

	

About	the	Author

Dr.	 Zainalabedin	 Navabi	 is	 a	 professor	 of	 electrical	 and	 computer	 engineering	 at
Northeastern	University.	Dr.	Navabi	is	the	author	of	several	textbooks	and	computer	based
trainings	on	VHDL,	Verilog	and	related	tools	and	environments.	Dr.	Navabi’s	involvement
with	hardware	description	languages	begins	in	1976	when	he	started	the	development	of	a
register-transfer	level	simulator	for	one	of	the	very	first	Hardware	Description	Languages
(HDLs).	 In	1981	he	completed	 the	development	of	a	 synthesis	 tool	 that	generated	MOS
layout	from	an	RTL	description.	Since	1981,	Dr.	Navabi	has	been	involved	in	the	design,
definition	 and	 implementation	 of	 HDLs.	 He	 has	 written	 numerous	 papers	 on	 the
application	of	HDLs	in	simulation,	synthesis	and	test	of	digital	systems.	He	started	one	of
the	first	full	HDL	courses	at	Northeastern	University	in	1990.	Since	then	he	has	conducted
many	 short	 courses	 and	 tutorials	 on	 this	 subject	 in	 the	 United	 States	 and	 abroad.	 In
addition	 to	 being	 a	 professor,	 he	 is	 also	 a	 consultant	 to	 Electronic	 Design	 Automation
(EDA)	companies.	Dr.	Navabi	received	his	M.S.	and	Ph.D.	from	the	University	of	Arizona
in	1978	and	1981,	and	his	B.S.	 from	the	University	of	Texas	at	Austin	 in	1975.	He	 is	a
senior	member	of	IEEE,	and	a	member	of	IEEE	Computer	Society,	ASEE,	and	ACM.	Dr.
Navabi	is	the	author	of	six	books	on	various	aspects	of	digital	system	design	automation.

	

Embedded	Core	Design	
with	FPGAs

Zainalabedin	Navabi,	Ph.D.

Professor	of	Electrical	and	Computer	Engineering	Northeastern

University	Boston,	Massachusetts

In	the	memory	of	my	sister,	Shahla	(Fami)	Navabi.

	

CONTENTS

Preface	xv

Introduction	xvii

Acknowledgments	xix

CHAPTER

1	Elements	of	Embedded	Design	…………………………….1

1.1	Abstraction	Levels	…………………………………………………………….	2

1.1.1	Transistors	to	Programs	…………………………………………….2

1.1.2	Mixed	Level	Hardware	………………………………………………	3

1.1.3	Design	Specification	…………………………………………………..	4

1.2	Embedded	System	Design	Flow	…………………………………………	4

1.2.1	Hardware/Software	Partitioning	………………………………..	4

1.2.2	Hardware	Part	………………………………………………………….	5

1.2.3	Software	Part	……………………………………………………………	6

1.2.4	Interconnection	Specification	……………………………………..	6

1.2.5	Common	Hardware/Software	Simulation	……………………	6

1.2.6	Hardware	Synthesis	………………………………………………….	7

1.2.7	Software	Compilation	………………………………………………..	7

1.2.8	Interconnection	Hardware	Generation	……………………….	8

1.2.9	Design	Integrator	………………………………………………………	8

1.3	Design	Tools	……………………………………………………………………..	9

1.3.1	Block	Diagram	Description	………………………………………..	9

1.3.2	HDL	and	Other	Hardware	Simulators	………………………..	9

1.3.3	Programming	Language	Compilers	…………………………….	9

1.3.4	Netlist	Simulator	………………………………………………………	9

1.3.5	Instruction	Set	Simulator	………………………………………..	10

1.3.6	Hardware	Synthesis	Tool	…………………………………………	10

1.3.7	Compiler	for	Machine	Language	Generation	……………..	10

1.3.8	Software	Builder	and	Debugger	………………………………..	10

1.3.9	Embedded	System	Integrator	…………………………………..	10

1.4	New	Hardware	Design	Trends	…………………………………………	10

1.4.1	Configurable	Processors	…………………………………………..	11

1.4.2	Standard	Bus	Structure	…………………………………………..11

1.4.3	Software	Programming	……………………………………………	11

1.4.4	Software	Utilities	…………………………………………………….	11

1.5	Summary	………………………………………………………………………..11

2	Logic	Design	Concepts	………………………………………13

2.1	Number	Systems	…………………………………………………………….14

2.1.1	Binary	Numbers	………………………………………………………	14

2.1.2	Hexadecimal	Numbers	…………………………………………….	15

2.2	Binary	Arithmetic	……………………………………………………………16

2.2.1	Signed	Numbers	………………………………………………………	16

2.2.2	Binary	Addition	……………………………………………………….16

2.2.3	Binary	Subtraction	………………………………………………….	17

2.2.4	Two’s	Complement	System	………………………………………	17

2.2.5	Overflow	…………………………………………………………………18

2.2.6	Fixed	Point	Numbers	……………………………………………….	18

2.2.7	Floating	Point	Numbers	…………………………………………..	19

2.3	Basic	Logic	Gates	and	Structures	…………………………………….	20

2.3.1	Logic	Value	System	………………………………………………….20

2.3.2	Logic	Function	Representation	…………………………………21

2.3.3	Transistors	……………………………………………………………..	22

2.3.4	CMOS	Inverter	………………………………………………………..	23

2.3.5	CMOSNAND	………………………………………………………….	23

2.3.6	CMOS	NOR	…………………………………………………………….24

2.3.7	AND	and	OR	gates	…………………………………………………..24

2.3.8	XOR	gate	………………………………………………………………..	25

2.3.9	MUX	gate	……………………………………………………………….25

2.3.10	Three-State	Gates	……………………………………………………	26

2.3.11	Look-up	Tables	(LUT)	………………………………………………28

2.4	Designing	Combinational	Circuits	……………………………………	28

2.4.1	Boolean	Algebra	………………………………………………………	28

2.4.2	Karnaugh	Maps	………………………………………………………	32

2.4.3	Don’t	Care	Values	……………………………………………………	35

2.4.4	Minimal	Coverage	……………………………………………………	36

2.4.5	Iterative	Hardware	………………………………………………….	38

2.4.6	Multiplexers	and	Decoders	……………………………………….41

2.4.7	Activity	Levels	…………………………………………………………	43

2.4.8	Enable	/	Disable	Inputs	……………………………………………	44

2.4.9	A	High-Level	Design	………………………………………………..	44

2.5	Storage	Elements	…………………………………………………………….	45

2.5.1	The	Basic	Latch	………………………………………………………	46

2.5.2	Clocked	D	Latch	………………………………………………………	47

2.5.3	Flip-Flops	……………………………………………………………….48

2.5.4	Flip-Flop	Control	……………………………………………………..	49

2.5.5	Registers	…………………………………………………………………	51

2.6	Sequential	Circuit	Design	………………………………………………..51

2.6.1	Finite	State	Machines	……………………………………………..	52

2.6.2	Designing	State	Machines	………………………………………..	53

2.6.3	Mealy	and	Moore	Machines	……………………………………..	58

2.6.4	One-Hot	Realization	………………………………………………..	59

2.6.5	Sequential	Packages	………………………………………………..	59

2.7	Memories	………………………………………………………………………..	63

2.7.1	Static	RAM	Structure	………………………………………………	64

2.8	Bidirectional	10	………………………………………………………………	64

2.9	A	Comprehensive	Example:	Serial	Adder	………………………….65

2.9.1	Problem	Statement	………………………………………………….	65

2.9.2	Design	Partitioning	………………………………………………….	65

2.9.3	Datapath	Design	……………………………………………………..	66

2.10	Summary	……………………………………………………………………	70

3	RTL	Design	with	Verilog	…………………………………….71

3.1	Basic	Structures	of	Verilog	………………………………………………	72

3.1.1	Modules	………………………………………………………………….	73

3.1.2	Module	Outline	……………………………………………………….	74

3.1.3	Module	Ports	…………………………………………………………..	75

3.1.4	Module	Variables	…………………………………………………….	76

3.1.5	Logic	Value	System	………………………………………………….78

3.1.6	Wire	(net)	Resolutions	……………………………………………..	79

3.2	Combinational	Circuits	……………………………………………………	80

3.2.1	Gate	Level	Combinational	Circuits	…………………………..	80

3.2.2	Gate	Level	Synthesis	……………………………………………….	85

3.2.3	Descriptions	by	Use	of	Equations	……………………………..	87

3.2.4	Instantiating	Other	Modules	……………………………………	90

3.2.5	Synthesis	of	Assignment	Statements	………………………..	92

3.2.6	Descriptions	with	Procedural	Statements	…………………	93

3.2.7	Combinational	Rules	……………………………………………….	98

3.2.8	Synthesizing	Procedural	Blocks	………………………………..	98

3.2.9	Bussing	…………………………………………………………………100

3.3	Sequential	Circuits	………………………………………………………..100

3.3.1	Basic	Memory	Elements	at	the	Gate	Level	………………	101

3.3.2	Memory	Elements	Using	Procedural	Statements	…….	102

3.3.3	Flip-flop	Synthesis	…………………………………………………	106

3.3.4	Registers,	Shifters	and	Counters	…………………………….	108

3.3.5	Synthesis	of	Shifters	and	Counters	…………………………	111

3.3.6	State	Machine	Coding	……………………………………………	111

3.3.7	State	Machine	Synthesis	………………………………………..	121

3.3.8	Memories	………………………………………………………………123

3.4	Writing	Testbenches	………………………………………………………125

3.4.1	Generating	Periodic	Data	……………………………………….126

3.4.2	Random	Input	Data	……………………………………………….127

3.4.3	Timed	Data	……………………………………………………………127

3.5	Sequential	Multiplier	Specification	…………………………………	128

3.5.1	Shift-and-Add	Multiplication	Process	……………………..	129

3.5.2	Sequential	Multiplier	Design	………………………………….	131

3.5.3	Multiplier	Testing	………………………………………………….	137

3.6	Synthesis	Issues	……………………………………………………………140

3.7	Summary	………………………………………………………………………141

4	Computer	Hardware	and	Software	…………………….	143

4.1	Computer	System	………………………………………………………….143

4.2	Computer	Software	………………………………………………………..146

4.2.1	Machine	Language	…………………………………………………	146

4.2.2	Assembly	Language	……………………………………………….	146

4.2.3	High-Level	Language	…………………………………………….	147

4.2.4	C	Programming	Language	……………………………………..	148

4.3	Instruction	Set	Architecture	…………………………………………..	160

4.4	SMPL-CPU	Design	………………………………………………………..162

4.4.1	CPU	Specification	………………………………………………….	162

4.4.2	Single-Cycle	Implementation	………………………………….	164

4.4.3	Multi-Cycle	Implementation	…………………………………..	177

4.5	SAYEH	Design	and	Test	………………………………………………..	187

4.5.1	Details	of	Processor	Functionality	…………………………..	188

4.5.2	SAYEH	Datapath	…………………………………………………..	190

4.5.3	SAYEH	Verilog	Description	……………………………………	193

4.5.4	SAYEH	Top-Level	Testbench	/	Assembler	……………….	193

4.5.5	SAYEH	Hardware	Realization	……………………………….	195

4.6	Summary	………………………………………………………………………195

5	Field	Programmable	Devices	…………………………….	197

5.1	Read	Only	Memories	……………………………………………………..	197

5.1.1	Basic	ROM	Structure	…………………………………………….	197

5.1.2	NOR	Implementation	…………………………………………….	199

5.1.3	Distributed	Gates	…………………………………………………..	199

5.1.4	Array	Programmability	………………………………………….	201

5.1.5	Memory	View	………………………………………………………..	202

5.1.6	ROM	Variations	…………………………………………………….	203

5.2	Programmable	Logic	Arrays	…………………………………………..	206

5.2.1	PAL	Logic	Structure	………………………………………………	208

5.2.2	Product	Term	Expansion	………………………………………..209

5.2.3	Three-State	Outputs	………………………………………………	210

5.2.4	Registered	Outputs	………………………………………………..	211

5.2.5	Commercial	Parts	………………………………………………….	211

5.3	Complex	Programmable	Logic	Devices	……………………………	214

5.3.1	Altera’s	MAX	7000S	CPLD	…………………………………….215

5.4	Field	Programmable	Gate	Arrays	…………………………………..	216

5.4.1	Altera’s	FLEX	10K	FPGA	………………………………………	217

5.4.2	Altera’s	Cyclone	FPGA	…………………………………………..223

5.5	Summary	………………………………………………………………………	241

6	Tools	for	Design	and	Prototyping	……………………..243

6.1	Hardware	Design	Flow	…………………………………………………..243

6.1.1	Datapath	of	Serial	Adder	……………………………………….244

6.1.2	Serial	Adder	Controller	………………………………………….	245

6.2	HDL	Simulation	and	Synthesis	………………………………………247

6.2.1	Pre-Synthesis	Simulation	……………………………………….	248

6.2.2	Module	Synthesis	…………………………………………………..	254

6.2.3	Post-Synthesis	Simulation	……………………………………..	260

6.3	Mixed-Level	Design	with	Quartus	II	………………………………263

6.3.1	Project	Specification	………………………………………………265

6.3.2	Block	Diagram	Design	File	…………………………………….265

6.3.3	Creating	and	Inserting	Design	Components	…………….267

6.3.4	Wiring	Design	Components	…………………………………….275

6.3.5	Design	Compilation	……………………………………………….275

6.3.6	Design	Simulation	…………………………………………………	276

6.3.7	Synthesis	Results	…………………………………………………..	279

6.4	Design	Prototyping	………………………………………………………..	284

6.4.1	UP3	Board	Specification	…………………………………………284

6.4.2	DE2	Board	Specification	…………………………………………291

6.4.3	Programming	DE2	Cyclone	II	…………………………………299

6.5	Summary	………………………………………………………………………	303

7	Design	of	Utility	Hardware	Cores	………………………305

7.1	Library	Management	…………………………………………………….	305

7.2	Basic	IO	Device	Handling	………………………………………………306

7.2.1	Debouncer	……………………………………………………………..	306

7.2.2	Single	Stepper	……………………………………………………….	310

7.2.3	Utilizing	UP3	Basic	IO	…………………………………………..	312

7.2.4	Utilizing	DE2	Basic	IO	…………………………………………..314

7.3	Frequency	Dividers	……………………………………………………….	315

7.4	Seven	Segment	Displays	………………………………………………..	315

7.4.1	SSD	Driver	……………………………………………………………	315

7.4.2	Testing	DE2	SSD	Driver	………………………………………..316

7.5	LCD	Display	Adaptor	…………………………………………………….317

7.5.1	Writing	into	LCD	…………………………………………………..	317

7.5.2	LCD	Initialization	………………………………………………….	319

7.5.3	Display	Driver	with	Initialization	…………………………..	320

7.5.4	Testing	the	LCD	Driver	(UP3)	………………………………..	321

7.5.5	Testing	the	LCD	Driver	(DE2)	………………………………..322

7.6	Keyboard	Interface	Logic	……………………………………………….	322

7.6.1	Serial	Data	Communication	……………………………………322

7.6.2	Power-On	Routine	………………………………………………….	325

7.6.3	Codes	and	Commands	……………………………………………	325

7.6.4	Keyboard	Interface	Design	……………………………………..328

7.7	VGA	Interface	Logic	………………………………………………………	333

7.7.1	VGA	Driver	Operation	……………………………………………	333

7.7.2	Monitor	Synchronization	Hardware	………………………..336

7.7.3	Character	Display	………………………………………………….	338

7.7.4	VGA	Driver	for	Text	Data	………………………………………	342

7.7.5	VGA	Driver	Prototyping	(UP3)	……………………………….	342

7.7.6	VGA	Driver	Prototyping	(DE2)	……………………………….	343

7.8	Summary	………………………………………………………………………	344

8	Design	with	Embedded	Processors	…………………..345

8.1	Embedded	Design	Steps	…………………………………………………345

8.1.1	Processor	Selection	………………………………………………..	346

8.1.2	Processor	Interfacing	……………………………………………..	348

8.1.3	Developing	Software	………………………………………………	349

8.2	Filter	Design	…………………………………………………………………	349

8.2.1	Filter	Concepts	………………………………………………………	350

8.2.2	FIR	Filter	Hardware	Implementation	……………………..	354

8.2.3	FIR	Embedded	Implementation	……………………………..	356

8.2.4	Building	the	FIR	Filter	…………………………………………..	361

8.3	Design	of	a	Microcontroller	…………………………………………….	363

8.3.1	System	Platform	……………………………………………………	363

8.3.2	Microcontroller	Architecture	…………………………………..	364

8.4	Summary	………………………………………………………………………	366

9	Design	of	an	Embedded	System	……………………….367

9.1	Designing	an	Embedded	System	…………………………………….	368

9.2	Nios	II	Processor	……………………………………………………………	369

9.2.1	Configurability	Features	of	Nios	II	…………………………	370

9.2.2	Processor	Architecture	……………………………………………	372

9.2.3	Instruction	Set	………………………………………………………	378

9.2.4	Nios	II	Alternative	Cores	……………………………………….	381

9.3	Avalon	Switch	Fabric	…………………………………………………….	381

9.3.1	Avalon	Specification	………………………………………………	381

9.3.2	Address	Decoding	Logic	………………………………………….	384

9.3.3	Data-path	Multiplexing	………………………………………….	384

9.3.4	Wait-state	Insertion	……………………………………………….	385

9.3.5	Pipelining	……………………………………………………………..	385

9.3.6	Endian	Conversion	………………………………………………..	386

9.3.7	Native	Address	Alignment	and	Dynamic	Bus	Sizing..	386

9.3.8	Arbitration	for	Multi-Master	Systems	…………………….	386

9.3.9	Burst	Management	………………………………………………..	388

9.3.10	Clock	Domain	Crossing	………………………………………….	389

9.3.11	Interrupt	Controller	……………………………………………….	390

9.3.12	Reset	Distribution	………………………………………………….	391

9.4	SOPC	Builder	Overview	…………………………………………………	391

9.4.1	Architecture	of	SOPC	Builder	Systems	……………………	391

9.4.2	Functions	of	SOPC	Builder	…………………………………….	393

9.5	IDE	Integrated	Development	Environment	…………………….	394

9.5.1	IDE	Project	Manager	……………………………………………..	394

9.5.2	Source	Code	Editor	………………………………………………..	395

9.5.3	C/C++	Compiler	……………………………………………………..	395

9.5.4	Debugger	………………………………………………………………395

9.5.5	Flash	Programmer	…………………………………………………	396

9.6	An	Embedded	System	Design:	Calculator	……………………….	396

9.6.1	System	Specification	………………………………………………	396

9.6.2	Calculating	Engine	………………………………………………..	397

9.6.3	Calculator	10	Interface	…………………………………………..	398

9.6.4	Design	of	Calculating	Engine	………………………………….398

9.6.5	Building	Calculator	Software	………………………………….408

9.6.6	Calculator	Program	……………………………………………….413

9.6.7	Completing	the	Calculator	System	………………………….417

9.7	Summary	………………………………………………………………………	417

APPENDIX

A	Nios	II	Instruction	Set	……………………………………….419

A.1	Data	Transfer	Instructions	…………………………………………….	419

A.2	Arithmetic	and	Logical	Instructions	……………………………….420

A.3	Move	Instructions	………………………………………………………….	421

A.4	Comparison	Instructions	………………………………………………..	421

A.5	Shift,	and	Rotate	Instructions	…………………………………………	422

A.6	Program	Control	Instructions	…………………………………………	422

A.7	Other	Control	Instructions	…………………………………………….	423

A.8	Custom	Instructions	………………………………………………………	424

A.9	No-Op	Instruction	………………………………………………………….	424

A.10	Potential	Unimplemented	Instructions	…………………………..424

B	Additional	Resources	……………………………………….	425

Index	427

	

PREFACE

The	topic	of	this	book	is	embedded	system	design	with	FPGAs.	Design	of	an	embedded
system	 involves	 design	 of	 functions	 that	 may	 be	 implemented	 in	 hardware	 or	 may	 be
implemented	 as	 software	 running	 on	 an	 embedded	 processor.	 Because	 of	 this	 multi-
disciplinary	 nature	 of	 embedded	 systems,	 they	 include	 the	 concepts	 of	 digital	 systems,
computer	 architectures,	 software	 development,	 computer	 systems	 and	 microprocessor
based	 design.	 In	 addition,	 implementing	 embedded	 systems	 with	 FPGAs	 requires	 the
additional	 knowledge	 of	 programmable	 devices	 and	 the	 corresponding	 design	 tools	 and
languages	(e.g.,	VHDL	or	Verilog).

While	it	is	clear	that	thoroughly	covering	all	these	topics	in	one	book	is	not	possible,	it
must	be	said	that	in-depth	knowledge	of	each	of	these	topics	is	not	necessary	for	becoming
an	embedded	system	designer.	An	embedded	system	designer	looks	at	the	digital	system
design	from	a	system	point	of	view;	a	basic	understanding	of	all	the	subjects	mentioned	is
all	that	such	a	designer	requires.

Embedded	Core	Design	with	FPGAs	provides	all	 the	 information	 that	 is	needed	 for
designing	complex	embedded	systems	and	cores.	The	first	chapter	defines	what	embedded
systems	are	and	how	the	knowledge	of	various	digital	design	aspects	becomes	useful	 in
design	of	such	systems.	Next	we	cover	logic	design	with	an	advanced	flavor	of	Register
Transfer	 Level	 (RTL)	 design.	 We	 then	 discuss	 Verilog	 at	 the	 RT	 level,	 and	 show
applications	 of	 this	 language	 for	RTL	 simulation	 and	 synthesis.	After	 discussion	 of	RT
level	 hardware	 and	 the	 corresponding	 design	 methodologies,	 we	 move	 to	 computer
hardware	 and	 software.	While	 the	 RT	 level	material	 is	 useful	 for	 the	 hardware	 side	 of
embedded	system	designs,	 the	computer	system	and	architecture	material	is	intended	for
the	software	side	of	such	designs.	After	covering	the	basics,	we	show	how	these	topics	are
put	 together	 into	 the	 de	 sign	 of	 a	 complete	 system	 with	 hardware	 and	 software	 cores.
Throughout	 this	presentation,	 tools	 for	RT	 level	 and	advanced	embedded	 system	design
are	introduced	and	utilized.

This	book	can	be	used	by	hardware	design	practitioners	who	are	already	familiar	with
the	 basics	 of	 logic	 design	 and	want	 to	move	 into	 the	 arena	 of	 automated	 system	 level
design.	 For	 this	 audience,	 the	 book	 includes	 a	 recap	 of	 digital	 design	 topics,	 computer
architectures,	and	 software	 programming.	 It	 also	 contains	 examples	 showing	 the	 use	 of
Verilog	and	compilers	 and	assemblers	 for	 embedded	 system	designs.	 In	addition,	 for	an
industrial	 setting,	we	show	how	existing	hardware	 and	 software	design	 components	 and
library	 cores	 are	 used	 in	 upper	 level	 designs.	 Using	 Altera’s	 development	 boards,	 this
book	gives	a	hands-on	knowledge	of	the	topics	covered.

In	 an	 educational	 setting,	 the	 book	 can	 be	 used	 in	 an	 upper	 level	 technical	 elective
course	for	electrical	and	computer	engineering	students	as	well	as	students	in	other	fields
of	engineering.	Using	Altera’s	development	boards	with	this	book	helps	students	see	their
designs	being	implemented	and	tested,	and	thereby	get	a	nuts-and-bolts	understanding	of

how	things	work.	For	students	in	other	fields	of	engineering,	like	mechanical	and	chemical
engineering,	 the	 book	 is	 a	 useful	 tool	 for	 design	 and	 implementation	 of	 controllers	 and
interfaces.

Zainalabedin	Navabi

nauabi@ece.	neu.edu

Boston,	Massachusetts

July,	2006

	

INTRODUCTION

Embedded	 system	 design,	 which	 has	 become	 the	 new	 trend	 in	 hardware	 design,	 uses
embedded	cores	and	processors	as	components	of	a	digital	system.	An	embedded	system
designer	uses	a	mix	of	high-level	software	programs	and	RT	level	descriptions	to	describe
various	parts	of	his	or	her	design.	The	abstract	communication	between	various	parts	of	a
system	 has	 also	 become	 a	 design	 issue	 that	 a	 hardware	 designer	 must	 be	 aware	 of.
Furthermore,	it	is	important	that	a	system	designer	knows	about	all	tools	that	are	available
for	design	and	implementation	of	hardware.

The	early	transistor	level	design	of	digital	systems	gave	way	to	the	gate-level	design,
and	 in	 the	 late	 ’80s	 RT	 level	 design	 started	 becoming	 the	 dominant	 digital	 design
methodology.	We	are	now	seeing	that	for	today’s	complex	designs,	RT	level	design	is	too
detailed	and	upper	level	abstractions	are	required.	Electronic	System	Level	(ESL)	is	 this
next	level	of	abstraction.	In	this	level,	designers	describe	their	hardware	components	at	a
very	 high	 functional	 level,	 and	 with	 the	 aid	 of	 design	 tools,	 they	 translate	 their
descriptions	into	more	detailed	RT	or	gate	level	descriptions.

As	designs	become	more	complex	and	hardware	descriptions	become	more	abstract,
interconnections	 of	 components	 become	 more	 sophisticated.	 While	 simple	 wires	 were
used	 for	 interconnecting	 transistors,	 logical	 signals,	 with	 more	 functional	 meaning,
became	 gate	 interconnections	 for	 gate-level	 designs.	 Interconnections	 became	 more
complex	 (i.e.,	 busses)	when	we	moved	 from	gate-level	 to	 the	RT	 level.	Continuing	 this
trend,	 we	 are	 now	 seeing	 that	 system	 level	 interconnections	 are	 becoming	 even	 more
complex	 and	 are	 themselves	 consisting	 of	 complex	 RTL	 components.	 Simple
interconnecting	 busses	 of	 RT	 level	 have	 become	 intelligent	 system	 busses	 or	 switch
fabrics	that	can	handle	block	data	transfers,	arbitration,	and	various	forms	of	master	slave
communications.	Understanding	 this	 interconnection	methodology	 is	 crucial	 for	 today’s
system	level	designers.

Developing	 software	 programs	 to	 implement	 hardware	 functions,	 understanding
processor	architectures	that	the	programs	runs	on,	design	of	hardware	at	the	RT	level,	and
describing	 interconnection	 of	 system	 components	 are	 required	 of	 today’s	 hardware
designer.

Embedded	Core	Design	with	FPGAs	covers	RTL,	system	level	design	methodology,
FPGAs,	 and	 tools	 and	 environments	 that	 are	 available	 to	 a	 system	 level	 designer.	 This
book	can	be	used	in	an	academic	or	 industrial	setting	by	students	or	engineers.	In	either
case	it	assumes	a	general	knowledge	of	logic	design.	After	a	review	of	this	topic,	it	builds
upon	gate	 level	 logic	 design	 techniques	 to	 cover	RTL.	The	 first	 five	 chapters	 cover	 the
main	concepts	of	digital	design	with	field	programmable	devices	from	a	practical	point	of
view.	The	remaining	chapters	show	environments	for	core	design	and	implementation	of
system	level	designs	using	hardware	and	software	cores.

Chapter	 1	 discusses	 the	 general	 flow	 of	 a	 system	 level	 design	 and	 the	 role	 of

compilers	 and	 synthesis	 tools.	 The	 focus	 is	 to	 show	 what	 is	 needed	 to	 become	 an
embedded	system	design	engineer.

Chapter	 2	 discusses	 RT	 level	 logic	 design	 from	 a	 practical	 point	 of	 view.	 Mainly,
topics	used	in	an	automated	RTL	design	are	discussed	here.

Chapter	3	introduces	Verilog.	Synthesizable	RT	level	Verilog	is	emphasized,	but	for	a
complete	HDL	based	design,	 testbenches	and	 language	utilities	 for	 this	purpose	are	also
discussed.

Chapter	 4	 discusses	 computer	 systems,	 computer	 architectures,	 and	 high	 level	 C
programming.	This	chapter	shows	how	processor	hardware	and	software	interact.

Chapter	 5	 details	 programmable	 devices.	 The	 approach	 we	 take	 is	 showing	 how
original	ROMs	evolved	into	today’s	complex	FPGAs.

Chapter	6	discusses	tools	we	use	for	design	validation,	synthesis,	device	programming
and	prototyping.	We	discuss	the	use	of	Quartus	II,	ModelSim	HDL	simulator	and	DE2	and
UP3	development	boards.

Chapter	7	shows	several	interface	designs.	This	presentation	demonstrates	how	cores
are	created	and	utilized.

Chapter	8	 shows	 the	 elements	of	 a	 complete	 embedded	 system	design	 that	 involves
hardware	 and	 software.	 We	 show	 an	 embedded	 implementation	 of	 an	 FIR	 filter.	 To
demonstrate	the	details,	we	will	not	take	advantage	of	design	tools	and	environments	that
are	available	for	embedded	system	designs.

Chapter	9	shows	how	a	complete	and	complex	system	that	has	hardware	and	software
parts	is	designed	and	implemented.	For	this	design	we	show	utilization	of	all	design	aids,
software	 tools	 and	 design	 automation	 tools	 that	 are	 available	 to	 an	 embedded	 system
designer.

	

ACKNOWLEDGMENTS

Several	 people	 helped	me	with	 preparation	 of	 this	manuscript.	My	 former	 students	Ms.
Shahrzad	Mirkhani	and	Dr.	Saeed	Safari	wrote	sections	of	Chapter	4	on	programming	and
hardware	design.	Ms.	Mirkhani	was	very	helpful	in	reviewing	the	manuscript	and	making
useful	recommendations.

My	former	and	present	students	Mr.	Armin	Alaghi,	Ms.	Elnaz	Ansari,	and	Ms.	Parisa
Razaghi	developed	the	embedded	designs	shown	in	Chapters	8	and	9.	Their	thoroughness
and	emphasis	on	the	details	were	useful	in	generating	and	implementing	these	designs.

As	 with	 all	 my	 other	 publishing	 works,	 Ms.	 Fatemeh	 Asgari	 helped	 me	 with	 the
preparation	of	 the	manuscript.	She	worked	with	me	on	 the	 initial	planning	of	 this	work,
distribution	of	tasks	during	the	project,	and	final	assembly	of	this	book.	Her	planning	and
organization	has	always	been	a	key	to	successful	completion	of	such	projects.

Instrumental	 in	 the	 original	 proposal	 and	 arrangement	 of	 this	 book	 was	 Mr.	 Mike
Phipps	of	Altera.	His	guidelines	in	making	this	book	useful	for	students	and	practitioners
were	 helpful	 in	 the	 organization	 of	 the	 book.	 I	 thank	 him	 for	 his	 support	 and	 special
attention	to	computer	engineering	education.

I	also	thank	my	wife,	Irma	Navabi,	for	help,	encouragement,	and	understanding	of	my
working	habits.	Such	an	intensive	work	could	not	be	done	without	the	support	of	my	wife
and	 two	 sons,	 Arash	 and	 Arvand.	 I	 thank	 them	 for	 this	 and	 my	 other	 scientific
achievements.

	

1

Elements	of	Embedded	Design

An	 embedded	 system	 is	 a	 digital	 system	with	 at	 least	 one	 processor	 that	 implements	 a
hardware	function	that	is	part	or	all	of	the	digital	system.	The	processor(s)	of	an	embedded
system	is	(are)	called	the	embedded	processor(s).	Embedded	systems	facilitate	design	of
digital	 systems	 by	 giving	 designers	 the	 opportunity	 to	 use	 a	 C	 or	 C++	 program	 for
description	and	design	of	complex	hardware	 functions.	The	high	 level	program	 replaces
detailed	design	of	hardware	 that	would	normally	be	done	by	writing	synthesizable	HDL
code	or	by	use	of	hardware	library	components.

It	 must	 be	 noted	 that	 an	 embedded	 system	 design,	 as	 defined	 above,	 is	 not	 very
different	 from	 design	 of	 microcontrollers.	 Embedded	 processors	 are	 used	 for	 hardware
implementation	the	same	way	microcontrollers	are.	The	main	difference	is	that	embedded
systems	 offer	 more	 flexibilities	 and	 design	 customization.	 Furthermore,	 embedded
systems	offer	higher	level	design	methods	for	integrating	those	parts	of	a	system	that	are
regarded	 as	 hardware	 components	with	 those	 parts	 of	 the	 system	 that	 are	 implemented
with	an	embedded	processor.

To	 be	 able	 to	 take	 advantages	 of	 flexibilities	 and	 high	 level	 design	 aids	 offered	 by
embedded	 systems,	 a	 new	 methodology	 of	 hardware	 design	 must	 be	 learned.	 This
methodology	 includes	 the	 use	 of	 hardware	 and	 software	 in	 the	 same	 integrated	 design
environment.	 This	 chapter	 highlights	 elements	 of	 an	 embedded	 design.	We	 discuss	 the
methodology,	role	of	software,	role	of	hardware	description	languages	(HDLs),	integration
of	 hardware	 and	 software,	 and	 tools	 and	 environments	 that	 are	 available	 for	 design	 of
embedded	systems.

1.1	Abstraction	Levels

Design	of	digital	systems	has	evolved	from	transistor	level,	to	gate	level,	and	to	Register
Transfer	 Level	 (RTL).	 Although	 HDLs	 and	 configurable	 library	 components	 have
provided	 for	 an	 RTL	 designer	 ways	 of	 achieving	 designs	 quickly,	 a	 higher	 abstraction
level	of	design	is	needed	for	implementation	of	today’s	complex	hardware	systems.

1.1.1	Transistors	to	Programs

Digital	 design	 started	 with	 putting	 transistors	 to	 implement	 a	 given	 hardware	 function.
Obviously	 this	 handcrafted	 method	 of	 design	 and	 flexibilities	 offered	 in	 choice	 of
transistor	size	and	routing	of	wires,	achieves	an	optimum	design	for	a	given	function.

On	 the	 other	 hand,	 as	 designs	 become	 more	 complex,	 this	 level	 of	 design	 had	 to

change	 to	 allow	 design	 of	 large	 circuits.	 In	 an	 evolutionary	 process,	 gate	 level	 designs
replaced	 transistor	 level	 designs.	 With	 this	 move	 to	 an	 upper	 abstraction	 level,
compromise	 for	 timing,	 silicon	utilization,	 and	power	 consumptions	 had	 to	 be	made.	 In
addition,	 design	 tools	 were	 developed	 to	 help	 designers	 with	 utilization	 of	 gates
verification	of	designs,	and	translation	to	the	transistor	level.

As	 designs	 became	 more	 complex,	 another	 higher	 abstraction	 level	 evolved	 that
include	even	less	detail	than	the	gate	level.	The	main	focus	of	this	level	of	abstraction	is
how	 transfer	of	data	happens	between	 registers,	 logic	 units,	 and	busses;	 and	because	of
this,	it	is	referred	to	as	register	transfer	level,	or	RTL.	As	in	the	move	from	transistor	level
to	gate	 level,	moving	 from	gates	 to	RT	 level	 carries	with	 it	 compromises	and	 tradeoffs.
Furthermore,	this	higher	level	of	abstraction	requires	use	of	tools	and	various	software	and
hardware	packages	to	aid	the	designer	in	the	design	process.	As	in	the	gate	level,	RT	level
tools	 include	 those	 for	design	capture,	verification,	 and	 translation	 from	RT	 level	 to	 the
lower	abstraction	level,	i.e.,	gate	level	synthesis.

For	the	same	reasons	that	design	had	to	go	up	from	gate	to	RT	level,	the	time	of	sole
RT	level	design	had	 to	expire,	and	 this	 level	of	abstraction	had	 to	give	way	 to	an	upper
level	of	abstraction,	which	for	now,	we	 refer	 to	as	electronic	 system	 level	 (ESL)	or	 just
system	level.	At	 the	system	level,	a	designer	 is	only	concerned	with	 the	functionality	of
the	system	being	designed,	and	describes	the	algorithm	that	 is	going	to	be	implemented.
The	 algorithm	 is	 described	 using	 a	 procedural	 language	 like	 the	 C	 language.	 The
description	at	this	level	does	not	contain	clock	or	gate	level	timing.

System	 level	 tools	 include	 design,	 entry	 tools,	 simulators,	 and,	 of	 course,	 hardware
generation	programs.	Hardware	generation	from	a	system	level	description	can	be	done	in
one	of	two	possible	ways.	As	in	other	abstraction	levels,	one	way	of	generating	hardware
is	 to	 translate	 a	 system	 level	 description	 to	 a	 lower	 level	 of	 abstraction,	 i.e.,	 RTL.
Alternatively,	 a	 system	 level	 procedural	 description	 can	 be	 compiled	 to	 run	 on	 a	 given
processor.	 This	 alternative	 is	 possible	 at	 the	 system	 level	 because	 the	 description	 is
procedural	and	a	software	language	like	C	can	be	used	for	it.

The	above	mentioned	method	of	hardware	generation	from	a	system	level	description
is	what	has	become	embedded	 system	design.	The	 former	method,	 i.e.,	 translation	 from
system	to	RTL,	is	often	referred	to	as	C	synthesis,	or	system	level	synthesis.	C	synthesis
refers	to	generation	of	hardware	from	a	C	program,	or	a	procedural	description.	Figure	1.1
shows	abstraction	levels	discussed	here.

Figure	1.1	Abstraction	Levels

1.1.2	Mixed	Level	Hardware

Although	design	at	a	higher	level	of	abstraction	is	easier	than	a	lower	level	and	more	tools
are	provided	for	 it,	designers	always	use	a	mixture	of	various	design	levels.	Going	from
one	level	to	another,	is	determined	by	design	constraints	and	the	effort	that	a	designer	has
to	put	into	the	design.

A	gate	level	designer	goes	down	to	transistors	for	especial	logic	functions,	or	when	an
optimized	design	of	a	cell	is	required.	Similarly,	very	often	in	RT	level,	a	designer	finds
the	need	for	putting	a	few	gates	together	for	an	especial	RT	level	function,	or	as	glue	logic.

The	 situation	 with	 system	 level	 is	 no	 different	 than	 those	 at	 the	 lower	 abstraction
levels.	Often,	a	system	level	design	consists	of	a	mixture	of	hardware	components	that	are
described	 and	 implemented	 with	 embedded	 processors,	 as	 well	 as	 several	 RT	 level
components.	RT	 level	 components	 can	 be	more	 handcrafted	 than	 embedded	 processors,
and	are	more	optimized	in	terms	of	chip	area	utilization,	timing,	and	power	consumption.

A	system	level	hardware	designer	must	be	able	to	use	a	mix	of	RT	level	and	system
level	tools	and	design	methodologies.

1.1.3	Design	Specification

The	way	a	design	is	described	varies	based	on	its	level	of	abstraction.	At	the	transistor	and
gate	levels,	the	main	form	of	design	entry	is	schematic	entry	and	most	of	the	design	tools
are	for	facilitating	this	form	of	design	specification.	At	the	RT	level,	hardware	description
languages	provide	an	unambiguous	and	compact	form	of	describing	hardware.	In	spite	of
this,	still	block	diagram	schematics	are	used	for	high	level	interconnection	of	components.

At	the	system	level,	the	C/C++	language	is	the	most	common	format	of	specifying	a
system.	At	the	same	time,	graphical	tools	are	used	for	specification	of	interconnection	of
components	at	the	top	level.	Components	of	such	a	block	diagram	may	be	described	at	the
system	level,	RT	level,	or	described	as	other	block	diagrams.

1.2	Embedded	System	Design	Flow

Figure	 1.2	 shows	 the	 design	 flow	 for	 an	 embedded	 system.	 This	 flow	 consists	 of
implementation	 of	 hardware	 functions	 in	 hardware	 and	 software,	 and	 then	merging	 the
results	 into	one	hardware	 realization.	The	 subsections	 below	describe	 the	 details	 of	 this
block	diagram.

1.2.1	Hardware/Software	Partitioning

The	 first	 step	 in	 design	 of	 an	 embedded	 system	 is	 to	 decide	 what	 parts	 are	 to	 be
implemented	using	hardware	packages,	HDL	programs,	or	gate	structures,	and	which	parts
are	to	be	implemented	with	a	program	running	on	a	processor.	This	decision	is	referred	to
as	 hardware/software	 partitioning.	 This	 is	 a	 manual	 (or	 semi-manual)	 process,	 and	 is
perhaps	the	most	difficult	system	design	phase.

Figure	1.2	Embedded	System	Design	Flow

The	 hardware	 part	 becomes	 a	 description	 of	 various	 hardware	 modules	 that	 are
described	in	an	HDL	or	are	available	as	predefined	hardware	modules.	The	software	part
is	a	high	level	C/C++	program	that	after	being	compiled	becomes	the	memory	contents	of
processor	that	runs	the	program.

1.2.2	Hardware	Part

The	hardware	part	(right	flow	in	Figure	1.2)	of	a	complete	hardware/software	system	may
be	composed	of	components	 that	are	described	 in	Verilog,	available	 in	a	 library,	or	gate
level	 parts.	Using	 tools	 and	 design	 environments,	 a	 hardware	 designer	 chooses	 to	 code
parts	of	his	or	her	design	in	Verilog,	or	use	parts	from	a	library	of	predefined	modules.

Often	 a	 design	 environment	 provides	 intellectual	 property	 (IP)	 cores	 that	 designers
can	 use	 and	 integrate	 in	 their	 designs.	 Hardware	 design	 environments	 also	 include
configurable	parts	 for	commonly	used	components	 such	as	arithmetic	 functions,	 register
banks,	and	counters.

1.2.3	Software	Part

The	left	flow	in	Figure	1.2	shows	the	implementation	of	the	software	part	of	a	system.	The

part	of	a	design	that	is	to	be	implemented	in	software	must	become	a	machine	language
program	in	a	given	processor.	The	designer	may	choose	to	code	this	part	 in	a	high	level
language	and	compile	it,	or	directly	code	it	in	assembly	or	machine	language.

All	the	necessary	software	tools	and	compilers	are	available	to	a	designer	who	uses	a
supported	processor	core.	In	this	case,	use	of	C/C++	for	describing	the	software	part	of	a
system	is	the	most	logical	choice.	This	way,	compilation	and	debugging	tools	are	provided
for	 the	 designer.	 On	 the	 other	 hand,	 if	 a	 designer	 uses	 his	 or	 her	 own	 processor	 or	 a
processor	 core	 that	 does	 not	 have	 a	 strong	 support,	 the	 designer	 is	 responsible	 for
generating	the	machine	language	of	the	program	he	or	she	is	implementing.

Regardless	of	how	the	programming	task	is	done,	after	the	completion	of	the	design	of
the	 software	 part,	 this	 part	 looks	 like	 any	 hardware	 block	with	 inputs	 and	 outputs.	The
inputs	 and	 outputs	 are	 either	 external	 to	 the	 system	 being	 designed,	 or	 they	 are	 to
interconnect	the	hardware	and	software	parts.

1.2.4	Interconnection	Specification

The	 middle	 of	 diagram	 of	 Figure	 1.2	 shows	 a	 block	 that	 specifies	 interconnection	 of
software	 and	 hardware	 parts.	 This	 block	 may	 be	 a	 simple	 shared	 bus,	 interconnection
wires,	 or	 a	 complex	 switch	 structure.	 Usually,	 embedded	 system	 design	 environments
have	 their	 own	 bus	 structures.	Handshaking,	 timers,	 block	 transfer	 hardware,	 and	 other
high	level	transactions	take	place	in	this	bus.	Such	issues	and	detailed	design	of	this	bus
are	transparent	to	the	high-level	system	designer.

1.2.5	Common	Hardware/Software	Simulation

A	 design	 that	 is	 part	 hardware,	 part	 software,	 and	 part	 switch	 transactions	 and	 data
communication,	 must	 be	 simulated	 in	 a	 common	 environment	 for	 design	 and	 timing
verifications.

Before	 a	 design	 is	 turned	 into	 hardware	 gates	 and	 netlist,	 the	 hardware	 part	 is
simulated	at	 the	RT	level,	and	 the	software	part	at	 the	 instruction	 level.	HDL	simulators
provide	RT	level	simulation,	and	ISS	(Instruction	Set	Simulators)	provide	instruction	level
simulation.	 Usually	 an	 embedded	 design	 environment	 provides	 a	 cosimulation	 link	 for
verifying	all	parts	of	a	complete	hardware	/	software	system.

1.2.6	Hardware	Synthesis

The	part	of	a	system	that	 is	described	using	hardware	description	methods	(right	side	 in
Figure	1.2)	 is	 synthesized	 to	 produce	 a	 netlist	 of	 gates	 and	primitive	 logical	 blocks.	As
shown	in	Figure	1.3,	in	addition	to	the	hardware	description,	a	synthesis	program	requires
the	 synthesis	 target	 specification.	 Target	 specification	 tells	 the	 synthesis	 tool	 what
resources,	 in	 terms	 of	 gates	 and	 logical	 blocks,	 are	 available	 for	 implementing	 our
hardware	 specification.	 The	 resources	 depend	 on	 whether	 we	 are	 using	 an	 FPGA,	 an
ASIC,	or	a	custom	IC	for	implementing	our	hardware.

The	 synthesis	 tool	 generates	 a	 netlist	 of	 components	 of	 the	 target	 library.	 This	 is
usually	given	in	an	internal	netlist	language,	VHDL,	Verilog,	or	other	netlist	formats.	This
netlist	together	with	hardware	details	of	the	target	library	components	form	the	complete
postsynthesis	 hardware	 description	 of	 the	 hardware	 part	 of	 our	 design.	This	 description
can	 be	 simulated	 for	 post-synthesis	 description,	 or	 it	 can	 be	 used	 for	 FPGA	 device
programming	or	ASIC	layout	generation.

Figure	1.3	Hardware	Synthesis

1.2.7	Software	Compilation

For	 the	 synthesis	 of	 the	 hardware	 part	 of	 a	 system	we	must	 define	 a	 specific	 synthesis
target.	Similarly,	compilation	of	the	software	part	of	a	system	must	be	done	for	a	specific
processor.	 Compiling	 our	 software	 part	 for	 the	 embedded	 processor	 that	 we	 are	 using
produces	a	machine	language	program	for	that	chosen	processor.	This	machine	language
program,	 together	with	 the	hardware	of	 the	processor	 it	 runs	on,	 produces	 the	 complete
implementation	 of	 the	 software	 part	 of	 our	 system	 design.	 Figure	 1.4	 shows	 the
compilation	process.

Figure	1.4	Software	Compilation

1.2.8	Interconnection	Hardware	Generation

Between	the	software	and	hardware	parts	of	a	system	in	Figure	1.2	is	the	interconnection
block.	 As	 discussed,	 this	 block	 is	 put	 in	 there	 by	 the	 embedded	 system	 design
environment,	and	its	hardware	is	generated	automatically.	The	situation	may	be	different	if
a	designer	does	not	take	advantage	of	the	facilities	of	the	embedded	design	environment,
and	uses	his	or	her	own	embedded	processor	 and/or	bussing	 logic.	 In	 this	 case,	 the	bus
hardware	must	be	designed	like	any	other	hardware	function,	and	synthesized	to	generate
appropriate	target	device	netlist.

1.2.9	Design	Integrator

The	 last	 phase	 of	 an	 embedded	 system	 design	 is	 the	 integration	 of	 various	 hardware
formats	 that	 belong	 to	 the	 hardware	 part,	 software	 part,	 and	 the	 bus	 structure.	 The
integrator	 box	 shown	 in	 Figure	 1.2	 generates	 a	 complete	 netlist	 of	 cells	 of	 the	 target
device.	The	netlist	output	of	this	phase	along	with	the	memory	contents	of	the	embedded
processor	 are	 mapped	 into	 the	 target	 device	 for	 realizing	 our	 embedded	 system	 on	 an
FPGA	or	ASIC.

1.3	Design	Tools

The	 flow	 described	 in	 the	 preceding	 section	 requires	 a	 complete	 and	 integrated	 set	 of
design	tools	and	utilities.	This	section	outlines	some	of	the	tools	that	are	essential	for	any
embedded	system	design	environment.

1.3.1	Block	Diagram	Description

At	the	top	level,	a	system	is	described	as	an	interconnection	of	components	 that	may	be
implemented	 in	 hardware	 or	 software.	 The	 block	 diagram	 tool	 allows	 hierarchical
specification	of	system	components.	A	component	may	be	as	large	as	a	processor/memory
system	or	as	small	as	a	single	logic	gate.

1.3.2	HDL	and	Other	Hardware	Simulators

For	 the	 verification	 of	 the	 hardware	 part	 of	 a	 system,	 HDL	 simulators	 and	 simulation
programs	 for	 simulating	 library	 components	 are	 needed.	 Often,	 library	 components	 are
available	in	some	HDL	language.	Furthermore	configurable	library	parts	get	translated	to
a	standard	HDL,	i.e.,	VHDL	or	Verilog.	Therefore,	usually,	an	HDL	simulation	is	all	that
is	needed	for	simulation	of	the	hardware	part	of	a	system.

1.3.3	Programming	Language	Compilers

Programming	language	compilers	provide	high	level	execution	and	functional	verification
of	 the	software	program	that	 runs	on	 the	embedded	processor.	A	program	that	describes
the	software	part	of	an	embedded	system	must	be	compiled	and	run	to	check	and	verify
the	correct	operation	of	this	part.

1.3.4	Netlist	Simulator

A	 netlist	 simulator	 provides	 detailed	 simulation	 of	 post-synthesis	 description	 of	 the
hardware	part	of	an	embedded	system.	This	simulation	uses	timing	files	(e.g.,	SDF	files)
that	are	generated	by	the	synthesis	process,	and	generates	accurate,	close	to	actual,	timing
results.	 Because	 most	 synthesis	 tools	 generate	 Verilog	 or	 VHDL	 netlists,	 an	 HDL
simulator	can	serve	as	a	post-synthesis	netlist	simulator.

1.3.5	Instruction	Set	Simulator

An	instruction	set	simulator	(ISS)	is	a	program	that	is	aware	of	the	instruction	set	of	the
embedded	processor,	and	simulates	the	compiler	output	accordingly.	The	relation	between
C	simulation	and	ISS	simulation	of	the	software	part	of	an	embedded	system	is	like	that	of
presynthesis	 simulation	 and	 post-synthesis	 simulation	 of	 the	 hardware	 part	 of	 the
embedded	system.

1.3.6	Hardware	Synthesis	Tool

The	 hardware	 synthesis	 tool	 uses	 the	 hardware	 description	 of	 the	 hardware	 part	 of	 an
embedded	 system	as	 input,	 and	generates	 a	 netlist	 of	 the	 target	 device.	As	 discussed	 in
Section	 1.2,	 from	 the	 view	 of	 the	 hardware	 part,	 synthesis	 of	 an	 HDL	 code	 with	 a
synthesis	tool	is	analogous	to	compiling	the	C	code	of	the	software	part	with	a	C	language
compiler.

1.3.7	Compiler	for	Machine	Language	Generation

As	discussed	in	Section	1.3.3,	software	compilers	are	used	for	verification	of	the	software
part	 of	 a	 system.	 In	 addition,	 compilers	 have	 the	 important	 role	 of	 machine	 language
generation	just	like	synthesis	tools	generate	netlists.

1.3.8	Software	Builder	and	Debugger

Embedded	design	environments	include	a	software	development	and	debugger	for	aiding
the	 designer	 in	 design	 of	 the	 software	 part	 of	 an	 embedded	 system.	 Editors,	 code
development	aids,	and	debuggers	are	usually	included	in	this	tool	set.

1.3.9	Embedded	System	Integrator

A	complete	 embedded	 system	 that	 includes	 hardware	 and	 software	 parts	 is	put	 together
using	an	integrator	tool.	Different	design	environments	refer	to	such	a	tool	differently.	But,
all	embedded	system	design	environments	have	some	type	of	an	integrator	as	part	of	their
tools.

1.4	New	Hardware	Design	Trends

The	 advent	 of	 embedded	 systems	 has	 brought	 new	 topics	 and	 subjects	 that	 a	 hardware
designer	 must	 be	 aware	 of.	 This	 section	 familiarizes	 readers	 with	 some	 of	 the
terminologies	that	are	used	in	relation	with	an	embedded	system	design.

1.4.1	Configurable	Processors

Instead	of	having	a	fixed	processor,	embedded	systems	use	configurable	processors	so	that
they	can	be	adjusted	for	best	performance	for	the	applications	they	are	running.	Embedded
design	tools	provide	facilities	for	configuring	their	supported	processors.

1.4.2	Standard	Bus	Structure

The	 interaction	 of	 hardware	 and	 software	 parts	 of	 an	 embedded	 system	 requires	 well
defined	protocols	and	their	corresponding	hardware	implementations.	Embedded	systems
provide	 their	 own	 bus	 structures	 and	 they	 automatically	 generate	 their	 corresponding
hardware.	 This	 way,	 designers	 can	 focus	 on	 functionality	 of	 their	 designs,	 and	 not	 the
communication	mechanisms.

1.4.3	Software	Programming

An	embedded	system	designer	 is	 continuously	 involved	 in	deciding	what	 functionalities
go	in	hardware	and	what	goes	into	software.	For	such	a	designer,	knowledge	of	software
and	programming	languages	is	essential.

1.4.4	Software	Utilities

Compilers,	assemblers,	and	 instruction	set	 simulators	have	become	essential	 tools	 that	 a
hardware	 designer	 must	 be	 aware	 of.	 Configurable	 compilers	 that	 can	 be	 modified	 to
compile	programs	for	a	variety	of	processors	can	be	very	useful	 in	design	of	embedded
systems.

1.5	Summary

This	 chapter	 introduced	 the	 concept	 of	 embedded	 systems.	 We	 first	 discussed	 digital
design	 abstraction	 levels	 and	 how	 this	 is	 affected	 by	 embedded	 systems.	 We	 then
discussed	 a	 hardware/software	 design	 flow	 and	 its	 implementation	 as	 an	 embedded
system.	 This	 discussion	 enables	 us	 to	 address	 tools	 that	 are	 needed	 for	 designing
embedded	systems.	The	last	section	in	this	chapter	discussed	new	trends	and	highlighted
some	of	 the	topics	that	new	hardware	designers	must	be	aware	of.	The	rest	of	 this	book
focuses	on	methods	and	tools	for	hardware	and	software	parts	of	embedded	systems.

	

2

Logic	Design	Concepts

A	 thorough	 understanding	 of	 basic	 logic	 design	 concepts	 is	 essential	 for	 proper	 use	 of
hardware	design	 languages	and	proper	utilization	of	 related	 tools.	Although	some	of	 the
mathematical	 concepts	 of	 logic	 design	 and	 elaborate	 minimization	 and	 simplification
methods	are	not	as	crucial	as	 they	used	to	be	a	few	years	ago,	 it	 is	still	 important	 that	a
hardware	designer	has	a	good	understanding	of	logic	design	concepts.	This	includes	those
hardware	designers	designing	at	the	gate	level	using	schematic	capture	tools,	or	those	who
design	hardware	at	the	system	level	using	hardware-software	tools.

This	chapter	gives	a	review	of	logic	design	concepts.	The	purpose	is	to	highlight	only
those	topics	that	are	essential	for	HDL-based	design.	We	discuss	topics	with	enough	depth
for	a	designer	wanting	to	use	hardware	design	tools	targeting	programmable	devices	as	the
target	technology.	The	orientation	of	the	material	is	geared	towards	using	FPGA.	For	this
purpose,	we	will	 not	 cover	 details	 that	 are	 covered	 in	 a	 basic	 logic	 design	 course,	 and
knowledge	of	the	theoretical	concepts,	and	much	of	the	background	concepts	are	assumed
here.

The	 chapter	 begins	with	 a	 review	of	 number	 systems,	 and	 basic	 logic	 gates.	FPGA
specific	primitives	are	discussed	here.	Basics	of	 combinational	 circuits	 such	 as	Boolean
algebra	and	Karnaugh	maps	and	design	of	these	combinational	circuits	are	discussed	next.
We	 show	 several	 RT	 level	 combinational	 components	 and	 their	 designs.	 We	 will	 then
focus	on	memory	elements	and	sequential	circuit	design.	Because	of	importance	of	state
machines	 in	RT	 level	designs,	 special	attention	 is	given	 to	 these	 circuits	 in	 this	 chapter.
The	 last	 section	of	 this	 chapter	 puts	 all	 topics	discussed	 in	 its	 preceding	 sections	 into	 a
complete	design	example.

2.1	Number	Systems

The	transistor	is	the	basic	element	of	all	digital	electronic	circuits.	A	transistor	in	a	digital
circuit	behaves	as	an	on-off	switch.	Because	all	elements	are	based	on	this	on-off	switch,
they	only	take	two	distinct	values.	These	values	can	be	(ON,	OFF),	(TRUE,	FALSE),	(3V,
OV),	or	(1,	0).

Because	of	this	two-value	system,	all	numbers	in	a	computer	are	in	base-2	or	binary
system.	On	the	other	hand,	we	use	the	decimal	system	in	our	every	day	life.	To	be	able	to
understand	what	happens	inside	a	digital	system,	we	have	to	be	able	 to	convert	between
base-l0	(Decimal)	and	base-2	(Binary)	systems.

2.1.1	Binary	Numbers

A	decimal	number	has	it	digits	and	the	weight	of	each	digit	is	10i,	where	i	is	the	position
of	 digits	 counting	 from	 the	 right	 hand	 side	 and	 starting	 with	 0.	 For	 example,	 3256	 is
evaluated	as:

A	number	 in	base-2	 is	evaluated	similarly,	except	 that	 the	weights	 in	decimal	are	2i
instead	of	10i.	For	example	10110	is	evaluated	as:

By	 considering	 the	 weights	 in	 decimal	 and	 multiplying	 binary	 digits	 (bit)	 by	 their
weights	a	binary	number	is	converted	to	its	equivalent	decimal.

For	conversion	from	decimal	to	binary,	a	decimal	number	is	broken	into	necessary	2i
parts.	Corresponding	to	the	i	values	for	which	the	decimal	number	has	a	2i	part,	there	is	a
1	in	the	equivalent	binary	number.	For	example	(325)D	can	be	broken	into:

256	that	is	28,

64	that	is	26,

4	that	is	22,	and

1	that	is	20.

Therefore,	the	equivalent	binary	number	has	is	in	positions	0,	2,	6,	and	8,	which	makes	the
binary	equivalent	of	(325)D	to	become	(101000101)s.

Methods	described	above	 for	decimal	 to	binary	and	binary	 to	decimal	 also	apply	 to
fractional	numbers.	In	this	case	the	weight	of	digits	on	the	right	hand	side	of	the	decimal
point	are	10-1,	10-2,	10-3,	…	Similarly,	the	weights	of	binary	digits	on	the	right	hand	side
of	the	binary	point	of	a	fractional	binary	number	are	2-1,	2-2,2-3,	…	.

For	 example,	 (1101.011)B	 in	 binary	 is	 (13.375)n	 in	 decimal,	 and	 decimal	 (19.7)D
translates	to	(10011.101)s.	When	converting	from	decimal	to	binary,	for	keeping	the	same
precision	as	in	the	decimal	number,	a	fractional	decimal	digit	translates	to	3	fractional	bits.

2.1.2	Hexadecimal	Numbers

A	 number	 in	 binary	 requires	 many	 bits	 for	 its	 representation.	 This	 makes,	 writing,
documenting,	or	entering	them	into	a	computer	very	error-prone.	A	more	compact	way	of
representing	 numbers,	 while	 keeping	 a	 close	 correspondence	 with	 binary	 numbers,	 is
Hexadecimal	representation.

Table	 2.1	 shows	 Hexadecimal	 digits	 and	 their	 equivalent	 Decimal	 and	 Binary
representations.	As	 shown,	 a	 base-16	 digit	 translates	 to	 exactly	 4	 bits.	 Because	 of	 this,
conversion	 from	 (to)	 a	 binary	 number	 to	 its	 (from)	 hex	 (hexadecimal)	 equivalent	 are
straightforward	 processes.	 Therefore,	 we	 can	 use	 Hex	 numbers	 as	 a	 compact	 way	 of
writing	binary	numbers.	Several	examples	are	shown	below:

2.2	Binary	Arithmetic

In	general,	binary	arithmetic	is	done	much	the	same	way	as	it	is	in	the	decimal	system.	In
straight	arithmetic,	binary	arithmetic	is	even	simpler	than	decimal	because	it	only	involves
is	and	Os.

2.2.1	Signed	Numbers

As	we	discussed	 earlier,	 everything	 inside	 a	 digital	 system	 is	 represented	by	 is	 and	Os.
This	means	 that	we	have	no	way	of	 representing	plus	 (+)	 or	minus	 (-)	 signs	 for	 signed
numbers	other	than	using	is	and	Os.	Furthermore,	unlike	writing	on	paper	and	being	able
to	use	as	many	digits	as	we	like,	representing	numbers	inside	a	digital	system	is	limited	by
the	width	of	busses,	storage	units,	and	lines.	Because	of	these,	a	binary	number	in	a	digital
system	uses	a	fixed	width,	and	the	left	most	bit	of	the	number	is	reserved	for	its	sign.

A	simple	signed	number	system	is	sign	and	magnitude	(S&M)	in	which	a	0	in	the	left-
most	position	of	 the	number	represents	a	positive	and	a	1	represents	a	negative	number.

For	example	+25	in	8-bit	S&M	system	is	00011001	and	-25	is	10011001.	Note	here	that
enough	Os	are	put	between	 the	sign-bit	and	 the	magnitude	of	 the	number	 to	complete	8
bits.

2.2.2	Binary	Addition

As	mentioned	before,	binary	addition	is	very	similar	to	decimal	addition,	and	even	easier.
Adding	two	numbers	starts	from	the	right-hand	side	and	with	addition	of	every	two	bits	a
carry	 is	 generated.	 The	 carry	 is	 added	 to	 the	 addition	 of	 the	 next	 higher	 order	 bits.	An
example	binary	addition	is	shown	below.

Addition	is	done	in	slices	(bit	positions)	and	with	every	add	operation,	there	is	a	sum
and	a	carry.	The	sum	bit	is	the	add	result	of	the	slice	being	added,	and	the	carry	is	carried
over	 to	 the	 next	 higher	 slice.	The	 right-most	 bit	 result	 is	 the	 least-significant	 bit	 and	 is
calculated	first,	and	the	sign-bit	is	calculated	last.

2.2.3	Binary	Subtraction

We	can	perform	subtraction	in	binary	using	borrows	from	higher	bits.	This	is	similar	to	the
way	subtraction	is	done	in	decimal.	However,	this	requires	a	different	process	from	binary
addition,	which	means	that	a	different	hardware	is	needed	for	its	implementation.

2.2.4	Two’s	Complement	System

As	an	alternative	procedure	for	adding	and	subtracting,	we	can	write	numbers	in	the	2’s
complement	number	system	and	perform	subtractions	the	same	way	we	add.	This	signed
number	representation	system	is	used	to	simplify	signed	number	arithmetic.

Unlike	 the	S&M	system,	 in	 the	2’s	complement	system	just	changing	 the	sign-bit	 is
not	 enough	 to	 change	 a	 positive	 number	 to	 a	 negative	 number	 or	 vice-versa.	 In	 this
system,	 to	 change	a	positive	 (negative)	 number	 to	 a	 negative	 (positive)	 number,	 all	 bits
must	 be	 complemented	 and	 a	 1	 must	 be	 added	 to	 it.	 For	 example	 -25	 is	 calculated	 as
shown	below:

When	 subtracting,	 instead	 of	 performing	 A-B,	 subtraction	 is	 done	 by	 A+(-B),	 in
which	(-B)	is	the	two’s	complement	of	B.	As	an	example	consider	subtraction	of	25	from

93.	First,	25	is	turned	into	its	two’s	complement	negative	representation	that	is	11100111
(as	shown	above).	Then	+93	that	is	01011101	and	-25	are	added	together	as	shown	below:

When	 adding	 a	 positive	 and	 negative	 number	 that	 results	 in	 a	 positive	 number,	 or
adding	 two	 negative	 numbers	 that	 results	 in	 a	 negative	 number,	 a	 last	 carry	 (as	 in	 the
above	example)	is	generated	that	is	ignored.

2.2.5	Overflow

In	 the	 2’s	 complement	 arithmetic	 if	 adding	 two	 positive	 (negative)	 numbers,	 (i.e.,
numbers	whose	 sign	 bits	 are	 0	 (1)),	 results	 in	 a	 number	 that	 has	 a	 1	 (0)	 in	 its	 sign-bit
position,	an	overflow	has	occurred.	This	means	that	the	result	cannot	fit	in	the	same	word
length	as	the	operands.	The	following	addition	is	an	overflow	and	the	result	is	invalid.	As
shown,	the	last	bit	beyond	the	sign-bit	is	dropped,	as	is	done	in	2’s	complement	arithmetic.
The	 final	 result	 of	 adding	 two	 negative	 numbers	 is	 a	 positive	 number	 that	 cannot	 be
correct.

The	case	of	overflow	can	be	corrected	by	allocating	more	bits	to	the	numbers	involved
in	the	two’s	complement	arithmetic.	A	2’s	complement	number	can	be	extended	to	occupy
more	 bits	 by	 extending	 its	 sign-bit	 to	 the	 left.	 For	 example,	 10111010	 in	 8-bit	 2’s
complement	 system	 becomes	 1111111110111010	 in	 16-bit	 2’s	 complement	 system.	 The
overflow	example	shown	above	can	be	corrected	if	performed	in	16-bit	system	as	shown
below:

In	the	above	example,	two	negative	numbers	are	added	and	a	negative	result	is	obtained,
no	over-flow	occurs	here.

2.2.6	Fixed	Point	Numbers

A	 fixed	 point	 number	 has	 integer	 and	 fractional	 parts.	 As	 with	 other	 binary
representations,	the	total	number	of	bits	used	for	this	representation	is	given	as	part	of	the
definition	 of	 a	 fixed-point	 number.	 Furthermore,	 the	 position	 of	 the	 binary	 point	 (radix
point)	where	the	integer	part	ends	and	the	fractional	part	begins	is	fixed.	Shown	below	is	a
16-bit	fixed	point.	Radix	point	of	this	number	is	assumed	to	be	to	the	right	of	 its	5th	bit
from	the	right.	The	decimal	value	of	this	number	is	971.78125.

2.2.7	Floating	Point	Numbers

Fixed-point	numbers	are	limited	in	the	precision	they	represent.	A	more	accurate	form	is
the	floating-point	number	representation.	A	floating	point	number	in	a	given	Radix	has	a
Mantissa,	an	Exponent	and	a	Sign.	The	value	of	the	number	depends	on	its	Sign,	Mantissa,
Radix	and	Exponent,	according	to	the	following	expression.

In	the	binary	system	Sign	is	0	for	positive	numbers	and	1	for	 the	negative	numbers.
Mantissa	is	a	normalized	integer.	Normalization	is	done	such	that	the	integer	representing
the	Mantissa	has	no	leading	zeros	resulting	in	more	bits	for	representing	the	value	of	the
number,	and	thus	a	better	precision.	Furthermore,	since	normalization	removes	all	leading
zeros,	the	left-most	bit	of	a	normalized	number	is	always	a	1.	To	save	space,	the	left-most
1	 of	 the	Mantissa	 is	 assumed	 and	 never	 explicitly	 specified.	With	 this	 arrangement,	 a
normalized	8bit	Mantissa	of	value	5	is	represented	by:

The	Radix	of	a	floating-point	number	is	always	2	and	not	explicitly	specified.	An	n-bit
Exponent	 is	 a	 signed	number	 that	 is	 added	by	2n-1-1.	The	Exponent	 part	 of	 a	 floating-
point	number	that	has	an	8-bit	Exponent	is	calculated	by	taking	the	actual	exponent,	e.g.,
-6	in	the	above	example,	and	adding	127	to	it.	Exponent	value	of	-6	in	an	8-bit	exponent	is
represented	as	shown	below:

In	an	8-bit	exponent,	all	0’s	represent	exact	0	and	all	1’s	represent	infinity.

For	uniformity	between	digital	systems	processing	floating-point	numbers,	IEEE	has
established	 two	standard	 formats,	a	 singleprecision	32-bit	 format	and	a	double-precision
64-bit	format.	These	formats	are	shown	in	Figure	2.1.	The	32-bit	format	has	a	Sign	bit,	an
8-bit	 Exponent,	 and	 a	 23-bit	 Mantissa.	 The	 64-bit	 format	 has	 a	 Sign	 bit,	 an	 11-bit
Exponent	and	a	52-bit	Mantissa.

Figure	2.1	IEEE	Floating-point	Formats

2.3	Basic	Logic	Gates	and	Structures

The	transistor	is	the	basic	element	for	all	digital	logic	components.	However,	for	a	design
with	several	million	 transistors,	designers	cannot	 think	at	 the	 transistor	 level.	Therefore,
transistors	are	put	together	into	more	abstract	components,	called	gates,	so	that	designers
thinking	at	the	high	behavioral	level	can	better	relate	to	such	abstract	components.	Later
we	will	 see	 that	 even	gate	 structures	 are	not	 abstract	 enough	and	designers	need	design
specification	at	a	higher	level	of	abstraction.	For	this	chapter,	however,	we	concentrate	on
gates	and	gate-level	designs.

2.3.1	Logic	Value	System

The	 (0,	 1)	 logic	 value	 system	 is	 a	 simple	 representation	 for	 voltage	 levels	 in	 a	 digital
circuit.	 However,	 this	 logic	 value	 system	 fails	 to	 represent	 many	 situations	 that	 are
common	in	digital	circuits.	For	example	if	a	line	is	connected	to	neither	Gnd	nor	Vdd,	it	is
neither	0	nor	1.	Or	a	line	that	is	both	driven	by	logic	0	and	logic	1,	is	neither	a	0	nor	a	1.	A
more	complete	system	for	representation	of	logic	values	is	the	four-value	system,	shown
in	Table	2.2.

In	logic	simulations,	a	line	that	is	not	driven	through	a	pull-up	or	a	pull-down	assumes
Z.	A	line	or	a	wire	that	is	driven	both	by	a	pullup	and	a	pull-down	structure	appears	as	X
in	the	simulation	report.

2.3.2	Logic	Function	Representation

A	 logic	 function	 can	 be	 represented	 in	 a	 variety	 of	 ways.	 In	 many	 cases	 a	 name	 that
describes	 the	 functionality	 of	 a	 logic	 function	 may	 be	 associated	 with	 it.	 The	 simple
tabular	 form	of	 a	 function	 listing	 input	 and	output	 values	 is	 referred	 to	 as	 a	 truth	 table.
This	 format	 is	 easy	 to	 read,	 but	 is	 limited	 in	 the	 size	 of	 function	 it	 can	 represent.	 An
algebraic	 form	 of	 representation	 is	 a	 more	 compact	 way	 of	 representing	 functions	 and
allows	manipulation	of	a	function	and	combining	several.	Often,	a	graphical	notation	may
also	be	associated	with	a	logical	function.

Figure	2.2	shows	truth	table,	expression,	and	a	block	diagram	symbol	 for	a	majority
function.	Rows	of	a	truth	table	may	be	numbered	according	to	the	decimal	equivalent	of
the	input	combinations	when	the	inputs	are	treated	as	a	binary	number	with	the	left	most
input	 being	 the	most	 significant	 bit	 of	 the	 binary	 number.	Among	 various	 forms	 of	 the
algebraic	 representations,	 a	 form	 that	 is	 referred	 to	 as	 the	minterm	 list	 (for	 reasons	 that
will	be	described	later	in	this	chapter)	lists	all	those	truth	table	rows	for	which	the	output
is	1.	Other	algebraic	forms	correspond	to	those	that	can	be	written	in	a	computer	language
or	those	used	in	printed	texts.

The	 example	 logic	 function	 in	 Figure	 2.2	 is	 a	 three-input	 oneoutput	 function.	 The
inputs	 are	 a,	 b,	 and	 c,	 and	 the	 output	 is	 w.	 The	 output	 of	 this	 function	 is	 1	 when	 the
majority	of	 its	 inputs	are	1.	 In	what	 follows,	we	will	 show	hardware	structures	used	 for
implementation	of	logical	functions.

Figure	2.2	Logic	Function	Representations

2.3.3	Transistors

The	 CMOS	 technology	 uses	 two	 types	 of	 transistors	 called	 NMOS	 and	 PMOS.	 These
transistors	 act	 like	 on-off	 switches	 with	 the	 Gate	 input	 controlling	 connection	 (current
flow)	between	Drain	and	Source	terminals.

Figure	2.3	MOS	Transistors

As	 shown	 in	Figure	 2.3,	 an	NMOS	 transistor	 conducts	when	 logic	 1	 representing	 a
high-voltage	level	drives	its	Gate.	The	conduction	path	allows	current	to	flow	between	its
Source	and	Drain	 terminals.	Driving	 the	Gate	of	 an	NMOS	 transistor	with	 logic	0	 (low
voltage	 value)	 causes	 an	 open	 between	 Source	 and	 Drain	 terminals,	 which	 causes	 no
current	to	flow	through	the	transistor	in	either	way.

As	shown	in	Figure	2.3,	opposite	 to	 the	way	an	NMOS	transistor	works,	 the	PMOS
transistor	 conducts	when	 its	gate	 is	driven	by	0,	 and	 is	open	when	 its	gate	 is	driven	by
logic	1	(or	high	voltage	value).

2.3.4	CMOS	Inverter

An	 inverter	 (also	 referred	 to	 as	 NOT	 gate)	 is	 a	 logic	 gate	 with	 an	 output	 that	 is	 the
complement	 of	 its	 input.	 Transistor	 level	 structure	 of	 this	 gate,	 its	 logic	 symbol,	 its
algebraic	notations,	and	its	truth	table	are	shown	in	Figure	2.4.

In	 the	 transistor	 structure	 shown,	 if	 a	 is	 0,	 the	 upper	 transistor	 conducts	 and	 w
becomes	1.	If	a	is	1,	there	will	be	a	conduction	path	from	w	to	Gnd	which	makes	it	0.	The
table	shown	in	Figure	2.4	is	called	the	truth	table	of	the	inverter	and	lists	all	possible	input
values	and	their	corresponding	outputs.	The	inverter	symbol	is	a	bubble	that	can	be	placed
on	either	side	of	a	triangle	representing	a	buffer.

Figure	2.4	CMOS	Inverter	(NOT	gate)

2.3.5	CMOS	NAND

A	CMOS	NAND	gate	uses	 two	series	NMOS	transistors	 for	pull-down	and	 two	parallel
PMOS	 transistors	 in	 its	pull-up	 structure.	Figure	2.5	 shows	structure	and	notations	used
for	this	gate.

Figure	2.5	CMOS	NAND

In	the	structure	shown	in	Figure	2.5,	if	a	and	b	are	both	1,	there	will	be	a	conduction
path	 from	w	 to	Gnd,	making	w	0.	Otherwise,	 the	 pull-up	 structure,	 instead	 of	 the	 pull-
down	structure,	conducts	that	forces	supply	current	to	flow	to	w,	making	this	output	1.

2.3.6	CMOS	NOR

A	CMOS	NOR	gate	uses	two	parallel	NMOS	transistors	in	its	pulldown	structure	and	two
series	PMOS	transistors	in	its	pull-up.	Figure	2.6	shows	structure	and	notations	used	for
this	gate.	For	the	output	of	a	NOR	gate	to	become	1,	the	pull-up	structure	must	conduct.
This	means	that	both	a	and	b	must	be	0.

Figure	2.6	CMOS	NOR

2.3.7	AND	and	OR	gates

Figure	2.7	shows	symbolic	notations,	algebraic	 forms	and	 truth	 tables	 for	AND	and	OR
gates.	These	gates	are	realized	using	inverters	on	the	outputs	of	NAND	and	NOR	gates.

Figure	2.7	AND	and	OR	gates

2.3.8	XOR	gate

In	 addition	 to	 gates	 discussed	 above,	 several	 other	 logic	 structures	 become	 useful	 for
realization	of	 logic	 functions.	One	such	gate	 is	 the	XOR	gate	 (Exclusive-OR)	of	Figure
2.8.	This	gate	 is	 similar	 to	 the	OR	gate	 except	 that	 its	output	 is	1	when	only	one	of	 its
inputs	is	1.

A	2-input	XOR	gate	produces	a	1	output	when	only	one	of	its	 inputs	is	1.	This	gate
can	also	be	considered	as	a	1-bit	comparator	that	produces	a	1	output	when	its	two	inputs
are	 different.	 Furthermore,	 a	 2-input	 XOR	 can	 be	 considered	 a	 controlled	 inverter	 that
complements	 its	 data	 input	 (e.g.,	 a)	 when	 its	 control	 input	 (e.g.,	 b)	 is	 1,	 and	 keeps	 its

unchanged	when	the	control	 input	 is	0.	An	n-input	XOR	gate	produces	a	1	output	when
the	number	of	1’s	on	its	inputs	is	odd.

Figure	2.8	Exclusive-OR

2.3.9	MUX	gate

A	very	useful	logic	structure,	particularly	in	the	FPGAs,	is	the	multiplexer	that	selects	one
of	its	inputs	depending	on	the	value	of	its	select	(s)	input.	Shown	in	Figure	2.9,	the	a	input
of	the	MUX	appears	on	its	output	when	s	is	0.	HDL	expression	of	the	MUX	and	its	truth
table	are	shown	in	Figure	2.9.	The	right	hand	side	of	the	equation	shown	reads	as:	if	(s	is
1)	 then	 (b)	 else	 (a).	 This	 is	 a	 convenient	 conditional	 expression	 that	 is	 used	 in	 the	 C
language	and	Verilog.

Figure	2.9	Multiplexer

A	multiplexer	can	be	used	as	a	switch	that	selects	one	of	its	inputs	depending	on	the
binary	value	of	its	select	input.	For	example,	the	4-to-1	MUX	of	Figure	2.10	selects	a,	b,	c,
or	d	for	when	siso	is	0,	1,	2,	or	3.

Figure	2.10	A	4-to-1	Multiplexer

A	useful	feature	of	the	multiplexer	is	in	the	ability	to	turn	it	into	any	of	the	standard
gates	 described	 above.	Wiring	 s	 and	 a	 of	 a	 2-to-1	multiplexer	 generates	 an	 AND,	 and

wiring	s	and	b	turns	a	2-to-1	multiplexer	into	an	OR	gates.	Figure	2.11	shows	these	two
configurations	of	the	multiplexer.	For	the	AND	function,	since	a	and	s	are	wired	together
they	will	always	be	the	same	and,	therefore,	those	rows	of	the	truth	table	with	different	a
and	s	values	are	crossed	out.	Considering	only	those	rows	that	are	not	crosses	out,	the	w
output	is	the	AND	function	of	a	and	b.	A	similar	analysis	shows	that	an	OR	can	be	built	by
tying	b	and	s	inputs	of	a	multiplexer.

Figure	2.11	Multiplexer	Configurations

Multiplexers	can	be	cascaded	to	build	higher	order	ones.	Figure	2.12	shows	a	4-to-1
multiplexer	built	out	of	three	2-to-1	multiplexers.	In	this	diagram,	a,	b,	c,	or	d	is	selected
when	siso	is	0,	1,	2,	or	3.

2.3.10	Three-State	Gates

All	gates	discussed	so	far	generate	a	1	or	a	0	on	their	outputs	depending	on	the	values	on
their	inputs.	A	three-state	(also	referred	to	as	tristate)	buffer	(or	gate)	has	a	data	input	(a)
and	a	control	input	(c).	Depending	on	c,	it	either	passes	a	to	its	output	(when	c	is	1)	or	it
floats	the	output	(when	c	is	0).	As	previously	discussed,	a	float	wire	is	represented	by	Z.
Figure	2.13	shows	a	three-state	buffer	with	true-value	output	and	active-high	control	input.
A	truth-table	and	an	algebraic	representation	are	also	shown	for	this	structure.

Figure	2.12	Cascading	Multiplexers

Figure	2.13	Three-State	Gate

Figure	2.14	Building	a	Multiplexer	with	Tri-state	Gates

Wiring	 two	 tri-state	 gates	 as	 shown	 in	 Figure	 2.14	 generates	 a	 2to-1	 multiplexer.
Similarly,	a	4-to-1	multiplexer	can	be	built	by	wiring	four	tri-state	gates.

Other	gate	structures	can	be	built	by	use	of	 transistors	arranged	into	complementary
NMOS	 pull-down	 and	 PMOS	 pull-up	 structures.	 Furthermore,	 more	 complex	 functions
can	be	built	by	use	of	gates	discussed	above.

2.3.11	Look-up	Tables	(LUT)

A	Lookup	table	(LUT)	structure	is	a	small	memory	block	with	it	inputs,	one	output,	and
2n	entries.	The	memory	block	can	be	programmed	to	implement	any	function	of	it	inputs
and	one	output.	This	structure	 is	usually	 implemented	by	a	programmable	fuse	structure
and	a	program	memory	and	used	in	programmable	devices	such	as	FPGAs.

Figure	2.15	LUT	Example

An	example	LUT	that	implements	a	majority	function	is	shown	in	Figure	2.15.	LUT
inputs	 are	 a,	 b,	 c,	 and	 d,	 and	 its	 output	 is	 w.	 To	 indicate	 the	 function	 that	 the	 LUT	 is

implementing,	its	contents	are	indicated	by	their	locations	similar	to	the	way	a	truth-table
is	expressed	(see	Figure	2.2).

2.4	Designing	Combinational	Circuits

Primitive	gates	 and	 structures	 discussed	 in	 the	previous	 section	 form	a	 set	 of	 structures
with	 which	 any	 digital	 circuit	 can	 be	 designed.	 Methods	 of	 utilizing	 these	 parts	 for
implementation	of	combinational	functions	are	discussed	here.

2.4.1	Boolean	Algebra

When	a	design	is	being	done,	a	designer	thinks	of	the	functionality	of	the	design	and	not
its	 gate	 structure.	 To	 facilitate	 the	 use	 of	 logic	 gates	 and	 to	 make	 a	 correspondence
between	logic	gates	and	design	functions,	Boolean	algebra	is	used.

