showing effect of the stuck-at 0 fault and the
masking effect of hazard cover.

two-level SOP or POS counterparts. This, of course, is one advantage in the use of XOP,
EOS, and CRMT circuits discussed in Chapter 5. However, if static hazards must be elimi-
nated in these circuits prior to fault testing, this advantage may be lessened or eliminated.
Static hazard cover must always be redundant cover (i.e., not essential to function represen-
tation). Redundant cover can make stuck-at fault testing more difficult and may even mask
an existing stuck-at fault. When considering the testability of a circuit, the designer must
consider the effect of any static hazard cover needed.

As an example, consider function NXOP in Eqs. (9.10) and (9.12) before and after the
addition of static hazard cover. Suppose there is a stuck-at-0 fault at any input to the term
ABCD. This fault causes an output error on the input condition 1011. However, the addition
of hazard cover ACD holds the output active and masks the presence of this fault. Thus, after
hazard cover is added, one cannot test for this fault by the standard methods of observing the
final output. The timing diagram in Fig. 9.20 illustrates the masking effect of hazard cover
in the NXOP function. This timing diagram can be easily understood if it is recalled that an
odd number of 1 's in an XOR string such as that for function NXOP in Eqs. (9.10) and (9.12)
yields a logic 1 for that function. Consequently, introducing the change 1111 —> 1011 into
these equations with and without the hazard cover ACD and with C = 0 results in the timing
diagram shown in Fig. 9.20b. In conclusion it can be stated that fault detection and location
test sets should be used prior to the addition of hazard cover; if not, some stuck-at faults
may not be detected and located.

FURTHER READING

The subject of static hazards in two-level combinational logic circuits is covered adequately
in texts by Breuer and Friedman, Katz, McCluskey, Tinder, Wakerly, and Yarbrough. Dy-
namic hazards and function hazards are also covered by McCluskey. However, there is no

414 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

known published information on static hazards in circuits of the XOR type considered in
this chapter.

[1] M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of Digital Systems. Computer
Science Press, 1976, pp. 10-13.

[2] R. H. Katz, Contemporary Logic Design. Benjamin/Cummings Publishing Co., Redwood City,
CA, 1992.

[3] E. J. McCluskey, Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986.
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice-Hall, Englewood Cliffs,

NJ, 1991.
[5] J. F. Wakerly, Digital Design Principles and Practice. Prentice-Hall, Englewood Cliffs, NJ,

1986.
[6] J. M. Yarbrough, Digital Logic. West Publishing Co., Minneapolis/St. Paul, 1997.

A discussion of the construction and application of binary decision diagrams (BDDs)
is limited to a few texts, among which are those of De Micheli and Sasao (Ed.). However,
more extensive information is available from published journal articles. Typical of these are
articles by Akers and Bryant.

[7] S. Akers, "Binary Decision Diagrams," IEEE Trans, on Computers, C-27, 509-516 (1978).
[8] R. Bryant, "Graph-based Algorithms for Boolean Function Manipulation, " IEEE Trans, on

Computers C-35(8), 677-691 (1986).
[9] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York, 1994.

[10] T. Sasao (Ed.), Logic Synthesis and Optimization. Kluwer Academic Publishers, Boston, 1993.

The subjects of fault detection and fault models are well covered by a number of texts
and articles. For the beginning reader the text of Hayes does a commendable job. The text

by McCluskey (previously cited) and that by Nelson, Nagle, Carroll, and Irwin are also
recommended. For the advanced reader the texts by De Mecheli (previously cited) and Lala
can be useful.

[11] J. P. Hayes, Introduction to Digital Design. Addison-Wesley, Reading, MA, 1993.
[12] P. K. Lala, Fault Tolerant and Fault Testable Hardware Design. Prentice-Hall, Englewood Cliffs,

NJ, 1985.
[13] V. P Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and

Design. Prentice-Hall, Englewood Cliffs, NJ, 1995.

The following articles are noteworthy for their coverage of fault detection and testing,
and of fault-tolerant systems:

[14] A. Chatterjee and M. A. d'Abreu, "The Design of Fault-Tolerant Linear Digital State Variable
Systems: Theory and Techniques," IEEE Trans, on Computers 42(7), 794-808 (1993).

[15] T. Lin and K. G. Shin, "An Optimal Retry Policy Based on Fault Classification," IEEE Trans,
on Computers 43(9), 1014-1025 (1994).

[16] B. Vinnakota and N. K. Jha, "Diagnosability and Diagnosis of Algorithm-Based Fault-Tolerant
Systems," IEEE Trans, on Computers 42(8), 924-937 (1993).

PROBLEMS 415

PROBLEMS

9.1 A function Y is represented in the K-map of Fig. P9.1. Refer to the examples in Section
9.2 and do the following:
(a) Loop out a minimum SOP and POS cover and then use arrows in separate K-maps

to indicate the direction of the hazardous SOP and POS transitions that are present
in this function.

(b) Find the hazard covers and combine them with the minimum SOP and POS ex-
pressions. Also, show these covers on the appropriate K-maps.

ArXCDAB\ oo 01 11 10

10

0

1

0

0

1

1

0

1

1

1

0

1

0

1

1

1

FIGURE P9.1

9.2 The following minimum SOP function contains both static 1-hazards and static 0-
hazards:

F = ABC + BD + ACD + BCD.

(a) Map and loop out this function in a fourth-order K-map and indicate the direction
of each SOP hazardous transitions on the map by using an arrow. Follow the
example in Fig. 9.6a.

(b) Find the hazard covers and add them to the original expression above.
(c) By following the example in Eq. (9.5), confirm that the same information can be

obtained directly from the minimum SOP expression just given.
(d) Repeat parts (a), (b), and (c) for the POS hazards (static 0-hazards) in the minimum

POS expression for this function.
(e) Use the gate/input tally (exclusive of possible inverters) to compare the SOP and

POS expressions with hazard cover included. Which result is simpler?

9.3 The following function contains a single static 1-hazard:

FSOP = ABC + AC + CD.

(a) From this expression (without using a K-map), determine the coupled terms, the
initial and final states of the hazardous transition, and the hazard cover to be added
to the expression. To do this, follow the example in Eq. (9.5).

416 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

(b) Use a timing diagram to show the development of this hazard, similar to the
example in Fig. 9.1c. Then, by adding the hazard cover, show that the hazard is
eliminated following the example in Fig. 9.2c. Assume that the inputs and output
are all active high.

(c) Construct the logic circuit for FSOp and include the hazard cover.

9.4 Map the expression in Problem 9.3 and extract a minimum expression for FPQS- This
function contains a single static 0-hazard.
(a) From this expression (without using a K-map), determine the coupled variable,

coupled terms, the initial and final states of the hazardous transition, and the hazard
cover to be added to the expression. To do this, follow the example in Eq. (9.6).

(b) Use a timing diagram to show the development of this hazard, similar to the
example in Fig. 9.4c. Then by adding the hazard cover, show that the hazard is
eliminated following the example in Fig. 9.5c. Assume that the inputs and output
are all active high.

(c) Construct the logic circuit for FPQS and include the hazard cover.

9.5 Each of the following minimum or reduced functions contains one or more static
hazards. For each function (without using a K-map), determine the coupled variable,
coupled terms, the initial and final states of the hazardous transition, and the hazard
cover to be added.
(a) W = ABCD + BCD+ACD
(b) R = (U + W + X}(U + V + W)(V + X)
(c) G = WXY + XYZ+ WYZ+WY
(d) T = (A + B + C)(A + B+ C)(A + D)(B + D)
(e) Y = wyz + xz + xy

9.6 A five-variable function Z is represented in the second-order K-map of Fig. P9.2. It
contains a single SOP hazard (static 1-hazard).
(a) Extract minimum SOP cover for this function and determine the coupled variable,

coupled terms, the initial and final states of the hazardous transition, and the hazard
cover to be added to the expression. To do this, follow the example in Eq. (9.5).
(Hint: There are two possible coupled terms depending on how minimum cover
is extracted.)

(b) Use a timing diagram to show the development of this hazard, similar to the
example in Fig. 9.1c. Assume that all inputs are active high. Then by adding the
hazard cover, show that the hazard is eliminated following the example in Fig. 9.2c.

CDE

E

E

CD + E

FIGURE P9.2

PROBLEMS 417

9.7 Find the minimum POS expression for the function in Fig. P9.2. How many static
0-hazards does this function have? What do you conclude as to the relative complexity
of the SOP and POS expressions for this function when account is taken of hazard
cover?

9.8 The following six- variable function has several static 1 -hazards. Construct a table
listing the coupled variable, coupled terms, initial and final states, and the hazard
cover for each of the hazards.

F = ABCDF + ABCE + ABCF + ABCE + DEF + CDE

9.9 The following multilevel functions have one or more static hazards. For each expres-
sion (without using a K-map), determine the coupled variable, coupled terms, the
initial and final states of the hazardous transition (read in alphabetical order), and
the hazard cover to be added to the expression. To do this, follow the examples in
Eq. (9.12), (9.13), and (9.14), whichever is relevant to the particular function.
(a) G = WXY eXTZe WYZ 0 WY
(b) T = (A + B + C) 0 (A + B + C) O (A + D} Q (B + D)

9.10 The following three-level XOR-type function has two static 1 -hazards:

/ = (Y e W) © (XZ) + WY.

(a) Construct the lumped path delay diagram (LPDD) for this function. From the
LPDD determine the hazard cover and initial and final states for each of the static
hazards. Follow the example in Fig. 9. 10. (Hint: Keep in mind the bidirectionality
of the static hazards in XOR-type functions and read the states for function / in
the order of WXYZ).

(b) By using two binary decision diagrams (BDDs), show the binary decisions re-
quired for each static 1 -hazard formation.

9.11 The following three-level function has both a static 1 -hazard and a static 0-hazard:

F = [x e WY] e

(a) Construct the LPDD for this function (exactly as written). Then, determine the
hazard cover and initial and final states for each of the static hazards. Read the
states in alphabetical order. Follow the example in Fig. 9.13 and Eq. (9.19).

(b) Use a timing diagram to show the development of the two hazards, similar to the
example in Fig. 9. 14. Then by adding the hazard cover, show that the hazards are
eliminated. Assume that all inputs and the output are active high.

(c) By using a binary decision diagram (BDD), show the binary decisions required
for the static 1 -hazard formation.

9.12 The following four-level function has three static 1 -hazards, one static 0-hazard, and
one dynamic hazard:

Y = [B 0 (AD)] © \AB 0 ACD 0 BCD]

418 CHAPTER 9 / PROPAGATION DELAY AND TIMING DEFECTS

(a) Construct an LPDD for this function (exactly as written) and find the hazard cover
for each of the static hazards and the conditions required to produce the dynamic
hazard. Indicate the initial and final states for each of the static hazards. Follow
the example in Fig. 9.16. (Hint: No dynamic hazard exists due to a change in
either input A or D, and the one that does exist is conditional on A. Also, look for
the possibility that a static hazard may change from a static 1-hazard to a static
0-hazard depending on the order of change of one or two variables.)

(b) Use a BDD to show the enabling paths of the variable whose change is responsible
for the dynamic hazard formation. Follow the example in Fig. 9.18.

(c) Use a timing diagram (simulation) to show the development of the dynamic hazard.
Demonstrate that the dynamic hazard cannot be eliminated by adding static hazard
cover.

(d) Demonstrate with both an LPDD and a timing diagram that the dynamic hazard
can be eliminated by making the B paths to the output less asymmetric.

9.13 At the discretion of the instructor, use the EXL-Sim2002 simulator included on the
CD-ROM bundled with this text to simulate any of the following problems: 9.3b,
9.4b, 9.6b, 9.1 Ib, 9.12c, 9.12d. For example, an assignment 9.13/9.6(b) requires the
use of EXL-Sim2002 to verify the existence of the static 1-hazard and its hazard cover
by simulating the five variable function Z in Fig. P9.2.

CHAPTER 10

Introduction to Synchronous State
Machine Design and Analysis

10.1 INTRODUCTION

Up to this point only combinational logic machines have been considered, those whose
outputs depend solely on the present state of the inputs. Adders, decoders, MUXs, PLAs,
ALUs, and many other combinational logic machines are remarkable and very necessary
machines in their own right to the field of logic design. However, they all suffer the same
limitation. They cannot perform operations sequentially. A ROM, for example, cannot
make use of its present input instructions to carry out a next-stage set of functions, and an
adder cannot count sequentially without changing the inputs after each addition. In short,
combinational logic devices lack true memory, and so lack the ability to perform sequential
operations. Yet their presence in a sequential machine may be indispensable.

We deal with sequential devices all the time. In fact, our experience with such devices is
so commonplace that we often take them for granted. For example, at one time or another
we have all had the experience of being delayed by a modem four-way traffic control light
system that is vehicle actuated with pedestrian overrides and the like. Once at the light we
must wait for a certain sequence of events to take place before we are allowed to proceed.
The controller for such a traffic light system is a fairly complex digital sequential machine.

Then there is the familiar elevator system for a multistory building. We may push the
button to go down only to find that upward-bound stops have priority over our command.
But once in the elevator and downward bound, we are likely to find the elevator stopping
at floors preceding ours in sequence, again demonstrating a sequential priority. Added to
these features are the usual safety and emergency overrides, and a motor control system that
allows for the carrier to be accelerated or decelerated at some reasonable rate. Obviously,
modern elevator systems are controlled by rather sophisticated sequential machines.

The list of sequential machines that touch our daily lives is vast and continuously growing.
As examples, the cars we drive, the homes we live in, and our places of employment all use
sequential machines of one type or another. Automobiles use digital sequential machines
to control starting, braking, fuel injection, cruise control, and safety features. Most homes
have automatic washing machines, microwave ovens, sophisticated audio and video devices
of various types, and, of course, computers. Some homes have complex security, energy,

419

420 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

and climate control systems. All of these remarkable and now commonplace gifts of modern
technology are made possible through the use of digital sequential machines.

The machines just mentioned are called sequential machines, or simply state machines,
because they possess true memory and can issue time-dependent sequences of logic signals
controlled by present and past input information. These sequential machines may also be
synchronous because the data path is controlled by a system clock. In synchronous sequen-
tial machines, input data are introduced into the machine and are processed sequentially
according to some algorithm, and outputs are generated — all regulated by a system clock.
Sequential machines whose operation is clock independent (i.e., self-timed) are called asyn-
chronous sequential machines, the subject of Chapters 14, 15, and 16.

Synchronous sequential machines and their design, analysis, and operation are the sub-
jects covered in this chapter. Treatment begins with a discussion of the models used for
these machines. This is followed by a discussion of an important type of graphic that is used
to represent the sequential behavior of sequential machines and by a detailed development
of the devices used for their memory. The chapter ends with the design and analysis of rel-
atively simple state machines. The intricacies of design are numerous and require detailed
consideration. For this reason they are discussed later, in Chapter 11.

10.1.1 A Sequence of Logic States

Consider that a synchronous sequential machine has been built by some means and that
it is represented by the block symbol in Fig. 10.la. Then suppose the voltage waveforms
from its three outputs are detected (say with a waveform analyzer) and displayed as in

Synchronous
Sequential
Machine

— + A

-> B

— * C

HV

LV

HV

LV

HV i .

LV ':

Time

(a) : : : : (b)

A(H) J

Logic j B(H)
Domain]

Time
C(H) 1

State ABC = 010 011 100 101 110 111 000 001

A present state at some point in time —'
(c)

FIGURE 10.1
A sequence of logic events from a synchronous state machine, (a) Block diagram symbol and (b)
output voltage waveforms, (c) Timing diagram representing the positive logic interpretation of the
voltage waveforms and showing a sequence of logic states.

10.2 MODELS FOR SEQUENTIAL MACHINES 421

Fig. 10. Ib. From these physical waveforms the positive logic waveforms are constructed
and a sequence of logic states is read in the order ABC as shown in Fig. 10. Ic. A group of
logic waveforms such as these is commonly known as a timing diagram, and the sequence
of logic states derived from these waveforms is seen to be a binary count sequence. Here,
A, B, and C are called state variables because their values collectively define the present
state of the machine at some point in time. Knowing the present state in a sequence of states
also reveals the next state. Thus, in Fig. 10.Ic, if state 101 is the present state, then 110 is
the next state. This short discussion evokes the following definition:

A logic state is a unique set of binary values that characterize the logic status of a
sequential machine at some point in time.

A sequential machine always has a finite number of states and is therefore called & finite
state machine (FSM) or simply state machine. Thus, if there are N state variables, there
can be no more than 2N states in the FSM and no fewer than 2. That is, for any FSM,

2 < (number of states) < 2N

For example, a two-state FSM requires one state variable, a three- or four-state FSM requires
two state variables, five- to eight-state FSMs require three state variables, etc. More state
variables can be used for an FSM than are needed to satisfy the 2N requirement, but this
is done only rarely to overcome certain design problems or limitations. The abbreviation
FSM will be used frequently throughout the remainder of this text.

To help understand the meaning of the various models used in the description and design
of FSMs, four binary sequences of states are given in Fig. 10.2, each presenting a different
feature of the sequence. The simple ascending binary sequence (a) is the same as that in
Fig. 10.1. This sequence and the remaining three will be described as they relate to the
various models that are presented in the following section.

10.2 MODELS FOR SEQUENTIAL MACHINES

Models are important in the design of sequential machines because they permit the design
process to be organized and standardized. The use of models also provides a means of
communicating design information from one person to another. References can be made to
specific parts of a design by using standard model nomenclature. In this section the general
model for sequential machines will be developed beginning with the most elemental forms.

Notice that each state in the sequence of Fig. 10.2a becomes the present state (PS) at
some point in time and has associated with it a next state (NS) that is predictable given the
PS. Now the question is: What logic elements of an FSM are required to do what is required
in Fig. 10.2a? To answer this question, consider the thinking process we use to carry out a
sequence of events each day. Whether the sequence is the daily routine of getting up in the
morning, eating breakfast, and going to work, or simply giving our telephone number to
someone, we must be able to remember our present position in the sequence to know what
the next step must be. It is no different for a sequential machine. There must be a memory
section, as in Fig. 10.3a, which generates the present state. And there must be a next state
logic section, as in Fig. 10.3b, which has been programmed to know what the next state
must be, given the present state from the memory. Thus, an FSM conforming to the model

422 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

State variables ABC _, p§ NS -^ /— State symbo'

(a) 0̂1?) ^MOcT) ^JO-T) >Alo) >Ml7) >(oOO^) >

X = Up count and X = down count

X X x x
S N

100

X ZiTif* x

FIGURE 10.2
A sequence of states with present and next states based on Fig. 10.1. (a) A simple ascending binary
sequence showing present state (PS) and next state (NS). (b) A bidirectional (up/down) binary sequence
showing PS and NS depending on logic level of input X. (c) A bidirectional binary sequence with
output Z in state 111. (d) A bidirectional sequence with output Z in state 111 conditional on input X
(up-count).

of Fig. 10.3b is capable of performing the simple ascending binary sequence represented by
Fig. 10.2a. However, to carryout the bidirectional binary sequence of Fig. 10.2b, a machine
conforming to the foz,s7c model of Fig. 10.3c is required to have external input capability.
As in the case of Fig. 10.2b, an input X would force the FSM to count up in binary, while
X would cause it to count down in binary.

If it is necessary that the FSM issue an output on arrival in any given state, output-forming
logic must be added as indicated in Fig. 10.4. This model has become known as Moore's
model and any FSM that conforms to this model is often called a Moore machine in honor of
E. F. Moore, a pioneer in sequential circuit design. For example, an FSM that can generate
the bidirectional binary sequence in Fig. 10.2c is called a Moore FSM, since an output Z is
unconditionally activated on arrival in state 111 (up arrow, f) and is deactivated on exiting
this state (down arrow, !); hence the double arrow (|j) for the output symbol Z^f. Such
an output could be termed a Moore output, that is, an output that is issued as a function of
the PS only. The functional relationships for a Moore FSM are

PS=f(NS)
NS = f'(IP, PS)

OP = /"(PS)

where IP represents the external inputs and OP the outputs.

(10.1)

10.2 MODELS FOR SEQUENTIAL MACHINES 423

Next State (NS)
Functions

Present
State

Inputs—^ Memory —^Outputs
Outputs

(a)

(b)

Next State (NS)
Functions

(_
External

Inputs ^l Next State T Present
~ ' " State

(PS)
Outputs

(c)

FIGURE 10.3
Development of the basic model for sequential machines, (a) The memory section only, (b) Model
for an FSM capable of performing the sequence in Fig. 10.2a, showing the memory section and
NS-forming logic, (c) The basic model for an FSM capable of performing the sequence in Fig. 10.2b
when the external input is X.

External
Inputs •

(IP) — *

-*
Next State

Forming
Logic

Memory
PS

PS Feedback

Output
Forming

Logic

FIGURE 10.4
Moore's model for a sequential machine capable of performing the bidirectional binary sequence in
Fig. 10.2c, showing the basic model in Fig. 10.3c with the added output-forming logic that depends
only on the PS.

424 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

External

(IP)
'

-*•

Next State
Forming

Logic
•as* Memory

*

F

PS Feedback

s ,
Output

Forming
Logic

Outputs
(OP)

FIGURE 10.5
Mealy's (general) model for a sequential machine capable of performing the bidirectional binary
sequence in Fig. 10.2d, showing the basic model in Fig. 10.3c with the added output-forming logic
that depends on both IP and PS.

Now suppose it is necessary to issue an output conditional on an input as in the bidirec-
tional binary sequence of Fig. 10.2d. This requires a model whose outputs not only depend
on the PS, but also depend on the inputs, as illustrated in Fig. 10.5. Such a model is the
most general model for state machines and is known as Mealy's model after G. H. Mealy,
another pioneer in the field of sequential machines. Thus, an FSM that conforms to this
model can be called a Mealy machine and would be capable of generating the bidirectional
binary sequence of Fig. 10.2d, where the output is issued in state 111 but only if X is active
(i.e., on an up count). Such an output could be termed a Mealy output, that is, an output that
is issued conditional on an input. The functional relationships for a Mealy FSM are

PS = f(NS)

NS = f'(IP, PS)

OP = f"(IP, PS)

(10.2)

As is evident from an inspection of Figs. 10.4 and 10.5, the only difference between a
Mealy FSM and a Moore FSM is that the Mealy machine has one or more outputs that are
conditional on one or more inputs. The Moore machine has no conditional outputs. Hereafter,
reference made to a Mealy machine or a Moore machine will imply this difference. Similarly,
outputs that are referred to as Mealy outputs will be those that are issued conditionally on
one or more inputs, and outputs referred to as Moore outputs will be those that are issued
unconditionally.

10.3 THE FULLY DOCUMENTED STATE DIAGRAM

In Fig. 10.2, a single input X is used to influence the sequential behavior of a binary sequence.
A more complex example might involve several inputs that control the sequential behavior
of the FSM. Such an FSM might be caused to enter one of several possible sequences (or
routines), each with subroutines and outputs, all controlled by external inputs whose values

10.3 THE FULLY DOCUMENTED STATE DIAGRAM 425

Present state or NS if XY -» XY
(PS)

State code assignment

NS i fXY->XY

Conditional
r output

COUNT IT ifY

Unconditional Branching
outPut paths

(a) (b)

FIGURE 10.6
(a) Features of the fully documented state diagram section, (b) The input/state map for state b.

change at various times during the operation of the FSM. Obviously, some means must be
found by which both simple and complex FSM behavior can be represented in a precise
and meaningful way. The fully documented state diagram discussed in this section is one
means of representing the sequential behavior of an FSM.

Presented in Fig. 10.6a is a portion of a state diagram showing the important features
used in its construction. Attention is drawn to states identified as a, b, c, and d. Here,
state b is the present state (PS) at some point in time and is given the state code assign-
ment • • • 010. Notice that state b branches to itself under the branching condition XY, the
holding condition for that state, and that the next state (NS) depends on which input, X or
Y, changes first. If X changes first, hence XY —>• XY, the FSM will transit to the next state
d, where it will hold on the input condition X , where X = XY + XY. Or if F changes first,
XY -> XY, the FSM will transit to state c, where there is no holding condition.

The output notation is straightforward. There are two types of outputs that can be repre-
sented in a fully documented state diagram. Referring to state b in Fig. 10.6a, the output

LOAD |t

is an unconditional (Moore) output issued any time the FSM is in state b. The down/up
arrows (It) signify that LOAD becomes active (up arrow, y) when the FSM enters state b
and becomes inactive (down arrow, |) when the FSM leaves that state. The order in which
the arrows are placed is immaterial as, for example, up/down. The output DONE in state c
is also an unconditional or Moore output. The second type of output, shown in state d of
Fig. 10.6a and indicated by

COUNT If if r,

is a conditional output that is generated in state d but only if Y is active — hence, COUNT

426 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

(a) (b)

FIGURE 10.7
Application of the sum rule given by Eq. (10.3). (a) State diagram segment showing branching
conditions relative to the j th state, (b) Application of the sum rule to the j th state in the state diagram
segment.

is a Mealy output according to the Mealy model in Fig. 10.5. Thus, if input Y should toggle
between active and inactive conditions while the FSM resides in state d, so also would the
output COUNT toggle with Y.

The Sum Rule There are certain rules that must "normally" be followed for proper con-
struction of state diagrams. One of these rules is called the sum rule and is stated as follows:

The Boolean sum of all branching conditions from a given state must be logic 1.

With reference to Fig. 10.7, this rule is expressed mathematically as

n-\

^2/i^j = l, (10.3)
i=0

where /)•«_/ represents the branching condition from the yth to the /th state and is summed
over n states as indicated in Fig. 10.7b. For example, if the sum rule is applied to state b in
Fig. 10.6a, the result is

XY + X + XY = 1,

since according to the absorptive law, Eq. (3.13), X+XY = X+Y, which is the complement
of XY. The graphical representation of the sum rule, as applied to state b, is shown in
Fig. 10.6b and is called the input/state map. Had the sum rule not been satisfied, one or
more branching conditions would not be accounted for and one or more of the cells in
the input/state map of Fig. 10.6b would be vacant. If applied, unaccounted-for branching
conditions can cause an FSM to malfunction.

The Mutually Exclusive Requirement While satisfying the sum (^ = 1) rule is a nec-
essary condition for state branching accountability in a fully documented state diagram, it
is not sufficient to ensure that the branching conditions are nonoverlapping. The meaning
of this can be stated as follows:

10.3 THE FULLY DOCUMENTED STATE DIAGRAM 427

'n-1

fn-1= fO + f1+ f2+ - "

(a) (b)

FIGURE 10.8
Application of the mutually exclusive requirement given by Eq. (10.4). (a) State diagram segment
showing branching conditions relative to the jth state, (b) Application of the mutually exclusive
requirement to the state diagram segment in (a).

Each possible branching condition from a given state must be associated with no
more than one branching path.

With reference to Fig. 10.8a, this condition is expressed mathematically as

/*-;. (10-4)

where each branching condition is seen to be the complement of the Boolean sum of those
remaining as indicated in Fig. 10.8b. When applied to state b in Fig. 10.6, Eq. (10.4) gives
the results XY = X + XY = X + Y = XY and X = XY + XY = X, etc., clearly indicating
that both the mutually exclusive requirement and the sum rule are satisfied. See Problem
10.24 for more on this subject.

Now consider the case shown in Fig. 10.9a, where the sum rule is obeyed but not the
mutually exclusive requirement. In this case, the branching condition XY is associated

X + X + XY = 1

Sum rule holds

XY * X + X

Mutually exclusive
condition does not hold

(b)

FIGURE 10.9
(a) A portion of a state diagram for which the mutually exclusive condition does not hold, (b) Input/state
map showing violation of the mutually exclusive requirement as applied to state a under branching
condition XY.

428 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

with both the a —*• b and the a —> c branching paths. Thus, if XY -> XY while in state
a, malfunction of the FSM is likely to occur. In Fig. 10.9b is the input/state map showing
violation of Eq. (10.4) under input condition XY shared by branching paths a —> b and
a —> c. Thus, if the mutually exclusive requirement is to hold for a given state, the input/state
map must not have cells containing more than one state identifier.

When Rules Can Be Broken There are conditions under which violation of the sum rule
or of the mutual exclusion requirement is permissible. Simply stated, these conditions are
as follows: If certain branching conditions can never occur or are never permitted to occur,
they can be excluded from the sum rule and from the mutually exclusive requirement. This
means that Eqs. (10.3) and (10.4) need not be satisfied for the FSM to operate properly. As an
example, suppose that in Fig. 10.6 the branching condition is Y for branching path b -> c.
Thus, the sum rule holds since XY + X + Y = 1. However, the branching condition XY is
common to both the b -> c and b -> d branching paths with branching conditions Y and
X, respectively. Clearly, the mutually exclusive requirement of Eq. (10.4) is not satisfied,
which is of no consequence if the input condition XY can never occur. But if the input
condition XY is possible, then branching from state b under XY is ambiguous, leading to
possible FSM malfunction. See Problem 10.24b for a more direct means of testing for the
mutual exclusivity of branching conditions.

10.4 THE BASIC MEMORY CELLS

Developing the concept of memory begins with the basic building block for memory called
the basic memory cell or simply basic cell. A basic cell plays a major role in designing a
memory device (element) that will remember a logic 1 or a logic 0 indefinitely or until it
is directed to change to the other value. In this section two flavors of the basic cell will be
heuristically developed and used later in the design of important memory elements called
flip-flops.

10.4.1 The Set-Dominant Basic Cell

Consider the wire loop in Fig. lO.lOa consisting of a fictitious lumped path delay (LPD)
memory element At and two inverters whose function it is to maintain an imaginary signal.
The LPD memory element is the path delay for the entire wire loop including inverters
concentrated (lumped) in At, hence the meaning of the word "fictitious." But since there
is no external access to this circuit, introduction of such a signal into this circuit is not
possible. This can be partially remedied by replacing one of the inverters with an NAND
gate performing the OR operation as in Fig. 10.1 Ob. Now, a Set (0 —> 1) can be introduced
into the circuit if S(L) = 1(L). This can be further understood by an inspection of the
Boolean expression Qt+\ = S + Q, for the circuit in Fig. 10.1Gb, where the following
definitions apply:

Qt+} = Next state

Qt = Present state.

10.4 THE BASIC MEMORY CELLS 429

Fictitious Lumped path
delay memory elements

Qt Hold
. 1 Set

Qt+1 = Q, CL, = S + Q.1 1 ' Q, = Present state * 1 '

(a) Qt+1 = Next state (b) (c)

FIGURE 10.10
Development of the concept of Set. (a) Wire loop with a fictitious lumped path delay memory element
and two inverters used to restore an imaginary signal, (b) Wire loop with one inverter replaced by a
NAND gate used to introduce a Set condition, (c) Truth table obtained from the logic expression for
Qt+i in (b) showing the Hold and Set conditions.

The truth table in Fig. lO.lOc is constructed by introducing the values {0, 1} for S into this
equation and is another means of representing the behavior of the circuit in Fig. 10.1Gb.
The hold condition Qt+\ = Qt occurs any time the next state is equal to the present state,
and the Set condition occurs any time the next state is a logic 1, i.e., Qt+\ = 1.

The circuit of Fig. lO.lOb has the ability to introduce a Set condition as shown, but no
means of introducing a Reset (1 -» 0) condition is provided. However, this can be done
by replacing the remaining inverter with an NAND gate performing the AND operation
as shown in Fig. 10.1 la. Then, if R(L) = 1(L) when S(L) = 0(L), a Reset condition is
introduced into the circuit. Thus, both a Set and Reset condition can be introduced into the
circuit by external means. This basic memory element is called the set-dominant basic cell
for which the logic circuit in Fig. 10.1 la is but one of seven ways to represent its character,
as discussed in the following paragraphs.

Fictitious Lumped path
delay memory element

Qt(H) <>—^—i s R

0 0
0 1
1 0
1 1

Qt Hold

0 Reset
1 Set

1 Set
Qt+1 = S + RQt SOP

(a) (b) (c)

FIGURE 10.11
The set-dominant basic cell represented in different ways, (a) Logic circuit showing the Set and Reset
capability, and the Boolean equation for the next state function, Qt+i- (b) EV K-map with minimum
cover indicated by shaded loops, (c) Operation table for the set-dominant basic cell showing the Hold,
Set, and Reset conditions inherent in the basic memory cell.

430 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

a

ble, Q

Reset Hold

Set

Reset

Set Hold

State
variable Input logic
change values

, A v r^~^

0 -»

0 ->

1 -»

1 -»

Qt+i

0

1

0

1

s
0

1
0

/11 ̂

R

*
^
1

nf

n

S + R

(a) (b)

FIGURE 10.12
The set-dominant basic cell (contd.). (a) State diagram derived from the operation table in Fig. 10. lie.
(b) Excitation table derived from the state diagram, (c) Timing diagram illustrating the operation of
the set-dominant basic cell.

Reading the circuit in Fig. 10.1 la yields the following SOP expression for the next state
function:

Qt+i=S + RQt. (10.5)

When this expression is plotted in an EV K-map, Fig. 10.1 Ib results, where minimum cover
is indicated by shaded loops. From this expression or from the EV K-map, it is clear that
a set condition is introduced any time 5 = 1 , and that a reset condition results only if
R = 1 and 5 = 0. However, if both inputs are inactive, that is, if 5 = R = 0, it follows
that Qt+\ = Qt, which is the hold condition for the basic cell. The Hold, Set, and Reset
conditions are easily observed by inspection of the operation table for the set-dominant basic
cell given in Fig. 10.1 Ic. The basic cell is called set-dominant because there are two input
conditions, SR and SR, that produce the Set condition as indicated by the operation table
in Fig. 10. lie. Notice that Fig. 10.11 represents four ways of representing the set-dominant
basic cell: logic circuit, NS function, NS K-map, and operation table.

By using the operation table in Fig. 10.1 Ic, the state diagram for the set-dominant basic
cell can be constructed as given in Fig. 10.12a. To clarify the nomenclature associated with
any fully documented state diagram, the following definitions apply to the state variable
changes and will be used throughout this text:

0-> 0 = Reset Hold

0 -> l=Set

1^0 = Reset

1 -* 1 = Set Hold

(10.6)

Thus, for the state diagram in Fig. 10.12a, 5 is the Reset Hold branching condition, 5 is
the Set branching condition, SR is the Reset branching condition, and 5 + R is the Set
Hold branching condition. The output Q is issued (active) only in the Set state (state 1),
not in the Reset state (state 0). Notice that for each of the two states the sum rule (£] = 1)

10.4 THE BASIC MEMORY CELLS 431

holds as it must. But all branching conditions are easily deduced from an inspection of the
operation table. For example, the Set condition is the Boolean sum SR + SR = S, or the
Set Hold condition is the sum SR±SR + SR = S + R, which is simply the complement
of the Reset branching condition SR = S + R in agreement with the sum rule.

From the state diagram of Fig. 10.12a another important table is derived, called the
excitation table, and is presented in Fig. 10.12b. Notice that a don't care 0 is placed in
either the S or R column of the excitation table for the basic cell to indicate an unspecified
input branching condition. For example, the Set branching condition S requires that a 1 be
placed in the S column while a 0 is placed in the R column, indicating that R is not specified
in the branching condition for Set. Similarly, for the Set Hold branching path 1 -» 1, the
branching condition S + R requires a 1 and 0 to be placed in the S and R columns for the S
portion of the branching condition, and that a 0 and 0 to be placed in the S and R columns
for the R portion, respectively. Thus, the excitation table specifies the input logic values for
each of the four corresponding state variable changes in the state diagram as indicated.

As a seventh and final means of representing the behavior of the set-dominant basic cell,
a timing diagram can be constructed directly from the operation table in Fig. 10.1 Ic. This
timing diagram is given in Fig. 10.12c, where the operating conditions Set, Set Hold, Reset,
and Reset Hold are all represented—at this point no account is taken of the path delay
through the gates. Notice that the set-dominant character is exhibited by the S, R = 1,0
and S, R = 1, 1 input conditions in both the operation table and timing diagram.

10.4.2 The Reset-Dominant Basic Cell

By replacing the two inverters in Fig. lO.lOa with NOR gates, there results the logic circuit
for the reset-dominant basic cell shown in Fig. 10.13a. Now, the Set and Reset inputs are
presented active high as S(H) and R(H). Reading the logic circuit yields the POS logic
expression for the next state,

= R(S + Gr), (10.7)

Fictitious Lumped path
delay memory element

Q,(H) w'\ S R

0 0

0 1
1 0
1 1

Qt+i
Q, Hold
0 Reset
1 Set

0 Reset
Qt+1 = R(S + Qt) POS

(a) (b) (c)

FIGURE 10.13
The reset-dominant basic cell represented in different ways, (a) Logic circuit showing the Set and Reset
capability, and the Boolean equation for the next state function, Qt+\. (b) EV K-map with minimum
cover indicated by shaded loops, (c) Operation table for the reset-dominant basic cell showing the
Hold, Set, and Reset conditions inherent in the basic memory cell.

432 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

State
S+R state variable Input logic

variable, Q chan9e values

Qt-» Qt+1

Reset Hold 0 -» 0
R

Set 0 -> 1

Q1T Reset 1 -> 0

Set Hold 1 -» 1

S R

/O ^\ 1
W 1/
1 0 R(H) i | — |

Y 1 . . .

^ 0 U(H) | j_J

n
I

(b)

FIGURE 10.14
The reset-dominant basic cell (contd.). (a) State diagram derived from the operation table in Fig.
10.13c. (b) Excitation table derived from the state diagram, (c) Timing diagram illustrating the oper-
ation of the reset-dominant basic cell.

which is plotted in the EV K-map in Fig. 10.13b with minimum cover indicated by shaded
loops. The operation table for the reset-dominant basic cell is constructed directly from
the Boolean expression for Qt+i and is given in Fig. 10.13c, where input conditions for
Hold, Reset, and Set are depicted. Notice that the Set condition is introduced only when
SR is active, whereas the Reset condition occurs any time R is active, the reset-dominant
character of this basic memory element.

The state diagram for the reset-dominant basic cell is constructed from the operation
table in Fig. 10.13c with the result shown in Fig. 10.14a. Here, the Set condition SR is
placed on the 0 -» 1 branching path. Thus, it follows that the Reset Hold condition is
S + R, which can be read from the operationtable as SR + SR-\- SR = S + R, or is simply
the complement of the Set input condition SR = S + R, a consequence of the sum rule.
The remaining two branching conditions follow by similar reasoning.

The excitation table for the reset-dominant basic cell is obtained directly from the state
diagram in Fig. 10.14a and is presented in Fig. 10.14b. Again, a don't care 0 is placed in
either the S or R column of the excitation table for the basic cell to indicate an unspecified
input branching condition, as was done in the excitation table for the set-dominant basic
cell of Fig. 10.12b. The nomenclature presented to the left of the excitation table follows
the definitions for state variable change given by Eqs. (10.6).

The seventh and final means of representing the reset-dominant basic cell is the timing
diagram constructed in Fig. 10.14c with help of the operation table in Fig. 10.13c. Again, no
account is taken at this time of the gate propagation delays. Notice that the reset-dominant
character is exhibited by the S, R = 0, 1 and S, R = 1,1 input conditions in both the
operation table and the timing diagram.

At this point the reader should pause to make a comparison of the results obtained for the
set-dominant and reset-dominant basic cells. Observe that there are some similarities, but
there are also some basic differences that exist between the two basic memory elements.
Perhaps these similarities and differences are best dramatized by observing the timing
diagrams in Figs. 10.12c and 10.14c. First, notice that the S and R inputs arrive active
low to the set-dominant basic cell but arrive active high to the reset-dominant cell. Next,

10.4 THE BASIC MEMORY CELLS 433

observe the difference in the Q(H) waveform for these two types of basic cells. Clearly,
the set-dominant character is different from the reset-dominant character with regard to the
S, R = 1, 1 input condition. This difference may be regarded as the single most important
difference between these two memory cells and will play a role in the discussion that follows.

10.4.3 Combined Form of the Excitation Table

The excitation table for a memory element has special meaning and utility in state machine
design. In subsequent sections it will be shown that the basic memory cell plays a major
role in the design and analysis of flip-flops, the memory elements used in synchronous
state machine design. Two such excitation tables have been identified so far: one associated
with the set-dominant basic cell and the other associated with the reset-dominant cell.
For purposes of flip-flop design these two excitation tables are inappropriate because of
the different way they behave under the S, R = 1,1 input condition. To overcome this
difference, the two may be combined to give the single generic (combined) excitation table
as shown in Fig. 10.15. Here, common S, R input conditions for the two excitation tables
in Figs. 10.15a and 10.15b are identified for each of the four branching paths given and
are brought together to form the combined excitation table in Fig. 10.15c. The important
characteristic of the combined excitation is that the S, R = 1,1 condition is absent. This
leads to the following important statements:

• Because the S, R = 1, 1 condition is not present in the combined excitation table,
it is applicable to either the set-dominant basic cell or the reset-dominant basic
cell.

• Throughout the remainder of this text only the combined excitation table will be
used in the design of other state machines, including other memory elements called
flip-flops.

1 -» 0

1 -> 1

s R
0 0 -» ° I W I <0 - 1 - ' • • l* 1

0 1

0

Excitation Table for
the Set-Dominant

Basic Cell

(a)

0 - ^ 0

0

0

1 -» 1

S R

0 ^

1 0

0 1

^ 0

0 - 1

1 - 0

1 - 1

S R

0

1 0

1
^ 0

Excitation Table for
the Reset-Dominant

Basic Cell

(b)
Combined

Excitation Table

(c)

FIGURE 10.15
The excitation table for the basic cell, (a) Excitation table for the set-dominant (NAND-based) basic
cell, (b) Excitation table for the reset-dominant (NOR-based) basic cell, (c) Generic (combined)
excitation table applicable to either of the basic cells since the 5, R = 1, 1 condition is absent.

S R

0 0

0 1

1 0

1 1

S + RQ,

Q,
0

1
1

R-[S +

Q.
0

1
0

RQ,]
Hold

Reset

Set

I Mixed-Rail
I Outputs

J

Ambiguous

434 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

[S + RQJ(H)

R-[S + RQt](L)

(a) (b)

FIGURE 10.16
Mixed-rail outputs of the set-dominant basic cell, (a) Logic circuit showing the mixed-logic output
expressions from the two gates, (b) Truth table indicating the input conditions required for mixed-rail
outputs.

Thus, the individual excitation tables for the set-dominant and reset-dominant basic cells
will be of no further use in the discussions of this text.

10.4.4 Mixed-Rail Outputs of the Basic Cells

There are subtle properties of the basic cells, yet to be identified, that are essential to
the design of other memory elements. These properties deal with the output character of
the basic cells. Referring to the logic circuit in Fig. 10.1 la, only one output is identified
for the set-dominant basic cell. However, by removing the fictitious lumped path delay
(LPD) memory element At and arranging the conjugate NAND gate forms one above the
other, there results the well-known "cross-coupled" NAND gate configuration shown in
Fig. 10.16a. There is but one feedback path for the basic cell (indicated by the heavy line),
though it may appear to the reader as though there are two.

The mixed-logic output expression from each of the two conjugate NAND gate forms in
the set-dominant basic cell is read and presented as shown in Fig. 10.16a. Using these two
output expressions, the truth table in Fig. 10.16b is constructed. In this table it is observed
that all input conditions except S, R = 1,1 generate what are called mixed-rail outputs from
the two conjugate NAND gate forms. This means that when a 0(//) is produced from the
OR form, a 0(L) appears on the output of the AND form. Or when the former is !(//), the
latter is 1(L). The S, R = 1, I input condition, meaning S(L) = R(L) = l(L), produces
outputs that are l (H) and 0(L) = l(H) from the OR and AND forms, respectively, and
are not mixed-rail outputs — the NAND gate outputs are ambiguous, since they cannot be
labeled as either Set or Reset.

A similar procedure is used in defining the mixed-rail outputs from the reset-dominant
basic cell. Shown in Fig. 10.17a are the "cross-coupled" NOR gates where the fictitious
LPD memory element A/ has been removed, and outputs from the two conjugate NOR gate
forms are given in mixed-logic notation. Notice again that only one feedback path exists as
indicated by the heavy line.

The input conditions required to generate mixed-rail outputs from the reset-dominant
basic cell are presented in the truth table of Fig. 10.17b. This table is obtained from the
logic circuit and mixed-logic expressions in Fig. 10.17a. Notice that all input conditions
except the S, R = 1, 1 condition generate mixed-rail outputs from the two conjugate NOR
gate forms, similar to the case of the set-dominant basic cell in Fig. 10.16b. Thus, again, the

10.4 THE BASIC MEMORY CELLS 435

S R

0 0

0 1

1 0

1 1

R(S + Qt)

Q*
0

1

0

S + R(S

Q*
0

1

1

+ Qt)
Hold 1

I Mixed-Rail
Reset f Outputs
Set J

Ambiguous
S(H)

(a) (b)

FIGURE 10.17
Mixed-rail outputs of the reset-dominant basic cell, (a) Logic circuit showing the mixed-logic output
expressions from the two confugate gate forms, (b) Truth table indicating the input conditions required
to produce mixed-rail output conditions.

S, R = 1, 1 condition produces an ambiguous output, since the outputs from the conjugate
NOR gates are neither a Set nor a Reset.

Clearly, the mixed-rail outputs of the two types of basic memory cells and the combined
excitation table representing both basic cells all have something in common. From the
results of Figs. 10.15c, 10.16b, and 10.17b, the following important conclusion is drawn:

The mixed-rail output character of the set- and reset-dominant basic cells is inherent
in the combined excitation table of Fig. 10.15c, since the S, R = 1, 1 input condition
is absent.

Use of this fact will be made later in the design of the memory elements, called flip-flops,
where the basic cells will serve as the memory. Thus, if the 5, R = 1, 1 condition is never
allowed to happen, mixed-rail output response is ensured. But how is this output response
manifested? The answer to this question is given in the following subsection.

10.4.5 Mixed-Rail Output Response of the Basic Cells

From Subsection 10.4.4, one could gather the impression that a mixed-rail output response
from the conjugate gate forms of a basic cell occurs simultaneously. Actually, it does not. To
dramatize this point, consider the set-dominant basic cell and its mixed-rail output response
to nonoverlapping Set and Reset input conditions shown in Fig. 10.18a. It is observed that
the active portion of the waveform from the ANDing operation is symmetrically set inside
of that from the ORing (NAND gate) operation by an amount i on each edge. Here, it is
assumed that T\ = 12 = T is the propagation delay of a two-input NAND gate. Thus, it
is evident that the mixed-rail output response of the conjugate gate forms does not occur
simultaneously but is delayed by a gate propagation delay following each Set or Reset input
condition. The circuit symbol for a set-dominant basic cell operated under mixed-rail output
conditions is given in Fig. 10.18b. Should an S, R = 1, 1 input condition be presented to the
set-dominant basic cell at any time, mixed-rail output response disappears, and the circuit
symbol in Fig. 10.18b is no longer valid. That is, the two <2's in the logic symbol assume
the existence of mixed-rail output response.

In a similar manner, the mixed-rail output response of the reset-dominant basic cell to
nonoverlapping Set and Reset input conditions is illustrated in Fig. 10.18c. Again, it is

436 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

S(L) |

R(L)

Q(H)

I

-1

>

•—
1

R(L)

(a) (b)

S(H)

(c) (d)

FIGURE 10.18
Mixed-rail output response of the basic cells and circuit symbols, (a) Logic circuit and mixed-rail
output response for the set-dominant basic cell, (b) Circuit symbol symbol for the set-dominant basic
cell, (c) Logic circuit and mixed-rail output response for the reset-dominant basic cell, (d) Circuit
symbol for the reset-dominant basic cell.

observed that the active portion of the waveform from the ANDing (NOR gate) operation
is symmetrically set within that of the ORing operation by an amount equal to T = r\ = T2,
the propagation delay of a NOR gate. The circuit symbol for the reset-dominant basic
cell operated under mixed-rail output conditions is given in Fig. 10.18d. The difference
in circuit symbols for set- and reset-dominant basic cells is indicative of the fact that the
former requires active low inputs while the latter requires active high inputs. As is the case
for the set-dominant basic cell, an S, R = 1, 1 input condition eliminates mixed-rail output
response and invalidates the circuit symbol in Fig. 10.18d. The two Q's in the logic symbol
assume the existence of mixed-rail output response.

10.5 INTRODUCTION TO FLIP-FLOPS

The basic cell, to which the last section was devoted, is not by itself an adequate memory
element for a synchronous sequential machine. It lacks versatility and, more importantly,
its operation cannot be synchronized with other parts of a logic circuit or system. Actually,
basic cells are asynchronous FSMs without a timing control input but which are essential to

10.5 INTRODUCTION TO FLIP-FLOPS 437

Rising Edge T Falling Edge

*-Time

I fl I I PI —*Time

FIGURE 10.19
Clock logic waveforms, (a) Regular clock waveform showing rising and falling edges and a fixed
clock period TCK- (b) Irregular clock waveform having no fixed clock period.

the design of flip-flops, the memory elements that are used in the design synchronous state
machines. A flip-flop may be defined as follows:

A flip-flop is an asynchronous one-bit memory element (device) that exhibits sequen-
tial behavior controlled exclusively by an enabling input called CLOCK.

A flip-flop samples a data input of one bit by means of a clock signal, issues an output
response, and stores that one bit until it is replaced by another. One flip-flop is required
for each state variable in a given state diagram. For example, FSMs that are capable of
generating the 3-bit binary sequences shown in Fig. 10.2 each require three flip-flops for
their design.

The enabling input, clock, can be applied to the flip-flops as either a regular or irregular
waveform. Both types of clock waveforms are represented in Fig. 10.19. The regular clock
waveform in Fig. 10.19a is a periodic signal characterized by a clock period TCK and
frequency fCK given by

fCK=~, (10-8)

where fCK is given in units of Hz (hertz) when the clock period is specified in seconds.
The irregular clock waveform in Fig. 10.19b has no fixed clock period associated with it.
However, both regular and irregular clock waveforms must have rising (0 -» 1) and falling
(1 — > 0) edges associated with them, as indicated in Fig. 10.19.

10.5.1 Triggering Mechanisms

In synchronous sequential machines, state-to-state transitions occur as a result of a triggering
mechanism that is either a rising or falling edge of the enabling clock waveform. Flip-flops
and latches that trigger on the rising edge of the clock waveform are said to be rising
edge triggered (RET), and those that trigger on the falling edge of the clock waveform are
referred to as falling edge triggered (FET). These two triggering mechanisms are illustrated
in Fig. 10.20, together with the logic symbols used to represent them. The distinction
between flip-flops and latches will be made in Section 10.7.

438 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

-Active . —i Active
— > — CK I

Inactive ' '— Inactive

Flip-flop Latch Flip-flop Latch

Rising Edge Triggering (RET) Falling Edge Triggering (FET)

(a) (b)

FIGURE 10.20
Flip-flop and latch logic circuit symbology. (a) Rising-edge triggering, (b) Falling-edge triggering.

Mechanisms involving a two-stage triggering combination of RET and FET flip-flops
are classified as master-slave (MS) triggering mechanisms and flip-flops that employ this
two-stage triggering are called, accordingly, master-slave (MS) flip-flops. MS flip-flops will
be dealt with together with edge-triggered flip-flops in subsequent sections.

10.5.2 Types of Flip-Flops

The designer has a variety of flip-flops and triggering mechanisms from which to choose for
a given FSM design. The mechanisms are classified as either edge triggered (ET), meaning
RET or FET, or master-slave (MS). The types of flip-flops and the mechanisms by which
they operate are normally chosen from following list:

D flip-flops (ET or MS triggered)
T flip-flops (ET or MS triggered)
JK flip-flops (ET or MS triggered)

The generalized definitions of the flip-flop types D, T, and JK are internationally accepted
and will be discussed in turn in the sections that follow. There are other flip-flop types
(e.g., SR flip-flops) and other triggering mechanism interpretations, and these will be noted
where appropriate. It is the intent of this text to concentrate on the major types of flip-flop
memory elements.

10.5.3 Hierarchical Flow Chart and Model for Flip-Flop Design

In checking the data books on flip-flops it becomes clear that there exists an interrelationship
between the different types suggesting that in many cases there exists a "parent" flip-flop
type from which the others are created — a hierarchy for flip-flop design. In fact, it is the D
flip-flop (D-FF) that appears to be the basis for the creation of the other types of flip-flops,
as indicated in the flow chart of Fig. 10.21. However, it is the JK flip-flop types that are
called universal flip-flops because they operate in all the modes common to the D, T, and
SR type flip-flops. Also, once created, the JK flip-flops are most easily converted to other
types of flip-flops (e.g., JKs converted to Ts), as suggested by the flow chart. With few
exceptions, flip-flops other than D, JK, and SR types are rarely available commercially. Of
the latches, one finds that only the D and SR latches are available commercially.

There are, of course, exceptions to this hierarchy for flip-flop design, but it holds true for
most of the flip-flops. The miscellaneous category of flip-flops includes those with special
properties for specific applications. The SR flip-flop types fall into this category.

10.5 INTRODUCTION TO FLIP-FLOPS 439

FIGURE 10.21
Flow chart for flip-flop design hierarchy, showing D type flip-flops as central to the design of other
flip-flops.

The model that is used for flip-flop design is the basic model given in Fig. 10.3c but
adapted specifically to flip-flops. This model, presented in Fig. 10.22a, is applied to a
generalized, fictitious RET XY type flip-flop and features one or more basic memory
cells as the memory, the next state (NS) forming logic, external inputs including clock
(CK), the S and R next state functions, and the present state (PS) feedback paths. Had
the fictitious XY-FF been given an FET mechanism, a bubble would appear on the outside
of the clock triggering symbol (the triangle). Note that the S and R next state functions
would each be represented by dual lines if two basic cells are used as the memory for
the XY flip-flop. The logic circuit symbol for the RET XY flip-flop (XY-FF) is given in
Fig. 10.22b.

Not all flip-flops to be discussed in the sections that follow have two data inputs and not
all have PS feedback paths as in Fig. 10.22. And not all flip-flops will be rising edge triggered
as in this fictitious flip-flop. Furthermore, flip-flops classified as master-slave flip-flops do
not adhere to the model of Fig. 10.22, since they are two-stage memory elements composed
of two memory elements of one type or another. Nevertheless, the model of Fig. 10.22
presents a basis for flip-flop design and will be used in the discussions that follow.

(a) (b)

FIGURE 10.22
(a) The basic model adapted to a fictitious RET XY type flip-flop showing the basic cell(s) as memory,
the NS forming logic, the S and R next state fucntions, the external data inputs X and Y, the clock
(CK) input, and the present state (PS) feedback lines from the mixed-rail outputs Q. (b) Circuit symbol
for the RET XY flip-flop.

440 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

10.6 PROCEDURE FOR FSM (FLIP-FLOP) DESIGN
AND THE MAPPING ALGORITHM

The following three-step procedure will be used in the design of FSMs including flip-flops:

1. Select the FSM (e.g., a flip-flop type) to be designed and represent this FSM in the
form of a state diagram. The output-forming logic can be mapped and obtained at
this point.

2. Select the memory element (e.g., a basic cell or flip-flop) to be used in the design of
the FSM (e.g., in the design of another flip-flop) and represent this memory element
in the form of an excitation table.

3. Obtain the NS function(s) for the FSM in the form of NS K-maps by combining the
information represented in the state diagram with that represented in the excitation
table for the memory. To accomplish this, apply the following mapping algorithm:

Mapping Algorithm for FSM Design

AND the memory input logic value in the excitation table with the corresponding branch-
ing condition (BC) in the state diagram for the FSM to be designed, and enter the result
in the appropriate cell of the NS K-map.

The mapping algorithm is of general applicability. It will be used not only to design and
convert flip-flops, but also to design synchronous and asynchronous state machines of any
size and complexity. The idea behind the mapping algorithm is that all FSMs, including
flip-flops, are characterized by a state diagram and a memory represented in the form of an
excitation table. The mapping algorithm provides the means by which these two entities can
be brought together in some useful fashion so that the NS functions can be obtained. For
now, the means of doing this centers around the NS K-maps. But the procedure is general
enough to be computerized for CAD purposes by using a state table in place of the state
diagram. Use will be made of this fact in the latter chapters of this text.

10.7 THE D FLIP-FLOPS: GENERAL

Every properly designed and operated D-FF behaves according to a single internationally
accepted definition that is expressed in any one or all of the three ways. Presented in
Fig. 10.23 are the three means of defining the D flip-flop of any type. The first is the
operation table for any D-FF given in Fig. 10.23a. It specifies that when D is active Q must
be active (Set condition), and when D is inactive Q must be inactive (Reset condition). The
state diagram for any D-FF, given in Fig. 10.23b, is best derived from the operation table
and expresses the same information about the operation of the D-FF. Thus, state 0 is the
Reset state (Q, = 0) when D = 0, and state 1 is the Set state (Q, = 1) when D = 1.

The excitation table for any D-FF, given in Fig. 10.23c, is the third means of expressing
the definition of a D-FF. It is best derived directly from the state diagram in Fig. 10.23b. In
this table the Qt —> Qt+\ column represents the state variable change from PS to NS, and
the D column gives the input logic value for the corresponding branching path in the state

10.7 THE D FLIP-FLOPS: GENERAL 441

State
variable Input logic

State change value
variable, Q

0 Reset
0

1 Set

0

1 Set Hold

1 Set
1 -> 0

Operation ^ 1 J utiT 1 —»• 1
Table

Excitation
(a) D Table

State (c)
Diagram

(b)

FIGURE 10.23
Generalized D flip-flop definition expressed in terms of the operation table (a), the state diagram (b),
and the excitation table (c).

diagram. For example, the Reset hold branching path 0 —> 0 is assigned D = 0 (for D),
and the Set branching path 0 —> 1 is assigned the D = 1 for branching condition D. The
excitation table for the D-FF is extremely important to the design of other state machines,
including other flip-flops, as will be demonstrated in later sections.

Now that the foundation for flip-flop design has been established, it is necessary to
consider specific types of D flip-flops. There are three types to be considered: the D-latch,
the edge triggered (ET) D flip-flop, and the master-slave (MS) D flip-flop, all of which
adhere to the generalized definition of a D flip-flop expressed in Fig. 10.23. Each of these
D-type flip-flops is represented by a unique state diagram containing the enabling input
clock (CK) in such a way as to identify the triggering mechanism and character of the D
flip-flop type. In each case the memory element used for the design of the D flip-flop is the
basic cell (set-dominant or reset-dominant) that is characterized by the combined excitation
table given in Fig. 10.15c. The design procedure follows that given in Section 10.6 where
use is made of the important mapping algorithm.

10.7.1 TheD-Latch

A flip-flop whose sequential behavior conforms to the state diagram presented in Fig. 10.24a
is called an RET transparent (high) D latch or simply D latch. Under normal flip-flop action
the RET D latch behaves according to the operation table in Fig. 10.23a, but only when
enabled by CK. The transparency effect occurs when CK is active (CK = 1). During this
time Q goes active when D is active, and Q goes inactive when D is inactive — that is,
Q tracks D when CK = 1. Under this transparency condition, data (or noise) on the D
input is passed directly to the output and normal flip-flop action (regulated by CK) does not
occur. If the D latch is itself to be used as a memory element in the design of a synchronous
FSM, the transparent effect must be avoided. This can be accomplished by using a pulse
narrowing circuit of the type discussed later. The idea here is that minimizing the active

442 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

D+CK
lfCK=1, Q follows D.

.•. Transparent

0 <j>
1 0

PS 1 <! ' " ° 1

0

Characterization of the memory

(a) (b)

FIGURE 10.24
The RET D latch, (a) State diagram for the D latch showing transparency effect when CK = 1. (b)
Excitation table for the basic cell and characterization of the memory.

portions of the clock waveform also minimizes the probability that the transparent effect
can occur. Although this is likely to be true, it is generally recommended that the D latch
not be considered as a viable option when selecting a memory element for FSM design.
Of course, if D can never go active when CK is active, the D latch can be considered as a
viable option for memory in FSM design.

The memory element to be used in the design of the D latch is one or the other of two
basic cells (Fig. 10.18) characterized by the combined excitation table given in Fig. 10.24b.
The plan for design of the D latch is simply to take the information contained in the state
diagram of Fig. 10.24a and in the excitation table in Fig. 10.24b, and bring the two kinds
of information together in the form of next-state K-maps by using the mapping algorithm
given in Section 10.6. When this is done the following information is used for the K-map
entries:

f place 0 • (D + CK) = 0 in Cell 0 of the S K-map }
For 0 —> 0 < _ _ >

(place (/)-(D + CK) = 0(D + CK) in Cell 0 of the R K-map\

(place 1 • (DCK) = DCK in Cell 0 of the S K-map]
}

place 0 • (DCK) = 0 in Cell 0 of the R K-map J

(place 0 • (DCK) = 0 in Cell 1 of the S K-map]
i

place 1 • (DCK) = DCK in Cell 1 of the R K-map\

[place <j)-(D + CK) = $(D + CK) in Cell 1 of the S K-map]
For 1 -»• 1 { } .

[place 0 • (DCK) = 0 in Cell 1 of the R K-map J

This results in the next state EV K-maps, minimum next state functions for S and R, and the
logic circuit and symbol all shown in Fig. 10.25. The four null (zero) entries are omitted in
the EV K-maps, leaving only the two essential and two nonessential (don't care) entries for

10.7 THE D FLIP-FLOPS: GENERAL 443

NS Logic Memory
\

Q(H) I

Q(L)
' • - *—\̂ >o-̂ —\ j~ ' i '

R = DCK

(a) (b) (c)

FIGURE 10.25
Design of the RET D latch by using a basic cell as the memory, (a) EV K-maps and minimum Boolean
expressions for the S and ^? next-state functions, (b) Logic circuit showing the NS logic from part (a)
and the set-dominant basic cell as the memory, (c) Logic circuit symbol for the RET D latch.

use in extracting minimum cover. Note that DCK (in the S K-map) is contained in 0D, that
DCK (in the R K-map) is contained in 0D, and that the logic circuit conforms to the model
in Fig. 10.22 exclusive of PS feedback. The CK input to the circuit symbol in Fig. 10.25c
is consistent with that for a latch as indicated in Fig. 10.20a.

The behavior of the RET D latch is best demonstrated by the timing diagram shown
in Fig. 10.26. Here, normal D flip-flop (D-FF) action is indicated for D pulse durations
much longer than a CK period. For normal D-FF behavior, Q goes active when CK samples
(senses) D active, and Q goes inactive when CK samples D inactive. However, when CK is
active and D changes activation level, the transparency effect occurs. This is demonstrated
in the timing diagram of Fig. 10.26.

The FET (transparent low) D latch is designed in a similar manner to the RET D latch
just described. All that is required is to complement CK throughout in the state diagram
of Fig. 10.24a, as shown in Fig. 10.27a. Now, the transparency effect occurs when CK is
inactive (CK = 0). If a set-dominant basic cell is again used as the memory, there results the
logic circuit of Fig. 10.27b, where an inverter is the only added feature to the logic circuit
shown in Fig. 10.25b. The logic circuit symbol for the FET D latch is given in Fig. 10.27c.
Here, the active low indicator bubble on the clock input identifies this as a falling edge

X
Normal D-FF action _ '

Transparency

FIGURE 10.26
Timing diagram for an RET D latch showing normal D-FF action and the transparency effect that can
occur when CK is active, where no account is taken of gate path delays.

444 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

D+CK
lfCK = 0, Q follows D.
.-. Transparent

NS Logic Memory
/-

D(H) , „-« N . Q(H) j

D+CK

(a) (b) (c)

FIGURE 10.27
The FET D latch, (a) State diagram showing condition for transparency, (b) Logic circuit assuming
the use of a set-dominant basic cell as the memory for design, (c) Logic circuit symbol.

triggered device consistent with Fig. 10.20(b). A CK(H) or CK(L) simply means RET or
FET, respectively.

If either the RET D latch or the FET D latch is to be used as the memory element in the
design of a synchronous FSM, extreme care must be taken to ensure that the transparency
effect does not occur. Transparency effects in flip-flops result in unrecoverable errors and
must be avoided. This can be accomplished by using a pulse narrowing circuit of the type
shown in Fig. 10.28a. Here, an inverting delay element of duration A? is used to produce
narrow pulses of the same duration in the output logic waveform as indicated in Fig. 10.28b.
The delay element can be one or any odd number of inverters, an inverting buffer, or an
inverting Schmitt trigger. In any case, the delay element must be long enough to allow the
narrow pulses to reliably cross the switching threshold. If the delay is too long, the possibilty
of transparency exists; if it is too short, flip-flop triggering will not occur.

10.7.2 The RET D Flip-Flop

The transparency problem inherent in the D latch, discussed in the previous subsection,
places rather severe constraints on the inputs if the latch is to be used as a memory element

At
(a) (b)

FIGURE 10.28
Pulse narrowing circuit, (a) Logic circuit showing an inverting delay element Ar used to produce
narrow pulses from long input pulses, (b) Positive logic timing diagram showing the resulting narrow
pulses of duration At on the output waveform.

10.7 THE D FLIP-FLOPS: GENERAL 445

S+R

(b) Basic Cell

FIGURE 10.29
The RET D flip-flop as represented by state diagrams, (a) Resolver FSM input stage, (b) Set-dominant
basic cell output stage.

in the design of a state machine. This problem can be overcome by using an edge triggered
D flip-flop that possesses data lockout character as discussed in the following paragraph.
Shown in Fig. 10.29a is the resolver FSM that functions as the input stage of an RET D
flip-flop. Here, state a is the sampling (unresolved) state, CK is the sampling (enabling)
input, and states b and c are the resolved states. Observe that the outputs of the resolver
are the inputs to the basic cell shown in Fig. 10.29b, and that the output of the basic
cell is the output of the D flip-flop. Thus, an input FSM (the resolver) drives an output
FSM (the basic cell) to produce the D flip-flop which conforms to the general D flip-flop
definitions given in Fig. 10.23. Note that both the resolver and basic cell are classified as
asynchronous state machines, yet they combine to produce a state machine (flip-flop) that
is designed to operate in a synchronous (clock-driven) environment. But the flip-flop itself
is an asynchronous FSM!

To understand the function of the RET D flip-flop, it is necessary to move stepwise
through the operation of the two FSMs in Fig. 10.29: Initially, let Q be inactive in state a
of the resolver. Then, if CK samples D active in state a, the resolver transits a —>• c and
issues the output S, which drives the basic cell in Fig. 10.29b to the set state 1 where Q is
issued. In state c, the resolver holds on CK, during which time Q remains active; and the
data input D can change at any time without altering the logic status of the flip-flop — this
is the data lockout feature. When CK goes inactive (CK), the resolver transits back to state
a, where the sampling process begins all over again, but where Q remains active. Now,
if CK samples D inactive (D) in state a, the resolver transits a ->• b, at which time R is
issued. Since the branching condition SR is now satisfied, the basic cell is forced to transit
to the reset state 0, where Q is deactivated. The resolver holds in state b on active CK. Then
when CK goes inactive (CK), the resolver transits back to the unresolved state a, at which
time the sampling process begins all over again, but with Q remaining inactive.

The design of the RET D flip-flop follows the design procedure and mapping algorithm
given in Section 10.6. Since the logic circuit for the set-dominant basic cell is known and
given in Fig. 10.18a, all that is necessary is to design the resolver circuit. This is done by
using what is called the nested cell model, which uses the basic cells as the memory elements.
Shown in Fig. 10.30 are the state diagram for the resolver (the FSM to be designed), the

446 CHAPTER 10/INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

State Memory
variable input logic

State varibales AB change values

Qt -> Qt+1

0 ^ 0

0 -> 1

1 -> 0

S R

0 (f>

1 0
0 1

PIT
(a) (b)

Resolver FSM to be designed Characterization of the memory

DCK

/S

CK
/

A 7R,

DCK

u

^(D+CKL

</>

CK A0̂

1
/

0

0

(T~

1
0

Tl
^0

1
/

0

0

n

1

w
/R0

 XSTS&B

(c) (d)

FIGURE 10.30
Resolver design for the RET D flip-flop, (a) State diagram for the resolver. (b) Characterization of the
memory, (c) EV K-maps for the next state functions required to drive the two basic cells, (d) Output
K-maps for the resolver.

characterization of the memory (combined excitation table for the basic cell), and the EV
K-maps for the next state and output functions.

The mapping algorithm requires that the information contained in the state diagram of
Fig. 10.30a be combined with the excitation table of Fig. 10.30b to produce the next state
EV K-maps. This has been done in Fig. 10.30c by introducing the following information
obtained by a step-by-step application of the mapping algorithm:

State 00 (K-map cell 0)

[0 -> 1, place 1 • (DCK) = DCK in the 5A K-map 1
Bit A { - }

'0^0, place 0 • (D + CK) in the RA K-map]

> 1, place 1 • (DCK) = DCK in the SB K-map 1

> 0, place 0 • (D + CK) in the RB K-map I

10.7 THE D FLIP-FLOPS: GENERAL 447

Stated (K-mapcelM)

10 -» 0, place 0 in the SA K-map, I
}

place 0 in the RA K-map I

!

1 -> 0, place 1 • (CK) = CKin the RB K-map)
>

1 -» 1, place 0 • (CK) = (f>CK in the SB K-map]

State 10 (K-map cell 2)

(1 ->• 0, place 1 • (CK) = CK in the RA K-map 1

1 -> 1, place 0 • (CK) = 0C£ in the 5A K-map j

(0 -» 0, place 0 in the SB K-map, 1. F « F> i
place 0 in the /?s K-map I

Notice that for every essential EV entry in a given K-map cell there exists the complement
of that entry ANDed with 0 in the same cell of the other K-map. This leads to the following
modification of the mapping algorithm in Section 10.6 as it pertains to S/R mapping:

1. Look for Sets (0 -> 1) and Resets (1 -» 0) and make the entry 1-(Appropriate BC) in
the proper Sj or /?,- K-map, respectively, according to the combined excitation table
for the basic cell. (Note: BC = branching condition.)

2. For each Set entry (from [1]) in a given cell of the 5, K-map, enter 0 • (Appropriate BC)
in the same cell of the corresponding /?, K-map.
For each Reset entry (from [1]) in a given cell of the /?, K-map, enter 0-
(Appropriate BC) in the same cell of the corresponding 5,- K-map.

3. For Hold Resets (0 -> 0) and Hold Sets (1 -> 1), enter (0,0) and (0,0), respectively,
in the (S,,/?,) K-maps in accordance with the combined excitation table for basic cell
given in Fig. 10.15c.

Continuing with the design of the RET D flip-flop, the minimum NS and output functions
extracted from the EV K-maps in Figs. 10.30c and 10.30d are

SA = BDCK RA
SB = ADCK RB

S = A R = B

(10.9)

which are implemented in Fig. 10.31a. Here, the basic cells for bits A and B are highlighted
by the shaded areas within the resolver section of the RET D flip-flop. Notice that the
requirement of active low inputs to the three set-dominant basic cells is satisfied. For
example, in the resolver FSM this requirement is satisfied by RA(L) = Rs(L) = CK(L) =
CK(H). The circuit symbol for the RET D flip-flop is given in Fig. 10.3 Ib, where the triangle
on the CK input is indicative of an edge triggered flip-flop with data-lockout character and
is consistent with Fig. 10.20a.

448 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

Resolver

D(H)

-Q(H)
~~ k"-̂

CK(H)-
_ rv-̂ N

•Q(L)

(a) (b)

FIGURE 10.31
(a) Logic circuit for the RET D flip-flop as constructed from Eqs. (10.9) showing the resolver and
output basic cell stage, (b) Logic circuit symbol.

The operation of the RET D flip-flop is best represented by the timing diagram in
Fig. 10.32, where arrows on the rising edge of the clock waveform provide a reminder that
this is an RET flip-flop. The edge-triggering feature is made evident by the vertical dashed
lines, and the data lockout character is indicated by the absence of a flip-flop output response
to narrow data pulses during the active and inactive portions of the clock waveform. For the
sake of simplicity, no account is taken of gate propagation delay in Fig. 10.32.

10.7.3 The Master-Slave D Flip-Flop

Another useful type of D flip-flop is the master-slave (MS) D flip-flop defined by the two
state diagrams in Fig. 10.33a and that conforms to the general definitions for a D flip-flop
given in Fig. 10.23. The MS D flip-flop is a two-stage device consisting of an RET D latch

CK

D(H)

Q(H)

Q(L)

FIGURE 10.32
Timing diagram showing proper operation of the RET D flip-flop.

10.7 THE D FLIP-FLOPS: GENERAL 449

D+CK -„ . - . - D(H)

CK

Master

D Q

CK Q

-^-

,f

Slave

D Q

CK Q

-Q(H)

D-Q(L)

(b)

D + CK

RET D Latch FET D Latch
Master Stage Slave Stage

(a) (c)

FIGURE 10.33
The master-slave (MS) D flip-flop, (a) State diagram for the master and slave stages, (b) Logic circuit,
(c) Circuit symbol.

as the master stage and an FET D latch as the slave stage. The output of the master stage is
the input to the slave stage. Thus, the transparency problem of the D latch in Fig. 10.24a has
been eliminated by the addition of the slave stage that is triggered antiphase to the master.
Thus, should signals pass through the master stage when CK is active, they would be held
up at the slave stage input until CK goes inactive.

The design of the MS D flip-flop can be carried out following the same procedure as
given in Figs. 10.24, 10.25, and 10.27. However, this is really unnecessary, since the logic
circuits for both stages are already known from these earlier designs. The result is the logic
circuit given in Fig. 10.33b, where the output of the master RET D latch symbol is the input
to the slave FET D latch symbol. The logic circuit symbol is shown in Fig. 10.33c and is
identified by the pulse symbol on the clock input.

The operation of the MS D flip-flop is illustrated by the timing diagram in Fig. 10.34,
where no account is taken of gate propagation delay. Notice that signals that are passed
through the master stage during active CK are not passed through the slave stage, which is

CK

D(H)

Q(H)

FIGURE 10.34
Timing diagram for the MS D flip-flop showing the output response from master and slave stages,
and the absence of complete transparency with no account taken of gate path delays.

450 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

(a) (b)

FIGURE 10.35
(a) The MS D flip-flop configured with CMOS transmission gates and inverters and requiring two-
phase (2<t>) clocking, (b) The reset-dominant basic cell used to generate 2<I> clocking as indicated by
the output logic waveforms.

triggered antiphase to the master. However, there is the possibility of noise transfer, though
of low probability. If logic noise should appear at the input to the slave stage just at the
instant that CK goes through a falling edge, that noise can be transferred to the output.

One important advantage the MS D flip-flop has over the edge triggered variety is that the
MS D flip-flop can be configured with transmission gates and inverters. Such a configuration
is shown in Fig. 10.35a, where two CMOS transmission gates are used together with two
inverters. To achieve the two-stage effect required by the MS configuration, the CMOS
transmission gates must be operated by using two-phase (24>) clocking such that the active
portions of the clock phases are nonoverlapping. Shown in Fig. 10.35b is a reset-dominant
basic cell used to generate the two clock phases (<&\ and $2) whose active portions are
separated in time by an amount r, the path delay of a NOR gate. Notice that both phase
waveforms (4> i and 4>2) are given in positive logic, similar to the physical voltage waveforms
but without rise and fall times. These clock phase signals must each be supplied to the CMOS
transmission gates in complementary form. This means that when 4>i is at LV, <I>i must
be at HV and vice versa. The same must be true for 4>2- Each complementary form is
achieved by the use of an inverter with a buffer in the HV path for delay equalization, if
necessary.

10.8 FLIP-FLOP CONVERSION: THE T, JK FLIP-FLOPS AND MISCELLANEOUS
FLIP-FLOPS

In Fig. 10.21 a hierarchy for flip-flop design is given with the understanding that the D
flip-flop is central to such a process. In this text, this is the case, as will be demonstrated
by the design of the other important types of flip-flops. First, however, certain information
must be understood.

To design one flip-flop from another, it is important to remember the following:

The new flip-flop to be designed inherits the triggering mechanism of the old (memory)
flip-flop.

10.8 THE TJK FLIP-FLOPS AND MISCELLANEOUS FLIP-FLOPS 451

Fictitious

1
1 .

V

NS
Forming

Logic

»•

-*

D Q
Memory

? Q

\ He

D—

XY-FF

L-Q(H) _

- Q(L) -^

x
V Q

? Q

/

CK \— triggering mechanism —'
of XY flip-flop

(a) (b)

FIGURE 10.36
(a) Model and (b) logic symbol for a fictitious XY flip-flop derived from a D flip-flop having an
unspecified triggering mechanism.

This important fact can best be understood by considering the fictitious XY flip-flop shown
in Fig. 10.36. This fictitious flip-flop has been derived from a D flip-flop of some arbitrary
triggering mechanism indicated by the question mark (?) on the clock input.

The model in Fig. 10.36a can be compared with the basic model in Fig. 10.22 for the
same fictitious XY flip-flop, where now a D flip-flop is used as the memory instead of
basic cells. In either case the XY flip-flop is designed according to the design procedure
and mapping algorithm presented in Section 10.6, but the characterization of memory is
different. As will be recalled from Section 10.7, flip-flops designed by using one or more
basic cells require that the memory be characterized by the combined excitation table for
the basic cell given in Fig. 10.15c. Now, for flip-flop conversion by using a D flip-flop as
the memory, the excitation table for the D flip-flop in Fig. 10.23c must be used.

10.8.1 The T Flip-Flops and Their Design from D Flip-Flops

All types of T flip-flops behave according to an internationally accepted definition that is
expressed in one or all of three ways. Presented in Fig. 10.37 are three ways of defining the
T flip-flop, all expressed in positive logic as was true in the definition of the D flip-flops.
Shown in Fig. 10.37a is the operation table for any T flip-flop. It specifies that when T is
active, the device must toggle, meaning that 0 -> 1 and 1 -> 0 transitions occur as long
as T = 1. When T = 0, the T flip-flop must hold in its present state. The state diagram
for T flip-flops in Fig. 10.37b is derived from the operation table and conveys the same
information as the operation table. Here, the toggle character of the T flip-flop is easily
shown to take place between Set and Reset states when T is active, but holding in these
states when T is inactive.

The excitation table presented in Fig. 10.37c is the third means of expressing the definition
of T flip-flops. It is easily derived from the state diagram and hence conveys the same
information regarding T flip-flop operation. This excitation table will be used to characterize
the memory in the design of FSMs that require the use of T flip-flops as the memory elements.

452 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

State
variable Input logic

State change value
variable, Q

Q.

Q, Hold

Q, Toggle

t

0 -»• 1
0 Reset Hold
1

Toggle
1
0 Set Hold

1 -»• 0
Operation (̂ 1 ̂ Q,it 1

Table
Excitation

(a) f Table

State (c)
Diagram

(b)

FIGURE 10.37
Generalized T flip-flop definition expressed in terms of the operation table (a), the state diagram (b),
and the excitation table (c).

Design of the T Flip-Flops from D Flip-Flops Since T flip-flops are to be designed
(converted) from D flip-flops, the excitation table for the D flip-flop must be used to char-
acterize the memory. This excitation table and the state diagram representing the family of
T flip-flops must be brought together by using the mapping algorithm set forth in Section
10.6. This is done in Fig. 10.38, parts (a), (b), and (c), where the next state logic for flip-flop
conversion is found to be

D = T®Q. (10.10)

State Memory
variable input logic
change value

Q

P S O < ° ^ ° 1 Q t1 Set
0

0 -* 1

1 -> 0

D

PS 1 <! ' " °
1 -> 1 1 Set Hold

Excitation Table
characterizing the

memory

(b) (c)

FIGURE 10.38
Design of the T flip-flops, (a) The state diagram for any T flip-flop, (b) Excitation table for the D
flip-flop memory, (c) NS K-map and NS function resulting from the mapping algorithm.

10.8 THE TJK FLIP-FLOPS AND MISCELLANEOUS FLIP-FLOPS 453

Inherits triggering
of the D flip-flop

Indicates an arbitrary
a) triggering mechanism

FIGURE 10.39
(a), (b) Implementation of Eq. (10.10) and logic circuit symbol for a T flip-flop of arbitrary triggering
mechanism, (c) Logic symbol and timing diagram for an RET T flip-flop showing toggle and hold
modes of operation.

Implementation of the NS function given in Eq. (10.10) is shown in Fig. 10.39a together
with the symbol for the T flip-flop in Fig. 10.39b, which as yet has not been assigned a
triggering mechanism — the designer's choice indicated by the question mark (?) on the
clock input. Remember that the new FSM (in this case a T flip-flop) inherits the triggering
mechanism of the memory flip-flop (in this case a D flip-flop). Shown in Fig. 10.39c is the
logic circuit symbol and timing diagram for an RET T flip-flop, the result of choosing an
RET D flip-flop as the memory. The timing diagram clearly indicates the toggle and hold
modes of operation of the T flip-flop. For the sake of simplicity no account is taken of the
propagation delays through the logic.

Were it desirable to produce an MS T flip-flop, the memory element in Fig. 10.39a would
be chosen to be a MS D flip-flop. The timing diagram for an MS T flip-flop would be similar
to that of Fig. 10.39c, except the output from the slave stage would be delayed from the
master stage by a time period TCK!^- This is so because the slave stage picks up the output
from the master stage only on the falling edge of CK, that is, the two stages are triggered
antiphase to one another.

10.8.2 The JK Flip-Flops and Their Design from D Flip-Flops

The flip-flops considered previously are single data input flip-flops. Now, consideration
centers on a type of flip-flop that has two data inputs, J and K. The members of the
JK flip-flop family conform to the internationally accepted definition expressed in terms

454 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

State
gtaje variable Input logic
variable Q chan9e values

J K

0 0
0 1
1 0

1 1

Qt Hold

0 Reset

1 Set
Qt Toggle

Operation
Table

(a)

FIGURE 10.40
Generalized JK flip-flop definition expressed in terms of the operation table (a), the state diagram (b),
and the excitation table (c).

of an operation table, a state diagram, or an excitation table provided in Fig. 10.40. The
operation table in Fig. 10.40a reveals the four modes of JK flip-flop operation: Hold,
Reset, Set, and Toggle. Thus, it is seen that the JK type flip-flops operate in all the modes
common to SR, T, and D type flip-flops, though SR flip-flops (clocked SR latches) are
yet to be discussed. For this reason the JK flip-flops are sometimes referred to as the
universal flip-flops. The state diagram in Fig. 10.40b is best derived from the operation
table. For example, the Set (0 —> 1) branching condition follows from the Boolean sum
(Set + Toggle) = JK + JK = J, and the Reset (1 —»• 0) branching condition results from the
sum (Reset + Toggle) = JK + JK = K. The Set-Hold and Reset-Hold conditions result
from the sums JK + JK = K and JK + JK = J, respectively. However, given the set
and reset branching conditions, the sum rule in Eq. (10.3) can and should be used to obtain
the two hold conditions.

The excitation table for the JK flip-flops in Fig. 10.40c is easily derived from the state
diagram in (b). For example, the Reset-Hold branching path requires a branching condition
J that places a 0 and a 0 in the J and K columns of the excitation table. A 0 is used for
unspecified inputs in branching conditions. Similarly, a 1 and 0 are placed in the J and
K columns for the Set branching condition /. Notice that this excitation table bears some
resemblance to that of the combined excitation table for the basic cells in Fig. 10.15c, but
with two additional don't cares. The excitation table for the JK flip-flops will be used rather
extensively to characterize the memory in the design of FSMs that require JK flip-flops as
memory elements.

Design of the JK Flip-Flops from the D Flip-Flops The process used previously in the
design of T flip-flops from D flip-flops is now repeated for the case of the JK flip-flops
defined in Fig. 10.40 in terms of the operation table, state diagram, and excitation table.
Shown in Fig. 10.4 la is the state diagram representing the family of JK flip-flops, the FSMs
to be designed. Since a D flip-flop is to be used as the memory element in the design, its
excitation table must be used to characterize the memory and is provided in Fig. 10.41b.

10.8 THE T,JK FLIP-FLOPS AND MISCELLANEOUS FLIP-FLOPS 455

PSO

CUT PS 1

Qt -» <Vi
o -> o
0 -» 1

1 -»• 0

1 -+ 1

D

0

1 Set

0

1 Set Hold /D

Excitation Table D = QJ + QK
K characterizing the NS function

FSM to be designed ^

(a) (b) (c)

FIGURE 10.41
Design of the JK flip-flops, (a) State diagram for any JK flip-flop, (b) Excitation table for the D
flip-flop memory, (c) NS K-map and NS function required for flip-flop conversion.

By using the mapping algorithm in Section 10.6 together with the state diagram for a JK
flip-flop and the excitation table for the memory D flip-flop, there results the NS logic
K-map and NS forming logic shown in Fig. 10.41c. Notice that only the Set and Set Hold
branching paths produce non-null entries in the NS K-map for D, a fact that is always true
when applying the mapping algorithm to D flip-flop memory elements.

The minimum NS logic function extracted from the K-map is

D=QJ + QK (10.11)

and is shown implemented in Fig. 10.42a with a D flip-flop of an arbitrary triggering
mechanism as the memory. Its circuit symbol is given in Fig. 10.42b, also with a question
mark (?) indicating an arbitrary triggering mechanism determined from the D flip-flop
memory element. In Fig. 10.42c is shown the circuit symbol and timing diagram for an FET
JK flip-flop that has been derived from an FET D flip-flop. The timing diagram illustrates
the four modes of JK flip-flop operation: Hold (Reset or Set), Reset, Set, and Toggle. Notice
that once a set condition is sampled by clock, that condition is maintained by the flip-flop
until either a reset or toggle condition is sampled by the falling edge of the clock waveform.
Similarly, once a reset condition is executed by clock, that condition is maintained until
either a set or toggle condition is initiated. As always, the toggle mode results in a divide-
by-two of the clock frequency.

Equation (10.11) has application beyond that of converting a D flip-flop to a JK flip-flop.
It is also the basis for converting D K-maps to JK K-maps and vice versa. K-map conversion
is very useful in FSM design and analysis since it can save time and reduce the probability
for error. The subject of K-map conversion will be explored in detail later in this chapter.

10.8.3 Design of T and D Flip-Flops from JK Flip-Flops

The procedures for converting D flip-flops to T and JK flip-flops, used in the preceding
subsections, will now be used for other flip-flop conversions. The conversions JK-to-T and

456 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

(b)

Reset v Reset Reset
Hold Toggle Hold

(c)

FIGURE 10.42
(a) Implementation of Eq. (10.11), and (b) logic circuit symbol for a JK flip-flop of arbitrary triggering
mechanism, (c) Logic symbol and timing diagram for an FET JK flip-flop designed from an FET D
flip-flop showing all four modes of operation indicated by the operation table in Fig. 10.40a.

JK-to-D are important because they emphasize the universality of the JK flip-flop types.
Presented in Fig. 10.43, for JK-to-T flip-flop conversion, are the state diagram for the T
flip-flops (a), the excitation table characterizing the JK memory (b), and the NS K-maps
and NS functions for J and K (c). Plotting the NS K-maps follows directly form application
of the mapping algorithm given earlier in Section 10.6. Notice that the 0's in the NS K-
maps result from summing of the branching condition values relative to the branching
paths of a particular present state (PS). For example, in PS state 1, a 0 is placed in cell
1 of the J K-map, since 0r + 07' = 0as required by the 1 —>• 0 and 1 —> 1 branching
paths, respectively. By using the don't cares in this manner, the minimum cover for the NS
functions is

J = K = T. (10.12)

Thus, to convert any JK flip-flop to a T flip-flop of the same triggering character, all that
is necessary is to connect the / and K input terminals together to become the T input, as
indicated by the logic circuit symbols in Fig. 10.43d. Equation (10.12) will also be useful
for converting JK K-maps to T K-maps and vice versa.

The conversion of JK flip-flops to D flip-flops follows in a similar manner to that just
described for converting JK to T flip-flops. Presented in Fig. 10.44 are the state diagram
for the family of D flip-flops (a), the excitation table for the memory JK flip-flop (b), and
the NS K-maps and conversion logic extracted from the K-maps (c). The minimum NS

10.8 THE T, JK FLIP-FLOPS AND MISCELLANEOUS FLIP-FLOPS 457

0*1
o -» o
0 -» 1

1 -» 0

1 -» 1

J K
0 <j> Reset Hold

1 ^ Set

^ 1 Reset

^ 0 Set Hold

Excitation Table J = T K = T
State Diagram for characterizing the

FSM to be designed JK flip-flop memory NS functions

(a) (b) (c)

(d)

FIGURE 10.43
Design of the T flip-flops from the JK flip-flops, (a) State diagram representing the family of T flip-
flops, (b) Excitation table characterizing the JK memory element, (c) NS K-maps and NS functions
for the flip-flop conversion, (d) Logic circuit and symbol for a T flip-flop of arbitrary triggering
mechanism.

functions, as extracted from the NS K-maps, are given by

J = D and K = D. (10.13)

Shown in Fig. 10.44d is the logic circuit and its circuit symbol for D flip-flop conversion
from a JK flip-flop of arbitrary triggering mechanism. Clearly, all that is necessary to convert
a JK flip-flop to a D flip-flop is to connect D to J and D to K via an inverter.

10.8.4 Review of Excitation Tables

For reference purposes, the excitation tables for the families of D, T, and JK flip-flops,
discussed previously, are provided in the table of Fig. 10.45. Also shown in the table
is the excitation table for the family of SR flip-flops and all related SR devices which
include the basic cells. Notice the similarity between the JK and SR excitation tables,
which leads to the conclusion that J is like S and K is like R, but not exactly. The only
difference is that there are two more don't cares in the JK excitation table than in the SR
excitation table. Also observe that the D values are active for Set and Set Hold conditions,
and that the T values are active only under toggle 1 -> 0 and 0 -> 1 conditions. These facts
should serve as a mnemonic means for the reader in remembering these important tables.

458 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

C o ; Q,->Q*i
r^ o -» o

D/
(P 0 - 1

(1)0,11 1 - o
TT 1 -» 1W

J K x

0 ^ Reset Hold Q^

1 <£ Set °

^ 1 Reset
1

^ 0 Set Hold

/•' -x

D

<*

Q I
0

1
f

f~~~\17
D
î_J

'J '

-D* -̂ K Q >-

D
Characterization of J = D K = D

State Diagram for the memory

FSM to be designed NS functions

(a) (b) (c)

D

(d)

FIGURE 10.44
Design of the D flip-flops from the JK flip-flops, (a) State diagram representing the family of D flip-
flops, (b) Excitation table characterizing the JK memory element, (c) NS K-maps and NS functions
for the flip-flop conversion, (d) The logic circuit and symbol for a D flip-flop of arbitrary triggering
mechanism.

Eventually, construction of the NS K-maps will become so commonplace that specific
mention of either the mapping algorithm or the particular excitation table in use will not be
necessary.

Any of the excitation tables given in Fig. 10.45 can be used to characterize the flip-flop
memory for the purpose of applying the mapping algorithm in Section 10.6 to obtain the
NS forming logic for an FSM. In fact, that is their only purpose. For example, if D flip-flops
are required as the memory in the design of an FSM, the excitation table for the family of
D flip-flops is used. Or if JK flip-flops are to be used as the memory, the excitation table
for the JK flip-flops is used for the same purpose, etc.

Reset Hold

Set

Reset

Set Hold

Qt->

0 ->

0 ->

1 -»

1 ->

Qt+1

0

1

0

1

D

0

1

0

1

T

0

1

1

0

J
0

1
<*

*

K

^

*1

0

s
0

1
0

I

R

#

0

1
0

FIGURE 10.45
Summary of the excitation tables for the families of D, T, JK, and SR flip-flops.

10.8 THE TJK FLIP-FLOPS AND MISCELLANEOUS FLIP-FLOPS 459

S T

0 0
0 1
1 0
1 1

PS 0
0 -> 0

0 Reset /~* w \ Q -> 1

Qt Toggle ^ S+T(r 1 -, o
1 Set \ / \ 1 -. 1
1 Set

0
1 Set
0
1 Set Hold

Excitation Table
Operation (J characterizing the

Table S memorV

(a) State Diagram (c)

(b)

D = S + QT

(d) (e)

FIGURE 10.46
Design of a special-purpose FET ST flip-flop, (a) Operation table for the family of ST flip-flops, (b)
State diagram derived from (a), (c) Characterization of the D flip-flop memory, (d) NS K-map and
NS function for flip-flop conversion, (e) Logic circuit and circuit symbol for the FET ST flip-flop.

10.8.5 Design of Special-Purpose Flip-Flops and Latches

To emphasize the applicability and versatility of the design procedure and mapping algo-
rithm given in Section 10.6, other less common or even "nonsense" flip-flops will now be
designed. These design examples are intended to further extend the reader's experience in
design procedures.

An Unusual (Nonsense) Flip-Flop Suppose it is desirable to design an FET ST (Set/
Toggle) flip-flop that is defined according to the operation table in Fig. 10.46a. The state
diagram for the family of ST flip-flops, derived from the operation table, is shown in
Fig. 10.46b. Also, suppose it is required that this flip-flop is to be designed from an RET
D flip-flop. Therefore, the memory must be characterized by the excitation table for the D
flip-flop presented in Fig. 10.46c. By using the mapping algorithm, the NS K-map and NS
forming logic are obtained and are given in Fig. 10.46d. Implementation of the NS logic
with the RET D flip-flop to obtain the FET ST flip-flop is shown in part (e) of the figure.
Notice that the external Q feedback is necessary to produce the toggle character required by
the operation table and state diagram for the family of ST flip-flops. If it had been required
to design an MS ST flip-flop, then an MS D flip-flop would have been used as the memory
element while retaining the same NS forming logic.

460 CHAPTER 10/INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

The external hardware requirememts in the design of the FET ST flip-flop can be min-
imized by using an RET JK flip-flop as the memory in place of a D flip-flop. If the D
excitation table in Fig. 10.46c is replaced by that for the JK flip-flops in Fig. 10.40c, the NS
functions become J = S + T and K = S, a reduction of one gate. It is left to the reader to
show the mapping details.

A Special-Purpose Clocked SR Latch As used in this text, the term latch refers to
gated or clocked memory elements that do not have data lockout character and that exhibit
transparency, or that lose their mixed-rail output character under certain input conditions.
The D latch in Fig. 10.24 is an example, since it exhibits the transparency effect under the
condition CK(H) = !(//). The family of SR latches also fall into this category. One such
SR latch is defined by the operation table in Fig. 10.47a from which the state diagram in
Fig. 10.47b is derived. This latch is observed to Set under the SR branching condition,
Reset under condition SR, and hold if S,R is either 0,0 or 1,1. Notice that CK is part
of the input branching conditions, and that the basic cell is to be used as the memory
characterized by the excitation table in Fig. 10.47c. Applying the mapping algorithm yields
the NS K-maps and NS-forming logic given in part (d) of the figure. Implementing with a

S+R+CK

S R

0 0
0 1
1 0
1 1

Qw
Q, Hold v ~ / pso

0 Reset „= ~, \ \ ^ °

Q. -> Q.+i

1 Set I ISR-CK PS1 J 1 -> 0
Q. Hold \—< X 1 -> 1

S R

0 0
1 0
0 1

(p 0

Characterization
Operation table Î J of the memory

(a) S+R+CK (c)

FSM to be designed

(b)

NS functions Logic circuit and circuit symbol

(d) (e)

FIGURE 10.47
Design of a special-purpose SR latch, (a) Operation table for this family of SR flip-flops and latches,
(b) State diagram for the special SR latch derived from the operation table in (a), (c) Characterization
of the basic cell memory, (d) NS K-maps and NS-forming logic, (e) Logic circuit and circuit symbol.

10.9 LATCHES AND FLIP-FLOPS WITH SERIOUS TIMING PROBLEMS 461

D(H)

CK-

D Q
M

r Q

QM(H)

3- ry-c

D Q
S

> Q

L- Q(H) D(H)

D-Q(L) CK —

D Q
M

> Q

QM(H)

D- -^c

D Q
S

CK Q

-Q(H)

D- Q(L)

(a) (b)

FIGURE 10.48
The D data lockout flip-flop, (a) All edge triggered flip-flop variety, (b) Same as (a) except with an
FET D latch as the slave stage.

reset-dominant basic cell yields the logic circuit and circuit symbol shown in Fig. 10.47e.
Clearly, an S,R — 1,1 condition cannot be delivered to the basic cell output stage. But there
is a partial transparency effect. For example, a change SR -> SR while in state 0 with CK
active (CK =1) will cause a transition to state 1 where Q is issued. Thus, Q follows S in
this case, which is a transparency effect. Similarly, a change SR —> SR while in state 1
when CK is active causes a transition 1 -> 0 with an accompanying deactivation of Q.
Again, this is a transparency effect, since Q tracks R when CK = 1.

The Data Lockout MS Flip-Flop The data lockout MS flip-flop is a type of master-
slave flip-flop whose two stages are composed of edge-triggered flip-flops or are an edge-
triggered/latch combination. Only the master stage must have the data lockout character
(hence must be edge triggered). Shown in Fig. 10.48a is a D data lockout flip-flop composed
of an RET D flip-flop master stage and an FET D flip-flop slave stage, and in (b) an RET D
flip-flop master with an FET D latch as the slave stage. The design in Fig. 10.48b needs less
hardware than that in (a) because of the reduced logic requirements of the D latch. Another
possibility is to use JK flip-flops in place of the D flip-flops in Fig. 10.48a, thus creating a
JK data lockout flip-flop. But the JK flip-flops require more logic than do the D flip-flops,
making the JK data lockout flip-flop less attractive. In any case, there is little advantage to
using a data lockout flip-flop except when it is necessary to operate peripherals antiphase
off of the two stage outputs, QM and Q, in Fig. 10.48.

10.9 LATCHES AND FLIP-FLOPS WITH SERIOUS TIMING PROBLEMS:
A WARN ING

With very few exceptions, two-state flip-flops have serious timing problems that preclude
their use as memory elements in synchronous state machines. Presented in Fig. 10.49
are four examples of two-state latches that have timing problems — none have the data
lockout feature. The RET D latch (a) becomes transparent to the input data when CK = 1,
causing flip-flop action to cease. The three remaining exhibit even more severe problems.
For example, the FET T latch (b) will oscillate when T • CK = 1, and the RET JK latch
(c) will oscillate when JK • CK = 1, requiring that / = K = CK = 1, as indicated
in the figure. Notice that the branching conditions required to cause any of the latches to
oscillate is found simply by ANDing the 0 -> 1 and 1 — ^ - 0 branching conditions. Any

462 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

D+CK T+CK J+CK

D+CK T+CK K+CK S+CK

Transparency OsciHation if Oscillation if Oscillation if
for CK = 1 CK = 1 J = K = CK = 1 ST-CK = 1

(a) (b) (c) (d)

FIGURE 10.49
Timing problems in latches, (a) RET D latch, (b) FET T latch, (c) RET JK latch, (d) FET ST latch.

nonzero result is the branching condition that will cause oscillation. Thus, the FET ST latch
in Fig. 10.49d will oscillate under the condition (S + T)S • CK = ST • CK = 1, that is if
S — CK = 0 and T = 1. The reason for the oscillation in these latches is simply that CK no
longer controls the transition between states since the branching condition between the two
states is logic 1. These FSMs are asynchronous, as are all flip-flops and latches, and if the
transitions are unrestricted by CK, they will oscillate. Thus, none of these two-state latches
should ever be considered for use as memory elements in the design of synchronous FSMs.
The one exception is the JK latch, which can be used as a memory element providing that
/ and K are never active at the same time — thus, operating as an SR latch.

There is an MS flip-flop that is particularly susceptible to timing problems. It is the MS
JK flip-flop defined by the two state diagrams shown in Fig. 10.50a and implemented in (b).

J+CK+Q CL+CK Master stage Slave stage

JCKQ

K+CK+Q

(a) (b)

FIGURE 10.50
An MS JK flip-flop that exhibits the error catching problem, (a) State diagrams for the MS JK flip-flop
which exhibit a handshake configuration, (b) Logic circuit derived from the state diagrams in (a).

10.10 ASYNCHRONOUS PRESET AND CLEAR OVERRIDES 463

Here, a handshake configuration exists between the master and slave stages. A handshake
configuration occurs when the output of one FSM is the input to another and vice versa. This
FSM is susceptible to a serious error catching problem: In the reset state, if CK is active
and a glitch or pulse occurs on the J input to the master stage, the master stage is irreversibly
set, passing that set condition on to the slave stage input. Then when CK goes inactive, the
output is updated to the set state. This is called 1 's catching and is an unrecoverable error,
since the final set state was not regulated by CK. Similarly, in the set state, if CK is active
and a glitch or pulse occurs on the K input, the master stage is irreversibly reset, passing
that reset condition on to the slave stage input. Then when CK goes inactive, the output is
updated to the reset state. This is called O's catching and is also an unrecoverable error.

Because of the error catching problem just described, the MS JK flip-flop in Fig. 10.50b,
derived from the "handshake" state diagrams in Fig. 10.50a, should never be considered
for application as a memory element in a synchronous state machine. If an MS JK flip-flop
is needed as the memory element, it is best designed by using Eq. (10.11) and Fig. 10.42a
for conversion from an MS D flip-flop that has no error catching problem. Also, because
the MS D flip-flop can be implemented by using transmission gates and inverters, as in
Fig. 10.35, the conversion to a MS JK can be accomplished with a minimum amount of
hardware.

1 0.1 0 ASYNCHRONOUS PRESET AND CLEAR OVERRIDES

There are times when the flip-flops in a synchronous FSM must be initialized to a logic 0 or
logic 1 state. This is done by using the asynchronous preset and clear override inputs to the
flip-flops. To illustrate, a D latch is shown in Figs. 10.5 la and 10.5 Ib with both preset and
clear overrides. If the flip-flop is to be initialized a logic 0, then a CL(L) = 1(L) is presented
to NAND gates 1 and 4, which produces a mixed-rail reset condition, Q(H} = 0(//) and
Q(L) = 0(L) while holding PR(L) = 0(L). Or to initialize a logic 1, a PR(L) = 1(L) is
presented to NAND gates 2 and 3, which produces a mixed-rail set condition, Q(H) = l(H)
and <2(L) = 1 (L), but with CL(L) held at 0(L). Remember from Subsection 10.4.4 that 5(L)
and /?(L) cannot both be 1(L) at the same time or else there will be loss of mixed-rail output.
Thus, the CL,PR =1,1 input condition is forbidden for this reason. The following relations
summarize the various possible preset and clear override input conditions applicable to any
flip-flop:

CL(L) = 1(L) CL(L) = 0(L)
Initialize 0 Initialize 1

PR(L) = 0(L) PR(L) = 1(L)
(10.14)

CL(L) = 0(L) CL(L)=1(L)
Normal Operation Forbidden

PR(L)=l(L)

The timing diagram in Fig. 10.5 Ic best illustrates the effect of the asynchronous preset
and clear overrides. In each case of a PR(L) or CL(L) pulse, normal operation of the latch
is interrupted until that pulse disappears and a clock triggering (rising) edge occurs. This
asynchronous override behavior is valid for any flip-flop regardless of its type or triggering
mechanism, as indicated in Fig. 10.52. For all flip-flops, these asynchronous overrides act
directly on the output stage, which is a basic cell.

464 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

PR(L)

"^ Q(H)

cK_fL_JLJ
D(H) |

CL(L)

PR(L)

Q(H)

LJLJl

n

_

LLfLJ
L

n_n_Ji_n_n_

i

n n n

(c)

FIGURE 10.51
Asynchronous preset and clear overrides applied to the D latch, (a) Logic circuit for the D latch
showing the active low preset and clear connections, (b) Logic circuit symbol with active low preset
and clear inputs indicated, (c) Timing diagram showing effects of the asynchronous overrides on the
flip-flop output.

A
PR

D Q

> Q
CL

— —

D- -C

T Q

*v

CL

— —

D- —

A
PR

D Q

JT. Q
CL

— ~

D- _

V V 9

A
PR

J Q

K Q
CL
u

_ _

o- -c

D Q

s.

PI fM^xL-i OLo

U U

—

0-

1 1 1 1 I I

FIGURE 10.52
Examples of flip-flops with asynchronous preset and/or clear overrides.

10.11 SETUP AND HOLD-TIME REQUIREMENTS OF FLIP-FLOPS 465

V Sampling y Sampling
Interval A Interval

Active
transition point

Mime

Inactive
transition point

-Mime
Inputs can —>-^ J^ ^—>• Inputs can Inputs can —>• • —>• Inputs can

change *~| **{* change change "*~^—Mr* change

(a) (b)

FIGURE 10.53
Clock voltage waveforms showing sampling interval (rsu + ?h) during which time the data inputs must
remain stable at their proper logic levels, (a) Rising edge of the clock waveform, (b) Falling edge of
the clock waveform.

10.11 SETUP AND HOLD-TIME REQUIREMENTS OF FLIP-FLOPS

Flip-flops will operate reliably only if the data inputs remain stable at their proper logic levels
just before, during, and just after the triggering edge of the clock waveform. To put this in
perspective, the data inputs must meet the setup and hold-time requirements established by
clock, the sampling variable for synchronous FSMs. The setup and hold-time requirements
for a flip-flop are illustrated by voltage waveforms in Fig. 10.53, where both rising and
falling edges of the clock signal are shown. The sampling interval is defined as

Sampling interval = (tsu + ?/,), (10.15)

where tsu is the setup time and th is the hold time. It is during the sampling interval that the
data inputs must remain fixed at their proper logic level if the outcome is to be predictable.
This fact is best understood by considering the definitions of setup and hold times:

• Setup time tsu is the time interval preceding the active (or inactive) transition
point (ttr) of the triggering edge of CK during which all data inputs must remain
stable to ensure that the intended transition will be initiated.

• Hold time f/, is the time interval following the active (or inactive) transition point
(ttr) of the triggering edge of CK during which all data inputs must remain stable
to ensure that the intended transition is successfully completed.

Failure to meet the setup and hold-time requirements of the memory flip-flops in an FSM
can cause improper sampling of the data that could, in turn, produce erroneous transitions,
or even metastability, as discussed in the next chapter. A change of the data input at the
time CK is in its sampling interval can produce a runt pulse, a pulse that barely reaches
the switching threshold. An incompletely sampled runt pulse may cause erroneous FSM
behavior. As an example of proper and improper sampling of an input, consider a portion
of the resolver state diagram for an RET D flip-flop shown in Fig. 10.54a. Assuming that

466 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

Sampling Interval
x >

\
Proper Improper

Sampling Sampling
(a) (b)

FIGURE 10.54
Examples of proper and improper sampling of the data input, (a) Portion of the resolver state diagram
for an RET D flip-flop, (b) Voltage waveforms showing proper and improper sampling of the D
waveform during the sampling interval of CK.

the FSM is in state a and that the rising edge of CK is to sample the D input waveform, two
sampling possibilities are illustrated by the voltage waveforms for CA'and D in Fig. 10.54b.
Proper sampling occurs when the data input D is stable at logic level 1 in advance of the
rising edge of CK and maintained during the sampling interval. Improper sampling results
when D changes during the sampling interval.

The setup and hold-time intervals are important design parameters for which manufac-
turers will normally provide worst-case data for their flip-flops. Awareness and proper use
of this data is vital to good state machine design practice. Ignoring this data may lead to state
machine unpredictability or even failure. The means to deal with this problem is discussed
later in Section 11.4.

10.12 DESIGN OF SIMPLE SYNCHRONOUS STATE MACHINES WITH
EDGE-TRIGGERED FLIP-FLOPS: MAP CONVERSION

Where nearly ideal, high-speed sampling is required, and economic considerations are not
a factor, edge-triggered flip-flops may be the memory elements of choice. The setup and
hold-time requirements for these flip-flops are the least stringent of all, and they possess
none of the problems associated with either the latches or MS flip-flops discussed earlier. In
this section two relatively simple FSMs will be designed to demonstrate the methodology
to be used. The emphasis will be on the procedure required to obtain the next state and
output functions of the FSM. This procedure will involve nothing new. Rather, it will be the
continued application of the design procedure and mapping algorithm discussed in Section
10.6, and an extension of the flip-flop conversion examples covered in Section 10.8 but now
applied to K-map conversion and FSM design.

10.12.1 Design of a Three-Bit Binary Up/Down Counter: D-to-T
K-map Conversion

In Fig. 10.2d a bidirectional binary sequence of states is used to represent a Mealy machine.
Now, that same binary sequence of states will be completed in the form of a three-bit binary
up/down counter as shown by the eight-state state diagram in Fig. 10.55a. It is this counter

10.12 DESIGN OF SIMPLE SYNCHRONOUS STATE MACHINES 467

State Memory
variable input logic

ABC = QAQBQC change value

Q

0 -» 1
1 -*• 0
1 -» 1

D

0

1 Set

0

1 Set Hold

ZiT if X
FSM to be designed Excitation Table

(a) (b)

\BC \BC \BC
A\

0

1

00

X

X

01

0

(7)

11

X

X

10

0

0
/

A\X.

0

1

00

X

X

01

X

X

11

X

X

10

X

X

/

A\

0

1

DB

00

1

1

01

0

0

11

0

0

10

1 1

1
/

NS K-maps
(c)

FIGURE 10.55
Design of a three-bit up/down binary counter by using D flip-flops, (a) State diagram for the three-
bit up/down counter with a conditional (Mealy) output, Z. (b) Excitation table characterizing the
D flip-flop memory, (c) NS K-maps plotted by using the mapping algorithm showing BC domain
subfunctions indicated with shaded loops.

that will be designed with D flip-flops. Using the mapping algorithm, the excitation table
for D flip-flops in Fig. 10.55b is combined with the state diagram in (a) to yield the entered
variable (EV) NS K-maps shown in Fig. 10.55c.

The extraction of gate-minimum cover from the EV K-maps in Fig. 10.55c is sufficiently
complex as to warrant some explanation. Shown in Fig. 10.56 are the compressed EV K-
maps for NS functions DA and DB, which are appropriate for use by the CRMT method,
discussed at length in Section 5.7, to extract multilevel gate minimum forms. The second-
order K-maps in Fig. 10.56 are obtained by entering the BC subfunction forms shown by
the shaded loops in Fig. 10.55c. For DA, the CRMT coefficients g, are easily seen to be
go = A © CX and g{ = (A © CX) © (A © CX) = CX © CX, as obtained from the
first-order K-maps in Fig. 10.56K Similarly, for DB the CRMT coefficients are go = B © X
and g\ = 1. When combined with the / coefficients, the gate minimum becomes

(10.16)

Z=ABCX

468 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

AffiX

A©X
/ D

A

R\L

0

1

' 0

X

X

1

X

X
y

(a)

FIGURE 10.56
Compressed EV K-maps required to extract a multilevel logic minimum for NS functions DA and
DB of Fig. 10.54. (a) Second-order EV K-maps. (b) First-order EV K-maps.

which is a three-level result (due to DA) with an overall gate/input tally of 7/18, excluding
inverters. The next state function for DC is obtained by inspection of the third-order K-map
in Fig. 10.55c, and the output Z is read directly off of the state diagram. Note that the
expressions for DA and DB in Eqs. (10.16) can be obtained directly from the first-order
K-maps in Fig. 10.56b by applying the mapping methods discussed in Section 5.2. The
minimum cover is indicated by the shaded loops.

Toggle character is inherent in the binary code. This is evident from an inspection of the
state diagram in Fig. 10.55a. State variable C toggles with each transition, state variable
B toggles in pairs of states, and state variable A toggles in groups of four states. Thus, it
is expected that the T flip-flop design of a binary counter will lead to a logic minimum,
and this is the case. Shown in Fig. 10.57 is the design of the binary up/down counter by
using T flip-flops as the memory represented by the excitation table in Fig. 10.57b. The NS
K-maps, shown in (c) of the figure, are plotted by using the mapping algorithm. Extracting
minimum cover from these K-maps (see shaded loops) yields the two-level results

TA = BCX + BCX

TB=CX + CX

Tc = X + X = 1

Z = ABCX

(10.17)

with an overall gate input tally 7/18 excluding inverters. Although the gate/input tally is
the same as that produced by the three-level result given by Eqs. (10.16), the two-level
result is expected to be faster and, of course, amenable to implementation by two-level
programmable logic devices (e.g., PLAs).

Implementation of Eqs. (10.17) is shown in Fig. 10.58a, where the NS forming logic,
memory and output forming logic are indicated. The present state is read from the flip-flop

State Memory
variable input logic

ABC = QAQBQC change value

o -+ o
0 -> 1

1 -»• 1

0

0] !> Toggle

0

ZiTifX T flip-flop
FSM to be designed Excitation Table

(a) (b)

\BC \BC \BC
A\ oo 01 11 10 A\ °° 01 11 1° A\ °o 01 11 10

X o 1
rI
1

1

1

1

1

1
>lJ

1

NS K-maps
(c)

FIGURE 10.57
Design of the three-bit up/down binary counter by using T flip-flops, (a) State diagram for the three-
bit up/down counter with a conditional (Mealy) output, Z. (b) Excitation table characterizing the T
flip-flop memory, (c) NS K-maps plotted by using the mapping algorithm and showing minimum
cover.

7TC

NS I I I I ~~l T I
forming ̂ \) \) \) \) A B C

logic Y . . J L J (H) (H> (H)

1(H)

CK

f I T ^l I T ^l I T ^l A(H)-U_
J A R n BfH)-iM x

•Z(H)

Y

r
Memory <

]
1r ^

A

Y

/

Q Q

k

ir v

B
/

Q Q

A(L)

1r v

C
>

Q Q

B(L) C(L)

A(H) B(H) C(H) Output logic

(a)

FIGURE 10.58
Implementation of the up/down binary counter represented by Eqs. (10.17). (a) NS-forming logic, T
flip-flop memory, and output-forming logic stages, (b) Block diagram for the counter.

469

470 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

outputs A(H), #(H), and C(H), where QA = A, QB = B, and QC = C, and the Mealy
output Z is issued from the AND gate in state 111 but only when input X is active, i.e.,
only when the counter is in an up-count mode. The block symbol for this counter is shown
in Fig. 10.58b.

D K-map to T K-map Conversion Once the NS D K-maps have been plotted, it is
unnecessay to apply the mapping algorithm a second time to obtain the NS T K-maps. All
that is necessary is to use the D —>• T flip-flop conversion equation, Eq. (10.10), but written
as

D= Q®T = QT + QT. (10.18)

Applied to the individual state variables in a D -» T K-map conversion process, Eq. (10.18)
takes on the meaning

(10.19)

In Fig. 10.59 are the D and T K-maps for the three-bit binary up/down counter reproduced
from Figs. 10.55 and 10.57. The heavy lines indicate the domain boundaries for the three
state variables A, B, and C. An inspection of the K-maps together with Eqs. (10.19) results
in the following algorithm for D-to-T K-map conversion:

\BC \BC \BC
AX oo 01 11 10 A\ °° 01 11 10 A\ oo . 01 11 10

0

1

X

X

0

1

X

X

0

1

/

0

1

D.

X

X

X

X

X

X

X

X

' 7

0

1

^o

1

1

0

0

0

0

1

1

/1 • 1 • i
\BC \BC \BC
AX

0

1

00

X

X

01

0

0

11

X

X

10

0

0

AX

0

1
/

00

X

X

01

X

X

11

X

X

10

X

X

A\

0

1
/

00

1

1

01

1

1

11

1

1

10

1

1

FIGURE 10.59
D and T K-maps for the three-bit binary up/down counter showing the domain boundaries for state
variable bits A, B, and C.

10.12 DESIGN OF SIMPLE SYNCHRONOUS STATE MACHINES 471

Algorithm 10.1:Z) -» T K-map Conversion (Refer to Eq. 10.19)

(1) For all that is NOT A in the DA K-map, transfer it to the TA K-map directly (ATA),
(2) For all that is A in the DA K-map, transfer it to the TA K-map complemented (ATA).
(3) Repeat steps (1) and (2) for the DB -*• TB and DC —* TC, etc., K-map conversions.

Notice that the word "complemented," as used in the map conversion algorithm, refers to
the complementation of the contents of each cell in the domain indicated.

10.12.2 Design of a Sequence Recognizer: D-to-JK K-map Conversion

It is required to design a sequence recognizer that will issue an output any time an overlap-
ping sequence . . . 01101... is detected as indicated in Fig. 10.60a. To do this a choice is
made between the Moore or Mealy constructions shown in Figs. 10.60b and 10.60c, respec-
tively. For the purpose of this example, the Mealy construction is chosen. Let the external

X — »

CK — c

Sequence
, Recognizer

X - - - 0 1 1 01 1 01 0 0 - "I \
z z

(a) Ny~f~~>vx

(111 J Z A T
Mealy version

Moore version

(b) (c)

FIGURE 10.60
A simple sequence recognizer for an overlapping sequence • • -01101- • -.(a) Block diagram and sample
overlapping sequence, (b) Moore FSM representation, (c) Mealy FSM representation.

472 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

FIGURE 10.61
Timing diagram for the Mealy version of the sequence recognizer in Fig. 10.60c.

input X be synchronized antiphase to clock, meaning, for example, that X is synchronized
to the rising edge of clock when the memory is FET flip-flops. An overlapping sequence
is one for which a given sequence can borrow from the latter portions of an immediately
preceding sequence as indicated in Fig. 10.60a. The loop • • -d -» e —>• / -» d- • • in
the Moore construction or the loop • • -c -> d -» e -> c- • • in the Mealy construction
illustrates the overlapping sequence. A nonoverlapping sequence requires that each se-
quence of pulses be separate, i.e., independent of any immediately preceding sequence.
Note that the Mealy state diagram is constructed from the Moore version by merging
states e and / in Fig. 10.60b, and by changing the unconditional output to a conditional
output.

The timing diagram showing the sequence of states leading to the conditional (Mealy)
output is presented in Fig. 10.61, where the state identifiers and state code assignments are
indicated below the Z waveform. Notice that input X is permitted to change only on the
rising edge of the clock waveform and that the arrows indicate a FET flip-flop memory.
Thus, when the FSM enters state e on the falling edge of clock, an output is issued when
X goes active, and is deactivated when the FSM leaves state e. Any deviation from the
sequence . . . 01101... would prevent the sequence recognizer from entering state e and no
output would be issued. Also, once in state e the overlapping loop • • -e -+ c -*• d -+ e- • •
would result in repeated issuance of the output Z.

Consider that the Mealy version of the sequence recognizer is to be designed by using D
flip-flops. Shown in Fig. 10.62 are the excitation table and the resulting D K-maps obtained
by applying the mapping algorithm. The shaded loops reveal the minimum covers for the
output and NS functions, which are easily read as

DA = BCX

DB = BCX + CX

DC = X + BC + A

Z = AX

(10.20)

Notice that the term BCX is a shared PI since it appears in two of the three NS functions.

D K-map to JK K-map Conversion Assuming it is desirable to design the sequence
recognizer of Fig. 10.60c by using JK flip-flops instead of D flip-flops, the process of

10.12 DESIGN OF SIMPLE SYNCHRONOUS STATE MACHINES 473

D BC\
A\T oo 01 11 10

0

(t
0

^

0

X

0

(f))

0
0
1 -•> 0 0
1 -> 1 1

' ' ' ' 7 z
Excitation Table Output K-map

(a) (b)

\BC \BC \BC
A\ oo 01 11 10 A\ oo 01 11 10 X\ 0° 01 11 1Q

0

$

0

t

0

0

"xj

4 /
'Dc

NS D K-maps
(c)

FIGURE 10.62
D K-map construction for the Mealy version of the sequence recognizer in Fig. 10.60c. (a) Excitation
table for D flip-flops, (b), (c) Output K-map and NS D K-maps showing minimum cover.

obtaining the NS JK K-maps can be expedited by K-map conversion. It will be recalled
from Eq. (10.11) that D -> JK flip-flop conversion logic is given by

D = QJ + QK.

When this equation is applied to the individual state variables in a D —> JK K-map con-
version, Eq. (10.11) takes the meaning

+
(10.21)

Shown in Fig. 10.63 are the JK K-maps converted from the D K-maps. From these K-maps
the minimum cover is easily observed to be

JA = BCX KA = 1
y /~r v v s~i

/? — UA /Yg — C

Jc = X Kc = ABX

(10.22)

which represents a gate/input tally of 4/10 compared to 5/12 for the NS functions in
Eq. (10.20), all exclusive of possible inverters.

474 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

BC \BC \BC
00 01 11 10 A\ °° °1 11 10 A\ °° 01 11 10

0

*

0

*

0

0

X

*

x

/J

1

/KA IVA
,BC \BC \BC

00 01 11 10 A\ °° 01 11 10 A \ °° 01 11 10

0

*

X

#
X

X

X

(*
X

,BC \BC \BC
00 01 11 10 A\ °° 01 11 10 A\ °° 01 11 10

X

«•
1

^
X

1

X

^
FIGURE 10.63
D-to-JK K-map conversion for the sequence recognizer of Fig. 10.60c, showing domain boundaries
for state variables A, B, and C, and minimum cover for the JK K-maps.