Boolean	 variables	 used	 in	 Boolean	 algebra	 take	 1	 or	 0	 values	 only.	 This	 makes
Boolean	algebraic	rules	different	from	the	algebra	that	is	based	on	decimal	numbers.

Boolean	algebra	operations	are	AND,	OR	and	NOT	and	their	algebraic	notations	are.,
+	 and	 The	 AND	 operator	 between	 two	 oper	 ands	 can	 be	 eliminated	 if	 no	 ambiguities
occur.	An	over-bar	also	represents	the	NOT	operator.	Basic	rules	used	for	transformation
of	 functions	 into	 gates	 are	 discussed	 below.	 These	 are	 Boolean	 algebra	 postulates	 and
theorems.

1.	Involution	Law

•	a=a

2.	Identity	Laws

.	a+0=a

.	a•1=a

3.	Null	Elements

.	a+1=1

.	a•0=0

4.	Idempotent	Laws

.	a	+	a	=	a

.	a•a=a

5.	Complementary	Laws

•	a+a=1

•	a•a=0

6.	Commutative	Laws

a+b=b+a

a•b=b•a

7.	Associative	Laws

a+(b+c)=(a+b)+c

(a•b)•c=a•(b•c)

8.	Distributive	Laws

a+b•c=(a+b).(a+c)

a•(b+c)=a•b+a•c

9.	Absorption	Laws

a+a•b=a

a.(a+b)=a

10.	Extended	Absorption	Laws

a+a•b=a+b

a•(a+b)=a•b

11.	Duality

•	If	E	is	true,	changing	AND	(.)	to	OR	(+),	OR	(+)	to	AND(.),	1	to	0,	and	0	to	1
results	in	ED	that	is	also	true.

12.	DeMorgan’s	Law

•	ab=a+b

•	a+b=a•b

Once	designers	obtain	 functionality	of	 their	designs,	 they	 translate	 this	 functionality
into	 a	 set	 of	 Boolean	 expressions.	 Using	 the	 above	 rules,	 this	 functionality	 can	 be
manipulated,	minimized,	and	put	into	a	form	that	can	be	realized	using	gates	described	in
Section	2.3.

As	an	example,	consider	 the	overflow	situation	 that	may	arise	 in	 two’s	 complement
addition.	Consider	the	sign	bits	of	the	operands	and	the	result,	a7,	b	7	and	s	7.	Overflow
(u)	occurs	if	a	7	is	1,	b	7	is	1,	s	7	is	0	or	if	a	7	is	0,	b	7	is	0,	and	s	7	is	1.	This	statement	can
be	written	as	the	following	Boolean	expression

Applying	Rule	12	(DeMorgan’s	Law),	described	above,	iv	becomes:

This	expression	is	realized	using	NAND	and	NOT	gates	as	shown	in	Figure	2.16.

Figure	2.16	An	Overflow	Detector

As	another	example	of	using	the	above	postulates	and	theorems	for	minimization	of	a
Boolean	expression	consider	the	three-variable	function	f	(a,	b,	c):

According	 to	 the	Complementary	 Laws	 (Rule	 Set	 5)	 any	 expression	ORed	with	 its
complement	 is	1,	 i.e.,	 a	ORed	with	 its	complement	 is	1.	Also,	 according	 to	 the	 Identity
Laws	(Rule	Set	2),	any	expression	can	be	ANDed	with	1	without	changing	its	value,	i.e.,	b
-c	•1	 is	 the	same	as	b	 •	c.	Applying	 these	 rules	 to	 the	 third	product	 term	of	 f,	 it	 can	 be
rewritten	as	shown	below:

In	 the	 above,	 using	 the	 second	 Distributive	 Law	 (Rule	 Set	 8)	 removes	 the	 set	 of
parenthesis	 and	 results	 in	 the	 product	 terms	 shown	 below.	 Note	 that	 in	 forming	 these
product	 terms	the	variables	are	rearranged	according	 to	 the	second	Associate	Law	(Rule
Set	7).

We	apply	the	second	Distributive	Law	to	the	first	and	third	product	terms	of	the	above
expression,	and	the	same	to	the	second	and	fourth	terms.	After	this	factorization,	the	above
expression	becomes	as	shown	below.

According	to	Null	Elements	(Rule	Set	3),	in	the	above	expression	1+c	is	1	and	1+b	is
1.	After	these	replacements,	and	after	application	of	the	second	of	the	Identity	Laws	(Rule
Set	2),	function	f	becomes	as	shown	below.

The	expression	 shown	above	 is	 equivalent	 to	 the	 function	we	 started	with,	with	 the
difference	of	using	fewer	gates	for	its	gate	level	implementation,	having	less	delays,	and
consuming	less	power.	It	is	important	to	be	able	to	reduce	functions	as	we	did	above,	but
as	in	the	above	manipulations,	it	is	not	always	obvious	which	rules	to	apply	and	in	what
order	 these	rules	have	 to	be	used.	The	section	below	describes	a	visual	method	 that	can
help	application	of	Boolean	algebra	rules.

2.4.2	Karnaugh	Maps

Application	of	rules	of	Boolean	algebra	and	expressing	a	hardware	function	with	Boolean
expressions	is	not	always	as	easy	as	it	is	in	the	overflow	example	above.	Karnaugh	maps
present	a	graphical	method	of	representing	Boolean	functions.	Karnaugh	maps	have	close
correspondence	with	tabular	list	of	function	output	values,	and	at	the	same	time	present	a
visual	method	of	applying	Boolean	algebra	rules.

Figure	 2.17	 shows	 a	 3-variable	 truth	 table	 and	 its	 corresponding	 karnaugh	map	 (k-
map).	The	truth	table	shows	the	listing	of	output	values	of	a	function	in	a	list,	and	a	k-map
shows	this	information	in	a	two-dimensional	table.

This	form	of	representing	a	function	is	called	sum	of	products,	and	since	the	product
terms	are	all	minterms,	this	representation	is	the	Standard	Sum	Of	Products	(SSOP).

As	 shown	 in	 Figure	 2.17,	 the	 same	 expression	 could	 be	 written	 by	 reading	 the
Karnaugh	map	shown.	For	this,	a	product	term	corresponds	to	every	box	of	the	Karnaugh
map	that	contains	a	1.	However,	the	k-map	has	certain	properties	that	we	can	use	to	come
up	with	a	more	reduced	form	of	sum	of	products.

Figure	2.17	A	3-Variable	K-map

For	discussion	of	Karnaugh	map	properties,	we	define	Boolean	and	physical	 k-map
adjacency	as	follows:

Boolean	Adjacency:	Two	product	terms	are	adjacent	if	they	consist	of	the
same	Boolean	variables	and	only	one	variable	appears	in	its	true	form	in
one	and	complement	in	another	(v	in	one,	v	-bar	in	another).

Physical	Adjacency:	Two	k-map	boxes	are	adjacent	if	they	are	horizontally
or	vertically	next	to	each	other.

Numbering	 k-map	 rows	 and	 columns	 are	 arranged	 such	 that	 input	 combinations
corresponding	to	adjacent	boxes	in	the	map	are	only	different	in	one	variable.	This	means
that	two	Physical	Adjacent	boxes	are	also	Boolean	Adjacent.	The	main	idea	in	the	k-map
is	that	two	minterms	that	are	different	in	only	one	variable	can	be	combined	to	form	one
product	term	that	does	not	include	the	variable	that	is	different	in	the	two	minterms.

In	the	resulting	product	term,	variable	a	that	appears	as	a	in	one	product	term	and	a	-
bar	in	another	is	dropped.	Because	of	adjacency	in	the	k-maps,	the	same	can	be	resulted
without	 having	 to	 perform	 the	 above	 Boolean	 manipulations.	 Figure	 2.18	 shows
minimization	of	function	f	using	k-map	grouping	of	terms.

Figure	2.18	Minimizing	Function	f

	

The	 following	Boolean	manipulations	 correspond	 to	 the	mappings	 shown	 in	 Figure
2.18:

As	shown	above,	the	term	a	-	b	•	c	is	repeated	3	times.	This	is	according	to	Boolean
algebra	Rule	4	of	Section	2.4.1	that	states	Offing	an	expression	with	itself	is	the	same	as
the	original	expression.	 In	 the	k-map,	application	of	 this	 rule	 is	 implied	by	using	 the	k-
map	box	with	a	1	that	corresponds	to	abc=111	in	as	many	mappings	as	we	need	(here	in	3
mappings).	For	another	example,	we	use	a	4-variable	map.

Figure	2.19	Minimizing	a	4-variable	Function

A	four-variable	function,	its	k-map,	its	minimal	Boolean	realization,	and	its	gate	level
implementation	 are	 shown	 in	 Figure	 2.19.	To	make	 a	 correspondence	 between	Boolean
adjacency	 and	 k-map	 physi	 cal	 adjacency,	 we	 visualize	 a	 k-map	 as	 a	 spherical	map	 in
which,	in	the	back	of	the	sphere,	the	sides	of	the	map	and	its	four	corners	are	adjacent.

Figure	2.20	Combining	Four	Corners	of	a	4-variable	Map

With	this	interpretation,	the	four	corners	of	the	k-map	of	Figure	2.19	form	two	product
terms	that	are	themselves	adjacent.	The	complete	mapping	of	the	four	corners	of	the	map
results	 in	 only	 one	 product	 term.	 By	 use	 of	 Boolean	 algebra	 rules,	 Figure	 2.20	 shows
justification	 for	 combining	 the	 four	 corners	 of	 the	k-map	 into	one	product	 term.	 In	 this
diagram	Position	indicates	North	West,	North	East,	South	West	and	South	East	of	the	map.

2.4.3	Don’t	Care	Values

In	some	designs,	certain	input	values	never	occur	or	if	they	do	occur,	their	outputs	are	not
important.	 For	 example,	 consider	 a	 design	 that	 takes	 a	 one-digit	 BCD	 number	 (Binary
Coded	Decimal)	as	input	and	generates	a	1	output	when	the	input	is	divisible	by	3.	The	4-
bit	input	includes	combinations	ranging	from	0	to	15	binary.	However,	1010	through	1111
combinations	 are	not	 valid	BCD	numbers	 and	 are	not	 expected	 to	 appear	 on	 the	 circuit
inputs.

Figure	2.21	Using	Don’t	Care	Values

When	we	are	designing	this	circuit	with	a	k-map,	we	have	to	decide	what	to	do	with
the	k-map	boxes	that	correspond	to	the	invalid	BCD	numbers.	If	we	fill	them	with	all	is,
we	will	 end	up	mapping	unnecessary	 is.	However,	 if	we	 fill	 them	with	all	Os,	mapping
function	minterms	may	become	too	limited.	The	alternative	is	to	leave	them	as	undecided
or	(Don’t	Care)	values	and	let	the	mapping	decide	what	values	these	invalid	cases	take.

We	use	a	dash	(-),	or	d	or	X	for	showing	a	Don’t	Care	k-map	value.	When	mapping
for	a	minimal	realization,	we	only	use	the	Don’t	Care	values	 if	 they	help	us	form	larger
maps.	This	way,	those	mapped	Don’t	Care	values	are	used	as	is	and	the	rest	are	Os.

The	solution	 to	 the	problem	stated	above	 is	shown	in	Figure	2.21.	Note	here	 that	of
the	6	Don’t	Care	values	4	are	used	for	forming	larger	maps	and	2	are	not	mapped.

2.4.4	Minimal	Coverage

In	 the	above	examples,	we	showed	how	minters	 formed	product	 terms	and	how	product
terms	were	used	to	form	a	minimum	implementation	of	a	logic	function.	In	these	examples
we	only	had	one	way	of	selecting	best	maps,	and	no	decisions	as	to	what	maps	to	select
needed	to	be	made.	An	example	Karnaugh	map	in	which	the	choice	of	best	product	terms
to	choose	is	not	as	clear	is	shown	in	Figure	2.22.

We	will	 show	that	 in	 the	 function	shown	 in	 this	 figure	several	choices	 exist	 and	we
need	a	procedural	method	for	finding	a	minimal	coverage	of	the	function.	For	this	purpose
the	following	definitions	are	needed.

2.4.4.1	Implicant.	An	Implicant	of	a	function	is	any	product	term	that	implies	the	function.
In	other	words,	if	product	term	p	becoming	1	causes	function	f	to	become	1,	then	p	is	an
Implicant	of	f.	In	Figure	2.22,	any	product	term	consisting	of	any	number	of	minterms	is

considered	to	be	an	Implicant	of	w.

2.4.4.2	Prime	Implicant.	A	Prime	Implicant	 (PI)	of	a	function	 is	an	Implicant	 that	 is	not
completely	 covered	 by	 any	 other	 Implicant	 but	 itself.	 In	 Figure	 2.22,	 all	 product	 terms
circled	in	the	second	Karnaugh	map	are	Prime	Implicants	of	w.

2.4.4.3	Essential	Prime	Implicant.	An	Essential	Prime	Implicant	(EPI)	of	a	function	is	a	PI
that	has	at	least	one	minterm	that	is	not	covered	by	any	other	PI.	In	Figure	2.22,	product
terms	circled	in	bold	are	Essential	Prime	Implicants	of	w.

lure	2.22	Finding	Minimal	Coverage

Figi

Using	 the	 above	 definitions,	 the	 below	 procedure	 finds	 the	 minimal	 coverage	 of	 a
function.

2.4.4.4	Finding	Minimal	Coverage.	Using	the	above	definitions,	steps	shown	below	find
the	minimal	coverage	of	a	function,	f.

1.	Of	all	Implicants	of	f,	list	all	PIs	of	f.	This	is	shown	in	the	second	map	of	Figure
2.22.

2.	Of	all	PIs	of	f,	identify	EPIs	by	looking	for	those	PIs	that	have	at	least	a	1	in	the
Karnaugh	map	that	is	not	covered	by	any	other	PI.	This	step	is	shown	in	the	third
map	of	Figure	2.22.

3.	 If	after	 the	above	step	all	minterms	of	 function	f	are	covered,	 then	 the	minimal
coverage	 is	 found.	 Otherwise	 choose	 from	 nonessential	 PIs	 to	 complete	 the
coverage	off.

4.	For	 the	 above	 step,	 choose	 those	PIs	 that	 cover	 the	most	number	of	uncovered
PIs.	 In	 Figure	 2.22,	 after	 choosing	 EPIs	 of	 w	 (third	map),	minterm	 number	 4
(abcd=0100)	remains	uncovered.	We	have	two	choices	for	covering	this	minterm,
of	which	we	have	 selected	 the	PI	 the	 shown	 last	 in	 the	 expression	of	w	 in	 the
fourth	map.

Generally,	Karnaugh	maps	are	used	 for	minimization	of	basic	and	 simple	 functions.
Other	complementary	methods	are	discussed	in	the	sections	that	follow.

2.4.5	Iterative	Hardware

Boolean	minimization	of	functions	by	use	of	Boolean	rules	or,	indirectly,	by	use	of	k-maps
is	 only	 practical	 for	 small	 functions.	 Partitioning	 based	 on	 regularity	 of	 a	 structure,	 or
based	on	 independent	 functionalities,	help	 in	breaking	a	circuit	 into	 smaller	manageable
circuits.

For	example,	consider	a	4-bit	comparator	that	generates	a	1	when	its	4-bit	A	input	is
greater	than	its	4-bit	B	input	(Figure	2.23).	One	way	of	designing	this	circuit	is	to	come	up
with	its	minimal	realization	by	doing	an	8-variable	k-map.	Obviously,	this	is	not	practical.

Figure	2.23	A	4-bit	Comparator

Alternatively,	we	can	design	 the	comparator	by	 first	 comparing	 the	most	significant
bits	of	its	two	inputs	and	working	our	way	into	the	least	significant	bit.

	

Figure	2.24	An	Iterative	Comparator

The	OR	gate	 shown	 in	 this	 figure	can	be	broken	 into	 four	2-input	OR	gates	 so	 that
each	stage	of	 the	circuit	uses	 its	own	gate,	and	all	 stages	become	exact	 instances	of	 the
same	structure.	Figure	2.25	shows	a	comparator	bit	 that	 is	structured	such	 that	 it	can	be
repeated	any	number	of	times	for	forming	a	comparator	of	any	size.

Figure	2.25	A	Comparator	Bit	for	a	Regular	Structure

As	 another	 example	 of	 iterative	 hardware,	 consider	 the	 design	 of	 an	 8-bit	 adder.
Adding	 two	 8-bit	 numbers	 is	 shown	 in	 Figure	 2.26.	As	 shown	 in	 this	 figure,	 adding	 is
done	bit-by-bit	starting	from	the	righthand	side.	The	process	of	adding	repeats	for	every
bit	position.	This	process	uses	a	carry-in	from	its	previous	position	(i-1),	adds	it	to	Ai	and

Bi,	and	generates	Si	as	well	as	a	carry-out	for	the	next	position.	Therefore,	hardware	for
the	8-bit	adder	uses	eight	repetitions	of	a	one-bit	adder	that	is	called	a	Full-Adder	(FA).

Figure	2.26	Adding	Two	8-bit	Numbers

The	FA	hardware	has	3	inputs	(Carry-in	(c),	bit	i	of	A	(a),	and	bit	i	of	B	(b))	and	two
outputs	(Carry-out	(co)	and	bit	i	of	sum	(s)).	Figure	2.27	shows	the	design	of	an	FA	using
k-maps.	Also	 shown	 in	 this	 figure	 is	 an	 8-bit	 adder	 using	 eight	 full-adders.	 This	 adder
design	is	referred	to	as	“ripple-carry”	since	the	carry	ripples	from	one	FA	to	another.

Figure	2.27	An	8-bit	Ripple	Carry	Adder

Hardware	components	like	the	comparator	and	the	adder	described	above	are	iterative,
cascadable,	extendable,	and	in	many	cases	configurable.	In	designing	digital	systems	it	is
important	to	have	a	library	of	such	packages	available.	Instead	of	designing	from	scratch,
a	 digital	 designer	 uses	 these	 packages	 and	 configures	 them	 to	 meet	 his	 or	 her	 design
requirements.

Discrete	logic	gates	used	to	match	inputs	and	outputs	of	various	packages	are	referred
to	as	“Glue	Logic”.

2.4.6	Multiplexers	and	Decoders

Other	packages	 that	become	useful	 in	many	high	 level	designs	 include	multiplexers	and
decoders.	Use	of	multiplexers	as	primitive	structures	was	discussed	in	Section	2.3.9;	this
section	discusses	multi-bit	multiplexers	that	are	often	used	for	high-level	RTL	design.

Figure	2.28	An	8-bit	4-to-1	Mux

A	multiplexer	is	like	an	it-position	switch	that	selects	one	of	its	it	inputs	to	appear	on
the	output.	A	multiplexer	with	it	inputs	is	called	an	it-to-1	Mux.	The	number	of	bits	of	the
inputs	(b)	determines	the	size	of	the	multiplexer.	A	multiplexer	with	it,	data	inputs	requires
s=log2(11)	number	of	select	lines	to	select	one	of	the	it	inputs;	i.e.,	2-n.

For	 example,	 a	 multiplexer	 that	 selects	 one	 of	 its	 four	 (n=4)	 8-bit	 (b=8)	 inputs	 is
called	an	8-bit	4-to-1	Mux.	This	multiplexer	needs	2	select	lines	(s=2).	Schematic	diagram
of	 this	multiplexer	 is	 shown	 in	 Figure	 2.28.	 This	 circuit	 can	 be	 built	 using	 an	 array	 of
AND-OR	 gates	 or	 three-state	 gates	 wired	 to	 implement	 a	 wired-OR	 logic.	 Figure	 2.29
shows	the	gate	level	design	of	a	1-bit	4-to-1	Mux.

Multiplexers	are	used	for	data	selection,	bussing,	parallel-toserial	conversion,	and	for
implementation	 of	 arbitrary	 logical	 functions.	 A	 1-bit	 2-to-1	 Mux	 can	 be	 wired	 to
implement	NOT,	AND,	and	OR	gates.	Together	with	a	NOT,	a	2-to-1	Mux	can	be	used	for
imple	 mentation	 of	 most	 primitive	 gates.	 Because	 of	 this	 property,	 many	 FPGA	 cells
contain	multiplexers	for	implementing	logic	functions.

Figure	2.29	A	4-to-I	Mux

Another	 part	 that	 is	 often	 used	 in	 high	 level	 designs	 is	 a	 decoder.	 Generally,	 a
combinational	circuit	 that	 takes	a	certain	code	as	 input	and	generates	a	different	code	 is
referred	 to	as	 a	decoder.	For	 example,	 a	 circuit	 that	 takes	as	 input	 a	4-bit	BCD	(Binary
Coded	Decimal)	and	generates	outputs	for	display	on	a	Seven	Segment	Display	(SSD)	is
called	a	BCD	to	SSD	decoder.

Figure	2.30	A	2-to-4	Decoder

A	 more	 accurate	 definition	 is	 that	 a	 decoder	 has	 as	 many	 outputs	 as	 it	 has
combinations	of	inputs.	For	every	combination	of	values	on	its	inputs	a	certain	output	of
the	decoder	 becomes	 active.	For	 example	 a	 2-to-4	 binary	 decoder	 has	 2	 inputs	 forming
four	combinations.	Its	four	outputs	become	active	for	input	combinations,	00,	01,	10,	and
11.	The	gate	level	design	of	this	decoder	is	shown	in	Figure	2.30.

The	selected	output	in	Figure	2.30	becomes	0	and	all	others	are	1.	The	circuit	also	has

an	 enable	 input,	EN.	For	 the	 decoder	 to	 become	 operational,	 this	 input	must	 be	 1.	 The
enable	input	is	useful	for	cascading	decoders.

2.4.7	Activity	Levels

Activity	levels	for	input	and	output	ports	of	digital	circuits	refer	to	the	way	that	these	ports
function.	For	example	an	active-low	output	(like	the	decoder	described	above)	is	1	when
not	active	and	it	becomes	0	when	active.	An	active-low	enable	input	of	a	circuit	makes	the
circuit	operational	when	it	is	0.	When	such	an	input	is	1,	circuit	outputs	become	inactive.
The	EN	input	of	the	decoder	described	above	is	an	active-high	enable	input.

A	NAND	gate	can	be	looked	at	as	an	AND	gate	with	an	activelow	output	and	active-
high	inputs.	A	NAND	gate	can	also	be	looked	at	as	an	OR	gate	with	active-low	inputs	and
active-high	 output	 (see	 Figure	 2.31).	 The	 following	 Boolean	 expressions	 justify	 these
views	of	a	NAND	gate:

Figure	2.31	NAND	Gate	Activity	Levels

Using	 correct	 polarities	 and	 notations	 with	 correct	 activity-level	 markings,	 make
circuit	diagrams	more	readable.	For	example	in	Figure	2.31	the	two	circuits	with	w	output
are	equivalent.	The	one	on	the	left	requires	writing	Boolean	expressions	to	understand	its
functionality,	 but	 the	 function	 of	 the	 one	 on	 the	 right	 can	 easily	 be	 understood	 by
inspection.

2.4.8	Enable	/	Disable	Inputs

Many	 digital	 logic	 packages,	 like	 multiplexers	 and	 decoders	 come	 with	 enable	 (EN)
and/or	output-enable	(OE)	inputs.	When	an	input	is	referred	to	as	EN,	it	means	that	if	this
input	is	not	active,	all	circuit	outputs	are	inactive.	On	the	other	hand,	an	OE	input	is	for
threestate	control	of	the	output.	In	a	circuit	with	an	OE	input,	if	OE	is	active,	the	outputs
of	the	circuit	are	as	defined	by	the	function	of	the	circuit.	However	when	OE	is	inactive,

all	circuit	outputs	become	highimpedance	or	float	(Z	value).

Figure	2.32	Wiring	Circuits	with	OE	Control	Inputs

Circuits	with	three-state	outputs	require	an	OE	input.	Outputs	of	such	circuits	can	be
wired	to	form	wired-OR	logic.	Figure	2.32	shows	two	2-to-1	multiplexers	with	three-state
outputs	that	are	wired	to	form	a	4-to-1	multiplexer.	If	the	multiplexers	of	Figure	2.32	had
EN	inputs	instead	of	OE	inputs,	forming	the	final	output	of	the	circuit,	w,	would	require	an
OR	gate.

2.4.9	A	High-Level	Design

In	the	first	part	of	this	chapter	we	showed	that	instead	of	using	transistors	in	a	design,	we
wire	them	to	form	upper-level	structures	(primitive	gates)	with	easier	functionalities	 that
digital	 designers	 can	 relate	 to.	 In	 the	 second	part,	we	discussed	 the	use	of	 gates	 in	 still
higher	level	structures	such	as	adders,	comparators,	decoders	and	multiplexers.	With	these
higher-level	structures,	designers	will	be	able	to	think	at	a	more	functional	 level	and	not
have	to	get	involved	in	putting	thousands	of	gates	together	for	a	simple	design.

This	 level	 of	 design	 is	 called	 RT	 (Register	 Transfer)	 level.	 In	 today’s	 designs,
designers	think	at	this	level	and	most	design	tools	work	at	this	level.	Most	design	libraries
include	configurable	RTL	components	for	designers	to	use.

Figure	2.33	An	Absolute	Value	Circuit

As	a	simple	RT	level	design,	consider	an	8-bit	Absolute-Value	calculator.	The	circuit
takes	a	positive	or	negative	2’s	complement	input	and	generates	the	absolute	value	of	its
input	on	its	8-bit	output.	The	circuit	diagram	using	RT	level	packages	is	shown	in	Figure
2.33.

The	 circuit	 uses	 an	 array	 of	 eight	NOT	gates	 to	 form	 the	 complement	 of	 the	 input.
Using	the	adder	shown	a	1	is	added	to	this	complement	to	generate	the	two’s	complement
of	the	input.	The	multiplexer	on	the	output	uses	the	sign-bit	of	the	input	to	select	the	input
if	 it	 is	 positive	 or	 to	 select	 the	 2’s	 complement	 of	 the	 input	 if	 the	 input	 is	 a	 negative
number.

2.5	Storage	Elements

Circuits	discussed	so	far	 in	 this	chapter	were	combinational	circuits	 that	did	not	 retain	a
history	 of	 events	 on	 their	 inputs.	 To	 be	 able	 to	 design	 circuits	 that	 can	make	 decisions
based	on	past	events,	we	need	to	have	circuits	with	memory	that	can	remember	some	of
what	has	happened	on	their	inputs.	This	section	discusses	the	use	of	memory	elements	that
help	us	achieve	this.

The	past	history	of	a	memory	circuit	participates	in	determination	of	its	present	output
values.	Therefore,	outputs	of	these	circuits	are	not	only	a	function	of	their	inputs,	but	also
a	function	of	their	past	history.	This	history	enters	the	logic	structure	of	a	memory	circuit
by	way	of	feedbacks	from	its	outputs	back	to	its	inputs.	The	more	lines	that	are	fed	back
means	that	the	circuit	remembers	more	of	its	past.

2.5.1	The	Basic	Latch

The	circuit	shown	in	Figure	2.34	is	the	basic	latch.	We	will	show	that	this	circuit	has	some
memory.	The	circuit	has	one	feedback	line	from	its	y	output	to	its	input.	One	feedback	line
can	take	0	or	1,	which	means	that	the	circuit	remembers	only	two	things	from	its	past.

Figure	2.34	The	Basic	latch	(Two	Equivalent	Circuits)

Applying	the	waveform	shown	in	Figure	2.35	to	the	inputs	of	the	latch	of	Figure	2.34
shows	that	a	pulse	on	s	sets	the	w	output	to	1	and	a	pulse	on	r	sets	it	to	0.

Note	from	of	the	timing	diagram	of	Figure	2.35	that	at	time	a	when	s	and	r	are	both	0,
w	is	0,	and	at	time	b	when	the	same	exact	values	appear	on	the	circuit	inputs	the	output	is
1.	This	reveals	that	the	output	depends	not	only	on	the	present	input,	and	that	the	circuit	is
remembering	something	from	its	past	history.

An	interpretation	of	the	behavior	of	this	circuit	is	that	a	complete	positive	pulse	on	s
causes	w	to	set	and	a	complete	pulse	on	r	causes	it	to	reset.	Because	of	this	behavior,	the
circuit	of	Figure	2.34	is	called	an	SR-Latch.	This	structure	is	the	basic	element	for	most
static	memory	structures.	Alternative	structures	that	implement	this	memory	behavior	use
NAND	gates	or	inverters	and	pass-transistors.

Figure	2.35	Setting	and	Resetting	the	Basic	Latch

2.5.2	Clocked	D	Latch

The	memory	behavior	of	the	SR-latch	does	not	have	a	close	correspondence	to	the	way	we
think	 about	 storing	 data	 or	 saving	 information.	 The	 structure	 shown	 in	 Figure	 2.36
improves	this	behavior.	In	this	structure,	when	clock	is	1	a	1	on	D	causes	s	to	become	1
which	causes	Q	to	set	to	1,	and	a	0	on	D	causes	r	to	become	1	to	reset	Q.

Figure	2.36	A	Clocked	D-Latch

This	behavior	that	at	a	given	time,	determined	by	the	clock,	a	value	is	stored	until	the
next	 time	we	decide	 to	 store	a	new	value,	 corresponds	more	 to	 the	way	we	 think	about
memories.	 The	 circuit	 of	 Figure	 2.36	 is	 called	 a	 clocked	 D-latch	 and	 is	 used	 in
applications	 for	 storing	 data,	 buffering	 data,	 and	 temporary	 storage	 of	 data.	 For	 storing
multiple	 bits	 of	 data,	 multiple	 latches	 with	 a	 common	 clock	 can	 be	 used.	 Figure	 2.37
shows	a	quad	latch	using	a	symbolic	representation	of	a	latch.

Figure	2.37	Quad	Latch

In	Figure	 2.36	when	 clock	 is	 1,	 data	 on	D	 pass	 through	 the	 latch	 and	 reach	Q	 and
changes	on	D	directly	affect	Q.	Because	of	this,	this	structure	is	called	a	transparent	latch.
The	symbolic	notation	of	latch	shown	in	Figure	2.37	indicates	dependence	of	D	on	clock.
This	shows	that	control	signal	1	that	is	the	clock	signal	controls	the	D	input.

2.5.3	Flip-Flops

The	latch	as	discussed	above	is	a	good	storage	element,	but	because	of	its	transparency,	it
cannot	be	used	in	feedback	circuits.	Take	for	example	a	situation	that	the	output	Q	of	the
latch	goes	 through	a	 combinational	 circuit	 and	 feeds	back	 to	 its	 own	 inputs	 (see	Figure
2.38).	Because	latches	are	transparent,	the	feedback	path	stays	open	while	the	clock	signal
is	active.	This	will	result	in	an	unpredictable	latch	output	due	to	the	uncontrolled	number
of	times	that	data	feeds	back	through	the	logic	block.	In	some	cases	the	output	oscillates
while	the	clock	is	active.

Figure	2.38	Latch	Feedback	Causes	Unpredictable	Results

Figure	2.39	A	D-Flip-Flop,	Its	Structure,	Symbolic	Notation	and	Waveform

To	overcome	the	above	mentioned	problem,	a	structure	without	transparency	must	be
used.	Conceptually	this	is	like	the	use	of	double	doors	for	building	entrances.	At	any	one
time	only	one	door	is	open	to	keep	the	air-conditioned	air	inside	the	building	and	eliminate
flow	of	air	into	the	building.

For	our	case,	we	use	two	latches	with	inverting	clocks	as	shown	in	Figure	2.39.	When
Clock	 is	 0,	 the	 first	 latch	 stops	 data	 on	D	 from	 propagating	 to	 the	 output.	When	 clock
becomes	1,	data	 is	allowed	 to	propagate	only	as	 far	 as	 the	output	of	 the	 first	 latch	 (M).
While	this	is	happening	the	second	latch	stops	data	on	M	from	propagating	any	further.	As
soon	as	Clock	becomes	0,	D	and	M	are	disconnected	and	data	stored	in	M	propagates	to
Q.	 The	 latch	 on	 the	 left	 is	 called	 master,	 and	 the	 one	 on	 the	 right	 is	 the	 slave.	 This
structure	 is	 called	 a	 master-slave	 D-flip-flop.	 At	 all	 times,	 input	 and	 output	 of	 this
structure	are	isolated.

Other	forms	of	flip-flops	that	have	this	isolation	feature	use	a	single	edge	of	the	clock
to	accept	the	input	data	and	affect	the	output.	Such	structures	are	called	edge-trigger	flip-
flops.	 Figure	 2.40	 shows	 a	 rising-	 and	 a	 falling-edge	D-flip-flop.	 The	 triangle	 indicates
edge	 triggering	 and	 the	 bubble	 on	 the	 clock	 input	 of	 the	 circuit	 on	 the	 right	 indicates
negative	(falling)	edge	triggering.

Figure	2.40	Edge	Trigger	Flip-flops

2.5.4	Flip-Flop	Control

The	initial	value	of	a	flip-flop	output	depends	on	its	internal	gate	delays,	and	in	most	cases
is	unpredictable.	To	force	an	initial	state	into	a	flip-flop,	set	and	reset	control	inputs	should
be	 used.	 Other	 control	 inputs	 for	 flip-flops	 are	 clock-enabling	 and	 three-state	 output
control	signals.

A	Set	or	Preset	 control	 input	 forces	a	 flip-flop	 into	 its	1	 state,	 and	a	Reset	or	Clear
input	forces	it	to	0.	We	refer	to	these	signals	as	flipflop	initialization	inputs.	Such	control
inputs	can	act	independent	of	the	clock,	or	act	like	the	D-input	with	the	specified	edge	of
the	clock.	In	the	former	case,	the	initialization	inputs	must	be	put	into	the	internal	logic	of
a	flip-flop	and	are	called	asynchronous	control	inputs.	In	the	case	that	a	control	signal	only
affects	the	flip-flop	when	the	flip-flop	is	clocked,	it	is	called	a	synchronous	control	input.
Synchronous	control	 inputs	 can	be	added	 to	 a	 flip-flop	by	adding	external	 logic.	Figure
2.41	shows	four	flip-flops	with	various	forms	of	synchronous	and	asynchronous	controls.
To	indicate	clock	dependency	in	a	flip-flop	with	a	synchronous	control,	the	clock	identifier
(number	1	on	the	right	hand	side	of	letter	C)	is	used	on	the	left	hand	side	of	the	control
signal	name.

Figure	2.41	Flip-flops	with	Synchronous	and	Asynchronous	Control

Another	control	input	for	flip-flops	is	a	clock	enabling	input.	When	enabled,	the	flip-
flop	accepts	its	input	when	a	clock	pulse	arrives,	and	when	disabled,	clocking	the	flip-flop
does	not	change	its	state.

Figure	2.42	Clock	Enabling

Two	 implementations	 for	 clock	 enabling	 are	 shown	 in	 Figure	 2.42.	 The	 one	 on	 the
left,	circulates	data	back	into	the	flip-flop	when	it	is	disabled	(EN	=	0).	When	enabled,	the
external	data	on	the	D	input	is	clocked	into	the	flip-flop.	The	structure	shown	on	the	right,
uses	an	AND	gate	to	actually	gate	the	clock	and	stop	the	flip-flop	from	accepting	data	on
its	D	input.	This	is	called	clock	gating	and	because	of	its	critical	timing	issues,	care	must
be	taken	when	using	this	implementation.

Figure	2.43	Three-State	Control

Some	flip-flops	come	with	three-state	outputs.	In	this	case,	a	three-state	buffer	on	the
output	is	controlled	by	an	OE	(Output	Enable)	control	input.	Hardware	implementation	of
this	feature	and	its	symbolic	notation	are	shown	in	Figure	2.43.	The	use	of	a	triangle	on
the	output	side	of	the	symbolic	notation	is	useful,	but	is	not	always	used.

2.5.5	Registers

The	structure	formed	by	a	group	of	flip-flops	with	a	common	clock	signal	and	common
control	 signals	 is	 called	 a	 register.	 As	 with	 flipflops,	 registers	 come	 in	 different
configurations	in	terms	of	their	enabling,	initialization	and	output	control	signals.	Figure
2.44	 shows	 an	 8-bit	 register	 with	 an	 active-low	 three-state	 output	 control	 and	 a
synchronous	active	low	reset.	A	register	is	also	said	to	a	group	of	latches.

Figure	2.44	An	8-bit	Register

2.6	Sequential	Circuit	Design

This	section	discusses	design	of	circuits	 that	have	memory;	 such	circuits	are	also	called
sequential	 circuits.	We	will	 first	 discuss	 the	 design	 of	 sequential	 circuits	 using	 discrete
parts	 (gates	 and	 flip-flops)	 and	 then	 focus	 our	 attention	 on	 sequential	 packages.	 This
approach	is	similar	to	what	was	done	in	Section	2.4	for	combinational	circuits.

2.6.1	Finite	State	Machines

A	sequential	circuit	is	a	digital	system	that	has	memory	and	decisions	it	makes	for	a	given
input	 depend	 on	what	 it	 has	memorized.	 These	 circuits	 have	 local	 (inside	 flip-flops)	 or
global	feedbacks	and	the	number	of	feedbacks	determine	how	much	of	its	past	history	it
remembers.

The	 number	 of	 states	 of	 a	 sequential	 circuit	 is	 determined	by	 its	memory.	A	 circuit
with	it	memory	bits	has	2-	possible	states.	Signals	or	variables	representing	these	states	(it
of	 them)	 are	 called	 state	 variables.	 Because	 sequential	 circuits	 have	 a	 finite	 number	 of
states,	they	are	also	called	finite-state	machines,	or	FSM.

All	 sequential	 circuits	 -	 from	 a	 single	 latch	 to	 a	 network	 of	 high	 performance
computers	 -	 can	 be	 regarded	 as	 an	 FSM.	 Such	 a	 machine	 can	 be	 modeled	 as	 a
combinational	circuit	with	 feedback.	 If	 the	 feedback	path	 includes	an	array	of	 flip-flops
with	 a	 clock	 for	 controlling	 the	 timing	 of	 data	 feeding	 back,	 the	 circuit	 becomes	 a
synchronous	 sequential	 circuit.	 Figure	 2.45	 shows	 the	 Huffman	 model	 of	 synchronous
sequential	 circuits.	 This	 model	 divides	 such	 a	 circuit	 into	 a	 combinational	 part	 and	 a
register	part.

Figure	2.45	Huffman	Model	of	a	Sequential	Circuit

The	clock	shown	is	the	synchronization	signal.	Outputs	that	are	fed	back	to	the	inputs	are
state	variables.	The	inputs	of	the	flip-flops	become	the	present	state	of	the	machine	after
the	 circuit	 clock	 ticks.	The	 circuit	 decides	 on	 its	 outputs	 and	 its	 next	 state	 based	 on	 its
inputs	and	its	present	state.

2.6.2	Designing	State	Machines

To	 show	 the	 design	 process	 for	 FSMs,	we	 use	 a	 simple	 design	with	 one	 input	 and	 one
output.	The	circuit	searches	on	its	input	for	a	sequence	of	is	and	Os.	This	circuit	is	called	a
sequence	detector,	and	the	procedure	used	in	its	design	applies	to	the	design	of	very	large
FSMs.

2.6.2.1	Problem	Description.	A	sequence	detector	with	one	input,	x	and	one	output,	w,	is
to	 be	 designed.	 The	 circuit	 searches	 on	 its	 x	 input	 for	 a	 sequence	 of	 1011.	 If	 in	 four
consecutive	 clocks	 the	 sequence	 is	 detected,	 then	 its	 output	 becomes	 1	 for	 exactly	 one
clock	 period.	 The	 circuit	 continuously	 performs	 this	 search	 and	 it	 allows	 overlapping
sequences.	For	example,	a	sequence	of	1011011	causes	two	positive	pulses	on	the	output.
Figure	2.46	shows	a	timing	diagram	example	of	this	search.

Figure	2.46	Searching	for	1011

2.6.2.2	State	Diagram.	The	above	problem	description	is	complete,	but	does	not	formally
describe	 the	 machine.	 To	 design	 this	 sequence	 detector,	 a	 state	 diagram	 which	 has
representations	 for	 all	 states	 of	 the	 machine	 must	 be	 used.	 A	 state	 diagram	 is	 like	 a
flowchart	and	it	completely	describes	our	state	machine	for	values	that	occur	on	its	input.
Input	 events	 are	 only	 considered	 if	 they	 are	 synchronized	 with	 the	 clock.	 Figure	 2.47
shows	the	state	diagram	of	our	1011	detector.

As	 shown	 in	 this	 state	 diagram,	 each	 state	 has	 a	 name	 (A	 through	 E)	 and	 a
corresponding	output	value	(w	is	1	in	E	and	0	in	the	other	states).	There	are	edges	out	of
each	state	for	all	possible	values	of	circuit	inputs.

Since	we	only	have	one	input,	two	edges,	one	for	x=O	and	one	for	x=1	are	shown	for
each	state.	Since	the	machine	is	to	detect	1011,	this	sequence	always	ends	in	state	E,	no
matter	what	state	we	start	from.	In	each	state,	if	the	input	value	that	takes	the	machine	one
state	closer	to	the	output	is	not	received	(e.g.,	receiving	a	0	in	state	D),	the	machine	goes
to	the	state	that	saves	the	most	number	of	bits	of	the	correct	sequence.	For	example	a	0	in
state	D	takes	the	machine	to	state	C	that	has	a	0	output,	since	state	D	is	the	state	that	101
has	 been	 detected	 and	 a	 0	 on	 x	 makes	 the	 remembered	 received	 bits	 1010.	 Of	 these
remembered	bits	only	the	last	10	can	be	used	towards	a	correct	sequence,	and	therefore	the
machine	goes	to	state	C	that	remembers	this	sequence.

Figure	2.47	State	Diagram	for	the	1011	Detector

2.6.2.3	State	Table.	Design	of	digital	circuits	requires	data	and	behavior	of	the	circuit	that
is	being	designed	to	be	represented	in	a	tabular	form.	This	enables	us	to	form	truth	tables

and/or	k-maps	from	this	behavioral	description.	Therefore,	the	next	step	in	design	of	our
sequence	detector	is	to	form	a	table	from	the	state	diagram	of	Figure	2.47.

Figure	2.48	State	Table	of	the	1011	Detector

Figure	 2.48	 shows	 the	 state	 table	 that	 corresponds	 to	 this	 state	 diagram.	 The	 first
column	shows	the	present	states	of	the	machine,	State.	Table	entries	are	the	next	states	of
the	machine	for	x	values	0	and	1.	The	table	also	shows	the	output	of	the	circuit	for	various
states	of	the	machine.	State	E	goes	to	state	C	for	x	of	0	and	to	state	B	if	x	is	1.	The	value
of	the	w	output	in	this	state	is	1.

2.6.2.4	State	Assignment.	The	 state	 table	 of	Figure	 2.48	 takes	 us	 one	 step	 closer	 to	 the
hardware	implementation	of	our	sequence	detector,	because	the	information	is	represented
in	 a	 tabular	 form	 instead	 of	 the	 graphical	 form	 of	 Figure	 2.47.	 However,	 hardware
implementation	requires	all	variables	in	a	circuit	description	to	be	in	binary.	Obviously,	in
our	state	table,	state	names	are	not	in	binary.

For	 this	binary	representation,	we	assign	a	unique	binary	pattern	(binary	number)	 to
each	of	 the	 states	 of	 our	 state	 table.	This	 step	of	 the	work	 is	 called	 “state	 assignment”.
Because	we	have	five	states,	we	need	five	unique	binary	numbers,	which	means	that	we
need	 three	 bits	 for	 giving	 our	 states	 unique	 bit	 patterns.	 Figure	 2.49	 shows	 the	 state
assignment	that	we	have	decided	to	use	for	this	design.

Specific	bit	patterns	given	 to	 the	states	of	a	state	machine	are	not	 important.	Binary
values	assigned	to	each	state	become	values	for	y2,	yi,	and	yo.	These	variables	are	state
variables	of	our	machine.

Figure	2.49	State	Assignment

2.6.2.5	 Transition	 Table.	 Now	 that	 we	 have	 binary	 values	 for	 the	 states	 of	 our	 state
machine,	 state	 names	 in	 the	 state	 table	 of	 Figure	 2.48	 must	 be	 replaced	 with	 their
corresponding	binary	values.	This	will	 result	 in	a	 tabular	 representation	of	our	circuit	 in

which	all	values	are	binary.	This	table	is	called	a	transition	table	and	is	shown	in	Figure
2.50.

Figure	2.50	Transition	Table	for	the	1011	Detector

A	transition	table	shows	the	present	values	of	state	variables	(y2,	yi	and	yo)	and	their
next	 values	 (y2+,	 yi+	 ,	 yo+).	 Next	 state	 values	 are	 those	 that	 are	 assigned	 to	 the	 state
variables	after	the	circuit	clock	ticks	once.	Since	only	five	of	eight	possible	states	are	used,
three	 combinations	 of	 state-variable	 value	 are	 unused.	 Therefore,	 next	 state	 and	 output
values	for	these	table	entries	are	don’t	care	values.

2.6.2.6	Excitation	Tables.	So	far	in	the	design	of	the	1011	detector,	we	have	concentrated
on	 the	 design	 of	 the	 complete	 circuit	 including	 its	 combinational	 and	 register	 parts,	 as
defined	by	the	Huffman	model	of	Figure	2.45.	We	have	been	discussing	present	and	next
state	values,	which	obviously	imply	a	sequential	circuit.

In	the	next	step	of	the	design,	we	separate	the	combinational	and	the	register	parts	of
the	design.	The	register	part	is	simply	an	array	of	flip-flops	with	a	common	clock	signal.
The	 combinational	 part	 is	where	 present	 values	 of	 flip-flops	 (their	 outputs)	 are	 used	 to
generate	flip-flop	input	values	that	will	become	their	next	state	values.

Because	a	D-type	flip-flop	takes	the	value	on	its	D	input	and	transfers	it	into	its	output
after	the	edge	of	clock,	what	we	want	to	become	its	next	state	is	the	same	as	what	we	put
on	its	D	input.	This	means	that	the	required	D	input	values	generated	by	the	combinational
part	 of	 a	 sequential	 circuit	 are	 no	 different	 than	 their	 next	 state	 values	 (Q+	 =	 D).
Therefore,	tables	for	values	of	D2,	Di	and	Do	in	our	1011	sequence	detector	are	the	same
as	those	for	y2+,	yl+,	and	yo+.	Flip-flop	input	tables	are	called	excitation	tables	that	are
shown	in	Figure	2.51	for	our	design.

Figure	2.51	Flip-flop	Excitation	Tables

2.6.2.7	 Implementing	 the	 Combinational	 Part.	 Now	 that	 we	 have	 separated	 the
combinational	and	register	parts	of	our	design,	the	next	step	is	to	complete	the	design	of
the	combinational	part.	This	part	is	completely	described	by	the	table	of	Figure	2.51.	This
table	includes	values	for	D2,	DI	and	DO	in	terms	of	x,	y2,	yl,	and	yO,	as	well	as	values	for
w	in	terms	of	y2,	yl	and	yO.	Karnaugh	maps	shown	in	Figure	2.52	are	extracted	from	the
table	of	Figure	2.51.

Figure	 2.52	 also	 shows	Boolean	 expressions	 for	 the	D-inputs	 of	 y2,	 yi	 and	yo	 flip-
flops.	The	four-input	 (x,	y2,	yi,	and	yo),	 four-output	 (w,	D2,	Di,	and	Do)	combinational
circuit	is	fully	defined	by	Boolean	expressions	of	Figure	2.52.

Figure	2.52	Implementing	Combinational	Part

Figure	2.53	Logic	Block	Diagram	of	the	1011	Detector

2.6.2.8	 Complete	 Implementation.	 The	 design	 of	 the	 1011	 sequence	 detector	 will	 be
completed	by	wiring	the	gate-level	realization	of	the	combinational	part	with	the	flip-flops
of	the	register	part.	This	realization	is	shown	in	Figure	2.53.

Implementation	 of	 the	 1011	 detector	 is	 according	 to	 the	 Huffman	model	 of	 Figure
2.45.	The	box	on	the	left	is	the	combinational	part,	and	the	one	on	the	right	is	the	register
part.	State	variables	of	this	circuit	are	y2,	yi	and	yo	that	are	fed	back	from	the	outputs	of
the	 combinational	 part	 back	 into	 its	 inputs	 through	 the	 register	 part.	 The	 clocking
mechanism	and	initialization	of	the	circuit	only	affect	the	register	part.	For	asynchronous
initialization	of	the	circuit,	flip-flops	with	asynchronous	set	and/or	reset	inputs	should	be
used.	 For	 synchronous	 initialization,	 AND	 gates	 on	 the	 D	 inputs	 should	 be	 used	 for
resetting	and	OR	gates	for	setting	the	flip-flops.

2.6.3	Mealy	and	Moore	Machines

The	design	presented	in	the	previous	section	produces	an	output	that	is	fully	synchronous
with	the	circuit	clock.	In	its	state	diagram,	since	the	output	is	specified	in	the	states	of	the
machine,	while	 in	a	given	state,	 the	output	 is	 fixed.	This	can	also	be	 seen	 in	 the	circuit
block	 diagram	 of	 Figure	 2.53	 in	 which	 the	 logic	 of	 the	 w	 output	 only	 uses	 the	 state
variables,	and	does	not	involve	x.	This	state	machine	is	called	a	Moore	machine.	A	more
relaxed	timing	can	be	realized	by	use	of	a	different	machine	that	is	referred	to	as	a	Mealy
machine.

Figure	2.54	shows	the	Mealy	state	diagram	of	the	1011	detector.	As	shown,	the	output

values	in	each	state	are	specified	on	the	edges	out	of	the	states,	along	with	input	values.
This	means	that	while	in	a	given	state,	the	value	on	x	decides	the	value	of	the	output.	For
example,	in	state	D,	if	x	is	0,	w	is	0	and	if	x	is	1,	w	is	1.

Figure	2.54	Mealy	State	Diagram

With	 this	 dependency,	 changes	 on	 x	 propagate	 to	 the	 output	 even	 if	 they	 are	 not
accompanied	by	the	clock.	The	implementation	of	a	Mealy	machine	is	similar	to	that	of	a
Moore	 machine,	 except	 that	 the	 output	 k-map	 involves	 the	 inputs	 as	 well	 as	 the	 state
variables.	A	se	quence	detector	that	is	implemented	with	a	Mealy	machine	usually	requires
one	state	less	than	the	Moore	machine	that	detects	the	same	sequence.	If	implemented	as	a
Mealy	machine,	our	detector	requires	four	states,	two	state	variables,	and	three	3-variable
Karnaugh	maps	for	the	two	state	variables	and	the	output.

2.6.4	One-Hot	Realization

Instead	of	going	through	steps	discussed	in	Section	2.6.2	for	gatelevel	implementation	of	a
state	machine,	a	more	direct	realization	can	be	obtained	by	using	one	flip-flop	per	state	of
the	machine.	Since	in	a	state	diagram	only	one	state	is	active	at	any	one	time,	only	one	of
the	 corresponding	 flip-flops	 becomes	 active.	 This	 method	 of	 state	 assignment	 is	 called
one-hot	 assignment.	 This	 implementation	 uses	 more	 flip-flops	 than	 the	 binary	 state
assignment	discussed	in	Section	2.6.2,	but	uses	fewer	logic	gates	for	activation	of	the	flip-
flops.

Figure	2.55	One-hot	Implementation

One-hot	implementation	of	the	Mealy	machine	of	Figure	2.54	is	shown	in	Figure	2.55.
Output	 of	 the	AND	 gates	 on	 the	 outputs	 of	 the	 flip-flops	 correspond	 to	 the	 edges	 that
come	out	of	the	states	of	the	state	diagram.	These	AND	gates	are	conditioned	by	x=0	or

x=1.	The	four	flip-flops	used	yield	24	possible	states.	Of	these	16	states	only	four	are	used
(1000,	0100,	0010	and	0001).	Initialization	of	a	one-hot	machine	should	be	done	such	that
it	is	put	into	one	of	its	valid	states.	Starting	the	machine	in	0000	is	wrong	because	it	will
never	get	out	of	this	state.

Some	 of	 the	 advantages	 of	 one-hot	machines	 are	 their	 ease	 of	 design,	 regularity	 of
their	structure,	and	testability.

2.6.5	Sequential	Packages

As	 there	 are	 commonly	 used	 combinational	 packages,	 like	 adders,	 decoders	 and
multiplexers,	 there	 are	 commonly	 used	 sequential	 packages	 like	 registers,	 counters	 and
shifters.	 An	 RT	 level	 designer	 first	 partitions	 his	 or	 her	 design	 into	 such	 predefined
components,	and	will	only	resort	to	designing	with	discrete	components	when	there	are	no
packages	that	meet	the	design	requirements.

2.6.5.1	Counters.	Counters	are	used	 in	many	RT	level	designs.	A	counter	 is	a	sequential
circuit	 that	 counts	 a	 certain	 sequence	 in	ascending	or	descending	order.	An	n-bit	binary
up-counter	counts	n-bit	numbers	in	the	ascending	order.

Figure	2.56	State	Diagram	of	a	2-bit	Counter

As	an	example	we	will	show	the	design	of	a	2-bit	up-down	counter.	With	each	clock
pulse,	when	UD	is	1	it	counts	up	and	when	UD	is	0	it	counts	down.

In	the	count-up	mode	the	next	count	after	11	is	00,	and	in	the	countdown	mode	the	next
count	after	00	is	11.

The	state	diagram	for	this	counter	is	shown	in	Figure	2.56.	Counter	count	outputs	are
shown	in	each	state.	This	is	a	Moore	state	machine	and	the	procedure	discussed	earlier	in
this	 chapter	 can	 be	 used	 for	 its	 design.	 However,	 because	 of	 the	 simple	 sequencing	 of
counter	circuits,	many	of	the	steps	discussed	in	Section	2.6.2	can	be	skipped	and	we	can
go	directly	from	the	description	of	the	counter	to	its	transition	tables.	Furthermore,	if	we
decide	to	use	D-type	flip-flops	for	our	counter,	excitation	tables,	or	even	D-input	k-maps,
can	be	written	based	on	the	count	sequence.	Figure	2.57	shows	k-maps	generated	directly
from	the	up	and	down	sequences	of	the	counter	of	Figure	2.56.

In	the	right	columns	of	the	k-maps	when	(JD=I,	values	for	DI	and	DO	are	set	to	take
Ci	and	Co	through	the	00,	01,	10,	11,	…	sequence.	In	the	left	columns	of	the	k-maps,	Di
and	Do	values	make	the	counter	count	the	11,	10,	01,	00,	…	sequence.	Circuit	shown	in

Figure	2.58	performs	the	basic	up-	and	down-	counting	for	our	2-bit	counter.

Figure	2.57	Excitation	K-maps	for	a	2-Bit	Up-Down	Counter

Figure	2.58	A	Two-Bit	Up-Down	Counter

In	 addition	 to	 the	 basic	 counting	 implemented	 by	 the	 circuit	 of	 Figure	 2.58,	 other
features	in	a	counter	include,	resetting,	parallel	loading,	enabling,	carry-in	and	carry-out.
Resetting	a	counter	 is	 like	 resetting	 registers.	Asynchronous	 resetting	 forces	 the	 counter
into	 its	 initial	 state	 and	 acts	 independent	 of	 the	 clock.	 Synchronous	 resetting	 loads	 the
initial	 state	 of	 the	 counter	 through	 the	 D-inputs	 of	 counter	 flip-flops,	 which	 obviously
requires	the	proper	clocking	of	the	register.

To	start	counting	from	a	given	state,	the	counter	is	put	into	parallel-load	mode	and	the
designated	start	state	is	loaded	into	the	flipflops	of	the	counter.

In	this	mode	the	counter	acts	just	like	a	register.	Inputs	of	flipflops	of	a	counter	with
parallel	load	feature	must	be	available	outside	of	the	counter	package.

An	 enable	 input	 for	 a	 counter	 makes	 it	 count	 only	 when	 this	 input	 is	 active.	 This
signal	controls	clocking	of	data	into	the	individual	flip-flops	of	the	counter.

Some	counters	have	carry-in	and	carry-out	input	and	output	signals	that	are	used	for
cascading	several	of	 them.	Carry-out	output	of	a	modulo-n	counter	becomes	1	when	 the
counter	reaches	its	maximum	count.	The	carry-in	input	of	a	counter	(if	it	exists)	acts	just
like	an	enable	 input	 except	 that	 it	 also	enables	 the	carry-out	of	 the	 counter.	Figure	2.59
shows	a	two-bit	up-counter	with	added	features	of	synchronous	reset,	enable,	parallel	load,
carry-in	and	carry-out.

Figure	2.59	Two-Bit	Up-Counter	with	Added	Features

The	mi	and	mo	inputs	of	the	counter	shown	in	Figure	2.59	are	its	mode	inputs.	These
inputs	control	data	 that	 are	clocked	 into	 the	 flipflops.	 If	mode	 is	0	 (mi,	mo	=	0,	0),	 the
counter	 is	disabled.	 In	mode	1	 the	counter	 resets	 to	0,	 in	mode	2	 the	counter	counts	up.
Mode	3	is	for	parallel	load;	in	this	mode	Pi	and	Po	are	loaded	into	the	counter.	The	counter
only	counts	if	carry	in	is	1,	otherwise	it	is	disabled.	When	carry	in	is	1	and	counter	reaches
11,	the	carryout	becomes	1.	Cascading	counters	can	be	done	by	connecting	carryout	of	one
to	the	carry_in	of	another.

2.6.5.2	Shifters.	Shift	registers	are	registers	with	the	property	that	data	shifts	right	or	left
with	 the	 edge	 of	 the	 clock.	 Shift	 registers	 are	 used	 for	 serial	 data	 collection,	 serial	 to
parallel,	and	parallel	to	serial	converters.

Figure	 2.60	 shows	 a	 4-bit	 right	 shifter.	 With	 every	 edge	 of	 the	 clock	 data	 in	 the
register	moves	one	place	to	the	right.	Data	on	Si	(serial-in)	starts	moving	into	the	register
and	data	in	the	register	moves	out	bit-by-bit	from	So	(serial-out).

Figure	2.60	A	4-bit	Shift	Register

Shift-registers	 can	 be	 easily	 cascaded	 by	 connecting	S.	 of	 one	 to	 the	Si	 of	 another.
Other	 functionalities	 included	 in	 these	 packages	 are	 left-shift,	 parallel	 load,	 enable,	 and
reset.	These	features	can	be	included	in	much	the	same	way	as	in	counters	(Figure	2.59).
Shiftregisters	with	three-state	output	control	use	three-state	gates	on	their	output,	like	what
is	done	in	registers	(Figures	2.43	2.44).

2.7	Memories

In	 their	 simplest	 form,	 memories	 are	 two-dimensional	 arrays	 of	 flipflops,	 or	 one-
dimensional	 arrays	 of	 registers.	 Flip-flops	 in	 a	 row	 of	 memory	 share	 read	 and	 write
controls,	and	memory	rows	share	input	and	output	lines.

The	number	of	 flip-flops	 in	a	 row	of	memory	 is	 its	word-length,	m.	Memory	words
are	arranged	so	that	each	word	can	individually	be	read	or	written	into.	Memory	access	is
limited	to	its	words.	A	memory	of	2-	m-bit	words	has	it	address	lines	for	addressing	and
enabling	read	and	write	operations	into	its	words.	The	address	space	of	such	a	memory	is
2-	words.	Input	and	output	busses	of	such	a	memory	have	m	bits.	The	block	diagram	of	a
clocked	memory	with	a	 r/w	(read/write)	control	signal	 is	shown	in	Figure	2.61.	The	CE
input	shown	is	the	Chip	Enable	input,	which	must	be	active	for	the	memory	to	be	read	or
written	into.

Figure	2.61	A	2”	rn-bit	Memory

Because	accessing	words	 in	a	memory	can	be	done	 independent	of	 their	 location	 in
the	 memory	 array	 and	 by	 simply	 addressing	 them,	 memories	 are	 also	 called	 RAM	 or
Random	Access	Memory.	RAM	structures	come	in	various	forms,	SRAM	(Static	RAM),
DRAM	(Dynamic	RAM),	Pseudo-Static	RAM,	and	many	other	forms	that	depend	on	their
technology	as	well	as	their	hardware	structures.

2.7.1	Static	RAM	Structure

Figure	2.62	shows	an	SRAM	that	has	an	address	space	of	4,	and	word	 length	of	3.	The
address	 bus	 for	 this	 structure	 is	 a	 2-bit	 bus	 (22	 =4),	 and	 its	 input	 and	 output	 are	 3-bit
busses.	A	2-to-4	decoder	 is	used	for	decoding	 the	address	 lines	and	giving	access	 to	 the
words	 of	 the	 memory.	 An	 external	 Chip-Enable	 disables	 all	 read	 and	 write	 operations
when	it	is	0.

The	logic	of	the	decoder	shown	in	Figure	2.62	may	be	distributed	inside	the	memory
array.	Other	blocks	in	the	memory	shown	are	a	read-write	logic	block	and	an	IO	block.

Figure	2.62	SRAM	Structure

2.8	Bidirectional	10

The	memory	 shown	 in	 Figure	 2.62	 has	 bidirectional	 inout	 lines	 used	 both	 as	 input	 and
output.	In	the	input	mode,	IO	lines	feed	D-flip-flop	inputs.	In	the	output	mode,	three-state
gates	in	the	10	buffer	block	take	the	output	of	the	addressed	memory	word	and	put	it	on
the	IO	of	the	memory.

Bidirectional	inout	lines	are	useful	for	cascading	memory	chips	and	for	reducing	pin
count	of	memory	packages.

2.9	A	Comprehensive	Example:	Serial	Adder

In	the	previous	section	basics	of	combinational	and	sequential	circuits	were	discussed.	We
showed	how	simple	combinational	parts	could	be	designed	and	how	state	machines	were
defined	 and	 designed	 using	 sequential	 and	 combinational	 concepts.	 Furthermore
combinational	and	 sequential	 packages	were	 defined.	 This	 section	 puts	 all	 the	 concepts
into	one	example	and	shows	how	a	complete	system	using	sequential	and	combinational
parts	is	designed.

2.9.1	Problem	Statement

The	example	we	are	using	is	an	8-bit	serial	adder	with	two	serial	data	inputs	ain	and	bin,

and	a	control	input	start.	As	shown	in	Figure	2.63,	the	circuit	has	an	eight	bit	result	output
and	a	ready	signal.	After	a	complete	pulse	on	start,	operand	data	bits	start	showing	up	on
ain	 and	 bin	 with	 every	 clock	 with	 least	 significant	 bits	 coming	 in	 first.	 In	 eight	 clock
pulses	as	input	data	come	into	the	circuit,	they	are	added	and	the	result	becomes	ready	on
result.	At	this	time	the	ready	signal	becomes	1	and	it	remains	1	until	a	1	is	detected	on	the
start	input.	While	the	circuit	is	performing	its	data	collection	and	addition,	pulses	on	start
are	ignored.

Figure	2.63	Serial	Adder	Block	Diagram

2.9.2	Design	Partitioning

The	design	of	the	serial	adder	has	a	datapath	and	a	controller.	The	datapath	collects	data,
adds	them,	and	shifts	the	result	into	a	shiftregister.	The	controller	waits	for	start,	controls
shifting	 of	 data	 into	 the	 shift-register,	 and	 issues	 ready	 when	 the	 addition	 operation	 is
complete.	Figure	2.64	shows	the	outline	of	this	partitioning.	In	what	follows,	the	details	of
the	two	parts	of	this	figure	will	be	discussed.

Figure	2.64	Serial	Adder	Data/Control	Partitioning

2.9.3	Datapath	Design

In	the	datapath	of	the	serial	adder	a	full-adder	adds	data	coming	in	on	ain	and	bin.	With
each	addition,	the	sum	is	shifted	into	a	shiftregister.	As	data	are	added,	the	carry	result	of
the	 full	 adder	 is	 saved	 in	 a	 flip-flop	 to	 be	 used	 for	 the	 addition	 of	 the	 next	 set	 of	 bits
coming	on	ain	and	bin.	This	flip-flop	must	be	reset	for	each	new	round	of	8-bit	addition.

Figure	2.65	Serial	Adder	Datapath

Figure	2.65	shows	the	details	of	hardware	of	the	datapath.	The	FA	shown	in	this	figure
is	the	same	as	that	shown	in	Figure	2.27;	the	FF	shown	is	a	rising-edge	trigger	D-type	flip-
flop	 (similar	 to	 the	 leftmost	 flip-flop	 of	 Figure	 2.41,	 without	 its	 asynchronous	 control
inputs).	The	AND	gate	at	the	input	of	the	flip-flop	provides	it	with	a	synchro	nous	reset.
This	input	connects	to	the	init	input	that	comes	from	the	controller.	As	stated	above,	this
flip-flop	saves	the	carry	output	of	a	lower	order	bit	addition	for	it	 to	be	used	in	the	next
upper-order	bit	addition.

The	shift-register	of	the	datapath	is	an	8-bit	shift-register	with	a	design	similar	to	that
of	Figure	2.60.	Our	 required	shift-register,	however,	needs	an	enable	 input	 that	does	not
exist	 in	 the	4-bit	 shiftregister	of	Figure	2.60.	This	 feature	 can	easily	be	 added	by	using
multiplexers	at	 the	 input	of	 the	 flip-flops	used	 in	 the	 shift-register.	Figure	2.66	 shows	a
shift-register	bit	that	can	be	cascaded	to	form	the	required	shift-register	of	our	design.	The
input	of	the	left-most	input	of	this	structure	becomes	the	serial-input	of	the	shift-register.
The	sum	output	from	the	full-adder	is	connected	to	this	input.	The	output	of	the	right-most
bit	of	the	shift-register	is	the	serial	output	that	is	not	needed	in	our	design.

Figure	2.66	Cascadable	Shift-register	Bit	with	an	Enable	Input

Figure	 2.67	 shows	 the	 controller	 of	 our	 serial	 adder.	 On	 one	 side	 there	 is	 a	 state
machine	that	waits	for	start	and	issues	count	enable	and	ready.	The	state	machine	waits	for
the	complete	signal	to	be	issued	by	the	counter	before	it	returns	to	its	initial	state	that	waits
for	another	pulse	on	start.	The	outputs	of	this	state	machine	are	ready,	init,	count	enable,
and	 shift	 enable.	 The	 init	 and	 shift	 enable	 outputs	 go	 out	 to	 the	 datapath	 to	 control
initialization	and	shift	activities.

On	the	other	side	of	the	controller	is	a	counter	that	counts	when	count	enable	is	issued.
Eight	clock	pulses	after	init	resets	this	counter	to	0,	and	while	count	enable	is	active,	the
counter	reaches	its	111	state	and	issues	the	complete	signal.	When	this	signal	is	issued,	the
controller	disables	count	enable,	which	causes	the	counter	to	hold	its	last	state.

Parallel	with	count	enable,	 the	controller	also	issues	shift	enable	that	goes	out	to	the
datapath.	While	this	signal	is	active,	add	results	from	the	full-adder	(FA)	are	shifted	into
the	datapath	shift-register.	Note	that	after	eight	shifts,	because	the	shift-register	is	disabled,
the	output	remains	on	the	circuit	result	output.

Figure	2.67	Serial	Adder	Controller

The	 state	machine	 part	 of	 the	 controller	 can	 be	 implemented	 in	 a	 variety	 of	 ways.
Figure	2.68	shows	 the	one-hot	 implementation	of	 this	circuit.	This	circuit	uses	start	and

complete	inputs	and	issues	ready,	iuit,	shift	enable	and	count	enable.	The	reset	input	is	the
serialadder’s	external	reset	 input	 that	sets	 the	machine	to	 its	state	SO	by	setting	 the	first
flip-flop	to	1	and	the	rest	to	0.

Figure	2.68	Controller	State	Machine	Implementation

The	 counter	 part	 of	 the	 controller	 of	 Figure	 2.67	 is	 a	 simple	 3-bit	modulo-8	 binary
counter	 that	can	be	 implemented	in	a	variety	of	ways.	We	have	used	an	iterative,	 toggle
flip-flop	 based	 structure	 that	 forms	 a	 synchronous	 counter.	 Gate	 level	 details	 of	 this
structure	are	shown	in	Figure	2.69.

Figure	2.69	Controller	Counter	Implementation

The	 init	 input	 that	 comes	 from	 the	 controller	 state	machine	provides	 a	 synchronous
reset	for	the	counter	of	our	controller.	When	this	input	is	0,	counter	slices	(Figure	2.69)	are
working	in	their	normal	count	mode	of	operation.	In	each	slice,	the	XOR	feedback	of	the
flipflop	makes	it	a	toggle	flip-flop	with	an	enable	input.	When	the	upper	input	of	the	XOR
is	0,	 the	output	of	 the	 flip-flop	circles	back	 into	 its	 input	causing	 its	contents	 to	 remain
unchanged.	On	the	other	hand,	when	the	upper	XOR	input	is	1	(it	 is	enabled),	 it	 toggles
with	every	clock	pulse.

Cascading	 three	 of	 the	 structures	 shown	 in	 this	 figure	 generates	 a	modulo-8	 binary
counter.	When	enabled,	 the	 right-most	bit	always	 toggles.	The	second	bit	 from	 the	 right

only	toggles	when	the	rightmost	bit	 is	1.	In	general,	cascading	of	 the	AND	gates	causes
each	bit	of	the	counter	to	toggle	with	the	clock	when	all	bits	to	its	right	are	1.	Therefore,
if,	 for	 example,	 the	 counter	 contents	 are	 011,	 the	 next	 clock	 causes	 the	 right-most	 1	 to
toggle	to	0.	Also,	the	second	1	toggles,	because	its	right-most	bit	is	1.	And,	since	the	two
bits	 to	 the	 right	 of	 the	 0	 are	 1,	 this	 bit	 toggles	 as	 well.	 This	 toggling	 causes	 the	 next
contents	of	the	counter	to	become	100	which	is	one	count	above	011	in	the	binary	system.

As	 stated	 above,	 the	AND	gate	 input	 of	 the	 right-most	 bit	 acts	 as	 the	 count	 enable
input.	This	 is	because,	when	 this	bit	 is	0,	 it	propagates	 to	all	AND	gates	of	 the	counter,
causing	 all	XOR	 inputs	 to	be	0	which	 disables	 the	 toggling	 of	 the	 flip-flops.	When	 the
AND	gates	 are	 enabled,	 the	 very	 last	 (left-most)	AND	gate	 output	 becomes	 1	when	 all
flip-flop	outputs	are	1.	This	happens	when	the	counter	reaches	111	which	is	the	final	count
of	 the	 counter.	 Therefore,	 as	 shown	 in	 Figure	 2.69,	 the	 last	AND	output	 is	 the	 counter
complete	output	that	is	used	by	the	controller	state	machine.

The	complete	controller	of	 the	 serial	 adder	 is	 formed	by	wiring	 the	counter	 and	 the
state	machine	together	as	shown	in	Figure	2.67.	Using	the	controller,	the	complete	serial
adder	is	formed	by	wiring	this	(Figure	2.67)	and	the	circuit	of	Figure	2.65	together	to	form
the	block	diagram	of	Figure	2.64.

2.10	Summary

This	 chapter	presented	an	overview	of	basic	 logic	design.	The	 focus	was	mostly	on	 the
design	techniques	and	not	on	their	theoretical	background.	We	covered	combinational	and
sequential	circuits	at	the	gate	and	RT	levels.	At	the	combinational	gate-level,	we	discussed
Karnaugh	maps,	but	mainly	concentrated	on	the	use	of	iterative	hardware	and	packages.	In
the	 sequential	 part,	 state	 machines	 were	 treated	 at	 the	 gate	 level;	 we	 also	 discussed
sequential	 packages	 such	 as	 counters	 and	 shift-registers.	 The	 use	 of	 these	 packages
facilitates	RT	level	designs	and	use	of	HDLs	 in	design.	 In	 the	 last	section	we	covered	a
complete	 example	 illustrating	 a	 design	 methodology	 for	 digital	 system	 designs	 out	 of
discrete	gates	and	components.	This	comprehensive	example	showed	how	various	design
techniques	could	be	used	in	a	complete	design.

	

RTL	Design	with	Verilog

The	level	of	hardware	description	that	hardware	description	languages	are	most	used	for	is
the	 register	 transfer	 level	 (RTL).	 Between	 gate	 level	 on	 the	 low	 abstraction	 side,	 and
system	 level	on	 the	high	 abstraction	 side,	 the	RT	 level	 of	 abstraction	 is	 a	 good	balance
between	 correspondence	 to	 actual	 hardware	 and	 ease	 of	 description	 for	 hardware
designers.	At	this	level	of	abstraction,	designs	can	be	simulated	with	HDL	simulators,	they
are	 synthesizable,	 and	 automatic	 generation	 of	 hardware	 is	 provided	 by	most	 hardware
design	EDA	environments.

This	chapter	presents	Verilog	at	the	RT	level.	We	discuss	how	a	design	is	described	in
Verilog	for	simulation	and	synthesis.	For	this	purpose,	only	a	subset	of	Verilog	is	needed
and	many	 complex	 language	 structures	 that	 are	 used	 in	 cell	modeling	 and	 higher	 level
non-	 synthesizable	 designs	 are	 not	 covered	 here.	 In	 order	 to	 utilize	 this	 language	 in	 a
design	 and	 test	 environment,	 certain	 language	 structures	 that	 do	 not	 necessarily
correspond	to	specific	hardware	structures,	but	are	used	for	testing	RT	level	designs,	are
also	described	in	this	chapter.

The	 chapter	 begins	 with	 a	 discussion	 of	 the	 main	 structures	 of	 Verilog.	 After	 this
introductory	presentation,	we	will	start	covering	various	constructs	of	the	language	using
small	 pointed	 examples.	 The	 examples	 progressively	 become	 more	 complex	 and	 more
constructs	of	the	language	are	covered.	After	we	present	a	sufficient	set	of	constructs	for
design	 of	 hardware,	 we	 will	 turn	 our	 attention	 to	 developing	 testbenches	 for	 testing
designs	in	Verilog.	Several	typical	testbenches	for	the	designs	presented	in	the	earlier	parts
of	this	chapter	will	be	discussed	in	this	part.

3.1	Basic	Structures	of	Verilog

The	 basic	 structure	 of	 Verilog	 in	 which	 all	 hardware	 components	 and	 testbenches	 are
described	 is	 called	 a	 module.	 Language	 constructs,	 according	 to	 Verilog	 syntax	 and
semantics	 form	 the	 inside	 of	 a	 module.	 These	 constructs	 are	 designed	 to	 facilitate
description	 of	 hardware	 components	 for	 simulation,	 synthesis,	 and	 specification	 of
testbenches	 to	 specify	 test	 data	 and	 monitor	 circuit	 responses.	 Figure	 3.1	 shows	 a
simulation	model	that	consists	of	a	design	and	its	testbench	in	Verilog.	Verilog	constructs
(shown	by	dotted	lines)	of	the	Verilog	model	being	tested	are	responsible	for	description
of	 its	 hardware,	 while	 language	 constructs	 used	 in	 a	 testbench	 are	 responsible	 for
providing	 input	 data	 to	 the	module	 being	 tested	 and	 analysis	 or	 display	 of	 its	 outputs.

Simulation	output	is	generated	in	form	of	a	waveform	for	visual	inspection	or	data	files	for
machine	readability.

Figure	3.1	Simulation	in	Verilog

After	a	design	passes	basic	functional	validations,	it	must	be	synthesized	into	a	netlist
of	components	of	a	 target	 library.	The	 target	 library	 is	 the	 specification	of	 the	hardware
that	the	design	is	being	synthesized	to.	Verilog	constructs	used	in	the	Verilog	description
of	a	design	for	its	verification,	or	those	for	timing	checks	and	timing	specifications	are	not
synthesizable.	A	Verilog	design	that	is	to	be	synthesized	must	use	language	constructs	that
have	a	clear	hardware	correspondence.

Figure	 3.2	 shows	 a	 block	 diagram	 specifying	 the	 synthesis	 process.	 Circuit	 being
synthesized	and	specification	of	 the	 target	 library	are	 the	 inputs	of	a	 synthesis	 tool.	The
outputs	 of	 synthesis	 are	 a	 netlist	 of	 components	 of	 the	 target	 library,	 and	 timing
specification	and	other	physical	details	of	the	synthesized	design.

Often	 synthesis	 tools	 have	 an	 option	 to	 generate	 this	 netlist	 in	Verilog.	 In	 this	 case
(Figure	 3.3),	 the	 same	 testbench	 prepared	 for	 the	 pre-synthesis	 simulation	 can	 be	 used
with	the	netlist	generated	by	the	synthesis	tool.	This	simulation,	which	is	often	regarded	as
postsynthesis	 simulation,	 uses	 timing	 information	 generated	 by	 the	 synthesis	 tool	 and
yields	simulation	results	with	detailed	timing.

Figure	3.2	Synthesis	of	a	Verilog	Design

Figure	3.3	Post-synthesis	Simulation	in	Verilog

3.1.1	Modules

The	 main	 structure	 used	 in	 Verilog	 for	 description	 of	 hardware	 components	 and	 their
testbenches	 is	 a	module.	A	module	 can	 describe	 a	 hardware	 component	 as	 simple	 as	 a
transistor	 or	 a	 network	 of	 complex	 digital	 systems.	 A	 module	 that	 encloses	 a	 design’s
description	can	be	described	to	test	the	module	under	design,	in	which	case	it	is	regarded
as	 the	 testbench	of	 the	design.	As	shown	 in	Figure	3.4,	modules	begin	with	 the	module
keyword	and	end	with	endmodule.	A	complete	design	may	consist	of	several	modules.	A
design	 file	 describing	 a	 design	 takes	 the	 .	 u	 extension.	 For	 describing	 a	 system,	 it	 is
usually	best	to	include	only	one	module	in	a	design	file.

A	design	may	be	described	in	a	hierarchy	of	other	modules.	The	top-level	module	is
the	 complete	 design,	 and	modules	 lower	 in	 the	 hierarchy	 are	 the	 design’s	 components.
Module	instantiation	is	the	construct	used	for	bringing	a	lower	level	module	into	a	higher
level	one.	Figure	3.5	shows	a	hierarchy	of	several	nested	modules.

Figure	3.4	Module

Figure	3.5	Module	Hierarchy

3.1.2	Module	Outline

The	first	part	of	a	module	description	that	begins	with	the	module	keyword	and	ends	with
a	semicolon	is	regarded	as	its	header.	As	shown	in	Figure	3.6,	in	addition	to	the	module
keyword,	a	module	header	includes	the	module	name	and	list	of	its	ports.	Port	declarations
specifying	the	mode	of	a	port	(i.e.,	input,	output,	etc)	and	its	length	can	be	included	in	the
header,	or	as	separate	declarations	in	the	body	of	the	module.	Module	declarations	appear
after	the	module	header.	In	addition	to	ports	not	declared	in	the	module	header,	this	part
can	 include	 declaration	 of	 signals	 used	 inside	 the	 module,	 or	 temporary	 variables.
Specification	 of	 the	 operation	 of	 a	 module	 follows	 module	 declarations.	 In	 this	 part,
various	interacting	statements	form	the	description	of	the	behavior	of	the	module.

Figure	3.6	Module	Outline

Operation	of	a	module	can	be	described	at	the	gate	level,	using	Boolean	expressions,
at	 the	 behavioral	 level,	 or	 a	mixture	 of	 various	 levels	 of	 abstraction.	 Figure	 3.7	 shows
three	ways	the	same	operation	can	be	described.	Module	simple	la	in	uses	Verilog’s	gate
primitives,	 simple-lb	 uses	 concurrent	 statements,	 and	 simple-le	 uses	 a	 procedural
statement.	Module	simple]a	describes	instantiation	of	three	gate	primitives	of	Verilog.	In
contracts,	 simple	 lb	 uses	 Boolean	 expressions	 to	 describe	 the	 same	 functions	 for	 the
outputs	 of	 the	 circuit.	 The	 third	 description,	 simple	 le,	 uses	 a	 conditional	 if-statement
inside	 a	 procedural	 statement	 to	 generate	 proper	 function	 on	 one	 output,	 and	 uses	 a
procedural	Boolean	function	for	forming	the	other	circuit	output.

Figure	3.7	Module	Definition	Alternatives

The	subsections	that	follow	describe	details	of	module	ports	and	description	styles.	In
the	 examples	 in	 this	 chapter	 Verilog	 keywords	 and	 reserved	 words	 are	 shown	 in	 bold.
Verilog	is	case	sensitive.	It	allows	letters,	numbers	and	special	character	“_”	to	be	used	for
names.	 Names	 are	 used	 for	 modules,	 parameters,	 ports,	 variables,	 wires,	 signals,	 and
instance	of	gates	and	modules.

3.1.3	Module	Ports

In	the	module	header,	following	its	name	is	a	set	of	parenthesis	with	a	list	of	module	ports.
This	list	includes	inputs,	outputs	and	bidirectional	input/output	lines.	Ports	may	be	listed
in	any	order.	This	ordering	can	only	become	significant	when	a	module	is	instantiated,	and
does	not	affect	the	way	its	operation	is	described.	Top-level	modules	used	for	testbenches
have	no	ports.

Along	with	input	and	output	names,	 in	 the	set	of	parenthesis	 that	 follow	the	module
name,	sizes	and	types	of	ports	may	be	specified.	A	port	may	be	input,	output	or	inout.	The
latter	type	is	used	for	bi-directional	input/output	lines.

Size	of	a	multi-bit	port	comes	in	a	pair	of	numbers	separated	by	a	colon	and	bracketed
by	square	brackets.	The	number	on	the	left	of	the	colon	is	the	index	of	the	left	most	bit	of
the	vector,	and	that	on	the	right	is	the	index	of	the	right	most	bit	of	the	vector.	Figure	3.8
shows	an	example	circuit	with	scalar,	vectored,	input,	output	and	inout	ports.	Ports	named
a,	and	b	are	one-bit	inputs,	and	port	c	is	a	one-bit	input/output.	Ports	au	and	be	are	8-bit
inputs	of	acircuit.	The	set	of	square	brackets	that	follow	the	input	keyword	applies	to	all
ports	 that	 follow	 it.	 Another	 input/output	 is	 port	 cc	 that	 is	 an	 8-bit	 vector.	 Port	 w	 of
acircuit	is	declared	as	a	one-bit	output,	and	we	is	an	8-bit	output	of	this	module.

Figure	3.8	Module	Notation

Alternatively,	 port	 declarations	 may	 appear	 as	 separate	 declaration	 statements	 in	 the
module	body,	outside	of	its	header	part.	Figure	3.9	shows	a	circuit	that	is	identical	to	that
of	Figure	3.8,	but	uses	the	latter	format.

Figure	3.9	Module	Ports

3.1.4	Module	Variables

In	 addition	 to	 port	 declarations,	 a	 module	 declarative	 part	 may	 also	 include	 wire	 and
variable	declarations	that	are	to	be	used	inside	the	module.

Wires	(that	are	called	net	in	Verilog)	are	declared	by	their	types,	wire,	wand	or	wor;	and
variables	are	declared	as	reg.	Wires	are	used	for	 interconnections	and	have	properties	of
actual	signals	in	a	hardware	component.	Variables	are	used	for	behavioral	descriptions	and
are	similar	to	variables	in	software	languages.	Figure	3.10	shows	several	wire	and	variable
declarations.

Figure	3.10	Wire	and	Variable	Declaration

Wires	 represent	 simple	 interconnection	 wires,	 busses,	 and	 simple	 gate	 or	 complex
logical	 expression	 outputs.	 When	 wires	 are	 used	 on	 the	 left	 hand	 sides	 of	 assign
statements,	 they	 represent	 outputs	 of	 logical	 structures.	Wires	 can	 be	 used	 in	 scalar	 or
vector	form.	Multiple	concurrent	assignments	to	a	net	are	allowed	and	the	value	that	the
wire	receives	is	the	resolution	of	all	concurrent	assignments	to	the	net.	Figure	3.11	shows

several	examples	of	wires	used	on	the	right	and	left	hand	sides	of	assign	statements.

Figure	3.11	Using	Wires	(net)

In	 contrast	 to	 a	 net,	 a	 reg	 variable	 type	 does	 not	 represent	 an	 actual	 wire	 and	 is
primarily	used	as	variables	are	used	in	a	software	language.	In	Verilog,	we	use	a	reg	type
variable	 for	 temporary	 variables,	 intermediate	 values,	 and	 storage	 of	 data.	 A	 reg	 type
variable	 can	 only	 be	 used	 in	 a	 procedural	 body	 of	 Verilog.	 Multiple	 concurrent
assignments	to	a	reg	should	be	avoided.	Figure	3.12	shows	several	examples	of	reg	type
variables	used	in	a	Verilog	module.

In	 the	 vector	 form,	 inputs,	 outputs,	wires	 and	 variables	may	 be	 used	 as	 a	 complete
vector,	part	of	a	vector,	or	a	bit	of	the	vector.	The	latter	two	are	referred	to	as	part-select
and	 bit-select.	 Examples	 of	 part-select	 and	 bit-select	 on	 right	 and	 left	 hand	 sides	 of	 an
assign	statement	are	shown	in	Figure	3.13.

Figure	3.12	Using	reg	Type	Variables

Figure	3.13	Using	Part-select	and	Bit-select

3.1.5	Logic	Value	System

Verilog	uses	a	4-value	logic	value	system.	Values	in	this	system	are	0,	1,	Z,	and	X.	Value	0
is	for	logical	0	which	in	most	cases	represents	a	path	to	ground	(Gnd).	Value	1	is	logical	1
and	 it	 represents	 a	 path	 to	 supply	 (Vdd).	 Value	 Z	 is	 for	 float,	 and	 X	 is	 used	 for	 un-
initialized,	undefined,	un-driven,	unknown,	and	value	conflicts.	Values	Z	and	X	are	used

for	wired-logic,	busses,	initialization	values,	tri-state	structures,	and	switch-level	logic.

A	 gate	 input,	 or	 a	 variable	 or	 signal	 in	 an	 expression	 on	 the	 right	 hand	 side	 of	 an
assignment	can	 take	any	of	 the	four	 logic	values.	Output	of	a	 two-valued	primitive	gate
can	only	take	0,	1	and	X,	while	output	of	a	tri-state	gate	or	a	transistor	primitive	can	also
take	a	Z	value.	A	right-hand-side	expression	can	evaluate	to	any	of	the	four	logic	values
and	can	thus	assign	0,	1,	Z,	or	X	to	its	left	hand	side	net	or	reg.

For	more	 logic	precision,	Verilog	uses	 strengths	values	as	well	 as	 logic	 values.	Our
dealing	with	Verilog	 is	 for	 design	 and	 synthesis,	 and	 these	 issues	will	 not	 be	 discussed
here.

3.1.6	Wire	(net)	Resolutions

As	discussed	above,	Verilog	allows	multiple	concurrent	assignments	to	net	type	variables.
Furthermore,	a	net	can	be	used	as	the	output	of	two	or	more	gates	or	components,	which
has	 the	 same	 effect	 as	 using	 a	 net	 on	 the	 left	 hand	 sides	 of	 several	 assignments.	As	 an
example,	consider	several	tri-state	gates	with	outputs	connected	to	the	same	wire.	In	this
case,	we	expect	the	resulting	value	to	be	a	wiring	resolution	of	all	the	driving	values.

Verilog	offers	three	types	of	resolutions	for	wired-and,	wired-or,	and	wiring	logic.	For
various	wiring	 functions,	we	use	wire,	wand,	wor,	 tri,	 trio	 and	 tril	 net	 types.	When	 two
wires	(nets)	are	connected,	the	resulting	value	depends	on	the	two	net	values,	as	well	as
the	type	of	the	interconnecting	net.	Figure	3.14	shows	net	values	for	net	types	wire,	wand
and	wor.	The	default	net	type	is	wire.	The	tri	net	type	is	the	same	as	the	wire	type.	A	net	of
type	trio	or	tril	resolves	to	0	and	1,	respectively,	when	driven	by	all	Z	values.	Table	shown
here	is	referred	to	a	net	resolution	table.

Figure	3.14	“net”	Type	Resolutions

In	the	example	of	Figure	3.15,	w	and	y	are	declared	as	wand	and	wire	types.	Multiple
assignments	 to	w	 are	 resolved	 by	 the	 “wand”	 labeled	 row	 of	 table	 of	 Figure	 3.14,	 and
multiple	assignments	toy	are	resolved	by	the	“wire”	labeled	row	of	this	table.

Figure	3.15	Multiple	Assignments	Causing	Resolutions

Several	examples	of	net	resolutions	are	shown	in	Figure	3.16.	As	shown	here,	if	in	the
code	of	Figure	3.15	a	is	1	and	b	is	Z,	since	resolution	of	w	is	wand,	the	value	assigned	to
w	becomes	X.

Figure	3.16	“net”	Resolution	Examples

3.2	Combinational	Circuits

A	 combinational	 circuit	 can	 be	 represented	 by	 its	 gate	 level	 structure,	 its	 Boolean
functionality,	or	description	of	its	behavior.	At	the	gate	level,	interconnection	of	its	gates
are	 shown;	 at	 the	 functional	 level,	 Boolean	 expressions	 representing	 its	 outputs	 are
written;	 and	 at	 the	 behavioral	 level	 a	 software-like	 procedural	 description	 represents	 its
functionality.	 This	 section	 shows	 these	 three	 levels	 of	 abstraction	 for	 describing
combinational	 circuits.	 Examples	 for	 combining	 various	 forms	 of	 descriptions	 and
instantiation	of	already	described	components	will	also	be	described	here.

3.2.1	Gate	Level	Combinational	Circuits

Verilog	 provides	 primitive	 gates	 and	 transistors.	 Some	 of	 the	 more	 important	 Verilog
primitives	and	 their	 logical	 representations	are	shown	 in	Figure	3.17.	 In	 this	 figure	w	 is
used	for	gate	outputs,	i	for	inputs	and	c	for	control	inputs.

Basic	logic	gates	are	and,	nand,	or,	nor,	xor,	xnor.	These	gates	can	be	used	with	one
output	and	any	number	of	 inputs.	The	other	 two	structures	shown	in	 the	first	column	of
this	 figure,	are	not	and	buf.	These	gates	can	be	used	with	one	 input	and	any	number	of
outputs.

Figure	3.17	Basic	Primitives

Another	group	of	primitives	shown	in	this	figure	are	three-state	(tri-state	is	also	used
to	 refer	 to	 these	 structures)	gates.	Gates	 shown	here	have	w	 for	 their	outputs,	 i	 for	data
inputs,	and	c	for	their	control	inputs.	These	primitives	are	bufifl,	notifl,	bufif0,	and	notif0.
When	control	c	for	such	gates	is	active	(1	for	first	and	third,	and	0	for	the	others),	the	data
input,	i,	or	its	complement	appears	on	the	output	of	the	gate.	When	control	input	of	a	gate
is	not	active,	its	output	becomes	high-impedance,	or	Z.

Verilog	 also	 has	 primitives	 for	 unidirectional	 and	 bi-directional	 MOS	 and	 CMOS
structures.	Shown	in	Figure	3.18	are	NMOS,	PMOS	and	CMOS	structures.	Primitives	in
the	left	column	are	unidirectional,	and	those	in	the	right	column	are	bidirectional.	These
are	switches	that	are	used	in	switch	level	description	of	gates,	complex	gates,	and	busses.
The	nmos	(pmos)	primitive	is	a	simple	switch	with	an	active	high	(low)	control	input.	The
cmos	 switch	 is	 usually	 used	 with	 two	 complementary	 control	 inputs.	 These	 switches
behave	 like	 the	 tri-state	 gates,	 and	 they	 are	 only	 different	 from	 tri-state	 gates	 in	 their

output	voltage	levels	and	drive	strengths.	These	parameters	are	modeled	by	wire	strengths
and	are	not	discussed	in	this	book.

Figure	3.18	Basic	MOS	Primitives

3.2.1.1	Majority	 Example.	We	 use	 the	majority	 circuit	 of	 Figure	 3.19	 to	 illustrate	 how
primitive	gates	are	used	in	a	design.	The	description	shown	in	Figure	3.20	corresponds	to
this	circuit.	The	module	description	has	inputs	and	outputs	according	to	the	schematic	of
Figure	3.19.

Figure	3.19	A	Majority	Circuit

Line	1	of	the	code	shown	is	the	timescale	directive.	This	defines	all	time	units	in	the
description	and	their	precision.	For	our	example,	ins/100ps	means	that	all	numbers	in	the
code	that	represent	a	time	value	are	in	nanoseconds	and	they	can	have	up	to	one	fractional
digit	(100	Ps).	It	is	always	a	good	practice	to	use	this	statement	in	every	Verilog	file	as	the
first	statement.	This	eliminates	ambiguities	in	decisions	made	by	Verilog	simulators,	and
carry	over	of	time	units	from	one	module	to	another.	Even	if	a	module	does	not	use	any
delay	parameter,	if	it	becomes	necessary	to	introduce	a	delay	in	the	debugging	process,	the
timescale	directive,	instead	of	simulator	defaults,	sets	the	time	units.

The	 statement	 that	 begins	 in	 Line	 6	 and	 ends	 in	 Line	 9	 instantiates	 three	 and
primitives.	The	construct	that	follows	the	primitive	name	specifies	rise	and	fall	delays	for

the	instantiated	primitive	(tplh=2,	tpni=4).	This	part	is	optional	and	if	eliminated,	0	values
are	assumed	for	rise	and	fall	delays.	Line	7	shows	inputs	and	outputs	of	one	of	the	three
instances	of	the	and	primitive.	The	output	is	iiml	and	inputs	are	module	input	ports	a	and
b.	The	port	 list	on	Line	7	must	be	 followed	by	a	 comma	 if	other	 instances	of	 the	 same
primitive	are	to	follow,	otherwise	a	semicolon	should	be	used,	like	the	end	of	Line	9.	Line
8	and	Line	9	specify	input	and	output	ports	of	the	other	two	instances	of	the	and	primitive.
Line	 10	 is	 for	 instantiation	 of	 the	 or	 primitive	 at	 the	 output	 of	 the	 majority	 gate.	 The
output	of	 this	gate	 is	y	 that	comes	 first	 in	 the	port	 list,	 and	 is	 followed	by	 inputs	of	 the
gate.	In	this	example,	intermediate	signals	for	interconnection	of	gates	are	im1,	im2,	and
im3.	Scalar	interconnecting	wires	need	not	be	explicitly	declared	in	Verilog.

Figure	3.20	Verilog	Code	for	the	Majority	Circuit

The	three	and	instances	could	be	written	as	three	separate	statements,	like	instantiation
of	the	or	primitive.	If	we	were	to	specify	different	delay	values	for	the	three	instances	of
the	and	primitive,	we	had	to	have	three	separate	primitive	instantiation	statements.

3.2.1.2	 Multiplexer	 Example.	 Figure	 3.21	 shows	 a	 2-to-1	 multiplexer	 using	 three-state
gates.	Three-state	gates	are	instantiated	in	the	same	way	as	the	regular	logic	gates.	Outputs
of	 three-state	 gates	 can	 be	 wired	 to	 form	 wired-and,	 wired-or,	 or	 wiring	 logic.	 The
resolution	of	 this	net	 is	determined	by	 the	 type	of	 the	net	 at	 this	node,	 i.e.,	wire,	wand,
wor,	tri,	trio	and	tril	net	types.

The	Verilog	code	of	 this	multiplexer	 is	 shown	 in	Figure	3.22.	Lines	4	 and	5	 in	 this
code	instantiate	two	three-state	gates.	Their	output	is	y,	and	since	it	is	driven	by	both	gates
a	wired-net	is	formed.	Since	y	is	not	declared,	its	net	type	defaults	to	wire.	When	s	is	1,
bufifl	conducts	and	the	value	of	b	propagates	to	its	output.	At	the	same	time,	because	s	is
1,	bufifO	does	not	conduct	and	its	output	becomes	Z.	Resolution	of	these	values	driving
net	y	is	determined	by	the	wire	net	resolution	as	shown	in	Figure	3.14.

Figure	3.21	Multiplexer	Using	Three-state	Gates

Figure	3.22	Multiplexer	Verilog	Code

3.2.1.3	 CMOS	 NAND	 Example.	 As	 another	 example	 of	 instantiation	 of	 primitives,
consider	the	two-input	CMOS	NAND	gate	shown	in	Figure	3.23.

Figure	3.23	CMOS	NAND	Gate

The	Verilog	code	of	Figure	3.24	describes	this	CMOS	NAND	gate.	Logically,	NMOS
transistors	 in	 a	 CMOS	 structure	 push	 0	 into	 the	 output	 of	 the	 gate.	 Therefore,	 in	 the
Verilog	code	of	the	CMOS	NAND,	input	to	output	direction	of	NMOS	transistors	are	from
Gnd,	 towards	w.	Likewise,	PMOS	transistors	push	a	1	value	 into	w,	and	 therefore,	 their
inputs	 are	 considered	 the	Vdd	node	and	 their	outputs	 are	 connected	 to	 the	w	node.	The
im1	signal	is	an	intermediate	net	and	is	explicitly	declared.

Figure	3.24	CMOS	NAND	Verilog	Description

In	 the	Verilog	 code	of	CMOS	NAND	gate,	 primitive	gate	 instance	names	 are	 used.
This	naming	(Ti,	T2,	T3,	T4)	is	optional	for	primitives	and	mandatory	when	modules	are
instantiated.	Examples	of	module	instantiations	are	shown	in	the	next	section.

3.2.2	Gate	Level	Synthesis

Gate	 level	 descriptions	 in	 Verilog	 are	 synthesizable.	 However,	 it	 must	 be	 noted	 that	 a
designer	 using	 a	 gate	 level	 description	 cannot	 expect	 the	 same	 exact	 gates	 and
interconnections	 to	 be	 used	 in	 the	 synthesized	 output.	 The	 hardware	 generated	 by	 a
synthesis	tool,	and	how	gates	are	implemented	merely	depends	on	the	target	 technology.
Furthermore,	delays	used	 in	a	gate	 level	description	are	always	 ignored	by	 the	synthesis
tools.

The	synthesis	of	maj3	module	of	Figure	3.20	using	Altera’s	Quartus	II	and	specifying
Cyclone	as	the	target	FPGA	results	in	using	a	single	look-up	table	of	a	logic	element,	as
shown	in	Figure	3.25.	As	shown,	the	three	inputs	of	the	circuit	are	used	in	a	look-up	table
to	produce	the	necessary	combinational	output.

Figure	3.25	Logic	Element	Used	for	maj3

The	RTL	view	of	this	implementation	that	is	also	produced	by	our	synthesis	tool	gives
a	better	view	of	the	functionality	of	this	generated	hardware.	Figure	3.26	shows	this	view
of	our	gate	 level	maj3	module.	As	expected,	 the	AND-OR	functionality	of	 the	Majority
function	is	obtained	from	the	synthesis	tool.

Figure	3.26	RTL	(logical)	View	of	Synthesized	maj3

Gate	level	descriptions	using	tri-state	primitive	structures	are	also	synthesizable.	If	the
synthesis	target	hardware	does	not	have	tristate	structures	inside	the	chip	(such	as	Altera’s
Cyclone)	regular	AND-OR	gates	will	be	used	for	the	implementation	of	a	description	that
uses	tri-states.	For	example,	when	synthesized,	the	description	of	the	multiplexer	of	Figure
3.22	uses	a	single	look-up	table.

HDL	 synthesizers	 cannot	 synthesize	 MOS	 switch	 level	 descriptions.	 The	 code	 of
Figure	3.24	is	not	accepted	by	synthesis	tools.

3.2.3	Descriptions	by	Use	of	Equations

At	a	higher	level	than	gates	and	transistors,	a	combinational	circuit	may	be	described	by
use	 of	 Boolean,	 logical,	 and	 arithmetic	 expressions.	 For	 this	 purpose	 the	 Verilog
concurrent	assign	statement	is	used.	Figure	3.27	shows	Verilog	operators	that	can	be	used
with	assign	statements.

Figure	3.27	Verilog	Operators

3.2.3.1	XOR	Example.	As	 our	 first	 example	 for	 using	 an	 assign	 statement	 consider	 the
description	of	an	XOR	gate	as	shown	in	Figure	3.28.	The	assign	statement	uses	y	on	the
left-hand-side	and	equates	it	to	Exclusive-OR	of	a,	b,	and	c	inputs.

Figure	3.28	XOR	Verilog	Code

Effectively,	 this	 assign	 statement	 is	 like	 driving	 y	with	 the	 output	 of	 a	 3-input	 xor
primitive	 gate.	 The	 difference	 is	 that,	 the	 use	 of	 an	 assign	 statement	 gives	 us	 more
flexibility	 and	 allows	 the	 use	 of	 more	 complex	 functions	 than	 what	 is	 available	 as
primitive	gates.	Instead	of	being	limited	to	the	gates	shown	in	Figure	3.17,	we	can	write
our	own	expressions	using	operators	of	Figure	3.27.

3.2.3.2	 Full-Adder	 Example.	 Figure	 3.29	 shows	 another	 example	 of	 using	 assign
statements.	This	code	corresponds	to	a	full-adder	circuit	(see	Chapter	2).	The	s	output	is
the	 XOR	 result	 of	 a,	 b	 and	 ci	 inputs,	 and	 the	 co	 output	 is	 an	 AND-OR	 expression
involving	these	inputs.

A	delay	value	of	10	ns	is	used	for	the	s	output	and	8	ns	for	the	co	output.	As	with	the
gate	outputs,	rise	and	fall	delay	values	can	be	specified	for	a	net	that	is	used	on	the	left-
hand	side	of	an	assign	statement.	This	construct	allows	the	use	of	two	delay	values.	If	only
one	value	is	specified,	it	applies	to	both	rise	and	fall	transitions.

Figure	3.29	Full	Adder	Verilog	Code

Another	property	of	assign	statements	that	also	corresponds	to	gate	instantiations	is	their

concurrency.	 The	 statements	 in	 the	Verilog	module	 of	 Figure	 3.29	 are	 concurrent.	 This
means	 that	 the	 order	 in	 which	 they	 appear	 in	 this	 module	 is	 not	 important.	 These
statements	are	sensitive	to	events	on	their	right	hand	sides.	When	a	change	of	value	occurs
on	any	of	the	right	hand	side	net	or	variables,	the	statement	is	evaluated	and	the	resulting
value	is	scheduled	for	the	left	hand	side	net.

3.2.3.3	 Comparator	 Example.	 Figure	 3.30	 shows	 another	 example	 of	 using	 assign
statements.	 This	 code	 describes	 a	 4-bit	 comparator.	 The	 first	 assign	 statement	 uses	 a
bitwise	 XOR	 operation	 on	 its	 right	 hand	 side.	 The	 result	 that	 is	 assigned	 to	 the	 iim
intermediate	net	 is	 a	4-bit	 vector	 formed	by	XORing	bits	 of	 a	 and	b	 input	 vectors.	The
second	assign	statement	uses	the	NOR	reduction	operator	to	NOR	bits	of	im	to	generate
the	equal	output	for	the	4-bit	comparator.

The	 above	 describes	 the	 comparator	 using	 its	 Boolean	 function.	 However,	 using
compare	operators	of	Verilog,	the	eq	output	of	the	comparator	may	be	written	as:

In	 this	expression,	 (a	==	b)	 results	 in	1	 if	a	and	b	are	equal,	and	0	 if	 they	are	not.	This
result	is	simply	assigned	to	eq.

Figure	3.30	Four-Bit	Comparator

The	 right-hand	 side	 expression	 of	 an	 assign	 statement	 can	 have	 a	 conditional
expression	 using	 the	 ?	 and	 :	 operators.	 These	 operators	 are	 like	 if-then-else.	 In	 reading
expressions	 that	 involve	 a	 condition	 operator,	 ?	 and	 :	 take	 places	 of	 then	 and	 else
respectively.	The	ifcondition	appears	to	the	left	of	?.

3.2.3.4	Multiplexer	Example.	Figure	3.31	shows	a	2-to-1	multiplexer	using	a	conditional
operator.	The	expression	shown	reads	as	follows:	if	s	is	1,	then	y	is	it	else	it	becomes	i0.

Figure	3.31	A	2-to-1	Mux	using	Condition	Operator

3.2.3.5	 Decoder	 Example.	 Figure	 3.32	 shows	 another	 example	 using	 the	 conditional
operator.	In	this	example	a	nesting	of	several	?:	operations	are	used	to	describe	a	decoder.

Figure	3.32	Decoder	Using	?:	and	Concatenation

The	decoder	description	also	uses	the	concatenation	operator	{	I	to	form	vectors	from
its	 scalar	 inputs	 and	 outputs.	 The	 decoder	 has	 four	 outputs,	 d3,	 d2,	 dl	 and	 d0	 and	 two
inputs	 a	 and	 b.	 Input	 values	 00,	 01,	 10,	 and	 11	 produce	 0001,	 0010,	 0100,	 and	 1000
outputs.	In	order	to	be	able	to	compare	a	and	b	with	their	possible	values,	a	twobit	vector
is	 formed	 by	 concatenating	 a	 and	 b.	 The	 {a,	 b}	 vector	 is	 then	 compared	with	 the	 four
possible	values	it	can	take	using	a	nesting	of	?:	operations.	Similarly,	in	order	to	be	able	to
place	vector	values	on	the	outputs,	the	four	outputs	are	concatenated	using	the	{	}	operator
and	used	on	the	left-hand	side	of	the	assign	statement	shown	in	Figure	3.32.

This	 example	 also	 shows	 the	 use	 of	 sized	 numbers.	 Constants	 for	 the	 inputs	 and
outputs	have	the	general	format	of	n’bm.	In	this	format,	n	is	the	number	of	bits,	b	is	the
base	 specification	 and	m	 is	 the	 number	 in	 base	 b.	 For	 calculation	 of	 the	 corresponding
constant,	number	m	 in	 base	 b	 is	 translated	 to	 n	 bit	 binary.	 For	 example,	 4’hA	becomes
1010	in	binary.

3.2.3.6	Adder	Example.	For	 another	 example	 using	 assign	 statements,	 consider	 an	 8-bit
adder	circuit	with	a	carry-in	and	a	carry-out	output.	The	Verilog	code	of	this	adder,	shown
in	Figure	3.33,	uses	an	assign	statement	to	set	concatenation	of	co	on	the	left-hand	side	of
s	 to	 the	sum	of	a,	b	and	ci.	This	sum	results	 in	nine	bits	with	 the	 leftmost	bit	being	 the
resulting	carry.	The	sum	is	captured	in	the	9-bit	left-hand	side	of	the	assign	statement	in
{co,	s}.

Figure	3.33	Adder	with	Carry-in	and	Carry-out

So	 far	 in	 this	 section	we	 have	 shown	 the	 use	 of	 operators	 of	 Figure	 3.27	 in	 assign
statements.	A	Verilog	description	may	contain	any	number	of	assign	statements	and	can
use	 any	 mix	 of	 the	 operators	 discussed.	 The	 next	 example	 shows	 multiple	 assign
statements.

3.2.3.7	ALU	Example.	As	our	final	example	of	assign	statements,	consider	an	ALU	that
performs	add	and	subtract	operations	and	has	two	flag	outputs	gt	and	zero.	The	gt	output
becomes	1	when	input	a	is	greater	than	input	b,	and	the	zero	output	becomes	1	when	the

result	of	the	operation	performed	by	the	ALU	is	0.

Figure	3.34	shows	 the	Verilog	code	of	 this	ALU.	Using	a	conditional	operation,	 the
addsub	 input	decides	whether	ALU	inputs	 should	be	added	or	 subtracted.	Other	Verilog
constructs	used	in	this	description	are	arithmetic,	concatenation,	conditional,	compare	and
relational	operations.

Figure	3.34	ALU	Verilog	Code	Using	a	Mix	of	Operations

3.2.4	Instantiating	Other	Modules

We	have	shown	how	primitive	gates	can	be	instantiated	in	a	module	and	wired	with	other
parts	of	the	module.	The	same	applies	to	instantiating	a	module	within	another.	For	regular
structures,	Verilog	pro	vides	 repetition	constructs	 for	 instantiating	multiple	copies	of	 the
same	module,	primitive,	or	 set	of	constructs.	Examples	 in	 this	 section	 illustrate	some	of
the	capabilities.

3.2.4.1	 ALU	 Example	 Using	 Adder.	 The	 ALU	 of	 Figure	 3.34	 starts	 from	 scratch	 and
implements	every	function	it	needs	inside	the	module.	If	we	have	a	situation	that	we	need
to	use	a	specific	design	from	a	given	library,	or	we	have	a	function	that	is	too	complex	to
be	repeated	everywhere	is	it	used,	we	can	make	it	into	a	module	and	instantiate	it	when	we
need	to	use	it.

Figure	 3.35	 shows	 another	 version	 of	 the	 above	 ALU	 circuit.	 In	 this	 new	 version,
addition	 is	 handled	 by	 the	 adder	 circuit	 of	 Figure	 3.33.	 On	 Line	 5	 of	 Figure	 3.35,	 the
b_bbar	signal	in	the	ALU	Adder	module	receives	input	b	or	its	complement	depending	on
the	addsub	input.	If	addition	is	to	be	done,	addsub	is	0	and	b	goes	on	b	Bar.	On	the	other
hand,	 if	 subtraction	 is	 to	be	done,	 b_bbar	becomes	 the	 complement	of	 b.	This	multi-bit
vector	is	used	for	the	input	of	the	8-bit	adder	that	is	instantiated	on	Line	4	of	Figure	3.35.
Since	subtraction	is	being	done	in	2’s	complement	system,	addsub	is	used	for	the	carryin
of	the	adder	to	add	a	1	to	the	result	if	subtraction	is	to	take	place.

Figure	3.35	ALU	Verilog	Code	Using	Instantiating	an	Adder

Instantiation	of	 a	 component	 such	 as	 add_8bit	 in	 the	 above	 example	 starts	with	 the
component	 name,	 an	 instance	 name	 (ADD)	 and	 the	 port	 connection	 list.	 The	 latter	 part
decides	how	local	variables	of	a	module	are	mapped	to	the	ports	of	the	component	being
instantiated.	 The	 above	 example	 uses	 an	 ordered	 list,	 in	 which	 a	 local	 variable,	 e.g.,
b_bbar,	 takes	 the	same	position	as	 the	port	of	 the	component	 it	 is	connecting	 to,	e.g.,	b.
Alternatively,	a	named	port	connection	such	as	that	shown	below	can	be	used.

Using	this	format	allows	port	connections	to	be	made	in	any	order.	Each	connection
begins	with	a	dot,	followed	by	the	name	of	the	port	of	the	instantiated	componet,	e.g.,	b,
and	followed	by	a	set	of	parenthesis	enclosing	the	local	variable	that	is	connected	to	the
instantiated	 component,	 e.g.,	 b_bbar.	 This	 format	 is	 less	 error-prone	 than	 the	 ordered
connection.

3.2.4.2	 Iterative	 Adder	 Description.	 Verilog	 uses	 the	 generate	 statement	 for	 describing
regular	 structures	 that	 are	 composed	 of	 smaller	 subcomponents.	 An	 example	 is	 a	 large
memory	 array,	 or	 a	 systolic	 array	 multiplier.	 In	 such	 cases,	 a	 cell	 unit	 of	 the	 array	 is
described,	and	by	use	of	several	generate-statements	it	is	repeated	in	several	directions	to
cover	 the	 entire	 array	of	 the	hardware.	Here	we	 show	an	alternative	description	 for	our
add8bit	module	of	Figure	3.33.	In	this	new	description	we	use	eight	instances	of	the	full-
adder	of	Figure	3.29.

The	code	of	Figure	3.36	uses	the	parameter	construct	to	specify	a	constant	value	for
SIZE.	In	 the	body	of	 this	module	on	Line	7,	a	variable	for	generating	eight	 instances	of
add_lbit	 is	declared	using	 the	genvar	declaration.	The	generate	 statement	 that	begins	on
Line	8	loops	eight	times	to	generate	a	full-adder	in	every	iteration	using	a	and	b	input	bits
0	to	7.	Each	instance	of	FA	uses	a	carry	bit	from	the	carry	vector,	and	produces	its	carry	on
the	next	bit	position	of	carry.	On	lines	5	and	6	of	this	code,	ci	is	put	into	carry[0J,	and	co	is
taken	from	carry[8].

Figure	3.36	Adder	Verilog	Code	Using	Generate	Statement

3.2.5	Synthesis	of	Assignment	Statements

Descriptions	of	the	previous	section	concentrated	on	using	assign	statements	in	description
of	modules.	We	also	showed	modules	that	instantiated	other	modules	consisting	of	assign

statements.	In	general,	assign	statements,	regardless	of	the	hierarchy	they	are	used	in	and
their	complexity,	are	synthesizable.

As	an	example	of	 this	 synthesis,	consider	 the	ALU	Adder	of	Figure	3.35.	The	RTL
view	 of	 this	 circuit	 after	 being	 synthesized	 by	 Quartus	 II	 is	 shown	 in	 Figure	 3.37.	 As
shown,	the	generated	hardware	uses	multiplexers	for	conditional	complementing	of	the	b
input.	 On	 the	 front	 side	 of	 the	 circuit,	 the	 EQUAL	 and	 LESS-THAN	 blocks	 are
responsible	 for	 generating	 zero	 and	 It	 outputs.	 The	 gray	 box	 is	 the	 adder	 block	 that
replaces	 the	ADD	 instance	 in	 the	 code	 of	 Figure	 3.35.	The	 complete	 hardware	 uses	 27
logic-elements	of	a	Cyclone	FPGA.

Figure	3.37	ALU_Adder	RTL	View	after	Synthesis

3.2.6	Descriptions	with	Procedural	Statements

At	 a	 higher	 level	 of	 abstraction	 than	 describing	 hardware	 with	 gates	 and	 expressions,
Verilog	 provides	 constructs	 for	 procedural	 description	 of	 hardware.	 Unlike	 gate
instantiations	 and	 assign	 statements	 that	 correspond	 to	 concurrent	 sub-structures	 of	 a
hardware	component,	procedural	statements	describe	the	hardware	by	its	behavior.	Also,
unlike	concurrent	statements	that	appear	directly	in	a	module	body,	procedural	statements
must	be	enclosed	in	procedural	blocks	before	they	can	be	put	inside	a	module.

The	 main	 procedural	 block	 in	 Verilog	 is	 the	 always	 block.	 This	 is	 considered	 a

concurrent	 statement	 that	 runs	 concurrent	with	 all	 other	 statements	 in	 a	module.	Within
this	 statement,	 procedural	 statements	 like	 if-else	 and	 case	 statements	 are	 used	 and	 are
executed	sequentially.	If	there	are	more	than	one	procedural	statement	inside	a	procedural
block,	they	must	be	bracketed	by	begin	and	end	keywords.

Unlike	 assignments	 in	 concurrent	 bodies	 that	model	 driving	 logic	 for	 left	hand	 side
wires,	assignments	 in	procedural	blocks	are	assignments	of	values	 to	variables	 that	hold
their	assigned	values	until	a	different	value	is	assigned	to	them.	A	variable	used	on	the	left
hand	side	of	a	procedural	assignment	must	be	declared	as	reg.

An	event	control	statement	is	considered	a	procedural	statement,	and	is	used	inside	an
always	block.	This	statement	begins	with	an	at-sign,	and	in	its	simplest	form,	includes	a
list	of	variables	in	the	set	of	parenthesis	that	follow	the	at-sign,	e.g.,	Gay	(u1	or	v2	…);	.

When	 the	 flow	of	 the	 program	 execution	within	 an	 always	 block	 reaches	 an	 event-
control	 statement,	 the	 execution	 halts	 (suspends)	 until	 an	 event	 occurs	 on	 one	 of	 the
variables	 in	 the	 enclosed	 list	 of	 variables.	 If	 an	 event-control	 statement	 appears	 at	 the
beginning	of	an	always	block,	the	variable	list	it	contains	is	referred	to	as	the	sen-	sitiiwity
list	 of	 the	 always	 block.	 For	 combinational	 circuit	 modeling	 all	 variables	 that	 are	 read
inside	a	procedural	block	must	appear	on	its	sensitivity	list.

Examples	that	follow	show	various	ways	combinational	component	may	be	modeled
by	procedural	blocks.

3.2.6.1	Majority	 Example.	 Figure	 3.38	 shows	 a	majority	 circuit	 described	 by	 use	 of	 an
always	block.	In	the	declarative	part	of	the	module	shown,	the	y	output	is	declared	as	reg
since	this	variable	is	to	be	assigned	a	value	inside	a	procedural	block.

Figure	3.38	Procedural	Block	Describing	a	Majority	Circuit

The	 always	 block	 describing	 the	 behavior	 of	 this	 circuit	 uses	 an	 event	 control
statement	 that	 encloses	 a	 list	 of	variables	 that	 is	 considered	as	 the	 sensitivity	 list	 of	 the
always	block.	The	always	block	 is	 said	 to	be	sensitive	 to	a,	b	and	c	variables.	When	an
event	 occurs	 on	 any	 of	 these	 variables,	 the	 flow	 into	 the	 always	 block	 begins	 and	 as	 a
result,	 the	 result	 of	 the	 Boolean	 expression	 shown	will	 be	 assigned	 to	 variable	 y.	 This
variable	holds	its	value	until	the	next	time	an	event	occurs	on	a,	b,	or	c	inputs.

In	 this	example,	 since	 the	begin	and	end	bracketing	only	 includes	one	statement,	 its
use	is	not	necessary.	Furthermore,	the	syntax	of	Verilog	allows	elimination	of	semicolon
after	 an	 event	 control	 statement.	 This	 effectively	 collapses	 the	 event	 control	 and	 the
statement	that	follows	it	into	one	statement.

3.2.6.2	Majority	Example	with	Delay.	The	Verilog	code	shown	in	Figure	3.39	is	a	majority
circuit	with	a	5ns	delay.	Following	the	always	keyword,	the	statements	in	this	procedural

block	are	an	eventcontrol,	a	delay-control	and	a	procedural	assignment.	The	delaycontrol
statement	begins	with	a	sharp-sign	and	is	followed	by	a	delay	value.	This	statement	causes
the	flow	into	this	procedural	block	to	be	suspended	for	5ns.	This	means	that	after	an	event
on	one	of	the	circuit	inputs,	evaluation	and	assignment	of	the	output	value	to	y	takes	place
after	5	nanoseconds.

Note	 in	 the	description	of	Figure	3.39	that	begin	and	end	bracketing	is	not	used.	As
with	 the	 event-control	 statement,	 a	 delay-control	 statement	 can	 collapse	 into	 its	 next
statement	 by	 removing	 their	 separating	 semicolon.	 The	 event-control,	 delay-control	 and
assignment	to	y	become	a	single	procedural	statement	in	the	always	block	of	maj3	code.

Figure	3.39	Majority	Gate	with	Delay

3.2.6.3	 Full-Adder	 Example.	 Another	 example	 of	 using	 procedural	 assignments	 in	 a
procedural	block	is	shown	in	Figure	3.40.	This	example	describes	a	full-adder	with	sum
and	carry-out	outputs.

The	always	block	shown	is	sensitive	to	a,	b,	and	ci	inputs.	This	means	that	when	an
event	 occurs	 on	 any	 of	 these	 inputs,	 the	 always	 block	 wakes	 up	 and	 executes	 all	 its
statements	 in	 the	 order	 that	 they	 appear.	 Since	 assignments	 to	 s	 and	 co	 outputs	 are
procedural,	both	these	outputs	are	declared	as	reg.

The	delay	mechanism	used	in	the	full-adder	of	Figure	3.40	is	called	an	intra-statement
delay	that	is	different	than	that	of	the	majority	circuit	of	Figure	3.39.

Figure	3.40	Full-Adder	Using	Procedural	Assignments

In	 the	 majority	 circuit,	 the	 delay	 simply	 delays	 execution	 of	 its	 next	 statement.
However,	 the	 intra-statement	 delay	 of	 Figure	 3.40	 only	 delays	 the	 assignment	 of	 the
calculated	value	of	 the	right-hand	side	 to	 the	 left-hand	side	variable.	This	means	 that	 in
Figure	3.40,	 as	 soon	 as	 an	 event	 occurs	 on	 an	 input,	 the	 expression	 a^b^c	 is	 evaluated.
But,	the	assignment	of	the	evaluated	value	to	s	and	proceeding	to	the	next	statement	takes
5ns.

Because	assignment	to	co	follows	that	to	s,	the	timing	of	the	former	depends	on	that	of

the	 latter,	 and	 evaluation	 of	 the	 right-hand	 side	 of	 co	 begins	 5ns	 after	 an	 input	 change.
Therefore,	co	receives	its	value	8ns	after	an	 input	change	occurs.	To	remove	this	 timing
dependency	and	be	able	 to	define	a	 statement	 timing	 independent	of	 its	previous	one,	 a
different	kind	of	assignment	must	be	used.

Assignments	in	Figure	3.40	are	of	the	blocking	type.	Such	statements	block	the	flow
of	 the	 program	until	 they	 are	 completed.	A	 different	 assignment	 is	 of	 the	 non-blocking
type.	A	different	version	of	the	full-adder	that	uses	this	construct	is	shown	in	Figure	3.41.
This	assignment	 schedules	 its	 right	 hand	 side	 value	 into	 its	 left	 hand	 side	 to	 take	 place
after	 the	 specified	 delay.	 Program	 flow	 continues	 into	 the	 next	 statement	 while
propagation	of	values	into	the	first	left	hand	side	is	still	going	on.

In	 the	 example	 of	 Figure	 3.41,	 evaluation	 of	 the	 right	 hand	 side	 of	 s	 is	 done
immediately	after	an	 input	changes,	and	 the	 resulting	value	 is	 scheduled	 for	 s	after	5ns.
Evaluation	 of	 the	 right	 hand	 side	 of	 co	 also	 occurs	 at	 the	 same	 time	 as	 that	 of	 s.	 The
resulting	value	for	s	is	scheduled	for	it	after	8ns.	The	8ns	delay	makes	the	timing	of	s	and
co	of	Figure	3.41	the	same	as	those	of	Figure	3.40.

Since	 our	 focus	 is	 on	 synthesizable	 coding	 and	 gate	 delay	 timing	 issues	 are	 not	 of
importance,	we	will	mostly	use	blocking	assignments	in	this	book.

Figure	3.41	Full-Adder	Using	Non-Blocking	Assignments

3.2.6.4	 Procedural	 Multiplexer	 Example.	 For	 another	 example	 of	 a	 procedural	 block,
consider	 the	2-to-1	multiplexer	of	Figure	3.42.	This	example	uses	an	if-else	construct	 to
set	y	to	i0	or	it	depending	on	the	value	of	s.

As	in	the	previous	examples,	all	circuit	variables	that	participate	 in	determination	of
value	of	y	appear	on	the	sensitivity	list	of	the	always	block.	Also	since	y	appears	on	the
left	hand	side	of	a	procedural	assignment,	it	is	declared	as	reg.

The	if-else	statement	shown	in	Figure	3.42	has	a	condition	part	that	uses	an	equality
operator.	If	the	condition	is	true	(i.e.,	s	is	equal	to	0),	the	block	of	statements	that	follow	it
will	be	taken,	otherwise	the	block	of	statements	after	the	else	are	taken.	In	both	cases,	the
block	of	statements	must	be	bracketed	by	begin	and	end	keywords	 if	 there	 is	more	 than
one	statement	in	a	block.

Figure	3.42	Procedural	Multiplexer

3.2.6.5	Procedural	ALU	Example.	The	if-else	statement,	used	in	the	previous	example,	is
easy	 to	 use,	 descriptive	 and	 expandable.	 However,	 when	 many	 choices	 exist,	 a	 case-
statement	which	is	more	structured	may	be	a	better	choice.	The	ALU	description	of	Figure
3.43	 uses	 a	 case	 statement	 to	 describe	 an	 ALU	 with	 add,	 subtract,	 AND	 and	 XOR
functions.

The	ALU	 has	 a	 and	 b	 data	 inputs	 and	 a	 2-bit	 f	 input	 that	 selects	 its	 function.	 The
Verilog	code	shown	in	Figure	3.43	uses	a,	b	and	f	on	its	sensitivity	list.	The	case-statement
shown	in	the	always	block	uses	f	to	select	one	of	the	case	alternatives.	The	last	alternative
is	the	default	alternative	that	 is	 taken	when	f	does	not	match	any	of	 the	alternatives	 that
appear	before	it.	This	is	necessary	to	make	sure	that	unspecified	input	values	(here,	those
that	contain	X	and/or	Z)	cause	the	assignment	of	 the	default	value	to	the	output	and	not
leave	it	unspecified.

Figure	3.43	Procedural	ALU

3.2.7	Combinational	Rules

Completion	 of	 case	 alternatives	 or	 if-else	 conditions	 is	 an	 important	 issue	 in
combinational	circuit	coding.	In	an	always	block,	if	there	are	conditions	under	which	the
output	of	a	combinational	circuit	 is	not	assigned	a	value,	because	of	 the	property	of	 reg
variables	the	output	retains	its	old	value.	The	retaining	of	old	value	infers	a	latch	on	the
output.	Although,	 in	 some	 designs	 this	 latching	 is	 intentional,	 obviously	 it	 is	 unwanted
when	 describing	 combinational	 circuits.	 With	 this,	 we	 have	 set	 two	 rules	 for	 coding
combinational	circuits	with	always	blocks.

1.	 List	 all	 inputs	 of	 the	 combinational	 circuit	 in	 the	 sensitivity	 list	 of	 the	 always
block	describing	it.

2.	Make	sure	all	combinational	circuit	outputs	receive	some	value	regardless	of	how
the	program	flows	in	the	conditions	of	if-else	and/or	case	statements.	If	there	are
too	 many	 conditions	 to	 check,	 set	 all	 outputs	 to	 their	 inactive	 values	 at	 the
beginning	of	the	always	block.

3.2.8	Synthesizing	Procedural	Blocks

Following	combinational	synthesis	rules	discussed	above,	we	can	easily	develop	Verilog
designs	 for	 synthesis.	We	use	 the	alu4bit	 example	of	Figure	3.43	 for	demonstrating	 this
synthesis.	 Figure	 3.44	 shows	 the	 RTL	 view	 of	 the	 synthesis	 result	 of	 this	 circuit.	 As
shown,	 the	 circuit	 has	 four	 selectors	 driven	by	 f	 that	 is	 first	 decoded	 and	 then	used	 for
selecting	one	of	the	four	functions	of	the	ALU.	The	logic	for	the	four	functions	of	a	and	b
appear	to	the	left	of	the	selectors.

The	complete	implementation	of	this	circuit	uses	17	of	the	5980	logic-elements	of	an
EP1C6Q240C8	Cyclone	FPGA.

Figure	3.44	Synthesis	of	Procedural	ALU

3.2.9	Bussing

Bus	structures	can	be	implemented	by	use	of	multiplexers	or	threestate	logic.	In	Verilog,
various	methods	of	describing	combinational	circuits	can	be	used	for	the	description	of	a
bus.

Figure	 3.45	 shows	Verilog	 coding	 of	 busout	 that	 is	 a	 three-state	 bus	 and	 has	 three
sources,	businl,	busin2,	and	busin3.	Sources	of	busout	are	put	on	this	bus	by	active-high
enabling	 control	 signals,	 en],	 en2	 and	 en3.	 Using	 the	 value	 of	 an	 enabling	 signal,	 a
condition	statement	either	selects	a	bus	driver	or	a	4-bit	Z	value	to	drive	the	busout	output.

Figure	3.45	Implementing	a	3-State	Bus

Verilog	allows	multiple	concurrent	drivers	for	nets.	However,	a	variable	declared	as	a
reg	 and	 used	 on	 a	 left	 hand	 side	 in	 a	 procedural	 block	 (always	 block),	 should	 only	 be
driven	 concurrently	 by	 one	 source.	 This	 makes	 the	 use	 of	 nets	 more	 appropriate	 for
representing	busses.

3.3	Sequential	Circuits

As	with	any	digital	circuit,	a	sequential	circuit	can	be	described	in	Verilog	by	use	of	gates,
Boolean	 expressions,	 or	 behavioral	 constructs	 (e.g.,	 the	 always	 statement).	 While	 gate
level	 descriptions	 enable	 a	 more	 detailed	 description	 of	 timing	 and	 delays,	 because	 of
complexity	 of	 clocking	 and	 register	 and	 flip-flop	 controls,	 these	 circuits	 are	 usually
described	by	use	of	procedural	always	blocks.	This	section	shows	various	ways	sequential
circuits	 are	 described	 in	Verilog.	The	 following	 discusses	 primitive	 structures	 like	 latch
and	flip-flops,	and	then	generalizes	coding	styles	used	for	representing	these	structures	to
more	complex	sequential	circuits	including	counters	and	state	machines.

3.3.1	Basic	Memory	Elements	at	the	Gate	Level

A	clocked	D-latch	latches	its	input	data	during	an	active	clock	cycle.	The	latch	structure
retains	the	latched	value	until	the	next	active	clock	cycle.	This	element	is	the	basis	of	all
static	memory	elements.

A	simple	implementation	of	the	D-latch	that	uses	cross-coupled	NOR	gates	is	shown
in	Figure	3.46.	The	Verilog	code	of	Figure	3.47	corresponds	to	this	D-latch	circuit.	This
description	uses	primitive	and	and	nor	structures.

Figure	3.46	Clocked	D-latch

As	 shown	 in	 this	 Verilog	 code,	 the	 tilde	 (-)	 operator	 is	 used	 to	 generate	 the
complement	of	the	d	input	of	the	latch.	Using	AND	gates,	the	d	input	and	its	complement
are	gated	to	generate	internal	_s	and	r	inputs.	These	are	inputs	to	the	cross-coupled	NOR
structure	that	is	the	core	of	the	memory	in	this	latch.

Figure	3.47	Verilog	Code	for	a	Clocked	D-latch

Alternatively,	 the	 same	 latch	 can	 be	 described	 with	 an	 assign	 statement	 as	 shown
below.

This	 statement	 simply	 describes	 what	 happens	 in	 a	 latch.	 The	 statement	 says	 that
when	c	 is	1,	 the	q	output	 receives	d,	and	when	c	 is	0	 it	 retains	 its	old	value.	Using	 two
such	 statements	with	 comple	mentary	clock	values	describe	 a	master-slave	 flip-flop.	As
shown	in	Figure	3.48,	the	qm	net	is	the	master	output	and	q	is	the	flip-flop	output.

Figure	3.48	Master-Slave	Flip-Flop

This	 code	 uses	 two	 concurrent	 assign	 statements.	 As	 discussed	 before,	 these
statements	model	logic	structures	with	net	driven	outputs	(qm	and	q).	The	order	in	which
the	statements	appear	in	the	body	of	the	master	slaw	module	is	not	important.

3.3.2	Memory	Elements	Using	Procedural	Statements

Although	latches	and	flip-flops	can	be	described	by	primitive	gates	and	assign	statements,
such	descriptions	are	hard	to	generalize,	and	describing	more	complex	register	structures
cannot	 be	 done	 this	 way.	 This	 section	 uses	 always	 statements	 to	 describe	 latches	 and
flipflops.	 We	 will	 show	 that	 the	 same	 coding	 styles	 used	 for	 these	 simple	 memory
elements	 can	 be	 generalized	 to	 describe	 memories	 with	 complex	 control	 as	 well	 as
functional	register	structures	like	counters	and	shift-registers.

Latches.	Figure	3.49	shows	a	D-latch	described	by	an	always	statement.	The	q	output	of
the	latch	is	declared	as	reg	because	it	is	being	driven	inside	the	always	procedural	block.
Latch	 clock	 and	data	 inputs	 (c	 and	d)	 appear	 in	 the	 sensitivity	 list	 of	 the	 always	block,
making	 this	 procedural	 statement	 sensitive	 to	 c	 and	 d.	 This	means	 that	 when	 an	 event
occurs	 on	 c	 or	 d,	 the	 always	 block	 wakes	 up	 and	 it	 executes	 all	 its	 statements	 in	 the
sequential	order	from	begin	to	end.

Figure	3.49	Procedural	Latch

The	 if-statement	 enclosed	 in	 the	 always	 block	 puts	 d	 into	 q	when	 c	 is	 active.	 This
means	 that	 if	 c	 is	 1	 and	 d	 changes,	 the	 change	 on	 d	 propagates	 to	 the	 q	 output.	 This
behavior	is	referred	to	as	transparency,	which	is	how	latches	work.	While	clock	is	active,	a
latch	structure	is	transparent,	and	input	changes	affect	its	output.

Any	 time	 the	always	statement	wakes	up,	 if	c	 is	1,	 it	waits	4	nanoseconds	and	 then
puts	d	into	q.	When	q	changes	and	it	receives	its	new	value,	its	complement	will	become
the	 driving	 value	 for	 q_b	 output.	Note	 that,	 since	 q	 is	 used	 on	 the	 left	 hand	 side	 in	 an
always	statement	 it	 is	a	 reg,	but	 since	q_b	 is	used	 in	an	assign	statement	 it	 is	 a	net.	By
default,	the	type	an	output,	such	as	q_b,	is	a	net	of	wire	type.

3.3.2.2	D	Flip-Flop.	While	a	latch	is	transparent,	a	change	on	the	Dinput	of	a	D	flip-flops
does	 not	 directly	 pass	 on	 to	 its	 output.	 The	 Verilog	 code	 of	 Figure	 3.50	 describes	 a
positive-edge	trigger	D-type	flipflop.

The	sensitivity	 list	of	 the	procedural	 statement	 shown	 includes	posedge	of	 clk.	This
always	statement	only	wakes	up	when	clk	makes	a	0	to	1	transition.	When	this	statement
does	 wake	 up,	 the	 value	 of	 d	 is	 put	 into	 q.	 Obviously	 this	 behavior	 implements	 a
risingedge	D	flip-flop.

Figure	3.50	A	Positive-Edge	D	Flip-Flop

Instead	of	posedge,	use	of	negedge	would	implement	a	fallingedge	D	flip-flop.	After
the	specified	edge,	the	flow	into	the	always	block	begins.	In	our	description,	this	flow	is
halted	by	4	nanoseconds	by	the	#4	delay-control	statement.	After	this	delay,	the	value	of	d
is	read	and	put	into	q.	Following	this	transaction,	the	flow	into	the	always	block	goes	back
to	 its	beginning	waiting	 for	another	positiveedge	of	 the	clock.	Although	 the	behavior	of
this	 code	would	 be	 the	 same	 if	 we	 used	 a	 blocking	 assignment	 (q	 =	 d)	 instead	 of	 the
nonblocking	 assignment	 (q	 <=	 d),	 it	 is	 more	 customary	 to	 use	 the	 latter	 in	 describing
sequential	circuits	in	Verilog.

3.3.2.3	Synchronous	Control.	The	coding	style	presented	for	the	above	simple	D	flip-flop
is	a	general	one	and	can	be	expanded	to	cover	many	features	found	in	flip-flops	and	even
memory	 structures.	 The	 description	 shown	 in	 Figure	 3.51	 is	 a	 D-type	 flip-flop	 with
synchronous	set	and	reset	(s	and	r)	inputs.

Figure	3.51	D	Flip-Flop	with	Synchronous	Control

The	 description	 uses	 an	 always	 block	 that	 is	 sensitive	 to	 the	 positive-edge	 of	 elk.
When	elk	makes	a	0	 to	1	 transition,	 the	flow	into	 the	always	block	begins.	 Immediately
after	the	positive-edge,	s	is	inspected	and	if	it	is	active	(1),	after	4	ns	q	is	set	to	1,	3	ns	after
which	 q_b	 is	 set	 to	 0	 (by	 the	 assign	 statement	 outside	 of	 the	 always).	 Following	 the
positive-edge	of	elk,	if	s	is	not	1,	r	is	inspected	and	if	it	is	active,	q	is	set	to	0.	If	neither	s
or	r	are	1,	the	flow	of	the	program	reaches	the	last	else	part	of	the	if-statement	and	assigns
q	to	d.

The	behavior	discussed	here	only	 looks	at	s	and	r	on	 the	positiveedge	of	elk,	which
corresponds	to	a	rising-edge	trigger	D-type	flip-flop	with	synchronous	active	high	set	and
reset	inputs.	Furthermore,	the	set	input	is	given	a	higher	priority	over	the	reset	input.	The

flip-flop	structure	that	corresponds	to	this	description	is	shown	in	Figure	3.52.

Figure	3.52	D	Flip-Flop	with	Synchronous	Control

Other	synchronous	control	inputs	can	be	added	to	this	flip-flop	in	a	similar	fashion.	A
clock	enable	(en)	input	would	only	require	inclu	sion	of	an	if-statement	in	the	last	else	part
of	the	if-statement	in	the	code	of	Figure	3.51.

3.3.2.4	 Asynchronous	 Control.	 The	 control	 inputs	 of	 the	 flip-flop	 of	 Figure	 3.51	 are
synchronous	because	the	flow	into	the	always	statement	is	only	allowed	to	start	when	the
posedge	of	elk	is	observed.	To	change	this	 to	a	flip-flop	with	asynchronous	control,	 it	 is
only	required	to	include	asynchronous	control	inputs	in	the	sensitivity	list	of	its	procedural
statement.

Figure	3.53	shows	a	D	flip-flop	with	active	high	asynchronous	set	and	reset	control
inputs.	Note	that	the	only	difference	between	this	description	and	the	code	of	Figure	3.51
(synchronous	control)	is	the	inclusion	of	posedge	s	and	posedge	r	in	the	sensitivity	list	of
the	always	block.	This	inclusion	allows	the	flow	into	the	procedural	block	to	begin	when
elk	becomes	1	or	s	becomes	1	or	r	becomes	1.	The	ifstatement	in	this	block	checks	for	s
and	 r	 being	 1,	 and	 if	 none	 are	 active	 (activity	 levels	 are	 high)	 then	 clocking	 d	 into	 q
occurs.

Figure	3.53	D	Flip-Flop	with	Asynchronous	Control

Figure	3.54	Flip-Flop	with	Asynchronous	Control	Inputs

An	active	high	(low)	asynchronous	input	requires	inclusion	of	posedge	(negedge)	of
the	 input	 in	 the	 sensitivity	 list,	 and	 checking	 its	 1	 (0)	 value	 in	 the	 if-statement	 in	 the
always	statement.	Furthermore,	clocking	activity	in	the	flip-flop	(assignment	of	d	into	q)
must	always	 be	 the	 last	 choice	 in	 the	 if-statement	 of	 the	 procedural	 block.	The	graphic
symbol	corresponding	to	the	flip-flop	of	Figure	3.53	is	shown	in	Figure	3.54.

3.3.3	Flip-flop	Synthesis

In	 the	 above	discussion,	 flip-flop	 and	 latches	described	by	use	of	procedural	 statements
are	synthesizable.	The	flip-flop	of	the	logicelement	used	for	the	implementation	of	code	of
Figure	3.51	uses	its	lookup-table	to	generate	a	1	or	0	for	setting	and	resetting	the	flip-flop.
As	shown	in	Figure	3.55,	all	data	(D,	Set	or	Reset)	of	the	flip-flop	go	through	the	D	input
and	its	asynchronous	inputs	are	unused.	Data	on	the	D	input	 is	always	controlled	by	the
clock.

Figure	3.55	Synchronous	Flip-Flop	Synthesis

On	the	other	hand,	 the	flip-flop	of	 the	 logic-element	used	for	 the	 implementation	of
code	of	Figure	3.53	uses	 its	 asynchronous	 inputs	 for	 setting	and	 resetting.	As	 shown	 in
Figure	3.56	the	lookup-table	used	for	the	flip-flop	with	asynchronous	control	is	only	used
for	 passing	 the	 D	 input	 of	 the	 circuit	 to	 the	 flip-flop	 D	 input.	 Logic-element	 flip-flop
inputs	aD	and	ald	are	responsible	for	asynchronously	loading	a	1	into	the	flip-flop	and	the
aclr	handles	asynchronous	resetting.

Figure	3.56	Asynchronous	Flip-Flop	Synthesis

RTL	 views	 of	 hardware	 generated	 for	 the	 two	 flip-flops	 are	 shown	 in	 Figure	 3.57.
Comparing	these	circuits,	more	clearly	shows	the	use	of	the	D-input	of	the	flip-flop	input
for	synchronous	reset.	The	D-input	of	the	flip-flop	resulted	from	synthesizing	Figure	3.51
has	a	logic	block	that	involves	d,	r,	and	s	(upper	part	of	Figure	3.57).	On	the	other	hand,
the	 circuit	 d	 input	 directly	 connects	 to	 the	 D-input	 of	 the	 flip-flop	 resulted	 from	 the
synthesis	of	Figure	3.53	(lower	part	of	Figure	3.57).

Figure	3.57	Synchronous	versus	Asynchronous	Synthesis

3.3.4	Registers,	Shifters	and	Counters

Registers,	 shifter-registers,	 counters	 and	 even	 sequential	 circuits	 with	 more	 complex
functionalities	can	be	described	by	simple	extensions	of	the	coding	styles	presented	for	the
flip-flops.	 In	most	 cases,	 the	 functionality	 of	 the	 circuit	 only	 affects	 the	 last	 else	 of	 the
ifstatement	in	the	procedural	statement	of	codes	shown	for	the	flipflops.

3.3.4.1	 Registers.	 Figure	 3.58	 shows	 an	 8-bit	 register	 with	 synchronous	 set	 and	 reset
inputs.	The	set	 input	puts	all	 is	 in	 the	register	and	the	reset	 input	resets	it	 to	all	Os.	The
main	 difference	 between	 this	 and	 the	 flip-flop	 with	 synchronous	 control	 is	 the	 vector
declaration	of	inputs	and	outputs.

Figure	3.58	An	8-bit	Register

3.3.4.2	Shift-Registers.	A	4-bit	shift-register	with	right-	and	leftshift	capabilities,	a	serial-
input,	synchronous	reset	input,	and	parallel	loading	capability	is	shown	in	Figure	3.59.	As
shown,	only	the	positive-edge	of	elk	is	included	in	the	sensitivity	list	of	the	always	block
of	 this	 code,	which	makes	 all	 activities	 of	 the	 shift-register	 synchronous	with	 the	 clock

input.	If	rst	is	1,	the	register	is	reset,	if	Id	is	1	parallel	d	inputs	are	loaded	into	the	register,
and	if	none	are	1	shifting	left	or	right	takes	place	depending	on	the	value	of	the	l_r	input	(1
for	left,	0	for	right).	Shifting	in	this	code	is	done	by	use	of	the	concatenation	operator	{	}.
For	left-shift,	sin	is	concatenated	to	the	right	of	q[2:0]	to	form	a	4-bit	vector	that	is	put	into
q.	 For	 right-shift,	 sin	 is	 concatenated	 to	 the	 left	 of	 q[3:1]	 to	 form	 a	 4-bit	 vector	 that	 is
clocked	into	q[3:0].

The	 style	 used	 for	 coding	 this	 register	 is	 the	 same	 as	 that	 used	 for	 flip-flops	 and
registers	presented	earlier.	 In	 these	examples,	a	single	procedural	block	handles	function
selection	 (e.g.,	 zeroing,	 shifting,	 or	 parallel	 loading)	 as	well	 as	 clocking	data	 d	 into	 the
register.

Figure	3.59	A	4-bit	Shift	Register

Another	 style	 of	 coding	 registers,	 shift-registers	 and	 counters	 is	 to	 use	 a	 combinational
procedural	block	for	function	selection	and	another	for	clocking.

As	an	example,	consider	a	shift-register	that	shifts	scnt	number	of	places	to	the	right
or	left	depending	on	its	sr	or	sl	control	inputs	(Figure	3.60).	The	shift-register	also	has	an
Id	input	that	enables	its	clocked	parallel	loading.	If	no	shifting	is	specified,	i.e.,	sr	and	sl
are	both	zero,	then	the	shift	register	retains	its	old	value.

Figure	3.60	Separate	Combinational/Sequential	Blocks	Shift	Register

The	Verilog	code	of	Figure	3.61	that	corresponds	to	this	design	shows	two	procedural

blocks	that	are	identified	by	combinational	and	register.	An	optional	block	name	appears
after	the	begin	keyword	that	begins	a	block	and	is	separated	from	this	keyword	by	use	of	a
colon.

The	 combinational	 block	 is	 sensitive	 to	 all	 inputs	 that	 can	 affect	 the	 shift	 register
output.	These	 include	 the	parallel	din,	 the	scnt	shift-count,	sr	and	sl	shift	control	 inputs,
and	the	Id	load	control	input.	In	the	body	of	this	block	an	if-else	statement	decides	on	the
value	placed	on	the	intq	internal	variable.	The	value	selection	is	based	on	values	of	Id,	sr,
and	sl.	If	Id	is	1,	int_q	becomes	din.	that	is	the	parallel	input	of	the	shift	register.	If	sr	or	sl
is	active,	intq	receives	the	value	of	q	shifted	to	right	or	left	as	many	as	sent	places.	In	this
example,	shifting	is	done	by	use	of	the	>>	and	<<	operators.	On	the	left,	these	operators
take	the	vector	to	be	shifted,	and	on	the	right	they	take	the	number	of	places	to	shift.

The	intq	variable	that	is	being	assigned	values	in	the	combinational	block	is	a	4-bit	reg
that	connects	the	output	of	this	block	to	the	input	of	the	register	block.

The	 register	 block	 is	 a	 sequential	 block	 that	 handles	 clocking	 intq	 into	 the	 shift
register	output.	This	block	(as	shown	in	Figure	3.61)	is	sensitive	to	the	positive	edge	of	elk
and	its	body	consists	of	a	single	reg	assignment.

Note	 in	 this	 code	 that	 both	 q	 and	 int_q	 are	 declared	 as	 reg	 because	 they	 are	 both
receiving	 values	 in	 procedural	 blocks,	 one	 in	 the	 register	 and	 one	 in	 the	 combinational
block.

Figure	3.61	Shift-Register	Using	Two	Procedural	Blocks

3.3.4.3	 Counters.	 Any	 of	 the	 styles	 described	 for	 the	 shift-registers	 in	 the	 previous
discussion	 can	 be	 used	 for	 describing	 counters.	 A	 counter	 counts	 up	 or	 down,	 while	 a
shift-register	 shifts	 right	or	 left.	We	use	arithmetic	operations	 in	counting	as	opposed	 to
shift	or	concatenation	operators	in	shift-registers.

Figure	3.62	shows	a	4-bit	up-down	counter	with	a	synchronous	rst	reset.	The	counter
has	an	Id	input	for	doing	the	parallel	loading	of	din	into	the	counter.	The	counter	output	is
q	and	it	is	declared	as	reg	since	it	is	receiving	values	within	a	procedural	statement.

Discussion	about	synchronous	and	asynchronous	control	of	flipflops	and	registers	also
apply	to	the	counter	circuits.	For	example,	inclusion	of	posedge	rst	in	the	sensitivity	list	of

the	counter	of	Figure	3.62	would	make	its	resetting	asynchronous.	Also,	as	in	the	other	ex
amples	 of	 clocked	 circuits,	 we	 are	 using	 nonblocking	 assignments	 in	 our	 clocked
procedural	blocks.

Figure	3.62	An	Up-Down	Counter

3.3.5	Synthesis	of	Shifters	and	Counters

Except	for	the	operations	that	are	performed	in	the	procedural	blocks	of	the	descriptions	of
the	registers,	counters,	and	shift	registers,	the	above	descriptions	followed	the	same	basic
rules,	and	the	same	styles	of	coding	could	be	used	for	them.	The	styles	we	presented	were
synthesizable,	and	for	demonstration	purposes	we	show	the	synthesis	results	obtained	by
synthesizing	the	shift	register	of	Figure	3.61.

Synthesis	of	 this	shift	 register	uses	26	 logic-elements	of	an	Altera	Cyclone	chip.	As
shown	in	the	RTL	view	of	Figure	3.63,	the	generated	hardware	has	the	same	outline	as	the
block	diagram	shown	in	Figure	3.60.	The	combinational	logic	on	the	left	feeds	the	register
on	the	right,	and	there	is	a	feedback	from	the	register	to	the	combinational	part.

3.3.6	State	Machine	Coding

Coding	styles	presented	so	far	can	be	further	generalized	to	cover	finite	state	machines	of
any	type.	This	section	shows	coding	for	Moore	and	Mealy	state	machines.	The	examples
we	will	use	are	simple	sequence	detectors.	These	circuits	represent	the	controller	part	of	a
digital	system	that	has	been	partitioned	into	a	data	path	and	a	controller.	The	coding	styles
used	 here	 apply	 to	 such	 controllers,	 and	 will	 be	 used	 in	 later	 chapters	 of	 this	 book	 to
describe	CPU	and	multiplier	controllers.

3.3.6.1	Moore	Detector.	State	diagram	for	a	Moore	sequence	detector	detecting	101	on	its
x	input	is	shown	in	Figure	3.64.	The	machine	has	four	states	that	are	labeled,	reset,	got],
got10,	and	got101.	Starting	in	reset,	if	the	101	sequence	is	detected,	the	machine	goes	into
the	got101	state	in	which	the	output	becomes	1.	In	addition	to	the	x	input,	the	machine	has
a	 rst	 input	 that	 forces	 the	 machine	 into	 its	 reset	 state.	 The	 resetting	 of	 the	machine	 is
synchronized	with	the	clock.

Figure	3.64	A	Moore	Sequence	Detector

The	Verilog	code	of	the	Moore	machine	of	Figure	3.64	is	shown	in	Figure	3.65.	After
the	declaration	of	 inputs	and	outputs	of	 this	module,	parameter	declaration	declares	four
states	of	the	machine	as	two-bit	parameters.	The	square-brackets	following	the	parameter
keyword	specify	the	size	of	parameters	being	declared.	Following	parameter	declarations
in	the	code	of	Figure	3.65,	the	two-bit	current	reg	type	variable	is	declared.	This	variable
holds	 the	current	 state	of	 the	 state	machine.	The	body	of	 the	code	of	 this	 circuit	has	an
always	block	and	an	assign	statement.

The	assign	statement	shown	in	Figure	3.65	puts	a	1	on	the	z	output	when	the	current
state	of	the	machine,	i.e.,	current,	is	got101.	This	statement	is	concurrent	with	the	always
block	 that	 is	 responsible	 for	making	 the	 state	 transitions.	The	 always	 block	 used	 in	 the
module	of	Figure	3.65	describes	state	transitions	of	the	state	diagram	of	Figure	3.64.	The
main	 task	 of	 this	 procedural	 block	 is	 to	 inspect	 input	 conditions	 (values	 on	 rst	 and	 x)
during	the	present	state	of	the	machine	defined	by	current	and	set	values	into	current	for
the	next	state	of	the	machine.

Figure	3.65	Moore	Machine	Verilog	Code

The	 flow	 into	 the	 always	 block	 begins	 with	 the	 positive	 edge	 of	 elk.	 Since	 all
activities	 in	 this	 machine	 are	 synchronized	 with	 the	 clock,	 only	 clk	 appears	 on	 the
sensitivity	list	of	the	always	block.	Upon	entry	into	this	block,	the	rst	input	is	checked	and
if	it	is	active,	current	is	set	to	reset	(reset	is	a	declared	parameter	and	its	value	is	0).	The
value	put	into	current	in	this	pass	through	the	always	block	gets	checked	in	the	next	pass
with	 the	next	 edge	of	 the	 clock.	Therefore	 this	 assignment	 is	 regarded	 as	 the	next-state
assignment.	When	this	assignment	is	made,	the	if-else	statements	skip	the	rest	of	the	code
of	the	always	block,	and	this	always	block	will	next	be	entered	with	the	next	positive	edge
of	elk.	Upon	entry	 into	 the	always	block,	 if	 rst	 is	 not	 1,	 program	 flow	 reaches	 the	 case
statement	 that	checks	 the	value	of	current	against	 the	 four	 states	of	 the	machine.	Figure
3.66	shows	an	outline	of	this	case-statement.

Figure	3.66	case-Statement	Outline

The	case-statement	shown	has	five	case-alternatives.	A	casealternative	is	followed	by
a	 block	 of	 statements	 bracketed	 by	 the	 begin	 and	 end	 keywords.	 In	 each	 such	 block,
actions	corresponding	to	the	active	state	of	the	machine	are	taken.	The	last	case-alternative
is	the	default	case	that	is	used	for	covering	cases	not	covered	by	other	alternatives.	In	this
description,	because	we	have	four	states,	 the	use	of	default	 is	not	required	for	synthesis.
However,	 for	 simulation	 purposes,	 in	 case	 of	 ambiguous	 values	 of	 current	 (X	 or	 Z	 in
current),	 this	 alternatives	 sets	 the	 next	 state	 of	 the	 machine	 to	 reset.	 For	 synthesis	 or
simulation,	 it	 is	recommended	to	use	default	regardless	of	 the	number	of	states.	We	will
elaborate	on	this	issue	in	the	next	state	machine	example	of	this	section.

Figure	3.67	shows	the	Verilog	code	of	the	got10	state	and	its	diagram	from	the	state
diagram	of	Figure	3.64.	As	shown,	the	casealternative	that	corresponds	to	the	got10	state
specifies	 the	 next	 values	 for	 that	 state.	 Determination	 of	 the	 next	 state	 is	 based	 on	 the
value	of	x.	If	x	is	1,	the	next	state	becomes	got101,	and	if	x	is	0,	the	next	state	becomes
reset.

Figure	3.67	Next	Values	from	got10

In	 this	 coding	 style,	 for	 every	 state	 of	 the	 machine	 there	 is	 a	 case-alternative	 that
specifies	the	next	state	values.	For	larger	ma	chines,	there	will	be	more	case-alternatives,
and	more	 conditions	within	 an	 alternative.	Otherwise,	 this	 style	 can	 be	 applied	 to	 state
machines	of	any	size	and	complexity.

This	 same	machine	 can	be	described	 in	Verilog	 in	many	other	ways.	We	will	 show
alternative	styles	of	coding	state	machines	by	use	of	examples	that	follow.

3.3.6.2	A	Mealy	Machine	Example.	Unlike	a	Moore	machine	that	has	outputs	that	are	only
determined	 by	 the	 current	 state	 of	 the	 machine,	 in	 a	 Mealy	 machine,	 the	 outputs	 are
determined	by	the	state	the	machine	is	in	as	well	as	the	inputs	of	the	circuit.	This	makes
Mealy	 outputs	 not	 fully	 synchronized	 with	 the	 circuit	 clock.	 In	 the	 state	 diagram	 of	 a
Mealy	machine	the	outputs	are	specified	along	the	edges	that	branch	out	of	the	states	of
the	machine.

Figure	3.68	A	101	Mealy	Detector

Figure	3.68	shows	a	101	Mealy	detector.	The	machine	has	three	states,	reset,	got]	and
got10.	While	in	got10,	if	the	x	input	becomes	1	the	machine	prepares	to	go	to	its	next	state
with	 the	 next	 clock.	 While	 waiting	 for	 the	 clock,	 its	 output	 becomes	 1.	 While	 this	 is
happening,	if	the	clock	arrives,	 the	machine	goes	out	of	got-10	and	enters	the	got]	state.
This	 machine	 allows	 overlapping	 sequences.	 The	 machine	 has	 no	 external	 resetting
mechanism.	A	sequence	of	two	zeros	on	input	x	puts	the	machine	into	the	reset	state	in	a
maximum	of	two	clocks.

The	Verilog	code	of	the	101	Mealy	detector	is	shown	in	Figure	3.69.	After	input	and
output	declarations,	a	parameter	declaration	defines	bit	patterns	(state	assignments)	for	the
states	of	the	machine.	Note	here	that	state	value	3	or	2’bll	 is	unused.	As	in	the	previous
example,	we	use	the	current	two-bit	reg	to	hold	the	current	state	of	the	machine.

After	the	declarations,	an	initial	block	sets	the	initial	state	of	the	machine	to	reset.	This
procedure	for	initializing	the	machine	is	only	good	for	simulation	and	is	not	synthesizable.

Figure	3.69	Verilog	Code	of	101	Mealy	Detector

This	 example	 uses	 an	 always	 block	 for	 specifying	 state	 transitions	 and	 a	 separate
assign	statement	for	setting	values	 to	 the	z	output.	The	always	statement	responsible	for
state	 transitions	 is	 sensitive	 to	 the	 circuit	 clock	 and	 has	 a	 case	 statement	 that	 has	 case
alternatives	for	every	state	of	the	machine.	Consider	for	example,	the	got10	state	and	 its
corresponding	Verilog	code	segment,	as	 shown	 in	Figure	3.70.	The	Verilog	code	of	 this
state	specifies	its	next	states.	Notice	in	this	code	segment	that	the	case	alternative	shown
does	not	have	begin	and	end	bracketing.	Actually,	begin	and	end	keywords	do	not	appear
in	blocks	following	if	and	else	keywords	either.

Verilog	only	requires	begin	and	end	bracketing	if	there	is	more	than	one	statement	in	a
block.	The	use	of	 this	bracketing	around	one	statement	 is	optional.	Since	 the	 if	part	and
the	 else	 part	 each	 only	 contain	 one	 statement,	 begin	 and	 end	 keywords	 are	 not	 used.
Furthermore,	 since	 the	 entire	 if-else	 statement	 reduces	 to	 only	 one	 statement,	 the	 begin
and	end	keywords	for	the	case-alternative	are	also	eliminated.

The	 last	 case-alternative	 shown	 in	 Figure	 3.69	 is	 the	 default	 alternative.	 When
checking	current	against	all	alternatives	that	appear	before	the	default	statement	fail,	this
alternative	is	taken.	There	are	several	reasons	that	we	use	this	default	alternative.	One	is
that,	 our	 machine	 only	 uses	 three	 of	 the	 possible	 four	 2-bit	 assignments	 and	 2’bll	 is
unused.	If	the	machine	ever	begins	in	this	state,	the	default	case	makes	reset	the	next	state

of	 the	machine.	 The	 second	 reason	why	we	 use	 default	 is	 that	Verilog	 assumes	 a	 four-
value	 logic	 system	 that	 includes	Z	and	X.	 If	 current	ever	contains	a	Z	or	X,	 it	does	not
match	any	of	the	defined	case	alternatives,	and	the	default	case	is	 taken.	Another	reason
for	 use	 of	 default	 is	 that	 our	 machine	 does	 not	 have	 a	 hard	 reset	 and	 we	 are	 making
provisions	for	it	to	go	to	the	reset	state.	The	last	reason	for	default	is	that	it	is	just	a	good
idea	to	have	it.

Figure	3.70	Coding	a	Mealy	State

The	last	statement	in	the	code	fragment	of	Figure	3.70	is	an	assign	statement	that	sets
the	z	output	of	the	circuit.	This	statement	is	a	concurrent	statement	and	is	independent	of
the	 always	 statement	 above	 it.	When	 current	 or	 x	 changes,	 the	 right	 hand	 side	 of	 this
assignment	is	evaluated	and	a	value	of	0	or	1	is	assigned	to	z.	Conditions	on	the	right	hand
side	of	this	assignment	are	according	to	values	put	in	z	in	the	state	diagram	of	Figure	3.68.
Specifically,	 the	 output	 is	 1	 when	 current	 is	 got10	 and	 x	 is	 1,	 otherwise	 it	 is	 0.	 This
statement	 implements	 a	 combinational	 logic	 structure	 with	 current	 and	 x	 inputs	 and	 z
output.

3.3.6.3	Huffman	Coding	Style.	The	Huffman	model	for	a	digital	system	characterizes	it	as
a	 combinational	 block	 with	 feedbacks	 through	 an	 array	 of	 registers.	 Verilog	 coding	 of
digital	systems	according	to	the	Huffman	model	uses	an	always	statement	for	describing
the	register	part	and	another	concurrent	statement	for	describing	the	combinational	part.

We	will	 describe	 the	 state	machine	 of	 Figure	 3.64	 to	 illustrate	 this	 style	 of	 coding.
Figure	 3.71	 shows	 the	 combinational	 and	 register	 part	 partitioning	 that	we	will	 use	 for
describing	 this	 machine.	 The	 combinational	 block	 uses	 x	 and	 p_state	 as	 input	 and
generates	 z	 and	 ustate.	 The	 register	 block	 clocks	 it-state	 into	 p_state,	 and	 reset	 p_state
when	rst	is	active.

Figure	3.71	Huffman	Partitioning	of	101	Moore	Detector

Figure	 3.72	 shows	 the	Verilog	 code	 of	 Figure	 3.64	 according	 to	 the	 partitioning	 of
Figure	 3.71.	 As	 shown,	 parameter	 declaration	 declares	 the	 states	 of	 the	 machine.
Following	this	declaration,	n	state	and	p_state	variables	are	declared	as	 two-bit	 regs	 that
hold	 values	 corresponding	 to	 the	 states	 of	 the	 101	Moore	 detector.	 The	 combinational
always	block	follows	this	reg	declaration.	Since	this	is	a	purely	combinational	block,	it	is
sensitive	to	all	its	inputs,	namely	x	and	p_state.	Immediately	following	the	block	heading,
it-state	is	set	to	its	inactive	or	reset	value.	This	is	done	so	that	this	variable	is	always	reset
with	the	clock	to	make	sure	it	does	not	retain	its	old	value.	As	discussed	before,	retaining
old	values	implies	latches,	which	is	not	what	we	want	in	our	combinational	block.

The	body	of	the	combinational	always	block	of	Figure	3.72	contains	a	case-statement
that	uses	the	p	state	input	of	the	always	block	for	 its	case-expression.	This	expression	is
checked	against	the	states	of	the	Moore	machine.	As	in	the	other	styles	discussed	before,
this	case-statement	has	case-alternatives	for	reset,	got],	got10,	and	got10]	states.

Figure	3.72	Verilog	Huffman	Coding	Style

In	 a	 block	 corresponding	 to	 a	 case-alternative,	 based	 on	 input	 values,	 n_state	 is
assigned	values.	Unlike	the	other	styles	where	current	is	used	both	for	the	present	and	next
states,	here	we	use	two	different	variables,	p-state	and	it	state.

The	 next	 procedural	 block	 shown	 in	 Figure	 3.72	 handles	 the	 register	 part	 of	 the
Huffman	model	 of	 Figure	 3.71.	 In	 this	 part,	 n_state	 is	 treated	 as	 the	 register	 input	 and
p_state	as	 its	output.	On	 the	positive	edge	of	 the	clock,	p_state	 is	 either	 set	 to	 the	 reset
state	(00)	or	is	loaded	with	contents	of	n	state.	Together,	combinational	and	register	blocks
describe	our	state	machine	in	a	very	modular	fashion.

As	 with	 other	 styles	 we	 presented	 here,	 a	 separate	 assign	 statement	 (or	 any	 other
concurrent	statement)	is	used	for	assignment	of	values	to	the	output.

The	advantage	of	 this	 style	of	 coding	 is	 in	 its	modularity	and	defined	 tasks	of	each
block.	State	 transitions	are	handled	by	 the	combinational	block	and	clocking	 is	done	by
the	register	block.	Changes	in	clocking,	resetting,	enabling	or	presetting	the	machine	only
affect	the	coding	of	the	register	block.	If	we	were	to	change	the	synchronous	resetting	to
asynchronous,	the	only	change	we	had	to	make	was	adding	posedge	rst	to	the	sensitivity
list	of	the	register	block.

3.3.6.4	More	Complex	Outputs.	 Thus	 far	 in	 presenting	 state	machine	 coding	 styles,	we
have	used	a	simple	assign	statement	for	assignment	of	values	to	the	output	of	the	circuit.
For	a	design	with	more	input	and	output	lines	and	more	complex	output	logic,	we	can	use
an	always	block	for	handling	assigning	values	to	the	outputs	of	the	circuit.	This	block	is
similar	to	the	block	used	for	handling	state	transitions.	For	coding	the	output	block,	it	 is
necessary	to	follow	the	rules	discussed	for	combinational	blocks	in	Section	3.2.7.