Implementation of Eqs. (10.22) is provided in Fig. 10.64, together with the output-
forming logic given in Eqs. (10.20). Notice that NOR/XOR/INV logic is used for this
purpose and that notation for the present state follows established practice in this text,
namely QA = A, QB = B, and Qc = C. The clock symbol CK(L) simply indicates FET
memory elements.

An inspection of the D -> JK K-map conversion in Fig. 10.63 together withEqs. (10.21)
evokes the following algorithm:

Algorithm 10.2:£> -» JK K-map Conversion [Refer to Eq. (10.21)]

(1) For all that is NOT A in the DA K-map, transfer it to the JA K-map directly (AJA).
(2) For all that is A in the DA K-map, transfer it to the KA K-map complemented (A KA)•
(3) Fill in empty cells with don't cares.
(4) Repeat steps (1), (2), and (3) for the DB -» JB, KB and £>c -*• Jc, %c, etc., K-map
conversions.

It is important to note that the "fill-in" of the empty cells with don't cares is a result of the
don't cares that exist in the excitation table for JK flip-flops. The reader should verify that
the JK K-map results in Fig. 10.63 are also obtained by directly applying the JK excitation
table and the mapping algorithm to the Mealy form of the sequence recognizer given in
Fig. 10.60c. In doing so, it will become apparent that the D -+ JK K-map conversion

10.12 DESIGN OF SIMPLE SYNCHRONOUS STATE MACHINES 475

NS forming
logic | j—1 r~^ [^-^ ^ ^—1 Output

forming
CK(D—: qp—.—I qp-,—t 4—, T logic

Memory < A B U Jjj-j;
A^L;

A(H)

FIGURE 10.64
Implementation of Eqs. (10.22) for the sequence recognizer of Fig. 10.60c showing the NS-forming
logic, memory, and output-forming logic.

method is quicker and easier than the direct method by using the excitation table for JK
flip-flops. Furthermore, the K-map conversion approach permits a comparison between,
say, a D flip-flop design and a JK K-map design, one often producing a more optimum
result than the other. For these reasons the K-map conversion approach to design will be
emphasized in this text.

Missing-State Analysis To this point no mention has been made of the missing (don't
care) states in Fig. 10.60c. Missing are the states 100, 101, and 110, which do exist but are
not part of the primary routine expressed by the state diagram in Fig. 10.60c. Each don't
care state goes to (—>) a state in the state diagram as indicated in Fig. 10.65. For example,
100 -> 001 unconditionally, but 110 -> 111 if X or 110 -> 001 if X, etc. The NS values
are determined by substituting the present state values A, B, and C into the NS functions
given in Eqs. (10.20).

The missing state analysis gives emphasis to the fact that FSMs, such as the sequence
recognizer in Fig. 10.60, must be initialized into a specific state. On power-up, the sequence
recognizer of Fig. 10.64 could initialize into any state, including a don't care state. For

Present Next
State State

A B C PADBDC Conclusion

1 0 0 0 0 1

1 0 1 0 X 1

1 1 0 X X 1

1 00 - > 001

1 0 1 -̂ -* 0 0 1 or 101 -*-* 0 1 1

1 1 0 --* 111 or 110 --* 0 0 1

FIGURE 10.65
Missing state analysis for the Mealy version of the sequence recognizer given in Fig. 10.60c.

476 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

example, if the FSM should power up into don't care state 110 with X inactive (X), it
would transit to state 111 on the next clock triggering edge and would falsely issue an
output Z if X goes active. Ideally, on power-up, this FSM should be initialized into state
000 to properly begin the sequence. Section 11.7 discusses the details by which this can be
accomplished.

10.13 ANALYSIS OF SIMPLE STATE MACHINES

The purpose of analyzing an FSM is to determine its sequential behavior and to identify
any problems it may have. The procedure for FSM analysis is roughly the reverse of the
procedure for FSM design given in Section 10.6. Thus, in a general sense, one begins with
a logic circuit and ends with a state diagram. There are six principal steps in the analysis
process:

1. Given the logic circuit for the FSM to be analyzed, carefully examine it for any
potential problems it may have and note the number and character of its flip-flops, its
inputs, and its outputs (Mealy or Moore).

2. Obtain the NS and output logic functions by carefully reading the logic circuit.
3. Map the output logic expressions into K-maps, and map the NS logic expressions into

K-maps appropriate for the flip-flops used. If the memory elements are other than D
flip-flops, use K-map conversion to obtain D K-maps.

4. From the D K-maps, construct the Present State/Inputs/Next State (PS/NS) table.
To do this, observe which inputs control the branching, as indicated in each cell,
and list these in ascending canonical word form together with the corresponding NS
logic values. Ascending canonical word form means the use of minterm code such as
XYZ, XYZ, XYZ, etc., for branching dependency on inputs X, Y, and Z relative to
a given K-map cell.

5. Use the PS/NS table in step 4 and the output K-maps to construct the fully documented
state diagram for the FSM.

6. Analyze the state diagram for any obvious problems the FSM may have. These
problems may include possible hang (isolated) states, subroutines from which there
are no exits, and timing defects (to be discussed in Chapter 11). Thus, a redesign of
the FSM may be necessary.

A Simple Example To illustrate the analysis procedure, consider the logic circuit given
in Fig. 10.66a, which is seen to have one input X and one output, Z, and to be triggered
on the falling edge of the clock waveform. Also, the external input arrives from a negative
logic source. Reading the logic circuit yields the NS and output logic expressions

JA = BQX, JB = AX

KA=X, KB = A (10.23)

Z = ABX,

where A and B are the state variables. These expressions are mapped into JK K-maps and

CK(L)

A(H)

X

X

X

X

(b)

FIGURE 10.66
(a) The logic circuit to be analyzed, (b) The NS JK K-maps for Eqs. (10.23) and their conversion to
the D K-maps needed to construct the PS/NS table.

PS NS

A B Inputs DA DB

0 0

0 1

1 0

1 1

X

X

X

X

X

X

X

X

(a)

1

0

0

1

1
0

1
0

0

0

1
1

0

1

0

0

(b)

FIGURE 10.67
(a) PS/NS table constructed from the D K-maps in Fig. 10.66 and (b) the resulting state diagram for
theFSMofFig. 10.66a.

477

478 CHAPTER 10/INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

converted to D K-maps as shown in Fig. 10.66b. Here, use is made of Algorithm 10.2 for
the reverse conversion process, that is, for the JK-to-D K-map conversion. Notice that the
domain boundaries are indicated by heavy lines as was done in Fig. 10.63.

Step 4 in the analysis procedure, given previously, requires the construction of the PS/NS
table from the D K-maps that are provided in Fig. 10.66b. This is done in Fig. 10.67a, from
which the state diagram follows directly as shown in Fig. 10.67b.

There are no serious problems with this FSM other than the potential to produce an output
race glitch (ORG) as a result of the transition 10 -> 01 under branching condition X. The
problem arises because two state variables are required to change during this transition, but
do not do so simultaneously. The result is that the FSM must transit from state 10 to 01 via
one of two race states, 00 or 1 1 . If the transition is by way of state 00, Z will be issued as a
glitch that could cross the switching threshold. A detailed discussion of the detection and
elimination of output race glitches is presented in Section 1 1.2.

A More Complex Example The following NS and output expressions are read from a
logic circuit that has five inputs, U, V, W, X, and Y, and two outputs, LOAD (LD) and
COUNT (CNT):

(10.24)

LD = ABX CNT - ABXY.

Presented in Fig. 10.68 are the JK-to-D K-map conversions for the NS functions given in
Eqs. (10.24). As in the previous example, Algorithm 10.2 is used for the reverse conversion
from JK to D K-maps. The domain boundaries are again indicated by heavy lines.

The PS/NS table for the NS functions, shown in Fig. 10.69a, is constructed from the D
K-maps in Fig. 10.68. Notice that only the input literals indicated in a given cell of the D
K-maps are represented in the PS/NS table as required by step 4 of the analysis procedure

\B
A

0 u + w

u + w

0 XY

XY X +Y

U + W

A\B 0 . 1 . A"6

X + Y X + Y X + VY X + VY X + Y X(V + Y)

B I XQ
D

FIGURE 10.68
JK-to-D K-map conversions for the NS functions given in Eqs. (10.24).

DC

10.13 ANALYSIS OF SIMPLE STATE MACHINES 479

PS NS

A B

0 0

0 1

1 0

1 1

Inputs

U
U

UW
UW
UW

UW

XY
XY
XY
XY

VXY
VXY
VXY
VXY
VXY
VXY
VXY
VXY

D/>

0
1

1

0
1
1

1
0
1
1

0
0
1
1
0
0
1
1

i B

0
0

1
1
1
1

0
1
1
1

0

0
1
1
0
0
1
0

XY

(a) (b)

FIGURE 10.69
(a) PS/NS table obtained from the D K-maps in Fig. 10.68 and (b) the resulting state diagram for the
FSM represented by Eqs. (10.24).

given previously in this section. Representation of these literals in canonical form ensures
that the sum rule is obeyed — all possible branching conditions relative to a given state are
taken into account.

The state diagram for the Mealy FSM represented by Eqs. (10.24) is derived from
the PS/NS table in Fig. 10.69a and is shown in Fig. 10.69b. Both Mealy outputs are de-
duced directly from the output expressions in Eqs. (10.24). This FSM has the potential
to form an output race glitch (ORG) during the transition from state 11 to state 00 under
branching condition XY. Thus, if state variable A changes first while in state 11, the FSM
could transit to state 00 via race state 01, causing a positive glitch in the output CNT,
which is issued conditional on the input condition XY. No other potential ORGs exist.
A detailed discussion of ORGs together with other kinds of logic noise is provided in
Chapter 11.

480 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

10.14 VHDL DESCRIPTION OF SIMPLE STATE MACHINES

An introduction to VHDL description of devices is given in Section 6.10. There, certain key
words are introduced in bold type and examples are given of the behavioral and structural
descriptions of combinational primitives. In Section 8.10, VHDL is used in the description of
a full adder to illustrate three levels of abstraction. In this section, the behavioral descriptions
of two FSMs (a flip-flop and a simple synchronous state machine) are presented by using
the IEEE standard package stdJogicJ164.

10.14.1 The VHDL Behavorial Description of the RET D Flip-flop

(Note: Figure 10.5la provides the symbol for the RET D flip-flop that is being described
here.)

library IEEE;

use IEEE.std_logic_l 164.all;

entity RETDFF is
generic (SRDEL, CKDEL: Time);
port (PR, CL, D, CK: in bit; Q, Qbar: out bit); ~ PR and CL are active low inputs

end RETDFF;

architecture behavioral of RETDFF is
begin

process (PR, CL, CK);

begin

if PR = ' 1' and CL = '0' then ~ PR = ' 1' and CL = '0' is a clear condition

Q <= '0' after SRDEL; - '0' represents LV

Qbar < = ' 1' after SRDEL; --' 1' represents HV

elseif PR = '0' and CL = ' 1' then - PR = '0' and CL = ' 1' is a preset condition

Q<= T after SRDEL;

Qbar <= '0' after SRDEL;

elseif CK' event and CK = ' 1' and PR = ' 1' and CL = ' 1' then
Q < = D after CKDEL;

Qbar <= (not D) after CKDEL;

end if;
end process;

end behavioral;

In the example just completed, the reader is reminded that the asynchronous overrides
are active low inputs as indicated in Fig. 10.5 la. However, VHDL descriptions treat the ' 1'
and '0' as HV and LV, respectively. Therefore, it is necessary to apply Relations (3.1) in
Subsection 3.2.1 to properly connect the VHDL description to the physical entity.

10.14 VHDL DESCRIPTION OF SIMPLE STATE MACHINES 481

FIGURE 10.70
A simple FSM that is used for a VHDL description.

10.14.2 The VHDL Behavioral Description of a Simple FSM

Shown in Fig. 10.70 is the state diagram for a two-state FSM having one input, X, and one
output, Z. It also has a Sanity input for reset purposes.
The following is a VHDL behavioral description of the FSM in Fig. 10.70:

library IEEE;

use IEEE.std_logic_1164.all;
entity FSM is

port (Sanity, CK, X: in bit; Z: out bit); -- Sanity is an active low reset input

end FSM;

architecture behavorial of FSM is
type statelype is (stateO, statel);

signal state, NS : statetype := stateO;

begin
sequence_process: process (state, X);
begin

case state is
when stateO =>

i fX= 'O'then
NS <= statel;

Z <='!';

elseNS <= stateO;
Z < = '0';

end if;
when statel—>

i f X = T then
NS <= stateO;

Z <= '0';

elseNS <= statel;
Z<= '!';

end if;
end case;

end process sequence_process;

482 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

CK_process: process;

begin

wait until (CK'event and CK = T);

if Sanity = '0' then -- '0' represents LV

state <= stateO;

else state <= NS;

end if;

end process CK_process;

end behavorial;

In this example the effect of the Sanity input is presented at the end of the behavioral
description. But it could have been placed in front of the sequence_process. Also, a keyword
not encountered in all previous examples is type. This keyword is used to declare a name and
a corresponding set of declared values of the type. Usages include scalar types, composite
types, file types, and access types. References on the subject of VHDL are cited in Further
Reading at the end of Chapter 6.

10.15 FURTHER READING

Nearly all texts on the subject of digital design offer coverage, to one extent or another, of flip-
flops and synchronous state machines. However, only a few texts approach these subjects by
using fully documented state (FDS) diagrams, sometimes called mnemonic state diagrams.
The FDS diagram approach is the simplest, most versatile, and most powerful pencil-and-
paper means of representing the sequential behavior of an FSM in graphical form. The text
by Fletcher is believed to be the first to use the FDS diagram approach to FSM design. Other
texts that use FDS diagrams to one degree or another are those of Comer and Shaw. The
text by Tinder is the only text to use the FDS diagram approach in the design and analysis
of latches, flip-flops, and state machines (synchronous and asynchronous). Also, the text
by Tinder appears to be the only one that covers the subject of K-map conversion as it is
presented in the present text.

[1] D. J. Comer, Digital Logic and State Machine Design, 3rd ed. Saunders College Publishing, Fort
Worth, TX, 1995.

[2] W. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs,
NJ, 1980.

[3] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993.
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,

NJ, 1991.

The subjects of setup and hold times for flip-flops are adequately treated in the texts by
Fletcher (previously cited), Katz, Taub, Tinder (previously cited), Wakerely, and Yarbrough.

[5] R. H. Katz, Contemporary Logic Design. Benjamin/Commings Publishing, Redwood City, CA,
1994.

PROBLEMS 483

[6] H. Taub, Digital Circuits and Microprocessors. McGraw-Hill, New York, 1982.
[7] J. F. Wakerly, Digital Design Principles and Practices, 2nd ed. Prentice-Hall, Englewood Cliffs,

NJ, 1994.
[8] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/St.

Paul, MN, 1997.

With the exception of texts by Katz and Taub, all of the previously cited references cover
adequately the subject of synchronous machine analysis. The texts by Fletcher, Shaw, and
Tinder in particular, present the subject in a fashion similar to that of the present text. Other
texts that can be recommended for further reading on this subject are those by Dietmeyer
and by Nelson et al., the former being more for the mathematically inclined.

[9] D. L. Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Inc., Boston, MA,
1978.

[10] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and
Design. Prentice Hall, Englewood Cliffs, NJ, 1995.

For detailed information on the subj ect of VHDL, the reader is referred to Further Reading
at the end of Chapter 6.

PROBLEMS

10.1 (a) Complete the timing diagram in Fig. P10.1 for the set-dominant basic cell shown
in Figs. 10.18a and 10.18b. To do this, sketch the resulting waveforms, taking into
account the path delay through a NAND gate represented by rp.
(b) Test the results of part (a) by simulating the circuit.

10.2 (a) Complete the timing diagram in Fig. P10.2 for the reset-dominant basic cell
shown in Figs. 10.18c and d. To do this, sketch the resulting waveforms, taking into
account the path delay through a NOR gate represented by TP.
(b) Test the results of part (a) by simulating the circuit.

10.3 The set-dominant clocked basic cell (also called a gated basic cell or gated SR latch)
is represented by the expression

=SCK+Qt(RCK),

FIGURE P10.1

484 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

S(H) o-

Q(L) -

FIGUREP10.2

where Qt+\ is the next state, Qt is the present state, CKis the clock input, and S and
R are the set and reset inputs, respectively.
(a) From the preceding expression, plot the first-order EV K-map for this device
showing minimum cover. Follow the example in Fig. 10.1 Ib.

(b) From the expression for Qt+\, construct the NAND logic circuit for the gated
basic cell. Thus, show that it consists of four two-input NAND gates (nothing else),
which includes a set-dominant basic cell represented as two "cross-coupled" NAND
gates as in Fig. 10.18a.
(c) By using the logic circuit in part (b), complete the timing diagram shown in
Fig. P10.3. Neglect the path delays through the NAND gates, and note that the
arrows indicate rising edge triggering by clock. [Hint: The logic waveforms for
<2(H) and Q(L) can be deduced qualitatively from the equation for Qt+l.]
(d) Test the results of part (c) by simulating the circuit of part (b) with a logic
simulator.

10.4 (Note: This problem should be undertaken only after completing Problem 10.3.)
The state diagram for the set-dominant basic cell is shown in Fig. 10.12a.
(a) Add CK to this state diagram in Fig. 10.12a to create the state diagram for the
rising edge triggered (RET) set-dominant SR latch of Problem 10.3 in a manner
similar to the state diagram given in Fig. 10.47b. (Hint: If this is properly done,
Fig. 10.12a will result when CK = 1.)

Q(H)

Q(L) _

FIGURE P10.3

PROBLEMS 485

(b) Redesign the gated basic cell of Problem 10.3 by using the set-dominant basic
cell as the memory. To do this, follow the examples in Figs. 10.24, 10.25, and 10.47
by plotting EV K-maps for Set and Reset. Thus, it is necessary to combine the
information in the state diagram of part (a) with the excitation table in Fig. 10.15c
via the mapping algorithm given in Section 10.6.
(c) Construct the NAND/INV logic circuit from the results of part (a). In what way
does it differ from that constructed in part (b) of Problem 10.3? What can be said
about the S, R = 1,1 condition relative to these two designs? (Hint: Only one
inverter is used.)

(d) Read this circuit and write a single expression similar to that given in Problem
10.3. Then construct a first-order EV K-map from this result. Compare the K-map
with that in part (a) of Problem 10.3. Are these two K-maps the same? Explain your
answer.
(e) Complete the timing diagram in Fig. P10.3 for this design. What do you conclude
relative to the S, R = 1,1 condition?

(f) Test the results of part (d) by simulating the circuit of part (b) with a logic
simulator.

10.5 (a) By using Eq. (10.5), implement the set-dominant basic cell by using one 2-to-l
MUX and one AND gate (nothing else). [Hint: Plot Eq. (10.5) in a first-order K-map
of axis 5", and remember that the S and R inputs are introduced active low into the
basic cell.]
(b) Construct the logic circuit for the design of part (a). To do this, construct the logic
circuit for the 2-to-l MUX and provide both active high and active low outputs as
in Fig. 6.4d. Qualitatively, discuss how the mixed-rail output response of this design
compares with that of Fig. 10.18a.

10.6 (a) Convert an RET D flip-flop to a set-dominated RET SR flip-flop. To do this, use
minimum external logic and assume that the S and R inputs arrive active high.

(b) Complete the timing diagram in Fig. PI0.3 by simulating this flip-flop. Is mixed-
rail output response preserved in this flip-flop? Explain your answer.

10.7 Shown in Fig. P10.4 are the operation tables for four unusual (perhaps nonsense)
flip-flops.
(1) Construct the two-state state diagram and excitation table for each of these. To
do this, follow the example of the JK flip-flop in Fig. 10.40.

L N

Q*i ° °
Qt 0 1

S P

0 0
0 1
1 0
1 1

QH1

0
1

Qt
1

A B

0 0
0 1
1 0
1 1

0*1
0
1
1

Q»
1 1 0

1 1
(a) (b) (c) (d)

FIGURE P10.4

486 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

QT» Qt*i F G Qt~* Qt+1
0^0

0-»1

1 -»0

1 -»1

P K

1 0

ftfl
1 ^

0 ^

(b)

Ql-» QH1

0 -> 0

o-» 1

1 -»0

1 -»1

S F

1 0

(S f)1̂ 1j

11 0;

(c)

Qt^ Qt+1

0 ^ 0

0-M

1 ->0

1 -> 1

R M

(J &
1 1

0 0

(H
(d)

0-»0

0-» 1

1 -»0

1 -»1

(a)

FIGURE P10.5

(2) Find the gate-minimum logic circuit required to convert any type D flip-flop to
each of these flip-flops. To do this, follow the model in Fig. 10.36 and assume that
all inputs arrive active high.

10.8 Shown in Fig. P10.5 are four excitation tables for unusual (perhaps nonsense) flip-
flops.
(1) Construct the two-state state diagram and operation table for each of these.
(2) Find the gate-minimum logic circuit required to convert any type of JK flip-flop
to each of these flip-flops. To do this, follow the model in Fig. 10.36 and assume that
all inputs arrive active high.

10.9 Find the gate-minimum logic circuit required for the following flip-flop conversions.
To do this, use the excitation tables in Fig. P10.5.
(a) Convert an MS D flip-flop to a MS FG flip-flop with inputs active low.
(b) Convert an RET T flip-flop to an FET PK flip-flop with inputs P(L) and K(H).
(c) Convert an RET D flip-flop to an RET RM flip-flop with inputs active high.

10.10 (a) Draw the two-state state diagram that describes the operation of an RET JK flip-
flop that has an active low synchronous clear input — one that takes effect only on
the triggering edge of the clock signal.
(b) Find the gate-minimum logic circuit required to convert an RET D flip-flop to
the JK flip-flop of part (a) by using NAND/INV logic only. Assume that the inputs
arrive active high.

10.11 Given the circuit in Fig. P10.6, complete the timing diagram to the right and determine
the logic function F. (Hint: Construct a truth table for Q\, Qi, and Z.)

10.12 The results of testing an FSM indicate that when its clock frequency fcK exceeds 25
MHz the FSM misses data. The tests also yield the following data:

tFF(ma\) = 15 HS

^MS(max) = 13 IIS,

where T/7/r(max) is the maximum observed delay through the memory flip-flops, and
r/v5(max) is the maximum observed delay through the next-state-forming logic, both
given in nanoseconds.

PROBLEMS 487

Transparent
D Latch

X(H)

CK-

Q

D Q

> Q

RETD
Flip-flop

FIGURE P10.6

(a) Calculate the minimum setup time ?SM(min) from the foregoing information. Note
that the hold time plays no significant role here.

(b) On a sketch of the voltage waveform for clock, illustrate the relative values for
), TMS(max), ^w(min), and TCK-

10.13 Shown in Fig. P10.7 are three relatively simple FSMs. First, check each state diagram
for compliance with the sum rule and mutually exclusive requirement. Then, for this
problem, design each of these FSMs by using RET D flip-flops as the memory. To do
this use a gate-minimum NS and output logic and assume that the inputs and outputs
are all active high.

10.14 Repeat Problem 10.13 by using RET JK flip-flops as the memory.

XY

S©T

\ \ QT
X+Yi

ZiT if T

488 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

10.15 Design the FSM in Fig. P10.7b by using PK flip-flops that are characterized by the
excitation table in Fig. P10.5b. To do this, find the gate-minimum logic required for
the NS- and output-forming logic. Do not implement the result. Thus, the information
in Figs. P10.7b and P10.5b must be brought together via the mapping algorithm in
Section 10.6. (Hint: The easiest approach to this problem is to obtain the NS K-maps
for a D flip-flop design and then apply the conversion logic for D-to-PK K-map
conversion. See Subsection 10.12.2 for assistance if needed.)

10.16 (a) Construct a four-state state diagram for an FSM that samples (with clock) a
continuous stream of data on an input X. The FSM is to issue an output Z any time
the sequence .. .1001... occurs. Consider that the sequence can be overlapping as,
for example, . . .100100100....
(b) By using two state variables, give this state diagram any valid state code assign-
ment.

10.17 Repeat Problem 10.16 for a nonoverlapping sequence .. .0101

10.18 Construct the state diagram for an FSM that samples (with clock) a continuous
stream of data on an input X. The FSM is to issue an output Z any time the sequence
...10110... occurs. Consider that the sequence can be overlapping as, for example,
.. .10101011011010..., where an output is issued twice in this series. The state
diagram must conform to the following representations:
(a) A Moore FSM representation with six states.

(b) A Mealy FSM representation with five states.

10.19 (a) Design a serial 2 's complementer logic circuit by using two RET D flip-flops and
a gate-minimum NS and output forming logic. To do this, follow Algorithm 2.6 in
Subsection 2.6.2 and the ASM chart in Fig. 13.29b. The inputs are Start and Bin (for
binary), and the output is T (for two's complement), all active high. (Hint: There
are at least three states and the process is unending.)
(b) Test the design of the serial 2's complementer by simulation and compare the
results with the timing diagram in Fig. 13.30.

(c) Repeat part (a), except use two RET JK flip-flops. Which design is more optimum?
Explain.

10.20 Shown in Fig. P10.8 is the logic circuit for an FSM that has two inputs, X and 7,
and two outputs, P and Q. Analyze this FSM to the extent of constructing a fully
documented state diagram. To do this, follow the examples in Section 10.13.

10.21 Presented in Fig. PI0.9 is the logic circuit for a two-input/one-output FSM that is
to be analyzed. To do this, construct a fully documented state diagram by following
the example in Figs. 10.66 and 10.67. Indicate any possible branching problems this
FSM may have. Such problems may include states for which there is no entrance as,
for example, don't care states.

10.22 In Fig. PIO.IO is the logic circuit for a single-input/single-output FSM. Analyze
this FSM by constructing a fully documented state diagram. Indicate any possible
branching problems this FSM may have. Such problems may include states for which
there is no entrance.

FIGURE P10.8

FIGURE P10.9

X(H)

FIGURE P10.10

Z(H)

489

490 CHAPTER 10 / INTRODUCTION TO SYNCHRONOUS STATE MACHINE DESIGN

10.23 (1) Shown in the following are the NS- and output-forming logic expressions for five
FSMs. Analyze these FSMs to the extent of constructing a fully documented state
diagram for each. To do this follow the examples in Section 10.13. Note that the
state variables are, as always, A, B, and C, and the outputs are P and Q. All other
literals are inputs. For FSM (d), use the excitation table in Fig. 10.5a to characterize
the FG flip-flop memory. (Hint: For FSM (d), convert D K-maps to FG K-maps to
obtain the NS logic.)

(2) Indicate any possible branching problems that may exist in each of the FSMs.
Such branching problems may include states for which there is no entrance and that
might be don't care states.

JA = BXY + XY TA = ABXY + AXY JA = BXY + BXY
KA = BXY + BXY TB = ABXY + BY KA = BX + XYZ
JB=AX + XY P =ABX + AB JB=A(X + Z)
KB = XY KB = AY
Q = ABX + BX Q = BXY + ABY

(a) (b) (c)

ABC
P=BX+A P = BCSY + ABC

Q = ACN

(d) (e)

10.24 (a) Prove that if Eq. (10.4) is satisfied, Eq. (10.3) is also satisfied.
(b) Prove that the mutually exclusive requirement is uniquely satisfied in Fig. 10.8 if

fi^j • /*<-; = °

for all / and k, where i ^ k. Here i, j, and k are integers with values 0, 1, 2, 3, —

10.25 At the discretion of the instructor, simulate by using EXL-Sim2002 any problem in
this chapter where simulation is appropriate and where it is not already required.
For example, an assignment 10.25/10.13c would require simulating the FSM in
Fig. P10.7c designed by using D flip-flops with a gate-minimum NS and output
forming logic, and with active high inputs and output.

CHAPTER 11

Synchronous FSM Design
Considerations and Applications

11.1 INTRODUCTION

A number of design considerations and problem areas were purposely avoided in the pre-
vious chapter. This was done to focus attention on the basic concepts of design and anal-
ysis. These design considerations and problem areas include logic noise in the output
signals; problems associated with asynchronous inputs, metastability, and clock distribu-
tion; and the initialization and reset of the FSM. It is the purpose of this chapter to discuss
these and other subject areas in sufficient detail so as to develop good, reliable design
practices.

11.2 DETECTION AND ELIMINATION OF OUTPUT RACE GLITCHES

Improper design of an FSM can lead to the presence of logic noise in output signals, and
this noise can cause the erroneous triggering of a next stage switching device to which the
FSM is attached. So it may be important that FSMs be designed to issue signals free of
unwanted logic transients (noise) called glitches.

There are two main sources of output logic noise in an FSM:

• Glitches produced by state variable race conditions
• Glitches produced by static hazards in the output logic

In this and the following section, both types of logic noise will be considered, with emphasis
on their removal by proper design methods.

A glitch that occurs as a result of two or more state variable changes during a state-
to-state transition is called an output race glitch or simply ORG. Thus, an ORG may be
regarded as an internally initiated function hazard (see Section 9.4), since two or more state
variables try to change simultaneously but cannot. A glitch is an unwanted transient in an
otherwise steady state signal and may appear as either a logic 0-1-0 (positive glitch) or as

491

492 CHAPTER 11 /SYNCHRONOUS FSM DESIGN CONSIDERATIONS

a logic 1-0-1 (negative) glitch, as indicated by the following:

0-1-0 1-0-1
Positive (+) glitch Negative (-) glitch

As a voltage transient, an ORG may not develop to an extent that it crosses the switching
threshold of a next-stage device. Even so, the wise designer must expect that the ORG might
cross the switching threshold and take corrective measures to eliminate it.

By definition, a race condition is any state-to-state transition involving a change in two
or more state variables. Thus, race conditions do not exist between logically adjacent states.
The fact is that there are n! possible (alternative) race paths for state-to-state transitions
involving a change in n state variables. For example, a change in two state variables requires
two alternative race paths, while a change in three state variables allows for 3! = 6 alternative
race paths. But since the specific, real-time alternative race path that an FSM may take during
a state-to-state transition is not usually predictable, all possible alternative race paths must
be analyzed if corrective action is to be taken. It is on this premise that the following
discussion is based.

An ORG produced by a transition involving the change of two state variables is illustrated
in Fig. 11.la by a portion of a state diagram. Here, two race paths, associated with the
transition from state Oil to state 110, are indicated by dashed lines. One race path is by
way of race state 010 and the other via race state 111, a don't care state. Notice that the

Use <j>7 as a 0 or X in Z
K-map else (+) glitch.

ABC Race path 2

Conditional
Branching

(a)

Destination
x State

Race path 1
(+) Glitch

(b)

FIGURE 11.1
Illustration of an ORG caused by a transition from state 011 to state 110 involving a change in two
state variables, (a) Portion of a state diagram showing the two alternative race paths associated with
the transition, (b) Simplified diagram showing the origin and destination states, the race paths and
possible ORGs.

11.2 DETECTION AND ELIMINATION OF OUTPUT RACE GLITCHES 493

Output Z Q | I Output Z Q I I

Race path 1 011—^010—^110 Race path 2 011—+ 111—M10

3 2 6 3 <£ =x 6

(b)

FIGURE 11.2
Logic sketches of the ORGs that can be produced by the state diagram segment in Fig. 11.1.
(a) Positive (+) glitch produced in state 010 via race path 1. (b) Conditional positive (+) glitch
produced in don't-care state 111 via race path 2.

branching from state a to state b is conditional on X and that this satisfies the conditional
output Z i f X i n race state 010. The race paths are best shown by the simplified diagram
in Fig. 1 l.lb, where all nonessential details are removed. Note that neither the origin state
nor the destination state are output states — an important observation in ORG analysis.

Should state variable C change first, the transition from state Oil to state 110 will take
place via race path 1 (race state 010) and the output Z would glitch, as indicated in Fig. 11. Ib.
On the other hand, if state variable A should change first, the transition will occur via race
path 2 through don't-care state 07. In this case the question of whether or not an ORG will
be produced depends on how 0? is used in extracting the cover for Z in the output K-map.
If 07 is used as a 1, state 111 becomes an unconditional output state and an ORG will be
produced by race path 2. Similarly, if 07 is used as an X , state 111 becomes a conditional
(Mealy) output state that will produce an ORG via race path 2. As indicated in Fig. 11. Ib, a
choice of07 = Oor07 = X eliminates the possibility of an ORG in state 111 via race path
2. That an ORG is an output discontinuity is illustrated by the logic sketches in Fig. 11.2,
which represents the ORGs produced by the state diagram segment in Fig. 11.1. Notice that
in both cases, the ORGs are (+) glitch discontinuities in the Z output, which should have
been maintained as a steady-state logic 0 signal during the transition 011 —»• 110. The ORG
shown in Fig. 11.2b is said to be conditional because its production depends on how 07 is
used in the K-map for Z, as discussed previously.

Given that ORGs are present in the FSM segment of Fig. 11.1, corrective action must
be taken to eliminate them, assuming it is necessary to do so. The easiest corrective action
involves changing the state code assignments to eliminate the race condition that caused
the ORGs. When state codes 110 and 010 in Fig. 11.1 a are interchanged, the race condition
disappears together with the ORGs. A simple alteration of the state code assignments is not
always possible, but should be one of the first corrective measures considered.

Another example is presented that demonstrates the use of other methods for eliminating
a possible ORG. Shown in Fig. 11.3a is a three-state FSM that has one input X, two outputs,
Y and Z, and a possible ORG produced during the transition 00 -> 11. To help understand
the ORG analysis of this FSM, only the essential features of Fig. 11.3a are presented
in Fig. 11.3b. Here, it is easily seen that if state variable A is caused to change first, the
transition from state 00 to state 11 will take place via race path 1 through race state 10

494 CHAPTER 11 /SYNCHRONOUS FSM DESIGN CONSIDERATIONS

Use ^1 as a 0 or X in Z K-map

Origin State else (+) 9litch in z

Choice in Y K-map

Destination
State AB

Race path 1
(+) glitch in Z

Early activation of Y

(a) (b)

FIGURE 11.3
Example of an ORG in a simple three-state FSM with two outputs, Y and Z, and one input X. (a) State
diagram showing the two alternative race paths for a transition from state a to state b. (b) Simplified
state diagram segment showing only the essential details of the race paths and ORG possibilities.

causing an ORG in output Z, but not in output Y. This can be understood by noting that the
output Z is not issued in the origin state 00 at the time the transition takes place. Nor is
Z issued in the destination state 11 at the time of arrival. But Z is issued unconditionally
in race state 10, thereby causing a discontinuity in the Z signal via race path 1 —an ORG.
Output 7, on the other hand, is issued conditionally on X in race state 10 and unconditionally
in the destination state 11. As a result, only early activation of Y is possible by way of race
path 1 — there is no ORG in Y.

The don't-care state 01 can potentially produce an ORG in output Z via race path 2 if
0i is used as a 1 or as an X in the K-map for output Z. This ORG can be avoided by using
0i as a 0 or X in extracting cover from the Z K-map. If X is used, for example, then the
output Z in state 01 is conditional on X. That is, the output is Z f^ if X, which does not
satisfy the branching condition X for the transition a-^-b, and no ORG in Z is possible.
The choice (f)\ = 0 in the Z K-map clearly makes state O l a nonoutput state for Z. In the
case of output 7, don't care 0i can take on any value in the Y K-map, since only early
activation of Y is possible should Y be caused to be issued in state 01.

The NS and output K-maps and the resulting minimum covers for the simple FSM of
Fig. 11.3a are shown in Figs. 11.4a and 11.4b. (Remember that the NS K-maps are plotted
by using the mapping algorithm in Section 10.6). Notice that 0i is taken to be 0 in the Z
K-map, in agreement with the requirements indicated in Fig. 11.3b. Thus, an ORG in Z is
not possible via race path 2. But 0i is used as a 1 in the Y K-map, which is permissible
since, by race path 2, only early activation of output Y is possible. Early activation or late
deactivation of an output is not a problem and, in some cases, may even be preferred as a
means of optimizing output logic.

11.2 DETECTION AND ELIMINATION OF OUTPUT RACE GLITCHES 495

DA = AX + B DB = AX + BX

(a) (b)

X(H)-

B(H) ^

Next state logic

- D Q
A

p> Q

- D Q
B

-> Q

0—

o —

4 /

L •>, ^_ j

\\ v —
Output logic

Y(H)

CK

(c)

FIGURE 11.4
Implementation of the FSM in Fig. 11.3. EV K-maps for the NS and output functions, (b) Logic
circuit showing two means of generating output Z.

Output Z is shown to be generated from both an AND gate and from a NOR gate in
Fig. 11.4c. This has been done to demonstrate that the choice of hardware can influence the
outcome of ORGs. An examination of the mixed-rail outputs from basic cells in Fig. 10.18
will help the reader understand the following discussion and how choice of hardware can be
used as a means of eliminating ORGs. If the output is taken from the AND gate, ZA/VD(^),
and if the D flip-flops are NAND based, state variable A will change before B by as much as
a gate delay, causing the ORG to be formed. However, if the NOR gate is used to generate
Z, ZNOR(H), and the D flip-flops are NAND based, no ORG will result. This is true since
state variable B will change before state variable A, forcing the FSM to take race path 2
during the transition a ->• b. But the use of NOR-based D flip-flops has the opposite effect
for each of the two cases just stated. In this case, ZAND(H) should be used for a glitch-free
output.

496 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

11.2.1 ORG Analysis Procedure Involving Two Race Paths

Certain facts emerge in the ORG discussions that have been presented so far. For reference
purposes these facts are presented in the following procedure:

• Notice whether or not the origin and destination states in a given state-to-state
transition have the same or different output action relative to a given output. If
the origin and destination states have the same output action relative to a given
output (that is, both are output states or both are not output states), then check
to see if a potential ORG exists via the race states. If the origin and destination
states have different output actions (that is, one is an output state but the other
is not), no ORG is possible.

• If a potential ORG exists, corrective action should be taken to eliminate it by
one of several means — an ORG may erroneously cross the switching threshold
and trigger a next stage.

When more than two state variables are required to change during a given state-to-state
transition, the analysis procedure becomes much more difficult. Recall that for a change of
n state variables during a transition there are n \ possible race paths.

11.2.2 Elimination of ORGs

Six methods for eliminating an ORGs are cited here for reference purposes. Three of these
methods, the first three listed below, have been discussed previously. These six methods
may be viewed as listed in decreasing order of importance or desirability:

1. If possible, for a don't-care state that lies in a race path, make proper choice of its
value in the output K-map to eliminate the ORG.

2. Change the state code assignment to either remove the race condition that caused
the ORG, or move the race condition elsewhere in the state diagram where an ORG
cannot form.

3. If possible, and with reference to Fig. 10.18 and the flip-flop technology, choose the
output hardware necessary to eliminate the ORG.

4. Filter the output logic signal containing the ORG.

5. Use a buffer (fly) state to remove the race condition that caused the ORG.

6. Increase the number of state variables to eliminate the race condition that caused the
ORG.

An inspection of the state diagram in Fig. 11.3a indicates that a simple change in the
state code assignment can eliminate the potentially active ORG in output Z just discussed.
This is demonstrated in Fig. 11.5a and in the state diagram segment of Fig. 11.5b. By using
the state code assignment shown, all ORGs are eliminated. Now, the conditional branching
a —> b in Fig. 11.5a is logically adjacent and cannot cause an ORG. The unconditional
branching from 10 to 00 (c —> a) is also logically adjacent and will cause no ORG. The
only race condition that exists is the conditional branching from state 01 to 10 (b —»• c) and
for this no ORG is possible, as indicated in Fig. 11.5b. Branching b —> c via race path 1

11.2 DETECTION AND ELIMINATION OF OUTPUT RACE GLITCHES 497

Race path 1.. -^No ORG

.-. . - v Destination
°'gn-- X X A" StateState

Race path 2

Choice in use of don't care ^3
with no ORG

(a) (b)

FIGURE 11.5
Use of a change in state code assignment to eliminate an ORG. (a) State diagram of Fig. 11.3a,
showing change in state code assignment and new race paths for transition b -»• c (dashed lines),
(b) Diagram segment for (a) showing elimination of all ORGs.

results in normal deactivation of Y and normal activation of Z. Assigning 03 a logic 1 or X
in the Y K-map merely results in a late deactivation of output Y via race path 2. Or, using
03 as a logic 1 in the Z K-map results in an early activation of output Z via race path 2.
Early or late activation or deactivation of an output is of no concern in most cases. In fact,
it is only under the most stringent of timing conditions that such late or early activation
or deactivation may become an important consideration. Use of 03 as a logic 0 results
in the normal output response in either case. The following paragraphs offer two simpler
alternatives for the elimination of all ORGs in the FSM of Fig. 11.3, alternatives that may
or may not provide the best solution.

Shown in Fig. 11.6 are two examples of how a potential ORG can be eliminated by using
a buffer (fly) state to eliminate the race condition causing the ORG. In Fig. 11.6a, don't-care
state 01 is used to eliminate the ORG in output Z by removing the race condition between
state a and b in Fig. 11.3a. In doing this, an additional clock period is introduced for the
transition from a to b. The use of the buffer state in Fig. 11.6b removes the potential ORG
in output Y but creates an additional clock period delay for the transition from state c to
state a. These additional clock period delays caused by the presence of a buffer state may
or may not be acceptable, depending on the design requirements for the FSM. Clearly, the
best solution to this ORG problem is that indicated in Fig. 11.5.

Another approach to eliminating ORGs is to filter them. This is easily accomplished
since ORGs, like all forms of logic noise, occur immediately following the triggering edge
of the clock waveform. Shown in Fig. II.la is an acceptable filtering scheme involving an
edge-triggered flip-flop that is triggered antiphase to the FSM memory flip-flops. Thus, if
the memory flip-flops of the FSM are triggered on the rising edge of the clock waveform
(RET), then the D flip-flop filter must be triggered on the falling edge of the clock waveform
(FET) or vice versa. The timing diagram in Fig. 11.7b illustrates the filtering action of the

Buffer
State

Buffer
State V01

YitifX

^1 = Buffer state
(a) (b)

FIGURE 11.6
Elimination of possible ORGs by using buffer states to eliminate race conditions, (a) Use of don't-care
state 01 as a buffer state to eliminate the ORG in Z shown in Fig. 11.3b. (b) Use of don't-care state
01 as a buffer state to eliminate a possible ORG in Y after interchanging the state codes 11 and 10 in
Fig. 11.3a.

Inputs

CK

* FSM
with Logic Noise

^

Z(H)

with logic
noise

r7^-

D Q

> Q

Z*(H) without
logic noise

(a)

Logic Noise

(b)

FIGURE 11.7
Filtering method for eliminating logic noise, (a) Logic circuit showing the use of an FET D flip-flop,
triggered antiphase to the FSM memory, to filter logic noise, (b) Timing diagram showing filtering
action of the FET D flip-flop.

498

11.3 DETECTION AND ELIMINATION OF STATIC HAZARDS 499

D flip-flop. Notice that one-half of a clock cycle is lost because of the action of the filter. If
the D flip-flop is triggered in phase with the FSM memory flip-flops, an entire clock cycle
will be lost in the filtering process. To help understand how the filtering process eliminates
logic noise such as ORGs, the following is presented for reference purposes:

Remember: All forms of logic noise (glitches), including ORGs, occur immediately
following the triggering edge of the clock waveform, and the duration of any logic
noise pulse will always be much less than one-half the clock period.

Because logic noise occurs immediately following the triggering edge (RET or FET) of
the clock waveform, it is very easily filtered. Another type of noise, called analog noise, is
more difficult to filter since it is usually produced randomly from sources outside the logic
system. The filtering of analog noise will not be discussed in this text.

Which Methods Should Be Used to Eliminate a Potential ORG? If possible, make the
proper choice of don't-care values in output K-maps or change the state code assignments as
needed to eliminate ORGs. These two reliable methods are least likely to increase hardware
requirements and slow down FSM operation. Choosing the output hardware in accordance
with Fig. 10.18 is somewhat "iffy," since this method may depend on a single gate delay
to force branching along a particular non-ORG race path (see Fig. 11.4.). Unlike methods
1 and 2, method 3 does not offer assurance that a given ORG will not form.

Methods 4 and 5 both involve delays in the performance of the FSM and in most cases
increase the hardware requirements. The filter method (4) is the most desirable of the two,
since only a half CK cycle (plus the path delay through the D flip-flop) is involved. The
filter method also has another advantage. By using a bank of such flip-flops (called an
output holding register) to filter multiple outputs from an FSM, the outputs can be delivered
synchronously to the next stage. Use of a buffer state (5) to eliminate a race condition in
a branching path (one that caused the ORG) introduces an additional clock cycle in that
branching path, and this may not be an acceptable option.

Least desirable, usually, is method 6. Although increasing the number of state variables
may not alter the performance appreciably, this method does require an additional flip-flop
and additional feedback paths for each state variable that is added. Thus, method 6 usually
requires additional NS logic and may even require additional output-forming logic. The
one-hot code method, discussed in Section 13.5, offers some advantages over conventional
coding methods, but at the expense of requiring as many state variables (hence, also flip-
flops) as there are states in the state diagram (see Table 2.11).

11.3 DETECTION AND ELIMINATION OF STATIC HAZARDS
IN THE OUTPUT LOGIC

A detailed treatment of static hazards in combinational logic circuits is provided in Sections
9.1 and 9.2 and forms the basis for discussion of hazards in the output logic of FSMs
presented in this section. It is recommended that the reader review these sections before
continuing on in this section. Unique to state machines is the fact that the static hazards can
be either externally initiated (as in combinational logic) or internally initiated because of

500 CHAPTER 11 /SYNCHRONOUS FSM DESIGN CONSIDERATIONS

State External
Variables Inputs Externally initiated
/ A x / ^ \ /• s -hazard

X x x A /(Constant state variables)
\ n-1 "' 1 0 I

Qm-l •••Q1Q0\ ...00 ...01 ...11 / ...10

...00 \JL

Internally ..-01
initiated s-hazard
(Constant inputs) -.,

...10

FIGURE 11.8
Output table for fictitious output Z showing externally and internally initiated static hazard transitions
for either static 1-hazards or static 0-hazards.

a change in a state variable. The basic difference between these two types of static hazards
(s-hazards) is illustrated by the generalized output table for output Z shown in Fig. 11.8.
Here, the double arrows represent hazardous transitions for either static 1-hazards or static
0-hazards. Notice that an externally initiated s-hazard is created by a change in a single
external input while all state variables are held constant, meaning that an externally initiated
s-hazard takes place under a hold condition. Conversely, an internally initiated s-hazard is
created by a change in a single state variable with all external inputs held constant. But
in this latter case it will take an input change to initiate the transition that produces the
s-hazard. The following discussions will consider both externally and internally initiated
s-hazards.

11.3.1 Externally Initiated Static Hazards in the Output Logic

Externally initiated static hazards can occur only in Mealy FSMs. A simple example is
presented in Fig. 11.9a, which is a resolver state machine configuration similar to that
shown in Fig. 10.29a for the RET D flip-flop. This Mealy machine has two inputs, X and
Y, and one output, Z. It is the function of this FSM that its output Z remain constant unless
input Y changes while the FSM is in a resolved state, 01 or 10. Thus, a change in Y while
the FSM is in a resolved state deactivates the output Z. Note that the FSM never enters state
11, a don't-care state.

The minimum SOP cover is shown in Fig. 11.9b. Notice that the coupled variable is
identified as the external input Y. Also, observe that the state variables in the two coupled
terms, AY and BY, are read in minterm code as AB = 00 to indicate that the hazard is
produced by a change Y —»• Y in state 00 under the holding condition X. When the SOP

11.3 DETECTION AND ELIMINATION OF STATIC HAZARDS 501

Zpos = (B+Y)(A+Y)

11 11 (NA)

(a) (b) (c)

FIGURE 11.9
(a) Resolver FSM configuration with two inputs, X and Y, and one output, Z. (b) Minimum SOP cover
for Z showing a 1 —> 0 change in coupled variable Y while in state 00. (c) Minimum POS cover for
Z indicating a 0 —> 1 change in Y while in state 11, a don't-care state, which is not applicable (NA).

consensus law in Eqs. (3.14) is applied, the ANDed residue of the coupled terms is simply
AB, which is the hazard cover (see Section 9.2). Thus, adding the hazard cover to the
minimum SOP expression yields

ZSOP=AY + BY+ A&,
v (A * • • * •)

Hazard cover

which ensures that the static 1-hazard will not form under any set of circumstances.
The NAND/INV logic and timing diagrams for the ZSOp function with and without

hazard cover are shown in Fig. 11.10. Figure 11.1 Oa illustrates the formation of the static
1-hazard resulting from a 1 —> 0 change in external input Y, hence an externally initiated
s-hazard. Implementation of Eq. (11.1), shown in Figure 11.1 Ob, illustrates the removal of
the s-hazard as a result of adding hazard cover A B to the minimum SOP cover. In this latter
case the hazard is removed regardless of the activation level of input 7, (H) or (L), and
regardless of the delay imposed by the inverter.

To reinforce what has been said in the foregoing discussion, the function ZSOP is repre-
sented in the output table of Fig. 11.11. The hazardous transition, indicated by an arrow,
shows that the static 1-hazard can be produced only by a 1 —>• 0 change in Y assuming
that input Y arrives active high. The hazard is eliminated by the hazard cover, which must
cover the hazardous transition as indicated in the figure. Notice that the hazardous transition
occurs in state 00 under holding condition X as required by Figs. 11.9a and 11.9b.

The minimum POS cover is indicated in Fig. 11.9c. Reading the coupled terms in
maxterm code indicates that a 0 —» 1 change in Y must occur in state 11, which is a don't-
care state. Since this FSM never enters state 11, the static 0-hazard never occurs and,
accordingly, hazard cover is said to be not applicable (NA). The gate/input tally for the POS
expression is 3/6 compared to 4/9 for Eq. (11.1), both exclusive of inverter count. Thus,
hardware-wise, a discrete logic POS implementation of the output Z is favored over the
SOP expression in Eq. (11.1).

502 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

Z(H)
Z(H)

I - T~~V l^— •"
B(L)- _ __

Hazard cover

A(L)J

Y(H)J 1 Y(H)J

AY(L) J | AY(L) J .

BY(L) J | BY(L) J '

Z(H)" U- Static A§(L)i;

1 -hazard z(H) J

(a) (b)

FIGURE 11.10
Formation and removal of the static 1-hazard in the Mealy FSM of Fig. 11.9(a) NAND/INV logic for
output Z in Fig. 11.9b and timing diagram showing the formation of the s-hazard. (b) Implementation
of Eq. (11.1) and timing diagram with hazard cover showing removal of the s-hazard.

11.3.2 Internally Initiated Static Hazards in the Output of Mealy
and Moore FSMs

The following discussion can best be understood by a reexamination of the mixed-rail output
responses of the set- and reset-dominant basic cells given in Fig. 10.18. Notice that in both
cases the active portion of the waveform from the ANDing operation is symmetrically

Hazard
cover

\ XY
AB\ 00

00

01

11

10

(1*-
1

01

1

11

1

X

10

1

if
1

/ SOP

FIGURE 11.11
Output K-map showing hazardous transition (arrow) and hazard cover for ZSOP in Eq. (11.1) and
Fig. 11.9b.

11.3 DETECTION AND ELIMINATION OF STATIC HAZARDS 503

placed within that from the ORing operation by an amount equal to the path delay through a
gate. From this information the following conditions for s-hazard formation can be stated:

• Conditions for static 1-hazard (SOP hazard) formation:

1. A 1 -> 0 change in the Q output of the flip-flop when <2(H) leads Q(L)

2. A 0 -» 1 change in the Q output of the flip-flop when Q(L) leads Q(H)

• Conditions for static 0-hazard (POS hazard) formation:

3. A 0 -* 1 change in the Q output of the flip-flop when Q(H) leads 0(L)

4. A 1 -> 0 change in the Q output of the flip-flop when Q(L) leads <2(H)

Note that these four conditions are similar to those for combinational logic when considering
the activation level of the initiating (coupled-variable) input. In Figs. 9.2 and 9.3, for
example, the coupled-variable inputs to the SOP logic circuits are the external inputs A(H)
and A(L), respectively. For internally initiated s-hazard formation, the coupled-variable
input is assumed to be the output from a basic cell, Q(H) and Q(L). This is a valid assumption
since the output stage of the most common flip-flops is a basic cell with mixed-rail outputs.

By relating the mixed-rail output response of the basic cells to the conditions for s-
hazard formation just stated, two useful conclusions can be drawn. To understand how
these conclusions come about, it is necessary to revisit Fig. 10.18. Presented in Fig. 11.12
are the mixed-rail output responses of the basic cells together with the conditions for s-
hazard formation for each, as deduced from conditions 1 through 4 previously stated. An
inspection of Fig. 11.12a reveals that the mixed-rail output response for the set-dominant
(SOP) basic cell generates the conditions for POS hazard (static 0-hazard) formation. In
dual fashion, the mixed-rail output response for the reset-dominant (POS) basic cell in
Fig. 11.12b generates the conditions for SOP hazard (static 1-hazard) formation. That the
set- and reset-dominant basic cells can be called SOP and POS circuits, respectively, is
easily deduced from an inspection of Figs. 10.1 la and 10.13a.

From Fig. 11.12 and the forgoing discussion, the following two conclusions can be
drawn, subject to the assumption that the coupled variables in an output expressions are
state variables produced from the mixed-rail outputs of the flip-flops:

• For flip-flops with NAND-centered (SOP) basic cells, s-hazards produced by
either a l - > O o r a O — > • 1 change in the coupled variable are not possible if SOP
output logic is used.

• For flip-flops with NOR-centered (POS) basic cells, s-hazards produced by either
aO-> 1 or a 1 -> 0 change in the coupled variable are not possible if POS output
logic is used.

The ramifications of the forgoing conclusions are important in FSM design. If the output
logic and that for the basic cell output stage of the flip-flop are matched, that is, both SOP
or both POS logic, internally initiated s-hazards are not possible in the logic domain. For
example, if the output logic of an FSM is to be implemented by using an SOP device, such as
a PLA, the choice of NAND-centered flip-flops avoids the possibility of internally initiated
s-hazard formation in the output logic of that FSM. On the other hand, if the form of the
output logic and that for the basic cell of the flip-flops are different, one SOP and the other
POS, s-hazards are possible on either al—»-OoraO-> 1 change of the coupled variable (state

504 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

S(L)

R(L)

— *
Q(H)

1

'ft— T -i

_j

-+! '<«— T — »>

>-*•

1

l«— T
T

«— T

R(L)

o^r,SOP Q(H) leads Q(L) Q(L) leads Q(H)
Basic cell N ^ '

Conditions for POS hazard formation

(a)

S(H)

R(H)

— i

Q(H) ,
r*

i_

1

r

j

T

l
•«— T

-r

S(H) i * >^*-Q(L)

POS Q(L) leads Q(H) Q(H) leads Q(L)
Basic cell v \/ x

Conditions for SOP hazard formation
(b)

FIGURE 11.12
Mixed-rail output response of the basic cells and conditions for internally initiated s-hazard formation,
(a) Logic circuit and mixed-rail output response for the set-dominant (SOP) basic cell showing
conditions for POS hazard formation, (b) Logic circuit and mixed-rail output response for the reset-
dominant basic cell showing conditions for SOP hazard formation.

variable). If such an s-hazard is formed, it will most likely cross the switching threshold
since the delay T in Fig. 11.12 represents an entire gate delay.

There is another means by which mixed-rail outputs can be produced from a flip-flop.
Shown in Fig. 11.13 is an RET D flip-flop whose output response is Q(H) from the flip-flop,
but now Q(L) is taken from an inverter, not from the flip-flop. As a consequence, the active
portion of the Q(L) waveform is skewed in time relative to that from Q(H). Though the
delay difference is now only that of an inverter, it does make possible the formation of
a static 1-hazard on a 1 ->• 0 change of the coupled variable, or the formation of a static
0-hazard on a 0 ->• 1 change of the coupled variable. Matching the output-forming logic to
the logic of the flip-flops can no longer be used as a possible means of eliminating internally
initiated s-hazards in the output logic.

11.3 DETECTION AND ELIMINATION OF STATIC HAZARDS 505

Q(H) leads Q(L) Q(H) leads Q(L)

Condition for Condition for
POS hazard SOP hazard

formation formation

FIGURE 11.13
Conditions for s-hazard formation from the mixed-rail output response of a flip-flop where <2(L) is
produced by an inverter.

When Is It Necessary to Run a Static Hazard Analysis on an FSM ? If the output logic
of an FSM appears to have the potential for s-hazard formation, there arises the question of
when an s-hazard analysis should be run on an FSM. There are specific guidelines one can
use in deciding this issue. These guidelines are stated next, but not in any particular order
of importance. A static hazard analysis should be carried out:

1. If it is known that s-hazard production in an output can cause a problem in the next
stage.

2. Always following an ORG analysis and any corrective action that may result.
3. If it is determined that the output in question is not to be filtered.
4. If there is no match of the output logic character with that of the flip-flop output

stages.

5. If the logic character of the flip-flops is unknown.

Generally, all five guidelines should be considered, but particular notice should be paid to
guidelines 2 and 3. Hazard analyses should always be carried out following any corrective
action required by an ORG analysis. If, for example, an ORG analysis requires a change in
the state code assignments or requires the particular use of a specific don't care in an output
K-map, the output logic is certain to change. It is useless to run a hazard analysis before
the final output logic is known. It is also useless to run either an ORG or a hazard analysis
if it is known that the output is to be filtered.

A Simple Example Consider the state diagram for the Mealy FSM presented in Fig. 11.14a.
It is shown to have two inputs, S and T, and one output, Y. The ORG analysis, which must
be run before the hazard analysis, is shown in Fig. 11.14b. No ORG is possible in this FSM,
and 04 can be used in any way to extract minimum cover for output Y. Notice that late
deactivation of Y is possible via race state 001 if the branching condition from c -» a is
ST, but normal deactivation if ST.

Hazard analyses for the FSM in Fig. 11.14 are carried out in Fig. 11.15. The hazard
analysis in Fig. 11.15a indicates that a static 1-hazard is possible if NOR-based flip-flops
are used with SOP output logic, and that the hazard cover required in that case is CST, the

506 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

Choice in use of ̂

YiTifS

Late deactiyation
of Y if ST

(a) (b)

FIGURE 11.14
A Mealy FSM having two inputs, 5 and T, and one output, Y. (a) State diagram, (b) ORG analysis
showing no ORG is possible.

ANDed residue of the coupled terms. The final result, after adding hazard cover, is given

by the following expression:

YSOP = ACT + AS + BC+ csr.
v (A A - - ^ /

Hazard cover

Note that if NAND-based flip-flops are used with the SOP output logic (YSop), no s-hazard
is possible in the logic domain (see Fig. 11.12a) and no hazard cover should be added.

A\ 00 01 11 10
\BC
A\ 00 01 11 10

0

1

1° 1

^
T)

S

1

$

0

< •)
'SOP ' ,v~

YSOP = ACT + AS + BC + CST Ypos = (A + B + T)(A + S>C

T ST T Hazard cover if T st T
071 _ 171 NOR-basedFFs 00? 10? (NA)
001 -§^> 101

(a) (b)

FIGURE 11.15
S-hazard analysis for the FSM in Fig. 11.14. (a) Static 1-hazard analysis showing hazard cover
necessary only if NOR-based flip-flops are used with the SOP output logic, (b) Static 0-hazard analysis
showing that the transition b-to-c has no s-hazard associated with it since the input requirements
indicated are not met. Thus, POS hazard cover is not applicable (NA).

11.3 DETECTION AND ELIMINATION OF STATIC HAZARDS 507

S(H) J

T(H) J — T(H) J

A<H) j I A(H) I

B(H) J \ B(H) J .

c(H) J ; o/Ln 1

ACT(L) J n ACT(L) J

A§(L) i I i | AS(L) J

YSOP(H) J —u CST(L) J

(b)

FIGURE 11.16
Timing diagrams for the static 1-hazard (SOP hazard) analysis shown in Fig. 11.15a. (a) Timing
diagram for FSOP showing a static 1-hazard formed during the transition b-to-c assuming the use of
NOR-based flip-flops for the memory, (b) Timing diagram for YSOP showing the removal of the static
1-hazard by addition of hazard cover.

The timing diagrams for the hazard analysis in Fig. 11.15a are presented in Fig. 11.16.
In Fig. 11.16a a static 1-hazard in YSOp is indicated for the transition 001 -> 101, assuming
that NOR-centered flip-flops are used for the FSM memory. If NAND-centered flip-flops
are used instead, no static 1-hazard (SOP hazard) will occur in YSOp. Remember that when
the logic character of the flip-flops matches that of the output logic, internally initiated
s-hazards are not possible in the logic domain. In Fig. 11.16b the static 1-hazard is shown
removed because of the presence of static hazard cover CST. In fact, the hazard is removed
regardless of the magnitude of any asymmetrically located delays associated with the b —>• c
transition in the logic or physical domain. Notice that account is taken of the gate path delays
in the timing diagrams of Fig. 11.16.

The memory and output logic for the FSM of Fig. 11.14 is shown in Fig. 11.17, assuming
the use of NOR-based flip-flops and SOP output logic. The external inputs are assumed to
arrive active high, and the shaded NAND gate is the hazard cover, CST.

The POS hazard analysis in Fig. 11.15b indicates that a static 0-hazard is not possible
under any circumstances. The reason: only the transition 00? -» 10? = 001 —>• 101 is pos-
sible and that must take place under the branching condition S + T = ST, which does not
meet the branching requirements for the b —>• c transition shown in Fig. 11.14a. In any POS
analysis it must be remembered that the ORed branching condition, as deduced from the
coupled terms, must be complemented for comparison with the state diagram. This is so
because the state diagram, like any K-map, is a minterm-code-based graphic. In extracting
minimum cover from the YPOs K-map, the domains for the state variables (A, B, and C)
are complemented, but the entered variable inputs are not.

The output-forming logic for YPOs is provided in Fig. 11.18a where it is assumed that the
external inputs, S and T, arrive active high as before. The timing diagram for YPQS, given

DA(H)

S(H)
T/mi \n;

DB(H) —

DC(H) —

D Q

A

> Q
^
o—

D Q
B

]> Q

D Q

C

> Q

NOR -based
OX" FFs

1 — 7^~ _

°~~

y

H"̂

' I>Ly- y>
Hazard
cover

°-

CK

FIGURE 11.17
Memory flip-flops (assumed to be NOR-based) and SOP output logic with hazard cover for the FSM
of Fig. 11.14a.

S(H) ;

A(H) J

B(H) J .

C(L) J

POS(H) (A+B+T)(L) J '

(A+§)(L) ;•
POS\ ' 0

(b)

FIGURE 11.18
(a) Output logic circuit for FPQS in Fig. 11.15b. (b) Timing diagram for FPQS showing absence of
a static 0-hazard during the £-to-c transition assuming the use of NAND-based flip-flops for the
memory.

508

11.3 DETECTION AND ELIMINATION OF STATIC HAZARDS 509

in Fig. 11.18b, clearly shows that a static 0-hazard is not possible for the transition 001 — > 101.
This is so because the b—>c branching condition in Fig. 11.14a requires that input T be
active, which is contrary to the requirements indicated by the coupled terms, (Sf). Thus,
independent of whether or not there is a match between the logic character of the flip-flops
and that of the output logic, no s-hazard is possible in YPQS- Therefore, the addition of
hazard cover is not applicable (NA) as indicated in Fig. 11.15b. Notice that the gate/input
tallies for YPOs and YSOP are 3/8 and 4/10, respectively, exclusive of inverters and hazard
cover. If hardware cost is the only consideration, the best choice for output logic would be

, as given in Fig. 11.15b.

11 .3.3 Perspective on Static Hazards in the Output Logic of FSMs

Static hazards in the next-state-forming logic are never a problem in synchronous FSMs
simply because the memory flip-flops act as a filtering stage for such logic noise. However,
in the case of s-hazards in the output-forming-logic, the situation is much different. As has
been discussed, a static hazard in the output function of an FSM can cause malfunction of a
next-stage logic device to which the output function is an input. But not every s-hazard may
cross the switching threshold of that next stage device. The problem is that the designer
cannot afford to gamble on that, and instead should take corrective measures such as adding
hazard cover or filtering the output to eliminate the hazard.

Externally initiated s-hazards pose a special dilemma for the designer, since the asym-
metric delay is usually caused by an inverter. The previous discussion suggests that if the
coupled terms require a branching direction opposite to that actually present in the state
diagram, hazard cover may be ignored. In fact, the s-hazard may still be formed if a delay
in the alternative path (not through the inverter) is larger than the inverter. Thus, it may
be desirable to apply the "shotgun approach" to all externally initiated s-hazards in the
output functions. This means that hazard cover would be assigned to all externally coupled
terms regardless or whether they represent a 1 -> 0 change or a 0 — »• 1 change of the cou-
pled external variable as indicated by the state diagram. This action would certainly make
computer-aided corrective action simpler for externally initiated s-hazards.

There is the remote possibility that internally initiated s-hazards may form even if the
logic character of the flip-flops matches that of the output-forming logic. For an s-hazard
to be produced under this condition, a delay larger than that of a basic cell gate would
have to exist in an alternative path so as to effectively reverse the symmetrical inset of the
waveforms in Fig. 10. 1 8. Though the probability that this may happen is low, it is something
of which the designer should be aware.

The following set of guidelines are offered to help eliminate any confusion the foregoing
discussion may have caused and to help establish safe and reliable design practices:

• Add hazard cover for all externally initiated s-hazards in the output logic ex-
pressions as required by the coupled terms. There is one exception to this rule:
If the state in which the externally initiated hazard exists is an extraneous
state (one that neither exists in the state diagram nor serves as a race state),
as was the case in Fig. 11. 9c, no hazard cover is needed and none should be
added.

• If internally initiated s-hazards are present and the goal is to achieve an optimum
design, match the logic character of the flip-flops with that of the output-forming

510 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

logic and take no corrective action on these s-hazards. Then, in configuring
a circuit layout try to minimize parasitic effects by minimizing lead lengths
between the flip-flops and output logic. If the logic character of the flip-flops is
unknown, always add hazard cover for all internally coupled terms in the output
logic for which a valid hazardous transition exists. Note that Fig. 11.13 applies
to any PLD in which the internal flip-flops lack Q(L) outputs.
If the outputs of FSM A are the inputs to another FSM B, take caution in assuming
that logic noise (e.g., s-hazards) from FSM A will be filtered by the memory of
FSM B. Whether or not such logic noise will be filtered by the memory of FSM
B depends on many factors, including the type of input conditioning circuits that
exist, the nature of the NS-forming logic, and the character of FSM B itself. If
this information is unknown or questionable, the safest action is to provide clean
output signals from FSM A by using the methods described previously.

11.4 ASYNCHRONOUS INPUTS: RULES AND CAVEATS

A synchronous input is one that is synchronized with clock to the extent that it cannot
change its logic level during a sampling interval (see Fig. 10.53). Any input that does not
meet this requirement is said to be an asynchronous input, defined as follows:

An asynchronous input is one that can change logic levels at any time, particularly
during the sampling interval established by the sampling variable, CK.

As was pointed out in Section 10.11, an input to a synchronous FSM must meet the setup
and hold-time requirements established by clock (the sampling variable) or proper transi-
tions cannot generally be guaranteed. Simply stated, a synchronous FSM may not function
properly if more than one asynchronous input is present. Remember that clock is, by defini-
tion, an asynchronous input. Therefore, CK should be considered to be the only permissible
asynchronous input controlling the branching from a given state.

11.4.1 Rules Associated with Asynchronous Inputs

To reduce the probability for FSM malfunction due to the presence of asynchronous inputs,
the following two rules should be observed:

Rule 1 (Branching Dependency Rule): Avoid branching dependency on more
than one asynchronous input.

Rule 2 (Conditional Output Rule): Do not attempt to generate an output condi-
tional on an asynchronous input.

These two rules are easily justified by discussing the consequences of their violation. For
example, if more than one asynchronous input controls the branching from a given state,
the sequential behavior can become unpredictable, resulting in the malfunction of the FSM.
Furthermore, an output that is conditional on an asynchronous input can, under certain
conditions, be no more than an underdeveloped (runt) pulse that may cause problems in

11.4 ASYNCHRONOUS INPUTS: RULES AND CAVEATS 511

X is synchronized to CK X is synchronized to CK
Y is asynchronous Y is synchronized to CK

(a) (b)

FIGURE 11.19
(a) Improper branching and output generation conditional on two asynchronous inputs, CK and Y.
(b) Proper branching and output generation conditional on one asynchronous input, CK.

the next stage to which it is an input. These problems and their proper solutions are now
considered in more detail.

Shown in Fig. 11.19 is a portion of a common resolver configuration that is used here
to illustrate the problems associated with asynchronous inputs and violation of rules 1 and
2. There are three inputs to the resolver, X, Y, and CK, that control the branching from
state a, where CK is understood to be the sampling variable and is not included in the state
diagram. In Fig. 11.19a both the branching from state a and the output, Z, are conditional
on two asynchronous inputs, Y and CK, which is a violation of both rule 1 and rule 2.
Should input Y change during the sampling interval established by CK, the branching and
output are not predictable. Worse yet, a runt pulse can be produced in the memory flip-flops
forcing the FSM into a metastable condition (discussed in Subsection 11.4.4) or possibly
causing an error transition in the FSM. Furthermore, output, Z, could be generated as a
runt pulse that could cause problems in another FSM to which it is an input. This is so
because the conditional output can be in its development stage at the time the flip-flops
trigger. Remember, it takes longer for the flip-flops to execute a transition than it does to
generate a conditional output by combinational logic from a given state. An output should
always be presented as a reliably detectable signal to the next stage and never as a pulse of
unpredictable duration.

In short, the proper solution to the problems implied by Fig. 11.19a is to synchronize all
external inputs to the CK waveform, as indicated in Fig. 11.19b. Now, input Y will be stable
at its proper logic level at the time CK goes through its sampling interval; the sampling
variable, CK, remains the only permissible asynchronous input. Even though output Z is
issued on an exiting condition in state a, it will nonetheless be generated well in advance of
the transition so as to be a reliably detectable pulse by the next stage. The important issue
of synchronizing inputs is discussed in the following subsection.

11.4.2 Synchronizing the Input

A reliable approach to dealing with the problem of asynchronous inputs is to synchronize
each asynchronous input to the clock waveform before it is introduced into the next state

512 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

Synchronizer

Input
Outputs

CK

X

nous

r
D Q

)> Q

\

X'(H) ^
Synchronized

Input
FSM

(a)

!«-!„„-•!

CK _J |_f LJ

X(H) | ;

X'(H) 1

1

(̂ LJ
I

' FSM '
CK

r LJ LJ LJ LJ L_

; n
n K, \

Narrow data pulse
is missed

(b)

FIGURE 11.20
(a) Synchronizing scheme for an asynchronous input X showing synchronizer triggered antiphase to
the FSM. (b) Timing diagram indicating results of synchronizing the input.

logic section of the FSM. This is accomplished by using a synchronizer D flip-flop triggered
antiphase to the FSM, as shown in Fig. 11.20a. Here, X(H) is an asynchronous input to the
FET synchronizer that issues a synchronized output, X'(H), to the RET FSM.

The timing diagram, presented in Figure 11.20(b), illustrates the action of the synchro-
nizer. Notice that the FSM can pick up the input X (as the synchronized X' signal) after
a delay ranging approximately from 1/2 to 3/2 of a clock period depending on when the
signal X(H) changes relative to CK, and assuming the setup and hold times are met and are
much smaller than a clock period. This pickup delay is the price that must be paid to present
a reliably readable data signal to the FSM. Notice that the arrows on the clock waveform
represent the rising edge triggering of the FSM. Also shown in Fig. 11.20b is a data pulse
too narrow to be picked up by the synchronizer. The means by which a narrow data pulse
can be read by the FSM is considered next.

11.4.3 Stretching and Synchronizing the Input

If it is known that the data can arrive as asynchronous pulses of duration less than that of
the clock period, a means must be sought to stretch as well as synchronize the data signals.
An effective scheme for accomplishing this is presented in Fig. 11.2la. The narrow asyn-
chronous pulse is first stretched by the set-dominant basic cell (stretcher), then synchronized
by the synchronizer. The active low output of the synchronizer is fed back to the R(L) input
of the stretcher to reset it in readiness for the next narrow pulse. Notice that the output of

11.4 ASYNCHRONOUS INPUTS: RULES AND CAVEATS 513

Stretcher Synchronizer
/

X(L)
Narrow and

asynchronous
Input |—c R Q D— , _ CGKA 1*. Outputs

Q(H)

X'(L) = R(L)

X'(H)

(b)

FIGURE 11.21
Stretching and synchronizing the input, (a) Logic circuit showing stretcher and synchronizer stages,
(b) Timing diagram illustrating the action of the stretcher cell and synchronizer, and showing caught
and missed narrow pulses.

the synchronizer, X'(H), is both stretched and synchronized, thereby providing a reliably
detectable signal to the FSM regardless of the pulse duration. If X' must be presented active
low to the FSM, the Q(L) output from the synchronizer can be used. Also, if the data is
presented to the stretcher as X(tf), an inverter can be used on the line to the stretcher's
active low input. Alternatively, a double complementation can be used somewhere between
the X(H) input to the stretcher and the input to the FSM, meaning (//) to (L) and (L) to (H).
For example, Q(L) from the stretcher can be used as the input to the synchronizer. Note
that a reset-dominant basic cell cannot be used as the stretcher cell for positive pulse trains,
since sustained positive data pulses would be reset by the feedback from the synchronizer
leading to false data input to the FSM.

The actions of the stretcher and synchronizer are illustrated in Fig. 11.21b. Here, it is
observed that not all narrow pulses can be caught by the synchronizer and presented to
the FSM. If a second pulse appears before the stretcher cell is reset, it cannot be picked
up by the stretcher as a discrete data pulse. Consequently, a second narrow pulse having
a leading edge separated by less than 2TCK from the leading edge of the first pulse cannot
be guaranteed to be caught by the FSM, and a second leading pulse edge separated by less
than TCK from the first can never be caught. These limiting conditions are based on the
assumption that the setup and hold times are negligibly small compared to the clock period,
usually a valid assumption. Again, observe that the arrows on the clock waveform represent

514 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

Metastable
state at

midsupply

Reset

(a) (b) (c)

FIGURE 11.22
Qualitative representations of metastability. (a) Mechanical analogue, (b) FSM metastability mani-
fested as a midsupply state, (c) FSM metastability manifested as an oscillatory state. Arm = Metastable
exit time.

the rising edge triggering of the FSM. Thus, for each narrow X(L) pulse that is caught,
a stretched X'(H) pulse is picked up by the RET FSM well into the active portion of the
pulse.

11.4.4 Metastability and the Synchronizer

An important function of the synchronizer is to protect an FSM from the effects of metasta-
bility if caused by an input change during the sampling interval of the clock waveform. The
problem is that the synchronizer is itself subject to the effects of metastability caused by data
input changes occurring during its sampling interval. Metastability is a very low-probability
event, but it can happen and can be a potential problem in any system with feedback. Just
as the second law of thermodynamics cannot be violated in attempting to invent a perpet-
ual motion machine, no "fix-it" scheme exists that will reduce to zero the probability that
metastability will occur in a given FSM. But there are synchronizing schemes that can come
close! Before proceeding with the means by which this can be accomplished, it will be
helpful to define metastability in qualitative terms.

Three qualitative representations of metastability are depicted in Fig. 11.22. First is the
mechanical analogue, shown in Fig. 11.22a, featuring a ball or round disk metastably situated
atop a convex surface such that any slight perturbation would send it to one stable state or
another. More appropriate to the needs of FSM design is the electrical representation of the
metastable state that lies somewhere between a set and a reset condition, say at midsupply, as
illustrated in Fig. 11.22b. Here, the time that the FSM spends in the metastable state, denoted
by A/w, is called the metastable exit time. This is a statistical period of time that cannot
be predicted. The two double-line regions preceding and following the metastable state
represent a stable set or reset condition, one or the other. However, it cannot be predicted
which logic level (set or reset) will emerge following exit from the metastable state. The
oscillatory metastable state illustrated in Fig. 11.22c is also a possibility in some FSMs,
which if exists, could pose a more serious problem for the FSM than a simple midsupply
"hangup." Here again, the logic level (set or reset) following exit from the metastable state

11.4 ASYNCHRONOUS INPUTS: RULES AND CAVEATS 515

cannot be predicted. But this is probably a moot point, since an oscillatory condition can
potentiallly cause far more serious problems than an unpredictable outcome following exit
from that state.

The foregoing discussion applies to any FSM, including flip-flops. As an example, the
resolver section of a D flip-flop shown in Fig. 10.3la can go metastable and cause both
the flip-flop and the FSM in which it is operating to malfunction. Thus, the synchronizer
in Fig. 11.20a is subject to the metastable condition and can pass that metastable state on

Two stage synchronizer
\

Stage 1 Stage 2 Insert to (a)

X(ll)

M CNT|-

r^-C

D Q
.,1 .

>;; ; Q

Qi(H)

o r̂ C

D Q

\ Q

/a1*

X'(H)

Q-

"> f" i!'Sl

,; ; ' r ;«'

,'* !"

i/x;;CK-f-| CNT M L ^ i—I I 1 PSM -^ Outputs

1CNT

Divide-by-2
counter

Sampling interval
CK

'CK

X(H) A I

°l(H) "̂7^ dH X(H)
Metastability disappears after_y

metastable exit time At Normal •
transition \

X'(H) :-
Possible runt

V Synchronizer 4 pulse into FF
T- triggering edge

(No counter)
(b) (c)

FIGURE 11.23
A two stage synchronizer scheme to greatly reduce the probability of a metastable state occurrence,
(a) Logic circuit showing two synchronizer FET D flip-flops in series, and use of a divide-by-2
counter to increase TCK of the synchronizers relative to the FSM. (b) Timing diagram for the two
stage synchronizer scheme with no counter showing a possible metastable state developed in stage 1.
(c) Blow up of shaded area in (b) showing a possible runt pulse formation as a result of data X
changing during the sampling interval of CK.

516 CHAPTER 11 /SYNCHRONOUS FSM DESIGN CONSIDERATIONS

to the FSM it is supposed to protect. A practical solution is illustrated by the two-stage
synchronizer configuration shown in Fig. 11.23a. The idea depicted here is that in the event
synchronizer 1 should go metastable, it would emerge from that metastable state long before
synchronizer 2 is triggered, as illustrated in Fig. 11.23b. This, in turn, greatly reduces the
probability that synchronizer 2 will become metastable and cause malfunction of the FSM.
Of course, it is assumed that the metastable exit time, Atm, will always be less than TCK, an
assumption that may or may not be valid.

The blown-up region in Fig. 11.23c illustrates one means by which a metastable state
can be introduced into stage 1 of the synchronizer. If asynchronous input X(H) changes
during the sampling interval of clock, a runt pulse could form and be introduced into the
D flip-flop as neither a set nor a reset condition, and this could initiate the metastable state.
Such a runt pulse could cross the switching threshold but lack the "strength" or duration
needed to resolve the flip-flop into a set (or reset) condition, and a metastable condition
could result.

Experimentally, it is found that the mean time between failures (MTBF) of the single D
flip-flop synchronizer in Fig. 11.20a is determined by the equation

MTBF = { [in seconds, (11.3)
[TO • JCK • JD \

where TCK is the clock period in nanoseconds (ns); fCK is the clock frequency in hertz (Hz);
tsu is the setup time in ns (see Fig. 10.53); fD is the average number of asynchronous data
input changes per second (data frequency) in Hz; and r (in ns) and TO (in seconds, s) are
empirical constants, provided by the flip-flop manufacturers, that depend on the electrical
characteristics of the flip-flop and on the physical conditions under which the flip-flop is
operated. For most applications, it is reasonable to assume that fCK ^> fD. Note that MTBF
refers to probabilistic failure caused by a metastable condition when Atm > TCK — tsu in a
single D flip-flop synchronizer.

Clearly, the larger the MTBF, the better is the action of the synchronizer flip-flop and vice
versa. Ideally, an infinite value for MTBF would be the most desirable, albeit impossible
to achieve with the synchronizing scheme of Fig. 11.23a. A value of 1010s = 317 years
might be achievable, but under what conditions? An important feature of Eq. (11.3) is the
sensitive inverse dependence of the MTBF on flip-flop clock frequency /CK = I/ TCK and
on the empirical r constants 7b:

MTBFoc
TO • fcK

Thus, for a high MTBF, it desirable to have a low /CK (high TCK) and low values for r and
TQ. To achieve reasonably high values of the MTBF in a single D flip-flop, it is necessary to
use D flip-flops from a fast technology such as the 74HCnn series or, better yet, the 74Fnnn
or 74ASnn series (see Subsection 6.1.4 for an explanation of part numbers). For these D
flip-flops T can be as low as 0.3 ns with values of T0 down in the microsecond (/JLS = 10~6s)
range. When operated at relatively low frequencies MTBF values of 10'°s may be possible,
but only for small tm.

Still, at the high frequencies required by modern technology, a single D flip-flop syn-
chronizer is not sufficient, and use must be made of the two-stage synchronizer shown in
Fig. 11.23 together with counters on the clock inputs to the two stages. By using fast D

11.5 CLOCK SKEW 517

flip-flop technology and by creating a large TCK for the synchronizers relative to the FSM,
large values of the MTBF can be achieved even with high frequencies. Note that use of a
delay circuit in place of the counter would be worse than having no delay at all. A divide-
by-2 counter doubles the clock period (see Subsection 12.3.1). Now, the clock period for
the two synchronizers is at least double that of the FSM, greatly improving chances for
2TCK > Afm. The divide-by-2 counter should be the slow 74SL74 with a Q(L) -> D(H)
feedback as indicated in the insert to Fig. 11.23a. If this is not sufficient, there are other
alternatives. One alternative is to replace the divide-by-2 counter in Fig. 11.23a by a divide-
by-4 ripple counter (see Section 12.5 for details). As another alternative, a multiple-stage
synchronizer scheme can be used with or without a counter on the clock inputs to the stages
as in Fig. 11.23. Also, Schmitt triggers can be used on the data lines between stages for
additional discrimination of a metastable signal.

All of the synchronizing schemes just mentioned are used at the expense of system
throughput, the price that must be paid to introduce reliably readable data to the protected
FSM. Also, it must be remembered that because metastability is a statistical phenomenon
and is unpredictable, no synchronizer "fix-it" scheme can be devised that will eliminate
entirely the possible occurrence of the metastable state. All that can be done is to reduce
the probability for metastability occurrence to acceptable levels for a given application. In
Chapter 16 an externally asynchronous/internally clocked (EAIC) system will be discussed
that will deal with the problem in a different and more effective manner. EAIC configurations
are pausable systems capable of yielding an infinite MTBF value with no required external
synchronizing logic of the type shown in Fig. 11.23.

11.5 CLOCK SKEW

In synchronous sequential machines the triggering edge of the clock waveform is assumed
to reach each flip-flop of the memory at approximately the same time. Sometimes, however,
this does not happen because of the presence of asymmetric path delays caused mainly by
resistance and parasitic capacitance effects in the clock leads to the memory devices or by
poor clock buffering methods. When such delays become large enough to cause a shift in
the triggering edge of one flip-flop relative to another, clock skew is said to exist. Clock
skew can become a serious problem in digital systems, particularly in complex systems
operated at very high frequencies.

Illustrated in Fig. 11.24 is one type of problem that can occur as a result of clock skew.
Shown in Fig. 11.24a are two RET D flip-flops configured in series with delays A.t\ and
A?2 indicated on the clock inputs to flip-flops 1 and 2, respectively. If the delays are equal,
A?2 = A?i = 0, no clock skew exists and proper flip-flop output response to a change in
data input X(H) results, as indicated in Fig. 11.24b. Observe that X(H) is synchronized to
the falling edge of the CK = CKj waveform. On the other hand, the condition A?2 > A?i
can result in an erroneous output, as indicated in Fig. 11.24c. Such an error will occur
in output Q2(H) if A?2 — &t\ > Tff, where rg is the flip-flop propagation delay. Timing
anomalies of this type can lead to unrecoverable errors in the operation of shift registers
and other devices. The reverse skew, A?i > Afz, on the other hand, will not cause an
output error in these devices, but will delay the issuance of the outputs by the amount of
the skew At\ > A?2- The subject of shift registers will be discussed in detail in Section
12.2. Finally, note that if the configuration indicated in Fig. 11.24 is used as a two-stage

518 CHAPTER 11 /SYNCHRONOUS FSM DESIGN CONSIDERATIONS

X(H)

\(

A
rt,

D Q

>CK, Q

_^(H)

r |—
At2

D Q

>o<2 Q

Q2(H)

o—

(a)

X(H)

Q,(H)

Q2(H)

At2 = At, = 0 At2 > At,

(b) (c)

FIGURE 11.24
Clock skew illustrated by using two D flip-flops in series, (a) Logic circuit showing delays on the
clock inputs to the two flip-flops, (b) Timing diagram showing correct response of the flip-flop outputs
to a data input change if A?i = A?2 = 0. (c) Timing diagram showing erroneous output response of
flip-flops due to a data change when A?2 > Af i .

synchronizer under the condition A?2 — A?] > Tff, little or no protection is provided against
metastability.

Another type of clock skew problem can occur when the data are presented in parallel, as
depicted in Fig. 11.25. Shown in Fig. 11.25a are two D flip-flops configured in parallel with
individual delays to the clock inputs and with identical data inputs X(H) synchronized in
phase with the CK input. For the sake of simplicity the inputs are made identical. Under the
condition that the delays are equal, A?2 = A?i, correct output response results, as indicated
by the timing diagram in Fig. 11.25b. Here, since X(H) is synchronized to the rising edge
of the CK waveform, both outputs, Q\(H) and Q2(H), must change simultaneously, one
clock period following the data input change. This, however, may not happen if Ar2 > Ati,
as indicated by the timing diagram in Fig. 11.25c. In the event that A?2 — Af] > Tff, X(H)
can be picked up by flip-flop 2 one clock period in advance of flip-flop 1 as illustrated. This
is a serious and unrecoverable error in the output signals. Note that because the flip-flops
are configured in parallel, the preceding discussion applies equally well to the reverse skew
A?i > A?2-

The clock skew problem demonstrated in Fig. 11.25c supports the need to synchronize
the data input X(H) antiphase to the clock triggering edge. In this case the system issues

11.5 CLOCK SKEW 519

CK 1
At,

1
1

Q

X

E

(H)

)

Q

At, X

1
(H)

1

CKa °

Q Q

(a)

CK1 = CK2 =

X(H)

Q2(H).

At2 = At1 = 0

(b)

FIGURE 11.25
Clock skew illustrated by using two D flip-flops in parallel, (a) Logic circuit showing delays on the
clock inputs to the two flip-flops, (b) Timing diagram showing correct response of the flip-flop outputs
to a data input change if Af i = A?2 = 0. (c) Timing diagram showing an erroneous output response
of flip-flops due to a data change when A/2 > A/i .

outputs separated by no more than the skew A?2 — A?i or A?i — Ar2- This, of course, can
become a problem only if the skew exceeds the tolerable limits permitted by the design
specifications.

The elimination of clock skew in simple synchronous FSMs, e.g., in shift registers,
is not usually a difficult task. Providing that the clock skew is stable (that is, not time or
temperature dependent), one simply balances the delays by using inverter pairs, noninverting
drivers, and the like. For high-frequency systems, transmission line delays on leads can be
substantial, and this can cause the balancing procedure to become more difficult. In any
case, the elimination of clock skew problems can be ensured only if all clock lead delays
are symmetric or nearly so.

Clock skew problems are more difficult to diagnose and deal with in very complex
systems operated by a system clock that must drive many independent devices at high
frequency. Modern VLSI circuits, WSI circuits, and ASICs are good examples. Other
examples include the use of FPGAs discussed in Subsection 7.7.3. The best advice that
can be given to the designer of such systems is to "think symmetrically" when laying out

520 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

a circuit or programming the routing paths in FPGAs. Try to avoid obvious sources of
asymmetric path delays, particularly those associated with the system clock leads. Often, a
conscious effort in this regard can save much time and expense.

11.6 CLOCK SOURCES AND CLOCK SIGNAL SPECIFICATIONS

Various timing problems relative to the clock waveform have been discussed, but no mention
has been made of the clock signal source and specifications. How, in fact, is a high-frequency,
highly precise clock waveform produced, and how must it be specified so as to perform
predictably as the system clock to a synchronous FSM? The answer is not a simple one,
but it can be dealt with in semiquantitative terms. First, there must be a reference frequency
source, one that has the following desirable characteristics:

High-frequency capability
Frequency stability
Starting reliability
Duty cycle control
Reasonable square-wave output capability

11.6.1 Clock-Generating Circuitry

Shown in Fig. 11.26 are two oscillator circuits that possess characteristics suitable for
rather different applications. Figure 11.26a presents an inexpensive self-starting oscillator
circuit that is limited to relatively low frequencies that are somewhat adjustable by the RC
time constant. This particular oscillator circuit has little or no useful application in modern
sophisticated state machine design. The oscillator circuit in Fig. 11.26b is considerably
more expensive, but has all of the desirable characteristics mentioned previously except
duty cycle control. There are oscillator circuits more and less sophisticated than that shown
in Fig. 11.26b. However, all oscillators capable of delivering a stable high frequency within

Output, f0 j—0°] l(* Ix0—f—°D>— Output, f0
—1— Q

T Quartz
(a) crystal

(b)

FIGURE 11.26
Example of clock oscillator circuits, (a) A simple, inexpensive, self-starting oscillator circuit that is
frequency limited, (b) A high-frequency, crystal-controlled oscillator with good starting capability
and frequency stability.

11.6 CLOCK SOURCES AND CLOCK SIGNAL SPECIFICATIONS 521

0.1% precision will be crystal controlled. Quartz crystals, which can be cut (dimensioned)
to oscillate at a specific frequency to a great precision, are an ideal choice for use in a
crystal-controlled oscillator. Such specific frequencies can be in the megahertz range.

The duty cycle of a clock waveform is defined by the relation

T
Duty cycle = — ̂ - x 100 (in percent), (H-4)

TCK

where TActive is the active portion of a clock cycle and TCK is the clock period, both given
in seconds. Thus, a 50% duty cycle means that the active and inactive portions of the clock
waveforms are equal. Duty cycle control by an oscillator circuit is important but requires
additional circuit elements and raises the cost of the device.

An oscillator, such as that in Fig. 1 1 .26b, provides the reference frequency /o that may
have to become some multiple of /o to achieve the high frequencies required by modern
sequential machines. Dividing frequency is easily accomplished by using a counter, as
explained later in Section 12.3. However, obtaining an integer multiple of the reference
frequency, n/o, is a much more complex operation. One means of accomplishing this is to
use a phase-locked loop with a programmable divider in the feedback called a frequency
synthesizer, the details of which are beyond the scope of this text. Properly designed, the
frequency synthesizer will provide all of the desirable oscillator characteristics previously
mentioned. Information on this and related subjects can be obtained in references cited in
Further Reading at the end of this chapter.

1 1 .6.2 Clock Signal Specifications

At some point in the design of a synchronous FSM, the designer must fashion the digital
electronics of the FSM to a given clock frequency or, perhaps less likely, the reverse.
In either case, it is necessary to know on what parameters an optimum clock frequency
depends. A view of Figs. 10.58 and 10.64, which are typical logic circuits for synchronous
FSMs, indicates that the clock period cannot be less than the propagation delay through
the flip-flop (including the setup time) plus the delay through the next state-forming logic.
In mathematical terms, the minimum clock period is usually evaluated from the maximum
system cycle time

TCK > rffmm + T/wmax + tSUmm (1 1.5)

or

= l//CK, (H.6)

where T#-max is the maximum flip-flop propagation delay, TnSmm is the maximum propagation
delay through the NS forming logic, tSUnYM is the maximum setup time (defined in Section
10.11), and Af/j is a factor of safety. The factor of safety allows for some variance in the
values used for the other parameters and for the possibility of clock skew on clock lines
to the flip-flops. The maximum flip-flop propagation delay is determined from the tphi and
tpih parameters, as illustrated for an RET D flip-flop in Fig. 1 1.27. Thus, the average value
for iff is obtained by introducing the data from Fig. 1 1.27 into Eq. (6.1), but it is clear that
Tjmax = Tphi in this case. Normally, the manufactures of the flip-flop devices will provide

522 CHAPTER 1 1 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

Sampling Intervals

CK / \ S

D I \ |

Q . y r

FIGURE 11.27
Propagation delay data for an RET D flip-flop from which the maximum propagation delay can be
obtained.

sufficient information to evaluate Eq. (11.6), providing that acceptable values for rM5max and
Afyj are used. The value for rn?max must be obtained with knowledge of the NS logic technol-
ogy, which is usually available from the manufacturer. An acceptable value for Af/j might
be 20% of (iff + rns + tsu)max, giving TCK = 1 -2(rff + rns + tsu)max as a safe minimum clock
period. Then from this, a safe maximum clock frequency fcK = 1 / TCK can be obtained.

11.6.3 Buffering and Gating the Clock

There are other considerations regarding the use of a clock waveform signal in a synchronous
system. Normally, the system clock signal from the clock-generating circuitry must be
buffered for fan-out reasons. As used in this text, the word buffer is synonymous with line
driver. In large systems where the clock signals must be supplied to a large number of
flip-flops, there may be insufficient fan-out to drive the flip-flops. In this case buffers must
be used but in a way that does not cause clock skew. The best way to buffer the clock signals
is to use packaged 1C buffers (as opposed to individual buffers or inverters off chip) and to
do so "symmetrically" to minimize clock skew.

Also, if it is necessary to gate the clock signals in addition to buffering them, the best
choice may be to use tri-state drivers (see Fig. 3.8 for CMOS tri-state drivers). If it is
necessary to gate some clock signals but not others, an asymmetric delay may result that
can produce clock skew problems. The solution to this potential problem is to place a delay
on each nongated clock line that is equal to the delay of the tri-state driver — again, think
symmetrically. Generally, it is a bad idea to gate the clock signals by using discrete gates.
To do this invites clock skew problems. If logic gates must be used for the gating action,
use ICs and make certain that all delays on clock lines are equal or nearly so — once again,
think symmetrically.

11.7 INITIALIZATION AND RESET OF THE FSM: SANITY CIRCUITS

An important part of the operation of any sequential machine is that it be initialized (on
power-up) into a specific state, or that it be reset into a specific state once in operation. If
initialization and reset of the FSMs were not possible, one can imagine the chaos that could

11.7 INITIALIZATION AND RESET OF THE FSM: SANITY CIRCUITS 523

result. Take, for example, the cruise control of an automobile. Failure of it to initialize or
reset into a startup state could be disastrous. Imagine not being able to initialize or reset
the controller of one's computer. Equally important, no FSM should ever be designed such
that it can initialize or reset into a "hang" state or subroutine that is not part of the intended
sequence. Whether the FSM is the controller for an elevator or traffic light system, or the
controller for a robotics or audio playback system, it should be obvious that initialization
and reset capabilities are vitally important.

11.7.1 Sanity Circuits

What is needed for initialization and reset of the FSM is a signal that can be used to drive
an FSM momentarily into a specific starting or reference state whenever it is necessary to
do so — that is, during power-up to initialize the FSM or during a reset operation. Shown in
Fig. 11.28 is a sanity circuit as it is used to power up or reset a three-bit D flip-flop memory
into the 001 state. It is called a sanity circuit because it adds "sanity" to a situation that
could otherwise be chaotic (insane) for the designer. The need for initialization and reset
was established in Subsection 10.12.2 by the missing state analysis in Fig. 10.65 following
the design of a sequence recognizer.

In Fig. 11.28 notice that Sanity(L) is connected to an active low asynchronous clear (CL)
override to initialize or reset a logic 0, but is connected to an active low asynchronous preset
(PR) override to initialize or reset a logic 1. It is important to observe that only one active
low asynchronous override per flip-flop can be connected to a sanity line and that all others
must be connected to 0(L) for normal operation of the flip-flop. The reader should review
the subject of asynchronous preset and clear overrides in Section 10.10 before proceeding
further on this subject.

Sanity Circuit DA(H) DB(H) DC(H)

Power Up/Dn Switch

Inverting
Schmitt

r̂ »

Reset-|[^p C J Vx , _£>_sanity (H)

I ,, I

FIGURE 11.28

tr'99er Sanity (L)—

Sanity (L) QA(H) QB(H) QC(H)

NliUKt 11.28

Sanity circuit and proper connections required to initialize or reset a three-bit memory into the 001

524 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

To understand how the sanity circuit works, it is necessary to first focus attention on
the R-C component of the circuit in Fig. 11.28. Students in electrical engineering will
recognize this as a first-order R-C circuit, where RC is called the time constant of the
circuit. With Reset at LV and neglecting the influence of the Schmitt trigger in Fig. 11.28,
the following approximations for Vx (voltage at node X) result:

On Power Up at time t = 0 (power Up/Dn switch connected to the supply voltage + V5

with Reset set to LV):

Vx(t)=Vs{l-e't/RC} (11.7)

@t = 0+ Vx = 0V, therefore X = 0(H) = 1(L) = Sanity(L)

@t = 5RC Vx = Vs, therefore X = !(//) = 0(L) = Sanity(L)

On Power Down or Reset at time t = 0 (power Up/Dn switch connected to ground or
Reset is set to HV, one or the other):

@t = 0+ Vx = Vs, therefore X = l(H) = 0(L) = Sanity(L)

@t>0 Vx = 0V, therefore X = 0(//) = 1(L) = Sanity(L)

On power up with the Reset input to the NMOS at LV, the capacitor is charged through the
resistance R since the diode is nonconducting in reverse bias. (Recall that a diode conducts
in forward bias only, the direction of the "arrow" in its symbol.) The result is Eq. (11.7)
for the approximate time dependent rise of voltage at node X. In effect, it is these voltage
values at node X that are presented to the preset and clear overrides of the flip-flops during
initialization or reset of the memory flip-flops, as in Figure 11.28. In the logic domain this
means that X(L) = Sanity(L). Notice that power down or reset is abrupt with no significant
exponential decay in voltage at node X. This is so because the capacitor is discharged to
ground either through the diode on power down or through the NMOS switch at reset. In
either case the discharge of the capacitor is extremely rapid. An abrupt power down or reset
is important during short power interruptions so as to ensure that proper initialization of the
flip-flops occurs during the power recovery event.

Thus, for a short period of time, say <3RC, each flip-flop is initialized to either a logic
0 or a logic 1 via the Sanity(L) input to its active low asynchronous clear or preset override.
Then, beyond a period of about 5RC all flip-flops are free to function normally since their
active low preset and clear overrides are now at 0(L). Typical values for RC may range from
the millisecond to the microsecond range by adjusting the values for R (in ohms) and C (in
farads). Values of the time constant that are too short may fail to properly initialize the flip-
flops in the memory, and values too large may cause unnecessary delays in the initialization
process. Therefore, it is worthwhile for the designer to match the RC time constant to the
logic family of the flip-flop memory. Note that Sanity(H) signals (see Fig. 11.28) are useful
in initializing asynchronous FSMs as described later in Section 14.11.

The results of the foregoing discussion are illustrated in Fig. 11.29. Here, Vpu is the
power-up switching threshold of the Schmitt trigger, and Vpd is the power-down switching
threshold. Unlike an inverter whose upward and downward bound switching thresholds are

11.7 INITIALIZATION AND RESET OF THE FSM: SANITY CIRCUITS 525

Voltage, V

Hysteresis

time
Power Up I—*• Power Dn

FIGURE 11.29
V-t characteristic at node X for the sanity circuit in Fig. 11.28 showing power-up (Vpu) and power-
down (Vpd) switching thresholds and hysteresis effect of the Schmitt trigger.

the same at about mid-supply, the Schmitt trigger exhibits a hysterisis effect illustrated in
Fig. 11.29 and discussed in the following paragraph. Clearly, power up can occur before Vx

reaches the supply level, Vs, and that is permissible provided that tpu is sufficient time for
all flip-flops in the memory to be initialized. Proper choice of the RC time constant would
satisfy this requirement.

The Schmitt trigger has three important characteristics that make it an ideal choice for use
in a sanity circuit. It has good fan-out capability, abrupt triggering, and the ability to reject
unwanted signals, a feature called noise immunity. These characteristics are best understood
by an inspection of its CMOS implementation and its I/O voltage waveforms shown in Fig.
11.30. The configuration of the CMOS circuit in Fig. 11.30a is that of an inverter with double
NMOS and PMOS transistors for improved fan-out (compared to a simple inverter), and
for feedback purposes. The transistors MP and MN supply the feedback voltages VFP and
VFN necessary to cause the output from the Schmitt trigger to change abruptly following
triggering at the dual thresholds, Vpu and Vpd, respectively. The I/O voltage waveforms
in Fig. 11.3Gb illustrate these characteristics. The input waveform for Vx-m shows that
slow changing voltage ramps become abrupt changes in the output waveform VXout- The
hysteresis effect shown in Fig. 11.30b corresponds to that in Fig. 11.29 and is expressed as
the difference Vpu — Vpd. Both the abruptly changing output waveform and the hysteresis are
due mainly to the internal feedback. Note that input line noise of amplitude less than that
of the hysteresis is rejected in the output signal, a feature that can produce clean, noise-free
outputs from the Schmitt trigger.

There are variations on the theme for implementing a sanity circuit. For example, the
Schmitt trigger in Fig. 11.28 can be replaced by an odd number of inverters. The problem
with this arrangement is that the inverters, which have a hysteresis of approximately zero,
have virtually no noise immunity and they do not switch abruptly. Another variation of the
sanity circuit is to replace the electronic NMOS Reset switch with a mechanical switch or
eliminate the reset feature altogether. Or alternatively, one or more external Master Reset
lines can be introduced to node X in lieu of or in parallel to the Reset switch, electronic or

526 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

/\- '

FIGURE 11.30
The inverting Schmitt trigger, (a) CMOS implementation showing feedback voltages, (b) Logic
symbols, and input and output voltage waveforms showing hysteresis.

mechanical. In any case, the bank of parallel inverters and/or buffers shown in Fig. 11.28
must be used to meet fan-out needs.

11.8 SWITCH DEBOUNCING CIRCUITS

A common problem in digital system design is to provide human interface to the system.
The use of push-button switches is a typical example. Asynchronous input signals from
push-button switches often produce a phenomenon called switch bounce that derives from
the mechanical structure of the switch and the physical nature of the contact surfaces.
Multiple open/close transitions may occur immediately following the depression or release
of a button switch, or any mechanical switch for that matter. Serious problems can result
in an FSM if a high-frequency clock catches the bounce signals produced by a mechanical
switch. This is equivalent to the introduction of false data.

11.8.1 The Single-Pole/Single-Throw Switch

Shown in Fig. 11.31 a is a simple normally closed single-pole/single-throw (SPST) mechan-
ical switch, and in Fig. 1 l.Slb the contact noise (bounce) that occurs as a result of opening
or closing the switch. Unfortunately, there is no solution to the problem of debouncing a
SPST switch other than to provide a delay greater than the bounce periods, A?B. This can
be accomplished by using an RC circuit of the type shown in Fig. 11.31 c. Here, the delays
are determined by the choice of the R and C components together with the hysteresis effect
of the inverting Schmitt trigger as in Figs. 11.29 and 11.30. The voltage Vx(t) across the

11.8 SWITCH DEBOUNCING CIRCUITS 527

Push
button —,
switch /

Bounce
+vs /per iods , AtB"

(a)

Closed .

Switch
opened

Push - /-Delays >AtB-lf

button—, T

switch
-K

1
SW(H)

0

!*-

Closed A

t
Switch
opened

if—

Open

-*!«-

I Closed

t
Switch
closed

(c) (d)

FIGURE 11.31
Debouncing the normally closed single-pole/single-throw (SPST) mechanical switch, (a) A non-
debounced SPST switch, (b) Timing diagram showing logic bounce periods for the switch in (a),
(c) A possible debouncing circuit for the SPST switch, (d) Bounce-free timing diagram for the
debounced SPST switch.

capacitor depends on whether the switch is opened or closed and is given approximately by

Switch opened @t = 0 Vx(t) = Vs{\ - e~'/RlC} (11.8)

Switch Closed @t = 0 Vx(t) = Vs{e-'/R2C}, (11.9)

where Eq. (11.9) expresses an exponential decay that depends on an R^C time constant. The
value of ^2 is chosen such that 7?2 <?C R\, a requirement for rapid discharge of the capacitor
following switch closure.

The result of the debouncing action is illustrated in Fig. 11.3 Id, where the delay periods
are indicated to be greater than the bounce periods AfB, as they must be. The circuit delay
on switch closure will be less than that for opening the switch since R^<^R\. Depending
on how the SPST switch is to be used, the R\C and R2C time constants must be chosen
so that the circuit delays are always greater that the worst-case bounce periods for opening

528 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

SW Up -» = Set
contact S r SW(H) = 1(H)

SW(H) I Y ^ 1(H) = 0(L) I SW(L) =

sw Dn J x ^ i(H) = 0(L) 1 Reset
contact ^ r SW(H) = 0(H)

SW(L) Y -» 0(H) = 1(L) I SW(L) = 0(L)

(a) C Q c t X = Y -1 (H) = 0(L) Hold

(b)

FIGURE 11.32
Debouncing the single-pole/double-throw (SPDT) switch by using a set-dominant basic cell, (a) Logic
circuit, (b) Logic values for Up-, Dn-, and Off-contact positions of switch, SW.

and closing the switch, respectively. Thus, it is important that R2 not be chosen too small —
certainly not zero if closing the switch can affect the behavior of an FSM. On the other
hand, if closure of the SPST switch can have no effect on the behavior of an FSM, /?2 can
be set to zero.

11.8.2 The Single-Pole/Double-Throw Switch

Unlike the single-pole/single-throw switch just discussed, the single-pole/double-throw
(SPDT) switch can be debounced very easily and precisely by using a basic cell. Shown
in Fig. 11.32a is the debouncing circuit for a SPDT switch. Notice that when the switch
button is in the up contact position the basic cell is set, and when it is in the down contact
position it is reset as indicated in Fig. 11.32b. Furthermore, in an off-contact position the
basic cell is forced to hold the previous mixed-rail output (see Fig. 10.16). What this means
is that the first contact bounce to cross the switching threshold of the basic cell on an Up
or Dn position of the switch will set or reset the basic cell, respectively. All subsequent
bounces are ignored. That is, any contact bounce that is produced following the first can
do nothing but hold the basic cell in either a set or reset condition. The set-dominant basic
cell in Fig. 11.32a can be replaced by a reset-dominant basic cell if the +V$ and ground
terminals are interchanged. The interchange is necessary to maintain the off-contact hold
requirement.

The debouncing arrangement in Fig. 11.32 can be used with most any CMOS family,
but there is a relatively high price tag for this type of circuit. For low-budget needs, a
simpler configuration can suffice under certain conditions. Shown in Fig. 11.33 is a simple
debouncing circuit for the SPDT switch consisting of two cross-coupled inverters and
buffers. The circuit functions somewhat the same as that in Fig. 11.32 with one major
difference. Upon switching from the Up contact position to the Dn contact position, or vice

11.8 SWITCH DEBOUNCING CIRCUITS 529

S W U p J X - . 0 (H) » S W (H)

Y - » 0 (L) = SW(L)

SW Dn J X - * 1(H) = SW(H) I {

contact Hold Set °r R6S6t

(a) (b)

FIGURE 11.33
A simple, low-budget SPDT switch debouncing circuit for low-speed CMOS, (a) Logic circuit with
buffer inverters, (b) Logic values for Up-, Dn-, and Off-positions of SW.

versa, there is a short time (approximately the path delay of the feedback loop consisting
of the two inverters) during which HV is shorted to ground. This can give rise to switching
transients that can cause problems in the FSM to which the debouncing circuit is connected.
Furthermore, the relatively high power drain during these periods may or may not be
acceptable. For best results the cross-coupled inverters should be implemented with CMOS
that will not source high current in the active high state. The 74SL04 CMOS inverter appears
to be a good choice for this purpose.

As a final thought, not all mechanical switch inputs need to be debounced. Switched
inputs that are set prior to the initiation of a sequential process need not be debounced
provided that the resulting switch signal is stable at the time the sequential process is to
begin. Examples are the so-called DIP switches in computers that are preset when the
computer is not in operation. The design of the one- to three-pulse generator in Section 11.9
illustrates the difference in dealing with preset switches as opposed to those that are not.

11.8.3 The Rotary Selector Switch

A variation on the theme of Fig. 11.32 can be applied to the debouncing of a four-post
rotary selector switch shown in Fig. 11.34. Here, each NAND gate receives a feedback
line from each of the other three NAND gates but not from itself, and each set-dominant
basic cell serves basically the same purpose as in the debouncing of the SPDT switch.
Together, the basic cells and the feedback inputs to the NAND gates permit the output logic
levels for all switches to be maintained during an off-contact bounce. The first selector-
post contact that crosses the switching threshold of the basic cell sets that switch and resets
the other switches via the feedback paths. All subsequent bounces cause the inputs to the
basic cell of that switch to fluctuate between the set and hold conditions. The resetting
of the other basic cells occurs after about one gate delay following the first threshold
contact.

There are alternative means of debouncing a rotary switch that may or may not be
recommendable depending on how the rotary switch is to be used. One alternative for

530 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

Rotary
switch'*t

> 1

'x

X

V-

X

S

y

>]
y>~

c

— £>o — c

i C

-[>o— c

c

4>o— c

c

4>°— <

S Q

R Q

S Q

R Q

S Q

R Q

S Q

R Q

— SW,(H)

D-SW,(L)

— SW2(H)

3— SW2(L)

— SW3(H)

>-SW3(L)

\— SW4(H)

^— SW4(L)

FIGURE 11.34
Debouncing a rotary select switch with four posts.

low-budget needs is to replace each basic cell in Fig. 11.34 with cross-coupled invert-
ers as in Fig. 11.33a. Another alternative applies to the case of a large number of posts
where fast throughput of the input signal is important and where fan-in limitations become
a problem when using CMOS NAND gates. Here, the debouncing circuit in Fig. 11.34
can best be implemented with NOR gates, reset-dominant basic cells and with the rotary
switch ground replaced by the supply voltage, +Vs. In this case the NOR gates can be
configured as in Fig. 8.46 with no fan-in limitations. Note that it is not recommended that
the basic cells be removed in any of these debouncing circuits. To do this would allow
bounce transients to occur over a period of at least two gate delays before the circuit stabal-
izes — there are no RC components present that can produce delays to outlast the bounce
periods.

11.9 APPLICATIONS TO THE DESIGN OF MORE COMPLEX STATE MACHINES

The design of FSMs in Section 10.12 was limited to relatively simple state machines for
which few problems existed. However, the design of the sequence recognizer in Subsection
10.12.2 did point to the need for initialization, one of several design considerations covered
in this chapter. Now, it is necessary to move on to more complex FSMs so as to apply some
of these design considerations.

11.9.1 Design Procedure

For reference purposes, a seven-part design procedure is presented here. Although not every
design consideration is included, the procedure is complete enough to serve as a guideline
for most FSM designs. This procedure is intended to be an augmentation of the three-step
procedure given in Section 10.6 and should be used in a manner dictated by the nature
and complexity of the design project. For example, only portions of this procedure need
be used for the design of relatively simple FSMs. On the other hand, very complex design
problems might require going beyond the coverage of this procedure. The reader should

11.9 APPLICATIONS TO THE DESIGN OF MORE COMPLEX STATE MACHINES 531

review the contents Section 10.6, in particular the mapping algorithm, before continuing in
this section.

Part I. Understand the Problem

1. Develop a thorough understanding of the functional requirements and I/O specifica-
tions of the FSM to be designed. The construction of block diagrams can be helpful
in this regard.

2. Note any specific timing constraints that must be met. Not all information regarding
timing constraints and timing problems may be apparent initially and may have to be
gathered as the design proceeds.

Part //. Construct a State Diagram

1. Choose a model (e.g., a Moore or Mealy model) and construct a fully documented
state diagram that meets the requirements of the algorithm and timing constraints
of the FSM. Use flowcharts and timing diagrams if necessary. Several attempts at
constructing a state diagram may be necessary in obtaining the one best suited to the
design.

The use of algorithmic state machine (ASM) charts and state tables can be very
useful in arriving at a suitable state diagram. Section 11.10 discusses ASM chart
nomenclature and the use of state tables together with their relationship to the state
diagram and to a hardware description language such as VHDL.

2. If asynchronous inputs are present, make certain that the branching dependency and
conditional output rules, given in Subsection 11.4.1, are obeyed. Decide at this point
if any or all of the asynchronous inputs are to be synchronized — usually, they will
have to be synchronized.

Part III. Obtain the Output Functions

1. Choose the NS and output logic hardware and memory devices to be used and then
obtain the output functions. Knowing how the output functions are to be implemented
and the character of the flip-flops to be used can influence the design strategy with
regard to static hazards in the output, as discussed in Section 11.3.

2. If logic noise is determined to be a problem in the output signals of the FSM, corrective
action must be taken.

(a) If output race glitches (ORGs) are present, eliminate them by using one or more
of the methods considered in Subsection 11.2.2.

(b) If static hazards exist in the output functions, eliminate them by adding hazard
cover to the output functions as discussed in Section 11.3, or use the filtering
method illustrated in Fig. 11.7. If one or more of the s-hazards are of the internally
initiated type, a proper choice of flip-flops can be used to eliminate them, as
indicated in Subsection 11.3.2.

Part IV. Obtain the Next-State Functions Plot the NS K-maps by using the mapping
algorithm given in Section 10.6 and then extract minimum or reduced cover for the NS

532 CHAPTER 11 /SYNCHRONOUS FSM DESIGN CONSIDERATIONS

functions. Implement these results by using discrete logic as in Section 10.12, or by using
a PLD as discussed later in Section 13.2. If a ROM is to be used to implement the NS and
output logic, program the ROM directly from the state diagram (also discussed in Section
13.2). If a shift register or counter is used as the memory, obtain the NS logic according to the
procedure discussed later in Sections 13.3 and 13.4. For one-hot designs, the NS and output
logic functions are read directly from the state diagram or ASM chart (see Section 13.5).

Part V. Select the Circuits Necessary for I/O Conditioning and Initialization/Reset

1. Select the appropriate input debouncing and synchronizing/stretching circuits and the
output filtering hardware to be used, if any. Refer to Sections 11.2, 11.4, and 11.8 for
assistance in making the proper choice. Make certain that all timing requirements are
met.

2. Select the initialization/reset hardware (sanity circuit) appropriate for the design as
discussed in Section 11.7.

Part VI. Construct the Logic Circuit Construct a complete logic circuit of the FSM,
preferably in mixed-logic notation, and make any necessary comments for future reference.
Avoid the use of unusual logic symbols unless accompanied by appropriate labels.

Part VII. Test the Logic Circuit Simulate the logic circuit to ascertain whether or not it
operates correctly in the logic domain. Use both gate-level and SPICE-level simulations, in
that order, if possible. The final test, of course, is that in real time by using testing equipment
such as a waveform analyzer.

11.9.2 Design Example: The One- to Three-Pulse Generator

The problem is to design a pulse generator that will issue one, two, or three clean, discrete
pulses or no pulses depending on the settings of two switches, SWi and SWo. A general
description of the pulse generator is provided by the block diagram in Fig. 11.35a and by
the operation table in Fig. 11.35b. It is required that each pulse issued by this FSM be of
the same active duration as clock, and that the two switches SW] and SWo be preset well
in advance of the start switch S command. Thus, SWi and SWo need not be debounced or
synchronized. It is also required that these two preset switches remain fixed at their proper
logic level for a period of time exceeding that required for a pulse generating sequence. It is
further required that the pulse generator be initialized into a non-output state, and that the
start signal S be returned to the inactive condition following a pulse-generating sequence
and before initiating another pulse sequence.

The switch inputs S, SWi, and SW0 are asynchronous inputs. However, only the start
switch S is required to be debounced and synchronized. It is best to synchronize S anti-
phase to the FSM memory, which is arbitrarily chosen to be FET flip-flops, as indicated
in Fig. 11.35a. The timing diagram in Fig. 11.35c illustrates the operation of the pulse
generator by showing one- and three-pulse generations in agreement with the operation
table in Fig. 11.35b. Notice that the first pulse of a sequence is issued with the next active
portion of the clock following an active Start command and the sampling of the preset
switch logic levels.

11.9 APPLICATIONS TO THE DESIGN OF MORE COMPLEX STATE MACHINES 533

CK-C>
SW SW Pulse, P

— '

1

rrJJ

\ *

I

h
CK samples CK samples

0 0 No pulse
Preset J sw,(H) w i-to3-Pulse I 0 -| 1 pulse

switches \SW0(H)—^ Generator \^PW 1 Q g pu|ses

Start, S(H) * 1 1 3Pulses

(a) (b)

CK

SW^H)

SW0(H)

Start, S(H)

Pulse, P(H)

SW. SW0 = 01 S\N< SW0 = 11
(C)

FIGURE 11.35
Description and operation of the one- to three-pulse generator, (a) Block diagram, (b) Operation table.
(c) Timing diagram showing one- and three-pulse generations.

The flowchart that satisfies the algorithm and timing requirements of the one- to three-
pulse generator is provided in Fig. 11.36a. The flow chart is a "thinking tool" that is used
in connection with the operation table to assist in the construction of the state diagram
shown in Fig. 11.36b. The shaded action squares in the flow chart are the same as the oval
state symbols in a state diagram. Notice how much more vividly the sequential behavior is
represented by the state diagram than by the flow chart. The state diagram has five states
that require the use of three state variables named QAQsQc = ABC. Each state is seen to
satisfy the sum rule given by Eq. (10.3) and illustrated in Fig. 10.7.

The next step in the design of the one- to three-pulse generator is to run an ORG analysis
followed by a hazard analysis. This is done in Fig. 11.37, where it is seen that no ORG
exists if 02 is taken to be either 0 or CK in the K-map for P. Keep in mind that none
of the outputs P if CK are issued immediately on entrance into a given state, since each
state-to-state transition occurs on the falling edge of CK, that is, on CK. Note that if 02 = 1
in the P K-map, an ORG is possible via the 000^- 010—>• Oil race path. Finally, since
there are no coupled terms in the output function P = A(CK) + B(CK), there are no static
hazards possible. From these results it is concluded that there are no restrictions placed on

534 CHAPTER 11 /SYNCHRONOUS FSM DESIGN CONSIDERATIONS

Sanity

Action blocks

(b)

(a)

FIGURE 11.36
Sequential description of the one- to three-pulse generator, (a) Flow chart, (b) State diagram derived
from the flow chart showing a suitable state code assignment.

the technology of the memory flip-flops, as discussed in Section 11.3, and that no filtering
of the output signal is necessary.

Having run the ORG and hazard analyses, all that remains is to map the NS functions, ex-
tract minimum cover, and construct the logic circuit with the appropriate input conditioning

11.9 APPLICATIONS TO THE DESIGN OF MORE COMPLEX STATE MACHINES 535

Use 02 = 0 or CK
in P K-map

else (+) glitch

\BC
101)PiTifCK A\ °° ° 11 10

SfSW.+SWJ 7^~^\ X—^ SW
ooo)— 1 ° »(011) (111) ^> K 001 CK

CK

CK
S

PitifCK 'N
v s

v S

^Y^\ p = A(CK)+ B(CK)(01l)pi t i fCK \ t \ i

(a) (b)

FIGURE 11.37
(a) Output race glitch (ORG) analysis showing conditions for a race-glitch-free output, (b) The output
K-map and the minimum hazard-free output function.

and initialization circuits. Presented in Fig. 11.38 are the NS K-maps for one- to three-pulse
generator of Fig. 11.36 assuming the use of D flip-flops. The resulting minimum NS and
output functions are easily seen to be

(DA

DB

DC

= AB(SWi)+AB(SW0)
= AB(SW{)-i
=S+A+B

-CS(SW\) + CS(SWo)

P = A(CK) + B(CK)

which represent a total gate/input tally of 10/26
AB(S'Wi), in the expressions for DA and

Implementation of Eqs.
shown are the debouncing,

DB.

(11.10)

in two-level logic. Notice the shared PI,

(11.10) by using discrete logic is shown in Fig. 11.39. Also
synchronizing and initialization (sanity) circuits. Notice that

C \BC
00 01 11 10

o o [sw, ^]

/

A\

0

1
f

00

S(SVW1+SW0)

< .