Figure	 3.73	 shows	 the	 coding	 of	 the	 110-101	 Mealy	 detector	 using	 two	 separate
blocks	 for	 assigning	 values	 to	 it	 state	 and	 the	 z	 output.	 In	 a	 situation	 like	 that	 of	 this
example,	 in	 which	 the	 output	 logic	 is	 fairly	 simple,	 a	 simple	 assign	 statement	 could
replace	the	outputting	procedural	block.	In	this	case,	z	must	be	a	net	and	not	a	reg.

The	 examples	 discussed	 above,	 in	 particular,	 the	 last	 two	 styles,	 show	 how
combinational	 and	 sequential	 coding	 styles	 can	 be	 combined	 to	 describe	 very	 complex
digital	systems.

3.3.7	State	Machine	Synthesis

All	 state	 machine	 descriptions	 discussed	 above	 are	 synthesizable.	 For	 demonstration
purposes	we	discuss	synthesis	results	of	the	Mealy	machine	of	Figure	3.69.

Except	 for	 the	 initial	 statement	used	 in	 this	description,	 everything	else	 synthesizes.
The	 synthesis	 process	 ignores	 this	 statement	 and	 issues	 a	warning	message.	Recall	 that
this	statement	was	put	in	the	code	of	the	mealy	detector	for	initialization	of	the	machine
when	being	simulated.

Implementation	 of	 this	 state	 machine	 uses	 four	 logic-elements,	 three	 of	 which	 are
registered	and	one	only	uses	the	lookup-table	of	its	logic-element.	Figure	3.74	shows	the
technology	 view	 of	 the	 synthesized	 hardware	 illustrating	 the	 use	 of	 four	 lookup	 tables.
Utilization	of	the	registered	logic-elements	(left-most	three	in	Figure	3.74)	is	similar	to	the
logic-element	of	Figure	3.55,	and	the	right-most	element	is	similar	to	the	logic-element	of
Figure	3.25.

Figure	3.73	Separate	Transition	and	Output	Blocks

Figure	3.74	Technology	View	of	Mealy	Machine	Synthesis

3.3.8	Memories

Verilog	allows	declaration	and	usage	of	multidimensional	arrays	for	any	of	the	net	types	or
reg	variables.	The	following	declares	aarray	as	a	two-dimensional	array	of	8-bit	words.

In	an	array	declaration,	the	address	range	(or	ranges,	for	multidimensional	arrays)	of	the
elements	of	the	array	comes	(or	come,	for	multi-dimensional	arrays)	after	the	name	of	the
array.	 Range	 specifications	 are	 enclosed	 in	 square	 brackets.	 The	 size	 and	 range
specification	 of	 the	 elements	 of	 an	 array	 come	 after	 the	 net	 type	 (e.g.,	 wire)	 or	 reg
keyword.	In	the	absence	of	a	range	specification	before	the	name	of	the	array,	an	element
size	 of	 one	 bit	 is	 assumed.	 Several	 examples	 of	 array	 declarations	 are	 shown	 in	 Figure
3.75.

Figure	3.75	Array	Declaration	Examples

3.3.8.1	Array	Indexing.	Bit-select	and	part-select	operators	are	used	for	extracting	a	bit	or
a	group	of	bits	from	a	declared	array.	Such	addressing	only	applies	to	contiguous	bits	of	an
array.	We	use	arrays	declared	above	to	demonstrate	bit-select	and	part-select	operations.

Bit-selection	is	done	by	using	the	addressed	bit	number	in	a	set	of	square	brackets.	For
example	Areg[51	selects	bit	5	of	Areg	array.

Verilog	allows	constant	and	indexed	part-select.	A	constant	part-select	specifies	range
of	bits	to	be	selected.	For	example,	Areg[7.•3]	selects	the	upper	five	bits	of	Areg.	On	the
other	 hand	 an	 indexed	 part-select	 specifies	 starting	 index	 and	 the	 number	 of	 bits	 to	 be
selected.	For	example,	Areg[3+:5]	selects	 the	same	five	bits	as	Areg[7.•3]	does.	Several
examples	are	shown	below.

3.3.8.2	Standard	Memory.	The	 standard	 format	 for	 declaring	 a	memory	 in	Verilog	 is	 to
declare	it	as	an	array	of	a	vector.	For	example	Cmem	of	Figure	3.75	is	a	4-word	memory
of	8-bit	words.	The	address	space	of	this	memory	is	4.	Emem	is	a	byte-oriented	memory
with	a	10	bit	address	(1024	address	space).

An	expression	can	be	used	 for	addressing	a	memory.	For	example	 two	bits	of	Areg
can	be	used	to	extract	an	8-bit	word	of	Cmem.	This	is	done	as	shown	below:

A	memory	word	can	be	used	as	an	address	for	itself.	The	following	example	uses	the	8-bit
word	at	location	0	of	Emem	to	address	this	memory:

Verilog	allows	selection	rules	for	accessing	part	of	an	addressed	word	of	a	memory.	For
this	 purpose	 a	 second	 set	 of	 square	 brackets	 to	 the	 right	 of	 those	 used	 for	 memory
addressing	are	used	 for	bit-or	partselect	of	 the	accessed	memory	word.	For	example	 the
four	least	significant	bits	of	the	word	at	location	355	of	Emem	are	accessed	by:

This	operation	is	equivalent	to:

Specifying	a	range	of	addresses	in	Verilog	is	not	allowed.	For	example,	Emem	locations
355	to	358	cannot	be	addressed	as	shown	below.

As	 discussed,	 declaring	multi-dimensional	memories	 is	 allowed	 in	Verilog,	 e.g.,	 Dmem
above.	For	accessing	such	memories,	simple	in	dexings	are	allowed	for	specifying	a	word
in	 the	memory,	 and	bitselect	 and	part-select	 are	 allowed	 for	 accessing	bit	 or	 bits	 of	 the
addressed	word.	The	following	is	an	example	using	Dmem.

Figure	 3.76	 shows	 a	memory	 block	with	 separate	 input	 and	 output	 busses.	Writing
into	 the	memory	 is	 clocked,	while	 reading	 from	 it	 only	 requires	 rw	 to	 be	 1.	An	 assign
statement	handles	 reading	 from	 the	memory,	 and	an	always	block	performs	writing	 into
this	memory.

Figure	3.76	Memory	Description

3.4	Writing	Testbenches

Verilog	coding	styles	discussed	so	far	were	for	coding	hardware	structures,	and	in	all	cases
synthesizability	and	direct	correspondence	 to	hardware	were	our	main	 concerns.	On	 the
other	hand,	testbenches	do	not	have	to	have	hardware	correspondence	and	they	usually	do
not	 follow	 any	 synthesizability	 rules.	 We	 will	 see	 that	 delay	 specifications,	 and	 initial
statements	that	do	not	have	a	one-to-one	hardware	correspondence	are	used	generously	in
testbenches.

Figure	3.77	Circuit	Under	Test

For	demonstration	of	testbench	coding	styles,	we	use	the	Verilog	code	of	Figure	3.77
that	 is	 a	101	Moore	detector,	 as	 the	 circuit	 to	be	 tested.	This	description	 is	 functionally
equivalent	to	that	of	Figure	3.65.	The	difference	is	in	the	use	of	condition	expressions	(?:)
instead	of	if-else	statements.	This	code	will	be	instantiated	in	the	testbenches	that	follow.

3.4.1	Generating	Periodic	Data

Figure	3.78	shows	a	module	that	is	used	as	a	testbench	that	instantiates	mooredetector	and
applies	 test	data	 to	 its	 inputs.	The	 first	 statement	 in	 this	 code	 is	 the	 ‘timescale	directive
that	defines	 the	 time	unit	of	 this	description.	The	 testbench	 itself	has	no	ports,	which	 is
typical	of	all	testbenches.	All	data	inputs	to	a	circuit-under-test	are	locally	generated	in	its
testbench.

Figure	3.78	Generating	Periodic	Data

Because	 we	 are	 using	 procedural	 statements	 for	 assigning	 values	 to	 ports	 of	 the
circuit-under-test,	all	variables	mapped	with	the	input	ports	of	this	circuit	are	declared	as
reg.	The	 testbench	uses	 two	 initial	blocks	and	 two	always	blocks.	The	 first	 initial	block
initializes	clock,	x,	and	reset	to	0,	0,	and	1	respectively.	The	next	initial	block	waits	for	24
time	units	 (ns	 in	 this	 code),	 and	 then	 sets	 reset	 back	 to	 0	 to	 allow	 the	 state	machine	 to
operate.

The	always	blocks	shown	produce	periodic	signals	with	different	frequencies	on	clock
and	x.	Each	block	waits	for	a	certain	amount	of	time	and	then	it	complements	its	variable.
Complementing	begins	with	the	initial	values	of	clock	and	x	as	set	in	the	first	initial	block.
We	are	using	different	periods	for	clock	and	x,	so	that	a	combination	of	patterns	on	these
circuit	inputs	is	seen.	A	more	deterministic	set	of	values	could	be	set	by	specifying	exact
values	at	specific	times.

3.4.2	Random	Input	Data

Instead	of	 the	periodic	data	on	x	we	can	use	the	$random	predefined	system	function	to
generate	random	data	for	the	x	input.	Figure	3.79	shows	such	a	testbench.

Figure	3.79	Random	Data	Generation

This	 testbench	 also	 combines	 the	 two	 initial	 blocks	 for	 initially	 activating	 and
deactivating	reset	into	one.	In	addition,	this	testbench	has	an	initial	block	that	finishes	the
simulation	after	165	ns.

When	the	flow	into	a	procedural	block	reaches	the	$finish	system	task,	the	simulation
terminates	and	exits.	Another	simulation	control	 task	 that	 is	often	used	 is	 the	$stop	 task
that	only	stops	the	simulation	and	allows	resumption	of	the	stopped	simulation	run.

3.4.3	Timed	Data

A	very	simple	testbench	for	our	sequence	detector	can	be	done	by	applying	test	data	to	x
and	timing	them	appropriately	to	generate	the	sequence	we	want,	very	similar	to	the	way
values	 were	 applied	 to	 reset	 in	 the	 previous	 examples.	 Figure	 3.80	 shows	 this	 simple
testbench.

Techniques	discussed	in	the	above	examples	are	just	some	of	what	one	can	do	for	test
data	 generation.	 These	 techniques	 can	 be	 combined	 for	more	 complex	 examples.	 After
using	Verilog	for	some	 time,	users	 form	 their	own	 test	generation	 techniques.	For	 small
designs,	 simulation	 environments	 generally	 provide	 waveform	 editors	 and	 other	 tool-
dependent	test	generation	schemes.	Some	tools	come	with	code	fragments	that	can	be	used
as	templates	for	testbenches.

Figure	3.80	Timed	Test	Data	Generation

3.5	Sequential	Multiplier	Specification

This	 section	 uses	 a	 comprehensive	 example	 to	 put	 all	 Verilog	 concepts	 and	 techniques
presented	 in	 the	preceding	 sections	 into	one	design.	The	design	 example	 is	 an	 add-and-
shift	 sequential	multiplier,	 with	 an	 8-bit	A	 and	B	 inputs	 and	 a	 16-bit	 result.	 The	 block
diagram	of	this	circuit	 is	shown	in	Figure	3.81.	This	multiplier	has	an	8-bit	bidirectional
I/O	for	inputting	its	A	and	B	operands,	and	outputting	its	16-bit	output	one	byte	at	a	time.

Multiplication	begins	with	the	start	pulse.	On	the	clock	edge	that	start	is	1,	operand	A
is	on	the	databus	and	in	the	next	clock,	this	bus	will	contain	operand	B.	The	two	operands
appear	on	the	bus	in	two	consecutive	clock	pulses.	After	accepting	these	data	inputs,	the
multiplier	begins	its	multiplication	process	and	when	it	is	completed,	it	starts	sending	the
result	out	on	the	databus.	When	the	leastsignificant	byte	is	placed	on	databus,	the	lsb_out
output	 is	 issued,	 and	 in	 the	 next	 clock	 for	 the	most-significant	 byte,	 msbout	 is	 issued.
When	both	bytes	are	outputted,	done	becomes	1,	and	the	multiplier	is	ready	for	another	set
of	data.	The	multiplexed	bi-directorial	databus	is	used	to	reduce	the	 total	number	of	I/O
pins	of	the	multiplier.

3.5.1	Shift-and-Add	Multiplication	Process

When	designing	multipliers	 there	 is	always	a	compromise	 to	be	made	between	how	fast
the	 multiplication	 process	 is	 done	 and	 how	 much	 hardware	 we	 are	 using	 for	 its
implementation.

Figure	3.81	Multiplier	Block	Diagram

A	 simple	multiplication	method	 that	 is	 slow	 but	 efficient	 in	 use	 of	 hardware	 is	 the
shift-and-add	method.	In	this	method,	depending	on	bit	i	of	operand	A,	either	operand	B	is
added	to	the	collected	partial	result	and	then	shifted	to	the	right	(when	bit	i	is	1),	or	(when
bit	i	is	0)	the	collected	partial	result	is	shifted	one	place	to	the	right	without	being	added	to
B.

This	 method	 can	 better	 be	 understood	 by	 considering	 how	 binary	 multiplication	 is
done	manually.	Figure	3.82	shows	manual	multiplication	of	two	8-bit	binary	numbers.

Figure	3.82	Manual	Binary	Multiplication

We	start	considering	bits	of	A	from	right	to	left.	If	a	bit	value	is	0	we	select	00000000
to	be	added	with	the	next	partial	product,	and	if	it	is	a	1,	the	value	of	B	is	selected.	This
process	repeats,	but	each	time	00000000	or	B	is	selected,	it	is	written	one	place	to	the	left
with	respect	to	the	previous	value.	When	all	bits	of	A	are	considered,	we	add	all	calculated
values	to	come	up	with	the	multiplication	results.

Understanding	hardware	implementation	of	this	procedure	becomes	easier	if	we	make
certain	 modifications	 to	 this	 procedure.	 First,	 instead	 of	 moving	 our	 observation	 point
from	one	bit	of	A	to	another,	we	put	A	in	a	shift-register,	always	observe	its	right-most	bit,
and	 after	 every	 calculation,	 we	 move	 it	 one	 place	 to	 the	 right,	 making	 its	 next	 bit
accessible.	Second,	for	the	partial	products,	instead	of	writing	one	and	the	next	one	to	its
left,	we	move	the	partial	product	to	the	right	as	we	are	writing	it.

Finally,	instead	of	calculating	all	partial	products	and	adding	them	up	at	the	end,	we
add	a	newly	calculated	partial	product	to	the	previous	one	and	write	the	calculated	value
as	the	new	partial	result.	Therefore,	if	the	observed	bit	of	A	is	0,	00000000	is	to	be	added
to	the	previously	calculated	partial	result,	and	the	new	value	should	be	shifted	one	place	to
the	right.	In	this	case,	since	the	value	being	added	to	the	partial	result	is	00000000,	adding
is	 not	 necessary,	 and	 only	 shifting	 the	 partial	 result	 is	 sufficient.	 This	 process	 is	 called
shift.	However,	if	the	observed	bit	of	A	is	1,	B	is	to	be	added	to	the	previously	calculated
partial	 result,	and	the	calculated	new	sum	must	be	shifted	one	place	 to	 the	right.	This	 is
called	add-and-shift.

Repeating	 the	 above	procedure,	when	all	 bits	 of	A	are	 shifted	out,	 the	partial	 result
becomes	 the	 final	 multiplication	 result.	 We	 use	 a	 4bit	 example	 to	 clarify	 the	 above
procedure.

Figure	3.83	Hardware	Oriented	Multiplication	Process

As	shown	in	Figure	3.83,	A	=	1001	and	B	=	1101	are	to	be	multiplied.	Initially	at	time
0,	A	is	in	a	shift-register	with	a	register	for	partial	results	(P)	on	its	left.

At	 time	0,	 because	A[O]	 is	 1,	 the	 partial	 sum	of	B	+	P	 is	 calculated.	This	 value	 is
01101	(shown	in	the	upper	part	of	time	1)	and	has	5	bits	to	consider	carry.	The	right	most
bit	of	this	partial	sum	is	shifted	into	the	A	register,	and	the	other	bits	replace	the	old	value
of	P.	When	A	is	shifted,	0	moves	into	the	A[O]	position.	This	value	is	observed	at	time	1.
At	this	time,	because	A[O]	is	0,	0000	+	P	is	calculated	(instead	of	B	+	F).	This	value	is
00110,	 the	right	most	bit	of	which	 is	shifted	 into	A,	and	 the	rest	 replace	P.	This	process
repeats	4	times.	At	the	end	of	the	4th	cycle,	the	least	significant	4	bits	of	the	multiplication
result	 become	 available	 in	A	 and	 the	most-significant	 bits	 in	 P.	 The	 example	 used	 here
performed	9*13	and	117	is	obtained	as	the	result	of	this	operation.

Figure	3.84	Datapath	and	Controller

3.5.2	Sequential	Multiplier	Design

The	 multiplication	 process	 discussed	 in	 the	 previous	 section	 justifies	 the	 hardware
implementation	that	is	being	discussed	here.

3.5.2.1	Control	Data	Partitioning.	The	multiplier	has	a	datapath	and	a	controller.	The	data
part	consists	of	registers,	logic	units	and	their	interconnecting	busses.	The	controller	is	a
state	machine	 that	 issues	 control	 signals	 for	 control	 of	 what	 gets	 clocked	 into	 the	 data
registers.

As	shown	in	Figure	3.84,	 the	datapath	registers	and	the	controller	are	triggered	with
the	same	clock	signal.	On	the	rising	edge	of	a	clock,	the	controller	goes	into	a	new	state.
In	 this	 state,	 several	 control	 signals	 are	 issued,	 and	 as	 a	 result	 the	 components	 of	 the
datapath	start	reacting	to	these	signals.	The	time	given	for	all	activities	of	the	datapath	to
stabilize	is	from	one	edge	of	the	clock	to	another.	Values	that	are	propagated	to	the	inputs
of	 the	datapath	 registers	are	clocked	 into	 these	 registers	with	every	positive	edge	of	 the
clock.

3.5.2.2	Multiplier	Datapath.	Figure	3.85	shows	 the	datapath	of	 the	 sequential	multiplier.
As	 shown,	 P	 and	B	 are	 outputs	 of	 8-bit	 registers	 and	A	 is	 the	 output	 of	 an	 8-bit	 shift-
register.	These	components	are	implemented	with	always	statements	in	the	Verilog	code	of
the	 multiplier.	 An	 adder,	 a	 multiplexer	 and	 two	 tri-state	 buffers	 constitute	 the	 other
components	of	this	datapath.	These	components	are	implemented	with	assign	statements.

Control	 signals	 that	 are	 outputs	 of	 the	 controller	 and	 inputs	 of	 the	datapath	 (Figure
3.84),	 are	 named	 according	 to	 their	 functionalWes	 like	 loading	 registers,	 shifting,	 etc.
These	 signals	 are	 shown	 in	 the	 corresponding	 blocks	 of	 Figure	 3.85	 next	 to	 the	 data
component	that	they	control.

Figure	3.85	Multiplier	Datapath	Block	Diagram

The	input	data	bus	(signal	named	data	in	this	figure)	connects	to	the	inputs	of	A	and	B
to	load	multiplier	and	multiplicand	into	these	registers.	This	bi-directional	bus	is	driven	by
the	 outputs	 of	 P	 and	 A	 through	 tri-state	 buffers.	 These	 tri-states	 become	 active	 when
multiplication	result	is	ready.

The	output	from	B	and	P	are	added	to	form	co	and	sum	to	be	put	in	P	if	adding	is	to
take	 place.	Otherwise,	 P	 is	 put	 on	 ShiftAdd	 to	 be	 shifted,	while	 being	 put	 back	 into	 P.
ShiftAdd	 is	 the	 multiplexer	 output	 that	 selects	 sum	 or	 P.	 The	 selsum	 control	 input
determines	if	sum	or	P	is	to	go	on	the	multiplexer	output.

The	 AND	 function	 shown	 in	 Figure	 3.85	 selects	 carry-out	 from	 the	 adder	 or	 0
depending	on	the	value	of	selsum	control	input.	This	value	is	concatenated	to	 the	left	of
the	multiplexer	output	to	form	a	9bit	vector.	This	vector	has	P+B	or	P	with	a	carry	to	its
left.	The	rightmost	bit	of	this	9-bit	vector	is	split	and	goes	into	the	serial	input	of	the	shift-
register	that	contains	A,	and	the	other	eight	bits	go	into	register	P.	Note	that	concatenation
of	the	AND	output	to	the	left	of	the	multiplexer	output	and	splitting	the	right	bit	from	this
9-bit	vector,	effectively	produces	a	shifted	result	that	is	clocked	into	P.

3.5.2.3	Datapath	Description.	The	complete	datapath	Verilog	description	of	the	multiplier
is	 shown	 in	 Figure	 3.86.	 Verilog	 assign	 and	 always	 statements	 are	 used	 to	 describe
components	 of	 the	 datapath.	 As	 shown	 here,	 the	 first	 two	 always	 statements	 represent
registers	B	and	P	for	operand	B	and	the	partial	result,	P.	The	assign	statement	that	comes
next	in	this	figure	represents	the	8-bit	adder.	This	adder	adds	P	and	B.

Another	component	of	our	multiplier	datapath	is	an	8-bit	shiftregister	for	operand	A	of
the	multiplier.	This	shift-register	either	loads	A	with	data	(controlled	by	load	A)	or	shifts
its	contents	(controlled	by	shift	A).	An	always	statement	that	implements	this	shiftregister
is	 shown	 in	Figure	 3.86.	 Following	 this	 statement,	 an	 assign	 statement	 representing	 the
multiplexer	 for	selection	of	sum	or	P	 is	shown	in	 the	Verilog	code	of	 the	datapath.	This
statement	puts	8’h0	on	ShiftAdd	if	clrP	is	active.	We	will	use	this	enabling	feature	of	the
multiplexer	for	producing	an	eight-bit	zero	at	its	output	to	load	into	P	for	resetting	the	P
partial	result	register	at	the	start	of	the	multiplication	process.

The	 last	 two	 assign	 statements	 of	 Figure	 3.86	 represent	 two	 sets	 of	 tri-state	 buffers
driving	the	bidirectional	data	bus	of	the	datapath.	As	shown,	if	lsb_out	is	1,	A	(the	least-
significant	byte	of	 result)	drives	data	and	 if	msb_out	 is	1,	P	 (The	most-significant	byte)
drives	data.

Figure	3.86	Datapath	Verilog	Code

3.5.2.4	The	Multiplier	Controller.	The	multiplier	 controller	 is	 a	 finite	 state	machine	 that
has	two	starting	states,	eight	multiplication	states,	and	two	ending	states.	States	and	their
binary	assignments	are	shown	in	Figure	3.87.

Figure	3.87	Multiplier	Control	States

Figure	3.88	Verilog	Code	of	Controller

In	 the	 ‘idle	 state,	 the	multiplier	waits	 for	 start	while	 loading	A.	 In	 ‘init,	 it	 loads	 the
second	operand	B.	In	‘ml	to	‘m8,	the	multiplier	performs	add-and-shift	of	P+B,	or	P+O,
depending	on	AO.	In	the	last	two	states	(‘rsltl	and	‘rslt2),	the	two	halves	of	the	result	are

put	on	data	that	becomes	the	databus	port	of	the	multiplier.

The	Verilog	code	of	controller	 is	shown	in	Figure	3.88.	This	Code	declares	datapath
ports,	and	uses	two	always	blocks	(emb	and	seq)	to	issue	control	signals	and	make	state
transitions.	At	the	beginning	of	the	cmb	always	block	all	control	signal	outputs	are	set	to
their	 inactive	 values.	 This	 eliminates	 unwanted	 latches	 that	 may	 be	 generated	 by	 a
synthesis	tool	for	these	outputs.	The	second	always	block,	seq,	handles	state	transitions.

The	 4-bit	 current	 variable	 represents	 the	 currently	 active	 state	 of	 the	 machine.	 As
shown	in	cmb,	when	current	is	‘idle	and	start	 is	0,	 the	done	output	remains	high.	In	this
state	if	start	becomes	1,	control	signals	load	A,	clrP	and	load	P	become	active	to	load	A
with	databus	and	clear	the	P	register.	Clearing	P	requires	clrP	to	put	0’s	on	the	ShiftAdd	of
the	datapath	and	loading	the	0’s	into	P	by	asserting	load	P.

In	‘m1	to	‘m8	states,	A	is	shifted,	P	is	loaded,	and	if	AO	is	1,	selsum	is	asserted.	As
discussed	in	relation	to	datapath,	selsum	controls	shifted	P+B	(or	shifted	P+0)	to	go	into	P.
In	the	result	states,	lsb	out	and	msb	out	are	asserted	in	two	consecutive	clocks	in	order	to
put	A	and	P	on	the	data	bus	respectively.

In	 the	 seq	block,	 a	 case	 statement,	 similar	 to	 and	parallel	 to	 that	 of	 the	 cmb	block,
handles	state	transitions	by	assigning	values	to	current.

Figure	3.89	Top-Level	Multiplier	Code

3.5.2.5	 Top-Level	 Code	 of	 the	 Multiplier.	 Figure	 3.89	 shows	 the	 toplevel	 Multiplier
module.	The	datapath	and	controller	modules	are	instantiated	here.	The	input	and	output
ports	of	 this	unit	 are	 according	 to	 the	block	diagram	of	Figure	3.81.	This	description	 is
synthesizable,	 and	 can	 be	 used	 in	 any	 FPGA	 device	 programming	 environment	 for
synthesis	and	device	programming.

3.5.3	Multiplier	Testing

This	section	shows	an	auto-check	adaptive	testbench	for	our	sequential	multiplier.	Several
forms	of	data	applications	and	 result	monitoring	are	demonstrated	by	 this	example.	The

outline	of	the	test	multiplier	module	is	shown	in	Figure	3.90.

Figure	3.90	Multiplier	Testbench	Outline

In	 the	 declarative	 part	 of	 this	 testbench	 inputs	 and	 outputs	 of	 the	 multiplier	 are
declared	 as	 reg	 and	wire,	 respectively.	Since	 databus	 of	 the	multiplier	 is	 a	 bidirectional
bus,	it	is	declared	as	wire	for	reading	it,	and	a	corresponding	im_data	reg	is	declared	for
writing	into	it.	An	assign	statement	drives	databus	with	imdata.	When	writing	into	this	bus
from	 the	 testbench,	 the	writing	must	 be	 done	 into	 im_data,	 and	 after	 the	 completion	 of
writing	the	bus	must	be	released	by	writing	8’hZZ	into	it.

Other	 variables	 declared	 in	 the	 testbench	 of	 Figure	 3.90	 are	 ex-	 pectedresult	 and
multiplier	result.	The	latter	is	for	the	result	read	from	the	multiplier,	and	the	former	is	what
is	calculated	in	the	testbench.	It	is	expected	that	these	values	are	the	same.

The	 testbench	 shown	 in	 Figure	 3.90	 applies	 three	 rounds	 of	 test	 to	 the	 Multiplier
module.	In	each	round,	data	 is	applied	to	the	module	under	 test	and	results	are	read	and
compared	with	the	expected	results.	These	are	the	tasks	performed	by	this	testbench:

•	Read	data	files	datal.dat	and	data2.dat	and	apply	data	to	databus

•	Apply	start	to	start	multiplication

•	Calculate	the	expected	result

•	Wait	for	multiplication	to	complete,	and	collect	the	calculated	result

•	Compare	expected	and	calculated	results	and	issue	error	if	they	do	not	match

These	tasks	are	timed	independently.	An	always	block	generates	a	periodic	signal	on	the
clk	 input.	 This	 clock	 is	 used	 for	 clocking	 the	 multiplier	 as	 well	 as	 for	 synchronizing
always	statements	for	collection	of	actual	 results	and	comparing	 them	with	 the	expected
ones.

Reading	Data	Files.	Figure	3.91	shows	the	Apply	data	initial	block	that	is	responsible	for
reading	data	and	applying	them	to	im_data,	which	in	turn	goes	on	databus.

Figure	3.91	Reading	Data	Files

Hexadecimal	data	from	datal.dat	and	data2.dat	external	files	are	 read	 into	meml	and
mem2.	In	each	round	of	 test,	data	from	meml	and	mem2	are	put	on	im_data.	Data	from
mem2	is	distanced	from	that	of	meml	by	100	ns.	This	way,	the	latter	is	interpreted	as	data
for	the	A	operand	and	the	former	for	the	B	multiplication	operand.	After	placing	this	data,
8’hzz	is	put	on	im_data.	This	releases	the	databus	so	that	it	can	be	driven	by	the	multiplier
when	its	result	is	ready.

3.5.3.2	Applying	Start.	Figure	3.92	shows	an	initial	block	in	which	variable	initializations
take	 place,	 and	 start	 signal	 is	 issued.	 Using	 a	 repeat	 statement,	 three	 100	 ns	 pulses
distanced	by	1400	ns	are	placed	on	start.

Figure	3.92	Initializations	and	Start

3.5.3.3	Calculating	Expected	Result.	Figure	3.93	shows	an	initial	block	that	reads	data	that
is	placed	on	databus	by	 the	Apply	data	block	 (Figure	3.91),	and	calculates	 the	expected
multiplication	 result.	After	 start,	when	databus	 is	 updated,	 the	 first	 operand	 is	 read	 into

opndl.	 The	 next	 time	 databus	 changes,	 opnd2	 is	 read.	The	 expected	 result	 is	 calculated
using	these	operands.

Figure	3.93	Calculating	Expected	Result

3.5.3.4	 Reading	 Multiplier	 Output.	 When	 the	 multiplier	 completes	 its	 task,	 it	 issues
msbout	and	 lsb_out	 to	 signal	 that	 it	 has	 readied	 the	 two	bytes	of	 the	 result.	The	always
block	of	Figure	3.94	is	triggered	by	the	rising	edge	of	the	circuit	clock.	After	a	clock	edge,
if	msb_out	or	 lsb_out	 is	1,	 it	 reads	 the	databus	and	puts	 in	 its	corresponding	position	 in
multiplier	result.

Figure	3.94	Reading	Multiplier	Results

3.5.3.5	 Comparing	 Result.	 Figure	 3.95	 shows	 the	 always	 block	 that	 is	 responsible	 for
comparing	actual	and	expected	multiplication	results.	After	the	active	edge	of	the	clock,	if
done	 is	1,	 then	comparing	multiplier	 result	 and	 expected	 result	 takes	place.	 If	 values	of
these	variables	do	not	match	error	is	issued.

Figure	3.95	Comparing	Results

The	self-running	testbench	presented	here	verifies	RT-level	operation	of	our	multiplier.
This	design	is	synthesizable	and	because	of	the	timing	used	in	our	testbench,	it	can	also	be
used	for	the	postsynthesis	description	of	our	multiplier.

This	section	showed	a	complete	design	of	a	system	with	a	welldefined	datapath	and	a
controller.	 The	 design	 demonstrates	 top-down	 design,	 data/control	 partitioning,	 and	 a
complete	flow	from	design	to	test	of	a	system.	This	flow	will	be	used	in	the	sections	that
follow	to	illustrate	how	Verilog	can	be	used	for	design	of	systems	that	access	memory	for
instructions	and	data.

3.6	Synthesis	Issues

Verilog	 constructs	 described	 in	 this	 chapter	 included	 those	 for	 cell	modeling	 as	well	 as
those	 for	 designs	 to	 be	 synthesized.	 In	 describing	 an	 existing	 cell,	 timing	 issues	 are
important	 and	 must	 be	 included	 in	 the	 Verilog	 code	 of	 the	 cell.	 At	 the	 same	 time,
description	 of	 an	 exist	 ing	 cell	 may	 require	 parts	 of	 this	 cell	 to	 be	 described	 by
interconnection	 of	 gates	 and	 transistors.	 On	 the	 other	 hand,	 a	 design	 to	 be	 synthesized
does	not	include	any	timing	information	because	this	information	is	not	available	until	the
design	is	synthesized,	and	designers	usually	do	not	use	gates	and	transistors	for	high	level
descriptions	for	synthesis.

Considering	the	above,	knowing	that	 the	 timings	are	 ignored	by	synthesis	 tools,	and
only	using	gates	when	we	really	have	to,	the	codes	presented	in	this	chapter	all	have	one-
to-one	 hardware	 correspondence	 and	 are	 synthesizable.	 For	 synthesis,	 a	 designer	 must
consider	his	or	her	target	library	to	see	what	and	how	certain	parts	can	be	synthesized.	For
example,	most	FPGAs	do	not	have	 internal	 threestate	structures	and	three-state	bussings
are	converted	to	AND-OR	busses.

3.7	Summary

The	focus	of	this	chapter	was	on	RT	level	description	in	the	Verilog	HDL	language.	The
chapter	used	complete	design	examples	at	various	levels	of	abstraction	for	showing	ways
in	 which	 Verilog	 could	 be	 used	 in	 a	 design.	 We	 showed	 how	 timing	 details	 could	 be
incorporated	 in	 cell	 descriptions.	 The	 examples	 that	 were	 presented	 had	 one-to-one
hardware	correspondence	and	were	synthesizable.	We	have	shown	how	combinational	and
sequential	components	can	be	described	for	synthesis	and	how	a	complete	system	can	be
put	together	using	combinational	and	sequential	blocks	for	it	to	be	tested	and	synthesized.
The	 Verilog	 HDL	 is	 far	 more	 extensive	 than	 the	 coverage	 given	 to	 it	 in	 this	 chapter.
However,	this	chapter	is	sufficient	for	doing	basic	designs	for	synthesis.

	

4

Computer	Hardware	and	Software

Processors	play	a	major	role	in	the	design	of	embedded	systems.	An	embedded	processor
may	be	used	as	the	central	processing	unit	of	an	embedded	system,	or	it	may	just	be	used
as	 a	 convenient	 and	 fast	 way	 of	 implementing	 a	 hardware	 function.	 With	 embedded
systems,	understanding	how	a	processor	works,	its	software,	and	software	utilities,	such	as
compilers	and	assemblers,	are	key	topics	that	a	hardware	designer	should	be	familiar	with.

This	chapter	provides	the	basic	concepts	and	techniques	that	are	necessary	for	design
and	 utilization	 of	 an	 embedded	 processor.	 The	 chapter	 begins	 with	 an	 introduction	 to
computer	systems,	describing	the	role	of	software	and	hardware	in	a	computer	system.	In
this	 part,	 instructions,	 programs,	 instruction	 execution,	 and	 processing	 hardware	will	 be
described.	After	this	introduction,	we	will	describe	a	computer	from	its	software	point	of
view.	 This	 provides	 the	 necessary	 background	 for	 understanding	 the	 hardware	 of	 a
processor.	 In	 the	 description	 of	 processor	 hardware	 we	 begin	 with	 a	 simple	 processor
example	 that	 has	 the	 basic	 properties	 found	 in	most	 processing	 units	 and	 then	 continue
with	 a	more	 realistic	processor.	The	hardware	 and	 software	of	 this	processor,	which	we
refer	to	as	SAYEH,	becomes	the	main	focus	of	this	chapter.	In	a	top-down	fashion,	we	will
show	control-data	partitioning	of	our	example	processors	and	design	and	implementation
of	the	individual	parts	of	these	machines.

4.1	Computer	System

It	is	important	to	understand	what	it	is	that	we	refer	to	as	a	computer.	This	section	gives
this	 overall	 view.	 A	 computer	 is	 an	 electronic	 machine	 which	 performs	 some
computations.	To	have	 this	machine	perform	a	 task,	 the	 task	must	 be	broken	 into	 small
instructions,	and	the	computer	will	be	able	to	perform	the	complete	task	by	executing	each
of	 its	 comprising	 instructions.	 In	 a	way,	 a	 computer	 is	 like	 any	of	 us	 trying	 to	 evaluate
something	based	on	a	given	algorithm.

To	 perform	 a	 task,	we	 come	 up	with	 an	 algorithm	 for	 it.	 Then	we	 break	down	 the
algorithm	into	a	set	of	small	 instructions,	called	a	program,	and	using	these	step-by-step
instructions	we	achieve	the	given	task.	A	computer	does	exactly	the	same	thing	except	that
it	cannot	decide	on	the	algorithm	for	performing	a	task,	and	it	cannot	break	down	a	task
into	small	instructions	either.	To	use	a	computer,	we	come	up	with	a	set	of	instructions	for
it	to	do,	and	it	will	be	able	to	do	these	instructions	much	faster	than	we	could.

Putting	 ourselves	 in	 place	 of	 a	 computer,	 if	 we	were	 given	 a	 set	 of	 instructions	 (a
program)	 to	 perform,	 we	 would	 need	 an	 instruction	 sheet	 and	 a	 data	 sheet	 (or	 scratch
paper).	The	instruction	sheet	would	list	all	instructions	to	perform.	The	data	sheet,	on	the

other	hand,	would	initially	contain	the	initial	data	used	by	the	program,	and	it	could	also
be	used	for	us	 to	write	our	 intermediate	and	perhaps	 the	final	results	of	 the	program	we
were	performing.

In	 this	 scenario,	 we	 read	 an	 instruction	 from	 the	 instruction	 sheet,	 read	 its
corresponding	data	from	the	data	sheet,	use	our	brain	to	perform	the	instruction,	and	write
the	 result	 in	 the	 data	 sheet.	 Once	 an	 instruction	 is	 complete,	 we	 go	 on	 to	 the	 next
instruction	and	perform	that.	In	some	cases,	based	on	the	results	obtained,	we	might	skip	a
few	 instructions	 and	 jump	 to	 the	 beginning	 of	 a	 new	 set	 of	 instructions.	 We	 continue
execution	of	the	given	set	of	instructions	until	we	reach	the	end	of	the	program.

For	 example	 consider	 an	 algorithm	 that	 is	 used	 to	 add	 two	3digit	 decimal	numbers.
Figure	4.1	shows	the	addition	algorithm	and	two	decimal	numbers	that	are	added	by	this
algorithm.	 The	 algorithm	 starts	 with	 reading	 the	 first	 two	 digits	 from	 the	 paper,	 and
continues	with	adding	them	in	the	brain	and	writing	the	sum	and	output	carry	on	the	paper
in	their	specified	positions.	So	the	paper	is	used	to	store	both	the	result	(i.e.,	sum),	and	the
temporary	 results	 (i.e.,	 carry).	The	algorithm	continues	until	 it	 reaches	Step	7	of	Figure
4.1.

There	 are	 similar	 components	 in	 a	 computing	 machine	 (computer).	 A	 computing
system	 has	 a	 memory	 unit.	 The	 part	 of	 the	 memory	 that	 is	 used	 to	 store	 instructions
corresponds	 to	 the	 instruction	 sheet	 and	 the	 part	 that	 stores	 temporary	 and	 final	 results
corresponds	 to	 the	 scratch	 paper	 or	 the	 data	 sheet.	The	Central	 Processing	Unit	 (CPU),
which	corresponds	to	the	brain,	sequences	and	executes	the	instructions.

Figure	4.1	Decimal	Addition

There	is	an	important	difference	between	storing	information	in	these	two	methods.	In
the	manual	computation,	the	instructions	are	represented	using	natural	 language	or	some
human	readable	guidelines	and	data	 is	usually	presented	 in	decimal	 forms.	On	 the	other
hand,	in	the	computer,	information	(both	instructions	and	data)	are	stored	and	processed	in
the	binary	form.	To	provide	communication	between	the	user	and	the	computer,	an	input-
output	 (JO)	 device	 is	 needed	 to	 convert	 information	 from	 a	 human	 language	 to	 the
machine	 language	 (0	 and	 1)	 and	 vice	 versa.	 So	 each	 computer	 should	 have	 a	 CPU	 to
execute	instructions,	a	memory	to	store	instructions	and	data,	and	an	10	device	to	transfer
information	between	the	computer	and	the	outside	world.

There	 are	 several	ways	 to	 interconnect	 these	 three	 components	 (Memory,	 CPU	 and

IO)	 in	 a	 computer	 system.	A	 computer	with	 an	 interconnection	 shown	 in	 Figure	 4.2	 is
called	 a	 uon-Neumann	 computer.	 The	 CPU	 communicates	 with	 the	 10	 device(s)	 for
receiving	input	data	and	displaying	results.	It	communicates	with	the	memory	for	reading
instructions	and	data	as	well	as	writing	data.

As	 shown	 in	 this	 figure,	 the	CPU	 is	 divided	 into	datapath	 and	 controller	 parts.	The
datapath	 has	 storage	 elements	 (registers)	 to	 store	 intermediate	 data,	 handles	 transfer	 of
data	 between	 its	 storage	 components,	 and	 performs	 arithmetic	 or	 logical	 operations	 on
data	 that	 it	 stores.	The	datapath	also	has	communication	 lines	 for	 transfer	of	 data;	 these
lines	are	referred	to	as	busses.	Activities	in	the	datapath	include	reading	from	and	writing
into	data	registers,	bus	communications,	and	distributing	control	signals	generated	by	the
controller	to	the	individual	data	components.

The	controller	commands	 the	datapath	 to	perform	proper	opera-	 tion(s)	according	 to
the	instruction	it	is	executing.	Control	signals	carry	these	commands	from	the	controller	to
the	datapath.	Control	signals	are	generated	by	controller	state	machine	 that,	at	all	 times,
knows	the	status	of	the	task	that	is	being	executed	and	the	sort	of	the	information	that	is
stored	in	datapath	registers.	Controller	is	the	thinking	part	of	a	CPU.

Figure	4.2	Von-Neumann	Machine

4.2	Computer	Software

The	 part	 of	 a	 computer	 system	 that	 contains	 instructions	 for	 the	machine	 to	 perform	 is
called	 its	 software.	 For	 making	 software	 of	 a	 computer	 available	 for	 its	 hardware	 to
execute,	 it	 is	 put	 in	 the	 memory	 of	 the	 computer	 system.	 As	 shown	 in	 Figure	 4.2	 the
memory	 of	 a	 system	 is	 directly	 accessible	 by	 its	 hardware.	 There	 are	 several	 ways
computer	software	can	be	described.

4.2.1	Machine	Language

Computers	are	designed	to	perform	our	commands.	To	command	a	computer,	you	should

know	the	computer	alphabets.	As	mentioned	 in	Chapter	2,	 the	computer	alphabet	 is	 just
two	letters	0	and	1.	An	individual	command,	which	is	presented	using	these	two	letters,	is
called	an	instruction.	Instructions	are	binary	numbers	that	are	meaningful	for	a	computer.
For	example,	the	binary	number	10110010	may	be	a	command	to	tell	a	computer	to	add
two	 numbers.	 This	 number	 has	 three	 fields,	 the	 first	 field	 (1011)	 signifies	 the	 add
operation,	 and	 the	 other	 two	 (00	 and	 10)	 are	 references	 to	 the	 numbers	 that	 are	 to	 be
added.	 This	 binary	 notation	 is	 referred	 to	 as	 the	 machine	 language.	 This	 language	 is
hardware	 dependent,	 and	 it	 is	 different	 from	 one	 machine	 to	 another.	 The	 SAYEH
processor	that	we	use	in	the	examples	of	this	book	has	its	own	machine	language.

4.2.2	Assembly	Language

The	earliest	programmers	wrote	 their	programs	 in	machine	 language.	Machine	 language
programs	 are	 tedious	 and	 error	 prone	 to	 write,	 and	 difficult	 to	 understand.	 So	 the
programmers	 used	 a	 symbolic	 notation	 closer	 to	 the	 human	 language.	 This	 symbolic
language	is	called	assembly	language	that	is	easier	to	use	than	the	machine	language.	For
example,	the	above	instruction	might	be	written	as	add	R0,	R2.

We	 need	 a	 special	 program,	 called	 assembler,	 to	 convert	 a	 program	 from	 assembly
language	 to	 machine	 language.	 Because	 the	 assembly	 language	 is	 a	 symbolic
representation	 of	 the	 machine	 language,	 each	 computer	 (e.g.,	 SAYEH)	 has	 its	 own
assembler.

4.2.3	High-Level	Language

The	 development	 of	 the	 programming	 language	 continued	 and	 resulted	 in	 a	 high-level
programming	 language	which	 is	 closer	 to	 the	 programmer’s	 problem	 specification.	 For
example	a	user	can	write	the	add	RO,	R2	instruction	mentioned	above,	as	RO	=	RO	+	R2,
which	is	more	readable.	Similarly	we	need	a	program,	called	compiler,	to	translate	 these
high-level	programs	into	the	assembly	language	of	a	specific	computer.	Consequently	the
high-level	languages	can	be	used	on	different	computers.

Figure	4.3	Translation	of	Programming	Languages

In	 its	 first	 pass,	 a	 compiler	 reads	 the	 input	 program	 and	 checks	 the	 syntax	 of	 the
language.	If	there	is	no	syntax	error	in	the	input	program,	the	compiler	builds	an	internal
data	 structure	 to	 hold	 the	 information	 extracted	 from	 the	 input	 program,	 otherwise	 it
reports	the	error.	In	 the	next	pass,	based	on	the	internal	data	structure,	 the	 target	code	 is
generated.	Figure	4.3	shows	a	program	(in	the	Clanguage)	that	finds	the	minimum	value	in
an	array.	The	array	has	100	elements	and	starts	from	memory	location	512.	The	compiler
takes	the	C	program	as	its	input	and	generates	the	assembly	program	for	the	corresponding
machine.	The	assembly	program	is	then	fed	to	the	assembler	to	generate	machine	code	for
the	machine	that	is	to	run	this	program.

4.2.4	C	Programming	Language

As	mentioned	 above,	 there	 are	 various	 languages	 in	 different	 levels	 that	 a	 designer	 can
develop	a	software	program	with.	Since	machine	and	assembly	 languages	are	processor-
dependent	 and	 they	 are	 not	 easy	 to	 learn	 and	 use,	 programmers	 prefer	 to	 develop	 their
software	programs	in	higher	level	languages	(e.g.,	C/C++,	Pascal,	and	Java).	A	program	so
developed,	is	translated	to	a	specific	machine	language	by	high-level	language	compilers.

This	 section	gives	an	overview	of	 the	C	 language	 that	 is	 enough	 for	 the	material	of	 the
chapters	that	follow.

A	simple	C	program,	which	is	converted	to	SAYEH	assembly	language	at	the	end	of
this	chapter,	is	shown	in	Figure	4.4.	This	code	reads	a	set	of	integers	from	a	file	and	sorts
it	 in	 the	 descending	 order.	 The	 first	 number	 in	 the	 input	 file	 determines	 the	 number	 of
integers	 in	 the	set.	The	name	of	 the	 input	 file	 is	passed	 to	 the	program	through	 the	first
argument	of	the	program.	We	use	this	program	to	introduce	language	constructs	of	the	C
language.

The	program	of	Figure	4.4	uses	preprocessor	directives	on	 lines	01	 to	05.	 It	utilizes
functions	for	a	better	readability	(lines	08,	17,	and	24).	The	sort	function	uses	a	nested	for-
loop	on	lines	11	and	12	and	a	conditional	statement	on	line	13.	The	getarrqy	size	and	get
data	functions	call	file	JO	functions	on	lines	19	and	28.	Lines	37,	43,	and	50	in	the	main
function	use	JO	functions	and	 lines	47	and	58	utilize	memory	allocation	functions	for	a
dynamic	array.

We	will	describe	preprocessors	 (lines	01	 to	05)	 in	Section	4.2.4.1,	C	data	 types	 and
variables	(e.g.,	line	07)	in	Sections	4.2.4.2	to	4.2.4.4,	conditional	statements	(e.g.,	line	13)
and	loops	(e.g.,	line	12)	in	Sections	4.2.4.5	and	4.2.4.6.	We	will	continue	with	discussing
subprograms	(e.g.,	 line	08)	 in	Section	4.2.4.7.	Section	4.2.4.8	describes	important	points
about	 arrays	 and	 pointers	 in	 C	 (e.g.,	 line	 46).	 This	 section	 ends	with	 describing	 a	 few
input/output	functions	defined	in	C	(e.g.,	line	37).

Figure	4.4	Sort	Program	in	C	Language

4.2.4.1	Preprocessors.	In	addition	to	the	body	of	a	C	program,	there	are	parts	in	a	C	code
that	 are	 processed	 by	 the	 compiler	 before	 the	 syntax	 checking	 process.	 These	 parts	 are
called	 preprocessors.	 These	 preprocessors	 begin	 with	 the	 `#’	 symbol.	 The	 main
preprocessors	are	discussed	below.

#include	 filename.	 This	 preprocessor	 inserts	 the	 contents	 of	 filename	 in	 the	 current
position	of	the	file	that	the	include	statement	is	written	(lines	01	and	02	in	Figure	4.4).

#define	 argl	 arg2.	 This	 preprocessor	 replaces	 argl	 with	 arg2	 everywhere	 after	 the
definition.	 This	 replacement	 can	 be	 a	 simple	 name	 replacement	 or	 it	 can	 be	 a	 complex
macro	 definition.	 For	 example	 the	 following	 statement	 replaces	 the	 word	 ERR	with	 -1
(also	see	lines	04	and	05	in	Figure	4.4).

Alternatively,	the	#define	preprocessor	can	be	used	in	macro	definitions.	For	example,	in
the	 following	 code	 the	 compiler	 searches	 for	 SWAP	 word	 with	 two	 arguments	 and
replaces	it	with	three	assignments	written	in	front	of	SWAP(i,	j)	in	its	definition.

For	 example,	 if	 somewhere	 in	 code	 there	 is	 SWAP(a,	 b),	 it	will	 be	 replaced	with	 these
statements:	{gswp	=	a;	a	=	b;	b	=	gswp,}.

#undef	 already_defined.	 This	 preprocessor	 clears	 the	 definition	 of	 an	 already	 defined
expression.	This	means	that	the	already	defined	expression	will	be	replaced	only	between
its	#define	statement	and	its	#undef	statement.

#if	conditional	exp	…	#endif.	The	codes	written	between	#if	and	#endif	expressions	are
included	 in	 the	 program	 only	 if	 the	 condi-	 tionalexp	 is	 true.	 Other	 useful	 conditional
preprocessors	are	#else,	#ifdef,	and	#ifndef.

4.2.4.2	Data	Types	in	C.	Like	other	high-level	programming	languages,	there	are	various
data	 types	 in	C.	There	are	simple	data	 types	as	well	as	complex	data	 types.	Simple	data
types	include	types	like	int	used	for	integer	variables,	float	for	floating	point	variables,	and
char	for	character-type	(single	byte)	variables.	A	boolean	data	type	in	standard	C	can	be
modeled	by	an	int,	float,	or	char	data	type.	In	other	words,	0	is	interpreted	as	false,	while
any	other	value	is	interpreted	as	true.

In	addition	 to	 the	above	single	data	 types,	 there	are	complex	data	 types	 in	C.	These
complex	data	types	include	the	following	types.

Enumeration	 types.	Enumeration	 types	are	a	subset	of	 integers.	A	simple	example	of	 an
enumeration	type	is:

The	above	expression	simply	assigns	value	0	to	Sat,	1	to	Sun,	etc.	If	we	define	variable	wd
of	type	weekday,	we	can	assign	any	values	between	Sat	and	Fri	to	it.

Structure	types.	A	structure,	defined	by	the	struct	keyword,	is	a	record	with	various	fields.
As	an	example,	the	following	data	type	represents	an	instruction	format.

This	type	has	three	fields.	The	first	field,	named	opeode,	is	of	type	char,	while	the	other
two	 fields	 are	 of	 type	 int.	 Field	 types	 used	 in	 the	 structures	 can	 be	 complex	 types
themselves.

Union	types.	Union	types	are	similar	to	structures	in	their	syntax.	But	a	C	compiler	will
allocate	memory	only	for	the	largest	field	of	a	union.	For	example,	in	the	following	union,
if	we	define	variable	uvar	of	type	u,	the	memory	allocated	for	uuar	would	be	of	size	float.
Therefore,	only	one	field	has	a	valid	value	at	the	same	time.	If	u	was	defined	as	a	struct,
there	would	be	separate	memory	spaces	for	each	of	its	fields	(the	total	memory	would	be
the	size	of	int	+	size	of	char	+	size	of	float).

Note	that	the	fields	of	a	union	or	struct	are	accessible	using	the	`.’	operation.	For	example,
to	access	cj’ield	of	uvar,	we	will	write	uuar.ejield	in	our	program	body.

4.2.4.3	Variable	Definition	in	C.	We	define	a	variable	uuar	of	a	specific	type	t_type	using
the	following	syntax:

Assigning	an	initial	value	to	u_uar	is	optional.	For	example,	variable	ch	of	type	char	is
defined	as	(like	lines	07,	09,	and	18	in	Figure	4.4):

4.2.4.4	Variable	Assignments.	In	C	language,	we	can	assign	a	value	to	a	variable	using	`_’
symbol	 (lines	 10	 and	 41	 in	 Figure	 4.4).	 In	 the	 following	 example,	 the	 content	 of	 ch
variable	becomes	`p’	and	the	content	of	it	becomes	equal	to	the	contents	of	i2	after	it	=	i2;
statement.

Unlike	many	high-level	languages,	in	the	C	language	variables	of	different	types	can
be	assigned	to	each	other	with	the	programmer’s	own	risk.	For	example,	you	can	assign
the	value	of	an	int	type	variable	to	a	char	type	variable.	In	this	case,	only	the	lower	byte	of

that	int	type	variable	will	be	assigned	to	the	char	type	variable.	This	is	because	char	type
occupies	only	one	byte	of	memory.

For	 these	 incompatible-type	 variable	 assignments,	 programmers	 usually	 use	 type-
casting	(line	47	in	Figure	4.4).	As	an	example,	if	i_u	is	a	variable	of	type	int	and	c_u	is	a
variable	of	 type	 char,	 and	 if	we	want	 to	 assign	 cu	 to	 iv,	we	 can	 use	 the	 following	 type
casting:

Using	 type	 casting	 in	 the	 above	 statement	 makes	 c_u	 to	 be	 interpreted	 as	 an	 int	 type
variable.

4.2.4.5	Conditional	Statements.	In	the	flow	of	a	program,	decisions	must	be	made	based
on	which	 certain	 tasks	 are	 to	 be	 done	 (lines	 13,	 19,	 28,	 etc.	 in	Figure	 4.4).	 In	C,	 these
decisions	 can	 be	 made	 using	 conditional	 statements.	 These	 statements	 are	 discussed
below.

if	…	else	if	…	else.	The	format	of	the	if-else	conditional	statement	is	as	follows:

In	 this	 format	 the	 number	 of	 else	 if	 sections	 can	 be	 zero	 or	 more.	 The	 else	 section	 is
optional.	The	conditional	statement,	written	after	 the	 if	keyword,	uses	 logical	operations
shown	in	Table	4.1.	For	example,	consider	the	following	expression:

This	expression	is	true	when	a	is	greater	than	b	and	also	c	is	less	than	or	equal	to	d.	If	this
condition	cannot	be	true,	the	above	statement	can	still	be	true	if	a	is	equal	to	d.

switch	 …	 case.	 If	 there	 are	 many	 branches	 in	 an	 if-else	 conditional	 statement,	 for
readability	purposes,	 it	 is	easier	 to	use	switch	statements.	The	format	of	 this	conditional

statement	is	discussed	here.

The	 above	 format	 is	 similar	 to	 an	 if-else	 statement	 in	 that	 each	 ifelse	 condition	 is
equivalent	 to	 auariable==uali	 (e.g.,	 auariable==ual2).	 The	 default	 section	 is	 identical	 to
the	last	else	section	in	an	if-else	conditional	statement.

If	we	omit	 the	break	statements	 in	 the	case	sections,	 the	statements	of	 the	next	case
sections	 will	 also	 be	 executed	 until	 they	 reach	 a	 break	 statement.	 For	 example,	 if
a_variable	 is	 equal	 to	 ualI	 and	 there	 is	 no	 break	 statement	 in	 the	 first	 case	 section,	 the
statements	of	the	first	two	case	sections	will	be	executed.

4.2.4.6	Loop	Statements.	There	 are	 several	ways	 to	write	 a	 loop	 in	 the	C	programming
language.

for	loop.	The	format	of	the	for	loop	is	shown	below.

In	this	loop	statement	there	can	be	three	sets	of	statements	between	the	parentheses	after
the	for	keyword.	These	sets	of	statements	may	include	any	number	of	statements	of	any
type.	However,	usually	statement	set	1	is	used	for	initializing	loop	variables,	statement	set
2	 is	 used	 for	 the	 exit	 condition	 of	 the	 loop,	 and	 statement	 set	 3	 is	 used	 for
incrementing/decrementing	 loop	variables.	A	general	 form	of	a	 for	 loop	used	 in	most	C
programs	is	shown	below	(see	lines	11,	12,	and	27	in	Figure	4.4):

The	 above	 for	 loop	 begins	with	 i	 equal	 to	 1	 and	 exits	when	 i	 is	 equal	 to	 100.	 In	 each
iteration	 of	 the	 loop,	 i	 is	 incremented	 by	 1	 (++	 is	 an	 operation	 defined	 in	 C	 and	 it
increments	its	operand	by	1).

while	loop.	Another	way	of	writing	loops	is	the	while	loop	that	is	shown	below:

The	while	loop	shown	above	exits	when	the	exit	condition	becomes	true.	As	an	example,
we	can	write	our	for	loop	example,	shown	earlier,	with	a	while	loop:

do…while	 loop.	The	do-while	 loop	 is	similar	 to	while	 loop,	but	 the	first	 iteration	of	 the
loop	will	be	certainly	executed.	Our	previous	example	for	a	for	and	while	loop	is	shown
below	in	do…while	format.

Note	that	in	the	loop	bodies,	the	loop	can	be	terminated	using	break	statement.	Similar
to	 other	 programming	 languages,	 we	 can	 construct	 nested	 loops	 by	 inserting	 a	 loop
statement	inside	the	loop	body	of	another	loop	statement	(line	12	in	Figure	4.4).

4.2.4.7	 Subprograms.	 Readability	 and	 modularity	 of	 a	 C	 program	 can	 be	 achieved	 by
implementing	each	specific	task	of	the	program	in	a	separate	subprogram.	A	subprogram
can	call	other	subprograms.	Subprograms	in	C	are	called	functions.	Unlike	languages	such
as	 Pascal,	 the	 C	 language	 does	 not	 have	 procedures.	 The	 main	 difference	 between
procedures	and	functions	is	that	procedures	do	not	have	a	return	value,	while	functions	do.
The	format	of	a	function	is	shown	below	(see	also	lines	08,	17,	24,	and	35	in	Figure	4.4):

To	 implement	 a	 procedure	 with	 functions	 in	 C,	 there	 is	 a	 special	 data	 type	 in	 this
language	named	void.	void	means	nothing	 in	 the	C	 language.	 If	 the	 rettype	 (return	data
type)	of	a	function	is	void,	this	function	acts	like	a	procedure	(line	08	in	Figure	4.4).	As	an
example,	min	max	function	is	shown	below:

An	 important	 point	 about	 functions	 in	 the	 C	 language	 is	 function	 prototyping.	As
shown	below,	if	function	fl	is	defined	before	function	f2	and	if	fl	uses	f2,	the	compiler	will
generate	an	error.	This	is	because	the	compiler	has	not	seen	the	definition	of	f2	when	it	is
referenced	in	fl.

A	 solution	 to	 this	 problem	 is	 that	 we	 define	 the	 prototype	 of	 function	 f2	 before
defining	fl,	as	shown	below:

Every	C	program	has	a	main	function	from	which	the	program	execution	begins.	This
function	 is	 called	main()	 (line	 35	 in	Figure	 4.4).	 Since	main()	 is	 the	 starting	 point	 of	 a
program,	 using	 this	 function	 is	 mandatory	 in	 all	 C	 programs.	 This	 function	 has	 two
arguments	called	arge	and	argu	 that	are	used	for	passing	 the	program’s	parameters	 from
outside	 to	 the	 program	 data	 structures.	 The	 former	 shows	 the	 number	 of	 program
parameters	(the	count	includes	the	program	name	itself),	while	the	latter	contains	the	name
of	 the	 program	 arguments	 (including	 the	 program	name).	 In	 our	 sort	 program	 example,
shown	in	Figure	4.4,	our	program	has	two	arguments	(here	arge	must	be	equal	to	2).	The
first	 argument	 contains	 the	 name	 of	 the	 sort	 program	 (e.g.,	 sort.exe)	 and	 the	 second
argument	 contains	 the	 input	 file	 name	 (e.g.,	 c:	 /input.srt).	 Therefore,	 argu[0]	 contains
“sort.exe”	string	and	argu[1]	contains	the	c:	/input.srt”	string.

4.2.4.8	Arrays	and	Pointers.	Like	other	high-level	languages,	you	can	define	arrays	in	C.	A
static	array	is	an	array	of	a	defined	type	with	a	fixed	size.	A	precise	amount	of	memory
will	be	allocated	when	these	variables	are	defined.	For	example,	an	array	of	100	integers	is
defined	by:

If	 an	 integer	 uses	 two	 bytes	 of	 memory,	 when	 the	 compiler	 reaches	 the	 above
definition	statement,	it	will	allocate	200	bytes	of	memory	for	 the	int_array	variable.	The
ith	member	of	 int_array	can	be	accessed	by	 int_array[i-IJ,	 because	 the	 first	 index	of	 an
array	in	the	C	language	is	0.

Another	powerful,	but	potentially	dangerous,	capability	of	C	language	is	the	ability	to
define	 a	 pointer	 type	 (lines	 40	 and	 46	 in	 Figure	 4.4).	 A	 pointer	 is	 an	 address	 that
corresponds	 to	 a	 variable’s	 address.	 Pointers	 are	 represented	 by	 a	 *	 preceding	 variable
names.	For	example	in	the	following	pointer	definition,	intptr	is	a	variable	that	points	to	an
integer.

In	 the	 above	 example	 int	 ptr	 is	 the	 address	 of	 an	 integer	 and	 *int	 ptr	 shows	 the
contents	of	this	address.

Another	operator	that	is	related	to	pointers	is	the	&	(address-of)	operator	that	is	used

before	 a	 variable	 (for	 example	 &int_uar)	 to	 show	 the	 address	 of	 that	 variable.	 The
following	code	shows	an	example:

In	 the	 above	 example	 &intcur	 shows	 the	 location	 of	 int_uar	 in	 memory.	 After
assigning	 &int_cur	 to	 int	 ptr,	 this	 integer	 pointer	 also	 points	 to	 the	 address	 of	 jut	 cur.
Therefore,	*int_ntr	is	equal	to	1000,	because	it	shows	the	contents	of	memory	of	int_uar
variable.

The	C	language	allows	definition	of	two	(or	more)	dimensional	pointers.	For	example,
a	pointer	to	another	pointer	is	defined	by	**.	Pointers	are	complicated	in	C	and	care	must
be	taken	in	using	them.	It	is	strongly	recommended	to	study	pointers	in	more	detail	before
starting	to	use	them.

Dynamic	arrays	are	pointers,	to	which	memory	can	be	assigned	at	run-time	(like	s_arr
in	Figure	4.4).	Allocating	memory	can	be	done	by	 several	memory	 allocation	 functions
(such	as	malloc	used	in	line	47	in	Figure	4.4).	It	is	necessary	to	free	an	allocated	memory
of	a	variable	after	using	it	(line	58	in	Figure	4.4),	because,	unlike	static	arrays,	it	will	not
be	de-allocated	automatically.	Memory	leaks	are	resulted	from	improper	de-allocation.	A
memory	de-allocation	function	is	free	function.

Another	interesting	point	about	pointers	and	dynamic	arrays	is	void	*	or	a	pointer	to
the	void	type.	As	stated	above,	void	in	C	means	nothing,	but	when	it	is	used	as	a	pointer,	it
means	anything.	If	a	variable	of	type	void	*	is	used	as	a	function	parameter,	any	type	of
pointer	can	be	passed	to	that	function	for	that	parameter	(for	example	char	*,	int	*,	etc.).	In
addition,	 if	a	void	*	variable	is	defined	inside	a	function,	memory	can	be	allocated	with
any	type	to	that	variable	by	type	casting.	For	example,	if	v	ptr	is	a	void	*,	what	is	shown
below	generates	an	array	of	100	characters:

And	an	array	of	50	integers	is	generated	by	the	following	statement:

4.2.4.9	Input	and	Output.	There	are	several	functions	that	are	available	in	the	standard	C
libraries	for	getting	data	from	an	input	device	and	putting	program	results	into	an	output
device.	An	input	can	be	a	keyboard	interface,	a	file,	or	a	computer	port,	while	an	output
can	be	a	monitor	display,	a	file,	or	a	computer	port.

Two	such	functions	that	are	mostly	used	by	C	programmers	are	printf	and	scanf.	The
printf	function	prints	a	string	or	the	value	of	a	variable	to	display	and	scanf	gets	a	value
from	keyboard	 and	 stores	 it	 in	 a	 specified	 variable.	 The	 data	 type	 that	must	 be	 read	 or
written	is	specified	with	the	`%’	symbol	followed	by	pre-defined	characters.	For	example,
%d	 corresponds	 to	 variables	 of	 integer	 type,	 while	 %s	 corre	 sponds	 to	 strings.	 Two
examples	for	these	IO	functions	are	shown	below:

In	the	above	printf	example,	if	the	value	of	avar	is	10	and	the	value	of	bear	is	`p’,	then
the	printf	function	will	display	The	value	of	a	=	10	and	b	=p	on	the	monitor.

In	 the	 above	 scanf	 example,	 the	 program	 shows	Enter	 a	 value:	 on	 the	monitor	 and
waits	 for	user	 to	 type	a	word.	Then	 it	 stores	 this	 input	word	 to	 the	 integer	 type	variable
int_var.

There	 are	other	 IO	 functions	 for	manipulating	 files.	These	 functions	 include:	 fopen,
fread,	 fwrite,	 (seek,	 ftell,	 felose,	etc.	These	 functions	work	with	a	pointer	of	 type	FILE.
The	 other	 set	 of	 file	 related	 functions	 are	 open,	 read,	 write,	 seek,	 close,	 etc.	 These
functions	work	with	a	file	handle	that	is	defined	as	an	integer.	Functions	fprintf	and	fscanf
are	two	other	functions	for	working	with	files.	These	functions	work	like	printf	and	scanf
functions.

4.2.4.10	Sort	Program	Description.	The	above	subsections	presented	an	overview	of	 the
constructs	of	C	that	are	most	often	used.	At	this	point	if	we	go	back	to	the	sort	program
that	was	presented	at	the	beginning	of	this	section	in	Figure	4.4,	we	can	describe	it	using
the	above	C	constructs.

The	sort	program	begins	with	preprocessor	directives	 (lines	01	 to	05).	The	first	 two
directives	are	used	for	including	standard	header	files	(stdio.h	and	stdlib.h).	Line	03	of	this
code	defines	a	macro	named	SWAP.	This	macro	swaps	the	contents	of	its	two	parameters
(s1	and	s2).	This	macro	is	used	for	swapping	two	array	members	in	sort	function.	On	line
07,	 a	 global	 variable	 named	 gswp	 is	 defined.	 This	 variable	 is	 used	 in	 swapping	 two
numbers.

This	program	consists	of	three	utility	functions	(sort,	getarray_size,	and	get-data)	and
a	main0	 function.	The	getarray_size	 function	gets	 the	 input	 file	 pointer	 as	 its	 input	 and
returns	the	number	of	data	items	that	must	be	sorted	(lines	17	to	23).	The	get	data	function
gets	the	input	file	pointer	and	a	pointer	to	an	integer	array	as	its	inputs,	reads	the	numbers
that	must	be	sorted	from	its	input	file,	stores	the	numbers	in	its	input	array,	and	returns	OK
(defined	as	0	on	line	05)	 if	 it	can	read	all	numbers	from	file	without	any	error.	The	sort
function	performs	the	main	sorting	function	in	this	program.	This	function	gets	a	pointer
to	 an	 integer	 array	 and	 uses	 a	 nested	 loop	 on	 the	 indexes	 of	 this	 array	 and	 the	 SWAP
macro	to	sort	the	existing	numbers	in	its	input	array	(lines	11	to	13).

The	main	function	uses	the	above	functions	to	handle	the	whole	process	of	sorting.	It
gets	the	name	of	input	file	from	the	first	program	argument	and	opens	it	(lines	36	to	40).
Then	it	calls	the	getarray_size	function	to	find	the	amount	of	integer	numbers	it	must	read.
Then	 it	 allocates	 the	 necessary	 amount	 of	memory	 for	 storing	 the	 integer	 numbers	 and
calls	get	data	to	store	numbers	in	s_arr	array	variable	(line	49).	If	all	the	function	calls	and
memory	 allocations	 pass,	 it	 closes	 its	 input	 file	 and	 calls	 the	 sort	 function	 to	 sort	 the
numbers	in	s_arr	(line	55).	From	this	point	in	the	program	to	line	58	(where	the	memory
allocated	for	sarr	is	freed)	we	can	use	s_arr	as	an	array	of	numbers	that	are	sorted	in	the
descending	order.	Line	59	exits	the	program	with	0	status.

This	section	provided	an	 introduction	to	C.	After	reading	 this	section	you	should	be
able	to	read	and	understand	C	language	programs,	and	be	able	to	write	simple	programs

like	the	sort	program	in	Figure	4.4	or	the	calculator	program	in	Chapter	9.

4.3	Instruction	Set	Architecture

As	shown	in	Figure	4.5,	a	computer	system	is	comprised	of	two	major	parts,	hardware	and
software.	The	 interface	between	 these	parts	 is	 called	 Instruction	Set	Architecture	 (ISA).
ISA	defines	how	data	that	is	being	read	from	a	CPU	memory	(CPU	program)	and	that	is
regarded	as	an	instruction,	is	interpreted	by	the	hardware	of	the	CPU.

Figure	4.5	Computer	System	Components

4.3.4.1	Hardware.	The	hardware	part	 of	 a	 computer	 has	 three	major	 components	 (CPU,
Memory	Unit,	and	10	Device).	Breaking	down	the	CPU	into	its	composing	parts,	shows
that	the	CPU	is	built	from	an	interconnection	of	datapath	and	controller.

Datapath	consists	of	functional	units	and	storage	elements.	A	functional	unit	(such	as
an	 adder,	 a	 subtractor	 and	 an	 arithmetic	 logical	 unit	 (ALU))	 performs	 an	 arithmetic	 or
logical	operation.	A	storage	element	 (e.g.,	a	 register	or	a	 register-file)	 is	needed	 to	store
data.	 Bussing	 structure	 defines	 the	 way	 functional	 units	 and	 storage	 elements	 are
connected.	Datapath	shows	interconnections	for	the	flow	of	data	from	one	component	 to
another.	Controller	is	used	to	control	the	flow	of	data	or	the	way	data	is	processed	in	the
datapath.

Figure	4.6	shows	an	example	of	a	datapath	that	has	two	registers	RO	and	RI	and	an
adder/subtractor	unit.	This	datapath	is	able	to	add	(subtract)	R0	to	(from)	R1	and	store	the
result	in	RO.	The	controller	controls	the	datapath	to	perform	addition	or	subtraction.

Figure	4.6	A	Typical	Datapath

4.3.4.2	 Software.	 The	 software	 part	 of	 a	 computer	 consists	 of	 the	 Operating	 System,
Compiler,	 and	Assembler.	 The	 operating	 system	provides	 an	 interface	 between	 the	 user
and	the	hardware.	The	compiler	translates	the	high-level	language	programs	to	assembly
language	programs.	The	assembler	translates	the	assembly	language	programs	to	machine
language	programs.

4.3.4.3	 Hardware/Software	 Interface.	 By	 specifying	 the	 format	 and	 structure	 of	 the
instruction	set,	ISA	specifies	the	interface	between	hardware	and	software	of	a	processing
unit.	In	other	words,	ISA	provides	the	details	of	the	instructions	that	a	computer	should	be
able	to	understand	and	execute.	Each	instruction	specifies	an	operation	to	be	performed	on
a	set	of	data,	called	operands.	The	operands	also	show	where	the	result	of	the	instruction
should	 be	 stored.	 The	 instruction	 format	 describes	 the	 specific	 fields	 of	 the	 instruction
assigned	 to	an	operation	and	 its	operands.	The	opcode	 field	 specifies	 the	operation,	 and
the	 operand	 fields	 specify	 the	 required	 data.	 The	 way	 in	 which	 the	 operands	 can	 be
delivered	to	an	instruction	is	called	addressing	mode.	For	example,	an	operand	may	be	a
constant	 value	 (immediate	 addressing),	 contents	 of	 a	 register	 (register	 addressing),
contents	 of	 a	 memory	 location	 (direct	 addressing),	 or	 contents	 of	 a	 memory	 location
addressed	 by	 another	 memory	 location	 (indirect	 addressing).	 Figure	 4.7	 shows	 an
instruction	format	with	two	operands.	It	is	common	to	specify	some	operands	explicitly	in
the	instruction	and	the	other	operands	implicitly.	The	implicit	operands	refer	to	the	CPU
registers.	For	example,	the	instruction	add	50,	may	mean	“add	the	content	of	the	memory
location	50	with	ace	and	store	the	result	in	ace”.	Here,	ace	is	an	implicit	operand	and	50	is
an	explicit	operand.

Figure	4.7	Instruction	Format

4.4	SMPL-CPU	Design

The	previous	sections	introduced	basic	concepts	of	a	computer	system.	This	section	shows
the	complete	design	of	a	simple	CPU,	which	we	refer	to	as	SMPL-CPU.	The	purpose	of
this	example	is	to	show	the	hardware	of	a	machine,	and	consequently	show	how	hardware

and	 software	 interact.	 Furthermore,	 we	 show	 assembly	 and	 machine	 languages	 of	 our
simple	example	processor.

Here	 we	 describe	 two	 different	 implementations	 of	 SMPL-CPU,	 Single-Cycle	 and
Multi-Cycle	implementations.	The	presentation	is	incremental	to	show	details	of	processor
architecture.

The	 single-cycle	 implementation	 reads	 an	 instruction	 from	 the	memory	 and	 in	 one
clock	cycle	it	processes	it,	executes	it,	and	writes	the	result	back	into	its	data	memory.	In	a
multi-cycle	processor,	an	instruction	is	executed	in	several	steps,	each	of	which	takes	one
clock	cycle.	Since	the	design	process	is	easier	to	show	in	a	single-cycle	implementation,
we	will	only	show	the	details	of	this	implementation.

4.4.1	CPU	Specification

The	 CPU	 design	 begins	 with	 the	 specification	 of	 the	 CPU,	 including	 the	 number	 of
general	purpose	registers,	memory	organization,	instruction	format,	and	addressing	modes.
A	CPU	is	defined	according	to	the	application	it	will	be	used	for.

4.4.1.1	CPU	External	Busses.	The	SMPL-CPU	has	an	8-bit	external	data	bus	and	a	6-bit
address	bus.	The	address	bus	connects	to	the	memory	in	order	to	address	locations	that	are
being	 read	 from	 or	 written	 into.	 Data	 read	 from	 the	 memory	 are	 instructions	 and
instruction	 operands,	 and	 data	 written	 into	 the	 memory	 are	 instruction	 results	 and
temporary	 information.	 The	 CPU	 also	 communicates	 with	 its	 10	 devices	 through	 its
external	busses.	The	address	bus	addresses	a	specific	device	or	a	device	register,	while	the
data	bus	contains	data	that	is	to	be	written	or	read	from	the	device.

4.4.1.2	 General	 Purpose	 Registers.	 The	 SMPL-CPU	 has	 an	 8-bit	 register,	 called
accumulator	(AC).	The	AC	register	plays	an	important	role	in	this	CPU.	All	data	transfers
and	arithmetic	 instructions	use	AC	as	an	operand.	 In	a	 real	CPU,	 there	may	be	multiple
accumulators	or	an	array	of	registers	that	is	referred	to	as	a	register-file.

4.4.1.3	 Memory	 Organization.	 The	 SMPL-CPU	 is	 capable	 of	 addressing	 64	 words	 of
memory;	each	word	has	an	8-bit	width.	We	assume	the	memory	read	and	write	operations
can	 be	 done	 synchronous	 with	 the	 CPU	 clock	 in	 one	 clock	 period.	 Reading	 from	 the
memory	is	done	by	putting	the	address	of	the	location	that	is	being	read	on	the	address	bus
and	 issuing	 the	 memory	 read	 signal	 (often	 called	 readenable	 or	 ren).	 Writing	 into	 the
memory	is	done	by	assigning	the	right	address	to	the	address	bus,	putting	data	that	is	to	be
written	on	the	data	bus,	and	issuing	the	memory	write	signal	(write-enable).

4.4.1.4	 Instruction	Format.	Each	 instruction	 of	 SMPL-CPU	 is	 eight	 bits	 and	 occupies	 a
memory	word.	The	instruction	format	of	the	SMPL-CPU,	as	shown	in	Figure	4.8,	has	an
explicit	operand	(immediate	data	or	memory	location	the	address	of	which	is	specified	in
the	 instruction),	 and	 an	 implicit	 operand	 (AC).	 The	 SMPL-CPU	 has	 four	 instructions,
divided	 into	 three	 classes	 of	 arithmetic	 (add),	 datatransfer	 (lda,	 sta),	 and	 control-flow
instructions	(imp).

Figure	4.8	SMPL	CPU	Instruction	Format

SMPL-CPU	 instructions	 are	 described	 below.	 A	 tabular	 list	 and	 summary	 of	 this
instruction	set	is	shown	in	Table	4.2.

•	add	immd:	adds	the	immd	data	with	AC	and	stores	the	result	back	in	AC.

•	 lda	adr:	 reads	 the	content	of	 the	memory	location	addressed	by	adr	and	writes	 it
into	AC.

•	sta	adr:	writes	the	content	of	AC	into	the	memory	location	addressed	by	adr.

•	jmp	adr:	jump	to	the	memory	location	addressed	by	adr.

4.4.1.5	Addressing	Mode.	The	SMPL-CPU	uses	direct	addressing.	For	an	instruction	that
refers	 to	 the	memory,	 the	memory	 location	 is	 its	 explicit	operand	and	AC	 is	 its	 implicit
operand.

4.4.2	Single-Cycle	Implementation

In	 a	 single	 cycle	 implementation	 the	 processor	 accesses	 data	 and	 instruction	memories
independently,	 reads	 instruction	 and	 data	 and	 performs	 its	 operation	 in	 a	 single	 clock
cycle.	 This	 implementation	 requires	 more	 hardware,	 but	 is	 faster	 than	 the	 alternative
multi-cycle	implementation.	Details	of	this	implementation	of	our	example	processor	are
described	in	the	sub-sections	that	follow.	We	will	show	the	design	of	the	datapath	first	and
then	the	controller.

4.4.2.1	Datapath	Design.	Datapath	design	is	an	incremental	process,	at	each	increment	we
consider	a	class	of	instructions	and	build	up	a	portion	of	the	datapath	which	is	required	for
execution	of	this	class.	Then	we	combine	these	partial	datapaths	to	generate	the	complete
datapath.	 In	 these	 steps,	 we	 decide	 on	 the	 control	 signals	 that	 control	 events	 in	 the
datapath.	 In	 the	design	of	 the	datapath,	we	are	only	concerned	with	how	control	signals
affect	flow	of	data	and	function	of	data	units,	and	not	how	control	signals	are	generated.

Step	 1:	 Program	 Sequencing.	 Instruction	 execution	 begins	 with	 reading	 an	 instruction
from	 the	memory,	 called	 Instruction	Fetch	 (IF).	 So	 an	 instruction	memory	 is	 needed	 to

store	the	instructions.	We	also	need	a	register	to	hold	the	address	of	the	current	instruction
to	be	read	 from	 the	 instruction	memory.	This	 register	 is	 called	Program	Counter	 or	PC.
When	an	 instruction	execution	 is	completed,	 the	next	 instruction	 from	 the	next	memory
location	should	be	read	and	executed.	After	the	completion	of	the	current	instruction,	PC
should	be	incremented	by	one	to	point	 to	the	next	instruction	in	the	instruction	memory.
This	leads	to	the	use	of	an	adder	for	incrementing	PC.	Because	the	memory	size	is	64	(=
26)	 words,	 PC	 should	 be	 a	 6-bit	 register.	 Figure	 4.9	 shows	 the	 sequencing	 part	 of	 the
datapath.

Figure	4.9	Program	Sequencing	Datapath

Step	2:	Arithmetic	Instruction	Datapath.	The	arithmetic	add	instruction	operates	on	the	AC
and	the	6-bit	immediate	data	that	comes	from	bits	5	to	0	of	the	instruction.	The	result	of
the	 operation	 will	 be	 stored	 in	 AC.	 We	 need	 an	 arithmetic-logical	 unit	 (ALU,	 which
performs	the	addition	of	 the	 two	operands	of	an	arithmetic	 instruction.	According	 to	 the
instruction,	 the	 ALU	 operation	 will	 be	 controlled	 by	 an	 input,	 alu_op.	 The	 ALU	 is
designed	 like	other	 combinational	 circuits	 using	 the	methods	presented	 in	Chapter	2.	 In
this	example	the	AL	U	is	a	simple	adder	and	does	not	require	any	control	signal.

Figure	4.10	shows	 the	arithmetic	 instruction	datapath.	ALU	inputs	are	AC	and	6-bit
immd	field	of	the	instruction.	ALU	output	is	connected	to	AC.	Two	zeros	appended	to	the
left	of	immd	make	an	8bit	input	for	the	ALU.	At	this	point	in	our	incremental	design,	AC
needs	no	control	signals,	because	in	all	instructions	of	the	type	we	have	considered	so	far
(arithmetic),	AC	is	loaded	with	the	ALU	output.

Figure	4.10	Arithmetic	Instructions	Datapath

Step	3:	Combining	the	Two	Previous	Datapaths.	Combining	the	previous	datapaths	results
in	the	datapath	of	Figure	4.11.	In	addition	to	what	is	shown,	for	accessing	data	from	the
data	memory,	the	adr	field	(bits	5	to	0)	of	the	instruction	read	from	the	instruction	memory
must	be	connected	to	the	address	bus	of	the	data	memory.	This	datapath	can	sequence	the
program	and	execute	our	arithmetic	instruction.

Figure	4.11	Datapath	for	Program	Sequencing	&	Arithmetic	Instructions

Step	 4:	 Data-Transfer	 Instruction	 Datapath.	 There	 are	 two	 datatransfer	 instructions	 in
SMPL-CPU,	Ida	and	sta.	The	Ida	instruction	uses	the	adr	field	of	the	instruction	to	read	an
8-bit	data	from	the	data	memory	and	stores	it	in	the	AC	register.	The	sta	instruction	writes
the	content	of	AC	into	a	data	memory	location	that	is	pointed	by	the	adr	field.	Figure	4.12
shows	 the	 datapath	 that	 satisfies	 requirements	 of	 data-transfer	 instructions.	Because	 Ida
reads	 from	 the	 data	 memory	 while	 sta	 writes	 into	 it,	 the	 data	 memory	 must	 have	 two
control	signals,	rdmem	and	wrmem	for	control	of	reading	from	or	writing	into	it.	In	data-
transfer	instructions,	only	Ida	writes	into	the	AC.	When	executing	an	sta	instruction,	AC
should	be	 left	 intact.	Having	a	register	without	a	clock	control	causes	data	 to	be	written
into	it	with	every	clock.	In	order	to	control	this	clocking,	the	Id	ac	(loadcontrol,	or	clock
enable)	signal	is	needed	for	the	AC	register.

Figure	4.12	Datapath	for	the	Data-Transfer	Instructions

Step	5:	Combining	the	Two	Previous	Datapaths.	Combining	the	two	datapaths,	may	result
in	multiple	connections	to	the	input	of	an	element.	For	example,	in	Step	3	(Figure	4.10	and

Figure	4.11)	the	AL	U	output	is	connected	to	the	AC	input	and	in	Step	4	(Figure	4.12)	the
data	memory	output	(ReadData)	is	connected	to	the	AC	input.	To	have	both	connections,
we	need	a	multiplexer	(or	a	bus	which	is	implemented	using	tri-state	buffers)	to	select	one
of	 the	 AC	 sources.	 When	 the	 multiplexer	 select	 input,	 ac_src	 is	 0	 the	 ALU	 output	 is
selected,	and	when	ac_src	is	1	the	data	memory	output	is	selected.	Figure	4.13	shows	the
combined	datapath.

Figure	4.13	Datapath	for	Program	Sequencing,	Arithmetic	and	Data-Transfer

Step	 6:	 Control-Flow	 Instruction	 Datapath.	 SMPL-CPU	 has	 an	 unconditional	 jump
instruction,	jmp.	The	jmp	instruction	writes	the	adr	field	of	the	instruction	(bits	5	to	0)	into
PC.	 So	we	 need	 a	 path	 between	 the	 adr	 field	 of	 the	 instruction	 and	 the	 PC	 input.	 The
required	datapath	is	shown	in	Figure	4.14.

Figure	4.14	Control-Flow	Instructions	Datapath

Step	7:	Combining	the	Two	Previous	Datapaths.	Performing	Step	6	created	another	partial
datapath	for	satisfying	operations	of	our	CPU.	In	this	step	we	are	to	combine	the	result	of
the	 last	 step	 with	 the	 combined	 datapath	 of	 Figure	 4.13.	 Considering	 these	 two	 partial
datapaths,	there	are	two	sources	for	the	PC	register.	One	was	created	in	Step	1,	shown	in

Figure	4.9	and	carried	over	to	Figure	4.13	by	Step	5,	and	the	other	was	created	in	Step	6
that	is	shown	in	Figure	4.14.	As	in	the	case	of	AC,	we	need	a	multiplexer	in	the	combined
datapath	to	select	the	appropriate	source	for	the	PC	input.	The	multiplexer	select	input	is
called	 pcsrc.	 If	 this	 control	 signal	 is	 0,	 incrementing	 PC	 is	 selected	 and	 if	 it	 is	 1,	 the
address	 field	 of	 the	 instruction	 being	 fetched	 will	 be	 selected.	 Figure	 4.15	 shows	 the
combined	datapath.	This	step	completes	the	datapath	design	of	SMPL-CPU.

Figure	4.15	The	SMPL-CPU	Datapath

4.4.2.2	Instruction	Execution.	Now	that	we	have	a	complete	datapath,	it	is	useful	to	show
how	a	 typical	 instruction,	e.	g.,	add	50,	 is	executed	 in	 the	SMPL-CPU	datapath.	On	 the
rising	edge	of	the	clock,	a	new	value	will	be	written	into	PC,	and	PC	points	the	instruction
memory	to	read	the	instruction	add	50.	After	a	short	delay,	the	memory	read	operation	is
complete	 and	 the	 controller	 starts	 decoding	 the	 instruction.	 Instruction	 decoding	 is	 the
process	 of	 controller	 deciding	 what	 control	 signals	 to	 issue	 to	 execute	 the	 given
instruction.	 For	 our	 add	 example,	 the	 controller	 issues	 appropriate	 control	 signals	 to
control	 the	 flow	 of	 data	 in	 the	 datapath.	 When	 data	 propagation	 is	 completed	 in	 the
datapath,	on	the	next	rising	edge	of	the	clock,	the	ALU	output	that	is	the	result	of	the	add
operation	is	written	into	AC.	To	complete	the	execution	of	the	current	instruction	PC+1	is
written	 into	 PC.	 This	 new	 value	 of	 PC	 points	 to	 the	 next	 instruction.	 Because	 the
execution	of	the	instruction	is	completed	in	one	clock	cycle,	the	implementation	is	called	a
single-cycle	implementation.

4.4.2.3	Controller	Design.	As	described	before,	controller	issues	the	control	signals	based
on	the	opcode	field	of	the	instruction.	On	the	other	hand,	the	opcode	field	will	not	change
while	 the	 instruction	 is	 being	 executed.	 Therefore,	 the	 control	 signals	 will	 have	 fixed
values	 during	 the	 execution	 of	 an	 instruction,	 and	 consequently	 the	 controller	 will	 be
implemented	as	a	combinational	circuit.

Figure	4.16	Datapath	and	Controller	Interconnection

Figure	4.16	shows	the	interconnection	of	the	datapath	and	controller.	As	shown	in	this
figure,	the	controller	issues	all	control	signals.	For	all	instructions,	except	jmp,	the	pc_src
signal	is	0	and	that	causes	PC	to	be	incremented.	For	the	jmp	instruction,	the	pcsrc	signal
is	1	and	consequently	the	adr	field	of	the	instruction	from	the	instruction	memory	is	put
into	the	PC	register.	As	shown	in	this	figure,	a	reset	primary	input	has	been	added	to	clear
PC.	 This	 input	 is	 used	 to	 reset	 the	 CPU	 and	 forces	 to	 fetch	 the	 next	 instruction	 from
memory	location	0.

As	 described	 before,	 the	 controller	 of	 a	 single-cycle	 implementation	 of	 a	 system	 is
designed	 as	 a	 combinational	 circuit.	 In	 Chapter	 2	 you	 learned	 how	 to	 specify	 a
combinational	logic	using	a	truth	table.

Table	4.3	shows	the	truth	table	of	the	controller.	The	values	shown	are	based	on	activities
and	flow	of	data	in	the	datapath.	In	what	follows,	we	indicate	status	of	control	signals	as
they	are	necessary	for	controlling	the	flow	of	data	in	the	datapath.

•	Arithmetic	Class:

o	Id	ac	=	1,	to	store	the	ALU	result	in	AC.

o	acsrc	=	0,	to	direct	AL	U	output	to	the	AC	input.

o	pcsrc	=	0,	to	direct	PC+1	to	the	PC	input.

•	Data-Transfer	Class:

o	lda	Instruction:

■	rdmem	=	1,	to	read	an	operand	from	the	data	memory.

■	ldacc	=	1,	to	store	the	data	memory	output	in	AC.

•	acsrc	=	1,	to	direct	data	memory	output	to	the	AC	input.

■	pcsrc	=	0,	to	direct	PC+1	to	the	PC	input.

o	sta	Instruction:

■	wrmem	=	1,	to	write	AC	into	the	data	memory.

•	Id	ac	=	0,	so	that	the	value	of	AC	remains	unchanged.

■	acsrc	=	X,	because	AC	clocking	is	disabled	and	its	source	is	not	important.

•	pcsrc	=	0,	to	direct	PC+1	to	the	PC	input.

•	Control-Flow	Class:

o	rdmem	and	wrmem	are	0,	because	jmp	does	not	read	from	or	write	into	the	data
memory.

o	Id	ac	=	0,	because	AC	does	not	change	during	jmp.

o	acsrc	=	X,	because	AC	clocking	is	disabled	and	its	source	is	not	important.

o	pcsrc	=	1,	direct	the	jump	address	(bits	5-0	of	instruction)	to	the	PC	input.

4.4.2.4	Verilog	Description.	To	give	a	detailed	view	of	the	hardware	of	this	machine,	and
also	 to	 show	 how	 its	 hardware	 interacts	 with	 its	 machine	 language,	 we	 develop	 the
complete	Verilog	 code	 of	 our	 SMPL-CPU	by	 developing	 code	 for	 the	 blocks	 of	 Figure
4.16.	We	 start	with	 the	 components	 of	 the	 datapath,	 and	when	 done,	 we	will	 form	 the
Verilog	code	of	the	datapath	by	instantiating	and	wiring	these	components.	The	controller
will	 be	 described	 next,	 using	 a	 combinational	 circuit	 coding	 style.	 At	 the	 end,	 the
description	of	our	example	will	be	completed	by	wiring	datapath	and	controller	in	a	top-
level	Verilog	module.	The	Verilog	testbench	of	this	machine	shows	how	machine	language
contents	of	the	memory	are	read	and	processed	by	its	hardware.

Figure	 4.17	 shows	 the	 datapath	 and	 controller	 interconnection,	 and	 the	SMPL-CPU
interface.	Our	 top-level	Verilog	module	 corresponds	 to	 the	SMPL-CPU	block	 shown	 in
this	figure.

Figure	4.17	SMPL-CPU	Interface

4.4.2.5	Datapath	components.	Datapath	components	of	SMPL-CPU	could	be	described	at
the	behavioral	level	(using	always	blocks)	or	at	dataflow	level	(using	assign	statements).
Verilog	code	for	PC,	AC,	ALU,	adder	and	multiplexer	modules	are	shown	in	Figure	4.18.

The	program	counter	(PC)	is	a	simple	register	with	a	reset	input.	Accumulator	(AC)	is
a	simple	register	with	load	enable	control	input.	This	input	is	driven	by	the	control	signal
coming	from	the	controller	through	datapath	ports.	The	ALU	is	a	combinational	logic	that
adds	 its	 two	 8-bit	 inputs.	 The	 6-bit	 adder	 is	 used	 to	 increment	 PC.	 The	 6	 and	 8-bit
multiplexers	of	Figure	4.16	are	described	using	assign	statements.

Figure	4.18	Datapath	Components	of	SMPL-CPU

4.4.2.6	Datapath	Description.	Figure	4.19	shows	the	datapath	description	of	SMPL-CPU.
The	module	name	for	this	description	is	DataPath	and	it	corresponds	to	Figure	4.15.

The	 inputs	 of	 the	Verilog	 code	 of	 Figure	 4.19	 are	 control	 signals	 coming	 from	 the
controller,	 and	 the	 external	 data	 busses	 coming	 from	 instruction	 and	 data	memory.	 The
outputs	of	this	module	are	the	opcode,	address	and	data	busses.	The	opeode	goes	out	to	the
controller,	the	output	address	busses	go	to	the	instruction	and	data	memory	for	instruction
and	operand	fetch,	and	 the	output	data	bus	(dmout_dbus)	 is	used	 for	writing	 into	a	data
memory	location.

Following	 the	 input	 and	 output	 declarations,	 the	DataPath	module	 declares	 internal
datapath	busses	and	signals.	As	shown,	these	declarations	are	followed	by	instantiation	of
data	 components,	 PC,	 AC,	 ALU,	 adder	 and	 multiplexers.	 Interconnection	 of	 these
components	are	done	through	wires	and	busses	declared	by	wire	net	decla	rations.	Control
signals	responsible	for	loading,	clearing	registers,	and	bus	selections	connect	to	the	control
inputs	of	AC,	PC	and	multiplexers.	In	the	last	part	of	the	DataPath	module,	several	assign
statements	are	used	for	bus	assignments.

Figure	4.19	Datapath	Description	of	SMPL-CPU

4.4.2.7	Controller	Description.	The	Controller	code	for	our	SMPLCPU	example	is	shown
in	Figure	4.20.	This	code	corresponds	to	the	controller	truth	table	shown	in	Table	4.3.	The
Controller	has	 the	opcode	 input	 that	 comes	 to	 the	controller	 from	 the	DataPath	module.
This	part	is	a	combinational	circuit	and	is	described	using	an	always	block.

	

Figure	4.20	Controller	Description	of	SMPL-CPU

4.4.2.8	The	Complete	Design.	The	top-level	module	for	our	example	processor	is	shown
in	Figure	4.21.	 In	 the	SMPL-CPU	module	shown,	DataPath	and	Controller	modules	are
instantiated.	Port	connections	of	the	Controller	include	its	output	control	signals,	and	the
opeode	 input	 from	DataPath.	 Port	 connections	 of	DataPath	 consist	 of	 address	 and	 data
external	busses,	opcode	output,	the	reset	external	input,	and	control	signal	inputs.

Figure	4.21	Description	of	SMPL-CPU

4.4.2.9	 Testing	 Single-Cycle	 SMPL-CPU.	 To	 develop	 a	 testbench	 for	 the	 SMPL-CPU
module,	we	 first	model	 a	 simple	 instruction	memory	with	 a	 read	 operation,	 and	 a	 data
memory	 with	 read	 and	 write	 operations.	 We	 load	 the	 instruction	 memory	 with	 a	 test
program	that	is	written	in	the	processor’s	machine	language,	and	let	the	processor	Verilog
model	run	this	program.

The	 test	 contents	 of	 the	 instruction	 memory	 and	 its	 corresponding	 assembly
instructions	are	shown	in	Figure	4.22.	The	test	program	starts	at	address	0	and	consists	of
an	infinite	loop	by	using	imp	00	instruction	located	at	address	03.	In	a	loop	iteration,	the
content	of	the	data	memory	location	0	is	loaded	into	AC	(lda	00),	then	the	content	of	AC

is	added	with	the	value	of	2	(add	02),	and	finally	the	new	value	of	AC	is	stored	into	the
memory	 location	 0	 (sta	 00).	 The	 initial	 value	 of	 the	 data	memory	 location	 0	 is	 0.	 The
initial	content	of	the	data	memory	is	also	shown	in	Figure	4.22.

Figure	4.23	shows	 the	Verilog	description	of	 the	 instruction	and	data	memories.	For
simplicity,	 the	 contents	 of	 the	 instruction	 and	 data	 memory	 are	 specified	 in	 an	 initial
block.

Figure	4.22	Instruction	and	Data	Memory	Contents

Figure	4.24	shows	the	testbench	for	testing	SMPL-CPU.	As	shown,	after	declarations,
the	processor,	 the	 instruction	memory,	and	data	memory	are	 instantiated	 in	 this	module.
Following	 this,	an	 initial	block	resets	 the	machine	by	applying	a	1	 to	 its	 reset	 input.	An
always	block	is	used	to	apply	a	waveform	to	the	clock	input.

After	 the	 reset,	 the	 CPU	 fetches	 instructions	 from	 the	 instruction	 memory	 starting
from	location	0,	and	executes	 them.	With	every	fetch,	a	machine	language	instruction	is
read.	The	opcode	of	the	instruction	causes	appropriate	control	signals	to	be	issued.

Figure	4.23	Verilog	Description	of	Instruction	and	Data	Memory

Figure	4.24	SMPL-CPU	Testbench

4.4.3	Multi-Cycle	Implementation

In	 the	single-cycle	 implementation	of	SMPL-CPU,	we	used	 two	memory	units,	and	 two
functional	units	 (an	ALU	and	an	adder).	To	reduce	 the	required	hardware,	we	can	share
some	 of	 the	 hardware	 used	 for	 instruction	 execution.	 This	 leads	 to	 a	 multi-cycle
implementation	 of	 SMPL-CPU,	 in	which	 instructions	 are	 executed	 in	 a	 series	 of	 steps.
Each	step	takes	one	clock	cycle	to	execute.

4.4.3.1	Datapath	Design.	For	 the	design	of	 the	datapath	of	multicycle	version	of	SMPL-
CPU,	we	 start	 with	 the	 single-cycle	 datapath	 and	 try	 to	 use	 a	 single	memory	 unit	 that
stores	both	instructions	and	data.	Sharing	hardware	adds	one	or	more	registers	to	store	the
output	of	the	shared	unit	to	be	used	in	the	next	clock	cycle.

To	use	a	single	memory,	we	need	a	common	bus	(that	can	be	implemented	using	tri-
state	buffers	or	multiplexers)	to	choose	between	the	address	of	the	memory	unit	from	the
PC	output	(to	address	instructions)	and	bits	5	to	0	of	the	instruction	(to	address	data).	To
store	 the	 instruction	that	 is	read	from	the	memory,	a	register	 is	used	at	 the	output	of	 the
memory	unit,	called	instruction	register	(IR).

The	program	counter	(PC)	is	implemented	as	a	counter	to	increment	PC	for	program
sequencing.	Using	these	registers,	the	multicycle	implementation	of	datapath	is	shown	in
Figure	4.25.	The	bussing	shown	here	is	appropriate	for	handling	the	necessary	operations
of	 our	 machine.	 As	 shown	 here,	 the	 datapath	 has	 an	 internal	 dbus	 bus.	 The	 external
bidirectional	data	bus	drives	and	is	driven	by	dbus.	This	bus	connects	to	the	input	of	IR	in
order	to	bring	instruction	read	from	the	memory	into	this	register.

IR	has	a	load	input	(ld_ir)	 that	is	activated	to	cause	it	 load	from	data-bus.	Similarly,
this	bus	connects	to	AC	to	bring	data	read	from	the	memory	into	this	register.	The	control
signal	 for	 loading	AC	 is	 Id	 ac.	This	 control	 signal	 is	 issued	when	 the	 Ida	 instruction	 is
expected.	PC	has	three	control	signals	Id-nc,	inc	pc	and	clr	pc	to	load,	increment	and	clear
it,	respectively.	The	right	most	six	bits	of	IR	connect	to	the	input	of	PC	for	execution	of
the	jmp	instruction.

For	 executing	 sta,	 AC	 is	 placed	 on	 the	 left	 input	 of	 ALU	 and	 from	 there	 to	 dbus,
which	eventually	goes	on	data	bus.	At	the	same	time,	IR	is	placed	on	adrbus	to	specify	the
address	 in	which	AC	data	 is	 to	be	stored.	For	 this	purpose,	 the	adder	unit	 (AL(1)	has	a
pass	control	input	to	make	it	pass	its	left	input	data	to	its	output.

Execution	of	add	 is	done	by	 taking	one	of	 the	add	operands	 from	AC	and	 the	other
from	IR.	For	this	instruction,	activating	the	add	control	input	of	AL	U	causes	the	AL	U	to
perform	addition.

The	 simple	 bussing	 structure	 described	 above	 facilitates	 execution	 of	 all	 four
instructions	of	our	SMPL-CPU.	When	a	bus	has	more	than	one	source	driving	it,	e.g.,	IR
and	PC	driving	adrbus,	control	signals	from	the	controller	select	the	source.

Figure	4.25	SMPL-CPU	Multi-Cycle	Datapath

4.4.3.2	Controller	Design.	After	the	design	of	the	datapath	and	figuring	control	signals	and
their	role	in	activities	in	the	datapath,	the	design	of	the	controller	becomes	a	simple	matter.
The	block	diagram	of	this	part	is	shown	in	Figure	4.26.

Figure	4.26	SMPL-CPU	Multi-Cycle	Controller

The	 controller	 of	 our	 simple	 von	 Neumann	 machine	 has	 four	 states,	 Reset,	 Fetch,
Decode	and	Execute.	As	the	machine	cycles	through	these	states,	various	control	signals

are	 issued.	 In	 state	 Reset,	 for	 example,	 the	 clr	 pe	 control	 signal	 is	 issued.	 State	 Fetch
issues	peonadr,	rd_mem,	dataon_dbus,	ld_ir,	and	inc_pc,	to	read	memory	from	the	present
PC	location,	route	it	to	IR,	load	it	into	IR,	and	increment	PC	for	the	next	memory	fetch.
Depending	on	opcode	bits,	that	are	the	controller	inputs,	the	Execute	state	of	the	controller
issues	control	signals	for	execution	of	lda,	sta,	add	and	jmp	instructions.	The	next	section
discusses	details	of	the	controller	signals	and	their	role	in	execution	of	these	instructions.

4.4.3.3	 Verilog	 Description.	 As	 before,	 our	 processor	 description	 has	 a	 datapath	 and	 a
control	component.	In	this	description,	we	use	a	slightly	different	style	of	coding	for	the
datapath.	Instead	of	coding	the	individual	components	of	datapath	and	instantiating	them
in	the	datapath	module,	our	datapath	module	will	include	all	the	codes	for	its	components.
The	controller	will	be	described	next,	using	a	state	machine	coding	style.	At	the	end,	the
description	of	our	small	von	Neumann	example	will	be	completed	by	wiring	datapath	and
controller	in	a	top-level	Verilog	module.

4.4.3.4	 Datapath	 Description.	 Datapath	 components	 of	 SMPL-CPU	 are	 described	 by
always	 and	 assign	 statements	 according	 to	 their	 functionalities	 described	 above.	 These
descriptions	are	directly	coded	in	the	datapath	module	of	our	machine.	Figure	4.27	shows
the	 Verilog	 code	 of	 the	 datapath.	 Structure	 and	 signal	 names	 in	 this	 description	 are
according	to	those	shown	in	Figure	4.25.

The	first	three	always	statements	in	the	body	of	the	DataPath	module	are	responsible
for	datapath	registers,	AC,	IR	and	PC.	These	registers	use	signals	from	the	controller	for
selecting	 their	 operations.	 The	 fourth	 always	 statement	 represents	 the	 AL	 U	 of	 our
machine.	All	left-hand	side	outputs	of	these	units	are	declared	as	reg.

In	 the	 last	part	of	DataPath,	bus	assignments	 take	place.	We	use	bus	control	signals
coming	from	the	controller	 to	drive	a	 left-handside	bus	either	with	one	of	 its	 sources	or
high-impedance.	For	example,	pcon_adr	control	signal	either	puts	PC	output	(pc	out)	or	all
Zs	on	adr_bus.	The	dbus	bus	is	declared	to	connect	to	the	external	bidirectional	data-bus.
Two	 assignments	 are	made	 to	 dbus	 using	 aluondbus	 and	 data	 _ondbus	 control	 signals.
Placement	of	 this	 intermediate	bus	 to	 the	external	data	bus	of	 the	datapath	 (data-bus)	 is
controlled	by	d	bus	on	data	control	signal.	The	last	assign	statement	shown	in	Figure	4.27
places	 most	 significant	 IR	 bits	 on	 the	 opcode	 output	 of	 DataPath	 that	 goes	 out	 to	 the
controller.

Although	we	have	used	tri-state	busses,	when	synthesizing	this	circuit,	we	can	direct
our	synthesis	tool	to	use	AND-OR	or	multiplexers	to	implement	these	busses.

Figure	4.27	Datapath	Description

4.4.3.5	Controller	Description.	The	controller	code	for	our	SMPLCPU	example	is	shown
in	Figure	4.28.	This	code	corresponds	to	the	right	hand	side	of	Figure	4.25	which	is	shown
in	more	details	in	Figure	4.26.	In	addition	to	elk	and	reset,	the	controller	has	the	opeode
input	 that	 is	 driven	 by	 IR	 and	 comes	 to	 the	 controller	 from	 the	 DataPath	 module	 (see
Figure	4.25).

The	sequencing	of	control	states	is	implemented	by	a	Huffman	style	Verilog	code.	In
this	 style,	 an	 always	 block	 handles	 assignment	 of	 values	 to	 present	 state,	 and	 another
always	 statement	 uses	 this	 register	 output	 as	 the	 input	 of	 a	 combinational	 logic
determining	next	 state.	This	 combinational	 block	 also	 sets	 values	 to	 control	 signals	 that
are	outputs	of	the	controller.

Figure	4.28	Controller	Description

The	first	always	block	of	the	controller	code	synthesizes	to	a	register	with	active	high
reset,	and	the	second	one,	i.e.,	combinational,	synthesizes	to	a	combinational	block.	This
block	 uses	 present-state	 and	 reset	 on	 its	 sensitivity	 list.	 For	 synthesis	 purposes	 and	 to
avoid	output	latches,	all	outputs	of	this	block,	that	are	the	control	signals,	are	set	to	their
inactive,	0,	values.	In	the	body	of	the	combinational	always	block,	a	case	statement	checks
present-state	 against	 the	 states	 of	 the	machine	 (‘Reset,	 `Fetch,	 `Decode,	 and	 `Execute),
and	activates	the	proper	control	signals.

The	 `Reset	 state	activates	clr	pc	 to	clear	PC	and	sets	 `Fetch	as	 the	next	 state	of	 the
machine.	 In	 the	 `Fetch	 state,	 pc_on_adr,	 rdmem,	 dataondbus,	 ld_ir,	 and	 inc	 pc	 become
active,	and	`Decode	is	set	to	become	the	next	state	of	the	machine.	By	activating	pc	on	adr
and	rdmem,	 the	PC	output	 goes	on	 the	memory	 address	 and	 a	 read	operation	 is	 issued.
Assuming	the	memory	responds	in	the	same	clock,	contents	of	memory	at	the	PC	address
will	 be	 put	 on	 data	 bus.	 Issuance	 of	 data	 on	 dbus	 puts	 the	 contents	 of	 this	 bus	 on	 the
internal	dbus	of	DataPath.	This	bus	 is	 connected	 to	 the	 input	of	 IR	and	 issuance	of	 ldir
loads	its	contents	into	this	register.	The	next	state	of	the	controller	is	`Decode	that	makes
the	new	contents	of	IR	available	for	the	controller.	In	the	`Execute	state	a	newly	fetched
instruction	in	IR	decides	on	control	signals	to	issue	to	execute	the	instruction.

In	the	`Execute	state,	op	code	is	used	in	a	case	expression	to	decide	on	control	signals
to	issue	depending	on	the	opcode	of	the	fetched	instruction.	The	case	alternatives	in	this
statement	are	four	op-code	values	of	00,	01,	10	and	11	that	correspond	to	lda,	sta,	jmp	and
add	instructions.

For	 lda,	 ironadr,	 rdmem,	 data	 on	 dbus	 and	 Id	 ac	 are	 issued.	 These	 control	 signals
cause	 the	address	 from	IR	 to	be	placed	on	 the	adrbus	address	bus,	memory	read	 to	 take
place,	and	data	from	memory	to	be	loaded	into	AC.	Data	from	the	memory	come	through
data	bus	onto	dbus	of	DataPath	by	the	control	signal	data	on	dbus.

The	controller	executes	the	sta	instruction	by	issuing	pass,	iron_adr,	aluondbus,	dbus
on	data	and	wrmem.	As	shown	 in	Figure	4.25,	 these	 signals	 take	contents	of	AC	 to	 the
input	bus	of	the	memory	(i.e.,	data-bus),	and	wrmem	causes	the	writing	into	the	memory
to	take	place.	Note	that	pass	causes	AC	to	pass	through	ALU	unchanged.

The	 jmp	 instruction	 is	 executed	 by	 enabling	 PC	 load	 input,	 which	 takes	 the	 jump
address	from	IR	(see	Figure	4.25).

The	last	instruction	of	this	machine	is	add,	for	execution	of	which,	add,	alu_on_dbus,
and	Id-ac	are	 issued.	This	 instruction	adds	data	 in	 the	upper	six	bits	of	 IR	with	AC	and
loads	the	result	into	AC.	The	add	control	signal	instructs	ALU	to	add	its	two	inputs;	the
aluondbus	puts	 this	output	on	 the	 internal	datapath	dbus;	and	 the	Id	ac	causes	AC	to	be
loaded	with	the	result	of	addition.

4.4.3.6	The	Complete	Design.	The	 top-level	module	 for	our	adding	machine	 example	 is
shown	in	Figure	4.29.	In	the	SMP-CPU	module	shown,	DataPath	and	Controller	modules
are	 instantiated.	Port	connections	of	 the	Controller	 include	 its	output	control	signals,	 the
opcode	 input	 from	DataPath	 and	 the	 reset	 external	 input.	 Port	 connections	 of	DataPath
consist	of	adrbus	and	data	bus	external	busses,	opcode	output,	and	control	signal	inputs.

Figure	4.29	SMPL-CPU	Top-Level	Module

4.4.3.7	 Testing	 Multi-Cycle	 Implementation	 of	 SMPL-CPU.	 In	 the	 testbench	 for	 the
SMPL-CPU	module,	 we	 model	 a	 simple	 memory	 with	 read	 and	 write	 operations.	 The
memory	is	file-based	and	we	will	use	file	I/O	tasks	for	reading	and	writing	from	and	to	the
memory.	The	testbench	uses	a	task	for	converting	instructions	in	mnemonic	form	from	an
external	file	to	binary	memory	data.	This	testbench	also	performs	the	task	of	an	assembler
by	reading	mnemonics	and	converting	them	to	the	processor’s	machine	language.

4.4.3.8	Testbench	 I	Assembler	Outline.	The	outline	of	 the	 testbench	 that	 also	 acts	 as	 an
assembler	for	our	machine	is	shown	in	Figure	4.30.	This	module	reads	the	InstructionFile.
mem	file	which	contains	instruction	mnemonics	and	their	addresses,	converts	them	to	hex
and	 writes	 them	 to	 HexadecimalFile.mem	 file.	 After	 this	 conversion	 is	 done,	 every
addressed	memory	read	or	write	uses	this	file.	Because	the	Unit	Under	Test	(UUT)	does
not	have	a	large	memory,	no	image	of	its	memory	is	kept	in	the	testbench	as	an	array	of
reg,	and	all	read	and	write	operations	are	directly	performed	on	the	HexadecimalFile.	mem
file.

As	shown	in	Figure	4.30,	after	declarations	and	instantiation	of	SMPL-CPU,	an	initial
block	 calls	 the	 Convert	 task	 to	 translate	 instruction	 mnemonics	 to	 hex,	 opens	 the
HexadecimalFile.mem	file,	and	sets	 the	end	of	 the	simulation	run	 time.	The	$fopen	 task
opens	this	hex	file	and	assigns	the	HexFile	descriptor	that	is	a	declared	integer	to	it.

Figure	4.30	Outline	of	SMPL-CPU	Testbench

This	initial	block	is	followed	by	the	Memor.y	Read	Write	block.	This	block	assumes
64	 8-bit	 hex	 data	 are	 available	 in	 HexadecimalFile.	 mem.	 For	 accessing	 this	 file,	 its
descriptor	HexFile,	will	be	used.

Figure	 4.31	 shows	 the	 details	 of	 MemoryRead_Write	 always	 block.	 After	 a	 short
delay	(1	ns)	after	the	posedge	of	elk,	rdmem	and	wrmem	are	expected	to	be	stable.	At	this
time,	 if	 rd_mem	 is	 1,	 data	 on	 adr_bus	 is	 used	 to	 set	 the	 position	 of	 the	 next	 read	 from
HexFile.	Since	data	in	HexadecimalFile.mem	are	in	hex	(2	bytes),	a	total	of	4	bytes	 that
include	 two	 “end	 of	 line”	 bytes	 are	 used	 for	 each	memory	 entry.	 Therefore,	 $fseek	 of
Figure	4.31	positions	the	next	reading	from	4*adrbus.	The	$fscanf	 task	 that	 follows	 this
task	 reads	 the	 hex	 data	 at	 the	 file	 position	 into	mem	 data.	 This	 variable	 is	 local	 to	 the
testbench	and	is	put	on	data-bus	only	when	reading	from	the	memory	is	to	take	place.	The
control	variable	is	used	to	drive	data-bits	with	mem	data	or	8’hZZ.

Figure	4.31	Memory	Read	and	Write

The	next	part	of	the	always	block	of	Figure	4.31	handles	writing	into	the	memory.	For
this	 purpose,	 after	 file	 positioning,	 the	 $fwrite	 task	 writes	 contents	 of	 data-bus	 into
HexadecimalFile.mem.	After	every	writing,	$fflush	writes	any	buffered	output	to	this	file.

4.4.3.9	Assembler.	 The	 testbench	 outline	 of	 Figure	 4.30	 shows	 the	Convert	 task	 that	 is
used	 for	 converting	 instruction	 mnemonics	 of	 [its	 tructionFile.	 mem	 to	 hex	 data	 in
HexadecimalFile.	 mern.	 Figure	 4.32	 shows	 six	 lines	 of	 InstructionFile.mem	 and	 their
corresponding	hex	translation	in	memory	locations	0	to	15.

Figure	4.32	Instruction	Mnemonics	and	Hex	Memory	Data

The	 Convert	 task	 reads	 a	 line	 of	 InstructionFile.	 mem	 that	 contains	 a	 memory
location,	instruction	mnemonic	and	its	operand.	It	converts	this	line	to	an	opcode	and	its

data	and	writes	it	in	its	specified	location	in	HexadecimalFile.mem.	For	example,	the	third
line	of	the	instruction	file	of	Figure	4.32	(sta	OA)	is	translated	to	4A	and	is	put	in	location
1	 of	 the	 hexadecimal	 file.	 For	 direct	 memory	 data,	 the	 instruction	 file	 uses	 the	 “:::”
notation.	OF	 :::	OF	 shown	 in	Figure	4.32	 is	 translated	 to	 data	OF	 in	 location	15	of	 the
hexadecimal	file.

The	 Convert	 task	 is	 shown	 in	 Figure	 4.33.	 Initially	 all	 locations	 of
HexadecimalFile.mem	 are	 initialized	 to	 “00”.	 The	 InstructionFile.mem	 is	 opened	 for
reading	 (i.e.,	 with	 r	 argument),	 and	 HexadecimalFile.mem	 is	 opened	 for	 reading	 and
writing	 (i.e.,	 with	 r+	 argument).	 File	 descriptors	 for	 these	 two	 files	 are	 InstFile	 and
HexFile.

Convert	has	a	while	loop	that	reads	data	from	InstFile,	converts	it	to	hex	and	puts	it	in
its	corresponding	location	in	HexFiile.	The	$fscanf	task	shown	in	this	loop	reads	the	first
two	hex	digits	of	a	line	of	instruction	into	addr.	This	variable	is	then	used	for	setting	the
write	position	for	the	HexFi,le	file.	File	positioning	is	done	by	$fseek.	This	is	followed	by
$fgets	that	reads	the	opcode	string	from	the	instruction	file	(InstFile).	A	case	statement	in
convert	 translates	 string	opcodes	 to	 their	hex	equivalent,	 and	an	$fwrite	 task	writes	 this
hex	data	into	the	hex	file	(HexFile)	at	the	location	set	by	the	$fseek	task.

If	the	opcode	string	read	from	InstFile	is	“:::”,	the	hex	data	that	follows	this	string	will
be	 written	 into	 HexFile	 location	 specified	 by	 addr.	 The	 last	 part	 of	 Convert	 flushes
HexFile	and	closes	both	instruction	and	hexadecimal	files.

Figure	4.33	Converting	Instructions	to	Hex

4.5	SAYEH	Design	and	Test

This	section	shows	design,	description,	and	test	of	a	small	computer	in	Verilog.	The	CPU
is	 SAYEH	 (Simple	 Architecture,	 Yet	 Enough	 Hardware)	 that	 has	 been	 designed	 for
educational	 and	 benchmarking	 purposes.	 The	 design	 is	 simple,	 and	 follows	 the	 design
strategy	used	for	the	processor	of	the	previous	section.	This	processor	will	be	used	as	an
embedded	processor	in	the	later	chapters	of	this	book.

4.5.1	Details	of	Processor	Functionality

The	simple	CPU	example	discussed	here	has	a	register	file	that	is	used	for	data	processing
instructions.	The	CPU	has	a	16-bit	data	bus	and	a	16-bit	address	bus.	The	processor	has	8
and	16-bit	 instructions.	Short	 instructions	contain	shadow	instructions,	which	effectively
pack	 two	 such	 instructions	 into	 a	 16-bit	 word.	 Figure	 4.34	 shows	 SAYEH	 interface
signals.

Figure	4.34	SAYEH	Interface

4.5.1.1	CPU	Components.	SAYEH	uses	 its	 register	 file	 for	most	of	 its	 data	 instructions.
Addressing	modes	of	this	processor	also	take	advantage	of	this	structure.	Because	of	this,
the	addressing	hardware	of	SAYEH	is	a	simple	one	and	the	register	file	output	is	used	in
address	calculations.

SAYEH	 components	 that	 are	 used	 by	 its	 instructions	 include	 the	 standard	 registers
such	as	the	Program	Counter,	Instruction	Register,	the	Arithmetic	Logic	Unit,	and	Status
Register.	In	addition,	this	processor	has	a	register	file	forming	registers	R0,	Rl,	R2	and	R3
as	well	as	a	Window	Pointer	that	defines	R0,	RI,	R2	and	R3	within	the	register	file.	CPU
components	and	a	brief	description	of	each	are	shown	below.

•	PC:	Program	Counter,	16	bits

•	R0,	R1,	R2,	and	R3:	General	purpose	registers	part	of	the	register	file,	16	bits

•	Reg	File:	The	general	purpose	registers	form	a	window	of	4	in	a	register	file	of	8
registers

•	WP:	Window	Pointer	points	to	the	register	file	to	define	R0,	RV,	R2	and	R3,	3	bits

•	 IR:	 Instruction	 Register	 that	 is	 loaded	 with	 a	 16-bit,	 an	 8bit,	 or	 two	 8-bit
instructions,	16	bits

•	 ALU:	 The	 ALU	 that	 can	 AND,	 OR,	 NOT,	 Shift,	 Compare,	 Add,	 Subtract	 and
Multiply	its	inputs,	16	bit	operands

•	Z	flag:	Becomes	1	when	the	ALU	output	is	0

•	C	flag:	Becomes	1	when	the	ALU	has	a	carry	output

4.5.1.2	SAYEH	Instructions.	The	general	format	of	8-bit	and	16-bit	SAYEH	instructions	is
shown	 in	 Figure	 4.35.	 The	 16-bit	 instructions	 have	 the	 Immediate	 field	 and	 the	 8-bit
instructions	 do	 not.	 The	 OPCODE	 filed	 is	 a	 4-bit	 code	 that	 specifies	 the	 type	 of
instruction.	 The	 Left	 and	 Right	 fields	 are	 two	 bit	 codes	 selecting	 RO	 through	 R3	 for
source	and/or	destination	of	an	instruction.	Usually,	Left	is	used	for	destination	and	Right

for	source.	The	Immediate	filed	is	used	for	immediate	data,	or	if	two	8-bit	instructions	are
packed,	it	is	used	for	the	second	instruction.

Figure	4.35	SAYEH	Instruction	Format

Our	processor	has	a	total	of	29	instructions	as	shown	in	Table	4.4.	Instructions	with	I
immediate	field	are	16-bit	instructions	and	the	rest	are	8-bit	instructions.	Instructions	that
use	 the	Destination	and	Source	 fields	 (designated	by	D	and	S	 in	 the	 table	of	 instruction
set)	have	an	opcode	that	is	limited	to	4	bits.	Instructions	that	do	not	require	specification
of	 source	 and	destination	 registers	 use	 these	 fields	 as	 opcode	 extensions.	 In	 addition	 to
nop,	 hex	 code	OF	 is	 used	 as	 filler	 for	 the	 right	most	 8-bits	 of	 a	 16-bit	word	 that	 only
contains	an	8bit	instruction	in	its	8	left-most	bits.

In	 the	 instruction	 set,	 addressed	 locations	 in	 the	memory	are	 indicated	by	enclosing
the	address	in	a	set	of	parenthesis.	For	these	instructions,	the	processor	issues	ReadMem
or	WriteMem	signals	 to	 the	memory.	When	 input	 and	output	 instructions	 (inp,	 oup)	 are
executed,	SAYEH	issues	ReadlO	or	WritelO	signals	to	its	10	devices.

4.5.2	SAYEH	Datapath

The	datapath	of	SAYEH	is	shown	in	Figure	4.36.	The	main	components	of	this	machine
are:	 Addressing	 Unit	 that	 consists	 of	 PC	 (Program	 Counter)	 and	 Address	 Logic,	 IR
(Instruction	Register),	WP	(Window	Pointer),	Register	File	that	consists	of	Left	Decoder]
and	Right	Decoder2,	ALU	(Arithmetic	Logic	Unit),	and	Flags.	As	shown	in	Figure	4.36,
these	 components	 are	 either	 hardwired	 or	 connected	 through	 three-state	 busses.
Component	 inputs	with	multiple	sources,	such	as	 the	 right	hand	side	 input	of	ALU,	use
three-state	busses.	Three-state	busses	in	this	structure	are	Dastabus	and	OpndBus.	In	this
figure,	signals	that	are	in	italic	are	control	signals	issued	by	the	controller.	These	signals
control	register	clocking,	logic	unit	operations	and	placement	of	data	in	busses.

Figure	4.36	SAYEH	Datapath

4.5.2.1	 Datapath	 Components.	 Figure	 4.37	 shows	 the	 hierarchical	 structure	 of	 SAYEH
components.	 The	 processor	 has	 a	 datapath	 and	 a	 controller.	 Datapath	 components	 are
Addressing	 Unit,	 IR,	 WP,	 Register	 File,	 Arithmetic	 Unit,	 and	 the	 Flags	 register.	 The
Addressing	Unit	is	further	partitioned	into	the	PC	and	Address	Logic.

The	Addressing	Logic	is	a	combinational	circuit	that	is	capable	of	adding	its	inputs	to
generate	 a	 16-bit	 output	 that	 forms	 the	 address	 for	 the	 processor	 memory.	 Program
Counter	and	Instruction	Register	are	16-bit	registers.	Register	File	is	a	two-port	memory
and	a	file	of	8,	16-bit	registers.	The	Window	Pointer	is	a	3-bit	register	that	is	used	as	the
base	of	 the	Register	File.	Specific	registers	for	read	and	write	(R0,	RI,	R2	or	R3)	in	the
Register	File	are	selected	by	its	4-bit	input	bus	coming	from	the	Instruction	Register.	Two
bits	are	used	to	select	a	source	register	and	other	two	bits	select	the	destination	register.

When	 the	Window	Pointer	 is	 enabled,	 it	 adds	 its	3-bit	 input	 to	 its	 current	data.	The
Flags	 register	 is	 a	 2-bit	 register	 that	 saves	 the	 flag	 outputs	 of	 the	Arithmetic	Unit.	 The
Arithmetic	Unit	is	a	16-bit	arithmetic	and	logic	unit	that	has	the	functions	shown	in	Table
4.5.	 A	 9-bit	 input	 selects	 the	 function	 of	 the	 ALU	 shown	 in	 this	 table.	 This	 code	 is
provided	by	the	processor	controller.

Figure	4.37	SAYEH	Hierarchical	Structure

Controller	of	SAYEH	has	eleven	states	for	various	reset,	fetch,	decode,	execute,	and
halt	 operations.	 Signals	 generated	 by	 the	 controller	 control	 logic	 unit	 operations	 and
register	clocking	in	the	datapath.

SAYEH	sequential	data	components	and	its	controller	are	triggered	on	the	falling	edge
of	the	main	system	clock.	Control	signals	remain	active	after	one	falling	edge	through	the
next.	This	duration	allows	for	propagation	of	signals	through	the	busses	and	logic	units	in
the	datapath.

4.5.3	SAYEH	Verilog	Description

SAYEH	 is	 described	 according	 to	 the	 hierarchical	 structure	 of	 Figure	 4.37.	 Data

components	 are	described	 separately,	 and	 then	wired	 to	 form	 the	datapath.	Controller	 is
described	 in	 a	 single	Verilog	module.	 In	 the	 complete	SAYEH	description,	 the	datapath
and	controller	are	wired	together.

The	 coding	 style	 used	 for	 the	 description	 of	 this	 processor	 is	 similar	 to	 that	 of	 the
multi-cycle	description	of	SMPL-CPU.	The	CD	accompanying	this	book	has	the	complete
code	of	 this	processor	and	will	not	be	shown	here.	SAYEH	top-level	description	will	be
shown	in	order	to	present	its	testbench	in	the	next	section.

4.5.3.1	 SAYEH	 Top-Level	 Description.	 The	 top-level	 Verilog	 code	 of	 SAYEH	 that	 is
shown	in	Figure	4.38	consists	of	instantiation	of	DataPath	and	controller	modules.	In	the
Sayeh	module,	control	signal	outputs	of	controller	are	wired	to	the	similarly	named	signals
of	DataPath.	The	ports	of	the	processor	are	according	to	the	block	diagram	of	Figure	4.34.

Figure	4.38	SAYEH	Top	Level	Description

4.5.4	SAYEH	Top-Level	Testbench	/	Assembler

In	 the	 testbench	 of	 SAYEH,	we	 instantiate	 the	 processor	 of	 Figure	 4.38,	 and	 through	 a
memory	model,	 we	 apply	 instructions	 to	 the	 CPU	 and	watch	 its	 response	 to	 these	 test
instructions.

The	 testbench	style	 is	 similar	 to	 that	of	multi-cycle	version	of	SMPL-CPU	 that	was
discussed	in	the	previous	section.	SAYEH	testbench	also	has	a	translation	program	that	is,
of	course,	much	larger	than	that	of	SMPL-CPU.	This	task	is	called	Concert	and	functions
like	an	assembler	for	SAYEH.

The	 testbench	 reads	 its	 program	 that	 is	 written	 in	 SAYEH	 assemble	 code	 from	 an
input	file	(inst.	mem),	translates	it	to	SAYEH	machine	language	and	writes	a	hex	file	that
contains	 the	 machine	 language	 equivalent	 of	 the	 program.	 This	 file	 (memFile.mem)
represents	the	memory	image	of	the	program	and	is	read	and	written	into	by	the	SAYEH
processor	Verilog	model.

Figure	4.39	Sorting	Program	for	SAYEH

An	example	sort	program	in	SAYEH	assembly	language	is	shown	in	Figure	4.39.	This
is	 the	assembly	equivalent	of	 the	C	program	that	was	discussed	 in	Section	4.2.4	(Figure
4.4).	The	program	reads	data	from	the	CPU	memory	and	sorts	them	in	descending	order.
The	number	of	data	 items	to	sort	 is	 in	 location	768	and	data	begins	 in	 the	next	memory
location.	 Like	 its	 equivalent	 C	 program,	 this	 program	 uses	 two	 loops	 for	 its	 sorting
function.	When	completed,	the	CPU	is	put	into	the	halt	state.

The	program	shown	in	Figure	4.39	is	translated	into	its	hexadecimal	equivalent	and	is
put	in	the	memFile.	mem.	As	discussed	in	the	previous	section,	SAYEH	testbench	reads

instructions	from	this	file	and	applies	them	to	the	CPU.

4.5.5	SAYEH	Hardware	Realization

SAYEH	 CPU	 described	 in	 this	 chapter	 has	 been	 synthesized	 and	 programmed	 into	 a
number	of	FPGAs	and	tested	on	Altera	development	boards.	One	implementation	has	been
on	Altera’s	 Cyclone	 EPIC12	 device	 of	 an	 Altera	 UP3.	We	 used	 a	 RAM	 from	Altera’s
megafunctions	and	configured	it	as	a	memory	of	256	16-bit	words.	The	number	of	logic
elements	used	by	 this	CPU	was	874,	which	 is	7%	of	 the	available	12060	LEs.	Memory
bits	used	was	2096,	which	is	2%	of	the	available	memory	bits.	This	usage	indicates	that
we	can	form	a	complete	system	with	a	keyboard	and	VGA	output	on	a	Cyclone	FPGA.

4.6	Summary

In	 this	chapter	we	discussed	processing	units,	 their	hardware	and	software.	These	 topics
are	 generally	 covered	 in	 detail	 in	 two	 or	 more	 courses	 on	 computer	 architecture	 and
computer	 software.	However,	 the	 discussion	 here	 only	 focused	 on	 those	 issues	 that	 are
needed	 for	 designing	 embedded	 systems	 with	 processors	 and	 processor	 software.	 This
discussion	 provided	 the	 necessary	 background	 for	 using	 embedded	 processors	 for
implementation	of	parts	of	 a	 larger	design,	or	 as	 stand	alone	 systems.	This	 chapter	 also
showed	CPU	hardware,	and	design	methodology	for	 large	RT	level	designs.	Application
of	processing	elements	in	design	of	embedded	systems	will	be	discussed	in	later	chapters
of	this	book.

	

5

Field	Programmable	Devices

The	need	for	getting	designs	done	quickly	has	 led	to	 the	creation	and	evolution	of	Field
Programmable	Devices.	The	idea	began	from	Read	Only	Memories	(ROM)	that	were	just
an	organized	array	of	gates	and	has	evolved	into	System	On	Programmable	Chips	(SOPC)
that	 use	 programmable	 devices,	memories	 and	 configurable	 logic	 all	 on	 one	 chip.	 This
chapter	 shows	 the	 evolution	 of	 basic	 array	 structures	 like	 ROMs	 into	 complex	 CPLD
(Complex	Programmable	Logic	Devices)	and	FPGAs	(Field	Programmable	Gate	Array).
This	 topic	 can	 be	 viewed	 from	 different	 angles,	 like	 logic	 structure,	 physical	 design,
programming	technology,	transistor	level,	software	tools,	and	perhaps	even	from	historic
and	commercial	 aspects.	However	our	 treatment	of	 this	 subject	 is	more	at	 the	 structural
level.	We	discuss	gate	level	structures	of	ROMs,	PLAs,	PALs,	CPLDs,	and	FPGAs.	The
material	 is	at	 the	 level	needed	for	understanding	configuration	and	utilization	of	CPLDs
and	FPGAs	in	digital	designs.

5.1	Read	Only	Memories

We	present	structure	of	ROMs	by	showing	the	implementation	of	a	3input	4-output	logic
function.	The	circuit	with	the	truth	table	shown	in	Figure	5.1	is	to	be	implemented.

5.1.1	Basic	ROM	Structure

The	 simplest	way	 to	 implement	 the	 circuit	 of	 Figure	 5.1	 is	 to	 form	 its	minterms	 using
AND	 gates	 and	 then	 OR	 the	 appropriate	 minterms	 for	 formation	 of	 the	 four	 circuit
outputs.	The	circuit	requires	eight	3input	AND	gates	and	four	OR	gates	that	can	take	up-to
eight	inputs.	It	is	easiest	to	draw	this	structure	in	an	array	format	as	shown	in	Figure	5.2.

Figure	5.1	A	Simple	Combinational	Circuit

Figure	5.2	AND-OR	Implementation

Figure	5.3	AND	and	OR	Planes

The	 circuit	 shown	 has	 an	 array	 of	 AND	 gates	 and	 an	 array	 of	 OR	 gates,	 that	 are
referred	to	as	the	AND-plane	and	the	OR-plane.	In	the	AND-plane	all	eight	minterms	for
the	three	inputs,	a,	b,	and	c	are	generated.	The	OR	plane	uses	only	the	minterms	that	are
needed	for	the	outputs	of	 the	circuit.	See	for	example	minterm	7	that	 is	generated	in	the
AND-plane	but	not	used	in	the	OR-plane.	Figure	5.3	shows	the	block	diagram	of	this	array
structure.

5.1.2	NOR	Implementation

Since	 realization	of	AND	and	OR	gates	 in	most	 technologies	are	difficult	and	generally
use	more	delays	and	chip	area	than	NAND	or	NOR	implementations,	we	implement	our
example	 circuit	 using	NOR	gates.	Note	 that	 a	NOR	gate	with	 complemented	outputs	 is
equivalent	to	an	OR,	and	a	NOR	gate	with	complemented	inputs	is	equivalent	to	an	AND
gate.	 Our	 all	 NOR	 implementation	 of	 Figure	 5.4	 uses	 NOR	 gates	 for	 generation	 of
minterms	 and	 circuit	 outputs.	 To	 keep	 functionality	 and	 activity	 levels	 of	 inputs	 and
outputs	 intact,	extra	 inverters	are	used	on	 the	circuit	 inputs	and	outputs.	These	 inverters
are	highlighted	in	Figure	5.4.	Although	NOR	gates	are	used,	 the	left	plane	 is	still	called
the	AND-plane	and	the	right	plane	is	called	the	OR-plane.

Figure	5.4	All	NOR	Implementation

5.1.3	Distributed	Gates

Hardware	 implementation	 of	 the	 circuit	 of	 Figure	 5.4	 faces	 difficulties	 in	 routing	wires
and	building	gates	with	large	number	of	inputs.	This	problem	becomes	more	critical	when
we	are	using	arrays	with	tens	of	inputs.	Take	for	example,	a	circuit	with	16	inputs,	which
is	 very	 usual	 for	 combinational	 circuits.	 Such	 a	 circuit	 has	 64k	 (216)	minterms.	 In	 the
AND-plane,	wires	 from	circuit	 inputs	must	be	 routed	 to	over	64,000	NOR	gates.	 In	 the
OR-plane,	the	NOR	gates	must	be	large	enough	for	every	minterm	of	 the	function	(over
64,000	minterms)	to	reach	their	inputs.

Such	an	implementation	is	very	slow	because	of	long	lines,	and	takes	too	much	space
because	 of	 the	 requirement	 of	 large	 gates.	 The	 solution	 to	 this	 problem	 is	 to	 distribute
gates	along	array	rows	and	columns.

In	the	AND-plane,	instead	of	having	a	clustered	NOR	gate	for	all	inputs	to	reach	to,
the	NOR	gate	is	distributed	along	the	rows	of	the	array.	In	Figure	5.4,	the	NOR	gate	that
implements	minterm	3	is	highlighted.	Distributed	transistor-level	logic	of	this	NOR	gate	is
shown	in	Figure	5.5.	This	figure	also	shows	a	symbolic	representation	of	this	structure.

Figure	5.5	Distributed	NOR	of	the	AND-plane

Figure	5.6	Distributed	NOR	Gate	of	Output	y

Likewise,	 in	the	OR-plane,	 instead	of	having	large	NOR	gates	for	the	outputs	of	the
circuit,	 transistors	 of	 output	 NOR	 gates	 are	 distributed	 along	 the	 corresponding	 output
columns.	 Figure	 5.6	 shows	 the	 distributed	 NOR	 structure	 of	 the	 y	 output	 of	 circuit	 of
Figure	5.4.	A	symbolic	representation	of	this	structure	is	also	shown	in	this	figure.

As	shown	in	Figure	5.5	and	Figure	5.6,	distributed	gates	are	symbolically	represented
by	gates	with	single	inputs.	In	each	case,	connections	are	made	on	the	inputs	of	the	gate.
For	the	AND-plane,	the	inputs	of	the	AND	gate	are	a,	b,	and	c	forming	minterm	3,	and	for
the	OR	gate	of	Figure	5.6,	the	inputs	of	the	gate	are	m2,	m5	and	m6.	The	reason	for	the
difference	 in	 notations	 of	 connections	 in	 the	ANDplane	 and	 the	OR-plane	 (dots	 versus
crosses)	becomes	clear	after	the	discussion	of	the	next	section.

5.1.4	Array	Programmability

For	 the	 a,	 b	 and	 c	 inputs,	 the	 structure	 shown	 in	 Figure	 5.4	 implements	w,	 x,	 y	 and	 z

functions.	 In	 this	 implementation,	 independent	 of	 our	 outputs,	 we	 have	 generated	 all
minterms	of	the	three	inputs.	For	any	other	functions	other	than	w,	x,	y	and	z,	we	would
still	 generate	 the	 same	minterms,	 but	 use	 them	 differently.	Hence,	 the	AND-plane	with
which	the	minterms	are	generated	can	be	wired	independent	of	the	functions	realized.	On
the	 contrary,	 the	 OR-plane	 can	 only	 be	 known	 when	 the	 output	 functions	 have	 been
determined.

We	can	therefore	generate	a	general	purpose	array	logic	with	all	minterms	in	its	AND-
plane,	and	capability	of	using	any	number	of	the	minterms	for	any	of	the	array	outputs	in
its	 OR-plane.	 In	 other	 words,	 we	 want	 a	 fixed	 AND-plane	 and	 a	 programmable	 (or
configurable)	 OR-plane.	 As	 shown	 in	 Figure	 5.7,	 transistors	 for	 the	 implementation	 of
minterms	in	the	AND-plane	are	fixed,	but	in	the	OR-plane	there	are	fusible	transistors	on
every	 output	 column	 for	 every	minterm	 of	 the	AND-plane.	 For	 realization	 of	 a	 certain
function	 on	 an	 output	 of	 this	 array,	 transistors	 corresponding	 to	 the	 used	minterms	 are
kept,	 and	 the	 rest	 are	 blown	 to	 eliminate	 contribution	 of	 the	 minterm	 to	 the	 output
function.

Figure	5.7	shows	configuration	of	the	OR-plane	for	realizing	outputs	shown	in	Figure
5.1.	 Note	 for	 example	 that	 for	 output	 y,	 only	 transistors	 on	 rows	m2,	 m5,	 and	m6	 are
connected	and	the	rest	are	fused	off.

Instead	of	the	complex	transistor	diagram	of	Figure	5.7,	the	notation	shown	in	Figure
5.8	is	used	for	representing	the	programmability	of	the	configurable	arrays.	The	dots	in	the
AND-plane	 indicate	 permanent	 connections,	 and	 the	 crosses	 in	 the	 OR-plane	 indicate
programmable	or	configurable	connections.

Figure	5.7	Fixed	AND-plane,	Programmable	OR-plane

Figure	5.8	Fuse	Notation	for	Configurable	Arrays

5.1.5	Memory	View

Let	us	look	at	the	circuit	of	Figure	5.8	as	a	black	box	of	three	inputs	and	four	outputs.	In
this	circuit,	if	an	input	value	between	0	and	7	is	applied	to	the	abc	inputs,	a	4-bit	value	is
read	on	the	four	circuit	outputs.	For	example	abc=011	always	reads	wxyz=1001.

If	 we	 consider	 abc	 as	 the	 address	 inputs	 and	 wxyz	 as	 the	 data	 read	 from	 abc
designated	address,	 then	the	black	box	corresponding	to	Figure	5.8	can	be	regarded	as	a
memory	with	an	address	space	of	8	words	and	data	of	four	bits	wide.	In	this	case,	the	fixed
AND-plane	becomes	the	memory	decoder,	and	the	programmable	OR-plane	becomes	the
memory	array	(see	Figure	5.9).	Because	this	memory	can	only	be	read	from	and	not	easily
written	into,	it	is	referred	to	as	Read	Only	Memory	or	ROM.

The	basic	ROM	is	a	one-time	programmable	 logic	array.	Other	variations	 of	ROMs
offer	more	flexibility	in	programming,	but	in	all	cases	they	can	be	read	more	easily	than
they	can	be	written	into.

Figure	5.9	Memory	View	of	ROM

5.1.6	ROM	Variations

The	 acronym,	ROM	 is	 generic	 and	 applies	 to	most	 read	 only	memories.	What	 is	 today
implied	 by	 ROM	may	 be	 ROM,	 PROM,	 EPROM,	 EEPROM	 or	 even	 flash	 memories.
These	variations	are	discussed	here.

5.1.6.1	ROM.	ROM	is	a	mask-programmable	integrated	circuit,	and	is	programmed	by	a
mask	in	IC	manufacturing	process.	The	use	of	mask-programmable	ROMs	is	only	justified
when	a	large	volume	is	needed.	The	long	wait	time	for	manufacturing	such	circuits	makes
it	a	less	attractive	choice	when	time-to-market	is	an	issue.

5.1.6.2	 PROM.	 Programmable	 ROM	 is	 a	 one-time	 programmable	 chip	 that,	 once
programmed,	cannot	be	erased	or	altered.	In	a	PROM,	all	minterms	in	the	AND-plane	are
generated,	and	connections	of	all	AND-plane	outputs	to	OR-plane	gate	inputs	are	in	place.
By	applying	a	high	voltage,	 transistors	 in	 the	OR-plane	 that	correspond	 to	 the	minterms
that	 are	not	needed	 for	 a	 certain	output	 are	burned	out.	Referring	 to	Figure	 5.7,	 a	 fresh
PROM	 has	 all	 transistors	 in	 its	 ORplane	 connected.	When	 programmed,	 some	 will	 be
fused	 out	 permanently.	 Likewise,	 considering	 the	 diagram	 of	 Figure	 5.8,	 an
unprogrammed	PROM	has	X’s	in	all	wire	crossings	in	its	OR-plane.

5.1.6.3	 EPROM.	 An	 Erasable	 PROM	 is	 a	 PROM	 that	 once	 programmed,	 can	 be
completely	erased	and	reprogrammed.	Transistors	in	the	OR-plane	of	an	EPROM	have	a
normal	gate	and	a	floating	gate	as	shown	in	Figure	5.10.	The	non-floating	gate	is	a	normal
NMOS	 transistor	 gate,	 and	 the	 floating-gate	 is	 surrounded	 by	 insulating	 material	 that
allows	an	accumulated	charge	to	remain	on	the	gate	for	a	long	time.

Figure	5.10	Floating	Gate

When	not	programmed,	or	programmed	as	a	`1’,	the	floating	gate	has	no	extra	charge
on	 it	and	 the	 transistor	 is	controlled	by	 the	nonfloating	gate	 (access	gate).	To	fuse-out	a
transistor,	or	program	a	`0’	into	a	memory	location,	a	high	voltage	is	applied	to	the	access
gate	 of	 the	 transistor	which	 causes	 accumulation	of	 negative	 charge	 in	 the	 floating-gate
area.	This	negative	charge	prevents	logic	1	values	on	the	access	gate	from	turning	on	the
transistor.	The	transistor,	therefore,	will	act	as	an	unconnected	transistor	for	as	long	as	the
negative	charge	remains	on	its	floating-gate.

To	erase	an	EPROM	it	must	be	exposed	to	ultra-violate	light	for	several	minutes.	 In
this	case,	the	insulating	materials	in	the	floatinggates	become	conductive	and	these	gates
start	loosing	their	negative	charge.	In	this	case,	all	transistors	return	to	their	normal	mode
of	operation.	This	means	 that	 all	EPROM	memory	 contents	 become	1,	 and	 ready	 to	 be
reprogrammed.

Writing	 data	 into	 an	 EPROM	 is	 generally	 about	 a	 1000	 times	 slower	 than	 reading
from	it.	This	is	while	not	considering	the	time	needed	for	erasing	the	entire	EPROM.

5.1.6.4	EEPROM.	An	EEPROM	is	an	EPROM	that	can	electrically	be	erased,	and	hence
the	 name:	 Electrically	 Erasable	 Programmable	 ROM.	 Instead	 of	 using	 ultra-violate	 to
remove	the	charge	on	the	nonfloating	gate	of	an	EPROM	transistor,	a	voltage	is	applied	to
the	 opposite	 end	 of	 the	 transistor	 gate	 to	 remove	 its	 accumulated	 negative	 charge.	An
EEPROM	can	be	erased	and	reprogrammed	without	having	to	remove	it.	This	is	useful	for
reconfiguring	a	design,	or	saving	system	configurations.	As	in	EPROMs,	EEPROMs	are
non-volatile	memories.	This	means	that	they	save	their	internal	data	while	not	powered.	In
order	 for	 memories	 to	 be	 electrically	 erasable,	 the	 insulating	 material	 surrounding	 the
floating-gate	must	be	much	thinner	than	those	of	the	EPROMS.	This	makes	the	number	of
times	EEPROMs	can	be	reprogrammed	much	less	than	that	of	EPROMs	and	in	the	order
of	 10	 to	 20,000.	 Writing	 into	 a	 byte	 of	 an	 EEPROM	 is	 about	 500	 times	 slower	 than
reading	from	it.

5.1.6.5	 Flash	 Memory.	 Flash	 memories	 are	 large	 EEPROMs	 that	 are	 partitioned	 into
smaller	 fixed-size	 blocks	 that	 can	 independently	 be	 erased.	 Internal	 to	 a	 system,	 flash
memories	are	used	for	saving	system	configurations.	They	are	used	in	digital	cameras	for
storing	pictures.	As	external	devices,	they	are	used	for	temporary	storage	of	data	that	can
be	rapidly	retrieved.

Various	 forms	 of	 ROM	 are	 available	 in	 various	 sizes	 and	 packages.	 The	 popular

27xxx	series	EPROMs	come	in	packages	that	are	organized	as	byte	addressable	memories.
For	 example,	 the	 27256	EPROM	has	 256K	 bits	 of	memory	 that	 are	 arranged	 into	 32K
bytes.	This	package	is	shown	in	Figure	5.11.

Figure	5.11	27256	EPROM

The	27256	EPROM	has	a	Vpp	pin	that	is	used	for	the	supply	input	during	read-only
operations	and	is	used	for	applying	programming	voltage	during	the	programming	phase.
The	 15	 address	 lines	 address	 256K	 of	 8-bit	 data	 that	 are	 read	 on	 to	 07	 to	 00	 outputs.
Active	low	CS	and	OE	are	for	three-state	control	of	the	outputs	and	are	used	for	cascading
EPROMs	and/or	output	bussing.

EPROMs	 can	 be	 cascaded	 for	 word	 length	 expansion,	 address	 space	 expansion	 or
both.	For	example,	a	1Meg	16-bit	word	memory	can	be	formed	by	use	of	a	four	by	two
array	of	27256s.

5.2	Programmable	Logic	Arrays

The	 price	 we	 are	 paying	 for	 the	 high	 degree	 of	 flexibility	 of	 ROMs	 is	 the	 large	 area
occupied	by	 the	AND-plane	 that	 forms	every	minterm	of	 the	 inputs	of	 the	ROM.	PLAs
(Programmable	Logic	Arrays)	constitutes	an	alternative	with	 less	flexibility	and	less	use
of	 silicon.	 For	 this	 discussion	we	 look	 at	ROMs	 as	 logic	 circuits	 as	 done	 in	 the	 earlier
parts	of	Section	5.1,	and	not	the	memory	view	of	the	later	parts	of	this	section.

For	 illustrating	 the	 PLA	 structure,	 we	 use	 the	 3-input,	 4-output	 example	 circuit	 of
Figure	5.1.	The	AND-OR	implementation	of	this	circuit	that	is	shown	in	Figure	5.2	led	to
the	ROM	structure	of	Figure	5.8,	in	which	minterms	generated	in	the	AND-plane	are	used
for	function	outputs	in	the	OR-plane.

An	easy	step	to	reduce	the	area	used	by	the	circuit	of	Figure	5.8	is	to	implement	only
those	minterms	that	are	actually	used.	In	this	example,	since	minterm	7	is	never	used,	the
last	row	of	the	array	can	be	completely	eliminated.	In	large	ROM	structures,	there	will	be

a	 much	 larger	 percentage	 of	 unused	 minterms	 that	 can	 be	 eliminated.	 Furthermore,	 if
instead	 of	 using	 minterms,	 we	 minimize	 our	 output	 functions	 and	 only	 implement	 the
regained	product	terms	we	will	be	able	to	save	even	more	rows	of	the	logic	array.

Figure	5.12	Minimizing	Circuit	of	Figure	5.1

Figure	5.12	shows	Karnaugh	maps	for	minimization	of	w,	x,	y	and	z	outputs	of	table
of	 Figure	 5.1.	 In	 this	 minimization	 sharing	 product	 terms	 between	 various	 outputs	 is
particularly	emphasized.

The	resulting	Boolean	expressions	for	the	outputs	of	circuit	described	by	the	tables	of
Figure	5.12	are	shown	 in	Figure	5.13.	Com	mon	product	 terms	 in	 these	expressions	are
vertically	aligned.

Figure	5.13	Minimized	Boolean	Expressions

Implementation	of	w,	x,	y	and	z	functions	of	a,	b	and	c	inputs	in	an	array	format	using
minimized	expressions	of	Figure	5.13	is	shown	in	Figure	5.14.	This	array	uses	five	rows
that	 correspond	 to	 the	 product	 terms	 of	 the	 four	 output	 functions.	 Comparing	 this	with
Figure	5.8,	we	 can	 see	 that	we	 are	 using	 fewer	 number	 of	 rows	by	generating	 only	 the
product	terms	that	are	needed	and	not	every	minterm.

Figure	5.14	PLA	Implementation

The	price	we	are	paying	for	the	area	gained	in	the	PLA	implementation	of	Figure	5.14
is	that	we	now	have	to	program	both	AND	and	OR	planes.	In	Figure	5.14	we	use	X’s	in
both	 planes	 where	 in	 Figure	 5.8	 dots	 are	 used	 in	 the	 fixed	 AND-plane	 and	 X’s	 in	 the
programmable	OR-plane.

While	ROM	structures	are	used	for	general	purpose	configurable	packages,	PLAs	are
mainly	used	as	structured	array	of	hardware	for	implementing	on-chip	logic.	A	ROM	is	an
array	logic	with	fixed	AND	plane	and	programmable	OR-plane,	and	PLA	is	an	array	with
programmable	AND-plane	and	programmable	OR-plane.

A	 configurable	 array	 logic	 that	 sits	 between	 a	 PLA	 and	 a	 ROM	 is	 one	 with	 a
programmable	AND-plane	and	a	fixed	OR-plane.	This	logic	structure	was	first	introduced
by	Monilitic	Memories	Inc.	(MMI)	in	the	late	1970s	and	because	of	its	similarity	to	PLA
was	retuned	to	PAL	or	Programmable	Array	Logic.

The	 rationale	 behind	 PALs	 is	 that	 outputs	 of	 a	 large	 logic	 function	 generally	 use	 a
limited	number	of	product	terms	and	the	capability	of	being	able	to	use	all	product	terms
for	all	function	outputs	is	in	most	cases	not	utilized.	Fixing	the	number	of	product	terms
for	the	circuit	outputs	significantly	improves	the	speed	of	PALs.

5.2.1	PAL	Logic	Structure

In	order	to	illustrate	the	logical	organization	of	PALs,	we	go	back	to	our	3-input,	4-output
example	of	Figure	5.1.	Figure	5.15	shows	PAL	implementation	of	this	circuit.	This	circuit
uses	w,	 x,	 y	 and	 z	 expressions	 shown	 in	 Figure	 5.13.	Recall	 that	 these	 expressions	 are
minimal	 realizations	 for	 the	outputs	of	our	 example	 circuit	 and	are	 resulted	 from	 the	k-
maps	of	Figure	5.12.

Figure	5.15	PAL	Implementation

The	 PAL	 structure	 of	 Figure	 5.15	 has	 a	 programmable	ANDplane	 and	 a	 fixed	OR-
plane.	Product	 terms	are	 formed	 in	 the	ANDplane	and	 three	 such	 terms	are	used	as	OR
gate	inputs	in	the	ORplane.	This	structure	allows	a	maximum	of	three	product	terms	per
output.

Implementing	expressions	of	Figure	5.13	is	done	by	programming	fuses	of	the	AND-
plane	of	the	PAL.	The	z	output	uses	all	three	available	product	terms	and	all	other	outputs
use	only	two.

5.2.2	Product	Term	Expansion

The	 limitation	 on	 the	 number	 of	 product	 terms	 per	 output	 in	 a	 PAL	 device	 can	 be
overcome	 by	 providing	 feedbacks	 from	 PAL	 outputs	 back	 into	 the	 AND-plane.	 These
feedbacks	are	used	in	the	AND-plane	just	like	regular	inputs	of	the	PAL.	Such	a	feedback
allows	Offing	 a	 subset	 of	 product	 terms	 of	 a	 function	 to	 be	 fed	 back	 into	 the	 array	 to
further	be	ORed	with	the	remaining	product	terms	of	the	function.

Consider	for	example,	PAL	implementation	of	expression	w	shown	below:

Let	 us	 assume	 that	 this	 function	 is	 to	 be	 implemented	 in	 a	 3input	 PAL	 with	 three
product	terms	per	output	and	with	outputs	feeding	back	into	the	AND-plane,	as	shown	in
Figure	5.16.

Figure	5.16	A	PAL	with	Product	Term	Expandability

The	partial	PAL	shown	in	this	figure	allows	any	of	its	outputs	to	be	used	as	a	circuit
primary	output	or	as	a	partial	 sum-of-products	 to	be	completed	by	Offing	more	product
terms	to	it.	For	implementation	of	expression	w,	the	first	three	product	terms	are	generated
on	the	o1.	The	structure	shown	does	not	allow	the	last	product	term	(a	•	b	•	c)	to	be	ORed
on	the	same	output.	Therefore,	the	feedback	from	this	output	is	used	as	an	input	into	the
next	group	of	product	terms.	The	circled	X	connection	in	this	figure	causes	o1-to	be	used
as	an	input	into	the	02	group.	The	last	product	terms	(a.b.c)	is	generated	in	the	ANDplane
driving	the	02	output	and	is	ORed	with	o1	using	the	OR-gate	of	the	02	output.	Expression
w	is	generated	on	02.	Note	that	 the	feedback	of	02	back	into	the	AND-plane	does	exist,
but	not	utilized.

5.2.3	Three-State	Outputs

A	 further	 improvement	 to	 the	 original	 PAL	 structure	 of	 Figure	 5.15	 is	 done	 by	 adding
three-state	controls	to	its	outputs	as	shown	in	the	partial	structure	of	Figure	5.17.

Figure	5.17	PAL	Structure	with	Three	Output	Control

In	addition	 to	 the	feedback	from	the	output,	 this	structure	has	 two	more	advantages.
First,	the	pin	used	as	output	or	partial	sum-ofproducts	terms	can	also	be	used	as	input	by
turning	 off	 the	 threestate	 gate	 that	 drives	 it.	 Note	 that	 the	 lines	 used	 for	 feeding	 back
outputs	 into	 the	AND-plane	 in	Figure	5.16,	become	connections	 from	the	 io2	 input	 into
the	AND-plane.	The	second	advantage	of	this	structure	is	that	when	io2	is	used	as	output	it
becomes	a	three-state	output	that	is	controlled	by	a	programmable	product	term.

Instead	of	using	a	three-state	inverting	buffer,	an	XOR	gate	with	three-state	output	and
a	fusable	input	(see	Figure	5.18)	provides	output	polarity	control	when	the	bi-directional
i02	port	is	used	as	output

Figure	5.18	Output	Inversion	Control

5.2.4	Registered	Outputs

A	 major	 advantage	 of	 PALs	 over	 PLAs	 and	 ROMs	 is	 the	 capability	 of	 incorporating
registers	 into	 the	 logic	 structure.	 Where	 registers	 can	 only	 be	 added	 to	 the	 latter	 two
structures	 on	 their	 inputs	 and	 outputs,	 registers	 added	 to	 PAL	 arrays	 become	 more
integrated	in	the	input	and	output	of	the	PAL	logic.

As	 an	 example	 structure,	 consider	 the	 registered	 output	 of	 Figure	 5.19.	 The
input/output	 shown	 can	 be	 used	 as	 a	 registered	 output	 with	 three-state,	 as	 a	 two-state
output,	as	a	registered	feedback	into	the	logic	array,	or	as	an	input	into	the	AND-plane.

Figure	5.19	Output	Inversion	Control

A	further	enhancement	 to	 this	structure	provides	 logic	 for	bypassing	 the	output	 flip-
flop	when	its	corresponding	I/O	pin	is	being	used	as	output.	This	way,	PAL	outputs	can	be
programmed	as	registered	or	combinational	pins.

Other	 enhancements	 to	 the	 register	 option	 include	 the	 use	 of	 asynchronous	 control
signals	for	the	flip-flop,	direct	feedback	from	the	flip-flop	into	the	array,	and	providing	a
programmable	logic	function	for	the	flip-flop	output	and	the	feedback	line.

5.2.5	Commercial	Parts

PAL	is	a	trademark	of	American	Micro	Devices	Inc.	More	generically,	 these	devices	are
referred	to	as	PLDs	or	programmable	logic	devices.	A	variation	of	the	original	PAL	or	a
PLD	that	is	somewhat	different	from	a	PAL	is	GAL	(Generic	Array	Logic).	The	inventor
of	GAL	is	the	Lattice	Semiconductor	Inc.	GALs	are	electrically	erasable;	otherwise	have	a
similar	 logical	 structure	 to	 PALs.	 By	 ability	 to	 bypass	 output	 flip-flops,	 GALs	 can	 be
configured	as	combinational	or	sequential	circuits.	To	familiarize	readers	with	some	actual
parts,	we	discuss	one	of	Altera’s	PLD	devices.

5.2.5.1	 Altera	 Classic	 EPLD	 Family.	 Altera	 Corporation’s	 line	 of	 PLDs	 is	 its	 Classic
EPLD	 Family.	 These	 devices	 are	 EPROM	 based	 and	 have	 300	 to	 900	 usable	 gates
depending	 on	 the	 specific	 part.	 These	 parts	 come	 in	 24	 to	 68	 pin	 packages	 and	 are
available	in	dual	in-line	package	(DIP),	plastic	J-lead	chip	carrier	(PLCC),	pin-grid	array
(PGA),	and	small-outline	integrated	circuit	(SOIC)	packages.	The	group	of	product	terms
that	are	ORed	together	are	referred	to	as	a	Macrocell,	and	the	number	of	Macrocells	varies
between	16	and	48	depending	on	the	device.	Each	Macrocell	has	a	programmable	register
that	 can	be	programmed	as	 a	D,	T,	 JK	and	SR	 flip-flop	with	 individual	 clear	 and	clock
controls.

These	devices	are	fabricated	on	CMOS	technology	and	are	TTL	compatible.	They	can
be	used	with	other	manufacturers	PAL	and	GAL	parts.	The	EP1810	is	the	largest	of	these
devices	that	has	900	usable	gates,	48	Macrocells,	and	a	maximum	of	64	1/0	pins.	Pin-to-
pin	logic	delay	of	 this	part	 is	20	ns	and	it	can	operate	with	a	maximum	frequency	of	50
MHz.	 The	 architecture	 of	 this	 and	 other	 Altera’s	 Classic	 EPLDs	 includes	 Macrocells,

programmable	 registers,	 output	 enable	 or	 clock	 select,	 and	 a	 feedback	 select.	 The	 brief
description	 of	 this	 device	 that	 follows	 is	 useful	 for	 understanding	 architecture	 of	 this
category	of	programmable	devices.

Macrocells.	Classic	macrocells,	shown	in	Figure	5.20,	can	be	individually	configured	for
both	 sequential	 and	 combinatorial	 logic	 operation.	 Eight	 product	 terms	 form	 a
programmable-AND	array	that	feeds	an	OR	gate	for	combinatorial	logic	implementation.
An	additional	product	term	is	used	for	asynchronous	clear	control	of	the	internal	register;
another	product	term	implements	either	an	output	enable	or	a	logic-array-generated	clock.
Inputs	to	the	programmable-AND	array	come	from	both	the	true	and	complement	signals
of	 the	 dedicated	 inputs,	 feedbacks	 from	 I/O	 pins	 that	 are	 configured	 as	 inputs,	 and
feedbacks	from	macrocell	outputs.	Signals	from	dedicated	inputs	are	globally	routed	and
can	feed	the	inputs	of	all	device	macrocells.	The	feedback	multiplexer	controls	the	routing
of	feedback	signals	from	macrocells	and	from	I/O	pins.

The	eight	product	 terms	of	 the	programmable-AND	array	 feed	 the	8-input	OR	gate,
which	then	feeds	one	input	to	an	XOR	gate.	The	other	input	to	the	XOR	gate	is	connected
to	 a	 programmable	 bit	 that	 allows	 the	 array	 output	 to	 be	 inverted.	 This	 gate	 is	 used	 to
implement	either	active-high	or	active-low	logic,	or	De	Morgan’s	inversion	to	reduce	the
number	of	product	terms	needed	to	implement	a	function.

Programmable	Registers.	To	implement	registered	functions,	each	macrocell	 register	can
be	individually	programmed	for	D,	T,	JK,	or	SR	operation.	If	necessary,	the	register	can	be
bypassed	 for	 combinatorial	 operation.	 Registers	 have	 an	 individual	 asynchronous	 clear
function	 that	 is	 controlled	 by	 a	 dedicated	 product	 term.	 These	 registers	 are	 cleared
automatically	 during	 power-up.	 In	 addition,	 macrocell	 registers	 can	 be	 individually
clocked	by	either	a	global	clock	or	any	input	or	feedback	path	to	the	AND	array.	Altera’s
proprietary	 programmable	 I/O	 architecture	 allows	 the	 designer	 to	 program	 output	 and
feedback	paths	for	combinatorial	or	registered	operation	in	both	activehigh	and	active-low
modes.

Figure	5.20	Altera’s	Classic	Mecrocell

Output	Enable	/	Clock	Select.	The	box	shown	in	the	upper	part	of	Figure	5.20	allows	two
modes	 of	 operations	 for	 output	 and	 clocking	 of	 a	 Classic	 macrocell.	 The	 mode	 is
controlled	 by	 a	 single	 programmable	 bit	 that	 can	 be	 individually	 configured	 for	 each
macrocell.	Mode	selection	logic	allows	a	product	term,	global	clock,	and	VCC	to	rive	flip-
flop	clock	and	output-enable	inputs.