01

0

0

11 10

[sw, I]

o <l>

\BC
A\ °° 01 11 10

0 S S 1 (ft

4 =X

1 f^ j 1 <f]

FIGURE 11.38
Next state K-maps showing minimum cover for the one- to three-pulse generator of Fig. 11.36b.

/

536 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

NS forming
logic

Memory

Input conditioning and SW0(H) 1 ' U~~X fcI] Ami formhg togic
initialization circuits

+vs Power Up/Dn
~T~ S~ Switch

P(H)

>C(L)

FIGURE 11.39
Implementation of Eqs. (11.10) for the one- to three-pulse generator showing the debouncing, syn-
chronizing, and initialization circuits.

Sanity(L) is connected to the active low asynchronous clear overrides of the flip-flops for
initialization or reset into the 000 state. Also note that only one RET D flip-flop is used
for the synchronizing stage of the start switch input, S. A more robust synchronizing stage
would be one such as that illustrated in Fig. 11.23a.

Although discrete two-level logic is used in Fig. 11.39 for the NS- and output-forming
logic, there exists a variety of other alternatives. These include the use of MUXs, decoders,
and array logic devices. Also, the memory can be made up of other devices such as shift
registers and counters. These and other alternative approaches to FSM design are considered
in Chapter 13.

11.10 ALGORITHMIC STATE MACHINE CHARTS AND STATE TABLES

In Subsection 11.9.1 a design procedure is laid out followed by the design of a relatively
simple FSM, the one- to three-pulse generator. In this design procedure, it is implied that the
final goal in describing the sequential behavior of a state machine is to arrive at a suitable

11.10 ALGORITHMIC STATE MACHINE CHARTS AND STATE TABLES 537

state diagram from which the design can be completed following the indicated procedure.
In this text, the fully documented state diagram is the easiest to work with in carrying out
the design of relatively simple FSMs. There are, however, other useful means of expressing
the sequential behavior of state machines. These other means include the use of algorithmic
state machine (ASM) charts and state tables. The use of these as an aid in constructing the
state diagram will now be explored.

11.10.1 ASM Charts

Just as the flowchart functions as a useful thinking tool in the construction of the state
diagram, so also does the ASM chart serve as a useful thinking tool. In fact, the two are
very similar, the ASM chart being the more useful in creating VHDL FSM descriptions.
Shown in Fig. 11.40 are the symbols used in the construction of ASM charts. The state
block symbol in Fig. 11.40a is used to give the state identifier, the state code assignment (if
known), and a listing of all unconditional (Moore) outputs associated with that state. The
decision symbol in Fig. 11.40b contains the input conditions on which depend the branching
from a given state. To assist in creating a VHDL description of the FSM, a separate symbol
is provided for conditional (Mealy) outputs, as indicated in Fig. 11.40c. A conventional
flow chart representation would combine all outputs, unconditional and conditional, into
the state block symbol, as was done in Fig. 11.36a, where only Mealy outputs exist. The
entry path to the conditional output symbol of Fig. 11.40c is always from a decision symbol,
but its exit path can be either to a state block symbol or to another decision symbol. Notice
that in comparing flowchart and ASM chart notation, the following interchangeability of
symbols applies:

1 <—> True <—> Yes

0 <—> False <—> No

All of these are based on positive logic, as is true for any logic graphic, including state
diagrams.

State entry EntrY
path Unconditional Conditional path

(Moore) output (Mealy) output^,
St3l6 .. \
Code list i list \

Exit true Exit false t
path path Exit

path

(a) (b) (c)

FIGURE 11.40
Traditional ASM chart symbology. (a) State block symbol and list of unconditional (Moore) outputs,
(b) Decision symbol showing true and false exit condition paths, (c) Conditional output symbol and
list of Mealy outputs.

538 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

XY CLRREGiT
LDCNTiT

(b)

FIGURE 11.41
ASM chart and state diagram for a resolver configuration having two inputs and having both condi-
tional and unconditional outputs, (a) ASM chart by using symbols in Fig. 11.40. (b) The equivalent
fully documented state diagram for the ASM chart in (a).

An example of the application of ASM chart notation is presented in Fig. 11.4 la, together
with its state diagram equivalent in Fig. 11.41b. This is seen to be a three-state resolver seg-
ment having two inputs, X and Y, and both conditional (Mealy) and unconditional (Moore)
outputs. Notice the manner in which the conditional output RES must be represented in the
ASM chart. A conventional flowchart representation would have combined the conditional
output RES, indicated as RES if Y, with the unconditional output FIN in state c. Notice
also how much easier it is to read the state diagram than the ASM chart. Imagine how
difficult it would be to obtain the NS-forming logic by using the ASM chart. Clearly, the
fully documented state diagram is much more suitable for this purpose. This leads to the
following guidelines regarding the use of ASM charts vs the use of state diagrams:

For state machines of up to moderate complexity, the ASM chart, like the flow chart,
should be used as a "thinking tool" in the construction of a fully documented state
diagram. Extracting the NS- and output-forming logic from fully documented state
diagrams is much simpler for such FSMs than the use of ASM charts. It is rare in mod-
ern times that ASM charts are used in the design of state machines. Rather, it is more
likely that experienced designers will design modern complex state machines by using
a hardware description language such as VHDL or Verilog. The ASM chart or flow
chart can be useful in obtaining a VHDL or Verilog description of a given state ma-
chine, but will not likely be used to design it. The one notable exeption to this is the use
of the one-hot code method in state machine design, as described later in Section 13.5.
There, the ASM chart is shown to be useful in writing the NS and output functions
directly from the ASM chart without the need for K-maps or minimization algorithms.

11.10 ALGORITHMIC STATE MACHINE CHARTS AND STATE TABLES 539

Sanity

Present External
s+T State / |nputs

^ Variables

\ ST I
ABC \ 00 01 11

ST

S+T
NS

identifiers
(x) Indicates a holding condition

" * Indicates a sample transition path

(a) (b)

FIGURE 11.42
Representation of a fictitious five-state FSM having two external inputs and two outputs, (a) State
diagram representation, (b) The equivalent state table for the FSM in (a).

11.10.2 State Tables and State Assignment Rules

The tabular representation of the state diagram is called the state table, or next state table if
output data is excluded. Shown in Fig. 11.42 are two representations for a Mealy FSM hav-
ing two inputs S and T, and two outputs P and Q. The state diagram for this FSM, lacking
only a suitable state code assignment, is given in Fig. 11.42a, and its equivalent state table
representation is presented in Fig. 11.42b. In both representations, literals (a, b, c, d, e} are
used for state identification. On the vertical axis of the state table they represent the present
state (PS), and within the state table they represent the next state (NS). The encircled state
identifiers indicate a holding condition for which PS = NS. Thus, in state a the FSM must
hold on input condition S + T, so the identifier a is encircled in row a for ST input values 01,
11, and 10, meaning ST + ST + ST = S + T. The state identifiers that are not encircled in
the state table represent unstable conditions. For instance, in state a under holding condition
ST, a transition to state b takes place if input T changes 1 —> 0, as indicated by the two
transition paths. Or in state b, holding on ST, a transition to state e will occur if input
S changes 0 —»• 1. The FSM cannot transit from state b to state c without changing both
inputs simultaneously, a condition that should be avoided if possible. Clearly, the state table
presents all features of the state diagram and is, therefore, the tabular equivalent of the state
diagram or ASM graphic representation. But the sequential behavior of the FSM is much
more easily grasped from the state diagram than from the state table. Furthermore, given a
suitable state code assignment, it should be obvious that the state diagram is far easier to use

540 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

for a "pencil-and-paper" design of an FSM than is the state table. There are, however, several
important usages of state tables, among them being their use for CAD purposes explored in
Section 11.11.

The state table provides a relatively simple means of obtaining the state code assignments
required for the optimum or near-optimum NS and output logic of an FSM by using D flip-
flops as the memory. There are three state assignment rules by which this can achieved,
listed in descending order of priority:

Rule 1 (The "into rule"): Make logically adjacent assignments to present states
that branch "into" a common next state, provided that their input conditions are
the same.

Rule 2 (The "from rule"): Make logically adjacent assignments to states that
are the next states "from" a common present state, provided that their input
conditions are logically adjacent.

Rule 3 (The output rule): Make logically adjacent assignments to states having
the same outputs. Rule 3 is relatively unimportant except where large numbers
of outputs are involved.

In Fig. 11.43a use is made of the next state table in applying rules 1 and 2 to the FSM
of Fig. 11.42. Here, rule 1 has the highest priority and is applied to state adjacency sets in
columns under constant input conditions. Thus, by rule 1, states within the set {abc} should
be made logically adjacent, and those within set {de} should be made adjacent, both sets be-
ing under the same input condition IQ — S f . Similarly, states within sets {ae} and {bd}, under
input condition I\=ST, should be made logically adjacent, etc. Rule 2, of lesser priority,
is applied to the rows of the state table as indicated in Fig. 11.43a. Now the input conditions
must be logically adjacent. For example, in present state d, states with sets {de}, {cd}, and
{ce} should be made logically adjacent. State sets that appear in both rule 1 and rule 2 are
given the highest priority and are indicated in dashed boxes. These are followed in priority by
those that appear only in rule 1. Those of least priority appear only in rule 2. Notice that not
all sets appearing in rules 1 and 2 can be accommodated, hence the reason to prioritize, as just
discussed. For example, it is not possible to include set {ce} together with the higher priority
sets.

By incorporating rules 1 and 2, as indicated in Fig. 11.43a, there results the following
three-bit state assignments:

a = 000, 6 = 001, c = 011, </=101, and e = 100.

These assignments are used in the state diagram of Fig. 11.43b and will generate an optimum
or near-optimum set of next-state functions, but only in three bits. It is possible, albeit
unlikely, that a four-bit set could result in a more optimum set of next-state functions.
However, no attempt will be made to explore this possibility. Note that ORGs are possible
in both P and Q.

The NS K-maps are plotted from the state diagram in Fig. 11.43b, assuming the use
of D flip-flops, and are given in Fig. 11.44 together with the output K-maps. Also
shown are the minimum covers for the K-maps that yield the following NS and output

\ST '° '1
ABC\ 00 01

a

b

c

d

e

b

(WV_x

b

e
\

_^
(£)

(a)

d \

GD

®'
\

a

'3 >2

11 10

®
c

)©
c

^^^(*)

(a)

e

e

e

^~N
(e)

ab

;bd,i be, cd, ce

be, ce, be

;de,| cd, ce

;ae j

Sanity

J
Rule 1 <

1

I

abc
Jdel

ae
bd

1
T

bed bcde

ST

Rule 2 ^-^-—^ ^v^-
PiT ifST
CUT if S

(a) (b)

FIGURE 11.43
Application of state assignment rules 1 and 2 to the FSM of Fig. 11.42a. (a) Next state table showing
grouping of states (shaded areas) that satisfy rule 1, and the results of rule 2. (b) The fully documented
state diagram showing an optimum or near optimum set of state code assignments resulting from
application of rules 1 and 2 in (a).

JBC \BC \BC
00 01 11 10 A \ °° 01 11 10 AX °° 01 11 10

S®T

+f

ST ST

ST

ST

0

S+T

T

S-t-T

*

4>

*

,BC \BC
\ 00 01 11 10 A \ 00 01 11 10

ST

Xu
FIGURE 11.44
Next-state and output K-maps plotted from the state diagram in Fig. 11.43b assuming the use of D
flip-flops and showing minimum cover.

541

542 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

functions:

DA = CSf + BCST + ACS + AT

DB = CST + BT

P = ACST

Q = ACS + BCST + ABC

(11.11)

These results represent a total gate/input tally of 14/40, excluding possible inverters.
Eqs. (11.11) will be compared with the results generated by using the array algebraic
approach to design discussed next in Section 11.11.

11.11 ARRAY ALGEBRAIC APPROACH TO LOGIC DESIGN

Results similar to those of Eqs. (11.11) can be obtained by using what is called the array
algebraic approach to state machine design. This approach is applicable to any FSM for
which each state-to-state transition ends in a holding condition, and each state obeys the
sum rule. Thus, the FSM in Fig. 11.36 would not be suitable for this method since there are
states without holding conditions.

The array algebraic approach can be used for the computer automated design (CAD) of
either synchronous or asynchronous FSMs, and without the need to use either state diagrams
or K-maps. Furthermore, the array algebra that is used bears a close resemblance to matrix
algebra, but there are some important differences. To properly launch this subject and to
minimize the difficulty index, the various matrix arrays and equations will be given using
the FSM in Fig. 11.43 as an example. In this way, the reader can follow the operations with
little difficulty.

Given the state code assignments that are generated by using the next-state table in
Fig. 11.43a,

a =000, fc = 001, c = 011, d = 101, and e = 100,

the state matrix S is defined as

b
S= c

d
e

'0 0 0"
0 0 1
0 1 1
1 0 1
1 0 0

= State matrix.

Also obtained from the next-state table in Fig. 11.43a is the destination matrix D, given by

/o /i h h

D =

a 0 ae a a
b abc 0 0 0
c 0 c bed 0
d 0 bd 0 0
e de 0 e bcde

= Destination matrix.

11.11 ARRAY ALGEBRAIC APPROACH TO LOGIC DESIGN 543

The D matrix is formed by combining all states in a given column that are associated with
a holding condition. For example, state set {abc} is associated with the holding condition b
in the /o column. Similarly, state set {de} is associated with holding condition e in the same
column. Notice that all state set entries involving two or more states in the D matrix are an
expression of rule 1, as indicated in Fig. 11.43a. Single literals appear when a present state
identifier is associated exclusively with a holding condition, as in row 1 columns 3 and 4
or in row 5 column 3 of Fig. 11.43a. A zero appears when there is no next state associated
with the present state.

By taking the transpose of the S matrix (S1) and Boolean multiplying it with the D matrix
there results the function matrix FNS given by

= S'D= 0 0 1 0 0 0 c bed 0 (11.12)
"0
0
0

" de
0

abc

0
0
1

0
1
1

bd
c

bed

1
0
1

1~|
0

°J

0 ae
abc 0
0 c
0 bd

_de 0

e bcde
bed 0
bed 0

a
0

bed
0
e

= Function

a
0
0
0

bcde

matrix

Notice how sets combine in array algebra. For example, bed in column 2, row 3 of the func-
tion matrix results from an implied matrix operation c + bd. This is one of the peculiarities
of array algebra. Thus, bed results from the Boolean product c • bd.

Now it is necessary to evaluate the function matrix F in terms of the state variables.
This can be accomplished in either of two ways. For an automated design approach, the
tabular representation of the state assignment in Fig. 11.45a can be used in connection with
a minimization algorithm such as that of Quine-McCluskey (Q-M) discussed in Subsection
4.8.1. Alternatively, a K-map representation of the state assignments, as in Fig. 11.45b, can
be used. In either case, if all state identifiers are present in a given state adjacency set, that
set becomes, logic 1. State identifiers not part of a set are assigned a logic 0. Remember
that in the case of the Q-M algorithm, don't cares are treated as minterms and therefore

A B C

0

0

0

0

1
1
1
1

0

0

1
1
0

0

1
1

0

1
0

1
0

1
0

1

a

b

*c

e

d

</>
t

\BC
A\. 00 01 11 10

0

1

a

e

b

d

c

*

*

*

(b)

FIGURE 11.45
State assignment representation for the state machine in Fig. 11.43b.

544 CHAPTER 11 /SYNCHRONOUS FSM DESIGN CONSIDERATIONS

take logic 1. For K-map evaluations, the don't cares are treated as don't cares. However
evaluated, the results for the six state adjacency sets in the function matrix are

de = m(4, 5,6, 7) = A, bd = m(l, 5) = BC, e = ̂ m(4, 6) = AC,

(2,3,6,7) = B

abc = m(0, 1,2,3) = A, bed = ̂ m(l, 3, 5, 7) = C,

bcde = m(l, 3, 4, 5, 6, 7) = A + C,

all of which must be substituted into Eq. (11.12) before proceeding. Again, to use the Q-M
algorithm in evaluating the six adjacency sets just presented, care must be taken to include
the three don't cares 0(2, 6, 7) as minterms ra(2, 6, 7) in each set, if they are not already
included. Thus, for use with the Q-M algorithm, the adjacency sets become

2,4, 5, 6, 7), bd = m(l, 2, 5, 6, 7), e = m(2,4, 6, 7),

c = ^m(2, 3,6,7)

=]Tm(0, 1, 2, 3, 6, 7), fccrf = £m(l, 2, 3, 5, 6, 7),

which will yield the same results as given previously. Because of the simplicity of the
adjacency set minimization process, the Q-M algorithm is quite suitable for CAD purposes
even for relatively complex state machines. However, most any minimization algorithm is
suitable for this purpose as, for example, BOOZER bundled with this text.

After making the appropriate substitutions into Eq. (11.12), the next-state functions can
be evaluated. This is done by multiplying the function matrix FNs by the input matrix I to
yield the following next-state function matrix NS:

NS = FNSI =
A BC AC (A + C)'
0 B C 0
A C C 0

DA
DB

/, °C

(11.13)

By carrying out the indicated matrix multiplication, there result the NS equations

DA = A/o + BCh + AC/3 + (A + C)/2

= AST + BCST + ACST + AST + CST

DB = £/i + C/3

= BST + CST

Dc = A/o + C/] + C/3

11.11 ARRAY ALGEBRAIC APPROACH TO LOGIC DESIGN 545

which compare closely with the NS functions in Eqs. (11.11). Notice that AST+AST = AT
inDA.

The output functions can be obtained by following the same procedure. Now, however,
the state matrices for the outputs are those obtained directly from the state table in Figure
11.42(b). When this is done, the following results are obtained for outputs P and Q:

= P1D=[0 0 0 0 Sf]
0 bd 0 0

de 0 e bcde

= [de 0 e bcde]ST,

or
Fp = PtD=[ASf 0 ACST (A + C)ST]

Then, by multiplying Fp by the input matrix I, the output P is found to be

~/o'

P=FPI = [ASr 0 ACST (A + C)ST] '
h
A

= AST + CST,

where 70 = ST, I\ = ST, 73 = ST, and 72 = ST. Similarly, for output Q there results

FQ = QtD = [0 1 0 ST S]D

= [(abc + deS) bdST eS bcdeS]

= [(A + S) BCST ACS (A + C)5]

and

Q = FCI = AST + BCST + ACST + AST + CST

Altogether the NS and output functions generated from the array algebraic approach are

DA = AST + BCST + ACST + AST + CST

DB = BST + CST

DC = AST + CT

P = AST + CST

Q = AST + BCST + ACST + AST + CST

(11-14)

which represent a total gate/input tally of 14/44 compared to 14/40 for the standard K-map
approach of Eqs. (11.11), all excluding possible inverters. Observe that all p-terms in the

546 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

output expressions of Eqs. (11.14) are covered by the DA expression. In fact, it is char-
acteristic of the array algebraic approach that most, if not all, of the p-terms in the output
functions will be shared Pis. This is so because the output functions are obtained by using
the same form of the function equation F = Z* • D, where Z is any output function matrix
and D is the destination matrix used in obtaining the NS functions. Notice that reducing
the expression for DA by factoring the terms AST + AST = AT results in a gate/input
tally of 14/41, only a very minor improvement. Generally, in using the array algebraic ap-
proach to design, significant savings in hardware can result by considering all of the factor-
ing/reduction possibilities that exist, particularly within the NS logic expressions. However,
account must also be taken of the shared Pis that might be lost in the factoring/reduction
process.

An inspection of the Q output function in Eqs. (11.14) reveals an externally initiated
static hazard in the coupled terms ACST+AST. This s-hazard can occur on a 1 ->• Ochange
in input T while in state 100 under holding condition S (see Fig. 11.43b). As indicated in
Section 11.3, this hazard can be eliminated either by adding the hazard cover ACS or by
filtering. Note that the p-term ACST can be replaced by AC S in the expression for Q,
thereby requiring no hazard cover. This results from the simplification ACST + AST =
ACS + AST after applying the absorptive law. Note that no hazards exist in the output
functions P or Q of Eqs. (11.11). In any case, since ORGs are possible in both outputs,
they should be filtered thereby eliminating all logic noise — hence no hazard analysis is
needed.

In attempting to automate the design of state machines by the array algebraic method,
the most difficult part, the "bottleneck," is to obtain the state adjacency sets of function
matrix F in terms of the state variables. Fortunately, these problems break up into single-
output minimization problems, as is indicated by the example given earlier, and often can
be easily handled by tabular minimization algorithms such as that of Q-M. But a given
minimization problem can be cyclical in the sense that more than one minimum is possible.
Petrick's algorithm (see Further Reading) can be used to solve simple to moderately complex
problems. On the other hand, an optimum solution may not be necessary, and one of the
minimum solutions for an adjacency set can be arbitrarily chosen on the basis of some
criterion built into the CAD algorithm. Full-blown heuristic-type minimization algorithms
are usually not required for this purpose. However, if needed, none are better for very
large minimization problems than the Espresso-II algorithm briefly discussed in Section
4.8. Included on the CD-ROM bundled with this text is the CAD software called ADAM
(for Automated Design of Asynchronous Machines). This software can also automate the
design of synchronous FSMs with D flip-slops. For more information see Appendix B.

Before leaving this subject, one final thought is worth mentioning. The array algebraic
approach is perfectly general. It can be applied to any FSM, synchronous or asynchronous
that meet the minimum requirements mentioned at the beginning, and to any set of state code
assignments that is used. The results may or may not be optimum, but will be at least near
optimum depending, of course, on the choice of state code assignments. In this section,
the array algebraic method is used to design a synchronous state machine, of moderate
complexity, whose state assignments are obtained by applying state assignment rules 1 and
2 given previously. However, applications of rules 1 and 2 do not eliminate ORGs.

In Section 14.12 the array algebraic method is again used, but to design the fastest
asynchronous FSMs possible, called single-transition-time (STT) machines. For these FSMs

11.12 STATE MINIMIZATION 547

the state code assignments are chosen by using special partitioning methods that avoid
ORGs and other serious timing problems. These partitioning methods, not involving state
assignment rules 1 and 2, are used to construct the state table from which the S matrix is
derived. These methods are also applicable to synchronous D flip-flop designs, but with an
increased number of state variables required — the price of avoiding ORGs.

11.12 STATE MINIMIZATION

Formal state minimization procedures are available that involve state tables, implication
charts, merger graphs, and the like. Further Reading at the end of this chapter cites references
on this subject. However, such procedures are rarely used in modern state machine design.
For state machines of up to moderate complexity, a minimum or near minimum number of
states can be obtained simply by visual inspection of the state diagram or state table. In fact,
it may not be desirable to obtain a minimum number of states for a particular FSM. There
are occasions where a nonminimum number of states may lead to a more optimum set of
NS and output functions for a state machine. Furthermore, if the state machine is relatively
complex and if it is to be implemented, say, with an FPGA or PAL, it really doesn't matter
whether or not a minimum number of states exist. In cases where hardware capability far
exceeds the state machine requirements, it is only necessary to make certain that the FSM
performs its tasks properly — hardware limitation is not a factor.

In this section, a visual method is used to demonstrate how states can be merged to
produce a more optimum design of relatively simple state machines. Consider the require-
ments for the pulse width adjuster (PWA) in Fig. 11.46, which has a single input X and a
single output P. It is required that X be synchronized in phase with the RET D flip-flops
of the memory. The PWA is to function according to the operation table in Fig. 11.46a,
where the pulse widths are adjusted to one, two, or three clock periods, TCK, as indicated.
The timing diagram in Fig. 11.46b illustrates the pulse width relationship between the in-
put pulse waveform X and the output waveform P relative to seven states a,b,c,d,e, /,
andg.

The state diagram that corresponds to the requirements of the PWA set forth in Fig. 11.46
is shown in Fig. 11.47a. An inspection of the seven states in the state diagram and in the
state table of Fig. 11.47b indicates that two merging operations are possible. If states c and
d are merged to form state c', and if states e, /, and g are merged to form state d', there
results the much simplified state diagram of Fig. 11.47c. This four-state PWA, functions
the same as the seven-state PWA, but at a significant reduction in hardware cost. There
are other advantages to state reductions. For example, in the case of the four-state PWA
in Fig. 11.47c, it can be coded in Gray code so as to eliminate any possibility of ORGs
occurring in the output. However, state reductions alone may or may not eliminate static
hazards in the output.

Notice how easy it is to recognize the merging patterns of the states in Fig. 11.47. Such
visual approaches to the state-merging process can be carried out even on much more
complex FSMs. Usually it is not necessary to apply formal techniques to this process. The
point is that, if the FSM is to be implemented with an array logic device, such as a ROM,
PLA, FPGA, or PAL, it may not matter whether or not a state-minimum design exists. What
is more important is the correct operation of the FSM. Of course, if the FSM is to be

X-

CK —

Sanity

A
Pulse Width Adjuster

(PWA)
X(H)

P(H)

X Synchronized in phase with
RET D flip-flops X(H)

D P(H)

1T,

2T,

3T

CK

CK

CK

3T,

2T,

1T

CK

CK

X(H)

P(H)
CK

(a) (b)

FIGURE 11.46
The pulse width adjuster (PWA) FSM. (a) Block diagram and operation table, (b) Timing diagrams
showing the three operations of the PWA relative to seven states a,b,c,d,e, f, and g.

Sanity C\ /-Sanity

Merge
/ states v
c,d -» c'

)P1T

^ Merc

X o 1
a

b

c
^
d

e

f

g
•

(a)

d

f
L

g

a

a

a
< — I

b

c

e

g
a

a

a

P
0

X

X

1

1

1

1

/
states

e,f,g -»d'

Pit

(c)

(a) " (b)

FIGURE 11.47
Use of a pulse width adjuster (PWA) to demonstrate state reduction by merging, (a), (b) State diagram
and state table showing merging of states c, d to state c' and merging of states e, f, g to state d'.
(c) The resulting state diagram for the PWA.

548

FURTHER READING 549

designed on chip to be manufactured by the millions, an optimum design may be necessary
(hardware-wise and/or speed-wise), but with or without a minimum number of states.

FURTHER READING

Few texts cover the subject of output race glitches (ORGs). The known sources on this
subject are the texts of Fletcher, Shaw, and Tinder, and of these the last is by far the most
comprehensive. It is equally difficult to find further reading on the subject of static hazards
in the outputs of synchronous FSMs. The reason for this is not exactly clear. Again the best
source appears to be the text by Tinder.

[1] W. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs,
NJ, 1980.

[2] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993.
[3] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,

NJ, 1991.

The subjects of asynchronous inputs, synchronizers and their failure, and metastability
appear to be covered to one extent or another by most texts in the field and in many journal
articles. Perhaps the best coverage for further reading on these subjects is found in the
text by Wakerly, with others by Fletcher, Tinder (both previously cited), Daniels, Katz,
McCluskey, and Unger all being a distant second choice.

The texts of Wakerly and Daniels cover the subject of mean time between failure (MTBF)
of synchronizer flip-flops and are recommended for further reading on this subject.

[4] J. D. Daniels, Digital Design from Zero to One. John Wiley & Sons, New York, 1996.
[5] R. H. Katz, Contemporary Logic Design. Benjamin/Cummings Publishing, Redwood City, CA,

1994.
[6] E. J. McCluskey, Logic Design Principles. Prentice Hall, Englewood Cliffs, NJ, 1986.
[7] S. H. Unger, The Essence of Logic Circuits. Prentice Hall, Englewood Cliffs, NJ, 1989.
[8] J. F. Wakerly, Digital Design Principles and Practices, 2nd. ed. Prentice-Hall, Englewood Cliffs,

NJ, 1994.

Of the journal articles on metastability and the synchronizer, none are more important
than those by Chaney, who has over many years established himself as a leading authority
on the metastability problem in synchronizers. In Chaney's article will be found measured
data on the MTBF of a variety of common flip-flops. Also, there are the earlier works of
Chaney et al., Stoll, and Veedrick that are worth reading for a more complete grasp of the
synchronizer problem. The advanced reader may find the theoretical work of Kleeman and
Cantoni more contributive to an understanding of the problem.

[9] T. J. Chaney, "Measured Flip-Flop Responses to Marginal Triggering," IEEE Trans. Comput.
C-32(12), 1207-1209 (1983).

[10] T. J. Chaney, S. M. Ornstein, and W. M. Littleneld, "Beware the Synchronizer," Dig. COMPCON,
San Francisco, Sept. 1972, pp. 317-319.

[11] L. Kleeman and A. Cantoni, "On the Unavoidability of Metastable Behavior in Digital Systems,"
IEEE Trans, on Comput. C-36(l), 109-112 (1987).

550 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

[12] P. A. Stoll, "How to Avoid Synchronization Problems," VLSI Design, Nov.-Dec., pp. 56-59
(1982).

[13] H. J. M. Veedrick, "The Behavior of Flip-Flops Used as Synchronizers and Prediction of their
Failure Rate," IEEE Journal of Solid State Circuits SC-15(2), 169-176 (1980).

Adequate treatments of clock skew are found in the texts of Fletcher, McCluskey,
Tinder, and Wakerly, all previously cited. Excellent coverage of clock generating circuitry
is provided in the text by Fletcher. Discussions on clock signal specifications, buffering,
and gating can be found in the text by Wakerly. For the advanced reader needing infor-
mation on the techniques for generating high-frequency clock waveforms from frequency
synthesizers, the texts by Best, Egan, and Rhode are recommended.

[14] R. G. Best, Phase-Locked Loops — Theory, Design and Applications. McGraw-Hill, New York,
1984.

[15] W. F. Egan, Frequency Synthesis by Phase Lock. Wiley Interscience, New York, 1981.
[16] U. L. Rhode, Digital PLL Frequency Synthesizers Theory and Design. Prentice Hall, Englewood

Cliffs, NJ, 1983.

Further reading on the subject of initialization (sanity) circuits is best found in the text
by Langdon and that by Tinder (previously cited). On the subject of debouncing circuits
the texts by Langdon, Tinder, and Wakerly are recommended, although the subject is to
one degree or another covered in other texts such as those by Daniels, Katz, and Unger, all
previously cited.

[17] B. G. Langdon, Jr., Computer Design. Computeach Press, Inc., San Jose, CA, 1982.

References covering the uses of ASMs, state tables, and state assignment rules in state
machine design are numerous. Good examples of all three of these subjects are found in
the texts by Hayes, Nelson et al., Roth, Wakerly (previously cited), and Yarbrough. The
text by Comer uses a unique graphical representation of sequential machines that appears
to draw from a combination of ASM chart notation and state diagram notation. Of the
journal articles on optimal state assignments, that by De Micheli et al. is perhaps the most
authoritative available.

[18] D. J. Comer, Digital Logic and State Machine Design, 3rd ed. Saunders College Publishing, Fort
Worth, TX, 1995.

[19] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli, "Optimal State Assignment for
Finite State Machines," IEEE Trans, on CAD/ICAS CAD-4(3), 269-284 (1985).

[20] J. P. Hayes, Introduction to Digital Design. Addison-Wesley, Reading, MA, 1993.
[21] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and

Design. Prentice Hall, Englewood Cliffs, NJ, 1995.
[22] C. H. Roth, Fundamentals of Logic Design, 4th ed. West, St. Paul, MN, 1992.
[23] J. M. Yarbrough, Digital Logic Applications and Design, West, Minneapolis/St. Paul, MN,

1997.

The formal approach to state reduction is nicely covered by numerous texts, includ-
ing those of Hayes, Katz, McCluskey, Nelson et al., and Yarbrough, all previously cited.

BIBLIOGRAPHY 551

For the more theoretically inclined, the texts by Dietmeyer, De Micheli, and Kohavi, are
recommended.

[24] D. L. Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Inc., Boston, MA,
1978.

[25] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York, 1994.
[26] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, New York, 1978.

There are no known simple references on the subject of the array algebraic approach to
logic design of synchronous state machines. The advanced reader may find the treatment
by Dietmeyer (previously cited) helpful, but some background in array Boolean algebra
notation is needed. For references covering Petrick's algorithm and related subjects, the
reader is referred to the texts by Hayes, Nelson et al, and Roth, all previously cited.

PROBLEMS

11.1 Inspect all three state diagrams in Figure P10.7 for possible output race glitches
(ORGs) and static hazards. If any exist, indicate their origin and type following
the examples in Sections 11.2 and 11.3.

11.2 Shown in Fig. PI 1.1 are the state diagrams for two fictitious FSMs.

X+Y

(a)

Q i T i f Y f 101 H — (011 JQIT Y C J 101) (011 I P A T i f X

FIGURE P11.1

552 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

(1) Run a complete output race glitch (ORG) analysis on each FSM. To do this,
follow the examples in Section 11.2. Thus, if ORGs exist, indicate their origin
and type (+ or —). Do not alter the state diagram in any way.

(2) In consideration of part (1), run a complete static hazard analysis on each of
these FSMs. To do this, follow the examples in Section 11.3. Assume that
each FSM is to be implemented with NAND-based flip-flops, and indicate
whether an existing static hazard is externally or internally initiated. Consider
both SOP and POS output-forming logic and give the gate/input tally for each,
including static hazard cover (if any). Do not alter the state code assignment
and do not construct a logic circuit for the FSM.

11.3 Shown in Fig. PI 1.2 are the state diagrams for two fictitious FSMs.

(1) Run a complete output race glitch (ORG) analysis on each FSM. To do this,
follow the examples in Section 11.2. Thus, if ORGs exist, indicate their origin
and type (+ or —). Do not alter the state diagram in any way.

(2) In consideration of part (1), run a complete static hazard analysis on each of
these FSMs. To do this, follow the examples in Section 11.3. Assume that the
FSM is to be implemented with NOR-based flip-flops, and indicate whether an
existing static hazard is externally or internally initiated. Consider both SOP
and POS output-forming logic and give the gate/input tally for each, including

W IT if Y

PIT if T_
Q IT if ST

S+T

(b)

PROBLEMS 553

S+T

ST

S©T

FIGURE P11.3

static hazard cover (if any). Do not alter the state code assignment and do not
construct a logic circuit for the FSM.

11.4 The FSM in Figure PI 1.3 has two inputs, S and T and one output, P.
(a) Run a complete output race glitch (ORG) analysis on this FSM. To do this,

follow the examples in Section 11.2. Thus, if ORGs exist, indicate their origin
and type (4- or —). Do not alter the state diagram in any way.

(b) In consideration of part (a), run a complete static hazard analysis on this
FSM. To do this, follow the examples in Section 11.3. However, it is not
known whether to use NAND- or NOR-based flip-flops for its design. Consider
both SOP and POS output-forming logic and give the gate/input tally for
each (including any static hazard cover). Based on this information, make a
selection as to the type of flip-flop (NAND- or NOR-based) that will yield
the most optimum design. Do not alter the state code assignment and do not
construct a logic circuit for the FSM.

11.5 Carry out complete ORG and static hazard analyses on the FSM in Fig. 11.43b.
To do this, use may be made of the NS and output expressions in Eqs. (11.11). If
any of these timing defects exist in the output signals, indicate the best means of
eliminating them. (Hint: See Subsection 11.2.2.)

11.6 Suppose it is desirable to estimate the mean time between failures (MTBF) for
a synchronizing system that is required to protect a hypothetical FSM operated
at 200 MHz when the asynchronous data change at an average rate of 10 kHz.
By experiment, the average setup time tsu is 1 nanosecond (ns) for the high-speed

554 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

D flip-flops to be used for the synchronizer. Consider that at 200 MHz, it is
necessary to use a synchronizing scheme of the type shown in Fig. 11.23a for
which a divide-by-4 counter is used in the diagram.
(a) Calculate the MTBF (in seconds, days and years) if r — 0.5 ns and T0 =

1 x 10~6 seconds. [Hint: Use Eq. (11.3) and take into account the cumulative
effects of both stages.]

(b) Repeat part (a) if a divide-by-two counter is used in the diagram. Calculate
the MTBF in seconds for comparison with the result in part a.

11.7 It is desired to find a safe operating clock frequency for a given FSM. The following
data is collected relative to the operation of the FSM:

Flip-flop parameters fpih = 6 ns; fpM = 9 ns
Maximum delay through the NS logic TNS = 1 ns
Maximum flip-flop setup time tsu = 3 ns

Calculate a safe operating clock frequency fcK based on a 15% safety factor.

11.8 Derive the expressions for Vx(t) in Eqs. (11.8) and (11.9) relative to Fig. 11.31c.
Assume that R\ ^> R2 and that the switch is opened (or closed) at time t = 0 only
after steady-state conditions are reached. State any simplifying assumptions that
are made relative to the Schmitt trigger and inverter. (Note: This exercise involves
solving a first-order RC circuit.)

11.9 Presented in Fig. PI 1.4 is the state diagram for a one-bit serial adder. The operand
bits, a and b, are introduced serially and are synchronized antiphase to the clock
triggering edge. The outputs are S (sum) and C0 (carry-out). Assume that the FSM
is initialized (reset) after each addition operation.
(a) Complete the state diagram by giving it a state code assignment that is free of

ORGs.

C IT

FIGURE P11.4

PROBLEMS 555

Sanity

FIGURE P11.5

(b) Design this serial adder by using two RET D flip-flops and a gate-minimum
NS and output logic. To do this, use XOR patterns where appropriate. Initialize
into the 00 state and show the sanity circuit and connections. Assume that all
inputs and outputs are active high.

(c) Test the one-hot serial adder by using the EXL-Sim2002 simulator bundled
with this text on CD-ROM. Remember to initialize the flip-flops. To do this,
include all four addition operations as indicated in the truth table of Fig. 8. Ic.

11.10 Shown in Fig. PI 1.5 is the state diagram representing a serial BCD-to-XS3 con-
verter. A synchronous BCD waveform is presented on the X input, and a syn-
chronous XS3 waveform is issued on the Z output. Note that all output signals are
issued on an exciting condition, and that the BCD code arrives serially LSB first.
(a) Use RET D flip-flops for an optimum logic circuit design of this converter.

To do this, use XOR patterns for the output function. Assume that input X is
synchronized to the falling edge of the clock waveform and that both X and
Z are active high. Initialize the FSM into the 000 state and show the sanity
circuit and its connections to the converter.

(b) Determine if ORGs or static hazards are present in the output. If they ex-
ist, then take the necessary steps to eliminate them and alter the logic cir-
cuit accordingly. Otherwise, do nothing. In any case, do not alter the state
diagram.

(c) Construct the timing diagram for the BCD-to-XS3 converter by introduc-
ing a BCD waveform equivalent to decimal 2 followed by decimal 7 (both
introduced LSB first). Thus, include waveforms for X(H), CK, A(H), B(H\
C(H), and Z(H). Use a clock waveform with a 50% duty cycle. Explain the
difference in active durations of the input and output pulses. (Hint: On the

556 CHAPTER 11 /SYNCHRONOUS FSM DESIGN CONSIDERATIONS

timing diagram, the four BCD code bits will appear in reverse order since they
are introduced LSB first.)

(d) Verify the timing diagram of part (c) by simulating the logic circuit of part (a).

11.11 A 3-bit serial odd-parity detector is to be designed that will issue an active output
pulse PoddDet(L) any time a series of three clock periods samples an odd number
of active pulses (one or three, in any order) on an input pulse string X. The output
must be issued only when clock is active.
(a) Construct an optimum state diagram and state table for this detector. To do

this, make effective use of the "from rule" discussed in Subsection 11.10.2
and initialize into the 000 state to begin the process. Remember that the
FSM must issue an output on the active portion of the clock waveform.
(Hint: This is a Mealy machine of five, six, or seven states depending on the
design.)

(b) Design the logic circuit for this detector by using three FET JK flip-flops and
a gate-minimum NS and output logic. To do this consider using XOR patterns
where appropriate. Assume that X arrives active high from a mechanical
switch, and that it must be debounced and synchronized antiphase to the clock
triggering edge. Show all input conditioning circuitry and their connections
to the FSM. Plan to use a SPOT debouncing circuit of the type shown in
Fig. 11.32a. [Hint: If Part (a) is done correctly, two to four gates will be
required for the NS and output logic.]

11.12 An FSM is to be designed that will issue an output according to the following
requirements:

If clock samples S active with both X and Y inactive, then Z is issued on
Y following XY or X following XY, provided that these events are spaced
one clock period apart. If these conditions are not met (an EQV condition),
then Z will not be issued, and the FSM must wait for S to be sampled
inactive before the FSM can return to the initial state and start the process
over again. The output Z must be issued for only one clock period, after
which the FSM must return unconditionally to the initial state.

Construct a state diagram and state table for this FSM and give it a glitch-free state
code assignment. Plan to initialize the FSM into the 000 state. (Hint: Properly
done, the state diagram will have only six states.)

11.13 Shown in Fig. PI 1.6 is a state diagram for an FSM that has two inputs, X and Y,
and one output, Z.
(a) Given the state code assignment indicated, use the array algebraic approach

to obtain the NS expressions for this FSM. To do this, first construct the
state table to obtain the state matrix S and destination matrix D. Then find
the function matrix FNs and the next matrix NS by following the exam-
ple in Section 11.11. End with an optimum set of logic equations for DA
and DB.

(b) Repeat the array algebraic approach to obtain the output function for Z.

PROBLEMS 557

X+Y

FIGURE P11.6

(c) From the results of parts (a) and (b), analyze this FSM by constructing the
revised state diagram. To do this, follow the examples in Section 10.13. Are
ORGs now possible? Are they possible in the state diagram of Fig. PI 1.6?

11.14 Shown in Fig. PI 1.7 is a state diagram for an FSM that has two inputs, X and Y,
and three outputs, P, Q, and R.
(a) Given the state code assignment indicated, use the array algebraic approach to

obtain the NS expressions for this FSM. To do this, first construct the state table
to obtain state matrix S and the destination matrix D. Then find the function
matrix FNS and the next matrix NS by following the example in Section 11.11.
End with an optimum set of logic equations for DA, DB, and DC-

XY

XY
N. V-^CUT

^*ŝ S r* ^ ^>

XY

FIGURE P11.7

558 CHAPTER 11 / SYNCHRONOUS FSM DESIGN CONSIDERATIONS

(b) Repeat the algebraic approach to obtain the output functions for P, Q, and R.
Are static 1-hazards present? If so, indicate whether they are internally ini-
tiated or externally initiated, and give the hazard cover required to eliminate
them.

(c) From the results of parts (a) and (b), analyze this FSM by constructing the
revised state diagram. To do this, follow the examples in Section 10.13. Are
ORGs possible? Are they possible in the original state diagram of Fig. PI 1.7?

(d) Noticing that none of the principal states are used as race states, obtain each
output function in terms of the three variables of the state in which the output is
issued. Now comment on the presence or absence of ORGs and static hazards.
Is this a valid set of output function expressions and, if so, is this a special
case? Which is best, the results of (b) or those of (d)?

11.15 Presented in Fig. PI 1.8 is the state table for an FSM having two inputs, X and Y,
and two outputs, P and Q. Notice that it follows the format given in Fig. 11.43a
and that the best compliance possible is made of the state assignment rules for
three state variables. (See state assignment rules 1 and 2 in Subsection 11.10.2.)
(a) Given the state code assignment indicated, use the array algebraic approach

to obtain the NS expressions for this FSM. To do this, first obtain the state
matrix S and destination matrix D. Then find the function matrix FNs and
the next matrix NS by following the example in Section 11.11. End with an
optimum set of logic equations for DA, DB, and Dc. Thus, some function
minimization is necessary.

(b) Repeat the algebraic approach to obtain the output functions for P and Q. Are
static 1-hazards present? If so, indicate whether they are internally initiated
or externally initiated, and give the hazard cover required to eliminate them.

(c) It will be observed that the array algebraic approach eliminates ORGs but
typically creates redundant output states. Use the results of part (b) to find an
optimum set of output functions that will still eliminate ORGs but that will no
longer require hazard cover. Keep in mind that the array algebraic approach
tends to maximize the number of shared Pis in the output functions, but often
at the expense of creating static 1-hazards.

\XY I0 \, I3 I2
ABC\ 00 01 11 10

111 -*i

010-^c

100-^d

011 -*e

000-^ f

© © b @

a d © c

© e e @

a (e) (e) (i;

2) CD b CD

FIGURE P11.8

PROBLEMS 559

Start

PSCRYiT
8^80= 1,UT

8^80 = 0,UT
CNTiT
CMPUT
FINlTifCNT=8

CNT=8

FIGURE P11.9

(d) Prove that the results of parts (a) and (c) are valid sets of NS and output
expressions by constructing a state diagram for this FSM. To do this, it will be
necessary to create a PS/NS table from the EV K-maps that derive from parts
(a) and (b). Compare this state diagram with that generated directly from the
state table in Fig. PI 1.8. Are ORGs possible in the original FSM?

11.16 Collapse the redundant state diagram (for a serial adder/subtractor) in Fig. PI 1.9
into one of three states. It is required that outputs CLCRY and PSCRY accompany
the USR mode control outputs S\, SQ = 1, 1, and that each of the two sets of mode
control outputs shown in the figure be assigned to separate states. It is further
required that the Start signal be active for a period greater than one clock period
and that it must go inactive before CNT and FIN signals can be issued. Assume
that any ORGs that occur after the three-state process is complete have no effect
on the proper operation of the FSM.

11.17 At the discretion of the instructor, use the CAD software ADAM included on the
CD-ROM bundled with this text to work any of the following design problems:
11.13, 11.14, and 11.15. A readme.doc accompanying this software explains the
use of the software. Thus, an assignment 11.17/11.15a would require the use of
ADAM to work Part (a) of Problem 11.15.

This page intentionally left blank

CHAPTER 12

Module and Bit-Slice Devices

12.1 INTRODUCTION

In Chapter 10 use was made of both the basic cell and the flip-flop as the memory in the de-
sign of relatively simple state machines such as other flip-flops and a sequence recognizer. In
Section 11.9 use was again made of flip-flops as memory devices in the design of a more com-
plex FSM, the one- to three-pulse generator. In this chapter, devices such as shift registers
and counters are considered. Registers and counters constitute two very important classes
of FSMs that are functionally different, and that are commonly used in the following ways:

As stand-alone devices
As data path devices in a controlled system
As memory devices in controller design

As will become evident, there is a variety of different types of shift registers and even a
greater variety of counters, some relatively simple and some relatively complex. Where
applicable, use will be made of the modular approach to register and counter design,
meaning that the modules can be cascaded into larger units. After completing this chapter the
reader will be familiar with the design and operation of almost any shift register or counter.

12.2 REGISTERS

For reference purposes, there are four modes of bitwise register operation:

True Hold a logic 0 or logic 1
Shift Right a logic 0 or logic 1
Shift Left a logic 0 or logic 1
Parallel Load a logic 0 or logic 1

Not all shift registers are designed to operate in all four modes. The simplest register, one
that can neither shift nor true hold, is called the storage (holding) register. The condition
whereby a device can sustain any set of logic output values over any number of clock cycles

561

562 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

independent of its input logic status is called true hold. The most complex shift register and
one that is designed to operate in all four modes just listed is called the universal shift register.
These and other shift registers will be considered in some detail during the discussions that
follow. Here, the modular approach to register design is emphasized, featuring the design
of a 1-bit slice, the 7th stage, which can be cascaded to form a register of any size. After
completing this section, the reader will be familiar with most any shift register available
commercially.

Registers are used in a wide variety of digital systems. They are used in the temporary
storage of binary data, in data transmission, in arithmetic operations, in counter design, in
accumulators, and in a host of other specialized applications. Registers are even used as
memory elements in FSM design.

12.2.1 The Storage (Holding) Register

A register whose only function is to store information is called a storage register and is some-
times referred to as a parallel-in/parallel-out or PIPO register. It is, of course, the simplest
of all registers, since it consists of nothing more than an array of synchronously triggered
D flip-flops with independent data inputs. Shown in Figs. 12.1a and 12. Ib are the state
diagram and NS K-map for the /th stage of a storage register. Notice that the NS function
Dj obtained from the K-map is trivial since it can be easily deduced from the state diagram.

Storage (holding) registers are commonly used in the output stage of FSMs to filter out
logic noise. A one-bit holding register is featured in Fig. 11.7, where it is used to filter the
logic noise in output Z from the FSM. Storage registers are also used to provide ordered
delivery of parallel data. For example, combinational adders, subtracters, multipliers, di-
viders, and arithmetic logic units all require the data to be introduced in an ordered and
parallel fashion, an operation that is easily accomplished by using storage registers. A four-
bit adder/subtractor of the type shown in Fig. 8.9 would require two four-bit PIPO registers,
one for word A and the other for word B. The sums may also require such a register.

12.2.2 The Right Shift Register with Synchronous Parallel Load

The operation table for the /th stage of a unidirectional shift register that can operate in
only two modes, right shift and parallel load, is given in Fig. 12.2a. It is the function of
this shift register that when the mode control S is inactive (S = 0) the register must shift
right one bit on each triggering edge of clock, and when S is active (S = 1) it must parallel
load synchronously. Synchronous parallel load means that the load values appearing on the
input to the register will be loaded into the register's flip-flops by the action of clock, not
via the flip-flop's asynchronous preset and clear overrides.

Shown in Fig. 12.2b is the state diagram for the shift register as derived from the operation
table in Fig. 12.2a. Notice that the branching condition fab is obtained by ANDing the mode
control logic (in the S column of the operation table) with the corresponding next state action
parameter (in the NSj column) for each operation that can introduce a set condition (0 —>• 1)
into the register, and then ORing the results. Thus, both a right shift Qj+\ or a parallel
load Pj operation can produce a set condition, hence fab = SQJ+l + SPj. The set hold
branching condition, fc, must contain all that is in fah, hence fb = fab, as is true for the D
flip-flop in Fig. 10.23b. The other two branching conditions follow from the sum rule but
need not be specified in plotting the K-map for Dj, given in Fig. 12.2c. The NS logic for

12.2 REGISTERS 563

PA(H) PB(H) PC(H) PD(H)

p p p p
rA rB rC rO

CLEAR(L)
(d)

QA(H) QB(H) QC(H) QD(H)

(c)

FIGURE 12.1
Design of the storage (PIPO) register, (a) State diagram and (b) NS K-map for the Jth stage, (c) Circuit
diagram and (d) circuit symbol for a four-bit storage register.

the Jth module is easily seen to be

Dj= SQJ+[+SPj, (12.1)

which can be read directly from either the operation table or state diagram.
The next-state logic, as given by Eq. (12.1), can be implemented by using discrete

logic or by using a 2-to-l MUX — the logic is the same. For this design the latter is
chosen. Shown in Figs. 12.3a and 12.3b are the MUX K-map for the Jth stage, and the
connections for the (/ + l)th, 7th, and (J — l)th stages. Here, S is the mode control
and R is the serial input (SI) for right shifting. The serial out (SO) is taken from the least
significant Q output bit, which in this case is Qj-\. Notice that this shift register has PIPO,
parallel-in/serial-out (PISO), serial-in/parallel-out (SIPO), and serial-in/serial-out (SISO)
capability. But it can only shift right and parallel load. It does not have true hold, meaning
that it cannot hold information over any number of clock periods independent of the parallel

CL>-

f = SO + SP
QJ+1 - Right shift input ab J+1 J

Pj- Parallel load input

(a)

FIGURE 12.2
Design of a 1-bit slice parallel loadable right shift register, (a) Operation table showing mode control,
S, and NS action for the 7th stage, (b) State diagram derived from (a), (c) NS K-map plotted from (b)
assuming the use of D flip-flops.

PI
/
PJ+1(H) Pj(H)

R(H) = SI — *

s\ S(H) —

0

1

QJ+i

PJ

r- S

CK •

rC

/bj

s

CL

1

'o

MUX

Y

'
' D

J+1

Q Q

(a)

Y <

r—
I

S

'

rC

\

CL

I
'o

J
MUX

Y

/ D

J

Q Q
Y <

pS

rC

\

CL

I

'o
J-1

MUX

Y

,

' D

J-1

Q Q

Y • i >
CL(L)

p p p p
rA rB rC rD

. Rgt. shift register
> with parallel load CL ®~

QA QB QC QO

(c)

QJ+1(H) Qj(H)
\ _ , _

v
PO

(b)

FIGURE 12.3
Modular design of a right shift register with synchronous parallel load and asynchronous clear ca-
pability. (a) Two-to-one MUX K-map for the 7th stage, (b) Modular connections for three bits.
(c) Block diagram symbol for the 4-bit parallel loadable right shift register.

564

12.2 REGISTERS 565

Parallel input and right 0 shifts Right 1 and right 0 shifts, and clear

CK

CL(L)

S(H)

R(H)

QA<H).

QB(H)

QC(H)

QD(H)

RO PL RO RO RO RO RO R1 R1 RO RO CL

FIGURE 12.4
Timing diagram for the parallel loadable right shift register of Fig. 12.3c showing a parallel load of
1010 and subsequent right shifts for R values of 0, 1 and 0, and asynchronous clear.

load logic values. For true hold to exist, each module would have to feed its output back
to itself on command of the mode control, which cannot happen in the shift register of
Fig. 12.3.

Presented in Fig. 12.4 is the timing diagram for the four-bit, parallel loadable, right
shift register represented by the block symbol in Fig. 12.3c. As indicated, a parallel load
of PAPBPcPo = 1010 is introduced followed by right shifts for serial inputs set at 0, 1
and 0, and ending with an asynchronous clear CL(L) = 1(L). For the sake of simplicity, no
account is taken of the propagation delay through the logic.

Variations of the shift register in Fig. 12.3 are possible. By connecting the Q output of
each flip-flop to the /o MUX input of the next most significant bit (MSB) stage, a parallel
loadable left-shift register results. The 8-bit version of this shift register is equivalent to the
commercial 74xxl66 shift register. Or by eliminating the MUX of each module in Fig. 12.3b
and by connecting each flip-flop output to the D input of the next MSB or next LSB stage,
a simple left or right shift register results but, of course, without the parallel load feature. In
the subsection that follows, a shift register having all these features and more is discussed
in detail.

12.2.3 Universal Shift Registers with Synchronous Parallel Load

A shift register that possesses all four bitwise modes of operation, given at the beginning
of this section, is called the universal shift register (USR). Its operation table in Fig. 12.5a
indicates that the USR requires two mode control inputs, S\ and So, for the four modes of

566 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

0 0

0 1

1 0

1 1

True Hold

QJ+1 Right Shift

Qj.., Left Shift

P, Parallel load

(a) (b)

(c) (d)

FIGURE 12.5
Design of a 1-bit slice universal shift register (USR). (a) Operation table for the Jth stage, (b) State
diagram for the Jth stage, (c) NS logic K-map plotted from (b) assuming the use of D flip-flops.
(d)MUX K-map for Dj.

operation. The state diagram for the 7th stage, shown in Fig. 12.5b, is obtained directly from
the operation table. For example, the branching condition fab is the Boolean sum of all set
producing conditions, each formed by ANDing the mode controls with its corresponding
NS action parameter. Thus, since a set condition can be introduced by a shift right operation,
the term S\So • QJ+\ must be included in the expression for /„/,. Because a left shift or a
parallel load can also introduce a set condition into the register, two more terms are added
for a total of three ANDed terms in the expression fab as indicated. Similarly, the set hold
condition fb must include S\ SQ • Qj (the true hold condition) as well as all the set terms in
fab. The two remaining branching conditions, f\,a and /a, can be found from the sum rule,
but are irrelevant for a D flip-flop design.

The minimum NS logic for the 7th stage is obtained from the K-map in Fig. 12.5c, which
is plotted from the state diagram in Fig. 12.5b, assuming the use of D flip-flops. The logic
expression for Dj , as read from the K-map, is

(12.2)

12.2 REGISTERS 567

which is just the set hold condition in the state diagram. Equation (12.2) can be implemented
either with discrete logic or by using a 4-to-1 MUX. For this example, the latter is chosen and
its MUX K-map representation is given in Fig. 12.5d. From this K-map an n-bit USR can be
configured. Shown in Fig. 12.6a is a 3-bit slice USR given for stages J + l, J, and J — 1, all
deduced from the MUX K-map in Fig. 12.5d. Notice that for this 3-bit USR, the serial input
for right shifting, R, replaces the MUX input Qj+2 from the next MSB stage. Similarly,
the serial input for left shifting, L, replaces the MUX input Qj-i from the next LSB stage.
The nature of the true hold mode is evident by observing that the output of each stage is fed

R(H)

,u\ i
1

CK-

[x ,
X,

X

*

PJ+i(H) Pj(H) Pj.^H)

Qj(H)

a

QJ

•

'

<-2\ H)

Qj*i(H)

1 n
S.

S

°

J+1 MUX

Y

Buffers — ̂
-C

\

CL

/ D

J+1

Q Q

Y

Qj-i(H)

3

QJ

?

+1 H)

Qj(H)

1 ft
S.

c
0

JMUX

Y

•

I
rC

x/

CL

Q

Y

D

J

Q

Qj.2(H)

Qj(H)

Qj-i(H)

• • L(H)

3 2 1 0
S.

S
J-1 M\JX

Y

!
rC

v D

CL J-1

Q Q

Y n (\ }OL^L;

Qj(H) Qj.^H)

(a)

P P P PrA rB C D

S0 Universal Shift
> Register

R /~s i~\ r\

(b)

FIGURE 12.6
(a) MUX implementation of a 3-bit slice universal shift register (USR) showing buffered inputs.
(b) Block diagram symbol for a 4-bit USR triggered with RET D flip-flops.

568 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

Parallel load in, PI

Buffers PA PB PC PD PE Pp PG PH

/

CK

SI for Rgt. shift =R(H)-

SO for Lft. shift

PA PB PC PO
S1

S0 Universal Shift

R

Register

QA QB Qc

b-1 Universal Shift
)> Register

Q Q Q QA 8 c D
-L(H) = SI for Lft. shift

SO for Rgt. shift
Qc QD QE QF QG QH

Parallel load out, PO

FIGURE 12.7
Block diagram symbols showing two cascaded 4-bit USRs to form an 8-bit USR.

back to its own 70 MUX input, a requirement of cell 0 in the MUX K-map of Fig. 12.5d.
The parallel load inputs for each stage, Py+), P/, and P/_i are the MUX inputs 73, as re-
quired by cell 3 of the MUX K-map. The block diagram symbol for a 4-bit USR is given in
Fig. 12.6b.

The USR stages in Fig. 12.6 can be cascaded to form a USR of any size. Shown in
Fig. 12.7 is an 8-bit USR formed by using two 4-bit USRs. The external serial inputs, R and
L, for right and left shifting, are the MSB stage MUX 7) input and the LSB stage MUX 72

input, respectively, of the cascaded system. The SO outputs are taken from the Q outputs
at the extreme opposite ends of the two cascaded USRs as shown. Also, note that mode
control inputs, S\ and So, and the clock input CK must be buffered for fan-out purposes,
as indicated in Figs. 12.6 and 12.7. Proper buffering of such signals is important to avoid
the introduction of degraded signals to the various components of the USR (see Section 3.5
and Subsection 11.6.3). Individually and in cascade, but with FET D flip-flops, the USRs in
Fig. 12.7 are equivalent to the 4-bit 74xxl94 and to the 8-bit 74xx299 commercial USRs,
respectively.

12.2.4 Universal Shift Registers with Asynchronous Parallel Load

The universal shift registers in Figs. 12.6 and 12.7 are parallel loaded synchronously as
required by the operation table given in Fig. 12.5a. USRs can be parallel loaded asyn-
chronously by removing the parallel load mode of operation from the operation table and
by implementing it via the asynchronous preset and clear overrides of the flip-flops. When
this is done, the new operation table, state diagram, NS K-map, and NS function Dj for the
yth module become those shown in Figs. 12.8a, b, and c, respectively. The resulting logic

12.2 REGISTERS 569

0 0

0 1

1 X

Qj True Hold

QJ+1 Right Shift

Q ,, Left Shift

X = Irrelevant input fb = S^Qj + f b (c)

(a) (b)

FIGURE 12.8
Design of a 1-bit slice universal shift register (USR) with asynchronous parallel load capability, (a)
Operation table for the 7th stage, (b) State diagram for the 7th stage, (c) NS logic K-map plotted
from (b), and minimum cover for NS function assuming the use of D flip-flops.

expression for Dj is

, (12.3)

which can be implemented by using either discrete logic or an SSI device such as a 4-to-l
MUX. Clearly, use of a MUX would not be the most efficient use of the logic, since there are
only three terms, not four as in Eq. (12.2). Recall from Section 6.2 that full use of a 2"-to-l
MUX as a function generator requires that 2" unique functions be generated by the use of n
data select inputs. This is not the case in Eq. (12.3). However, if optimized use of hardware is
not required, use of an off-the-shelf MUX to implement Eq. (12.3) can suffice quite nicely.

The advantage of asynchronous parallel loading is that the load values can be introduced
directly into the register's memory via the preset and clear overrides of the flip-flops and
that shifting can occur on the rising edge of the clock waveform immediately following
the release of the load command. In comparison, synchronous parallel loading can occur
only on the triggering edge of the clock waveform, but the external load inputs should be
synchronized to the clock signal. The load inputs for asynchronous parallel loading do not
have to be synchronized.

A combinational logic truth table must be constructed to provide the external logic
necessary for the asynchronous parallel load capability. This truth table is given in Fig. 1 2.9,
together with the K-maps and minimum cover for the asynchronous PRE and CLR override
inputs of the flip-flops. The minimum cover yields the following expressions for PRE
and CLR:

PRE=CL-LD- Pj
CLR = LD-Pj + CL

= PRE -LD + CL
(12.4)

570 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

CL LD

1 X X

0 0 0

0 0 1

0 1 0

0 1 1

PRE CLR

0 1 xLD-P, \LD-Pj
/ • M X

0 0

0 0

0 1

1 0

CL\

0

1

00 01 11 10 CL\

0

0

0

0

CD
0

0

0

/

0

1

PRE

00 01 11 10

0

(1
0

1

0

1

p~
1)
/ CLH

X = Irrelevant input

(a) (b)

FIGURE 12.9
Combinational logic required for asynchronous parallel load, (a) Truth table, (b) K-maps and minimum
cover for the preset and clear overrides of a flip-flop.

The second expression for CLR is obtained by complementing the K-map for PRE, ANDing
with LD and ORing with CL, as the terms suggest. This alternative expression is the one
used in this example.

Shown in Fig. 12.10a is the logic circuit for the 7th stage of a USR with asynchronous
parallel load and asynchronous clear capability, where use has been made of Eqs. (12.4).
Here, the NS-forming logic for Dj is implemented with discrete logic, and an FET D flip-
flop is used as the memory. Notice that the load control input is made active low, LD(L),
which is commonly done for such devices. The Qj+\ and Qj-\ inputs are taken from the
next MSB and next LSB stages, respectively, as was done in Fig. 12.6a. Proper buffering
of input signals is indicated in Fig. 12.10a.

Cascading four identical stages results in a 4-bit USR having the block circuit symbol
shown in Fig. 12.1 Ob. Observe that it differs from that in Fig. 12.6b only by the presence
of the LD(L) input required for asynchronous parallel load capability. An 8-bit USR is
produced by cascading two 4-bit modules as was done in Fig. 12.8, but with the added
LD(L) input buffered and connected to both 4-bit USRs. Functionally, the 4-bit and 8-bit
USRs are equivalent to the commercial 74xxl94 and 74xx299 USRs, respectively, but with
asynchronously parallel loaded data inputs. A perspective on synchronous vs asynchronous
parallel loading of data is given later in Subsection 12.3.6 following a detailed discussion
of counters.

12.2.5 Branching Action of a 4-Bit USR

In Section 13.3 the USR is used as the memory as a form of alternative architecture in
the design of state machines. To program the USR in such applications requires that its
branching action be labeled as illustrated in Fig. 12.11 for a fictitious state machine. Here, it
is assumed that shifting action has priority over parallel load. Notice that for the branching
action of the USR there are six possibilities:

H, SLO, SL1, SRO, SRI, and PL,

representing hold, shift left 0 or 1, shift right 0 or 1, and parallel load, respectively.

Pj(H)

Qj-i(H)

Universal Shift
Register

QA QB Qc Q0

CL(L) '

Qj(H) (b)

FIGURE 12.10
(a) The Jth stage for a USR with asynchronous parallel load capability, (b) Block circuit symbol for
a 4-bit USR with asynchronous parallel load capability.

SRO

SR° ^ ' SRO

FIGURE 12.11
Illustration of the branching action of a USR used as the memory for a fictitious state machine.

571

572 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

12.3 SYNCHRONOUS BINARY COUNTERS

Synchronous counters form a class of FSMs for which each state code assignment of its state
diagram is taken to be a number in a count sequence. Most simple synchronous counters are
degenerate Moore machines that obey the basic model of Fig. 10.3c, since their only outputs
are the state variables. Other synchronous binary counters are those that have control inputs
and unconditional or conditional outputs, and that adhere to either the Moore or Mealy
model (Fig. 10.4 or 10.5). In any case, such binary counters are classified as modulo-N
counters or as divide-by-N counters, where TV is the number of states of the sequence.
The divide-by-N designation results from the fact that the clock frequency is divided by
N(fcK/N} if taken from the MSB output of the counter. The up/down binary counter of
Figs. 10.57 and 10.58 is classified as a modulo-8 (divide-by-8) bidirectional counter. But as
will soon become evident, it is also a divide-by-8, divide-by-4, or divide-by-2 binary counter
depending on from which output A, B, or C the count is taken, respectively. Any of these
counters can be designed with synchronous or asynchronous parallel load capability, which
means that these counters can begin the synchronous count from the parallel load state.

The state sequence of a synchronous counter need not conform to a regular binary count,
up or down. Synchronous counters can be designed to count in any of the codes defined in
Section 2.10, and in any direction. The most common of these for use in counter design
are the decimal codes, specifically the BCD code. A BCD counter has 10 states and is
accordingly called a decade or divide-by-10 counter. Still, the count sequence does not have
to be binary. Counters can be designed to count in a unit distance code sequence of the type
given in Table 2.12. The most common of these is the Gray code counter that sequences
through states shown in column (2) of Table 2.12, assuming it to be of four bits.

Counters discussed so far are classified as synchronous counters because their flip-
flops are all triggered simultaneously by the clock signal. Counters whose flip-flops are
each triggered by the output of the next LSB stage flip-flop are called ripple counters or
asynchronous counters. Thus, the triggering action of the flip-flops ripples from the LSB
stage flip-flop, where the external clock enters the counter, to the MSB stage flip-flop.
Ripple counters can be designed to up count, or down count, or both. These counters will
be discussed in detail in Section 12.5.

Finally, there is a broad class of synchronous counters that can be designed by using
shift registers of the type discussed in Section 12.2. One such counter, called a ring counter,
sequences through a series of one-hot code states as in column (c) of Table 2.11. Another
counter in this class of counters is called the twisted ring counter (also called the Johnson
or Mobius counter), which sequences through a series of creeping code states as in column
(7) of Table 2.10. Still other counters can be configured with D flip-flops and XOR gates to
form what are called autonomous linear feedback shift register counters or simply ALFSR
counters. ALFSR counters are useful in generating pseudo-random sequences of n-bit
binary numbers, among other uses.

For future reference, the following lists several members of the rather diverse family of
synchronous counters:

Code counters
Binary divide-by-2" counters
Decimal counters (e.g., BCD, XS3 counters)
Gray code counters

12.3 SYNCHRONOUS BINARY COUNTERS 573

CK

,

—

D Q
A

> Q 0-

-Q(H)

L-Q(L)

(C)

(d)

FIGURE 12.12
D flip-flop design of the divide-by-2 counter, (a) State diagram, (b) NS K-map. (c) Logic circuit,
(d) Timing diagram.

Bidirectional (up/down) counters
Multisequence counters (e.g., binary/Gray code counters)
Shift register counters

Standard ring counters
Twisted ring (Johnson or Mobius) counters
Linear feedback shift register (LFSR) counters

12.3.1 Simple Divide-by-N Binary Counters

Although these counters represent some of the simplest state machines discussed thus far,
their coverage is important to an understanding of some of the basic concepts involved.

The Divide-by-2 Counter Shown in Fig. 12.12 are the state diagram, K-map, logic cir-
cuit, and timing diagram for a divide-by-2 (^-2l) binary counter that has been implemented
by using an RET D flip-flop. Because it exhibits only toggle character, it is also called a tog-
gle module. The toggle module is used in the design of ripple counters (Section 12.5), in the
design of data-triggered counters (Subsection 13.6.2), and as a memory element for pulse-
mode state machine design (Chapter 15). Of course, as a divide-by-2 counter, it performs
the simple function of dividing the clock frequency by 2, as indicated in Fig. 12.12d.

The Divide-by-3 Counter The divide-by-3 counter has just three states, and therefore is
not a divide-by-2M -counter—it does not complete the 22 count, resulting in some interesting
consequences. Shown in Fig. 12.13a is the state diagram for a divide-by-3 counter where the
sequence is binary • • • 00 -> 01 —» 10 —»• 00 • • •. The NS K-maps are given in Fig. 12.13b,
assuming the use of D flip-flops, and the timing diagram is presented in Fig. 12.13c. Notice
that each of the two outputs from the flip-flops divides the clock frequency by 3 (/ctf/3)

574 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

QAQB = AB

(a) (b)

FIGURE 12.13
Design of the divide-by-3 binary counter with D flip-flops, (a) State diagram, (b) NS K-maps.
(c) Timing diagram.

and has a 33'/3% duty cycle, independent of the clock duty cycle. For the sake of brevity,
no logic circuit is given for this example.

The Divide-by-4 Counter The divide-by-4 O22) counter completes the 2" = 22 count
so that advantage can be taken of the toggle character inherent in a divide-by-2" counter.
This means that the use of T flip-flops can be used advantageously in the design of such
counters. Shown in Fig. 12.14 are the state diagram, NS K-maps, logic circuit for a T
flip-flop design, and the timing diagram for this modulo-4 counter. The toggle character
is obvious by an inspection of the state diagram: bit A toggles every other bit and bit B
toggles on each bit. It is for this reason that the T flip-flop design generates the simplest
NS logic. Keep in mind, however, that extra logic is required to convert a D flip-flop to a
T flip-flop, as indicated in Fig. 10.39; T flip-flops are not normally available commercially.
Notice that the outputs each exhibit a duty cycle of 50% independent of the duty cycle of the
regular clock waveform. Also, observe that the output from the MSB flip-flop (A) divides
the frequency by 4, whereas the output from the LSB flip-flop (B) divides it by 2. This fact
will be expanded upon in the discussion that follows.

Perspective on Divide-by-N Counters Before moving on to examples of more complex
counters, it is worth while to pay attention to some important characteristics of the divide-by -
N binary counters. These counters can be divided into two categories: those that are divide-
by-2" (modulo 2") counters and those that are not (N ^ 2"). The outputs from a divide-by-2"
binary counter are always of a 50% duty cycle and have frequency division in descending

12.3 SYNCHRONOUS BINARY COUNTERS 575

\B
A\

0

1

0

0

0

1

1

1
/

\B

A\

0

1

0

1

1

1

1

1

-7TA = B ZTB = 1

(a) (b)

CK
CK

\
r~

' T

A

Q Q
V

\/ r

B

Q Q
V

QA<H>

QA(H) QB(H)

(c) (d)

FIGURE 12.14
Design of the divide-by-4 counter by using RET T flip-flops, (a) State diagram, (b) NS K-maps and
minimum cover, (c) Logic circuit, (d) Timing diagram showing divide-by-2 and divide-by-4 outputs.

orders of 2" beginning with the MSB flip-flop and ending with the LSB flip-flop, where
n = 1, 2, 3, 4 • • •. Thus, for a 4-bit binary counter Q A is a fCK -=- 24 output, Q B is a /CK -^ 23

output, Qc a fcK -^ 22 output, QD a /CK -^- 21, and are all independent of count direction,
up or down. In contrast, divide-by-N counters, for which N / 2", do not have frequency
division in descending orders of 2" and do not always have outputs of the same duty cycle.

There is one further and important distinction between these two categories of counters.
The divide-by-2" binary counters have complete toggle character for which the use of T flip-
flops yields minimum NS logic. Divide-by-N counters, for which N ^2n,do not complete
the 2" count and consequently do not have complete toggle character. For these counters
the use of JK flip-flops will most likely yield NS logic of least cost hardware-wise. The
following example of a BCD counter is evidence of this latter fact.

12.3.2 Cascadable BCD Up-Counters

The BCD counter is designed to sequence states 0000 through 1001 in binary, after which it
must start over. A review of the BCD code is provided in Subsection 2.4.1. In order for the
BCD counter to be useful in representing a range of weighted digits (• • • 100, 10, 1, 0, 0.1,
0.01 • • •), it is necessary to design cascading capability into the counter. Shown in Fig. 12.15
is the state diagram for a BCD (decade) up-counter that can be cascaded to represent multiple

576 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

Sanity, reset
or clear

EN EN

FIGURE 12.15
State diagram for a cascadable BCD up-counter.

decades. It has 10 states and has an enable (EN) input and an unconditional carry out (CO)
output for cascading purposes.

The NS K-maps are derived directly from the state diagram in Fig. 12.15 by using the
mapping algorithm given in Section 10.6 as applied to T flip-flops. The results are given in
Fig. 12.16 together with the output K-map for CO. Also shown are the NS K-maps for a JK
flip-flop design, which are obtained by K-map conversion. The T-to-JK K-map conversion
algorithm is easily deduced from Eq. (10.12) and by observing the domain partitions in the
K-maps indicated with heavy lines. The algorithm is stated as follows:

Algorithm 12.1: T ~-> JK K-map Conversion [Refer to Eq. (10.12)]

(1) For all that is NOT 4 in the TA K-map, transfer it to the JA K-map directly.
(2) For all that is A in the TA K-map, transfer it to the KA K-map directly.
(3) Fill in the empty cells with don't cares.
(4) Repeat steps (1), (2), and (3) for the TB -* JB , KB and Tc -*• /c, ^c» etc., K-map

conversions, always by observing the domain partitions.

Note that Algorithm 12.1 can be applied in reverse — that is, for JK -> T K-map conversion.
Thus, for domain A, all that is NOT A in the JA K-map is transferred directly to the TA
K-map, and all that is A in the KA K-map is transferred directly to the TA K-map, etc.

An inspection of the NS K-maps in Fig. 12.16 indicates that the JK NS logic is simpler
than that for the T NS logic. This results from the don't cares that are inherent in the
excitation table for the family of JK flip-flops given in Fig. 10.45. Because of the simpler
logic, the cascadable BCD counter is implemented with FET JK flip-flops, as shown in
Fig. 12.17a. The D flip-flop implementation of this counter is not considered here, but
would involve considerably more NS logic.

The timing diagram for the 4-bit BCD counter is given in Fig. 12.18 together with
frequency division and duty cycle information for the four state variable outputs. Notice
that all but the D(H) output are divide-by-10 outputs and that the duty cycles vary from
20% for the A(H) output to 50% for D(H). Output C(H) has a split duty cycle. Such
information can be important for some applications.

The four-bit BCD counter module in Fig. 12.17a can be cascaded to form any number
of weighted digits. For example, cascading two 4-bit counters permits a 0 to 99 count or

\CD \CD \CD
AB\ 00 01 11 10 AB\ 00 01 11 10 AB\ 00 01 J1 10

00

01

11

10

0

0

^

0

0

0

*
EN

0

IN*

Id
*

0

0

<{>

*

0

0

^
0

0

0

*
0

EN

EN

*

_L

0

0

*
0

0

0

*
0

EN

EN

^

0

EN

EN

*

*

0

0

*
#

00

01

11

10

0

0

*
0

0

0

*
1

0

0

*
.*,

0

0

^
<*

00

01

11

10

0

0

*

*

0

0

*
*

0

EN

JL

*

0

0

#
0

00

01

11

10

*
*
*
0

m

m

Y

EN

*'

^

^

f,

(j>

r

r

T

TA = BCD(EN) + AD(EN) JA = BCD(EN) KA = D(EN)

\CD \CD \CD
AB\ 00 01 11 10 AB\ 00 01 11 10 AB\ 00 01 11 10

00

01

11

10

TB = CD(EN)

\CD
AB\ 00 01 11 10

00

01

11

10

TC = AD(EN) JC = AD(EN) Kc = AD(EN) = Jc

\CD
AB\ 00 01 11 10

TD = JD = KD = EN by inspection

rCO
CO = AD

FIGURE 12.16
NS and output K-maps for the T or JK flip-flop design of the cascadable BCD counter in Fig. 12.15.

577

00

01

11

10

0

*
*
0

0

Y

r

0

EN

Y

Y

. *

0

(j)

(j)

*

00

01

11

10

*
0

r

r

*
0

r

T

r , ^

EN

Y

JP_^

Y

0

^
^

/• JB /"

JB = CD(EN) KB = CD(EN) = JB

VCD \CD
\

00

01

11

10

00

0

0

#

0

01

EN

EN

t

0

11

Y

*

<t>

*

10

T

Y

(h

Y

AB\

00

01

11

10

00

(h

(f)

*
T

01

Y

Y

</>

*

11

EN

EN

^

>

10

0

0

r

m

D(H)—| • EN(H)

CO(H)—C —A(H)

CK-o[>o

I I
vJ

K

rCCL

Q

^

B(H) C(H) A(H)

^

A

1
C(H) Y

o

T

JL A

M r^T A A
J

Q

K X/ I t^ X/
U l\ v

rCCL B rCCL C

J

Q Q Q Q
V V

-c

A
K ^/ J

CL D

Q Q
V

CL(L)

A(H) B(H) C(H) D(H)

(a)

^

CL

CO EN

->_

<«- ... <«-

A
CL

CO EN
QA QB QC QO

-y_

4

A
CL

CO <°> EN
QA Q8 QC QQ

-y_

4—

Sanity(L)

EN(H)

MSD (b) LSD

FIGURE 12.17
(a) Implementation of the 4-bit cascadable BCD up-counter by using FET JK flip-flops, (b) Cascaded
4-bit modules to produce a A>digit BCD counter.

A(H) _ | | _ | |_ fCK/10; 20% duty cycle

B(H) _ [| _ | | _ fCK/1°: 40% duty cycle

W1°; 40% dutv cvcle

FIGURE 12.18
Timing diagram for the BCD up-counter of Fig. 12.17 showing the frequency division and duty cycle
percentages for the state variables, and the output CO in state 1001.

578

12.3 SYNCHRONOUS BINARY COUNTERS 579

0.1 to 9 count, etc., depending on how one views the count. Cascading three such modules
gives a 0 to 999 count. Or generally, cascading k of these modules, as in Fig. 12.17b, forms
a &-digit BCD counter with a 0 to 10^ — 1 count, where k is an integer (k = 0, 1, 2, 3, ...).
The EN input to the LSD stage is, of course, a counter enable control. If EN(H) = !(//),
the counter is enabled. But if EN(H) = Q(H), the counter is disabled and is caused to hold
in whatever state it is in at the time. The EN input can be replaced by an ANDing operation
permitting two signals to control the operation of the counter: a count enable input and an
inhibit input, both performing basically the same function.

The manner in which a cascaded BCD counter operates is as follows: Each full count of
the LSD (0) stage sends a CO signal to the next MSD (1) stage which is properly enabled on
the next rising edge of the clock pulse. Thus, for each full count (O-to-9) of stage (0), stage
(1) is bumped up 1. So after 10 such full counts of stage (0), stage (1) completes its full
count (O-to-9) and enables the next MSB stage, which is bumped up one on the next rising
edge of clock. Any output race glitches (ORGs) that occur are of no consequence, since the
single-output CO can enable the next stage only if is issued for a complete clock period.
ORG glitches occur immediately following the triggering edge of the clock waveform and
damp out long before the output CO can be picked up by the next MSB stage.

12.3.3 Cascadable Up/Down Binary Counters with Asynchronous Parallel Load

For the most part the design details for this counter have already been established. Equations
(10.17) in Subsection 10.12.1 give the NS and output logic for a 3-bit (divide-by-23) up/down
binary counter, assuming the use of T flip-flops. There, a single input, X, controls the
direction of the count such that if X = 1 the count is Up or if X = 0 the count is Down.
The state diagram for a 4-bit (divide-by-24) up/down counter is given in Fig. 12.19, where
two direction controls are used, Up and Dn (down). Clearly, these two direction controls
can never be active at the same time. Should this happen, the FSM would not know how to
respond and would malfunction. Notice that all holding conditions are omitted in the state
diagram of Fig. 12.19. This is permissible since a T flip-flop design is anticipated — a given
state cannot toggle to itself.

Equations (10.17) can easily be extended and applied to the 4-bit up/down counter of
Fig. 12.19 by noting the trend in the equations and by taking X = Up and X = Dn. When this
is done, there results the following NS and output equations for the cascadable divide-by-24

BO it if Dn
U

Up
COiT if Up

FIGURE 12.19
State diagram for a cascadable up/down binary counter.

580 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

CO(H)

h-AH)
-B(H)
— C(H) BO(H)
L-D(H)
- Up(H)

B(H)
C(H)
D(H)

P P P PrA rB rC rD
LD

Parallel loadable CL
Up/Down Binary

CO Counter
BO Dn

QA QB Qc Qc

>

•-CL(L) I ' I

Qj(H) (b)

FIGURE 12.20
Implementation of the 4-bit up/down binary counter of Fig. 12.19 with asynchronous parallel load,
(a) Logic circuit for the 7th stage with CO and BO logic, (b) Block circuit symbol.

binary up/down counter:

TA = BCD • Up + BCD • Dn

Tc = D • Up + D • Dn
TD= Up + Dn

CO = ABCD • Up
BO = ABCD • Dn

The trend in the NS and output logic having been established, the equations for any size
bidirectional divide-by-2" binary counter can be written directly without the need for K-
maps or minimization algorithms.

All that remains to complete the design of this counter is to obtain the external logic
required for the asynchronous parallel load capability. This has already been done in the
form of Eqs. (12.4) and Fig. 12.10a for the USR with asynchronous parallel load capability
(see Subsection 12.2.4). Presented in Fig. 12.20a is the logic circuit for the jth stage. Here,
it is understood that Tj represents the four different NS functions (TA,TB,TC, and TD) in
Eqs. (12.5) taken in turn, and that LD(L) is the command to parallel load the value Pj(H).
Observe that when parallel loading, the asynchronous overrides PRE and CLR are never
active at the same time.

The block circuit symbol for the 4-bit parallel loadable up/down counter is provided in
Fig. 12.20b. Here, each stage is that of Figure 12.20(a), but with the appropriate NS function
taken from Eqs. (12.5). Shown in Fig. 12.21 is a 4fc-bit parallel loadable up/down binary
counter consisting of k 4-bit counters in cascade. The output logic, CO and BO, for each
4-bit counter is given in Fig. 12.20a. Notice that the input LD(L) is common to all k modules

12.3 SYNCHRONOUS BINARY COUNTERS 581

4k-Parallel load inputs

p p p p
rA rB rC rD

>
CL

k-1
CO Up
BO Dn

Q Q Q Q

MSB

P4 Pa P, Pr

CL

CO Up
BO Dn

Q4 QB Qn Qn

p p prA * B rC

>
CL

CO Up«--Up(H)
BO Dn«—Dn(H)

Q

LSB

\ ^ x X\x
24k-1 Count

FIGURE 12.21
Cascading of 4-bit parallel loadable up/down counters to form a 4fc-bit counter.

for purposes of introducing the 4k parallel load values to the counter asynchronously via
the preset and clear overrides of its 4k T flip-flops.

The operation of the fc-stage up/down binary counter in Fig. 12.21 is straightforward.
Any time LD(L) is active the counter is parallel loaded asynchronously and the counting
operation is interrupted. When LD(L) becomes inactive, counting is resumed up or down
from that parallel load value. The direction of count is determined by which input, Up(H)
or Dn(H\ is active. Obviously, both cannot be active at the same time. When one of the
k stages has completed its full count, an output (CO or BO) is issued to the next stage
enabling it on the next triggering edge of clock. If the count is up, CO is issued; if the count
is down, BO is issued. The maximum number of states through which this fc-stage counter
can sequence is 24k — 1. As is true for the counter in Fig. 12.17, any ORG that exists in the
CO or BO output signal disappears long before the next stage is triggered.

The advantage of an asynchronous parallel load feature is that the load values are in-
troduced directly into the memory without having to be clocked in or synchronized, as in
the synchronous parallel load arrangement. An asynchronous parallel load capability can
be added to any counter that has flip-flops with preset and clear overrides. For example,
the BCD counters in Fig. 12.17 can be designed with this feature if the flip-flops are given
both preset and clear input overrides. Considered next are the cascadable up/down binary
counters with synchronous parallel load and true hold capability.

12.3.4 Binary Up/Down Counters with Synchronous Parallel Load
and True Hold Capability

The design of this counter creates a special dilemma. The parallel load must be introduced
to the counter synchronously, but T flip-flops lack the capability to do this. One approach
would be to design this counter by using D flip-flops with D NS logic. However, the NS

CL(L)

582 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

0 0

0 1

Qj True hold _ -
Tab~bibo' j+ bipj

j Up/down count

1 x ^j Parallel load (" ^ ^ •* Dj

" ' ' " -"S 0 Qj + 'ab

(C)

(b)

FIGURE 12.22
Design of a 4-bit slice up/down counter with synchronous parallel load and true hold capability.
(a) Operation table for the /th stage, (b) State diagram for the /th stage, (c) NS logic K-map and
minimum cover obtained from (b) assuming the use of D flip-flops.

logic would be too costly (hardware-wise) to justify a design by this means. A much simpler
approach is to use D flip-flops for the parallel load and true hold capability but convert them
to T flip-flops for the up/down count, all on command of two mode-control inputs. This is
the method that is used in this example.

Shown in Fig. 12.22 are the operation table, state diagram, NS K-map, and NS function
for the /th stage of an up/down counter with synchronous parallel load and true hold
capability. The NS K-map yields the NS function for the /th stage D flip-flop as

DJ = SlSoQj + S l S o T j + S l P j -+SiS0Qj + SiS0(Tj@Qj) + SiPj, (12.6)

where S\ and So are the mode controls for this counter. The NS functions and output
functions for the up/down count are given by Eqs. (12.5) and are reproduced here for the
convenience of the reader:

TA = BCD • Up + BCD • Dn]

TB = CD-Up + CD- Dn

Tc = D • Up + D • Dn

TD= Up + Dn

CO = ABCD • Up

BO = ABCD • Dn

(12.7)

Thus, Tj in the operation table and state diagram of Fig. 12.22, and each Tj in Eq. (12.6)
and in Eqs. (12.7), becomes Tj © Qj to permit conversion between T and D flip-flops, as
explained in the next paragraph.

12.3 SYNCHRONOUS BINARY COUNTERS 583

Pj(H) Tj(H)

A(H)
B(H)
C(H)
D(H)

Up(H)

CO(H)

BO(H)

p p^ p p
rA rS rC rO

S0 4-Bit Parallel CLP~
-<£> Loadable Up/Down

Q Binary Counter y

BO Dn

CL(L)
(b)

Qj(H)

(a)

FIGURE 12.23
Implementation of the cascadable up/down binary counter with synchronous parallel load and true
hold capability represented in Fig. 12.22 and by Eqs. (12.6) and (12.7). (a) The Jth stage show-
ing D-to-T flip-flop conversion logic and output logic, (b) Block diagram symbol for the 4-bit
counter.

Implementation of Eqs. (12.6) and (12.7) is given in Fig. 12.23afor the Jth stage of a 4-bit
cascadable up/down binary counter with synchronous parallel load and true hold capability.
The block circuit symbol for a 4-bit version of this counter is provided in Fig. 12.23b. This
design requires the use of FET D flip-flops, which permit the counter to parallel loaded or
hold in a particular state for any number of CK cycles, all depending on the mode controls
as indicated in Fig. 12.22a. But to count up or down, the D flip-flops are converted to T
flip-flops by Eq. (10.10) or, in this case, by Dj = Tj 0 Qj for the Jth stage. This approach
provides the best of both worlds: D flip-flops for parallel load and true hold capability, and T
flip-flops for an efficient means of dealing with the toggle character inherent in the binary up
or down count. Counter designs by this means are especially attractive for implementation
by registered PLD devices. These devices include V-type PALs (see Section 7.4), or the
Xilinx FPGAs discussed in Subsection 7.7.3, all of which have edge-triggered D flip-flops

584 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

with asynchronous preset and clear overrides built into them. Implementation of this counter
by using FPGA-type devices will require special programming software.

The cascadable up/down binary counter in Figs. 12.22 and 12.23 can be designed with
asynchronous parallel load capability while retaining the true hold feature. To do this
simply requires that the synchronous parallel load feature be removed from the operation
table in Fig. 12.22a, and then applied as an asynchronous parallel load via the PRE and
CLR overrides of each D flip-flop, as is done in Fig. 12.20. Now, only one mode control
remains (S), permitting the use of a 2-to-l MUX to implement the new Dj function. With
a few changes, the bidirectional 4-bit counter in Fig. 12.23 is equivalent to the commercial
74xxl69 counter.

12.3.5 One-Bit Modular Design of Parallel Loadable Up/Down
Counters with True Hold

A one-bit modular approach will now be used to design a binary counter that can count up
or down, that can be parallel loaded synchronously, and that has true hold capability. The
operation table for a 1-bit slice counter of this type is presented in Fig. 12.24a. The LD and
EN inputs are the mode control inputs that determine whether the counter will hold, count
or parallel load synchronously. The count function CNT represents an up- or down-count
depending on the count direction parameter D/U introduced in the following discussion.
The state diagram, shown in Fig. 12.24b, is constructed directly from the operation table in
Fig. 12.24a. For example, the branching condition fab is the Boolean sum of all set producing
conditions, each formed by ANDing the mode control inputs on the left with the correspond-
ing NS action parameter on the right of the operation table. Thus, count and parallel load
are the set-producing modes of operation that constitute fab. The set hold condition must
contain the true hold condition as well as fab. The remaining two branching conditions can
be obtained from the sum rule, but are of no consequence when designing for D flip-flops.

LD EN

0 0

0 1

1 X

NSj

Qj True Hold

(CNT)j Count

Pj Parallel Load

fab = LD-EN(CNT)J+ , _ Q

1

LD = Parallel load command ~> DJ = LD-EN-QJ + fab

EN = Count enable command

(b)

FIGURE 12.24
Design of a 1-bit slice up/down counter with synchronous parallel load and true hold capability,
(a) Operation table, (b) State diagram for the /th stage, (c) K-map and minimum cover for the 7th
stage assuming the use of D flip-flops.

12.3 SYNCHRONOUS BINARY COUNTERS 585

D/U Q, Cl CNT CO D/Q^oo 01 11 10

Increment
(Up count)

Decrement
(Dn count)

'CNT,

_\QjCI
D / U X 00 01 11 10

CO,

(a) (b)

FIGURE 12.25
Truth table representing the increment and decrement operations for the 7th stage of the counter,
(b) K-maps for CNT (sum or difference) and CO (carry-out or borrow-out).

The NS K-map, shown in Fig. 12.24c, is obtained from the state diagram in (b) by
applying the mapping algorithm assuming the use of D flip-flops. The resulting NS equation
for the Jth 1-bit slice is given by

Dj = LD-EN- Qj + LD- EN -(CNT)j + LD • P j , (12.8)

which can be implemented with discrete logic or by using an SSI device such as a 4-to-l
MUX. Use of a MUX, however, would not be an efficient use of the device since not all
four function terms are present in the expression. For this example, discrete logic will be
used to implement Eq. (12.8).

All that remains to be done is to find the logic for the CNT parameter representing either
a count up or a count down. This is accomplished by constructing a combinational logic
truth table for the /th stage, as shown in Fig. 12.25a. Notice that the first four rows of
the truth table correspond to that of a half adder (HA) for up count while the latter four
rows correspond to that of a half subtracter (HS) for down count. Here, a new parameter
D/U is introduced to indicate count direction. The carry-out output CO serves as both the
carry-out for increments and borrow-out for decrements. Inputs Qj and Cl can be thought
of as A ± B, where A = Qj and B = CL For a review of adders and subtracters the reader
is referred to Sections 8.2 and 8.3.

The CNT and CO outputs for the /th stage are mapped in Fig. 12.25b and minimum
cover is extracted by using XOR patterns to yield the results

COj=CI-(D/U®Qj} '

Implementing these equations together with Eq. (12.8) gives the logic circuit in Fig. 12.26a
for the 7th 1-bit slice. This module can be cascaded to form a counter of any number of bits.

The block circuit symbol for a 4-bit counter of this type is shown in Fig. 12.26b, where itis
required that the Cl of the LSB stage be set at 1 (H) so as to enable the AND gate for CO from

586 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

Pj(H)

CO(H)-/ ~1<
LD(L)-c|>r{>o-^
EN(H)_[>oT^>—

CK-0

' /

\

<

r l
/

It

'

\\

\s

CL J
Qv

"Hi

rI

1X
\.

* M.

V,

P--

^

J

/
J—

^

±
D

Q

1
'

\y"

CI(H)
D/U(H)

• • •

— C

CL(L)

PA PB PC PD
LD

EN CL

D/g 4-bit Parallel
loadable up/down

V counter

CO Cl

QA QB Qc Q0

Qj(H)

(a) »)

FIGURE 12.26
Implementation of Eqs. (12.8) and (12.9) for the /th 1-bit counter module with synchronous parallel
load and true hold, (b) Block circuit symbol for the 4-bit counter implemented by cascading four 1-bit
slices as in (a).

this stage. The gate/input tally for the NS forming logic to this 4-bit synchronously parallel
loadable counter is 28/68, excluding possible inverters. For comparison, the gate/input tally
for the 4-bit synchronously parallel loadable up/down counter of Fig. 12.23b is 32/86,
also excluding possible inverters. Thus, by gate tally alone, the half-adder/half-subtractor
approach in Fig. 12.26 is favored over that of Fig. 12.23. Both designs have three-level NS
forming logic for each stage, depending on how one views the implementation of the XOR
gates. A PAL or FPGA design of a parallel loadable up/down counter would probable favor
the design of Fig. 12.23b since one fewer XOR gate is involved. Remember that these array
logic devices are registered with only D flip-flops and that the XOR gate must likely be
implemented by using the two-level SOP logic of Eq. (3.4) in Section 3.9. However, array
logic devices such as the Xilinx FPGAs having arithmetic units might be more amenable
to the half-adder/half-subtractor approach of Fig. 12.26.

The 4-bit counter in Fig. 12.26b or that in Fig. 12.23b can be cascaded to form k 4-bit
stages that can sequence through 24k — 1 = 16* — 1 states, hence a divide-by-24i counter.

12.3 SYNCHRONOUS BINARY COUNTERS 587

PA-PD(H) PE-PH(H) P,-PL(H)

P P P P
n

 rA rB rC rD

CK-[>
CL(L)

QA-QD(H)

FIGURE 12.27
A divide-by-212(163) up/down binary counter with synchronous parallel load and true hold capability
formed by cascading three 4-bit counters of the type given in Fig. 12.26.

Shown in Fig. 12.27 is a three-stage counter of the former type that can sequence through
163 — 1 = 4095 states. At any point in the operation of the counter, it can be given the
command L£>(L) = 1(L) to parallel load a binary word of 12 bits. Then when LD(L) = 0(L),
the counter can hold that number if EN is also inactive EN(H) = 0(//), or it can count up or
down from that number if EN(H) = !(//). The direction of count, of course, depends on the
setting of the direction control D/U: D/U(H) = 0(H) for Up, and D/U(H} - \(H} for
down. Thus, by parallel loading any number between 0 and 4095, any count sequence
or frequency division in that range can be obtained. For example, by parallel loading
000100100111 (= 29510), the counter can count up from 295 to 4095, a frequency division
of fcic -j- 3800. Or if the counter is set to count down from that parallel load, a frequency
division of fCK -=- 295 would result. One application of the frequency division aspect of
counter operation is the production of relatively long periods of time. Thus, by parallel
loading 29510, a time T = 38007c/r can be produced by an up count, assuming it completes
the count from 295 to 4095. Alternatively, a down count from this value results in time
period of 295 TCK, assuming that it is the final CO signal that is sensed. Remember that
the 12 outputs of the counter can be tapped for frequency divisions within the range of the
complete count, thus allowing for a wide range of time periods.

The counter of Fig. 12.26 can also be designed with asynchronous parallel load capability.
To do this requires only that the parallel load feature be removed from the operation table in
Fig. 12.24a and implemented by using Eqs. (12.4) together with the PRE and CLR overrides
of the D flip-flops. Shown in Fig. 12.28 are the operation table, MUX K-map for D flip-flops,
and logic circuit for the /th 1-bit stage of such a counter. This 1-bit slice can be cascaded

588 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

Pj(H)

CQ(H) \-([_, ^_ii 1 C|(_H)
D/U(H)

EN NS,

EN(H)

LD(L)-o(

Qj True Hold

(CNT), Count

(a) (b)
CK-o(>o

CL(L)

Qj(H)

FIGURE 12.28
Design of an up/down counter with asynchronous parallel load and true hold capability, (a) Operation
table, (b) MUX K-map assuming the use of D flip-flops, (c) Logic circuit for the Jth 1-bit slice.

as in Fig. 12.27, the only difference being that the loading is produced asynchronously and
that FET D flip-flops are used.

12.3.6 Perspective on Parallel Loading of Counters and Registers:
Asynchronous vs Synchronous

As has been mentioned or implied at various points in previous discussions, there are two
advantages to asynchronously parallel loading data into the memory flip-flops of registers
and counters. These advantages are as follows:

1. Introducing the parallel data directly into the memory via the preset and clear overrides
of the flip-flops permits the device to change modes of operation before the next
triggering edge of clock. This can save time and speed up the processing of data—
time can be wasted waiting for the data to be clocked input the memory as is required
in synchronously loaded data.

12.3 SYNCHRONOUS BINARY COUNTERS 589

2. Data inputs that are asynchronously loaded never have to be synchronized with clock
since the loading process interrupts the operation of the flip-flops by temporarily intro-
ducing a clear or preset condition into the flip-flops. Data inputs that are synchronously
loaded should be synchronized with clock for reasons discussed in Subsection 11.4.4.

Generally, the cost in hardware of asynchronous parallel loading will be somewhat
greater than that for synchronous parallel loading. Comparing Figs. 12.26a and 12.28c is
indicative of a small difference in the external logic to the D flip-flop, two gates per stage
including the 2-to-l MUX. Speedwise there is little difference between the two means of
parallel loading. The choice of flip-flop type (e.g., T or D or JK) can be a more significant
factor in both hardware and speed. However, these factors may be unimportant if the register
or counter is implemented by using an array logic device such as a V-type PAL or Xilinx
4000 series FPGA. These devices have built-in D flip-flops, SSI devices, and a host of
other features of which use can be made. But such devices will usually require the use of
proprietary software to program them, as discussed in Section 7.8.

12.3.7 Branching Action of a 4-Bit Parallel Loadable Up/Down Counter

In Section 13.4 a parallel loadable up/down counter is used as the memory in state machine
design — an alternative architecture. To program the counter in such applications, it is
necessary to specify the branching action of the counter for each state-to-state transition in
the state diagram. The specification of this action is illustrated in Fig. 12.29 for a fictitious
FSM. Notice that there are just four possibilities for the branching action of a parallel
loadable up/down counter:

(H), (I), (D), and (PL),

representing hold, increment, decrement, and parallel load, respectively. Here, highest
priority must be given to the count action if efficient use is to be made of the counter as the
memory in the design of a state machine. If only PL branching were used, the design would
revert to the use of discrete flip-flops as was the case in the designs of Chapters 10 and 11.

FIGURE 12.29
Illustration of the branching action of a 4-bit parallel loadable up/down counter used as the memory
for a fictitious state machine.

590 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

12.4 SHIFT-REGISTER COUNTERS

Shift registers are normally designed to be operated in one or more of the noncyclic "data"
modes of operation given at the beginning of Section 12.2. However, the flip-flops of a regis-
ter can be configured to operate in a "nondata" cyclic fashion with or without external logic
depending on the desired effect. Registers that are configured to operate in a cyclic fashion
are called shift-register counters. These counters cycle through a sequence of states that gen-
erally conform to one or three types of codes: 1-hot code (Table 2.11), creeping code (Table
2.10), and a pseudo-random code. For future reference, the names of these counters are

Ring counters
Twisted ring (Johnson) counters
Linear feedback shift register (LFSR) counters

An introduction to these counters is provided in the next few subsections.

12.4.1 Ring Counters

A counter that consists of n states and n state variable outputs, such that each output
corresponds to the integers (decimal values) 0 to n — 1 in 1-hot code, is called a ring
counter—the simplest of the shift-register counters. This, of course, assumes that the
counter is initially loaded with a binary word having a single "1." A 10-state 1-hot code
is given in column (c) of Table 2.11 in Subsection 2.10.2. This means that a ring counter
of 10 states would sequence through this 1-hot code in cyclical fashion, but would require
10 flip-flops to accomplish this. In comparison a binary counter having 10 flip-flops would
sequence through 210 = 1024 states.

Shown in Fig. 12.30a is the state diagram for a simple 4-bitring counter that will sequence
through a 1-hot code of 4 bits. The present-state/next-state (PS/NS) table for this counter
is given in Fig. 12.30b. A brief inspection of the columns in this table yields the NS logic
expressions, given in Fig. 12.30c, without the need to use K-maps. The nature of the NS
functions requires that the single 1 be circulated around the counter in cyclic fashion.

The logic circuit for this ring counter is shown in Fig. 12.30d. Once initialized into the
0001 state, the "1" will be circulated as illustrated in the state diagram of Fig. 12.30a.
Actually, any bit pattern can be circulated in this fashion. For example, if two 1 's are
initialized into the counter to form an even-parity code, that bit pattern would be circulated
according to the NS functions in Fig. 12.30c.

The ring counter of Fig. 12.30 must be initialized into one of the 1-hot code states. If it is
not initialized, it could power up into any one of the five extraneous subroutines, including
two "hang" states. Even if the counter is properly initialized, there is the possibility that
one of the extraneous subroutines could be entered because of noise or power fluctuation.
To avoid this problem the ring counter can be made self-correcting. To accomplish this, a
missing-state analysis must be made of the 12 don't-care states, as in Fig. 12.3 la, where
five extraneous subroutines are discernible by close inspection of the table. The two hang
states are easily seen to be states 0000 and 1111, since these states branch to themselves.
Correction follows in Fig. 12.3 Ib if it is recognized that all present states must be shifted
left with a 0 except for state 0000, which must be shifted left with a 1. Notice that all 12
extraneous states eventually transit to a 1-hot state, though over varying numbers of clock

12.4 SHIFT-REGISTER COUNTERS 591

A B C D ! D A D B D C D D

Sanity^ r-ABCD = QAQBQCQD 0 0 0 1 - ^ 0 0 1 0 n R
\ / y UA = b

0 0 1 0 - ^ 0 1 0 0 D = C

0 1 0 0 -7 1 0 0 0 D=Dc

1 0 0 0 -hr 0 0 0 1

*f
0 0 0 1 !

(a) (b)

QA(H) QB(H) QC(H) QD(H)

-Q D
A 4

< Q CL <
-c

Q D
B J

° C L <

V

t
-c

Q D
c >

Q C L <

¥
-c

Q D
D .

%R <

V

J
Sanity(L)

CK '

(d)

FIGURE 12.30
Design of a 4-bit ring counter, (a) State diagram, (b) PS/NS table, (c) NS functions, (d) Logic circuit
configured for left shifting and initialized into the 0001 state.

cycles. As an example, state 9 transits directly to state 2 (a 1-hot state) after one clock cycle.
But state 13 must transit 13 -> 10 -> 4 over two clock cycles and state 1 must transit
1 —> 14 -+ 12 —> 8 over three clock cycles. Thus, while this counter is self-correcting,
it may take up to three clock cycles for it to recover to a 1-hot state. This fact justifies
initialization into the 0000 state, which must enter state 0001 on the next triggering edge of
clock. If no initialization occurs, the counter can power up into any state, including a state
such as 1 that requires three clock pulses for recovery.

Inspection of PS/NS tables in Figs. 12.30b and 12.3 Ib indicates that only states 0000
and 1000 must be shifted left with a logic 1. The remaining 14 states are shifted left with
a logic 0. Shown in Fig. 12.32a is the K-map for left shifting giving the result L = BCD,
which makes self-correcting any 4-bit 1-hot ring counter. Shown in Fig. 12.32b is a 4-bit
USR that has been configured to produce a self-corrected ring counter that is initialized into
the 0000 state. Notice that it is wired for left shifting according to the operation table for a
USR given in Fig. 12.5a.

Ring counters can be expanded to include k states each with k state variables and can
circulate any binary pattern once parallel loaded into the shift register. As one example, the

Non-self-correcting

PS NS Decimal

A B C D DA DB Dc DD RL PS NS

0 0 0 0 0 0 0 0 R L 0 -> 0 Hang state 0 -* 1 S L 1

0 0 1 1 0 1 1 0 R L 3 -» 6 3 -» 6 S L O

0 1 0 1 1 0 1 0 RL 5 -» 10 5 -» 10 SLO

0 1 1 0 1 1 0 0 RL 6 -» 12 6 -^ 12 SLO

0 1 1 1 1 1 1 0 RL 7 -» 14 7 -» 14 SLO

1 0 0 1 0 0 1 1 R L 9 -* 3 9 ^ 2 S L O

1 0 1 0 0 1 0 1 RL 10 -» 5 10 -> 4 SLO

1 0 1 1 0 1 1 1 RL 11 -» 7 11 -> 6 SLO

1 1 0 0 1 0 0 1 RL 12 -» 9 12 ^ 8 SLO

1 1 0 1 1 0 1 1 RL 13 -» 11 13 -» 10 SLO

1 1 1 0 1 1 0 1 RL 14 -» 13 14 -» 12 SLO

1 1 1 1 1 1 1 1 R L 1 5 -» 1 5 Hang state 1 5 -» 1 4 S L O

RL = Rotate left SL = Shift left

(a) (b)

FIGURE 12.31
Missing-state analysis and correction of the 4-bit ring counter in Fig. 12.30 (a) PS/NS table for the
non-self-correcting counter, (b) PS/NS table for the self-correcting ring counter showing the 1-hot
code states shaded.

\CD 0(H).
AB\ 00 01 11 10

00 v—/ | I I I i^n; 1 o1

Universal Shift01

11

10 m 0 0

0(H)
CK-

0(H)

Register
CL 3—Sanity(L)

L = B-C-D A(H) B(H) C(H) D(H)

(a) (b)

FIGURE 12.32
Initialized and self-correcting 4-bit ring counter designed with the USR of Fig. 12.6. (a) K-map for
the left serial input to the USR. (b) The USR wired for left shifting with external logic required for
self-correction.

592

12.4 SHIFT-REGISTER COUNTERS 593

ring counter of Fig. 12.32b can be expanded to an 8-bit, 1-hot ring counter by cascading
two USRs as in Fig. 12.7. But without parallel loading a 1-hot state, the self-correction
logic becomes L = BCDEFGH, a fan-in of 7 for a single gate. Thus, self-correction takes
place within seven clock pulses. Generally, an n-bit ring counter will self-correct within
n — l clock pulses. For such counters and where permitted, the CMOS NOR gate, shown
in Figure 8.46, is preferred since it operates free of fan-in limitations. Alternatively, any bit
pattern can be parallel loaded into an n-bit ring counter and circulated with self-correction.

The advantage of the ring counter is that it provides glitch-free decoded outputs directly
from the flip-flops. This means that one and only one flip-flop is active for each state of the
1-hot sequence. This feature can be very useful for timing sequence generation in control
applications. A down side to the ring counter is that it does not encode its states as efficiently
as binary counters — one flip-flop must be used for each state. Considered next is a type
of counter that can generate twice as many states as the ring counter but with only a minor
increase in overall hardware.

12.4.2 Twisted Ring Counters

A counter that circulates a creeping code, such as that in Column (7) of Table 2.10 in
Subsection 2.10.1, is called a twisted ring counter, or sometimes called a Johnson counter.
The "twist" aspect of this counter is created simply by interposing an inverter in the feedback
line of a standard ring counter or by tapping the feedback line off of the active low output
of the flip-flop. Shown in Fig. 12.33a is the state diagram for a 4-bit twisted ring counter
together with the required branching action for a USR design of this counter. The PS/NS
table for this counter, given in Fig. 12.33b, indicates that a left shift of A generates the next
state for each of the eight states in the sequence. This is shown more vividly in the K-map
of Fig. 12.33c for L, the left-shift serial input of a USR. Notice that all eight extraneous
states are assigned a don't-care symbol.

A USR design of this twisted-ring counter is given in Fig. 12.33d. Notice that it is initial-
ized into the 0000 state, which is one of eight states of the creeping code sequence. Thus,
once initialized the counter will cycle through the creeping code states — that is, unless the
unexpected occurs and the counter is caused to enter an extraneous state. To avoid this po-
tential problem, the counter can be made self-correcting. But to do this requires additional
logic, as was the case for the ring counter of Fig. 12.32b.

The twisted ring counter of Fig. 12.33d can be made self-correcting by making use of
the shift left and parallel load capability of the USR. Shown in Figs. 12.34a and 12.34b
are the K-maps for S0 and L of the USR. Here, left-shifting of the eight creeping code
states is the same as in Fig. 12.33c, except that state 0 along with states 2, 4, and 6 are
parallel loaded into the 0001 state. Also, the remaining five extraneous states (0101, 1001,
1010, 1011, and 1101) are shifted left an A eventually to states 2, 4, or 6, where they are
subsequently parallel loaded into state 0001. Up to n — 1 = 3 clock pulses are necessary
for the self-correction of this counter shown configured with the USR in Fig. 12.34c.

Twisted ring counters of any size can be designed. By cascading k 4-bit USRs, a twisted
ring counter of 4k bits results that will sequence through 8fc creeping code states. For these
counters the external logic maintains the same form, namely L = A and SQ = QMSB •
QLSB, for self-correction. If self-correction is neglected, then So = Q as in Fig. 12.33d.
The advantage of the twisted ring counter over its cousin, the standard ring counter, is
that 2n states are generated for n flip-flops as opposed to n states for the ring counter.

594 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

A B C D ! DA DB Dc DD

-T7- U 0 0 1

Sanity^. 0 0 0 1 -^ 0 0 1 1

0 0 1 1 -p7 0 1 1 1

0 1 1 1 -J7- 1 1 1 1

1 1 1 1 - . 1 1 1 0

1 1 1 0 ^ 1 1 0 0

1 1 0 0 - 1 0 0 0

1 0 0 0 - f ^ O O O O

o o o o !
(b)

\CD
AB\ 00 01 11 10

00

01

10

CK
11

0(H)

0(H)

Si
Universal Shift

)> Register

QA QB Qr Q,

CL

L = A

(C) A(H) B(H) C(H) D(H)

(d)

FIGURE 12.33
Design of a 4-bit twisted ring counter by using a USR. (a) State diagram showing USR branching
action, (b) PS/NS table, (c) K-map and minimum cover for serial input L of the USR. (d) Initialized
USR configured as the twisted ring counter.

Furthermore, the creeping code, like the Gray code, is unit distance, meaning that each
state in the sequence is surrounded by states that differ by no more than one bit. Because
of their simplicity, twisted ring counters can be easily used to produce time delays.

12.4.3 Linear Feedback Shift Register Counters

A series connection of D flip-flops with feedback paths via XOR gates but with no external
inputs is called an autonomous linear feedback shift register (ALFSR) counter. If external
inputs are involved, the counter is usually referred to simply as an LFSR counter. The
ALFSR counter generates pseudorandom test patterns (vectors) that are useful in testing
both combinational and sequential machines. Shown in Fig. 12.35a is an ALFSR counter

Sanity(L)

CD \CD
AB\ 00 01 11 10 AB\ 00 01 11 10 0(H)

00

01

11

10

CK

00

01

11

10

CK-

0(H)-

PA PB Pc

*1

»o USR

<QA QB Qc

Sanity(L)

/

S = AD L = A
0 A(H) B(H) C(H) D(H)

(a) (b) (c)

FIGURE 12.34
External logic necessary for self-correction of the twisted ring counter designed with a USR.
(a) K-map and minimum cover for the So mode control, (b) K-map and minimum cover for the
left-shift serial input, (c) Logic diagram showing external logic and a parallel load of 0001 required
for self-correction.

C®D(H) f It

—

D Q
A

> P R °
>

V

—

D Q
B

> C L °
>

Y
—

D Q
C

> C L °
>

Y
—

D Q
D

> C L °
>

Y

Clock

1

2

3

Sanity(L) 4

5

6
A(H) B(H) C(H) D(H)

(a) 8

Sanity /-ABCD 9

10

11

12

13

14

15

16

A B C D

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

1 0 0 0

(c) (b)

FIGURE 12.35
Analysis of a 4-bit near-maximum length ALFSR counter, (a) Logic diagram, (b) Truth table showing
clock pulses and sequence of states, (c) State diagram for the 16 states.

595

596 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

that is to be analyzed. The D flip-flops are connected in a series for right shifting with
feedback C © D to the MSB stage. Compare this with the ring counter in Fig. 12.30d. The
sequence of states is easily generated from knowledge of the feedback function, C © D,
and is given in Fig. 12.35b together with the corresponding clock pulse number. Notice that
this ALFSR counter is initialized into the 1000 state and that it will sequence through 15
of the 16 states in pseudorandom fashion. The ALFSR counter is not allowed to enter the
0000 state since that state is a hang state, as indicated in the state diagram of Fig. 12.35c.
Once in the 0000 state it must remain there indefinitely unless reinitialized.

The ALFSR counter just described is termed a near-maximum-length ALFSR counter
since it can sequence through 2" — 1 states, one short of the maximum of 2", where n is
the number of state variables (or flip-flops). Other feedback functions used for the ALFSR
counter of Fig. 12.35 may not generate a near-maximum-length sequence of pseudorandom
states. For example, it is easily shown that the B © C feedback function can generate only
eight unique pseudo-random states, and A © B only five, each being initialized into the 1000
state. But other initialization states may be used with similar results. If, for example, the
ALFSR counter of Fig. 12.35 is initialized into the 1111 state, 8 unique states are generated
with feedback function B © C, 15 unique states result if C © D is used, and 5 unique states
result if A © B is used, all as before. Note that for right shifting, all XOR combinations not
containing D must be avoided if initializing into the 0001. The reason is simply that on the
second clock pulse the ALFSR counter is caused to enter the hang state 0000, from which
there is no exit. Thus, a valid feedback function must contain the LSB state variable.

If a packaged shift register (e.g., a USR) is used to externally configure an ALFSR
counter, a means must be found to initialize the counter into the 0000 state with the ability
to cycle through all 2" pseudorandom states. Shown in Fig. 12.36a is the new state diagram
with all 16 states represented, and the K-map for DA is plotted in Fig. 12.36b. Since it is
known that XOR functions are involved, there is an opportunity to use the Reed-Muller
(R-M) transformation forms as discussed in Section 5.7. Following the examples given
there, the following R-M g coefficients become

80 = 8\ = g4 = g6 = #8 = glO = g\2 = g\4 = 1

g2 = #3 = #5 = gl = g9 = gll = #13 = gl5 = 0.

When these coefficients are introduced into Eq. (5.17) the NS function DA is found to be

DA = ! © /) © # © 5C ©A© AC © A f l © ABC

= 1 © D © BC © AC © ABC

= 1 ®D®BC®ABC

= 1 ©Z)©C(5 + AB)

= 1 © £> © [C(A + fl)],

which yields the gate minimum result

DA = D®(AB+C\ (12.10)

12.4 SHIFT-REGISTER COUNTERS 597

00

01

11

10

01 11 10

(a)

0(H).

0(H)-

1
V

CK

PC

o USR CL

QA QB Qc QD

•Sanity(L)

L0(H)

DA = R
A(H) B(H) C(H) D(H)

(b) (c)

FIGURE 12.36
USR implementation of a ALFSR counter that will sequence through all 2" states, (a) State diagram
showing sequence of 16 states, (b) K-map for R plotted from the state diagram in (a), (b) Logic circuit
showing the external logic given by Eq. (12.10).

Here, use has be made of the identities in XOR algebra given in Subsection 3.11.2. The
other NS functions remain the same: that is, DB = A, Dc = B, and DD = C. Figure 12.36c
shows a USR configured with the corrected feedback function of Eq. (12.10). This ALFSR
counter will initialize into the 0000 state and will sequence through all 24 = 16 maximum-
length states in cyclic fashion. Without making the correction expressed by Eq. (12.10), it
would not be possible to initialize or parallel load into the 0000 state and then sequence
through all 2" pseudorandom states.

By altering the logic expressed by Eq. (12.10), it is possible to selectively reduce the num-
ber of unique pseudorandom states from the maximum length of 16 shown in Fig. 12.36a.
To do this the following procedure can be applied:

(1) Select the number of states, S < (2" - 1), that is desired.
(2) Find a pair of states separated by {(2n — 1) — 5} other states such that the smaller is

an even digit and 1 less than the larger.
(3) Advance 1 state from the larger and draw an arrow. The result is a modified state

diagram of S states from which the new feedback logic for a USR can be obtained.

598 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

\CD
AB\ 00 01 11 10

00

01

11

10

0(H)-

0(H)

CK

P P P PrA * B rC * D

So USR CL

R QA QB Qc

•Sanity(L)

-0(H)

A(H) B(H) C(H) D(H)

(a) (b)

FIGURE 12.37
Design of the decade ALFSR counter in Fig. 12.36a. (a) Conventional and EV K-maps for the NS
logic, DA. (b) A USR configured with the logic of Eq. (12.11).

As an example of the application of this procedure, suppose it is desired to design a
decade ALFSR counter from the pseudo-random states in Fig. 12.36a. A pair of states
separated by 16— 1 — 10 = 5 must be found such that the smaller is even and 1 less than
the larger. An inspection of the state diagram in Fig. 12.36a indicates that states 4 and 5
satisfy this requirement. By advancing by 1 state from state 5, an arrow is drawn from state
4 to state 10, as indicated by the dashed arrow. This is the 10-state state diagram for which
a new DA must be found, the other three NS functions remaining the same. Presented in
Fig. 1231 a. is the NS logic for DA as determined from the new state diagram in Fig. 12.36a.
Here, the conventional (1's and O's) K-map is converted to an EV K-map, which permits
the use of XOR patterns to extract gate-minimum logic as discussed in Section 5.2. The
result is expressed as

DA = D0(AC) = D ® (A + C) , (12.11)

where use has been made of Eqs. (3.27) and (3.15). The remainder of the NS functions
remain the same as DB = A, Dc = B, and DD = C. A USR, configured with Eq. (12.11),
is shown in Fig. 12.37b. This counter will initialize into the 0000 state and thereafter
sequence in iterative fashion through all 10 pseudorandom states shown to the left of the
dashed arrow in Fig. 12.36a.

The foregoing discussion has dealt with ALFSR counter variations based on a single
set of feedback XOR taps, namely C © D. However, there are numerous possible XOR
taps that can be used for the feedback function of a 4-bit ALFSR counter, but not all will
generate a maximum length ALFSR counter. This is also true for ALFSR counters having
a larger number of bits. For example, the feedback function D © E © F 0 H applies

12.4 SHIFT-REGISTER COUNTERS 599

Table 12.1 Examples of Feedback Functions for Near-Maximum-Length ALFSR Counters

Feedback function
SR size, n-bits Feedback function /(Q) (literal notation)

4 £>i £
5 G 2 £
8 G49

12 G69
16 Gs9
24 07 6

32 Q22 <

BGo
D G o
3 Gs 0 62 9
5 G40 Gi 9
3 G4 0 G3 9

5 G2 0 Gi 9
B G2 0 Gi <

C@D
C ®E

& G o D®E®F®H
5Qo F @H ®K®L
\\ f\ ~Lf /T\ r /T\ fl/f^ /^T\ I>
L? |̂ (J i v \I/ LJ \SJ / "-/ 1̂7 i.

5 Go G 0 V 0 W 0 X
BGo —

Near maximum length
(In nos. of states)

15
31

255
4,095
65,535

16,777,215
4,294,967,295

to an 8-bit near-maximum-length ALFSR counter in literal notation. Or for 12- and 16-
bit near-maximum-length ALFSR counters, the feedback functions F © H © K 0 L and
K © L © M © P apply, respectively. Shown in Table 12.1 are a few feedback functions that
apply to right- shifted, near-maximum-length ALFSR counters. Note that for the numeral
notation Q0 is always the LSB, and that for the literal notation QA = A is always the MSB
of the counter.

As has been pointed out earlier, ALFSR counters are very useful in generating pseudo-
random test vectors suitable for testing a variety of machines, combinational and sequential.
Take, for example, a 16-bit ALFSR counter. It can sequence through 216 — 1 = 65,535
unique pseudorandom states in iterative fashion if the all-zero state is forbidden, or through
65,536 states if corrected to include the all-zero state. If a 32-bit ALFSR counter is used for
testing, a total of 4,294,967,296 unique pseudorandom states are available with correction
to include the all-zero state. Some large state machines are designed with ALFSR counter
elements in them to provide a built-in- self -test (BIST) capability. BIST capability facilitates
and automates testing of these machines without need for an external testing facility.