In	Mode	0,	 the	tri-state	output	buffer	 is	controlled	by	a	single	product	 term,	and	 the
macrocell	 flip-flop	 is	 clocked	 by	 its	 global	 clock	 input	 signal.	 In	 Mode	 1,	 the	 output
enable	buffer	 is	always	enabled,	and	 the	macrocell	 register	can	be	 triggered	by	an	array
clock	signal	generated	by	a	product	 term.	This	mode	allows	 registers	 to	be	 individually
clocked	by	any	signal	on	the	AND	array.	This	product-termcontrolled	clock	configuration
also	supports	gated	clock	structures.

Feedback	Select.	Each	macrocell	 in	 a	Classic	device	provides	 feedback	 selection	 that	 is
controlled	by	the	feedback	multiplexer.	This	feedback	selction	logic,	shown	at	the	bottom
of	Figure	5.20	allows	the	designer	to	feed	either	the	macrocell	output	or	the	I/O	pin	input
associated	with	the	macrocell	back	into	the	AND	array.	The	macrocell	output	can	be	either
the	Q	output	of	the	programmable	register	or	the	combinatorial	output	of	the	macrocell.

5.3	Complex	Programmable	Logic	Devices

The	next	step	up	in	the	evolution	and	complexity	of	programmable	devices	is	the	CPLD,
or	Complex	PLD.	Extending	PLDs	by	making	 their	AND-plane	 larger	and	having	more
macrocells	in	order	to	be	able	to	implement	larger	and	more	complex	logic	circuits	would

face	difficulties	 in	 speed	 and	 chip	 area	 utilization.	Therefore,	 instead	 of	 simply	making
these	 structures	 larger,	 CPLDs	 are	 created	 that	 consist	 of	 multiple	 PLDs	 with
programmable	wiring	channels	between	 the	PLDs.	Figure	5.21	 shows	 the	general	 block
diagram	of	a	CPLD.

Figure	5.21	CPLD	Block	Diagram

The	approach	taken	by	different	manufacturers	for	implementation	of	their	CPLDs	are
different.	 As	 a	 typical	 CPLD	we	 discuss	 Altera’s	 EPM7128S	 that	 is	 a	 member	 of	 this
manufacturer’s	MAX	7000	Programmable	Device	Family.

5.3.1	Altera’s	MAX	7000S	CPLD

A	member	of	Altera’s	MAX	7000	S-series	is	the	EPM7128S	CPLD.	This	is	an	EEPROM-
based	 programmable	 logic	 device	 with	 in-system	 programmability	 feature	 through	 its
JTAG	interface.	Logic	densities	for	the	MAX	family	of	CPLDs	range	from	600	to	5,000
usable	 gates	 and	 the	 EPM7128S	 is	 a	mid-rage	 CPLD	 in	 this	 family	 with	 2,500	 usable
gates.	Note	that	these	figures	are	2	to	4	times	larger	than	those	of	the	PLDs	from	Altera.

The	 EPM7128s	 is	 available	 in	 plastic	 J-lead	 chip	 carrier	 (PLCC),	 ceramic	 pin-grid
array	 (PGA),	plastic	quad	 flat	pack	 (PQFP),	power	quad	 flat	pack	 (RQFP),	and	1.0-mm
thin	quad	flat	pack	(TQFP)	packages.	The	maximum	frequency	of	operation	of	this	part	is
147.1	MHz,	and	it	has	a	propagation	delay	of	6	ns.	This	part	can	operate	with	3.3	V	or	5.0
V.

Figure	5.22	Altera’s	CPLD	Architecture

This	CPLD	has	8	PLDs	that	are	referred	to	as	Logic	Array	Blocks	(LABs).	Each	LAB
has	16	macrocells,	making	the	total	number	of	its	macrocells	128.	The	LABs	are	linked	by
a	wiring	channel	 that	 is	 referred	 to	as	 the	Programmable	 Interconnect	Array	 (PIA).	The
macrocells	 include	hardware	for	expanding	product	 terms	by	 linking	several	macrocells.
The	 overall	 architecture	 of	 this	 part	 is	 shown	 in	 Figure	 5.22.	 In	 what	 follows,	 blocks
shown	in	this	figure	will	be	briefly	described.

5.3.1.1	Logic	Array	Blocks.	The	EPM7128S	has	8	LABs	(4	shown	in	Figure	5.22)	that	are
linked	by	 the	PIA	global	wiring	channel.	 In	general,	 a	LAB	has	 the	 same	structure	as	a
PLD	 described	 in	 the	 previous	 section.	Multiple	 LABs	 are	 linked	 together	 via	 the	 PIA
global	bus	that	is	fed	by	all	dedicated	inputs,	I/O	pins,	and	macrocells.	Signals	included	in
a	LAB	are	36	signals	from	the	PIA	that	are	used	for	general	logic	inputs,	global	controls
that	are	used	for	secondary	register	functions,	and	direct	input	paths	from	I/O	pins	to	the
registers.	Macrocells	constitute	substructures	of	LABs.

5.3.1.2	 Programmable	 Interconnect	 Array.	 Logic	 is	 routed	 between	 LABs	 via	 the
programmable	 interconnect	 array	 (PIA)	 shown	 in	 the	 center	of	Figure	5.22.	This	global
bus	 is	 a	 programmable	 path	 that	 connects	 any	 signal	 source	 to	 any	 destination	 on	 the
device.	All	MAX	7000	 dedicated	 inputs,	 I/O	 pins,	 and	macrocell	 outputs	 feed	 the	 PIA,
which	makes	the	signals	available	throughout	the	entire	device.	Only	the	signals	required
by	each	LAB	are	actually	routed	from	the	PIA	into	the	LAB.

5.3.1.3	 I/O	Control	 Blocks.	 The	 I/O	 control	 block,	 shown	 on	 the	 sides	 of	 Figure	 5.22,

allows	 each	 I/O	 pin	 to	 be	 individually	 configured	 for	 input,	 output,	 or	 bidirectional
operation.	All	I/O	pins	have	a	tristate	buffer	that	is	individually	controlled	by	one	of	the
global	output	enable	signals	or	directly	connected	to	ground	or	VCC.

5.4	Field	Programmable	Gate	Arrays

A	more	 advanced	 programmable	 logic	 than	 the	CPLD	 is	 the	 Field	 Programmable	Gate
Array	 (FPGA).	 An	 FPGA	 is	 more	 flexible	 than	 CPLD,	 allows	 more	 complex	 logic
implementations,	and	can	be	used	for	implementation	of	digital	circuits	that	use	equivalent
of	several	Million	logic	gates.

An	 FPGA	 is	 like	 a	 CPLD	 except	 that	 its	 logic	 blocks	 that	 are	 linked	 by	 wiring
channels	are	much	smaller	than	those	of	a	CPLD	and	there	are	far	more	such	logic	blocks
than	 there	are	 in	a	CPLD.	FPGA	logic	blocks	consist	of	smaller	 logic	elements.	A	 logic
element	 has	 only	 one	 flip-flop	 that	 is	 individually	 configured	 and	 controlled.	 Logic
complexity	 of	 a	 logic	 element	 is	 only	 about	 10	 to	 20	 equivalent	 gates.	 A	 further
enhancement	 in	 the	 structure	 of	 FPGAs	 is	 the	 addition	 of	 memory	 blocks	 that	 can	 be
configured	 as	 a	 general	 purpose	 RAM.	 Figure	 5.23	 shows	 the	 general	 structure	 of	 an
FPGA.

Figure	5.23	FPGA	General	Structure

As	shown	in	Figure	5.23,	an	FPGA	is	an	array	of	many	logic	blocks	that	are	linked	by
horizontal	 and	 vertical	wiring	 channels.	 FPGA	RAM	blocks	 can	 also	 be	 used	 for	 logic
implementation	or	 they	can	 be	 configured	 to	 form	memories	 of	 various	word	 sizes	 and
address	space.	Linking	of	logic	blocks	with	the	I/O	cells	and	with	the	memories	are	done
through	wiring	channels.	Within	 logic	blocks,	smaller	 logic	elements	are	linked	by	local
wires.

FPGAs	 from	 different	 manufacturers	 vary	 in	 routing	 mechanisms,	 logic	 blocks,
memories	and	I/O	pin	capabilities.	As	a	typical	FPGA,	we	will	discuss	Altera’s	EPF10K70
that	 is	 a	 member	 of	 this	 manufacturer’s	 FLEX	 10K	 Embedded	 Programmable	 Logic

Device	Family.

5.4.1	Altera’s	FLEX	10K	FPGA

A	member	of	Altera’s	FLEX	10K	family	is	the	EPF10K70	FPGA.	This	is	a	SRAM-based
FPGA	that	can	be	programmed	through	its	JTAG	interface.	This	interface	can	also	be	used
for	 FPGAs	 logic	 boundaryscan	 test.	 Typical	 gates	 of	 this	 family	 of	 FPGAs	 range	 from
10,000	 to	 250,000.	 This	 family	 has	 up	 to	 40,960	 RAM	 bits	 that	 can	 be	 used	 without
reducing	logic	capacity.

Altera’s	FLEX	10K	devices	are	based	on	reconfigurable	CMOS	SRAM	elements,	the
Flexible	 Logic	 Element	 MatriX	 (FLEX)	 architecture	 is	 geared	 for	 implementation	 of
common	gate	array	functions.	These	devices	are	reconfigurable	and	can	be	configured	on
the	board	for	the	specific	functionality	required.	At	system	power-up,	they	are	configured
with	 data	 stored	 in	 an	 Altera	 serial	 configuration	 device	 or	 provided	 by	 a	 system
controller.	 Altera	 offers	 the	 EPC1,	 EPC2,	 EPC16,	 and	 EPC1441	 configuration	 devices,
which	configure	FLEX	10K	devices	via	a	serial	data	stream.	Configuration	data	can	also
be	 downloaded	 from	 system	 RAM	 or	 from	 Altera’s	 BitBlaster	 serial	 download	 cable,
ByteBlaster	 parallel	 download	 cable,	 or	USBBlaster	USB	 port	 download	 cable.	After	 a
FLEX	10K	device	has	been	configured,	 it	can	be	reconfigured	in-circuit	by	resetting	the
device	 and	 loading	 new	 data.	 Reconfiguration	 requires	 less	 than	 320	 ms.	 FLEX	 10K
devices	contain	an	interface	that	permits	microprocessors	to	configure	FLEX	10K	devices
serially	 or	 in	 parallel,	 and	 synchronously	 or	 asynchronously.	 The	 interface	 also	 enables
microprocessors	 to	 treat	 a	 FLEX	 10K	 device	 as	 memory	 and	 configure	 the	 device	 by
writing	to	a	virtual	memory	location.

The	EPF10K70	has	a	total	of	70,000	typical	gates	that	include	logic	and	RAM.	There
are	 a	 total	 of	 118,000	 system	 gates.	 The	 entire	 array	 contains	 468	 Logic	Array	Blocks
(LABs)	 that	are	arranged	 in	52	columns	and	9	 rows.	The	LABs	are	 the	“Logic	Blocks”
shown	in	Figure	5.23.	Each	LAB	has	8	Logic	Elements	(LEs),	making	the	total	number	of
its	LEs	3,744.	 In	 the	middle	of	 the	FPGA	chip,	 a	column	of	9	Embedded	Array	Blocks
(EABs),	 each	 of	 which	 has	 2,048	 bits,	 form	 the	 18,432	 RAM	 bits	 of	 this	 FPGA.	 The
EPFlOK70	has	358	user	I/O	pins.

5.4.1.1	FLEX	10K	Blocks.	The	block	diagram	of	a	FLEX	10K	is	shown	in	Figure	5.24.
Each	group	of	LEs	is	combined	into	an	LAB;	LABs	are	arranged	into	rows	and	columns.
Each	 row	 also	 contains	 a	 single	 EAB.	 The	 LABs	 and	 EABs	 are	 interconnected	 by	 the
FastTrack	 Interconnect.	 IOEs	 are	 located	 at	 the	 end	 of	 each	 row	 and	 column	 of	 the
FastTrack	Interconnect.

FLEX	 10K	 devices	 provide	 six	 dedicated	 inputs	 that	 drive	 the	 flip-flops’	 control
inputs	to	ensure	the	efficient	distribution	of	highspeed,	low-skew	(less	than	1.5	ns)	control
signals.	These	signals	use	dedicated	routing	channels	that	provide	shorter	delays	and	lower
skews	 than	 the	 FastTrack	 Interconnect.	 Four	 of	 the	 dedicated	 inputs	 drive	 four	 global
signals.	These	four	global	signals	can	also	be	driven	by	internal	logic,	providing	an	ideal
solution	for	a	clock	divider	or	an	internally	generated	asynchronous	clear	signal	that	clears
many	registers	in	the	device.

Signal	 interconnections	within	FLEX	10K	devices	 and	 to	 and	 from	 device	 pins	 are
provided	 by	 the	 FastTrack	 Interconnect,	 a	 series	 of	 fast,	 continuous	 row	 and	 column
channels	that	run	the	entire	length	and	width	of	the	device.

Each	 I/O	 pin	 is	 fed	 by	 an	 I/O	 element	 (IOE)	 located	 at	 the	 end	 of	 each	 row	 and
column	of	the	FastTrack	Interconnect.	Each	IOE	contains	a	bidirectional	I/O	buffer	and	a
flip-flop	 that	 can	 be	 used	 as	 either	 an	 output	 or	 input	 register	 to	 feed	 input,	 output,	 or
bidirectional	 signals.	 When	 used	 with	 a	 dedicated	 clock	 pin,	 these	 registers	 provide
exceptional	performance.	As	 inputs,	 they	provide	setup	 times	as	 low	as	1.6	ns	and	hold
times	of	0	ns;	as	outputs,	 these	registers	provide	clock-to-output	 times	as	 low	as	5.3	ns.
IOEs	provide	a	variety	of	features,	such	as	JTAG	BST	support,	slew-rate	control,	tri-state
buffers,	and	open-drain	outputs.

Figure	5.24	FLEX	10K	Block	Diagram

5.4.1.2	Embedded	Array	Block.	Each	 device	 contains	 an	 embedded	 array	 to	 implement
memory	and	specialized	logic	functions,	and	a	logic	array	to	implement	general	logic.	The
embedded	 array	 consists	 of	 a	 series	 of	 EABs.	When	 implementing	 memory	 functions,
each	EAB	provides	2,048	bits,	which	can	be	used	to	create	RAM,	ROM,	dualport	RAM,
or	first-in	first-out	(FIFO)	functions.	When	implementing	logic,	each	EAB	can	contribute
100	to	600	gates	 towards	complex	logic	functions,	such	as	multipliers,	microcontrollers,
state	machines,	and	DSP	 functions.	EABs	can	be	used	 independently,	or	multiple	EABs

can	be	combined	to	implement	larger	functions.

Logic	functions	are	implemented	by	programming	the	EAB	with	a	 read-only	pattern
during	configuration,	creating	a	large	look-up	table.	With	tables,	combinatorial	functions
are	 implemented	 by	 looking	 up	 the	 results,	 rather	 than	 by	 computing	 them.	 This
implementation	 of	 combinatorial	 functions	 can	 be	 faster	 than	 using	 algorithms
implemented	in	general	logic,	a	performance	advantage	that	is	further	enhanced	by	the	fast
access	 times	 of	 EABs.	 The	 large	 capacity	 of	 EABs	 enables	 designers	 to	 implement
complex	 functions	 in	one	 logic	 level.	For	example,	 a	 single	EAB	can	 implement	a	4X4
multiplier	with	eight	inputs	and	eight	outputs.

EABs	can	be	used	to	implement	synchronous	RAM	that	generates	its	own	WE	signal
and	 is	 self-timed	with	 respect	 to	 the	 global	 clock.	A	 circuit	 using	 the	EAB’s	 self-timed
RAM	need	only	meet	 the	 setup	 and	hold	 time	 specifications	 of	 the	 global	 clock.	When
used	as	RAM,	each	EAB	can	be	configured	in	any	of	the	following	sizes:	256x8,	512x4,
1,024x2,	or	2,048x1.	Larger	blocks	of	RAM	are	created	by	combining	multiple	EABs.

5.4.1.3	Logic	Array	Block.	Referring	to	Figure	5.24,	the	logic	array	of	FLEX	10K	consists
of	logic	array	blocks	(LABs).	Each	LAB	contains	eight	LEs	and	a	local	interconnect.	An
LE	 consists	 of	 a	 4-input	 lookup	 table	 (LUT),	 a	 programmable	 flip-flop,	 and	 dedicated
signal	paths	for	carry	and	cascade	functions.	Each	LAB	represents	about	96	usable	gates
of	logic.

Figure	5.25	FLEX	10K	LAB	Architecture

Each	 LAB	 (see	 Figure	 5.25)	 provides	 four	 control	 signals	 with	 programmable
inversion	that	can	be	used	in	all	eight	LEs.	Two	of	these	signals	can	be	used	as	clocks;	the
other	 two	 can	 be	 used	 for	 clear/preset	 control.	 The	 LAB	 clocks	 can	 be	 driven	 by	 the
dedicated	 clock	 input	 pins,	 global	 signals,	 I/O	 signals,	 or	 internal	 signals	 via	 the	 LAB
local	interconnect.	The	LAB	preset	and	clear	control	signals	can	be	driven	by	the	global
signals,	I/O	signals,	or	internal	signals	via	the	LAB	local	interconnect.	The	global	control
signals	are	 typically	used	 for	 global	 clock,	 clear,	 or	 preset	 signals	 because	 they	provide
asynchronous	 control	 with	 very	 low	 skew	 across	 the	 device.	 If	 logic	 is	 required	 on	 a
control	 signal,	 it	 can	be	generated	 in	 one	or	more	LEs	 in	 any	LAB	and	 driven	 into	 the
local	 interconnect	 of	 the	 target	 LAB.	 In	 addition,	 the	 global	 control	 signals	 can	 be
generated	from	LE	outputs.

Logic	Element.	The	LE	eight	of	which	are	contained	in	a	LAB,	as	shown	in	Figure	5.25,	is
the	 smallest	 unit	 of	 logic	 in	 the	FLEX	10K	architecture.	Each	LE	 contains	 a	 four-input
LUT,	which	 is	 a	 function	generator	 that	 can	 compute	 any	 function	 of	 four	 variables.	 In
addition,	each	LE	contains	a	programmable	flip-flop	with	a	synchronous	enable,	a	carry
chain,	and	a	cascade	chain.	Each	LE	drives	both	the	local	and	the	FastTrack	Interconnect.
See	Figure	5.26.

Figure	5.26	Logic	Element	Structure

The	 programmable	 flip-flop	 in	 the	 LE	 can	 be	 configured	 for	 D,	 T,	 JK,	 or	 SR
operation.	The	 clock,	 clear,	 and	preset	 control	 signals	 on	 the	 flip-flop	 can	 be	 driven	 by
global	 signals,	 general-purpose	 I/O	 pins,	 or	 any	 internal	 logic.	 For	 combinatorial

functions,	the	flip-flop	is	bypassed	and	the	output	of	the	LUT	drives	the	output	of	the	LE.

The	LE	has	two	outputs	that	drive	the	interconnect;	one	drives	the	local	interconnect
and	the	other	drives	either	the	row	or	column	FastTrack	Interconnect.	The	two	outputs	can
be	controlled	independently.	For	example,	the	LUT	can	drive	one	output	while	the	register
drives	 the	other	output.	This	 feature,	called	register	packing,	can	 improve	LE	utilization
because	the	register	and	the	LUT	can	be	used	for	unrelated	functions.

The	 FLEX	10K	 architecture	 provides	 two	 types	 of	 dedicated	 high-speed	 data	 paths
that	connect	adjacent	LEs	without	using	local	interconnect	paths:	carry	chains	and	cascade
chains.	 The	 carry	 chain	 supports	 high-speed	 counters	 and	 adders;	 the	 cascade	 chain
implements	wide-input	functions	with	minimum	delay.	Carry	and	cascade	chains	connect
all	 LEs	 in	 an	 LAB	 and	 all	 LABs	 in	 the	 same	 row.	 Intensive	 use	 of	 carry	 and	 cascade
chains	can	reduce	routing	flexibility.	Therefore,	the	use	of	these	chains	should	be	limited
to	speed-critical	portions	of	a	design.

5.4.1.4	FastTrack	Interconnect.	 In	 the	FLEX	10K	architecture,	connections	between	LEs
and	 device	 I/O	 pins	 are	 provided	 by	 the	 FastTrack	 Interconnect.	 This	 is	 a	 series	 of
continuous	horizontal	 and	vertical	 routing	channels	 that	 traverse	 the	device.	This	global
routing	structure	provides	predictable	performance,	even	in	complex	designs.

5.4.1.5	I/O	Element.	An	I/O	element	(IOE)	of	FLEX	10K	(see	the	top-level	architecture	of
Figure	5.24)	contains	a	bidirectional	I/O	buffer	and	a	register	that	can	be	used	either	as	an
input	register	for	external	data	that	requires	a	fast	setup	time,	or	as	an	output	register	for
data	that	requires	fast	clock-to-output	performance.	In	some	cases,	using	an	LE	register	for
an	input	register	will	result	in	a	faster	setup	time	than	using	an	IOE	register.	IOEs	can	be
used	 as	 input,	 output,	 or	 bidirectional	 pins.	 For	 bidirectional	 registered	 I/O
implementation,	 the	output	 register	 should	be	 in	 the	 IOE,	and	 the	data	 input	 and	output
enable	register	should	be	LE	registers	placed	adjacent	to	the	bidirectional	pin.

When	an	IOE	connected	to	a	row	(as	shown	in	Figure	5.27),	is	used	as	an	input	signal
it	can	drive	two	separate	row	channels.	The	signal	is	accessible	by	all	LEs	within	that	row.
When	such	an	IOE	is	used	as	an	output,	the	signal	is	driven	by	a	multiplexer	that	selects	a
signal	from	the	row	channels.	Up	to	eight	IOEs	connect	to	each	side	of	each	row	channel.

Figure	5.27	FLEX	10K	Row-to-IOE	Connections

Connections	of	columns	to	IOEs	are	similar	to	those	of	rows,	as	shown	in	Figure	5.27.
When	an	IOE	connected	to	a	column	is	used	as	an	input,	it	can	drive	up	to	two	separate
column	channels.	When	an	IOE	is	used	as	an	output,	the	signal	is	driven	by	a	multiplexer
that	 selects	 a	 signal	 from	 the	 column	 channels.	 Two	 IOEs	 connect	 to	 each	 side	 of	 the
column	channels.	Each	IOE	can	be	driven	by	column	channels	via	a	multiplexer.	The	set
of	column	channels	that	each	IOE	can	access	is	different	for	each	IOE.

In	this	section	we	have	shown	FPGA	structures	by	using	Altera’s	EPF10K70	that	is	a
member	of	the	FLEX	10K	family	as	an	example.	The	focus	of	the	above	discussion	was
on	 the	description	of	 the	main	components	of	 this	programmable	device.	Some	detailed
logic	 structures	 and	 many	 of	 the	 timing	 and	 logical	 configuration	 details	 have	 been
eliminated.	The	“FLEX	10K	Embedded	Programmable	Logic	Device	Family”	datasheet	is
a	 detailed	 document	 about	 this	 and	 other	 FLEX	 10K	 members.	 Interested	 readers	 are
encouraged	 to	 study	 this	 document	 for	 advanced	 features	 and	 details	 of	 logical
configurations	of	this	FPGA	family.

5.4.2	Altera’s	Cyclone	FPGA

The	Cyclone	field	programmable	gate	array	family	is	based	on	a	1.5-	V,	0.13-um,	all-layer
copper	SRAM	process,	with	densities	up	 to	20,060	 logic	 elements	 (LEs)	 and	up	 to	288
Kbits	of	RAM.	With	features	like	phase-locked-loops	(PLLs)	for	clocking	and	a	dedicated
double	data	rate	(DDR)	interface	to	meet	DDR	SDRAM	and	fast	cycle	RAM	(FCRAM)
memory	 requirements,	 Cyclone	 devices	 are	 a	 costeffective	 solution	 for	 data-path
applications.	The	Cyclone	device	fam	ily	offers	a	range	of	 logic-elements,	memory	bits,
phase-lock-loops,	and	IO	pins.	Table	5.1	shows	Cyclone	devices	and	their	features.

Cyclone	devices	are	available	in	quad	flat	pack	(QFP)	and	spacesaving	FineLine	BGA
packages.

Cyclone	 devices	 contain	 a	 two-dimensional	 row-	 and	 column-based	 architecture	 to
implement	custom	logic.	Column	and	row	interconnects	of	varying	speeds	provide	signal
interconnects	between	LABs	and	embedded	memory	blocks.

The	logic	array	consists	of	LABs,	with	10	LEs	in	each	LAB.	An	LE	is	a	small	unit	of
logic	providing	efficient	 implementation	of	user	 logic	 functions.	LABs	are	grouped	 into
rows	 and	 columns	 across	 the	 device.	Various	Cyclone	 devices	 have	 between	 2,910	 and
20,060	LEs.

M4K	RAM	blocks	 are	 true	 dual-port	memory	 blocks	with	 4K	 bits	 of	memory	plus
parity	 (4,608	 bits).	 These	 blocks	 provide	 dedicated	 true	 dual-port,	 simple	 dual-port,	 or
single-port	memory	up	to	36-bits	wide	at	up	to	250	MHz.	These	blocks	are	grouped	into
columns	 across	 the	 device	 in	 between	 certain	LABs.	Cyclone	 devices	 offer	 between	 60
and	288	Kbits	of	embedded	RAM.

Each	Cyclone	device	 I/O	pin	 is	 fed	by	an	 I/O	element	 (IOE)	 located	at	 the	 ends	of
LAB	 rows	 and	 columns	 around	 the	 periphery	 of	 the	 device.	 I/O	 pins	 support	 various
single-ended	and	differential	 I/O	standards,	such	as	 the	66-	and	33-MHz,	64-	and	32-bit
PCI	 standard	 and	 the	 LVDS	 I/O	 standard	 at	 up	 to	 640	 Mbps.	 Each	 IOE	 contains	 a
bidirectional	I/O	buffer	and	three	registers	for	registering	input,	output,	and	output-enable
signals.	Dual-purpose	DQS,	DQ,	 and	DM	pins	 along	with	delay	 chains	 (used	 to	 phase-
align	DDR	signals)	provide	interface	support	with	external	memory	devices	such	as	DDR
SDRAM,	and	FCRAM	devices	at	up	to	133	MHz	(266	Mbps).

Cyclone	devices	provide	a	global	clock	network	and	up	to	two	PLLs.	The	global	clock
network	consists	of	eight	global	clock	 lines	 that	drive	 throughout	 the	entire	device.	The
global	clock	network	can	provide	clocks	for	all	resources	within	the	device,	such	as	IOEs,
LEs,	 and	 memory	 blocks.	 The	 global	 clock	 lines	 can	 also	 be	 used	 for	 control	 signals.
Cyclone	 PLLs	 provide	 general-purpose	 clocking	 with	 clock	 multiplication	 and	 phase
shifting	as	well	as	external	outputs	for	highspeed	differential	I/O	support.

Figure	 5.28	 shows	 the	 general	 outline	 of	 a	 typical	 Cyclone	 device	 (EP1C12).	 The
number	of	M4K	RAM	blocks,	PLLs,	rows,	and	columns	vary	per	device,	and	are	shown	in
Table	5.2.

Figure	5.28	General	Outline	of	a	Cyclone	Device

5.4.2.1	Logic	Array	Blocks.	A	Cyclone	LAB	structure	 and	 its	 surrounding	 environment
are	shown	 in	Figure	5.29.	Each	LAB	consists	of	10	LEs,	LE	carry	chains,	LAB	control
signals,	 a	 local	 interconnect,	 look-up	 table	 (LUT)	 chain,	 and	 register	 chain	 connection
lines.	The	local	interconnect	transfers	signals	between	LEs	in	the	same	LAB.	LUT	chain
connections	 transfer	 the	 output	 of	 one	LE’s	LUT	 to	 the	 adjacent	 LE	 for	 fast	 sequential
LUT	connections	within	the	same	LAB.	Register	chain	connections	transfer	the	output	of
one	LE’s	register	to	the	adjacent	LE’s	register	within	an	LAB.	The	Quartusc®	II	Compiler
places	associated	logic	within	an	LAB	or	adjacent	LABs,	allowing	the	use	of	local,	LUT
chain,	and	register	chain	connections	for	performance	and	area	efficiency.

Figure	5.29	Cyclone	LAB	Structure

LAB	Interconnects.	The	LAB	local	interconnect	can	drive	LEs	within	the	same	LAB.	The
LAB	local	interconnect	is	driven	by	column	and	row	interconnects	and	LE	outputs	within
the	same	LAB.	Neighboring	LABs,	PLLs,	and	M4K	RAM	blocks	from	the	left	and	right
can	also	drive	an	LAB’s	local	interconnect	through	the	direct	link	connection.	The	direct
link	 connection	 feature	 minimizes	 the	 use	 of	 row	 and	 column	 interconnects,	 providing
higher	performance	and	flexibility.	Each	LE	can	drive	30	other	LEs	through	fast	local	and
direct	link	interconnects.

LAB	Control	Signals.	Each	LAB	contains	dedicated	logic	for	driving	control	signals	to	its
LEs.	The	control	signals	include	two	clocks,	two	clock	enables,	two	asynchronous	clears,
synchronous	clear,	asynchronous	preset/load,	synchronous	 load,	and	add/subtract	control
signals.	This	gives	a	maximum	of	10	control	signals	at	a	time.

Each	LAB	can	use	 two	clocks	and	 two	clock	enable	signals.	Each	LAB’s	clock	and
clock	enable	signals	are	linked.	For	example,	any	LE	in	a	particular	LAB	using	the	labclkl
signal	 will	 also	 use	 labclkenal.	 If	 the	 LAB	 uses	 both	 the	 rising	 and	 falling	 edges	 of	 a
clock,	it	also	uses	both	LAB-wide	clock	signals.	De-asserting	the	clock	enable	signal	will
turn	off	the	LAB-wide	clock.

Each	LAB	can	use	 two	asynchronous	clear	 signals	and	an	asynchronous	 load/preset
signal.	The	asynchronous	load	acts	as	a	preset	when	the	asynchronous	load	data	input	is
tied	high.

With	 the	 LAB-wide	 addnsub	 control	 signal,	 a	 single	 LE	 can	 implement	 a	 one-bit
adder	 and	 subtractor.	 This	 saves	 LE	 resources	 and	 improves	 performance	 for	 logic
functions	such	as	DSP	correlators	and	signed	multipliers	 that	alternate	between	addition
and	subtraction	depending	on	data.

The	 LAB	 row	 clocks	 [5..0]	 and	 LAB	 local	 interconnect	 generate	 the	 LAB	 wide
control	signals.	The	MultiTrack	interconnect’s	inherent	low	skew	allows	clock	and	control
signal	 distribution	 in	 addition	 to	 data.	 Figure	 5.30	 shows	 the	 LAB	 control	 signal
generation	circuit.

Figure	5.30	LAB-Wide	Control	Signals

5.4.2.2	 Logic	 Elements.	 The	 smallest	 unit	 of	 logic	 in	 the	 Cyclone	 architecture,	 the	 LE
(Figure	5.31),	 is	compact	and	provides	advanced	features	with	efficient	 logic	utilization.
Each	LE	contains	a	four-input	LUT,	which	is	a	function	generator	that	can	implement	any
function	 of	 four	 variables.	 In	 addition,	 each	 LE	 contains	 a	 programmable	 register	 and
carry	 chain	 with	 carry	 select	 capability.	 A	 single	 LE	 also	 supports	 dynamic	 single	 bit
addition	or	subtraction	mode	selectable	by	an	LAB-wide	control	signal.	Each	LE	drives	all
types	 of	 interconnects:	 local,	 row,	 column,	 LUT	 chain,	 register	 chain,	 and	 direct	 link
interconnects.

Each	LE’s	 programmable	 register	 can	 be	 configured	 for	D,	T,	 JK,	 or	SR	operation.
Each	 register	 has	 data,	 true	 asynchronous	 load	 data,	 clock,	 clock	 enable,	 clear,	 and
asynchronous	load/preset	inputs.	Global	signals,	general-purpose	I/O	pins,	or	any	internal
logic	can	drive	 the	 register’s	clock	and	clear	control	 signals.	Either	general-purpose	 I/O
pins	 or	 internal	 logic	 can	 drive	 the	 clock	 enable,	 preset,	 asynchronous	 load,	 and
asynchronous	data.	The	asynchronous	load	data	input	comes	from	the	data3	 input	of	 the
LE.	For	combinatorial	functions,	the	LUT	output	bypasses	the	register	and	drives	directly
to	the	LE	outputs.

Figure	5.31	Cyclone	LE

Each	LE	has	three	outputs	that	drive	the	local,	row,	and	column	routing	resources.	The
LUT	or	register	output	can	drive	these	three	outputs	independently.	Two	LE	outputs	drive
column	 or	 row	 and	 direct	 link	 routing	 connections	 and	 one	 drives	 local	 interconnect
resources.	 This	 allows	 the	 LUT	 to	 drive	 one	 output	 while	 the	 register	 drives	 another
output.	 This	 feature,	 called	 register	 packing,	 improves	 device	 utilization	 because	 the
device	can	use	the	register	and	the	LUT	for	unrelated	functions.	Another	special	packing
mode	 allows	 the	 register	 output	 to	 feed	 back	 into	 the	 LUT	 of	 the	 same	LE	 so	 that	 the
register	 is	 packed	 with	 its	 own	 fan-out	 LUT.	 This	 provides	 another	 mechanism	 for
improved	 fitting.	The	LE	 can	 also	 drive	 out	 registered	 and	 unregistered	 versions	 of	 the
LUT	output.

LUT	Chain	&	Register	Chain.	 In	 addition	 to	 the	 three	 general	 routing	 outputs,	 the	LEs
within	an	LAB	have	LUT	chain	and	register	chain	outputs.	LUT	chain	connections	allow
LUTs	within	the	same	LAB	to	cascade	together	for	wide	input	functions.	Register	chain
outputs	allow	registers	within	the	same	LAB	to	cascade	together.	The	register	chain	output
allows	 an	LAB	 to	 use	LUTs	 for	 a	 single	 combinatorial	 function	 and	 the	 registers	 to	 be
used	for	an	unrelated	shift	register	implementation.	These	resources	speed	up	connections
between	LABS	while	saving	local	interconnect	resources.

addnsub	Signal.	The	LE’s	dynamic	adder/subtractor	feature	saves	logic	resources	by	using
one	set	of	LEs	to	implement	both	an	adder	and	a	subtractor.	This	feature	is	controlled	by
the	LAB-wide	control	signal	addnsub.	The	addnsub	signal	sets	the	LAB	to	perform	either
A	+	B	or	A	-	B.	The	LUT	computes	addition;	subtraction	is	computed	by	adding	the	two’s

complement	 of	 the	 intended	 subtractor.	 The	 LABwide	 signal	 converts	 to	 two’s
complement	by	inverting	the	B	bits	within	the	LAB	and	setting	carry-in	=	1	to	add	one	to
the	least	significant	bit	(LSB).	The	LSB	of	an	adder/subtractor	must	be	placed	in	the	first
LE	of	the	LAB,	where	the	LAB-wide	addnsub	signal	automatically	sets	the	carry-in	to	1.

LE	 Operating	 Modes.	 The	 Cyclone	 LE	 can	 operate	 in	 normal	 or	 dynamic	 arithmetic
operating	modes.	Each	mode	uses	LE	resources	differently.	In	each	mode,	eight	available
inputs	 to	 the	 LE	 -	 the	 four	 data	 inputs	 from	 the	 LAB	 local	 interconnect,	 carry-in0	 and
carry-in]	from	the	previous	LE,	the	LAB	carry-in	from	the	previous	carry-chain	LAB,	and
the	 register	 chain	 connection	 -	 are	 directed	 to	 different	 destinations	 to	 implement	 the
desired	 logic	 function.	 LAB-wide	 signals	 provide	 clock,	 asynchronous	 clear,
asynchronous	preset/load,	synchronous	clear,	synchronous	load,	and	clock	enable	control
for	 the	 register.	 These	 LAB-wide	 signals	 are	 available	 in	 all	 LE	 modes.	 The	 addnsub
control	signal	is	allowed	in	arithmetic	mode.

Figure	5.32	LE	in	Normal	Mode

The	 normal	 mode	 is	 suitable	 for	 general	 logic	 applications	 and	 combinatorial
functions.	In	normal	mode,	four	data	inputs	from	the	LAB	local	interconnect	are	inputs	to
a	four-input	LUT	(see	Figure	5.32).	Each	LE	can	use	LUT	chain	connections	to	drive	its
combinatorial	output	directly	to	the	next	LE	in	the	LAB.	Asynchronous	load	data	for	the
register	 comes	 from	 the	 data3	 input	 of	 the	 LE.	 LEs	 in	 normal	 mode	 support	 packed
registers.	The	addusub	signal	in	Figure	5.32	is	only	allowed	in	the	normal	mode	if	the	LE
is	at	the	end	of	an	adder/subtractor	chain.

The	 dynamic	 arithmetic	 mode	 is	 ideal	 for	 implementing	 adders,	 counters,
accumulators,	wide	parity	functions,	comparators,	and	other	iterative	logic	functions.	An
LE	 in	 dynamic	 arithmetic	 mode	 uses	 four	 2-input	 LUTs	 configurable	 as	 a	 dynamic
adder/subtractor.	The	first	two	2-input	LUTs	compute	two	summations	based	on	a	possible
carry-in	of	1	or	0;	 the	other	 two	LUTs	generate	 carry	outputs	 for	 the	 two	 chains	 of	 the
carry	select	circuitry.	As	shown	in	Figure	5.33,	the	LAB	carry-in	signal	selects	either	the
carry-inO	 or	 carry-in]	 chain.	 The	 selected	 chain’s	 logic	 level	 in	 turn	 determines	 which
parallel	 sum	 is	 generated	 as	 a	 combinatorial	 or	 registered	 output.	 For	 example,	 when

implementing	an	adder,	the	sum	output	is	the	selection	of	two	possible	calculated	sums:

or

The	 other	 two	LUTs	 use	 the	 datal	 and	 data2	 signals	 to	 generate	 two	possible	 carry-out
signals	-	one	for	a	carry	of	1	and	the	other	for	a	carry	of	0.	The	carry-inO	signal	acts	as	the
carry	select	for	the	carry-	outO	output	and	cary-inl	acts	as	 the	carry	select	for	 the	carry-
outl	output.	LEs	in	arithmetic	mode	can	drive	out	registered	and	unregistered	versions	of
the	LUT	output.

The	dynamic	arithmetic	mode	also	offers	clock	enable,	counter	enable,	synchronous
up/down	 control,	 synchronous	 clear,	 synchronous	 load,	 and	 dynamic	 adder/subtractor
options.	 The	 LAB	 local	 interconnect	 data	 inputs	 generate	 the	 counter	 enable	 and
synchronous	 up/down	 control	 signals.	 The	 synchronous	 clear	 and	 synchronous	 load
options	are	LAB-wide	signals	that	affect	all	registers	in	the	LAB.	The	addnsub	LAB-wide
signal	 controls	whether	 the	LE	 acts	 as	 an	 adder	 or	 subtractor.	 This	 signal	 is	 tied	 to	 the
carry	input	for	the	first	LE	of	a	carry	chain	only.

Carry-Select	 Chain.	 The	 carry-select	 chain	 provides	 a	 very	 fast	 carryselect	 function
between	LEs	in	dynamic	arithmetic	mode.	The	carryselect	chain	uses	the	redundant	carry
calculation	 to	 increase	 the	 speed	 of	 carry	 functions.	 The	 LE	 is	 configured	 to	 calculate
outputs	for	a	possible	carry-in	of	0	and	carry-in	of	1	in	parallel.	The	carry-in0	and	carry-
in]	 signals	 from	a	 lower	order	bit	 feed	 forward	 into	 the	higher-order	 bit	 via	 the	parallel
carry	 chain	 and	 feed	 into	 both	 the	LUT	and	 the	 next	 portion	of	 the	 carry	 chain.	Carry-
select	chains	can	begin	in	any	LE	within	an	LAB.

Figure	5.33	LE	in	Dynamic	Arithmetic	Mode

The	 speed	 advantage	 of	 the	 carry-select	 chain	 is	 in	 the	 parallel	 precomputation	 of
carry	chains.	Since	the	LAB	carry-in	selects	the	precomputed	carry	chain,	not	every	LE	is
in	the	critical	path.	Only	the	propagation	delays	between	LAB	carry-in	generation	(LE	5
and	LE	10)	are	now	part	of	the	critical	path.	This	feature	allows	the	Cyclone	architecture
to	 implement	high-speed	counters,	adders,	multipliers,	parity	 functions,	and	comparators
of	arbitrary	width.

Figure	5.34	shows	the	carry-select	circuitry	in	an	LAB	for	a	10bit	adder.	One	portion
of	the	LUT	generates	the	sum	of	two	bits	using	the	input	signals	and	the	appropriate	carry-
in	bit;	the	sum	is	routed	to	the	output	of	the	LE.	The	register	can	be	bypassed	for	simple
adders	or	used	for	accumulator	functions.	Another	portion	of	the	LUT	generates	carryout
bits.	An	LAB-wide	carry-in	bit	selects	which	chain	is	used	for	the	addition	of	given	inputs.
The	 carry-in	 signal	 for	 each	 chain,	 carry-in0	 or	 carry-inl,	 selects	 the	 carry-out	 to	 carry
forward	 to	 the	 carry-in	 signal	 of	 the	 next-higher-order	 bit.	 The	 final	 carry-out	 signal	 is
routed	to	an	LE,	where	it	is	fed	to	local,	row,	or	column	interconnects.

Clear	&	Preset	Logic	Control.	LAB-wide	signals	control	the	logic	for	the	register’s	clear
and	preset	 signals.	The	LE	directly	 supports	 an	asynchronous	 clear	 and	preset	 function.
The	register	preset	is	achieved	through	the	asynchronous	load	of	a	logic	high.	The	direct
asynchronous	preset	does	not	require	a	NOT	gate	push-back	technique.	Cyclone	devices
support	simultaneous	preset/	asynchronous	load	and	clear	signals.	An	asynchronous	clear
signal	takes	precedence	if	both	signals	are	asserted	simultaneously.	Each	LAB	supports	up
to	two	clears	and	one	preset	signal.

Figure	5.34	Carry	Select	Chain

In	addition	to	the	clear	and	preset	ports,	Cyclone	devices	provide	a	chip-wide	reset	pin
(DEV	 CLRn)	 that	 resets	 all	 registers	 in	 the	 device.	 An	 option	 set	 before	 compiling	 a
design	in	the	Quartus	II	software	controls	this	pin.	This	chip-wide	reset	overrides	all	other
control	signals.

5.4.2.3	MultiTrack	 Interconnect.	 In	 the	Cyclone	 architecture,	 connections	 between	LEs,
M4K	memory	blocks,	 and	device	 I/O	pins	 are	 provided	by	 the	MultiTrack	 interconnect
structure.	 This	 structure	 consists	 of	 continuous,	 performance-optimized	 routing	 lines	 of
different	 speeds	 used	 for	 inter-	 and	 intra-design	 block	 connectivity.	 The	 Quartus	 II
Compiler	 automatically	 places	 critical	 design	 paths	 on	 faster	 interconnects	 to	 improve
design	performance.

The	 MultiTrack	 interconnect,	 shown	 in	 Figure	 5.35,	 consists	 of	 row	 and	 column
interconnects	that	span	fixed	distances.	Dedicated	row	interconnects	route	signals	 to	and
from	LABs,	PLLs,	and	M4K	memory	blocks	within	 the	same	row.	These	row	resources
include	direct	link	interconnects	between	LABs	and	adjacent	blocks,	and	R4	interconnects
traversing	four	blocks	to	the	right	or	left.

The	direct	 link	interconnect	allows	an	LAB	or	M4K	memory	block	to	drive	into	the
local	interconnect	of	its	immediate	left	and	right	neighbors.	Only	one	side	of	a	PLL	block

interfaces	with	direct	link	and	row	interconnects.	The	direct	link	interconnect	provides	fast
communication	 between	 adjacent	 LABs	 and/or	 blocks	 without	 using	 row	 interconnect
resources.

The	R4	row	interconnects	span	four	LABS,	or	two	LABs	and	one	M4K	RAM	block.
These	resources	are	used	for	fast	row	connections	in	a	four-LAB	region.	Every	LAB	has
its	own	set	of	R4	interconnects	to	drive	either	left	or	right.	R4	interconnects	can	drive	and
be	driven	by	M4K	memory	blocks,	PLLs,	and	row	IOEs.	For	LAB	interfacing,	a	primary
LAB	or	LAB	neighbor	can	drive	a	given	R4	interconnect.	For	R4	interconnects	that	drive
to	the	right,	the	primary	LAB	and	right	neighbor	can	drive	on	to	the	interconnect.	For	R4
interconnects	that	drive	to	the	left,	the	primary	LAB	and	its	left	neighbor	can	drive	on	to
the	interconnect.	R4	interconnects	can	drive	other	R4	interconnects	to	extend	the	range	of
LABs	they	can	drive.	R4	interconnects	can	also	drive	C4	column	interconnects	for	vertical
connections	from	one	row	to	another.

The	column	interconnect	operates	similarly	to	 the	row	interconnect.	Each	column	of
LABs	is	served	by	a	dedicated	column	interconnect,	which	vertically	routes	signals	to	and
from	LABS,	M4K	memory	blocks,	 and	 row	and	column	 IOEs.	These	column	 resources
include-	LUT	chain	 interconnects	within	an	LAB,	 register	chain	 interconnects	within	an
LAB,	 and	 C4	 interconnects	 traversing	 a	 distance	 of	 four	 blocks	 in	 an	 up	 and	 down
direction.

Every	LAB	has	 its	own	set	of	C4	 interconnects	 to	drive	either	up	or	down.	The	C4
column	interconnects	can	drive	and	be	driven	by	all	types	of	architecture	blocks,	including
PLLs,	 M4K	 memory	 blocks,	 and	 column	 and	 row	 IOEs.	 For	 LAB	 interconnection,	 a
primary	LAB	or	its	LAB	neighbor	can	drive	a	given	C4	interconnect.	C4	interconnects	can
drive	each	other	 to	extend	 their	 range	as	well	as	drive	 row	interconnects	 for	column-to-
column	connections.

All	 embedded	 blocks	 communicate	 with	 the	 logic	 array	 similar	 to	 LAB-to-LAB
interfaces.	 Each	 block	 (i.e.,	 M4K	 memory	 or	 PLL)	 connects	 to	 row	 and	 column
interconnects	and	has	local	interconnect	regions	driven	by	row	and	column	interconnects.
These	 blocks	 also	 have	 direct	 link	 interconnects	 for	 fast	 connections	 to	 and	 from	 a
neighboring	LAB.

5.4.2.4	Embedded	Memory.	The	Cyclone	embedded	memory	consists	of	columns	of	M4K
memory	 blocks.	 EP1C3	 and	 EP1C6	 devices	 have	 one	 column	 of	 M4K	 blocks,	 while
EP1C12	and	EP1C20	devices	have	two	columns.	Each	M4K	block	can	implement	various
types	 of	memory	 with	 or	 without	 parity,	 including	 true	 dual-port,	 simple	 dualport,	 and
single-port	 RAM,	 ROM,	 and	 FIFO	 buffers.	 The	 M4K	 blocks	 support	 the	 following
features:

.	4,608	RAM	bits

•	250	MHz	performance

•	True	dual-port	memory

•	Simple	dual-port	memory

•	Single-port	memory

•	Byte	enable

•	Parity	bits

•	Shift	register

.	FIFO	buffer

•	ROM

•	Mixed	clock	mode

Memory	Modes.	The	M4K	memory	blocks	include	input	registers	that	synchronize	writes
and	 output	 registers	 to	 pipeline	 designs	 and	 improve	 system	 performance.	M4K	 blocks
offer	a	true	dual-port	mode	to	support	any	combination	of	two-port	operations:	two	reads,
two	writes,	or	one	read	and	one	write	at	two	different	clock	frequencies.

In	addition	to	true	dual-port	memory,	 the	M4K	memory	blocks	support	simple	dual-
port	 and	 single-port	RAM.	 Simple	 dual-port	memory	 supports	 a	 simultaneous	 read	 and
write.	Single-port	memory	supports	non-simultaneous	reads	and	writes.

The	memory	blocks	also	enable	mixed-width	data	ports	for	reading	and	writing	to	the
RAM	 ports	 in	 dual-port	 RAM	 configuration.	 For	 example,	 the	 memory	 block	 can	 be
written	in	x	l	mode	at	port	A	and	read	out	in	x	16	mode	from	port	B.

The	Cyclone	memory	can	be	configured	as	a	fully	synchronous	RAM	by	registering
both	the	input	and	output	signals	to	the	M4K	RAM	block.	All	M4K	memory	block	inputs
are	registered,	providing	synchronous	write	cycles.	In	synchronous	operation,	the	memory
block	generates	its	own	self-timed	strobe	write	enable	(wren)	signal	derived	from	a	global
clock.	In	contrast,	a	circuit	using	asynchronous	RAM	must	generate	the	RAM	wren	signal
while	ensuring	its	data	and	address	signals	meet	setup	and	hold	time	specifications	relative
to	the	wren	signal.	The	output	registers	can	be	bypassed.	Pseudoasynchronous	reading	is
possible	in	the	simple	dual-port	mode	of	M4K	blocks	by	clocking	the	read	enable	and	read
address	registers	on	the	negative	clock	edge	and	bypassing	the	output	registers.

When	configured	as	RAM	or	ROM,	an	initialization	file	can	be	used	to	pre-load	the
memory	contents.

Two	single-port	memory	blocks	can	be	implemented	in	a	single	M4K	block	as	long	as
each	of	the	two	independent	block	sizes	is	equal	to	or	less	than	half	of	the	M4K	block	size.

Parity	 Bit	 Support.	 The	M4K	 blocks	 support	 a	 parity	 bit	 for	 each	 byte.	 The	 parity	 bit,
along	with	internal	LE	logic,	can	implement	parity	checking	for	error	detection	to	ensure
data	integrity.

Shift	 Register	 Support.	 You	 can	 configure	 M4K	 memory	 blocks	 to	 implement	 shift

registers	 for	 DSP	 applications	 such	 as	 pseudorandom	 number	 generators,	 multichannel
filtering,	 auto-correlation,	 and	 cross-correlation	 functions.	 For	 these	 and	 other	 DSP
applications	that	require	local	data	storage,	instead	of	using	a	large	number	of	LEs,	using
embedded	memory	 as	 a	 shift	 register	 block	 saves	 logic	 cell	 and	 routing	 resources	 and
provides	a	more	efficient	implementation	with	the	dedicated	circuitry.

The	size	of	a	w	x	m	x	n	shift	register	is	determined	by	the	input	data	width	(w),	the
length	of	the	taps	(m),	and	the	number	of	taps	(n).	The	size	of	a	w	x	m	x	n	shift	register
must	 be	 less	 than	 or	 equal	 to	 the	maximum	number	 of	memory	 bits	 in	 the	M4K	block
(4,608	bits).	The	total	number	of	shift	register	outputs	(number	of	taps	n	x	width	w)	must
be	less	than	the	maximum	data	width	of	the	M4K	RAM	block	(x36).	To	create	larger	shift
registers,	multiple	memory	blocks	are	cascaded	together.

Data	 is	written	 into	 each	 address	 location	 at	 the	 falling	 edge	 of	 the	 clock	 and	 read
from	 the	 address	 at	 the	 rising	 edge	 of	 the	 clock.	 The	 shift	 register	 mode	 logic
automatically	 controls	 the	 positive	 and	 negative	 edge	 clocking	 to	 shift	 the	 data	 in	 one
clock	cycle.

Memory	 Configuration	 Sizes.	 The	 memory	 address	 depths	 and	 output	 widths	 can	 be
configured	as	4,096	x	1,	2,048	X	2,	1,024	X	4,	512	X	8	(or	512	x	9	bits),	256	x	16	(or	256
X	18	bits),	and	128	X	32	(or	128	X	36	bits).	The	128	x	32-	or	36-bit	configuration	is	not
available	 in	 the	 true	 dual-port	 mode.	 Mixed-width	 configurations	 are	 also	 possible,
allowing	different	read	and	write	widths.	When	the	M4K	RAM	block	is	configured	as	a
shift	register	block,	you	can	create	a	shift	register	up	to	4,608	bits	(w	x	m	x	n).

Byte	Enables.	M4K	blocks	support	byte	writes	when	the	write	port	has	a	data	width	of	16,
18,	32,	or	36	bits.	The	byte	enables	allow	the	input	data	to	be	masked	so	the	device	can
write	to	specific	bytes.	The	unwritten	bytes	retain	the	previous	written	value.

Control	 Signals	&	M4K	 Interface.	 The	M4K	 blocks	 allow	 for	 different	 clocks	 on	 their
inputs	 and	 outputs.	 Either	 of	 the	 two	 clocks	 feeding	 the	 block	 can	 clock	 M4K	 block
registers	 (renew	 (read-enable-not-writeenable),	 address,	 byte	 enable,	 datain,	 and	 output
registers).	 Only	 the	 output	 register	 can	 be	 bypassed.	 The	 six	 labclk	 signals	 or	 local
interconnects	can	drive	the	control	signals	for	the	A	and	B	ports	of	the	M4K	block.	LEs
can	also	control	 the	clock	a,	clock-b,	renwea,	renweb,	elra,	elrb,	cloekena,	and	clockenb
signals.

Independent	Clock	Mode.	The	M4K	memory	blocks	implement	independent	clock	mode
for	true	dual-port	memory.	In	this	mode,	a	separate	clock	is	available	for	each	port	(ports
A	 and	B).	Clock	A	 controls	 all	 registers	 on	 the	 port	A	 side,	while	 clock	B	 controls	 all
registers	on	the	port	B	side.	Each	port,	A	and	B,	also	supports	independent	clock	enables
and	asynchronous	clear	signals	for	port	A	and	B	registers.

Input/Output	Clock	Mode.	Input/output	clock	mode	can	be	implemented	for	both	the	true
and	simple	dual-port	memory	modes.	On	each	of	the	two	ports,	A	or	B,	one	clock	controls
all	 registers	 for	 inputs	 into	 the	memory	block:	 data	 input,	wren,	 and	 address.	The	other
clock	controls	 the	 block’s	 data	 output	 registers.	 Each	memory	 block	 port,	 A	 or	 B,	 also
supports	 independent	 clock	enables	and	asynchronous	clear	 signals	 for	 input	and	output

registers.

Read/Write	Clock	Mode.	The	M4K	memory	blocks	implement	read/write	clock	mode	for
simple	 dual-port	memory.	You	 can	 use	 up	 to	 two	 clocks	 in	 this	mode.	 The	write	 clock
controls	 the	 block’s	 data	 inputs,	wraddress,	 and	wren.	 The	 read	 clock	 controls	 the	 data
output,	 rdaddress,	 and	 rden.	 The	memory	 blocks	 support	 independent	 clock	 enables	 for
each	clock	and	asynchronous	clear	signals	for	the	readand	write-side	registers.

Single-Port	Mode.	The	M4K	memory	blocks	 also	 support	 single-port	mode,	 used	when
simultaneous	reads	and	writes	are	not	required.	A	single	M4K	memory	block	can	support
up	to	two	single-port	mode	RAM	blocks	if	each	RAM	block	is	 less	 than	or	equal	 to	2K
bits	in	size.

5.4.2.5	Global	Clock	Network	&	Phase-Locked	Loops.	Cyclone	devices	provide	a	global
clock	network	and	up	to	two	PLLs	for	a	complete	clock	management	solution.

Global	Clock	Network.	The	global	clock	network	of	a	Cyclone	device	is	shown	in	Figure
5.36.	As	shown,	There	are	four	dedicated	clock	pins	(CLK[3..0],	two	pins	on	the	left	side
and	two	pins	on	the	right	side	of	a	Cyclone	device)	 that	drive	 the	global	clock	network.
PLL	outputs,	 logic	array,	and	dual-purpose	clock	 (DPCLK[7..0])	pins	can	also	drive	 the
global	clock	network.

Figure	5.36	Global	Clock	Generation

Dual-Purpose	Clock	Pins.	Each	Cyclone	device	except	the	EP1C3	device	has	eight	dual-
purpose	 clock	 pins,	 DPCLK[7..O]	 (two	 on	 each	 I/O	 bank).	 EP1C3	 devices	 have	 five

DPCLK	pins	 in	 the	100-pin	TQFP	package.	These	dual-purpose	pins	can	connect	 to	 the
global	 clock	 network	 (see	 Figure	 5.36)	 for	 high-fanout	 control	 signals	 such	 as	 clocks,
asynchronous	clears,	presets,	and	clock	enables,	or	protocol	control	signals	such	as	TRDY
and	IRDY	for	PCI,	or	DQS	signals	for	external	memory	interfaces.

PLLs.	 Cyclone	 PLLs	 provide	 general-purpose	 clocking	 with	 clock	 multiplication	 and
phase	shifting	as	well	as	outputs	for	differential	I/O	support.	Cyclone	devices	contain	two
PLLs,	except	for	the	EP1C3	device,	which	contains	one	PLL.

5.4.2.6	I/O	Structure.	IOEs	support	many	features,	including	differential	and	single-ended
I/O	standards,	3.3-V,	64-	and	32-bit,	66-	and	33-MHz	PCI	compliance,	JTAG	boundary-
scan	test	support,	and	tristate	buffers.

Cyclone	 device	 IOEs	 contain	 a	 bidirectional	 I/O	 buffer	 and	 three	 registers	 for
complete	embedded	bidirectional	single	data	rate	transfer.	Figure	5.37	shows	the	Cyclone
IOE	 structure.	The	 IOE	 contains	 one	 input	 register,	 one	 output	 register,	 and	 one	 output
enable	register.	You	can	use	the	input	registers	for	fast	setup	times	and	output	registers	for
fast	clock-to-output	 times.	Additionally,	you	can	use	 the	output	enable	 (OE)	 register	 for
fast	clock-to-output	enable	timing.	IOEs	can	be	used	as	input,	output,	or	bidirectional	pins.

Figure	5.37	Cyclone	IOE	Structure

The	IOEs	are	located	in	I/O	blocks	around	the	periphery	of	the	Cyclone	device.	There
are	 up	 to	 three	 IOEs	 per	 row	 I/O	 block	 and	 up	 to	 three	 IOEs	 per	 column	 I/O	 block
(column	I/O	blocks	span	two	columns).	The	row	I/O	blocks	drive	row,	column,	or	direct
link	interconnects.	The	column	I/O	blocks	drive	column	interconnects.	Figure	5.38	shows
how	 a	 row	 I/O	 block	 connects	 to	 the	 logic	 array;	 a	 similar	 arrangement	 is	 used	 for
connection	of	a	column	I/O	block	to	the	logic	array.

The	 Cyclone	 device	 IOE	 includes	 programmable	 delays	 to	 ensure	 zero	 hold	 times,
minimize	setup	times,	or	increase	clock	to	output	times.

A	path	in	which	a	pin	directly	drives	a	register	may	require	a	programmable	delay	to
ensure	 zero	 hold	 time,	 whereas	 a	 path	 in	 which	 a	 pin	 drives	 a	 register	 through
combinatorial	 logic	may	not	 require	 the	delay.	Programmable	delays	decrease	 input-pin-
to-logicarray	and	IOE	input	 register	delays.	The	Quartus	 II	Compiler	can	program	these
delays	 to	 automatically	 minimize	 setup	 time	 while	 providing	 a	 zero	 hold	 time.
Programmable	delays	can	increase	the	register-to-pin	delays	for	output	registers.

Figure	5.38	Row	I/O	Block	Connection	to	the	Interconnect

External	 RAM	 Interfacing.	 Cyclone	 devices	 support	 DDR	 SDRAM	 and	 FCRAM
interfaces	at	up	to	133	MHz	through	dedicated	circuitry.

DDR	SDRAM	&	FCRAM.	Cyclone	devices	have	dedicated	circuitry	for	interfacing	with
DDR	SDRAM.	All	I/O	banks	support	DDR	SDRAM	and	FCRAM	I/O	pins.	However,	the
configuration	input	pins	in	bank	1	must	operate	at	2.5	V	because	the	SSTL-2	Vccio	level
is	2.5	V.	Additionally,	the	configuration	output	pins	(nSTATUS	and	CONF	DONE)	and	all

the	JTAG	pins	in	I/O	bank	3	must	operate	at	2.5	V	because	the	Vccio	level	of	SSTL-2	is
2.5	V.	I/O	banks	1,	2,	3,	and	4	support	DQS	signals	with	DQ	bus	modes	of	x	8.

5.4.2.7	Power	Sequencing	&	Hot	Socketing.	Because	Cyclone	devices	 can	be	used	 in	 a
mixed-voltage	environment,	they	have	been	designed	specifically	to	tolerate	any	possible
power-up	sequence.	Therefore,	the	Vccio	and	VCCINT	power	supplies	may	be	powered	in
any	order.

Signals	 can	 be	 driven	 into	 Cyclone	 devices	 before	 and	 during	 power	 up	 without
damaging	the	device.	In	addition,	Cyclone	devices	do	not	drive	out	during	power	up.	Once
operating	conditions	are	reached	and	the	device	is	configured,	Cyclone	devices	operate	as
specified	by	the	user.

5.5	Summary

In	 an	 evolutionary	 fashion,	 this	 chapter	 showed	 how	 a	 simple	 idea	 like	 the	ROM	have
evolved	into	FPGA	programmable	chips	that	can	be	used	for	implementation	of	complete
systems	that	include	several	processors,	memories	and	even	some	analog	parts.	The	first
part	 of	 this	 chapter	 discussed	 generic	 structures	 of	 programmable	 devices,	 and	 in	 the
second	part,	when	describing	more	complex	programmable	devices,	Altera	devices	were
used	 as	 examples.	 We	 focused	 on	 the	 structures	 and	 tried	 to	 avoid	 very	 specific
manufacturer’s	details.	This	introduction	familiarizes	readers	with	the	general	concepts	of
the	programmable	devices	and	enables	them	to	better	understand	specific	manufacturer’s
datasheets.

	

6

Tools	for	Design	and	Prototyping

In	a	hardware-only	design	process,	a	hierarchical	structure	of	the	hardware	is	obtained	and
simulation	 and	 synthesis	 tools	 are	 used	 for	 verifying	 it	 and	 obtaining	 hardware	 for	 it.
Often,	in	an	FPGA	based	design,	a	development	board	is	used	for	actual	verification	of	the
hardware	that	is	being	designed.

This	chapter	introduces	tools	and	utilities	for	design	and	implementation	of	hardware.
We	will	discuss	a	typical	hardware	design	flow	and	use	a	small	hierarchical	example	for
its	 illustration.	 Application	 of	 tools	 for	 design	 specification,	 simulation,	 synthesis,	 and
device	 programming	 will	 be	 shown	 using	 this	 example.	 We	 start	 by	 showing	 HDL
simulation	 using	 Altera-Mentor	ModelSim	 simulation	 environment.	We	will	 then	 show
how	an	HDL	synthesis	is	performed	with	Altera’s	Quartus	II	FPGA	design	environment.
Post-synthesis	 simulation	 of	 an	 HDL	 design	 will	 be	 illustrated	 using	ModelSim.	 After
being	 introduced	 to	 an	 HDL	 design	 flow,	 we	 will	 show	 how	 a	 complete	 design	 that
consists	of	HDL	parts,	gates,	library	parts,	and	other	predefined	components	is	specified,
simulated	 and	 synthesized.	 For	 this	 purpose	 a	 complete	 flow	 from	 design	 entry	 to
hardware	 translation	 will	 be	 shown	 using	 Quartus	 II.	 In	 the	 final	 part	 of	 this	 chapter
Altera’s	UP3	 and	DE2	development	 boards	will	 be	 discussed	 and	 use	 of	Quartus	 II	 for
programming	Cyclone	/	Cyclone	II	of	these	boards	will	be	illustrated.

6.1	Hardware	Design	Flow

This	 section	 uses	 a	 simple	 example	 that	 is	 composed	 of	 a	 datapath	 and	 a	 controller.
Components	 of	 this	 hierarchical	 design	 are	 imple	 mented	 using	 Verilog,	 gate
instantiations,	predefined	Altera	library	functions	(Megablocks),	and	a	combination	of	all
these.	 In	 the	 implementation	of	 this	 system	we	will	 show	how	various	components	of	a
system	are	specified,	simulated,	synthesized,	and	wired	together	into	a	complete	system.
Utilization	of	design	tools	used	for	this	implementation	will	be	illustrated.

The	design	example	we	are	using	is	the	serial	adder	of	Chapter	2,	also	shown	here	in
Figure	6.1.	For	complements,	some	of	the	material	of	this	chapter	will	be	repeated	here.

Figure	6.1	Datapath	and	Control	of	Serial-Adder	example

The	serial	adder	has	two	serial	data	inputs	ain	and	bin,	and	a	control	input	start.	As	shown
in	Figure	6.1,	the	circuit	has	an	eight	bit	result	output	and	a	ready	signal.	After	a	complete
pulse	on	 start,	operand	data	 bits	 start	 showing	up	on	 aiu	 and	bin	with	 every	 clock	with
least	 significant	 bits	 coming	 in	 first.	 In	 eight	 clock	 pulses	 as	 input	 data	 come	 into	 the
circuit,	they	are	added	and	the	result	becomes	ready	on	result.	At	this	time	the	ready	signal
becomes	1	 and	 it	 remains	1	until	 a	 1	 is	 detected	on	 the	 start	 input.	While	 the	 circuit	 is
performing	its	data	collection	and	addition,	pulses	on	start	are	ignored.

As	 shown	 in	 Figure	 6.1,	 this	 circuit	 has	 a	 datapath	 and	 a	 controller.	 The	 datapath
collects	data,	adds	them,	and	shifts	the	result	into	a	shift-register.	The	controller	waits	for
start,	 controls	 shifting	of	data	 into	 the	 shift-register,	 and	 issues	 ready	when	 the	 addition
operation	is	complete.	In	what	follows,	the	details	of	the	two	parts	of	this	design	will	be
discussed.

6.1.1	Datapath	of	Serial	Adder

In	the	datapath	of	the	serial	adder	a	full-adder	adds	data	coming	in	on	ain	and	bin.	With
each	 addition,	 the	 sum	 is	 shifted	 into	 a	 shift	 register.	As	 data	 are	 added,	 the	 full	 adder
carry	is	saved	in	a	flip-flop	to	be	used	for	the	addition	of	the	next	set	of	data	coming	on
ain	and	bin.	This	flip-flop	must	be	reset	before	a	new	8-bit	addition	starts.

Figure	6.2	Serial	Adder	Datapath

Figure	6.2	shows	 the	details	of	hardware	of	 the	datapath.	FA	is	a	simple	Full-Adder
that	will	be	 implemented	with	a	Altera	Megablock.	The	flip-flop	shown	is	a	 rising-edge
trigger	D-type	 flip-flop,	 for	 the	 implementation	of	which	a	primitive	component	will	be
used.	The	AND	gate	at	the	input	of	the	flip-flop	provides	it	with	a	synchronous	reset.	This
input	connects	to	the	init	input	that	comes	from	the	controller.	This	flip-flop	saves	a	carry
output	from	a	lower	order	bit	for	the	addition	of	the	next	upper-order	bit.

The	 shift-register	 of	 the	 datapath	 is	 an	 8-bit	 shift-register	with	 an	 enable	 input.	We
will	implement	this	part	of	the	datapath	with	a	Verilog	module	description.

6.1.2	Serial	Adder	Controller

Figure	6.3	shows	the	controller	of	our	serial	adder.	On	the	one	side	there	is	a	state	machine
that	waits	for	start	and	issues	count	enable	and	shift	enable	and	ready.	The	state	machine
waits	for	the	complete	signal	to	be	issued	by	the	counter	before	it	returns	to	its	initial	state
that	waits	for	another	pulse	on	start.	The	outputs	of	this	state	machine	are	ready,	init,	count
enable,	and	shift	enable.	The	init	and	shift	enable	outputs	go	out	to	the	datapath	to	control
initialization	and	shift	activities.	This	state	machine	assumes	that	after	a	pulse	on	start,	it
will	 not	 become	 1	 again	 until	 ready	 is	 issued.	 We	 will	 use	 a	 Verilog	 module	 for	 the
implementation	of	this	state	machine.

On	the	other	side	of	the	controller	is	a	counter	that	counts	when	count	enable	is	issued.
Eight	clock	pulses	after	iuit	resets	this	counter	to	0,	and	while	count	enable	is	active,	the
counter	reaches	its	111	state	and	issues	the	complete	signal.	When	this	signal	is	issued,	the
controller	 disables	 count	 enable,	 which	 causes	 the	 counter	 to	 hold	 its	 last	 state.	 The
counter	part	of	 the	controller	will	be	 implemented	with	a	predefined	configurable	Mega
function.	That	is	part	of	our	Quartus	II	design	environment.

Parallel	with	count	enable,	 the	controller	also	issues	shift	enable	that	goes	out	to	the

datapath.	While	this	signal	is	active,	add	results	from	the	full-adder	(FA)	are	shifted	into
the	datapath	shift-register.	Note	that	after	eight	shifts,	because	the	shift-register	is	disabled,
the	output	remains	on	the	circuit	result	output.

Figure	6.3	Serial	Adder	Controller

The	complete	controller	of	 the	 serial	 adder	 is	 formed	by	wiring	 the	counter	 and	 the
state	machine	together.	Using	the	controller,	the	complete	serial	adder	is	formed	by	wiring
this	(Figure	6.3)	and	the	circuit	of	Figure	6.2	together	to	form	the	block	diagram	of	Figure
6.1.

The	sections	that	follow	show	the	implementation	of	this	design	and	programming	the
Cyclone	FPGA	of	a	UP3	and	Cyclone	II	of	the	DE2	development	board.

In	the	text	of	this	material	we	often	need	to	show	menus	selected	and	menu	items	that
need	to	be	clicked.	For	this	purpose	we	use	the	following	notation:

Interpretation	 of	 the	 above	 menu	 selections	 is	 clear	 by	 their	 contents.	 If	 a	 certain	 tab
needed	to	be	selected	in	a	certain	window,	the	name	of	the	window	would	be	followed	by
the	tab	name	separated	by	a	dash,	e.g.,	{CertainWindow	-	TabName).	If	the	first	menu	is
originated	by	a	mouse	right-click	the	following	format	will	be	used.

When	 a	window	name	or	menu	 item	 is	 used	 in	 text,	Arial	 font	will	 be	 used	 for	 its
name.	An	example	is:	A	New	Window.

6.2	HDL	Simulation	and	Synthesis

For	the	situations	that	a	part	of	a	design	cannot	be	found	in	a	predefined	or	a	user	library,
or	it	cannot	easily	be	built	by	discrete	components,	developing	an	HDL	model	is	usually
the	best	alternative.	Most	parts	in	the	controller	and	datapath	of	our	serial	adder	example
are	standard	parts.	The	most	likely	candidate	for	HDL	implementation	is	the	state	machine
part	of	the	controller.

We	will	show	how	the	Verilog	code	of	this	component	is	simulated	with	ModelSim,
synthesized	 with	 Quartus	 II,	 and	 post	 synthesis	 simulation	 is	 done	 in	 the	 ModelSim
environment.

Figure	6.4	shows	 the	Verilog	code	of	 the	controller	 state	machine	shown	on	 the	 left
hand	side	of	Figure	6.3.	This	circuit	is	described	by	use	of	three	always	blocks	that	handle
state	 transitions,	 output	 values,	 and	 register	 clocking	 respectively.	 This	 description	 is
synthesizable;	 the	 first	 two	 always	 blocks	 follow	 synthesizable	 combinational	 rules	 of
Chapter	3,	and	the	last	always	block	implements	a	two-bit	register	with	synchronous	reset.

	

Figure	6.4	Controller	State	Machine	Verilog	Code

6.2.1	Pre-Synthesis	Simulation

This	section	shows	steps	involved	in	simulating	the	controller	SM	module	of	Figure	6.4	in
ModelSim.	We	show	how	a	project	is	created,	an	existing	module	is	compiled,	a	testbench
is	developed,	simulation	is	performed	and	waveforms	are	displayed.

After	starting	ModelSim	its	main	window	and	its	default	 toolbar	appears.	Definition
of	a	simulation	project	starts	here.

6.2.1.1	Creating	a	Project.	Creation	of	a	new	ModelSim	project	starts	from	the	File	menu
and	continues	as	shown	here:

{Main}:	File	b	New	*	Project	…

Figure	6.5	shows	the	project	creation	window,	where	project	name	and	its	corresponding
directory	are	specified.	We	use	controller	for	the	project	name	and	browse	to	our	chosen
directory	of	Chapter6	designs.	We	use	work	 for	 our	 library	which	 is	 the	 default	 library
name.

Project	creation	in	ModelSim	continues	with	the	software	wanting	us	to	add	existing
files	to	the	newly	created	project.	This	is	done	in	the	windows	shown	in	Figure	6.6.	File
controllerSM.v	 (Figure	 6.4)	 from	Chapter-6	 directory	 is	 added	 to	 the	 controller	 project.
When	 this	 is	 done,	 controller_SM.	 u	 will	 be	 added	 to	 our	 workspace.	 The	 following
displays	the	workspace	window.

Figure	6.5	Project	Creation

Figure	6.6	Adding	Files	to	Project

6.2.1.2	Creating	a	Verilog	Testbench.	A	testbench	is	just	another	Verilog	file	that	we	will
enter	and	add	to	our	project.	For	this	purpose	follow	menu	items	shown	below:

This	 causes	 a	 text	 window	 to	 open	 in	 which	 we	 can	 enter	 our	 Verilog	 testbench.

Alternatively,	we	could	use	our	own	text	editor	to	create	our	testbench	and	then	add	it	to
the	project.

Figure	6.7	shows	the	text	window	of	ModelSim	with	our	testbench	code	typed	in	it.
This	testbench	instantiates	controller	SM	of	Figure	6.4	and	applies	data	to	its	inputs.	We
name	this	file	controllerSM	Tester.v	and	save	it	in	Chapter6	directory.

Figure	6.7	Entering	a	Design	File

A	file	created	as	specified	above	must	be	added	to	our	current	project	before	it	can	be
compiled	 and	 simulated.	 Follow	 the	menu	 items	 shown	 below	 to	 open	 the	Add	 File	 to
Project	window.

In	 the	 window	 that	 opens	 browse	 to	 select	 controllerSM	 Tester.v,	 and	 click	 OK	 to
complete	adding	this	file	to	the	controller	project.

After	 completion	 of	 this	 phase,	 the	 Project	 tab	 of	 the	 Workspace	 window	 shows
controllerSM.v	and	controller	SMTester.v	files	added	to	our	currently	active	project,	 i.e.,
controller.	Figure	6.8	shows	the	new	workspace	and	menu	items	that	need	to	be	selected
for	displaying	it.

Figure	6.8	Workspace	showing	Files	in	Project

6.2.1.3	Compiling	Design	Files.	Before	simulation	can	take	place,	all	design	file	must	be
compiled.	 Question	 marks	 are	 used	 for	 the	 status	 of	 design	 files	 in	 the	 workspace	 of
Figure	6.8.	This	shows	that	these	files	are	not	compiled.

We	can	perform	compilation	by	selecting	a	file	in	the	workspace,	right-clicking	it	and
selecting	 Compile	 in	 the	 menu	 that	 appears.	 Alternatively,	 from	 the	 main	 window,	 the
following	menu	items	perform	compilation	of	all	project	files.

After	a	successful	compilation,	question	marks	in	the	workspace	will	be	replaced	by
check	marks.	If	an	error	occurs,	an	X	mark…

6.2.1.4	 Starting	 the	 Simulation.	 The	 top-level	 design	 unit	 in	 our	 controller	 project	 is
controllerSM	Tester.	For	simulation	of	this	design,	start	in	the	main	window	and	select	the
following	menu	items:

When	 this	 is	 done,	 the	 Start	 Simulation	 window	 shown	 in	 Figure	 6.9	 opens.	 In	 this
window	under	 the	Design	tab,	open	the	work	library	and	click	 the	 top-level	design	unit,
controllerSM	Tester.

Alternatively,	simulation	could	be	started	from	the	workspace	window	by	selection	of
the	following	menu	items:

Figure	6.9	Starting	Simulation

Figure	6.10	Starting	Simulation	from	Workspace

6.2.1.5	 Setting	 up	 Waveform.	 After	 the	 start	 of	 simulation,	 an	 objects	 window	 opens,
listing	signals	of	the	top-level	testbench.	Signals	shown	can	be	selected	for	waveform	and
display.	If	this	window	does	not	automatically	open,	perform	the	following:

Initially,	signals	shown	in	the	Objects	windows	are	of	the	top-level	design	components.	To
select	 signals	 in	 lower	 levels	 of	 hierarchy	 in	 the	 design,	 select	 the	 Sim	 tab	 in	 the
Workspace	window	and	select	the	component	for	which	signals	are	to	be	displayed.	Once
selected,	the	corresponding	signals	will	appear	in	the	Objects	window.	Figure	6.11	shows
selection	of	mutl	instance	and	listing	of	its	corresponding	signals	in	the	Objects	window.

Figure	6.11	Objects	Window

Signals	from	the	Objects	window	must	be	selected	and	added	to	the	Wave	window	for
displaying	them.	For	this	purpose,	in	the	Objects	window,	perform	the	following:

This	will	open	 the	Wave	window	and	add	signals	 in	 the	Objects	window	to	 it.	The	next
step	is	to	simulate	the	design	for	the	values	given	to	it	by	its	testbench.

6.2.1.6	Running	the	Simulation.	With	the	Wave	window	open	and	selected	signals	on	its
left,	 running	 simulation	 will	 show	 waveforms	 on	 all	 the	 selected	 signals.	 To	 run	 the
simulation,	follow	menu	items	listed	here,

This	 will	 run	 the	 testbench	 until	 no	 more	 events	 occur	 in	 the	 design.	 We	 can	 afford
running	the	simulation	opened-ended,	because	our	 testbench	limits	placement	of	data	on
input	 signals	of	 the	design.	See	 in	Figure	6.7	 that	all	 the	procedural	blocks	 terminate	at
some	point	in	time.

Simulation	result	of	our	controllerSM	is	shown	in	Figure	6.12.	This	figure	shows	elk,
reset,	start,	complete,	init,	shift	enable,	count	enable,	and	ready	from	the	testbench,	and	the
p_state	(present	state)	from	MUTT	instance	of	the	controllerSM	module.

Figure	6.12	Simulation	Results	of	Controller_SM

6.2.2	Module	Synthesis

The	 next	 step	 in	 design	 of	 a	 module	 after	 a	 successful	 simulation	 is	 synthesis	 and
generation	of	a	netlist.	For	this	purpose	we	will	use	Altera’s	Quartus	II	design	software.	In
this	 section	we	will	 only	 take	 advantage	 of	 this	 program’s	 synthesis	 capabilities	 and	 its
other	 utilities	 such	 as	 graphical	 design	 entry,	 library	 utilization,	 and	 post	 synthesis
simulation	will	not	be	discussed.	Such	features	will	be	illustrated	in	a	later	section	when
we	use	Quartus	II	for	a	complete	design	implementation,	i.e.,	our	serial	adder.

This	 section	 shows	 a	 project	 definition	 in	Quartus	 II,	 synthesis	 of	 the	 controllerSM
module,	 and	 generation	 of	 post	 synthesis	 Verilog	 code.	 Figure	 6.13	 shows	 the	 main
window	of	Altera’s	Quartus	II	when	it	first	opens.

Figure	6.13	Quartus	II	Main	Window

Shown	here	are	utility	windows:	Project	Navigator,	Status,	and	Messages.	Utility	windows
can	be	added	or	removed	by:

6.2.2.1	Synthesis	Project.	We	will	define	a	new	project	for	synthesizing	the	controllerSM
module.	For	this	purpose,	in	the	main	Quartus	II	window,	select	the	following	menu	items:

This	opens	 the	project	wizard	 that	uses	 five	pages	 for	defining	 the	details	of	 the	project
being	created.	As	shown	in	Figure	6.14,	 the	first	page	asks	for	project	directory,	project
name	 and	 design	 file,	 for	 which	 we	 use	 Chapter6,	 controllerSM,	 and	 controllerSM
respectively.	This	coincides	with	 the	ModelSim	project	 for	 simulation	of	 controller_SM
which	causes	the	same	simulated	design	file	to	become	available	for	synthesis.

Figure	6.14	Project	Directory,	Name	and	Design	File

Page	 2	 of	 project	 definition	 flow	 asks	 for	 files	 to	 be	 included	 in	 the	 design.	 Since	 our
controllerSM	is	self	contained	and	does	not	depend	on	any	other	file	we	will	skip	this	step.

Page	 3	 of	 project	 definition	 asks	 for	 FPGA	 family	 and	 the	 specific	 device	 to
synthesize	to.	As	shown	in	Figure	6.15	we	use	Cyclone	EPIC12Q24OC8	that	is	the	device
on	 Altera’s	 UP3	 development	 board.	 For	 the	 DE2	 board	 we	 would	 use	 Cyclone	 II	 -
EPC35F672C6.

The	 next	 page	 of	 project	 definition	 (page	 4)	 is	 for	EDA	page	 settings.	 In	 this	 page
(Figure	6.16),	we	will	specify	ModelSim(Verilog)	for	our	EDA	simulation	tool.	This	way,
the	 Quartus	 II	 synthesis	 generates	 a	 Verilog	 output	 file	 (.vo)	 that	 can	 be	 simulated	 in
ModelSim.	This	is	for	post-synthesis	simulation	in	ModelSim.

Figure	6.15	Family	and	Device	Setting

The	 last	 page	 of	 a	 Quartus	 II	 project	 definition	 sequence	 (Figure	 6.17)	 shows	 the
project	 summary.	 Now	 that	 controllerSM	 project	 is	 defined,	 the	 existing	 controllerSM
module	in	the	controller	SM.	i)	file	of	the	Chapter6	directory	becomes	our	top-level	design
entity.	The	following	list	of	commands	opens	this	file.