Correction for inclusion of the all-zero state in the general case for maximum-length
ALFSR counters is not trivial, but it is not difficult either. Consider that upon initializing
into the all-zero state 00000 • • • 00 the next transition must be into the 10000 • • • 00 state to
begin the pseudorandom sequence. Then, at the end of the 2" sequence, in the 00000 • • • 01
state, the ALFSR counter must return to the all-zero state. For all of this to happen, a
correction function must be found and XORed with the feedback function. Noting that all
feedback functions in Table 12.1 end with <2o, it follows that the correction functionjnust
be the ANDed complements of all ALFSR counter outputs except <2o, that is, Qn-\ • Qn-2 •
---- &2 • Q i • Here, Qn-\ is the MSB and QQ is the LSB. Therefore, the corrected feedback
function is given by

/(corrected) = (£„_, - QH_2 Q2 • Qi) © /(G), (12.12)

where f(Q) is the numeral feedback function in column 2 of Table 12. 1. Thus, it follows that
the corrected feedback functions for 4-bit, 5-bit, and 8-bit ALFSR counters are(<23<22<2i)©

respectively. Applying Eq. (12.12) to the 16-state ALFSR counter in Fig. 12.36 yields

600 CHAPTER 12/MODULE AND BIT-SLICE DEVICES

Eq. (12.10),

DA = (ABC) 0 C 0 D = D @ (AB + C),

in literal form, which can be proved by applying the laws of XOR algebra in Section 3.11.
A cursory inspection of Eq. (12.12) and Table 12.1 indicates that the maximum number

of XOR operations is three, independent of ALFSR counter size, but only after simplifying
by application of Eqs. (3.25) and (3.13). Fortunately, three XOR operations can be handled
very easily by a standard four-input, even-parity generator module such as that in Fig. 6.32c.
The problem is, of course, in dealing with the large number of ANDed complements present
in the correction functions. If CMOS logic is permitted, the multiple input NOR gate in
Figure 8.46 can be used to great advantage. It has no fan-in limitations.

Table 12.1 and Eq. (12.12) apply to right-shifted ALFSR counters that sequence through
all 2" pseudo-random states and that are initialized into the all-zero state. Table 12.1 and
Eq. (12.12) can also be applied to left-shifted ALFSR counters if the Qj outputs are in-
terpreted in "reverse" fashion such that <2o is the MSB and Qn-\ the LSB. The corrected
feedback function now becomes (Q\ • Q2 Qn-2 • Qn-\) © f(Q') by omitting <2o,
where /(Q') is the feedback function in Table 12.1 interpreted in reverse order. For example,
<2o © Qi ® Qi © Q4 = A 0 C © D 0 E for n = 8 .

12.5 ASYNCHRONOUS (RIPPLE) COUNTERS

All counters discussed in Sections 12.3 and 12.4 are classified as synchronous counters
because the flip-flops, of which the counters are constructed, are all triggered simultaneously
or very nearly so. Counters composed of T flip-flops that are triggered in series are called
ripple counters. Each T flip-flop is triggered off of the output from the next LSB flip-flop.
For this reason, they are classified as asynchronous counters even though the LSB flip-flop
is triggered by the external CK signal.

Shown in Fig. 12.38a is a general divide-by-2" ripple counter composed of toggle modules
of the type shown in Fig. 12.12c, a toggle module being nothing more than a divide-by-2
counter. Notice that the Q(H) output of each toggle module is the input to the FET clock
of the next MSB stage. In Fig. 12.38b is the timing diagram for the three LSB stages of
this ripple counter. The count, taken from outputs Qn-\ • • • QiQ\ <2o is shown to be in
ascending binary, an up-count, and that frequency is divided beginning with fCK + 2 for
<2o and ending with /CK -+- 2" for Qn-\. A sanity input permits the counter to be initialized
into the 0 • • • 000 state.

The direction of the count (Dn = 1 for down count and Dn = 0 for up count) of any
ripple counter can be altered by making any odd number of changes in the expression

Dn = RET © QCK 0 QOUT- (12.13)

In this equation, RET = 1 for RET flip-flops or RET = 0 for FET flip-flops, QCK = 1 if
triggering is from Q(H) of the next LSB stage or QCK — 0 if triggering is from Q(L), and
QOUT = 1 if the count is read from Q(H) or QOUT = 0 if read from Q(L). Thus, any odd
number of changes (parameters or operators) in Eq. (12.13) changes the count direction.
For example, if RET toggle modules are used in Fig. 12.38a, a down-count occurs. Thus,

12.5 ASYNCHRONOUS (RIPPLE) COUNTERS 601

-c

Qn

—

Q
n-1

-c

**- '" —

V

^(H) Q

Q
2

QCLT<

-c

>7^

?

2(H) Q

Q
1

QCLT<

-C

^

Y
,(H) Q

h—

Q
0

QCLT<>-

Y
B(H)

(a)

Sanity(L)

(b)

FIGURE 12.38
An n-bit ripple up-counter, (a) Logic circuit implemented with toggle modules as the memory el-
ements. (b) Timing diagram showing frequency division and transition delays due to clock ripple
effect.

Eq. (12. 13) becomes

Dn = l ® l ® l = l = Down-count.

This is easily verified in Fig. 12.38b by shifting in turn each of the outputs QQ, Q\, and (?2
to the left such that each output change occurs on the rising edge of the next LSB output, the
output QQ being shifted to the left by one half of a CK period. The same result could have
been achieved by triggering the FET toggle modules in Fig. 12.38a off of Q(L) from the
next LSB stage. Now QCK = 0 so that Dn = 0 © 0 © 1 = 1 = Down— count. But applying
both changes (RET = 1 and QCK = 0) given above would leave the count unaltered, that
is, Dn = 1 © 0 © 1 = 0 = Up— count.

Any memory element capable of the toggle mode is suitable for use in a ripple counter.
For reference purposes, three types of flip-flops are shown in Fig. 12.39, all configured to
operate in the toggle mode. They are (a) an FET JK flip-flop, (b) an FET T flip-flop, and
(c) an RET D flip-flop wired as a toggle module (divide-by-2 counter). The toggle module

602 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

(c)

FIGURE 12.39
Three examples of memory elements suitable for use in a ripple counter, (a) FET JK flip-flop in toggle
mode, (b) FET T flip-flop in toggle mode, (c) RET D flip-flop wired as a toggle module.

in Fig. 12.39c is the least costly (hardware-wise) of the three and is the one featured in the
ripple counter of Fig. 12.38a, but as an FET toggle module.

Take Care in Using the Ripple Counter There are two major problems that can arise in
using ripple counters. The problems are stated as follows together with some suggestions
for proper use:

• All ripple counters suffer from a progressive noise (glitch) generation problem
if any attempt is made to decode their outputs. An inspection of the timing
diagram in Fig. 12.38b shows the transition delays that result from the series
(ripple) triggering of the flip-flops. If decoding of the outputs is not necessary or
if decoding is used but glitch production can cause no problem, ripple counters
can be used advantageously — they require no external logic for their operation.
If these conditions cannot be met, no attempt should be made to use ripple
counters. Instead, use should be made of synchronous binary counters whose
output transitions are synchronous or very nearly so.

• Ripple counters are inherently slow compared to synchronous counters. This is
so because the output changes must propagate through the counter one flip-flop
at a time. For an n-bit ripple counter this propagation delay may be expressed as

T Ripple Counter = « X ?ff , (12.14)

where rg is the delay through a single flip-flop in the ripple counter. This counter
delay would be required for completion of a 2" binary count. In comparison,
the delay of a divide-by-2" synchronous binary counter required to complete the
count is

*Synch Counter = (tff + tNs) (12.15)

and is not progressive. In Eq. (12.15) TNS is the propagation delay through the
next-state-forming logic required in the design of the synchronous counter.

Therefore, if counter speed is not a consideration and if the outputs are not decoded in
any way, use of ripple counters can be recommended. In fact, if these conditions apply,

12.5 ASYNCHRONOUS (RIPPLE) COUNTERS 603

ripple counters can be cascaded to any size simply by connecting the appropriate output
from the MSB stage of one counter to the LSB clock input another, etc. For example, the
n-bit ripple counter of Fig. 12.38a can be cascaded to produce a 2n-bit up-counter by simply
connecting its Qn_\ output to the LSB FET clock input of the other n-bit ripple counter.
But remember, that ripple counter delay increases in proportion to the number of flip-flops
in the counter.

It is also possible to design a ripple counter that will count through N <2n states. This
is demonstrated in Fig. 12.40 by the design of a decade (divide-by-10) ripple counter that
is initialized into the 0000 state. The truth table in Fig. 12.40a gives the values of the
asynchronous preset (PR) and clear (CL) overrides to the flip-flops required to force a series
of asynchronous transitions from the "jump" state 1010 to the origin state 0000. Notice that
the PR and CL override values must be 0 for proper counter operation in the 10-state count
sequence. All states between state 1010 and 0000 are don't-care states.

The state diagram for this decade ripple counter is given in Fig. 12.40b. It illustrates the
fact that when the counter attempts to enter the jump state 1010 (the 11th state) the counter
will be forced to transition asynchronously through some path to the origin state 0000 (see
looped arrow). The correction logic required to do this is found from the conventional K-
map in Fig. 12.40c, which yields CLA = CLC = A • C, all other override values being

Jump state,' N
j 1010 ;

Sanity

A B C D PRACLA PRBCLB PRCCLC PRDCLD

0

0

1
1
1

1
0

0

0

0

0

0

1
0

0

0

•

0

1
1

1
0

0

1

1

- 0 -

0 — j O I 0 0 0 1 0 07./
0 0 0 0 0 0 0 0 0

\CD
AB\ 00 01 11 10

00

01

11

10

0

0

*
0

0

0

t

0

0

0

V

0

0

YJ1
CLA = CLC = AC

(a) (b) (c)

FIGURE 12.40
Design of decade ripple up-counter, (a) Truth table showing the values of the PR and CL asynchronous
override inputs to the flip-flops, (b) State diagram showing jump state 1010. (c) K-map and minimum
cover for the CL inputs, CL& and CLc-

604 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

QA(H) QB(H) QC(H) QD(H)

<Q A T <
Q

CL

y- -c
i

Q B T <
Q

CL

y-
i

v Y

-c Q C T <
Q

CL

D
1 — Q

CL

^ A
/ \

'"rtrr'

- \-f\-

s — CK

Sanity(L)

FIGURE 12.41
Implementation of the decade ripple counter of Fig. 12.40 showing correction and sanity logic.

logic 0. The result is the logic circuit in Fig. 12.41, which shows both the correction logic
and that required to initialize the counter into the 0000 state. Here, this logic is configured
in a manner that simply clears all memory elements. Thus, when the counter is initialized
or when it attempts to enter the jump state 1010, it will be forced asynchronously into state
0000 via the external logic and the four CL overrides of the toggle modules. Notice that the
asynchronous PR overrides need not be present since they are all set at logic 0.

The decade ripple counter in Fig. 12.41 suffers the same problems described earlier.
That is, it will exhibit progressive logic noise generation if the outputs are decoded, and it is
inherently slow. In addition, this counter breaks the 2" count, thereby requiring it to undergo
an asynchronous transition from the 1010 state to the origin state 0000 via the asynchronous
CL overrides. But this can occur only after a delay through the external and internal logic
associated with CL. Consequently, additional timing problems can be created if an attempt
is made to decode the output signals. Therefore, as a rule of thumb, it is advisable to use
ripple counters in the absence of any output decoding logic. This rule is especially important
if the decoded signals are used as inputs to other switching devices. The few exceptions to
this rule were noted earlier.

Synchronous unidirectional binary counters, such as the cascadable BCD up-counter in
Fig. 12.17a, can be made bidirectional by reading the outputs from 2-to-l MUXs placed on
the mixed-rail outputs of its flip-flops. Reading from the Q(L) outputs of the BCD counter in
Fig. 12.11 a has the effect of complementing the output waveforms in Fig. 12.18 — a down
count. Ripple counters can also be made bidirectional by reading their outputs from 2-to-l
MUXs placed on the mixed-rail outputs of the toggle modules and by applying Eq. (12.13).
For example, the MUX output for the Jth stage of the ripple counter in Fig. 12.38a
would be

Yj = XQj+XQj, (12.16)

where X is the direction control, and Qj and Qjare the active high and active low outputs
from the Jth stage toggle module, respectively. Thus, the count is up if X = 1 or down if
X = 0, but only for FET toggle modules. Reading the outputs from Qj instead of Qj has

FURTHER READING 605

the effect of complementing the waveforms in Fig. 12.38b to give a down count. However,
to do this does not allow the CK waveform to be used to add an additional bit in the count, as
it can be in Fig. 12.38b. Note that for RET toggle modules, X and X must be interchanged
in Eq. (12.16).

One important precaution must be recognized when using MUXs together with Eq.
(12.13) for bidirectional ripple counter designs. It is not a good idea to use the 2-to-l MUXs
for purposes of altering the triggering activation level of the toggle modules by placing the
MUXs between modules. To do so makes it possible for the counter to change count simply
by changing the direction control X while the external clock signal is idle.

FURTHER READING

Nearly every modern text in digital design covers the subject of shift registers to one extent
or another. Perhaps the best sources for further reading are the texts by McCluskey, Nelson
et al., Shaw, Tinder, Wakerly, and Yarbrough. Of these, the texts of Nelson et al, Wakerly,
and Yarbrough provide the best coverage of commercial MSI registers and their applications.

[1] E. J. McCluskey, Logic Design Principles. Prentice Hall, Englewood Cliffs, NJ, 1986.
[2] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and

Design. Prentice Hall, Englewood Cliffs, NJ, 1995.
[3] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993.
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,

NJ, 1991.
[5] J. F. Wakerly, Digital Design Principles and Practices, 2nd ed. Prentice-Hall, Englewood Cliffs,

NJ, 1994.
[6] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/St.

Paul, MN, 1997.

Again, almost every text will provide some information regarding synchronous binary
counter design and application. The references just cited regarding registers are good
examples of this. The texts by Nelson et al., Wakerly, and Yarbrough seem particularly
strong in their treatment of commercial MSI counters and their applications. Tinder's text
is the only one that covers the one-bit modular design of counters by using half adders and
half subtracters. The text by Katz and the lesser-known text by Taub are also worth reading
on this subject. For the advanced reader the older text by Dietmeyer can be worthwhile.

[7] D. L Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Boston, MA, 1971.
[8] R. H. Katz, Contemporary Logic Design. Benjamin/Cummings Publishing, Redwood City, CA,

1994.
[9] H. Taub, Digital Circuits and Microprocessors, McGraw-Hill, New York, 1982.

For further reading on the subjects of ring and twisted ring (Johnson) counters, the texts
by McCluskey, Nelson et al., and Wakerly are recommended. Of these three, the text by
Nelson et al. appears to be the most thorough.

The subject of linear feedback shift register (LFSR) counters is somewhat esoteric, with
recommended further reading limited to a few sources. The most important of these devices
are the autonomous LFSR counters or ALFSR counters. The best treatment on these devices

606 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

appears to be found in the texts by McCluskey, Nelson et al., and Wakerly, all previously
cited. The feedback functions listed in Table 12.1 of this text are generated by primitive
polynomials that can be found in texts by McClusky, Wakerly, and Golumb.

[10] S. W. Golumb, Shift Register Sequences. Aegean Park Press, Laguna Hills, CA, 1982.

The subject of ripple (or asynchronous) counters is somewhat special, and useful infor-
mation may be more difficult to find. With the exception of texts by Wakerly and Yarbrough,
all of those previously cited cover this subject adequately. For the advanced reader, the text
by Dietmeyer (previously cited) is recommended.

PROBLEMS

12.1 The shift registers that are featured in this chapter are all built around edge-triggered
D flip-flops. Suppose one decided to design a shift register with transparent D latches
instead of edge-triggered D flip-flops. What are the negative consequences (if any)
of this design? If this poses a problem, are there any conditions under which such
a design would be acceptable? Explain.

12.2 Problem 10.6 in Chapter 10 features the conversion of an RET D flip-flop to an
RET SR flip-flop. What would be the advantage or disadvantage of using RET SR
flip-flops in place of RET D flip-flops in the design of a shift register?

12.3 A four-bit storage (PIPO) register is featured in Fig. 12.1. Reconfigure this register
so that it is a tri-state register. To do this, use tri-state drivers so that a 1(L) on either
of two enable inputs, EN\ or £7V*2, enables the active high outputs, and a 0(L) on both
of the two enable inputs disables the active high outputs. (Hint: See Figure 3.8.)

12.4 (a) Use the four-bit right shift register in Fig. 12.3c and a single OR gate (nothing
else) to generate the waveform shown in Figure PI2.1 from any one of its four
outputs QA, QB, Qc, and QD.

(b) Run a missing state analysis on the resulting FSM and determine whether or not
it is necessary to initialize it into one of its states.

12.5 A cascadable left-shift register is to be designed. It is to have true hold and asyn-
chronous parallel load capability. Also, it is to have asynchronous clear (reset)
capability.
(a) Give the operation table and state diagram for the Jth 1-bit slice for this register.
(b) Construct the logic circuit for the /th stage. To do this, use a 2-to-1 MUX and an

RET D flip-flop together with the external logic required for the asynchronous

Time
_i i i i i i i i i i 1

FIGURE P12.1

PROBLEMS 607

EN(H)

ACCUM(L)— C

*~

D '* * » Bo

EN M 2
B1 B01 ° HoW

y n-Bit Parallel Accumulator CL

COUt Q ,,. . Q
wn-1 2

Cin

Hold(L)

FIGURE P12.2

parallel load capability. Include all truth tables, K-maps, and logic expressions
that are used in constructing the logic circuit.

12.6 Shown in Fig. P12.2 is the block diagram for a cascadable n-bit parallel accumu-
lator. It is the function of this accumulator to add and store (accumulate) with each
triggering edge of clock the numerical data that appears on the B word lines. For
example, ifACCUM(L) first samples . . . 0001 on the first triggering edge, a . . . 0001
will be stored in the flip-flops and delivered to their outputs. Then, if on the second
triggering edge, ACCUM(L) samples a ... 0111 on the B word lines, a ... 1000 will
be stored in the flip-flops and delivered to the outputs.
(a) Design this accumulator by using n full adders and n FET D flip-flops. The

accumulator is to have asynchronous clear, and tri-state output capability such
that the outputs are enabled only if EN(H) = !(//). For this part, disregard the
Hold(L) input.

(b) Add true hold capability to this accumulator, meaning that at any time the
current accumulated sum can be stored and delivered to the outputs for any
number of clock (ACCUM) cycles. Assume that this occurs under the condition
Hold(L) = \(L).

12.7 The waveforms for the divide-by-3 counter in Fig. 12.13c show a frequency of
fcK/3 and a duty cycle of 331% for each of the two outputs. What would be the
frequency and duty cycle for a divide-by-3 counter if the state code assignment were
changed to Gray code, 00 - 01 - 11 - 00 - ...?

12.8 (a) Construct the waveforms for a divide-by-5 counter by using a binary count
beginning with 000. From these waveforms determine the frequency and duty
cycle for each of the three outputs.

(b) Repeat part (a) for a Gray code count beginning with 000.
(c) Repeat part (a) for the pseudo-random count Oil — 001 — 111 — 101 — 010 —

Oi l -

12.9 Design a 2-bit bidirectional binary/Gray code counter that will operate according to
the mode control and count requirements given in Fig. PI2.3. To do this, use two
4-to-l MUXs, RET D flip-flops as the memory, a 2-to-4 decoder for the outputs,
and a gate-minimum NS logic. Assume that the mode control inputs, X and Y, are
asynchronous and must be synchronized antiphase to clock, and that all inputs and
outputs are active high.

608 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

X Y

0 0

0 1

1 0

1 1

Count

Up Gray

Dn Gray

Up Binary

Dn Binary

Outputs

UPGRY

DNGRY

UPBIN

DNBIN

FIGURE P12.3

12.10 A counter is to be designed that will count through the following sequence of states
in three-bit code:

Sequence I • • • 0 - » l - » 3 - » 2 - * 0 - - - I f j c

Sequence II • • • 7 « - 6 « - 4 « - 5 « - 7 - - - I f f

It is required that the counter change sequence at any time beginning with the com-
plement of the state in the previous sequence. For example, if jc -> x while in state 2
of Sequence I, then Sequence II will begin with state 5, that is, 010 —> 101 and so on.
(a) Construct the state diagram and state table for this counter.
(b) Design this counter with RET T flip-flops and a gate-minimum NS forming

logic. Assume that the input x arrives asynchronously and is active high. (Hint:
Use XOR patterns.)

12.11 Design a 1-bit slice (/th stage) for a cascadable parallel loadable up-counter by
using the hardware given below (nothing else). The counter is to have asynchronous
parallel load and asynchronous clear capability. End with an optimum logic circuit
showing all inputs and outputs. Block symbols may be used where appropriate for
the hardware parts listed.

Allowable Hardware
One half adder
One RET D flip-flop
One2-to-lMUX
Gates as needed for the asynchronous parallel load

12.12 By using the simplest means possible, convert the 4-bit binary counter of Fig. 12.23
to the following counters such that each will count continuously via a count com-
mand CNT(H) = !(//). To do this, use LD(L) as the command to parallel load and
set the CL(L) input to the counter to 0(L).
(a) Divide-by-8 (modulo 8) up-counter beginning with state 0000.

(b) Divide-by-10 (BCD) down-counter beginning with state 1010.

(c) Divide-by-11 (modulo 11) down-counter beginning with state 1111.
(d) Divide-by-10 (XS3) up-counter beginning with state 0011.

12.13 A psychology student requires a special timer for a research experiment that is being
performed. Design a timer that will deliver a single pulse after a 45-second period

PROBLEMS 609

Parallel loads
0(H)

CK
, 45 Second
' Timer
CO Up
BO Dn

Permitted Hardware

Sanity (L)

EN(L)
Three 8-bit counters

One set-dominant basic cell

Three AND gates

One NAND gate

One inverter

45Sec(H)

FIGURE P12.4

from a 100-kHz clock on command of an enable pulse EN(L) that is less than 45
seconds. However, if the enable signal is fixed at EN(L) = 1(L), the timer will is-
sue pulses at 45-second intervals. The 45-second period must be delivered with an
accuracy of ±0.5%. Also, the system is to be initialized into the all-zero state from
which the count will begin when enabled. Fig. P12.4 gives the block symbol for
the tinier and the permitted hardware to be used. Note that the 8-bit counters are
constructed of counters shown in Fig. 12.23b. [Hint: Use the NAND gate on the
most significant counter stage to generate the 45 second pulse and a clear, and use
the R(L) input to the basic cell for the enable.]

12.14 A design project requires the use of both a universal shift register (USR) and a
parallel loadable bidirectional counter, devices that must be operated interchange-
ably with the same set of mode controls. It is also required that the carry and
borrow outputs be disabled except during counter operation. The problem is that
limited space requires a compact system. With this information in mind, do the
following:
(a) Construct the operation table, state diagram, and MUX K-map for the /th stage

of the USR/counter device. Base your decisions on the hardware requirements
given in Fig. P12.5a.

(b) From the information in part (a), first design the /th stage for the USR/counter. It
must be cascadable and bi-directional with true hold, asynchronous parallel load,
and clear capability. Then, show how that stage can be cascaded to form the 4-bit
device shown in Fig. P12.5b. (Hint: The counter design should be a combination
of the counter design examples featured in Subsections 12.3.3 and 12.3.4.) Also,
no CO or BO signal is permitted during a true hold or shift operation.

12.15 (a) Construct the complete state diagram for the self-correcting twisted ring counter
featured in Fig. 12.34. In doing so, demonstrate that all extraneous states even-
tually end up in state 0001.

610 CHAPTER 12 / MODULE AND BIT-SLICE DEVICES

Required Hardware for the Jth stage -c

p
rB

So CL
LD

USR/Up-Dn
Counter

CO Up
80 Dn
R L

One FET D flip-flop with PR and Cl overrides -c

One 4-to-1 MUX

One XOR gate

Necessary gates for the NS and output logic

(a) I I I

(b)

FIGURE P12.5

(b) Are there any states other than state 0001 that can be used for parallel loading
in Fig. 12.34? If so, name them. Can state 0000 be used for parallel loading?
Explain.

12.16 (a) Construct a table to indicate the pseudorandom states through which a right
shifting 5-bit ALFSR counter would sequence. To do this, use Table 12.1 and
assume that the ALFSR counter has been corrected to include the all-zero state.

(b) Construct the logic circuit for the 5-bit ALFSR counter of part (a). Include the
gate-minimum correction logic and plan to initialize this counter into the all-zero
state.

12.17 Repeat Problem 12. 16 for a 4-bit ALFSR counter that is left shifted.

12.18 Design a 4-bit maximum length ALFSR counter that will right shift or left shift as
determined by a mode control X. Plan to initialize it into the all-zero state. Thus,
assume that it possesses the required correction logic for the right or left shift of a
universal shift register (USR).

12.19 Design a ripple down-counter that will sequence through the following states:

111 -> 110 -> 101 -> 100 -* Oil -> 010 -> 111 • • • .

To do this, use FET T flip-flops and take the count from the Q(H) outputs of the
flip-flops. Initialize the counter into the 111 state.

12.20 Shown in Fig. P12.6a is the block symbol for a 4-bit (-^24) ripple Up/Down counter.
The count direction is determined by the following:

0-

UpifX(H)=

Dn if X(H) = 0(H)

PROBLEMS 611

CK

v/u. u 4-Bit Ripple Up/Dn
X(H)—H counter

Required Hardware

Four FET D fl ip-flops

Four 2-to-1 MUXs

QA(H) QB(H) QC(H) QD(H)

(a) (b)

FIGURE P12.6

(a) Construct the state diagram and state table for this counter.
(b) Design this counter by using the hardware indicated in Fig. P12.6b (nothing

else), and end with a logic diagram. Plan to initialize into the 0000 state and
take the count from the Q(H) outputs. (Hint: Review Fig. 12.39 and read the
discussion at the end of Section 12.5.)

(c) Alter the design slightly to provide cascading capability for this counter.

12.21 At the discretion of the instructor, simulate by using EXL-Sim2002 any problem
in this chapter where simulation is appropriate. Thus, an assignment 12.21/12.17b
requires that the resulting logic circuit of 12.17 (following Problem 12.16b but now
for a 4-bit left shift ALFSR counter) be simulated.

This page intentionally left blank

CHAPTER 13

Alternative Synchronous
FSM Architectures
and System-Level Design

13.1 INTRODUCTION

It is in this chapter that an attempt will be made to bring the subjects of Chapters 10 through
12 together in some meaningful fashion so that useful controller and system-level designs
can be created. This is, to state it mildly, no simple task, since an almost endless number of
alternatives are available to the designer. Accordingly, and without apology, the treatment
will be limited to a few select topics that are representative of some of the more popular and
constructive approaches to state machine and system-level design. The "creativity" aspect
of the design task is highly valued and should be exercised by the skilled designer whenever
it is profitable to do so. To a reasonable extent this creativity ethic will be used in this chapter,
but only if it serves to edify the reader's experience in design without unnecessary effort.
Cute or novel designs that add little or nothing to an understanding of design fundamentals
will be left to the reader's imagination.

13.1.1 Choice of Components to be Considered

The first thing that must done before proceeding is to list the various devices that should be
considered for use in a given design architecture. The various components available to the
designer are divided into the following five categories:

1. Next state and output-forming logic. Choose from the following:

Discrete logic (gates mainly)
MUXs
Decoders
ROMs
PLAs
Basic I/O PALs

613

614 CHAPTER 13/ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

2. Memory. Choose from the following:

Discrete flip-flops (D, JK, or T that are edge-triggered or master/slave)
Shift registers
Counters

3. Registered PLDs for total state machine design. Choose from the following:

R- and V-type PALs
FPGAs (e.g., Actel and Xilinx)
GALs, EPLDs, PLSs, etc. (see Subsection 7.7.4 for definitions)

4. Input and output conditioning circuits. Choose from the following:

Synchronizers
Synchronizer/stretchers
Debouncing circuits
Output holding (storage) registers for filtering

5. Initialization and reset circuits. Choose from the following:

Sanity circuits

The preceding list of components may not be exhaustive, but it covers most of the
components that are commonly used in modern state machine and system-level design.
Clearly, the choice of components depends on various considerations, including intended
use, physical realization, programmability, and a host of other factors. For example, if it is
the intent of the designer to place the state machine on chip, the choice is somewhat limited.
In this case, a proper choice might include the use of a PLA and discrete flip-flops chosen
from categories 1 and 2, together with the appropriate input and output conditioning circuits
and initialization circuit. On the other hand, if the choice is off chip, many more alternatives
are available, mainly because of the vast numbers of possibilities contained in categories 1,
2, and 3, perhaps limited only by the imagination of the designer. In the following sections,
several exemplary design architectures are demonstrated in the design of various FSMs and
controlled systems. Before proceeding it is recommended that the reader review the design
procedure laid out in Subsection 11.9.1.

13.2 ARCHITECTURES CENTERED AROUND NONREGISTERED PLDs

The model used for designs centered around nonregistered PLDs is shown in Fig. 13.1,
together with block symbols representing possible input and output conditioning circuits.
This model is sometimes referred to as the Huffman model. The PLD represents a ROM, a
PLA, or a basic I/O PAL and is used to generate both the NS- and output-forming logic. The
memory can be any of the devices listed previously in category 2, namely discrete flip-flops

13.2 ARCHITECTURES CENTERED AROUND NONREGISTERED PLDs 615

Inputs'

r
NON-

REGISTERED
PLD

Outputs

FIGURE 13.1
Model used for architectures centered around a nonregistered PLD showing block symbols represent-
ing input and output conditioning circuits for the model.

of some type, a shift register, or a counter. If a shift register or counter is used, the highest
priority is given to shifts or counts in assigning state codes so as to make the most efficient
use of that particular memory device. Such devices are assumed to be of the off-the-shelf
type and should be used in the model shown in Fig. 13.1 only if the sequential nature of the
FSM is amenable to their use. For some FSMs, it may be advisable to use discrete flip-flops
as the memory elements of choice — a designer's option. The input and output conditioning
circuit elements are taken from category 4 in the previous section.

13.2.1 Design of the One- to Three-Pulse Generator by Using a PLA

For purposes of comparison and for a simple first example, consider the design of the one-
to three-pulse generator in Fig. 13.2 by using a PLA to generate the NS and output forming
logic. Figure 13.2a is a reproduction of that in Fig. 11.36b discussed in Subsection 11.9.2. For
a review of PLAs and the actual programming of MOS-oriented PLAs, refer to Section 7.3.

Shown in Fig. 13.2b is the p-term table for Eqs. (11.10), which are obtained from the
K-maps in Fig. 11.38 and which are provided as follows for the convenience of the reader:

DA=AB(SWl)+AB(SW0)

DB = AB(SWi) + CS(SWi)

DC = S + A + B
P = A(CK) + B(CK)

(13.1)

Notice that the p-terms are listed in the order of those for D^, DB, DC, and output P. It is a
good idea to organize the p-term table in such manner for ease of future reading. Also, note
that the p-term AB(S W\) is a shared PI for next state functions DA and DB and is given only
once in the p-term list. For the AND plane (the decoder portion of the PLA), an existing
input is represented either as a logic 1 if uncomplemented or as a logic 0 if complemented
in the p-term. A dash is used to indicate the absence of an input in the p-term to the left.

Some explanation of the CK input to the PLA is necessary. In Section 7.5 the subject
of active low inputs and outputs relative to PLAs and ROMs is discussed. However, the
periodic CK signal (waveform) is really an "apolar" input to a state machine and is treated

616 CHAPTER 13 /ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

Sanity

PLA Inputs
/ \

S(SW1-SW0)

S(SW1+SW0)

Pit ifCK

PS External Inputs

P-terms

AB(SW.,)
AB(SW0)

CSCSW,)
CS(SW0)

s
A

B
A(CK)

B(CK)

A B C S SW1 SW0 CK

0 1 - -- 1

1 1 _ _ _ _ _ _ i

- - 0 1 1

- - 0 1 - 1

1 -
1

- 1
"I __ __ __ __ __ "I

1 11 1

D'
1
1
0

0

0

0

0

0

0

DB

1
0

1
1
0

0

0

0

0

Dc

0

0

0

0

1
1
1
0

0

p

0

0

0

0

0

0

0

1
1

(a) (b)

FIGURE 13.2
Design of the one- to three-pulse generator centered around a PLA. (a) State diagram, (b) P-term table
suitable for programming a 7 x 9 x 4 or larger PLA.

as such in this text. Thus, a CK waveform need not have an activation level, high or low,
associated with it. In a few cases, CK may be assigned an activation level indicator for
emphasis or clarification, particular if I/O conditioning circuits are involved. Figure 11.39
is an example.

Presented in Fig. 13.3 is an n x /> x m = 8x16x4 FPLA that is programmed to generate
the NS and output forming logic for the one- to three-pulse generator of Fig. 13.2. Here, the
symbolism represents the bit position patterns illustrated in Fig. 7.6. The tri-state drivers
serve to enable the FPLA ifEN(L) = 1 (L) or to disable the FPLA if EN(L) = 0(L). Notice
that all nine p-terms in Fig. 13.2b are represented and that one, AB(SWi), contributes to
both the DA and DB NS functions — hence a shared PI, as pointed out previously. Observe
also that the array of square dots and circles in the OR plane of Fig. 13.3 is the same as the
PLA output array of 1's and O's in the p-term table of Fig. 13.2b. This will always be so for
the symbolic representations of nonsequential PLDs. Note that the square dots and circles
store a 1(L) and 0(L), respectively, in agreement with Fig. 7.6.

Implementation of the programmed FPLA in Fig. 13.3 is illustrated in Fig. 13.4. The
one- to three-pulse generator is unique in the sense that CK is an input (like any other
input) to the PLA. This, of course, is required if the output P, shown in Fig. 13.2a, is to
be conditional on CK. Recall, in Subsection 11.9.2, Fig. 11.35, that the pulses are required
to be issued only when CK is active. Actually, it is possible to remove the CK input to the

13.2 ARCHITECTURES CENTERED AROUND NONREGISTERED PLDs 617

AB(SW1)-

AB(SW0)-

CS(SW0)-

s-
A-

B-

A(CK)-

B(CK)-

EN(L) -

or ^ $ or
r

Input to p-term

A(H) B(H) C(H) S(H) SW^H) SW0(H) CK —J—Stores a 1 (L)

I7(H) I6(H) I5(H) I4(H) I3(H) I2(H) I^H) I0(H)

Stores a 0(L)

DA(H) DB(H) DC(H) P(H)

FIGURE 13.3
Symbolic representation of the fusible bit position patterns for an 8 x 1 6 x 4 FPL A that is programmed to
generate the NS and output forming logic required by the one- to three-pulse generator in Figure 13.2.

PLA provided that the output P(H} is ANDed with CK externally. This would satisfy the
requirement just mentioned while requiring one less input to the PLA. Also, notice that
the actual debouncing, synchronizing, and initialization circuits are not shown in Fig. 13.4
since they are exactly the same as those provided in Fig. 1 1.39.

1 3.2.2 Design of the One- to Three-Pulse Generator by Using a PAL

Unlike the PLA, a PAL device can be programmed only in the AND plane. The OR plane has
a fixed number of inputs for each output and is, therefore, nonprogrammable. It is for this
reason that all p-terms must be programmed separately into the PAL device — shared Pis
cannot be used, as in the case of a PLA. Shown in Fig. 13.5 is the symbolic representation
of the fusible bit position patterns for an 8 x 16 x 4 basic I/O PAL that is programmed to
generate the NS and output logic required by the one- to three-pulse generator in Fig. 13.2.
Notice that all 10 p-terms in Eqs. (13.1) are programmed into the AND plane and that
the p-term AB(SW\) is listed twice and not shared as in the FPLA of Fig. 13.3. In the
nonprogrammable OR plane, three p-term connections [filled squares each storing 1(L)]
are provided for each output. If fewer than three p-term connections are needed, the unused

618 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

CK

SW0(H)

SW/H)

S(H) —

V7; r
Debouncing and

synchronizing circuits

EN(L) Sanity(L)

FIGURE 13.4
Implementation of the one- to three-pulse generator with a PLD such as an FPLA or basic I/O PAL,
where the debouncing, synchronizing, and initialization circuits are given in Fig. 11.39.

connections are not programmed. This is the case for outputs DA(H) and P(H), each with
one unused p-term. On the other hand, if more ORed connections are needed than are
provided by the fixed OR plane of the PAL, the outputs must be ORed external to a basic
I/O PAL. However, an L-type PAL has feedback paths that could be used for that purpose.
The tri-state drivers serve the same purpose as in Fig. 13.3.

The basic I/O PAL in Fig. 13.5 is nonregistered, meaning that it lacks the capability to be
used to implement a state machine without using external memory elements (flip-flops). The
R- and V-type PALs, discussed in Section 7.4, are much more versatile devices since they
can be programmed to implement state machines without the need for external memory —
they have built-in flip-flops and feedback paths. Erasable PALs are also available, a feature
that makes them even more attractive to the designer. The acronym PAL is a registered
trademark of Advanced Micro Devices, Inc. Therefore, use of this acronym acknowledges
AMD's right of trademark for all PAL-type devices.

13.2.3 Design of the One- to Three-Pulse Generator by Using a ROM

Whereas the PAL is programmed in the AND plane, the ROM is programmed only in the OR
plane. But programming the ROM is simpler in the sense that the canonical ROM program

13.2 ARCHITECTURES CENTERED AROUND NONREGISTERED PLDs 619

AB(SW1)-

AB(SW0)-

ABfSW,)-

CS(SW0)-

S-

A-

B-

A(CK)-

B(CK)-

EN(L)

A(H) B(H) C(H) S(H) SW^H) SW0(H) CK
I7(H) I6(H) I5(H) I4(H) I3(H) I2(H) I^H) I0(H)

Non-programmable OR
Plane

XV

FIGURE 13.5
Symbolic representation of the fusible bit position patterns for an 8 x 16 x 4 basic I/O PAL that
is programmed to generate the NS- and output-forming logic required by the one- to three-pulse
generator in Fig. 13.2. PAL is a registered trademark of AMD, Inc.

table is obtained directly from either the state diagram or from the state table. Shown in
Fig. 13.6a is the state table for the one- to three-pulse generator. An inspection of the state
table shows it to be the same as the state diagram in Fig. 13.2a with one major exception.
The outputs P are no longer conditional on CK. This has been done to reduce the number
of inputs to the ROM, PROM in this case. Recall that ROM size increases by a factor of
2 for each additional ROM input. Now, however, another means must be found to produce
a pulse output conditional on CK. This is done by ANDing P with CK as is illustrated
later.

The ROM program table is given in Fig. 13.6b. In this case, it is constructed directly
from the state table in Fig. 13.6a with unconditional P outputs. Notice that the program
table is canonical (1's and O's only, as it must be) and that the irrelevant input symbol X is
used to collapse it to only 11 rows. The fully expanded truth table would require 26 = 64
rows of I/O data, which is not necessary to program the ROM. The missing states in the
program table are all assigned X's on the input side and don't-cares on the output side of
the table. Remember that an irrelevant input, like a don't care, can be assigned a logic 1 or

620 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

ROM Inputs ROM Outputs

\ S SW SW0
ABC\ 000 001

000

011

111

101

001

000

001

001

001

000

000

001

101

001

000

011 010

000

111
101

001

000

SW0

000

111
001

001

000

110 111
011

111
001

001

001

011

111
101

001

001

101 100

011

001

101

001

001

SW0

001

001

001

001

001

p
0

1
1
1
0

(a)

/

s~
'5
A

0

0

0

0

0

0

1

1

1

0

0

PS
/

u
B

0

0

0

0

1
1
1
1
0

0

0

X's

x =

~N

>3

c
0

0

0

0

1
1
1
1
1
1
1

External
Inputs

'2 '1 I0s sw, sw-
0

1
1
1
X

X

X

X

X

1
0

•

X

0

1
0

0

1
X

X

X

X

X

X's

X

0

X

1
X

X

0

1
X

X

X

/ '̂

^-^

D. D»

0

0

0

0

0

1
0

1

0

0

0

Irrelevant input ^

0

0

1
1
0

1

0

0

0

0

0

p* \

-N

Y1

nr

0

1
1
1
1
1
1
1
1
1
0

<

— \

Y0

P

0

0

0

0

1
1
1
1
1
0

0

J's

= Don't care

(b)

FIGURE 13.6
ROM design of the one- to three-pulse generator in Fig. 13.2, except with CK removed as an input
to the ROM. (a) State table showing an unconditional output P for states b, c, and d in Fig. 13.2a.
(b) Collapsed program table for a PROM implementation.

a logic 0; it doesn't matter. This, of course, is true only if the FSM is properly initialized,
in this case into the 000 state. Finally, remember that all outputs in a ROM program table
are indicated relative to the present state (PS), never the NS.

Presented in Fig. 13.7 is a 2" x m = 26 x 4 PROM that is programmed to generate the
NS- and output-forming logic for the one- to three-pulse generator represented in Fig. 13.6b.
Here, the filled square dots and circles represent the fusible bit position patterns for storage
of 1's and O's shown in the generalized PROM structure of Fig. 7.2. As before, the tri-state
driver outputs permit the PROM to be enabled if EN(L) = 1(L) or disabled if EN(L) = 0(L),
according to Fig. 3.8d, assuming CMOS logic.

Implementation of the one- to three-pulse generator by using a PROM is shown in
Fig. 13.8. Here, the required dependence of output P on CK is removed from the PROM
and placed external to it by using an AND gate. Thus, output P' cannot be issued except
in states Oil, 111, and 101 of the state table, and then only when CK is active, as required

13.2 ARCHITECTURES CENTERED AROUND NONREGISTERED PLDs 621

EN(L)

DA(H) DB(H) DC(H) P(H)

FIGURE 13.7
PROM decoder and symbolic representation of the fusible bit patterns required to program the one-
to three-pulse generator represented in Fig. 13.6.

by the design specifications. Note that the input debouncing and synchronizing circuits
are the same as those shown in Fig. 11.39, which was also true for the FPLA design in
Fig. 13.4.

There still remains the question of output race glitches (ORGs) and static hazards in the
PROM implementation of the one- to three-pulse generator. First, according to Fig. 11.37,
there are no ORGs possible in this FSM. Second, the PROM generates minterms for output
P, as illustrated in Fig. 13.9a. The expression for P, obtained from the K-map in 13.9a or
from the state table in Fig. 13.6a, is given in Fig. 13.9b. It indicates the possibility of two
internally initiated static 1-hazards. This can be verified by comparing the coupled terms
in the logic expression for P with the state table. The possible hazardous transitions are
Oil —> 111 and 111 -> 101. Assuming that the flip-flops are NOR-based, static 1-hazards
will be produced in output P(H) shown in Fig. 13.8. However, these hazards cannot possibly
appear in the output P'(H), since they are filtered out by the AND gate. Remember that
all logic noise is produced immediately following the triggering edge of the CK waveform.
Since FET flip-flops are used for the memory and since the pulses P are coincident with
CK active, the output is filtered by the ANDing operation permitting clean pulses to be
issued.

622 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

CK

SW0(H)

S(H) — Debouncing and
synchronizing circuits

Sanity(L)

FIGURE 13.8
Implementation of the one- to three-pulse generator with a six-input, four-output PROM showing the
external logic required to generate pulses conditional on CK.

13.2.4 Design of a More Complex FSM by Using a ROM as the PLD

As a second and more complex example of ROM-centered implementation, consider the
state diagram for a fictitious FSM in Fig. 13.10a. This state machine features four syn-
chronous inputs, one of which is active low, and four outputs, one of which is also active
low. This machine is interesting because it possesses up to three-way branching where
branching is dependent on all four inputs, and has both conditional and unconditional out-
puts. Thus, the ROM program table will be somewhat more complex than that of Fig. 13.6b.
Though this FSM has only seven states, it is as complex (branching-wise) as one is likely
to encounter in the field.

BC
\ 00 01 11 10

CD P = ABC + ABC + ABC

111 101

111 011

(a)

FIGURE 13.9
Static hazard analysis of the PROM implementation of output P taken from the state table in Fig. 13.6a.
(a) K-map showing cover for P required by the PROM, (b) Expression for P showing coupled p-terms
and internally initiated hazard transitions.

13.2 ARCHITECTURES CENTERED AROUND NONREGISTERED PLDs 623

Sanity

ROM Inputs

PS

IB 's '4 '3 '2 '1
A

0

0

0

0

0

1

1

1

1

1

1

0

0

1
1

B

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

c

0

0

1
1
1
1
1

1
0

0

1

0

0

0

0

s

0

1
X

X

X

0

0

1
X

X

X

X

X

X

X

T

X

X

0

X

1

0

1

X

X

X

X

0

1
X

X

u*

X

X

X

X

X

X

X

X

1
0

X

X

X

X

X

>o
V

X

X

0

1
0

X

X

X

X

X

X

X

X

0

1

/

/ —
Y6

DA

0

0

0

0

1
0

1

1

1
1
0

1

0

1

1

ROM

NS
-* ^

DB

0

0

0

0

0

0

1

1

1

0

1
1
1
0

0

DC

0

1
1
0

1

0

1

0

0

0

0

0

0

1
1

Outputs

Y Y YT 3 T 2 T1

M

0

0

0

1

0

0

0

0

0

0

0

1
1
0

0

N*

0

0

0

0

0

0

0

0

0

0

0

0

0

1
0

p

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

\

Q

0

0

0

0

0

0

0

0

1
1

0

0

0

0

0

MiT

Synchronous Inputs Outputs
S(H), T(H), U(L), V(H) M(H), N(L), P(H), Q(H) X = Irrelevant input

* Indicates an active low input or output

FIGURE 13.10
Design of the NS and output logic for a fictitious FSM by using a ROM. (a) State diagram, (b) Coll-
apsed ROM program table constructed directly from the state diagram in (a).

The ROM program table is constructed directly from the state diagram and is given in
Fig. 13.10b. As can be seen, this table is a collapsed canonical truth table involving only
15 rows. Fully expanded, this table would require 27 = 128 rows, which is unnecessary for
programming purposes. Remember that the irrelevant input X is to inputs as the don't care
0 is to outputs. Thus, all input data for state 011 (not shown) take X's and all output data
relative to this state take don't cares.

There are other features of this ROM program table that are noteworthy. Active low
inputs to a ROM can be dealt with by complementing the logic values in columns of those
active low inputs, or by placing inverters on these inputs to the ROM and not complementing
the columns. Similarly, active low outputs can be handled by either complementing their
columns or by placing an inverter on these outputs, but not both actions. The input U(L) and
the output N(L) are represented by using an asterisk in the ROM I/O table to indicate that
one of the two actions just stated is necessary to accommodate their active low logic level.
For this example, only the U input column is complemented in the ROM program table of
Fig. 13.10b. This eliminates the need to use an inverter on the input to produce U(L). The
active low output N(L) will be issued from an output holding register as discussed later in
this section. Section 7.5 provides a review of this subject.

One other feature of the ROM program table, mentioned earlier, is important to remem-
ber: The outputs are always given relative to the present state, never the next state. The

624 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

reader can verify this by comparing the ROM program tables in Figs. 13.6b and IS.lOb
with their respective state table and state diagram in Figs. 13.6a and 13.10a.

The ROM program table in Fig. 13.1 Ob could have been constructed from a state table.
However, this approach would have been more difficult, or at least more tedious, mainly
because of the size of the state table needed. Nevertheless, a state table can be constructed
by using state identifiers, thereby permitting the construction of the ROM program table to
proceed with little effort. Use of a state table for this purpose is the method of choice if a
CAD approach is used.

Shown in Fig. 13.11 is an 8-to-28 EPROM decoder and symbolic representation of the
fusible bit position patterns in the OR plane required to generate the NS- and output-forming
logic for the FSM in Fig. 13.10. The meaning of the filled squares and circles and use of

EN(L).

DA(H) DB(H) DC{H) M(H) N(H) P(H) Q(H)
Stores a 1(L) —O— Stores a 0(L)

FIGURE 13.11
EPROM decoder and symbolic representation of the fusible bit position patterns in the OR plane
required to program the fictitious FSM in Fig. 13.10.

13.2 ARCHITECTURES CENTERED AROUND NONREGISTERED PLDs 625

0(H) 0(H) Sanity(L)

FIGURE 13.12
Implementation of the fictitious FSM in Figs. 13.10and 13.11 by using an 8-input/8-output EPROM,
and two 4-bit storage registers.

the tri-state drivers was discussed previously relative to Fig. 13.7. Notice that the array of
filled squares and circles in Fig. 13.11 is exactly the same as the array of 1's and O's in the
ROM program table of Fig. 13.1 Ob. Note that the last 127 minterms are not used.

Implementation of the fictitious FSM in Fig. 13.10 is shown in Fig. 13.12. It follows
closely that of the one- to three-pulse generator in Figure 13.8, but with some significant
changes in ROM size and in external logic. In this case use is made of a 28 x 8 EPROM,
in agreement with Fig. 13.11, though only a 27 x 7 EPROM is necessary. Also different is
the use of two 4-bit storage registers, one used for the 3-bit memory and the other used as
a holding register to filter out the ORGs that can occur in the four outputs. Notice that the
output holding (filtering) register is triggered antiphase to the memory register, a necessary
feature for filtering logic noise, as discussed in Subsection 11.2.2. Static hazards in the
output logic are not possible in this FSM; but if they were possible, they also would be
filtered out. The output holding register serves one other function. It can also be used to
deliver the four outputs synchronously to the next stage independent of any logic and routing
delay differences that can occur within the EPROM.

Finally, notice that the active low input U(L) and active low output N(L) are pro-
perly dealt with in Fig. 13.12. Since the input column for U is to be complemented be-
fore the EPROM is programmed, no inverter on this input is necessary. However, since
the output column for N in the ROM program table is not complemented prior to
programming, N(L) must be delivered by the register as indicated in Fig. 13.12. Thus,

626 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

N(L) must be issued from the Q(L) output of the register's flip-flop, or by an inverter on

13.3 STATE MACHINE DESIGNS CENTERED AROUND A SHIFT REGISTER

There are times when the designer might like to consider using an off-the-shelf universal
shift register (USR) in the design of a state machine, one that is amenable to the shifting
character of the USR. Remember, it makes little sense to use a USR for this purpose if
most of the FSM's state-to-state transitions are parallel load actions. For such an FSM, it
would be best to use discrete flip-flops as has been done in all examples up to this point.
In making the state code assignments for an FSM, shifting operations must be given the
highest priority if the most efficient use is to be made of the shift register.

Shown in Fig. 13.13a is the state diagram for an FSM that would be considered amenable
to the use of a USR as the memory. Notice that it has what could be termed a linear array

, S0 NS,

_

—

-c

-c

81
So
LD

R

PA PB PC PO

Universal Shift
Register CL

L
QA QB QC QD

1 1

0

> o

_ 1

1

0

1

0

1

(H)--Hold

(SR)--Shift Right

(SL)--Shift Left

(PL)--Parallel load

(b) (c)

FIGURE 13.13
State machine design by using the USR as the memory, (a) State diagram for a fictitious FSM showing
state-to-state branching actions of the USR. (b) Block diagram symbol for the USR. (c) Operation
table and branching action for the USR.

13.3 STATE MACHINE DESIGNS CENTERED AROUND A SHIFT REGISTER 627

of states — hence, a linear state machine. The branching action required by the USR is
given for each state-to-state transition. Notice that only left shifting and parallel loading are
required of the USR.

In Figs. 13.13b and (c) are the block circuit symbol and operation table for the USR.
A view of the logic circuit symbol indicates that logic must be found for inputs S\, SQ, R,
L, and the four parallel load inputs PA, PB, Pc, and PD before the USR can be used in
the design of this FSM. However, the external logic required to drive the USR through the
sequence of states in Fig. 13.13a turns out to be quite simple. Shown in Fig. 13.14a are the
K-maps for the two mode controls and the serial input for left shifting. The minimum cover,

\CD VCD \CD
ABX 00 01 11 10 AB\ 00 01 11 10 AB\ 00 01 11 10

00

01

11

10

00

01

11

10

0

*
<!>

</>

0

X

*
^

^
(f)

$
*

0

^l
^J
0

00

01

11

10

rs(

(a)

X(H)±T^V-
D(HH /"

B(H) ^ A_

CK— C

0(H)

P P P Fr* rB rC r

1

0 Universal Shift
Register

>

R

QI Q8 QC C
M D W

U

>
D

CL

L

r —

(H)

D — Sar

•**<y -D(H)

Z(H)

A(H) B(H) C(H) D(H)

(b)

FIGURE 13.14
Implementation of the fictitious FSM in Fig. 13.13 by using a USR as the memory, (a) Mode control
and serial input K-maps showing minimum cover, (b) The USR and external logic derived from (a)
and from the state diagram.

628 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

indicated by shaded loops, yields the expressions:

S] = X + C + D

L = D
(13.2)

where R = 0 or 1 and PA = PB = PC = PD = 0 by inspection of the state diagram in
Fig. 13.13a. The logic for L can also be deduced from an inspection of the state diagram
since state variable D toggles in complementary fashion with respect to the left shifting
of 1's and O's. Observe that state pairs, 0101 and 1010, are the only two four-bit patterns
that can be cycled exclusively with either a left shift or a right shift. Knowledge of this
fact can be useful in state machine designs centered around a shift register, as in this case.
Implementation of Eqs. (13.2) is shown in Fig. 13.14b, where the Moore output is simply
Z(//) = A(H), as deduced from the state diagram in Figure 13.13a.

S
Sanity

Synchronous Inputs
S(H),T(H),U(L),V(H)

V(SRO)
Outputs

MIT if V M(H), N(L), P(H), Q(H)

0 0

0 1

1 0

1 1

NIT if V

(H)-Hold

(SR)-Shift Right

(SL)--Shift Left

(PL)-Parallel load

(a) (b)

FIGURE 13.15
Design of the fictitious FSM of Fig. 13. lOa by using a USR as the memory, (a) State diagram with a state
code assignment amenable to a USR design showing state-to-state branching actions in parentheses,
(b) Operation table for a USR.

13.3 STATE MACHINE DESIGNS CENTERED AROUND A SHIFT REGISTER 629

A More Complex Example of State Machine Design Centered around a USR It has
just been demonstrated that a "linear state machine" can be well suited to the use of a
shift register as the memory. However, if this approach is applied to an FSM design where
multiple branchings are involved, use of a USR as the memory element loses some of its
appeal. Consider the state machine in Fig. 13.15a, which is the FSM of Fig. 13.10a but
coded in such a way as to take better advantage of the shift character of the USR. The
branching actions of the USR, defined in Fig. 13.15b, are indicated in parentheses for each
state-to-state transition. As in the previous example, this is very helpful in obtaining the
required logic external to the USR. Notice that the MSB state variable A is left inactive
so as to minimize the external logic commitment — its use is not needed in this case.
Deactivation of a state variable in shift register designs can be done only if care is taken
to ensure that the shifting and parallel load actions do not create problems at this bit
position.

The third-order K-maps for the mode control and the parallel load inputs are provided
in Figs. 13.16a and 13.16b. Because the MSB state variable is inactive, only the remaining
state variables, B, C, and D, need be used in K-map construction. No minimum cover
is indicated in the mode control K-maps because MUXs are to be used to implement S\
and So — a designer's call. Note that a K-map for PA is not necessary since, by inspection
of the state diagram, it is evident that PA = 0. K-maps for serial inputs L and R are also
unnecessary since, by inspection of the state diagram, L = 1 and R = 0. That is, all indicated
shift-left operations are SLl and all indicated shift-right operations are SRO; all others are,

(a)

\CD
p\ 00 01 11 10

0

1

S

0

TV

1

1

1

U

*

\CD
p\ 00 01 11 10

0

1

0

f

V

1

S+T

1

0

*
\CD \CD \CD
[X 00 01 11 10 g\ 00 01 11 10 R\ 00 01 11 10

(f)

(j)
*
0

0

('
^

(j) \

(b)
1 ^ 0 [1 ^ j 1 ^ 1 0 ^

^P,

I ^

(f)
<-
Y

1

S

0

')
#

V
/-

Y
1

0

0

(f)

(f)

\CD
R\ 00 01 11 10

0

1

0

M

M if V

N if V

0

P

Q

*

(c)
1

FIGURE 13.16
K-maps for
implemental
four outputs

FIGURE 13.16
K-maps for the fictitious FSM of Figure 13.15(a). (a) Mode control K-maps appropriate for MUX
implementation, (b) Parallel load input K-maps and minimum cover, (c) Composite K-map for the

630 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

of course, don't cares. The composite output K-map in Fig. 13.16c is useful since a state
decoder is to be used to generate all Moore outputs and to reduce the logic necessary for
the Mealy outputs.

Gathering the results so far, the expressions for the serial and parallel load inputs are

L = 1

PB=BC = State 1

PC = BS + C = (State 3) • S + State 5

PD = C = State 5

(13.3)

and for the four outputs

M = (State 1) • V + State 4

N = (State 5) • V
\, (13.4)

P= State 1 '

Q = State 2

where it is understood that the mode control inputs, S\ and So, are to be generated by
8-to-l MUXs and that a state decoder is to be used to produce the State values given
in Eqs. (13.3) and (13.4). It is important for the reader to realize that the State values
in the parallel load and output equations can be read directly from the state diagram. For
example, PB — State 1 since the only parallel load involving state variable B is the branching
01 1 1 -> 0100. Similarly, Pc = (State 3) • S + State 5 is due to the parallel load 001 1 -^ 0010
under branching condition S and the unconditional parallel load transition 0101— >• 00 11.
Or, in the case of an output, TV = (State 5) • V results since N is conditional on V in state
0101. Thus, the use of a state decoder can save time and reduce the number of external
gates required for implementation, which, of course, comes at the cost of adding a state
decoder.

Shown in Fig. 13.17 is the FSM of Fig. 13.15a centered around a USR and state decoder
with 8-to-l MUXs used to generate the mode controls, S\ and SQ. Here, the external logic
to the MUXs is the logic contained in the cells of the mode control K-maps, and the parallel
load and output logic follow Eqs. (13.3) and (13.4). An output holding register, triggered
anti-phase to the memory, is necessary since ORGs abound, as can be seen by an inspection
of the state diagram in Fig. 13.15a. Observe that the shifting and parallel load action re-
quired by this FSM presents no problem at the inactive MSB position, A, since that position
accepts a logic 0 in all cases.

The use of the state decoder in Fig. 13.17 is to be considered a design convenience,
and so its presence is arbitrary. A state decoder helps to minimize the parallel load and
output-forming logic and reduces the overall effort in obtaining this logic. In the absence
of a state decoder, one can expect a significant increase in the number of gates required to
implement the parallel load and output logic. For example, without the state decoder, the

7
6

5
4

3
2

1
0

8-to-1 M
U

X

Y

7
6

5
4

3
2

1
0

8-to-1 M
U

X

Y

2

1

0

3-to-8 S
tate D

ecoder

5
4

3
2

C
K

1̂

Q

D

M
 Q

D

N

Q

TS
anity(L)

M
(H

)
N

(L)

P
(L) =

 P
(H

)

Q
(L) =

 Q
(H

)

FIG
U

R
E

 13.17
Im

plem
entation of the F

S
M

 in Fig. 13.15a centered around a U
S

R
 w

ith application of E
qs. (13.3) and (13.4) and 8-to-l M

U
X

s for the external logic.

632 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

output-forming logic in Eqs. (13.4) becomes

M = BCDV+BD

N = BCDV

P=BC

Q = CD

(13.5)

as read from the composite K-map in Fig. 13.16c. This represents an increase of three gates
over that required by Eqs. (13.4). But again, the price to be paid for convenience and for
the reduction in external gate logic is the added state decoder hardware.

13.4 STATE MACHINE DESIGNS CENTERED AROUND A PARALLEL LOADABLE
UP/DOWN COUNTER

For purposes of comparison, it will be interesting to design the same FSMs as in Section 13.3
but now centered around a parallel loadable up/down counter instead of a USR. Shown in
Fig. 13.18a is the "linear state machine" of Fig. 13.13a, but now state coded in a count
sequence. Notice that the MSB state variable is inactive and that only one parallel load
transition exists, 0011 ->• 0000.

The counter to be used for this design is that featured in Fig. 12.23. This is a binary
up/down counter with synchronous parallel load and true hold capability. The logic symbol
and operation table for this counter are reproduced from Subsection 12.3.4 and are presented
in Figs. 13.18b and 13.18c for convenience of the reader. An inspection of the logic circuit
symbol indicates that external logic must be found for inputs S\, SQ, Up, Dn, and the four
parallel load inputs PA, PB, PC, and PD. But, as it turns out, this external logic is quite
simple. From the K-maps and minimum cover for the mode control and Up/Dn inputs given
in Fig. 13.19a, there results the external logic given by

Sl=CDX

S0 = X + B

Up = B
Dn = B

(13.6)

where it is understood that PA = PB = PC — PD = 0 by inspection of the state diagram
in Fig. 13.18a. That is, the parallel load inputs are necessarily all zero because the only
parallel load branching is from state 0011 to state 0000. Notice that the logic for Up and
Dn could also have been deduced from the state diagram.

The resulting logic circuit for the FSM in Fig. 13.18a is shown in Fig. 13.19b. Here, it is
easily seen from the state diagram that the single Moore output is simply Z(//) = B(H).
Comparing Fig. 13.19b with Fig. 13.14b indicates that both a USR and parallel loadable
up/down counter design of this linear state machine result in only minimal external logic.
Remember that to accomplish these designs it is necessary that the USR and counter have
both parallel load and true hold capability.

p p p p
~A rB ~C rD

S,

S0 4-Bit Parallel CL

)> Loadable Up/Down
nn Binary Counter ,.„
v x/ U P

BO Dn
QA QB QC QO

O-
0 0

0 1

1 X

Q , True hold

Tj Up/down count

P, Parallel load

(b) (c)

(a)

FIGURE 13.18
State machine design by using the parallel loadable up/down counter of Fig. 12.23 as the memory.
(a) State diagram for the FSM showing state-to-state branching actions of the counter, (b) Block
diagram symbol for the parallel loadable up/down counter, (c) Operation table for the parallel loadable
up/down counter.

CD
00 01

-0(H)

PA PB PC PD

S0
Parallel

Loadable
Up/Dn CL >- Sanity(L)

_ _ Counter ,, r / v '
CO Up
BO Dn

QA QB QC QD

D(H)

B(H)

-Z(H)

B(H)C(H)D(H)

(a) (b)

FIGURE 13.19
Implementation of the state machine in Fig. 13.18a by using an up/down counter with parallel load
and true hold capability, (a) K-maps and minimum cover for the mode control and Up and Dn inputs.
(b) Logic circuit for the state machine.

633

634 CHAPTER 1 3 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

A More Complex Example of FSM Design Centered around a Parallel Loadable
Up/Down Counter The previous example demonstrated that the a linear state machine
could be favorably designed by using a parallel loadable up/down counter as was the case in
using a USR for the memory. But what would be the consequence of using such a counter-
based design for a more complex FSM? The comparison between the various approaches to
FSM design now continues with the design of the FSM in Figs. 13.10 and 13.15 by using as
the memory the 4-bit parallel loadable up/down counter with true hold capability featured
in Fig. 12.26. Shown in Fig. 13.20a is the state diagram for the FSM with a state code
assignment suitable to counter design. Clearly, the number and character of its inputs and
outputs, together with up to three-way branching, is much more complex than the linear
FSM of Fig. 13.18a. Consequently, it is predictable that the external logic required for a
counter design of this FSM will be considerably more complex than that in Fig. 13.19b. In
fact, an architecture similar to that for the USR design in Fig. 13.17 is to be expected.

s
Sanity

V(D)
Outputs

MiTifV M(H), N(L), P(H), Q(H)

= Increment
D = Decrement

LD

.EN
Synchronous Inputs
S(H), T(H), U(L), V(H)

p P P PrA rB rC rD

0/y 4-bit Parallel
loadable up/down

counter

CO Cl

QA QB Qc Q0

(b)

LD EN

0 0
0 1
1 X

NSj.

Qj True Hold

(CNT)j Count

Pj Parallel Load

LD = Parallel load command
Nit if V EN = Count enable command

(a) (c)

FIGURE 13.20
Design of the fictitious FSM of Fig. IS.lOa by using a parallel loadable up/down counter with true
hold capability, (a) State diagram with state code assignments suitable for counter design showing
counter branching actions in parentheses, (b) Logic circuit symbol for the counter of Fig. 12.26.
(c) Operation table for the counter.

13.4 STATE MACHINE DESIGNS 635

\CD \CD \CD \C .
R\

0

(a)
1

00

0

0

\CD
R\ 00

0
(b)

1

fi
-€

(j)

01

0

0

01

fi

(f)

11
0

^

11

(f)

(f)

10

CO
0

/

10

S+T

— 3-
$

R\

0

1

LD

00

s

u

\CD
R\ 00

0

1

^-e —
(p

01

T+V

T

01

(p

(f)

11

1

^

11

r

Y

10

^

1

/

10

ST
3_

0

R\

0

1

EN

00

0

1

\CD
R\ 00

0

1

(f)

-f —
r

01

V

1

01

(j)

(f)

11

1

^

11

(j)

(j)

10

^
1

/

10

0
— J_

^

B\ 0 1

0 DV 1

•̂
1 1 1

D/U /

x

(c)

\CD
g\. 00 01 11 10

0

1

0

Q

M if V

M

N if V

^

0

p

FIGURE 13.21
K-maps for the fictitious FSM of Fig. 13.20a consistent with the operation table in Fig. 13.20c.
(a) Mode control and count direction EV K-maps. (b) Parallel load input K-maps and minimum
cover, (c) Composite K-map for the four outputs.

An inspection of the logic circuit symbol in Fig. 13.20b indicates that to drive this counter
through the state sequence in Fig. 13.20a, external logic must be found for inputs LD, EN,
D/U and the four parallel load inputs PA, PB, Pc, and PD. The EV K-maps for all external
inputs except PA are shown in Figs. 13.21a and 13.21b, together with the minimum cover
for LD and the three parallel load inputs. It follows that PA = 0 since the MSB state variable
A is inactive as can be seen in the state diagram of Fig. 13.20a. The outputs are represented
by the composite K-map in Fig. 13.21c. From these K-maps there results the following
expressions for the inputs:

BCD = State 2

PC = ST

PD=Q

For the four outputs, assuming the use of a state decoder,

' M = (State !)• V + State 5

(13.8)
P = State 6

Q = State 4

Inputs £Wand D/U are not included in Eqs. (13.7) since the choice is made to use MUXs to
implement these parameters. In the case of D / U, the option of using either an 8-to-1 MUX or

D/U

636 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

a 4-to-l MUX is indicated by the compressed EV K-maps in Fig. 13.2la. For this example,
the 8-to-l MUX will be used. Predictably, there is similarity between Eqs. (13.8) and (13.4).

Shown in Fig. 13.22 is the implementation of the FSM in Fig. 13.20a centered around
the parallel loadable up/down counter of Fig. 12.26. A state decoder is used primarily to
reduce the external gate logic required to generate the four outputs. The choice is made to
implement the count enable and direction controls, EN and D/U, by using 8-to-l MUXs
although, in the latter case, discrete logic or a 4-to-1 MUX would make more efficient use
of hardware. An additional gate would be necessary to produce the p-term DV if a 4-to-l
MUX is used, as indicated in Fig. 13.2la. Notice that the external logic to the MUXs is
exactly that contained in the cells of the EN and D/U K-maps. As in the USR design of this
fictitious FSM shown in Fig. 13.17, an output holding register is used to filter the several
ORGs that are produced in the operation of this FSM.

The state decoder in Fig. 13.22 can be eliminated, but only at the expense of additional
external logic. From the K-maps in Fig. 13.21, the change in the external gate commitment
would be

LD = BCD, M = BCDV + BD, N = CDV, P = BC, Q = BCD,

which is an increase of four gates over that required with a state decoder. Notice that use of a
16-to-l MUX to generate EN would eliminate the need for the OR gate shown in Fig. 13.22.

13.5 THE ONE-HOT DESIGN METHOD

As evident from the previous examples, designing a state machine to have a minimum
number of state variables (hence a minimum number of flip-flops) involves a considerable
effort. Functions often must be mapped and minimized before the design process can be
completed. Furthermore, for such designs, no direct relation exists between states of the
FSM and the NS and output functions that result.

An alternative design architecture exists that greatly reduces the design effort and ends
with a direct relationship between the states of the FSM and the NS and output logic that
results. This method is aptly dubbed the one-hot method for state machine design — a single
"1" per state. But the advantages provided by this method come at a price: one flip-flop
per state each with NS-forming logic. A 10-bit one-hot code is given in Column (c) of
Table 2.11 in Subsection 2.10.2.

A big advantage of the one-hot method is that the NS and output functions are generated
directly from either the state diagram, state table or from an ASM chart — no specific state
code assignments are needed! Shown in Fig. 13.23a is a state diagram segment for the jth
reference state that serves as the model for the one-hot method. Here, it is understood that
any branching condition //<_/ represents the holding condition for the y'th state, where j is
an integer j = 0, 1, 2 , . . . , (m — 1). Since only one logic 1 is permitted in each state code,
the use of D flip-flops make it necessary to know only the branching conditions for states
that transition into a given reference state. The result is the generalized NS (Dj) and output
(Z/) forming logic for m states and r total outputs presented in Fig. 13.23b. These functions
are expressed succinctly by

i n — 1 m — \

Dj = Q k - f j ^ k and Z, = Qj-fj,,(X), (13.9)

T
(H

)
1

|
V

(H
)

1
1

S
(H

)
T

(H
)

2

1

0

3-to-8 S
tate D

ecoder

5
4

3
2

C
K

1»-s»2

M
(H)

N(L)

P
(L) = P

(H
)

Q
(L) =

 Q
(H

)

-.
ro

ro
ro

ro
ro

ro
ro

ro

S
anity(L)

2

c
o

c
o

c
o

c
o

c
o

c
o

w
c

o

FIG
U

R
E

 13.22
Im

plem
entation of the FSM

 in Fig. 13.20a centered around the parallel loadable up/dow
n counter of Fig. 12.26 w

ith application of E
qs. (13.7) and (13.8)

and w
ith 8-to-l M

U
X

s for count enable and direction controls.

638 CHAPTER 1 3 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

Do = Qofo^o + Q1 Vi + Q2fo<-2

D, = Q0 V0 + Q, V, + Q2f^

D m i = Q n f / m n n + Q i t m n 1+CU, n o + " ' + Q <t „m-i u (rn-i} *™u i (rn - i)<— i d. (rn-l) <—c m-l (m - t) <

(a) (b)

FIGURE 13.23
Model for the one-hot method expressed by Equations (13.9). (a) State diagram segment showing
"into" branching conditions and Mealy outputs for the y'th reference state. Here, any branching
condition //<-_/ is understood to represent the holding condition for the j'th state, (b) Generalized
one-hot NS- and output-forming logic for D flip-flop designs by application of Equations (13.9) to m
states and r total conditional outputs (or unconditional Moore outputs if fjj(X) = 1).

where f j , i (X) represents the y'th function of external inputs X for the /th output, the £>'s are
the state variables, and the integer / = 0, 1, 2, . . . , (r — 1). Notice that Eqs. (13.9) give the

minimum NS- and output-forming logic for a D flip-flop design by the one-hot method —
but without the use of K-maps! Moore outputs result for any f j , i (X) = 1 in Eqs. (13.9).

To illustrate the application of Eqs. (13.9), consider the state diagram and state table in
Figs. 13.24a and b, which represent the FSM in Fig. 13.13a but with only state identifiers

Sanity

X °
a

b

c

d

e

®

c

d

a

d

1

b

c

d

e

d

Z

0

0

0

0

1
IZiT

(a) (b) (c)

FIGURE 13.24
State machine design by using the one-hot method, (a) State diagram for a fictitious FSM. (b) State
table for the FSM in (a), (c) State diagram of part (a) suitable for initialization into state 00000 by
using the one-hot-plus-zero approach.

13.5 THE ONE-HOT DESIGN METHOD 639

indicated for the states. Applying Eqs. (13.9) directly to either the state diagram or state
table, there results the following NS and output functions:

Da=aX
Db=aX

De=dX
Z = e

(13.10)

where the assignment of specific one-hot codes is not necessary. If one were to make one-hot
state code assignments for this FSM, the specific code words would be chosen from the set
(00001, 00010, 00100, 01000, 10000} in any order. But to do this is an apparent waste of
the designer's time and effort, and can even be misleading. All that is important to know is
that Eqs. (13.10) can be read directly from either the state diagram or state table without
the assistance of K-maps, and that no specific one-hot state code assignments are required
or even desired. These are the salient features of the one-hot method that set it apart from
the alternative approaches. But, of course, the advantages afforded by the one-hot method
come at the price of an increased hardware commitment.

One potential problem with the one-hot method for state machine design is the initial-
ization into a one-hot state as in Fig. 13.24a. To do this requires that the D flip-flops have
both preset (PR) and clear (CL) asynchronous overrides, or that one flip-flop have a PR
override while the other four have CL overrides. However, many MSI devices, such as
storage registers, come with only CL asynchronous overrides. To overcome this limitation
on the use of the one-hot method, a one-hot-plus-zero approach can be used, as indicated in
Fig. 13.24c. Now the FSM can be initialized into the 00000 state with flip-flops having only
CL asynchronous overrides. But the cost of this convenience is the extra logic required for
the Da function given by Da = aX + dX + abcde. Shown in Figs. 13.25a and 13.25b are
the logic circuits for the one-hot and one-hot-plus-zero approaches, respectively, based on
Eqs. (13.10). To avoid fan-in limitations by the one-hot-plus-zero method, the correction
for generalized "0" state initialization abcde • • • is best implemented by using the CMOS
NOR gate shown in Fig. 8.46.

A More Complex Example of the One-Hot Design Method To further illustrate the
use of Eqs. (13.9), consider the state diagram and state table for a fictitious FSM in Fig. 11.42
that is reproduced in Fig. 13.26 for the convenience of the reader. Reading directly from
the state diagram or state table, Eqs. (13.9) become

Da = aS + aT+ eST + abcde
Db = aSf + bSf + cSf
Dc = bST + cT + dST

(13.11)
De=bSf + cSf + df

P =eSf
Q = dST

where it is understood that a = Qa, b = Qb, c = Qt, d — Qd, and e = Qe. To initialize
this FSM into the 00000 state instead of state a, in agreement with Fig. 13.26a, Da must

640 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

a(L)

e(H) = Z(H) H >-HD . Q |—H e(H) = Z(H)

Sanity(L) CK Sanity(L)

(a) (b)

FIGURE 13.25
Implementation of the FSM in Fig. 13.13a by using the one-hot functions given by Eqs. (13.10).
(a) External logic required if FSM is initialized into one-hot state a. (b) External logic required if
FSM is initialized into the 00000 state by using the one-hot-plus-zero method implied by Fig. 13.24c.

include the term abode, as indicated in Eqs. (13.11). This irreversibly directs the FSM into
state a on the next clock triggering edge following initialization. Note the increased hardware
required by Eqs. (13.11) compared to that required by Eqs. (11.11) in Subsection 11.10.2,
the extra cost for use of the one-hot method. But ORGs and s-hazards in the output logic
are not possible, as explained later in Subsection 13.5.4.

13.5.1 Use of ASMs in One-Hot Designs

The one-hot method holds some unique advantages over other approaches to state machine
design. Because there is a direct relation between each state of the FSM and the NS and

13.5 THE ONE-HOT DESIGN METHOD 641

S+T

\ST '
Qj\ 00 01 11 10

ST
X ' \^S \^_S

S+T

ST

(b)

FIGURE 13.26
Reproductions of the FSM in Figure 11.42 for use in the one-hot design method, (a) Fully docu-
mented state diagram representation showing state identifiers, (b) Equivalent state table represen-
tation.

output functions that result in the one-hot method, a registered PLD can be programmed
directly from the state table, the ASM chart, or the state diagram. In fact, the ASM chart
can be thought of as a graphical representation of the one-hot NS and output equations from
which the logic circuit is constructed.

Consider the state diagram and equivalent ASM segments given in Figs. 13.27a and
13.27b. From either of these, the one-hot NS and output equations are read directly
as

Da=()
Db=a

= bx • (m2)

P =b
R = c

with the resulting logic circuit shown in Fig. 13.27c. Notice how the ASM chart or the state
equations translate directly to the logic circuit.

As a second and more complex example of the use of ASMs in logic circuit con-
struction by the one-hot method, consider the resolver configuration in Fig. 11.41. Re-
produced in Figs. 13.28a and 13.28b are the state diagram and ASM chart for this re-
solver, from which the following NS and output functions are derived by application

642 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

RiT

R(H)

(a)

FIGURE 13.27
One-hot state machine configuration derived from a state diagram, an ASM chart, or from state
equations, (a) State diagram segment, (b) ASM segment equivalent to (a), (c) One-hot logic circuit
derived from the state diagram segment, ASM segment, or from Eqs. (13.12).

ofEqs. (13.9):

and •

><=<+<* ' RES=cY

CLRREG = LDCNT = a

(13.13)

Again, notice the ease with which the one-hot Eqs. (13.13) are generated from the state
diagram.

The logic circuit for the resolver configuration, shown in Fig. 13.28c, is easily produced
from the ASM chart in Fig. 13.28b. But the logic circuit is also easily constructed either
from the NS and output functions in Eqs. (13.13) or from the state diagram. In fact, any one
of these (the state diagram, the NS and output function, or the ASM chart) can be used with
equal ease in constructing the one-hot logic circuit. The fully documented state diagram
can replace the ASM chart for this purpose if it is recognized that a holding condition is
a merging path that contributes to the NS function according to Eqs. (13.9). The reader
can confirm this be comparing the NS functions in Eqs. (13.13) with the state diagram in
Fig. 13.28a.

13.5 THE ONE-HOT DESIGN METHOD 643

CLRREGiT
a } LDCNTiT

X(H,

Y(H)

CLRREG(H)
LDCNT(H)

FIN(H)

"")—RES(H)

STDLY(H)

(b)

FIGURE 13.28
Resolver configuration of Fig. 11.41 implemented by the one-hot design method, (a) Fully documented
state diagram for the resolver. (b) Equivalent ASM chart, (c) One-hot logic circuit constructed directly
from the ASM chart, state diagram, or from the NS and output functions in Eqs. (13.13).

13.5.2 Application of the One-Hot Method to a Serial 2's Complementer

Algorithm 2.6 in Section 2.6 presented a simple "pencil-and-paper" method of obtaining
the 2's complement of a binary number. As a simple example of the application of the
one-hot method in state machine design, Algorithm 2.6 will now be implemented. It is
recommended that the reader review and fully understand this algorithm before continuing
in this subsection.

Shown in Fig. 13.29a is the block diagram symbol for the serial 2's complementer
indicating that the binary input (Bin) is introduced LSB first to the complementer and
that the 2's complement output (T) is issued LSB first. The ASM chart and state diagram

644 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

Binary in
LSB First — *

(Bin)
Serial Two's

Complementer

Two's
Complement

~* LSB out First
(T)

Start(L)
| " ff)"""

(a)

Bin(H)

CT-
b i

•0
L

r

Complement
remainder

i

0 X>jn\ 1

•0
L

Sanity(L)
TIT if (aBin + bBin)

(b) (c) (d)

FIGURE 13.29
Design of the serial 2's complementer by using Algorithm 2.6 and the one-hot method, (a) Block
symbol of the complementer, (b) ASM chart and (c) state diagram representations of Algorithm 2.6.
(d) Logic circuit for the serial 2's complementer derived directly from either the ASM chart or the
state diagram.

expressions of Algorithm 2.6 are given in Figs. 13.29b and 13.29c. Notice how much
simpler it is to read the state diagram representation than it is to read the ASM chart. From
either the state diagram or ASM chart there results the following one-hot NS and output
expressions:

(13.14)
Da = aBin
Db = aBin + b
T = aBin + bBin

where it follows that Db = aBin + bBin + bBin = aBin + b, the result obtained from the
state diagram.

13.5 THE ONE-HOT DESIGN METHOD 645

Sanity(L) J~~

Start(L)

Bin(H)

T(H)

— |

_l "H

I
I 1 .._

1
1

j

1 .
1
J

1
1

•i1
J

J
™l

FIGURE 13.30
Timing diagram for the serial 2's complementer in Fig. 13.29, showing the binary input Bin and the
2's complement output T together with the initialization and start signals.

Equations (13.14) are implemented with the one-hot logic circuit shown in Fig. 13.29d.
Here, it is observed that the FSM is initialized into the 00 state following which a Start signal
must be applied over at least one clock cycle to begin the process. In effect, the Start signal
irreversibly forces the FSM into a one-hot state from the 00 state following deactivation
of the sanity input. Notice also that the sequence is open-ended in the sense that it never
returns to the initial state a. Thus, the process will continue ad infinitum, or until the circuit
is reset by the sanity input.

The results of a logic simulation of the serial 2's complementer is given in Fig. 13.30.
Here, the serial input Bin is shown synchronized in phase with clock, and the circuit is forced
into state a by Sanity(L) following initialization. Notice that the Start signal is sampled by
the triggering edge of the clock waveform immediately following release of the Sanity
initialization signal. This is necessary to permit the process to begin.

13.5.3 One-Hot Design of a Parallel-to-Serial Adder/Subtractor Controller

For this example, consider that two 8-bit USRs, one for word A and the other for word B,
shift each bit into a single Full Adder (FA) LSB first. The sum is then issued serially from
the FA LSB first. One bit, say bit B, is introduced to the FA via a controlled inverter (XOR
gate) for purposes of adding bit B to or subtracting (in 2's complement) bit B from bit A.
A D flip-flop is used to supply the carry-out of one operation to the carry-in of the next
bitwise serial operation. The D flip-flop must also have PRE and CLR overrides to preset
the carry-in (PSCRY) to the FA for the subtraction operation, as required by Eq. (2.14) in
Subsection 2.6.2, or to clear the carry-in (CLCRY) if addition. An n-bit binary counter is
used to indicate when the 8-bit addition/subtraction process is complete so that the system
can be reset for the next 8-bit series of bit-wise operations.

Shown in Fig. 13.3 la is the state diagram representing the sequence of events that must
take place during the process of serially adding or subtracting two 8-bit operands. Thus,
this state diagram represents the controller for the process. Notice that use is made of
the one-hot-plus-zero approach allowing the FSM to be initialized into the 000 state. The
process begins in state a by loading the counter (LDCNT) in preparation for counting, by
clearing the registers (CLREG), and by pushing the start button (Start) to begin the process.
In state b, the external D flip-flop is initialized for either subtraction or addition (PSCRY
or CLCRY), and the mode controls to the USRs are set to parallel load the 8-bit operands
(S\ = 1, SQ = 1). Finally, in state c the mode control Si goes inactive for right shifting

646 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

-Sanity

^<
Start (_

LDCNTiT
CLREGiT

Start

PSCRY1T if Add/Sub

CLCRYiT if Add/Sub
S,1T

Start

^ ^ ^ .CMPLAT if Add/Sub
CNTiT
FINiT if (CNT = 8)

(CNT = 8)

(b) a b C Start CNT=8 Add/Sub

<e

T^TTrt ••- i)

hpCfart

C(CNT=8) -

aStart -)

bStart -

bStart —

c(CNT=8) -

b(Add/Sub) -

b(Add/Sub) -

c(Add/Sub) —

M
s

7 *

\
}

— J

— 3

—3

\x

•s

s
\

7 \

f

S

— J

— 5

M

\

7 ^

f

—1

— J

vj
>

'S

^

y

—)

7 ^

r —

< -

\
'

e—

V<

X

^

— 3

7 •<

—5

—)

M

—?
X

7

• _|

• ,

— v^
— ̂
— r
—^— r
^ O-H

-^r
D Dh D,, PSCRY CLCRY CMPL FIN

a D C

FIGURE 13.31
Design of the parallel-to-series adder/subtractor controller by the one-hot method, (a) State diagram
for the controller initialized into the 000 state by using the one-hot-plus-zero approach, (b) Symbolic
representation of the fusible bit position patterns for an FPLA programmed to generate the NS and
Mealy output logic in Eqs. (13.15).

(S1, = 0); the XOR gate is set to complement (CMPL) operand B if subtraction or not if
addition, hence CMPL if (Add/Sub)', counting is begun (CNT); and a completion signal
(FIN) is issued at the end of 8 counts, FIN if (CNT = 8). Notice that the mode control 50

is set to logic 1 throughout the process.

13.5 THE ONE-HOT DESIGN METHOD 647

From the state diagram in Fig. 13.3la, the one-hot NS and output functions are read
directly by applying Eqs. (13.9), and the results are

LDCNT'= CLREG = a

PSCRY=b(Add/Sub)

Da = aStart + bcStart + c(CNT - 8)
Db = aStart + bStart
Dc = bStart + c(CNT = 8)

and
CLCRY=b(Add/Sub)

S\=b

CMPL = c(Add/Sub)
CNT=c
FIN=c(CNT=8) \

(13.15)

where if follows that Da = aStart + abcStart + c(CNT= 8) = aStart + bcStart + c(CNT =
8). In the state diagram and in Eqs. (13.15) it is understood that the start signal (Start) must
be active for a period of time greater than the clock period and that it must be debounced.
It is not necessary to synchronize Start because of the GO/NO-GO configurations that exist
relative to states a and b. Finally, the exact nature of the counter is not highly relevant at
this time since its only function is to issue the signal CNT = 8 at the end of the process.
However, CNT = 8 is necessarily a synchronous output from the counter.

The one-hot implementation of the parallel-to-series adder/subtractor controller is illus-
trated in Fig. 13.31b, where an FPLA is programmed to generate the NS and Mealy output
functions of Eqs. (13.15). The Moore outputs in Eqs. (13.15) are not included because they
are generated by the outputs from the flip-flops, an important characteristic of the one-hot
method. Note that with a little care, it is possible to program the FPLA directly from the
state diagram by application of Eqs. (13.9). For more complex FSMs, however, it is still
a good idea to construct a p-term table from the NS and output equations to help reduce
programming errors and to establish a record for future use.

The logic circuit for the adder/subtractor controller is shown in Fig. 13.32 where an
FPLA and a 4-bit storage register are used for the implementation. Three individual FET D
flip-flops could be used in place of the 4-bit storage register, but the 4-bit storage register
is conveniently available as the 74xxl75 MSI chip. Notice that all four of the Moore
outputs are issued directly from the flip-flop outputs. The 6 x 1 0 x 7 FPLA indicated is the
minimum size required. The actual size of the FPLA may be larger, its choice being left
to the discretion of the designer. The debouncing circuit is chosen from those discussed in
Section 11.8.

13.5.4 Perspective on the Use of the One-Hot Method: Logic Noise and Use of
Registered PLDs

The subject of logic noise in the output of one-hot FSMs is conspicuously absent in all
previous discussions. The reason: No logic noise is possible in the FSMs considered! Since
the output functions never involve coupled state variables, internally initiated static haz-
ards are not possible. Externally initiated static hazards are also not possible since a pro-
perly designed one-hot FSM cannot hold in a two-one's race state. Furthermore, if care is
taken in the use of two-one's race states as output states, ORGs will not be generated (see

Start(H)

648 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

Add/Sub(H)

Y,
(CNT = 8)(H)

Debounce Circuit

Y

Y,

Minimum
6 X 1 0 X 7

FPLA Y

Y

Y

DC(H)

Db(H)

Da(H)

0(H) —

D c

D

D
CL Q

D-

0-

CK

CNT(H)

LDCNT(L)
CLREG(L)

Sanity(L)

FIGURE 13.32
Implementation of the parallel-to-serial adder/subtractor controller by using a minimum 6 x
10 x 7 FPLA and a 4-bit storage register to implement the one-hot NS and output functions in
Eqs. (13.15).

Section 11.2 for a discussion of ORGs). Remember that each state-to-state transition is
forced through a unique state having two ones — never through the all zeroes state. The
reason for this is that the action of the flip-flop in a given state-to-state transition holds
the "1" of the origin state active until the transition to the destination state is complete.
Consequently, the use of the one-hot-plus-zero approach presents no problem even if the
all-zero state is used as an output state.

Registered PLDs, such as the R- and V-type PALs discussed in Section 7.4, are a natural
choice for the one-hot implementations of relatively small FSMs with only Moore (uncon-
ditional) outputs. As has been pointed out, Moore outputs are generated directly from the
flip-flop outputs in one-hot designs. The problem encountered in dealing with Mealy (con-
ditional) outputs in one-hot designs is that each Mealy output requires an ANDing operation
between an external input and a one-hot state variable (flip-flop output). But PALs with R-
or V-type macrocells lack the capability of generating Mealy outputs directly from internal
ANDing operations. Therefore, each Mealy output must be generated by an ANDing op-
eration external to the PAL. Alternatively, the one-hot state variable can be fed back into
an unused macrocell and ANDed with the external input. But this uses up a macrocell and
delays that Mealy output by a clock cycle. Remember that in the one-hot method, each state

13.6 SYSTEM-LEVEL DESIGN 649

requires a macrocell and if each Mealy output must also use a macrocell, the capability of the
PAL can be quickly used up for all but relatively small FSMs. Therefore, as a rule, it is best
to use registered PAL devices for one-hot designs of relatively small FSMs with only Moore
outputs. Used in this manner, registered PAL designs by the one-hot method offer quick,
convenient and reliable results, and without the need for K-maps or programming soft-
ware. See subsection 16.4.4 for information regarding synchronous one-hot programmable
sequencers.

If registered PLDs are to be used to implement large Mealy state machines by the one-hot
method, FPGAs are the best choice. A good example is the use of the 4000 series Xilinx
FPGAs. As explained in Subsection 7.7.3, these devices are extremely versatile and have
the capacity to handle very large one-hot state machine designs with both Moore and Mealy
outputs. The one drawback in the use of these FPGAs is that they require dedicated soft-
ware to program them. For all but the experienced user of Xilinx FPGAs, this requirement
is an impediment to design and may even preclude their use. Xilinx FPGAs accept VHDL
descriptions of state machines from which the FSM can be synthesized automatically by
synthesis tools such as AutoLogic VHDL by Mentor Graphics. For more information on
these subjects see references cited in Further Reading at the end of this chapter.

There still remains the question of initializing registered PLDs for one-hot designs.
R-type PAL devices apparently lack initialization capability and are not recommended for
use in most one-hot designs. The macrocells of V-type PAL devices contain D flip-flops
with both PRE and CLR asynchronous overrides. Thus, V-type PALs can be initialized
directly into a one-hot state but are otherwise limited in their use in one-hot applications
as explained earlier. The configurable logic blocks (CLBs) of all Xlinx FPGAs contain D
flip-flops with both PRE and CLR overrides and consequently are suitable for one-hot state
initialization. Generally, registered PLDs having D flip-flops with only CLR overrides can
be used, but only for the one-hot-plus-zero approach as indicated by previous examples.

Finally, there is software called A-OPS (for Asynchronous-One-hot Programmable Se-
quencers) on the CD-ROM bundled with this text that can be used to automate the design
of PLA or RAM driven asynchronous and synchronous one-hot state machines. Initializa-
tion into the all zero state is possible by using the one-hot-plus-zero approach. For more
information regarding this software, refer to Appendix B.

13.6 SYSTEM-LEVEL DESIGN: CONTROLLER, DATA PATH,
AND FUNCTIONAL PARTITION

One very common view of a digital system is the use of an FSM as the controller for a set
of components parts that comprise the controlled system called the data path. This view
is expressed in Fig. 13.33, where all input and output (I/O) conditioning logic has been
omitted to focus attention on the main features of this architecture. Here, it is understood
that the data path devices generally consist of a mixture of both sequential and combinational
logic machines. Typical among these are registers, counters, ALUs, PLDs of various types,
decoders, MUXs, shifters, comparators, digital-to-analog (D/A) converters, and the like.
The architecture represented in Figure 13.33 is the one emphasized in this text.

All sections in this chapter up to this point have been devoted to various architectures
that can and should be considered in controller design. Chapters 10, 11, and 12 supply
the necessary background information needed to build reliable controllers as well as those

650 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

Sanity
CK

External
Inputs

1
Sanity

Controller
State Machine

Control
Signals

i i
Data Path
Devices

1
Feedback Signals-

Outputs Outputs
Data out

FIGURE 13.33
Controller/data-path architecture for digital system design.

FSMs that comprise the data path. Chapters 2 through 9 provide the necessary background
for the design of a wide range of combinational logic devices, many of which are widely
used in the data path of digital systems. In short, this section may be considered as the
culmination of all developments necessary to build reliable digital systems.

The controller for a digital system is an FSM, perhaps like the one in Fig. 13.3la. But
it is also the "brains" of the system. Its function is to coordinate precisely the operation of
the various components of the data path so as to perform the specific tasks required by the
system. Thus, the controller must issue instructions (control signals) to the data path unit
(DPU) based on the external inputs it receives and on the feedback information received
from the DPU. A configuration such as this, where the outputs of one unit are the inputs to
another, and vice versa, is called a handshake interface. Feedback from the DPU is not a
requirement for all systems, but is common in most. Note that both the controller and data
path devices may receive signals from and issue signals to the outside world.

Designing a complex digital system requires a "divide-and-conquer" approach. The
system must be divided into subsystems that in turn must be broken down into well-defined
parts that can be implemented with available hardware. The detailed block diagram that
conveys this information is appropriately called the functional partition of the system. Thus,
the functional partition contains a block representation of the controller, all the peripheral
devices that constitute the DPU, all inputs from and outputs to the outside world, and the
I/O conditioning circuits. Consequently, the functional partition contains all the information
needed for "hookup" and operation of the system given the details of the controller design,
which must be treated as an integral part of the design process.

The functional partition and a detailed flowchart or ASM chart for the controller of a
digital system are usually interdependent and must be developed together. For a complex
digital system this development process may require two or more attempts at representing
the functional partition and flowchart or ASM chart before satisfactory representations can
be found. Simple block diagrams are often useful in this process, since they can provide a
physical picture of the overall system. The use of timing diagrams is usually a necessary part
of the development stages of the design process — in some designs timing considerations
are of paramount importance. Finally, remember that a flowchart or ASM chart is considered

13.6 SYSTEM-LEVEL DESIGN 651

to be only a "thinking tool" for the construction of the state diagram or state table from
which the controller is designed.

There may be more than one good design for a given digital system. This is particularly
true for complex digital systems. The success of the design will usually depend on the
engineering creativity, intuition, and generally the experience of the digital designer. But
the manner in which a digital system is to operate in a particular environment can also be an
important factor. For example, suppose a stepping motor control system is to be designed
to move a certain mass from one fixed position to another in a smooth, nonjerky fashion.
Clearly, the design considerations for the stepping motor controller, based on mass, time,
and distance constraints, are different for the operation of a small robotic arm than for the
operation of an elevator. The point is that important detailed information regarding timing
and functional constraints must be factored into the design process from the beginning
stages if successful designs are to result.

13.6.1 Design of a Parallel-to-Serial Adder/Subtracter Control System

A brief description of the parallel-to-serial adder/subtractor system was given in Subsection
13.5.3. There, the one-hot-plus-zero approach was used to design the system controller
shown in Figs. 13.31 and 13.32. Now, it is necessary to construct the functional partition for
this system. This is done in Fig. 13.34, where block circuit symbols are used to represent the
controller and data path devices. The data path unit (DPU) consists of two 8-bit USRs, a full
adder (FA), an RET D flip-flop, a controlled inverter (XOR gate), and a 4-bit parallel loadable
up/down counter of the type shown in Fig. 12.20. Of course, there are many "variations
on the theme" in the design of the DPU. For example, right shift registers with parallel
load capability can replace the USRs, a simple 3-bit binary up counter with asynchronous
CL can replace the 4-bit parallel loadable up/down counter, and a transparent D latch with
asynchronous PR and CL overrides (Fig. 10.51) can replace the edge-triggered D flip-flop.
If operands larger than 8-bits are to be added or subtracted, larger registers must be used.
Thus, two 8-bit registers can be cascaded in series to accommodate 16-bit operands, or four
8-bit registers can be cascaded to accommodate 32-bit operands, etc.

Presented in Fig. 13.35a is a reconstruction of the state diagram for the parallel-to-serial
adder/subtractor controller in Fig. 13.3la, but now with a state code assignment suitable
for a conventional design. In Fig. 13.35b is shown the timing diagram for an 8-bit serial
subtraction operation by the adder/subtractor system. Notice that the sequence of events
indicated in the timing diagram are the same as those in the state diagram and that they,
together with the functional partition in Fig. 13.34, provide a complete stepwise description
of this system: Following initialization of the adder/subtractor in state a, the controller
loads a 0000 into the counter and clears the USRs. After the start button Start is pressed
(for a period of time greater than a clock period) the controller transits from state a to state
b. In state b the RET D flip-flop and mode control S\ are set to logic 1 by the controller
in preparation for subtraction. The carry-in CI to the FA is now initialized to logic 1, as
required for subtraction by 2's complement. After the release of the Start switch button
(hence Start), the controller transits to state c, where counting by the counter is begun.
During this time, the two 8-bit USRs deliver the operands serially LSB first to the full
adder (FA) via a controlled inverter on the B line, which is now set to complement B
[CMPL(H) = !(//)] as required for subtraction. With each clock triggering edge, bitwise

652 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

Start
Switch

+V

Sanity(L) -

s SYSCK —

Add/Sub(H)

CNT = 8(H)

Controller

FIN(H)

CMPL(H)

CLCRY(L)

PSCRY(L)

CNT(H)

» LDCNT(L)

» CLREG(L)

0(H)

LDCNT(L)

SYSCK

LD
P P P PrA rB rC rD

Parallel loadable CL
Up/Down Binary

CO Counter up

BO Dn

>0(L)

CNT = 8(H)

"7 "0" ''

SYSCK —

0(H)-

8

p . . . p
rA rH

)> 8-Bit CL
Universal Shift

R Register L

S Q O ' • » f~}
1 bO UA UH

S^H) '

0(H)-

CK —

>- CLREG(L)

-0(H)

I

CMPL(H) -^ ^^

1 0 A H

R 8-Bit L
, Universal Shift
/ Register CL

p . . . p
rA rH

\

1
Cl

A _.
FA s

B
CO

-0(H) L,

3- CLREG(L)

CLCRY(L) — C

8

v D

CL PR

Q Q

D

B7-B0(H) h V 1 1

— ̂ Serialout(H)

SYSCK

— PSCRY(L)

FIGURE 13.34
Functional partition for the parallel-to-serial adder/subtractor system showing block symbols for the

controller and data path devices.

subtraction of operand B from A occurs and continues until all eight operand bits of A and B
have been processed. At this time the controller receives the signal CNT= 8, a completion
signal FIN is issued, and the controller returns to state a in readiness for the next 8-bit
addition/subtraction process.

All that remains is to find an acceptable logic design for the controller. In contrast to
the one-hot approach represented by Eqs. (13.15) and implemented in Figs. 13.31 and
13.32, a minimum result will now be found. Shown in Fig. 13.36 are the K-maps and
minimum covers for the NS- and output-forming logic as plotted from the state diagram in
Fig. 13.35a, assuming the use of JK flip-flops. The resulting NS and output functions are

CNT(H)

13.6 SYSTEM-LEVEL DESIGN 653

SYSCK

LDCNT(L)
Start

Sanity^ /^ CLREG(L)

LDCNTiT
CLREGiT Start(H)J

Start PSCRY(L)

PSCRYiT if Add/Sub CLCRY(L)

CLCRYiT if Add/Sub
8,1? Sl(H)

Start CMPL(H)

CMPLit if Add/Sub CNT(H)
CNTIT
FINitif(CNT=8) CNT=8(H)

(CNT=8) FIN(H)

Decimal equivalent of
/a\ counter output ~ /^

FIGURE 13.35
Design and timing considerations for the parallel-to-serial adder/subtractor system, (a) State dia-
gram suitable for a conventional controller design, (b) Timing diagram for an 8-bit serial subtraction
operation showing input signals to and output signals from the controller.

given by

LDCNT'= CLREG = B
PSCRY=AB(Add/Sub)

JA = BStart } _ =
K =(CNT=8) CLCRY=AB(Add/Sub)

JB = Start
KB = A(CNT = 8),

and S}=AB

CMPL=A(Add/Sub)
CNT=A
FIN=A(CNT=8)

(13.16)

which contain one shared PI, A(CNT = 8). Notice that there are four Mealy outputs and
four Moore outputs, none of which have static hazards associated with them.

Equations (13.16) are implemented in Fig. 13.37 by using a minimum number of gates
external to the flip-flops for a total gate/input tally of 6/12 excluding the single inverter. This
may be compared with the one-hot-plus-zero design given by Eqs. (13.15) which represent
a total gate/input tally of 13/28 excluding inverters and taking account of the one shared

(b)

FIGURE 13.36
Next-state- and output-forming logic for the adder/subtractor controller as obtained from the state
diagram in Fig. 13.35a. (a) NS K-maps and minimum cover for a JK flip-flop design, (b) Output
forming logic showing minimum cover.

CNT(H)
B(L)-

X ^M I ** f\ _ _ * _ ' i_ \

CMPL(H)
|~y A _ Add/Sub(H)—^ 1 ' /

CNT=8(H)-

Sanity(L) -M \ J pq J ^ 1 S^H)

Start(H) -i-j HJ CL O|J H>-̂ O^~ CL°RY(L)

SYSCK-
LDCNT(L) = CLREG(L)

FIN(H)

FIGURE 13.37
Logic minimum design of the parallel-to-serial adder/subtractor controller of Fig. 13.35a by using JK
flip-flops.

654

13.6 SYSTEM-LEVEL DESIGN 655

PI, c(CNT = 8). Thus, roughly twice as much external hardware and one extra flip-flop
are needed by the one-hot approach for the convenience of reading and implementing the
NS- and output-forming logic directly from the state diagram without the use for K-maps.
If D flip-flops are used instead of JK flip-flops, it is easily shown by map conversion that
the NS functions become

\DA = ABStart+A(CNT=V
\DB = AStart + A(CNT = 8) + AB J '

the output logic remaining the same. This would bring the total gate/input tally for the D flip-
flop design to 10/22 exclusive of inverters. Thus, the gap narrows between a conventional
D flip-flop design and that for the one-hot method. Also shown, by map conversion, is the
T flip-flop design that falls in between the JK and D designs, yielding

TA = ABStart + A(CNT = 8)1
_ f (LJ. lo)

TB = BStart + A(CNT = 8) J

for the NS functions, giving a total gate/input tally of 8/19 excluding inverters.
There still remains the question of ORGs in the design of this FSM. The transition from

state 11 to state 00 can result in the production of ORGs if the race path is via the 01 state.
In Fig. 13.36b it is evident that 02 is not used in the K-maps for PSCRY, CLCRY, or S\ and,
consequently, ORGs are not possible by the 10-race state path. But this discussion is made
moot by the fact that the 11 -> 00 transition completes the process and the FSM is brought
to an initialized condition in state 00. Therefore, it does not matter that ORGs are produced
during this transition — no logic noise problems exist. This fact can be useful in the design
of other system controllers.

13.6.2 Design of a Stepping Motor Control System

Stepping motors convert a series of pulses into angular motion that permits very accurate
positioning of the motor's rotor without feedback control. Also, stepping motors are useful
in systems where there is space only for a small motor to drive a relatively massive part.
Linear angular accelerations and decelerations of the motor can prevent slippage, chattering,
or jerky motion that could lead to mechanical failure or adversely affect mechanical opera-
tion. Stepping motors exhibit zero steady-state error positioning and can develop torque up
to 15 Nm (Newton-meters). They are used in robotics to accurately operate mechanical parts
in some manner, in fluid control systems for precise adjustment of fluid control valves, in
wire-wrap processing of circuit boards, and in a variety of other applications too numerous
to mention here.

Stepping motors will accept pulse strings in the range of 1500 to 2500 pulses per second.
The design of the control system required to generate these pulse strings is the subject of
this subsection. The nature and design of the stepping motor to which the control system
is attached fall outside the scope of this text and will not be discussed further (see Further
Reading for information on this subject).

The overall operational characteristics for the stepping motor control system are provided
in Fig. 13.38. In Fig. 13.38a are shown the angular velocity/time requirements of the motor.
The GO command causes a linear angular acceleration of the motor while a HALT command

656 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

J^axim_u_m_sjpeed_ „ \ Linear angular
deceleration

i i N

.' \ HA I T^ V
O
_g

>
CB
o, _,^-L ,_ _, ' ' ,_HALT
c

Time

(a)

SYSCK

GO(H)-

HOLD(H)-

Sanity(L)
i STEPCK

_i I
STEP pulses required I

Control
system

for linear angular ^/
acceleration

Motor

_jL_JL_jL_n_TLJL
STEP(H)

4-Bit
SIPO ^ ' *[Stepping motor

register

shaft

HALT(H)-

(b)

FIGURE 13.38
Overall operational characteristics of the stepping motor control system, (a) Angular velocity vs time
requirements of the control system, (b) Physical picture showing input controls, STEP pulse train
required for linear angular acceleration, and register outputs to stepping motor.

produces a linear angular deceleration. The HOLD command causes the motor to maintain
the angular velocity that is reached at the time the HOLD command is given. The motor
must operate between zero speed and a maximum angular velocity that is set by the number
of steps in the speed/time characteristic, 16 in the case of Fig. 13.38a.

The physical picture for the overall system is presented in Fig. 13.38b. Here, the control
system receives one of the three (nonoverlapping) asynchronous input signals, GO, HOLD,
or HALT, and issues a series of STEP pulses in response to that input signal. In the physical
picture, a GO signal is implied, resulting in a STEP pulse series required to cause a linear
angular acceleration of the motor. Each STEP pulse is received by the SIPO register, which,
in turn, delivers a set of four phase pulses (4>i, 4>2> 03, $4) to the power transistors of
the stepping motor, causing the motor to rotate by a certain amount. The SIPO register is
triggered by the STEPCK waveform, which is exactly twice the frequency of SYSCK, the
waveform used to trigger the control system.

13.6 SYSTEM-LEVEL DESIGN 657

SYSCK _T|_nJ

STEPCK WfUl

qnm) 1 1

Hnl P(H)

HAIT(H)

STFP(H) r

«MH)

02(H)

<J>3(H)

~LTLJ
vww

1
h
n
n

-LTLTU
twiruuir

jj r

-j}
^f
-&

•\jnj~u~u~LTun
mivtRmiiiRRRruiJ

"i n n n
n n n r
n n n
n n r

[jnjnjnjnjnjnjajnjiJT_
FUlJWmftftlWUlftJlJ^̂

i — i
n n n n n
i n n n n n
j~Ln_ri_n n n
irLTLTLTL—n n

n

Rotational step Maximum speed
of motor

Angular acceleration Angular deceleration

FIGURE 13.39
Acceptable timing relationships between synchronized external inputs and STEP pulse signals to the
stepping motor.

An acceptable timing relationship between external inputs, the STEP pulse, and the
phase pulse signals to the stepping motor is given in Fig. 13.39. Each STEP pulse width is
specified to be one period of the STEPCK waveform and to be active coincidentally with
the active portion of the SYSCK waveform. When a STEP pulse is received by the register,
that pulse is shifted from the LSB stage toward the MSB stage on each falling edge of the
STEPCK pulse. Thus, a set of four time-shifted pulses is generated from the shift register
outputs by each STEP pulse as indicated in Figure 13.39. The maximum rotational velocity
is set by the frequency of the STEPCK waveform, which is assumed to be low enough to
match the inertial characteristics of the motor. The maximum rotational velocity (speed)
is illustrated midway through the timing diagram in Figure 13.39 followed by an angular
deceleration mode as indicated. Note that the SYSCK waveform can be generated from the
STEPCK waveform simply by using a divide-by-two counter. Such a counter is shown in
Fig. 12.12c.

The functional partition of the stepping motor control system is shown in Fig. 13.40.
Synchronous, nonoverlapping inputs GO, HOLD, and HALT are introduced to the controller
from input conditioning circuits. The data path (DPU) devices consist of a parallel-loadable
right shift register, as in Fig. 12.3, but triggered by FET flip-flops; a special parallel-loadable,
up/down data-triggered counter; and a parallel-loadable up/down counter, of the type shown
in Fig. 12.20, set for up-count only and hereafter called the "up-counter." The special data-
triggered counter is similar to that in Fig. 12.20, except that the NS functions in Eqs. (12.5)
are the clock inputs to the FET T flip-flops — hence, data triggered. This counter is triggered
off of the falling edge of the Up (DECDLY) or Dn (INCDLY) input pulse as indicated by
its design shown at the end of this subsection in Fig. 13.46. The up-counter is triggered on
the falling edge of the SYSCK waveform and issues a CO (CNT) signal at the end of count

SYSCK

658 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

Input conditioning circuits

' T i l l 0(H)

* /
— >

— >

— >

-
->

— *

DLY(H) *

DLY(H) *•

DNT(H) *

ouiiimL; • z ^ - £ »• - -I'""
[L § ^A KB PC * D

V

Controller

STEP.H, STEPCK^> --"- CL"So 1 trln) ^ o
W Q. QR Qr Qn« B W U

3 — ̂ LDZERO(L) '

^DECDLY(H)

MNCDLY(H)

+

*

' >
D — ̂ LDDLY(L)

1 1 1 '
^STDLY(H) PA PB pc pD

GO(H)-

HOLD(H)-

HALT(H) H HH WUIPIIUIICI ' 1 *3>3(H)

^(H

0(H)

Parallel loadable CL
Data-Triggered

CO Up/Down Counter Up

BO Do

LD
PA PB P

Parallel loadable
Up-Counter

CL

CO r Up

BO Dn

LDZERO(L)

MINDLY(H)

MAXDLY(H)

LDDLY(L)-

SYSCK

CNT(H)

FIGURE 13.40
Functional partition for the stepping motor control system showing controller and data path compo-
nents, and an input conditioning circuit block.

15 that is picked up by the controller on the next rising edge of SYSCK. To ease timing
restrictions, both counters are designed to be parallel loaded asynchronously via the PRE
and CLR overrides on their flip-flops.

Constructed in coordination with the functional partition is the ASM chart shown in
Fig. 13.41. It is to be used as a thinking tool in the construction of the sate diagram from
which the controller will be designed. The chart expresses the basic algorithm involved that
is physically carried out by the functional partition in Fig. 13.40. Briefly, this algorithm
requires that in the GO mode, and with each successive STEP pulse issued, the up count is
decreased from a maximum of 15 to a minimum of 0 SYSCK cycles via the parallel load of
the up/down data-triggered counter. In the HALT mode this processed is reversed with each
successive issue of the STEP pulse. And in either case, the acceleration or deceleration

•0(L)

-DECDLY(H)

-INCDLY(H)

-STDLY(H)

•0(H)

Sanity

Start maximum delay
LDZERO

Issue step
STEP

Enable up-counter
LDDLY

CIncrement up/dn counter^
I DECDLY J

Issue step
STEP

Enable up-counter
LDDLY

Decrement up/dn counter
INCDLY

FIGURE 13.41
ASM chart for the stepping motor controller used as a thinking tool for the construction of the state
diagram.

659

660 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

DECDLYit if MNDLY- HOLD

STDLYiT

CNT-HALT

MXDLY"
STEPIT
LDDLYit

INCDLYit if MXDLY- HOLD

I MX
CNT-GO

Vk
STDLYiT

CNT-GO

CNT

FIGURE 13.42
Fully documented state diagram for the stepping motor controller as derived from the ASM chart in
Fig. 13.41.

process can be bypassed by a HOLD command. Notice that the ASM chart is that of a
Mealy machine.

The state diagram that is derived from the ASM chart is shown in Fig. 13.42. A state code
assignment has been given that yields no output race glitches (ORGs), provided that the
don't cares (j>\ and fa are not used for minimizing the output logic. The output LDZERO is
an exception to this requirement, permitting these don't-care states to be used as needed for
its minimum cover (see transition 000 —> 011 in the state diagram). Notice how much more

13.6 SYSTEM-LEVEL DESIGN 661

vividly the sequential behavior of this FSM is portrayed by the state diagram than by the
ASM chart. But the ASM chart serves as a better thinking tool than the state diagram when
used to represent the algorithmic behavior of the FSM while constructing the functional
partition. Of course, a flowchart can serve the same purpose as the ASM chart in this regard.

At this point it is decided that the controller is to be designed by using a PLA together
with RET D flip-flops. To this end the K-maps for the NS and output functions are plotted
from the state diagram in Fig. 13.42 and are presented in Fig. 13.43. Here, the minimum
cover is shown by shaded loops, as is customary in this text, and the results are given as
follows:

DA = A-MXDLY+B

DB = C • CNT- GO + A-GO + B- CNT+ B • HALT+BC

DC = BC • CNT • HALT+ ABC • MXDLY+ BC • CNT
+ BC-GO + A-GO + AC

LDZERO = AC
STEP = LDDLY = ABC + ABC

DECDLY = ABC • MNDLY • HOLD

(13.19)

INCDLY= ABC • MXDLY • HOLD

STDLY=ABC+ABC

Notice that there are two shared Pis, A • GO and AC, bringing the p-term count to 19 for
the combined NS and output functions. The requirement that 0i and 02 not be used for the
output functions., other than LDZERO, is evident in the K-map for STDLY.

The p-term table based on the results given by Eqs. (13.19) is presented in Fig. 13.44.
Here, two inputs are each marked with a single asterisk and two outputs are each marked
with a double asterisk to indicate that they are active low. Active low inputs to and active low
outputs from PLAs are discussed in Section 7.5. Recall from that section that the active low
inputs can be accommodated by either complementing their columns in the p-term table or
by using an inverter on their input lines, but not both. Acive low outputs from a PLA-type
device require the use of inverters. Notice that there are 9 inputs, 8 outputs, and 19 p-terms
indicated in the p-term table. Thus, the minimum size PLA required for this controller
has dimensions 9 x 19x8, but any larger PLA device can suffice. The use of a ROM to
implement this FSM would be an inefficient application (an overkill) of the device, since
only a small fraction of the 29 = 512 minterm capability of the ROM would be utilized.
For a review of array logic devices and their uses, the reader is referred to Sections 7.2
through 7.6.

Having completed the functional partition and the p-term table for the controller, all
that remains is an overview of the controller architecture. This is done in Fig. 13.45 where
a 9 x 20 x 8 FPLA is used to generate the NS and output functions and a 4-bit storage
register is used as the memory. To satisfy the requirement that STEP be issued coinci-
dentally with SYSCK, an AND gate is used to AND the SYSCK waveform with the STEP
signal issued by the FPLA. The input conditioning circuits and SYSCK generating cir-
cuits are provided for completeness. Notice that it is a divide-by-2 counter that generates
SYSCK from a STEPCK input. The input conditioning circuits each consist of debounc-
ing and synchronizing stages. If it is known that the input signals are of duration less

\B
C

\B

C
A

X

00
01

11
10

A
X

°0

01
11

10

N
J

0

[M
X

D
L

Y

rL
1

1

i
 r

J —
 i

1
*1

DA

G
O0

*
C

N
T

.G
O

11

#

C
N

T
+

H
A

LT

\B
C

A
X

0°

0

1

1
1

1
0

G
O

M
X

D
LY

^
~
~
1

C
N

T
+

G
O

—
 D0

A I

*
I

C
N

T
-H

A
LT

\B
C

\B

C

\B
C

A
X

0°

0
1

1
1

1
0

A
\

0
°

0
1

1
1

1
0

A
X

0°

0
1

1
1

1
0

00

u
0

1)0

00

/
LD

Z
E

R
O

00

*0

0

M
N

D
LY

-H
O

LD

^0

0

M
X

D
LY

-H
O

LD

^0

00

*0

\B
C

\B

C

\B
C

A
X

o
o

01 _

11 _

10

A
X

oo

°
1

11
1

0

A
\

o°
0

1

11
10

/D
E

C
D

L
Y

/IN

C
D

L
Y

FIG
U

R
E

 13.43
N

S
 and output K

-m
aps plotted from

 the state diagram
 in Fig. 13.42 show

ing m
inim

um
 cover for a glitch-free design of the stepping m

otor controller.

S
T

D
LY

P
-term

s

A
-M

A
X

D
LYBC

C
-C

N
T

-G
O

A
-G

O

B
-C

N
T

B
 • H

A
LT

B
C

B
C

-C
N

T
H

A
L

T

A
B

C
 • M

X
D

LY

B
C

-C
N

T

B
C

-G
O

A
C

A
B

C

A
B

C

ABC

• M
N

D
LY

 • H
O

LD

ABC

• M
X

D
LY

 • H
O

LD

A
B

C

A
B

C

P
LA

 Inputs

A»81---0----1--0111111

B'7-1---1111000-011001

C

M
N

D
L
Y

*
M

X
D

L
Y

*
C

N
T

G

O

H
A

LT

H
O

L
D

'a
's

>4
I,

'2
"1

I0

0

-

-

-

-

-

1

_

_

1

-
-

1

11

o

o
"I

_

_

_

_

_

_

0
-

-
1

-

0

0

0

-
•1

Q

^_

1

-
-

1

1
_

_

0

_
-

-

1
_

_

1
0

-

0

0

-
0

0

1
_

_
0

_

-

P
LA

 O
utputs

D
A

Y
71110000000000000000

D
R
D

Y
60001111100000000000

D
r Lf

w0000100011111000000

LD
ZE

R
O

Y
4

0000000000001000000

** . ?
L

E
 v**

D
E

C
D

LY
L
U

U
L
Y

Y
3

0000000000000110000

Y
2

0000000000000001000

IN
C

D
LY

Y
,0000000000000000100

S
TD

LY

Y
o0000000000000000011

* Indicates an
 active

 low
 input—

com
plem

ent colum
n

 or use
 an

 inverter on
 the

 input.
** Indicates an

 active low
 o

u
tp

u
t-m

u
st use

 an
 inverter on

 the
 output.

FIG
U

R
E

 13.44
P-term

 table for the PL
A

 im
plem

entation of the N
S and output functions of the stepping m

otor controller expressed by E
qs. (13.19).

664 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

HOLD(H> - - *STDLY(H)

Sanity(L)
Sanity(L) i i v

CNT(H)

MXDLY(H)

ID Y0

'2

9 x 20 x 8
FPLA

'6

I
Q

MNDLY(H)
DA(H)

INCDLY(H)

•>DECDLY(H)

SYSCK — J-^STEP(H)

-{>o—»• LDDLY(L)

->LDZERO(H)

DC(H)

DB(H)

C
Q

D B

D A

Q
0(H)H

SYSCK
"7~~\ U W I 1 •

STEPCK-

Divide-by-two
counter

FIGURE 13.45
Architecture for the stepping motor controller centered around an FPLA and showing input condi-
tioning and clock generation circuitry.

than one clock period, a stretcher stage (see Fig. 11.21) must be added to each of these
circuits.

The data-triggered up/down counter indicated in the functional partition of Fig. 13.40
is somewhat different from any counters discussed previously. This counter is triggered on
the falling edge of either the Up pulse or the Dn input pulse with the strict requirement that
these pulses never be overlapping. This requirement is necessarily met by the controller. An

13.6 SYSTEM-LEVEL DESIGN 665

B(H)
C>VC(H)

D(H)
0—Dn(L)

p p p prA r8 rC rD

Parallel Loadable L
Data-Triggered
Up/Down Binary

CO Counter Up
BO Dn

QA QB Qc QD

• -CL(L) ' '

Qj(H) (b)

i r

FIGURE 13.46
Implementation of the 4-bit data-triggered up/down binary counter with asynchronous parallel load,
(a) Logic circuit for the 7th stage showing the CO and BO output logic, where the NS functions Tj (H)
are given by Eqs. (12.5). (b) Block circuit symbol.

inspection of the state diagram in Fig. 13.42 indicates that DECDLYand INCDLY, the Up and
Dn inputs to the counter, can never be active at the same time — they are issued in separate
states of the state diagram. Another unique feature of this data-triggered counter is that the
memory of each stage is an FET D flip-flop configured as an FET toggle module (a divide-
by-2 counter). Thus, the only data input to each memory element is by way of the clock
input, where Tj in Fig. 13.46a represents TA,TB,TC, and TD in Eqs. (12.5). The FET feature
of the toggle module ensures that triggering will occur on the falling edge of the data pulse,
a necessary feature of this type of counter. Were triggering to occur on the rising edge of the
pulse, the nonoverlapping requirement of the input pulses could not generally be assured
in applications other than the present one. In effect, the data-triggered up/down counter in
Fig. 13.46 is an asynchronous state machine since it operates independent of a clock signal. It
is said to operate in the pulse mode. An in-depth coverage of this subject and related matters
is provided in Chapter 15, which deals with the pulse mode design of state machines.

Just as is true for the first system-level design in Subsection 13.6.1, there are many
acceptable variations possible in implementing the stepping motor control system. Some
of these variations may depend on the type and character of the stepping motor itself. But
aside from that possibility, there exists other suitable variations. Take the DPU, for example.
The parallel-loadable right shift register can be replaced by a USR set for right shifting,
and both counters can be the parallel loadable up/down type featured in Subsection 12.3.5
with the appropriate changes in the functional partition. If this change in counters is made,
then the up/down (upper) counter shown in the functional partition must be triggered on the
rising edge of the SYSCK waveform while the lower up/down counter is set for up count
and triggered on the falling edge of the SYSCK waveform. In this case the parallel loading
is best accomplished asynchronously by using the counter design presented in Fig. 12.28.

666 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

13.6.3 Perspective on System-Level Design in This Text

System-level designs can connote a different meaning to different designers. To some,
system-level design might refer strictly to a combinational system. Or to others, it might
mean the design of a microprocessor or computer. In the sense used in this text, a system-
level design will always imply the presence of a controller unit (CU) and a controlled
system called the data path unit (DPU). The CU will always be an FSM, which must not
be confused with the CPU or central processing unit of a microprocessor or computer.
Commonly, the CPU contains both a CU and a DPU; the DPU (or execution unit, EU)
typically consists of registers, shifters, and an ALU. The design of microprocessors and
computers will not be covered in this text. It is the philosophy of the author that digital
design fundamentals and the design of microprocessors and computers cannot be treated
effectively within a single text. Further Reading at the end of this chapter cites references
on the subject of microprocessor and computer design for the reader wishing to develop in
that direction.

In system-level designs, the CU and DPU take on an entirely different identity and
functionality and may differ greatly in their individual hardware requirements. In one case
the DPU may be far more complex in its hardware makeup than the CU, while in other
cases the reverse may be true. Two illustrative examples of system-level design have been
presented in Subsections 13.6.1 and 13.6.2. Both are examples of the case where the DPU
is more complex hardware-wise than the CU. There are, of course, many more examples
of system-level design that could be offered in this section, and each could be used to
illustrate specific facets of the design process and involve system designs both larger and
smaller than those previously presented. This, however, is not practical given the space
limitation of a text, and would take up space at the expense of other important subject
matter. Learning how to design at the system level requires practice, practice, and more
practice — there is no substitute for practical experience in this field. Threrefore, as an
alternative, other illustrative system-level design problems are provided in the problem
section to this chapter. And to help the reader in the decision-making process for these
problems, a few suggestions are offered regarding hardware, input conditioning, and so on.
Again, it is emphasized that these problems are all open-ended in the sense that they have no
single best solution. Consequently, the reader's design skills and engineering intuition can
be exercised within the limits provided by the description of the problem. But, the instructor
can also permit greater latitude in arriving at an acceptable solution — all under the heading
of "variations on the theme." This attitude toward design can be quite rewarding to both
student and instructor alike.

13.7 DEALING WITH UNUSUALLY LARGE CONTROLLER
AND SYSTEM-LEVEL DESIGNS

In using the model given in Figure 13.1, it is assumed that both the NS- and output-forming
logic functions for a controller FSM can be handled by a single nonregistered PLD. In
the event that this is not the case and the controller requirements exceed the limitations
of a single PLD, separate PLDs of the same or different type can be used to implement
the NS and output forming logic. The idea here is to invoke the concept of "divide and
conquer." Such a scheme is shown in Fig. 13.47 for a Mealy FSM together with input and

13.7 DEALING WITH UNUSUALLY LARGE CONTROLLER 667

Input
Conditioning

Circuits
î L>

-*>
NS PLD

PS

NS^
Memory

'

P
••

Feedback

S ^
Output

PLD/ |px r/Mitc iVMife V * " " /

FIGURE 13.47
Separate PLD approach to the implementation of unusually large Mealy controller FSMs showing
input and output conditioning circuit blocks.

output conditioning circuit blocks. Furthermore, this scheme can be used for very large
FSM design even if the PLDs are individually insufficient for the task. Section 7.6 explains
how multiple PLD schemes can be used to augment input and output capability, but only
when decoders are used with PLDs having tri-state enables. There may be times when these
arrangements are both expedient and advantageous to the designer. However, for unusually
large controller and system-level designs, there are better options available to the designer
as explained in the following paragraphs.

For the complete design of very large controller FSMs by using registered PLDs, excellent
choices are the Xilinx FPGAs. The Xilinx XC4000E (0.5 micron-5 volt) series, for example,
offers a wide variation in FPGA capability and features ranging from 100(10x 10 array)
configurable logic blocks (CLBs) and 360 flip-flops for the XC4003E to 1024 (32 x 32
array) CLBs and 2560 flip-flops for the XC4025E, and operating up to 66 MHz. The gate
equivalence for the XC4000E series ranges from 2000 to 45,000. At the 0.25-micron and
2.5-volt end, Xilinx offers the XC4000XV series. These devices range from 4624 (68 x 68
array) CLBs for the XC40125 to 8454 (92 x 92 array) CLBs for the XC40250 family
with a gate equivalency ranging from 80,000 to 500,000. This series will soon be extended
to the 2,000,000 gate-equivalency level. Xilinx claims that the XC4000XV series FPGAs
can operate at over 100 MHz with minimum power consumption by today's standards.
Quite clearly, these devices lie in the VLSI range and are large and versatile enough to
be used for an entire system-level design—both combinational and sequential. Their use
is leading away from on-chip designs for many applications and may even replace on-
chip microprocessor design for specialized, low-volume applications. The XC40250XV
has more than 100,000,000 transistors, compared to the 7,500,000 transistors used in the
Pentium II microprocessor.

Whether or not it is desirable to use an FPGA, say, for the implementation of the DPU
devices, is a matter left to the discretion of the designer. Also, the reader must understand that
to design with these FPGAs requires the use of sophisticated software to cover all aspects
of the design. The software, provided by Xilinx Corp., can be used for schematic capture,
simulation, and the automatic block placement and routing of interconnects. Obviously,

668 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

considerable knowledge of the use and interpretation of this software is needed before
reliable designs can result. But even with that knowledge, the designer must still deal
with a variety of timing problems. In some system-level designs timing is everything and
improper routing delays can cause malfunction of the system. Fortionately, Xilinx Corp.
has taken this into account and has provided generous routing resources in their XC4000E
and XC4000XV series FPGAs and have made them reprogrammable an unlimited number
of times. The section on Futher Reading at the end of this chapter cites relevant sources of
information on this subject.

If it is the designer's intent to use a so-called programmable logic sequencer (PLS) for
total system design, be aware of the limitations of such a device. Although many of these
devices conform to the model in Fig. 13.47, the number of flip-flops they provide may be
quite limiting. For example, the Signetics PLS155 provides the equivalent of a 16 x 45 x 12
PLA but is equipped with only four edge-triggered flip-flops on chip. Of course, such devices
can be combined to accommodate larger designs, but compared to what FPGAs can offer, it
may not seem worthwhile. This is not to say that individual PLSs cannot be useful in simple
controller designs. Even the Signetics PLS 155 can be useful in the design of FSMs having
four or fewer state variables. Remember that FSMs up to 16 states can be designed by using
four flip-flops as the memory. But for very large controller- and system-level designs, it is
advisable to look elsewhere for a suitable PLD. In particular, FPGAs should be considered
as the ideal choice for such FSMs provided that the appropriate software is available for
programming.

FURTHER READING

To one extent or another, every text on digital design contributes something to the subject
of alternative architectures in synchronous controller design and, perhaps to a lesser extent,
to system-level design. Useful sources for further reading on the subject of alternative
controller designs of state machines can best be found in texts by Fletcher and Tinder, and
to a lesser extent in the texts by Katz and Roth. The texts by Fletcher and Tinder provide
extensive coverage of counter- and register-based controller design. The use of MUXs and
state decoders is also covered in these two references.

[1] W. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs,
NJ, 1980.

[2] R. H. Katz, Contemporary Logic Design. Benjamin/Cummings Publishing, Redwood City, CA,
1994.

[3] C. H. Roth, Fundamentals of Logic Design, 4th ed. West Publishing Co., St. Paul, MN, 1992.
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach, Prentice Hall, Englewood Cliffs,

NJ, 1991.

Further reading on the subject of controller design centered around nonregistered PLDs,
mainly ROMs and PLAs, can be found in the four previously cited references. In addition,
the text of Nelson et al. provides useful further reading on this subject.

[5] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and
Design. Prentice Hall, Englewood Cliffs, NJ, 1995.

FURTHER READING 669

Good coverage of the use of registered PLDs in digital system design can be found in
the texts by Bolton, Carter, Katz (previously cited), Lala, Pellerin and Holley, and Wakerly,
and these are recommended for further reading. For the automatic logic design of digital
systems, the book by Edwards is recommended.

[6] M. Bolton, Digital Systems Design with Programmable Logic. Addison-Wesley, Reading, MA,
1990.

[7] J. W. Carter, Digital Designing with Programmable Logic Devices. Prentice Hall, Englewood
Cliffs, NJ, 1997.

[8] T. K. Edwards, Automatic Logic Synthesis for Digital Systems. McGraw-Hill, New York, 1992.
[9] P. K. Lala, Digital System Design Using Programmable Logic Devices. Prentice Hall, Englewood

Cliffs, NJ, 1990.
[10] D. Pellerin and M. Holley, Practical Design Using Programmable Logic. Prentice Hall, Engle-

wood Cliffs, NJ, 1991.
[11] J. F. Wakerly, Digital Design Principles and Practices, 2nd ed. Prentice-Hall, Englewood Cliffs,

NJ, 1994.

The one-hot method in state machine design is apparently offered for significant further
reading in only two texts, those by Hayes and by Nelson et al. (previously cited). Both
contribute something different to the subject and are recommended. To a lesser extent this
subject is covered in the text by Comer.

[12] D. J. Comer, Digital Logic and State Machine Design, 3rd ed. Saunders College Publishing, Fort
Worth, TX, 1995.

[13] J. P. Hayes, Introduction to Digital Design. Addison-Wesley, Reading, MA, 1993.

Other sources for further reading on the subject of system-level design where examples
are provided are found in the texts by Fletcher (previously cited) and Shaw.

[14] A. W. Shaw, Logic Circuit Design. Sanders College Publishing, Fort Worth, TX, 1993.

For the reader who wishes to have more information on stepping motors, mentioned in
this chapter in connection with a stepping motor controller design, the book by Kenjo is
recommended.

[15] T. Kenjo, Stepping Motors and Their Microprocessor Controls. Oxford University Press, 1984.

Finally, it should be noted that for logic system design by using registered PLDs, PLSs,
and FPGAs, there may be no better sources than the data books published by Advanced
Micro Devices, Signetics, Xilinx, Actel, and Altera. GAL devices are covered by Lattice
Semiconductor's data book. For EPLD component specifications and applications, the
reader will find Intel's data book useful.

[16] ACT Family Field Programmable Gate Array Databook. Actel Corp., Sunnyvale, CA, 1991.
[17] Altera Data Book. Altera Corp., San Jose, CA, 1995.
[18] GAL Data Book. Lattice Semiconductor, Hillsboro, OR, 1992.
[19] PAL Device Data Book. Advanced Micro Devices, Inc., Sunnyvale, CA, 1992.
[20] Programmable Gate Array Data Book. Xilinx, Inc., San Jose, CA, 1995.

670 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

[21] Programmable Logic Data Book, Intel Corp., Santa Clara, CA, 1994.
[22] Programmable Logic Devices Data Handbook. Signetics Co., Sunnyvale, CA, 1992.
[23] The Programmable Logic Data Book. Xilinx, Inc., San Jose, CA, 1996.
[24] XACT, Logic Cell Array Macro Library. Xilinx, Inc., San Jose, CA, 1992.

Most texts in digital design do not attempt to cover digital design fundamentals together
with the organization and design of microprocessors (or microcontrollers) and computers.
Of those that do attempt this and for the reader who is interested in microprocessor and
computer design but who has had no previous experience in the field, the texts by Hayes
and Katz (both previously cited) and that by Shaw are given a qualified recommendation.
Usually the subject of computer organization and design is a challenge to develop in a single
dedicated text. So one might expect the treatment to be somewhat on the thin side in the
three texts cited above. Better sources for the beginning reader can be found in the text by
Mano and Kime, and in that by Pollard. In these last two references the reader will find
much more detailed information on computer organization and design. However, the reader
should expect to find only token coverage of digital design fundamentals in these texts.

[25] A. W. Shaw, Logic Circuit Design. Saunders College Publishing, Fort Worth, TX, 1991.
[26] M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals. Prentice-Hall, Engle-

wood Cliffs, NJ, 1997.
[27] L. H. Pollard, Computer Design andArchiteture. Prentice-Hall, Englewood Cliffs, NJ, 1990.

PROBLEMS

13.1 Shown in Fig. P13.1 is an FSM that has two inputs, X and 7, and two outputs, P
and Q. It is to be designed by using RET D flip-flops as the memory, and an FPLA
for the NS- and output-forming logic.
(a) Run both output race glitch and static hazard analyses on this FSM and deter-

mine the requirements for glitch-free outputs. In doing this, select the type of

CUT if Y

Pit if X

FIGURE P13.1

PROBLEMS 671

flip-flop (NAND-based or NOR-based) that should be used. Remember that a
PLA is an SOP device.

(b) By using third-order K-maps, obtain an optimal set of expressions for the NS
functions.

(c) Construct the p-term table and block diagram for an FPLA design of this FSM.
To do this, use a 5 x 13 x 5 FPLA (as a block symbol) to design an optimum
glitch-free logic circuit for this FSM. Plan to filter the output signals only if nec-
essary. Do not alter the state diagram. Assume that input X is asynchronous from
a mechanical switch (switch Down in Fig. 11.32a is the active state), that input Y
is synchronous, and that both arrive active low. Take the outputs as active high.

13.2 A counter is to be designed that will drive the seven-segment display in Fig. 6.22a
directly from its seven state variables, that is, from the flip-flop outputs, A, B, C,
D, E, F, and G. When the counter is connected to the common cathode LED array
in Fig. 6.23b, seven-segment Arabic numerals will appear. The FSM must have a
count-up enable control X and must be cascadable so that numerals greater than 9
can be displayed. Thus, two such counters in cascade will count with each clock
cycle, • • • 0-1-2-3 90-0- • •, but only if enabled.
(a) Construct the state diagram for this FSM. Plan to initialize it into the decimal

zero state.

(b) Assuming the use of D flip-flops, map the state diagram directly into seven
fourth-order EV K-maps and extract minimum or near minimum cover for
each of the seven NS functions by using a logic minimizer such as BOOZER.
(Suggestions: The simplest approach is to use the map format AB/CD \ \ E/FG
by following the example in Fig. 5.7 as an array of third-order K-maps. Each
cell of a given fourth-order NS K-map will represent a third-order submap with
axes E/FG and one entered variable, X. Thus, each NS K-map represents a
fourth-order compression. It will be helpful to divide each state code assignment
of the state diagram into two parts, the most significant four bits for the K-map
axes AB/CD and the least significant three bits for the submaps. Note that the
use of submaps is necessary only for cells 6, 14 and 15.)

(c) Use an 8 x 32 x 8 FPLA to implement the NS- and output-forming logic.
Assume that the inputs and outputs are active high. To do this, construct the
p-term table and block diagram for this FSM.

13.3 The state diagram in Fig. P13.2a represents the controller for a candy-bar vending
machine. The controller has six inputs and four outputs, all of which are defined in
Fig. P13.2b.
(a) Construct a minimum size p-term table for implementation of the NS and output

functions by using an FPLA. To do this, assume that D flip-flops are to be used as
the memory, and note that only one of the inputs LT, GT, or EQ can be active at
any given time — they are the outputs from a comparator. Furthermore, assume
that all inputs and outputs are active high.

(b) From the results of part (a), construct the logic circuit for the vending machine
controller. Plan to use RET D flip-flops and to initialize into the 000 state. If
ORGs are present, take the necessary steps to eliminate them, but do not change
the state code assignment that is given. Use a block symbol for the PLA and

672 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

cm

Sanity

CIR = Coin in receiver

LT = Underpayment

GT = Overpayment

EQ = Exact payment

CDR = Candy drop ready

CCR = Coin changer ready

DRPC = Drop candy

CLACCUM = Clear accumulator

RN = Return nickel

DECCNT = Decrement counter

CLACCUMIt DECCNTiT

(a) (b)

FIGURE P13.2

note that synchronizing of the inputs is not necessary for GO/NO-GO branching
actions. Also, assume that the inputs from the comparator are synchronized by
the CIR signal.

13.4 (a) Without altering the state diagram in Fig. P13.2a, construct the ROM program
table for the candy bar vending machine controller directly from the state dia-
gram in Fig. P13.2a. Again, note that only one of the inputs LT, GT, or EQ can
be active at any given time — they are the outputs from a comparator,

(b) Repeat part (b) of Problem 13.3. Also, assume that all inputs and outputs are
active high.

13.5 Shown in Fig. P13.3 is the p-term table for an FSM that has five inputs, U, W, X,
Y, and Z, and four outputs, P, Q, R, and S.
(a) Obtain the state diagram for this FSM. (Hint: First, construct the NS and output

K-maps.)
(b) Run complete ORG and hazard analyses on this FSM. If these timing defects

exist in any of the outputs, indicate what corrective action is most appropriate
to eliminate them.

13.6 The state diagrams for two FSMs are presented in Fig. PI3.4.
(1) Construct the collapsed ROM program table for each of these FSMs directly

from the state diagram. List the present state, ABC, in ascending binary

Inputs Outputs Inputs Outputs
A B C

0 0 1

1 - 0

1 - 1

- 1 0

1 1 -

0 1 -

1 - -

1 0 -

0 0 0

1 0 0

U W X Y Z

0 - - - -

- 0 - - -

- - - 0 -

. . . _ 1
- 0 - - -

- - 1 . .
. o - - -

D A D B D C P Q R S A B C U W X Y Z D A D B D C P Q R S

1 0 0 0 0 0 0 1 - 1 - - - 1 - 0 0 1 0 0 0 0

1 0 0 0 0 0 0 - 1 1 - - - - 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 1 - - - 1 - - 0 0 1 0 0 0 0

1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 - 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 1 0 - 1 - - - 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 - 1 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1 - - - - 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 1 1 1 - - 1 - - 0 0 0 0 0 0 1

FIGURE P1 3.3

S+T
Sanity

Pit if X

Pit
Q it if X

(a) (b)

FIGURE P13.4

673

674 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

order, and assume that the activation levels for the inputs and outputs are
as follows:

For Fig. P13.4a—S(L) and T(H);X(H), Y(H) and Z(H)

For Fig. P13.4b — X(H) and Y(H); P(L) and Q(L)

Note that inverters cannot be used in dealing with an active low input or out-
put. For the FSM in Fig. P13.4b, make a clear distinction between the input
X and the irrelevant input symbol, X, used in the collapsed ROM program
table.

(2) Construct the logic circuit for the ROM implementation of each of these FSMs.
Use a block symbol for the ROM and assume the use of FET D flip-flops.
Consider that S and T are synchronous inputs and bounce-free. However, in
Fig. P13.4b both X and Y are asynchronous inputs, and input X arrives from
a mechanical switch. Thus, include any input or output conditioning circuits
that are necessary for a reliable glitch-free operation of the FSM. Initialize as
indicated in the state diagrams.

13.7 Construct the collapsed ROM program table for the FSM in Fig. PI 1.3. List the
present state, ABC, in ascending binary order. List any assumptions made.

13.8 The ROM program table in Fig. P13.5 represents an FSM having two inputs, S and
T, and two outputs, P and Q.
(a) Construct the state diagram for this FSM directly from the program table.

Indicate which, if any, are don't-care states.
(b) Point out any problems or potential problems this FSM may have.

13.9 Shown in Fig. PI3.6 is the state diagram for a sequence recognizer. This FSM is
the same as that in Fig. 10.60c, but with a state code assignment best suited for
a shift register design. Design this FSM by using a universal shift register (USR)
following the example in Fig. 13.14. Assume that both the input and output are

A B C S T

0 0 0 0 0

0 0 0 0 1

0 0 0 1 X

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

0 0 1 1 1

0 1 0 X X

0 1 1 X X

DA DB Dc P Q

0 0 1 0 , 0

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 0 1

1 0 1 0 0

1 0 1 1 0

0 1 1 0 1

0 1 0 1 1

A B C S T

1 0 0 0 X

1 0 0 1 X

1 0 1 1 1

1 0 1 0 X

1 0 1 1 0

1 1 - 0 X 0

1 1 0 X 1

1 1 1 0 X

1 1 1 1 X

DA DB Dc P Q

1 0 0 0 1

0 0 0 0 1

1 0 1 0 0

1 0 0 0 0

1 1 1 0 0

1 0 0 0 0

1 0 0 1 0

1 1 0 0 1

1 1 1 0 1

X = Irrelevant input

FIGURE P13.5

PROBLEMS 675

Sanity-
\ J ^ X \ \

Zi t i fX

' Vr^-^xx'' N — ̂ V~^V ^- — -^
FIGURE P1 3.6

active high. Use a gate-minimum external logic and plan to initialize the FSM into
the 0000 state. (Hint: Look for XOR patterns in the Si and SQ K-maps.)

13.10 A candy bar vending machine is described in Problem 13.3 and is represented by the
state diagram in Fig. P13.2. Change the state code assignment in the state diagram
as follows:

0001 c->0011 d^

0101

Now design this FSM by using a universal shift register (USR) and a state decoder.
To do this, follow the architecture used for the example in Fig. 13.17. Is an output
holding register necessary? Explain your answer.

13.11 In Fig. P13.7 is given the logic circuit for an FSM that is built around a universal
shift register. This architecture is similar to that used for the example in Fig. 13.17,
but with neither a state decoder nor an output holding register.
(a) From the logic diagram, obtain the state diagram for this FSM. Indicate which,

if any, of the states are don't care states. (Hint: Construct the PS/NS table from
the K-maps associated with the USR.)

(b) Analyze the FSM for any possible problems.

13.12 Shown in Fig. P13.8 is the state diagram for the sequence recognizer in Fig. P13.6,
but with a state code assignment that is best suited for a design centered around a
counter. Design this FSM by using a parallel loadable up/down counter following
the example in Fig. 13.19. Assume that both the input and output are active high.
Find a gate-minimum external logic and plan to initialize the FSM into the 0000
state. (Hint: Look for XOR patterns.)

13.13 The candy bar vending machine is described in Problem 13.3 and is represented
by the state diagram in Fig. P13.2. Alter the state code assignment as indicated
below and design this FSM by using a parallel loadable up/down counter and a
state decoder. To do this, follow the architecture used for the example in Fig. 13.22.
Is an output holding register necessary? Explain your answer.

a -» 0000 b -> 0001 c -+ 0010 d -> 0101

e-+0100 /-»0110 g

676 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

C(H)-
D(H)-

Y(H)
I . _ I *1 ^s

D(H).
C(H)

B(H)

FIGURE P13.7

13.14 Shown in Fig. P13.9 is the logic circuit for an FSM that is built around a parallel
loadable up/down counter. This architecture is similar to that used for the example
in Fig. 13.22, but with neither a state decoder nor an output holding register.

(a) Obtain the state diagram for this FSM. Indicate which, if any, of the states are
don't care states. (Hint: Construct the PS/NS table from the K-maps associated
with the counter.)

(b) Analyze the FSM for any possible problems.

Sanity'
\ ^ ^ x \ \

Z i T i f X

' V l̂̂ V' ^-^ ^S

V ^—-^
FIGURE P13.8

PROBLEMS 677

S(H)-i r-T(H) D(H)

.ii, S(Hi} i VH)
•S(H)

7 6 5 4 3 2 1 0
B(H)-S2 LD B(H)-S2 B(H)-

C(H)- S, MUX C(H)- S, ENMUX C(H)-

P P P P' A ' a ' f ^ ' n —
LD A B c D D/U

EN Parallel Loadable , Con-t, i\ \
S Up/Dn Counter CL^ San,ty(L)

CO Cl
Q4 QB Q^ Qn

B(H)
C(H) f

T(H)

FIGURE P13.9

13.15 The NS and output logic functions for a one-hot FSM are as follows:

Da=aXY + cXY

Z = bY

Here, a, b, and c are the state identifiers, X and Y are the external inputs, and Z is
the output.

(a) Construct the state diagram directly from the NS and output functions given
above.

(b) Show how the NS function Da must be altered to initialize the FSM into the 000
state, but thereafter be driven into the one-hot state a. Implement the logic for
Da and connect it to an RET D flip-flop symbol together with all other required

678 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

S
\

0000000 }*—Sanity

X©Y

inputs to and outputs from that flip-flop. Do not implement the logic for flip-
flops b and c.

13.16 Presented in Figure PI3.10 are the state diagrams for two FSMs, each with two
inputs and one output.

(1) Given the indicated state identifiers, use the one-hot approach to obtain the NS
and output expressions for each of these FSMs directly from the state diagrams.
Assume that RET D flip-flops are used as the memory elements.

(2) Obtain the logic necessary to initialize each FSM into the all-zero state after
which each must be forced to transit irreversibly into one-hot state a — the
one-hot-plus-zero approach.

(3) Construct the logic circuit, including the initialization logic into the all-zero
state for each one-hot design.

(4) Comment on the presence or absence of ORGs and s-hazards in the outputs. If
ORGs are possible, indicate where they exist and by what race path. If they are
not possible, explain your reasoning.

13.17 (a) The state diagram for a candy bar vending machine controller is presented in
Figure P13.2. Given the state identifiers indicated for this FSM, write the one-
hot NS and output expressions directly from the state diagram. Plan to initialize
directly into the one-hot state a.

PROBLEMS 679

PLA Inputs PLA Outputs PLA Inputs PLA Outputs

a b

1 -
•j _

- 1

- 1

- -

- -

0 0

c d Q K M

- - 0 - -

_ _ _ 0 -

_ - 0 - -

- - - 0 0

1 - 0 1 -

- 1 0 1 -

0 0 - - -

Da Db Dc Dd P a b c d Q K M Da Db Dc Dd P

1 0 0 0 0 - 1 - - 1 - 1 0 1 0 0 0

1 0 0 0 0 - - 1 - 1 1 1 0 1 0 0 0

1 0 0 0 0 _ _ 1 _ _ 0 - 0 0 1 0 1

1 0 0 0 0 - - _ 1 - o - 0 0 1 0 1

1 0 0 0 0 - - - 1 1 1 - 0 0 0 1 0

1 0 0 0 0 1 - - - 1 1 - 0 0 0 1 0

1 0 0 0 0 - 1 - - 1 1 0 0 0 0 1 0

- - 1 - 1 1 0 0 0 0 1 0

FIGURE P13.11

(b) Implement the NS and output functions by using a FPLA and RET D flip-
flops. To do this construct the p-term table together with a logic circuit and the
necessary connections for initialization. Assume that the all inputs and outputs
are active high. Are ORGs possible in this design? Explain your reasoning.

(c) Is a ROM implementation of the NS and output functions for this one-hot FSM
a wise choice? Are there FSMs for which the ROM implementation of a one-
hot FSM has an advantage over a PLA or PAL implementation? Explain your
answers to these questions.

13.18 Shown in Fig. P13.11 is the p-term table for the one-hot design of an FSM that has
three inputs, Q, K, and M, and one output P. Here, the state identifiers are a, b, c,
and d.
(a) Construct the state diagram directly from the p-term table. Pay particular atten-

tion to how the FSM is to be initialized.
(b) Analyze this FSM for possible ORGs and static hazards.

THE FOLLOWING PROBLEMS ARE TO BE CARRIED OUT AT THE SYSTEM
LEVEL.

(Note that typically there is more than one correct solution for each system-level design.)

13.19 (a) Design a multiple pulse generator that will issue, on the Pulse output, 0 to
99 clean (glitch-free), evenly spaced pulses with an active duration the same
as that for the system clock. To do this, it is necessary to design a controller
and two interconnected BCD down-counters with an active low borrow-out
(BO). Use RET D flip-flops for the counter design and FET D flip-flops for the
controller, both with Preset and Clear overrides. Thus, state-to-state transitions
of the controller are made on the falling edge of the system clock.

A Start signal is required to load the counters and initiate the process. As-
sume that the count settings are made by individual switches and are loaded
asynchronously into the counters via the Preset and Clear overrides prior to

680 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

the Stan signal. The count begins at the particular setting of the switches and
ends when the count reaches zero. The pulses are to be generated with active
clock by the Pulse output from the controller, and the counters are to count
with inactive clock on each rising edge of the Count command CNT from the
controller. An END(L) signal from the counters ends the count process when
zero has been reached. Make certain that the counters are loaded at least one
clock period before the CNT and Pulse signals are issued by the controller. Plan
to use four states for the controller design, and make certain that only one series
of pulses can be issued on a start command.

To design the BCD down counters, follow the example in Subsection 12.3.2,
but for a down count, and with asynchronous preset and clear override capability
as in Fig. 12.20. Let CNT(H) be the enabling input to the MSD counter, and
connect the two counters in series by connecting the BO(L) of the MSD counter
to the EN(H) of the LSD counter. Note that a pulse is never issued in the 0000
end state, and that any false data setting (1010 to 1111) must not result in pulse
generation.

(b) Construct a timing diagram of the results of part a assuming a count of 03. To
do this, include the waveforms for CK, START(H), LD(L), CNT(H), PULSE(H),
END(L), and present states A(H) and B(H).

13.20 An election between two competing candidates for mayor is to be held in a small
community of 752 registered voters. Design a voter booth tabulation system that
will tally the vote count on each of two competing candidates. The booth will show
an "Enter" light when not occupied. When the voter enters the booth and closes the
door, a Voter-in (VI) signal is sent to the controller, the "Enter" light is turned off,
and an "Occupied" light is turned on. This is accomplished by a motion detector
working in coordination with door and light switches (matters of no concern to this
design problem). Once in the booth with the door closed, the voter pushes one of
two switches for the candidate of his or her choice. When either button is pressed
a corresponding counter is incremented, and the door is automatically opened for
the voter to exit. The current count of each counter is stored in a register as a BCD
number ready to be presented later as a seven-segment display. If both buttons are
pressed simultaneously, neither counter is incremented and the door is opened. It
is not possible for a voter to vote twice while in the booth. Once the door is opened
and the voter exists the booth (VI), the process is ready to begin again. Assume
that the entrence to the voter booth is minitored in some way so as to prevent an
individual from voting more than once.

The block diagram for the controller is provided in Fig. P13.12(a) and the input
and output symbology is defined in Fig. P13.12(b). Take all inputs and outputs as
active high and note that the switch inputs Ba and Bb are presented to the controller
asynchronously from mechanical switches.

Design the controller for this system by using the one-hot-plus-zero approach,
and construct the functional partition for its operation. To do this, use RET D
flip-flops for the controller FSM, and RET cascaded BCD up-counters for the
count. In addition to the controller, plan to initialize the counters, registers and
the appropriate input conditioning circuits. Carefully consider how best to trigger
the registers relative to the counters and controller. Assume that the lights and

PROBLEMS 681

door opening mechanisms are available to the designer. No acknowledge signal
following an increment is necessary from the counters. Finally, make certain that
all required input conditioning circuits are included.

13.21 A traffic light control system is to be designed that will operate traffic lights at the
intersection of a main highway and an infrequently used farm road. Traffic sensors
are placed on both the highway and the farm road to indicate when traffic is present.
If no traffic is sensed on the farm road, traffic on the highway is allowed to flow. But
when a vehicle activates the sensor on the farm road, the highway light signals are
activated immediately if the traffic sensor on the highway is not active. Otherwise,
the vehicle on the farm road must wait 30 seconds or until the highway is clear,
whichever occurs first, before the highway signals are reactivated. Once the farm
road is clear, the system must activate the farm and highway lights so as to permit
highway traffic to flow, but only after a 30-second time interval to allow the farm
road to clear.

In designing the control system, two interval timers (counters) must be designed,
one for the 30 second time interval and the other for the 5-second yellow light time
interval. These timers accept an input to signal the start of the time interval and
return an output to indicate the end of the time interval. Upon receiving the count
enable input signal, the timer begins timing. At the end of the specified time, the
output signal is activated and remains active until the count enable input signal is
deactivated.

Construct a suitable controller state diagram and functional partition for the
traffic light control system. Make any reasonable state code assignment for the
controller and use an architecture centered around a PLA, as in Figure 13.1. Con-
struct the p-term table for programming the PLA device and provide a block dia-
gram for the controller. Assume that all inputs and outputs are active high. Use the
abbreviations given next and assume that F and H are asynchronous inputs.

Controller Inputs: F = Farm road active; H = Highway active; 30 =30
seconds complete; 5 = 5 seconds complete.

Sanity

A

EL - Enter light on
VI -- Voter in

Voter Booth
Controller DC -- Door closed

OL -- Occupied lignt on

DO -- Door open
Ba- Button a pushed

INCRa -- Increment counter a
Bb-- Button b pushed

INCRb -- Increment counter b

(a) (b)

FIGURE P13.12

682 CHAPTER 13 / ALTERNATIVE SYNCHRONOUS FSM ARCHITECTURES

Controller Outputs: FR = Farm Red; FG = Farm Green; FY = Farm
Yellow; HR = Highway Red; HG = Highway Green; HY = Highway
Yellow; S30 = Start 30 seconds; S5 = Start 5 seconds; LDCNT =
Load counters

Use a minimum number of RET D flip-flops and an optimum NS and output
logic for the controller. Pay particular attention to timer requirements as they per-
tain to the handshake interface, counter design, and clock frequency. To do this,
construct timing diagrams if necessary. Initialize the system properly and deal with
any asynchronous input requirements. Assume that the clock frequency is 13.1
kHz.
Hints and suggestions:
(1) Six or seven states are adequate for the state diagram.

(2) Plan to synchronize inputs and filter outputs as needed.

(2) Use divide-by-164 and divide by 16 parallel loadable binary counters to gen-
erate the 5 second and 30 second time intervals. Counters will need to be
initialized.

(3) Counter design should follow that in Figs. 12.19, 12.20, and 12.21.
(4) By law, a green light never changes directly to red, but must first change to

yellow.
(5) Assume that mechanisms for light generation exist and that they are unaffected

by logic noise.

(6) The output LDCNT must be free of logic noise.

13.22 At the discretion of the instructor, use the software A-OPS (see Appendix B) in-
cluded on the CD-ROM bundled with this text to work any of the following one-hot
approach problems and include their VHDL descriptions: 13.15, 13.16, 13.17,
13.18. A readme.doc accompanying this software explains its use. Note that an as-
signment 13.22/13.16a would require the use of the A-OPS software to work only
circuit (a) of Problem 13.16. If necessary, refer to Section 16.4 for more information
regarding one-hot programmable sequencers and their use.

CHAPTER 14

Asynchronous State Machine
Design and Analysis:
Basic Concepts

14.1 INTRODUCTION

In Chapters 10 through 13 the emphasis was directed toward synchronous sequential ma-
chine design. These chapters developed a rather thorough understanding of the concepts
necessary for the meaningful and reliable design of these machines. Now, it is necessary
to move on to another type of sequential machine — the asynchronous FSM. In Fig. 14.1
is presented an overview of the various types of digital machines. Observe that combina-
tional machines are classified as asynchronous because they operate in the absence of a
clock signal, but they do not have feedback. Combination logic machines were the subjects
of Chapters 6 through 8. As is indicated in Fig. 14.1, all sequential machines must have
feedback, but they can be divided into two categories, synchronous and asynchronous.

The major aim of this chapter is, of course, to develop a working-level understanding of
asynchronous FSMs, their design and analysis, and to design state machines that operate at
speeds exceeding those possible for their synchronous FSM counterparts. But the mission
of this chapter is really broader than that. In the course of the various discussions, the reader
will develop a better understanding of those concepts involved in synchronous machine
design and analysis. In fact, an understanding of asynchronous sequential machines is
required before synchronous sequential machines can be fully understood.

So why has the subject of asynchronous machine concepts and methodologies been
delayed to this point? The answer is simple. The study of asynchronous FSMs forces one
to deal with the complexities of sequential machines in greater depth than was required for
the simpler synchronous machines. Putting it another way, the study of synchronous FSMs
permitted the reader to develop capabilities sufficient to design and analyze large systems
without having to deal with the intricacies of asynchronous machine design. Remember
that all digital machines can eventually be broken down into their component asynchronous
parts. For example, the synchronous FSMs, studied in Chapters 10 through 13, use memory
elements (flip-flops) that are themselves asynchronous machines but that are designed to
operate in a clock-driven environment.

683

684 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

Digital Machines

Synchronous
Sequential Machines

(Chapters 10-13)

Asynchronous
Sequential Machines

(Chapters 14-16)

Feedback required No feedback Feedback required

FIGURE 14.1
Breakdown of the various classes of digital machines showing chapters in this text pertinent to each
class with emphasis on asynchronous sequential machines, the subject of this and subsequent chapters.

14.1.1 Features of Asynchronous FSMs

All sequential machines have certain characteristics in common. However, there are features
owned more or less exclusively by asynchronous FSMs:

• The presence of memory in the absence of the familiar clocked flip-flop
• The appearance of the asynchronous machine as a combinational logic circuit

with feedback

Other more subtle features distinguish asynchronous FSMs from those that are syn-
chronous. These features include the possible existence of certain timing defects such as
endless cycles (oscillations), critical races (races that can produce error transitions), static
hazards in both the NS and output logic, and essential hazards. Static hazards that are
generated in the NS-forming logic of asynchronous FSMs can cause the malfunction of
these machines. Static hazards that form in the NS logic of synchronous FSMs are of no
consequence since they are filtered out by the action of clock in the memory flip-flops.
Also, in synchronous FSMs static hazards that are produced in the output-forming logic
can be filtered out by using an output holding register. This advantage is also not shared
by asynchronous FSMs, since there is no system clock with which to trigger a register. In
short, the benefits of clock, which are taken for granted in synchronous machine design,
do not exist in asynchronous FSMs. The reality is that endless cycles, critical races, and
hazards can occur in asynchronous FSMs and, if present, can and do cause the machines to
malfunction. A detailed study of these and other timing defects and the actions required to
eliminate them constitute a significant portion of this chapter.

14.2 THE LUMPED PATH DELAY MODELS FOR ASYNCHRONOUS FSMS 685

14.1.2 Need for Asynchronous FSMs

It is perhaps natural to believe that the data processing in and passage through a sequen-
tial machine must be regulated by some periodic sampling (enabling) function, the system
clock. This, of course, is a requirement of the synchronous sequential machine. But one never
questions the absence of a clock in the combinational logic circuits covered in Chapters 6,
7, and 8, yet these circuits are asynchronous machines of a type — those without feed-
back (i.e., nonsequential). Why then the concern about the need for a clock to regulate
synchronous sequential operations? And when is it advantageous, if ever, to perform se-
quential operations asynchronously? The complete answers to these questions will be
forthcoming, but only after most of the contents of this chapter has been considered. For
now let it suffice to say that it may be desirable to use asynchronous designs for the following
reasons:

• The speed requirements of the system may exceed the capability of synchronous
machines. Properly designed, a synchronous FSM can only approach (not equal)
the speed of a properly designed asynchronous FSM performing the same se-
quential operation(s). There are exceptions to this rule.

• Use of a system clock to synchronize a given sequential machine may not be pos-
sible or even desirable. Clock distribution problems (clock skew) may seriously
limit the use of synchronous designs, particularly in complex digital systems
operated at very high frequencies.

• Since flip-flops and clock oscillator circuits are absent, an asynchronous design
may occupy less real estate on an 1C chip and use less power than an equiv-
alent synchronous design. However, this statement may not be true for com-
plex asynchronous FSMs, the components of which must communicate through
handshake configurations.

• Just as there are some designs that should be carried out synchronously, there are
other designs that lend themselves quite naturally to asynchronous design. This
statement may be even more relevant in integrated systems, systems containing
both synchronous and asynchronous state machines, where maximum speed is
required.

Clearly, there is potential for use of asynchronous machines. In fact, it is predictable
that designers will become more familiar with this type of machine, that asynchronous
design techniques will improve, and that asynchronous FSM methods will play an impor-
tant role in the design of future superhigh-speed microprocessors and computers. It is the
judgment of many digital designers that the continued upward climb of system size and
speed will require more integration of asynchronous FSMs into "conventional" system-level
designs.

14.2 THE LUMPED PATH DELAY MODELS FOR ASYNCHRONOUS FSMs

In synchronous FSMs the memory function is formed by using flip-flops. But if asynchro-
nous FSMs are characterized by the absence of such devices as flip-flops, how, then, does

686 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

Memory
stage

Intput
(IP)

V1
Ideal NS
forming

logic
(No delays)

Output
forming

logic

Output
(OP)

PSfedback _ Fictitious LPD
memory elements

FIGURE 14.2
Lumped path delay (LPD) model for an asynchronous Mealy FSM operated in the fundamental mode.

memory manifest itself in these machines? The answer to this question lies in the fact
that data transport through an FSM is not instantaneous. Propagation time delays are an
inherent part of any circuit, and it is these path delays that constitute the memory stage of
an asynchronous FSM. Recall that this is precisely the basis for the heuristic development
of the basic cells presented in Section 10.4. It is this heuristic development that provides
the basis for the generalized and more formal treatment that follows.

Consider the Mealy model for the asynchronous FSMs shown in Fig. 14.2. This model
is called the generalized lumped path delay (LPD) model and is applicable to FSMs that are
operated in the fundamental mode.

Operation in the fundamental mode requires that no external input to an FSM may
change until all internal signals are stabilized, and that only one input can change at
a time.

The LPD model is characterized by an NS-forming logic that is treated as ideal (free of path
delays) for which the propagation time delays are separated out into a minimum number
of distinct lumped memory elements A?o, At\, A?2, • • • Atm-i, each delay element being
associated with a state variable. It is these fictitious lumped memory elements, taken in toto,
that constitute the memory stage for an asynchronous FSM.

14.3 FUNCTIONAL RELATIONSHIPS AND THE STABILITY CRITERIA 687

The model of Fig. 14.2 is the most degenerate (fundamental) form of the Mealy model
depicted in Fig. 10.5. This model can be broken down into the more rudimentary forms
similar in appearance to those in the development of the basic model in Fig. 10.3 or to the
Moore model in Fig. 10.4, but always with a memory stage composed of fictitious LPD
memory elements. Regarding the memory stage, it will be recalled that the memory for
the basic model in Fig. 10.3(c) is interpreted as basic cells in Fig. 10.22 or as a flip-flop in
the case of Fig. 10.36. In fact, the more general models given in Figs. 13.1 and 13.47 can
be used in synchronous systems where the memory is interpreted as discrete flip-flops, or
flip-flops in a register or counter. Now, the reader should consider that memory in all these
models can be interpreted as any one of the following forms given in the order of increasing
degeneracy:

{Flip-flops -> BasicCells -> LPD Memory Elements}

Thus, if the memory is composed of flip-flops and clocked, the FSM is called synchronous.
But if the more degenerate forms are used for the memory (e.g., basic cells or LPD memory
elements) the FSM becomes asynchronous. In this text, the nested cell model is character-
ized by the use of basic cells as the memory elements, while the LPD model is characterized
by the use of fictitious LPD memory elements.

1 4.3 FUNCTIONAL RELATIONSHIPS AND THE STABILITY CRITERIA

The parameters used in Fig. 14.2 are defined by

jc, = jcn_i , . . . X 2 , x \ , X Q = Input State (IP)

Yk = 7m_! , . . . Y2, Yi,Y0 = Next State (NS)
(14.1)

yj = ym-i, ...yi,yi,yo = Present State (PS)

Z/ = Zr-i, . . . Z2, Zj , Z0 = Output State (OP),

all of which have been arranged in positionally weighted form to represent binary words.
These parameters are functionally related to each other and to the inputs and outputs by the
following set of logic equations written in subscript notation:

(14.2)

or simply

7 = /(IP, PS)

Z = /'(IP, PS).

688 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

The subscripts in Eqs. (14.2) are assigned the ranges of values

/=0, 1,2, . . . , / i - l

7=0, 1,2, . . . , m - 1

* = 0, 1,2, . . . ,m- 1

/ = 0, 1,2, . - - , r - l

The fact that the inputs, jc/, can be multivariable functions implies that one asynchronous
FSM may be controlled by another asynchronous FSM.

Inspection of Eqs. (14.2) indicates that corresponding NS and PS variables are separated
in time by distinct lumped delay memory elements, A?y. This leads directly to the important
stability criteria for asynchronous FSMs operated in the fundamental mode:

Stability Criteria

If the PS is logically equal to the NS at some point in time, then

Yj(t) = yj(t) (far all j\ (14.3)

and the asynchronous FSM is stable in that state.
If the PS and NS are not logically equal at any point in time, then

Yj(t}^yj(t} (for any j), (14.4)

and the asynchronous FSM is unstable in that state and must transit to another state.

Here, the presence of a lumped memory element for each feedback loop ensures that all
path delays within the NS forming logic are represented. A much less attractive alternative
is the distributed path delay model, which requires a memory element for each gate and as
many state variables. The LPD model has the decided advantage of simplicity — it requires
a minimum of lumped memory elements and hence a minimum number of state variables.
Use of the distributed path delay model would be prohibitively difficult for all but the
simplest state machines.

14.4 THE EXCITATION TABLE FOR THE LPD MODEL

The excitation table for the LPD model of Fig. 14.2 and all of its degenerate forms is derived
directly from the stability criteria given by Eqs. (14.3) and (14.4). The results are shown in
Figs. 14.3a and 14.3b, where a stable condition exists for yt = Yt, and an unstable condition
exists if yt ^ Yt. Here, y, —> yt+\ represents a transition from the PS to the NS, implying
that yt+\ = Y, = NS. It is important to notice the similarity between the excitation table
in Fig. 14.3b and that for the D flip-flop in Fig. 14.3c. Thus, it is expected that some LPD
design methods apply to synchronous D flip-flop designs and vice versa. The excitation
table for the LPD model is essential to the design of asynchronous FSMs to be operated in
the fundamental mode and will be used extensively throughout the remainder of this text.

14.5 STATE DIAGRAMS, K-MAPS, AND STATE TABLES FOR ASYNCHRONOUS FSMs 689

PS State
variable NS
change variable

Y, yt

0 ^ 0 Stable
1 -» 0 Unstable
0 -» 1 Unstable
1 -» 1 Stable

0 -» 0
0 -> 1
1 -» 0
1 -> 1

0 -» 0 0

Set 0 -» 1 1

1 -> 0 0
Set Hold 1 -> 1 1

(a) (b) (c)

FIGURE 14.3
(a) Excitation table for the LPD model as derived from Eqs. (14.3) and (14.4). (b) The excitation table
of (a) arranged in the form familiar for flip-flops, (c) Excitation table for the D flip-flop shown for
comparison.

14.5 STATE DIAGRAMS, K-MAPS, AND STATE TABLES FOR
ASYNCHRONOUS FSMs

This section deals with subject matter that has been covered in Chapters 10 and 11, but now
applied to asynchronous FSMs. Thus, the concepts involved here are basically the same as in
synchronous FSM design. Therefore, the reader who is familiar with this subject matter may
wish to simply browse through this short section for a sufficient understanding of its contents.

14.5.1 The Fully Documented State Diagram

The sequential behavior of any FSM (synchronous or asynchronous) is revealed most effec-
tively by a fully documented state diagram representing the sequential behavior of the FSM.
However, the state diagram itself does not indicate whether the machine is synchronous or
asynchronous. For example, the state diagram in Fig. 11.42 could be interpreted as that
for either an synchronous or asynchronous FSM. But once the FSM is declared to be an
asynchronous FSM and to be operated in the fundamental mode, then the design process can
begin by applying the model and excitation table of Figs. 14.2 and 14.3b to the state diagram.

Shown in Fig. 14.4 is a section of a generalized, fully documented state diagram ap-
plicable to any FSM, in particular to an asynchronous FSM. The features are the same as
those in Fig. 10.6, except that the PS variables are specifically identified as ym-\ • • • j2j\ Jo
to distinguished them from those for a synchronous FSM QAQsQcQo • • • = ABCD • • •,
as used in this text. The branching conditions are given in subscript notation where, for
example, fab(.Xi) represents conditional branching on inputs */ from state a to state b, and
fb(X{) is the holding condition in state b, again a function of inputs *,. Also, the output in
state c is conditional on some function of inputs x f .

Sum Rule and Mutually Exclusive Requirement The sum rule and mutually exclusive
requirement for state diagrams representing asynchronous FSMs are given by Eqs. (10.3)
and (10.4); the conditions under which they can be violated are discussed in Section 10.3.

690 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

f (x) Unconditional
a ' ' output

Branching
^ paths

PS variables

Branching
_, L - -, , _^ conditions
State code

assignment

Conditional
fc(Xj) output

FIGURE 14.4
Fully documented state diagram as interpreted for an asynchronous FSM.

Thus, there is no difference in the applications of these rules to either synchronous or
asynchronous FSMs. See Problem 10.24 for more information on the relationship between
these two rules, and a more direct means of testing for mutually exclusivity of branching
conditions.

ASM Charts and Flowcharts Flowcharts were used in Subsection 11.9.2 and ASM charts
were used in Subsections 11.10.1, 13.5.2, and 13.6.2 as thinking tools in the construction of
the fully documented state diagrams for synchronous FSM design. So also can these thinking
tools be used for the purpose of constructing state diagrams for asynchronous FSM design.
Furthermore, it may be recalled that the ASM chart is used effectively to design a one-hot
state machine in Subsection 13.5.2, but the fully documented state diagram is shown to be
equally effective for such a purpose. The point to be made here is that the ASM chart or
flowchart should be considered only as a thinking tool in the construction of the fully docu-
mented state diagrams or state tables. In this text, it is the fully documented state diagram or
state table that is considered to be the simplest and most effective means of representing the
sequential behavior of an FSM (synchronous or asynchronous) in preparation for its design.

14.5.2 Next-State and Output K-maps

When using the LPD model for asynchronous FSMs, the entered variable (EV) K-maps for
the NS variables are easily constructed by applying the mapping algorithm in Section 10.6
to the state diagram and the excitation table for the LPD model in Fig. 14.3b. Thus, this
NS mapping process for the LPD model is very similar to that used in the D flip-flop
designs of synchronous FSMs, the only difference being the nomenclature for the PS and
NS parameters. Shown in Fig. 14.5 are the generalized EV K-maps for the NS and output
functions as applied to the LPD model of an asynchronous FSM. The K-maps are of the
mth order with state variables for their axes and inputs as the EVs. It is important for the

14.5 STATE DIAGRAMS, K-MAPS, AND STATE TABLES FOR ASYNCHRONOUS FSMs 691

\Vi -Wo \Vp-i -Wo

ym-i • • • yp+iv\o-oo 0-01 0-11 - ym-i • • • y^vX Q-QQ.0-01
0---00

0---01

0-11

0
w
etc.

0-00

0-01

0-11

etc.

/Yk

(a) (b)

FIGURE 14.5
K-maps for asynchronous FSMs. (a) EV K-map for the /cth NS state variable, (b) EV K-map for the
output Z.

reader to understand that the state variables must always be the K-map axes variables,
never the K-map EVs. Therefore, for state variables numbering between four and nine,
K-map formats of the types shown in Fig. 4.38 of Section 4.7 and in Fig. 5.7 of Section 5.9
are recommended. For larger numbers of state variables, computer-aided design should be
considered as the only reasonable alternative.

14.5.3 State Tables

State tables and NS tables were used previously in connection with the use of state as-
signment rules in Subsection 11.10.2 and in the array algebraic approach to synchronous
FSM design discussed in Section 11.11. State tables are, of course, the tabular equivalent
of a state diagram. In this chapter state tables will be used in the design of asynchronous
single-transition-time (STT) state machines by using the array algebraic approach. STT
machines are the fastest state machines possible but require special state coding procedures
that were not needed in Section 11.11. Shown in Fig. 14.6 are the state diagram and state
table for the FSM in Figs. 11.42 and 11.43 but interpreted as an asynchronous FSM to
be operated in the fundamental mode. Notice that each cell entry in Fig. 14.6b is a state
identifier representing the specific state code assignment shown on the vertical axis of the
state table and in agreement with those in the state diagram of Fig. 14.6a. State variables
should not be used as cell entries in state tables.

Recall from the discussion in Subsection 11.10.2 that the encircled state identifiers in
state tables indicate a holding condition. But a holding condition in an asynchronous FSM
means that Eq. (14.3) of the stability criteria is satisfied and that the FSM is stable in that
state. So it follows, for example, that in state a = 000 the FSM is stable in that state under
input conditions ST + ST + ST = S + T. Conversely, if the FSM is unstable in a given state
according to Eq. (14.4), it must transit to another state. Thus, should the input conditions
change to ST while in state a, the FSM must transit to state b as indicated by the vertical
down arrow in the S f column of Fig. 11.6b. To summarize, the encircled state identifiers in
a state table indicate FSM stability in agreement with Eq. (14.3) while the vertical arrows

692 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

External
Inputs

Sanity

T

(IT) Indicates a holding condition
CUT if S v-/

^ * Indicates a transition path

(a) (b)

FIGURE 14.6
The FSM in Figs. 11.42 and 11.43 interpreted as an asynchronous FSM to be operated in the funda-
mental mode, (a) State diagram, (b) State table.

indicate FSM instability according to Eq. (14.4). Perhaps the most important use of state
tables is in the designs of FSMs without the use of K-maps. This will be demonstrated later
in connection with the design of STT machines.

14.6 DESIGN OF THE BASIC CELLS BY USING THE LPD MODEL

The reader who is familiar with Section 10.4 will recall that the set-dominant basic cell
and the reset-dominant basic cell were developed by a heuristic approach. This was done to
avoid having to use asynchronous design methods which, at that time, would have caused
unnecessary delays in the primary goals of that chapter. Now, it is appropriate that the basic
memory cells be designed from first principles by using the LPD model. The basic cells
represent two of the simplest asynchronous FSMs that are operated in the fundamental mode.

14.6.1 The Set-Dominant Basic Cell

The state diagram for the set-dominant basic cell is shown in Fig. 14.7a and is a reproduction
of that given in Fig. 10.12a. The NS logic for this basic cell is easily found by using the
mapping algorithm, given in Section 10.6, to combine information contained in the state
diagram with that contained in the excitation table for the LPD model in Fig. 14.7b. The result

14.6 DESIGN OF THE BASIC CELLS BY USING THE LPD MODEL 693

State variable, y

Y

0 -> 0
0 -* 1
1 -» 0

1 -» 1

(b) (c)

Fictitious Lumped path
delay memory element \ S(L) —-3 ^\ . y(H) = Q(H)

(d) (e)

FIGURE 14.7
Design of the set-dominant basic memory cell by using the LPD model, (a) State diagram, (b) Excita-
tion table for the LPD model, (c) NS K-map and minimum cover, (d) Logic circuit showing fictitious
LPD memory element, (e) Final logic circuit with fictitious memory element removed.

is the NS K-map and minimum cover shown in Fig. 14.7c. From this there results the NS
logic function in LPD notation given by

Y = S + Ry. (14.5)

Except for the difference in PS and NS nomenclature, Eqs. (14.5) and (10.5) are identical,
as they must be. The logic circuit that results from Eq. (14.5) is presented in Fig. 14.7d
and is seen to be identical (again except for PS and NS nomenclature) with that given
in Fig. 10.1 la. Since the lumped path delay element At is fictitious, it may be removed,
resulting in the familiar "cross-coupled NAND gate" circuit shown in Fig. 14.7e. Recall
that in Fig. 10.18a this latter circuit was analyzed as to its mixed-rail output response. But
more information remains on this deceptively simple machine, as discussed in the following
paragraph.

If the inputs S(L) and R(L) should undergo a simultaneous 1(L) ->• 0(L) change, the
basic cell may become metastable and either "hang up" in a state that is neither a set nor
reset, or oscillate. This condition is illustrated in Fig. 14.8, which represents a logic (ideal)
simulation of the basic cell. The oscillation occurs because the identical cross-coupled
NAND gates drive each other in antiphase fashion to produce an oscillation of period 2rp,
where rp is the propagation delay through a NAND gate. Under ideal conditions, oscilla-
tory behavior of this type is predictable and indicative of a possible metastable condition.

694 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

S(L) 1

R(L)

— M

Q(H)

P(L)

I

_l

-*- U-T -*
' P

1

•+•

1

i

^J

^— T
P

'

1 '

HnJT r̂̂

I _^ ^_T
• P

n n n n n

Loss of mixed- Oscillation
rail outputs

FIGURE 14.8
Timing diagram for the set-dominant basic cell showing loss of mixed-rail outputs for the 5, R = 1, 1
condition, and the oscillatory behavior that results when S and R change 1—^-0 simultaneously.

However, an actual physical test of a basic cell will most likely not yield these same results,
since metastability is a low-probability condition. But it can occur! In fact, in real-time tests
of closely matched NAND gates, the basic cell is likely to show short-duration instability
when subjected to simultaneous 1(L) -> 0(L) of the S(L) and R(L) inputs. It is because
of loss of mixed-rail output character and the possibility of metastable behavior that the
S, R = 1, 1 condition is normally avoided in using basic cells for FSM design. Remember
that it is only for mixed-rail conditions that P(L) = Q(L). Subsection 10.4.4 discusses the
importance of mixed-rail character of the basic cell.

14.6.2 The Reset-Dominant Basic Cell

The design of the reset-dominant basic cell follows closely that of the set-dominant basic
cell in the previous section. Shown in Fig. 14.9 are the state diagram, excitation table for
the LPD model, the NS K-map and minimum cover, and the logic circuits with and without
the fictitious LPD memory element. The NS function read in maxterm code from the NS
K-map is given by

Y = R(S + y) (14.6)

and is seen to be identical with that of Eq. (10.7), except for the change in PS and NS
notation.

Simultaneous !(//) —>• 0(//) changes of the inputs S(H) and R(H) to the reset-dominant
basic cell can cause timing problems similar to those that can occur in the set-dominant
basic cell. Shown in Fig. 14.10 is a timing diagram for the reset-dominant basic cell similar
to that in Fig. 14.8. As indicated for ideal cross-coupled NOR gates, loss of mixed-rail
output conditions can lead to oscillatory behavior under simultaneous 1 —> 0 changes in
the inputs. This again supports the need to avoid the S, R — 1,1 condition when using
basic cells for design purposes. Although real cross-coupled NOR gates may not oscillate
as in Fig. 14.10, they may go logically unstable or may go metastable for a short period of
time if simultaneous 1 -> 0 input changes are permitted.

14.7 DESIGN OF THE RENDEZVOUS MODULES 695

y«

0 -> 1
1 -» o
1 -» 1

Y

0

1
0 \^

Y = R(S+y)

(b) (c)

Fictitious Lumped path
delay memory element \ R(H)-^ V-f- Y(H) = Q(H)

(d) (e)

FIGURE 14.9
Design of the reset-dominant basic memory cell by using the LPD model, (a) State diagram, (b) Exci-
tation table for the LPD model, (c) NS K-map and minimum cover, (d) Logic circuit showing fictitious
LPD memory element, (e) Final logic circuit with fictitious memory element removed.

14.7 DESIGN OF THE RENDEZVOUS MODULES BY USING
THE NESTED CELL MODEL

A rendezvous module (RMOD) is an asynchronous state machine whose output is issued
active when all external inputs become active and is issued inactive when all external inputs

S(H)

R(H)

.
r*~ l

p

_J

I :
"*i *~ p ~*

-^

1

L T _^.

i* p *

^^ P

1

; _
:"*" P
n n n n n

• ^ j T
: P

Loss of mixed- Oscillation
rail outputs

FIGURE 14.10
Timing diagram for the reset-dominant basic cell showing loss of mixed-rail outputs for the S, /? = 1, 1
condition, and the oscillatory behavior that results when S and R change 1 —»• 0 simultaneously.

696 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

Q

P 8 o : J

PS 1 J 1

S R

1 0

0 1

A Artl*0

$A1+A0)
V .)

0

1
/

$At+A0)

AtA0
v , y

/S /

S "" A A R — A A~~ r\ j f\ j-. II ~~ F\ A r\ «

(b) (c)

y'"/

-Y(L)
r ' i—'

(e)

FIGURE 14.11
Design of the two-input rendezvous module (RMOD) by using the nested cell model, (a) State dia-
gram, (b) Excitation table for the basic cell, (c) NS K-maps and minimum NS functions, (d), (e) Logic
circuits with and without the fictitious LPD memory element for the basic cell.

become inactive. The RMOD, also known as a majority gate or Muller C (concurrency)
module, is used in the design of other useful asynchronous circuits. The name C-module
has also been used for this device. In effect, the RMOD acts like an AND gate in issuing
an active output but acts like an OR gate in issuing an inactive output. Thus, the external
inputs must all rendezvous with the same activation level before a change in the output is
possible. Since the acronym RMOD is easy to remember and seems more descriptive of the
device's function, it will be retained in this text.

Shown in Fig. 14.1 la is the state diagram for a two-input RMOD. Clearly, the transition
from the inactive state to the active state is possible only if both inputs become active — an
AND function. Then, while in the active state, a transition to the inactive state is possible
only if both inputs become inactive — an OR function. Applying the mapping algorithm in
Section 10.6 to the state diagram together with the excitation table of Fig. 10.15c gives the
NS K-maps and minimum covers for the nested cell design of the RMOD in Fig. 14.1 Ic.
From the K-maps there results the NS S and R functions

S = AiAQ and R = AiA0 (14.7)

14.7 DESIGN OF THE RENDEZVOUS MODULES 697

A,(H)

A0(H)

Y(H)

Y(L)

FIGURE 14.12
Timing diagram for the two-input RMOD showing input conditions for active and inactive mixed-rail
outputs from the basic cell.

for external inputs A\ and A0. Implementation of Eq. (14.7) yields the NAND/OR logic
circuits with and without the fictitious LPD memory element, Af, shown in Figs. 14.lid
and 14.1 le. In the strict sense, the RMOD operates out of the fundamental mode since it is
no longer required that one input "settle in" before another input changes. Notice that the
OR gates are shaded in these figures.

The timing diagram for the two-input RMOD is given in Fig. 14.12. The input conditions
are shown for active and inactive mixed-rail outputs. Also shown is a 2rp delay following
input active level conjunction and 3rp following inactive level conjunction, where TP is the
propagation delay through a NAND gate or OR gate, the two types of gates being treated
the same in this case.

Multiple input RMODs can be designed. Presented in Fig. 14.13a is the state diagram
for an n-input RMOD where the similarity between it and the two-input RMOD is evident.
Thus, the NS functions for multiple inputs follow in similar fashion to those given in
Eq. (14.7) and are

S = A W _, A,A0 and R = An-i A j A , (14.8)

which leads to the NOR/INV logic circuit given in Fig. 14.13b. Here, the multiple-input
NOR gates (shown shaded) can be configured as in the specially designed CMOS NOR gate

An-1+-"+A1+A0

A ... A A / \ AjOH)Mn-1 M1M0 _ A (\-i\
An,-AA Ao<H>

YiT j ^U l̂ H^Y(H)

An-i+-+VA0 (b)

(a)

FIGURE 14.13
The multiple input RMOD. (a) State diagram, (b) Logic circuit based on the nested cell model.

698 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

of Fig. 8.46 so as to avoid possible fan-in problems. Recall that propagation delay increases
with increasing number of gate inputs. Notice that a reset-dominant basic cell is used as the
memory element in this case.

14.8 DESIGN OF THE RET D FLIP-FLOP BY USING THE LPD MODEL

The RET D flip-flop was previously designed in Subsection 10.7.2 by using the basic cell
as the memory. In this section the same flip-flop will be designed by using the LPD model.
Shown in Fig. 14.14 are the state diagrams for the resolver and set-dominant basic cell
FSMs, both reproduced from Fig. 10.29 for the convenience of the reader. Note the change
in the resolver state code assignment.

Since the set-dominant basic cell has previously been designed in Fig. 14.7, all that
remains is to design the resolver for the D flip-flop by using the LPD model and then
connect the two. In Fig. 14.15a is the resolver state diagram reproduced from Fig. 14.14(a),
and in Figs. 14. 15(b) and (c) are the NS and output K-maps with minimum covers indicated
by shaded loops. The NS K-maps are constructed by combining the information in the state
diagram with the excitation table in Fig. 14. 3b via the mapping algorithm in Section 10.6.
Reading the minimum cover in the K-maps yields the following results for the NS and
output functions:

(14.9)

where factorization has been use so that the term (yoD + y\) appears in both NS functions,
Y\ and YQ for optimization purposes.

FW SiT S+R

(a) Resolver (b) Basic Cell

FIGURE 14.14
The RET D flip-flop as represented by state diagrams, (a) Resolver FSM input stage, (b) Set-dominant
basic cell output stage.

14.8 DESIGN OF THE RET D FLIP-FLOP BY USING THE LPD MODEL 699

(a) (c)

FIGURE 14.15
Design of the RET D flip-flop resolver by using the LPD model, (a) State diagram, (b) NS K-maps
and minimum cover, (c) Output K-maps and minimum cover.

To connect the resolver to a set-dominant basic cell it is necessary that the resolver outputs
be active low, that is, S(L) = y\(L} and R(L) = yo(L) = yo(H). Therefore, by applying
the NS functions in Eqs. (14.9), there results the logic circuit for the RET D flip-flop in
Fig. 14.16a, which is shown with the fictitious LPD memory elements indicated in their
proper positions. Notice that only four NAND gates are necessary to implement the resolver
circuit, whereas six NAND gates are required in the earlier design shown in Fig. 10.31. The
logic circuit in Fig. 14.16b is the same as that in Fig. 14.16a but with the fictitious memory
elements removed and showing the asynchronous PR and CL override connections (dashed
lines). It is equivalent to the 74LS74 RET D flip-flop. An FET D flip-flop results by adding
an inverter to the CK input.

The fictitious LPD memory elements are removed in Fig. 14.16b and asynchronous PR
and CL override connections are added for completeness. Notice that all gates are now
three-input NAND gates. An explanation of the override connections follows closely that
for the transparent D latch in Fig. 10.51. A review of the discussion in Section 10.10 will
help with an understanding of the reasoning behind these connections. The introduction of
a CL override signal is straightforward. With PR(L) = 0(L), a, CL(L) = 1(L), forces gates
2 and 6 to issue a 0(L), which, in turn, forces gate 5 to issue a 0(H), thereby completing the
mixed-rail clear output of the flip-flop. Remember that the asynchronous overrides PR and
CL can never be active at the same time.

The introduction of a PR override signal is a little more involved but still easily explained.
With CL(L) = 0(L) = 1(H), introducing a PR(L) = 1(L) forces gates 1 and 5 to issue a
!(//), which is now the input to gate 2. Then for gate 6 to issue a 1 (L), as required for a mixed-
rail set output, gate 3 must issue a !(//). This is made possible because a !(//) output from
gate 3 results directly or indirectly from the CK input. Thus, if CK(H) = l (H) = 0(L), the
input to gate 3 from gate 2 is 1(L), forcing a l (H) from gate 3. Or, if CK(H} = Q(H) = 1(L),

700 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

, ., Q(H)

CK(H)-4

D(H)

FIGURE 14.16
Implementation of the RET D flip-flop, (a) Implementation showing the intermediate functions, and
indicating the proper position of the fictitious LPD memory elements, (b) The same circuit as in (a)
but with the fictitious LPD memory elements removed and showing the asynchronous PR and CL
override connections (dashed lines).

the output from gate 3 is again !(//). Since in either case all three inputs to gate 6 are now
!(//), its output is 1(L), thereby completing the mixed-rail set output from the flip-flop.
In short, it is the CK input that makes possible a mixed-rail set output from this RET D
flip-flop.

1 4.9 DESIGN OF THE RET JK FLIP-FLOP BY FLIP-FLOP CONVERSION

The conversion of a D flip-flop to a JK flip-flop is illustrated in Fig. 10.42a by using
Eq. (10.11) for the conversion. So, if the D flip-flop is of the design in Fig. 14.16b, nine
gates would be required, three for the conversion logic and six for the resolver FSM. The
conversion can be optimized by introducing Eq. (10.1 1) into the expression yoD(L) (given
in Fig. 14.16a) to obtain the following result:

(14.10)

In fact, the resolver for the RET JK flip-flop can be constructed simply by introducing
Eq. (10.11) into the D flip-flop resolver in Fig. 14.15a. If gate 4 in Fig. 14.16b is replaced

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS 701

Q(H)

Q(L) —

FIGURE 14.17
(a) Optimized conversion of the RET D flip-flop in Fig. 14.16b to an RET JK flip-flop, (b) Logic
circuit symbol.

by the logic of Eq. (14.10), there results the optimized RET JK flip-flop and logic circuit
symbol shown in Figs. 14.17a and 14.17b. This logic circuit is equivalent to the 74LS109
JK flip-flop but with the added PR override. Note that an FET JK flip-flop results simply
by adding an inverter to the CK input.

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS
IN ASYNCHRONOUS FSMs

The preceding sections are intended to be only an introduction to asynchronous FSM design.
Much more must be known regarding the complexities of asynchronous sequential machines
before meaningful designs are possible. The subject matter of this section is not only
essential to the development of good design practices for asynchronous FSMs but should
improve the reader's understanding of synchronous FSMs as well.

In Subsection 14.1.1, it was indicated that certain timing defects such as endless cycles
(oscillations), critical races, static hazards, and essential hazards, can exist in asynchronous

702 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

(b)

FIGURE 14.18
Endless cycles in asynchronous FSMs. (a) A segment of a state diagram used as a model for endless
cycle analysis, (b) Example of an endless cycle, (c) Elimination of the endless cycle in (b).

FSMs and can cause the FSMs to malfunction. In Section 10.9, oscillations were shown
to exist in some two-state flip-flops making them useless for most any application. Now
it is necessary to learn how to detect and eliminate these timing defects, so that reliable
asynchronous FSM designs can result.

14.10.1 Endless Cycles

The transition of an asynchronous FSM from one stable state to another stable state through
one or more unstable states is called a cycle. When an asynchronous FSM enters a cycle for
which there is no stable state, an endless cycle or oscillation is said to exist. Although cycles
are necessary to the operation of some asynchronous FSMs, endless cycles must always be
avoided.

Shown in Fig. 14.18a is a segment of a state diagram for which the branching conditions
are fPQ and /QP between two states P and Q. The condition under which an endless cycle
can exist is expressed by

f p Q ' f o r * U , (14.11)

meaning that any residue of this Boolean product /PQ • /QP is the branching condition
for which an endless cycle exists. A typical example is presented in Fig. 14.18b. Here, an
endless cycle is caused to occur under the branching condition (A © B) • B = AB. If the
algorithm for this fictitious FSM permits, the endless cycle can be eliminated by making
the appropriate changes in the branching conditions associated with state P as indicated
in Fig. 14.18c. Of course, if the branching condition A B can never exist, no correction
of this state diagram segment is necessary. Endless cycles, as in Fig. 14.18, need not be
limited to two states. Although less likely, multiple-state configurations can also support
endless cycles. For example, suppose an asynchronous FSM exists having a sequence of

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS 703

interconnected states P, Q, R, S, P. In this case an endless cycle exists if

fpQ • /OR • fits • fsp + 0. (14.12)

14.10.2 Races and Critical Races

The set of alternative cycle paths that lead to the same state is called a race. Recall that this
subject was discussed in Section 11.2 relative to output race glitches (ORGs) in synchronous
FSMs. In an asynchronous FSM a race results when the FSM undergoes a transition to a
next state that differs from the present state by two or more bits. There are n \ race paths for
a race condition involving the change of n state variables. Since no two feedback variables
can change precisely at the same time, one variable will always change before another, even
though the time span between the two events may be very small. Thus, the alternative race
path taken by the FSM will depend on which feedback variable changes first to meet the
stability criterion of Eq. (14.3), and this is not usually predictable.

The generalized state diagram segment in Fig. 14.19a serves as a model for detection of
race and critical race conditions associated with the transition from state P to state Q under
branching condition fPQ. The noncritical race conditions, given in Fig. 14.19b, indicate that
a proper transition from the origin state P to the destination state Q requires the following
conditions: that input condition IPQ be contained in the branching condition /PQ, that IPQ

be contained in either /g or fQX, and that a valid branching path be available from the
race state R and S to state Q. This last condition requires that IPQ be contained in both
branching conditions fRQ and f$Q. Note that the symbol c is standard algebraic notation
for "is contained in" and a slash through it signifies its negation.

If, on the other hand, IPQ is contained in either fR or /$, a critical race exists as
indicated in Fig. 14.19c. Now the FSM can be stuck in either state R or S in attempting

Non-critical race requirements

'PQ — 'PQ 'PQ ̂ *R 'PQ — 'RQ

'PQ — 'Q or 'QX 'PQ ? 's 'PQ — 'SQ

(b)

Critical race requirements

l p Q £ fp Q ' P Q £ f R or ' p Q £ f
s

,xx = Input condition
(a) fxx = Branching condition (c'

FIGURE 14.19
Races and critical races in asynchronous FSMs. (a) Generalized state diagram segment used as a model
for detection of races and critical races, (b) Requirements for noncritical races, (c) Requirements for
critical races.

704 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

State 01 provides a cycle
path for correction

A0B ^ / §
k A D

ZiTif A

Correction path
replacement

FIGURE 14.20
State diagram of an FSM showing a critical race for the 11 -> 00 transition and its elimination by
using a correction path.

the P —> Q transition. Basically, the requirement for a critical race is that the holding
condition of any race state contain the input condition for transition from the origin state
to the destination state. Where only two state variable changes are involved in a given
state-to-state transition, detection of a critical race is easily accomplished by a cursory
inspection of the state diagram. Thus, the following procedure should be followed without
exception:

• Look for race conditions in the state diagram. If the holding condition for any
race state contains IPQ, a critical race exists.

• Make certain that valid branching paths exist between the race states and the
destination state.

• Eliminate the critical race by any one of several means discussed later in this
subsection. Critical races must never be permitted to exist in any asynchronous
FSM designed to operate in the fundamental mode.

As an example, consider the state diagram for an FSM in Fig. 14.20. Shown is a critical
race during the 11 —> 00 transition under branching condition A B. Thus, if the race path
is via state 10 during 11 -> 00 transition, the FSM will reside stably and improperly in
state 10 under holding condition B. Thus, Ica c fd which is the requirement for a critical
race according to Fig. 14.19c. On the other hand, if the race path is via the 01 state, the
FSM will cycle correctly to state 00. The problem is, of course, that it cannot be predicted
by which race path the FSM will transit. The critical race is eliminated by replacing the
11 —> 00 branching path with the 11 ->• 01 path indicated by the dashed arrow, but under
the same branching condition A B. Thus, the basic algorithm has not been altered in making
this correction. State 01 now provides an cycle path from state 11 —> 01 —>• 00 under the
same branching condition AB.

Methods for Eliminating Critical Races The methods for eliminating critical races are
straightforward and similar to those discussed in Subsection 11.2.2 relative to ORGs in
synchronous FSMs. The causal race condition can be eliminated by one of the following
actions given in descending order of importance or desirability:

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS 705

1. Altering the branching path without changing the basic algorithm of the FSM.

2. Changing the state code assignment to remove all race conditions or move the race
condition elsewhere in the state diagram without creating any new timing defects.

3. Adding a buffer (fly) state to remove the race condition without violating critical
timing constraints.

4. Adding additional state variables.

The action of removing the critical race by moving the causal race condition elsewhere in
the state diagram is complicated by the possible formation of ORGs. Not only must the
change be scrutinized as to the formation of another critical race, but the formation of static
hazards and ORGs (not originally present) must be considered. The issue of static hazards
in the NS-forming logic will be considered next. Obviously, the safest course of action in
removing a critical race is to change the state code assignment so as to eliminate all race
conditions in the FSM. Doing so, eliminates all race-related timing defects automatically.

14.10.3 Static Hazards in the NS and Output Functions

Before proceeding with this subsection, the reader should review Sections 9.2 and 11.3
dealing with static hazards (s-hazards) in combinational circuits and in the output of syn-
chronous FSMs, respectively. In Section 11.3, the treatment of s-hazards in the NS-forming
logic was not an issue since all such timing defects are filtered out by the memory flip-flops.
Of course, asynchronous FSMs have no such filtering mechanism and are therefore subject
to the problems that hazards can create in the NS-forming logic. Whereas s-hazards in the
output-forming logic of asynchronous FSMs cannot cause the parent FSM to malfunction,
s-hazards in the NS-forming logic can and do cause FSMs to malfunction. This may be
viewed as yet another complicating timing defect that distinguishes the asynchronous FSM
from its cousin, the synchronous state machine.

Static hazards in both the NS and output forming logic of asynchronous FSMs fall
into two general categories: externally initiated and internally initiated static hazards, as
illustrated in Fig. 11.8 for s-hazards in the output logic of synchronous FSMs. In fact,
there is little difference in the methods used for detection and elimination of s-hazards in
asynchronous and those used for s-hazards in the output functions of synchronous FSMs.
It is important for the reader to remember the following:

Any suspect hazardous transition found by analyzing the NS and output functions of
an asynchronous FSM must be verified by inspection of the state diagram — this is
standard operating procedure for s-hazard analysis in such state machines.

Since s-hazards in the output-forming logic cannot cause malfunction of the asynchronous
FSM itself, attention in this subsection will be devoted to these timing defects in the NS
forming logic. The analysis of static hazards in the output logic of asynchronous FSMs
follows closely developments in Section 9.2 and in Subsection 11.3.1.

As the first and simple example, the transparent D latch, discussed in Subsection 10.7.1,
will be designed by using the LPD model and then analyzed for an s-hazard timing problem.
Shown in Fig. 14.21a is the state diagram for the D latch reproduced from Fig. 10.24a.
By using the mapping algorithm in Section 10.6 to combine the excitation table for the

706 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

D+CK

D(H)

CK(H)

Hazard cover

_ , CK(H)
CK(H) [_ _

_ M _ D(H)
D,H, - - -

DCK,U, - -T _

-»j *-2TD '"
y(H) Lrorrnj LT- • • ycxu

Oscillation y(H)

(d) (e)

FIGURE 14.21
Example of an externally initiated s-hazard in the RET D latch, (a) State diagram, (b) NS K-map
and minimum cover based on the LPD model, (c) Logic circuit derived from Eq. (14.13). (d) Timing
diagram for the D latch without hazard cover showing oscillation effect of s-hazard. (e) Timing
diagram with hazard cover showing elimination of the hazard.

LPD model with the state diagram, the NS K-map and minimum cover result as shown in
Fig. 14.21b. The NS function is easily read to be

Y = DCK+yCK + yD , (14.13)

D 1 Hazard
1 " l cover

which includes hazard cover, the ANDed residue of the coupled terms. The notation in
Eq. (14.13) is intended to indicate that a static 1-hazard occurs on a 1 -> 0 change in
CK in state 1 when input D is active — hence, an externally initiated s-hazard. The logic
circuit for the LPD design of the D latch is given in Fig. 14.21c, where the s-hazard cover
yD is indicated by the shaded NAND gate. This circuit should be compared with that in
Fig. 10.25b, where the basic cell is used as the memory—the nested cell design.

From Eq. (14.13), the timing diagrams are constructed without and with hazard cover as
shown in Figs. 14.21d and 14.21e, respectively. Here, rp is the path delay for any two- or

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS 707

FIGURE 14.22
Hazard analysis of a four-state FSM. (a) State diagram, (b) SOP NS K-maps showing minimum cover.
(c) POS NS K-maps and minimum cover.

three-input NAND gate and T]NV = f TP is the path delay for an inverter. The oscillation,
shown in Fig. 14.2 Id, occurs as a result of the s-hazard formation. When the s-hazard is
removed by adding hazard cover the D latch functions normally as indicated in Fig. 14.21e.
It is true that a real-time test of this hazardous transition in the D latch may not show logic
instability in the absence of hazard cover. That is, the asymmetric path delay imposed by
an inverter may not be sufficient to cause the formation of the s-hazard. However, a proper
design of this FSM would make no such presupposition and would include hazard cover.
Adding the hazard cover yD means that the FSM cannot malfunction due to an s-hazard
even if the inverter creates an enormous delay. In fact, with hazard cover, an s-hazard cannot
be formed as a result of an asymmetric delay of any magnitude on either path of CK to the
output ORing stage.

As a second and more complex example, consider the state diagram for the four-state
FSM in Fig. 14.22a. The NS K-maps and minimum cover are given in Figs. 14.22b and
14.22c for SOP and POS logic, respectively. Remember, it is the mapping algorithm of
Section 10.6 that is used to bring together the information in the state diagram with that of
the LPD excitation table to construct the NS K-maps. The SOP NS-forming logic is read
from the minimum cover in Fig. 14.22b to give the following results:

Y0 = y\AB + y,A + yiy0 + y0AB (14.14)

Equations (14.14) also includes the hazard analysis following the procedure established
earlier in Section 9.2 for combinational logic circuits. From these results, it is clear that an
internally initiated static 1 -hazard (an SOP hazard) may exist in the YQ function, that the
coupled terms are y\ jo and y \ A B , and that the hazardous transition is from state 1 1 to state

708 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

Inverter
causing
s-hazard

y,(H)

Fictitious LPD
memory elements

•y0(H)

FIGURE 14.23
LPD logic circuit diagram derived from Eqs. (14.14) and the state diagram in Fig. 14.22

01 (a change of 1 —> 0 in ji) under constant-input conditions AB. An inspection of the
state diagram indicates that this can occur, thereby validating the existence of the s-hazard.
As indicated in Eqs. (14.14), the s-hazard is eliminated by adding the hazard cover yoAB.
The removal of the hazard is verified in Fig. 14.24b by the presence of the hazard cover. As
is always true, the removal of the s-hazard by adding hazard cover eliminates any possibility
that this hazard will form no matter how large the delay is through the inverter.

The LPD logic circuit is constructed from the NS functions in Eqs. (14.14) and is
presented in Fig. 14.23. The LPD memory elements, indicated in dashed boxes, are included
only as a reminder that a fictitious memory stage exists. Hereafter, these fictitious LPD
memory elements will be excluded in, but implied by, the logic circuit. The shaded gate in
Fig. 14.23 is the hazard cover that eliminates the s-hazard indicated in Eqs. (14.14).

Timing diagram verification of the existence of the s-hazard indicated in Eqs. (14.14), is
given in Fig. 14.24. Here, attention is focused on the 11 —>• 01 transition (see Fig. 14.22a).
To simplify the timing diagram, certain terms have been omitted purposely because they are
logic 0 for this transition and, hence, do not contribute to the hazard analysis. Thus, according
to Eqs. (14.14), j0 = 1, A = 0, and B(\ -* 0). Therefore, it follows that y0AB = y}y0 =
yQ A = 0 and need not be included in the timing analysis. These results lead to the following
simplified NS functions: Y\ =y\B and 7o = y \B + y\y$ when no hazard cover is added.
Notice in Fig. 14.24 that the delays are given in terms of TP and TINV, the path delay of a
NAND gate (two or three input) and that of an inverter, respectively. This is done to help
the reader trace through the sequence of steps leading to the formation of the s-hazard. For

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS 709

A(H) A(H)

B(H) | . B(H)

y,(H) ; L yt(H)

Static
1 -hazard

y,B(L)

y, AB(L) i I y, B(L)

yiy0(L) ~~^ ViVoC-)
+T£ INV

y0AB(L) _

(b)

FIGURE 14.24
Timing diagrams for the FSM in Fig. 14.23, showing (a) formation of the static 1-hazard in yo and
(b) its elimination by adding hazard cover (see arrow).

this timing analysis, as in the previous example, the relative delay values are expressed by

The formation of the static 1 -hazard, shown in Fig. 14.24a, occurs as a result of the
asymmetric path delay imposed by the highlighted inverter shown in Fig. 14.23. Thus, there
are two alternative paths of the coupled (feedback) variable y\ to output yo: one through
gate y\ yo and the other through gate y \ A B via the highlighted inverter. The reader can
follow the sequence of events that lead up to this s-hazard formation shown in Fig. 14.24a
by noting that the term y i B is the first to change after one NAND gate path delay following
the change in input B. This is followed by a change in the state variable y\ after an additional
NAND gate path delay. The sequence of events continues as indicated in Fig. 14.24a until
the static 1 -hazard is formed after four NAND gate path delays.

The s-hazard in Fig. 14.24 is eliminated by applying the SOP form of the consensus law,
given in Eqs. (3.14), to the coupled terms y\AB and yiyo- When this is done the result is
the hazard cover term yoAB, which eliminates the s-hazard after a delay of one gate delay
plus an inverter delay following the change in B well in advance of the hazard, as indicated
in Fig. 14.24b. This hazard is eliminated regardless of the magnitude of the asymmetric
delay on either of the alternative paths of y\ to yo. Notice that the waveforms in Fig. 14.24b
are identical to those of Fig. 14.24a except for the presence of hazard cover and the absence
of the s-hazard in y0.

The static 1 -hazard shown in Fig. 14.24a is nondisruptive in the sense that the FSM finally
resides in the proper 01 state immediately following a brief improper transition to state 00.
However, there is a short delay in achieving stability in the 01 state, and this could be highly
disruptive to any next-stage FSM to which yo is attached if the hazard is sufficiently well
developed. Also, if it is required that state 00 issue an output signal, an ORG will result that
could be disruptive depending, of course, on how that output signal is used.

710 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

A static 0-hazard (POS hazard) also exists in the FSM of Fig. 14.22. From the K-maps
in Fig. 14.22c, the following POS NS functions are read in maxterm code:

7, = (y, + A)(yi + B)(y0 + B)(yi + y0)

Yo = (yi + A)(yi + B)(yi + yo + A) • (jo + A + B). (14.15)
t Hazard

00 AB 10 cover

From these NS expressions, it is clear that an internally initiated static 0-hazard exists in
function YQ and that it occurs on a 00 —> 10 due to a 0 —>• 1 change in the state variable y\

under constant branching conditions (A + B} = AB. Remember that the coupled terms are
read in maxterm code and that this requires the input conditions, as read from the coupled
terms, to be complemented before a comparison can be made with the state diagram, which
is a minterm-code based graphic. Applying the POS consensus law in Eqs. (3.14) means that
the hazard cover is the ORed residue of the coupled terms (y\+B) and (y \ + yo + A) given
by (yo + A + B), as indicated in Eqs. (14.15). The hazard is eliminated by adding this hazard
cover, as indicated by the arrow in Fig. 14.25b. The addition of hazard cover (yo + A + B)
ensures that this hazard can never form regardless of the size of the asymmetric delay
associated with either alternative path of y\ to the output yo. This is true for the elimination
of any s-hazard after adding hazard cover.

Unlike the static 1-hazard in Fig. 14.24a, the static 0-hazard in Fig. 14.25a is potentially
disruptive to the FSM itself. Any time an s-hazard can cause an FSM to go logically unstable
as in Fig. 14.25a, the potential is there for malfunction. Of course, it is understood that the
s-hazard must develop to the extent that it is picked up by the NS-forming logic. Since

B(H)'

yi(H).

y0(H). ; } \
(y^B)(L) i f— -

(y1+y0+A)(L)

Oscillation due to (y0+A+B)(L) |
static 0-hazard

(a) (b)

FIGURE 14.25
Timing diagrams for the POS NS functions in Eqs. (14. 15) showing (a) formation of the static 0-hazard
in yo and the resulting oscillation, and (b) elimination of the s-hazard by adding hazard cover (see
arrow).

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS 711

it is only the delay through an inverter that is the causal effect, there is the possibility
that the FSM will function properly even without hazard cover. But since this cannot be
assured, hazard cover must be added. Again, this should be considered as standard operating
procedure in dealing with static hazards in the NS logic as well as the output logic.

14.10.4 Essential Hazards in Asynchronous FSMs

Elimination of all endless cycles, critical races and static hazards from an asynchronous FSM
operated in the fundamental mode does not ensure proper operation of the FSM. Certain
noncombinational hazards produced by explicitly located asymmetric path delays in gates
and/or on leads are guaranteed to cause such FSMs to malfunction. These hazards, called
essential hazards (E-hazards), are steady-state sequential hazards in the sense that they
involve the change of two or more state variables in otherwise steady-state output signals.
The term "essential" does not imply "needed" or "necessary," but rather, refers to the
fundamental mode of FSM operation. Without exception, E-hazards cannot be eliminated
by adding redundant cover as can s-hazards.

General Requirements for E-hazard Formation The general requirements that must
be met before an E-hazard can form are as follows:

1 . The asynchronous FSM must operate in the fundamental mode.
2. There must be at least two state (feedback) variables — hence, at least three states —

and at least one external input, designated as the initiator input.
3. There must be at least two paths of propagation of the initiator to the first invariant

state variable: one path directly to the first invariant and at least one other indirect
path to the first invariant via the second invariant state variable. Both the initiator and
second invariant must meet at a specific gate called the race gate.

4. An asymmetric path delay must be explicitly located in the direct path of the initiator
to the first invariant state variable and must be at least of the minimum magnitude to
cause the E-hazard to form.

The process of E-hazard formation involves a "critical" race (to the race gate) between
the initiator and the second invariant state variable. If the race is won by the second invariant,
an E-hazard is formed. An explicitly located path delay of sufficient duration will ensure
that the race is won by the second invariant state variable and, consequently, cause the
E-hazard to form.

The path delay requirements for the formation of a first-order E-hazard in a two-level
NS logic system are given in Fig. 14.26. Here, two race gate (RG) types are identified. For
the case of the first-level race gate in Fig. 14.26a, the path delay requirement for E-hazard
formation is given by

T i + T 2 , (14.16)

and for the second-level race gate in Fig. 14.26b by

(A f £ + T i) > T2 + T3 + T4. (14.17)

712 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

•| st 2nd

level level
1st 2nd 9ates Sates

level level
gates gates Direct path

Direct path X -f—' AtE j—>/T1 }—i/RoV—• ya
Initiator VJ/̂ ^ar̂ .y 1st Invariant

x —pJ AtE j-x RG w-w) ya
Initiator ^^''^^-^ ^-^ 1st Invariant

2nd Invariant

(a) (b)

FIGURE 14.26
Illustrations of the path delay requirements for E-hazard formation in two-level logic showing causal
delays AtE, initiator input X, first and second invariants, gate delays r,, race gates (RG), and correction
delays to eliminate the E-hazard. (a) First-level race gate, (b) Second-level race gate.

s^t
I
i
t Irtdiree
i path

_ <*, *~ *•

\ 2|

^^^^^^\
t ""^-4 T

3H vbKjy 2nd Invariant

l^Wnyrt, —*

In both Eqs. (14.16) and (14.17) the quantity A?£ is the asymmetric path delay, shown in
Fig. 14.26, that is required to cause the E-hazard to form (yb wins the race); T, are the path
delays associated with the gates (including any inverters) and leads. In these equations the
correction delay Atcorrect is assumed to be zero. If a counteracting delay A.tcorrect is added
in the indicated feedback path of the 2nd invariant, then the requirements for eliminating
the E-hazard are given by

(TI + T2 + &tcorrect), (14.18)

for the first-level race gate, and

(r2 + T3 + r4 + Atcorrect\ (14.19)

for the second-level race gate. Thus, if AtE is of sufficient magnitude to cause an E-
hazard to become active according to the requirements of Eqs. (14.16) and (14.17), the
second invariant yb wins the race and the FSM is guaranteed to malfunction. However,
if a counteracting (correcting) delay is added in the feedback path of the 2nd y-variable
invariant, the inequality is reversed, as in Eqs. (14.18) and (14.19). Under this condition,
the initiator X wins the race and the E-hazard is eliminated.

The minimum requirements for E-hazard formation are summarized in Fig. 14.27. The
state diagram segment, shown in Fig. 14.27a, specifies the first- and second-level race gate
SOP terms that must be contained in the first invariant function 7, before an E-hazard is
possible. Notice that the first invariant is the second y-variable to change while the second
invariant is the first to change. The minimum requirements for E-hazard formation are
continued in Fig. 14.27b, where now another type of E-hazard is identified, the d-trio. The

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS 713

1st Level
Race Gate

yi = First invariant

y. = Second invariant
Path to

2nd Level
Race Gate

I — > I . in state aa ab

ab
~ ab

if 'bc=-xixr

x. = Initiator input

Only a single change in the initiator x. is
allowed in fgb and fbcwith x and all other
inputs held constant.

For E-hazard formation

For D-trio formation

'ab S *cb

(b)

FIGURE 14.27
Minimum requirements for first-order E-hazard and d-trio formation in two-level SOP logic, (a) State
diagram segment showing first- and second-level race gate requirements, only one of which will be
met in the first-invariant function F,. (b) Minimum requirements for E-hazard and d-trio formation
indicating assumed input conditions for lab and lbc-

d-trio (delay-trio) is a special E-hazard that returns the FSM to the intended state but only
following a second (error) transition to another state. Thus, the transition path for a d-trio
is a -» b ->• c -> b, while that for a E-hazard isa^b^-cora^b-*c^-x, where
state x lies beyond state c in Fig. 14.27a. The latter E-hazard path is possible if the input
conditions are such that Iaf, c fcx in addition to those indicated in Fig. 14.27b. Clearly,
the minimum requirements are the same for the E-hazard and d-trio formation, except the
E-hazard does not return the FSM to the intended next state. Another important minimum
requirement for E-hazard and d-trio formation is that the initiator jc, is permitted to have
only one change in fab and f\,c while holding Xj and all other inputs constant.

To summarize, an E-hazard or d-trio can form iff an unintended asymmetric delay A/£
of sufficient magnitude is explicitly located as shown in Fig. 14.26, and if the minimum
requirements indicated in Fig. 14.27 are met. A cursory check of the state diagram is all that
is necessary to show whether or not the minimum requirements for E-hazard (and d-trio)
formation are met. If they are not met, these potential defects cannot form and no further
analysis is necessary. If the minimum requirements are met, the second stage of the analysis
is to determine the requirements for the indirect path — that is, the requirements to allow
the second j-variable invariant to win the race at the race gate.

Only first-order E-hazards are considered in this text. The reason is that second and higher
order E-hazards are far less likely to be activated than first-order E-hazards. A second-order
E-hazard, for example, requires two successive invariants in the indirect path (IP), which
greatly increases the minimum path delay requirement for activation of the E-hazard.

714 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

Indirect Path (IP) Requirements for E-hazard and D-trio Formation The first-order
IP requirements are as follows:

1. The IP must not be inconsistent with the conditions of the initiating state a in
Fig. 14.27a, including its state variables and all input conditions other than the initiator
input.

2. The IP must contain the initiator as Xj or xt•.
3. The IP must follow a path to the RG that is unobstructed. Thus, IP terms in the second

invariant function Yj must not be inconsistent with any input held constant.

With reference to Fig. 14.27a, the IP must not be inconsistent with • • •) > / ,) ' _ / • • • , Xj and
must contain *, or f, in Yj.

A SIMPLE EXAMPLE. Consider the state diagram for the simple two-input FSM shown
in Fig. 14.28a. Here, two paths are shown, one for an E-hazard and the other for a d-trio.
The shaded states indicate the origin states for the potential defect in question. Thus, the E-
hazard path is c —> b —> a while that for the d-trio isa-+d-+c-+das indicated by the
dashed arrows. Notice that there are no endless cycles or critical races present in this FSM.

So that the reader can follow the reasoning process involved in analyzing these potential
defects, the NS functions, read from the K-maps in Fig. 14.28b, are provided in Eqs. (14.20)
and (14.21) and are used for E-hazard and d-trio analysis, respectively. In these equations
RG represents a race gate or a path to a race gate, and IP represents an indirect path term. The

Path of ABO in V^ C n< IDA Path of
d-trio ^^v/ X V^*-^ E-hazard

(b)

FIGURE 14.28
E-hazard and d-trio analysis for a simple FSM having two inputs and one unconditional output,
(a) State diagram showing paths for an E-hazard and for a d-trio. (b) NS K-maps and minimum cover.

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS 715

subscripts E and D refer to the E-hazard and d-trio, respectively. Following the procedure
given in Subsection 14.10.3, a brief inspection of these NS functions indicates that they are
free of static hazards.

^PathtoRGE

*y,y0
 Yo = y0

A + M + ?,* (14.2o)
IPE

ORing RGE

-^v

Y,= y0B + jjA + yjy0 Y0 = yQA

Nearly complete information regarding E-hazard and d-trio formation can be gleaned
from Fig. 14.28(a) together with the NS functions given by Eqs. (14.20) and (14.21). The
logic circuit, constructed from these NS functions, is presented in Fig. 14.29. Here, ATE

and A rD are the unwanted explicitly located path delays (occuring separately) that will
cause the formation of the E-hazard and d-trio according to Eqs. (14.22) and (14.23). The
race gates, RGe and RGo, are shown shaded.

E-hazard Analysis With reference to the state diagram in Fig. 14.28a and to Eqs. (14.20),
the following constitute the minimum requirements for E-hazard formation as set forth in

Correction path ^ ,̂ ~ CouS52,ctln9i A * ' aeiay

A(H)

B(H)

FIGURE 14.29
Logic circuit constructed from the NS functions of Eqs. (14.20) or (14.21) showing causal delays
required to form the E-hazard or d-trio, their respective race gates, and the position of the counteracting
delay required to eliminate the E-hazard or d-trio.

716 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

Fig. 14.27:

AB^AB, AB = I c b ^ f b = A, AB = Iba c fc = AB, Icb£fab.

Only a single change in the initiator is indicated in c —> b and b —>• a with B held constant.
Here, state 11 (state c) is the origin state, A is the initiator input, the intended path is
11 -> 01 (c —> b), the E-hazard (error) path is 11 -> 01 ->• 00, y0 is the first invariant,
and y\ is the second invariant.

The remaining requirements for E-hazard formation in the FSM of Fig. 14.28a are
obtained from Eqs. (14.20) and Fig. 14.29 in accordance with Fig. 14.27 and the indirect
path (IP) requirements given previously.

1. A delay At£ placed on the initiator A input to the first invariant jo causes a critical
race to the race gate RGE between the initiator A and the second invariant y\. If Ar£

exceeds the minimum path delay requirements, y\ wins the race and the E-hazard is
formed. If A?E is not of sufficient magnitude, the initiator input A wins the race and
no E-hazard will form.

2. The path to the ORing (2nd level) race gate (RGE) is indicated by the term yoA in YQ,
as shown in Eqs. (14.20). No ANDing RG is possible according to Figs. 14.27a and
14.28a.

3. The indirect path (!PE) must not be inconsistent with B, y\, yo in Y\ and must contain
y\ or y \ and A or A in YQ. Therefore, the IP is via the term y\ A in Y\, and either y\ A
or y\B in YQ.

4. Based on the foregoing and with reference to Fig. 14.29, the theoretical minimum
path delay requirements for E-hazard formation is given by the inequalities

(Af£ + T7) > (r2 + T5 + TIO + T8) = (TINV + 3rp)

or

A?£ > (r,NV + 2rp), (14.22)

where rp is the path delay through a gate (e.g., a two- or three-input NAND gate),
and T/NV = ?2 is the path delay through an inverter. Thus, Eq. (14.22) does not take
into account the gate path delay dependence on fan-in.

D-trio Analysis With reference to the FSM in Fig. 14.28a and Eqs. (14.21), the following
constitute the minimum requirements for d-trio formation as set forth in Fig. 14.27:

AB^AB, AB = I a d ^ f d = AB, AB = Idc c fa = B, Iad^fcd = AB,

and only a single change of the initiator is indicted in a —> b and b —>• c with A constant.
In this case state 00 (state a) is the origin state, B is the initiator, the intended path is
00 —> 10 (a —> b), the d-trio (error) path is 00 —> 10 —>• 11 -»• 10, jo is the first invariant, and
ji is the second invariant.

The remaining requirements for d-trio formation in the FSM of Fig. 14.28a are obtained
from Eqs. (14.21), from Figs. 14.27 and 14.29, and from the IP path requirements given
previously.

14.10 DETECTION AND ELIMINATION OF TIMING DEFECTS 717

1 . A delay ArD placed on the initiator B input to the first invariant JQ causes a critical race
to the race gate between the initiator B and the second invariant y\. If AtD exceeds
the minimum path delay requirements, y\ wins the race and the d-trio will be formed.
If A?D is not of sufficient magnitude, the initiator input B wins the race and no d-trio
will form. Should the d-trio be formed, an output Z will be issued for a duration equal
to the difference between AtD and the minimum path delay requirements for d-trio
formation.

2. An ANDing race (ROD) is indicated by the term y \ B in y$, as indicated in Eqs. (14.21).
No ORing RG is possible according to Figs. 14.27a and 14.28a.

3. The indirect path (IPo) must not be inconsistent with A,yi,yoinY\ and must contain
either B or B in Y\ . Therefore, the I?D is by way of the term y$B \nY\.

4. Based on this information and with reference to Fig. 14.29, the theoretical minimum
path delay requirement for d-trio formation is given by the inequality

(ArD) > (n +T4 + rio) = (TINV + 2rp), (14.23)

where, as previously, TP is the path delay through a gate (e.g., a two- or three-
input NAND gate), and TJ^V = r is the path delay through an inverter. Accordingly,
Eq. (14.23) does not take into account the gate path delay dependence on fan-in.

The corrective action required to prevent the E-hazard or d-trio from forming, is indicated
in Fig. 14.29 by a counteracting delay in the feedback path of the second-invariant state
variable y\. Thus, the theoretical corrective action required to eliminate these defects is
given by the inequalities

2rp + &tCorrect) (14.24)

and

(TINV + 2TP + &tComct). (14.25)

Notice that if A/correc/ = Af£, the inequalities of Eqs. (14. 24) and (14. 25) are easily satisfied.
Also, observe that the delay Ar£ is effective in causing the E-hazard to form at any point
along the path E to F (see the large nodes in Fig. 14.29), including the intervening two-input
NAND gate. This is characteristic of any ORing race gate, a feature not shared with the
ANDing race gate.

Further verification of the results presented so far is provided by the timing diagrams in
Fig. 14.30. Presented in Fig. 14.30a is the result of E-hazard formation indicating an error
transition 11 -» 01 — >• 00 due to a delay Af£ = 5rp positioned anywhere along the path
between large nodes E and F (including the intervening NAND gate) shown in Fig. 14.29.
Recall that under the input change AB — »• AB from state 11 the correct transition should
be 1 1 -> 01, but because of the unwanted path delay A.tE an error transition is forced to
occur. A path delay of AtE = 5rp clearly exceeds the minimum path delay requirements
for E-hazard formation given by Eq. (14.22).

The formation of the d-trio is illustrated by the timing diagram in Fig. 14.30b. Here, a de-
lay of A?£> = 5TP, positioned as shown in Fig. 14.29, causes an error pulse in state variable
jo and output Z of duration 5rp — (TINV + 2rp) = 3rp — TINV- The d-trio has the appearance

718 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

AtF = 5rnE P

AtD = 5rp

A(H)

B(H)

y^H)

y0(H)

y,A(L)

V^CL)

Effect of
^ E-hazard

1
— *i r«— (2rn)

1

1

I

A(H)

B(H)

Vl(H)

V0(H)

(V0B(L)

Y1 < VlA(L)

Z(H)

Effect of
f d-trio

I
~~^ |*~ (

3T
p ~ r!Nv)

^J LJ

I

r-i
| 1

(a) (b)

FIGURE 14.30
Timing diagrams derived from simulator tracings showing error transitions caused by delays of 5rp

located at the positions Afe and A?D indicated in Fig. 14.29. (a) Timing diagram showing development
of the E-hazard consistent with Eq. (14.22). (b) Timing diagram showing development of the d-trio
consistent with Eq. (14.23).

of a static 0-hazard but with a pulse width proportional to the difference between the delay
Af/) and the minimum path delay requirements for d-trio formation given by Eq. (14.23).
The proper transition from state 00 under input change AB -> AB should be 00-> 10,
but because of the explicitly located delay AtD the d-trio transition 00 -> 10 —> 11-* 10 is
forced to occur.

The E-hazard and d-trio featured in this example can be removed simply by adding a
counteracting delay of sufficient magnitude in the feedback path of the second invariant state
variable as indicated in Fig. 14.29. When this is done the requirements of Eqs. (14.24) and
(14.25) are met. A safe magnitude for the counteracting delay is usually the magnitude of
the minimum theoretical delay causing the E-hazard or d-trio to form. If the latter magnitude
is not known, then a delay of 2rp will usually suffice.

14.10.5 Perspective on Static Hazards and E-hazards in Asynchronous FSMs

Static hazard analyses should always be run and corrective active taken (if needed) prior to
carrying out an E-hazard analysis. The reason for this is simple: Static hazard cover may,

_ Error
output

14.11 INITIALIZATION AND RESET OF ASYNCHRONOUS FSMs 719

in some cases, actually provide an indirect path for E-hazard formation, thereby making
E-hazard formation possible whereas otherwise it would not be. E-hazards are potential
defects in the sense that the FSM logic is not "born" with these defects as can be the case
for static hazards. E-hazards require explicitly located path delays of magnitude exceeding
the minimum requirements before they can form. However, an active E-hazard is guaranteed
to cause malfunction of the FSM, whereas active static hazards in the NS logic may or may
not be disruptive to the operation of the FSM. Before a static hazard in the NS-forming logic
can cause malfunction, it must be "strong" enough to cross the switching threshold, but even
then the hazard may not cause malfunction. However, the designer must assume that the
static hazard has the potential to cause malfunction of the FSM and must add hazard cover.
In fact, some designers find it worthwhile to take the "shotgun approach," which means
adding hazard cover to any pair of coupled terms appearing in the NS logic functions.

The d-trio is a special case of an E-hazard that causes the FSM to undergo an error
transition before residing in the intended state. Sometimes this has the effect of only delaying
the transition from the origin state to the intended state. However, at other times an output
can be activated erroneously as in Fig. 14.30b. Such an erroneous output can be just as
disruptive as an active E-hazard would be. For this reason, active E-hazards and d-trios are
considered equally capable of causing malfunction of an asynchronous FSM and corrective
action should be taken where warranted. This action usually amounts to nothing more than
adding a delay in the feedback path of the second invariant state variable, a delay equal to
about the minimum path delay requirement for E-hazard formation.

Corrective action to prevent the formation of E-hazards can take the form of carefully
choosing routing paths in a circuit layout so as to avoid excessive path delays at certain
critical locations in the circuit. Thus, an E-hazard analysis is of value in this regard, since
knowledge of the position and magnitude of a causal delay can offer the designer the
information needed to make an engineering judgment as to possible corrective action. Again,
it must be remembered that a strongly active E-hazard is guaranteed to cause malfunction of
the FSM. If the minimum path delay requirements are just barely exceeded, a weakly active
E-hazard may cause the FSM to become logically unstable or may even permit the FSM
to operate properly. But the designer should not take a chance except for the case where a
large minimum path delay requirement is indicated. The E-hazard and d-trio effects given
in Fig. 14.30 are those of a strongly active E-hazard, since the delay of 5rp that is used
exceeds the minimum requirements by about a factor of 2. A causal delay that just exceeds
the minimum path delay requirements for an E-hazard, as indicated in Eqs. (14.22), will
cause the FSM to oscillate when simulated. The same reduction in the causal delay for the
d-trio only narrows the error pulse. Real circuits, on the other hand, may require causal
dalays considerably in excess of the theoretical minimum.

14.11 INITIALIZATION AND RESET OF ASYNCHRONOUS FSMs

Like synchronous FSMs, most asynchronous FSMs must also be initialized or reset. But
unlike synchronous FSMs that can be initialized or reset via sanity circuit inputs to PR and
CL overrides of the flip-flops, asynchronous FSMs must be initialized or reset by using
sanity circuit inputs to the gates of which the NS logic is configured. The sanity circuit
shown in Fig. 11.28 presented in connection with synchronous FSMs applies here also.
Figure 14.31 illustrates the means by which an asynchronous FSM must be initialized or
reset. Figure 14.31 a applies to an active low output from the sanity circuit while Fig. 14.3 Ib

720 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

Sanity(L) Sanity(H)

t t = o tlpu pu

OID-
Initializes 0 Initializes 0

Initializes 1 Initializes 1

(a) (b)

FIGURE 14.31
Gate requirements for initializing a logic 0 or a logic 1 . (a) Active low output from the sanity circuit.
(b) Active high output from the sanity circuit.

applies to an active high output from the sanity circuit. Generally, an ANDing operation is
required to initialize a logic 0, and an ORing operation is required to initialize a logic 1.
For example, a Sanity(L) = \(L) = 0(H) initializes a logic 0 if it is the input to an AND
symbol without input active low indicator bubbles, but initializes a logic 1 if it is the input
to an OR symbol with input active low indicator bubbles, as in Fig. 14.3la. Conversely, a
Sanity(H) = 1(H) = 0(L) initializes a logic 0 if it is the input to an AND symbol with input
bubbles, but initializes a logic 1 if it is the input to a OR symbol without the input bubbles, as
in Fig. 14.3 Ib. The time tpu is the power-up point beyond which the system can be operated.

As an example of the initialization methods just discussed, consider the two general-
ized two-level SOP circuits shown in Fig. 14.32. In Fig. 14.32a the NAND circuit can be
initialized a logic 0, whereas in Fig. 14.32b the NAND circuit can be initialized a logic 1,
both with an input Sanity(L) = 1(L) = 0(H) required for initialization. The difference is,
of course, in the way the sanity input is introduced into the circuit. For the former case it is
introduced in the input ANDing stage and in the latter case it is introduced into the output
ORing stage. Note that if the NAND logic in Fig. 14.32b is replaced by AND/OR logic, the
sanity input must be changed to Sanity(H), but no change would be necessary in Fig. 14.32a
for AND/OR logic. A dual arrangement results in the case of two-level NOR-based POS
logic for which Sanity(H) is the initializing input.

14.12 SINGLE-TRANSITION-TIME MACHINES AND THE ARRAY
ALGEBRAIC APPROACH

This important section describes a class of asynchronous FSMs that undergo the fastest state-
to-state transition times possible and that avoid all race-associated problems, namely critical
races and ORGs. This class of fundamental mode FSMs is commonly called single transition

14.12 SINGLE-TRANSITION-TIME MACHINES 721

Sanity(L) Sanity(L)

Feedback '. jp-i Feedback
paths • ' paths

y,(H)

(a) (b)

FIGURE 14.32
Initializing two-level NAND SOP logic with a sanity(L) input, (a) SamYy(L) = 1(L) = 0(H) used to
initialize a logic 0. (b) Sanity(L) = 1(L) used to initialize a logic 1.

time (57T) state machines. The array algebraic approach used here is precisely the same as
that used in Section 11.11 for synchronous FSM design by using D flip-flops. The reason
why the same array algebraic approach can be used lies in the fact that the excitation table
for the LPD model is exactly the same as that for D flip-flop designs. Now, however, state
code assignments must be found that will eliminate critical races and ORGs and yet yield NS
functions that represent the fastest transition times possible. As will be demonstrated in this
and the following section, STT FSMs can be designed by using either the LPD model or the
nested cell model, both models complying with the requirements of the fundamental mode.

Procedure for Obtaining an STT State Code Assignment

1. Construct a state table free of cycles and buffer states, which are strictly forbidden,
and assign a state identifier to each state. The state table can be constructed very
easily from the state diagram or ASM chart for the FSM. Note that violation of the
sum rule can cause critical races.

2. Identify the state that is to be initialized and assume that it will be an all-zero state
(• • • 000) or an all-one state (• • •111) . This is done to simplify the initialization process
(see Section 14.11).

3. Partition the state transitions into groups or sets that eliminate critical races and
ORGs. These partitions are called n (partial) partitions. The TT-partitions result from
an extension of the "into rule" (rule 1) used to obtain optimum state code assignments
for D flip-flop designs of synchronous FSMs as discussed in Subsection 11.10.2. If
present, the state identifier for the initialization state together with all other state
identifiers associated with that initialization state must be positioned on the left side
of the TT-partitions. This is done so as to organize the TT-partitions into a form that
can be used to obtain a valid STT state code assignment by following the remaining
steps of this procedure.

722 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

4. Collect the TT-partitions into partitions that include all states identifiers. These parti-
tions are called r (total) partitions. If this is properly done, all T-partitions will begin
with the state identifier for the initialization state on the left side of the partition.

5. Find a minimum set of T-partitions that "cover" all n -partitions. The number of T-
partitions is equal to the number of state variables for the FSM. There may be more
than one minimum set of T-partitions. If more than one minimum set of T-partitions
exist, the choice of any one of the minimum sets will lead to an optimum or near
optimum STT design — there is usually little difference in their use. A nonminimum
set of T-partitions will usually not yield an optimum STT design, but it can happen.

6. Select a valid state code assignment from a minimum set of T-partitions. Choose the
initialization state to be either a • • • 000 state or a • • • 111 state, not a mixture. See
Section 14.11 for rules governing the initialization of asynchronous FSMs. Note that
for FSMs lacking cross branching the partitioning method defaults to unit distance
coding of states as in Fig. 14.22.

At this point the array algebraic approach, discussed in Section 11.11, can be used to
obtain the NS and output functions for the STT state machine. The array algebraic approach
discussed here is actually an extension of the LPD model, since the lumped path delays in
the NS functions are implied.

As an example, consider the FSM represented by the state diagram and state table in
Fig. 14.33, presented here for purposes of designing it as an STT state machine. This figure
is a reproduction of that presented in Fig. 14.6, exclusive of state code assignments at this
point. From the state table in Fig. 14.33b, there result the seed sets given by Eqs. (14.26).

S+T
Sanity

ST I0 I T I3 I2
oo 01 11 10 P Q

ST

ST
V_/ X ' ^_S

S+T

0 0

ST

PATifSf (̂) indicates a holding condition
Q1T if S ^-^

(a) (b)

FIGURE 14.33
Reproduction of state machine in Fig. 14.6 for purposes of designing it as an STT machine, (a) State
diagram representation, (b) The equivalent state table for the FSM in (a).

Seed sets (14.26)

14.12 SINGLE-TRANSITION-TIME MACHINES 723

Seed sets are useful as a aid in establishing the TT-partitions and may be disregarded for
simple FSMs. Notice that the branching paths within a given seed set contain just one
holding condition state identifier and that all branching paths within the set share a common
branching condition. This is easily seen by comparing each seed set with the state diagram
in Fig. 14.33a. Normally a single state identifier representing a holding condition will not
appear singly within a seed set unless it is not otherwise associated with another state
identifier within the same seed set.

Seed Set IQ = {ab, be, de]
Seed Set I\ = {ae, bd, c}
Seed Set 73 = {a, be, cd, e]
Seed Set /2 = {a, be, ce, de}

Seed Set /o —>• TZ\ = abc, de
Seed Set I\ —> Jti = ae, bd
Seed Set I\ —>• TT?, = ae, c
Seed Set I\ -^ n4 = bd, c . . _

\ ^-partitions. (14.27)
Seed Set Ij -> TTS = a, bed

Seed Set /3 —>n() = a,e

Seed Set IT, —>• iti — bed, e

Seed Set /2 -> TTg = a, bcde

The TT-partitions are derived from the seed sets in Eqs. (14.26) and are given by Eqs.
(14.27), where state a is taken to be the initialization state in agreement with the state
diagram in Fig. 14.33a. Observe that when present in a given TT-partition, state a always
appears on the left side of the partition (the comma). If it is decided to assign • • • 000 to
state a, then all state identifiers grouped with a on the left side of the partition must also
be assigned logic 0. Accordingly, this requires that all state identifiers on the right side
of the partition be assigned a logic 1. For example, from seed set /o, the TT-partition is
7T] = abc, de for which state identifiers a, b and c all take logic 0 while state identifiers d
and e take logic 1. Notice in particular that the partitions are formed in such a manner that
no state variable appears on both sides of the partition, a requirement for discreteness of the
partition.

Having completed step 3 of the procedure given previously, it is now required by step 4
that the n -partition be collected into r-partitions, each of which must contain all the state
identifiers. This is done and the results are presented in Eqs. (14.28). Observe that there are
eight T-partitions of which five are shown, but only four are necessary to cover all eight
TT-partitions. The choice of the first four T-partitions is made, which constitutes a minimum
set thereby completing step 5. Hence, four state variables are required.

TI = abc, de = n(l, 6)
T2 = ae, bed = n(2, 3, 5, 7)
13 = ace, bd = n(2,4)
T4 = a, bcde = n(5, 6, 8)
T5 = abde, c = ?r(3, 4)

n -partitions. (14.28)

The state matrix S can now be established according to step 6 assuming that the initial-
ization state a is assigned all zeros, 0000. If an ascending order of T-partitions is chosen,

724 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

the S matrix becomes

= State matrix, (14.29)S =

TI
a
b
c
d
e

0
0
0
1
1

^2

0
1
1
1
0

^3

0
1
0
1
0

T4

0"
1
1
1
1

where Hamming distances of 1, 2, and 3 are required for the STT state-to-state transitions.
Note that if the initialization of state a is chosen to be 0000, there are 4! = 24 ways the
columns in the state matrix in Eq. (14.29) can be commuted. Therefore, there are 24 possible
state code assignments for which state a is assigned 0000. If state a can be initialized as 1111
in addition to 0000, then there are 2 x 4! = 48 possible state code assignments. Generally,
for n T-partitions there are n! S arrays possible assuming initialization into either a • • • 000
state or a • • • 111 state. Or, if no restrictions are placed on the initialization state code, the
number of S arrays is expressed as SA = (2n — l)!/(2" — r}\(n!), where n is the number of
state variables (T-partitions) and r is the number of states. In the present case, this would
amount to SA = 1365 possible state code assignments.

By continuing to follow the procedure described in Section 11.11, the destination matrix
becomes

/O /I /3 /2

0 ae a a
abc 0 0 0

0 c bed 0
0 W • 0 0

de 0 e bcde

= Destination matrix, (14.30)

d
e

which is exactly the same as that given in Eq. (11.12). Then by taking the transpose of the
S matrix (S1) and by multiplying it with the destination matrix D, there results the function
matrix FNS given by

FNS=S'D =

"0
0
0
0

0
1
1
1

0
1
0
1

i r
1 0
1 0
1 1

" 0
abc
0
0

de

ae
0
c

bd
0

a
0

bed
0
e

a
0
0
0

bcde

de bd e bcde
abc bed bed 0
abc bd 0 0
1 bed bcde bcde

(14.31)

where the entries in the F matrix are called the state adjacency sets.
The next step is to express the NS function matrix FJVS in terms of the state variables

J3, j2, v j , and y0. This can be done by inspection of the state assignment map shown in
Fig. 14.34a. Noting that all empty cells of this map are don't cares, the state adjacency sets

14.12 SINGLE-TRANSITION-TIME MACHINES 725

00 01 I 11 10 I

de = y3 bd = y1

abc = y3 bed = y.

00

01

11

10

a

c

e

b

d e = y3y1 bcde = y0

= y3y2

abcde = 1

(a) (b)

FIGURE 14.34
Evaluation of the state adjacency sets in the F matrix of Eq. (14.31). (a) State assignment map for
the state matrix of Eq. (14.29). (b) State adjacency sets in terms of the state variables as evaluated by
inspection of (a).

are easily expressed in terms of the y-variables as shown in Fig. 14.34b. For example, ^3
covers all states adjacent to states d and e in the y3 domain. Similarly, y 3 encompasses all
state adjacencies relative to states a, b, and c in the 3/3 domain. If automated designs are
required to express the state adjacency sets in terms of the y-variables, tabular methods
such as that of Quine-McCluskey can be used as discussed in Section 11.11. However, very
large, complex FSMs may require the use of a minimization algorithm such as Espresso-II
to accomplish this task.

After the appropriate substitutions are made into Eq. (14.31), the NS functions can be
evaluated. This is accomplished by multiplying the function matrix FNS by the input matrix I
to obtain the following NS function matrix NS:

= F N S . I=

J3 y\
y3 y2 y2 o
y3 yi 0 0
l y2 yo yo Y

(14-32)

By carrying out the indicated matrix multiplication, there results the NS equations

"y3/o + yi / i + y3y\I3 +
Y2 '

Y0

or

y0ST
+y2T

y, =y3sf
(14.33)

726 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

The output functions are obtained by using the same procedure. As was indicated in
Section 11.11, the state matrices for outputs P and Q are obtained directly from the state
table in Fig. 14.33b. By multiplying the transpose of the P state matrix in Fig. 14.33b by
the D matrix and by substituting the appropriate y-variables for the state adjacency sets, the
P function matrix is found to be

FP = PtD=[0 0 0 0 Sf]

0 ae a a
abc 0 0 0

0 c bed 0
0 bd 0 0

de 0 e bcde

= [de 0 e bcde]ST

or

= FpI=[v3>ST 0 y3ji5T yoST]

'/o'

= y0ST.