Figure	6.16	EDA	Tool	Setting

Figure	6.17	Project	Summary

Figure	6.18	shows	the	main	Quartus	II	window	and	procedure	for	opening	the	design
file.

Figure	6.18	Opening	Top-Level	Design	Entity	File

6.2.2.2	 Design	 Compilation.	 Compiling	 controllerSM	 results	 in	 synthesis,	 timing	 file
generation,	FPGA	placement	and	routing,	and	generation	of	the	device	programming	file.
For	this	compilation	perform:

After	a	successful	compilation,	appropriate	files	are	created	and	a	compilation	report,
as	shown	in	Figure	6.19	will	be	given.	Files	 that	are	 important	 in	 the	design	flow	being
discussed	in	this	section	are:	controller	SM.uo	and	controllerSM.sdo.	The	former	is	post-
synthesis	Verilog	output	file	using	appropriate	components	of	our	target	FPGA.	The	latter
file	 is	an	SDF	(Standard	Delay	Format)	file	 that	contains	 the	timing	of	 the	netlist	of	 the
controllerSM.	uo	file.

6.2.2.3	Creating	 Symbol.	 The	 controllerSM	 component	 that	 is	 now	 synthesized	will	 be
used	 in	 an	 upper	 level	 Quartus	 II	 design.	 For	 this	 to	 be	 possible,	 we	 have	 to	 create	 a
symbol	 for	 this	 design.	 In	order	 to	 do	 this,	 open	 the	design	 file	 (controller	SM.	u),	 and
follow	the	sequence	of	menu	items	shown	below:

The	symbol	created	here	will	be	used	in	Section	6.3	when	we	present	the	complete	design
of	our	serial	adder.

Figure	6.19	Compilation	and	Synthesis	Report

6.2.3	Post-Synthesis	Simulation

Files	 created	 in	 the	 compilation	 process	 discussed	 above	 are	 used	 for	 post-synthesis
simulation	of	controllerSM	in	ModelSim.	For	this	purpose	we	will	copy	controllerSM.uo
and	 controllerSM.sdo	 from	 Chapter6/simulation/modelsim	 directory	 to	 our	 design
directory,	Chapter6,	and	start	ModelSim	again	for	post-synthesis	simulation.

For	 post-synthesis	 simulation,	we	will	 use	 the	 controller	ModelSim	 project	 that	we
created	 for	our	pre-synthesis	project.	We	will	 simulate	 both	models	 simultaneously,	 and
see	 the	 differences	 between	 pre-	 and	 postsynthesis	 models,	 i.e.,	 controller-SM.	 v	 and
controller	SM.uo.	Tasks	for	performing	 this	simulation	are	project	setup,	new	testbench,
simulation	and	waveform	display.

6.2.3.1	Project	Setup.	As	mentioned,	we	use	 the	 same	project	we	used	for	pre-synthesis
simulation.	In	order	to	do	this,	the	newly	created	design,	controllerSM.	uo	must	be	added
to	the	controller	project,	which	is	done	by	starting	in	the	main	window	of	ModelSim	and
following	menu	items:

The	above	results	in	addition	of	controllerSM.uo	to	the	controller	project.	Figure	6.20
shows	the	new	workspace.

Figure	6.20	Workspace	for	Post-Synthesis	Simulation

6.2.3.2	Testbench	For	Post-Synthesis	Simulation.	In	order	to	be	able	to	simulate	controller
SM.	u	and	controller	SM.	uo	with	 the	 same	 testbench,	we	have	 to	use	different	module
names.	Since	the	postsynthesis	description	of	our	design	generated	by	Quartus	II	uses	the
same	 name	 as	 the	 original	 module,	 we	 have	 to	 edit	 this	 code	 to	 use	 a	 different	 name.
Figure	6.21	shows	the	header	part	of	controller	SM.uo	to	use	controller	SM	PS	for	module
name.

Figure	6.21	Modifying	Module	Name	of	Post-Synthesis	Description

We	 also	 need	 to	 change	 our	 testbench	 to	 instantiate	 both	 preand	 post-synthesis
modules.	The	code	of	the	new	testbench	is	shown	in	Figure	6.22.	As	shown,	MUTT	is	the
instantiation	 of	 the	 original	 controllerSM	 and	 MUT2	 is	 its	 post-synthesis	 description.
MUT1	and	MUT2	use	the	same	input	signals,	but	use	output	names	that	are	appended	by
“1”	or	“2”	for	MUT1	or	MUT2.

Figure	6.22	Testbench	Instantiating	Pre-	and	Post-Synthesis	Description

6.2.3.3	 Simulation	 of	 Pre-	 and	 Post-Synthesis	 Descriptions.	 The	 controller	 project
workspace	 includes	 controllerSM.v,	 control	 lerSM	 Tester.	 u,	 and	 controllerSM.	 uo.
Perform	the	following	to	compile	these	files:

For	 starting	 the	 simulation,	 the	 same	 procedure	 discussed	 in	 Section	 6.2.1	must	 be
followed,	except	that	the	Cyclone	FPGA	library	must	be	added	to	our	library	search	path.
As	before,	activate	the	Start	Simulation	window	by:

In	 this	window	 first	 click	on	controllerSM	Tester	under	 the	Design	 tab.	Before	 clicking
OK,	go	to	Libraries	tab	in	this	window	and	add	the	path	to	the	Cyclone	(or	Cyclone	II	for
DE2)	library	of	ModelSim	to	the	search	libraries.	The	default	installation	of	Altera	version
of	ModelSim	puts	the	Cyclone	library	in	the	directory	that	is	shown	below.	This	directory
needs	to	be	added	to	the	list	of	search	Libraries.

Before	 clicking	 OK	 in	 the	 Start	 Simulation	 window,	 make	 sure	 the	 SDF	 file
(controller_SM.sdo)	is	in	the	original	design	directory,	i.e.,	Chapter6.	Simulation	starts	by
clicking	OK	in	the	start	simulation	window.

6.2.3.4	Waveform	Display.	To	prepare	for	 running	simulation	and	displaying	 the	 results,
bring	up	the	Objects	window,	select	signals,	and	add	them	to	the	Wave	window.	Perform
the	following	to	run	the	simulation.

The	waveform	of	Figure	6.23	shows	pre-	and	post-synthesis	results.	The	first	four	signals
shown	 are	 common	 inputs.	 The	 second	 four	 signals	 are	 outputs	 of	 the	 pre-synthesis
description,	and	 the	 last	 four	 signals	are	 init2,	 shift_enable2,	count_enable2,	and	 ready2
outputs	of	the	post-synthesis	description.

As	 shown	 in	 this	waveform,	 there	 is	 a	 difference	 of	 about	 6.7	 ns	 between	 initl	 and
init2.	This	is	due	to	the	fact	that	in	init2	all	internal	FPGA	delays	are	considered,	whereas,
initl	 is	 the	 output	 of	 our	 original	 controller	 description	 in	 which	 no	 delay	 values	 were
specified.

Figure	6.23	Comparing	Pre-	and	Post-Synthesis	Results

This	 section	 showed	design	and	 implementation	of	 an	HDL	module.	This	may	be	a
complete	design,	or,	in	our	case,	part	of	a	larger	design.	The	next	section	shows	the	use	of
Quartus	 II	 for	 design	 and	 implementation	 of	 a	 circuit	 composed	 of	 various	 forms	 of
components.	The	controllerSM	module	is	one	component	of	this	design.

6.3	Mixed-Level	Design	with	Quartus	II

Section	 6.2	 showed	 the	 design	 of	 a	 component	 using	 its	 Verilog	 code.	 Although	many
designs	 can	 be	 completely	 done	 this	 way,	 block	 diagram	 specification	 and	 using
predefined	components,	 instead	of	describing	every	component	of	a	design,	has	 its	own
advantages.

For	small	gate	level	components,	there	is	too	much	overhead	in	writing	a	Verilog	code
and	 instantiating	 with	 other	 components.	 In	 addition,	 many	 RTL	 components	 such	 as
ALUs,	counter,	register	files,	and	FIFOs,	are	available	as	Mega	blocks	or	Mega	functions
in	 most	 FPGA	 design	 environments	 and	 can	 easily	 be	 instantiated	 and	 configured	 to
proper	 functionality	 and	 size.	 An	 advantage	 of	 using	 such	 functions	 is	 that	 they	 are
optimized	for	specific	target	FPGAs	and	their	implementations	take	advantage	of	especial
FPGA	features	they	are	used	for.	Furthermore,	use	of	predefined	components,	 instead	of
defining	our	own,	has	the	advantage	that	such	components	have	already	been	 tested	and
debugged.

Another	advantage	of	using	tools	for	block	diagram	specification	is	the	graphical	user
interface	 that	 they	 provide.	 Such	 a	 graphical	 interface	 provides	 ways	 of	 selecting,
instantiating,	configuring	and	wiring	parts	from	other	designs,	as	well	as	using	parts	from
the	library	of	Mega-blocks,	primitives,	and	parts	that	are	specific	to	the	design	being	done.
Often	these	environments	provide	facilities	for	high	level	test	and	debug	of	designs.

In	what	follows	we	show	implementation	of	a	complete	design	that	consists	of	various
parts	at	various	levels	of	abstraction	and	of	various	design	libraries.	The	example	we	are
using	is	the	serial	adder	of	Section	6.1.	Although	this	is	a	simple	design,	but	it	has	most
characteristics	of	a	 large	RTL	design	and	 it	 is	a	good	candidate	 for	 showing	a	complete
design	flow.

As	discussed	in	Section	6.1,	our	serial	adder	has	a	datapath	and	a	controller.	As	shown
in	Figure	6.2,	the	datapath	of	this	design	has	four	components:	a	full-adder,	a	rising-edge
D-Type	flip-flop,	an	inverted-input	AND	gate	and	an	8-bit	shift-register	with	clock	enable
input.	As	shown	in	Figure	6.3,	the	controller	of	our	design	has	a	state	machine	part	(FSM)
and	a	counter.	Various	forms	of	component	specifications	will	be	used	for	these	parts:

•	Full-adder:	lpm_addsub	configurable	Megafunction	from	Library	of	Parameterized
Modules	(LPM).

•	D-Type	flip-flop:	d1	f	primitive	from	library	of	primitives.

•	Inverted-input	AND:	NOT	and	AND2	primitives	from	library	of	primitives.

•	8-bit	shift-register:	Verilog	code	entered	directly	in	Quartus	II	environment.

•	Controller	FSM:	Existing	Verilog	code	developed	in	Section	6.2.

•	Controller	counter:	lpm_counter	primitive	from	Quartus	II	LPM.

In	the	sections	that	follow	we	will	use	Quartus	II	and	discuss	the	use	of	this	software
for	our	design.	We	will	refer	to	Quartus	II	menus,	windows	and	toolbars.	In	most	cases	we
show	complete	paths	of	menus	and	toolbars	to	a	certain	Quartus	II	program.	On	the	other
hand,	this	software	has	a	standard	toolbar	with	shortcuts	to	commonly	used	programs	and
settings,	 shown	 in	 Figure	 6.24.	 Instead	 of	 following	 a	 long	 list	 of	 menu	 and	 window

selections,	a	program	can	be	started	directly	by	clicking	its	icon	on	the	standard	toolbar.

In	case	this	toolbar	is	not	active,	it	can	be	activated	by	starting	from	the	main	Quartus
II	window	and	following	menu	items	shown	below:

Figure	6.24	Quartus	Standard	Toolbar

6.3.1	Project	Specification

The	 design	 and	 implementation	 of	 our	 serial	 adder	 will	 be	 done	 in	 Quartus	 II	 and
programmed	 into	a	Cyclone	EPIC12	or	Cyclone	II	EP2C35.	The	Quartus	 II	serial	adder
project	is	created	for	this	purpose.	The	method	used	for	creating	this	project	is	similar	to
that	described	in	Section	6.2	for	the	controller	project.

We	create	the	serial-adder	project	in	the	same	directory	as	that	of	the	controller,	 i.e.,
Chapter6.	 When	 this	 project	 is	 being	 created,	 Quartus	 II	 finds	 the	 controller	 project
already	in	this	directory	and	asks	if	you	want	 to	use	a	different	directory.	Answer	No	to
use	the	same	directory.	Figure	6.25	shows	Quartus	II	windows	and	the	serialadder	project
summary.

6.3.2	Block	Diagram	Design	File

The	top-level	structure	of	our	serial	adder	design	is	a	block	diagram.	Components	of	the

serial	adder	are	placed	in	this	block	diagram	and	wired	together.

Figure	6.25	Serial-adder	Project	Definition

The	top-level	block	diagram	of	our	design	must	be	named	the	same	as	the	project	it	is
in.	To	define	a	block	diagram	design	file,	start	in	the	main	Quartus	II	window,	in	the	File
menu	 select	 New…,	 and	 under	 the	 Device	 Design	 File	 tab	 of	 the	 New	 window	 select
Block	Diagram/Schematic	File.	This	procedure	is	shown	in	Figure	6.26	and	summarized
below.

Figure	6.26	A	New	Block	Diagram	File

After	 following	 this	 procedure,	 a	 window	 opens	 in	 which	 our	 se-	 rialadder

components	can	be	placed	and	their	wirings	specified.

6.3.3	Creating	and	Inserting	Design	Components

Various	methods	available	in	Quartus	II	for	creating	new	components	and	using	existing
ones	 will	 be	 used	 for	 the	 components	 of	 se-	 rialadder.	We	 will	 start	 with	 the	 datapath
components	and	then	do	the	controller.

6.3.3.1	Inserting	Primitive	Components.	The	procedure	for	inserting	a	new	component	for
our	schematic	file	is	to	select	it	from	a	library,	and	place	it	in	the	block	diagram	window.
Primitive	gates	and	components	of	our	design,	like	the	flip-flop,	AND,	and	NOT	of	Figure
6.27,	are	the	easiest	to	handle.

The	 D-type	 flip-flop	 (Figure	 6.27)	 is	 a	 primitive	 of	 Quartus	 II,	 i.e.,	 it	 exists	 as	 a
component	 in	 Quartus	 II	 library	 of	 primitives.	 To	 place	 this	 component	 in	 the	 Block
Diagram	window,	double	click	anywhere	on	this	window	for	the	symbol	window	to	open.
In	 this	window	under	 altera/quartus/libraries,	 go	 to	 primitives,	 and	 under	 storage	 select
dff.	 The	 dff	 symbol	 is	 now	 selected	 (see	 Figure	 6.27)	 and	will	 be	 placed	 in	 the	Block
Diagram	window	when	OK	is	pressed.

Repeat	 the	 same	 procedure	 for	 AND	 and	 NOT	 gates	 (these	 are	 under	 logic	 in	 the
library	of	primitives).	A	two-input	AND	gate	is	called	and2	and	an	inverter	is	called	not	in
the	logic	library.

6.3.3.2	Inserting	10	Pins.	We	follow	the	same	procedure	discussed	above	for	placement	of
input/output	pins.	In	the	Quartus	libraries,	the	primitives	branch	has	a	branch	called	pin.
This	library	has	input	and	output	pins	that	are	selected	and	placed	in	our	schematic.	Figure
6.28	 shows	our	 schematic	 file	 after	 placement	 of	 primitives	 discussed	 above.	 To	 assign
names	to	input	and	output	pins,	double-click	on	the	pin	symbol	and	enter	the	name	of	the
pin	 in	 the	 window	 that	 opens.	 Alternatively,	 the	 same	 Properties	 window	 opens	 by
selecting	the	pin	and	doing	a	right-click	on	it.

Also	shown	in	Figure	6.28	is	the	Block	Diagram	tool	bar.	This	tool	bar	appears	on	the
left	side	of	the	block	diagram	window.	Some	important	tools	here	are:	Symbol	Tool	(the
AND	 symbol),	Orthogonal	Node	 Tool	 (the	 90	 this	 line),	 and	 the	Orthogonal	 Bus	 Tool.
Activating	 the	 Symbol	 window	 for	 selection	 of	 a	 library	 component	 can	 be	 done	 by
selecting	the	Symbol	Tool	instead	of	double	clicking	the	schematic	area.

Figure	6.27	Selecting	a	Component	for	Block	Diagram

Figure	6.28	Schematic,	after	inserting	primitives

6.3.3.3	 Inserting	 configurable	 components.	 In	 addition	 to	 basic	 primitives,	 the	 quartus
library	 contains	 components	 that	 can	 be	 configured	 for	 size	 and	 functionality	 to	 be
inserted	in	schematic	files.	These	components	are	in	the	megafunctions	library	of	Quartus
II.

For	the	full	adder	of	the	datapath	of	our	serial	adder	(Figure	6.2)	and	for	the	counter
part	of	its	controller	(Figure	6.3),	Altera	megafunction	will	be	used.

As	 with	 other	 components,	 inserting	 a	 configurable	 component	 in	 our	 schematic
begins	by	double-clicking	anywhere	on	the	Block	Diagram	window.	Instead	of	a	double-
click,	pressing	the	right	mouse	button	and	selecting	Insert	and	then	Symbol…	in	the	menu
that	opens,	also	opens	the	symbol	window	(Figure	6.29).

The	 full	 adder	 of	 Figure	 6.2	 can	 be	 generated	 by	 configuring	 an	 adder-subtractor
megafunction.	In	order	to	do	this,	in	the	Symbol	window	select	megafunctions	and	under
its	arithmetic	library	branch	select	Ipm_add_sub.	This	LPM	component	can	be	configured
as	an	n-bit	complex	pipeline	adder-subtractor,	or	a	simple	full-adder.	After	pressing	OK	in
the	 Symbol	 window	 of	 Figure	 6.29,	 the	 wizard	 for	 configuring	 this	 component	 begins
working.	Configuration	will	be	done	in	a	series	of	pages,	of	which	the	window	of	Figure
6.29	is	considered	the	first	page.

A	modified	version	of	Page	2	of	the	Megawizard	is	shown	in	Figure	6.30.	In	this	page
we	 specify	 a	 name	 for	 our	 component	 and	 the	 HDL	 that	 will	 be	 generated	 for	 it.	 As
shown,	we	are	using	Verilog	for	the	output	file	and	FA	for	the	name	of	the	component.	The
original	Page	2	 looks	different	 that	what	 is	 shown	here.	We	have	altered	by	eliminating
some	of	the	comments	on	this	page.

Page	3	to	6	of	Megawizard,	parts	of	which	are	shown	in	Figure	6.31,	allow	users	 to
specify	 number	 of	 bits,	 data	 types	 carry	 input	 and	 output,	 and	 pipeline	 structure	 for
lpm_addsub.	Our	specifications	for	defining	a	full	adder	are	shown	in	this	figure.

The	 last	page	of	Megawizard	shows	files	 that	are	created	and	will	be	written	 in	our
design	 directory.	 After	 completion	 of	 this	 phase	 of	 our	 design,	 the	 FA	 symbol	 will	 be
added	to	the	schematic	window	of	our	design.	Components	defined	thus	far	are	shown	in
Figure	6.32.

Figure	6.29	Configuring	lpm_add_sub	for	FA

Figure	6.30	Page	2	of	Megawizard

Figure	6.31	Configuring	Ipm_add_sub

Figure	6.32	Adding	FA	to	our	Schematic

6.3.3.4	Inserting	an	HDL	components.	Next	we	will	show	how	a	component	that	we	are	to
write	Verilog	code	for	is	added	to	our	schematic.	For	this	demonstration,	in	the	Quartus	II
environment,	we	will	describe	the	shift	register	shown	in	Figure	6.33	in	Verilog,	create	a
symbol	for	it,	and	add	its	symbol	to	our	schematic.

We	 begin	 the	 definition	 of	 our	 shift	 register	 by	 opening	 a	 new	Verilog	 file.	This	 is
similar	to	opening	a	schematic	file	as	shown	in	Figure	6.26,	except	that	Verilog	HDL	File
must	be	selected	in	the	New	window.	The	procedure	is	shown	below:

After	execution	of	these	menus,	a	new	file	opens	in	which	we	will	enter	the	Verilog
code	of	our	shift	register.	When	completed,	this	file	should	be	saved	using	the	name	of	the
module	 for	 the	 file	 name.	 Saving	 the	 shift	 register	module	 and	 its	 Verilog	window	 are
shown	in	Figure	6.33.

Before	the	above	saved	file	can	be	used	in	our	schematic,	a	symbol	must	be	created
for	 it.	Menu	 items	 shown	 below	must	 be	 executed	 for	 creating	 a	 symbol	 for	 our	 shift
register.

Note	in	the	above	procedure	that	the	symbol	will	be	created	for	the	current	file.	This
means	that	while	this	procedure	is	being	done,	the	shift_register.u	Verilog	window	must	be
active.

With	 the	 above	 procedures,	 Quartus	 II	 generates	 a	 default	 symbol	 for	 the
shift_register.v	file.	Quartus	II	allows	us	to	use	its	symbol	editor	to	modify	a	symbol	and
perhaps	 use	 some	 of	 our	 artistic	 abilities	 for	 generation	 a	 more	 attractive	 symbol.	 To
modify	the	shift	register	symbol	(file	name	is	shiftregister.bs/),	start	 in	the	main	Quartus
window,	 and	 from	 File	 menu	 click	 Open.	 Open	 shift_register.bsf	 and	 edit	 this	 symbol
using	the	basic	drawing	tools	that	this	editor	provides.	The	new	shift	register	symbol	in	the

symbol	editor	is	shown	in	Figure	6.34.

After	 creating	 a	 symbol	 for	 our	 Verilog	 file,	 the	 corresponding	 component	 can	 be
inserted	in	our	schematic	just	like	any	of	the	existing	Quartus	II	components.	For	the	shift
register,	first	activate	the	schematic	file,	double-click	anywhere	on	this	window	and	in	the
list	 of	 libraries	 select	 Project,	 and	 there,	 select	 shift	 register.	 With	 this	 procedure,	 the
symbol	of	Figure	6.34	will	be	added	to	the	Block-diagram	of	our	serial	adder.

Figure	6.33	Saving	a	Verilog	File

Figure	6.34	Editing	Shift	Register	Symbol

6.3.3.5	Controller	Components.	As	shown	in	Figure	6.3,	the	controller	of	our	serial	adder
has	a	state	machine	and	a	counter.

As	discussed,	 the	 state	machine	part	of	 the	controller	 (control-	 lerSAI)	was	created,
simulated,	and	synthesized	in	Section	6.2.	In	this	section	we	also	showed	how	a	symbol
was	created	for	this	component.	The	procedure	for	inserting	controllerSM	symbol	in	our
serial	adder	schematic	 is	 the	same	as	 that	discussed	 in	Section	6.3.3.4	for	 inserting	shift
register.

The	counter	part	of	our	controller	is	built	by	selecting	lpmcounter	from	the	library	of
Quartus	II	Megafunctions,	and	configuring	it	as	a	3-bit	up-counter	with	an	enable	input,	a
carry	output,	and	a	synchronous	clear	input.	The	procedure	for	defining	this	component	is
similar	 to	 that	 discussed	 in	 Section	 6.3.3.3	 for	 creating	 and	 inserting	 FA.	 Figure	 6.35
shows	Megawizard	pages	for	configuring	the	controller	counter	(controllerCNV).

Figure	6.35	Configuring	Ipm_counter	for	controller	count

6.3.4	Wiring	Design	Components

The	Orthogonal	Node	Tool	 from	 the	Block	Diagram	 tool	bar	 selects	 the	 tool	 for	wiring
components	 of	 the	 schematic	 window.	 When	 selected,	 using	 the	 mouse,	 wires	 can	 be
drawn	on	the	schematic	of	our	design	for	connecting	one	node	to	another.	The	Orthogonal
Bus	Tool	is	used	for	wiring	busses.	For	example	connection	from	the	8-bit	output	of	the
shift-register	to	the	output	pin	is	done	by	the	Bus	Tool.

Figure	 6.36	 shows	 the	 complete	 schematic	 of	 serial	 adder	 after	 completion	 of	 all
wirings.	Note	here	that	the	8-bit	par	output	of	the	shift	register	component	is	wired	to	the
8-bit	result	which	is	a	primary	output	of	the	serial	adder.	Naming	the	result	output	pin,	is
done	in	its	Properties	window.	In	this	window	its	dimensions	are	defined	as	[7..0].	Quartus
II	uses	two	dots	for	index	range.

Figure	6.36	Complete	Schematic	of	serial-adder

6.3.5	Design	Compilation

The	 complete	 design	 of	 Figure	 6.36	 must	 be	 compiled	 for	 design	 errors	 and
incompatibilities.	For	this	purpose,	follow	menu	items	shown	below:

Note	that	this	process	is	no	different	than	that	discussed	in	Section	6.2.2.

6.3.6	Design	Simulation

The	next	step	in	design	after	design	entry	 is	 its	simulation.	Steps	 involved	in	simulation
are	waveform	definition,	and	simulation	run.

6.3.6.1	Waveform	Definition.	To	define	our	waveforms	we	create	a	new	Vector	Waveform
file.	For	 this	 purpose	 start	 from	 the	File	menu	of	 the	main	Quartus	window	and	 follow
menu	items	shown	below:

This	 is	 similar	 to	 opening	 a	 new	 schematic	 or	HDL	 file	 as	 shown	 in	 Figure	 6.26.	 The
difference	is	that	the	waveform	file	is	part	of	the	Other	Files	tab.	A	waveform	file	has	the
.uwf	extension.

Input	ports	of	our	design	must	be	brought	into	the	newly	created	waveform	file	before

values	can	be	assigned	to	them.	For	this	purpose	right-click	in	the	Name	area	of	the	open
waveform	window	and	select	Insert	Node	or	Bus…	in	the	menu	that	shows	up.	This	will
cause	a	new	Insert	Node	or	Bus	window	to	open.	In	this	window	(shown	in	Figure	6.37),
we	can	enter	the	input	names	for	which	waveforms	are	to	be	defined.

Figure	6.37	Waveform	and	Node	Definitions

Individually	 naming	 each	 input	 can	 be	 avoided	 by	 having	Quartus	 II	 find	 the	 input
nodes	for	us.	The	Node	Finder	utility	shown	in	Figure	6.37	can	only	be	used	if	our	design
has	been	successfully	compiled.

The	Node	Finder	window	opens	by	clicking	the	corresponding	button	in	Figure	6.37.
In	 this	window	(shown	in	Figure	6.38)	click	on	 the	List	button	 to	see	a	 list	of	available
nodes.	Note	the	“pins:	all”	selection.

Figure	6.38	Node	Finder	Window

Select	nodes	from	the	left	part	of	this	window	and	add	to	the	right.	After	clicking	on	OK,
this	 window	 closes	 and	 the	 selected	 signals	 will	 be	 added	 to	 the	 waveform	 window.
Another	OK	should	be	clicked.

Next	is	to	set	the	end	time	of	the	simulation.	For	this	purpose	follows	the	procedure
shown	below:

In	the	End	Time	window	that	appears,	specify	the	end	time	and	its	units.	We	use	5.0	us	for
the	simulation	of	our	serial	adder.

Figure	6.39	shows	menus	and	windows	used	for	definition	of	waveforms	for	the	input
nodes	of	our	circuit.	This	is	done	by	selecting	the	input	and	defining	values	for	it	from	the
waveform	toolbar,	or	by	right-clicking	the	input	and	assigning	values	to	it	using	windows
that	open.

One	way	of	assigning	values	to	a	waveform	is	by	selecting	it	and	using	the	mouse	for
highlighting	certain	time	segments	of	it.	The	highlighter	time	segment	can	be	assigned	a
value	by	clicking	the	value	on	the	waveform	toolbar.

Assignment	of	values	using	value	menus	 is	shown	in	Figure	6.39.	 In	what	 is	shown
we	are	giving	our	clock	signal	a	period	of	57	ns	with	a	duty	cycle	of	50%.	This	periodic
signal	continues	until	the	simulation	end	time	that	is	set	to	5	us.

Figure	6.39	Defining	Input	Waveforms

6.3.6.2	 Simulation	 Run.	 Simulation	 run	 begins	 by	 selecting	 Start	 Simulation	 of	 the
Processing	 menu	 or	 by	 clicking	 the	 start	 simulation	 button	 on	 the	 Quartus	 standard
toolbar.	Figure	6.40	shows	simulation	result	of	our	serial	adder	design.

The	result	shown	here	verifies	correct	operation	of	our	adder	circuit.	 In	order	 to	use
this	circuit	in	another	design	or	save	it	as	a	library	component,	a	symbol	must	be	created
for	 it.	 The	 procedure	 for	 generation	 of	 a	 symbol	 is	 the	 same	 as	 that	 discussed	 in
conjunction	 of	 Verilog	 files.	 A	 symbol	 generated	 as	 such	 can	 be	 used	 in	 upper	 level
designs.

Figure	6.40	Simulation	Run	Results

6.3.7	Synthesis	Results

Compiling	 a	 design	 as	 discussed	 in	 Section	 6.3.5	 synthesizes	 the	 design	 and	 generates
various	reports	and	diagrams.	This	section	provides	an	overview	of	the	information	that	is
generated	by	Quartus	II.	Figure	6.41	shows	the	synthesis	flow	summary.

Figure	6.41	Synthesis	Flow	Summary

6.3.7.1	Flow	Information.	Quartus	synthesis	generates	various	report	and	log	files	showing
the	 details	 of	 the	 synthesis	 process.	 This	 information	 includes	 compiler	 settings,	 device
settings,	elapsed	time,	resources	used	and	legal	notices.

6.3.7.2	Timing	Information.	An	important	part	of	the	information	provided	by	a	synthesis
tool	 is	 the	 timing	 information.	This	 includes	setup	and	hold	 time	of	 registers,	maximum
clock	frequency,	and	worst	case	delays.	The	maximum	clock	frequency	of	our	serial	adder
is	reported	to	be	275.03	MHZ	on	the	Cyclone	device.	This	is	shown	in	the	timing	analyzer
section	of	the	compilation	report.

6.3.7.3	Hardware	Information.	Hardware	information	generated	by	the	compiler	includes
diagrams	showing	FPGA	utilized	areas,	interconnections,	and	logic	diagrams.	For	viewing
these	diagrams	go	to	Quartus	Tools	menu	and	select	the	appropriate	viewing	tool.

In	what	Quartus	 II	 refers	 to	as	 timing	Closure	Floor	Plan,	 logic	blocks	of	 the	 target
FPGA	(in	our	case	Cyclone	or	Cyclone	II)	used	for	a	design	and	input	and	output	blocks
are	 shown.	Timings	between	various	 nodes	 of	 the	 implementation	 can	 be	 looked	 up	 by
activating	the	corresponding	timing	tools.	Figure	6.42	shows	part	of	the	floor	plan	of	our
design.	The	serial	adder	uses	18	of	the	12060	logic	elements	of	a	Cyclone-EP1C12	FPGA.

Figure	6.42	also	shows	some	of	the	pins	used	for	this	design.

By	 right-clicking	 and	 locating	 a	 logic	 element	 in	 the	 resource	 property	 editor,	 the
detailed	view	of	 the	 logic	element	appears.	Figure	6.43	shows	 three	of	 the	LEs	of	serial
adder.	The	first	LE	is	a	flip-flop	of	the	controller	state	machine	of	serial	adder	with	reset,
start	and	data	inputs	going	to	the	LUT	of	this	LE.	The	second	LE	is	one	of	the	counter	bits
of	the	controller.	This	cell	uses	the	carry	input	and	output	of	the	LUT	for	implementing	the
repetitive	counter	structure.	Note	here	 that	 the	LUT	block	 is	used	as	 two	3-input	LUTs.
The	third	LE	is	a	combinational	one	and	only	its	LUT	is	used.	This	LE	is	part	of	the	logic
of	 the	 controller	 state	machine.	The	LUTs	 shown	here	 are	 illustrative	 of	 some	 of	many
ways	that	LUTs	can	be	formed	in	an	Altera	FPGA.

Figure	6.42	Timing	closure	floor	plan

In	 what	 Quartus	 II	 refers	 to	 as	 Technology	 Map,	 mapping	 of	 FPGA	 resources	 to
components	of	our	design	is	shown.	For	every	functional	part	of	a	design	Logic	Elements
that	are	used	are	shown	in	this	hierarchical	view.	Figure	6.44	shows	the	technology	map	of
the	serial	 adder	design.	Blocks	 shown	with	darker	 shades,	 are	FPGA	LEs.	LEs	of	other
structures	can	be	seen	by	double-clicking	on	them.

Gate	 level	 details	 of	 a	 synthesized	 design	 are	 available	 in	 its	 RTL	 view.	 In	 a
hierarchical	fashion,	this	view	shows	the	complete	gate	level	diagram	of	a	design	and	their
interconnections.

Figure	6.45	shows	the	RTL	view	of	the	serial	adder.	At	the	toplevel,	only	the	flip-flop
used	for	saving	the	carry	and	its	resetting	AND	gate	are	shown.	To	see	gate	details	of	other
blocks,	the	corresponding	block	must	be	double-clicked.

Figure	6.43	Details	of	Three	LEs

6.4	Design	Prototyping

The	 next	 phase	 in	 completing	 a	 design	 after	 successful	 simulation,	 synthesis	 and
verification	 of	 the	 design	 is	 design	 prototyping.	 In	 this	 phase	 an	 actual	 FPGA	 is
programmed	in	a	setup	very	similar	to	the	setup	the	design	will	be	used	in.	The	FPGA	is
tested	with	actual	hardware	interfaces	and	its	operation	is	examined.

We	usually	use	development	boards	for	design	prototyping.	A	development	board	is	a
test	board	for	a	particular	FPGA.	In	the	center	of	such	a	board	is	the	FPGA	chip	that	the
board	 is	 to	be	used	 for.	A	development	 board	has	 standard	 interfaces	 and	memories	 for
designers	to	use	for	testing	their	designs.

Hardware	 for	 programming	 the	 FPGA	 of	 a	 development	 board	 is	 provided	 on	 this
board.	For	designing	with	Cyclone,	Altera	provides	several	development	boards.	The	UP3

(University	Program	3)	board	is	one	such	board.	Another	development	board	that	will	be
discussed	here	 is	Altera’s	DE2	 (or	 in	 general	DE	 series).	 This	 board	 uses	 a	Cyclone	 II
EP2C35F672C6.	The	sections	that	follow	give	an	overview	of	these	development	boards.

6.4.1	UP3	Board	Specification

In	 the	center	of	UP3	 is	a	Cyclone	EP1C12	FPGA.	The	board	has	a	JTAG	programming
connector	 for	direct	programming	of	 the	FPGA,	and	a	connector	 for	AS	(Active	Serial)
programming	of	its	EPCS4	serial	configuration	device.

The	board	has	four	LEDs,	four	push	buttons	and	four	DIP	switches	that	can	be	used
for	application	of	data	or	monitoring	simple	flags	of	design	implemented	on	a	Cyclone.	In
addition,	UP3	 has	 a	 PS/2	 connector,	 a	 25-pin	 printer	 port,	 a	 serial	 D-type	 connector,	 a
standard	VGA	connector	and	a	USB.	Connections	of	all	these	devices	(LEDs	and	switches
included)	to	the	Cyclone	device	are	fixed,	i.e.,	no	user	wirings	are	needed.

A	 16x2	 character	 LCD	 module	 is	 also	 part	 of	 UP3.	 This	 module	 connects	 to	 the
connector	 on	 the	 side	 of	 the	 board	 that	 has	 permanent	 connections	 to	 the	 FPGA	 ports.
Other	features	of	UP3	include	on	board	SRAM,	FLASH	and	SDRAM,	multiple	clocks,	an
expansion	header,	an	IDE	interface	connector,	and	12C	bus.

The	 front	 of	 the	UP3	board	 is	 shown	 in	Figure	6.46.	The	 reference	manual	 of	UP3
education	 kit	 is	 included	 in	 the	 CD	 that	 accompanies	 this	 book.	 This	 is	 a	 concise
document	 describing	 all	 details	 of	 the	 board	 and	 utilization	 of	 its	 components.	 In	what
follows,	we	will	describe	some	of	the	main	features	of	the	UP3	board.	The	presentation	is
sufficient	for	the	designs	that	are	presented	in	chapters	that	follow.

Figure	6.46	UP3	Development	Board

6.4.1.1	 UP3	 Programming.	 Programming	 the	 Cyclone	 chip	 of	 UP3	 is	 done	 by	Altera’s
USB	Blaster,	or	Byte	Blaster.	A	USB	Blaster	connects	to	the	USB	port	of	your	computer,
while	the	Byte	Blaster	connects	to	the	printer	port.	The	Quartus	II	software	must	be	setup
to	use	the	appropriate	programming	device.

The	 USB	 Blaster	 or	 Byte	 Blaster	 has	 a	 10-pin	 connector	 to	 connect	 to	 UP3.	 This
connector	connects	to	JP11	for	AS	programming	mode	or	to	JP12	for	JTAG	programming.
These	connectors	are	on	the	left	side	of	the	front	of	the	board	as	shown	in	Figure	6.46.

Active	 serial	 (AS)	 configuration	of	Cyclone	 is	 carried	out	 through	 the	 serial	 device
EPCS4.	 To	 program	 in	 AS	 mode,	 the	 download	 cable	 from	 a	 Blaster	 device	 must	 be
connected	 to	 the	 10-pin	 JP11	 connector.	 With	 this	 connection,	 when	 programming	 is
performed	the	EPCS4	device	that	is	a	serial	FLASH	memory	is	programmed.	Upon	power
up,	configuration	data	from	EPCS4	is	serially	moved	into	the	Cyclone	FPGA.	EPCS4	is
an	8-pin	chip	labeled	U15	and	is	located	in	the	middle	right	on	the	back	of	UP3.

JTAG	configuration	directly	downloads	configuration	data	 into	Cyclone.	The	10-pin
header	 JP12	 (to	 the	 right	 of	 JP11	 of	AS	mode)	 is	 used	 for	 JTAG	 programming.	 JTAG
programming	 configures	 the	 Cyclone	 memory	 and	 its	 data	 will	 be	 lost	 when	 power	 is
removed	from	the	board.

6.4.1.2	Basic	10	Devices.	Simple	basic	IO	devices	of	UP3	are	LEDs,	Push	Buttons,	and
DIP	switches.	There	are	four	of	each	of	these	devices	on	UP3.	These	devices	are	located
on	the	lower	left	part	of	the	front	of	the	UP3	board.	In	addition,	a	push	button	for	resetting
UP3	is	also	located	in	this	same	general	area	of	the	board.

Push	 buttons	 are	 connected	 to	 Cyclone	 10	 pins	 through	 pull-up	 resistors.	 They	 are
regarded	as	0	when	pressed	and	1	when	released.	DIP	switches	are	connected	to	Cyclone
10	pins	 through	pull-up	resistors.	These	switches	are	considered	active	 low,	 i.e.,	0	when
ON.	The	LEDs	of	UP3	are	active	high	and	are	connected	to	Cyclone	10	pins	with	current
limiting	resistors.	Table	6.1	shows	Cyclone	pin	connection	of	the	basic	devices	discussed
above.

6.4.1.3	The	LCD	Display.	The	LCD	display	of	UP3	mounts	on	the	U1	connector	on	 the
lower	edge	of	the	board.	The	display	connects	to	the	Cyclone	pins	as	shown	in	Table	6.2.

The	LCD	display	 has	 two	 rows	 of	 16	 characters.	 Standard	ASCII	 characters	 are	 its
default,	however	its	user	programmed	RAM	can	be	programmed	for	any	desired	character
set.	Before	 the	LCD	display	 can	 be	written	 into	 for	 display,	 it	 has	 to	 be	 initialized	 and
programmed.	 Programming	 is	 done	 by	 holding	 RS	 and	 RIW	 inputs	 low	 and	 applying
instructions	to	D7	through	DO	and	issuing	the	E	signal.	Some	of	 the	key	instructions	of
the	LCD	display	and	their	execution	time	are	shown	in	Table	6.3.

After	 initializing	 the	 LCD	 (executing	 the	 first	 four	 instructions	 of	 Table	 6.3),	 8-bit
ASCII	data	are	written	into	it	by	setting	RS,	R/W	to	1	and	0	respectively,	placing	ASCII
data	 on	D[7:0],	 and	 issuing	 the	 E	 signal	 and	 allowing	 40	 us.	 Each	 time	 a	 data	 byte	 is
written	into	the	LCD,	the	cursor	moves	one	place	to	the	right.

Moving	 the	 cursor	 back	 to	 the	 home	 position	 requires	 execution	 of	 the	 third
instruction	of	Table	6.3.

6.4.1.4	 PS/2	 Keyboard	 and	 Mouse	 Connector.	 UP3	 has	 a	 6-pin	 mini-din	 type	 PS/2
connector	for	connecting	a	mouse	or	a	keyboard.	Figure	6.47	shows	a	PS/2	connector	and
its	pin	specifications.

Figure	6.47	Mini-din	PS/2	Connector	(UP3)

A	 PS/2	 connector	 has	 pins	 for	 bi-direction	 clock	 and	 data.	 These	 pins	 are	wired	 to	 the
Cyclone	pins	as	shown	in	Table	6.4.

6.4.1.5	VGA	Standard	Connector.	The	standard	VGA	connector	of	UP3	(Figure	6.48)	is	of
the	standard	15-pin	D-type	connector.	This	connector	has	five	active	pins	with	permanent
connections	to	the	Cyclone	IO	pins.

Figure	6.48	Standard	VGA	Connector	(UP3)

Pins	 1,	 2	 and	 3	 are	 for	 RGB	 color	 control,	 and	 13	 and	 14	 are	 for	 horizontal	 and
vertical	synchronization.	Connections	of	the	VGA	connector	to	Cyclone	pins	are	shown	in
Table	6.5.

6.4.1.6	FLASH	Memory	Device.	U8	that	is	located	below	the	Cyclone	FPGA	on	the	UP3

board	(see	Figure	6.46)	is	a	16-Meg	bit	FLASH.	This	device	can	be	used	as	a	2-Meg	8-bit
or	a	1-Meg	16-bit	memory

To	perform	read	and	write	operations,	active	 low	CE	 it	and	OE	it	 inputs	of	FLASH
(Fed	by	Cyclone	10	pins	117	and	118)	must	be	0.	The	WE	it	must	be	1	for	reading	and	0
for	writing.	The	Ry/By_n	pin	(pin	15	of	FLASH,	126	of	Cyclone)	indicates	if	the	FLASH
is	ready	for	read	and	write	operations,	and	if	it	has	completed	its	last	operation.	Read	and
write	operations	can	only	be	initiated	when	this	FLASH	output	is	1.

The	Word/Byte	FLASH	input	must	be	1	for	configuring	it	as	a	1M	16-bit	wide	words,
and	0	for	2M	8-bit	wide	words.

6.4.1.7	SRAM	Device.	The	U7	chip	on	the	lower	left	side	of	front	of	UP3	is	the	on	board
SRAM	of	 this	board.	This	 is	a	64K	word	(65536	by	16	bits)	asynchronous	SRAM.	The
access	time	of	this	memory	is	about	10	ns.	Table	6.7	shows	pin	descriptions	and	numbers
of	U7.

Writing	is	done	by	applying	appropriate	address	and	data,	holding	CE	it	and	OE	it	low
and	applying	a	0	to	WE	it.	For	reading	from	the	memory	WE	it	must	be	inactive	(1).	LB	n
and	UBn	enable	lower	and	higher	bytes,	respectively.

6.4.1.8	SDRAM	Memory	Device.	The	U6	 chip	 of	UP3	 is	 an	 8	Meg	Byte	 Synchronous
Dynamic	RAM.	This	memory	 is	 located	 on	 the	 lower	 left	 side	 of	 the	 back	 of	 the	UP3
board.	The	memory	is	organized	as	a	1Meg	*	16-bit	*	4-bank	memory.	Memory	read	and
write	operations	are	clocked	with	the	rising	edge	the	clock	(elk)	input.	Pin	connections	of
this	device	are	shown	in	Table	6.8.

6.4.1.9	UP3	Clock	Circuitry.	The	UP3	board	has	a	master	clock	chip	that	provides	various
clocks	 for	 the	 FPGA	use.	On	 chip	 clocks	 can	 be	 configured	 for	 various	 frequencies	 by
placing	appropriate	jumpers	on	JP3	and	J7	headers.	These	headers	are	located	next	to	each
other	on	the	lower	part,	in	the	middle	of	the	UP3	board.	Clock	inputs	of	the	FPGA	are	pins
29,	152	and	153.	Table	6.9	shows	jumper	settings	for	clock	inputs	of	Cyclone.

Several	other	clocks	are	available	that	are	not	connected	to	 the	FPGA	pins.	There	 is
also	a	user	clock	header	that	is	connected	to	pin	38	of	Cyclone.	Clocks	shown	in	Table	6.9
are	sufficient	for	most	designs,	and	the	above	discussion	is	complete	for	such	uses.

6.4.1.10	Other	UP3	 Interface	Devices.	Other	devices	or	 connectors	not	 discussed	 above
are	expansion	prototype	connector,	IDE,	12C	Bus,	and	USB.	Furthermore,	the	board	has
power	and	resetting	circuitry	that	are	not	included	in	the	above	discussion.

These	 ports	 and	 devices	 are	 discussed	 in	 the	 UP3-1C12	 Reference	 Manual	 that	 is
included	in	the	CD	that	accompanies	this	book.

6.4.2	DE2	Board	Specification

This	 section	 discusses	 the	 DE2	 board,	 its	 programming	 and	 its	 utilities.	 The	 DE2
development	board	offers	many	more	hardware	utilities	than	UP3.	In	addition,	this	board
has	a	control	program	with	a	control	panel	for	setting	it	up,	initializing	it,	and	loading	its
FLASH	and	other	memories.	This	section	provides	a	quick	overview	of	DE2;	 the	user’s
manual	 of	 this	 board	 that	 is	 provided	 on	 the	 CD	 that	 accompanies	 this	 book	 is	 a
comprehensive	document	and	provides	detailed	information	on	using	and	configuring	the
board.	The	 brief	 introduction	 that	 follows	 is	 sufficient	 for	 the	 projects	 discussed	 in	 this
book.

The	DE2	board	(Figure	6.49)	uses	Altera’s	Cyclone	II	2C35	FPGA	chip.	It	also	has	an
EPCS16	for	programming	the	FPGA.	The	board	has	a	JTAG	programming	connector	for
direct	programming	of	the	FPGA,	and	a	mode	for	AS	(Active	Serial)	programming	of	its
EPCS16	serial	configuration	device.	The	following	hardware	that	can	be	used	for	 testing
various	embedded	designs	is	provided	on	the	DE2	board:

•	4	pushbutton	switches

•	18	toggle	switches

•	18	red	user	LEDs	and	9	green	user	LEDs

•	50-MHz	oscillator	and	27-MHz	oscillator	for	clock	sources

•	A	2-line,	16	character	LCD	display

•	512-Kbyte	SRAM,	8-Mbyte	SDRAM,	and	4-Mbyte	FLASH

•	SD	Card	socket

•	24-bit	audio	CODEC	with	line-in,	line-out,	and	microphone	jacks

•	VGA	DAC	(10-bit	triple	DACs)	with	VGA-out	connector

•	TV	Decoder	(NTSC/PAL)	and	TV-in	connector

•	10/100	Ethernet	Controller	with	a	connector

•	USB	Host/Slave	Controller	with	type	A	and	B	connectors

0	RS-232	transceiver	and	9-pin	connector

•	PS/2	mouse/keyboard	connector

6.4.2.1	DE2	Programming.	Programming	the	Cyclone	II	chip	of	DE2	is	done	through	its
built-in	 USB	Blaster.	 A	USB	 cable	 connects	 the	 programming	 USB	 connector	 of	 DE2
(upper	 left	 side	 of	 the	 board)	 to	 a	 USB	 port	 of	 the	 computer	 you	 are	 using	 for
programming	it.	The	Quartus	II	software	must	be	setup	to	use	this	programming	device.	A

toggle	switch	on	the	left	side	of	the	board	sets	the	board	for	JTAG	(RUN	switch	position)
or	AS	(PROG	switch	position).

Active	serial	(AS)	configuration	of	Cyclone	II	is	carried	out	through	the	serial	device
EPCS16.	To	program	 in	AS	mode,	 the	programming	USB	cable	must	be	connected	and
the	programming	switch	must	be	in	PROG	position.	With	this	setup,	when	programming
is	performed	 the	EPCS16	device	 that	 is	 a	 serial	FLASH	memory	 is	programmed.	Upon
power	up,	configuration	data	from	EPCS16	is	serially	moved	into	 the	Cyclone	II.	JTAG
configuration	directly	downloads	configuration	data	into	Cyclone	II.	JTAG	programming
configures	the	Cyclone	II	memory	and	its	data	will	be	lost	when	power	is	removed	from
the	board.

6.4.2.2	 Basic	 10	 Devices.	 Simple	 basic	 IO	 devices	 of	 DE2	 are	 Toggle	 switches,	 Push
Buttons,	LEDs,	and	SSD	displays.	There	are	seventeen	switches,	four	push	buttons,	a	total
of	twenty	six	LEDs,	and	eight	SSD	or	HEX	display	units.	These	devices	are	located	on	the
lower	side	the	front	of	the	DE2	board.

Toggle	switches	are	connected	directly	to	Cyclone	TO.	The	switches	provide	logic	0
when	in	the	Down	position.	Table	6.10	shows	mapping	of	toggle	switches	to	DE2	Cyclone
II	pins.

There	 are	 four	 debounced	 push	 buttons	 (keys)	 on	 the	 DE2	 board.	 These	 keys	 are
directly	connected	to	Cyclone	II	pins.	Normally	Key	0	through	Key	3	provide	logic	1,	and
they	become	0	when	pressed.	Table	6.11	shows	connections	of	these	keys	to	the	Cyclone
II	FPGA.

DE2	provides	seventeen	red	LEDs	and	nine	green	ones.	The	LEDs	are	connected	 to
Cyclone	 II	 pins	 through	 pull-up	 resistors.	Driving	 an	 LED	 to	 logic	 value	 1	 turns	 it	 on.
Table	6.12	shown	Cyclone	II	pin	connections	to	LEDs.

As	shown	in	Figure	6.49,	 there	are	eight	seven-segment	displays	on	 the	DE2	board.
The	 segments	 of	 these	 display	 units	 are	 like	 the	 LEDs	 and	 are	 directly	 connected	 to
Cyclone	 II	 pins.	 Table	 6.13	 shows	 Cyclone	 II	 pin	 connections	 to	 the	 seven-segment
displays.

6.4.2.3	The	LCD	Display.	The	LCD	display	of	DE2	is	located	above	the	SSDs	on	the	left
side	of	the	board.	The	display	connects	to	the	Cyclone	II	pins	as	shown	in	Table	6.14.

The	LCD	display	 has	 two	 rows	 of	 16	 characters.	 Standard	ASCII	 characters	 are	 its
default,	however	its	user	programmed	RAM	can	be	programmed	for	any	desired	character
set.	Before	 the	LCD	display	 can	 be	written	 into	 for	 display,	 it	 has	 to	 be	 initialized	 and
programmed.	 Programming	 is	 done	 by	 holding	 RS	 and	 RIW	 inputs	 low	 and	 applying
instructions	to	D7	through	DO	and	issuing	the	E	signal.	Some	of	the	key	instructions	of
the	LCD	display	and	their	execution	time	are	shown	in	Table	6.15.

After	 initializing	 the	LCD	(executing	 the	 first	 four	 instructions	of	Table	 6.15),	 8-bit
ASCII	data	are	written	into	it	by	setting	RS,	R/W	to	1	and	0	respectively,	placing	ASCII
data	 on	D[7:0],	 and	 issuing	 the	 E	 signal	 and	 allowing	 40	 us.	 Each	 time	 a	 data	 byte	 is
written	into	the	LCD,	the	cursor	moves	one	place	to	the	right.	Moving	the	cursor	back	to
the	home	position	requires	execution	of	the	third	instruction	shown	in	this	table.

6.4.2.4	 PS/2	 Keyboard	 and	 Mouse	 Connector.	 DE2	 has	 a	 6-pin	 mini-din	 type	 PS/2
connector	for	connecting	a	mouse	or	a	keyboard.	Figure	6.50	shows	a	PS/2	connector	and
its	DE2	pin	connections.	Connections	of	PS/2	bi-direction	clock	and	data	pins	to	Cyclone
II	pins	are	shown	in	Table	6.16.

Figure	6.50	Mini-din	PS/2	Connector	(DE2)

6.4.2.5	VGA	Standard	Connector.	The	standard	VGA	connector	of	DE2	(Figure	6.51)	is	of
the	standard	15-pin	D-type	connector.	This	connector	has	three	pins	for	color	and	two	pins
for	 horizontal	 and	 vertical	 synchronizations.	 Horizontal	 and	 vertical	 synchronization
inputs	are	 directly	 connected	 to	Cyclone	 II	 pins	 of	DE2.	The	 color	 inputs	 come	 from	a
triple	 DAC	 (Digital	 to	 Analog	 Converter)	 device	 that	 takes	 10	 bit	 digital	 data	 and
generates	analog	signals	for	intensity	of	each	of	the	three	colors.

Figure	6.51	Standard	VGA	Connector	(DE2)

As	shown	 in	Figure	6.51,	Pins	1,	2	and	3	of	 the	VGA	connector	are	connected	 to	RGB
color	outputs	of	the	on-board	ADV7123.	This	device	has	thirty	color	inputs	(10	for	each
color)	that	are	directly	connected	to	Cyclone	II	pins.	In	addition,	it	has	Blank,	Synch	and
Clock	inputs	that	are	also	driven	by	DE2	Cyclone	II.	Table	6.17	shows	connection	of	VGA
related	pins	to	DE2	Cyclone	II.

6.4.2.6	FLASH	Memory	Device.	U20	that	 is	 located	below	the	Cyclone	II	FPGA	on	the
DE2	board	(see	Figure	6.49)	is	a	4-Mega	byte	FLASH.	Cyclone	II	pin	connections	to	this
device	are	shown	in	Table	6.18.

To	perform	read	and	write	operations,	active	 low	CE	 it	and	OE	it	 inputs	of	FLASH
(Cyclone	 II	pins	V17	and	W17)	must	be	0.	The	WE	n	must	 be	1	 for	 reading	 and	0	 for
writing.

6.4.2.7	SRAM	Device.	The	U18	chip	on	the	lower	left	side	of	the	FPGA	of	DE2	is	the	on
board	SRAM	of	this	board.	This	is	a	512-K	byte	asynchronous	SRAM.	Table	6.19	shows
Cyclone	II	pin	connections	to	this	device.

Writing	is	done	by	applying	appropriate	address	and	data,	holding	CE	it	and	OE	it	low
and	applying	a	0	to	WE	it.	For	reading	from	the	memory	WE	it	must	be	inactive	(1).	LB	it
and	UBn	enable	lower	and	higher	bytes,	respectively.

6.4.2.8	SDRAM	Memory	Device.	The	U17	chip	of	DE2	is	an	8	Meg	Byte	Synchronous
Dynamic	RAM.	This	memory	is	located	on	the	DE2	board	on	the	left	side	of	Cyclone	II.
The	memory	is	organized	as	a	1Meg	x	16-bit	x	4-bank	memory.	Memory	read	and	write

operations	are	clocked	with	the	rising	edge	the	clock	(elk)	input.	Pin	connections	of	 this
device	are	shown	in	Table	6.20.

6.4.2.9	DE2	Clock	Circuitry.	 The	DE2	 board	 provides	 two	 clocks	 that	 have	 permanent
connections	to	Cyclone	II	pins.	In	addition,	an	external	pin	on	the	lower	left	corner	of	the
board	has	a	permanent	connection	to	the	FPGA	for	any	external	clock	that	may	be	needed
for	a	design.	Table	6.21	shows	Cyclone	II	clock	pin	connections.

6.4.2.10	 Other	 DE2	 Devices.	 As	 previously	 mentioned,	 there	 are	 several	 other	 more
advanced	devices	on	the	DE2	board.	We	limited	our	discussion	here	only	to	the	very	basic
interface	 devices.	 The	DE2	 user’s	manual	 and	 datasheets	 for	 the	 individual	 devices	 are
provided	on	the	CD	that	accompanies	this	book	and	Altera’s	DE2	System	CD,	and	provide
complete	information	about	using	various	DE2	resources.

6.4.3	Programming	DE2	Cyclone	II

After	simulation	and	synthesis,	the	next	step	in	design	is	to	program	the	target	FPGA	in	a
development	board.	This	 is	done	by	a	 computer	 running	Quartus	 II,	 connected	 by	USB
Blaster	to	UP3	or	DE2.	Programming	the	FPGA	of	our	development	board	and	using	the
existing	 resources	 of	 this	 board	 for	 testing	 our	 design	 is	 the	 final	 phase	 of	 design
prototyping.	 This	 phase	 requires	 pin	 assignment,	 programmer	 setup,	 and	 device

programming.	 In	 what	 follows,	 we	 will	 show	 how	 our	 serial	 adder	 example	 is
programmed	into	 the	Cyclone	II	FPGA	of	a	DE2	board.	Except	 for	 the	pin	connections,
the	procedure	is	the	same	for	a	UP3	board.

6.4.3.1	Pin	Assignment.	The	last	sections	discussed	available	IO	devices	and	mapping	of
their	pins	to	Cyclone	II	pins.	In	order	to	take	advantage	of	these	IO	devices,	we	have	to
assign	ports	of	our	design	to	Cyclone	II	pins	connected	to	the	corresponding	devices.

Our	serial	adder	of	Figure	6.36	has	inputs	aiu,	bin,	reset,	start	and	clock,	and	output
ready	and	result	 [7:0].	Toggle	switches	SW17	and	SW16	(Table	6.10),	and	push	buttons
KEY3	and	KEY2	(Table	6.11)	are	used	for	airs,	bin,	reset,	and	start,	respectively.	The	50
MHZ	clock	of	DE2	 is	used	for	 the	clock	 input	of	 the	serial	adder	 (see	Table	6.21).	 The
ready	 output	 goes	 on	 green	 LED	 LEDGO	 (Table	 6.12).	 Bits	 7	 through	 0	 of	 result	 are
displayed	on	 red	LEDs,	LEDR17	 through	LEDR10	 (Table	6.12).	Table	6.22	 shows	port
connections	of	se-	rial_adder	to	DE2	devices	and	Cyclone	II	pins.

In	order	to	program	our	design	for	the	pin	specifications	shown	in	this	table,	Quartus
II	Assignment	Editor	window	or	Pin	Planner	can	be	used.	The	Assignment	Editor	window
can	also	be	opened	by	selecting	it	from	standard	Quartus	II	 toolbar	(Figure	6.24).	In	the
Edit	 part	 of	 the	 Assignment	 Editor	 window	 select	 ports	 of	 serial	 adder	 under	 the	 To
column	and	select	Cyclone	II	pin	number	under	the	Value	column.	The	Assignment	Editor
window,	after	assigning	all	pins	as	specified	in	Table	6.22	is	shown	in	Figure	6.52.

Figure	6.52	Assigning	serial-adder	Pins	Using	Assignment	Editor

6.4.3.2	Programmer	Setup.	The	first	 time	Quartus	II	 is	 to	program	a	device,	 it	has	 to	be
setup	 for	 use	 of	 Byte	 Blaster,	 or	 USB	 Blaster,	 or	 any	 other	 programming	method.	We
show	how	this	is	done	for	the	USB	Blaster.	This	procedure	is	no	different	than	that	for	the
Byte	Blaster.	DE2	only	uses	its	onboard	USB	Blaster.

Programming	Cyclone	II	begins	with	activating	the	Programmer	tool	from	the	Tools
menu	as	shown	below:

This	window	allows	you	to	setup	the	programming	hardware,	select	programming	mode,
and	start	programming	Cyclone	II.

In	 this	 window,	 press	 the	 Hardware	 Setup…	 button	 to	 open	 the	 Hardware	 Setup
window	as	shown	in	Figure	6.53.	From	the	list	of	available	hardware	items	in	this	window
select	the	hardware	you	are	using	for	programming	(in	our	case,	USB	Blaster),	and	close
this	window.

Figure	6.53	Programming	Hardware	Setup

This	 procedure	 is	 done	 only	 once	 and	 need	 not	 be	 repeated	 unless	 you	 reinstall
Quartus	II,	or	want	to	change	your	programming	hardware.

6.4.3.3	 Programming	 Cyclone	 II.	 The	 final	 setup	 in	 implementing	 your	 hardware	 on	 a
Cyclone	 is	 selecting	 a	 program	 file	 and	 starting	 the	 programmer.	 This	 is	 done	 in	 the
programming	window	after	hardware	setup	is	complete.

For	this	purpose,	we	have	to	decide	whether	we	are	programming	Cyclone	II	in	AS	or
JTAG	mode.	The	AS	(Active	Serial)	programs	the	on-board	FLASH	and	is	non-volatile,
while	the	JTAG	mode	programs	 the	Cyclone	II	 itself	and	 is	volatile.	The	AS	mode	uses
pof	programming	files,	while	 to	JTAG	mode	uses	sof	 files.	We	use	 the	JTAG	mode	and
need	serialadder.sof	file	for	this	purpose.

The	 JTAG	 programming	mode	 is	 selected	 in	 the	 programming	window	 by	 clicking
Mode:	 and	 selecting	 JTAG.	 Following	 this,	 the	 program	 file	must	 be	 selected.	 For	 this
purpose	click	on	Add	File…	to	open	the	window	for	file	selection.	This	is	shown	in	Figure
6.54.

Figure	6.54	Selecting	Programming	File

We	select	serialadder.sof	file	that	is	the	right	file	for	JTAG	programming	mode.	After
the	file	 is	selected	 it	appears	 in	 the	white	space	 in	 the	programming	window.	Check	 the
Program/Configure	column	next	to	the	file	and	click	on	start	to	start	programming	the	se-
rial_adder	 into	 Cyclone.	 Figure	 6.55	 shows	 the	Quartus	 II	 window	 after	 completion	 of
device	programming.

Figure	6.55	Device	Programming

6.4.3.4	Testing	serial	adder.	The	serial	adder	that	is	programmed	into	Cyclone	II	can	now

be	tested.	The	setup	discussed	above	makes	it	difficult	to	test	our	serial	adder	because	of
its	fast	clock.	The	50	MHz	clock	runs	the	complete	addition	process	before	we	even	have
a	 chance	 to	 set	 its	 input	 data.	 To	 correct	 this	 problem,	we	 should	 use	 one	 of	 the	 push
buttons	 for	 the	 circuit	 clock,	 and	manually	 operate	 this	 clock	while	 setting	 appropriate
input	data.	Readers	are	encouraged	to	go	through	this	process	and	verify	the	operation	of
the	serial	adder.

In	 the	 next	 chapter	 we	 develop	 several	 library	 components	 for	 better	 utilization	 of
UP3	and	DE2	resources.	For	example,	the	LCD	display	with	the	help	of	a	hardware	driver
can	be	used	for	displaying	numbers	and	characters.

6.5	Summary

This	chapter	showed	how	various	parts	of	a	design	could	be	implemented	and	tested	using
Altera	simulation	tools,	synthesis	programs,	and	two	of	Altera’s	development	boards.	We
discussed	a	design	that,	in	spite	of	its	small	size,	had	components	that	were	implemented
with	various	mechanisms	available	in	Altera’s	tool	set.	This	chapter	can	be	regarded	as	a
complete	tutorial	for	using	ModelSim,	Quartus	II,	UP3	and	DE2	boards.	In	addition,	 the
presentation	of	two	Altera	development	boards	shows	readers	how	an	FPGA	is	used	in	a
board	level	design	and	how	various	components	such	as	memories	and	interface	devices
operate.

	

7

Design	of	Utility	Hardware	Cores

The	 previous	 chapter	 showed	 how	 various	 design	 tools	 could	 be	 utilized	 for	 design,
implementation,	 and	 prototyping	 a	 complete	 design.	 We	 showed	 how	 existing	 library
components	 could	 be	 used	 in	 a	 new	 design.	 This	 chapter	 discusses	 creation	 and
managements	 of	 general	 purpose	 hardware	 components	 that	 can	 be	 useful	 in	 more
complex	designs.	We	refer	to	such	components	as	utility	cores	that	are	placed	in	a	library
that	can	be	accessed	by	various	designers.

Utility	cores	cover	a	wide	range	of	complexity,	and	are	different	from	one	design	to
another.	Our	main	purpose	of	 covering	 this	material	 here	 is	 to	 introduce	 the	 concept	 of
hardware	components	that	are	packaged	into	a	 library	and	are	used	by	other	designs.	At
the	 same	 time	 we	 introduce	 several	 common	 interfaces	 and	 familiarize	 readers	 with
operation	of	devices	such	as	keyboards	and	displays.

We	 begin	 this	 chapter	 with	 a	 discussion	 of	 libraries,	 components	 of	 a	 library,	 and
accessing	 these	 components.	 The	 sections	 that	 follow	 this	 discussion	 introduce	 utility
hardware	components	ranging	from	a	simple	switch	debouncer	to	a	VGA	display	adaptor.
Every	component	designed	will	be	placed	in	our	library	of	utility	components	and	a	tester
will	be	developed	for	it.

7.1	Library	Management

The	utility	cores	that	we	develop	in	this	chapter	are	primarily	IO	interface	drivers	that	will
be	used	in	the	next	two	chapters	and	in	various	design	projects.	We	create	a	directory	for
our	 library	 components	 and	 place	 each	 of	 the	 library	 components	 as	 projects	 in	 this
directory.	For	 designs	 implemented	 on	 the	UP3	 board,	 the	 directory	 is	UP3Library	 that
must	be	added	as	a	“User	Library”	to	new	projects	that	use	components	of	this	library.	We
use	DE2Library	for	DE2	designs.

In	 addition	 to	 UP3Library,	 another	 library	 (UP3Library	 Testers)	 is	 created	 that
contains	testers	for	the	components	or	UP3Library.	Projects	created	in	UP3LibraryTesters
are	examples	of	utilization	of	library	elements	of	UP3Library.	Tester	projects	verify	basic
operations	of	our	library	components	and	in	many	cases	combine	several	of	UP3Library
components	 into	 a	 tester.	 Components	 of	 our	 UP3Library	 range	 from	 a	 simple	 switch
debouncer	to	a	VGA	controller.

Similarly,	we	 create	 a	 test	 library	 for	 our	 designs	 of	 the	DE2	board.	This	 library	 is
named	DE2Library	Testers.	most	designs	in	UP3	and	DE3	libraries	are	the	same,	except
that	the	former	uses	Cyclone	and	the	latter	uses	the	Cyclone	II	FPGA.

7.2	Basic	10	Device	Handling

This	section	develops	interfaces	for	utilization	of	push	buttons	for	providing	control	and
data	signals	of	a	design	and	for	single	stepping	through	a	design.	In	an	example	at	the	end
of	this	section	we	show	a	simple	design	that	uses	LEDs,	DIP	switches,	and	Pushbuttons.

7.2.1	Debouncer

Pushbuttons	are	mechanical	switches	and	are	not	debounced.	This	means	 that	when	you
press	a	pushbutton,	it	makes	several	contacts	before	it	stabilizes.	The	result	 is	 that	when
you	press	a	pushbutton	that	 is	1	 in	 the	normal	position,	 its	output	changes	several	 times
between	 logic	 0	 and	 1	 before	 it	 becomes	 0,	 and	when	 you	 release	 it,	 it	 again	 switches
several	 times	 between	 these	 logic	 values	 before	 it	 becomes	 1.	 Figure	 7.1	 shows	 a
pushbutton	contact	bounce.

In	 some	cases,	 pushbuttons	 are	debounced	using	 a	Schmitt	Trigger	 circuit.	 If	 not,	 a
logical	 circuit	 can	 be	 designed	 for	 debouncing	 a	 pushbutton.	 UP3	 pushbuttons	 are	 not
debounced,	but	those	of	the	DE2	board	are.

Pushbutton	bouncing	causes	no	problem	 if	 it	 is	used	as	an	 input	of	a	combinational
circuit	 for	 test	 purposes.	 In	 this	 case,	 you	 should	 give	 enough	 time	 for	 all	 changes	 to
propagate	before	 reading	 the	switch’s	output.	However,	 in	sequential	circuits	with	a	 fast
clock,	each	 of	 the	 bounces	 between	 0	 and	 1	 logic	 values	may	 be	 regarded	 as	 an	 actual
logic	 value.	 For	 example,	 for	 a	 counter	 with	 a	 fast	 clock	 for	 which	 a	 mechanical
pushbutton	is	used	as	a	count	input,	pressing	the	pushbutton	may	cause	several	counts.

Figure	7.2	Debouncing	a	Single-Pole	Double-Throw	(SPDT)	Switch

A	Single-Pole	Double-Throw	(SPDT)	mechanical	switch	such	as	that	shown	in	Figure

7.2	can	easily	be	debounced	by	an	SR-latch	also	 shown	 in	 this	 figure.	However,	 a	UP3
pushbutton	 is	 Single-Pole	 Single-Throw	 (SPST)	 and	 its	 only	 available	 terminal	 is	 the
output	that	connects	to	Gnd	for	logic	0	or	to	Vdd	through	a	pullup	resistor	for	logic	1.

Debouncing	 UP3	 pushbuttons	 requires	 a	 slow	 clock	 to	 sample	 the	 switch	 output
before	and	after	it	is	pressed	or	released.	The	clock	should	be	slow	enough	to	bypass	all
the	 transitional	 changes	 that	 occur	 on	 its	 output	 terminal.	 In	what	 follows	we	 show	 the
generation	of	a	switch	debouncer	and	its	necessary	clock.	For	the	design	of	the	former	part
we	use	 schematic	 entry	 at	 the	gate	 level,	 and	 for	 the	 latter	 part	we	use	 schematic	 entry
using	Quartus	II	megafunctions.

Although	 debouncing	DE2	pushbuttons	 is	 not	 necessary,	 this	 first	 project	 is	 a	 good
start	and	provides	general	information	for	setting	up	a	design	and	testing	it.	You	can	still
use	 the	 debouncer	 circuit	 that	we	 develop	 here	with	DE2	pushbuttons,	 even	 though	 the
Schmitt	Trigger	circuit	exits.

7.2.1.1	Debouncer-Gate	Level	Entry.	The	debouncer	project	is	created	in	UP3Library.	We
use	 schematic	 entry	 at	 the	 gate	 level	 for	 this	 design.	 The	 Quartus	 II	 schematic	 of
debouncer	 is	 shown	 in	 Figure	 7.3.	 The	 inputs	 of	 this	 circuit	 are	 PushButton	 and
SlowClock.

One	of	the	flip-flops	used	here	is	 triggered	on	the	rising	edge	of	SlowClock	and	 the
other	 is	 triggered	 on	 the	 falling	 edge	 of	 this	 clock.	 Since	 the	 output	 of	 this	 circuit	 is
generated	by	ANDing	the	two	flip	flop	outputs,	both	flip-flops	must	see	logic	1	on	their
inputs	 before	 the	 output	 of	 the	 circuit	 becomes	 1.	 This	 means	 that	 the	 pushbutton
connected	to	the	PushButton	input	of	this	circuit	must	stay	high	for	the	entire	duration	of
the	slow	clock	for	the	circuit	output	to	become	1.

Figure	7.3	Debouncer	Schematic

This	design	 is	entered	 in	 the	Quartus	 II	environment	using	 its	block	diagram	editor.
Flip-flops	used	here	are	part	of	the	Quartus	II	library	of	primitives.	To	use	this	circuit	in
other	designs,	a	symbol	must	be	created	for	 it.	Figure	7.4	shows	the	symbol	after	 it	was
created	by	Quartus	II	and	modified	using	the	symbol	editor	utility	of	Quartus	II.

Figure	7.4	Debouncer	Symbol

This	part	of	our	design	can	be	simulated,	but	the	real	test	of	this	circuit	is	using	it	with
UP3	pushbuttons.	This	requires	the	use	of	a	slow	clock	that	will	be	created	next.	UP3	has
a	slow	14.318	MHZ	clock	that	becomes	available	on	pin	152	of	Cyclone	when	pins	6	and
8	of	JP3	are	connected.	The	slowest	clock	available	on	a	DE2	board	is	its	27	MHz	clock
on	pin	D13.

7.2.1.2	 Slow	 Clock	 Using	 Megafunctions.	 Obviously	 a	 14	 MHz	 clock	 is	 too	 fast	 for
filtering	transitions	in	pushbuttons.	Dividing	this	clock	by	218	produces	a	54	Hz	clock	that
will	be	more	adequate	for	fil	tering	slow	mechanical	transitions.	We	use	an	18-bit	counter
for	 dividing	 the	 14	MHz	 clock	 of	UP3.	The	 divider	 circuit	 is	 implemented	 by	 use	 of	 a
counter	megafunction.

The	 divider	 output	 is	 the	most	 significant	 bit	 of	 the	 18-bit	 count	 output.	Figure	 7.5
shows	 the	 circuit	 of	 the	 divider	 circuit	 and	 its	 corresponding	 symbol.	 The	 waveform
shown	in	the	symbol	of	this	circuit	has	been	manually	added	to	the	default	symbol	that	is
automatically	generated	by	Quartus	II.

Figure	7.5	Slow	Clock	Generation

7.2.1.3	A	Debounced	Switch	Using	Completed	Parts.	By	putting	together	the	hardware	of
Figure	 7.4	 and	 Figure	 7.5,	 hardware	 for	 debouncing	 a	 switch	 is	 generated.	 For	 this
hardware	 we	 generate	 the	 CleanPulse	 project	 in	 the	 UP3Library	 directory,	 and	 in	 its
schematic	we	use	symbols	for	Debouncer	(Figure	7.4)	and	SlowClock	(Figure	7.5).

The	 schematic	 of	 CleanPulse	 is	 shown	 in	 Figure	 7.6.	 For	 using	 this	 circuit,	 its
FastClock	 input	 must	 be	 driven	 by	 clock	 at	 Pin	 152	 of	 Cyclone,	 and	 the	 output	 of	 a
pushbutton	being	debounced	must	be	connected	to	its	PushButton	input.

Figure	7.6	CleanPulse	Schematic

The	 Slow	 Clock	 part	 of	 this	 circuit	 can	 be	 shared	 for	 debouncing	 multiple
pushbuttons.	For	single	pushbutton	debouncing	a	symbol	is	created	that	is	shown	in	Figure
7.7.

Figure	7.7	CleanPulse	Symbol

7.2.2	Single	Stepper

Debugging	 a	 sequential	 circuit	 requires	 stepping	 through	 its	 states	 and	 examining	 its
signals	 in	 every	 state.	 Single	 stepping	 cannot	 be	 done	 in	 the	 normal	mode	of	 operation
where	clock	frequencies	are	14	MHz	or	higher.	This	section	shows	the	design	of	a	circuit
that	 generates	 a	 single	 clock	 pulse	 on	 its	 output	 for	 every	 time	 its	 pushbutton	 input	 is
pressed.	 We	 refer	 to	 the	 circuit	 we	 are	 designing	 as	 CleanlPulser.	 This	 circuit	 first
debounces	 a	 pushbutton	 and	 then	 generates	 one	 pulse	 for	 every	 time	 the	 pushbutton	 is
pressed.

Since	 DE2	 pushbuttons	 do	 not	 require	 debouncing,	 only	 the	 part	 of	 CleanlPulser
circuit	that	puts	out	one	pulse	is	required	for	designs	on	this	board.

7.2.2.1	Design	of	a	One-Pulser.	Generally,	when	a	pushbutton	 is	manually	operated,	 the
duration	of	the	time	that	the	switch	is	kept	pressed	is	in	the	order	of	seconds.	Compared
with	clock	rates	of	50	MHz	or	even	14	MHz,	the	time	a	switch	is	kept	pressed	is	way	too
long	for	observing	steps	of	operation	of	a	design.

A	 circuit	 that	 we	 refer	 to	 as	 OnePulser	 has	 a	 slow,	 but	 clean	 and	 filtered,	 input
(LongPulse),	and	a	 fast	elk	 input.	When	LongPulse	becomes	0,	 the	output	of	OnePulser

becomes	0	for	an	entire	period	of	elk.

Figure	 7.8	 shows	 the	 state	 diagram	 of	 the	 OnePulser	 circuit.	 While	 in	 SO,	 the
SinglePulse	output	 of	 this	 circuit	 is	 1.	When	LongPulse	 input	 becomes	0,	 on	 the	 active
edge	of	the	clock	the	output	becomes	0	in	state	Si	and	immediately	with	the	next	clock	it
becomes	1	again.	This	puts	a	0	of	one	clock	period	on	SinglePulse.	Staying	in	S2	while	the
LongPulse	 input	 is	 0,	 prevents	 more	 pulses	 to	 appear	 on	 the	 output	 until	 this	 input	 is
released	and	pressed	again.

Figure	7.8	OnePulser	State	Machine

The	 Verilog	 code	 of	 OnePulser	 that	 is	 synthesized	 into	 the	 OnePulser	 library
component	 is	 shown	 in	 Figure	 7.9.	 The	 symbol	 for	 this	 component	 is	 shown	 in	 Figure
7.10.

Figure	7.9	OnePulserVerilog	Code

Figure	7.10	OnePulser	Block	Symbol

7.2.2.2	 Clean	 One	 Pulser.	 Using	 CleanPulse	 (debouncer)	 and	 OnePulser	 library
components,	 the	design	of	 the	CleanlPulser	 is	shown	in	Figure	7.11.	This	circuit	 is	used
for	single	stepping	a	sequential	circuit.	Connecting	a	UP3	pushbutton	 to	 the	PushButton
input	 of	 this	 circuit	 causes	 a	 positive	 or	 negative	 pulse	 of	 FastClock	 duration	 on	 the
circuits	 output.	 Using	 this	 circuit	 with	 a	 DE2	 pushbutton	 still	 works	 the	 same	 way.
However,	 since	 DE2	 pushbuttons	 (KEY3,	 KEY2,	 KEY1,	 and	 KEYO)	 are	 already
debounced,	using	the	CleanPulse	circuit	is	not	needed.

Figure	7.11	CleanlPulser	Circuit	Diagram

The	 block	 symbol	 for	 CleanlPulser	 is	 shown	 in	 Figure	 7.12.	 When	 used	 with	 a
pushbutton,	 each	 time	 the	 pushbutton	 is	 pressed	 a	 filtered	 pulse	 that	 can	 be	 used	 for
clocking	a	sequential	circuit	is	generated.

7.2.3	Utilizing	UP3	Basic	10

This	 section	 presents	 a	 counter	 design	 that	 uses	 utility	 library	 components	 discussed
above.	This	 simple	example	demonstrates	utilization	of	 the	 library	components	we	have
developed	so	far.

The	 counter	 we	 are	 designing	 is	 an	 up/down	modulo-16	 4-bit	 binary	 counter,	 with
parallel	data	input	(data[3:0]),	an	asynchronous	load	input	(aloud),	an	updown	control,	and
a	rising	edge	sensitive	clock.	We	used	Quartus	II	configurable	lpm_counter	for	this	design.
The	Quartus	II	schematic	for	the	tester	of	this	design	is	shown	in	Figure	7.12.

Figure	7.12	Testing	a	Counter	with	Debouncers

The	 clock	 input	 of	 Modl6Counter	 is	 driven	 by	 an	 instance	 of	 CleanlPulse.	 The
FastClock	input	of	CleanlPulse	is	driven	by	sys_elk	that	is	tied	to	pin	152	of	Cyclone.	UP3
jumper	JP3.6	and	JP3.8	are	connected	to	provide	a	clock	frequency	of	14.318	on	pin	152.
The	PushButton	 input	of	CleanUPulse	connects	 to	SW4	pushbutton.	Every	 time	SW4	is
pressed	a	positive	pulse	will	be	applied	to	clock	input	of	Modl6Counter.

The	 aload	 input	 of	Modl6Counter	 that	 asynchronously	 loads	par	 data	 input	 into	 the
counter	 is	 driven	 by	 a	 CleanPulse	 library	 module.	 This	 component	 debounces	 its
PushButton	 input.	 This	 input	 is	 tied	 to	 pin	 49	 of	 Cyclone	 that	 is	 driven	 by	 SW5
pushbutton.	The	updown	 input	of	 the	counter	 that	 selects	 the	count	direction,	 is	directly
tied	 to	 SW6	pushbutton.	Because	 this	 select	 input	 is	 synchronous,	 debouncing	 the	UP3
pushbutton	is	not	necessary.

The	 four	 DIP	 switches	 of	 UP3	 connect	 to	 the	 parallel	 input	 (pardata[3..0])	 of	 the
counter.	The	outputs	of	the	counter	are	displayed	on	D3	to	D6	LEDs	of	UP3.

The	 count	 sequence	 of	 Modl6Counter	 is	 verified	 by	 pressing	 SW4.	 When	 this
pushbutton	is	pressed,	the	count	increases	or	decreases	depending	on	updown.	The	binary

count	of	the	circuit	is	displayed	on	the	UP3	LEDs.

7.2.4	Utilizing	DE2	Basic	10

In	this	section	we	use	DE2	push	buttons	to	operate	a	counter	in	the	single-step	mode.	The
output	of	the	counter	will	be	displayed	in	binary	using	DE2	LEDs.	This	simple	example
demonstrates	utilization	of	the	OnePulser	library	components	that	we	have	developed	for
our	library.

The	 counter	 we	 are	 designing	 is	 an	 up/down	modulo-16	 4-bit	 binary	 counter,	 with
parallel	data	input	(data[3:0]),	an	asynchronous	load	input	(aloud),	an	updown	control,	and
a	rising	edge	sensitive	clock.	We	used	Quartus	II	configurable	lpm_couuter	for	this	design.
The	Quartus	II	schematic	for	the	tester	of	this	design	is	shown	in	Figure	7.13.