The results for output Q follows in similar fashion. By multiplying the transpose of the
state matrix for output Q with the D matrix and by substituting the appropriate y-variables
for the state adjacency sets, the Q function matrix becomes

= Q1D=[0 1 0 ST S]

0 ae a a
abc 0 0 0

0 c bed 0
0 bd 0 0

de 0 e bcde

bdST eS bcdeS]

or

~/o'

yoS] f
l

A.
+ yoST,

where y^S • /o = yiS • ST — 0 has been eliminated.

F3 = yiS + yiST + y^yiST + y0ST
+y2T

FO = ST + y2ST + yoS

14.12 SINGLE-TRANSITION-TIME MACHINES 727

Collectively, the NS and output functions generated from the array algebraic approach
are

(14.34)

which represents a gate/input tally of 14/40 taking into account four shared Pis and excluding
possible inverters. Notice that all five output p-terms are covered by p-terms in the NS logic
functions owing to the four shared Pis. This is characteristic of the array algebraic approach
to FSM design since the same form of the function matrix F = Z1D is used for the output
functions as for the NS functions.

The NS and output functions in Eqs. (14.34) are guaranteed to be free of critical races
and ORGs. This is a result of using the array algebraic approach on the state assignment
matrix of Eq. (14.29), the combination of which is inherently exclusionary of all race related
problems. However, the result is not expected to be an optimal result. The array algebraic
approach to FSM design used in this section is attractive from another point of view: It
offers a method for obtaining the NS and output functions of STT state machines that is
amenable to computer aided design (CAD).

Logic minimization methods should rarely, if ever, be used to obtain the NS and output
functions directly from the state diagrams of STT state machines. The reason is that an STT
state code assignment is, by itself, not sufficient to ensure a critical race-free and ORG-free
design. For example, if an optimal K-map minimization approach is used directly on the
state diagram in Fig. 14.33a with the STT state code assignments given by Eq. (14.29), a
result is obtained that cannot be guaranteed to be free of critical races and ORGs. The NS
and output functions must be "looped out" correctly to avoid race-related problems — a
task performed automatically by the array algebraic approach.

There remains the question of static hazards in Eqs. (14.34). A static hazard analysis of
Eqs. (14.34) indicates that there are seven active static 1-hazards in the NS functions, three
in function F3, one in Y2, and three in function Y0, but all are externally activated. Shown
in Eqs. (14.35) are the NS functions with hazard cover included for these seven s-hazards.
Also shown is the hazard cover for the singular externally initiated static 1-hazard in the
output Q. When this hazard cover is included, the gate/input tally for Eqs. (14.35) becomes
21/68. However, there is one potentially active static 1-hazard in function Y\ if a delay
greater than that of an inverter is placed on the noninverter path, that is, on the T line to
gate y\ST. There are also two such potentially active s-hazards in output function Q, one
between coupled terms y^ST,y\ST and the other between coupled terms y^ST, yoST. In
each of these latter two cases an s-hazard could form if a delay exceeding that of an inverter
is positioned on the noninverter line of the coupled variable to the coupled term gate. The
hazard covers for these hazards are not shown in Eqs. (14.35) since they are not likely to
form, although some designers may include them to ensure proper operation of the FSM.
The term "potentially active" applies to any hazard that must be activated by an unintended
delay that is explicitly located along some path in the circuit — a delay that cannot always

728 CHAPTER 14 /ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

be predicted from an analysis of the logic circuit.

y\ST + y3y\ST + y0ST +
Hazard cover

_ _ _ Hazard cover

Y}=y3Sf+yiST

YQ = ST + y2ST + y0S + y2S
Hazard cover

P =

Hazard cover

To assist the reader in understanding the analysis by which the hazard cover in Eqs. (14.35)
is obtained, the hazardous 1 — > 0 transitions for function Y3 and the states within which they
occur are indicated in Eq. (14.36). Like all the other s-hazards in the NS functions, these
are externally initiated static 1 -hazards that will occur only under the holding condition
of a given state. The static hazard cover is obtained by consensus, that is, by ANDing the
residues of the coupled terms involved in the particular hazardous transition. Thus, for this
s-hazard occurring in state d, the consensus term is y3y\ 5, which is the ANDed residue of
the coupled terms y3ST and y\ ST. This hazard occurs when the FSM begins the transition
from state 1111 to 1001 (d—^e~) under input change ST — »> ST during which Y3 should
remain active but instead is forced to undergo a negative glitch caused by the static 1 -hazard.
For a review of hazard analyses in two-level combinational logic and in synchronous FSMs,
see Sections 9.2 and 1 1.3.

ytST (14.36)

The two-level NAND/INV logic circuit for Eqs. (14.35) is presented in Fig. 14.35 together
with the shared Pis A, B, C, D, and E that are used to implement the outputs Q and P. Also
shown are the covers for the seven hazards indicated by shaded gates. Notice that the p-term
yiy \yoS serves as hazard cover for both the externally initiated s-hazard in NS function Y3

and the internally initiated s-hazard in output Q. Static hazard cover for an output function is
frequently (but not always) found in an NS logic function, including its hazard cover — that
is, an output s-hazard cover is frequently a shared PI. Sanity connections are omitted for
simplicity but can easily be added following the discussion and figures in Section 14.1 1.

The results of a logic simulation of the circuit in Fig. 14.35 is shown in Fig. 14.36,
where the single transition times are clearly indicated by vertical dotted lines. Thus, the
simultaneous change of the state variables is what is meant by single transition time (STT).
Clearly, it is easy to understand why race-related timing problems do not exist in such
FSMs, even in real time. Though not indicated, the time elapsing between a change in an
external input (S or T) and the resulting simultaneous change in y- variables varies from
2rp to (2rp + TMV) for the state-to-state transitions shown. Here, as before, rp is the path

14.12 SINGLE-TRANSITION-TIME MACHINES 729

Hazard
Cover

Hazard f
Cover \

Hazard
Cover

y2(H) —
y0(H) —
T(H) —

A(L)

Q(H)

E(L)

FIGURE 14.35
Two-level implementation of the NS and output functions in Eqs. (14.35) showing hazard cover for
the eight s-hazards (shaded gates) and use of the four shared Pis A, B, C, D, and E to implement
outputs Pand Q.

delay through a gate and T/NV is the path delay through an inverter, where the relative delay
values are taken to be T//VV = f tp • The changes in Q, for the most part, occur simultaneously
with changes in the y-variables, while changes in P occur in the range of rp to (rp + T//W)
following an external input change. Changes in Q may precede changes in the y-variables
by T/yw, but that is the exception rather than the rule. To assist the reader in following
these events, the state codes and state identifiers are provided in Fig. 14.36 following each
state-to-state transition.

Hazard analyses, such as that required to arrive at Eqs. (14.35), are not easily carried
out and can lead to serious problems if performed incorrectly. Furthermore, as is evident
in Eqs. (14.35), there is a significant increase in the hardware commitment required to
eliminate the static hazards in complex FSMs such as STT machines. However, there exists
a means by which all s-hazards can be eliminated from any fundamental mode state machine
(meaning also STT FSMs) without having to add hazard cover. This is the subject of the
following section in which the basic memory cell is used as the memory element.

730 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

S(H)

T(H)

Y3(H)

y^H)

y0(H)

P(H)

0111 1111
b d

FIGURE 14.36
Results of a simulation for the logic circuit in Fig. 14.35 showing the single transition times of the state
variables (dashed lines) that are characteristic of STT machines, the state codes and state identifiers
following each transition, and the output fucntion P and Q.

14.13 HAZARD-FREE DESIGN OF FUNDAMENTAL MODE STATE MACHINES
BY USING THE NESTED CELL APPROACH

Fundamental mode designs of FSMs are fraught with special problems, not the least of
which is that dealing with static hazards in the NS logic. If an s-hazard exits in a NS logic
function, it can, under the right conditions, cause the FSM to malfunction. Furthermore,
the process of identifying and eliminating these hazards is no trivial task, as has been made
evident from discussions in Subsection 14.10.3 and in Section 14.12. No where is this point
better illustrated than in Eqs. (14.35), where seven active static 1-hazards are identified in
three of four NS functions. But the processes of identifying and eliminating such hazards
can be circumvented by using the nested cell model as is done in Fig. 10.30 for the RET
D flip-flop. The following is one such approach in the use of this model.

Consider the STT NS (LPD) logic in Eqs. (14.34), exclusive of hazard cover, which is
to be converted to nested cell form. Next consider that the LPD-to-SR conversion follows
similar to that of Eq. (10.11) for converting a D flip-flop to a JK flip-flop and is given by

Y = yS + yR. (14.37)

Here, J is replaced by S and K is replaced by R, while D and Q are replaced by Y and
y, respectively. To carry out the y —> SR conversion, use Algorithm 10.2 for D —> JK
K-map conversion but with the following change: Instead of filling in with don't cares
(0' s), fill in each empty cell with a 0 ANDed with the complement of the S or R K-map
entry having the same cell number. The following demonstrates how this is accomplished
algebraically.

With Eq. (14.37) in mind, a theoretical procedure (applicable to CAD with the appro-
priate search algorithm) can be devised to execute the conversions directly from the NS
YJ functions. Consider the K-maps in Fig. 10.30c for the nested cell design of the resolver

14.13 HAZARD-FREE DESIGN OF FUNDAMENTAL MODE STATE MACHINES 731

FSM. Essential entries in a given domain excludes that domain character from the NS logic
function being extracted. Consequently, the following F/ — > 5,- , RI conversions can be made
directly from the Y, functions in Eqs. (14.34):

FS = y^ST + y\ST + y3y\ST + yoST
S3 = J3jiyo(0) + y3yiy_o(ST) + y3y\yo(ST) + yiyiyo(S © T) + y3XX(f>

= y\yo(ST)+_yiy0(ST) + yiyo(S<& T)
= yoSf+yiST

^3 = y3XX(f> -\- y3y \yo(ST 4~ ST) -\- y3y \yo(ST -I- ST + ST)

+yiy\yo(S) + yiyiyotf + ST + ST)
= y~}yo(S © T) + yiy0(ST) + yiyo(S) + yiyo(ST)

(14'38)

Here, the results for ^3 and ^3 are precisely those that would be obtained by a K-map
conversion of Eqs. (14.34) given the use of Eq. (14.37). Note that XX appearing in the
terms y^XXcf) and y^XXcj) represents all canonical ANDed forms of y\ and yo, that is,
y\yo, J i Jo» y\yo, y\yo (j2 is absent in FS). Similarly, the don't-care symbol 0 represents
all canonical ANDed forms of S and T(S f , S T, ST , ST). Thus, ^3^X0 in S3 eliminates y 3

in all p-terms of that function. Similar reasoning is applied to the expression for RT, where
y iXXQ eliminates ^3 from all terms in that function.

Continuing this procedure yields the following results for the remaining three functions:

+y2T

R2 = y2X$ + y2y_3(S + T) + y 2 y 3 (f)
= y3Sf +y_3f
= ST

Fi = y_3ST +y}ST
Si =yl_

= y3ST

_
= S + y3f

(14.38)

_
= Sf+y2S _

O = y0X(f> + y0y2(S + f) + y0y2(ST + ST +
= y2ST + y2(0)
= y2ST

Although the NS functions have been converted from F/ LPD form to hazard-free S,R
form in Eqs. (14.38), the output functions must remain as given in Eqs. (14.35), including
the hazard cover term in Q. If the output functions were not retained, ORGs would be

732 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

generated during several of the transitions. With this in mind, the results are given collec-
tively by Eqs. (14.39). The NS and output functions in Eqs. (14.39) represent a gate/input
tally of 29/69, including the four basic cells and three shared Pis, but not including pos-
sible inverters. This may be compared with a gate/input tally of 21/68 for Eqs. (14.35),
including the five shared Pis, but again not including possible inverters. Note that an invalid
set of STT NS logic functions would result if the nested cell model were applied directly
to the state diagram in Fig. 14.33 with the STT state assignments of Eq. (14.29). How-
ever, Yi —> Sf, Rj K-map conversions of Eqs. (14.34) will minimize to the NS functions of
Eqs. (14.39).

S3=yQSf+yiST

S2 = y i S f
R2 = ST +y3f

(14.39)
So = '
*o =

P=y0Sf
y0ST

Hazard cover

The logic circuit representing Eqs. (14.39) is given in Fig. 14.37, where reset-dominant
basic cells are used as memory elements. Here, all sanity inputs have been omitted for
simplicity. Initialization of this FSM into the 0000 state requires that all R's be initialized
a logic 1 while all S's be initialized an logic 0 (see Section 14.11). Notice the relative
simplicity of the NS logic for this "nested cell" model compared to that required by the
LPD model in Fig. 14.35. The maximum fan-in for this nested-cell implementation is 4,
compared to 7 for Fig. 14.35, all exclusive of sanity inputs.

What has not been discussed here is the relative speed of the two types of implementa-
tions, that resulting from Eqs. (14.35) and that from Eqs. (14.39). Predictably, the nested-cell
design will be somewhat slower than the LPD design. This is so because the nested-cell
design can behave as a three-level implementation whereas the LPD design of Eqs. (14.35)
represents a two-level implementation provided that it is not necessary to "tree" any of the
NS functions because of fan-in restrictions. Both designs offer smooth fast operation free
of critical races and ORGs. But because of the action of the basic cells in the nested cell
design, no hazard cover is necessary. Shown in Fig. 14.38 are the simulation results for the
nested-cell logic circuit in Fig. 14.37. An examination of this simulation clearly indicates
that the y-variable transitions do not necessarily change at the same time as they did in
Fig. 14.36. In the case of Fig. 14.38, the time elapsing between a change in an external
input and the first y-variable to change varies from 2xp to (3rp + T///V) and the time between
y-variable changes for a single transition varies from r^v to 2rp. Also, the outputs may
precede the first y-variable to change by as much as 2rp. Note that critical races and ORGs
are still precluded from occurring since the NS logic functions of Eqs. (14.34) are used to
generate those of Eqs. (14.39) with the output logic and hazard cover remaining the same.
Here, as before, TP is a gate path delay and

S(H)

T(H)

Y3(H)

y2(H)

S(H) ̂ °T(H) ̂ O

T(L>—

A(L)-c|>-P(H)

Hazard Cover

FIGURE 14.37
Implementation of Eqs. (14.39) by using reset-dominant basic cells as memory elements.

y0(H) I J L J
1001 0000 0111 1111 0101 0111 1111 1001 0000 0111 1001
e a b d c b d e a b e

P(H) I I I I

Q(H) I I I T

FIGURE 14.38
Results of a simulation for the nested cell logic circuit in Fig. 14.37 showing some variation in the
single transition times of the state variables (compare by using dashed lines), the state codes, and
state identifiers following each transition, and showing the output functions P and Q.

733

734 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

Which method should be used for STT FSM design, the nested cell approach or
the LPD approach? Both the nested-cell and the LPD approaches to asynchronous FSM
design are generally applicable to any fundamental mode FSM. However, for the nested
cell designs of an STT FSM, special methods must be used. The NS functions must be
converted from a valid set of Yf forms that are the result of the array algebraic approach.
The conversion process can be accomplished by either 7, -> 5,-, R, K-map conversions from
the Y(forms or by algebraic means as was demonstrated in this section. Remember that to
avoid possible critical races and ORGs in an STT FSM design, it is necessary to use both
the partitioning methods and array algebraic approach that were discussed in Section 14.12.
Thus, the nested cell design of an STT FSM requires the extra step of converting the NS
LPD functions to S-R form . Once this is understood, the decision as to which approach
to use reduces to the following: An LPD STT approach generally results in a faster logic
circuit compared to a comparable nested cell design. However, an LPD design must deal
with the static hazard problem in the NS logic, the analysis of which can be complex but
can also be automated with some effort. For this approach, fan-in may become an important
consideration, particularly if discrete logic is to be used. In contrast, externally initiated
s-hazards in the NS logic of a nested cell design cannot affect the operation of the FSM, as
demonstrated later in Fig. 14.50. And by applying the requirements of Subsection 11.3.2
to the basic cell, internally initiated s-hazards are also avoided. Powerful software called
ADAM (see Appendix B) is bundled on CD ROM with this text. This software permits the
automated design of either LPD or nested cell designs of FSMs, defect-free.

14.14 ONE-HOT DESIGN OF ASYNCHRONOUS STATE MACHINES

The one-hot design of synchronous FSMs is discussed at length in Section 13.5. Table 2.11
gives a 10-bit one-hot code, a code consisting of a single "1" per state. A model is presented
in Fig. 13.23 and by Eqs. (13.9) that applies to the one-hot designs of synchronous FSMs
by using D flip-flops. Since the excitation tables for the LPD model and that for D flip-flop
designs are the same (see Fig. 14.3), it follows that Eqs. (13.9) also apply to the one-hot
design of asynchronous FSMs if the notation changes D-*Y and Q ->• y are made. The
following paragraphs demonstrate this.

In order to apply Eqs. (13.9) to the design of asynchronous one-hot FSMs, however,
it is necessary to add another term to the NS function equation. In a synchronous FSM,
the single active state variable in the origin state remains active until the transition to the
destination state is complete. This happens as a result of the action of the enabling input,
clock (CK). But because there is no enabling input such as CK controlling the transitions in
a fundamental mode FSM, some means must be found to maintain the active state variable
in the origin state constant (active) until the transition is complete to the destination state.
This is done by altering the NS functions in Eqs. (13.9) in the following way:

• (14.40)
"Out of" terms

"Into " terms

Here, Fj is the Boolean sum of all active j-variables in states to which the y'th state transits.

14.14 ONE-HOT DESIGN OF ASYNCHRONOUS STATE MACHINES 735

Thus, the first part ("into" terms) of Eq. (14.40) represents m minimum NS functions as
derived, say, from K-map cover or from a minimization algorithm. This part is identical to
that appearing in Eq. (13.9) but with the appropriate symbol changes for the present and
next state variables. The second part ("out of" terms) of Eq. (14.40) functions to maintain
the state variable of the origin state active until the transition to the destination state is
complete. This forces the FSM to transit through a state with two 1 's, a state consisting of
1's from the origin and destination states. The r output functions summed over m states are
similar to those given by Eqs. (13.9) and are represented by

(14.41)

where fj,i(X) represents the y'th function of external inputs X for the /th output with
/ = 0, 1, 2, . . . , (r - 1). Note that Moore outputs result for any /_/,/(X) = 1.

Application of Eqs. (14.40) and (14.41) is remarkably simple since, as was pointed out
in Section 13.5, the NS and output functions can be read directly from the state diagram,
from an ASM chart or from a state table — and without the need for a state code assignment
or the use of K-maps. However, there are a few guidelines that must be followed in state
diagram (or state table) construction and initialization of a one-hot state machine:

1. Eliminate all buffer ("fly") states — there is no need for them in a one-hot design.
2. Cycles cause successive transitions between states with two 1's. This produces an

overlap in the two 1's states, resulting in a state variable pulse of short duration,
which may not be acceptable. Also an intermediate state in a cycle transition should
not be an output state, since it would create an output glitch. In short, avoid cycles in
one-hot designs. There is no need for them.

3. If a static hazard exists in the NS-forming logic, it is formed between the "out of"
term and an "into" term and is always an internally initiated static 1 -hazard in SOP
logic. Hazard cover is provided by the "into" holding condition term, which is usually
a reduced consensus term. Recall that the consensus term is the ANDed residue of
the coupled terms, as discussed in Sections 9.2 and 11.3 and in Subsection 14.10.3.

4. Initialization of one-hot designs must be accomplished according to Fig. 14.32a
together with a term that meets the requirements of the one-hot-plus-zero approach
discussed in Section 13.5. Thus, the idea here is to first set all y- variables to logic 0
and then force the FSM into a one-hot state where thereafter it can transition normally
from one one-hot state to another. No attempt should be made to initialize according
to Fig. 14.32b, because to do so will usually result in the activation of more than one
state on startup. Entrance into the intended one-hot routine of the FSM may not take
place until the inputs change in some favorable manner.

5 . Use the software A-OPS on the CD-ROM bundled with this text to automate the design
of any asynchronous one-hot FSM driven by a PLA or RAM. For more information
regarding the A-OPS software, refer to Appendix B.

As an example, and for reasons of comparison, consider the state diagram and state table
in Fig. 14.39, which are reproduced from Figs. 13.26 and 14.33 for the convenience of the

736 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

S+T
Sanity

\ST ' I
Q,X 00 01 11 10 P Q

ST

ST
•• S " / ^~~/

S+T

ST

(a) (b)

FIGURE 14.39
Reproductions of the FSM in Fig. 13.26 for use by the asynchronous one-hot-plus-zero FSM design
method, (a) Fully documented state diagram representation showing only branching conditions and
state identifiers, (b) Equivalent state table representation.

reader. For this example, Eqs. (13.11) apply, but with the added "out of" terms required by
Eq. (14.41). The result is the set of two-level NS and output functions expressed as

Ya = aS + aT + eST + ab + abode
Yb=aST + bST + cST + bcde
Yc = bST +cT + dST + cbe

(14.42)
Ye = bST + cST + dT + eS + eT + ea

= eST
= dST + eS + b

where it is understood that a = ya,b — y/,, c = yc,d = yd and e = ye. The abode
term is added to Ya for initialization purposes — the one-hot-plus-zero approach. Notice
the simplicity of the output expressions compared to those of the STT design expressed
by Eqs. (14.34). This simplicity derives from the fact that each NS and output function is
associated with a specific state.

The NS functions in Eqs. (14.42) are free of critical races, ORGs, and static hazards due
to the nature of Eqs. (14.40) and (14.41). The two static 1-hazards that would have been
active in the NS functions are each covered by the "into" holding condition term of the state
for which the NS function applies. A static hazard in the NS logic of a one-hot design, if
present, is always an internally initiated static 1-hazard that is formed between the "out of"
term and an "into" term. One internally initiated s-hazard is formed in function Yb between

14.14 ONE-HOT DESIGN OF ASYNCHRONOUS STATE MACHINES 737

coupled terms cST and bcde, indicating (c — > b) under branching conditions ST , but is
covered by the holding condition "into" term bST for state b. The other s-hazard exists in
function Yc and is produced between coupled terms bST and cbe, meaning b — > c under
branching conditions ST, with cover provided by the "into" holding condition term cT for
state c. Thus, hazard cover in the NS logic expression of one-hot designs is provided by
a reduced consensus term, which turns out to be the "into" holding condition term of the
state for which the NS function applies. If left active, s-hazards in the NS logic can cause
malfunction of the FSM. No s-hazard is possible in the Q output function of Eqs. (14.42),
since the coupled terms eS and dST indicate an externally initiated static 1 -hazard that
must occur in a two 1 's state under a holding condition T that is clearly not possible in a
one-hot design.

The logic circuit for the one-hot FSM represented by Eqs. (14.42) is given in Fig. 14.40.
Here, it is understood that a = ya , b = y^, c = yc, d = y</, and e = ye, as indicated earlier.
Observe that this one-hot FSM is initialized into the 00000 state and that two shared Pis are
used in the output function Q. Unlike the case of STT FSMs, which make maximum use
of shared Pis in the output expressions, one-hot designs may have few if any shared Pis in
their output functions.

The circuit in Fig. 14.40 initializes into state a by first setting all state variables to
zero and then forcing the FSM into state a by using the one-hot-plus-zero approach de-
scribed in Section 13.5 and applied here as follows: The initialization process begins with
a Sanity(L) = 1(L) = 0(#) input to each of the NAND gates in Fig. 14.40 by following
the initializing scheme shown in Fig. 14.32a. Then, when Sanity goes low, that is, when
Sanity(L) = 0(L) = !(//), all inputs to the shaded NAND gate in Fig. 14.40 are set to
1(H), which introduces a 1(L) into the ORing NAND gate for state a and initializes the FSM
into that state. Because use is made of the "all-zero" state in the initialization process, this
state should normally not be chosen as an output state. Furthermore, no attempt should be
made to initialize a logic one directly into state a by using the scheme shown in Fig. 14.32b.
This approach usually results in the activation of more than one state on startup. For a large
number of states, it is recommended that the CMOS NOR gate configuration in Fig. 8.46
together with an inverter be used in place of the shaded NAND gate in Fig. 14.40, but with
complementary changes in the activation levels of the inputs.

The results of a simulation of the logic circuit in Fig. 14.40 is shown in Fig. 14.41.
Vertical dashed lines are placed at specific changes in an external input to emphasize the
overlap effect of the "out of" terms in Eqs. (14.42). These terms serve to maintain the
y-variable of the origin state active until the transition to the destination state is complete.
This, in turn, requires the FSM always to transit through a state of two 1's, one from
the origin state and the other from the destination state — the FSM can never transit through
the all-zero state. This is easily seen from an inspection of the timing diagram in Fig. 14.41 .
An analysis of this simulation reveals that the time elapsing between an external variable
change and the first y-variable to change is 2rp and that the overlap of the y-variables
amounts to (2rp + t/yvv) in all cases. Here, as in all cases previously, no account is taken
of fan-in effects. The relative delay values are TINV = | TP, where rp is the delay through
any NAND gate. Changes in the outputs P and Q follow a change in the external input
by amounts ranging from TP to (2rp + TINV) but fall within the overlap of the y-variable.
Thus, the speed of the one-hot design is comparable to that of the LPD STT design in
Fig. 14.36.

738 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

e(H)4—H x "—| X(L)
a(L)-

Sanity (L)

e(L)
S(L) —O

C(L) T(H)
P(H)

. . X(L)—C|)—Q(H)

Sanity (L)

FIGURE 14.40
Implementation of the one-hot FSM represented by Eqs. (14.42) with one-hot-plus-zero initialization
circuitry showing shared Pis W and X.

14.15 PERSPECTIVE ON STATE CODE ASSIGNMENTS OF
FUNDAMENTAL MODE FSMs

Before the subject of state code assignments can be properly considered, it is necessary to
clear up any confusion the reader may have regarding the types of asynchronous FSMs that
have been considered. All asynchronous FSMs considered to this point have been those

14.15 PERSPECTIVE ON STATE CODE ASSIGNMENTS 739

S(H)

T(H)

a(H)

b(H)

c(H).

d(H)

e(H)

P(H)

Q(H).

FIGURE 14.41
Results of a simulation for the one-hot SSM of Fig. 14.40 showing effect of the "out of" terms in Eqs.
(14.42), which hold each origin state ^-variable active until the transition is complete (see dashed
lines), and showing the outputs P and Q.

that are said to operate in the fundamental mode. Any fundamental mode FSM requires
that no external input to the FSM may change until all internal signals have been stabilized
within the FSM and that only one input can change at a time. This requirement holds for
STT and one-hot FSMs, both of which can be considered as obeying the LPD model, since
fictitious memory elements are always implied. Even the nested cell design of STT FSMs,
or the design of flip-flops for that matter, results in state machines that must operate in the
fundamental mode. Recall that the basic cell is itself a fundamental mode FSM.

So what really distinguishes one fundamental mode FSM from another? The answer
to this question is quite simple. It is the state code assignment as it affects the manner in
which the state-to-state transitions occur that ultimately distinguishes one type of funda-
mental mode FSM from another. Consider that an STT state code assignment is so chosen
that critical races and ORGs are eliminated. To do this, the state code assignment may in-
volve multiple y-variable changes during any given state-to-state transition. This introduces
the concept of distance, i.e., Hamming distance. Two adjacent states are said to be unit-
distance coded, or to have a Hamming distance of 1. An STT design will default to unit-
distance coding for FSMs lacking cross branching. The FSM in Fig. 14.22a is one such
example, since the same unit distance code assignment could have been derived by using the
partitioning methods described in Section 14.12. Furthermore, a change of n y-variables
during a state-to-state transition involves a Hamming distance of n. The FSM discussed
in Section 14.12 possesses several cross branchings and must undergo Hamming distance
transitions ranging from 1 to 3 as indicated by the timing diagram in Fig. 14.36. The de-
signer of STT state machines must take extra care to ensure that the sum rule holds for each
state in the state diagram or state table and that no cycle paths are present. Failure to meet
the sum rule requirement will cause critical races to form.

In comparison, the one-hot approach fixes the Hamming distance at 2, as shown by
the timing diagram in Fig. 14.41. Both the STT and the one-hot techniques accomplish

740 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

the same thing: they both eliminate critical races, but by entirely different approaches to
state coding. For the STT design the goal is to arrive at an FSM whose transitions take
place simultaneously or nearly so. However, the one-hot design method (for synchronous
or asynchronous machines) forces the FSM to cycle through states having exactly two 1's,
one from the origin and the other from the destination state. The one-hot approach has the
added advantage that static hazards are automatically covered by the holding conditions.
Thus, cycle paths must be avoided and the sum rule must always hold in the state diagrams
for both STT and one-hot FSMs. Critical races and ORGs are automatically eliminated
in STT designs and can easily be avoided in one-hot designs. Associating each output
exclusively with its host state automatically eliminates ORGs. If minimization methods are
used in one-hot designs, great care must be exercised in using the two-l's race states as
output states to avoid ORGs. Finally, recall that static hazards are also eliminated by the
one-hot approach to design, an advantage not shared by the STT method.

The alternative to STT or the one-hot approach to state code assignments is to "eyeball"
a state code assignment that will eliminate all critical races and ORGs. This usually means
making all state-to-state transitions logically adjacent (unit distance coded) by using buffer
states where needed to accomplish the task, but all of this is at the expense of speed and the
inability to use either the STT or the one-hot method. Dealing with FSMs having complex
cross branchings often becomes too arduous and dangerous a task to warrant the use of any
method other than an STT or one-hot approach. It is for this reason that these techniques
are covered at length in this chapter.

14.16 DESIGN OF FUNDAMENTAL MODE FSMs BY USING PLDs

The rules pertaining to implementation of fundamental mode state machines by using
programmable logic devices (PLDs) are not much different than those for synchronous
FSMs. However, there are a few important, if not cardinal, rules that must be followed
when implementing an asynchronous FSM by using certain types of PLDs. These rules
apply to all fundamental-mode FSMs, including STT and one-hot designs. The rules are as
follows:

1. ROMs should never be used to implement the NS and output logic. They are "noisy,"
and there is no compelling reason to use them. The logic noise that ROMs can generate
in the NS logic of fundamental mode FSMs can cause them to malfunction. This was
not the case for synchronous FSMs where the memory flip-flops served as a filters.
Of course, it is possible to attach capacitors to the outputs of the NS logic functions
from ROMs to filter out the logic noise. But this distorts the signal, which can cause
other undesirable effects. There are much better alternatives than to use ROMs!

2. PLAs and PALs are appropriate choices to implement the NS and output functions of
fundamental mode FSMs. However, it must be remembered that PALs cannot accept
shared Pis and are limited to a fixed number of p-terms within any given Y function.
No such restriction is placed on the use of PLAs. PALs (registered trademark of
AMD, Inc.) with L-type macrocells are attractive choices because they can come
equipped with feedback paths suitable for asynchronous designs. Registered PALs
with internal flip-flops such as the R- and V-types should be avoided for fundamental
mode FSM design unless the designer is very knowledgeable in their use for such
purposes.

14.17 ANALYSIS OF FUNDAMENTAL MODE STATE MACHINES 741

3. Both PLA and PAL implementations can be initialized into an all-zero state by adding
a sanity input to each p-term as shown in Fig. 14.32a. If it is necessary to initialize
a PLA or PAL into an all one state, introduce each y-variable as a separate p-term
and connect Sanity(H) to it. Obviously, it is easier to initialize 1's than O's in a
NAND-centered PLD. The reverse is true for a NOR-centered PLD.

4. Whereas FPGAs are attractive PLDs for synchronous FSM design, they can be
a source of almost limitless consternation to the designer if used carelessly for
fundamental mode FSM design. The reason for this lies in the fact that routing delays
can seriously alter the timing behavior of asynchronous state machines (see Subsec-
tion 7.7.3). While endless cycles, critical races and static hazards may be designed
out of a given FSM, routing delays can cause essential hazard formation that will
most certainly cause malfunction. It is recommended that only the most skilled user
of FPGAs attempt to use them to implement asynchronous state machines.

As an example, consider the PLA implementation of the NS and output functions given by
Eqs. (14.35) and representing the STT FSM in Fig. 14.33a. The Sanity(L) input initializes
or resets the FSM into the 0000 state as required by Fig. 14.33a. Notice that all terms
in Eqs. (14.35) must be accounted for in the p-term table, including hazard cover. Also,
observe that the outputs P and Q have been initialized via the shared Pis. This is really
not necessary, but it is convenient. Avoiding initializing the outputs, in this case, would
require that the p-terms that make up the output functions be listed separately with O's for
these terms appearing in the Sanity column. A PLA of minimum dimensions 7 x 16 x 6 is
required by the p-term table in Fig. 14.42.

Notice that the p-terms for Y\, P, and Q are not listed separately in the p-term table
of Fig. 14.42. However, they are there. Because these particular p-terms are covered by
functions YT, and ¥2 (they are shared Pis), they need not be listed separately. This is the
advantage of PLA implementation over that with a PAL. It may be recalled that because
PALs are programmed only in the AND plane they cannot accept shared Pis as is done in
PLA p-term table of Fig. 14.42. It is important for the reader to remember this distinction.

14.17 ANALYSIS OF FUNDAMENTAL MODE STATE MACHINES

The procedure for asynchronous FSM analysis is essentially the reverse of that for design.
The following summarizes the five-step procedure to be used in analyzing fundamental
mode machines:

1. Given the circuit to be analyzed, read the circuit to obtain the NS and output logic
expressions.

2. Map the NS and output logic functions into EV K-maps that have as their coordinates
the present state variables, y,. If the asynchronous FSM has been designed by using the
nested cell model, the 5, and RI state variables must be converted to 7-variable form
by using the conversion relation given by Eq. (14.37). For state variables exceeding
four in number use K-map formats of the type shown in Figs. 4.37, 5.6, and 5.7 all
with external inputs as the only EVs.

3. From the Y K-maps, construct the Present State/Inputs/Next State (PS/NS) table with
the inputs represented in canonical SOP form. Inclusion of the output data in the PS/NS
table is necessary only if the output-forming logic is complex enough to warrant it.

742 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

P-term s

Y 3 <

Y*

X

y3ST

y.,ST

y^ST

y ST

y y y S

" y3sf

•

I M

Y° 1

^ sf
y2ST

y S

•

, v^T

PLA Inputs PLA Outputs

y3 y2 Yi y0 S T Sanity*

'e 's '4 's '2 'i 'o

1 - - - 0 0 1

- - 1 - 0 1 1

1 - 0 - 1 1 1

- - - 1 1 0 1

1 - 0 1 1 - 1

0 - - - 0 0 1

0 1 - - 0 - 1

- - - - 0 0 1

- 1 - - 0 1 1

- - - 1 1 - 1

•

- 1 - 1 - 1 1

v v v v P ny3 "2 "1 "o r ^

05 04 03 02 0, 00

1 0 0 0 0 0

1 0 1 0 0 1

1 0 0 0 0 1

1 0 0 0 1 1

1 0 0 0 0 1

0 1 1 0 0 1

.

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

;

0 0 0 1 0 0

* Indicates a sanity(L) input.

FIGURE 14.42
P-term table for the PLA implementation of the NS and output functions of the STT FSM expressed
by Eqs. (14.35) showing a Sanity(L) input as required to initialize into the 0000 state.

4. Construct a fully documented state diagram from the PS/NS table. This diagram
should be of the general form illustrated in Fig. 14.4.

5. Analyze the state diagram, together with the NS and output functions, for state con-
struction problems and possible timing defects. The state construction problems may
include violations of the sum rule, the mutually exclusive rule, and the initialization
requirements. The timing defects include endless cycles, critical races, and static

14.17 ANALYSIS OF FUNDAMENTAL MODE STATE MACHINES 743

E(H)

C(L)«

M(H) | 1 5 v}^3JLx>Tyo(H) M(H) ~| I y^zg_^ ĵ̂ t0_îT_J \^^L
(a) (b)

FIGURE 14.43
Logic circuits for the pulse synchronizer module (PSM) used as an analysis example, (a) Mixed-logic
circuit without the fictitious LPD memory elements, (b) Logic circuit showing the two fictitious LPD
memory elements.

hazards in both the NS and output functions. A complete timing analysis should
include essential hazards, though these timing defects are only potentially active de-
pending on the existence of certain unintended path delays at specific locations in
the logic circuit. Although this was not mentioned earlier, the nature of the external
inputs must also be considered. Signals from mechanical switches must usually be
debounced. Nowhere can bounce periods be more disruptive to the operation of a
sequential FSM than in asynchronous state machine operation. These bounce periods
may last into the millisecond range with amplitudes that may cross the switching
thresholds tens to thousands of times. Finally, make certain the initialization circuitry
is functionally correct.

AN EXAMPLE Consider the logic circuit in Fig. 14.43a representing an FSM called the
pulse synchronizer module or PSM. The PSM has three inputs E (for pulse enable), C (for
clock), and M (for mode), and one output P (for pulse). It is the goal of this analysis to
determine how the PSM functions and to identify any problems or potential problems it
may have. First, it is required to obtain the NS and output functions. To do this, the circuit
in Fig. 14.43b, which includes the fictitious LPD memory elements, is read as follows: Let
X = y0EM and X = y0 + E + M. Then, after simplification,

ECX
-I- fiT^M 4- v, C1

+ y»EM • (14'43)

where a single shared PI, y\C, is seen to exist in both NS functions and in the output
function. A hazard analysis of the NS and output functions in Eqs. (14.43) indicates that

744 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

EC

E + C

ECM •

EM + C

0

Y,

EM

EM + C

Yr

FIGURE 14.44
Next state and output K-maps as plotted from Eqs. (14.43).

the two externally initiated static 1-hazards that would have been active in function FI are
covered by terms yiyoE and yi EM. Thus, there are no active static hazards present in the
PSM. The positions E\, D\, £2 and Dj_ shown in Fig. 14.43a are used later in connection
with E-hazard analyses.

The next step is to map the NS and output functions of Eqs. (14.43) as shown in Fig. 14.44.
Notice that up to three EVs control the branching of the PSM, and that the shared PI y\ C
is readily discernible in the y \ domain of each of the three K-maps.

The final step is to construct the PS/NS table from the K-maps in Fig. 14.44 and then use
the PS/NS table to construct the state diagram as is done in Figs. 14.45a and 14.45b. This, of

PS NS PS NS

y,y0 inputs Y 1 Y 0 y,y0 Inputs Y ,Y 0
 E+c

E+CM

EC
EC

00 -
EC
EC

ECM
ECM
ECM

0 0
0 0
0 0
1 0

0 0
0 0
0 0

EC
EC

1 0 -
EC
EC

ECM
ECM
ECM

1 1

0 0
1 1

1 0

1 1
1 1

0 0
ECM 0 0 ECM 0 0 ' ^

0 1 ECM 0 0 11 ECM 1 1 WPIT if C

ECM 0 1 ECM 1 1
ECM 1 0 ECM 1 0 C

ECM 0 1 ECM 0 1

(a) (b)

FIGURE 14.45
(a) PS/NS table obtained from the Y K-maps in Fig. 14.44 and (b) the state diagram for the FSM
represented by the logic circuit in Fig. 14.43 as derived from the PS/NS table in part (a) and the output
K-map in Fig. 14.44.

14.17 ANALYSIS OF FUNDAMENTAL MODE STATE MACHINES 745

course, follows the same procedure as used in the analysis of synchronous FSMs discussed
in Section 10.13. Remember that the PS/NS table is, in reality, a tabular representation of
the state diagram, one that can be read by a computer.

An inspection of the state diagram in Fig. 14.45b indicates that no endless cycles or critical
races exist in the PSM. Notice that the race conditions from 01 -> 10 and from 11 -> 00 are
properly dealt with in the state diagram. In each case the requirements for noncritical race
conditions are satisfied in agreement with Figs. 14.19a and 14.19b. Furthermore, a cursory
inspection of the state diagram reveals that no ORGs are present. Thus, the PSM is free of
any apparent timing problems, including any active static hazards.

There still remains the problem of determining the function of the pulse synchronizer
module. Again, an inspection of the state diagram provides the information needed. As
can be seen from the state diagram, an output P can be generated only in state 10 and 11
and then only under the input condition C. A transition 10—> 11 must produce an output
since the condition C is satisfied. However, the output in state 10 during this transition
is of little or no consequence since C is an exiting condition from this state. If the FSM
enters state 11 and then exits from that state to state 00 on EC or to state 01 on ECM,
only one pulse is issued. If, on the other hand, the PSM is caused to cycle with the C
waveform between states 10 and 11 under condition EM, then a pulse is issued with each
falling edge of the C input. Thus, multiple pulses are possible only under the cyclical con-
dition ECM -o- ECM, whereas a single pulse is issued from state 11 under input conditions
EC -> ECM or EC -> EC. This assumes that C and E are never permitted to change at the
same time in exiting either from state 10 or from state 11. This information is confirmed
by the timing diagram shown in Fig. 14.46, which is the result of a logic simulation of the
logic circuit in Fig. 14.43a.

As has been previously stated, there are no active timing defects present in the PSM —
this FSM will operate as predicted. However, essential hazards can become active if unin-
tended asymmetric delays, exceeding certain magnitudes, occur at specific locations in the
logic circuit. Following the minimum requirements for E-hazard and d-trio formation given

FIGURE 14.46
Simulation results of the PSM logic circuit in Fig. 14.43(a) verifying the pulse P dependence on
inputs E, C and M, and showing no critical races, ORGs, or static hazards, all as predicted from
Eqs. (14.43) and Fig. 14.45b.

746 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

in Fig. 14.27 and considering the indirect path requirements listed in Subsection 14.10.4,
the possible E-hazards and d-trios can be easily determined. However, before continuing
in this section, the reader should review the E-hazard analysis of FSMs as discussed in
connection with Figs. 14.28, 14.29, and 14.30. With reference to the various gate numbers
and delay positions (E\, D\, E2, D2) in Fig. 14.43a, the following summarizes the ideal
requirements for activation of the E-hazards and d-trios in the PSM:

1 . The EI -hazard path is 00 -+ 10 -* 1 1 -» 01 for input conditions ECM -> ECM while
in origin state 00 with a theoretical activation delay of Af£, > (r\ + T2 + r^) on the
C input to ANDing race gate 4 (yi C) in yo at position EI , as indicated in Fig. 14.43a.
Note that the indirect path is indicated by the inequality which includes an inverter
T] = T/w Here, the indirect path must contain the initiator as either C or C , must not
be inconsistent with E, M, and must not be inconsistent with state a = 00 meaning

. This requires that the indirect path be via gate ECX (gate 2) representing yoEC

2. The Di-trio path is 00 -» 10^ 11 -» 10 for input conditions EC M^ ECM while
in origin state 00 with a theoretical delay of AtDl > (r\ + T2 + re) on the C line to
ANDing race gate 4 at position DI shown in Fig. 14.43a. This d-trio causes a glitch in
P. The indirect path for the DI -trio must contain C or C and must not be inconsistent
with E, M (they are constant) or with state 00. Thus, the indirect path and minimum
path delay required for activation of the DI -trio are the same as that for the EI -hazard
just discussed.

3. The E2-hazard path is 10 -> 11 — > 01 for input conditions ECM—> ECM while in
origin state 10 with a theoretical activation delay A?£2 > (T? -I- 15 -f r3) on the C
input to gate 4 (y\C) at position E2, the path to ORing race gate 6 in ji. Here, the
indirect path must contain C or C and must not be inconsistent with E, M (which
are constant) or with the initiating state 10 meaning y\yo. It follows that the indirect
path must be via yo through gates 7, 5, and 3.

4. The D2-trio path is 01 -> 00 -* 10 -> 00 for input conditions ECM^ ECM while
in origin state 01 with a theoretical activation delay of A?DI > T5 on the E input to
ANDing race gate 2 (ECX contains yoEC) at position D2 to y\ . In this case the indirect
path must contain E or E and must not be inconsistent with constant inputs C, M or
with the initiating state 01 meaning y\yo- Note that this d-trio causes a glitch in y\
but not in P. However, the transition 01 to 00 is delayed by the d-trio path.

Again it is emphasized that E-hazards and d-trios are potential timing defects that can
occur only if the minimum requirements are met, which includes an explicity located path
delay that exceeds the minimum required to produce the defect. Thus, potential defects 1 and
2 require delays exceeding 2rp + TMV to activate them, whereas potential defect 3 requires a
delay exceeding 3rp. Therefore, all three are very unlikely to be activated. However, defect 4
requires only a delay exceeding TP and, consequently, is more easily activated. Defects 1, 2,
and 3 are guaranteed to cause malfunction of the PSM if activated, but defect 4 will cause
only a delay in the 0 1 -> 00 transition if activated. A counteracting delay of 2rp + rINV on the
y\ feedback line essentially eliminates any possibility of defects 1 and 2 from occurring. A
counteracting delay of 3rp on the yo feedback line safely eliminates defect 3 from occurring.
To virtually eliminate the D2-trio, a counteracting delay of magnitude rp should be placed

14.17 ANALYSIS OF FUNDAMENTAL MODE STATE MACHINES 747

on the X feedback line to ANDing race gate 2. As in previous analyses, rp is used here
to represent the path delay through any gate in Fig. 14.43 irrespective of the number of
inputs.

High-level (ideal) simulation results (not shown) verify the theoretical minimum path
delay requirements for activation of the E-hazard and d-trio defects 1 through 4 previously
discussed. For purposes of simulation, the inverter delay is set at TINV = | TP, which is the
value used throughout this chapter. It is left as an exercise for the reader to run simulations
on the PSM and verify again its operation and the requirements for E-hazard and d-trio
formation.

A SECOND EXAMPLE. Now consider the nested cell logic circuit shown in Fig. 14.47.
Notice that this FSM has three state variables y>2,y\, and yo, two external inputs A and B, and
three Moore outputs W, X and Z, all active high. The basic cells are all of the set-dominant
type, and use is made of the mixed-rail outputs from these basic cells to generate the state
variable feedback signals. Also, the mixed logic external inputs A(H), A(L), #(//), and
B(L) are generated by the use of inverters at the appropriate places in the circuit (but not
shown) and are assumed to be bounce-free. Note that the circuit has the sanity connections
required for initialization into the 000 state, all according to Fig. 14.32.

Sanity(L)

- y0(H)

y0(L)

FIGURE 14.47
NS and output logic for a nested cell circuit to be analyzed, showing sanity connections required for
initialization into the 000 state.

748 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

Reading the circuit in Fig. 14.47 results in the following NS and output functions exclu-
sive of sanity inputs:

R2 = AB + y0A
Si=AB

(14.44)

In order to analyze this FSM with little difficulty, it is necessary to convert the nested cell
NS functions in Eqs. (14.44) to LPD form. This is accomplished by reversing LPD-to-SR
conversion expressed by Eq. (14.37), that is, by Y = yS + yR. As it is applied to design by
the mapping algorithm in Section 10.6, the LPD-to-SR K-map conversion expressed by this
equation is exactly the same as that for D-to-JK K-map conversion given by Algorithm 10.2
in Subsection 10.12.2. Thus, / and K are replaced by S and R, D and Q are replaced by
Y and v, and subscripts A, B, and C are replaced by 3, 2, and 1, respectively. With these
changes, the S, R functions in Eqs. (14.44) are mapped and converted to LPD K-map form
as shown in Fig. 14.48.

\y y \y y \y y
yX °0° 01 11 10 yX! °00 01 11 10 yX! °00 01 11 10

0 AB

AB

AB

AB

AB

AB

AB

AB

/S2 7R2

A+B

AB AB

A + B

v y y >. y y xViyn
yV °° 01 11 10 yX! 00 01 11 10 yX 00 01 11 10

AB

AB

AB

AB

AB

AB

AB

AB

/S

AB

AB

AB

AB

AB

AB

AB

AB

AB

AB

AB

AB

A+B

A+B

A+B

A+B

R, /Y,i "1 • 1
\ v v \ . v v \ v v
yX °00 01 11 10 yX! °00 01 11 10 yX °00 O1 11 10

AB AB AB AB

AB AB AB AB

AB

A+B A+B

AB

/

FIGURE 14.48
SR-to-LPD K-map conversion for the NS functions in Eqs. (14.44).

14.1 7 ANALYSIS OF FUNDAMENTAL MODE STATE MACHINES 749

PS Ext. NS PS Ext. NS

y2y1y0
 lnPuts Y

2
YiYo y2yiy0

 lnPuts Y2YiY

Sanity

AB

AB

300 AB
AB

AB

A§

D01 *!
AB

AB

AB

)10 *!
AB

AB

AB

AB
)11

AB

AB

0 0 0

1 0 1

0 0 0

1 1 0

0 0 0

1 0 1
0 0 0

0 1 1

0 0 0

1 1 0

0 1 1

1 1 0

0 0 0

1 1 0

0 1 1

0 1 1

AB

100 AB
AB

AB

AB

101 AB
AB

AB

AB

110 A!
AB

AB

AB

AB
111

AB

AB

1 0 1

1 0 1

0 0 0

1 1 0

1 0 1

1 0 1
0 0 0

0 1 1

1 0 1

1 1 0

0 1 1

1 1 0

1 0 1

1 1 0

0 1 1

0 1 1

(a) (b)

FIGURE 14.49
(a) PS/NS table derived from the K-maps of Fig. 14.48. (b) State diagram for the FSM in Fig. 14.47
as derived from the PS/NS table in (a), but excluding the four don't-care states.

In Fig. 14.49 the PS/NS table is constructed directly from the three Y K-maps in
Fig. 14.48. This follows exactly the same procedure as was used for the analyses of syn-
chronous FSMs in Section 10.13. Recall that the excitation table for the LPD model is the
same as that for D flip-flops, thereby permitting the analyses for both the synchronous and
asynchronous FSMs to proceed in exactly the same fashion. Observe that four of the states
in the PS/NS table (001, 010, 100, and 111) have no entrance from any other state and are
therefore don't-care states. The remaining states are those that contribute to the sequential
behavior as indicated by the state diagram in Fig. 14.49b, which is derived directly from
the PS/NS table in Fig. 14.49a and from the output functions in Eqs. (14.44). Notice also
that each state-to-state transition involves a Hamming distance of 2, meaning that two state
variables must change during the transition.

Having constructed the state diagram representing the FSM in Fig. 14.47, it can now
be analyzed for the existence of timing defects and certain other problems it may have. A
cursory inspection of the state diagram clearly indicates that no endless cycles exist. An
inspection of the state diagram and PS/NS table indicates that none of the four states of the
state diagram are used as race states, that each state-to-state transition has a valid branching
path to the destination state according to Fig. 14.19, and that each of the three outputs is
associated with a specific state in the state diagram. Therefore, no race-related problems
exist, meaning that critical races and ORGs do not form. This indicates that this FSM is

750 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

an STT state machine for which there are six different state code assignments possible by
commuting columns of the state matrix S defined in Section 14.12. Note that the race states
are the four don't-care states mentioned in the previous paragraph.

By analyzing the NS functions in Eqs. (14.44) together with the state diagram in Fig.
14.49b, it is found that one externally initiated static 1-hazard exists in each of the functions,
SQ and RQ. However, these s-hazards are of no consequence since basic cell 0 in Fig. 14.47
effectively filters them out — an important advantage of the nested cell approach to asyn-
chronous FSM design. This is demonstrated by the simulation results shown in Fig. 14.50.
Notice that the static 1-hazards that are formed in the So and RQ NS functions have no
effect on the output yo because of the filtering action of the basic cell. From the simulation
results it is found that the first y-variable to change in response to an external input change
varies from 2rp + TMV to 4rp, and that the second y-variable change for a given transi-
tion may be delayed by as much as 2rp relative to the lower limit of the first y-variable
change. This means that the STT feature of the LPD design, as illustrated by the timing
diagrams in Fig. 14.36, is lost when the nested cell design is used — a conclusion arrived at
in Section 14.13 by comparing the simulation results in Fig. 14.38 with those in Fig. 14.36.
Nevertheless, the nested cell design of the FSM in Fig. 14.47 is hazard-free and operates
reliably with only minor delays in the y-transitions. As with other simulation results given
in this chapter, rINV = ^TP, where TP is the path delay through any gate in Fig. 14.47,
including the NAND gates in the basic cells.

Were they present in the nested cell design just described, internally initiated s-hazards
would not form since the basic cells are of the set-dominant (NAND) type used with
SOP output-forming logic, which in this case is the same as POS logic. The reader may
verify these statements by reviewing the subject matter in Subsection 11.3.2. Although
Subsection 11.3.2 deals with synchronous FSMs, the conclusions arrived at here are, nev-
ertheless, valid for asynchronous nested cell designs.

Although there are no active timing problems associated with static hazards in the FSM
of Fig. 14.47, there is the potential for FSM malfunction due to the formation of essential
hazards (E-hazards), as will now be discussed. However, before beginning the E-hazard
analysis of this FSM, the reader should review the contents of Subsection 14.10.4.

By following the minimum requirements for E-hazard formation given in Fig. 14.27 and
by noting the requirements for indirect E-hazard paths listed in Subsection 14.10.4, one
can easily determine the minimum path delays required to activate any potential E-hazard
that may exist in this FSM. Thus, an inspection of the state diagram in Fig. 14.49b together
with Eqs. (14.44) and Fig. 14.47 indicate that two E-hazards can be activated under the
following conditions:

1. The EI-hazard path is a —>• c —>• d for input conditions AB -> AB while in state a
with a theoretical minimum activation delay of (A?£, + T//W) > (TJ + TO//,) on the
B line to ANDing race gate 11 (yi AB) in yo at position EI indicated by an enlarged
node in Fig. 14.47. Here, the indirect path must be via state variable yi, must not
be inconsistent with origin state a = 000 (meaning yiy iy~o) or with input A (which
is constant), and must contain the initiator as either B or B. Thus, the indirect path
must be via gate 7 (AB) and basic cell 1 in yt. Note that TCeii = 2rp, where TP is the
path delay through a gate, a two-input NAND gate in this case. From this information
one deduces that the theoretical minimum delay required to active

A
(H

)

B
(H

)

y2 (H)

Y
i(H

)

y0 (H)

S
0 (D

R
0 (L)

W
(H

)

X
(H

)

Z
(H

)

Statijc 1-hazards*^

FIG
U

R
E

 14.50
S

im
ulation results of the logic circuit in Fig. 14.47 show

ing the N
S

 and output response to input change; also show
n are the presence of tw

o externally
initiated static 1-hazards in the N

S
 functions, w

hich are filtered out by the basic cell and never affect the state variables or outputs.

Cn

752 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

the EI-hazard is AtEl > (3rp — r{Ny) = yr, where TMV = \fp as in previous
examples. Note that for Ej -hazard the first and second ^-invariants are and yo and y\,
respectively.

2. The predicted E2-hazard path is b —> d -> c for input conditions Afi —^ Afi while in
state b with a theoretical activation delay of (A?£, + T/WV) > (j? + tceii\) on the A line
to ANDing race gate 15 (y\ AB) in yo at position £2 indicated by the enlarged node
in Fig. 14.47. Again, the indirect path must be via state variable y\, but now must
contain the initiator as A or A and must not be inconsistent with the requirements of
state b = 101 (meaning j2y \ yo) or with input B, which is constant. Thus, the indirect
path must again be via gate A B (7). Therefore, the minimum path delay required to
activate the E2-hazard is exactly the same as that required to active the EI-hazard,
and the first and second y-invariants are yo and y\ as before.

From the results of a high-level (ideal) simulation on the E-hazard problem, the the-
oretical minimum activation delays for the two E-hazards and their corresponding error
transition paths are as predicted in the forgoing discussion. A counteracting delay of
^correct > (3fp — T/Ny) = yT placed on the y\ feedback line reduces the probabil-
ity for E-hazard formation to near zero. This delay is a conservative, usually safe value.
However, delays less than Af£l can also be effective as long as they meet the require-
ments of Eq. (14.18). It is left as an exercise for the reader to verify these results by
simulation.

The important point to be made here is that E-hazards can form in any FSM of three
or more states operated in the fundamental mode. This includes FSMs designed by using
either the LPD model or the nested cell model. Since both STT and one-hot FSMs fall into
this category, they are also subject to E-hazard formation. The following third example
illustrates the point.

A THIRD EXAMPLE. As a third and final example, the logic circuit in Fig. 14.51 is
to be analyzed. It is a one-hot FSM having four state variables (y^, yi, y\ and yo), two
external inputs (A and B), and three outputs (W, X, and Z). It is basically the same
FSM as in Fig. 14.47, except designed to operate as a one-hot FSM. This is done to
compare performance and E-hazard formation between the two design methodologies.
Notice that this one-hot FSM is initialized into the 0001 state via the one-hot-plus-zero
circuitry, as discussed in Section 13.5 and used in the design an asynchronous FSM in Section
14.14.

Reading the logic circuit in Fig. 14.51 yields the NS and output logic given in Eqs. (14.45).
Here, each NS function is separated into the "into" terms and one "out of" term following
Eq. (14.40). The "out of" term, it will be recalled, is necessary to maintain the state variable
of the origin state active until the transition to the destination state is complete. Each set
of "into" terms includes a holding condition term that functions as the hazard cover for the
internally initiated s-hazard that is formed between the "out of" term and an "into" term
as indicated in Eqs. (14.45). For example, an s-hazard in 73 is formed between coupled
terms J3j2jo and yiAB for which the holding condition term y3A is the minimum hazard
cover, since it contains the consensus term y^yoAB. Similarly, the s-hazard in Y\ is formed
between the "out of" term y\y^yo and the "into" term yoAB where the holding condition

14.17 ANALYSIS OF FUNDAMENTAL MODE STATE MACHINES 753

Sanity(L) Sanity(L)

y0(L)
ya(L)

W(H) = y0(H) X(H) = yi(H) Z(H) = y3(H)

FIGURE 14.51
NS and output logic for a one-hot asynchronous FSM to be analyzed, where the polarized external
inputs, A and B, are assumed to be produced by the use of inverters.

term y i A serves as the hazard cover. Thus, no s-hazards exist in this FSM.

"Into" terms

^ = y2 A B + y i A B + v3 A

Y\ =

(14.45)

y3y2\
00

01

11

10

00

0

AB

A

1

01

0

AB

A

A

11

AB

A

A

A

10

AB

A

A

1

y3y2\
1

00

01

11

10
/

00

0

1

B

AB

01

AB

1

B

B

/Y 3

11

AB

B

B

B

10

0

B

B

AR

/

\yj0 \y^nyay2\ oo 01 11 10 y3y2\
00

01

11

10

0

AB

AB

0

AB

A

A

AB

A

A

A

A

1

1

A

A

00

01

11

10
/

00 01 11 10

0

0

AB

AB

1

B

B

1

B

B

B

B

AB

AB

B

B

754 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

PS Ext. NS
Inputs Y3Y2Y1Y0

A B 0 0 0 1

0001 *! ° ° 1 1

A B 0 0 0 1

AB 0 1 0 1

A B 0 0 1 0

0010 AB ° ° 1 °
A B 0 0 1 1

AB _ J 0 1 0

AB 0 1 1 0

0100 AB ° 1 ° °
A B 1 1 0 0

^B _ 0 1 0 0

A B 1 0 0 1

/Y° 1000 *-B 1 1 0 °
(a) AB 1 0 0 0

A B 1 0 0 0

(b)

FIGURE 14.52
Analysis of the logic circuit in Fig. 14.51. (a) NS K-maps plotted from Eqs. (14.45). (b) PS/NS table
derived from the the K-maps in (a) showing only the necessary logic for the four one-hot states (1,2,
4 and 8).

The NS K-maps are easily plotted from Eqs. (14.45) and are shown in Fig. 14.52a. Notice
that each K-map contains two O's and two 1's and that a zero always appears in state 0000.
Thus, state 0000 is never used as a race state, since a properly designed one-hot FSM is
forced to cycle through a state having two 1's, one "1" from the origin state and the other
from the destination state.

The PS/NS table for this FSM can be constructed from the K-maps in Fig. 14.52a. This
is done in Fig. 14.52b, where only the one-hot states are represented. It is not necessary
to represent the cycle states (those with two 1 's), since they are easily deduced from the
PS/NS table knowing the present and next state and the nature of one-hot FSM operation.
All other states are irrelevant. The one-hot-plus-zero path is also excluded from the PS/NS
table, although it is easily deduced from the logic circuit, where it is clear that initialization
takes place into the 0001 state as discussed in Section 14.14.

Finally, the state diagram is constructed from the PS/NS table and is shown in Fig. 14.53a,
where only the four one-hot states are represented. As expected, this state diagram is
identical to that in Fig. 14.49b with one exception. The cycle states (those with two 1 's) are

14.17 ANALYSIS OF FUNDAMENTAL MODE STATE MACHINES 755

1st cycle path 2nd cycle path

Sanity

AB,

«V V ^
\ ^ T 1-4-

(b)

1st cycle path 2nd cycle path

(c)

FIGURE 14.53
Analysis of the logic circuit in Fig. 14.51 (contd.). (a) State diagram derived from the PS/NS table in
Fig. 14.52b, including no cycle paths but showing the 0000 state as required by the one-hot-plus-zero
initialization method, (b) Cycle paths for transitions a-to-c and c-to-d. (c) Cycle paths for transitions
b-to-d and d-lo-c.

deliberately omitted even though they are an integral part of the state diagram — remember,
the FSM is force to cycle through these states in transit from one one-hot state to another.
Shown in Fig. 14.53b is a set of two such cycle paths, one for the a —>• c transition and
the other for the c —> d transition. A similar set for transitions b —>> d and d -> c is given
in Fig. 14.53c. These two sets of cycle paths will later be used for the E-hazard analysis
of this FSM, but also will be useful for comparing timing performance with the previous
nested cell design of this FSM given in Fig. 14.50. Notice that the state diagram includes
the 0000 state required by the one-hot-plus-zero initialization method applied earlier in
Section 14.14. Also, note that no endless cycles, critical races, ORGs, or s-hazards exist in
this FSM.

The timing performance of the one-hot FSM is best represented by using timing diagrams
taken from simulation results. This is done in Fig. 14.54, where the NS and output response
to input change begins following initialization into the 0001 state. From an inspection of
these waveforms the cycle paths are easily established. In each case, the destination state
overlaps the origin state meaning the FSM is forced to cycle through a state with two 1 's.
This is accomplished via an "out of term together with feedback. Thus, the transition
0001-to-0010 requires that state variable y\ go active via the v0A5 term, which in turn
causes the "out of" term yQj\j2 to go inactive, followed by the state variable yo, thereby
completing the transition. The active response of state variable y\(L) to a 0 —> 1 change in
B takes a theoretical time 2ip + rINV, as can be seen from the logic circuit in Fig. 14.51. To
deactivate state variable jo requires an additional period of 2rp. Therefore, a given transition

756 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

A(H)

B(H)

W(H) = Y3(H)

X(H) = Y2(H)

Z(H)=Y1(H)

Y0(H)

FIGURE 14.54
Simulation results of the logic circuit in Fig. 14.51 showing the NS and output response to input
change for comparison with Fig. 14.50.

can be completed in no less time than 4rp + TMV- The vertical dashed lines in Fig. 14.54 are
placed for the convenience of the reader to show semiquantitatively these response times
and to make it easy to observe the cycle states required for each transition. As in all previous
examples, TP is the path delay through any gate regardless of its type or number of inputs.

A performance comparison can now be made between the one-hot and nested cell design
of this FSM. From the simulation results it is concluded that the nested cell design of this
FSM is at best only slightly faster on the average than the one-hot design. The nested cell
design will complete a given transition in the theoretical time range of (2rp + T//W) to
(4ip + T/W), whereas the one-hot design will complete a transition in no less time than
(4rp + r/yvv)- The outputs for the one-hot design, on the other hand, change concurrently
with the state variables, as indicated in the timing diagram of Fig. 14.54. In contrast, the
output response to input change for the nested cell design falls in the theoretical range of
(3rp + T/JVV) to (5rp + TINV) which, on the average, is no faster than the output response for
the one-hot design.

Both designs require NS logic for initialization purposes in accordance with Fig. 14.32.
However, there is one exception. The nested cell design can be implemented with gated
basic cells equipped with PR and CL overrides, the use of which permits initialization of
a logic 1 or logic 0. A gated basic cell is nothing more than a basic cell with the S and
R inputs introduced into a basic cell via ANDing gates with PR and CL overrides inputs
connected as in Fig. 10.5la. Clearly, no CK input is necessary or desired. If gated basic
cells are available in chip form, the CK input can be set active, which makes the ANDing
gates transparent to the 5 and R inputs.

The E-hazard analysis of this one-hot FSM is carried out in accordance with Subsection
14.10.4 and Figs. 14.26 and 14.27. Thus, two E-hazard paths are identified, one a —»• c —»• d
and the other b -» d —> c, both of which satisfy the minimum requirements for E-hazard
formation given in Fig. 14.27. As expected, these E-hazard paths are identical to those for
the nested cell design since the state diagrams in Figs. 14.49b and 14.53a are the same.
Now however, the cycle states must be taken into account in determining the race gate and
indirect path. The following summarizes the conditions under which these two E-hazards
can be activated:

1. The predicted EI-hazard path is a -> c—>• d for input conditions AB —> AB with
cycle paths shown in Fig. 14.53b. Here, the initiator is B, and the first and second
invariants are VB and y2, respectively. Note that y\ remains inactive (logic 0). From this

14.17 ANALYSIS OF FUNDAMENTAL MODE STATE MACHINES 757

information and the cycle paths, it is clear that the ANDing race gate must be y2 AB in
Yj, . If the EI -hazard is to form, a delay Af£| of sufficient magnitude must occur on the
B line to y^ such that y2 wins the race with B at the race gate. The indirect path (IP)
must not be inconsistent with the initiating state a (y~3, y2, y \ , yo) or with A (which
is constant) and must contain the initiator as B or fi, all in 72. Thus, the indirect path
must be via the p-term yo AB in 72 • Now, the minimum path delay requirement to form
the E-hazard can be easily calculated to be (AtE[+ TINV) > 2r/> . In this expression 2rp

derives from the y$AB gate and the ORing of terms in 72; *INV on the left side results
from the presence of a presumed inverter on the B line to the ANDing race gate,

in 73. If now TMV = f IP is introduced into this inequality, there results the
minimum path delay requirement A.tEj > |rp, where TP is propagation delay through
any gate, as in previous examples. Once sufficiently activated, simulation results show
that the EI -hazard error transition path is a — > 0101 ->• 1100, not the expected path
a->0101->>c-»-1100->d, and that the FSM remains stably in state 1 100 (a cycle
path state) — it never enters and stabilizes into the intended destination state 0100.
Clearly, a serious malfunction of the FSM results.

2. The predicted E2-hazard path is b —> d —> c for input conditions AB —> AB with cycle
paths indicated in Fig. 14.53c. In this case the initiator is A, the first and second
invariants are y2 and ys, respectively, and yo stays inactive. Given this information
and the cycle paths, the ANDing race gate is found to be y?,AB in F2. To cause this
E-hazard to form, a delay of at least A/£2 must exist on the A line to y2, thereby
allowing y^ to win the race with A at the race gate. The indirect path must not be
inconsistent with the initiating state b (y~3, y2, yi , yo) or with B (which is constant)
and must contain the initiator as A or A , all in ^3 . Therefore, it follows that the indirect
path must be via the p-term y\AB in 73. From this information, it is concluded that
the minimum path delay requirement to form the E2-hazard is (A?£, + T//W) > 2t>
or A?£| > (2rp — r/#v), which is exactly the same as that calculated for the EI -hazard
formation. If sufficiently activated, simulation results indicate that the error transition
path caused by E2 -hazard is b -> 1010 — »• 1 100, where again the FSM resides stably
in the cycle state 1 100, an obvious malfunction of the FSM.

The results of ideal simulations indicate that these two E-hazards begin to form under
precisely the minimum path delay conditions predicted by the forgoing analyses. Comparing
the minimum path delay requirements to activate E-hazards in the two designs, nested cell
and one-hot, it is concluded that E-hazard activation is easier in the one-hot design than in
the nested cell design by a gate delay rp. That is, to activate either of the E-hazards in the
one-hot design requires a minimum path delay of AtE > \rp, whereas for the nested cell
design a delay of AtE > y rp is required. Here, it is assumed that rlNV = | rP and that rp

is the path delay through any gate.

Remember, E-hazards are only potential timing defects that may never be activated under
normal operation of a real FSM — even if the theoretical minimum path delay requirements
are just exceeded. However, should these timing defects be sufficiently activated, malfunc-
tion of the FSM is guaranteed. By the expression "sufficiently activated" is meant that an
asymmetric delay of sufficient magnitude must exist on a specific path (noted in the analy-
sis) to cause the E-hazard to form. In a real circuit this may require exceeding the theoretical
minimum path requirement to a significant extent before malfunction occurs. Nevertheless,

758 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

the designer might be prudent to include some counteracting delay on specific feedback
lines to further ensure that these timing defects will never occur. Modern logic circuits are
now commonly constructed of very high-speed logic. If, for example, gate propagation de-
lays exist in the subnanosecond range, it does not take much of a lead delay in a specific path
to activate an E-hazard. Such delays may be caused by parasitic capacitance and resistance,
by buffers, or by gates that have abnormally large path delays.

FURTHER READING

Unfortunately, significant reference material in the area of asynchronous state machines
design and analysis is limited to a few text sources. Only the texts of Comer, Dietmeyer,
Fletcher, Kohavi, Nelson et al., Roth, Tinder, and Yarbrough devote one or more chapters to
this subject. However, some of these texts provide only a superficial treatment. Though of
an older vintage, the text of Unger is devoted entirely to this subject and still stands as one
of the better sources of information on asynchronous FSMs. However, the reader will find
this text, like those of Dietmeyer and Kohavi, somewhat difficult to grasp on first reading.
Unger's text, for example, is theorem and lemma based.

[1] D. J. Comer, Digital Logic and State Machine Design, 3rd ed. Saunders College Publishing, Fort
Worth, TX, 1995.

[2] D. L. Dietmeyer, Logic Design of Digital Systems, 2nd ed. Allyn and Bacon, Inc., Boston, Mass,
1978.

[3] W. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs,
NJ, 1980.

[4] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, New York, 1978.
[5] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and

Design. Prentice Hall, Englewood Cliffs, NJ, 1995.
[6] C. H. Roth, Fundamentals of Logic Design, 4th ed. West Publishing Co., St. Paul, MN, 1992.
[7] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,

NJ, 1991.
[8] S. H. Unger, The Essence of Logic Circuits. Prentice Hall, Englewood Cliffs, NJ, 1989.
[9] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/

St. Paul, MN, 1997.

Perhaps the most frequently cited reference on the STT approach to asynchronous FSM
design is the article by Tracey. Other than that only the texts by Dietmeyer and Unger
(previously cited) appear to be worthy of mention with regard to published work on this
subject.

[10] J. H. Tracey, "Internal State Assignments for Asynchronous Sequential Machines," IEEE Trans,
on Electronic Computers, Vol. EC-15, Aug. 1966, pp. 551-560.

The one-hot method in state machine design is apparently offered for significant further
reading in only two texts, those by Hayes and by Nelson et al. (previously cited). Both
contribute something different to the subject and are recommended. To a much lesser extent
this subject is covered in the texts by Comer, Dietmeyer, and Unger (all previously cited).

[11] J. P. Hayes, Introduction to Digital Design, Addison-Wesley, Reading, MA, 1993.

PROBLEMS 759

CK

SCK/ "\ SB™/ T S(H).

R(H) .

Q(H) .

Q(L).

(c)

FIGURE P14.1

PROBLEMS

14.1 Problem 10.3 of Chapter 10 deals with the clocked set-dominant basic cell. There,
questions are asked based on an expression that is provided without explanation of
its origin. This exercise provides the basis for this expression together with that for
the clocked reset-dominant basic cell.

Shown in Figs. P14.1a and p!4.1b are the state diagrams for the clocked set-
and reset-dominant basic cells, respectively. Notice the similarities with the state
diagrams in Figs. 14.7a and 14.9a.
(1) Use the lumped path delay (LPD) model to obtain an optimum design for

each of these asynchronous FSMs. (Hint: For the reset-dominant basic cell use
maxterm code to extract minimum cover from the EV K-map.)

(2) Implement the clocked set-dominant basic cell by using four NAND gates
(nothing else), and let the inputs be active high. Implement the clocked reset-
dominant basic cell by using two NOR gates and two AND gates (nothing else),
and let the inputs be active high.

(3) Complete the waveforms in Fig. P14. Ic for each FSM by following the examples
in Figs. 14.8 and 14.10. Keep in mind the action of clock and the nature of the
set- and reset-dominant behavior of these clocked basic cells. Verify your results
by using a simulator.

14.2 In Section 14.7 the two-input rendezvous module (RMOD) is designed by using
the nested cell model.
(a) Given the state diagram for the two-input RMOD in Fig. 14.11, design this FSM

by using the LPD model. End with an optimum logic circuit that will generate
both y(H) and y(L), as is done in Fig. 14.1 le.

(b) In what way does the LPD design of the two-input RMOD differ from that of
the nested cell design? Use the waveforms for y(H) and y(L) in Fig. 14.12 to
support your explanation.

760 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

S+R

(c) Write a generalized expression for an n-input RMOD that is designed by the
LPD model.

14.3 Presented in Fig. P14.2 are the state diagrams for the FET D flip-flop. Given the
state code assignment indicated, design this flip-flop by using the LPD model. To
do this, follow the example in Figs. 14.15 and 14.16 for the RET D flip-flop. End
with an optimum logic circuit by using six NOR gates and a single inverter (nothing
else). (Hint: Avoid using the don't care in the NS K-maps.)

14.4 In Fig. 12.12, a D flip-flop is used to design a toggle module (a divide-by-2 counter).
Shown in Fig. P14.3 are the state diagrams for the toggle module.
(a) Design this flip-flop by using the LPD model and end with a logic circuit

consisting of six NAND gates (nothing else). To do this follow the design of
the RET D flip-flop in Section 14.8.

(b) Is this design the same as that in Fig. 12.12? Explain your answer.

(c) Demonstrate the operation of the toggle module by simulating the logic circuit
of part (a).

S+R

PROBLEMS 761

A+B

FIGURE P14.4

14.5 An asynchronous FSM that has two inputs, A and B, and one output, Z, operates
as follows: Whenever B = 1, then Z = 0. But if B = 0 and Z = 0, a change in
A causes Z to be Z = 1. The output Z cannot change to Z = 0 until B changes to
B = l.
(a) Construct the state diagram for this FSM. Make certain that it is free of endless

cycles, critical races, and ORGs. (Hint: The state diagram should be one of
four states.)

(b) Use the LPD model to obtain the NS and output logic that is free of static haz-
ards. End with a gate-minimum NOR/INV logic circuit for this FSM. Assume
that the inputs and output are all active high.

14.6 In Fig. P14.4 is a three-state FSM that is to be operated in the fundamental mode.
(a) Analyze this FSM for possible endless cycles and critical races. If either of

these timing defects exists, indicate how it can be eliminated.
(b) Design this FSM by using the LPD model. To do this, find an optimum set of

SOP NS and output logic expressions. Analyze the NS logic for possible static
1-hazards. If any exist, indicate their type (internally initiated or externally ini-
tiated) and add the necessary hazard cover to the original NS expressions. To
do this, follow the examples in Subsection 14.10.3.

(c) Repeat part (b) for an optimum set of POS NS logic expressions and analyze
them for possible static 0-hazards.

(d) Based on the results of part (b), construct an optimum NAND/INV logic circuit.
Assume that the inputs arrive active high and that the output is active low.

(e) Analyze this FSM for potential essential hazards (E-hazards) and d-trios. If any
exist, give the direct and indirect paths, race gates, branching conditions, and
the theoretical minimum path delay requirements for their formation. Use a
timing diagram to illustrate their formation. On the logic circuit, show where
the counteracting delay must be placed to reduce the probability of E-hazard
formation. To accomplish all of this, follow the example in Subsection 14.10.4.

14.7 Repeat parts (b), (d) and (e) of Problem 14.6 for the design of the FSM in Fig. P14.4
by using the nested cell model. Thus, design this FSM by using two set-dominant
basic cells as the memory. To do this, follow the example in Fig. 14.11, but now with
two state variables y\ and jo- What conclusion do you come to with regard to the
presence of static hazards in the NS functions? Explain. If your results indicate that
E-hazards are possible in the nested cell design of this FSM, explain why this is so.

762 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

14.8 The state diagram for the resolver of an RET D flip-flop is shown in Fig. 14.15a, and
the resulting NS and output expressions are given by Eqs. (14.9). Two potentially
active d-trios exist in this FSM.
(a) Run a complete d-trio analysis of this FSM. To do this, give the direct and

indirect paths, race gates, branching conditions, and theoretical minimum path
delay requirements for their formation. Also, indicate what problems they could
cause should they become active.

(b) On the logic circuit, show where the counteracting delays must be placed to
reduce the probability of d-trio formation.

(c) Use timing diagrams to verify the results of part (a). Simulate if necessary.

14.9 The FSM represented by the state diagram in Fig. P14.4 is to be designed by using
the STT array algebraic approach. Change to state identifiers: 00 -» a, 01 —>• b,
and 11 -> c. To accomplish this, refer to Section 14.12 and do the following:
(a) Construct the state table (including the output) for this FSM. From the state

table, obtain the state matrix S and the destination matrix D.

(b) Given the state code assignment indicated, use the array algebraic approach to
obtain the next-state logic expressions for Y\ and YQ. Are static hazards possible
in the NS expressions? If so, give the hazard cover for any hazard that may exist.

(c) Repeat the array algebraic approach to obtain the output function, Z. Prove that
ORGs are not possible and that no static 1-hazard is associated with the output.

(d) Run a complete E-hazard analysis on this FSM (a logic circuit is not neces-
sary). If an E-hazard or d-trio exists, give the direct and indirect paths, race
gates, branching conditions, and the theoretical minimum path delay require-
ments for its formation. Also, if one of these potential defects exists, indi-
cate the magnitude of the counteracting delay and the position where it must
be placed to reduce the probability of E-hazard or d-trio formation to near
zero.

14.10 In Fig. P14.5 is the state table for an FSM that has two inputs and three outputs,
(a) Design this FSM by using the STT array algebraic approach. To do this, follow

the example in Section 14.12. Note that the FSM, as it stands, has two cycles
that must be eliminated, while retaining the algorithm, before the STT approach
can be applied. Plan to initialize the FSM into state a = 000 • • •. It is also a
requirement that state d have a state code assignment of 11 • • -. Remove any

\AB
Y m-1 yiy0\00 01 11 10

a

b

c

d

b b a a

b c a b

a c d c

b d d a

R S T

0

A

0

0

0

0

0

A

B

0

0

0

FIGURE P14.5

PROBLEMS 763

static hazards that may be present in the NS and output logic. End with a valid
optimized set of NS and output expressions for the array algebraic method. Do
not implement the circuit. (Hint: The state diagram or state table for an FSM
is useful in identifying and eliminating cycles.)

(b) Use EV K-maps and a logic minimizer (e.g., BOOZER) to obtain the NS and
output functions directly from the state diagram for this FSM. To do this, use
the LPD model together with the STT state code assignment, and include any
static hazard cover that may be necessary. Use the gate/input tally (exclusive
of inverters) to compare these results with those obtained in part (a). Are crit-
ical races and ORGs possible in either design when using the STT state code
assignments? Explain.

(c) Run a complete E-hazard and d-trio analysis on the results of part (a). If any
are present, give the direct and indirect paths, race gates, branching conditions,
and theoretical minimum path delay requirements for their formation. To do
this, follow the example in Subsection 14.10 but without a logic circuit. Also, if
E-hazards or d-trios exist, indicate the location and magnitude of the counter-
acting delays that will reduce the probability of their formation to near zero.

14.11 Note: This problem should be undertaken only after completing Problem 14.10.
(a) Use the one-hot approach to design the FSM represented by the state table in

Fig. P14.5, but only after removal of the cycles, as in Problem 14.10. End with a
set of NS and output functions as read directly from the corrected state diagram
or corrected state table obtained in Problem 14.10(a). Use the gate/input tally
to compare the results of the one-hot design with the STT design in parts (a)
and (b) of Problem 14.10.

(b) Analyze this FSM for possible static 1-hazards and ORGs . If any exist, indi-
cate their origin and the means by which they can be eliminated. Are E-hazards
possible in a one-hot design? Explain.

(c) Discuss the factors that affect the relative FSM speeds of the two designs (STT
and one-hot). Which of the two designs is expected to be the faster, if either?

14.12 Presented in Fig. P14.6 is the state diagrams for an FSM with two inputs and four
outputs.
(a) Construct the state table for this FSM and include the outputs.
(b) Use the STT array algebraic approach to design this asynchronous FSM. To

do this, find an STT state matrix S that satisfies the partial state assignment
indicated and follow the example in Section 14.12. End with a complete set of
NS and output logic expressions. Assuming that the transition a-*b cannot
occur, comment on its function in the design of this problem.

(c) Analyze the FSM for static 1-hazards and eliminate any that exist. If hazard
cover is required, first check for redundant terms then eliminate the hazards.
Assume that the inputs arrive active high. Also, prove that no ORGs exist.

(d) Construct a logic circuit for the results of parts (b) and (c), and initialize the
FSM into the 111 state as required by the state diagram. For initialization, refer
to Section 14.11.

(e) Verify the proper operation of this FSM by simulation.

764 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

A©B

FUTif AB (nm J \ t JSITi f B

FIGURE P14.6

14.13 The state diagram for an FSM having two inputs and three outputs is shown in
Fig. P14.7.
(a) Construct the state table for this FSM.

(b) Design this FSM by using the STT approach. To do this, find an STT state
matrix S that satisfies the partial state codes indicated and follow the example

Sanity

FIGURE P14.7

PROBLEMS 765

w

FIGURE P14.8

in Section 14.12. End with a complete set of NS and output logic expressions.
(Hint: This FSM can be designed by using five state variables.)

(c) Analyze the FSM for static 1-hazards and eliminate any that exist. Also, prove
that no ORGs exist. Assume that the external inputs arrive from positive logic
sources.

(d) Construct a logic circuit for the results of part (b), and initialize the FSM into
the all zero state as required by the state diagram. For initialization, refer to
Section 14.11.

(e) Verify the proper operation of this FSM by simulation.

14.14 In Fig. P14.8 is the state diagram for an FSM that has two inputs and four outputs,
and that is to be operated in the fundamental mode.
(a) Design this FSM by using the one-hot method. End with a valid set of NS and

output expressions. The design must be free of critical races, ORGs, and static
hazards. To do this, follow the example in Section 14.14.

(b) Run a complete E-hazard analysis on this FSM. If any are present, give the direct
and indirect paths, race gates, branching conditions, and theoretical minimum
path delay requirements for their formation. Also, if E-hazards or d-trios exist,
indicate the location of the counteracting delays that will reduce the probability
of their formation.

(c) What are the advantages and disadvantages to the one-hot method.

(d) Without constructing a logic circit, explain how this FSM can be initialized into
the 00001 state (state a).

14.15 Shown in Fig. P14.9 are the state diagrams for two FSMs, each with two inputs and
two outputs, that are to be operated in the fundamental mode.

766 CHAPTER 14/ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

X0Y

Sanity—*(000000)—^(a

Sanity

Qitif XY

(a)

FIGURE P14.9

(1) Design each of these FSMs by using the one-hot-plus-zero method as in Section
14.14. Thus, obtain a complete set of NS and output expressions free of critical
races, ORGs and static hazards.

(2) Construct the logic circuit for each FSM assuming that the inputs and outputs
are all active high.

(3) Verify the proper operation of each design by simulation.

14.16 Presented in Fig. P14.10 is the state diagram of an asynchronous FSM that has two
inputs and four outputs.
(a) Design this FSM by using the one-hot code method. End with a valid set of logic

equations for the NS and output functions that are free of critical races, ORGs,
and static hazards. Plan to use the one-hot-plus-zero approach to initialization
such that the next transition is into state a.

(b) Construct the p-term table for this FSM that is suitable for a PLA implementa-
tion. Assume that the inputs are active high. Take the outputs as P(H), Q(H),
R(L), and S(L). What are the minimum dimensions for the PLA? Can (or
should) a ROM be used to implement this FSM? Explain.

14.17 (a) Construct the state table for the asynchronous FSM in Fig. P14.10.

Pit if XY

PROBLEMS 767

A0B

SIT if AB
Pit if AB

A+B

FIGURE P14.10

(b) Find the minimum number of state variables required to design the FSM in
Fig. P14.10 by the STT array algebraic approach. (Hint: Fewer than eight
state variables are required.) Given this result, which approach to design of this
FSM (the one-hot or STT) would appear to be the most practical? Base your
answer on the hardware commitment that is expected for each of these design
methods.

(c) Obtain a suitable state matrix S and the corresponding destination matrix D
from the results of parts (a) and (b).

(d) Obtain a complete set of NS and output functions from the results of parts
(a), (b) and (c). What size PLA would be required to implement these results?
(Hint: For the state assignment map use the format y^y^/y^y?, \\y2/yiyo, similar
to that used in Fig. 5.7 except with third-order submaps.)

14.18 The following NS and output logic is read from an FSM that is designed to operate
in the fundamental mode. Here, the inputs are A and B and the outputs are X and Z.

+AB

Yl=ylAB + AB

Yo = y2AB + AB + yQAB + AB

X = y2AB + yiy0AB

Z = yiAB +y}y0AB

(a) Construct the state diagram and state table for this FSM. Identify any don't-care
states that are associated with it.

768 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

FIGURE P14.11

(b) From the state diagram, determine if this FSM has any obvious transition or
output problems. Does it satisfy the basic rules for the proper operation of a
fundamental mode FSM?

(c) Check the FSM for possible endless cycles, critical races, and static hazards in
both the NS and output logic. If any exist, indicate their origin.

(d) What type of FSM (LPD, STT or one-hot) is this FSM?

14.19 Shown in Fig. P14.ll is the logic circuit for a fundamental mode FSM that has
been designed by using the nested cell model.
(a) Analyze this FSM. To do this, first construct its state diagram by following the

example in Figs. 14.47, 14.48, and 14.49. Analyze this FSM for critical races,
ORGs, and static hazards. If any exist, indicate their type, origin, and the means
to eliminate them.

(b) Run complete E-hazard and d-trio analyses on this FSM. If any are present, give
the direct and indirect paths, race gates, branching conditions, and minimum
path delay requirements for their formation, and indicate the location of the
counteracting delays that will reduce the probability of their formation.

14.20 The following NS and output logic is read from an FSM that is designed to oper-
ate in the fundamental mode. Here, the inputs are A and B and the outputs are P
and Q.

F3 = y2AB + y0AB

Y2 = y3AB +yiAB + y0AB +J2j3ji + yiAB + y2AB

Y\ = y^AB + y2AB + y0AB + yiy3y0 + y\B

Y0 = yl AB

y2AB

PROBLEMS 769

HIT if_D
Lit if D

FIGURE P14.12

(a) Analyze this FSM by constructing its state diagram. What approach to FSM
design is this? Check for any timing problems it may have. If any exist, indicate
their type and origin.

(b) Run a complete E-hazard analysis following the example in Figs. 14.51 through
14.53.

14.21 The state diagram in Fig. P14.12 represents the selector module. It is the function
of this module to steer input signals, C, to either the H (high) or L (low) output,
depending on the activation level of input D.

(a) Use both the LPD model and nested cell model to obtain an optimal set of NS
and output functions for the selector module that are free of static hazards. Is
this also a valid STT design? Explain.

(b) Analyze this FSM for possible E-hazards and d-tios. What do you conclude
from this analysis?

(c) Construct the logic circuit from the results of part (a). Assume that the inputs
arrive from positive logic sources and that the outputs are issued active high.
Initialize the FSM into the 00 state as indicated.

(d) Verify the proper operation of this FSM by simulation.

14.22 An asynchronous FSM is to be designed that will detect the direction of rotation of a
circular shaft as indicated in Fig. P14.13. Two light beams are caused to fall incident
on the end surface of the shaft half of which is reflecting and half nonreflecting. Two
photocells, A and fi, are located at the proper angle of reflection relative to the two
beams so that whenever a beam strikes a reflecting surface the photocell receiving
the reflected beam will generate a voltage signal. For the shaft position shown in
Fig. PI4.13, the logic input to the FSM is AS = 01. It is a requirement of this FSM

770 CHAPTER 14 / ASYNCHRONOUS STATE MACHINE DESIGN AND ANALYSIS

Light beams

Non-reflecting surface

Asynchronous
FSM

CCW(H)

Reflecting surface —' — Photo cells

FIGURE P14.13

that the output CCWbe active any time the shaft is rotating counterclockwise, and
be inactive if rotating clockwise (CW). Note that the direction of rotation is taken
with respect to the front face of the shaft.
(a) Use the LPD model to design an optimum logic circuit for this FSM that is

free of endless cycles, critical races, ORGs, and static hazards. [Hint: Only
four states are required. Also, the output CCW must be issued from each state
conditional on a single input variable resulting in a two-level output function
to which hazard cover must be added.]

(b) Discuss the limits of this design relative to shaft oscillation sensitivity. To do
this, sketch the shaft face orientations that have the least and most light beam
sensitivity to possible rotational oscillations.

(c) Analyze this FSM for possible E-hazards and d-trios. If any are present, give
the direct and indirect paths, race gates, branching conditions, and minimum
path delay requirements for their formation, and indicate the location of the
counteracting delays that will reduce the probability of their formation. If they
cannot exist, explain why.

14.23 The block diagram in Fig. PI4.14 illustrates the handshake interface between a call
module and a digital system. It is the function of the call module to issue a signal, r,
to the system indicating that an access request signal has been made on one of two
lines, REQX or REQY, but not on both. Then, if the system acknowledges receipt
of the request by sending back a signal ACK to the call module while the request is

REQX
Call Module
(subsystem)

REQY

FIGURE P14.14

PROBLEMS 771

active, the call module will steer that access request (either REQX or REQY) to its
respective output, X or Y. But this can happen only if that the "other" request line
is inactive at the time ACK is received. Thus, REQX-^ X if r is sent to and ACK is
received from the system when REQY is inactive. Similarly, REQY ̂ Y if r is sent
to and ACK is received from the system when REQX is inactive. A second request
can be granted access if ACK is active following withdrawal of the first request.
(a) Construct the two state diagrams for the call module. (Hint: One version of the

call module consists of two RMODs of the type shown in Fig. 14.11 together
with the appropriate NS and output logic.)

(b) Construct the logic circuit for the call module by using two RMODs, an XOR
gate, and two NOR gates (nothing else). Assume that the request signals, REQX
and REQY, arrive active high, and that the ACK input is active low. Let the out-
puts be issued active high.

(c) Design the entire call module as a single two-state FSM. In this version of the
call module, a repeating contender, REQX or REQY, can be granted access to
the system without an active ACK signal prior to each grant of access. The call
module version of parts (a) and (b) requires that an ACK signal be received from
the protected system before access can be granted during a request. Consider
both the LPD and nested cell design of this version of the call module. Choose
the design that yields the simpler implementation of the module. Remember to
eliminate any static hazards that might exist in either design.

14.24 (a) Repeat parts (b), (d) and (e) of Problem 14.6 for the design of the FSM in
Fig. P14.4 by using two RMODs as the memory. (Hint: First design for the
nested cell model and then convert to the RMOD design. Simple conversion
logic can be obtained by comparing state transition tables.) What conclusion
do you come to with regard the presence of static hazards in the NS functions?
Explain. If your results indicate that E-hazards or d-trios are possible in this
design, explain why this is so and give the information required by part (e) of
Problem 14.6.

(b) Verify the proper operation of this design by simulation.

14.25 At the discretion of the instructor, use the software ADAM (see Appendix B) in-
cluded on the CD-ROM bundled with this text to work any of the following STT
array algebraic approach problems: 14.9,14.10,14.12,14.13,14.17,14.21,14.22.
A readme.doc accompanying this software explains its use. Note that an assign-
ment such as 14.25/14.21a would require the use of ADAM to work only Part (a)
of Problem 14.21.

14.26 At the discretion of the instructor, use the software A-OPS (see Appendix B) in-
cluded on the CD-ROM bundled with this text to work any of the following one-hot
approach problems and include their VHDL descriptions: 14.11, 14.14, 14.15,
14.16. A readme.doc accompanying this software explains its use. Note that an
assignment 14.26/14.15b would require the use of the A-OPS to work only circuit
(b) of Problem 14.15. If necessary, refer to Section 16.4.

This page intentionally left blank

CHAPTER 15

The Pulse Mode Approach
to Asynchronous FSM Design

15.1 INTRODUCTION

Asynchronous FSMs that are designed to operate with nonoverlapping pulsed inputs and that
use "data-triggered" memory elements are called pulse mode sequential machines. The pulse
mode approach offers a simple and reliable means of designing clock-independent FSMs,
but at the price of greatly restricted input signal conditions. Chapter 14 dealt exclusively with
asynchronous FSMs that are designed to operate in the fundamental mode. The fundamental
mode, it will be recalled, is characterized, in part, by overlapping inputs signals and the
potential to form certain types of timing defects such as endless cycles, critical races, and
essential hazards, any of which, if present and active, is guaranteed to cause malfunction
of the FSM. Furthermore, fundamental mode FSMs can also cause malfunction due to
the presence of static hazards in the NS-forming logic. But like synchronous FSMs and
unlike fundamental mode FSMs, properly designed pulse mode machines cannot have
any of these timing defects — no endless cycles, no critical races, no essential hazards.
Furthermore, pulse mode FSMs cannot malfunction because of static hazards in the NS
logic. Thus, pulse mode FSMs would seem to have all the advantages of synchronous
FSMs, but with none of the timing defects of fundamental mode machines. However, this
apparent advantage is offset by the severe restrictions placed on the input signals. In fact,
it is for this reason that treatment of the pulse mode approach to FSM design has been
deferred until this time.

15.2 PULSE MODE MODELS AND SYSTEM REQUIREMENTS

The generalized (Mealy) model for pulse-mode FSM design is illustrated in Fig. 15.1. It is
unique in the sense that its memory stage is composed of data-triggered toggle modules that
include memory elements of the type featured in Fig. 12.12 or T flip-flops set to the toggle
mode. Thus, data-triggered toggle modules are, in effect, undocked memory elements. The
degenerate forms of this model follow those shown for synchronous FSMs in Figs. 10.3
and 10.4.

773

774 CHAPTER 15 / THE PULSE MODE APPROACH

Non-

, . P, IInput Pulses

FIGURE 15.1
Mealy's (general) model for an asynchronous FSM that is designed to operate in the pulse mode.

The inputs to pulse mode FSMs must be nonoverlapping pulses that are at least minimally
separated such that the leading edge of one pulse is sufficiently separated from the trailing
edge of any previous pulse. Examples of such pulses are shown in Fig. 15.2. Here, the
positive pulses are shown to have active durations (pulse widths) with no upper bound but
with a lower limit sufficient to trigger the flip-flop memory elements and initiate a state
change. Runt pulses must not be permitted since their effect on the flip-flops is unpredictable.
It should be understood that the "at least minimally separated" restriction placed on these
input pulses is governed by the stability criteria given by Eqs. (14.3) and (14.4). That
is, it is equivalent to the requirement that a second input to a fundamental-mode circuit
not be permitted to change until the stability criteria y/(0 = ^/(O (for &U j) is satisfied
following a previous input change. In fact, proper operation of any FSM (synchronous or
asynchronous) can be ensured only if all memory elements of the FSM achieve stability
prior to any successive change of an input logic level. The complement of the pulse trains
shown in Fig. 15.2 are examples of negative pulses that have no upper bound on their
inactive durations but, nevertheless, must be minimally separated.

15.2.1 Choice of Memory Elements

The choice of memory elements for pulse mode FSM design is quite limited. For rea-
sons made clear in the subsequent discussions, it is best that triggering occurs on the
trailing edge of the data input pulses. Thus, positive (0 -> 1 —> 0) pulses of unrestricted
active duration from positive logic sources require the use of FET toggle modules, while

XO(H) TLJ L
FIGURE 15.2
Examples of nonoverlapping and at least minimally separated positive pulses having active durations
with no upper bound.

15.2 PULSE MODE MODELS AND SYSTEM REQUIREMENTS 775

External
inputs

(Active High)

FIGURE 15.3
Data-triggered memory elements required for pulse mode FSMs that receive pulses having no upper
bound on pulse width, (a) FET toggle modules required for positive pulses from active high sources,
(b) RET toggle modules required for negative pulses from active low sources, (c) Master/slave memory
element used for positive pulses from active high sources.

negative (1 —>• 0 —> 1) pulses of unrestricted inactive duration from negative logic sources
require RET toggle modules. The various memory elements recommended for use in pulse-
mode designs are shown in Fig. 15.3. Use of the toggle modules shown in Figs. 15.3a and
15.3b are the simplest and most reliable memory elements that can be used for this pur-
pose. These memory elements require no upper bound on pulse width. As a lower bound,
the data pulses must be fully developed enough to trigger the flip-flops and initiate a state
transition — also a requirement for synchronous state machines.

The master/slave configuration in Fig. 15.3c is an acceptable memory element for pulse-
mode designs and, like the toggle modules of Figs. 15.3a and 15.3b, it triggers on trailing

776 CHAPTER 15 / THE PULSE MODE APPROACH

edge of the data pulse. However, use of the master-slave memory element requires a lower
bound on the data pulse width determined by

&tpuke > (NS logic + Master stage). (15.1)

Thus, pulses of active duration less than this lower bound may not be picked up. Because
the master-slave configuration requires more hardware, is slower, and places a significant
lower bound on pulse width, it is less desirable for use as a memory element than toggle
modules. To use the master-slave configuration requires the use of the excitation table for
the basic cell in Fig. 10.15c together with the mapping algorithm in Section 10.6 to obtain
the NS logic in S and R form. Consequently, the data inputs will be present in both the S
and R NS logic functions to the master stage and as inputs to slave stage D flip-flop via the
multiple input NOR gate.

Under certain conditions the basic cell can be used solely as a memory element in pulse
mode designs. However, it is not a good idea to use a basic cell for this purpose, since
triggering must occur on the leading edge of the data pulse. This requires that delays be
placed on the feedback lines and that an upper bound be placed on the active duration of
the positive data pulses. Exceeding this upper bound risks the activation of more than one
memory element in response to an input pulse. Sufficient overlap of active memory elements
in a pulse mode FSM is tantamount to introducing overlapping pulses and, consequently,
causes the malfunction of that FSM. To use basic cells solely as the memory in pulse-mode
designs requires the application of the nested cell model as indicated in Fig. 15.4. Here,
delays are required on all feedback lines if activation of more than one basic cell memory
element is to be avoided. As a conservative limit, the pulse widths are limited to an upper
bound &tpuise given by

&tpuise < (A.tj + best-case path delay through the system), (15.2)

External

(IP)

p

Next State
Forming

Logic

NS

Atj

'

>
Basic
cells

FH
Output

Forming
Logic

Outputs
(OP)

Required
feedback delays

FIGURE 15.4
Generalized nested cell model of a pulse mode FSM for which delays in the feedback lines are required
to avoid simultaneous activation of memory elements.

15.3 OTHER CHARACTERISTICS OF PLUSE MODE FSMs 777

where Af, represents the feedback delays. The "best case path delay through the system"
is a quantity that usually falls in the range of 2rp to 3rp for most systems, where TP is
an average gate path delay. The lower limit is, as before, the requirement that the pulse
be of sufficient strength to initiate a state change. This lower limit together with the upper
limit expressed by Eq. (15.2) lead to what is called a bounded pulse. The bounded pulse
requirement places a severe restriction on the pulse widths that a nested cell design can
properly accept without malfunction. It is for this reason that the nested cell approach to
pulse mode FSM design is of little or no practical importance. Should the nested cell model
be used for this purpose, the NS functions must be generated by combining the excitation
table for the basic cell given in Fig. 10.15c with the state diagram for the FSM by using
the mapping algorithm in Section 10.6. Remember that for such designs, Eq. (15.2) must
always be satisfied.

To summarize, all memory elements in a pulse mode design require nonoverlapping pulse
waveforms of sufficient width to initiate a state transition and that are at least minimally
separated. But it is only the memory elements in Fig. 15.3 that require no upper bounds to
the pulse width. Both the toggle module and master/slave memory elements are triggered
on the trailing edge of the data pulse and require no delays in the feedback lines. In contrast,
the basic cells in Fig. 15.4 are triggered on the rising edges of the data pulses and require
feedback delays and bounded data pulse widths. All pulse mode designs require that the data
pulse widths be of sufficient duration as to cause a state change. Because of the bounded
data pulse width requirement placed on the use of the nested cell model, this model is
not recommended for use in the design of pulse mode FSMs. Furthermore, master-slave
memory elements are significantly slower, require more hardware, and place a larger lower
bound on the data pulse width than toggle modules. Consequently, the toggle modules of
Figs. 15.3a and 15.3b are the memory elements of choice. The examples and discussions
presented in this chapter will justify this fact. The examples will also utilize positive data
pulse trains exclusively.

15.3 OTHER CHARACTERISTICS OF PULSE MODE FSMs

There are a number of interesting and advantageous pulse mode characteristics that result
from the use of data-triggered toggle modules as memory elements:

1. Branching conditions in a pulse mode state diagram consist of single variables or
ORed single variables that are always uncomplemented (for positive pulses) or always
complemented (for negative pulses) — never mixed! Unconditional branching in a
state diagram is strictly forbidden for obvious reasons.

2. Any state coding scheme will suffice, but, since toggle modules are used, a binary
sequence is preferred where possible to minimize the NS logic. Recall the design of
binary counters in Section 12.3.

3. The NS logic is obtained by combining the excitation table for the T flip-flop in
Fig. 10.37c with the pulse mode state diagram by using the mapping algorithm in
Section 10.6.

4. Since states in a toggle module design cannot toggle to themselves, only outgoing
single variable or ORed single variable (e.g., X + Y) branching conditions need be

778 CHAPTER 15 / THE PULSE MODE APPROACH

considered in mapping the NS logic. Thus, holding conditions should not be indicated
in a state diagram or state table.

5. The sum rule in Eq. (10.3) is never observed — it has no meaning in the state diagram
for a pulse-mode FSM. However, the mutually exclusive requirement is uniquely
satisfied by the nonoverlapping inputs requirement (see Problem 10.24).

6. When it is appropriate to do so, outputs should be made conditional on the excit-
ing branching variable. Use of conditional (Mealy) outputs results in two important
benefits involving exclusively those outputs (explanations are given later) in which

(a) Output race glitches (ORGs) are not possible.
(b) Static hazards in the output forming logic are not possible.

These benefits are not guaranteed if unconditional (Moore) outputs are used.

7. As stated earlier, pulse mode designs cannot have endless cycles, critical races, or
essential hazards, and cannot have problems due to static hazards in the NS logic
functions.

8. Initialization methods are exactly the same as those for synchronous FSMs discussed
in Section 11.7.

9. Debouncing of inputs from switches is absolutely necessary since pulse-mode circuits
are highly sensitive to transient signals of sufficient duration and strength.

10. The inputs to pulse mode FSMs need not be synchronized since the requirement of
nonoverlapping data pulses, at least minimally separated, is a form of synchronization.

11. Properly designed and operated pulse mode FSMs cannot go metastable and hence
have an infinite MTBF, assuming that the data pulses are of sufficient duration and
strength (not runt pulses).

The 11 characteristics of pulse mode FSMs just given should seem impressive when
compared to those of synchronous state machines and asynchronous FSMs that are operated
in the fundamental mode. In fact, it appears that pulse mode FSMs have all the benefits
of synchronous and asynchronous fundamental mode machines, but with none of their
problems. This is true! However, the price to be paid for this "perfection" is the severe
restrictions that are placed on the input signals — they must be nonoverlapping pulses that
are at least minimally separated.

The reason why pulse mode FSMs with toggle modules and Mealy outputs cannot have
either ORGs or static hazards in the output logic is because triggering occurs on the trailing
edge of the data pulse. This means that the requirements for ORG and static hazard formation
cannot be met, since all data inputs are inactive at the time the transitions occur, assuming
positive data pulses. Remember that to initiate an externally or internally activated static
hazard, the data variable must be active for positive pulses. But since the data variable
is always inactive immediately following a transition, externally initiated s-hazards are
unconditionally eliminated and internally initiated s-hazards cannot form if Mealy outputs
are used. Using the same argument, ORGs are not possible for an output conditional on an
active exciting input since, again, the transition occurs only after the input goes inactive
(trailing-edge triggering).

If Moore outputs are used with toggle module memory elements, ORGs and internally
initiated s-hazards in the output functions are possible. Because of the trailing-edge trigger-
ing of the toggle modules, such logic noise (if present) cannot be filtered with D flip-flops

15.4 DESIGN EXAMPLES 779

as in synchronous FSMs. An existing ORG must be eliminated by altering the state code
assignments to remove the race condition causing the ORG. Static hazards can be eliminated
only by adding hazard cover as in Section 11.3.

15.4 DESIGN EXAMPLES

In this section three pulse mode FSMs of varying complexity will be designed by using
toggle modules as memory elements and will feature different implementations of the NS
and output forming logic. For this purpose use will be made of discrete logic, a ROM, and
aPLA.

A SIMPLE PULSE MODE SEQUENCE RECOGNIZER. Consider the state diagram for a sim-
ple sequence recognizer in Fig. 15.5a that is suitably documented for a pulse mode design. In
this case, toggle modules are to be used as the memory elements. Notice that the branching
conditions are single uncomplemented variables, as required for nonoverlapping positive
data pulses, and that no holding conditions are shown. Holding conditions have no relevance
in a pulse mode design that uses toggle modules as memory elements, since a given present
state variable cannot toggle to itself. A single output exists in state 10 and is conditional on
the exciting condition Y. Shown in Figs. 15.5b and 15.5c are the excitation table for a T
flip-flop and the resulting NS and output K-maps, from which the minimum functions are
found to be

TA = BX + AY, TB = AX + BY, and Z = AY. (15.3)

The entry in cell 1 for TB is X + Y because bit B must toggle in that state on the falling
edge of either an X pulse or a Y pulse. Note that the term AY is a shared PI between TA

and Z, and that the FSM is initialized into the 00 state.

Sanity

o -» o
0 -» 1
1 -» o

0
1
1
0

1 I Y <D I
V

0

(, Y

0

*)

(b) (c)

FIGURE 15.5
Design of a simple sequence recognizer by using the pulse mode approach, (a) State diagram applicable
to a pulse mode design, (b) Excitation table for the T flip-flop, (c) NS and output K-maps and minimum
cover.

780 CHAPTER 15 / THE PULSE MODE APPROACH

B(H) 1
Y(H)
A(L)
X(H)

FIGURE 15.6
Discrete logic implementation of Eqs. (15.3) representing the pulse mode FSM in Fig. (15.5).

The logic circuit for the simple pulse mode sequence recognizer of Fig. 15.5 is shown in
Fig. 15.6. Here, discrete logic is used to implement the NS and output functions represented
by Eqs. (15.3). The FSM is initialized by a Sanity(L) input to the CL asynchronous overrides
of the two toggle modules. Notice that the NS logic is presented active high to the FET
toggle modules, a requirement for trailing-edge triggering by positive pulses.

The operation of this pulse mode FSM is illustrated by the timing diagram in Fig. 15.7,
which is the result of a simulation. The vertical dashed lines are positioned so that the NS,
PS, and output responses to the data pulses can be easily compared. The results show that
the time elapsing between input and NS pulses is always 2rp, and that the rise and fall edges
of the PS pulses lag the corresponding data input pulse edges by 4rp and 5rp, respectively.

Jl

Z(H),

FIGURE 15.7
Simulation results for the pulse mode logic circuit in Fig. 15.6 showing the PS, NS, and output
responses to input changes (compare by using vertical dashed lines).

15.4 DESIGN EXAMPLES 781

X(H) *

Y(H) *

Digital Combinational
Lock

— ̂ LOCK(H)

^OPEN(H)

X+Y
(a)

i I
X X Y X Y
. . . | , LOCKiT(000

LOCK LOCK LOCK LOCK OPEN

(b) (C)

FIGURE 15.8
Pulse mode design of a digital combinational lock, (a) Block symbol circuit symbol, (b) input pulse
sequence showing outputs, (c) Suitably documented state diagram.

The time between input pulse change and output response is always ip and the lower bound
of input pulse width is 2rp. Notice that the output pulse width is the same as that of the Y
pulse causing it. Here, as before, rp is the path delay through any gate, regardless of the
type or number of inputs.

A PULSE MODE DIGITAL COMBINATIONAL LOCK. Shown in Fig. 15.8 are the block
circuit symbol, the input pulse sequence required to open the lock, and a state diagram
appropriately documented for the pulse-mode design of a digital combinational lock. The
two inputs, X and Y, are assumed to be nonoverlapping pulses of sufficient strength and
duration and to arrive from positive logic sources. Furthermore, it is assumed that these
inputs are produced by debounced, interlocked mechanical switches that cannot be activated
simultaneously. Simultaneous activation of the switches would violate the fundamental
premise on which the pulse mode is based — that is, that the input pulses be nonoverlapping
and at least minimally separated from each other. It is understood that the logic used in the
implementation of the digital combination lock is very much faster than the mechanical
switches delivering the input signal pulses. Another requirement is that the two outputs be
free of all logic noise and be delivered active high to the next stage. Finally it is required
that this FSM be designed by using toggle modules as the memory and by using a ROM to
implement the NS- and output-forming logic.

The ROM program table for this pulse mode FSM is given in Fig. 15.9. Notice that the
X, Y = 1, 1 conditions are absent in this table, since they are irrelevant in a pulse-mode
design — the pulses are never permitted to overlap. Also, observe that don't-care states 101,
110 and 111 are presented as nonoutput states to avoid possible ORGs. The input conditions
for these states are arbitrarily taken to be logic 0 although they are actually irrelevant as are
the corresponding NS function values. The minimum ROM size required for this FSM is
25 x5.

Implementation of the ROM program table is shown in Fig. 15. lOa by using three toggle
modules and a ROM of the minimum required dimensions. The outputs are delivered directly
from the ROM free of logic noise. The operation of this digital combination lock is illustrated

782 CHAPTER 15 / THE PULSE MODE APPROACH

1 XV-/IVI II I^UtO

f "\

PS

<4 "3 I2 «1 'o

A B C XV

0 0

0 0 0 0 1

1 0

0 0

0 0 1 0 1

1 0

0 0

0 1 0 0 1

1 0

0 0

0 1 1 0 1

1 0

1 *— '

/
NS

Y Y Y'4 '3 '2
TA TB Tc

0 0 0

0 0 0

0 0 1

0 0 1

0 0 0

0 1 0

0 1 0

0 1 1

0 0 0

0 1 1

0 0 0

1 0 0

IVI WUIWUIC

Y,

LOCK

1

1

1

1

1

1

1

1

1

1

1

1

>

A

Y0

OPEN

0

0

0

0

0

0

0

0

0

0

0

0

1 \WIVI II I|JUIO

A
f \

PS

'4 >3 >2 'l >0

A B C X Y

0 0

1 0 0 0 1

1 0

0 0

1 0 1 0 0

0 0

0 0

1 1 0 0 0

0 0

0 0

1 1 1 0 0

0 0

r^^ivi wuipuu:

/

NS

Y Y Y YI4 I3 I2 T 1

TA TB Tc LOCK

1 0 0 1

0 0 0 0

0 0 0 1

(j) (j) fy 0

(j) <J) (]) 0

(ft (j) (j) 0

(f) (/) (f) 0

^ (f) ^) 0

(f) $ (f) 0

(f) (j) (f) 0

(j) (j) (f> 0

(f) <p (f) 0

>

N

Y0

OPEN

0

1

0

0

0

0

0

0

0

0

0

0

FIGURE 15.9
ROM program table obtained directly from the state diagram in Fig. 15.8c showing all input conditions
except the X, Y = 1, 1 conditions, which are irrelevant in a pulse-mode design.

in Fig. 15.1 Ob for a sequence of input pulses leading to the output OPEN. For simplicity, no
logic delays are shown. Vertical dashed lines are placed on the trailing edges of the input
pulses for the convenience in reading the timing diagram. Notice that the output LOCK
is maintained active until OPEN is activated as required by the ROM program table. This
is important only if it is assumed that the LOCK/OPEN mechanisms are such that one or
the other of the two outputs must be active at all times, but never both inactive or both
active.

DESIGN OF A CANDY-BAR VENDING MACHINE. As a third and final example, a candy-
bar vending machine controller is designed by using the pulse mode approach. The candy
bars each cost 40 cents (a bargain these days) and are dispensed automatically by the ma-
chine after correct change has been inserted. The vending machine accepts nickels (N),
dimes (D), and quarters (Q) only. It consists of a controller (CONTROLLER), a coin re-
ceiver (CR), an electromechanically operated coin changer (CC) for nickel return (RN),
a 4-bit accumulator (ACC), a 4-bit parallel loadable down counter (CNT), a comparator
(COMP) to keep account of the coin exchange, an electromechanically operated candy
bar drop mechanism (CBD), and a price strapping unit (PSU) to set the price of the
candy. These components and their interconnections are illustrated in the block diagram of
Fig. 15.11

15.4 DESIGN EXAMPLES 783

EN(L)-C

X(H)

G
Y

Y

Sanity(L)

2 5 x 5
ROM

Y

Y

LOCK(H)

OPEN(H)

TB(H)

TA(H)

I

>

8

A

o-

o-

o-

X(H)_J

Y(H)

A(H)

B(H)

C(H)

LOCK(H)

OPENfm

r

I 1

|

I

rn

i 1

LJ

r~i

i

(a) (b)

FIGURE 15.10
(a) ROM implementation of the pulse mode FSM represented by the program table in Fig. 15.9.
(b) Timing diagram leading to an output OPEN and excluding ROM and memory delays.

Only the controller is designed in this chapter. This will be accomplished by using FET
toggle modules as the memory and by using a PLA to implement the NS and output logic.
The controller must accept discrete nonoverlapping pulses generated by coin insertion and
must generate well-developed output signals that are free of logic noise. The controller
must be initialized into an origin state and must return to that state once the exact payment
has been received by the vending machine and a candy bar has been dispensed to the
customer.

The state diagram for the controller of the candy-bar vending machine is provided in
Fig. 15.12 together with the meanings of the abbreviations used in the state diagram and in
the block diagram of Fig. 15.11. Notice that the exiting condition from state b is CFR not
CIR. CFR, meaning coin free of receiver, is a positive pulse in keeping with the requirement
of a positive pulse mode design. Except for the output RN, all outputs are conditional
(Mealy) outputs that, with the state assignment given, ensure that no ORGs will be produced.
The controller is to be initialized into the 000 state by using a sanity circuit of the type shown
in Fig. 11.28.

Though the details of the data path devices are not needed at this time, it is important to
have a general understanding of their function within the system so that the controller can
be properly designed. With reference to Figs. 15.11 and 15.12, the following provides this

> Adder/PlPO Register

FIGURE 15.11
Block diagram for a candy-bar vending machine showing controller and data path devices.

Sanity
Inputs

CIR -- Coin in receiver

CFR -- Coin free of receiver

<40<2 -- Underpayment

>40<2 -- Overpayment

=40 <2 -- Exact payment

CCRDY -- Coin changer ready

C B D R D Y - - C a n d y bar drop ready

Outputs

DCB -- Drop candy bar

DECACC -- Decrement accumulator

CLRACC -- Clear accumulator and counter

CLACCiT if CBDRDY RN1T RN - Return nickel
DECACCiT if CCRDY

FIGURE 15.12
State diagram and definitions for the pulse mode design of the candy-bar vending machine controller
shown in Fig. 15.11.

784

15.4 DESIGN EXAMPLES 785

general understanding:

• Coins are placed in the slots of the coin receiver (CR) and the 4-bit adder in the
accumulator is automatically updated.

• Each quarter (Q), dime (D), or nickel (N) that is inserted into the coin receiver
(CR) is encoded according to the number of nickels: N = 0001, D = 0010, and
Q = 0101.

• The accumulator's PIPO register stores the current coinage count and the 4-bit
counter is parallel loaded only after each coin has cleared the receiver (CFR).
Thus, the register is triggered and the counter is parallel loaded on the trailing
edge of the CFR pulse.

• The counter should be a data-triggered up/down binary counter with asyn-
chronous parallel load as detailed in Fig. 13.46, but set for down count with
Up = 0(H).

• The output of the counter is compared in the comparator (COMP) with the value
of a candy bar set by the price strapping unit (PSU), and the result (<40$,
=40$ or >40$) is sent to the controller and to the accumulator's adder. In this
case the PSU is set at 40 cents = 1000 (eight nickels).

• If an underpayment (<40$) signal is received by the controller, the system
awaits the insertion another coin. If overpayment (>40$) is received, a nickel
is returned (RN) to the coin changer (CC) and the accumulator is decremented
(DECACC) when the CC is ready (CCRDY); and this process is repeated until
the exact amount is reached. When the exact amount (= 40$) is received by the
controller, a candy bar is dropped (DCB) and no nickel is returned.

• Immediately following the dispensing of a candy bar and after the candy bar
drop is ready (CBDRDY), the accumulator and counter are cleared (CLRACC)
and the controller is returned to the initialization state, 000. The controller is
now ready to repeat the process.

In Fig. 15.13 are given the NS and output logic K-maps and minimum cover for the
pulse-mode FSM represented by the state diagram in Fig. 15.12. It is the plan to implement
the NS and output logic of this FSM by using a PLA so that a comparison can be made with
the previous two examples where discrete logic and a ROM are used for the NS and output
logic. Recall that it is strongly advisable, but not mandatory, to use minimum or reduced
cover for a PLA implementation of the NS and output logic. ROMs must use canonical
(minterm) data but not PLAs as discussed in Sections 7.2 and 7.3. From the K-maps in
Fig. 15.13 the NS and output functions are easily read to be

TA = AflC(>40$) + A(CCRDY)

TB = BC(CFR) + AflC(<40$) + BC(CBDRDY)

Tc = BC(CIR) + AflC(<40$) + ABC(= 40$)

DCB = ABC(= 40$)

CLACC = BC(CBDRDY)

RN=A

DECACC = A(CCRDY)

(15.4)

786 CHAPTER 15 / THE PULSE MODE APPROACH

\B
A\

0

'

°00

0

(*_

01

0

t

11

Gi°3
CCRDY

10

0

^J

\B
A\

0

1

Coo

0

*

01

CFR

.'I

11

[<4Q(Z]

0

10

CBDRDY

*

\BC
A\ 00

0

1

CIR

iJ

01

0

*

11

^oV

0

10

o

,
7TC

\BC \BC
A\ 00 01 11 10 A\ °0 01 11 10

0

1

0

*
0

#

e
0

0

#
/

\BC
A\ oo 01 11 10

0

1

0

d>
.

0

*
0

1

0

')

0

1

\B
A\

0

1

0

#

00

0

(#

0

#

01

0

#

0

0

CBDRDY

«*

/

11

0

CCRDY

10

0

<)

CLACC

/RN XDECACC
FIGURE 15.13
NS and output K-maps for the pulse mode FSM in Fig. 15.12 showing minimum NS and output logic

Here, four shared Pis are indicated, A(CCRDY), ABC(<40 cents), BC(CBDRDY), and
ABC'(=40 cents), which brings the total number of p-terms to eight for the combined NS
and output functions. It is not uncommon for a relatively large number of shared Pis to exist
in a pulse mode design that has several outputs, each of which is conditional on an exiting
condition. Characteristic 6 in Section 15.3 makes the point that Mealy outputs should be
used whenever possible so as to avoid ORGs and static hazards in the output functions.
Obviously, another advantage in using Mealy outputs is that they tend to maximize the
number of shared Pis, but add more input variables to the output functions. Notice that the
single Moore output RNis state variable A and that no ORG results from it. Note also that in
cell 3 of the Tc K-map, (>40 cents) must not be used in place of (>40 cents) + (=40 cents).
To do so would cause the FSM to malfunction, since a basic principle of this pulse mode
design would have been violated — that is, all nonoverlapping pulses must be positive
pulses, never a mixture of positive and negative pulses.

The p-term table for the PLA implementation of the candy-bar vending machine con-
troller is constructed directly from Eqs. (15.4). It can be seen that there are 10 PLA inputs,
7 outputs, and 8 p-terms (including four shared Pis), which requires a PLA of minimum
dimensions 10 x 8 x 7. This p-term table is provided in Fig. 15.14 following the format
given in Section 7.3. Recall that a dash (—) in the AND plane indicates the absence of
an input variable in a p-term, and hence no connection for that input. Clearly, the use of a
ROM to implement the NS and output logic for this FSM would be a gross overkill, since
a ROM of 10 inputs requires 210 minterms. Compared to only eight p-terms required by a
PLA, it is obvious that a ROM would be a poor choice for such applications.

Shown in Fig. 15.15 is the block diagram for the PLA implementation of the candy-bar
vending machine represented by the p-term table in Fig. 15.14. Observe that the NS functions

PLA Inputs PLA Outputs
X\ _ v _ _ XV,

PS NS

I I I I I I I I I I Y Y Y Y Y Y Y
'9 '8 '7 '6 '5 M '3 '2 '1 '0 T 6 T 5 T 4 T 3 T 2 T 1 T 0

P-terms A B C CIR CFR <40tf =40Qi >40tf CCRDY CBDRDY TA TB Tc DCB CLACC RN DECACC

ABC(>40<2) 0 1 1 - - - - 1 - - 1 0 0 0 0 0 0

A(CCRDY) 1 _ - - - - - - 1 - 1 0 0 0 0 0 1

BC(CFR) - 0 1 0 1 - - - - - 0 1 0 0 0 0 0

ABC(<40£) 0 1 1 - - 1 - - - - 0 1 1 0 0 0 0

BC(CBDRDY) - 1 0 - - - - - - 1 0 1 0 0 1 0 0

BC(CIR) - 0 0 1 - - - - - - 0 0 1 0 0 0 0

ABC(=40tf) 0 1 1 - - - 1 - - - 0 0 1 1 0 0 0

A 1 - - - - - - - - - 0 0 0 0 0 1 0

FIGURE 15.14
P-term table for implementation of the pulse mode candy-bar vending machine controller represented
by the NS and output functions in Eqs. (15.4).

EN(L).

, RN(H)
CBDRDY(H)

CCRDY(H) -

>40<£(H)

= 4 0 < 2 (H)

<40<£(H) -

CFR(H)

CIR(H)

Y

Y
I 2

1 YT 3

- DECACC(H)

- CLACC(H)

DCB(H)
• Sanity(L)

" 1 0 x 8 x 7
L

Q

o-

o-

C(H)

B(H)

A(H)

FIGURE 15.15
PLA implementation of the p-term table in Fig. 15.14 for the candy-bar vending machine designed
to operate in the pulse mode.

787

788 CHAPTER 15 / THE PULSE MODE APPROACH

CIR(H) F

CFR(H)

=40<£(H)

CCRDY(H)

CBDRDY(H)

A(H)

B(H)

C(H)

DCB(H)

CLACC(H)

RN(H)

DECACC(H)

r

j

i 1

j

r

i
"i

n

j
j

1 — i

—

1 — i

I

i

i —

i —

r~i

i
i

•| — \

FIGURE 15.16
Simulation results of the candy-bar vending machine controller by using the discrete logic expressed
by the NS and output functions in Eqs. (15.4).

TA , TB, and TC are introduced active high to the FET toggle modules, a requirement for
positive data pulses. Note also that no input or output conditioning circuits are necessary
for this FSM.

The sequential behavior of the candy-bar vending machine is revealed by the simulation
results in Fig. 15.16, which were produce by using discrete logic for the NS and output
functions of Eqs. (15.4). Vertical dashed lines are provided to facilitate reading of the various
responses to data pulses. The time elapsing between input and NS function pulses is always
TP (not shown); the rising and falling edges of the present state pulses (A, B, and C) lag
the corresponding falling edges of the data input pulses by 4rp, and 5rp, respectively. The
output response time to input pulse change is rp, and the lower bound of input pulse width
is 2rp. As always, TP is the propagation delay of a gate regardless of its type or number of
inputs. The FET toggle modules are designed by using the D flip-flops as given in Fig. 12.12,
but with inverters on the CK inputs.

15.5 ANALYSIS OF PULSE MODE FSMs

The procedure used to analyze pulse mode FSMs is basically the same as that used to analyze
synchronous and asynchronous (fundamental mode) FSMs discussed in Sections 10.13 and
14.17. The NS and output functions are read from a logic circuit and the results are plotted
in K-maps. The K-maps are converted to D form and the PS/NS table is constructed. It is
at this point that the analyses of pulse mode FSMs differ from those of synchronous and

15.5 ANALYSIS OF PULSE MODE FSMS 789

Sanity(L)

| B(L)

B(H)
X(H)

A(H)_1

B(H) —
Y(H)

(a)

Z(H)

(b)

FIGURE 15.17
Analysisof apulsemodeFSM. (a) logic circuit. (b)NS and output K-maps as plotted from Eqs. (15.5).

fundamental mode FSMs. The following corrections to the PS/NS table are necessary for
positive pulse mode FSMs having more than one external input:

Line out (disregard) all entries in the PS/NS table that are associated with either all
inactive data inputs or that are associated with more than one active data input. Thus,
only one active input is permitted for each entry.

The state diagram for the pulse mode FSM is then constructed from the corrected PS/NS
table and the result is analyzed for possible problems. For pulse mode FSMs that are
designed to operate with negative pulses, valid entries in the PS/NS table must include only
those having one inactive input.

A SIMPLE EXAMPLE. Shown in Fig. 15.17a is the logic circuit for a pulse mode FSM
that is to be analyzed. This FSM is seen to have two external inputs, X and Y, two state
variables, and a single output, Z. From the logic circuit the NS and output functions are
easily read and found to be

TA = AY + BY + ABX
TB = AY + BY + BX

Z = ABY

(15.5)

790 CHAPTER 15 / THE PULSE MODE APPROACH

PS NS

'B A B '""^ DaDB

Sanity
A B DADB

-0--Q-
0 1

0 1
| X Y 0 0
I -v--^- 1--G-

] X Y 1 0 v^^^__3^>

ZIT if Y

(a) (b)

FIGURE 15.18
Analysis of the pulse mode FSM in Fig. 15.17 (contd.). (a) PS/NS table constructed from the D
K-maps in Fig. 15.17b. (b) State diagram derived from the PS/NS table in (a) and from Eqs. (15.5).

Mapping Eqs. (15.5) yields the results shown in Fig. 15.17b, where map conversion is used
to present the NS functions in D form.

The PS/NS table is now easily constructed from the D K-maps in Fig. 15.17b and is
presented in Fig. 15.18a. Here, entries that are associated with either all inactive inputs or
two active inputs are lined out and disregarded. Thus, entries with only one active input are
considered. From the PS/NS table there results the state diagram given in Fig. 15.18b. The
sanity input and output Z are not indicated in the PS/NS table but are known by inspection
of Fig. 15.17 and Eqs. (15.5) and are shown in the state diagram.

The sequential behavior is easily deduced from the state diagram. Keeping in mind that
the output Z is issued coincidentally with data pulse Y, it is clear that this FSM recognizes
and issues an output only after three consecutive Y pulses. Interposition of one or more X
pulses before three consecutive Y pulses occur requires the FSM to begin the Y sequence
again. Notice that the Y sequence can be initiated from either the initiation state 00 or from
state 10.

No ORG is possible from state 11 during the 10 -» 01 transition, since the transition is
executed on the trailing edge of the positive Y pulse. This means that Y is inactive at the time
the transition occurs, making it impossible for output Z to be issued. This fact together with
the proper operation of the FSM is verified by the simulation result provided in Fig. 15.19.
Here, as in many examples given previously, dashed vertical lines are provided to facilitate
the reading of the various transitional events. Also, as in Fig. 15.16, the rise and fall edges
of the present state pulses (now A and fi) lag the corresponding falling edges of the data
pulses by 4rp and 5rp, respectively; the output response time to input pulse change is rp.
Although there is no upper bound of data pulse width, there still remains a lower bound at
2tp, where rp is the path delay through a gate regardless of type of number of inputs. Note
that any number of X pulses while in state 00 retain the FSM in that state, since a Y pulse is
required to initiate a transition from state 00 to state 01, as indicated in the state diagram of
Fig. 15.18b.

15.5 ANALYSIS OF PULSE MODE FSMS 791

XfH)

Y(H) I

A(H)

B(H)

Z(H)

n

n

_

r~i

i

j

n

r

n i

i 1 n

i i i

i i

rn

i — i

n

i

i

FIGURE 15.19
Simulation results of the logic circuit in Fig. 15.17a, verifying its proper operation including the
absence of any ORGs.

A SIMPLE NESTED CELL EXAMPLE. Consider the logic circuit in Fig. 15.20 representing
a pulse mode design by using the nested cell model of Fig. 15.4 but without delays in the
feedback lines. Thus, all Afy = 0. This is done to test the validity of the inequality expressed
in Eq. (15.2), as well as to reinforce the notion that the nested cell approach to pulse mode
designs should be avoided except under very special circumstances to be discussed later.

Reading the logic circuit in Fig. 15.20 yields the following NS and output functions:

i D V D D VA — /JA KA — oi

(15.6)

Z = BX

Also, an inspection of the initialization connections indicate that the FSM will initialize
into the 10 state. That is, SA(L) = RB(L) = Sanity(L) with RA(L) = SB(L) = Sanity(L)
forces the FSM into state 10 when Sanity(L) = 1(L) and preserves the mixed-rail output
logic values.

Z(H)

Sanity(L)

FIGURE 15.20
Logic circuit for the nested cell design of a pulse mode FSM to be analyzed showing initialization
connections.

792 CHAPTER 15 / THE PULSE MODE APPROACH

PS NS
A ^ Inputs
A B DADB

o o < "*""°"°-
X 0 1

0 1

Y 0 0

Don't care *
state '

(a) (b)

FIGURE 15.21
Analysis of the nested cell pulse mode circuit in Fig. 15.20. (a) NS and output K-maps and map
conversion plotted from Eqs. (15.6). (b) PS/NS table constructed from the NS D K-maps in (a).

The NS functions in Eqs. (15.6) are plotted in the S, R K-maps shown in Fig. 15.21a,
where they are converted to D form by using Eq. (14.37) with the appropriate change in the
NS and output notation. The PS/NS table can now be easily constructed from the D K-maps
as presented in Fig. 15.21b. Notice that the nonessential and invalid entries are lined out
and will be disregarded in constructing the state diagram from this table. Also, observe that
state 11 has no entry from any other state and is, therefore, a don't-care state. Thus, state
11 can be omitted in the state diagram.

The state diagram is constructed directly from the PS/NS table in Fig. 15.21b and is
presented in Fig. 15.22a. Included are the sanity input and conditional output that are not
shown in the PS/NS table but that are easily deduced from the logic circuit. The sequential
behavior is easily discernible from the state diagram. Assuming valid bounded pulses, as
discussed in Subsection 15.2.1, the output Z will be issued coincidentally (actually after a
gate path delay) with the second X pulse in an uninterrupted sequence Y —> X ->• X. The
proper sequential behavior of this FSM can be verified by simulation of the logic circuit
in Fig. 15.20. This is done with the result shown in Fig. 15.22b. Here, the pulse widths
are set at 2rp (two gate delays). Since no feedback delays are present (Ar; = 0), the pulse
widths must not fall significantly outside the range of 2rp to 3rp for this FSM, as expressed
by the inequality of Eq. (15.2). The simulation result in Fig. 15.22c is an example of what
can happen when the upper bound of permissible pulse width is exceeded. Here, the pulse

15.5 ANALYSIS OF PULSE MODE FSMS 793

~* *~ 2TDxm) ri n
Y(H) n ! n i
AfH) h 1 i I
B(H) 1 ' 1 1

zrm

n n n
i n !
il 1 :

;i 1
n

(b)

X(H) h P

B(H) n n
z(H) n n_

(a) (c)

FIGURE 15.22
Analysis of the pulse mode FSM in Fig. 15.20 (contd.). (a) State diagram as deduced from the
PS/NS table in Fig. 15.21b. (b) Simulation result for 2ip pulse widths indicating correct operation.
(c) Simulation result for 4rp pulse widths showing malfunction of the FSM by exceeding the upper
bound for pulse width.

widths are set at 4rp, causing the FSM to malfunction. Since the lower bound of permissible
pulse width is about 2r/;, it is obvious that pulse widths for nested cell designs of this type
must be restricted to the narrow range of 2ip to 3rp if malfunction is to be avoided.

The upper bound problem for nested cell designs of pulse-mode FSMs can be solved in
one or both of two ways. First, if no feedback delays are used, pulse narrowing circuits, as
in Fig. 10.28a, can be used as input conditioning stages for all inputs. To do this requires
that the pulses be set within that narrow range acceptable for proper operation of the FSM.
But this may not achieve the desired result if output pulses of longer widths are required.
Use of feedback delays A/> offer a partial solution to this problem. However, it may still
be necessary to limit the width of incoming pulses, pulses that may vary greatly in pulse
width. In this event, both pulse narrowing circuits and feedback delays are required, as
indicated in Fig. 15.23. Now, incoming pulses are constrained to a width of Az>. That
is, pulses introduced to the NS logic of the FSM can be no greater than A?F, assuming
that AJ> < A.tF\ and incoming pulses less than AtP will not reach the output of the pulse
narrowing circuit. This scheme has the advantage that conditional outputs can have pulse
widths significantly larger than that shown in Fig. 15.22b while allowing proper operation
of the FSM. Remember that introducing feedback delays alone does not guarantee proper
operation for incoming pulses of unrestricted pulse width. It is for this reason that pulse
narrowing circuits are also necessary. If pulse narrowing circuits are used by themselves
the delay element A/> must be set such that the pulse widths fall, say, within the range of
2rp to 3rp for most nested cell designs.

DELAY ELEMENTS. The delay elements, A?/, and A/F, can be realized in any number
of ways. Small delay elements are easily obtained by cascading gates, buffers, inverters,

794 CHAPTER 15 / THE PULSE MODE APPROACH

FIGURE 15.23
Logic circuit of Fig. 15.20 with input pulse narrowing circuits and feedback delays as required for
incoming data pulses of unrestricted upper bound.

and/or Schmitt triggers in some combination to achieve the desired delay. For larger delays
inertial elements are needed. Shown in Fig. 15.24a is an inertial delay element composed of
diodes, resistors, and capacitors and a rendezvous module (RMOD). The two-input RMOD
is designed in Fig. 14.11 by using the nested cell model.

The inertial delay element in Fig. 15.24a ensures the creation of the delay At indi-
cated in the timing diagram provided in Fig. 15.24b. Although the analysis of this circuit
is complex and beyond the scope of this text — it is a nonlinear second-order circuit — its
operation can be understood qualitatively with little difficulty. On the rising edge of the
X input pulse, the RC time constant at node A is smaller than that at node B because

X(H)—4 _cH RMOD X<H) H 1 U L_
R T C 3—X*(L) U-At-J U-
R2 ^L- 02 : A : ; '

"̂ X*(H) J "~

(b)

FIGURE 15.24
An inertial delay element for creation of large delays, (a) Circuit composed of resistors, R, diodes,
D, capacitors, C, and a rendezvous module (RMOD). (b) Timing diagram showing formation of the
delay, At, and the filtering action of the R-C circuit.

15.6 PERSPECTIVE ON THE PULSE MODE APPROACH TO FSM DESIGN 795

diode DI is turned ON (with low resistance in forward bias) while diode D2 is OFF (with
high resistance in reverse bias). As a result, capacitor d charges up via the low resis-
tance of diode DI allowing node A to reach the high-voltage threshold of the RMOD
before node B. Assuming that R2 has a greater resistance than diode Dt in forward bias,
capacitor C2 charges up after a time A? bringing node B to the threshold voltage of the
RMOD. When both inputs to the RMOD reach the threshold (i.e., become active), the
RMOD responds by issuing an active output, X*. The reverse is true for the falling edge
of the X input pulse. Now diode D2 is ON and DI is OFF, resulting in a smaller time
constant at node B than at node A. Thus, node B reaches the low threshold voltage of
the RMOD before node A since the capacitor C2 can discharge through the low resistance
of diode D2, now in forward bias. Since capacitor Ci must discharge through high re-
sistance RI, node A reaches the low threshold voltage after a time A?. Then when both
inputs to the RMOD reach the low threshold (i.e., go inactive), the RMOD issues an in-
active output. In this discussion it is assumed that DI = DI, RI = R2, and C\ = C2, which
accounts for the ideal edge delay symmetry indicated in Fig. 15.24b. Actually, the falling
edge of X*(H) is delayed by A? + rp, as can be deduced from the RMOD simulation in
Fig. 14.12.

The magnitude of the delay At produced by the inertial delay element can be adjusted
somewhat by altering the values of the R's and C's in the R-C circuit of Fig. 15.24a. The
larger the time constant, the greater will be the A? delay. Use of large time constants to
generate large delays probably necessitates the use of Schmitt triggers on the outputs of the
RMOD to minimize waveform distortion produced by the R-C components. Notice that the
narrow input pulses have no effect on the delayed output response because of the low-pass
filtering action of the R and C components. This, in effect, sets the lower bound on pulse
width if the inertial delay element is used in the pulse narrowing circuits.

15.6 PERSPECTIVE ON THE PULSE MODE APPROACH TO FSM DESIGN

Clearly, pulse mode asynchronous FSMs have very limited practical application because
of the stringent requirements placed on the input data signals. That is, the inputs must
consist of nonoverlapping pulses at least minimally separated and with pulse widths of
lower bound depending on the logic used. Also, an important distinction is made with
regard to the memory elements that can or should be used in the design of asynchronous
pulse-mode FSMs. The use of toggle modules as memory elements requires no upper bound
on incoming pulse widths and has the advantage of eliminating ORGs and static hazards
in the output logic by using outputs conditional on exiting pulses. This, of course, is made
possible because it is a requirement that triggering occurs on the trailing edge of the data
pulse. The toggle modules can be implemented by using D flip-flops, as in Fig. 15.3, or
by using T or JK flip-flops operated in the toggle mode. The only down side to the use of
toggle modules is that output logic noise, if it exists, cannot be filtered out by any of the
conventional methods discussed so far in this text. This is so because the transitions occur
on the trailing edges of the data pulses. However, such timing defects can occur only if
Moore (unconditional) outputs are used.

Attempting to use the nested cell model in the design of pulse mode FSMs requires that
special attention be paid to the bounds of pulse width that can be tolerated by the system.
Pulse widths exceeding the upper bound limit will cause malfunction of the FSM. The

796 CHAPTER 15 / THE PULSE MODE APPROACH

only reliable means of dealing with unrestricted data pulse widths is to use feedback delays
together with pulse narrowing circuitry as demonstrated in Fig. 15.23. Remember that use
of inertial delay elements as in Fig. 15.24 may be necessary to generate the large delays
required by some applications. It is true that without the use of these two types of delay the
nested cell approach may enjoy a slight speed advantage over an equivalent design using
toggle modules as the memory. However, safeguarding the nested cell design by adding
feedback delays and pulse narrowing circuits negates any speed advantage the system may
have had over a toggle module design. In fact, the logic circuit in Fig. 15.23 is likely to
be considerably slower that its toggle module counterpart. With these facts in mind, one
must conclude that there is little or no justification for using the nested cell approach to
design pulse mode state machines. Therefore, if a pulse mode design is called for, it is
recommended that toggle modules (or T flip-flops) be the memory elements of choice. The
rather extensive discussion of this subject in this text is justified on the basis that most of
the references in Further Reading at the end of this chapter deal with nested cell designs of
pulse mode FSMs — often without discussing the critical pulse width problem.

If desirable, the nested cell design of a pulse mode FSM can be easily converted to the
use of the MS memory elements of the type shown in Fig. 15.3c. Here, the S and R NS
functions to the master stage remain the same as in the nested cell design, but now triggering
occurs on the trailing edges of the data pulses similar to the toggle module approach. Also,
as with toggle modules, the MS memory elements can be initialized via the asynchronous
PR and CL overrides of the slave D flip-flops. However, the additional requirements on the
lower bound of pulse width, expressed by Eq. (15.1), together with the additional hardware
requirements and slower FSM performance, make this approach to pulse mode design less
desirable than an equivalent toggle module design. Thus, toggle modules remain the memory
elements of choice if given the option to use them in the design of pulse mode FSMs.

By their nature, pulse mode FSMs have limited applicability. But for those applications
that are appropriate, pulse mode designs can offer the best approach. Sequence recognizers,
digital combination locks, and vending machines, as described in Section 15.4, are good
examples of appropriate applications of the pulse mode concept. Actually, the control or
recognition of individual events of any kind often lend themselves quite naturally to the
pulse mode design concept. For example, controlling, counting, or recognizing the passage
or transport of individual people, fish, cans, coins, automobiles, boats, boxes, batteries,
etc., is easily handled by the pulse mode method. Certain types of mechanical motion
can also be recognized or controlled by pulse mode machines. Remember that the pulse
mode approach to design of FSMs requires no clock oscillator circuitry, which can result
in reduced hardware and power consumption.

The applications of the pulse mode also extends to counter design. Shown in Fig. 13.46
is the design of a 4-bit data-triggered up/down binary counter with asynchronous parallel
load and asynchronous clear. This is a pulse mode design which requires that the Up and
Dn input pulses never be active at the same time and that they always be at least minimally
separated. For the counting of individual events, such data-triggered counters may be the
best choice.

FURTHER READING

Unfortunately, few texts treat the subject of asynchronous pulse mode FSMs, and half of
those give only passing mention to the design and analysis of these state machines. The texts

PROBLEMS 797

of Kohavi, McCluskey, Nelson et al., Tinder, Unger, and Yarbrough are the exceptions. All
five of these texts cover the subject to one extent or another, but with different emphases.
However, based on the subject as it is presented in this text, the texts of Nelson et al. and
Tinder are the two recommended here for further reading. These two texts cover the use
of both data-triggered T flip-flops and basic cells as memory elements in the design of
pulse mode FSMs. Texts by Unger and Yarbrough tend to emphasize the use of basic cells.
Unger provides a good discussion of the delay element requirements in the use of basic cell
memory elements and is recommended for further reading. The text of McCluskey, on the
other hand, provides a broadened definition of the pulse mode and covers different aspects
of the pulse mode concept, those dealing with both synchronous and asynchronous FSMs.
However, unless one is familiar with the ANSI/IEEE Standard for logic circuit symbols,
McCluskey's text will be somewhat difficult to read. It should be mentioned that only
McCluskey's text and the present text devote an entire chapter to the discussion of pulse
mode machines.

[1] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, New York, 1978.
[2] E. J. McCluskey, Logic Design Principles. Prentice Hall, Englewood Cliffs, NJ, 1986.
[3] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and

Design, Prentice Hall, Englewood Cliffs, NJ, 1995.
[4] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,

NJ, 1991.
[5] S. H. Unger, The Essence of Logic Circuits. Prentice Hall, Englewood Cliffs, NJ, 1989.
[6] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/St.

Paul, MN, 1997.

PROBLEMS

15.1 A simple digital combination lock (DCL) is to be designed for a vault that is to be
operated in the pulse mode. It is the function of the DCL to issue a signal OPNVLT
coincidentally with the last pulse in the pulse sequence • • • Y-X-Y-Y-X • • •, and
then return immediately to the initialization state and reissue a LOCK signal. Note
that the sequence cannot be overlapping.
(a) Construct the state diagram for the DCL by following the example in Fig. 15.8,

keeping in mind that the sequence must be a nonoverlapping sequence. Give a
state code assignment and output assignment that is free of ORGs.

(b) From the results of part (a), obtain an optimum set of NS and output functions
for the DCL. To do this, use T flip-flops as the memory. Plan to use don't cares
as permitted by the requirements of the design.

(c) Construct the logic circuit for the DCL. Use discrete logic for the NS and output
logic and FET T flip-flops as the memory. Plan to initialize into the all-zero state.

(d) Verify the correct operation of the DCL by simulating the logic circuit of part (c).

15.2 Shown in Fig. PI5.1 are the state diagrams for two FSMs that are to be operated in
the pulse mode. These two FSMs are adaptations of those in Fig. PI 3.4 used earlier
for synchronous FSM design.

798 CHAPTER 15 / THE PULSE MODE APPROACH

Sanity -v Sanity

XiTifT

YITifS

(a) (b)

FIGURE P1 5.1

(1) Obtain an optimum set of NS and output functions for each of these pulse mode
FSMs. Plan on using toggle modules as the memory. Indicate any problem these
FSMs may have.

(2) Based on part (1), construct the logic circuit for each of these FSMs. To do this,
use FET toggle modules as the memory and a PL A for the NS and output logic.
Thus, construct the p-term table for the PLA. Initialize as indicated in the state
diagrams, and assume that all inputs and outputs are active high.

15.3 The state diagram in Fig. P15.2 represents a pulse mode FSM.

Z i T i f X

FIGURE P15.2

PROBLEMS 799

(a) Design this FSM by using the nested cell model. Thus, obtain an optimum set
of NS and output equations appropriate for using basic cells as the memory.
To do this, use T -» S, R, K-map conversion. (Hint: Refer to Algorithm 12.1,
in Subsection 12.3.2, and Figs. 10.43 and 10.45. Thus, K-map conversions
T 4> S, R and T •*» J, K are similar except in the way that don't cares are
used.)

(b) Construct the logic circuit for the results of part (a). Assume that the inputs and
output are all active high. Indicate the bounds of permissible pulse widths that
can be used by this FSM. Plan to initialize into the 00 state. (Hint: To initialize
a zero, force the basic cell into a reset condition.)

(c) Verify the proper operation of this FSM by simulating the results of part (b).
Show the consequence of exceeding the upper bound in pulse width.

(d) State the algorithm (sequential function) for this FSM.

15.4 The following NS and output logic is read from an FSM that is designed to operate
in the pulse mode. Here, the inputs are C and D, and the outputs are H and L.
Initialization occurs via the active low PR and CL overrides to the two toggle
modules, A and B.

TA = ABC+AD + BD
TB = C + D
H = D(A®B)

L=AC

Sanity(L) = PRA(L) = CLB(L)

(a) Construct the state diagram for this FSM. Follow the example in Figs. 15.17
and 15.18.

(b) From the state diagram determine the sequential function of this FSM (its
algorithm). Does this FSM satisfy all the requirements for operation in the
pulse mode? Explain.

(c) Verify the results of parts (a) and (b) by simulating the circuit. (See Fig. 15.19
as an example.)

15.5 In Fig. PI 5.3 is the p-term table for a PL A implementation of an FSM that is
designed to operate in the pulse mode. Here, X and Y are the inputs and P and Q
are the outputs. The FSM is initialized via its PR and CL overrides according to the
following: Sanity(L) = CLA(L) = CLB(L) = CLC(L).
(a) Construct the state diagram for this FSM by following the example in Figs. 15.17

and 15.18.

(b) Does this FSM satisfy all requirements for operation in the pulse mode? What
limitations are placed on the pulse width limits? Are ORGs and static 1-hazards
present in the output logic? Justify your answers to these questions. If ORGs
and static hazards cannot be present, explain why that is so.

(c) Verify the proper operation of this FSM by simulating the circuit.

800 CHAPTER 15 / THE PULSE MODE APPROACH

P-term

BCX

BCY

ABY

ACX

ACY

ABX

ACX

CX

BY

CY

AX

AY

A

—

-

1

1

0

0

1
-
-
-

1
1

B

1

1

0

-

-

1

-

-

1

-

-
—

C

0

1
-
1
1
-
0
0
-
1
-

—

X

1
-
-
1
-
1
1
1
1
-

1
—

Y

—

1

1

-

1

-

-

-

-

1

-

1

TA

1

1

1

1

0
0
0
0
0
0
0
0

TB

0
0
0
0
1
1
1
0
0
0
0
0

Tc

0
0
0
0
0
0
0
1
1
1
1
0

p

1
1
0
1
0
0
0
0
0
0
0
0

Q

0
0
0
0
0
0
0
0
0
0
0
1

FIGURE P15.3

15.6 The following NS and output logic is read from a pulse mode FSM that has been
designed by using the nested cell model. Here, X, 7, and Z are the inputs, and P
and Q are the outputs. The logic circuit is initialized into the 00 state following the
example in Fig. 14.47.

SA=AX + AZ, SB = ABX + ABY + ABZ
RA = ABX+AY, RB=ABX+ABY+AX + AZ

P = X(A 0 B)

Q=ABY+ABZ

(a) Construct the state diagram for this FSM. To do this, follow the example in
Figs. 15.21 and 15.22.

(b) Does this FSM satisfy all requirements for operation in the pulse mode? What
limitations are placed on the pulse width limits? Are ORGs and static 1-hazards
possible in the output logic? Justify your answers to these questions. If upper
and lower bounds of pulse width exist for this FSM, quantify them.

(c) Verify the proper operation of this FSM by simulating the logic circuit. Follow
the example in Fig. 15.22. Thus, show the consequence of exceeding the upper
bound of pulse width.

(d) Indicate on the logic circuit how the circuit can be altered to accommodate
pulses of greater widths than that specified in part (b).

15.7 A pulse mode asynchronous FSM is to be designed that functions as a controller for a
security area shown in Fig. PI5.4. It is required that when occupied the security area
must be occupied by just two people, no more and no less. Access to the security
area is through an outer door (Dl) one person at time, along a narrow corridor

PROBLEMS 801

.Access
corridor

D1

/ —* 2ft j«-

t— Light beams

FIGURE P15.4

Security Area

UD1 Unlock door D1

LD1 Lock door D1

UD2 Unlock door D2

LD2 Lock door D2

LTON Light ON

LTOFF Light OFF

and through an inner door (D2), as shown in the figure. The corridor is equipped
with two narrow (planar) light beams, X and F, that fall incident on photodetector
cells on the opposite wall. When the second person passes the Y check beam, the
inner door (normally locked) is unlocked and the outer door (normally unlocked)
is locked. The system permits one or both of the people in the access corridor to
change their minds at any time and exit the corridor. However, any attempt by a
third person to pass through the check beam X once two occupants have passed
both check beams will set off an alarm (ALARM).

A red occupancy light (LT) is monitored on a remote control panel. It is initially
OFF (LTOFF) and remains OFF until the second person passes the Y check beam
on entering, at which time it is turned ON (LTON). Thereafter it remains ON until
the second person passes the X check beam on exiting the corridor, at which time
it is turned OFF.
(a) Construct a state diagram for the controller FSM that has no more than six

states. Make certain it is free of ORGs and plan to initialize into the 000 state.
(Hint: Use Gray code, and use conditional outputs only where necessary.)

(b) Construct the ROM program table directly from the state diagram in part (a).
To do this, follow the example in Figs. 15.8 and 15.9. Assume that the inputs
are all active high. Let all outputs be active high except those of LTON and
LTOFF, which are issued active low to an LED display.

(c) Construct the logic circuit for the security area access controller. Use a block
symbol for the ROM and assume the use of FET T flip-flops as the memory.
Are static hazards and ORGs possible in the output logic from the ROM? If so,
explain the consequences of their presence.

15.8 One severely limiting aspect to pulse mode FSM design is the requirement of
nonoverlapping input pulses. Many applications of the pulse mode approach to
design are prohibited because the inputs arrive as overlapping waveforms. Further-
more, if a nested cell design is to be used, further restrictions are placed on the
upper and lower bounds of nonoverlapping pulses. Some of these problems can be
solved by the use of a bus arbiter, which is the subject of this problem.

Shown in Fig. P15.5 are two basic two-input bus arbiter modules. Each con-
sists of a mutual exclusion element (ME) and the external logic as shown. The
ME is composed of a special basic cell and two line drivers. It is the function of
the bus arbiter to arbitrate between two competing requests RX and Ry and grant
access to a protected system based on a "first-in/first-out" principle. Thus, only one
grant signal (Gx or Gy) is active at any given time, even though the inputs may be

802 CHAPTER 15 / THE PULSE MODE APPROACH

RX(H)

NAND Cell Arbiter
Gain elements

(Drivers)
Mutual Exclusion

Elements

— Gx(H)

— GY(H)

- GX(H)

- GY(H)

Logic Symbol

Mutual Exclusion
Element

FIGURE P15.5

overlapping. If the inputs are overlapping at some point in time, a second access
is granted only after the first request goes inactive. Should both input requests go
active at the same time, the ME must arbitrate a "winner" and grant access to that
input. It is the specially built basic cell together with the gain elements and XOR
gate that perform the arbitration function.
(a) Simulate each circuit in Fig. P15.5 as a logic circuit. To do this, omit the gain

elements and treat the remainder as simple logic. Monitor all inputs and outputs
shown, including the F(L) and F(H) outputs. From the simulation, determine
the throughput response and the pulse width of the grant signals in each case.

(b) Multiple inputs can be handled by a multiple-input bus arbiter. Use a sufficient
number of NOR cell bus arbiter modules (in Fig. P15.5) together with a sufficient
number of RMODs to design a three-input bus arbiter. Let the three inputs be
R\, /?2, and R?, and assume that all inputs are active low and outputs are active
high. Consider that the number of bus arbiter modules required is determined
by the number of combinations of n inputs taken q at a time given by

q\(n-q)\

Plan to provide an asynchronous clear capability to the bus arbiter. To do this,
use the LPD RMOD design of Problem 14.2 and follow Fig. 14.32a. End with
a logic circuit by using logic (block) symbols for each bus arbiter module and
each RMOD.

PROBLEMS 803

(c) Verify the proper operation of the three-input bus arbiter of part (b) by simu-
lating the actual arbiter circuit. To do this, present the inputs to the arbiter as
overlapping waveforms that do not change in close proximity to one another.

(d) Repeat part (b) for a four-input bus arbiter. (Hint: Use three-input RMODs
designed by the LPD model.) How many bus arbiter modules and RMODs are
required for five-input and six input bus arbiters, and how many inputs must
each RMOD have?

15.9 Use the two-input NAND cell bus arbiter module in Fig. P15.5 to design the pulse
mode FSM in Fig. P15.2 if it is assumed that the inputs, X and Y, arrive as over-
lapping waveforms.
(a) Obtain an optimum set of NS and output functions for this FSM by using toggle

modules as the memory.
(b) Use the results of part (a) to construct the logic circuit for this FSM. Include the

arbiter module and assume that the inputs and output are all active high. Plan
to initialize into the 00 state.

(c) By using the logic circuit for the two-input NAND cell bus arbiter module, show
how the pulse widths from the arbiter module can be augmented for use in pulse
mode FSMs by using two identical delays. Recall that permissible pulse widths
often fall in the range of 2rp to 3rp for most nested cell designs, but that they
must be greater than 2rp for pulse mode designs that use toggle modules as the
memory.

(d) By using the EXL-Sim2002 simulator included on the CD-ROM bundled with
this text, simulate the logic circuit of part (b) by making use of part (c). To do
this, use the logic equivalent of the arbiter module (exclusive of drivers) and
apply the input waveforms given as follows:

XY 00-10-11-01-00-01-11-10-00-01-11-10-11-01-11-10-

00-10-00-01-00.

Make certain that the input waveform changes are sufficiently separated. An
ideal logic simulator cannot arbitrate between two competing request signals
that are changing in close proximity to one another.

15.10 (Note: This problem should be performed after completing Problem 15.9). Repeat
parts (a), (b) and (d) of Problem 15.9 by using the NOR cell bus arbiter module
in Fig. P15.5. Disregard any reference to part (c) of Problem 15.9. To perform the
simulation, use the EXL-Sim2002 simulator. Compare this simulation with that of
Problem 15.9 as to output (grant) response to input (request) change.

This page intentionally left blank

CHAPTER 16

Externally Asynchronous/
Internally Clocked (Pausable)
Systems and Programmable
Asynchronous Sequencers

16.1 INTRODUCTION

Externally asynchronous/internally clocked (EAIC) systems represent a compromise be-
tween the synchronous and asynchronous design methodologies. While functioning asyn-
chronously with respect to the external world, the EAIC system is controlled by a single
internally generated clock signal that is produced when valid outputs exist from each mem-
ory element. In this scheme, input synchronizing registers and memory registers coordinate
to generate the internal clock. The internal clocking of an EAIC system causes it to be free
of critical races, essential hazards, and errors due to static hazards. In addition, the memory
modules of an EAIC system are protected against errors due to metastability and, hence, are
an integral part of apausable system — one that is capable of an infinite MTBF. The speed of
the internal clock is limited only by the actual logic delays within the system, rather than by
the typical worst-case delay of synchronous systems, and can operate in excess of 400 MHz
for state-of-the-art submicron CMOS designs. The EAIC memory elements are constructed
of either static or dynamic domino logic, and each is protected by a unique metastable de-
tection stage that prohibits any metastable condition from reaching the output. The internal
clock generating circuitry is shown to be delay insensitive when operated within specified
bounds.

This chapter concludes with the detailed development of two unique and important
classes of asynchronous programmable sequencers that are designed to operate in the fun-
damental mode. These sequencers can be driven by discrete logic or by PLDs (e.g., PLAs or
PALs) free of the numerous timing defects that can cause fundamental mode FSMs to fail.
Furthermore, by multiplexing PLDs to drive a single sequencer, it is possible to instantly
switch between radically different asynchronous FSMs. By this means multiple controllers
can be operated asynchronously, on a time-shared basis, by the same sequencer. The PLDs

805

806 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

that drive the sequencer are easily programmed directly from a state diagram or state table,
or from K-maps plotted from the state diagram.

16.2 EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED
SYSTEMS AND APPLICATIONS

The general (Mealy) model for an EAIC system is shown in Fig. 16.1. It consists of input
(synchronization) and memory DFLOP registers of either the static logic (SL) or dynamic
logic (DL) type, next-state-forming logic, and clock-generating circuitry. On the rising edge
of each clock cycle, the inputs are stored in the input register and a new state is stored in
the memory register as determined by the next-state logic during the previous clock cycle.
As each DFLOP resolves, a data-ready (R) signal is issued to the majority gate (NOR gate)
which, in turn, issues the falling edge of the clock when all DFLOPs have resolved. On
the falling edge of the clock, the DFLOPs return to their unresolved state, causing the R
signals to be deasserted and a new rising clock edge to be issued by the clock generating
circuitry.

The memory element of an internally clocked system is called a DFLOP module. It
functions in a manner similar to an edge-triggered D flip-flop, but with an added output that
signals when the DFLOP is resolved and ready for a deactivating clock edge. This added
output signal is required for proper operation of the DFLOP within the EAIC system. In
addition, each DFLOP contains mutual-exclusion circuitry that protects the output stage of

INPUTS
: r 1 : nr-v-i- ^^^ : i 1 : ni ITPI IT

OUTPUTS

CLOCK

FIGURE 16.1
General architecture (Mealy model) for the EAIC system showing DFLOP input and memory registers
and clock-generating circuitry with tri-state enable.

16.2 EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED SYSTEMS 807

CK(H)

(b)

FIGURE 16.2
Multiple-input NOR gate specifically designed to minimize fan-in limitations and propagation delay,
(a) Generalized CMOS circuit required for application in EAIC systems, (b) Generalized NOR gate
symbol and input logic level requirements for EAIC system operation.

the DFLOP from errors caused by any metastable condition that may develop in the input
stage. The design details of the DFLOPs are discussed later in Subsection 16.2.1.

The NOR gate shown in Fig. 16.1 is an important part of the clock generating system.
As is pointed out in Section 8.9, the performance of a conventional CMOS NOR gate
diminishes with increasing fan-in. Since the NOR gate in an EAIC system must be able to
accommodate a large number of inputs, it is necessary to use a specially designed CMOS
gate structure. Shown in Fig. 16.2 is the multiple input NOR gate featured in Fig. 8.46, but
specifically labeled for use in an EAIC system. The number of permissible inputs up to
about eight will have negligible effect on the gate path delay. Thus, it retains essentially the
same path delay of a two-input NOR gate regardless of the number of inputs. The output
of this gate goes to high voltage (HV) only if all inputs are at low voltage (LV). If any one
or more of the inputs go to HV, the output goes to ground level (LV). To work correctly,
it is necessary that the PMOS be specially designed so that the drain-to-source resistance
(actually impedance) remains sufficiently high so as to minimize drain current when one
or more NMOS are turned ON. Note that the specially built PMOS can be replaced by a
depletion-mode NMOS permitting the NOR gate of Fig. 16.2 to be replaced by the NMOS
technology of Fig. A. 1 in Appendix A.

16.2.1 Static Logic DFLOP Design

The general structure for a DFLOP is shown with block symbols in Fig. 16.3. Its structure is
similar to that of a conventional D flip-flop except the DFLOP is equipped with a metastable

808 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

D(H) —
- - • • • - "•- " — Q (H)

MDS
D yi'(L)

v '
Static Logic
Metastable

-C

-C

S Basic Q
R Cell Q

1 \j "N.

J~ R(H)

FIGURE 16.3
Block diagram for a DFLOP showing the static logic CMOS metastable detection stage and the NAND
gate required to generate the data-valid signal (R).

detection stage (MDS) and data-ready (R) circuitry. It is the function of the MDS to detect
any metastable condition in the resolver and block it from entering the output basic cell
stage. The manner in which this is done is discussed later in this section.

The details required for the design of the static logic (SL) DFLOP are provided in
Fig. 16.4. The resolver state diagram shown in Fig. 16.4a is similar to that for the RET D
flip-flop given in Fig. 14.14a. The state code assignment differs from that of the D flip-flop
because of the need for logic symmetry when connecting the resolver to the MDS logic
shown in Fig.16.4b. The state diagram for the set-dominant basic cell in Fig. 16.4c is the
same as that given in Fig. 14.14b, except for the branching condition labels that derive from
the MDS outputs.

On the rising edge of clock (CK), the static-logic DFLOP (SL-DFLOP) resolver stores
the value of the input data D and issues an output R via the MDS (see Fig. 16.3) indicating
that it has resolved the data. Once the resolver has entered a resolved state (either 01 or 10),
further changes in the input data D cannot affect the stored value until the next rising CK

(a) Resolver (b) MDS Stage (c) Basic Cell

FIGURE 16.4
Design of the DFLOP for EAIC systems exclusive of preset and clear circuitry, (a) State diagram for
the resolver FSM input stage, (b) Metastable detection stage (MDS) indicating raised (f) and lowered
(I) thresholds for inverters and gates, (c) State diagram for the set-dominant basic cell.

16.2 EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED SYSTEMS 809

0

1

DCK

-®

0

*

y^° o 1
0

1

[DCK

0

u<*D
*

' '1 ' ^0

FIGURE 16.5
EV K-maps for the resolver of a DFLOP as plotted from the state diagram in Fig. 16.4a.

edge. This, of course, is the data lockout character of a D flip-flop. Only when CK goes
inactive will the resolver return to the unresolved 00 state where it awaits another active
CK signal.

The next-state (NS) K-maps are obtained directly from the resolver state diagram in
Fig. 16.4a and are presented in Fig. 16.5. To obtain the activation levels and logic symmetry
needed to interface with the MDS, an apparent nonoptimum cover is chosen as indicated
by the shaded loops. Thus, the don't care in each K-map is ignored. From these K-maps the
resulting NS logic expressions are found to be

[7, = y0DCK+yiyQCK = (D + y,) • y0CK]
(16.1)

where factoring is used to optimize the logic and for purposes of interfacing with the MDS
stage.

The Set and Reset branching conditions of the set-dominant basic cell in Fig. 16.4c are
easily defined in terms of the present state variables of the resolver. Recalling the connections
shown in Fig. 16.3, these branching conditions are given by

(J\= y\yo Set condition Ij i j i jv i (\ (\ f y \
y'\ y'o — y\ yo Reset condition I

Clearly, the Set condition results from the resolver entering a resolved state 10, whereas the
Reset condition is caused when the resolver enters the 01 state.

The complete logic circuit for the SL-DFLOP is constructed from Figs. 16.3, 16.4, and
16.5 and from Eqs. (16.1) and is presented in Fig. 16.6, where the MDS is highlighted for
emphasis. Included are the preset (PR) and clear (CL) overrides, which are necessary for
initialization and reset of the DFLOPs. The active low inputs to the MDS are provided by the
outputs from the two four-input NAND gates of the resolver. This represents the logic level
compatibility and logic symmetry mentioned earlier. In order to correctly implement the
preset and clear functions, it is necessary to set the state of the resolver FSM as well as that
of the output basic cell. Because extra time is necessary for the effect of the preset or clear
signal to propagate through the MDS stage to the outputs, the duration of either the PR(L)
or CL(L) signal to the DFLOPs must be long enough to assure that the correct mixed-rail
outputs have time to propagate through the next state logic (indicated in Fig. 16.1) before
the occurrence of the next clock event.

810 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

•Q(H)
pr-i ^j \p\y^^ ' ^ pOL-^^J

CK(H)-

CL(L)

Input FSM Metastable Detection Output FSM
(Resolver) Stage (MDS) (Basic Cell)

FIGURE 16.6
Logic circuit for the static logic SL-DFLOP as constructed from Figs. 16.3, 16.4, and 16.5 together
with Eqs. (16.1) showing PR and CL override connections.

It is a basic cell output stage of the SL-DFLOP that stores the set or reset output from
the resolver via its MDS circuit. The data-ready (/?) signal issued by one of the resolved
states of the resolver is formed by the logical OR of the set and reset conditions from the
MDS. An active R signal indicates that the DFLOP outputs have been updated and signals
a readiness of the resolver to receive a falling CK edge. Since the basic cell output stage
is protected from any possible metastable conditions in the resolver, the Q(H) and <2(L)
outputs will be error free and logically stable.

The Metastable Detection Stage Each SL-DFLOP used in the EAIC system employs a
metastability detection stage (MDS) of the type shown in Fig. 16.6. The MDS operates as a
mutual exclusion element to prevent a possible metastable state in the resolver from being
passed on to the basic cell output FSM: If either y\ or y0 is active (not both active), the
corresponding y[(set condition) or y0 (reset condition) becomes active, signaling that the
resolver has resolved into a logically definable state. Under any other set of input conditions,
the outputs vj and VQ are always deactivated—they drop low!

The simulated PSPICE response of the static logic MDS in Fig. 16.4b to a variety of
input conditions is shown in Fig. 16.7. Correct operation of the resolver is simulated in the
first input sequence (0-30 ns), where the MDS outputs vj and y0 follow the inputs y\ and yo
as the resolver transits between resolved and unresolved states. Worst-case conditions exist
in the next segment (30-100 ns) where the inputs are introduced as a damped sine-wave
oscillation with a phase difference of 90 degrees causing the maximum difference between
the inputs y\ and yo to approach 2.5 volts. As can be seen, the straddling of the MDS
switching threshold (Vth = 1-1 V) by y\ and yo causes the beginning of pulse formation

16.2 EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED SYSTEMS 811

CD

I
o

— y/
y0'

0 20 40 60 80 100 120 140

Time (ns)
FIGURE 16.7
PSPICE simulation of the static logic MDS circuit in Fig. 16.4b.

on the MDS outputs, y[and y'Q. However, the formation of these erroneous output pulses is
very small and directly dependent on the frequency of oscillation. An increase in oscillation
frequency results in a decrease in straddling time and consequently permits the MDS to
correctly filter the metastable condition. In addition, because a valid output pulse can only
be generated if the inputs straddle the adjusted switching threshold, any input activity above
the threshold of 1.1 volts cannot result in output pulses regardless of the frequency and phase
difference of the input signals.

The metastable voltage Vm tends to lie in the range of mid-supply (see references in
Further Reading), which in this case is taken to be 2.5 volts for a 5.0-volt supply, as indicated
in Fig. 16.7. Consequently, shifting the switching threshold of the MDS away from the
predicted voltage of Vm can reduce the probability to zero that a metastable state will occur
and cause an erroneous output signal to be generated. To shift the threshold of the MDS
circuit shown in Fig. 16.4b, the switching thresholds of the MDS gates (including inverters)
are adjusted in the following way: A PMOS-to-NMOS width ratio of wp/wn = 0.25 is
used in the MOSFETs of the low-threshold (|) gates, shifting their switching threshold
to approximately 1.1 volts. For the high-threshold inverters (f), a PMOS-to-NMOS width
ratio of wp/wn = 8 is used to raise their switching threshold to approximately 3.0 volts.
By using these adjusted gates and inverters, the switching threshold of the entire MDS in
Fig. 16.4b is lowered to approximately 1.1 volts. As a result, only cleanly asserted signals
can pass through the MDS circuit, while a metastable input condition will cause the MDS
outputs to drop low. For sub-micron CMOS technology with wp/wn ratios remaining the
same, Vm and the thresholds will be altered approximately in proportion to the supply
voltage ratio, VDD/5.0.

812 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

Should the resolver enter a metastable state, the logic state of the outputs would be
undefined and a fatal error would result if the metastable state were permitted to propagate
to the external system. Consequently, it is essential that the outputs of the resolver be stably
resolved before the result is permitted to propagate to the output stage of the DFLOP. It is,
of course, the MDS that performs this function within the DFLOP. Studies of the metastable
condition relevant to this subject are cited in Further Reading at the end of this chapter. In a
fully protected EAIC system, any pause in the issuance of the R signal due to metastability
in the resolver of a DFLOP will result in a corresponding pause in the internal clock.
Therefore, such an EAIC system can be categorized as a pausable-clock system.

A frequently reported study of the metastable state in the cross-coupled NAND gates
is cited in Further Reading at the end of this chapter. With this study in mind, and since
the signal rise/fall time tends to dominate the propagation delay of simple CMOS gates,
it is reasonable to assume that a metastable condition in the DFLOP resolver would be
characterized by an output voltage Vm and not by oscillatory behavior. However, an os-
cillatory metastable condition must be considered as possible. Therefore, the oscillation
frequency and phase difference of any oscillatory metastable condition that is passed to the
MDS circuit is important in evaluating the total performance of the MDS. Although most
previous work supports the in-phase nature of metastable oscillation, little has been said
about possible phase differences. The symmetrical nature of the cross-coupled NAND gates
in the DFLOP resolver supports the assumption of minimal phase difference in oscillatory
behavior. Thus, should a metastable oscillatory condition occur, any actual phase difference
would be much less than the 90 degrees difference used in the simulation of Fig. 16.7, al-
lowing the detection circuit to fully protect the outputs from any possible metastable input
conditions.

16.2.2 Domino Logic DFLOP Design

Dynamic domino CMOS logic, or simply domino logic (DL), can be used advantageously
in the design of DFLOP modules. Domino logic gates are noninverting and are fast, but
require reasonably high clocking frequencies to control the precharge and evaluate phases
of the dynamic operation. Low-frequency operation is excluded because of leakage current
effects. Since an EAIC system provides a fast and regular clock signal, the DFLOP is ideally
suited for implementation with dynamic domino logic — possibly the best usage of the DL
technology. For this purpose, the resolver for the domino logic DFLOP (DL-DFLOP) must
be designed to accommodate the requirements of domino logic. References on domino logic
are cited in Further Reading at the end of this chapter. The following subsection provides
an introduction to domino CMOS logic.

Represented in Fig. 16.8 are the essential components of the DL-DFLOP. Included are
the state diagram for the DL-DFLOP resolver FSM, the DL MDS stage, and the familiar set-
dominant basic cell as the output FSM. The dashed branching paths for CK andCK shown
in the state diagram are used to indicate that the CK signal does not act directly to force a
state-to-state transition but does so via the precharge and evaluate stages of dynamic domino
logic operation. The asterisk (*), placed within a gate symbol, identifies a domino CMOS
logic structure. Except for this notable difference, the resolver FSM for the DL-DFLOP
operates the same as that for the SL-DFLOP in Fig. 16.6.

Presented in Fig. 16.9 are the NS K-maps for the DL-DFLOP resolver FSM. Again, the
use of don't cares is avoided so to yield the proper logic level and symmetry characteristics

16.2 EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED SYSTEMS 813

CK(

(a) Resolver (b) MDS Stage (c) Basic Cell

FIGURE 16.8
Design of the domino logic DL-DFLOP for EAIC systems exclusive of the preset and clear circuitry.
(a) State diagram for the resolver input FSM. (b) Metastable detection stage (MDS) indicating lowered
(I) and raised (y) thresholds for inverters and gates, and dynamic domino logic AND gates (*). (c)
State diagram for the set-dominant basic cell output FSM.

needed to interface with the DL MDS stage. The K-maps are plotted as though the CK
and CK branching paths in Fig. 16.8a were absent. The resulting NS functions for the
DL-DFLOP, as read directly from the K-maps, are

Yi = y0D + yiyQ = (D + y i) • y0]
- - \ , (16.3)

o = (D + yQ) • yi

which are the same as those for the SL-DFLOP but with the CK input missing. The Set and
Reset branching conditions for the basic cell output FSM are the same as those given by
Eqs. (16.2).

As pointed out previously, domino logic is noninverting. This means that AND and
OR gate forms are used in configuring the DL-DFLOP. The resulting logic circuit for the
DL-DFLOP is easily constructed from Eqs. (16.3) and Figs. 16.8 and 16.9, and is shown
in Fig. 16.10. As before, the gates (or inverters) with lowered switching thresholds are
indicated with a down arrow (|) and those with raised switching thresholds are identified
with an up-arrow (y). Because of the opposite oriented adjusted thresholds and the opposite
activation levels of the inputs from the resolver, the switching threshold for the DL MDS

o D 0 (B

0

IIJ
0

FIGURE 16.9
EV K-maps for the domino logic resolver of a DL-DFLOP as plotted from the state diagram in
Fig. 16.8a.

814 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

PR(L)

-Q(H)
I " - " I I /—Itx1""7"!-—^ ^ KX ^ I

D(H)-

CL(L)

Input FSM Metastable Detection Output FSM
(Resolver) Stage (MDS) (Basic Cell)

FIGURE 16.10
Logic circuit for the DL-DFLOP based on Figs. 16.8 and 16.9 and on Eqs. (16.3) showing PR and
CL override connections.

circuit in Fig. 16.10 is raised to approximately 3.3 volts and not lowered as in the case of the
SL MDS. Again, the asterisk symbol (*) indicates dynamic domino CMOS logic. Notice
that DL logic us used for both resolver and MDS circuit. This helps to improve performance
of the DL-DFLOP.

16.2.3 Introduction to CMOS Dynamic Domino Logic

Conventional CMOS gates of the general structure shown in Fig. 3.5 can be characterized
as having a pull-up part (the PMOS) and a pull-down part (the NMOS) that are positioned
to make the best use of the MOSFETs. The PMOS transistors are placed on the supply
end (high side) because they pass HV well but not LV; the NMOS transistors are placed
on the ground end (low side) because they pass LV well but not HV. Thus, conventional
CMOS can be viewed as having to realize the same logic function twice in complementary
fashion, once for the pull-up part and once for the pull-down part. The dynamic CMOS
logic eliminates this redundancy by using one clocked pull-up PMOS (TP) to precharge
the output high, and one clocked pull-down NMOS (T^) to evaluate low the intervening
NMOS logic between these two transistors. Domino CMOS logic (DL) adds an inverter to
the output of the dynamic structure. This can best be understood by viewing the generalized
DL logic configuration shown in Fig. 16.1 la. Here, the symbol 4> represents a single phase
clock signal whose logic values have the following meaning:

cD = 0 (LV) Precharge

$ = 1 (HV) Evaluate.

16.2 EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED SYSTEMS 815

Logic
Inputs

well

Dynamic part

(a) Generalized domino (b) Three-Input AND (c) Two-Input OR
CMOS logic configuration gate gate

FIGURE 16.11
Examples of domino CMOS logic (DL) structures suitable for use in an EAIC system, (a) Generalized
DL configuration, (b) Three-input AND gate, (c) Two-input OR gate.

During the precharge stage, TP is turned ON while TN is turned OFF, bringing Z high
and Z low. Thus, a single PMOS is required to pass HV during the precharge stage, which
it does well. Then during the evaluate stage, the logic values of Z and Z depend on the
intervening NMOS logic. The three-input DL AND gate example in Fig. 16.1 Ib may help
the reader better understand the evaluate stage. If all inputs to this gate are at HV during
the evaluate stage, Z is forced to ground potential (low) while Z goes high. Thus, the node
at Z is discharged to ground, a fast process. If, on the other hand, one or more of the three
inputs are at LV, then Z remains at its previous precharge level (by stored charge in the
capacitance of the system). So to prevent significant leakage current and static (quiescent)
power dissipation during this precharge-hold state, the precharge/evaluate process must be
driven at high frequency. The same arguments apply to the DL OR gate in Fig. 16.1 Ic, and
to all other DL gate structures.

The dynamic part of domino CMOS logic tends to be noisy because of switching tran-
sients. This problem is eliminated by adding the inverter (buffer) to the dynamic part as
indicated in Fig. 16.11. It is because of the presence of the inverter buffer that DL logic is
basically noninverting. Without the inverter, the gates in Figs. 16.1 Ib and 16.1 Ic would be
a three-input NAND gate and a two-input NOR gate, respectively. But these gates should
never be configured in that manner. If a three-input NAND gate is required, an inverter must
be added to the DL AND gate in Fig. 16.1 Ib. Similarly, an inverter must be added to the
DL OR gate in Fig. 16.1 Ic to form a NOR gate.

816 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

For relatively few inputs, domino logic requires more transistors than for static logic.
However, as the number of inputs increases, a crossover point is reached beyond which
domino logic has fewer transistors than static logic. With reference to Figs. 3.10 through
3.19, 16.1 Ib, and 16.lie, the number of transistors (N) as a function of number of inputs
(I) for dynamic logic (DL) and for static logic (SL) is given by the following equations:

DL AND or OR N = (I + 4)

DL NAND or NOR # = (/ + 6)

SL NAND or NOR N = 21

SL AND or OR N = 21 + 2

Clearly, beyond four inputs, the DL AND or OR gate requires fewer inputs than the SL
AND or OR gate. However, for NAND or NOR gates the crossover point is at six inputs.

Domino CMOS logic is fast if operated correctly. However, it is difficult to make a valid
comparison of the relative speeds of the DL and SL technologies. It is true that in DL gates,
only a single PMOS needs to be precharged, which it does over a very short period of time.
In SL gates, the complementary configuration of PMOS is required to pass HV (a charging
process), which it does well but over period of time that depends on the complexity of the
complementary logic. It is likely that precharging a single PMOS as in the DL case takes
less time that does the charging process in SL gates. This difference may be especially
significant for OR or NOR gates of the two technologies.

16.2.4 EAIC System Design

The general architecture for the EAIC system is illustrated in Fig. 16.1. The operation of this
system centers mainly on the manner in which the internal clock is generated and the events
that take place in triggering the DFLOPs of the input and memory registers. Otherwise the
operation of the EAIC system is quite similar to the operation of a synchronous FSM that
uses D flip-flops as the memory. In fact, the design and analysis of EAIC FSMs is exactly
the same as the design and analysis of synchronous FSMs that use D flip-flops, as described
in Sections 10.12 and 10.13. What must be done next is to discuss the details of the timing
constraints and throughput characteristics for an EAIC system.

Next-State Logic and Input Pulse Constraints In order to guarantee the proper operation
of an EAIC system, certain timing constraints must be observed. Within the bounds of these
constraints, the EAIC system may be classified as completely delay-insensitive. To optimize
throughput it is necessary that the updated Q outputs from the input register propagate
through the next-state forming logic before the next rising-edge clock event. Consequently,
it is required that

SNS < (SDFLOP + I&NOR), (16.4)

where SNS is the propagation delay through next-state logic, 28^oR is the propagation delay
through the external portion of the clock-generating circuitry (NOR gate plus driver), and

16.2 EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED SYSTEMS 817

SDFLOP is the propagation delay through DFLOP. There is a little more than about three or
four (maximum) gate delays through a DFLOP, and one gate delay through the NOR gate.
Consequently, the propagation delay through the next-state logic should not exceed five
gate delays, if optimum and reliable results are to be achieved. This allows a good margin
for error when two-level next-state logic is used. Exceeding the next-state logic constraint
can cause error only in the outputs of some Mealy machines. Also, the minimum input pulse
width must be greater than the period of the internal clock, guaranteeing that each input
state will last long enough to be clocked into the input register.

Frequency and Throughput Characteristics of the EAIC System An inspection of
the general EAIC architecture in Fig. 16.1 indicates that the internal clock generating path
involves the propagation delay through the DFLOP registers combined with that of the NOR
gate. Tracing this path beginning and ending at the NOR gate output provides the following
expression for the internal clock frequency:

fcK = (2&DFLOP + 2<$yv0/?)~ . (16.5)

With the gate delay equivalents given earlier, the internal clock period is estimated to lie
in the range of 8 to 10 gate delays, but will depend on the fan-in of these gates. Given the
propagation delays of modern state-of-the-art CMOS gates, frequencies in excess of 400
MHz can be expected for EAIC systems that employ this technology.

Throughput may be defined as the elapsed time between an external input change and
a resulting output response from the DFLOP memory register. For an EAIC system, the
throughput will normally be in the range

(fcK + 3&DFLOP + 25jv0fl) > ^Throughput > (38DFLOP + 25/vOfl) (16.6)

with a minimum exceeding the clock period by 8DFLOP» °r approximately three to four gate
delays. The ranges expressed by Eq. (16.6) result from introducing Eqs. (16.4) and (16.5)
into the minimum and maximum throughputs given by (ZSDFLOP+SNS) and (38DFLOP+2&Ns)>
where the latter quantity is the minimum plus the feedback delay of (&DFLOP + &NS}-

16.2.5 System Simulations and Real-Time Tests

Shown in Fig. 16.12 are the state diagram, and NS and output K-maps for a simple two-input/
one-output sequence recognizer that is used to test the EAIC system. The minimum NS and
output functions, as read from the K-maps, are

DA = AXY + BXY + AB
DB=AXY + BXY

Out=ABXY
(16.7)

The Mealy output is issued only in state 10 and then only under the input conditions XY. It
is possible for this FSM to transit (cycle) with CK through states 10 and 00 under branching
conditions XY without issuing an output and without holding in either state. This is done
deliberately to test throughput.

818 CHAPTER 16/EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

Sanity

X+Y
N. ^ r

OutitifXY

\B
A\

0

1

0

0

[xV]

1
0

0

/ Out

FIGURE 16.12
Design of a simple sequence recognizer for use in testing the EAIC system, (a) State diagram, (b)
Next-state and output K-maps.

The EAIC circuit is constructed by using Eqs. (16.7) and is shown in Fig. 16.13. Notice
that two DFLOPs are used for input register and two for the memory register, and that all four
issue a data ready (R) signal that are part of the clock generating circuitry. All four R signals
must be inactive and must rendezvous at the NOR gate before an active CK(H} signal is
issued. Then, on the rising edge ofCK(H), all four DFLOPs are triggered simultaneously. At
this time the inputs are stored in the input register and delivered to the memory register via the
NS logic and, at the same time, the new state is stored in the memory register as determined
by the NS logic during the previous clock cycle. When the four DFLOPs are triggered,
the four R signals become active, which deactivates CK(H) at the NOR gate. When the
DFLOPs receive the falling edge of CK(H), the MDS outputs go low, which deactivates
the R signals while retaining the current input values in the basic cell output stages. The
inactive R signals cause CK to go active again and the process just described is repeated.

The EAIC system in Fig. 16.13 was simulated by using PSPICE (Level 3), with l.Oyu,
n-well MOSFET transistor models obtained from MOSIS fabrication runs. The 1/i model
provides a suitable reference point between old and new industrial standards. All gates were
designed by using CMOS technology, with the goal of optimizing for size while setting an

16.2 EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED SYSTEMS 819

X(H)

Out(H)

CK(H)

FIGURE 16.13
Logic circuit for the EAIC system applied to a simple two-input/one-output sequence recognizer.

arbitrary rise/fall time ceiling at approximately 0.5 ns for both 1.0/z static and domino logic
gates. In the simulations, the parasitic effects of line resistance, capacitance, and inductance
were assumed to be negligible, a reasonable assumption with the possible exception of line
capacitive effects. (See Further Reading for reference on this work.)

PSPICE simulations were performed on both SL-DFLOP and DL-DFLOP designs of
the sequence recognizer in Fig. 16.13. A typical result is shown in Fig. 16.14, which is
that for a DL-DFLOP design with a conventional CMOS NOR gate in the clock-generating
circuitry. The measured internal frequency for this design is 280 MHz with a minimum
and maximum throughput of 4.9 and 8.5 ns, respectively. The maximum allowable NS
logic delay for this design is found to be 2.3 ns. Simulations performed on SL-DFLOP
design of the sequence recognizer yield an internal frequency of 220 MHz and minimum
and maximum throughputs of 7.6 and 12.1 ns, respectively, with a maximum allowable NS
logic delay of 3.2 ns.

In order to test the functionality of a static logic EAIC system in real time and make com-
parisons with the simulations results, the sequence recognizer of Fig. 16.13 was fabricated

820 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

CK mmmim\i\mmimmmmm
R* UliLLUAJLUUUUULiliiĴ

Qv J

DA

OUT

0 20 40 60 80 100 120

Time (ns)

FIGURE 16.14
PSPICE simulation tracing of the EAIC circuit in Figure 16.13 using DL-DFLOPs and a conventional
CMOS NOR gate in the clock generating circuitry.

by using a 2/u, «-well CMOS process. The chips were tested by using a laboratory test rig and,
more extensively, by using the HP 82000 test station with a 0.5-ns resolution, both monitor-
ing the internal frequency directly. The chips were found to operate correctly and revealed
variable internal clock frequencies in the range of 25-35 MHz. The lower frequencies, which
were observed by the test station, fell well below the predicted PSPICE value of 3 8 MHz for a
2/z design. However, frequency measurements on a laboratory test rig accounted for frequen-
cies up to about 35 MHz, very close to the predicted PSPICE value. The frequency differ-
ences are believed to be due mainly to capacitive loading effects by the measurement leads.

16.2.6 Variations on the Theme

A very interesting aspect of the EAIC approach to FSM design is that nearly all D flip-flop
synchronous design considerations, methods, and associated alternative architectures are
applicable to EAIC systems. This should not be surprising since the only difference between
the two design methods is the way in which the clock is generated — internally in the EAIC

16.2 EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED SYSTEMS 821

system, externally for the conventional approach. For reference purposes, the following are
examples of the overlap between the two approaches:

1. DFLOPs can be converter to either TFLOPs or JKFLOPs, as is done for D flip-flops
in Section 10.8.

2. The design and analysis of FSMs by using the EAIC system follows the discussion
for synchronous FSMs in Sections 10.12, 10.13, and 11.9.

3. Logic noise (including ORGs and static hazards) in the output functions of EAIC
FSMs can be filtered by using conventional edge triggered D flip-flops as discussed
in Subsection 11.2.2. In contrast to synchronous FSMs, the filtering D flip-flops should
be triggered in phase to the internal clock.

4. Sanity circuits and debouncing circuits can and should be used in EAIC systems
following Sections 11.7 and 11.8.

5. The array algebraic approach to FSM design and the one-hot design method, as
discussed in Sections 11.11 and 13.5, also apply to EAIC system designs.

6. Any shift register or counter discussed in Chapter 12 can be designed by using
DFLOPs or TFLOPs in place of D flip-flops or T flip-flops.

7. All alternative architectures and system-level design methods discussed in Chapter 13
are also applicable to EAIC system design. Thus, ROMs, PLAs, nonregistered PALs,
etc., are all applicable to EAIC system design. Data path FSMs in a given system can
be controlled by the internal clock of the controller.

8. As in synchronous FSM design, endless cycles, critical races and essential hazards
cannot exist in EAIC systems — an advantage that both synchronous and EAIC FSMs
have over fundamental mode FSMs.

Although there are several features of the EAIC system that are in common with conven-
tional synchronous systems, sharply distinct differences exist as discussed in the following
subsection.

16.2.7 How EAIC FSMs Differ from Conventional Synchronous FSMs

• Perhaps the most important difference between the EAIC approach and the
synchronous approach is the fact that EAIC systems are inherently protected
from metastability and require no other synchronizing scheme. The reason why
this is so rests with the nature of DFLOP and the clock generating circuitry in
the EAIC system. A properly designed EAIC system is pausable in the sense
that if any one or more of the DFLOPs should go metastable, the system is
held up (paused) until those DFLOPs exit from the metastable state and issue a
clean set or reset. Thus, a properly designed EAIC system cannot fail because
of metastability and its MTBF becomes infinite. In contrast, to achieve a large
(but not infinite) MTBF for a synchronous FSM, synchronizing schemes of the
type discussed in Section 11.4 must be applied. Application of such schemes to
synchronous systems would, in many cases, lower the performance well below
that of a comparable EAIC system.

822 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

A second important distinction between the two approaches is that clock skew
is not possible within a properly designed EAIC system consisting of both con-
troller and data path FSMs that coordinate to produce the internal clock. Clock
skew is always a potential problem in synchronous system-level designs.
A third important difference is that EAIC systems are delay insensitive when op-
erated within the bounds given in Subsection 16.2.4. To this extent, unexpected
delays in the NS logic have no effect on the operation of the EAIC system.
Even asymmetric delays in the one or more of the DFLOPs or in any part of the
clock-generating circuitry, including clock skew, will not cause malfunction —
the system simply performs more slowly if such delays exist. The same claims
cannot be made with regard to synchronous FSMs. Asymmetric delays in fun-
damental mode FSMs are likely to cause malfunction of the FSM as discussed
in Chapter 14.

Other differences exist that are also advantages of the EAIC system. The internal
clock frequency can be easily lowered by simply adding a delay (or counter)
to the output of the external clock generating circuitry. Furthermore, the EAIC
FSM's internal clock can be paused at any time by use of a tri-state enable/driver
in the clock-generating circuit as indicated in Fig. 16.1. This can result in a
savings of power during periods when the EAIC system must remain idle.

16.2.8 Perspective on EAIC Systems as an Alternative Approach to FSM Design

The EAIC system offers the designer an innovative alternative to synchronous and asyn-
chronous (fundamental mode) approaches to FSM design. The EAIC approach has the
advantages of high speed, operational reliability, low power consumption, and relatively
low real estate commitment, all in the absence of an external clock oscillator circuit, as
required for a comparable synchronous design. The EAIC system appears to have most
all the benefits of the synchronous system and none of the disadvantages of asynchronous
fundamental mode machines — the best of both worlds. Also, it may offer one of the most
effective and appropriate applications of domino CMOS technology. The high-frequency
internal clock seems ideally suited to the precharge/evaluate rates required by domino logic.
Because of its pausable nature, the EAIC is essentially immune to clock distribution prob-
lems (clock skew) within a closed system, that is, within one controlled by a single internal
clock. So why is the EAIC system not the approach of choice of designers for most modern
applications? The answer to this question is explored in the following paragraphs.

The EAIC system designs are not without their drawbacks. One potential drawback to the
EAIC approach to large system-level design is the fact that multiple controllers within a large
system must communicate by means of handshake signals. Interfacing two independent
clocked systems is never a simple task. But it is necessary since each controller establishes
its own clock frequency independent of the others. In contrast, a fully synchronous system,
consisting of multiple controllers, can operate on a single system clock. However, such
a synchronous system is definitely subject to clock skew problems which may require
handshake interfacing as well.

Another disadvantage to the EAIC system is due to the fact that the internal clock is
not precise. That is, its frequency may vary slightly depending on a variety of factors in-
cluding temperature effects. Also, duty cycle cannot generally be altered. Crystal-controlled

16.3 ASYNCHRONOUS PROGRAMMABLE SEQUENCERS 823

oscillator circuits, of the type used in high-quality synchronous designs, are precise and have
a number of desirable characteristics not found in the internal clock-generating circuits of
the EAIC system. These desirable characteristics are discussed in Section 11.6.

16.3 ASYNCHRONOUS PROGRAMMABLE SEQUENCERS

In Chapter 14, it is made clear that any FSM that is designed to operate in the fundamental
mode must be free of certain timing defects that would otherwise cause the FSM to fail.
Such timing defects include endless cycles, critical races, static hazards in the NS logic, and
essential hazards. Normally, it is not difficult to eliminate these defects, but the task can be
tedious and does require a fair understanding of asynchronous FSM design methods. The
EAIC system, presented in the first portions of this chapter, offers one means of avoiding
these problems, and does so by operating from an internally generated clock, somewhat
similar to a synchronous FSM. But the EAIC system cannot be used as a programmable
sequencer owing to the mechanism required to generate the internal clock. In this section a
distinctive, versatile, and highly reliable class of asynchronous programmable sequencers
is considered in detail.

16.3.1 Microprogrammable Asynchronous Controller Modules
and System Architecture

A unique family of high-speed asynchronous programmable sequencers is now described
that combine fundamental mode operation with the programmability power of PLDs. These
sequencers have been dubbed microprogrammable asynchronous controller (MAC) mod-
ules. Shown in Fig. 16.15 is the generalized architecture for a fully programmable system
capable of operating as any one of 2k asynchronous controllers that operate by means of a
single n-bit (2"-state) MAC module. The basic components are a 2k bank of PLDs (ROMs,
PLAs, nonregistered PALs, or any combination thereof), a k-\o-2k decoder for PLD selec-
tion, an interfacing and deactivate inputs (DI) stage, and the n-input MAC module with
initialization and enable inputs. If several PLDs are used to drive the MAC module, the
interfacing and DI stage should be a bank of n 2A-input MUXs, one MUX for each input
to the MAC module. If only two PLDs are used to drive the MAC module, the decoder is
reduced to a simple inverter. Also, if one PLD is used, the interfacing and DI stage is simply
composed of discrete logic. These and other related subjects will be explored more fully in
later sections.

The DI signal, which is introduced into the interfacing logic from the MAC module, as
shown in Fig. 16.15, plays an essential role in the operation of the MAC module. Following
each successful transition of the FSM, all inputs to the MAC module must be deactivated
for a short time by the DI signal so as to make ready for the next transition as deter-
mined by the PLD program driving the system. A handshake mechanism involving two
fundamental-mode state machines within the MAC module coordinates this process so that
each transition is guaranteed to occur in an orderly and reliable fashion, even if cycles
exist under conditional or unconditional branching. The handshake process guarantees that
endless cycles, critical races, static hazards in the NS functions, and essential hazards can-
not cause the MAC module operation to fail. Furthermore, ORGs are not possible, since
every state-to-state transition must be logically adjacent. In short, the operation of the MAC

824 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

PLD inputs

k-decoder
inputs

Outputs

k data select f
inputs

n NS inputs/

n 2k-input MUXs
(Interfacing and Dl logic)

Initializing and
enable inputs

\n

PR

IrH ••• 11 10

2n state
MAC module

EN
yn-1 « • • y1 yO Di

FIGURE 16.15
Generalized architecture for programming an n-bit MAC module to operate with any one of 2k PLDs
(ROMs, PLAs, or PALs) by using k inputs to a PLD select decoder and to n 2k -input interfacing
MUXs.

module cannot fail by any timing defect common to fundamental mode FSMs, and clean
outputs are guaranteed to be issued.

16.3.2 Architecture and Operation of the MAC Module

Shown in Fig. 16.16 are the two fundamental mode FSMs of which an n-bit MAC module
is composed. One FSM represents a 2n state array machine (SAM for short) with n-way
branching capability. The other is a timing control machine or TCM. The two machines
coordinate the handshake process that permits the MAC module to operate correctly. Notice
that five outputs of the SAM are the inputs to the TCM. These are the select parameters,
&? and 50, parity parameters EP and OP, and Reset. Completing the handshake, the inputs
to the SAM received from the TCM are the transition enable parameters, Te and To. The
SAM issues n present state signals (yn — 1, . . . , y2, yl, yO) to the PLDs and back to itself

16.3 ASYNCHRONOUS PROGRAMMABLE SEQUENCERS 825

From interfacing
and Dl stage

f ^

I I I
ln-1«" 11 10

CL

PR SAM

EN
yn-1 • • • yt yp £p pp Se So...rm

To interfacing
and Dl stage

FIGURE 16.16
Components of an n -input MAC module consisting of a 2" state array machine (SAM) and a timing
control machine (TCM) and their interconnections.

as feedback. In return, the SAM receives from the selected PLD (via the interface and Dl
stage) one of n programmed NS instructions, In — 1, . . . , 12, I I , or 10. This is the one bit
that must change to produce the required SAM transition, but only when the transition is
enabled by a transition enable parameter (Te or To) from the TCM. After the transition is
complete, the TCM issues the Dl signal to the interfacing and Dl stage, thereby deactivating
the NS instruction input so that the process can begin all over again.

The SAM consists of an array of states such that any given reference state in the array
has transitions paths to states that are logically adjacent and, hence, of opposite parity to
the reference state. Thus, a transition from any state to another (adjacent) state involves a
change of only one state variable and a change in parity [odd parity (OP) to even parity (EP)
or vice versa]. The structure of the SAM is best illustrated by example. Shown in Fig. I6.lla.
is the 2 x 4 state SAM required by a 3-input (23-state) MAC module. This SAM can be
used to operate any 2-, 4-, 6-, or 8-state controller FSM — an odd number of states is strictly
forbidden in any MAC module controller design. Notice that the states are coded in 3-bit
Gray code and that there is three-way branching from each state, permitting it to transition
to any one of three logically adjacent states. The branching condition for each transition
path is the Boolean product of a transition enable parameter (Te or To) and a single NS
instruction input (via the interfacing and Dl stage) given by 12, I I , or 70. The specific
NS instruction input represents the positional weight 22, 21, or 2° of the bit programmed
to change during a given transition. For example, a transition from even parity (EP) state
101 to odd parity (OP) state 001 will occur only if Te • 12 is valid (active). The holding
conditions in the SAM state diagram are those required to maintain the SAM in a given
even or odd parity state during the time that the inputs are deactivated.

The outputs Se, So, and Reset from the 23-state SAM in Fig. 16.17a are the inputs to the
TCM. These outputs are issued conditionally on the functions to which they are equated.
For example, Se is issued in an even-parity state (EP active) when To is inactive and when

Teh

826 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

To+12-11-10 Te+12'IMO
State Holding Conditions for SAM

y2y1yO

fe+12-iT-io To+iI-iT-io

SAM Outputs

Se = To(l2+l1+IO)EP So = Te(l2+IHIO)OP

Reset = 1 2 - 1 1 - K) Reset = 12 -IT -io

Te+I2.|1-I0 TO-M2-I1.IO " °P

(a) SAM

FIGURE 16.17
State diagrams for a 3-input (23 -state) MAC module, (a) The 2x4 state array machine (SAM) showing
the holding conditions and outputs separately, (b) Timing control machine (TCM).

one of the NS instruction inputs (72, 71 or 70) is active. The parity parameters EP and OP
are defined by the relations

OP = y2 0 yl 0 jO = Odd parity

EP = ~OP = Even parity. (16-8>

The output 7?eser is issued to the TCM from any state of the SAM provided that the NS in-
struction inputs are all in the deactivated condition such that 72 + 71 + 70 = 7 2 - 7 1 - 7 0 = l .
It is important that all inputs be in the deactivated state after each successful transition and
before the NS instruction is received by the MAC module. Thus, the intermediate interfac-
ing and DI stage is ideally suited for this purpose. However, the inputs can be deactivated
either by the DI signal or by the PLD, whichever action occurs first.

The TCM, shown in Fig. 16.17b, is a resolver FSM. When Reset is active, meaning
that 72 • 71 • 70 = 1, the TCM must reside in the unresolved 00 state for as long as both
select inputs from the SAM are inactive (Se • So). When one of the select inputs becomes
active, the TCM must transit to a resolved state (01 or 10) and must issue a transition enable
command (Te or To) to the SAM. Then, when the SAM successfully transits and parity is
changed, a DI signal is issued to the interfacing and DI stage thereby deactivating the NS
instruction input that caused the transition. This, in turn, causes the SAM to issue an active

16.3 ASYNCHRONOUS PROGRAMMABLE SEQUENCERS 827

Reset signal which forces the TCM back to the unresolved 00 state ready to receive the next
active select input, Se or So.

The operation of the MAC module can best be understood by following the sequence
of steps leading to a state-to-state transition of a controller FSM that is implemented with
the 23-state MAC module shown in Figs. 16.16 and 16.17. To begin with, assume that the
MAC module (hence the controller also) is initialized into the 000 (EP =1) state, that all
NS instruction inputs to the SAM are inactive, and that the TCM is in the unresolved 00
state where both Te and To are inactive. Now, assume that the PLD issues one of three NS
instructions (12,11, or 70) to the SAM, which in turn issues the conditional output Se to the
TCM. The TCM receives the Se signal and transits to the 01 state where the output Te is issued
to the SAM (Te = 1 and To = 0). After receiving the Te signal, the SAM transits from the
000 state to an OP state (100,010, or 001) under one of the branching conditions Tel 2, Tel I ,
or TelQ, respectively. When the SAM successfully completes the transition, parity changes
requiring that OP = j 2 0 y l © ^ 0 = l , and the TCM issues the conditional output DI to
the interfacing and DI stage, which deactivates the single NS instruction input that caused
the SAM transition (now all instructions are deactivated). This causes the SAM to issue the
output Reset, which forces the TCM to transit from state 01 to the unresolved 00 state where
Te = To = 0. Then when one of the NS instruction inputs from the PLD goes active, the
SAM issues an So signal to the TCM. This forces the TCM to transit to the 10 state where To
is issued to the SAM (To = 1 and Te = 0). The To signal is received by the SAM, causing it
to transit from an OP state to an EP state, changing the parity back to EP = 1. The DI signal
is again issued by the TCM which, in turn, causes the SAM to issue a Reset command that
forces the TCM back to the 00 state (Te — To — 0), allowing the process to be repeated.

It is important to understand that the DI signal maintains strict control over all state-
to-state transitions. This is especially important when cycles occur in the controller's state
diagram, or when buffer states must be added to the controller's state diagram to satisfy
the state logic adjacency requirement of the MAC module. Clearly any alteration of a state
diagram or state table must be done prior to programming the PLD. Because of the handshake
between the TCM and SAM, no SAM transition (and hence no controller transition) can
take place until a sequence of events occurs leading to the deactivated state of all inputs.
This fact alone eliminates any possibility of essential hazard or d-trio formation. Thus, a
transition via a cycle or buffer state is treated no differently from any other state-to-state
transition in the MAC module — oscillatory endless cycles, for example, are not possible.

1 6.3.3 Design of the MAC Module

Presented in Fig. 16.18 are the NS K-maps for the 3-input SAM as plotted from Fig. 16. 17a.
Optimum two-level results for the NS-forming logic of the SAM are easily read directly
from these K-maps and are given by the following equations:

Y2 = y2yl^QTe!2 + y2yl yO To 12 + y2y lyQ TeI2 + y2yl^QToI2_
y2'ylyOTe+ y2ylyOfo + y2yl'yQfe + y2I2

Y I = y2ylyQTe_Il +y2yly_OTo 71 + y2yyO To 71 _ .
~ y2ylyQTo + y2ylyOTe + vlTT '

FO = ~y2y(yO TelO + ~y2ylyQToIO + y2ylyQToIQ + y2yl;yO TeTO
y2yly07b

828 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

\yiyo \yiyo \yiyo
y2\

0

1

00

Tel2

fo+12

01

Tol2

fe+12

11

Tel2

fo+12

10

Tol2

fe+12

/

y2\
0

1
Y2

00

Tell

Toll

01

Ton

Tell

11

fe+iT

fo+n

10

fo+n

fe+iT

/

y2\
0

1

Y1

00

TelO

TolO

01

fo+IO

fe+IO

11

fe+IO

fo+IO

10

TolO

TelO

/

FIGURE 16.18
NS K-maps plotted from the state diagram for the 3-input SAM in Fig. 16.17a.

Notice that there are a total of 22 p-terms for these three expressions, including four shared
Pis. Thus, the PLA required by Eqs. (16.9) must have minimum dimensions of 8 x 22 x 3.
It is important to note that because of the nature of the state code assignments together with
the NS instructions, static hazards are not possible in the optimized expressions for 72, 71,
and 70 functions given by Eqs. (16.9).

Alternative approaches to the implementation of the NS-forming logic of the SAM are
possible. A nonregistered 8 x 27 x 3 PAL can be used for this purpose, but the shared Pis
must be treated as separate p-terms. Use of an 8-input ROM would not be a good choice
since it would be an "overkill" when compared to the more efficient use of a PLA or PAL.
A more interesting alternative design of the SAM can be obtained by making use of the
XOR patterns that exist in the NS K-maps (see Section 5.2). Again, reading the K-maps
directly leads to the following multilevel expressions:

72 = y2 TeI2(yl 0 yO) + y2To!2(yl 0 yO) + y2 To(y\ 0 yO)
+ y2fe(yl ®jO)

_
+ y!7e(y20yO) (' }

70 = yOTeIQ(y2 0 yl) + y070/0(y2 0 y 1) + y07b(y2 0 y 1)
+ y07%20yl)

Use of these expressions has two advantages over the two-level function of Eqs. (16.9): Re-
duced fan-in for discrete logic implementation, and use of the parity expression in Eq. (16.8)
to generate one of the three required XOR terms. As is true for Eqs. (16.9), static hazards
are not possible in the NS functions of Eqs. (16.10).

The TCM is best designed by using the nested cell model. The NS- and output-forming
logic for the TCM can be deduced directly from the state diagram in Fig. 16. 17 without the
need for K-maps. When this is done the results become

Si =So SQ = Se

RI = Reset RQ = Reset

To = y l f

> , (16.11)
Te = yO' ' ^

DI=y\'EP+yVOP
= ToEP + TeOP

YO

16.3 ASYNCHRONOUS PROGRAMMABLE SEQUENCERS 829

y2(H) \
y1(H)

yO(H)

Nr
SAM Section TCM Section

FIGURE 16.19
Logic diagrams for the SAM and TCM sections of a 3-input (8-state) MAC module.

where the subscripts 1 and 0 refer to basic cells 1 and 0. The optimized NS logic results for
Si and SQ that are given in Eqs. (16.11) are a result of the internal handshake configuration
used by the MAC module — all cells of the K-maps (not shown) for these functions are
don't cares except for cell 00, which contains So and Se, respectively.

Putting it all together, there results the logic circuits for the 3-input MAC module shown
in Fig. 16.19. Here, the optimal results for the TCM given by Eqs. (16.11) are implemented,
and the two XOR gates represent the parity logic expressed by Eqs. (16.8). The SAM is
presented as a block diagram since its implementation is a matter of choice by the designer.

The TCM logic shown in Fig. 16.19 remains the same regardless of the SAM dimensions,
which can be of any 2" state size. A generalization of the 2" -state SAM is shown in Fig. 16.20,
as required by an n-input MAC module. Here, each transition path into an EP state is from
an OP state, and each transition path out of an EP state must go to an OP state. Similarly,
each transition path into and out of an OP state is from and to an EP state, respectively.
Notice that a 2"-state a SAM has up to n-way out-branching capability of any one of its
states to a logically adjacent state of opposite parity. Thus, a 22-state SAM is a 2 x 2 array
with up to 2-way out-branching capability, a 23-state SAM is a 2 x 4 array with up to 3-way

830 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

(!2)(To) (H)(To) (IO)(To)

Salt if To(,n-1 + - + ,2 + 11 + ,0)€P

Resetlt if (ln-1 + ••• + 12 + 11 + 10)

(!2)(Te) (H)(Te) (IO)(Te)

(!2)(Te) (M)(Te) (IO)(Te)

To , . , ~. — , Soitif Te (ln-1 + ... + 12 + 11 + IO)-OP

ResetiT if (ln-1 + ••• + 12 + 11 + 10)

(!2)(To) (M)(To) (IO)(To)

FIGURE 16.20
Generalized transition conditions and outputs for the EP and OP states of a 2" state SAM with n-way
out-branching.

out-branching capability, a 24-state SAM is either a 4 x 4 array or a 2 x 8 array, both with
up to 4-way out-branching capability, and so on. Clearly, it is not necessary that all n-way
branching possibilities be used in any state-to-state transition. But it is required that for any
FSM design, the SAM transition paths include an even number of states — never an odd
number. Thus, a 4 x 4 array SAM can be used to design any controller FSM with states
numbering 2 ,4 ,6 , . . . , etc., up to 16 states. If, for example, a 5-state FSM is to be designed,
one or an odd number of buffer states must be added so that either a 2 x 4 o r 4 x 4 SAM
array (meaning a 3- or 4-input MAC module) can be utilized in the design. Initialization of
any SAM array requires that the procedures discussed in Section 14.11 be followed.

16.3.4 MAC Module Design of a Simple FSM

Perhaps the most stringent test of the MAC module's capabilities is its use in the design of
an unrestrained Gray code counter. This is done for the 3-bit Gray code counter shown in

16.3 ASYNCHRONOUS PROGRAMMABLE SEQUENCERS 831

Sanity
/-y2y

s~~ir\
Sanity

MAC I I j l~v"' u y2
Program p l̂ X 23 Stete

logic MAC
for Gray |—J—7-]) M(H) »| Module yo

code
counter . _

I 1 1 > IO(H) .
Dl

(a) (b)

FIGURE 16.21
MAC module design of a simple 3-bit Gray code up-counter, (a) State diagram for the counter, (b) Logic
diagram showing the block symbol for the MAC module program logic chosen from Eqs. (16.12),
the Dl stage, and the block symbol for the 23-state MAC module.

Fig. 16.21. To determine the program logic required to drive the 23-state MAC module in
Fig. 16.21b, it is only necessary to read the state diagram in Fig. 16.21a for the changing
y-variable bits. As an example, the y2 bit changes only in transitions from states 010 and
100, hence y2yiyo + y2y\yo- Continuing with bits y\ and yo there results the following NS
instruction equations in both two-level and multilevel form:

= y0(y2

(16.12)

u = y2yiyo + y2yiyo +
= yi(y2 O yo) + yi(yz © yo)
= y2 © yi O yo

Shown in Fig. 16.22 is the mixed logic simulation for the MAC module design of the
3-bit Gray code counter in Fig. 16.21b. This is done by using the two-level NS instructions
functions in Eqs. (16.12) to drive the 3-input MAC module presented in Fig. 16.19. The
results show that the y-variable response to an /-instruction change occurs following a time
period that varies between 4rp and 5rp, where rp is the average gate propagation delay.
Also, the results indicate that the average time period between y-variable changes is about

832 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

y2(H).
yKH).
yO(H) I L

FIGURE 16.22
Mixed logic simulation results for the MAC module design of the 3-bit Gray code counter in Fig.
16.21a when the two-level forms of Eqs. (16.12) are used as transition instructions to a 23-state MAC
module.

I2xp. These time periods are predictable, given the logic circuits for the SAM and TCM of
the MAC module.

The additional pulses observed in the 12, 71, and 70 waveforms of Fig. 16.22 are a
consequence of the unrestrained nature of the state-to-state transitions in the Gray code
counter together with the action of the 7)7 input. However, as can be seen from the simulation
results, these additional pulses have no effect on the state variables. It is the strict control
maintained by the MAC's internal handshake mechanism and the action of the DI signal
that ensures reliable transitions of the FSM even under these severe operating conditions.

16.3.5 Cascading the MAC Module

Cascading two 23-state MAC modules of the type indicated in Fig. 16.19 increases the
state capacity of the system to 23 x 23 = 64 states with six state variables and up to
6-way branching capability. Shown in Fig. 16.23 is such a cascading arrangement where
the DI stage is properly placed on the outputs of the PLD. With this arrangement, the NS
instruction logic (the PLD) must provide a separate set of three NS instruction inputs to the
SAM of each MAC module for a total of six, as indicated in Fig. 16.23. Also, two DI inputs
are needed, but these must not be ORed to the DI stage. Thus, immediately following the
completion of a transition involving a change in a state variable y5, y4, or y3, the DI output
of MAC module 1 goes active while the DI output of MAC module 0 remains inactive. The
reverse is true for a change in a state variable v2, y 1, or yO of MAC module 0. It is important
to understand that since these modules are cascaded in parallel, speed and reliability are not
compromised.

A second approach to cascading MAC modules makes use of the EN(L) inputs to multi-
plex the MAC modules so that only one is enabled at any given time. This cascading method
requires that the proper multiplexing instructions be programmed into the NS instruction
logic of the PLD. Of the two cascading methods, the one illustrated in Fig. 16.23 is likely
to be the simpler for most applications.

Multiple MAC modules can be cascaded for greatly enhanced capability. For example,
cascading three 23 -state MAC modules increases the state capacity to (23)3 = 29 = 512 states

16.3 ASYNCHRONOUS PROGRAMMABLE SEQUENCERS 833

SYSRES(L) -

0(L)-

System 1(L)-
Inputs

r i (! r rr
CL

PR

EN

12 11 JO

MAC
Module 1

Dl y5 y4 y3

L.

0(L)-

CL

PR

EN

12 11 10

MAC
Module 0

Dl y2 y1 i yO
\6
\

PLD
(with Dl stage on PLD outputs)

I I I ITT
System
Outputs

FIGURE 16.23
Cascading configuration for two 3-bit MAC modules that is independent of the EN inputs.

with nine state variables and up to 9-way branching capability. Cascading three 24-state
MAC modules results in a system having (24)3 = 212 = 4096 states with 12 state variables
and up to 12-way branching capability. Generally, MAC modules having SAMs with state
variables numbering /, m, n, . . . can be cascaded to produce a system state capacity of
2l x 2m x 2n x • • • with up to (/ + m +n -\ ----)-way branching capability. Since the modules
are cascaded in parallel, speed and reliability are not compromised. Cascading n 2-bit MAC
modules to produce larger systems having state capacities of (22)w is an attractive alternative
for improved speed capability. This is so because use can be made of a single XOR gate
(e.g., yl © yO) for the parity circuit of each 2-bit module. Remember, that the internal
handshake mechanism depends on the parity parameters EP and OP, where for an n -input
MAC module OP = yn — 1 © • • • © y2 0 yl © yO. Therefore, the larger the state capacity
of a MAC module, the slower will be its response time.

16.3.6 Programming the MAC Module

To begin with, it is necessary that each state-to-state transition of the controller FSM be
logically adjacent. If this is not the case initially, then either buffer states must be added or
the number of state variables must be increased to accomplish this. State code assignments
of Hamming distances greater than 1 cannot be used in any MAC module controller design.
After the state logic adjacency requirement is satisfied and before programming a MAC
module, there still remains one important requisite that must be satisfied. The conditions for
an endless cycle, as defined in Subsection 14.10.1, must never exist in the state diagram for
the controller. Such conditions lead to the formation of static hazards in the NS instruction
logic — defects that can cause MAC module failure.

834 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

Once the requirements just mentioned have been met, programming the NS instruction
and output logic (hence, the PLD) for the MAC module design of a controller is easily
accomplished with an I/O table obtained directly from either the state diagram or state table
for the controller. To do this, the state variables (yn — 1, . . . , y2, yl, yO) are placed on
the input side, and the NS instruction inputs (In — 1 , . . . , 72, 71, 70) and the controller
outputs are placed on the output side of the I/O table. Then, one simply places the branching
conditions for any given transition in the appropriate output column. Thus, programming
the MAC module does not require reference to the state array of the SAM since the position
of the changing bit in the state diagram or state table for the controller indicates the required
PS-to-NS transition in the SAM.

The NS instruction inputs can be mapped from the I/O table and then minimized for
discrete logic or PLA (or PAL) implementation. Alternatively, the I/O table can be read
directly in canonical form for ROM implementation. In any case, the NS instruction logic
will be free of static hazards. Static hazards produced in the output-forming logic of a PLA
device can be eliminated by either adding static hazard cover or by using an output holding
register (D flip-flops) triggered by the DI signal. If the PLD is a ROM, an output holding
register must be used since redundant cover for hazard elimination is not possible.

16.3.7 Metastability and the MAC Module: The Final Issue

The MAC module is a programmable asynchronous sequencer that is designed to operate in
the fundamental mode. When used in the design of one or more asynchronous controllers,
the MAC module will not fail by any of the timing defects common to fundamental mode
machines. However, there is the possibility that a MAC module-designed controller could
go metastable because of a runt pulse, or be forced into irregular behavior if the setup and
hold times requirements are not met by the external inputs—problems that can occur in
any fundamental mode FSM. To avoid possible metastable behavior, the MAC module con-
troller should be protected by using a bus arbiter on its inputs. Such an arbiter is described
logically in Problem 15.8 and is available commercially as the Signetics fast (7 ns) 74F786
asynchronous bus arbiter. This commercial arbiter is designed with a metastable detection
stage and should be used on the output of the interfacing and DI stage shown in Fig. 16.15,
or in place of the DI state located on the output of the PLD shown in Fig. 16.23. When this
is done, a highly reliable and robust system results that will not fail under any set of input
conditions.

16.3.8 Perspective on MAC Module FSM Design

Interchanging PLDs or reprogramming an existing PLD permits the PLD/MAC module
system to be easily converted from one asynchronous FSM to another radically different one
without the need to run timing defect analyses on either FSM. This is a very attractive feature,
given all that is required to ensure the proper and reliable operation of each asynchronous
FSM. Endless cycles, critical races, static hazards in the NS logic, and potentially active
essential hazards are all automatically eliminated in a MAC module design. By multiplexing
PLDs, any number of asynchronous controllers can be operated reliably on a time-shared
basis and without clock skew problems within any given controller. Also, MAC modules
can be cascaded in parallel to greatly enhance state machine capacity without compromising
either speed or reliability, another important feature of the MAC module approach.

16.4 ONE-HOT PROGRAMMABLE ASYNCHRONOUS SEQUENCERS 835

Of course, the one major drawback to MAC module FSM design is the fact that each
state-to-state transition must involve one, and only one, state variable change. Thus, the
controller state machine must be composed of an even number of states that are unit-
distance coded. When this is not the case, the logical adjacency requirement must be met by
either adding buffer states or by increasing the number of state variables. Adding a buffer
state may or may not be acceptable, since it does introduce a delay in executing a given
transition. Adding state variables may require increasing the size (capacity) of the MAC
module. As an example, the vending machine controller in Fig. PI3.2 would require three
state variables and two properly positioned buffer states to satisfy the logical adjacency
requirement. In this case the code for state g would be changed to 010. But there are some
FSMs whose branching paths may not be amenable to MAC module design. The FSMs in
Figs. P14.6 and P14.10 would appear to fall into this category.

16.4 ONE-HOT PROGRAMMABLE ASYNCHRONOUS SEQUENCERS

One-hot asynchronous programmable sequencers can be designed by applying Eqs. (14.40)
for all possible branching conditions in an n-state FSM. This type of asynchronous pro-
grammable sequencer enjoys some attractive advantages over the MAC module approach
discussed in the previous section. The one-hot approach requires only a state array machine
and can support any state-to-state transition in an FSM that is void of cycle conditions,
including, in particular, endless cycles. Because of the one-hot coding, a timing control
machine is not needed. That is, no parity detection or deactivation of inputs is required.
Furthermore, the programming of a one-hot sequencer is exceedingly simple since it is only
necessary to provide the sequencer with the branching condition for each 1 -hot state-to-state
transition as read from a state table or state diagram of the FSM to be designed.

16.4.1 Architecture for One-Hot Asynchronous Programmable Sequencers

Shown in Fig. 16.24 is the generalized architecture for an n-state asynchronous programm-
able one-hot sequencer. Here, it is seen that 2k PLDs representing 2k different asynchronous
FSMs can be selected by a decoder to drive the sequencer on a time-shared basis. This, of
course, is no different than in the case of the MAC module architecture in Fig. 16.15. What
is different is the interfacing logic which, in the case of the one-hot approach, is nothing
more than an array of OR gates.

An inspection of Fig. 16.24 indicates that an n-state one-hot sequencer requires specifi-
cation of n2 inputs, one for each branching condition in an n x n state array. As indicated
in Fig. 16.25, each fcth state of a completely specified n-state one-hot sequencer requires n
input branching paths, including the required holding condition — hence, n-way branching
capability to and from each state. Thus, for n states, n2 branching conditions must be
specified in a one-hot sequencer that contains all possible branching paths. This can be
viewed as a significant down side to one-hot sequencer design and application. For example,
consider that a 10-state sequencer requires that 100 branching conditions be specified for
a given FSM design, though many of these branching conditions are set to logic 0 if their
corresponding branching paths do not exist in the FSM. However, this seemingly impractical
requirement of dealing with n2 outputs from PLDs can be handled by using the output
augmentation scheme shown in Fig. 7.16. For a large number of ORing operations in the
interfacing logic of Fig. 16.24, it is recommended that the CMOS NOR gate form in Fig. 8.46

PLD inputs

k-decoder
inputs

i-il
k-1 1 0 o

1
PLD select
decoder k

rv—

k '

Jm, >o

1 „

k PLD2M ... k PLD, LC PLD0

•->• Outputs L> Outputs L-̂ Outputs

N N. \

n2 2k-lnput OR Gates

\r v \r v

'n2-1 2 1 o

Sanity(L)— <: CL n-State 1-Hot Sequencer

^ i — LL)
FIGURE 16.24
Generalized architecture for programming an asynchronous n-state one-hot sequencer with n2 inputs.

'k«-2 'k«-l 'lk«-0

FIGURE 16.25
Generalized transition conditions for the &th state of an n -state one-hot sequencer.

836

16.4 ONE-HOT PROGRAMMABLE ASYNCHRONOUS SEQUENCERS 837

Sanity

FIGURE 16.26
State diagram for a 4-state 1-hot sequencer that will initialize into the 0001 state (state a).

be used with the appropriate changes in activation levels of the inputs. This can avoid costly
fan-in delays or delays due to possible OR tree forms. Finally, for a large n-state one-hot
sequencer, the NS-forming logic is best implemented by using a PLD, preferably a PLA.
Further discussion on this and other related subjects is included in Subsection 16.4.4.

16.4.2 Design of a Four-State Asynchronous One-Hot Sequencer

To illustrate the design of a one-hot sequencer, consider the state array for a fully specified,
4-state, one-hot sequencer shown in Fig. 16.26. Notice that each state requires specification
of four branching conditions. Once this sequencer is designed, its programming for use in
the design of an asynchronous FSM requires specification of 16 branching conditions many
of which may be zero if those branching paths are nonexistent. The design of this sequencer
is straightforward. By using Eqs. (14.40) together with the one-hot-plus-zero approach,
there results the following set of four NS logic equations given in array form:

Y

Y

Y,d

ya

yd

, , , , _ _ _ Sanity. (16.13)
•* r

Here, each/!) term in the 4 x 4 state array represents the branching condition from the zth
state "into" the jth state. Also, the four leading diagonal (holding conditon) terms//, when
ANDed with >>, to give fay i, provide the cover required to eliminate the static 1-hazards that
develop between an "into" term and the single "out of" term in each NS function. Notice
that initialization into state a follows the one-hot-plus-zero method discussed in Section
14.14. In this case, however, the "out of" term combines with the "one-hot-plus-zero" term
to give yaybycyd + yajbycjd = ybycyd for initialization into state a via the 0000 state. Any
outputs associated with the sequencer design of an FSM are generated from the PLD or
discrete logic by applying Eqs. (14.41).

Another important advantage of the one-hot sequencer approach to FSM design is the
fact that the NS logic equations for any size fully specified sequencer can be written down

838 CHAPTER 1 6 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

directly without the aid of a state table or state diagram. The generalized NS equations are
put into tensor notation form as

j=Q i=Q

(16.14)

where an additional term y^y \y-2yi • • • Jn-i must be added to a specific 7/ for use with the
one-hot-plus-zero approach. Eqs. (16.14) are of importance for CAD purposes in dealing
with relatively large sequencers, particularly if a PLD is to be used to implement the NS
functions. An inspection of Eqs. (16.14) reveals how this can be easily accomplished. Any
n-state sequencer would require an n x n non-symmetrical matrix of'/?/ branching condition
terms, n state variables, and n2 inputs. The "out of" term for each NS function is a p-
term consisting of the uncomplemented state variable for that function ANDed with the
complement of each of the remaining state variables. For initialization purposes, the one-
hot-plus-zero approach requires that a term of ANDed complements of all state variables
(exclusive of that for the initialization state) be added to the specific Y, variable into which
the FSM is to be initialized. When the initialization term is combined with the "out of" term
for that initialization state, the result is a reduced p-term consisting of the complement of
all state variables exclusive of that for the initialization state, as in Eqs. (16.13). Once the
one-hot-plus-zero implementation is complete, the sanity circuit can be used to drive all
state variables initially and momentarily into the inactive state.

16.4.3 Design and Operation of a Simple FSM by Using a Four-State
One-Hot Sequencer

To demonstrate the application of a one-hot sequencer, consider the state diagram for the
FSM of Figure P14.8, which is reproduced in Fig. 16.27 for the convenience of the reader.

Sanity

Z iT i fB l d) - C J Y l t i f A

FIGURE 16.27
State diagram for the FSM to be designed by using the four-state one-hot sequencer of Fig. 16.26.

16.4 ONE-HOT PROGRAMMABLE ASYNCHRONOUS SEQUENCERS 839

Notice that there are 12 in-branching paths including the four holding conditions. Thus,
4 of the 16 branching conditions are set to zero. From the state diagram, the information
required for programming the state array in Fig. 16.26 is easily deduced by inspection to
be the following:

AB =fda =fcb A =fbb fad = 0

AB =fab =fdc A =fdd fbc = 0

AB =fba =fcd B = faa fca = 0

AB — fac = fbd B =fcc fdb = 0

W = yn
(16.15)

Y = yc-A

Z = yd-B

From this information it is clear that only six two-input gates and two inverters are needed
to program the sequencer. Notice that any given Moore output is a one-hot state variable
and that any given Mealy output is a one-hot state variable ANDed with the input condition
on which it depends.

The logic circuit for the one-hot sequencer design of the FSM in Fig. 16.27 is shown
in Fig. 16.28 where all 16 branching conditions and outputs are implemented by using
discrete logic. When Sanity(L) = 1(L), the sequencer is forced into the 0000 state. Then,
when Sanity(L) = 0(L), the sequencer initializes into state a, after which normal operation
of the FSM can occur.

The operation of the one-hot sequencer design of the FSM in Figs. 16.27 and 16.28 is
best represented by the simulation results provided in Fig. 16.29. For simplicity, only the
external inputs, outputs, and state variables are represented. An analysis of the simulation
results indicate that the time elapsing between an input change and an output response
(response time) varies from rp to 5rp + TINV, where rp is the average path delay through a
gate and TINV is the path delay of an inverter, both in keeping with the usage in this text. The
time spent in a state having two 1 's during the transition between one-hot states is found
to be 1ip + TINV, or about half the maximum response time. Comparing the response times
of the one-hot sequencer and the MAC module indicates that the two sequencers operate at
approximately the same speed, but which will vary for some applications because of their
inherently different design features.

16.4.4 Perspective on Programmable Sequencer Design and Application

Obviously, the most serious problem in using a fully specified n-state one-hot sequencer is
in dealing with n2 inputs. If the FSM to be implemented by the sequencer has relative few
inputs and its branching conditions are relative simple, the problem is easily manageable
with discrete logic. The example shown in Fig. 16.28 is a case in point. For FSMs having
a large number of states with fairly complex branching conditions, the n2 requirement
for one-hot sequencer design most likely will require a CAD approach. Included on the
CD-ROM bundled with this text is the CAD software called A-OPS. This software permits
the automated design of any asynchronous (or synchronous) one-hot FSM of 10 or fewer
states. See Appendix B for more information.

A(H) B(H) Sanity(L)

?17
f >—J

^\) -J

/ V—J

>-

fm̂ \

— C

,,

flab
f
ac

f
'ad

fta ya
j
*bb

f 4-State 1-Hot
bd „

f Sequencer
'ca "c
f
'cb
f
cc y«t
f
'cd

f
'dc

W(H)

X(H)

A(H)— ^

B(H) —

FIGURE 16.28
Implementation of the FSM in Fig. 16.27 by using the 4-state one-hot sequencer in Fig. 16.26 with
discrete transition and output-forming logic.

FIGURE 16.29
Simulation results for the one-hot design of the FSM in Figs. 16.27 and 16.28 showing state transition
and output response to input change following initialization into the 0001 state by using the one-hot-
plus-zero method.

840

16.4 ONE-HOT PROGRAMMABLE ASYNCHRONOUS SEQUENCERS 841

The main advantage in using a programmable one-hot sequencer is the ease with which
it can be designed and the relative simple means by which it can be programmed. True, the
hardware commitment is substantial. But if the objective is to use a single machine to reliably
operate as any number of asynchronous controller FSMs on a time-shared basis, then the
one-hot sequencer approach should be considered as a viable option. With the large PLDs
that are available and with the software provided by the vendors to program them, the design
and programming of a one-hot sequencer can be carried out with little difficulty. For large
sequencers, the use of an FPGA is recommended, provided that care is taken in selecting
the routing paths, a precaution that is essential in dealing with any asynchronous FSM.
Obviously, none of the flip-flops in an FPGA can be used in the design of an asynchronous
one-hot sequencer, but they can and should be used in the design of a one-hot synchronous
sequencer. The genalized NS equations for a synchronous one-hot sequencer are obtained
from Eqs. (16.14) exclusive of the "out of" terms expressed by the second portion of
Eqs. (16.14). Remember that it is the action of the flip-flop that maintains the state variable
of the origin state active until the transition to the destination state is complete.

Thus, a synchronous programmable one-hot sequencer can be designed by applying
Eqs. (13.9) in much the same way that Eqs. (16.14) are applied to the design of an asyn-
chronous one-hot sequencer. Actually, if the j-variables are fed back externally in the design
of a one-hot sequencer, there is the option of converting from an asynchronous design to
one that is synchronous. With feedback and output-forming logic taken from the flip-flop
outputs, a synchronous one-hot sequencer results. To do this, however, requires that the
"out of" terms be disabled. With this information in mind, Fig. 16.24 is applicable to the
design of a generalize one-hot sequencer.

At this point, it is interesting to compare the two asynchronous sequencers that have been
considered in this chapter. Both the MAC module sequencer and the one-hot sequencer op-
erate in the fundamental mode and can be programmed by a bank of PLDs or by discrete
logic. Both types make use of a fixed-state array machine, both are immune to most of
the asynchronous timing problems, and both may need arbiter protection on the relatively
few external inputs. However, the similarity stops here. The MAC module can be cascaded
to produce modules of much greater capacity without compromising speed and reliability.
In contrast, a one-hot sequencer cannot be cascaded because of the branching character
between one-hot states. Whereas the MAC module approach requires that all state-to-state
transitions be logically adjacent, which, in turn, requires that an even number of states be
used in the controller design, the one-hot approach has no such requirement. The MAC mod-
ule sequencer requires n inputs and is limited to n-way branching capability for a 2"-state
array, but the one-hot sequencer requires n2 inputs and has n-way branching for an n-state ar-
ray. Also, recall that the MAC module sequencer requires the use of a timing control machine
to complete the required handshake configuration with the state array machine. A one-hot
sequencer, on the other hand, requires no timing control machine for its proper operation.

Continuing this comparison, it is known that a one-hot sequencer should not be used
to implement an FSM with cycles. An endless cycle condition between two states causes
the one-hot sequencer to stick in the intervening state with two 1's. In contrast, the MAC
module permits, and sometimes requires, cycle conditions, but never between adjacent states
(see subsection 16.3.6). For example, a one-hot sequencer could not be used to design a
ring counter as in Fig. 12.30, but the MAC module can easily be used to design the Gray
code counter in Fig. 16.21. Both of these counters are examples of FSMs with continuous
cycles.

842 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

The two types of asynchronous programmable sequencers that are discussed in this
chapter are each, by their nature, unique approaches to multiple controller design. Beyond
these two approaches there are no other prospects. The one feature that accounts for the
success of an asynchronous programmable sequencer is the fact that each state-to-state
transition is predictable in some unique way. For the MAC module, it is a parity shift
between logically adjacent states, whereas for the one-hot approach it is a logic 1 shift
between one-hot coded states.

The applications of asynchronous programmable sequencers to multiple controller use
on a time-shared basis may appear to be highly specialized and somewhat limited. And to
some extent this is so. However, with greater need for high-speed processing void of internal
clock skew, there are some applications for which asynchronous programmable sequencers
are better suited than conventional synchronous controller designs. The response times
characteristic of asynchronous sequencer controllers will be considerably less than those
associated with conventional clock-driven (synchronous) controllers of the same technol-
ogy. Also, it is asserted here that as modern synchronous systems become more complex and
are operated at increasingly higher speeds, failure due to clock distribution problems (clock
skew) becomes more probable. Use of asynchronous programmable sequencers offers a
practical means of avoiding such problems while meeting the demands for greater speeds.
Communication between multiple asynchronous sequencer controllers operated simultane-
ously within a given system can be accomplished reliably by using appropriate handshake
interfaces, again avoiding clock skew problems.

16.5 EPILOGUE TO CHAPTER 16

It is hoped that the subject matter presented in this chapter will serve to stimulate new ideas in
both teaching and research. It is the author's position that teaching and research are closely
interrelated and that innovation often arises from a spirit of inquiry. Upon completing a
second-level course in digital design, students should be left with the notion that it is proper
to challange "old" ideas and to seek new and innovative approaches to logic design. If this
text can engender these concepts and instill in the reader the spirit of inquiry, then it has
accomplished an important feat. To accept without question work of the past and present is
to surrender to a future of stagnant technology and lackluster innovation.

FURTHER READING

A variety of systems have been studied that utilize both internally fixed and pausable
clocks, but for various reasons are inherently more complex and slower than the EAIC
system described in this text. In further contrast, these systems offer little or no protection
from metastable effects — an important feature of the EAIC approach. The six selected
references that follow are typical of these studies.

[1] W. Lim, "Design Methodology for Stoppable Clock Systems," Proc. 1EE 133E, 65-69 (1986).
[2] M. Afghani and C. Svensson, "Performance of Synchronous and Asynchronous Schemes for

VLSI Systems," IEEE Trans. Comput. 41(7), 858-872 (1992).

FURTHER READING 843

[3] W. Lim and J. R. Cox, "Clocks and the Performance of Synchronizers," Proc. IEE130E, 57-64
(1983).

[4] A. B. Hayes, "Stored State Asynchronous Sequential Circuits," IEEE Trans. Comput. C-30(8)
596-600(1981).

[5] H. Y. H. Chuang and S. Das, "Synthesis of Multiple-Input Change Asynchronous Machines
using Controlled Excitation and Flip-Flops," IEEE Trans. Comput. C-22(12) (1973).

[6] S. M. Nowick and D. L. Dill, "Automatic Synthesis of Locally-Clocked Asynchronous State
Machines," Proc. ICCAD-1991, pp. 318-321.

Closely related to this chapter is the work of Rosenberger et al, who describe the design
and analysis of Q-flops in an internally clocked configuration. The Q-flops are designed
with an internal handshaking mechanism that ensures that the inputs are not stored until
the input stage is ready to accept them and the outputs are not updated until the input stage
has fully resolved and is stable in its new state. This allows the design of sequential delay-
insensitive modules that require fewer delay constraints than other functionally equivalent
design methodologies. Tinder provides a logic interpretation and discussion of Q-flops in
EAIC systems.

[7] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T. Fang, "Q-Modules: Internally Clocked
Delay-Insensitive Modules," IEEE Trans. Comput. 37(9), 1005-1018 (1988).

[8] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,
NJ, 1991.

Extensive studies have been conducted on the effects of the metastable state in D latches
and synchronizers. Typical among these are the works of Jackson and Albicki and those
of Pechoucek. Other studies relevant to the subject of metastability and to this chapter are
those of Kacprzak and Albicki and of Chaney and Molner, the latter notable for work on
metastability in cross-coupled NAND gates (the set-dominant basic cell).

[9] T. A. Jackson and A. Albicki, "Analysis of Metastable Operation in D Latches," IEEE Trans, on
Circuits and Systems 36(11), 1392 (1989).

[10] M. Pechoucek, "Anomalous Response Times of Input Synchronizers," IEEE Trans. Comput.
C-25(2), 133-139 (1976).

[11] T. Kacprzak and A. Albicki, "Analysis of Metastable Operation in RS CMOS Flip-Flops," IEEE
J. Solid-State Circuits SC-22(1), 57-64 (1987).

[12] T. J. Chaney and C. E. Molnar, "Anomalous Behavior of Synchronizer and Arbiter Circuits,"
IEEE Trans. Comput. C-22, 421-422 (1973).

A number of texts cover the subject of CMOS domino logic. Among these the texts of
Fabricius, Mavor et al., and Weste and Eshraghian are recommended.

[13] E. D. Fabricius, Introduction to VLSI Design. McGraw-Hill, New York, 1990.
[14] J. Mavor, M. A. Jack, and P. B. Denyer, Introduction to MOS LSI Design. Addison-Wesley,

Reading, MA, 1983.
[15] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design. Addison-Wesley, Reading, MA,

1985.

The portions of this chapter dealing with the EAIC system are based in part on the work
of VanScheik and Tinder, which includes additional studies not mentioned in this chapter. In

844 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

this reference, a comparison is made between the EAIC system featured in this chapter and
the Q-Flops described in the article by Rosenberger et al. (cited previously). The part of this
chapter, describing a unique class of asynchronous sequencers (MAC modules), is based in
part on the work of Tinder, Klaus, and Snodderley, cited below. There is no known previous
work on the subject of one-hot programmable asynchronous sequencers. For information
on one-hot asynchronous FSM design, refer to Further Reading at the end of Chapter 14.

[16] W. S. VanScheik and R. F. Tinder, "High Speed Externally Asynchronous/Internally Clocked
Systems," IEEE Trans. Computers 46(7), 824-829 (1997).

[17] R. F. Tinder, R. I. Klaus, and J. A. Snodderley, "High Speed Microprogrammable Asynchronous
Controller Modules," IEEE Trans. Computers 43(10), 1226-1232(1994).

PROBLEMS

16.1 (a) Convert the SL-DFLOP in Fig. 16.6 to a static logic JKFLOP by using the flip-flop
conversion given by Eq. (14.10) and illustrated in Fig. 14.17. Use conventional
gates and inverters for the MDS — that is, keep the conversion at the gate level
only.

(b) Test the JKFLOP by simulation. To do this plan to use the logic input waveforms,
including CK, similar to those of Fig. 10.42c. Include Q(L) in the simulation.

16.2 (a) Construct the logic circuit for the three-bit binary up/down counter of Fig. 10.55a
by using the general architecture for EAIC system given in Fig. 16.1. To do this,
use TFLOPs for the input and memory registers, and use Eqs. (10.17) for the NS
and output logic. Convert the DFLOPs to TFLOPs as in Fig. 10.39.

(b) Predict how the D-to-TFLOP conversion logic will affect the NS logic con-
straints, and the frequency and throughput characteristics, given by Eqs. (16.4),
(16.5), and (16.6), for the up/down counter of part (a).

(c) Test by simulation at the gate level the up/down counter in part (a) by using both
an up-count and a down-count. Keep in mind that this is an ideal simulation. This
means that input conditions that might lead to metastability in a real-time test of
the EAIC system cannot be resolved by the simulator program — the MDS in a
real EAIC system is part analog and part digital. As a result, the simulation will
likely show momentary oscillation at certain nodes in the circuit.

16.3 (a) Repeat all parts of Problem 16.2 by using Eqs. (10.16) for the NS and output
functions. Replace part (b) in Problem 16.2 with the following:

(b) Predict how the multilevel logic of Eqs. (10.16) will affect the NS logic con-
straints, and the frequency and throughput characteristics, given by Eqs. (16.4),
(16.5), and (16.6), for the up/down counter.

16.4 (a) Construct the logic circuit for the two-input/two-output FSM in Fig. 11.43b by
using the general architecture for EAIC system given in Fig. 16.1. Plan to use
Eqs. (11.11) for the NS and output logic and to initialize into the 000 state,

(b) Test the logic circuit of part (a) by simulation. To do this, set the input conditions
necessary to traverse the state diagram in the following way:

PROBLEMS 845

Keep in mind that this is an ideal simulation. This means that input conditions that
might lead to metastability in a real-time test of the EAIC system cannot be resolved
by the simulator program — the MDS in a real EAIC system is part analog and part
digital. As a result, the simulation will likely show momentary oscillation at certain
nodes in the circuit.

16.5 (a) Design the rotation detector in Problem 14.22 by using the EAIC system. Imple-
ment the NS and output function with discrete logic. Plan to use the two-level
SOP expression for CCW output and then use an edge-triggered D flip-flop to
filter out any logic noise that is generated by static hazards.

(b) Address the issues of endless cycles, critical races, ORGs, static hazards, and
E-hazards as they relate to the EAIC design of the rotation detector.

(c) Simulate the results of part (a) to verify the proper operation of the rotation
detector EAIC design.

16.6 Design and test the 2-input (22-state) MAC module as follows:
(a) Construct the fully documented state diagrams for the SAM and TCM by fol-

lowing the example in Subsections 16.3.2 and 16.3.3. Include all branching
conditions and outputs.

(b) Obtain an optimum set of NS and output functions for the SAM and TCM, and
end with a complete logic circuit by using these results.

(c) Use the 2-input MAC module to design a 2-input Gray code counter by following
the example in Subsection 16.3.4.

(d) Test the design in part (c) by simulation. Thus, initialize the system into the 00
state and then cycle the counter through all four states in a manner similar to that
shown in Fig. 16.22 for the 3-bit Gray code counter.

16.7 The FSM in Fig. P14.4 (see Problems at the end of Chapter 14) is to be designed by
using the 2-input MAC module of Problem 16.6.
(a) Construct the state diagram for the FSM that is appropriate for a MAC module

design.
(b) Obtain the NS instructions from the state diagram. (Hint: First construct the

K-maps for the instruction inputs.)

(c) Construct a complete logic diagram for this MAC module design. Include all
branching conditions and outputs. Note: Block symbols may be used for the
2-input MAC module.

(d) Test the design of part (c) by simulating the logic circuit. To do this, initialize the
FSM into the 00 state and then cause it to transit through all state-to-state paths.

16.8 Repeat Problem 16.7 for the design of the FSM in Fig. 16.12a. Note: When simulating
the logic circuit, include the cycle from state 11 to state 01 under input conditions
XY as one of the tests.

16.9 Obtain the NS instruction functions for the FSM in Fig. P14.12 assuming the use
of the 3-input MAC module, presented in Fig. 16.17, as the sequencer. (Hint: First
assign a 3-bit state code to the FSM in Fig. P14.12 by adding a 0 (zero) to each state
code in the MSB position.

846 CHAPTER 16 / EXTERNALLY ASYNCHRONOUS/INTERNALLY CLOCKED

16.10 Obtain the NS instruction functions for the FSM in Fig. P13.4a required to drive the
3-input MAC module of Fig. 16.17 as the sequencer.

16.11 Design and test by simulation the one-hot asynchronous sequencer design of the
FSM in Fig. P14.9a by using the programmable sequencer discussed in Subsection
16.4.2. To do this, use discrete logic for both the sequencer design and the external
logic required to program it.

16.12 By following the example in Subsection 16.4.2, write the NS functions for a fully
specified, six-state, one-hot asynchronous sequencer by using the one-hot-plus-zero
approach to initialization. To do this, use the form of Eqs. (16.13) and assume that
initialization is to occur into state a.

16.13 (a) Write the program logic required to operate the one-hot sequencer of Problem
16.12 as the FSM represented by the state diagram in Fig. P14.10. To do this,
follow the format of Eqs. (16.14) and (16.15).

(b) Construct the logic circuit for this design in a manner similar to that used to
represent the sequencer design shown in Fig. 16.28.

16.14 At the discretion of the instructor, use the software A-OPS included on the CD-ROM
bundled with this text to work any of the following design problems: 16.11, 16.12,
16.13. Write the VHDL descriptions for each. To do all of this, follow the instructions
in the readme.doc that accompanies the software.

EAIC System Design Projects at the Advanced Level

For projects at the advanced level, more complex EAIC device and system designs can be
carried out together with simulations of those designs. The projects that can be used for
this purpose are extensive in number and really limited only by one's imagination. A few
examples are as follows:

Device Category Examples

Four-bit parallel loadable shift register
Four-bit parallel loadable up/down binary counter
Four-bit autonomous linear feedback shift register (ALFSR) counter
Four-bit ripple counter by using toggle modules as memory elements
One-hot EAIC design of a serial 2's complementer (see Subsection 13.5.2)

System Category Example Four-bit parallel-to-serial adder/subtractor system. Follow
the design in Subsection 13.6.1, but use the parallel loadable right shift registers designed
in Subsection 12.2.2.

Notes

Remember that it is not necessary to add external synchronizing circuitry to an EAIC
system since the input register serves to synchronize the inputs.

To correctly design an EAIC system containing both controller and data path devices,
it may be necessary to generate the internal clock with data ready (R) signals from
controller and data path devices of the same triggering edge, e.g., RET.

PROBLEMS 847

3. For simulation purposes, it will be necessary to use a conventional NOR gate in the
clock generating circuit. For large number of inputs, a NOR tree configuration similar
to the OR tree in Fig. 4.49 may be necessary.

Asynchronous Programmable Sequencer Design Projects at the Advanced Level

Advanced designs with MAC module and one-hot sequencers are, of course, required to
operate in the fundamental mode. Keeping this in mind, the following devices and system
designs are examples that can be undertaken at the advanced level with simulations included.
Designing and testing with VHDL should be considered as an option.

Device Category Examples

A 4-bit MAC module with preset, clear, and enable inputs.
A 4-bit Gray code up/down counter by using two 2-input MAC modules.
The rotation detector of Problem 14.22 designed by using the four-state one-hot

programmable asynchronous sequencer.
A 6-state one-hot programmable sequencer and its use to implement the 5-state

FSM in Fig. P14.7.

System Category Example A four-bit parallel-to-serial adder/subtractor system similar
to the eight-bit parallel-to-serial adder/subtractor in Subsection 13.6.1. To do this, use a
2-input (22-state) MAC module for the controller, and trigger the appropriate data path
devices with the DI signal.

An asynchronous one-hot design of the voter booth system of Problem 13.20 that will
tabulate continuously the individual count of the contestants and give, on command, the
difference in the count at any point in the voting period. It is required that a parallel-to-serial
adder/subtractor be used, one similar to that in Subsection 13.6.1 but enlarged to handle
the number of voters that may vote. (Hint: To generate a periodic triggering signal for use
with the adder/subtractor, consider activating a very simple one-hot "cycle" FSM properly
initialized.)

A one-hot time-slice system of four controllers by using a six-state asynchronous pro-
grammable sequencer and a 2-to-4 decoder according to the architecture in Fig. 16.24.
To do this, use the software ADAM bundled with this text. Assume that switching be-
tween the controller FSMs (via the decoder) requires initialization of the "new" controller.
Demonstrate the proper operation of this time-slice system with simulations.

Notes

In most cases, it will be necessary to use minimized functions in these designs. There-
fore, except for the one-hot design, use of a logic minimizer is highly recommended.

Since fundamental mode FSMs are involved, avoid external input changes in near
proximity to one another when simulating the designs.

In the system-level design problem that uses the 2-input MAC module for the con-
troller, pay particular attention to the timing of events when triggering the peripherals
with the DI signal.

This page intentionally left blank

APPENDIX A

Other Transistor Logic Families

A.1 INTRODUCTION TO THE STANDARD NMOS LOGIC FAMILY

Though CMOS is currently the most important member of the MOS family, NMOS still
occupies a significant position is modern technology. Shown in Fig. A.I is the generalized
NMOS logic configuration similar to that for CMOS given by Fig. 3.5. The depletion-
mode NMOS serves a similar purpose as the PMOS in CMOS logic — it produces a
high resistance (impedance) when the enhancement-mode NMOS logic (NL) is evalu-
ated (shorted to ground), but becomes a low resistance otherwise. Thus, the CMOS NOR
gate in Fig. 8.46 could be replaced by a NOR gate built with the NMOS technology of
Fig.A.I.

Figure A. 1 implies that NL can represent a variety of logic devices. Four simple examples
of NMOS logic gates are presented in Fig. A.2. The AND and OR gates are implemented
by adding inverters to the NAND and NOR gates, as is done in CMOS (see Figs. 3.16
and 3.17).

The relative simplicity of NMOS logic compared to CMOS is illustrated by the examples
in Fig. A.3. Here, the comparison is made between AND-OR-invert (AOI) gates of the two
MOS families. These circuits and those of Fig. A.2 are classified as static logic. Dynamic
domino CMOS logic is discussed in Subsection 16.2.3. Dynamic domino NMOS logic
is similar to dynamic domino CMOS logic except that in dynamic domino NMOS logic
the depletion mode NMOS is replaced by an enhancement mode NMOS transistor for the
precharge stage.

The main advantage of CMOS logic over NMOS logic is in power dissipation. For exam-
ple, when the input to an NMOS inverter is at low voltage (LV) no DC power is dissipated.
However, when the input goes to HV, the depletion mode NMOS draws a saturation current
which causes "quiescent" power dissipation. When the packing density of NMOS gates
reaches into the hundred of thousands (small by modern standards), Joule heat dissipation
becomes a problem. This heat must be sinked; otherwise it could accelerate chip failure
due to impurity and dopant diffusion. Remember that diffusion processes are exponentially
temperature dependent.

849

850 APPENDIX A / OTHER TRANSISTOR LOGIC FAMILIES

H

uu

J >l Depletion-mode
NMOS

pull-up transistor

• 1 Z

Enhancement
r i Mode
u ' NMOS Logic

(NL)

FIGURE A.1

A.2 INTRODUCTION TO THE TTL LOGIC FAMILY

The standard transistor-transistor logic (TTL) family is composed mainly of bipolar junc-
tion transistors (BJTs) and resistors. Shown in Fig. A.4 are three examples of standard
TTL gates. In these figures B is the base, E is the emitter, and C is the collector. The phe-
nomenological operation of these gates can be easily understood by first considering the
inverter. Qualitatively, the TTL inverter operates as follows: When Xin is at LV (E = LV),
transistor TI forces transistor T2 to be turned OFF, thereby bringing Xou, to Vcc level, hence
Xou! = HV. But when Xin goes to HV (E = HV), Tj causes T2 to be turned ON, which
brings Xou, to ground level, hence, Xout = LV. Thus, this behavior obeys the physical truth
table in Fig. 3.6b. In a sense, a BIT is turned ON when E = HV and is turned OFF when
E = LV, which is similar to the behavior of an NMOS transistor when these voltages are

INV N A N D 2 NOR 2

FIGURE A.2

A.2 INTRODUCTION TO THE TTL LOGIC FAMILY 851

+VD D

NMOS AOI CMOS AOI

FIGURE A.3

applied to the gate, G. The resistors in the inverter of Fig. A.4 are called "pull-up" resistors
and serve basically the same function as the depletion mode NMOS in Fig. A.2— they
are current-limiting elements. The symbol Vcc is internationally accepted to represent the
supply voltage to the bipolar logic families.

The operation of the two-input BIT NAND gate in Fig. A.4 follows directly from the de-
scription of the inverter. Here, TI is a dual-emitter BIT, the operation of which is not unlike
that of TI for the inverter. Thus, any time either input X or Y (or both) is at LV, 1^ is turned
OFF, causing Z to go to HV. Only when both X and Y are at HV is T2 turned ON, bringing
Z to LV. This behavior is, of course, expressed by the truth table in Fig. 3. lOb. The number
of inputs to a TTL NAND gate can be increased by increasing the number of emitter con-
nections. However, this usually limited to eight or fewer for technological reasons. Standard
TTL AND gates are produced by attaching TTL inverters to the NAND gate outputs.

The operation of the two-input NOR gate can be explained in a similar manner. If either
input X or Y (or both) is at HV, TS or T4 (or both) is turned ON and the output Z goes to

TTL INV TTL NAND 2 TTL NOR 2

FIGURE A.4

852 APPENDIX A / OTHER TRANSISTOR LOGIC FAMILIES

ground (Z = LV). Only when both X and Y are at LV will the output Z be at HV. This is
the same physical behavior expressed by the truth table in Fig. 3.12b. Standard TTL OR
gates are produced by attaching TTL inverters to the NOR gate outputs.

The presentation here does not do justice to the field of TTL devices, which is extensive
and requires much more time and space than is permitted here. The TTL family is actually
divided into several subfamilies. These include Schottky TTL (S), low-power Schottky (LS),
and advanced low-power Schottky (ALS). Also belonging to the bipolar group of families
is the emitter-coupled logic (ECL) family. Further Reading at the end of this appendix cites
several sources that will carry the reader well beyond the present treatment.

A.3 PERFORMANCE CHARACTERISTICS OF IMPORTANT 1C LOGIC FAMILIES

All members of the TTL family suffer from high power consumption in comparison to
the MOS family, and especially in comparison to CMOS. The one advantage that bipolar
logic families may have over MOS is speed. Generally, all members of the TTL family of
gates are faster than either NMOS or CMOS. However, modern high-speed CMOS (HC)
has closed the gap in speed somewhat. Of the bipolar logic families, ECL is the fastest
but suffers from high power consumption. It is because of its speed that the ECL family is
currently the fourth important logic family next to CMOS, NMOS, and TTL, CMOS being
the most important. Members of the MOS family have the lowest power consumption of
any of the logic families, with CMOS logic having the lowest.

Any summary of logic family performance characteristics is risky because the relative
assessments change, sometimes rapidly, with technological developments and because these
assessments often have to be qualified to be valid. Nevertheless, an attempt is made in
Table A. 1 to present a qualitative assessment of these characteristics for some of the more
important logic families.

Not included in Table A. 1 are several other logic families that are important for certain
specialized applications. The families include integrated injection logic (I2L), low voltage
injection logic (LVIL), gallium arsenide logic (GAL), and silicon-on-sapphire CMOS
(CMOS/SOS) logic. Also, there are the rather esoteric optical and superconducting families
that appear to have relatively little use.

FURTHER READING

To one extent or another, every text in digital design or digital electronics contributes
something to the subject of logic families and their characteristics. Some are technology

Table A.1 Characteristics of commonly used 1C logic families

Parameter

Switching speed
Power dissipation
Noise immunity
Fan-out
Packing density

TTL

Very good
Medium
Very good
Fair
Medium

ECL

Excellent
High
Fair
Fair
Low

NMOS

Fair
Low
Good
Very good
High

CMOS

Good
Very low
Very good
Excellent
High

FURTHER READING 853

dependent and some are not. The text of McCluskey is recommended for its technology-
dependent coverage of TTL, diode-transistor logic (DTL), and integrated injection logic
(I2L) logic. Another technology-oriented coverage of the TTL logic family is found in the
text by Wakerly. Other texts that cover TTL and DTL to a lesser extent include those by
Katz and Tinder. Good electronics-oriented coverage of the integrated logic families are
provided in the texts of Jones and Tocci. For CMOS logic, the VLSI text of Fabricius and
that of Weste and Eshraghian are recommended. Another source of information on the
characteristics of the most commonly used logic families is The Electrical Engineering
Handbook, R. C. Dorf, Editor-in-Chief.

[1] R. C. Dorf, Editor-in-Chief, Electrical Engineering Handbook, 2nd ed. CRC Press, Boca Raton,
FL, 1997, pp. 1769-1790.

[2] E. D. Fabricius, Introduction to VLSI Design. McGraw-Hill, New York, 1990.
[3] L. D. Jones, Principles and Applications of Digital Electronics. Macmillan, New York, 1986.
[4] R. H. Katz, Contemporary Logic Design. Benjamin/Cummings Publishing, Redwood City, CA,

1994.
[5] E. J. McCluskey, Logic Design Principles. Prentice-Hall, Englewood Cliffs, NJ, 1986.
[6] R. F. Tinder, Digital Engineering Design: A Modern Approach. Prentice Hall, Englewood Cliffs,

NJ, 1991.
[7] R. J. Tocci, Digital Systems, Principles and Applications, 4th ed. Prentice Hall, Englewood Cliffs,

NJ, 1988.
[8] J. F. Wakerly, Digital Design Principles and Applications. Prentice Hall, Englewood Cliffs, NJ,

1994.
[9] N. H. E. Weste, and K. Eshraghian, Principles of CMOS VLSI Design. Addison-Wesley, Reading,

MA, 1985.

This page intentionally left blank

APPENDIX B

Computer-Aided Engineering Tools

B.1 PRODUCTIVITY TOOLS BUNDLED WITH THIS TEXT

Five important productivity tools are available on the CD-ROM bundled with this text for
use in combinational logic, synchronous and asynchronous machine design and analysis:

1. EXL-Sim2002 logic simulator

2. BOOZER logic minimizer

3. ESPRESSO II logic minimizer

4. ADAM CAD software

5. A-OPS CAD software

Complete instructions are included for the use of each of these software tools. All but
EXL-Sim2002 require the use of a text editor.

EXL-Sim2002 is an outstanding gate-level, interactive, schematic-capture and simulation
program that can be used at either the beginning or advanced level of logic design. It is
the student version of a more powerful advanced-level program. EXL-Sim2002 is unique
for its intuitive approach, yet it is powerful enough to handle any problem associated
with this text. Its features include a drag-and-drop capability, rubber banding, mixed and
positive logic capability, primitive (gate) libraries, macro generation capability, library
development, project management, individual or global delay assignments, a connection
feature that eliminates the need for wire connections, unrestricted timing intervals, multiple
zoom levels, simple editing and labeling capability, multiple windows, waveform zooming
and scrolling, a variety of printout capabilities, and a host of other features. EXL-Sim2002
operates in the Windows environment and requires relatively little computer memory. For
information regarding EXL-Sim2002 and periodic updates, visit EXL-Sim2002's home page
at http://www.tbdgroup.com.

BOOZER (for BOOlean ZEro-one Reduction) is an excellent software minimization tool
and is highly recommended for use with this text. It can accept entered variable (EV) or
canonical data from K-maps or tables with or without don't cares and can return an optimal or
near optimal single or multiple output SOP solution. These features are especially important
in synchronous and asynchronous FSM design of relatively large systems as presented in this
text. The program operates in the DOS mode on PCs operated in a Windows environment,

855

856 APPENDIX B / COMPUTER-AIDED ENGINEERING TOOLS

and the computer memory requirements are minimal. See Further Reading at the end of this
appendix for more information about BOOZER and its basic algorithm.

ESPRESSO II is a well known software tool used widely for minimization of large
Boolean functions. It is also available through the University of California, Berkeley,
1986 VLSI tools distribution. It supports advanced algorithms for minimization of two-level,
multi-output Boolean functions but does not accept EVs. The algorithms for ESPRESSO
are described in an article by Rudell cited in Further Reading at the end of this appendix.

ADAM (for Automated Design of Asynchronous Machines) is a unique, versatile and
powerful software tool that permits the automated design of very complex asynchronous
state machines free of all timing defects, and provides output files for direct PLA program-
ming by using the Berkeley format. The input file is a state table for the desired state machine.
ADAM also allows the designer to design synchronous state machines, timing-defect-free.
The options include the LPD model or NESTED CELL model for asynchronous FSM de-
signs, and the use of D FLIP-FLOPs for synchronous FSM designs. For more information
about ADAM, see Further Reading at the end of this appendix.

A-OPS stands for Asynchronous One-hot Programmable Sequencer designs of asyn-
chronous and synchronous state machines. This software generates a PLA (or PAL) output
file (in Berkeley format), a RAM output file, or the VHDL code for the automated timing-
defect-free designs of the following: (a) Any 1-Hot programmable sequencer up to 10 states,
(b) The 1-Hot design of multiple asynchronous or synchronous state machines driven by
either PLDs or RAM. The input file is a state table for the desired state machine. This
software can be used to design systems with the capability of instantly switching between
radically different controllers on a time-shared basis, all defect-free. For more information
about A-OPS, see Further Reading at the end of this appendix.

B.2 OTHER PRODUCTIVITY TOOLS

There are other schematic capture and simulation software available for logic design at the
student level. Examples include Beige Bag V3.0 for Windows (http://www.beigebag. com),
LogicWorks from Capilano Computing for either PCs or Macs (http://www.logic
works.com), and the student edition of Workview Office by VIEWlogic for Windows
(http://www.prenhall.com/workview). These three offer similar features, which are given
at their respective Web sites.

At the professional level, Workview Office (V 7.31A or higher) is one of the most powerful
tools available. It includes such features as front-end and project-management tools, project
navigation and library maintenance, design entry and schematic capture, PLD and FPGA
design entry, digital/analog simulation, timing analysis, synthesis/FPGA design, netlisting,
graphical analysis and editing, and PCB layout. Workview Office operates in the Windows
environment, and its memory requirements are substantial. Information about this program
can be obtained on Viewlogic's home page: http://www.viewlogic.com.

A quality CAD tool, called Cedes (C++ Engine for Discrete Event Simulator), is avail-
able to students and professionals. Cedes is an affordable, efficient, object-oriented design
tool for modeling and simulation of digital systems. The program permits use of the MS
graphical user interface (GUI) to describe a design in schematic format and can automat-
ically generate a simulation program based on the schematic drawing. The user can click
icons to run the simulation, make changes to the diagram as needed, and then rerun the

FURTHER READING 857

simulation. Cedes is VHDL and Verilog compatible in netlist formats. Custom libraries can
be generated that support local design environments. Information regarding this program is
available on its Web site: http://www.fbeedle.com.

The three best-known professional tools for schematic capture, simulation, VLSI chip
design, and circuit board layout are Mentor Graphics, Cadence, and OrCad. Since these
three CAD tools provide essentially the same features and since more detailed information
can be obtained from their Web sites, only a brief description is given of Mentor Graphics'
features. Mentor Graphics permits a variety of inputs into ModelSim, perhaps the world's
most powerful simulation engine. These inputs include schematic capture, VHDL or Verilog
description, state table representation, and Quicksim. Cell and FPGA libraries can be gener-
ated from the VHDL description, as can circuit board layout files. ModelSim (Elite Edition)
is used for ASIC systems on UNIX, while ModelSim (Personal Edition) is targeted toward
FPGA designs on PCs operating in the Windows environment. To obtain further infor-
mation on these powerful professional tools, see their Web sites: http://www.mentor.com;
http://www.cadence.com; and http:/www.orcad.com.

FURTHER READING

The algorithm for the original BOOZER program is discussed in Fletcher. The program
has since been revised to include entered variables. The basic algorithms of Espresso are
described in an article by Rudell. The CAD software ADAM and A-OPS are based on the
MS theses of G. Murphy and A. Boen, respectively, as cited below.

[1] W. I. Fletcher, An Engineering Approach to Digital Design. Prentice Hall, Englewood Cliffs, NJ,
1980.

[2] R. Rudell, "Espresso-MV: Algorithms for Multiple-Valued Logic Minimization," Proc. Int. Circ.
Conf., May 1985.

[3] G. Murphy, "Computer Aided Design of Glitch-Free Single Transition Time Asynchronous State
Machines," MS Thesis, School of Electrical Engineering and Computer Science, Washington
State University, Pullman WA, 2002.

[4] A. Boen, "Automated Design of Defect-Free Asynchronous Programmable One-Hot Sequencers
and Micro-controllers." MS Thesis, School of Electrical Engineering and Computer Science,
Washington State University, Pullman WA, 2002.

This page intentionally left blank

APPENDIX C

IEEE Standard Symbols

C.1 GATES

The standard ANSI/IEEE Std. 91-1984 is extensive and will not be covered in its entirety in
this appendix. Shown in Fig. C.I a is the basic logic gate rectangle used in the standard gate
library, and in Fig. C.lb are the most commonly used standard and nonstandard qualifying
logic operation symbols that are placed in the open box at the top of the standard rectangle. In
Fig. C.lc are the qualifying input/output (I/O) symbols that are used as logic level indicators
on the inputs and outputs of the standard rectangle.

Presented in Fig. C.2 are three circuit representations of the function F = AB + CD + E.
Here, the distinctive shape symbols are used in Fig. C.2a and is compared with two IEEE
standard representations of the same circuit in Figs. C.2b and c. Clearly, the identity of the
gates (NAND or AND/OR) is lost in the compact IEEE format of Fig. C.2c.

C.2 COMBINATIONAL LOGIC DEVICES

Several types of dependency are used in the IEEE standard symbols of combinational and
sequential MSI devices. A truncated list is provided as follows:

G — AND V — OR N — Negate (Exclusive-OR)
Z — Interconnection C — Control S and R — Set and Reset
EN — Enable M — Mode A — Address

Shown in Fig. C.3 are MSI combinational devices that are represented as IEEE standard
symbols. The meaning of the symbol G^ is somewhat self-explanatory. For example, the
8-to-l MUX shows a grouping of three data select inputs that steer one of eight (0-to-
7) data inputs to the output. Hence, G° indicates AND dependency with signals given
in the range 0 to 7. The symbol G4 EN in the dual l-to-4 DMUX is an enable input
affecting four outputs such that when G4 is inactive-low the outputs are inactive-low and
vice versa.

859

Inputs

860 APPENDIX C / IEEE STANDARD SYMBOLS

Qualifying
operation & AND gate

symbol i no * ' I A c t i v e low
> 1 OR gate or > . ,a , [input
= 1 XOR gate

Logic
Gate

Output
1 Inverter or buffer

+ Non-standard symbol for OR Gate

Non-standard symbol for XOR Gate f . t3 , f output
Non-standard symbol for EQV Gate

Active low

Standard gate
rectangle Qualifying logic operation symbols Qualifying I/O symbols

(a) (b) (c)

FIGURE C.1

C.3 FLIP-FLOPS, REGISTERS, AND COUNTERS

An explanation of the IEEE standard symbology for sequential machines is somewhat
more involved. Shown in Fig. C.4 are five examples. The symbology for the two flip-flops
is straightforward. Single data and clock inputs are indicated by ID and Cl, respectively.
The active low asynchronous preset and clear inputs are given the symbols S and R for set
and reset.

The symbology used for the MSI devices in Fig. C.4 is more complex, although that for
the storage register appears to be self-evident. The four-bit universal shift register (USR)
uses M| to indicate the mode control inputs that set the FSM for true hold, shift right,
shift left, or parallel load: hence, four mode dependencies (O-to-3). Inputs DO-D3 are
subject to simultaneous dynamic control by the clock input. The 3 in the symbol 3,4D
indicates that the input is enabled for parallel loading (M = 3). The dynamic (clock) symbol
C4, 1 —> /2 «— on the clock input simply means that when M = 1 the USR shifts right (-»)
and when M = 2 it shifts left (•<—), and that the 4D inputs are controlled by clock at input
C4. The label SRG4 indicates a four-input shift register.

For the 4-bit up-counter, the symbol CT means "content" and has a somewhat different
meaning when applied to an input vs an output. For example, in this counter 5CT = 0

A(H) A—I
B-

C —

-F

>1

(a) (b) (c)

FIGURE C2

C.3 FLIP-FLOPS, REGISTERS, AND COUNTERS 861

EN

2j ° 7

0
1
2
3
4
5
6
7

Data f— |o\p 0 I Data /— |o\r 0 I
Select \-| 1 / 3 " Select \-Ji/b J

*— 1 HK >>rl— 1 I-1

=Data c
\ .,

J ~~~~~<i ~~~1
X

EN
0
1
2
3

0
1
2
3

block

-C

— Output /

Data

~~^

0
G4 EN 1

2
3

G4 EN °

2
3

r k Data^ —

n«i» / 3 Data C n . OutputsData < x „ !„ Data I „ L ~ ,

EN
0
1
2

— 3
7 4

5
6
7

• Outputs

8-to-1 MUX Dual 4-to-1 MUX Dual 1-to-4 DMUX 3-to-8 line Decoder

FIGURE C.3

represents a synchronous clear, meaning that a clear command must be clocked into the
FSM. The output symbol 3CT =15 means that an output signal becomes active only at the
count of 15 when G3 is active. In this counter, symbols G3 and G4 are dual count enable
inputs, such that both must be active before the counter will count up. Thus, the dynamic
input symbol C5/2, 3, 4+ signifies that clock input C5 controls inputs 5D and that the
counter will count up only if M2, G3, and G4 are active. An up/down counter would have
two dynamic input strings, one ending in plus (+) and the other in minus (—). The label
CTRDIV16 simply indicates a 4-bit (H-16) counter.

The IEEE standard symbol forms are not for everyone and certainly not for the beginning
student in the subject area. As can be seen from these examples, the standard language is
complicated and should not be used by anyone but the most experienced user. Thus, for
pedagogical reasons, this text has avoided the use of the standard forms in favor of the
more traditional symbols. The main advantage of the IEEE standard symbology seems to

s

ID -5CT=°
M1

M2

G4
RET D Flip-flop with

preset and clear

u

—C>C1

1K

R

— c

so —

S1 —

CK

J SRG4
"I

C K — 4>C1

AO

A1

A2

A3

h r
1D

1D

1D

1D

SR SER —

DO —

— QO D1 —

— Q1 D2 —

— Q2 D3 —

Q3 SL SER —

SRG4
R

°1 0
1 J

M 3

^C4,1^/2^
L, pJ

1,4D

3,4D

3,4D

3,4D

3,4D

2,4D

QO

Q1

— Q2

— Q3

DO-

D1

D2

D3-

C T R D I V 1 6

3CT=15
G3

> 05/2,3,4+

1,5D

1,5D

1.5D

1,5D

•QO

•Q1

•Q2

•Q3

FET JK Flip-flop Storage register Universal shift register 4-Bit parallel loadable up
with clear with clear with clear counter (74xx163)

FIGURE C.4

862 APPENDIX C / IEEE STANDARD SYMBOLS

be that it is, in fact, a standard that professionals can adhere to. The problem is that not all
of industry uses the standard, which leads to a mix of notation and symbology. The new
ANSI/IEEE Std 91-1984, IEEE Standard Graphic Symbols for Logic Functions, is based on
the International Electrotechnical Commission (IEC) standard 617, and its use is required
by the U.S. Department of Defense (DOD). For those wishing more information on the
IEEE standard, the references cited in Further Reading should be helpful.

FURTHER READING

Perhaps the best way to begin to learn the IEEE standard symbology is to read those texts
that either emphasize its use or have included a detailed summary of it. Such texts include
those of McCluskey, Nelson et al., Wakerely, and Yarbrough and are recommended. For
a more complete treatment of this symbology the reader should visit the original IEEE
documentation cited here.

[1] Standard Graphic Symbols for Logic Functions, IEEE/ANSI Standard 91-1984. Institute of Elec-
trical and Electronics Engineers, Inc., IEEE Standards Office, 345 East 47th St. New York, NY
10017, 1984.

[2] E. J. McCluskey, Logic Design Principles. Prentice Hall, Englewood Cliffs, NJ, 1986.
[3] V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit Analysis and

Design. Prentice Hall, Englewood Cliffs, NJ, 1995.
[4] J. F. Wakerly, Digital Design Principles and Practices, 2nd ed. Prentice-Hall, Englewood Cliffs,

NJ, 1994.
[5] J. M. Yarbrough, Digital Logic Applications and Design. West Publishing Co., Minneapolis/St.

Paul, MN, 1997.

Index

A Binary division, restoring, 59
ABEL, 329 Binary multiplication, 56
Absolute minimum expressions, 198 Binary-to-BCD conversion, 261
Absorptive Laws Booth's, 57-58

AND/OR forms, 108 Carry-save addition of multiple integers, 349
EQV/XOR forms, 112 D-to-JK K-map conversion, 474

Accumulator, parallel design, 607 D-to-T K-map conversion, 471
Actel FPGAs, 319-321 Diminished radix complement, 48

Act-1 family, 320-321 Direct quadratic convergence, nonrestoring, 62
Activation level indicators Floating point multiplication/division, 67

Active high, active low, 80 Fraction conversion, 41
Active state, 79 Mapping, 440
Active transition point, 465 Positive integer conversion, 38, 39
ADAM CAD software, xxv, 855 Radix complement, 46
Adders Round off for fraction conversion, 42

Binary, 335-340 T-to-JK K-map conversion, 576
Binary coded decimal (BCD), 386-387 Two's complement, 46
Carry look-ahead, 345-349 Two's complement multiplication, 57-58
Carry-save, 349-350 Two's complement subtraction, 54
Excess 3 (XS3), 387 Alternative race paths
Full, 337-338 In analysis of ORGs, 492
Half, 336 In analysis of races and critical races, 703
Ripple-carry, 338-340 Alternative synchronous FSM architecture

Adder/subtractors Choice of components, 613-614
Binary, 342-388 One-hot method, 636-649
Binary coded decimal (BCD), 387 Parallel loadable up/down counters as the
Excess 3 (XS3), 387-388 memory, 632-637
Parailel-to-serial, 645-651, 651-655 Universal shift registers as the memory, 626-632
Ripple-carry, 342-345 Use of ROMs, PLAs, and PALs, 614-626

Addition Analysis of finite state machines (FSMs)
Binary, 52-53 Asynchronous, 741-758, 788-795
Binary coded decimal (BCD), 62-63 Synchronous, 476-479
Excess 3 (XS3), 75 Analysis of synchronous FSMs
Floating point, 64-65 Examples, 476-479
Hexadecimal, 75 Procedure, 476

Adjacent XOR patterns, 198-206 PS/NS table, use of, 476
Algorithmic state machine (ASM) charts AND

In one-hot FSM designs, 640-645 Definition, 87
Symbology, 537-538 Logic circuit symbols, 88, 92-94
Vs state diagrams, 538, 642-644,659-660 Operator symbols, 87

Algorithms AND array, 301 (see also AND stage)
BCD addition, 63 AND function, 94
BCD subtraction (10's complement), 63-64 AND gate
BCD-to-binary conversion, 260 Conjugate gate symbols, 92-94
Binary addition, 52 CMOS, 92

863

864 INDEX

AND gate (cont.) Single transition time (STT) FSMs, 720-730,
Domino logic configuration, 815 734, 738-740
Mixed logic interpretations, 92 Synchronous FSMs, 542-547
Multiple inputs, 93 ASCII character code, table, 71
Physical truth table, 92 ASICs, 238

AND laws, 106 ASMs, 536-538, 640-644, 659 (see also
AND operator, 87 Algorithmic state machine charts)
AND-OR-Invert (AOI) gate Associative laws

CMOS, 317-318, 851 AND/OR forms, 108
Logic equivalent circuits, 318, 319 EQV/XOR forms, 111
NMOS, 851 Associative XOR patterns, 198-204
Truth tables, 318 Asynchronous binary counters
Use of in ALU design, 364 Data triggered, 664—665

AND stage (plane or section) Ripple counters, 600-605
In PLDs, 297-298, 301-303, 307-309 Asynchronous FSM analysis

ANSI/IEEE Standard gate symbology, 859-860 Critical races, 703-705
ANSI/IEEE Std91-1984 Standard, 859-862 Endless cycles, 701-793
Antiphase triggering Essential hazards, 711-719, 746, 750, 752,

Of output holding registers, 497, 498 756-757
Of synchronizers, 512, 513, 515 Examples, 741-758

A-OPS CAD software, xxv, 855 LPD model FSMs, 743-747
Apolar input, 615 Nested cell model FSMs, 747-752
Arbiters One-hot FSMs, 752-757

Bus, 801-803 Procedure, 741-742
Arithmetic and logic units (ALUs), 357-380 Static hazards in the NS and output logic,

Carry look-ahead configurations, 361-363, 705-711
378-380 Asynchronous FSM design

Dedicated and with CLA capability, 358-363 Array algebraic approach (STT FSMs), 720-711
Dual-rail systems with completion signals, Call module, 770-771

369-380 Flip-flops, 438-461, 698-701
MUX approach for VLSI application, Fundamental mode, defined, 686

363-369 Hazard-free FSMs by using the nested cell model,
Arithmetic codes 730-734

Binary coded decimal (BCD), 34-36 Initialization, 719-720
Excess 3 (XS3), 35-36, 49 Latches, 441-444, 460-464
Nine's complement, 48 LPD model, 686
One's complement, 47,48 Lumped path delay (LPD) approach, 692-695,
Signed-magnitude, 44-45 698-700, 705-710, 714-715
Ten's complement, 45^6, 48 One-hot approach, 734-740, 835-842
Two's complement, 45^7 Nested cell approach, 441-448, 460-461,
Unsigned binary, 33 695-700, 730-734
Vs difficulty of arithmetic operations, 68 Perspective on state code assignments, 738-740

Arithmetic combinational devices, 335-380 Rendezvous module (RMOD), 695-698
Adders, 335-340, 345-349, 349-350, Rotation detector, 769-770

386-387 Rules for use of PLDs, 740-741
Adder/subtractors, 342-345, 387-388 Selector module, 769
Arithmetic and logic units, 357-380 Use of PLDs, 740-742
Comparators, 265-272 Asynchronous inputs, 510-517
Dividers, 353-357 Branching dependency rule, 510
Multipliers, 350-353, 389-390 Conditional output rule, 510
Subtracters, 340-342 Definition, 510
VHDL description of a full adder, 381-382 Mean time between failures (MTBF), 516-517

Array algebraic approach to logic design Metastability and the synchronizer, 514-517
Asynchronous FSMs, 720-730 Multiple stage synchronizers, 515-517
Partitioning methods for state code assignments, Stretching and synchronizing the inputs, 512-514

721-724 Synchronizing the inputs, 511-517

INDEX 865

Asynchronous preset and clear overrides, 463-464 Operation tables, 429, 431
Asynchronous parallel loading Reset-dominant, 431-433, 435, 436, 694-695

Counters, 579-581, 588-589 Set-dominant, 428-431,434,436, 692-694
Shift registers, 568-570, 588-589 . Timing diagrams (examples), 430, 432, 436, 694,

Asynchronous programmable sequencers 695
Microprgrammable asynchronous controller Basic model, 422

modules, 823-835 BCD addition, algorithm, 63
One-hot programmable modules, 835-839 BCD multiplier, 390

Asynchronous state machines BCD representation, 34-35
Analysis, 741-758 Negative, 47^8
Array algebraic approach to the design, 720-730 BCD subtraction
Design examples, 695-698, 698-701, 720-733, Algorithm, 63-64

734-738, 740-741 Ten's complement, 63
Detection and elimination of timing defects, BCD-to-creeping code converter, 625

701-719 BCD-to-decimal conversion
Excitation table for the LPD model, 688-689 Polynomial representation, 35
Features, 684 Positional weight representation, 35
Fully documented state diagrams, 689-690 Table, 35
Fundamental mode, defined, 686 BCD-to-seven-segment display converter, 261-265
Hazard-free design, 730-734, 734-740, 837-839 Biased-weighted codes
Initialization and reset, 719-720 Excess, 127, 49, 51
Lumped path delay (LPD) model, 685-689 Offset, 49
Models, 439, 685-687, 773-774 XS3, 35, 49, 68
Nested cell model, 439, 776 Bi-directional counters, 466-469, 579-588
Need for clock-independent FSMs, 685 Binary adders
Pausable system approach to the design, 806-823 Carry look-ahead, 345-349
Perspective on state code assignments of Carry save, 349-350

fundamental mode FSMs, 738-740 Full, 337-338
Programmable sequencer systems, 823-835 Half, 336-337
Pulse mode approach, 773-796 Ripple-carry, 338-340
One-hot approach to design, 734-738, 835-842 Binary addition, 52-53
Single transition time (STT) machines, 720-730 Algorithm, 52
Stability criteria, 688 Binary arithmetic, 52-67
State tables, use of, 691-692 Addition, 52-53
Timing defects, 701-719 Algorithms, 52, 54, 56, 57-58, 59, 62, 63-64,

AutoLogic VHDL, 649 67
Autonomous linear feedback shift register (ALFSR) BCD, 62-64

counters, 594-600 Division, 58-62
Correction for all zero state, 596-600 Division by direct quadratic convergence, 59-62
Decade, 598 Floating point, 64-67
Maximum length, 596-600 Multiplication, 55-58
Near maximum length, 596, 599 Subtraction, 53-55
Table of near maximum length, 599 Two's complement, 53-54

A word of warning, 5 Binary coded decimal (BCD) code, 34-35
Binary codes

B BCD, 34
Barrel shifter, 275 Biased-weighted, 68
Base (radix) of a number, 32 Decimal codes, 68
Basic (memory) cells Error detection, 69

Circuit symbols, 436 Gray, 70, 140
Combined excitation table, 433 One-hot, 70
EV K-maps, 429, 431 Reflective, 70
Excitation tables, 430, 432, 433 Unit distance, 70, 71
Logic circuits, 434, 435, 436 Unweighted, 69
Mixed-rail output response, 436 Weighted, 69
Mixed-rail outputs, 434-435 XS3, 68, 69

866 INDEX

Binary coded hexadecimal (BCH), 36-37 Useful identities, 115
Binary coded octal (BCO), 36-37 Worked examples, 118-120
Binary decision diagrams (BDDs), 405, 407-408, XOR algebra

410-411 Boolean product, 87
Binary derived radices, 37 Boolean sum, 87
Binary digit (bit), 33 BOOZER logic minimizer, xxv, 855
Binary division, 58-62 Borrow-in, 340, 341

Algorithms, 59, 62 Borrow-out, 340, 341
Direct quadratic convergence, 59-62 Bounded pulse, 777
Restoring type, 58 Branching action of registers and counters, 570,

Binary number system, 33-34 589
Binary multiplication, 55-58 Branching conditions (BCs), 425, 690

Algorithms, 56, 57-58 Branching dependency rule, 510
Two's complement, 56-58 Branching paths, 425, 690

Binary state terminology, 79-81 Buffer, 87, 94
Activation level indicators, 80 Buffering and gating the clock, 522
Logic domain Vs the physical domain, Buffer (fly) state, 496, 498, 835

80-81 Built-in-self-test (BIST), 599
Mixed logic notation, 80-81 Bus arbiters, 801-803
Negative logic, 81 Bus arbiter modules, 801-802
Positive logic, 81 Bus lines, 274, 313

Binary subtraction, 53-55
Algorithm, 54 C
Direct, 53 CAD, 552, 554, 838, 839, 856
One's complement, 54-55 Cadence, 329, 856
Two's complement, 53-54 CAD help in programming PLDs, 328-329

Binary subtracters, 340-342 ABEL, 329
Binary-to-2's complement conversion, 45^4-7 Mentor Graphics design architecture, 329

Algorithm, 46 ORCAD's SDT, 329
Negation, 47 PALASM (PAL assembler), 329

Binary-to-BCD conversion, 260-261 XACT (Xilinx automated CAE tools), 329
Algorithm, 261 X-BLOX, 329
Converter, 292 Xilinx-ABEL, 329

Binary-to-decimal conversion, 32-34 CAE, 329 (see also computer aided engineering
Method of positional weights, 33 design)
Polynomial, 32-33 Call module, 770-771
Table, 34 Candy bar vending machine design

Bipolar junction transistors (BJTs), 850-852 Pulse mode approach, 782-788
Biquinary code, 70 Canonical forms
BIST, 599 Produce-of-sums, 135, 136
Bit, 33 Sum-of-products, 132, 133
Bit slice, 8 Canonical truth tables, 133, 136
Bond set, 210 Capacitors
Boolean algebra, 105-116 In debouncing circuits, 526-527

Absorptive laws, 108-112 In inertial delay elements, 794-795
AND laws, 106 In sanity circuits, 523-524
Associative laws, 108, 111 Cardinality of a function, 151-152
Commutative laws, 108, 111 Carry generate/propagate (CGP) networks, 346
Consensus laws, 108, 112 Carry-in, carry-out, 337, 338, 339
Corollaries, 114 Carry look-ahead (CLA) adders, 345-349
DeMorgan's laws, 110, 112 Carry generate/propagate network, 346
Distributive laws, 108, 112 CLA module, 346
Duality, 107 Group CLA, 348
EQV laws, 111 Logic circuits, 346-348
Factoring laws, 108, 112 Carry overflow, 53, 54
OR laws, 107 Carry propagate, 345

INDEX 867

Carry-save (CS) adders, 349-350 Encoders, 254-256
Algorithm, 349 Magnitude comparators, 265-272
Logic circuit, 350 Multiplexers (MUXs), 242-248

Cascadable binary counters, 575-588 Parity generators and detectors, 273-275
Cedes, 856 Part numbering systems, 241
Cell coordinates, 138, 140, 143 Performance characteristics, 238-241
Character codes, 70-72 Shifters, 275-278

ASCII, 71 Steering logic, 278-279
EBCDIC, 72 VHDL description, 279-287

Chips classification, 238 Combinational shifters, 275-278
Clear asynchronous overrides Common anode LED configuration, 263, 265

In flip-flops, 463-464 Common cathode LED configuration, 263, 265
Clock buffering and gating, 522 Commutative laws
Clock frequency, 437, 521 AND/OR forms, 108
Clock generating circuitry, 520-521 EQV/XOR forms, 111
Clock logic waveforms, 437 Comparators, 265-272
Clock Period, 437, 521 Complementary MOSFET (CMOS) switching
Clock signal specifications, 521-522 circuits, 82-83

Factor of safety, 521-522 Complementation, 95
Clock skew, 517-520, 685, 822 Composite output maps, 629, 635

Examples, 518, 519 Compressed entered variable (EV) truth table, 242,
Clock sources 244

Clock oscillator circuits, 520-521 Computer aided engineering (CAE) design
Duty cycle, 521 Logic minimization tools, 329, 855

C-module, 696 (see also rendezvous module) Schematic capture, simulation and timing
CMOS, definition, 82 analysis tools, 329, 855-857
CMOS domino logic, 814-816 Conditional branching, 492,496

DFLOP design, 812-814 Conditional outputs, 424, 425
Gates, 815 Conditional output rule, 510-511
Generalized configuration, 815 Conjoint terms, 114, 209

CMOS gate configurations, generalized, 82-83 Conjugate mixed logic gate symbols
CMOS terminology and symbology, 82-83 AND, 92, 93, 94

Ideal equivalent circuits, 82 Buffer, 94
NMOS, 82 EQV, 101, 103
PMOS, 82 Inverter, 84, 94

Code conversion between number systems, 37—43 NAND, 88, 89, 94
Fractions, 40-43 NOR, 90, 91, 94
Integers, 38-40 OR, 93, 94

Code converters, 257-265 Summary, 94, 103
Algorithms for binary/BCD conversion, 260, 261 Tri-state driver, 86
BCD-to-binary, 261-263 XOR, 100, 103
BCD-to-creeping code, 292 Connectives
BCD-to-seven-segment display, 261-265 AND, 87
BCD-to-XS3, 258-260 EQV, 98
Binary-to-BCD, 260-261, 292 OR, 87
Binary-to-2's complement, 291-292, 643-645 XOR, 98
Gray-BCD, 291 Consensus laws
Gray-to-binary, 257-258 AND/OR, 108
Procedure, 257 EQV/XOR, 112

Codes. See binary codes Construction of mixed-logic circuits, 97-98
Combinational logic devices, non-arithmetic Contracted Reed-Muller transformation (CRMT)

Building blocks, 237-238 minimization, 209-229
Classification of chips, 238 Heuristics, 217-218
Code converters, 257-265 Incompletely specified functions, 218-228
Decoders/Demultiplexers, 248-254 Multiple output functions with don't cares,
Design procedure, 241-242 222-228

868 INDEX

Contracted Reed-Muller transformation (cont.) Ripple (asynchronous), 600-605
Perspective, 229 Ring, 590-593
Subfunction partitioning, 225-228 Shift register, 590-600

Controlled inverters. See controlled logic level Synchronous parallel loadable, 581-587, 588-589
conversion True hold capability, 581, 582, 584, 589

Controlled inversion, 103 Twisted ring (Johnson), 593-594
Controlled logic level conversion, 103-104 Coupled term, definition, 392

Adder/subtractor designs, 342-343 Coupled variable, definition, 392
ALU designs, 374—375 Cover, definition, 10
BCD adder/subtractor designs, 387 Minimum POS, examples, 146-148
Binary counter designs, 586-587 Minimum SOP, examples, 146-148
Mixed logic interpretation, 103-104 CPLDs, 328
Overflow error detection circuits, 344 Creeping code, 69
Positive logic interpretation, 104 Critical races, 703-705
XS3 adder/subtractor designs, 387-388 CRMT coefficients, 210-212

Controlled system, 349 CRMT forms, 210-216
Data path unit (DPU), 650 CRMT minimization, heuristics for, 217-218

Controller Cross branching, definition, 10
In system-level design, 649-650 Relative to STT designs, 740

Conventional K-maps, 137-158, 167 Cube representation, 173
Conversion between flip-flops, 450-461 (see also Cycles (In asynchronous FSMs), 702

flip-flop conversion)
Conversion between number systems D

Algorithms, 38, 39, 41 Data path (In system-level design), 649, 650
Fractions, 40-43 Data bus, 274
Integers, 38^0 Data lockout character of flip-flops, 445
Rounding off, 42-43 Data selector, 242 (see also multiplexer)
Summaries, 39, 41 Data-triggered counters, 664-665

Conversion of fractions, 40-43 Data-triggered memory elements, 773-775
Algorithms, 41, 42 Toggle modules, 573, 774-775
Rounding off, 42 Debouncing circuits, 526-530
Table, 41 Decade counters, 575-579, 598, 603-604

Conversion of integers, 38^0 Decimal codes, 68
Algorithms, 38, 39 BCD, 34-35, 69
Table, 39 Table, 69

Corollaries in XOR algebra, 114, 204 Weighted and unweighted, 68-69
Counteracting delay XS3, 36, 49, 69

Elimination of essential hazards, 712, 715 Decimal-to-BCD conversion. See BCD-to-decimal
Counters, 572-605 Decoders/demultiplexers, 248-254

Asynchronously parallel loadable, 579-581, Design, 248-251
587-589, 664-665 Mixed logic inputs, 252

Bi-directional, 579-588, 664-665 Stacked configurations, 251
Binary, 572-605 Steering logic implementation, 279-280
Binary up/down. See bi-directional Use in Combinational logic design, 251-253
Branching action of a parallel loadable up/down, Decomposition (Shannon's expansion theorem),

587-590 177-180
Cascadable BCD, 575-579 D flip-flops, 440-450

Cascadable binary, 579-588, 664-665 Analysis of FSMs with D flip-flops, 476-480
Cascadable up/down, 579-584 Conversion from JK flip-flops, 456^458
Data triggered, 664-665 Conversion to SR flip-flops, 485
Johnson (twisted ring), 593-594 Conversion to T flip-flops, 452^453
Linear feedback shift register (LFSR), Data lockout, 461

594-600 Edge triggered, 444-448, 698-700
Multimode, 607-608 Excitation table, 441, 458
One-bit modular design, 584-588 Logic circuit symbols, 443, 444, 448, 449
Parallel loading, a perspective, 588-589 Master/slave, 448^50

INDEX 869

Operation table, 441 By direct quadratic convergence, 59-62
State diagrams, 441, 442, 444, 445^46, 449, 698 Restoring, 58-59
Timing diagrams, 443,448,449 D-latch
Use as a filter for logic noise, 497^99 Design, 441^44, 705-707
Use as a synchronizer, 511-517 Logic circuit, 443, 444
VHDL behavioral description, 480 Logic circuit symbol, 443, 444

Delay elements, 794-795 Next state functions, 443, 706
DeMorgan relations, 95 State diagram, 443, 706
DeMorgan's laws Timing diagrams, 443, 706

AND/OR forms, 110-111 Transparency character, 443-444
EQV/XOR forms, 112 DL-DFLOPs

Demultiplexers/decoders, 248-254 (see also Design, 812-814
Decoders/demultiplexers) State diagrams, 813

Depletion mode NMOS, 378, 807, 849-850 Use in EAIC systems, 819-820
Design area Vs performance, 180-181 DMUX (demultiplexer/decoder), 248-254
Design of synchronous FSMs with edge triggered Domain boundary, 814-816

flip-flops Domino logic
Design procedure, 530-532 CMOS, 815
One-to-three pulse generator, 532-536, 615-622 Gate examples, 815
More complex FSM, 622-626 Generalized gate configuration, 815
Sequence recognizer, 471-476 Precharge and evaluate stages, 814-815
Three-bit binary up/down counter, 466^71 Use of in DFLOP design, 812-814

Design procedure (general) Don't cares, 150-158 (see also incompletely
Combinational logic, 241-242 specified functions)
Finite state machines (FSMs), 530-532 As entered variables, 164

Destination matrix, 542-543,724 As nonessential minterms or maxterms, 150, 151
Destination and origin states (in ORG analysis), In canonical forms, 150, 151

492^93 Rules in multiple-output minimization, 153
DFLOPs DPU (data path unit), 650

Dynamic logic design, 812-814 Drivers
State diagrams, 808, 813 Buffers, 87, 94
Static logic design, 807-810 Tri-state, 85-87
Use of Metastable detection stages, 807-808, D-trios (see also essential hazards)

810-812 Analysis and elimination, 716-718
Use in EAIC systems, 806-807, 816-820 Requirements for formation, 711-714

Diagonal XOR patterns, 198-199, 201-203 Dual-emitter BIT, 851
Digital combination lock (DCL), 781-782, 797 Dual-rail systems
Digital machines, an overview, 684 ALUs with completion signals, 369-380
Diminished radix complement representation, 48 Duality, definition of, 107
Diodes Dual forms of Boolean laws, 107-116

In inertial delay elements, 794-795 Duty cycle, 521
In Sanity circuits, 523-524 In counters, 574, 578

Diode-transistor logic (DTL), 853 Dyad groups of logic adjacencies, 145
Distributed path delay model, 688 Dynamic hazards
Distributive laws In multilevel XOR-type functions, 409-411

AND/OR forms, 108 Use of binary decision diagrams (BDDs), 411
EQV/XOR forms, 112 Use of lumped path delay diagrams (LPDDs),

Divide-by-N binary counters 410
Divide-by-2, 573 Dynamic power dissipation, 239-240
Divide-by-3, 573-574
Divide-by-4,574 E
Perspective on divide-by-N, 574-575 EAIC systems, 806-823 (see also externally

Dividers asynchronous/internally clocked systems)
Parallel (fast), 353-357 Edge-triggered flip-flops

Division (binary) Conversion between, 450-459
Algorithms, 59, 62 D, 444-448

870 INDEX

Edge-triggered flip-flops (cont.) Error checking systems, 274-275
JK, 454-456 Error checking circuits
T, 452-453 Parity circuits, 273-274
Used in the design of FSMs, 466-476, 530-536, Error detection codes, 69-70

562-605, 617-666 Even and odd parity, table, 70
Unusual types, 459-460, 461 Espresso, xxv, 173, 855

EEPROMS, 298 Espresso algorithm (reference), 855
E-hazards, 711-719 (see also Essential hazards) Qualitative description, 173-174
Electronically erasable PROMs (EEPROMs), Essential hazards in fundamental mode FSMs,

298-299 711-718
Floating gate NMOS transistors, 299 Analysis examples, 714-718, 743-758

Emitter-coupled logic (ECL), 852 Counteracting delays, 712, 715
Encoders D-trios, 712-713, 714, 716-717

Priority, 254-256, 291 General requirements for formation, 711
Stacked, 256 Indirect path requirements, 714

Endless cycles, 702-703 In LPD FSMs, 743-747
Enhancement mode NMOS logic, 849 In nested cell FSMs, 747-752
Entered variable (EV) K-map minimization, In one-hot FSMs, 752-758

158-169, 198-207 Minimum requirements for formation,
Don't cares as EVs, 164 712-713
Five or more variables, 165-169 Perspective, 718-719
Map compressions, 158-169 Timing diagrams, 718
Map Key, 160 Essential prime implicants (EPIs), 149-150
Subfunction rules, 164, 165 EV K-maps, 158-169, 198-207
Use of submaps, 159, 163, 164, 182, 184, 187 Worked examples, 181-188
Worked examples, 181-188 Exact minimum expression, 198
XOR patterns, 198-207 Excess representations, 49

Entered variables (EVs) Excitation table for the LPD model, 688-689
In K-maps, 158-169, 198-207 Comparison with the D flip-flop, 689
In truth tables, 183, 244, 246, 268, 269, 358, 361, Excitation tables for basic (memory) cells

372, 374 Combined form, 433
In XOR-type patterns, 198-207 Reset-dominant, 432, 433

Epilogue to Chapter 16, 842 Set-dominant, 430, 433
EPI, 149 Excitation tables for flip-flops and latches
EPROMs, 298-299 D, 441
EQPOS functions, 208-209 JK, 454
EQPOS/POS functions, 225, 228 SR, 433
Equivalence. See EQV Summary of, 457-^58
EQV function T, 452

Defining relations, 101 EXL-Sim2000, 855-856
Definition, 99 EXSOP functions, 207-208
Logic circuit symbols, 101, 103 EXSOP/SOP, 226-227
Multiple gate realizations, 101-102 Externally asynchronous/internally clocked (EAIC)
Operator symbol, 98 systems

EQV gate DFLOP conversion, 821
CMOS, 101 Domino logic DFLOP design, 812-814
Conjugate logic circuit symbols, 101, 103 EAIC system architecture, 806
Effect of active low inputs, 102 Features, 805-807, 816-817
In controlled logic level conversion, 103-104 Memory elements, 806-814
Mixed-logic interpretations, 101 Metastable detection stage, 810-812
Physical truth table, 101 Models, 806, 808
Tree forms for multiple inputs, 99 MTBF, 805, 821

EQV laws, 111 Pausable systems, 805
Erasable programmable read-only memory Perspective, 822-823

(EPROM), 298-299 Real time tests, 819-820
Error catching in MS JK flip-flops, 462-463 Simple sequence recognizer example, 817-820

INDEX 871

System simulations, 819-820 JK, 454-456, 700-701
Static logic DFLOP design, 807-812 Master slave, 448^50, 462-463
Timing constraints, 816-817 Models, 439, 451
Variations on the theme, 820-821 SR, 485
Vs conventional synchronous FSMs, 821-823 T, 451-453

Unusual, 459^60
F Floating gate NMOS transistors, 298-299
Factoring law Floating point addition, 64-65

AND/OR, 108 Floating point arithmetic, 64-67
EQV/XOR, 112 Floating point division

Factorization, 175-176 Algorithm, 67
Factor of safety for clock signals, 521-522 Quadratic convergence, 66-67
Falling edge-triggering (FET) Floating point multiplication

Defined, 437^38 Algorithm, 67
In flip-flops, 432 Signed-magnitude, 65-66

False carry rejection, 359, 362, 364 Floating point number (FPN) systems, 49-52
False data rejection (FDR) IEEE standard, 50-51

In ALU design, 358-359, 366 Normalized, 50
In code converter design, 257, 259-260 Floating point subtraction

Fan-in, fan-out, 240-241 Two's complement, 65
FDR. See false data rejection Flow charts, 533-534
Feedback delays FPGAs

Counteraction E-hazard formation, 712, 715 Actel, 319-321
Nested cell designs of pulse mode FSMs, Xilinx, 321-328

776-777, 793-794 FPLAs, 302 (see also Programmable logic arrays)
Feedback paths Fraction conversion, 40-43

In models for FSMs, 423-424, 439, 686, 774 Algorithms, 41, 42
In PLDs, 309-310 Rounding off and error bounds, 41-43

FET. See falling edge triggering Summary of methods, 41
Field programmable gate arrays (FPGAs), 319-329 Free set

Actel, 319-321 In CRMT minimization method, 210
Configurable logic blocks (CLBs), 321-327 Frequency division
I/O blocks (lOBs), 321-326 In binary counters, 572-575
Logic cell arrays (LCAs), 328 In ripple counters, 600-601
Xilinx, 321-328 Frequency synthesizers, 521

Field programmable logic arrays, 301-306 (see also "From rule", 540
Programmable logic arrays) FSM. See finite state machine

Fill bit, in combinational shifters, 275-278 Full adders (FAs)
Finite state machines (FSMs), 421 Design of, 337-338
Fixed-point numbers, 32 In adder/subtractor design, 342-345
Flip-flop conversions, 450-460 In carry-save adder design, 349-350

D-to-JK, 454-456 In multiplier design, 350-353
D-to-T, 452-453 In parallel-to-serial adder/subtractor design,
D-to-unusual flip-flops, 459-460 651-652
JK-to-D, 456-458 In ripple-carry adder design, 338-340
JK-to-T, 455^57 Full subtractors (FS)
Model for conversion from D, 451 Design, 340-342

Flip-flop design, general, 438^40 Use of in parallel divider design, 354-355
Mapping algorithm, 440 Fully documented state (FDS) diagrams, 425
Models, 439, 451 Features, 424-425, 689-690
Procedure, 440 Mutually exclusion requirement, 46-428, 490,

Flip-flops (FFs) 686-690
D, 440-450, 698-700 Sum rule, 426, 689-690
Data lockout, MS, 461 Functional partition
Edge triggered, 437-438 In system-level design, 650, 652, 658
Hierarchical flow chart, 439 Function generators, 245

872 INDEX

Function hazards Field programmable logic sequencers (FPLSs),
Combinational, 412 328
Internally initiated in FSMs, 491 (see also output Generic array logic (GAL) devices, 328

race glitches) Programmable array logic (PAL) devices,
Function matrix, 543-546, 724-727 307-310
Function minimization Programmable logic arrays (PLAs), 301-306

Cube notation, 173 Read-only memories (ROMs), 295-301
CRMT method, 210-229 Glitches, types
Decomposition (Shannon's expansion theorem), Negative, 391, 492

177-180 Output race glitches (ORGs), 491-492
Factorization, 175-176 Positive, 391, 492

K-map, 144-169 Static hazards, 391-392
Perspective on, 181 Glossary of terms, expressions and abbreviations,
Reed-Muller transformation, 207-209 5-29
Re-substitution, 176-177 GO/NO-GO configuration, 647
Tabular (Quine-McCluskey algorithm), Gray code, 140

169-172
Worked EV K-map examples, 181-188 H
XOR-type patterns, 198-204 Half adder (HA), 336-337

Fundamental Mode FSMs Half-adder/half-subtractor counter design, 584-588
LPD model, 685-687 Half subtracter, 341-342
Nested cell model, 687, 696, 730, 776 Use of in a 1-bit modular counter design, 585
Requirements for operation, 686 Hamming distance
Stability criteria, 688 In state code assignments of fundamental mode

Fuse map, 329 FSMs, 739-740
Fusible links Handshake interface

In FPLAs, 302-303 In system-level design, 650
In PROMs, 297 Hardware description languages (HDLs)
On transistors, 297-298 Verilog, 856
On diodes (bipolar form), 297, 298-299 VHDL, 279, 288, 380, 480, 856

Hazard cover, 392
G Effect on stuck-at faults, 412-413
Gain element, 100 Static 1-hazards (SOP hazards), 393-394,
Gates (CMOS) and symbols 397-398,401-402, 501-502, 505-509

AND, 92, 93, 94 Static 0-hazards (POS hazards), 394-396, 398,
AND-OR-invert (AOI), 317-319 402^03, 499-501, 506
EQV, 100-101, 103 Hazard-free design of asynchronous FSMs, 730-734
CMOS configuration, generalized, 83 Hazards
IEEE standard symbols, 859-860 Dynamic, 392, 409-411
Inverter, 83-84, 94 Essential, 711-718
NAND, 88-89, 94 Function, 412, 491
NOR, 89-90, 91, 94 Static 0 (POS hazard), 391
OR, 93, 94 Static 1 (SOP hazard), 391
OR-AND-invert (OAI), 317-319 HDLs, 279
XOR, 100, 103 Hexadecimal addition, 75

Gate/input tally, 151-152 Table, 77
Minimum, 198 Hexadecimal multiplication, 75
Vs cardinality, 151-152 Table, 77

Gated basic cell, 483-485 Hexadecimal number system, 36-37
Gate-minimum cover, 198 Fraction conversion to/from radix r, 40
Gate propagation time delay, defined, 239 Integer conversion to/from radix r, 38
General-purpose PLDs Holding condition, 425

Erasable programmable logic devices (EPLDs), Holding (storage) register
328 Applications, 499, 614-615, 625, 630-631,

Field programmable gate arrays (FPGAs), 636-637, 664
317-328 Design, 562-563

INDEX 873

Hold time, 495 Involution, 106
Hybrid forms Irredundant cover, 173-174

AND/OR, 175-180 Irrelevant input, 249
XOR/SOP/EQV/POS, 225-228

J
I JEDEC, 17, 329
IEEE standard graphic symbols for logic functions, JK flip-flops

859-862 Analysis of FSMs with JK flip-flops,
Combinational logic devices, 859-860 476-479
Flip-flops, registers and counters, 860-862 Conversion from edge triggered D flip-flops,
Gates, 860 454^55, 700-701

Inactive state, 80 Conversion to D flip-flops, 456-458
Inactive transition point, 465 Conversion to T flip-flops, 456-457
Incompatibility and complementation, 95-96 Design of FSMs with JK flip-flops, 471^475,
Incompatibility slash, 95 562-564
Incompletely specified functions, 150-152 (see also Excitation table, 454,458

don't cares) Master-slave, 462-463
Rules for use in EV K-maps, 164 Operation table, 454
Rules in multiple output minimization, 153 PR and CL overrides, 701
Use in canonical forms, 150, 151 State diagram, 454

Inertial delay elements, 794-795 Timing diagram for edge triggered, 456
Initialization and reset of the FSM Jump state, 603

Asynchronous FSMs, 719-720
Sanity circuits, 523-526 K
Synchronous FSMs, 523 Karnaugh maps (K-maps)

Initiator input in E-hazard analysis, 711 Domain boundaries, 145
In-phase triggering Entered variable (EV), 158-169

In EAIC systems, 821 First-order, 138
In filtering out logic noise, 499 Forbidden groups of minterms or maxterms,

Input matrix, 544, 725 145-146
Input/state map, 425, 426 Fourth-order, 143
Internally pausable clocked systems, 806-823 (see Loop-out protocol, 145

also externally asynchronous/internally Map key, 160
clocked systems) POS extraction procedure, 145

Intersection, 87 (see also Boolean product) Reduction rule, 145
"Into rule", 540 Second-order, 138
Introductory remarks and glossary, 1-29 Third-order, 140

Automatic control systems, 2 K-map conversion
Communications, 2 Algorithms, 471, 474, 576
Computing, 1 D-to-JK, 473-474
Entertainment, 2 D-to-T, 470-471
Glossary, 5-29 JK-to-D, 477, 478
Information retrieval, 1-2 JK-to-T, 576, 577
Instrumentation, 2-3 K-map minimization
What is so special about digital systems?, 1-3 Conventional (1's and O's), 138-158
Word of warning, 5 Entered variable (EV), 158-169
Year 2000 and beyond?, 3^ XOR patterns, 198-207

Invariant state variable in E-hazard analysis, 711 K-maps. See Karnaugh maps
Inverters K-map subfunction partitioning, 225-228

CMOS, 83-84 Keywords in VHDL, 281
Circuits, 84, 850, 851
Conjugate logic circuit symbols, 84, 94 L
Mixed logic interpretations, 84 Large-scale integrated circuits (LSI), 238
NMOS, 850 Latch
Physical truth table, 84 D, 441-444, 464, 705-707
TTL, 851 JK,

874 INDEX

Latch (cont.) Look-ahead-carry (LAC) adder
SR, 460-461, 483^84 Same as carry look-ahead adder, 345-349
T, 461-462 Loop-out protocol, 145

Laws of Boolean algebra, 105-116 (see also LPD model. See Lumped path delay model
Boolean algebra) LPD-to-SR conversion, 730-732

LED Lumped path delay (LPD) model, 685-687
In seven-segment display designs, 265 Excitation table, 688-689

Least significant bit (LSB), 33 Functional relationships, 687-688
Linear Feedback shift register (LFSR) counters, Stability criteria, 688

594-600
Line drivers M

Buffers, 87 Magnitude comparators, 265-267
Tri-state, 84-87 Cascadable, 265-272

Linear state machine, 627, 632 Non-cascadable, 388
Logic adjacency Majority functions, 116, 293

In cube notation, 173 Majority gate, 696
In Espresso algorithm, 173 Map key
In K-maps, 145 Use in EV K-map minimization, 160
In Quine-McCluskey algorithm, 170 Mapping algorithm for FSM design, 440
Requirement for in the MAC module, 825-826 Master/Slave D flip-flop

Logic cell Circuit symbol, 449
Configurable logic block (CLB), 321 CMOS implementation, 450

Logic circuit symbols Conversion to MS JK flip-flops, 463
Summary of conjugate mixed logic symbols, 94, Logic circuit, 449

103 State diagrams, 449
Logic compatibility, 95, 96 Timing diagram, 449
Logic domain, 80 Maxterm, 134
Logic function graphics. See Karnaugh maps Maxterm code
Logic instability Defined, 134

By E-hazard formation, 719 Table, 135
By s-hazard formation, 705-706, 710-711 Mealy machine, 422
Due to endless cycles in asynchronous FSMs, Mealy output, 424, 426

702-703 Mealy's (general) model
Due to metastability, 514-515 For fundamental mode (LPD) FSMs, 686
In basic cells, 694, 695 For nested cell designs of pulse mode FSMs, 776

Logic level conversion, 83-84 For pulse mode FSMs with toggle modules, 774
Controlled inverter, 103-104 For synchronous FSMs, 424
Inverter, 83 Mean time between failures (MTBF), 516-517, 805,
Logic circuit symbols, 84 821
NAND gate, 90-92 Infinite MTBF, 805, 821
NOR gate, 90-92 Medium-scale integrated (MSI) circuits, 238

Logic level incompatibility, 95-96 Memory cells, 428^436
Complementation, 95 Set-dominant basic cell, 428^31
Examples, 96 Reset-dominant basic cell, 431-433
Incompatibility indicator slash, 95, 96 Memory elements

Logic minimization tools In EAIC system design, 806
BOOZER, 855, 857 In fundamental mode (LPD) FSM design, 686
Espresso, 173-174, 329, 855, 857 In nested cell designs, 687

Logic noise In pulse mode FSM design, 774
Filtering, 497^499 In synchronous FSM design, 438
Output race glitches (ORGs), 491^499 Mentor Graphics, 329, 856
Static hazards, 499-510, 705-711 Merging of states

Logic simulators. See simulators, logic State minimization, 547-549
Logic state, definition, 421 Metastability
Logic waveforms, 105 (see also timing And the synchronizer, 514-517

diagrams) Mean time between failures (MTBF), 516-517

INDEX 875

Metastable exit time, 514 Mealy's model, 424, 686, 774
Practical solutions to the synchronizer problem, Moore's model, 423

515-517 Pulse mode FSMs, 773-774, 776
Metastable detection stage in EAIC systems, 808 Synchronous FSMs, 421-424

Domino logic design, 812-813 ModelSim, 856
Simulation, 810-811 Modular and bit slice devices
Static logic design, 810-812 Registers, 561-572

Metastable exit time, 514 Counters, 572-605
Microprogrammable asynchronous controller Modular approach to design, 561, 562

(MAC) modules Modulo-N counters, 572
Application to a Gray code counter design, Moore machine, 422

830-832 Moore's model, 423
Architecture, generalized, 823-825 Moore output, 422
Cascading, 832-833 MOS
Components of an n-input, 824-825, 829-830 CMOS, 82-83, 814-816, 849-851, 852
Design of a 3-input MAC module, 827-829 NMOS, 82, 849-851, 852
Features, 823-824, 834-835 PMOS, 82, 849
Metastability considerations, 834 MOSFET, 82
Perspective, 834-835 MTBF, 516-517, 805, 821
Programming, 833-834 Muller C module, 696 (see also Rendezvous
Simulation results, 831-832 module)
State array machine (SAM), 824-827, 829-830 Multilevel logic minimization forms
Timing control machine (TCM), 824-827 Due to CRMT methods, 210-229

Minimization algorithms Due to factorization, resubstitution, or
Espresso, 173-174 decomposition, 174-179
Quine-McCluskey, 169-172 Due to Reed-Muller transformations, 207-209

Minimization, degrees of, 198 Due to use of XOR K-map patterns, 198-207
Minimization, logic function Multiple number addition

Contracted Reed-Muller transformation (CRMT), Carry-save adder, 349-350
209-229 Multiple output functions, 152-158, 222-227

CRMT, 210-218 Multiple output minimization
EV K-map, 158-169, 198-207 CRMT approach, 222-225
Decomposition, 177-180 Examples, two-level, 154-158
Factorization, 175-176 Maxterm ORing rules, 153
Multiple output, 152-158, 222-229 Minterm ANDing rules 153
Reed-Muller transformation, 207-209 Multiple PLD schemes, 312-316
Tabular (Quine-McCluskey), 169-172 Input augmentation, 312-315
XOR pattern, 198-204 Output augmentation, 313-316

Minterm, denned, 132 Partitioned program tables, 315
Minterm code Use of tri-state enables, 312

Defined, 132 Multiple pulse generator system, 679-680
Table, 133 Multiple stage synchronizers, 515-517

Missing state analysis, 475^76 Multiplexers (MUXs), 242-248
Mixed-logic inputs and outputs As function generators, 245

ROMs, PLAs and PALs, 310-311 Design, 242-245
Mixed logic notation, 81 Mixed logic inputs, 247
Mixed-mode design entry, 329 Steering logic implementation, 278-279
Mixed-rail outputs Use in combinational logic design, 245-248,

Basic cells, 434-435 363-365
Combinational logic circuits, 105 Use in FSM design, 563-564, 567, 587-588
Flip-flops, 451 Multiplicand and multiplier, 55-57, 351

Mobius counter, 573 Multiplication
Models for sequential machines Algorithms, 56, 57-58, 67

Asynchronous FSMs, 686, 774, 776 Binary, 55-57
Basic model, 422, 439 Floating point number (FPN), 65-66
EAIC systems, 806 Two's complement, 56-58

876 INDEX

Multipliers Building blocks, 237-238
BCD, 389-390 Code converters, 257-265
Binary, 350-353 Combinational shifters, 275-278
Four-by-four bit, 350-353 Decoders/demultiplexers, 248-253
Iterative carry-save with CLA, 352-353 Design procedure, 241-242
XS3, 390 Encoders, 254-256

Mutual exclusion elements Multiplexers, 242-248
Bus arbiters, 801-802 Magnitude comparators, 265-272

Mutually conjoint terms, 114, 207 Part numbering systems, 241
Mutually disjoint terms, 114, 207 Parity generators and error checking systems,
Mutually exclusive requirement, 426-428,490 273-275

Defined, 427 Steering logic and tri-state applications, 278-279
Exceptions, 428 VHDL description, 279-287

MUX approach Nonessential minterms and maxterms, 150-151 (see
ALU design, 363-365 also don't cares)

Nonoverlapping sequences, 472
N NOR gates
NANDgate CMOS, 90, 91

CMOS, 88 Configurations that eliminate fan-in problems,
Conjugate gate symbols, 88, 94 377-378, 849
Logic level converter, 90-91 Conjugate gate symbols, 90, 94
Mixed logic interpretations, 88, 89 In EAIC system design, 807
Multiple inputs, 89 In one-hot programmable sequencer design,
NMOS, 850 835-837
Physical truth table, 88 Logic level converter, 90-91
TTL, 851 Mixed logic interpretations, 90, 91

Natural binary, 33 Multiple inputs, 94, 377-378, 807, 849
Nested cell designs NMOS, 850

Conversion from LPD designs, 730 Physical truth table, 90
Flip-flops, 444^48 TTL, 851
Hazard-free design of fundamental mode FSMs, NOT function, 106

730-734 Number systems
Latches, 441^44, 460-461 BCD, 34-36
Pulse mode FSMs, 776-777, 791-794 Biased weighted representation, 35
Rendezvous modules (RMODs), 695-698 Binary, 33-34
STT FSMs, 730-734 Binary coded hexadecimal (BCH), 37
Vs the LPD approach for STT FSM design, 734 Binary coded octal (BCO), 37

Nested cell model, 445, 730, 747, 776, 791 Conversion of fractions, 40-43
Nested inverse radix, 40 Conversion of integers, 38^0
Nested radix form, 38 Diminished radix complement, 48
Next state, 421, 422 Excess (offset) representation, 49
Next state function matrix, 543, 724 Fixed-point, 32
Next state (NS) function, 423 Floating point, 49-52
Next state table and the state assignment rules, Important characteristics, 31

539-542 Positional and polynomial representations, 32
NMOS Radix complement, 45^48

Ideal equivalent circuits, 82 Signed binary, 43^48
Simplified circuit symbol, 82 Signed magnitude, 44—45

NMOS logic family, 849-851 Ten's complement, 45-46
Gate examples, 850 Two's complement, 46-47
Generalized configuration, 850 Unsigned binary, 33-43
NMOS AOI gate Vs CMOS AOI gate, 851 XS3, 35-36

Noise immunity, 525
Noise margins, 81, 240 O
Non-restoring logic Octal system, 36-37

Steering logic, 278-279 Odd parity BCD code, 70
Non-arithmetic combinational logic, 237-279 Offset patterns, 198-203

INDEX 877

One-bit modular counter design, 584-588 Output holding register
One-hot code, 70 Filtering of logic noise, 625, 630-631, 636-637
One-hot design and analysis of asynchronous FSMs Output K-maps (tables)

Analysis, 752-758 In asynchronous FSM design, 690-691
Guidelines for design, 735 In static hazard analysis, 500-502, 621-622

One-hot-plus-zero approach, 735-738 In synchronous FSM design, 472-473, 535
Perspective, 738-740 Output race glitches (ORGs)
Programmable sequencers, 835-840 Analysis procedure, 496

One-hot design of FSMs As an internally initiated function hazard, 491
Asynchronous, 734-740, 835-840 Elimination, 496-499
Synchronous, 636-649, 841 Examples, 492-495

One-hot design of synchronous FSMs In asynchronous FSMs, 705, 721, 727, 739-740
One-hot-plus-zero initialization, 639-640 In synchronous FSMs, 491-499
Parallel-to-serial adder/subtractor controller, Overflow error detection circuits, 343-345

645-648 Overlapping sequence, 472
Perspective, logic noise and use of PLDs,

647-649 P
Serial 2's complementer, 643-645 P-term tables
Use of ASM charts Vs state diagrams, 640-644 In programming PLAs and PALs, 304-305,

One-hot programmable asynchronous sequencers, 317
835-840 Packing density, 239

Application to a 4-state FSM, 838-840 PAL, 307-310 (see also Programmable array logic
Architecture, generalized, 835-837 devices)
Design of a four-state sequencer, 837-838 PALUs, 363-380 (see also Programmable
NS equations, generalized, 387-838 arithmetic and logic units)
Perspective on programmable sequencer design Parallel accumulator, 607

and applications, 839-842 Parallel adders, 338-340
Simulation results, 839-840 Parallel dividers, 353-357

One-hot programmable synchronous sequencers, Subtracter modules, 354-356
841 Parallel loadable up/down counters

One's complement subtraction, 54-55 Asynchronous parallel loading, 579-581,
One-to-three pulse generator designs, 532-536, 587-588, 664-665

615-622 Branching action, 589
Operation tables Cascadable, 575-588

Flip-flops, 441, 452, 454, 459 Data triggered, 664-665
For counters, 582, 584, 588 One-bit modular design, 584-588
For shift registers, 564, 566, 569 Operation tables, 582, 584, 588

OR Perspective on parallel loading, 588-589
Definition, 87 State diagrams, 579, 582, 584
Logic circuit symbols, 88, 93, 94 Synchronous parallel loading, 581-584,
Operator symbols, 87 584-587

OR-AND-Invert (OAI) gate With true hold, 581-588
CMOS, 319 Parallel loadable shift registers
Logic equivalent circuit, 319 Operation tables, 564, 566, 569
Truth tables, 319 Right shift register with synchronous parallel

OrCad, 839, 856 loading, 562-565
ORGs. See Output race glitches State diagrams, 564, 566, 569
OR gate Timing diagrams, 565

CMOS, 93 Universal shift register with asynchronous
Conjugate gate symbols, 93, 94 parallel loading, 568-570
Domino logic configuration, 815 Universal shift register with synchronous parallel
Logic interpretations, 93 loading, 565-568
Multiple inputs, 94 Parallel loading of counters and registers,
Physical truth table, 93 perspective, 588-589

Origin and destination states, 493-494,496 Parallel-to-serial adder/subtractor controller
Output discontinuity, 493 Conventional design with JK flip-flops, 652-655
Output forming logic, 423, 424, 686, 774 One-hot design, 645-647

878 INDEX

Parallel-to-serial adder/subtractor system Positional weight, 33, 35
Controller, 645-648, 652-655 Power-delay product (PDF), 240
Design, 651-655 Power dissipation
Functional partition, 651-652 Dynamic, 240
Timing diagram, 653 Static (quiescent), 815, 849

Parity bit, 273 Powers of 2, table, 76
Parity generators and detectors Present state/next state (PS/NS) table

Design, 273-274 Use of in analysis of FSMs, 476, 741-742
Use of in error checking systems, 274-275 Preset asynchronous overrides

Partitioning method for state code assignments, In flip-flops, 463^464
721-723 Prime implicants, 148-150

Procedure, 721-722 Essential, 149
TT-partitions, 721-722 Optional, 149
Seed sets, 722-723 Redundant, 149
T-partitions, 722 Priority encoders

Part numbering systems Cascadable, 254-256
CMOS and TTL logic families, 241 Collapsed truth tables, 255
ECL logic family, 241 Logic circuits, 255-256

Parasitic capacitance effects, 517 Noncascadable, 256
Passive switching devices, 84, 278 Product-of-sums (POS) representation, 134
Pass transistor switches, 84-85 (see also Canonical forms, 135-137

transmission gates) Use of maxterm code, 134-137
Pausable clock systems Programmable array logic (PAL) devices,

Externally asynchronous/internally clocked 307-310
(EAIC) systems, 806-823 Applications, 617-619

PDF, 240 (see also Power-delay product) Basic I/O type, 309
Performance characteristics of 1C logic families L-type, 309

Table, qualitative assessments, 852 Mixed logic inputs and outputs, 310-311
Performance characteristics of switching devices, R-type, 309

238-241 Symbolic representation, 308
Cost, 241 V-type, 310
Fan-in and fan-out, 240-241 Programmable logic arrays (PLAs)
Noise margins, 240 Applications, 302-306
Packing density, 239 Architecture, 301, 303
Power-delay product, 240 Dimensions, 301
Power dissipation, 239-240 FPLAs, 302
Propagation delay (switching speed), 239 Fusible links, 304

Phase-locked loops, 521 Mixed logic inputs and outputs, 310-311
PLAs. See Programmable logic arrays NMOS connections (switches), 302-303
PLDs. See Programmable logic devices Programming, 302-304
PMOS P-term tables, 304-305

Ideal equivalent circuit, 82 Symbolic representation, 306
Simplified circuit symbol, 82 Types, 302

Polarized mnemonics, 80, 81 Programmable logic devices (PLDs)
Polynomial representations FPGAs, 319-328

Binary numbers, 33 EPLDs, 328
Number of radix r, 32 FPLSs, 328

POS hazards (see also static hazards) GALs, 328
In asynchronous FSMs, 710-711 PALs, 307-310
In combinational logic circuits, 394-396, 398 PLAs, 302-306
In synchronous FSMs, 501, 506-507 ROMs, 295-301

POS representation, 134 Programmable read-only memories (PROMs)
Canonical form, 135-137 Application, 299-301
Expansion of reduced forms, 135-136 Bipolar, 298
Use of maxterm code, 134-137 Dimensions, 296

Positional representation of a number, 32 Fusible links, 297

INDEX 879

MOS architecture, 297 Read only memories (ROMs), 295-301
Symbolic representation, 300 Applications, 299-301, 618-626

Programmable sequencers, 823-842 Architecture, 296, 297
Microprogrammable asynchronous controller Dimensions, 296

(MAC) modules, 823-835 EEPROMs, 298
One-hot, 835-839 EPROMs, 298-299
Perspectives, 834-835, 839-842 Fusible links, 297

PROMs. See Programmable read-only memories Mixed logic inputs and outputs, 310, 311
Propagation delay, 239 NMOS connections, 297

Levels of, 197-198 Programming, 297-299
Pulse mode FSMs PROMs, 297

Analysis, 788-794 Symbolic representation, 300
Candy bar vending machine system, 782-788 UVEPROMs, 298
Characteristics, 777-778 Redundant cover (see also static hazard cover)
Design examples, 779-788 As used to eliminate s-hazards, 392
Digital combinational lock, 781-783 Redundant prime implicant, 149
Feedback delays for nested cell designs, 793-794 Reed-Muller coefficients, 207
Input requirements, 774-775 Reed-Muller transformations, 207-209
Memory elements, 774-777 Minimum function extraction, 209-217
Models, 774, 776 POS-to-EQPOS, 208-209
Nested cell approach, 776, 791-794 SOP-to-EXSOP, 207-208
Perspective, 795-796 Reflective codes
Pulse narrowing circuits for nested cell designs, Gray, 70, 71

793 XS3gray,71
Security area controller, 800-801 Registered PLDs
Sequence recognizer, 779-781 FPGAs, 321-328
Simulations, 780, 788, 791, 793 General purpose, 328

Pulse narrowing circuits, 444 R-type PALs, 307, 309
Pulse synchronizer module, 743-747 V-type PALs, 307, 309-310
Pulse width adjuster, 547-549 Registers, 561-572 (see also Shift registers)

Shift, 562-572
Q Storage, 561-563
Quad, groupings of logic adjacencies, 145 Rendezvous modules (RMODs)
Quadratic convergence As memory elements in asynchronous FSM

Algorithm, 62 design, 771
In fast binary division, 59-62 In bus arbiters, 802-803

Quiescent power dissipation, 815, 849 Logic circuits, 696, 697
Quine-McCluskey algorithm, 169-173 Logic circuit symbol, 794

Applications, 170-172 LPD design, 759-760
Notation, 170 Nested cell design, 695-698

Timing diagram, 697
R Use in delay circuit design, 794-795
Race conditions Reset-dominant basic cell

In critical race analysis, 703-704 EV K-maps for, 431, 433
In E-hazard analysis, 711-713 Excitation table, 432, 433
In ORG analysis, 492-494 Logic circuit, 431, 435, 436, 695
Race gate, 711 Mixed-rail output response, 436

Radix complement representation Mixed-rail outputs, 435
Algorithms, 46 Next state function, 432, 694
Radix, r, 45 Operation table, 431
Table for 2's complement, 47 State diagram, 432, 695
Ten's complement, 45^17 Timing diagrams, 432, 436, 695
Two's complement, 46-47 Residue

Radix divide method, 38 In finding static hazard cover, 392
Radix multiply method, 41 Restoring (active) switching devices, 84
Reading mixed-logic circuits, 97-98 Re-substitution method, 176-177

880 INDEX

RET, 437-438 (see also Rising edge triggering) Seed sets, 722
RET D flip-flop, 444-448, 698-700 Selector module, 769
RET JK flip-flop, 454^56, 700-701 Self-complementing codes, 69
Reverse bias Self-correcting counters, 591-592

In diodes of inertial delay elements, 794-795 Sequence of states, 420, 422
In diodes of sanity circuits, 524 Sequence recognizers, 471^475, 488, 674-675,

Ring counters, 590-593 675-676, 791-793
Ripple counters, 600-605 Sequential machines, overview, 684

Bi-directional, 604-605 Serial one-bit adder, 554-555
Decade, 603-604 Serial 2's complementer, 488, 643
Design, 600-605 One-hot design, 643-645
Choice of memory elements, 600,601-602 Serial BCD-to-XS3 converter, 555-556
Logic circuits, 601, 604 Serial odd parity detector, 556
Propagation delay, 602 Set, 430
State diagram, 603 Set-dominant basic cell
Timing diagram, 601 EV K-maps, 429, 693

Rising edge triggered D flip-flop Excitation table, 430, 433
Design, 444-448, 698-700 Logic circuit, 429, 434, 436, 693
Logic circuits, 448, 700 Mixed-rail output response, 435^36
Logic circuit symbol, 448 Mixed-rail outputs, 434
Next state and output functions, 447, 698 Next state function, 430, 693
NS and output K-maps, 446, 699 Operation table, 429
State diagrams, 445,446, 698, 699 State diagram, 430, 693
Timing diagram, 449 Timing diagrams, 430, 436, 694

Rising edge triggering (RET), 437^38 Setup and hold time requirements of flip-flops,
Flip-flop, 438 465-466
Latches, 438 Hold time, 465

ROMs. See Read-only memories Improper sampling, 466
Rotation direction detector, 469^470 Proper sampling, 466
Round-off error, 42-43 Sampling interval, 465, 466
Runt pulse, 465, 515-516 Setup time, 465

Seven-segment display counter, 671
S Shannon's expansion theorem
Sampling interval, 465 Single variable decomposition, 177-178
Sampling variable, 465, 510 Multiple variable decomposition, 178
Sanity circuits, 523-526 Shift-left/add 3 algorithm, 261
Schematic capture, simulation and timing analysis Shift register counters, 590-600

tools Autonomous linear feedback shift register
Beige Bag, 856 (ALFSR), 594-600
Cadence, 856 Linear feedback shift register (LFSR), 594
Cedes, 856 Ring, 590-593
EXL-Sim2000, 855 Twisted ring (Johnson), 593-595
Logic works, 856 Shift registers, 562-572
Mentor Graphics, 856 Asynchronous parallel load, 568-571
ModelSim, 856 Branching action of a universal shift register
OrCad, 856 (USR), 570-571
Timing Designer, 856-857 Modes of operation, 561
Workview Office, 856 Operation tables, 564, 566, 569

Schmitt triggers Right shift with synchronous parallel load,
CMOS circuit, 525-526 562-565
In debouncing circuits, 527 State diagrams, 564, 566, 569
In inertial delay elements, 793-794 Synchronous parallel load, 562-568
In sanity circuits, 523 Universal with asynchronous parallel load,
In synchronizing circuits, 516 568-571
Logic symbols, 526 Universal with synchronous parallel load,
V-t characteristics, 525 565-568

Security area controller, 800-801 Shift-right/subtract 3 algorithm, 260

INDEX 881

Shifters, combinational, 275-278 Static hazard cover, 392
Barrel, 275 Static hazards in asynchronous FSMs
Examples of operations, 276 Detection and elimination in NS logic, 705-711
General n-bit, 275 Static hazards in two-level combinational logic
MUX design, 276-278 circuits, 392-398

Sign bit, 44, 50, 53, 54, 66, 343-344 Procedure for elimination, 392, 397
Sign-bit error detection circuits, 343-345 Static 1-hazards, 391
Sign-complement arithmetic, 53-55, 56-58, 63-64 Static 0-hazards, 391
Signed binary numbers, 43-48 Terms associated with, 392
Signed-magnitude representation, 44-45 Timing diagrams, 393-396
Simulators, logic Use of K-maps, 393-397

Beige Bag, 856 Static hazards in multilevel XOR-type functions
Cedes, 856 Alternative path configuration, 399
EXL-Sim2002, xxv, 855 Detection and elimination procedure in complex
Logicworks, 856 functions, 408-409
ModelSim, 856 Dynamic hazards, 409^ 11
Workview Office, 856 Timing diagrams, 402,403, 405, 407

Single transition time (STT) machines, 720-730 Use of binary decision diagrams (BDDs), 405,
Analysis, 747-752 408, 411
Array algebraic approach, 724-727 Use of lumped path delay diagrams (LPDDs),
Design example, 722-730 404, 406, 410
Hazard-free design, 730-734 XOP and EOS functions, 400-403
Partitioning methods for state code assignment, Static hazards in synchronous FSMs

721-724 Detection and elimination, 499-510
SOP hazards (see also Static hazards) Examples, 500-502, 505-509

In asynchronous FSMs, 707-709, 727-729, Externally initiated, 500-502
731-732, 750-751 Internally initiated, 502-505

In combinational logic circuits, 392-394, Prospective, 509-510
397-398, 400^01 Static logic DFLOP design

In synchronous FSMs, 500-502, 505-507 In EAIC systems, 807-812
SOP representation, 131-133 Static (quiescent) power dissipation, 815

Canonical forms, 132-133, 136-137 Steering logic, 84
Expansion of reduced forms, 133 Buffering rule, 279
Use of minterm code, 132-137 Decoder design, 279-280

SPOT switch, 528-529 MUX design, 278-279
Use of basic cells, 528-529 Stepping motor control system, 655-665

Special-purpose flip-flops, 459-460 ASM chart for controller, 659
Spill bit, 276 Functional partition, 658
SPST switch, 526-528 Logic circuit for controller, 665

Use of R-C circuits, 527 NS and output K-maps and minimum cover, 662
Stability criteria Operational characteristics, 656

For fundamental mode FSMs, 688 P-term table for PLA implementation, 663
State adjacency sets, 543-544, 546, 724-725 State diagram, 660
State code assignment rules and application Timing requirements, 657

For one-hot approach to design, 636, 735 Stretching and synchronizing the input,
For STT FSM design, partitioning methods, 512-514

721-722 Stuck-at-faults, 412-413
For synchronous FSMs, 539-541 Effect of hazard cover, 413

State matrix, 542, 543, 723-724 Subfunction partitioning
State minimization, 547-549 Applied to the CRMT approach, 225-228

Merging of states, 547-548 Subtraction
State tables Algorithms, 54, 63-64

Use in obtaining state code assignments in STT BCD, 63-64
FSM design, 721-724 Binary, 52-55

Use with state assignment rules, 540-541 Direct, 53
Vs state diagrams, 539 FPN, 64-65

State variable, 421 Hexadecimal, 75

882 INDEX

Subtraction (cont.) Memory elements, 438
One's complement, 54-55 One-hot method, 636-649
Two's complement, 53-54 Shift register counters, 590-600

Subtracters Shift registers, 562-572
Full, 340-342 Simple state machines, examples, 466-476,
Ripple-borrow, 341 532-536
Use in comparators, 388 Synchronous state machines, general
Use in dividers, 355-356 Analysis procedure, 476

Sum-of-products (SOP) representation, 131-133 Design procedure, 440, 530-532
Canonical forms, 132-133 Fully documented state diagram, 424-428
Use of minterm code, 132-133 Models, 423-424

Sum rule Mutually exclusion requirement, 426^428, 490
Defined, 426 Sequence of states, 420-421
Exceptions, 428 Sum rule, 426, 490

Switch bounce periods, 526, 527 Synchronous Vs asynchronous parallel loading, a
Switch debouncing circuits perspective

Rotary selector switch, 529-530 In counters, 588-589
Single-pole/double throw (SPDT) switch, In shift registers, 588-589

528-529 System clock, 420, 657
Single-pole/single throw (SPST) switch, 526-528 System level design

Switching speed, 852 Architecture, 650
Switching threshold, 465, 516 Candy bar vending machine system, 782-788
Synchronizer circuits Controllers and data paths, 649-650, 652, 658,

Mean time between failures (MTBF), 516-517 784
Metastability, 514-517 Dealing with unusually large controllers,
Multiple stage, 517 666-668
Single stage, 512 Functional partitions, 652, 658, 784
Two stage with counters, 515 Parallel-to-serial adder/subtractor control system,
Use of Schmitt triggers, 517 651-655

Synchronous binary counters, 572-589 Stepping motor control system, 655-665
Branching action of a parallel loadable up/down Use of ASM charts, 659

counter, 589
Cascadable BCD up counters, 575-579 T
Cascadable up/down with asynchronous parallel Tabular minimization, 169-172

load, 579-581 Ten's complement arithmetic
Cascadable up/down with synchronous parallel Algorithm, 63-64

load and true hold, 581-584 BCD subtraction, 63-64
Divide-by-N, 573-575 T flip-flops
One-bit modular up/down design with parallel Analysis of FSMs with T flip-flops, 488, 489, 490

load and true hold, 584-588 Conversion from D flip-flops, 452^53
Perspective on parallel loading, 588-589 Conversion from JK flip-flops, 455^57
Timing diagrams, 578 Design of FSMs with T flip-flops, 466-470,
Types, 572-573 474-475, 579-581

Synchronous FSM architectures, 426-424 Excitation table, 452
Synchronous state machine analysis Master/slave, 453

Analysis procedure, 476 Operation table, 452
Output race glitches (ORGs), 491-499 PR and CL overrides, 464
Static hazards, 499-510 State diagram, 452
Use of the PS/NS table, 476, 476^479 Timing diagram, 453

Synchronous state machine design Time constant, RC, 524, 527
Array algebraic method, 542-547 Timing defect analyses in fundamental mode FSMs
Choice of components, 613-614 Critical races, 703-705
Counters, 572-589 Endless cycles, 702-703
Design considerations, 491-530, 536-549 Essential hazards, 711-718, 746, 750-752,
Design procedure, 440, 530-532 756-757
Mapping algorithm, 440 Static hazards, 705-711, 750-751

INDEX 883

Timing defects in combinational logic Multiplication, 56-58
Dynamic hazards, 392, 409-411 Subtraction, 53-54
Functional hazards, 392, 412 Two's complement representation, 45-47
Static hazards in two-level logic circuits, 392-398 Algorithm, 46
Static hazards in multilevel XOR-type circuits, Negation, 47

399-409 . Table, 47
Timing Designer Professional, 586-587 True value, 47
Timir ; diagrams (examples), 410, 443, 448, 464,

5«S, 657, 694, 718, 751, 780, 793, 840 U
Timing problems Unary operator, 106

In latches, 461-462 Unclocked memory elements
In rraster-slave JK flip-flops, 462-463 Pulse mode approach to FSM design, 773,

Toggk modules 774-777
Design from D flip-flops, 573 Unconditional branching, 496, 497
Ur^Jn counter design, 600-605, 664-665 Unconditional output, 425
UsT.n pulse mode FSMs, 773-775 Union, 87 (see also OR)

Traffic light control system, 681-682 Unit distant codes
Transistor-transistor logic (TTL), 850-852 Decimal code, 71
Transmission gates Gray code, 71

CMOS, 84-85 Table, 71
Circuit symbols, 84-85 XS3 Gray code, 71
Ideal equivalent circuits, 84-85 Universal flip-flops
NM OS, 84-85 JK flip-flops, 438, 454
PN 3S, 84-85 Universal shift register (USR), 562

Trans arent D latch. See D-latch Asynchronous parallel loaded, 568-570
Tree structures, 90, 180 Branching actions, 570-571
Triggering mechanisms Cascaded, 568

Falling edge triggering (FET), 437^38 Circuit symbols, 567, 571
Master-slave, 438 Logic circuits, 567, 568, 571
Rising edge triggering (RET), 437-438 NS functions, 566, 569

Triggering threshold. See switching threshold Operation tables, 566, 569
Tri-state bus, 313 State diagrams, 566, 569
Tri-state drivers, 85-87 Synchronous parallel loaded, 565-568

CMOS logic circuits, 86 Unsigned binary coded decimal (BCD), 34-35
Idealized equivalent circuits, 86 Unsigned binary coded hexadecimal (BCH), 36-37
Logic circuit symbols, 86 Unsigned binary coded octal (BCO), 36-37
Use in augmentation schemes for PLDs, 312 Unsigned binary number systems, 33-34
Use in PLD implementation, 297, 300, 303, 306, Unstable state, 688, 702

307, 309-310 Unusually large controllers, 666-668
Use in steering logic designs, 278-280 Unweighted codes

True hold Creeping, 68, 69
In v. »unters, 582, 584, 588 Up/down counters
In shift registers, 561, 566, 569 Cascadable with asynchronous parallel load,

Truth tables (non-conventional) 579-581, 587-588
Compressed (collapsed), 249, 255, 256, 264, 280 Cascadable with synchronous parallel loading,
Compressed entered variable, 244, 278 581-584, 584-587
Entered variable (EV), 246, 268, 269, 277, 358, Data triggered with parallel load, 664-665

361,372,374 With true hold, 581-588
TTL logic family, 850-852 USR. See Universal shift register

Gate examples, 851 USR/Up-Down counter combination, 609-610
Twisted ring counters UVEPROMs, 298

Universal shift register design, 593-594
Self correcting, 593,595 . V

Two-phase clocking, 450 Very-large-scale integrated circuits (VLSI), 238
Two's complement arithmetic VHDL description of combinational primitives

Algorithms, 54, 57-58 Cascadable bit-comparator, 283-285

884 INDEX

VHDL description of combinational (cont.) Commutative laws, 111
Four-to-one MUX, 282 Consensus laws, 112
Full adder, 381-382, 383 Corollaries, 114-115
NOR gate, 281 DeMorgan's laws, 112

VHDL description of sequential machines Distributive laws, 112
Simple FSM, 481-482 EQV laws, 111

VHDL, an introduction to, 279-287 Summary of useful identities, 115
Behavior level, 280 Worked examples, 119-120
Dataflow level, 280 XOR laws, 111
IEEE standard package std-logic-1164, 286 XOR function
Key words, 281 Defining relations, 101
Logic data types, 287 Definition, 99
Operator overloading, 285 Logic circuit symbols, 100, 103
Structural level, 280 Multiple gate realizations, 101-102
VHDL operator list, 286 Operator symbol, 98

VHSIC, 279 XOR gate
Viewlogic, 856 CMOS, 100, 117
Voltage waveform, 80, 522, 526 Conjugate gate symbols, 100, 103
Voter booth tabulation system, 680-681 Effect of active low inputs, 102

In controlled logic level conversion,
W 103-104
Waveform analysis Mixed-logic interpretations, 100

Combinational logic circuits, 97, 105 Physical truth table, 100
Weighted codes, 68, 69 Tree forms for multiple inputs, 99
Wired OR technology XOR patterns, 197-207

Multiple PLD schemes, 312, 313, 316 Adjacent, 198-199
WorkView Office Associative, 198-199

Professional version, 856 Compound, 198-199
Student version, 856 Diagonal, 200

WSI circuits, 238 Extraction procedure, 200
K-map plotting, 205-207

X Offset, 198-199
Xilinx FPGAs, 321-329 Vs two-level logic minimization, table,

Configurable logic blocks (CLBs), 321, 322, 325, 204
327

I/O blocks (lOBs), 321, 322, 324, 326 Y
Range of Xilinx FPGAs, 324 Year 2002 and beyond, 3-4
XACT software, 329

XNOR, 99 (see also EQV) Z
XOR algebra Zero blanking

Absorptive laws, 112 BCD-to-seven-segment displays, 265,
Associative laws, 111 267

	Contents
	Preface
	1. Introductory Remarks and Glossary
	1.1 What Is So Special about Digital Systems?
	1.2 The Year 2000 and Beyond?
	1.3 A Word of Warning
	1.4 Glossary of Terms, Expressions, and Abbreviations

	2. Number Systems, Binary Arithmetic, and Codes
	2.1 Introduction
	2.2 Positional and Polynomial Representations
	2.3 Unsigned Binary Number System
	2.4 Unsigned Binary Coded Decimal, Hexadecimal, and Octal
	2.4.1 The BCD Representation
	2.4.2 The Hexadecimal and Octal Systems

	2.5 Conversion between Number Systems
	2.5.1 Conversion of Integers
	2.5.2 Conversion of Fractions

	2.6 Signed Binary Numbers
	2.6.1 Signed-Magnitude Representation
	2.6.2 Radix Complement Representation
	2.6.3 Diminished Radix Complement Representation

	2.7 Excess (Offset) Representations
	2.8 Floating-Point Number Systems
	2.9 Binary Arithmetic
	2.9.1 Direct Addition and Subtraction of Binary Numbers
	2.9.2 Two's Complement Subtraction
	2.9.3 One's Complement Subtraction
	2.9.4 Binary Multiplication
	2.9.5 Binary Division
	2.9.6 BCD Addition and Subtraction
	2.9.7 Floating-Point Arithmetic
	2.9.8 Perspective on Arithmetic Codes

	2.10 Other Codes
	2.10.1 The Decimal Codes
	2.10.2 Error Detection Codes
	2.10.3 Unit Distance Codes
	2.10.4 Character Codes

	3. Background for Digital Design
	3.1 Introduction
	3.2 Binary State Terminology and Mixed Logic Notation
	3.2.1 Binary State Terminology

	3.3 Introduction to CMOS Terminology and Symbology
	3.4 Logic Level Conversion: The Inverter
	3.5 Transmission Gates and Tri-State Drivers
	3.6 AND and OR Operators and Their Mixed-Logic Circuit Symbology
	3.6.1 Logic Circuit Symbology for AND and OR
	3.6.2 NAND Gate Realization of Logic AND and OR
	3.6.3 NOR Gate Realization of Logic AND and OR
	3.6.4 NAND and NOR Gate Realization of Logic Level Conversion
	3.6.5 The AND and OR Gates and Their Realization of Logic AND and OR
	3.6.6 Summary of Logic Circuit Symbols for the AND and OR Functions and Logic Level Conversion

	3.7 Logic Level Incompatibility: Complementation
	3.8 Reading and Construction of Mixed-Logic Circuits
	3.9 XOR and EQV Operators and Their Mixed-Logic Circuit Symbology
	3.9.1 The XOR and EQV Functions of the XOR Gate
	3.9.2 The XOR and EQV Functions of the EQV Gate
	3.9.3 Multiple Gate Realizations of the XOR and EQV Functions
	3.9.4 The Effect of Active Low Inputs to the XOR and EQV Circuit Symbols
	3.9.5 Summary of Conjugate Logic Circuit Symbols for XOR and EQV Gates
	3.9.6 Controlled Logic Level Conversion
	3.9.7 Construction and Waveform Analysis of Logic Circuits Containing XOR-Type Functions

	3.10 Laws of Boolean Algebra
	3.10.1 NOT, AND, and OR Laws
	3.10.2 The Concept of Duality
	3.10.3 Associative, Commutative, Distributive, Absorptive, and Consensus Laws
	3.10.4 DeMorgan's Laws

	3.11 Laws of XOR Algebra
	3.11.1 Two Useful Corollaries
	3.11.2 Summary of Useful Identities

	3.12 Worked Examples

	4. Logic Function Representation and Minimization
	4.1 Introduction
	4.2 SOP and POS Forms
	4.2.1 The SOP Representation
	4.2.2 The POS Representation

	4.3 Introduction to Logic Function Graphics
	4.3.1 First-Order K-maps
	4.3.2 Second-Order K-maps
	4.3.3 Third-Order K-maps
	4.3.4 Fourth-Order K-maps

	4.4 Karnaugh Map Function Minimization
	4.4.1 Examples of Function Minimization
	4.4.2 Prime Implicants
	4.4.3 Incompletely Specified Functions: Don't Cares

	4.5 Multiple Output Optimization
	4.6 Entered Variable K-map Minimization
	4.6.1 Incompletely Specified Functions

	4.7 Function Reduction of Five or More Variables
	4.8 Minimization Algorithms and Application
	4.8.1 The Quine–McCluskey Algorithm
	4.8.2 Cube Representation and Function Reduction
	4.8.3 Qualitative Description of the Espresso Algorithm

	4.9 Factorization, Resubstitution, and Decomposition Methods
	4.9.1 Factorization
	4.9.2 Resubstitution Method
	4.9.3 Decomposition by Using Shannon's Expansion Theorem

	4.10 Design Area vs Performance
	4.11 Perspective on Logic Minimization and Optimization
	4.12 Worked EV K-map Examples

	5. Function Minimization by Using K-map XOR Patterns and Reed–Muller Transformation Forms
	5.1 Introduction
	5.2 XOR-Type Patterns and Extraction of Gate-Minimum Cover from EV K-maps
	5.2.1 Extraction Procedure and Examples

	5.3 Algebraic Verification of Optimal XOR Function Extraction from K-maps
	5.4 K-map Plotting and Entered Variable XOR Patterns
	5.5 The SOP-to-EXSOP Reed–Muller Transformation
	5.6 The POS-to-EQPOS Reed–Muller Transformation
	5.7 Examples of Minimum Function Extraction
	5.8 Heuristics for CRMT Minimization
	5.9 Incompletely Specified Functions
	5.10 Multiple Output Functions with Don't Cares
	5.11 K-map Subfunction Partitioning for Combined CRMT and Two-Level Minimization
	5.12 Perspective on the CRMT and CRMT/Two-Level Minimization Methods

	6. Nonarithmetic Combinational Logic Devices
	6.1 Introduction and Background
	6.1.1 The Building Blocks
	6.1.2 Classification of Chips
	6.1.3 Performance Characteristics and Other Practical Matters
	6.1.4 Part Numbering Systems
	6.1.5 Design Procedure

	6.2 Multiplexers
	6.2.1 Multiplexer Design
	6.2.2 Combinational Logic Design with MUXs

	6.3 Decoders/Demultiplexers
	6.3.1 Decoder Design
	6.3.2 Combinational Logic Design with Decoders

	6.4 Encoders
	6.5 Code Converters
	6.5.1 Procedure for Code Converter Design
	6.5.2 Examples of Code Converter Design

	6.6 Magnitude Comparators
	6.7 Parity Generators and Error Checking Systems
	6.8 Combinational Shifters
	6.9 Steering Logic and Tri-State Gate Applications
	6.10 Introduction to VHDL Description of Combinational Primitives

	7. Programmable Logic Devices
	7.1 Introduction
	7.2 Read-Only Memories
	7.2.1 PROM Applications

	7.3 Programmable Logic Arrays
	7.3.1 PLA Applications

	7.4 Programmable Array Logic Devices
	7.5 Mixed-Logic Inputs to and Outputs from ROMs, PLAs, and PAL Devices
	7.6 Multiple PLD Schemes for Augmenting Input and Output Capability
	7.7 Introduction to FPGAs and Other General-Purpose Devices
	7.7.1 AND–OR–Invert and OR–AND–Invert Building Blocks
	7.7.2 Actel Field Programmable Gate Arrays
	7.7.3 Xilinx FPGAs
	7.7.4 Other Classes of General-Purpose PLDs

	7.8 CAD Help in Programming PLD Devices

	8. Arithmetic Devices and Arithmetic Logic Units (ALUs)
	8.1 Introduction
	8.2 Binary Adders
	8.2.1 The Half Adder
	8.2.2 The Full Adder
	8.2.3 Ripple-Carry Adders

	8.3 Binary Subtracters
	8.3.1 Adder/Subtractors
	8.3.2 Sign-Bit Error Detection

	8.4 The Carry Look-Ahead Adder
	8.5 Multiple-Number Addition and the Carry-Save Adder
	8.6 Multipliers
	8.7 Parallel Dividers
	8.8 Arithmetic and Logic Units
	8.8.1 Dedicated ALU Design Featuring R-C and CLA Capability
	8.8.2 The MUX Approach to ALU Design

	8.9 Dual-Rail Systems and ALUs with Completion Signals
	8.9.1 Carry Look-Ahead Configuration

	8.10 VHDL Description of Arithmetic Devices

	9. Propagation Delay and Timing Defects in Combinational Logic
	9.1 Introduction
	9.2 Static Hazards in Two-Level Combinational Logic Circuits
	9.3 Detection and Elimination Hazards in Multilevel XOR-Type Functions
	9.3.1 XOP and EOS Functions
	9.3.2 Methods for the Detection and Elimination of Static Hazards in Complex Multilevel XOR-type Functions
	9.3.3 General Procedure for the Detection and Elimination of Static Hazards in Complex Multilevel XOR-Type Functions
	9.3.4 Detection of Dynamic Hazards in Complex Multilevel XOR-Type Functions

	9.4 Function Hazards
	9.5 Stuck-at Faults and the Effect of Hazard Cover on Fault Testability

	10. Introduction to Synchronous State Machine Design and Analysis
	10.1 Introduction
	10.1.1 A Sequence of Logic States

	10.2 Models for Sequential Machines
	10.3 The Fully Documented State Diagram: The Sum Rule
	10.4 The Basic Memory Cells
	10.4.1 The Set-Dominant Basic Cell
	10.4.2 The Reset-Dominant Basic Cell
	10.4.3 Combined Form of the Excitation Table
	10.4.4 Mixed-Rail Outputs of the Basic Cells
	10.4.5 Mixed-Rail Output Response of the Basic Cells

	10.5 Introduction to Flip-Flops
	10.5.1 Triggering Mechanisms
	10.5.2 Types of Flip-Flops
	10.5.3 Hierarchical Flow Chart and Model for Flip-Flop Design

	10.6 Procedure for FSM (Flip-Flop) Design and the Mapping Algorithm
	10.7 The D Flip-Flops: General
	10.7.1 TheD-Latch
	10.7.2 The RET D Flip-Flop
	10.7.3 The Master–Slave D Flip-Flop

	10.8 Flip-Flop Conversion: The T, JK Flip-Flops and Miscellaneous Flip-Flops
	10.8.1 The T Flip-Flops and Their Design from D Flip-Flops
	10.8.2 The JK Flip-Flops and Their Design from D Flip-Flops
	10.8.3 Design of T and D Flip-Flops from JK Flip-Flops
	10.8.4 Review of Excitation Tables
	10.8.5 Design of Special-Purpose Flip-Flops and Latches

	10.9 Latches and Flip-Flops with Serious Timing Problems: A Warning
	10.10 Asynchronous Preset and Clear Overrides
	10.11 Setup and Hold-Time Requirements of Flip-Flops
	10.12 Design of Simple Synchronous State Machines with Edge-Triggered Flip-Flops: Map Conversion
	10.12.1 Design of a Three-Bit Binary Up/Down Counter: D-to-T K-map Conversion
	10.12.2 Design of a Sequence Recognizer: D-to-JK K-map Conversion

	10.13 Analysis of Simple State Machines
	10.14 VHDL Description of Simple State Machines
	10.14.1 The VHDL Behavorial Description of the RET D Flip-flop
	10.14.2 The VHDL Behavioral Description of a Simple FSM

	11. Synchronous FSM Design Considerations and Applications
	11.1 Introduction
	11.2 Detection and Elimination of Output Race Glitches
	11.2.1 ORG Analysis Procedure Involving Two Race Paths
	11.2.2 Elimination of ORGs

	11.3 Detection and Elimination of Static Hazards in the Output Logic
	11.3.1 Externally Initiated Static Hazards in the Output Logic
	11.3.2 Internally Initiated Static Hazards in the Output of Mealy and Moore FSMs
	11.3.3 Perspective on Static Hazards in the Output Logic of FSMs

	11.4 Asynchronous Inputs: Rules and Caveats
	11.4.1 Rules Associated with Asynchronous Inputs
	11.4.2 Synchronizing the Input
	11.4.3 Stretching and Synchronizing the Input
	11.4.4 Metastability and the Synchronizer

	11.5 Clock Skew
	11.6 Clock Sources and Clock Signal Specifications
	11.6.1 Clock-Generating Circuitry
	11.6.2 Clock Signal Specifications
	11.6.3 Buffering and Gating the Clock

	11.7 Initialization and Reset of the FSM: Sanity Circuits
	11.7.1 Sanity Circuits

	11.8 Switch Debouncing Circuits
	11.8.1 The Single-Pole/Single-Throw Switch
	11.8.2 The Single-Pole/Double-Throw Switch
	11.8.3 The Rotary Selector Switch

	11.9 Applications to the Design of More Complex State Machines
	11.9.1 Design Procedure
	11.9.2 Design Example: The One- to Three-Pulse Generator

	11.10 Algorithmic State Machine Charts and State Tables
	11.10.1 ASM Charts
	11.10.2 State Tables and State Assignment Rules

	11.11 Array Algebraic Approach to Logic Design
	11.12 State Minimization

	12. Module and Bit-Slice Devices
	12.1 Introduction
	12.2 Registers
	12.2.1 The Storage (Holding) Register
	12.2.2 The Right Shift Register with Synchronous Parallel Load
	12.2.3 Universal Shift Registers with Synchronous Parallel Load
	12.2.4 Universal Shift Registers with Asynchronous Parallel Load
	12.2.5 Branching Action of a 4-Bit USR

	12.3 Synchronous Binary Counters
	12.3.1 Simple Divide-by-N Binary Counters
	12.3.2 Cascadable BCD Up-Counters
	12.3.3 Cascadable Up/Down Binary Counters with Asynchronous Parallel Load
	12.3.4 Binary Up/Down Counters with Synchronous Parallel Load and True Hold Capability
	12.3.5 One-Bit Modular Design of Parallel Loadable Up/Down Counters with True Hold
	12.3.6 Perspective on Parallel Loading of Counters and Registers: Asynchronous vs Synchronous
	12.3.7 Branching Action of a 4-Bit Parallel Loadable Up/Down Counter

	12.4 Shift-Register Counters
	12.4.1 Ring Counters
	12.4.2 Twisted Ring Counters
	12.4.3 Linear Feedback Shift Register Counters

	12.5 Asynchronous (Ripple) Counters

	13. Alternative Synchronous FSM Architectures and Systems-Level Design
	13.1 Introduction
	13.1.1 Choice of Components to be Considered

	13.2 Architecture Centered around Nonregistered PLDs
	13.2.1 Design of the One- to Three-Pulse Generator by Using a PLA
	13.2.2 Design of the One- to Three-Pulse Generator by Using a PAL
	13.2.3 Design of the One- to Three-Pulse Generator by Using a ROM
	13.2.4 Design of a More Complex FSM by Using a ROM as the PLD

	13.3 State Machine Designs Centered around a Shift Register
	13.4 State Machine Designs Centered around a Parallel Loadable Up/Down Counter
	13.5 The One-Hot Design Method
	13.5.1 Use of ASMs in One-Hot Designs
	13.5.2 Application of the One-Hot Method to a Serial 2's Complementer
	13.5.3 One-Hot Design of a Parallel-to-Serial Adder/Subtractor Controller
	13.5.4 Perspective on the Use of the One-Hot Method: Logic Noise and Use of Registered PLDs

	13.6 System-Level Design: Controller, Data Path, and Functional Partition
	13.6.1 Design of a Parallel-to-Serial Adder/Subtractor Control System
	13.6.2 Design of a Stepping Motor Control System
	13.6.3 Perspective on System-Level Design in This Text

	13.7 Dealing with Unusually Large Controller and System-Level Designs

	14. Asynchronous State Machine Design and Analysis: Basic Concepts
	14.1 Introduction
	14.1.1 Features of Asynchronous FSMs
	14.1.2 Need for Asynchronous FSMs

	14.2 The Lumped Path Delay Models for Asynchronous FSMs
	14.3 Functional Relationships and the Stability Criteria
	14.4 The Excitation Table for the LPD Model
	14.5 State Diagrams, K-maps, and State Tables for Asynchronous FSMs
	14.5.1 The Fully Documented State Diagram
	14.5.2 Next-State and Output K-maps
	14.5.3 State Tables

	14.6 Design of the Basic Cells by Using the LPD Model
	14.6.1 The Set-Dominant Basic Cell
	14.6.2 The Reset-Dominant Basic Cell

	14.7 Design of the Rendezvous Modules by Using the Nested Cell Model
	14.8 Design of the RET D Flip-Flop by Using the LPD Model
	14.9 Design of the RET JK Flip-Flop by Flip-Flop Conversion
	14.10 Detection and Elimination of Timing Defects in Asynchronous FSMs
	14.10.1 Endless Cycles
	14.10.2 Races and Critical Races
	14.10.3 Static Hazards in the NS and Output Functions
	14.10.4 Essential Hazards in Asynchronous FSMs
	14.10.5 Perspective on Static Hazards and E-hazards in Asynchronous FSMs

	14.11 Initialization and Reset of Asynchronous FSMs
	14.12 Single-Transition-Time Machines and the Array Algebraic Approach
	14.13 Hazard-Free Design of Fundamental Mode State Machines by Using the Nested Cell Approach
	14.14 One-Hot Design of Asynchronous State Machines
	14.15 Perspective on State Code Assignments of Fundamental Mode FSMs
	14.16 Design of Fundamental Mode FSMs by Using PLDs
	14.17 Analysis of Fundamental Mode State Machines

	15. The Pulse Mode Approach to Asynchronous FSM Design
	15.1 Introduction
	15.2 Pulse Mode Models and System Requirements
	15.2.1 Choice of Memory Elements

	15.3 Other Characteristics of Pulse Mode FSMs
	15.4 Design Examples
	15.5 Analysis of Pulse Mode FSMs
	15.6 Perspective on the Pulse Mode Approach to FSM Design

	16. Externally Asynchronous/Internally Clocked (Pausable) Systems and Programmable Asynchronous Sequencers
	16.1 Introduction
	16.2 Externally Asynchronous/Internally Clocked Systems and Applications
	16.2.1 Static Logic DFLOP Design
	16.2.2 Domino Logic DFLOP Design
	16.2.3 Introduction to CMOS Dynamic Domino Logic
	16.2.4 EAIC System Design
	16.2.5 System Simulations and Real-Time Tests
	16.2.6 Variations on the Theme
	16.2.7 How EAIC FSMs Differ from Conventional Synchronous FSMs
	16.2.8 Perspective on EAIC Systems as an Alternative Approach to FSM Design

	16.3 Asynchronous Programmable Sequencers
	16.3.1 Microprogrammable Asynchronous Controller Modules and System Architecture
	16.3.2 Architecture and Operation of the MAC Module
	16.3.3 Design of the MAC Module
	16.3.4 MAC Module Design of a Simple FSM
	16.3.5 Cascading the MAC Module
	16.3.6 Programming the MAC Module
	16.3.7 Metastability and the MAC Module: The Final Issue
	16.3.8 Perspective on MAC Module FSM Design

	16.4 One-Hot Programmable Asynchronous Sequencers
	16.4.1 Architecture for One-Hot Asynchronous Programmable Sequencers
	16.4.2 Design of a Four-State Asynchronous One-Hot Sequencer
	16.4.3 Design and Operation of a Simple FSM by Using a Four-State One-Hot Sequencer
	16.4.4 Perspective on Programmable Sequencer Design and Application

	16.5 Epilogue to Chapter 16

	A: Other Transistor Logic Families
	A.1 Introduction to the Standard NMOS Logic Family
	A.2 Introduction to the TTL Logic Family
	A.3 Performance Characteristics of Important 1C Logic Families

	B: Computer-Aided Engineering Tools
	B.1 Productivity Tools Bundled with this Text
	B.2 Other Productivity Tools

	C: IEEE Standard Symbols
	C.1 Gates
	C.2 Combinational Logic Devices
	C.3 Flip-Flops, Registers, and Counters

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