Figure	7.13	Single-Stepping	a	Counter	on	DE2

The	 clock	 input	 of	Mod	 16Counter	 is	 driven	 by	 an	 instance	 of	OnePulser.	 The	 elk
input	of	OnePulser	 is	driven	by	clock-pulse	 that	 is	 tied	 to	pin	N2	of	Cyclone	 II	 (the	50
MHz	 clock).	 The	 LongPulse	 input	 of	 OnePulser	 connects	 to	 pushbutton	 KEY1.	 Every
time	KEY1	 is	pressed	 a	 positive	 pulse	will	 be	 applied	 to	 clock	 input	 of	Modl6Counter.
The	 aload	 input	 of	Modl6Counter	 asynchronously	 loads	par	 data	 input	 into	 the	 counter.
This	input	is	connected	to	DE2	pushbutton	KEYO.	The	updown	input	of	the	counter	that
selects	the	count	direction	is	directly	tied	to	DE2	toggle	switch	SW4.	Parallel	inputs	of	the
counter	(pardata[3..0])	are	tied	to	four	toggle	switches	SW3	to	SWO.	The	outputs	of	the
counter	are	displayed	on	four	rightmost	red	LEDs.

The	 count	 sequence	 of	 Modl6Couuter	 is	 verified	 by	 pressing	 and	 holding	 down
KEYO	 and	 pressing	 and	 releasing	 KEY1.	 With	 each	 press	 and	 release	 of	 KEY1,	 the
counter	counts	up	or	down	depending	of	SW4	position.

7.3	Frequency	Dividers

In	many	of	the	designs	that	we	will	discuss	in	the	sections	that	follow,	timers	of	varying
durations,	or	slow	clocks	are	needed.	For	this	purpose,	we	develop	frequency	dividers.	A
frequency	divider	is	a	counter	with	a	carry	out	output.	An	n-bit	counter	divides	its	 input
clock	 by	 2n.	 This	 means	 that	 for	 every	 2n	 pulses	 on	 the	 circuit	 clock	 input	 one	 pulse
appears	on	counter’s	carry	output.

Frequency	dividers	will	be	used	in	LCD	display,	keyboard	interface,	and	VGA	driver
that	are	discussed	in	the	following	sections.	The	debouncer	circuit	of	the	previous	section
also	used	a	frequency	divider.	A	toggle	flip-flop	is	a	divide-by-2	circuit.

7.4	Seven	Segment	Displays

Many	development	boards	including	Altera’s	DE2	include	sevensegment	displays	(SSD).
An	SSD	consists	of	seven	LEDs	organized	in	such	a	way	to	display	digits	0	through	9	and
letters	A	 though	F.	An	SSD	 is	 also	 referred	 to	 as	 a	HEX	display.	Figure	7.14	 shows	an
SSD	display	and	numbering	of	its	LEDs.

Figure	7.14	SSD	Segment	Numbers

7.4.1	SSD	Driver

Figure	 7.15	 shows	 Verilog	 code	 of	 an	 SSD	 driver.	 This	 code	 takes	 a	 4bit	 input	 and
generates	SSD	code	for	driving	LEDs	of	a	display	according	to	Figure	7.14.	The	Quartus
II	symbol	for	this	unit	has	four	inputs	and	seven	outputs	and	will	be	shown	in	the	circuit
that	we	will	discuss	next.

Figure	7.15	SSD	Driver	Verilog	Code

7.4.2	Testing	DE2	SSD	Driver

Testing	the	SSD	driver	is	achieved	by	using	it	at	the	output	of	the	modulo-16	counter	of
Figure	7.13.	This	test	circuit	is	shown	in	Figure	7.16.	With	the	pin	assignment	shown,	the
counter	output	is	displayed	on	the	right-most	HEX	display	of	the	DE2	development	board.

Figure	7.16	Using	a	DE2	SSD	to	Display	Counter	Output

7.5	LCD	Display	Adaptor

The	 UP3	 and	 DE2	 development	 boards	 come	 with	 a	 16	 character	 LCD	 display.	 The
display	has	internal	memory	for	character	matrix	definition,	and	a	standard	character	set.
To	use	this	display,	it	has	to	be	initialized,	and	then	write	into	its	ports	that	are	connected
to	Cyclone	pins.	A	 simple	 interface	 is	 described	 here.	Although,	 this	 interface	 does	 not
utilize	all	capabilities	of	this	particular.	LCD	display,	it	does	show	key	issues	in	operating
such	a	device.

The	datasheet	of	the	LCD	display	has	details	of	its	operation.	Commands	and	data	can
be	written	into	this	device,	and	its	status	can	be	read	when	it	is	in	the	command	mode.	Our
interface	for	this	device	initializes	it	and	readies	it	for	being	written	into	for	display.

7.5.1	Writing	into	LCD

Chapter	6	showed	pin	connections	and	operation	of	an	LCD	display	unit.	To	write	data	or
command	 into	 the	LCD,	 the	data	or	command	byte	must	be	placed	on	 its	DB	input,	RS
must	be	set	to	1	or	0	for	data	or	command,	RW	must	be	set	to	1	or	0	for	read	or	write,	and
its	E	input	(enable)	must	become	0	for	at	least	500	µs.

The	Verilog	code	of	LCD	interface	circuit	is	shown	in	Figure	7.17.	This	circuit	has	an
sic	 input	 that	 is	 driven	 by	 a	 slow	 clock.	 This	 input	 decides	 on	 the	 duration	 of	 outputs
generated	by	this	Verilog	code.	Every	time	wrt	becomes	1	for	any	length	of	time,	a	pulse
whose	duration	is	equal	to	that	of	sic	appears	on	the	en	it,	output	of	this	circuit.

Figure	7.17	Producing	Enable	for	LCD

The	 elk	 input	 of	 this	 module	 should	 be	 connected	 to	 any	 available	 clock	 on	 the
development	board.	The	wrt	input	is	the	write	pulse	that	is	at	least	as	long	as	the	duration
of	elk.	The	sic	 (slow	clock)	 input	 is	a	 slow	clock	with	duration	of	500	ns	or	more.	The

LCD	display	requires	an	enable	cycle	of	at	least	500	ns.	A	clock	frequency	of	1	MHz	on
sic	satisfies	 this	 requirement.	The	outputs	of	 the	write-synch	module	are	en	 it	and	busy.
The	busy	output	becomes	1	when	wrt	of	1	is	detected	and	remains	at	this	level	until	en	-it
is	inactive.

Figure	7.18	 shows	 the	 state	machine	 that	 corresponds	 to	 the	Verilog	code	of	Figure
7.17.	State	SO	waits	for	wrt	to	become	1.	Following	this	event,	when	sic	becomes	1,	the
can	output	becomes	0	and	remains	0	for	as	long	as	sic	is	1.	At	this	point,	the	machine	goes
into	S3	waiting	for	wrt	to	become	0	before	returning	to	SO.

Figure	7.18	LCD	Enabling	State	Machine

The	 Verilog	 module	 described	 above	 is	 incorporated	 into	 the	 LCD	 Driver	 circuit
shown	 in	 Figure	 7.19.	 This	 circuit	 is	 implemented	 as	 a	 Quartus	 II	 schematic.	 The	 RW
output	is	tied	to	ground	since	we	will	only	be	using	this	circuit	for	writing	into	the	LCD
and	not	reading	from	it.

Figure	7.19	LCD_Driver	Circuit

7.5.2	LCD	Initialization

Before	display	data	can	be	written	into	the	LCD	display,	it	has	to	be	reset	and	initialized.
The	minimum	set	of	instructions	that	are	needed	for	this	purpose	are	2’h04,	2’h01,	2’h02,
and	2’hOF.	The	first	instruction	initializes	the	display.	The	next	two	instructions	turn	clear
LCD	display	and	set	curser	at	the	home	position.	The	last	instruction	turns	on	the	display,
turns	on	the	curser,	and	causes	the	curser	to	blink.

The	procedure	for	writing	commands	 into	 the	LCD	is	similar	 to	 that	of	writing	data
for	display,	except	that	for	commands,	the	RS	input	of	LCD	must	be	0.

The	 LCD	 Driver	 of	 Figure	 7.19	 writes	 8-bit	 commands	 into	 the	 LCD	 when	 its
dataCmdBar	 input	 is	 0.	 On	 the	 other	 hand,	 a	 separate	 hardware	 must	 be	 used	 for
generating	the	above	mentioned	instructions	and	applying	them	to	the	LCD	Driver	when
an	initialization	pulse	is	received.

We	 have	 developed	 initializer	 and	 InitROM	modules	 for	 initializing	 the	 LCD.	 The
initializer	 module	 waits	 for	 a	 1	 on	 its	 init	 input,	 and	 when	 received	 it	 generates	 the
sequence	of	00,	01,	and	10	on	its	addr	output.	With	each	address,	it	issues	wrt	and	waits
for	 busy	 to	 become	 0	 before	 issuing	 the	 next	 address.	 The	 m	 itROM	 module	 is	 an
unclocked	ROM	that	contains	the	8’h04,	8’h01,	8’h02,	and	8’h0F	commands	in	its	0,	1,	2,
and	3	locations.

Figure	7.20	shows	 the	Verilog	code	of	 the	 initializer	module	and	Figure	7.21	 shows
the	Init_ROM	module.

	

Figure	7.20	initializer	Module

Figure	7.21	Command	ROM

Together,	 modules	 of	 Figure	 7.20	 and	 Figure	 7.21,	 execute	 a	 sequence	 of	 four
instructions.	At	the	same	time	that	an	instruction	appears	on	the	Q	output	of	m	itROM,	the
wrt	output	of	initializer	becomes	1.	The	next	instruction	is	applied	when	the	busy	output
of	LCD	Driver	become	0.

7.5.3	Display	Driver	with	Initialization

Putting	together	our	driver	(Section	7.5.1)	and	initializer	(Section	7.5.2)	gives	us	a	display
driver	 with	 initialization.	 This	 driver	 that	 is	 shown	 in	 Figure	 7.22	 uses	 LCD	Driver	 to
write	data	or	command	to	the	LCD.	The	init	input	causes	the	initializer	to	take	control	of
the	 multiplexers	 and	 send	 instructions	 from	 Init_ROM	 to	 LCD	 _Driver.	 When	 all
instructions	have	been	sent,	sel	becomes	0,	and	data	from	datain	port	of	the	LCDDriverlnit
will	 be	 routed	 to	 the	LCD	Driver.	As	 shown	 in	Figure	 7.22,	 the	LCD	driver	 requires	 a
slow	(clk1MHz)	input	for	the	timing	of	the	LCD	display.

Figure	7.22	LCD	Driver	with	Initialization

7.5.4	Testing	the	LCD	Driver	(UP3)

Figure	7.23	shows	a	test	circuit	for	our	LCD	driver.	A	simple	test	of	this	circuit	is	done	by
writing	 8-bit	 constants	 into	 it.	 For	 this	 purpose	 we	 have	 connected	 the	 four	 most
significant	bits	of	the	data	input	of	LCDDriuerluit	to	1000	constant	and	its	least	significant
bits	 to	 the	UP3	DIP	switches.	As	 shown	 in	Figure	7.23	a	divide-by-64	circuit	 generates
LCD	slow	clock	from	the	input	48	MHz	clock.	The	CleanPulse	unit	shown	in	this	figure
filters	 push-button	 that	 drives	 the	 write	 input	 of	 the	 LCD	 driver.	 This	 test	 hardware
verifies	the	operation	of	our	LCD	interfaces.

Figure	7.23	LCD	Driver	Tester	(UP3)

7.5.5	Testing	the	LCD	Driver	(DE2)

The	test	circuit	of	Figure	7.24	tests	the	LCD	display	of	the	DE2	board.	Testing	is	done	by
writing	8-bit	constants	into	the	LCD.	For	this	purpose	we	have	connected	the	data	input	of
LCDDriuerlnit	 to	DE2	 toggle	 switches,	SW7	 through	SWO.	As	 shown	 in	Figure	7.23	a

divide-by-64	circuit	generates	LCD	slow	clock	from	the	 input	50	MHz	clock.	The	write
input	of	 the	LCD	driver	 is	driven	by	a	DE2	pushbutton.	This	 test	 hardware	verifies	 the
operation	of	our	LCD	interfaces.

Figure	7.24	LCD	Driver	Tester	(DE2)

7.6	Keyboard	Interface	Logic

As	another	library	component,	this	section	shows	the	design	of	keyboard	interface	logic.
This	interface	is	implemented	on	a	Cyclone	and	Cyclone	II	and	can	be	used	for	inputting
data	through	a	PS2	port.	We	will	show	how	keyboards	work	and	how	they	transmit	serial
data	representing	keys	pressed.	We	will	design	an	interface	logic	that	communicates	with	a
keyboard	and	collects	the	serially	transmitted	data	from	a	keyboard.

7.6.1	Serial	Data	Communication

Figure	 7.25	 shows	 the	 interface	 that	 we	 are	 designing	 in	 this	 section.	 This	 device
communicates	 with	 they	 keyboard	 through	 two	 bidirectional	 signals.	 Keys	 pressed	 are
turned	into	8-bit	ASCII	and	are	made	available	for	the	processing	device.

Figure	7.25	Keyboard	Interface	Logic

Data	communication	between	the	keyboard	and	the	host	system	is	synchronous	serial	over
bi-directional	 clock	 and	 data	 lines.	 Keyboard	 sends	 commands	 and	 key	 codes,	 and	 the
system	sends	commands.

Either	the	system	or	the	keyboard	drive	the	data	and	clock	lines,	while	clocking	data
in	 either	 direction	 is	 provided	 by	 the	 keyboard	 clock.	 When	 no	 communication	 is
occurring,	 both	 lines	 are	 high.	 Figure	 7.26	 shows	 the	 timing	 of	 keyboard	 serial	 data
transmission.

Figure	7.26	Keyboard	Serial	Data	Transmission

7.6.1.1	Serial	Data	Format.	Data	 transmission	on	 the	 data	 line	 is	 synchronized	with	 the
clock;	 data	 will	 be	 valid	 before	 the	 falling	 edge	 and	 after	 the	 rising	 edge	 of	 the	 clock
pulse.	Serial	data	 transmission	begins	with	 the	data	 line	dropping	 to	0.	This	bit	value	 is
taken	 on	 the	 rising	 edge	 of	 the	 clock	 and	 considered	 as	 the	 start-bit.	On	 the	 next	 eight
clock	edges,	data	is	transmitted	in	low	to	high	order	bit.	The	next	data	bit	is	the	odd-parity
bit,	such	that	data	bits	and	the	parity	bit	always	have	odd	number	of	ones.	The	last	bit	on
the	data	line	is	the	stop-bit	that	is	always	1.	After	the	stop-bit,	the	data	line	remains	high
until	 another	 keyboard	 key	 is	 pressed	 and	 a	 new	 transmission	 begins.	 For	 every	 key
pressed,	eleven	bits	are	transmitted.

When	 the	 keyboard	 sends	 data	 to	 or	 receives	 data	 from	 the	 system	 it	 generates	 the
clock	signal	to	time	the	data.	The	system	can	prevent	the	keyboard	from	sending	data	by
forcing	the	clock	line	to	0,	during	 this	 time	 the	data	 line	may	be	high	or	 low.	When	 the
system	sends	data	to	the	keyboard,	it	forces	the	data	line	to	0	until	the	keyboard	starts	to
clock	the	data	stream.

7.6.1.2	Keyboard	Transmission.	When	the	keyboard	is	ready	to	send	data,	 it	first	checks
the	status	of	the	clock	to	see	if	it	is	allowed	to	transmit	data.	If	the	clock	line	is	forced	to
low	by	the	system,	data	transmission	to	the	system	is	inhibited	and	keyboard	data	is	stored
in	the	keyboard	buffer.	If	the	clock	line	is	high	and	the	data	line	is	low,	the	keyboard	is	to
receive	data	from	the	system.	In	this	case,	keyboard	data	is	stored	in	the	keyboard	buffer,
and	 the	 keyboard	 receives	 system	 data.	 If	 the	 clock	 and	 data	 lines	 are	 both	 high	 the
keyboard	 sends	 the	 start-bit,	 8	 data	 bits	 the	 parity	 bit	 and	 the	 stop-bit.	 Figure	 7.27
summarizes	these	communication	modes.

During	transmission,	the	keyboard	checks	the	clock	line	for	low	level	at	least	every	60
µseconds.	If	the	system	forces	the	clock	line	to	0	after	the	keyboard	starts	sending	data,	a

condition	known	as	 line	contention	occurs,	 and	 the	keyboard	 stops	 sending	data.	 If	 line
contention	 occurs	 before	 the	 rising	 edge	 of	 the	 10th	 clock	 pulse,	 the	 keyboard	 buffer
returns	the	clock	and	data	lines	to	high	level.

Figure	7.27	Keyboard	Communication	Modes

7.6.1.3	System	Transmission.	The	system	sends	8-bit	commands	 to	 the	keyboard.	When
the	 system	 is	 ready	 to	 send	 a	 command	 to	 the	 keyboard,	 it	 first	 checks	 to	 see	 if	 the
keyboard	is	sending	data.	If	 the	keyboard	is	sending,	but	has	not	reached	the	10th	clock
signal,	the	system	can	override	the	keyboard	output	by	forcing	the	keyboard	clock	line	to
0.	 If	 the	keyboard	 transmission	 is	beyond	 the	10th	clock	signal,	 the	 system	receives	 the
transmission.

If	 the	keyboard	 is	not	sending	or	 if	 the	system	decides	 to	override	 the	output	of	 the
keyboard,	the	system	forces	the	keyboard	clock	line	to	0	for	more	than	60	µseconds	while
preparing	 to	 send	 data.	 When	 the	 system	 is	 ready	 to	 send	 the	 start	 bit,	 it	 allows	 the
keyboard	 to	 drive	 the	 clock	 line	 to	 1	 and	 drives	 the	 data	 line	 to	 low.	 This	 signals	 the
keyboard	that	data	is	being	transmitted	from	the	system.	The	keyboard	generates	the	clock
signals	 and	 receives	 the	 data	 bits,	 parity	 and	 the	 stop-bit.	After	 the	 stop-bit,	 the	 system
releases	 the	data	 line.	 If	 the	keyboard	 receives	 the	stop-bit	 it	 forces	 the	data	 line	 low	 to
signal	the	system	that	the	keyboard	has	received	its	data.

Upon	receipt	of	this	signal,	the	system	returns	to	a	ready	state,	in	which	it	can	accept
keyboard	output	or	goes	 to	 the	 inhibited	 state	until	 it	 is	 ready.	 If	 the	keyboard	does	not
receive	the	stop-bit,	a	framing	error	has	occurred,	and	the	keyboard	continues	to	generate
clock	signals	until	the	data	line	becomes	high.	The	keyboard	then	makes	the	data	line	low
and	requests	a	resending	of	the	data.	A	parity	error	will	also	generate	a	re-send	request	by
the	keyboard.

In	 our	 implementation	 of	 keyboard	 interface	 logic,	 system	 transmission	 is	 not
considered;	 i.e.,	 flow	 of	 data	 is	 always	 from	 the	 keyboard	 to	 the	 data	 processing	 drive
(Figure	7.25).

7.6.2	Power-On	Routine

The	keyboard	 logic	 generates	 a	 power-on-reset	 signal	when	power	 is	 first	 applied	 to	 it.
The	 timing	of	 this	signaling	 is	between	150	milliseconds	and	2.0	seconds	from	the	 time
power	is	first	applied	to	the	keyboard.

Following	this	signaling,	basic	assurance	test	is	performed	by	the	keyboard.	This	test
consists	of	a	keyboard	processor	 test,	a	checksum	of	 its	ROM,	and	a	RAM	test.	During
this	test,	activities	on	the	clock	and	data	lines	are	ignored.	The	keyboard	LEDs	are	turned
on	 at	 the	 beginning	 and	 off	 at	 the	 end	 of	 the	 test.	 This	 test	 takes	 a	 minimum	 of	 300
milliseconds	 and	 a	maximum	of	 500	milliseconds.	Upon	 satisfactory	 completion	 of	 the
basic	 assurance	 test,	 a	 completion	 code	 (hex	 AA)	 is	 sent	 to	 the	 system,	 and	 keyboard
scanning	begins.

7.6.3	Codes	and	Commands

A	host	 system	may	 send	 8-bit	 commands	 to	 the	 keyboard,	while	 a	 keyboard	may	 send
commands	and	key	codes	to	the	system.

7.6.3.1	System	Commands.	System	commands	may	be	sent	to	the	keyboard	at	any	time.
The	 keyboard	 will	 respond	 within	 20	 milliseconds,	 except	 when	 performing	 the	 basic
assurance	 test	 (BAT),	 or	 executing	 a	 Reset	 command.	 System	 commands	 and	 their
hexadecimal	values	are	shown	in	Table	7.1.

7.6.3.2	Keyboard	Commands.	Table	7.2	shows	the	commands	that	the	keyboard	may	send
to	the	system	and	their	hexadecimal	values.

7.6.3.3	Keyboard	Codes.	Keyboards	are	available	for	several	languages	and	settings.	The
keyboard	 that	 is	most	common	for	 the	English	 language	 is	one	with	104	keys	shown	 in
Figure	7.28.	Keys	of	this	keyboard	are	identified	by	numbers,	and	for	every	key	there	is	a
scan	code.	Several	scan	codes	are	available,	and	the	default	scan	code	is	Scan	Code	2	that
we	will	discuss	here.

Keyboard	scan	codes	consist	of	a	Make	and	a	Break	code.	The	Make	code	identifies
the	key	pressed	and	the	Break	code	indicates	the	release	of	a	key.	For	most	keys	the	Break
code	 is	 FO	 followed	 by	 the	Make	 code.	 For	 example	 when	 the	 Space	 bar	 (key	 61)	 is
pressed	and	released,	hexadecimal	codes	29,	FO	and	29	are	transmitted	from	the	keyboard
to	the	system	via	 the	data	serial	 line.	If	 this	key	remains	pressed,	 the	Make	code	(29)	 is
continuously	 transmitted	until	 it	 is	 released.	Make	 codes	 for	Scan	Code	2	 are	 shown	 in
Table	7.3.

Figure	7.28	Standard	104-key	Keyboard	and	Key	Number

The	 Make	 and	 Break	 arrangement,	 makes	 it	 possible	 for	 the	 system	 to	 identify
multiple	keys	pressed	and	the	order	in	which	they	have	been	pressed.	For	example,	if	one
presses	and	holds	down	the	Left-Shift	key	(key	number	44),	12	Hex	is	continuously	sent
to	 the	 system.	While	 this	 is	 happening,	 if	 key	 number	 9	 (the	 8/*	 key)	 is	 pressed	 and
released,	 3E,	 FO	 and	 3E	 codes	 are	 transmitted.	 The	 receiving	 system	 identifies	 this
sequence	of	events	as	the	intention	to	enter	an	asterisk	(*).

7.6.4	Keyboard	Interface	Design

This	section	discusses	a	keyboard	interface	for	reading	scan	data	from	the	keyboard	and
producing	ASCII	codes	of	the	keys	pressed.	Code	Set	2	is	assumed,	and	the	interface	only
handles	 data	 transmission	 from	 the	 keyboard.	 The	 interface	 reads	 serial	 data	 from	 the
keyboard,	detects	the	Make	code	when	a	key	is	pressed	and	looks	up	the	Make	code	in	an
ASCII	 conversion	 table.	 For	 simplicity,	 the	 look-up	 table	 only	 handles	 upper-case
characters.

7.6.4.1	Collecting	the	Make	Code.	The	first	part	of	our	interface	connects	to	the	keyboard

data	and	clock	lines	and	when	a	key	is	pressed,	it	outputs	an	8-bit	scan	code.	The	KBdata,
KBclock	inputs	are	for	the	keyboard	data	and	clock	inputs,	and	the	8-bit	ScanCode	is	the
main	output	of	this	part.

This	part	 also	uses	 a	 fast	 synchronizing	clock,	SYNclk,	 and	a	keyboard	 reset	 input,
KBreset.	In	addition	to	 the	ScanCode	output,	 this	part	outputs	a	signal	 to	 indicate	 that	a
scan	code	is	ready	(ScanRdy)	and	another	output	to	indicate	that	a	key	has	been	released
(KeyReleased).	These	outputs	make	distinction	between	Make	and	Break	states.	When	a
key	is	pressed	three	positive	pulses	appears	on	ScanRdy,	one	for	the	Make	code	and	two
for	the	Break	codes.	The	KeyRealesed	output	only	becomes	1	once	when	all	three	codes
have	been	transmitted.

Figure	7.29	shows	the	outline	of	the	Verilog	code	for	collection	of	bits	of	KBdata	and
generation	 of	 scan	 code	 and	 the	 corresponding	 handshaking	 outputs.	 As	 shown	 in	 this
figure,	 KBClock	 that	 is	 synchronized	 with	 SYNclk	 is	 generated	 from	 KBclk.	 This
synchronized	 clock	 is	 used	 in	 state	 machines	 that	 follow	 instead	 of	 KBclk.	 The	 code
consists	of	three	state	machines.

The	first	state	machine	generates	a	signal	that	remains	1	from	the	detection	of	start-bit
to	the	end	of	stop-bit.	Another	state	machine	waits	for	start-bit	and	collects	data	bits	on	the
rising	 edge	 of	KBClock.	 The	 last	 state	machine	 waits	 for	 the	 completion	 of	 the	 Break
Codes	and	issues	the	KeyReleased	output.

Figure	7.29	Keyboard	Scan	Code	Generation

Figure	 7.30	 shows	 the	 part	 of	 code	 of	 KBScanCode	 module	 for	 issuing
StartBitDetected.	 The	 state	machine	 shown	 uses	 the	 fast	 system	 SYNclk.	 The	machine
waits	for	KBdata	to	become	0	to	issue	StartBitDetected.	This	signal	remains	1	until	stop
bit	is	detected	and	data	bit	collection	is	complete.	The	completed	signal	issued	by	the	data
collection	state	machine	resets	StartBitDetected.

Figure	7.30	Detect	Start	and	Stop

The	part	of	 the	Verilog	code	of	Figure	7.29	 that	 is	 responsible	for	collection	of	data
bits	 transmitted	 by	 the	 keyboard	 is	 shown	 in	Figure	 7.31.	 The	 clock	 used	 for	 this	 state
machine	 is	 KBClock.	 The	 machine	 waits	 for	 StartBitDetected	 in	 its	 Idle	 state.	 When
detected,	it	cycles	through	Bit1	to	Bit8	states	as	data	bits	appear	on	KBdata	on	the	rising
edge	of	KBClock.	When	all	bits	have	been	detected,	it	goes	to	the	stop	state.

Figure	7.31	Data	Bit	Collection

The	completed	output	of	this	part	of	the	circuit	is	issued	when	the	machine	reaches	the
stop	state.	Also	note	in	Figure	7.31	that	ScanRdy	is	issued	the	same	way.	The	last	part	of
Figure	7.31	shows	a	shift	 register	 that	clocks	data	bits	as	 they	appear	on	KBdata	on	 the
rising	edge	of	KBCloch..	When	all	bits	are	shifted,	 the	Scan.Code	register	will	have	 the

keyboard	scan	code.	For	every	key	pressed	this	happens	three	times	for	Make	and	Break
codes.

Figure	7.32	Waiting	for	Key	Release

The	 last	 part	 of	 the	 Verilog	 code	 of	 Figure	 7.29	 is	 a	 state	 machine	 that	 issues
KeyReleased	 when	 a	 complete	 set	 of	 Make	 and	 Break	 codes	 are	 transmitted	 by	 the
keyboard.	This	part	that	is	a	state	machine	triggered	by	KBClock	and	is	shown	in	Figure
7.32.	This	machine	cycles	through	WaitFO,	WaitRPT,	and	Released	states	as	Break	codes
are	 transmitted.	 The	 FO	 code	 that	 is	 transmitted	 appears	 on	 ScanCode	 when	 ScanRdy
becomes	1.	When	 this	 is	detected	 the	machine	goes	 from	Wait	FO	 to	WaitRPT.	 In	 the	 -
WaitRPT	state,	the	machine	waits	for	the	repeat	of	the	code	of	the	key	pressed.	This	code
is	accompanied	by	another	pulse	on	ScanRdy.	When	detected,	the	machine	moves	into	the
released	state	in	which	the	KeyReleased	output	is	issued.

7.6.4.2	ASCII	Look-Up.	The	ASCII	 lookup	part	of	our	keyboard	 interface	 is	a	ROM	of
Quartus	 II	megafunctions	with	 8	 address	 lines	 and	word	 length	 of	 8	 bits.	 Hexadecimal
locations	OD	through	66	of	this	ROM	are	defined	to	contain	ASCII	codes	for	scan	codes
that	correspond	to	ROM	addresses.	This	megafunction	is	defined	to	use	the	KbASCII.mif
memory	 initialization	 file,	 a	 portion	 of	 which	 is	 shown	 in	 Figure	 7.33.	 The	 ScanCode
output	 of	 Figure	 7.29	 connects	 to	 the	 address	 input	 of	 this	 ROM,	 and	 ASCII	 codes
corresponding	to	input	addresses	appear	on	its	output.	This	lookup	ROM	implemented	as
a	megablock	is	defined	as	Scan2ASCII	block	symbol.

Figure	7.33	ASCII	Conversion	Memory	Initialization	File

7.6.4.3	 Keyboard	 Driver.	 The	 complete	 keyboard	 driver	 that	 takes	 a	 key	 press	 and
generates	 the	 corresponding	 ASCII	 code	 consists	 of	 the	 KBScanCode	 Verilog	 code	 of
Figure	7.29	and	 the	Scan2ASCII	 lookup	ROM.	Figure	7.34	shows	 the	block	diagram	of
our	keyboard	driver.

Figure	7.34	Schematic	Diagram	of	KB_Driver	Keyboard	Driver

7.6.4.4	Testing	 the	Keyboard	Driver.	We	use	 the	LCD	display	of	Section	7.5	 to	 test	our
keyboard	driver	of	Figure	7.34	shows	this	 testbench.	The	character	output	of	KBDrirver
connects	 to	dataIn	of	 the	LCD	display.	Since	we	need	 to	see	only	 the	character	 that	has
been	pressed	(and	not	the	Break	Codes),	we	use	the	KeyReleased	output	of	the	KB	Driver.
This	 output	 connects	 to	wrt	 input	 of	 LCDDriverlnit.	As	 before,	 the	DiuideBy64	 circuit
generates	the	slow	clock	needed	by	the	LCD	display.

The	 diagram	 of	 Figure	 7.35	 shows	 pin	 assignments	 for	 the	 keyboard	 circuit
implemented	 on	 the	 UP3	 development	 board.	 Figure	 7.36	 shows	 this	 same	 circuit
implemented	with	a	DE2	Cyclone	II.

Figure	7.35	Testing	the	Keyboard	Interface	(UP3)

Figure	7.36	Testing	the	Keyboard	Interface	(DE2)

7.7	VGA	Interface	Logic

In	this	section	we	discuss	the	design	of	VGA	interface	logic.	The	VGA	driver	discussed	is
capable	of	displaying	characters	from	a	display	RAM	on	a	standard	VGA	monitor.	After
discussing	 how	 a	 VGA	 monitor	 works,	 we	 show	 hardware	 for	 driving	 it.	 The	 design
methodology	presented	here	uses	Verilog	blocks,	megafunctions,	memories	and	schematic
capture.	A	simple	testbench	at	needed	will	show	the	basic	operation	of	this	unit.

7.7.1	VGA	Driver	Operation

A	standard	VGA	monitor	 consists	 of	 a	grid	of	pixels	 that	 can	be	divided	 into	 rows	 and
columns.	A	VGA	monitor	contains	at	least	480	rows,	with	640	pixels	per	row,	as	shown	in
Figure	 7.37.	 Each	 pixel	 can	 display	 various	 colors,	 depending	 on	 the	 state	 of	 the	 red,
green,	and	blue	input	signals.	These	signals	are	analog	signals	and	determine	the	intensity
of	their	corresponding	colors.

Figure	7.37	VGA	Monitor

7.7.1.1	Pixel	Sweeping.	In	a	VGA	monitor	pixels	are	refreshed	with	proper	color	one-by-
one	from	location	(0,	0)	to	(640,	480).	This	is	done	from	upper	left	of	the	monitor	to	its
lower	right.	To	eliminate	any	screen	flickering,	the	refreshing	must	be	done	such	that	the
entire	screen	is	refreshed,	i.e.,	all	screen	is	sweeped	in	less	than	0.02	second.	For	a	better
than	maximum	refresh	time,	of	we	choose	a	refresh	cycle	of	1/60	of	a	second.	With	this
rate,	and	considering	the	overhead	time	of	moving	scan	from	one	line	to	another,	and	one
screen	to	next,	a	frequency	of	25.175	MHz	is	required	for	refreshing	each	pixel.	In	most
VGA	monitors	the	refresh	time	can	range	anywhere	from	0.02	to	1/160	of	a	second.	This
translates	 to	 a	 pixel	 frequency	 of	 21	MHz	 to	 67	MHz.	Higher	 pixel	 resolutions	 require
higher	frequencies.	Discussion	of	VGA	timing	that	follows	justifies	pixel	frequencies	and
refresh	rates.

7.7.1.2	VGA	Timing.	The	discussion	of	VGA	timing	that	we	are	presenting	here	is	based
on	 the	 60	 Hz	 screen	 refresh	 rate	 with	 a	 clock	 frequency	 of	 25.175	 MHz.	 After	 the
completion	of	 this	discussion	we	will	show	how	the	 timings	described	 translate	 to	other
refresh	rates.

For	 the	VGA	monitor	 to	work	 properly,	 it	must	 receive	 data	 at	 specific	 times	with
specific	 pulses.	 Horizontal	 and	 vertical	 synchronization	 pulses	 must	 occur	 at	 specified
times	to	synchronize	the	monitor	while	it	is	receiving	color	data.

Figure	7.38	shows	the	timing	waveform	for	the	color	information	with	respect	to	the
horizontal	 synchronization	 signal.	 Times	 shown	 are	 for	 the	 standard	 pixel	 frequency	 of
25.175	MHz	for	640x480	pixel	resolution.

Figure	7.38	Horizontal	Refresh	Cycle

As	shown,	 the	row	pixel	 time	interval	(D)	is	25.17	gs	 in	which	640	pixels	are	 refreshed
(one	pixel	per	every	clock	cycle).	Considering	640	cycles	in	25.17	gs,	the	6.6	gs	horizontal
blanking	interval	(B+C+E)	becomes	160	cycles.	This	makes	complete	sweeping	of	a	row
of	a	VGA	monitor	to	take	place	in	800	cycles	of	the	25.175	MHz	clock,	or	equivalent	to
800	pixels.	Figure	7.39	shows	horizontal	refresh	parameters	in	time	and	equivalent	pixel
values.

Figure	7.39	Horizontal	Parameters

Figure	7.40	shows	the	timing	waveform	for	the	color	information	with	respect	to	the
vertical	synchronization	signal.	As	discussed	above,	a	complete	horizontal	sweep	(a	 line
of	pixels)	takes	800	clock	cycles	that	is	equivalent	to	31.77	gs	for	25.175	MHz	clock.

A	complete	screen	of	480	pixel	 lines	 takes	480x800	clock	cycles	 (31.77	µs	x	480	=
15.25	ms)	to	sweep,	plus	an	additional	band	guard	(P+Q+S)	of	1.434	ms.	Considering	that
the	 time	 of	 sweeping	 a	 pixel	 line	 is	 31.77	 is,	 the	 duration	 of	 the	 band	 guard	 becomes
equivalent	to	45	lines.

Figure	7.40	Vertical	Refresh	Cycle

This	 translates	 to	 480+45=525	 lines	 of	 800	 cycles	 each.	 Figure	 7.41	 shows	vertical
refresh	 parameters	 in	 time	 and	 equivalent	 line	 values.	 The	 values	 given	 are	 for	 a	 clock
frequency	of	25.175	MHz.

Figure	7.41	Vertical	Parameters

As	previously	discussed,	VGA	monitors	allow	refresh	clock	frequencies	of	21	 to	67
MHz.	For	a	25	MHz	clock,	the	following	parameters	are	calculated:

Where:

The	monitor	writes	to	the	screen	by	positioning	a	pixel	using	vertical	and	horizontal
synchronization	signals.	The	red,	green,	blue	color	 inputs	of	 the	screen	are	driven	when
the	 screen	 is	 at	 the	 expected	 location.	 These	 signals	 send	 the	 correct	 color	 data	 to	 the
pixel.

7.7.2	Monitor	Synchronization	Hardware

The	hardware	required	for	VGA	signal	generation	must	keep	track	of	the	number	of	clock
cycles	(equivalent	pixels),	and	issue	signals	according	to	the	timing	waveforms	of	Figure
7.38	and	Figure	7.40.	The	Verilog	code	of	Figure	7.42	uses	the	SynchClock	clock	signal	to
generate	 Hsynch	 (Horizontal	 Synch	 of	 Figure	 7.38),	 Vsynch	 (Vertical	 Synch	 of	 Figure
7.40),	and	Red,	Green,	and	Blue	color	data.

Figure	7.42	Monitor	Synchronization	Hardware

The	 code	 shown	 uses	 color	 specifications	 from	 RedIn,	 Greenln	 and	 Blueln	 input
signals	and	during	the	time	periods	specified	by	parameter	D	in	Figure	7.38	and	parameter
R	 in	Figure	7.40,	 puts	 them	on	 the	Red,	Green	 and	Blue	 output	 signals.	At	 any	pint	 in

time,	the	Verilog	code	of	Figure	7.42	outputs	the	position	of	the	pixel	being	updated	in	its
10-bit	PixelRow	and	PixelCol	output	vectors.

Two	always	blocks	that	are	synchronized	with	Synch	Clock	keep	track	of	horizontal
and	vertical	counts	(Hcouut	and	Vcouut).	Hcouut	is	associated	with	parameter	A	of	Figure
7.38	or	Figure	7.39	and	Vcouut	with	parameter	0	of	Figure	7.40	or	Figure	7.41.

Considering	the	very	first	pixel	at	(0,	0)	position,	the	counting	of	the	horizontal	pixels
begins	at	the	beginning	of	the	D	region	of	the	waveform	of	Figure	7.38.	Therefore	as	the
Verilog	code	shows,	Hsynch	becomes	0	when	Hcount	is	between	661	and	756	(this	is	the
B	region).	Likewise,	considering	the	beginning	of	region	R	as	the	0	point,	the	P	region	in
Figure	 7.40	 begins	 at	 Veount	 of	 491	 and	 ends	 at	 493.	 Therefore,	 as	 the	 code	 shows,
Vsynch	is	0	during	such	Vcount	values.	With	the	(0,	0)	point	defined	as	such,	pixels	are
active	while	Heount	is	between	0	and	640	and	Veount	is	between	0	and	480.	During	these
count	periods	output	colors	are	active	and	PixelRow	and	PixelCol	outputs	reflect	Hcount
and	Vcount	respectively.

The	 Verilog	 code	 of	 Figure	 7.42	 is	 defined	 as	 a	 block	 that	 will	 be	 used	 in	 our
implementation	of	a	character	display	design.

7.7.3	Character	Display

The	design	we	are	considering	in	this	section	is	a	character	display	hardware	that	outputs
an	 address	 to	 a	 character	 display	 memory	 and	 inputs	 an	 ASCII	 code	 representing	 the
character	to	display.	We	assume	the	display	memory	has	4800	ASCII	characters	that	will
be	 displayed	 in	 60	 rows	 of	 80	 characters.	 Considering	 the	 480	 by	 640	 resolution,	 this
makes	each	character	occupy	a	matrix	of	pixels.

In	 addition	 to	 the	 synchronization	 module	 of	 the	 previous	 section	 (MonitorSynch
module),	 the	 character	 display	 hardware	 has	 a	 character	 pointer	 and	 a	 pixel	 generation
hardware.	 The	 character	 pointer	 finds	 the	 character	 address	 at	 a	 specified	 screen	 pixel
location,	and	the	pixel	generation	hardware	finds	the	pixel	value	(1	or	0)	for	the	character
that	is	being	displayed.

Figure	 7.43	 shows	 the	 complete	 CharvacterDisplay	 hardware.	 The	 elements	 of	 this
diagram	are	discussed	next.

Figure	7.43	Character	Display	Hardware

7.7.3.1	 Character	 Pointer.	 The	 character	 pointer	 hardware	 is	 the	 block	 shown	 in	 upper
right	 part	 of	 Figure	 7.43.	 MonitorSynch	 provides	 X	 and	 Y	 pixel	 coordinates	 for	 this
hardware.	CharacterPointer	takes	these	coordinates	and	generates	a	13	bit	address	pointing
to	one	of	the	4800	characters	at	the	screen	location.	Because	each	character	consists	of	8
row	 and	 8	 column	 pixels,	 64	 different	X	 and	Y	 coordinates	map	 to	 the	 same	 character
address.	The	Verilog	code	for	generating	this	mapping	is	the	CharacterPointer	module	of
Figure	7.44.

Figure	7.44	Finding	Character	Position	from	a	Pixel	Position

As	shown,	ScreenLine	and	ScreenPos	ignore	three	low	order	bits	of	pixel	coordinates,
which	causes	 the	corresponding	screen	 location	 to	map	 to	 the	character	 at	 that	 location.

The	CharPntr	 output	 of	 this	module	 provides	 a	 one-dimensional	 pointer	 for	 the	 display
memory.

7.7.3.2	 Pixel	 Generation	 Hardware.	 The	 lower	 part	 of	 Figure	 7.43	 is	 responsible	 for
generation	of	a	specific	pixel	value	(1	or	0)	for	the	specific	X-Y	position	of	screen	and	the
character	 being	 displayed.	 Inputs	 to	 this	 part	 are	 ASCII	 code	 of	 the	 character	 being
displayed	 (Charac-	 ter[6..0])	 and	 coordinates	within	 the	 8x8	 pixel	 area	 of	 the	 character
(PixelRow[2..0]	and	PixelCol[2..	0]).	The	three	parts	of	pixel	generation	are	MatrixSlice,
CharacterMatrix	and	CharacterPixel.

The	MatrixSlice	module	(Figure	7.45)	takes	the	ASCII	code	of	the	input	character	and
subtracts	32	from	it	to	make	printable	character	codes	begin	from	0.	It	then	appends	three
bits	 of	 PixelRow	 to	 its	 right	 to	 form	 an	 address	 for	 the	 pixel	 row	of	 the	 corresponding
character.

Figure	7.45	Matrix	Slice	Verilog	Code

The	output	of	 this	module	 looks	up	a	row	of	 the	character	being	displayed	from	the
CharacterMatrix	 component.	 In	 our	 simple	 design	we	 use	 8x8	 character	 resolution	 and
only	 support	ASCII	 characters	 from	 32	 to	 95.	With	 these	 64	 supported	 characters,	 our
character	matrix	becomes	an	8-bit	memory	of	512	words,	 in	which	every	8	consecutive
words	define	a	character.	For	example,	as	shown	in	Figure	7.46,	pixels	for	character	“5”
with	ASCII	code	of	53	decimal,	begin	at	address	OA8	Hex	that	is	(53-32)x8.

Figure	7.46	Character	Matrix	for	Character	“5”

The	CharacterMatrix	component	is	a	RAM	that	is	implemented	with	an	Altera	LPM
and	 is	 mapped	 into	 the	 on-chip	 memory	 of	 our	 FPGA.	 This	 component	 is	 called
LPM_RAM	and	 is	 available	under	 the	 storage	 category	of	Altera	megafunctions.	Using
the	 megafunction	 wizard	 we	 configure	 this	 component	 as	 an	 8-bit	 memory	 with	 nine
address	 lines.	 During	 the	 configuration	 process	 we	 are	 asked	 to	 enter	 the	 Memory
Initialization	File	name	(.miff,	for	which	we	use	CharMtx.mif.	Using	the	mif	format,	pixel
values	 (similar	 to	 those	 shown	 in	 Figure	 7.46	 for	 character	 “5”)	 are	 defined	 for	ASCII
characters	from	32	to	95.	Figure	7.47	shows	the	beginning	and	end	of	this	file,	from	which
its	complete	format	can	be	seen.

The	output	of	CharacterMatrix	is	q[7..0].	This	output	has	a	slice	of	the	character	that

is	being	displayed.	For	example	for	row	2	of	character	“5”,	q[7..	0]	is	01111100.

The	 last	 component	 shown	 in	Figure	7.37	 that	 is	 responsible	 for	pixel	 generation	 is
CharacterPixel.	This	 component	 takes	 a	 character	 row	 and	 its	 column	pointer	 (PixelCol
[2:0])	and	looks	up	the	pixel	to	be	displayed.	The	Verilog	code	of	CharacterPixel	is	shown
in	Figure	7.48.	This	code	uses	CharColPntr	as	index	to	look	into	CharacterRow	in	reverse
bit	order.

The	complete	 schematic	of	our	character	display	hardware	 is	 shown	 in	Figure	7.43.
The	 MonitorSynch	 module	 continuously	 sweeps	 across	 the	 640x480	 pixel	 screen	 and
refreshes	pixel	with	colors	specified	by	its	three	color	inputs.	At	the	same	time	it	reports
the	position	of	 the	pixel	being	refreshed	 to	CharacterPointer.	Based	on	 these	coordinate,
this	 module	 calculates	 the	 address	 of	 the	 character	 that	 is	 be	 ing	 displayed.	 After	 the
character	is	looked	up	refreshed	is	found.	This	pixel	value	allows	color	inputs	to	be	used
by	the	MonitorSynch	module	for	painting	the	pixel.	The	complete	design	shown	in	Figure
7.43	is	referred	to	as	CharacterDisplay.

Figure	7.47	Character	Matrix	mif	File

Figure	7.48	Looking	up	Character	Pixel

7.7.4	VGA	Driver	for	Text	Data

The	previous	 section	discussed	 the	complete	design	of	CharacterDisplay	hardware.	This
hardware	outputs	the	address	of	one	of	the	4800	characters	that	is	to	appear	on	the	screen,
looks	 up	 its	 ASCII	 code,	 and	 generates	 pixel	 colors	 and	 horizontal	 and	 vertical
synchronization	signals.	This	section	shows	a	simple	VGA	driver	that	provides	data	to	be
displayed	to	our	CharacterDisplay	hardware.

The	 complete	 schematic	 of	 our	VGA	Driver	 is	 shown	 in	 Figure	 7.49.	On	 the	 right
hand	side	is	CharacterDisplay	that	generates	character	address,	monitor	synch,	and	pixel
information.	 On	 the	 left	 hand	 side	 is	 DisplayMemoi	 y	 that	 is	 a	 dual-port	 read/write
memory.	 Character	 address	 from	 CharacterDisplay	 goes	 to	 its	 read	 address.	 The	 write
address,	data	to	be	written,	and	the	write	enable	of	this	memory	are	provided	externally.
While	CharacterDisplay	 is	 displaying	 the	 current	 contents	 of	 the	memory,	 new	data	 for
display	can	be	written	into	this	memory.

Our	VGA-Driver	has	two	clock	inputs,	VGAc1k	and	Memoryclk.	The	latter	must	be	a
faster	 clock	 so	 that	 address	 output	 from	 CharacterDisplay	 can	 be	 used	 to	 lookup	 the
display	character	from	the	Display	Memory.

Figure	7.49	VGA	Driver	with	Display	Memory

7.7.5	VGA	Driver	Prototyping	(UP3)

Figure	7.50	shows	a	simple	tester	for	our	VGA	driver.	This	circuit	causes	the	initial	data	in
DisplayMemory	 to	 be	 displayed	 on	 the	VGA	monitor.	 Changing	 display	 data	 can	 only
happen	by	changing	contents	of	DisplayRAM.mif	file	which	is	loaded	into	this	memory.

Figure	7.50	VGA	Driver	Tester	(UP3)

Note	the	use	of	the	T-type	flip-flop	for	generating	a	slower	clock	for	the	VGA	driver

than	 that	 of	 the	memory.	This	 circuit	 is	 implemented	on	 a	UP3	development	board	 and
verifies	 the	 operation	 of	 our	 VGA	 adapter.	 A	 more	 elaborate	 testbench	 would	 have	 a
counter	to	set	memory	display	memory	locations	to	desired	characters.	We	leave	this	as	an
exercise.

7.7.6	VGA	Driver	Prototyping	(DE2)

Figure	7.51	shows	our	VGA	driver	that	is	programmed	into	the	Cyclone	II	FPGA	of	a	DE2
development	 board.	 Initially,	 the	DisplayMemory	 is	 initialized	with	 the	 contents	 of	 the
DisplayRAM.mif	file.	The	data	in	this	file	will	be	displayed	on	the	monitor.

As	discussed	in	Chapter	6,	the	DE2	board	has	a	triple	DAC	that	takes	10-bit	color	data
for	each	of	the	red,	green	and	blue	colors	and	generates	analog	inputs	for	the	color	inputs
of	a	display.	As	evident	from	Figure	7.51,	we	have	not	taken	advantage	of	all	the	30	bits
that	are	available	for	color	specification.	Instead,	we	have	used	the	most	significant	bit	of
the	10-bit	color	input	of	each	color	and	have	driven	it	with	1	or	0.	This	means	that	we	can
only	display	eight	colors	at	fixed	intensities.

This	design	uses	a	50	MHz	clock	input	that	is	divided	by	two	by	using	a	toggle	flip-
flop.	The	25	MHz	output	of	the	flip-flop	is	used	for	the	VGA	clock.

Figure	7.51	VGA	Driver	Tester	(DE2)

The	design	discussed	here	verifies	the	operation	of	the	VGA	driver	that	we	developed.
This	driver	has	 a	memory,	 and	we	have	provided	 address	 lines	 and	 character	 inputs	 for
addressing	 screen	 locations	 and	 writing	 into	 them.	 The	 reader	 is	 encouraged	 to	 take
advantage	of	these	utilities	and	implement	a	more	elaborate	design	using	this	VGA	driver.

7.8	Summary

This	 chapter	 presented	 several	 designs	 that	 mainly	 consisted	 of	 drivers	 for	 various
peripherals.	By	use	of	 these	examples	we	achieved	several	goals.	First,	we	were	able	 to
show	 designs	 that	 used	 the	 Cyclone	 or	 Cyclone	 II	 FPGA	 and	 their	 corresponding
development	 boards.	 These	 designs	 elaborated	 some	 of	 the	 Verilog	 and	 logic	 design
concepts	 of	 the	 earlier	 parts	 of	 this	 book.	 Secondly,	 we	 showed	 how	 designs	 could	 be
packaged	into	tested	user	defined	cores	and	blocks.	The	other	goal	achieved	in	this	chapter
was	 showing	 how	 peripherals	 like	 keyboards	 and	 VGA	 monitors	 operate,	 and	 how
interfaces	are	designed.

	

Design	with	Embedded	Processors

So	 far	 in	 this	 book,	 we	 have	 learned	 the	 basics	 of	 hardware	 design,	 how	 hardware	 is
implemented,	what	tools	are	available,	and	how	a	hardware	component	can	be	utilized	as
part	 of	 a	 larger	 system.	An	 alternative	way	 of	 implementing	 a	 hardware	 function	 is	 by
programming	an	existing	processor	 to	perform	the	function.	The	existing	processor	used
as	such	is	the	embedded	processor.

Design	with	an	embedded	processor	requires	1)	selection,	configuration,	or	the	design
of	 the	 embedded	 processor,	 2)	 design	 and	 configuration	 of	 processor	 memory	 and
interfaces,	and	3)	development	of	the	software	that	the	processor	is	to	run	to	perform	the
hardware	function	being	implemented.	This	chapter	focuses	on	these	 topics.	We	start	by
discussion	of	these	topics	and	further	elaboration	of	each.	We	will	then	show	a	complete
filter	design	done	with	an	embedded	processor.	The	design	of	filter	will	be	done	manually
to	show	the	details	of	an	embedded	design	process.	After	completion	of	this	presentation,
we	show	a	microcontroller	implemented	by	an	embedded	core.

8.1	Embedded	Design	Steps

As	mentioned	above,	implementation	of	a	hardware	function	with	an	embedded	processor
requires	selection	of	the	processor,	design	of	its	interfaces,	and	writing	the	program	that	it
runs.	We	will	discuss	the	details	of	these	steps	here.

In	 large	designs	use	of	proper	design	automation	 tools	 for	performing	 these	steps	 is
essential.	 However,	 our	 discussion	 here	 is	 ge	 neric	 and	 independent	 of	 any	 tool	 or
environment.	 The	 next	 chapter	 shows	 this	 design	 process	 using	 Altera’s	 FPGA	 based
tools.

Steps	 involved	 in	 design	 of	 an	 embedded	 processor	 for	 implementing	 a	 hardware
function	 are	 similar	 to	 those	 of	 a	 microcontroller	 based	 system,	 except	 that	 embedded
systems	 offer	 more	 flexibility	 and	 customization	 in	 each	 step	 of	 the	 work.	 The	 steps
involved	 for	 implementing	 a	 hardware	 function	 in	 an	 embedded	 system,	 or	 a
microcontroller	 system,	 are	 the	 selection	 of	 the	 processor,	 design	 of	 its	 interfaces	 and
external	bussing	structure,	and	writing	the	program	implementing	the	hardware	function.
Figure	8.1	shows	where	in	a	design	process	these	steps	apply.

Figure	8.1	Hardware	Function	Implemented	by	Embedded	Processor

8.1.1	Processor	Selection

Selection	 of	 an	 embedded	 processor	 is	 like	 selecting	 a	 microcontroller	 for	 a	 specific
function.	The	main	difference	is	that	there	are	more	options	when	it	comes	to	embedded
processors.	 These	 options	 allow	 a	 hardware	 designer	 to	 tailor	 his	 or	 her	 embedded
processor	and	perform	optimizations	to	best	fit	the	hardware	function	being	designed.

Generally	 optimizations	 available	 to	 a	 hardware	 designer	 include	 elimination	 of
instructions	that	are	not	needed,	use	of	just	enough	memory,	memory	mapping,	data	and
address	lengths,	memory	structure,	use	of	proper	cache	size	or	elimination	of	it,	and	use	or
elimination	of	hardware	processors	like	multipliers.	Depending	on	a	specific	application,	a
hardware	designer	selects	an	embedded	processor	and	 tailors	 it	 to	best	satisfy	his	or	her
design	constraints.

An	embedded	processor	may	come	as	a	softcore,	a	hardcore,	or	you	may	design	your
own.	A	softcore	may	be	available	in	presynthesis	HDL	description	or	as	a	post-synthesis
description	 for	 a	 specific	 target.	 A	 hardcore	 is	 fixed	 in	 a	 chip	 or	 a	 layout	 and,	 like	 a
microcontroller,	offers	very	little,	if	any,	customization	or	flexibility	in	the	processor	core
hardware.	An	embedded	processor	can	also	be	designed	by	a	designer	who	is	using	it	in	a
larger	 system.	 In	 this	 case,	 the	 designer	 uses	 VHDL	 or	 Verilog	 to	 design	 his	 or	 her
processor,	and	has	all	the	freedom	to	choose	the	functionality	of	the	processor.

8.1.1.1	 Softcores.	 Whether	 it	 comes	 as	 a	 pre-synthesis	 HDL	 description,	 or	 a	 post-
synthesis	 target-specific	description,	a	softcore	offers	certain	customizations	and	options
to	choose	from.	These	options	make	 it	a	better	 fit	 for	 the	specific	application	 it	 is	being
designed	for.	A	designer	using	an	existing	softcore	is	able	to	select	instructions,	hardware
feature,	or	data	and	address	size	of	a	customizable	softcore.	This	is	usually	done	through

software	 tools	 that	 the	softcore	vendor	 is	providing.	Tools	are	also	available	 for	helping
the	 softcore	 user	 in	 the	 next	 two	 steps	 of	 an	 embedded	 system	 design,	 i.e.,	 design	 of
processor	interfaces	and	its	software.

For	 a	 softcore	 available	 in	 a	 pre-synthesis	 HDL,	 the	 designer	 is	 free	 to	 make	 any
changes	to	the	code	that	is	necessary	for	speed	and	space	optimizations.	However,	in	this
case,	vendor	provided	software	tools	may	no	longer	be	useful	in	the	next	two	steps	of	an
embedded	system	design	process.

8.1.1.2	Hardcores.	A	hardcore	has	a	fixed	architecture,	a	fixed	instruction	set,	and	usually
a	hardcore	is	designed	for	a	specific	application.	For	example,	there	as	DSP	hardcores	for
DSP	applications	or	RISC	hardcores	for	high-end	data	processing	applications.	A	hardcore
vendor	 provides	 all	 simulation	 and	 design	 tools	 that	 are	 needed	 for	 using	 the	 hardcore,
configuring	its	interfaces,	and	developing	its	software.

8.1.1.3	 HDL	 Processor	 Cores.	 Instead	 of	 using	 processor	 cores	 from	 core	 vendors,	 a
hardware	designer	may	choose	 to	develop	his	or	her	own	processor	 that	 can	be	used	 in
many	of	 the	designs	that	 the	designer	 is	 involved	in.	In	this	case,	 the	designer	 is	able	 to
modify	the	processor	however	it	best	implements	the	hardware	function	being	designed.

With	 an	 HDL	 processor,	 there	 is	 no	 limit	 as	 to	 the	 target	 of	 the	 processor	 or
implementation	 technology.	 Restructuring	 the	 processor	 for	 better	 power	 or	 space
utilization	is	also	possible	when	using	an	HDL	processor	core.

The	biggest	drawback	in	using	your	own	HDL	embedded	core	is	lack	of	availability	of
a	 compiler	 and	 other	 software	 tools.	 Furthermore,	 for	 structuring	 the	 hardware	 of	 the
processor	to	meet	your	requirements,	you	are	on	your	own	in	developing	and	testing	your
VHDL	 or	 Verilog	 code	 of	 your	 processor.	 Because	 of	 this,	 use	 of	 homemade	 HDL
processor	cores	is	only	recommended	for	simple	and	very	specialized	functions.

8.1.1.4	 Embedded	 Processor	 Example.	 Altera	 Corporation	 offers	 the	 Nios	 II	 softcore
processor	for	its	solution	to	the	embedded	design	methodology.	Nios	II	is	a	softcore	and	is
available	for	Altera	FPGAs.

This	processor	comes	in	three	flavors	for	small,	medium	and	complex	applications.	In
addition,	each	flavor	of	Nios	II	can	be	configured	for	instruction	set,	memory	usage,	and
cache	 using	 Altera	 provided	 design	 tools.	 Altera’s	 SOPC	 Builder	 Software	 is	 used	 for
selecting	and	configuring	Nios	II	processors.

8.1.2	Processor	Interfacing

In	 an	 embedded	 design,	 the	 next	 step	 after	 selection	 of	 the	 processor	 is	 configuring	 its
external	 bussing	 structure.	 This	 includes	 tasks	 such	 as	 design	 of	 memory	 and	 device
selection	 logic,	 interrupt	 handling	 hardware,	 design	 of	 priority	 and	 bus	 arbitration,	 and
other	I/O	and	memory	related	hardware	components.	For	large	systems	this	part	becomes
so	complex	 that	 shifts	 the	 focus	of	 the	hardware	designer	 from	 implementing	his	or	her
hardware	function	of	an	embedded	processor	to	designing	the	interface	logic	and	external
processor	bus	structure.

8.1.2.1	 Simple	 Interfacing.	 Memory	 mapped	 I/O,	 use	 of	 fast	 singlecycle	 dedicated
memories,	and	limiting	a	design	to	a	single	processor	simplifies	a	design	to	the	level	that
one	 can	 design	 an	 entire	 embedded	 system	 without	 needing	 complex	 hardware
configuration	tools.

Generous	 uses	 of	 interrupt,	 use	 of	 complex	 arbitration	 schemes,	 and	 using	multiple
bus	masters,	are	factors	that	complicate	design	of	an	embedded	system.

8.1.2.2	 Embedded	 Processor	 Interface	 Example.	 A	 design	 Tool	 provided	 by	 Altera	 for
design	 of	 embedded	 systems	 around	 their	 Nios	 II	 processor	 is	 their	 SOPC	 Builder
Software.	In	addition	to	configuring	the	Nios	II	processor,	this	tool	can	be	used	for	design
of	 the	 interface	of	 a	Nios	 II	 based	 embedded	 system.	The	 bus	 structure	Altera	 uses	 for
interfacing	with	Nios	 II	 is	 the	Avalon	 switch	 fabric.	 The	 use	 of	Avalon	 through	SOPC
Builder	hides	all	handshakings,	timings,	arbi	trations	and	other	interfacing	issues	from	the
embedded	system	designer.

8.1.3	Developing	Software

The	 last	 step	 in	 the	 embedded	design	of	 a	 hardware	 function	 is	 the	development	 of	 the
software	to	run	on	the	embedded	processor.	This	step	involves	writing	the	program,	which
is	 generally	 done	 in	C	 or	C++,	 and	 compiling	 it	 to	 the	machine	 language	 of	 the	 newly
configured	embedded	processor.

8.1.3.1	 Basic	 Programming	 Task.	 If	 we	 were	 to	 use	 our	 own	 homemade	 processor	 for
implementing	a	hardware	function,	our	only	choice	of	a	language	to	program	it	would	be
the	 assembly	 language	 of	 our	 processor.	 Obviously	 for	 complex	 tasks,	 this	 is	 not	 an
acceptable	solution,	and	a	high	level	language	such	as	C	or	C++	should	be	used.	Lack	of
other	 software	 utilities	 such	 as	 an	 instruction	 set	 simulator	 and	 a	 debugger	 for	 our
homemade	HDL	embedded	processor,	limit	utilization	of	such	a	processor.

8.1.3.2	Software	Tools	Example.	Altera	provides	 IDE	integrated	design	 environment	 for
helping	an	embedded	system	designer	develop	software	for	Nios	II.	This	environment	has
tools	for	C	code	development,	a	C	compiler,	and	all	the	necessary	debugging	tools.

8.2	Filter	Design

As	 an	 example	 for	 an	 embedded	 design	we	 use	 an	 FIR	 filter.	We	will	 show	 how	 steps
discussed	 in	 Section	 8.1	 and	 depicted	 in	 Figure	 8.1	 can	 be	 used	 to	 design	 a	 processor
system	that	implements	our	specified	digital	filter.

In	order	to	show	the	actual	design	steps	and	not	overshadow	these	design	steps	with
use	 of	 design	 tools	 and	 utilities,	 we	 will	 use	 our	 homemade	 processor	 of	 Chapter	 4
(SAYEH)	and	perform	all	the	design	steps	manually.

The	 SAYEH	 processor	 we	 are	 using	 for	 our	 embedded	 processor	 is	 available	 in
behavioral	pre-synthesis	Verilog.	We	will	use	memory	mapped	 I/O	 for	 its	 interfacing	 to
keep	 its	 bussing	 structure	 simple.	 The	 filter	 program	will	 be	written	 in	 C,	 and	we	will

show	a	hand	translation	of	it	into	SAYEH	Assembly	Language.

8.2.1	Filter	Concepts

This	section	gives	a	brief	overview	of	filters.	We	will	only	discuss	filter	concepts	 to	 the
point	that	we	can	discuss	hardware	implementation	of	digital	filters.

8.2.1.1	Analog	and	Digital	Filters.	A	filter	has	the	property	of	allowing	some	frequencies
in	 its	 incoming	waveform,	 and	 blocking	 others.	An	 analog	 filter	 uses	 active	 or	 passive
components	 for	 the	 job	of	 filtering	or	 eliminating	certain	 frequencies	 from	an	 incoming
waveform.	A	simple	passive	analog	 filter	 is	 an	RC	circuit	 (Figure	8.2).	This	circuit	 is	 a
low	pass	filter,	meaning	that	it	eliminates	high	frequency	components	of	its	input	f(t).

Figure	8.2	Passive	Low	Pass	Filter

Because	 filters	 are	 mainly	 concerned	 with	 frequencies	 of	 an	 input	 signal,	 most	 filter
discussions	 and	 representations	 are	 in	 the	 frequency	 domain.	 Filter	 representation	 in
Figure	8.2	indicates	that	the	filter	allows	lower	frequencies	to	pass	through,	while	higher
frequencies	are	blocked.

An	important	application	of	filters	is	in	audio	and	video	processing.	Since	most	such
applications	 are	 done	 with	 digital	 computers,	 it	 is	 more	 appropriate	 to	 use	 digital
techniques	 for	 filtering	so	 that	 the	 job	of	 filtering	and	other	audio	and	video	processing
can	all	be	done	with	the	same	integrated	digital	system.

8.2.1.2	Sampling.	An	analog	signal	 to	be	used	with	a	digital	 filter	must	be	turned	into	a
series	of	digital	data.	This	data	is	obtained	by	sampling	the	analog	data	and	then	digitizing
the	sample	data	as	shown	in	Figure	8.3.

Figure	 8.3	 shows	 that	 an	 input	 analog	 signal	 is	 sampled	 with	 a	 sample-and-hold
(S&H)	 circuit.	 This	 circuit	 outputs	 discrete	 data.	 The	 discrete	 analog	 data	 is	 then
converted	to	digital	data	using	an	Analog-to-Digital	converter	(A/D).	After	filtering,	and
possibly	other	processings,	the	processed	digital	data	is	turned	into	analog	(e.g.,	audio	or
video	signals)	by	a	Digital-to-Analog	(D/A)	converter.

Figure	8.3	Sampling	and	Digitizing

According	 to	 Nyquist,	 in	 order	 to	 sample	 a	 signal	 without	 loss	 of	 information,	 the
sampling	 frequency	 must	 be	 faster	 than	 twice	 the	 highest	 frequency	 of	 the	 incoming
signal.	This	frequency	is	referred	to	as	the	Nyquist	frequency.	Signal	sampling	is	done	by
a	 train	of	 pulses	 at	 a	 frequency	of	 at	 least	 the	Nyquist	 frequency.	Figure	8.4	 shows	 the
sampling	process	of	an	incoming	x(t)	analog	signal.

Figure	8.4	Sampling	with	P(t)	Pulse	Train

When	modulated	by	a	pulse	modulator,	each	sample	of	an	incoming	signal	becomes	a
pulse	that	is	fed	into	the	filter.	The	accumulation	of	the	responses	of	a	filter	to	the	train	of
pulses	that	appear	on	its	input	becomes	the	output	of	the	filter.	The	response	of	a	filter	to	a
unit	pulse	determines	its	functionality.

8.2.1.3	Impulse	Response.	Digital	filters	are	characterized	by	their	response	to	an	impulse.
Figure	 8.5	 shows	 frequency	 response	 of	 lowpass,	 high-pass	 and	 band	 pass	 filters.	Also

shown	here	is	the	impulse	response	of	a	low-pass	filter.	The	impulse	response	is	described
by	a	set	of	coefficients;	the	number	of	coefficients	determines	the	order	of	the	filter.	The
order	 of	 a	 filter	 determines	 how	 accurate	 filtering	 is	 done.	 This	 translates	 to	 a	 sharper
frequency	response	for	higher	order	filters.

Figure	8.5	Filter	Impulse	Response

The	response	of	a	filter	to	a	series	of	input	samples	can	be	considered	as	convolution
of	 filter	 impulse	 responses	 to	 the	 individual	samples.	This	convolution	 takes	 the	present
and	past	input	samples	and	output	responses	into	account.

8.2.1.4	Filter	Equation.	What	was	described	above	will	be	put	into	an	equation	form	from
which	the	necessary	hardware	of	a	filter	can	be	extracted.	As	discussed,	as	train	of	pulses
from	a	sampled	 input	source	enter	a	digital	 filter,	 the	 response	of	 the	 filter	becomes	 the
convolution	of	previous	inputs	and	previous	outputs.	Equation	below	shows	a	filter	output
y[n]	 in	 terms	of	 its	 previous	 inputs,	 i.e.,	 x[n-k],	 and	 its	 previous	 outputs,	 y[n	 jJ.	 In	 this
equation,	input	coefficients	are	indicated	by	a[j]	and	output	coefficients	are	b[k].

The	block	diagram	for	implementation	of	this	equation	is	shown	in	Figure	8.6.	This	filter
has	a	feedback	that	causes	its	impulse	response	to	be	infinite	in	duration.	Such	a	filter	is
called	an	infinite	impulse	response	(IIR)	filter.

Figure	8.6	An	IIR	Filter

In	Figure	8.6,	the	delay	elements	delay	input	values	to	be	used	in	the	next	recursions.	This
filter	is	also	called	a	recursive	filter.

8.2.1.5	Finite	Impulse	Response	(FIR)	Filter.	The	IIR	filter	of	Figure	8.6	can	be	simplified
by	eliminating	its	feedback.	This	eliminates	output	coefficients	and	simplifies	calculation
of	remaining	filter	coefficients.	Shown	below	is	the	resulting	equation.

A	 filter	made	 as	 such	has	 finite	 impulse	 response	 and	 is	 referred	 to	 as	 an	FIR	or	 finite
impulse	response	filter.	In	an	FIR	filter,	filter	coefficients	can	directly	be	extracted	from	its
impulse	response.	An	FIR	filter	block	diagram	is	shown	in	Figure	8.7.

Figure	8.7	An	FIR	Filter

In	 the	 above	 sections	 we	 started	 with	 general	 filter	 concepts	 and	 ended	 with
implementation	 of	 an	 FIR	 filter.	 The	 section	 that	 follows	 discusses	 alternatives	 for
hardware	implementation	of	this	filter.

8.2.2	FIR	Filter	Hardware	Implementation

The	discussions	of	the	previous	section	and	filter	block	diagrams	provide	a	good	guideline
for	designing	a	digital	system	for	a	digital	filter.	This	section	shows	two	possibilities	for
implementing	an	FIR	filter.

As	discussed,	filter	coefficients	are	taken	from	the	impulse	response	of	a	filter.	These
coefficients	are	the	main	factors	in	filter	design.	A	generic	hardware	can	be	implemented
using	 the	 structures	 that	 we	 discuss,	 and	 it	 can	 be	 configured	 for	 a	 specific	 filter	 by
changing	the	coefficients.

The	 filter	 we	 are	 designing	 is	 a	 4th	 order	 FIR	 filter	 with	 five	 coefficients	 that	 are
shown	in	Figure	8.8.	We	will	show	an	RTL	and	a	CPU	based	hardware	implementations.

Figure	8.8	Filter	to	Design

8.2.2.1	 FIR	 Filter	 RTL	 Design.	 Figure	 8.9	 shows	 the	 block	 diagram	 of	 the	 RT	 level
hardware	of	a	fourth	order	FIR	filter.	A	series	of	regis	ters	provide	delayed	inputs	that	are
multiplied	 by	 ei	 coefficients	 and	 then	 added	 together	 to	 generate	 the	 output.	 The	 clock
frequency	 for	 the	 registers	 must	 the	 same	 as	 the	 sampling	 frequency	 that	 is	 twice	 the
largest	frequency	of	the	input	signal.

Figure	8.9	RTL	FIR	Filter

The	hardware	shown	in	Figure	8.9	is	an	iterative	hardware	and	can	be	described	using
Verilog	 generate	 statements.	 This	 hardware	 can	 easily	 be	 implemented	 using	 registers,
adders	and	multipliers.	Of	all	 these	parts,	 the	multipliers	are	 the	most	complex	and	 take
more	hardware	than	the	other	components.

8.2.2.2	 Processor	 Core	 FIR	 Design.	 The	 algorithm	 presented	 in	 the	 block	 diagram	 of
Figure	 8.7	 can	 be	 implemented	with	 a	 processor	 running	 the	 iterative	 add	 and	multiply
procedure.	A	block	diagram	of	this	hardware	implementation	is	shown	in	Figure	8.10.

Figure	8.10	Processor	Core	for	FIR	Implementation

The	 data	 memory	 of	 the	 implementation	 of	 Figure	 8.10	 has	 a	 section	 for	 storing
coefficients	 and	 another	 section	 for	 storing	 sampled	data.	We	assume	 that	 sampled	data
have	been	sampled	and	collected	using	a	valid	sampling	rate	for	the	input	signal.

The	program	memory	of	 the	processor	has	 a	program	 that	 reads	a	new	sample	data
performs	 shifting	 and	 five	multiply	 and	 add	 operations,	 one	 for	 each	 coefficient	 of	 the
filter.	With	each	data	read,	the	program	outputs	a	new	data	for	the	circuit	response.

8.2.3	FIR	Embedded	Implementation

The	 previous	 sections	 discussed	 operation	 and	 hardware	 of	 a	 digital	 filter.	 This	 section
shows	 an	 embedded	 core	 implementation	 of	 a	 fifth	 order	 FIR	 filter.	We	 will	 show	 the
implementation	of	Figure	8.10	on	an	Altera	FPGA.

Recall	 the	steps	we	discussed	 in	Section	8.1	for	design	of	an	embedded	core.	These
steps	are	selection	of	the	processor,	design	of	the	memory	and	I/O	structure,	and	software
development.	The	sections	that	follow	will	exercise	these	design	steps.

Before	 an	 embedded	 design	 begins,	 the	 operation	 must	 be	 clearly	 defined.	 The
operation	of	our	 filter	 is	 reading	data,	multiplying	by	all	coefficients	 and	 outputting	 the
result.	The	C	code	corresponding	to	this	functionality	is	shown	in	Figure	8.11.

The	program	shown	begins	with	header	files	and	declarations.	Following	this	part,	it
opens	input,	parameter	and	output	files	(lines	16	to	19).	The	input	file	is	where	sampled
data	are	stored,	and	output	is	where	result	will	be	stored.	The	parameter	file	is	where	filter
degree,	and	number	of	input	samples	are	stored.

The	loop	that	begins	on	line	26	and	ends	on	line	47	(line	numbers	are	shown	in	bold)
reads	data	inputs	calculates	result	and	outputs	data	to	the	output	file	on	line	46.

The	loop	that	begins	on	line	37	and	ends	on	line	43	performs	multiplying	data	by	filter
coefficients	 and	 adding	 them	 as	 many	 times	 as	 there	 are	 coefficients.	 The	 result	 is
collected	in	temp.

Note	in	this	code	that	shifting	of	data	that	are	multiplied	(lines	32	and	40)	results	in
using	 their	 eight	 most	 significant	 bits.	 This	 is	 done	 so	 that	 we	 will	 not	 require	 16-bit
multiplications	in	our	implementation	of	this	routine,	which	makes	this	C	code	conforms
to	the	processor	that	we	will	be	using	for	the	implementation	of	this	design.	The	processor
we	will	use	can	only	do	8-bit	multiplications,	which	results	in	low	accuracy	of	our	filter
design.	This	is	a	compromise	we	had	to	make	to	keep	our	design	simple.

The	program	shown	in	Figure	8.11	works	for	any	number	of	input	data	samples	and
FIR	filters	of	any	order.

Figure	8.11	FIR	Filter	C	code

8.2.3.1	Processor	Selection.	We	have	many	choices	for	the	processor	to	perform	the	task
of	 Figure	 8.11.	 Because	 the	 purpose	 of	 this	 chapter	 is	 to	 present	 design	 steps	 and	 not
design	 tools,	 we	 stay	 away	 from	 Nios	 II	 and	 other	 processors	 that	 require	 use	 of
sophisticated	SoC	and	embedded	design	tools.	Our	choice	of	the	processor	for	this	design
is	the	SAYEH	processor	of	Chapter	4.

SAYEH	instruction	set	contains	instructions	that	are	not	required	for	our	simple	task.
On	the	other	hand,	SAYEH	has	an	8-bit	multiplier	that	results	in	a	16-bit	result.	Although
the	 use	 of	 this	 multiplication	 reduces	 the	 precision	 of	 our	 filter,	 we	 will	 not	 modify
SAYEH	or	add	a	 software	multiplication	 routine	 for	 this	 introductory	example.	 In	 other
words,	we	will	use	SAYEH	as	is.

8.2.3.2	Memory	and	I/O	Interfacing.	As	discussed	in	Section	8.1,	the	step	after	selection
and/or	 configuration	 of	 the	 embedded	 processor	 is	 structuring	 memory	 and	 I/O	 of	 the
processor	 and	 design	 of	 the	 CPU	 external	 busses.	 For	 a	 large	 system	 with	 many	 I/O
devices	 and	 memory	 hierarchies	 this	 step	 involves	 design	 of	 address	 logic,	 I/O
handshaking,	arbitration,	interrupt	setting,	priority	encoding,	etc.	However,	our	system	is
much	simpler	than	this.

Our	embedded	system	needs	a	data	memory	for	reading	filter	parameters,	data	input,
filter	coefficients,	and	writing	filter	outputs.	In	addition,	 the	system	needs	an	 instruction
memory	for	storing	the	filtering	program	to	be	read	by	the	processor.

The	bussing	structure	of	our	system	only	consists	of	processor	data	bus,	address	bus,
and	decoding	logic	for	addressing	these	memory	blocks.	Our	instruction	memory	begins	at
address	 0000,	 and	 the	 data	 memory	 begins	 at	 0100.	 We	 use	 FPGA	 on-chip	 clocked
memory	for	the	instruction	memory,	and	fast	signal	cycle	off-chip	asynchronous	RAM	for
the	data	memory.	Figure	8.12	shows	the	bussing	structure	of	our	embedded	system.

The	decoder	and	read/write	logic	shown	in	Figure	8.12	has	AND/OR	logic	for	address
decoding	 and	 issuing	 read/write	 signals.	 The	 select	 logic	 blocks	 in	 this	 figure	 are	 for
connection	of	the	bidirectional	SAYEH	data	bus	to	the	data	busses	of	the	data	memory	and
instruction	memory.

Figure	8.12	Embedded	System	Bus	Structure

8.2.3.3	 Filter	 Software.	 The	 last	 step	 in	 the	 design	 of	 our	 FIR	 filter	 example	 is	 the
development	 of	 its	 software.	 The	 algorithm	 for	 this	 software	 is	 that	 of	 Figure	 8.11,	 the
hardware	structure	that	this	software	will	be	implemented	in	is	shown	in	Figure	8.12,	and
the	 processor	 that	 the	 software	 runs	 on	 is	 SAYEH.	 In	 an	 automated	 environment,
compiling	the	C	program	of	Figure	8.11	with	consideration	of	memory	mappings,	would
be	all	that	we	needed	to	do	for	this	step	of	the	design.	In	our	case,	however,	we	have	to
develop	our	software	in	SAYEH	assembly	code.

Considering	 the	memory	structure	of	Figure	8.12	and	requirements	of	our	algorithm
(Figure	 8.11)	 as	 to	 filter	 parameters,	 data	 and	 coefficients,	 we	 decide	 on	 the	 memory
mapping	shown	in	Figure	8.13.

Filter	program	in	SAYEH	assembly	is	developed	based	on	the	memory	map	of	Figure
8.13.	We	first	read	locations	0100	and	0101	for	the	degree	of	the	filter	and	the	number	of
input	 samples.	 Then	 each	 data	 sample	 that	 is	 read	 starting	 in	 0140,	 is	multiplied	 by	 its
corresponding	coefficient	that	being	in	0130,	stored	in	locations	0120	to	012f	and	added	to
previous	data	 in	 these	same	 locations.	For	each	data	 read,	 an	output	 is	generated	 that	 is
written	starting	in	location	0180.	Filter	code	in	SAYEH	assembly	is	shown	in	Figure	8.14.

Figure	8.13	Filter	Memory	Map

The	assembly	code	shown	in	this	figure	is	translated	to	SAYEH	machine	language	and
becomes	available	for	it	to	be	loaded	into	the	program	memory	(Figure	8.12).	The	task	of
assembly	can	be	done	manually,	using	the	Verilog	testbench	convert	of	Chapter	4,	or	by
writing	an	assembler	for	SAYEH.

Figure	8.14	Filter	Program	Assembly	Code

8.2.4	Building	the	FIR	Filter

The	 previous	 section	 showed	 the	 complete	 design	 steps	 for	 an	 FIR	 filter.	 This	 section
shows	 implementation	 of	 this	 design	 on	 an	Altera	 FPGA.	 Figure	 8.15	 shows	 the	 block
diagram	of	the	filter	in	Quartus	II.	The	processor	code	is	available	in	Verilog.	The	Decoder
block	is	built	using	basic	gate	primitives,	and	the	rest	of	the	bussing	is	just	bus	wires	and
tri-state	gates.

The	ROM	shown	in	this	figure	is	the	program	memory.	The	hex	file	that	corresponds
to	the	assembly	code	of	Figure	8.14	goes	into	this	memory	at	the	initialization	time.	The
lpm_romO	mega	block	is	programmed	to	read	InstructionMem.mif	file	upon	start.

Figure	8.15	Quartus	II	Implementation	of	FIR

The	external	RAM	that	is	used	as	data	memory	is	not	shown	in	the	block	diagram	of
Figure	 8.15.	 Before	 the	 filter	 program	 starts,	 this	 RAM	 must	 be	 loaded	 with	 filter
parameters,	coefficients,	and	data.	The	DE2	development	board	has	a	control	program	and
can	be	used	to	initialize	its	memories.	Howver,	for	a	board	that	does	not	have	such	a	utility
an	FPGA	program	can	handle	the	task	of	initializing	board	memories.

For	example	for	the	UP3	board,	we	have	developed	an	FPGA	hardware	that	reads	data
loaded	into	its	internal	memory	and	writes	it	into	the	selected	external	RAM.	The	FPGA
internal	memory	is	loaded	with	a	mif	file.	The	FPGA	hardware	for	performing	this	task	is
first	programmed	into	the	FPGA,	and	after	it	programs	the	external	RAM,	it	is	overwritten
by	 the	 filter	 hardware	 of	 Figure	 8.15.	 The	 RAM	 initializer	 Quartus	 II	 project	 is	 called
ROAM.bdf	and	is	available	on	the	CD	that	accompanies	this	book.

The	filter	discussed	here	has	been	implemented	on	UP3	and	DE2	Altera	development
boards.	 The	 filter	 design	 is	 generic	 and	 by	 changing	 its	 coefficient	 in	 the	 external	 data
memory,	it	can	be	configured	to	implement	any	FIR	filter	for	which	an	impulse	response
can	 be	 calculated.	 The	 filter	 can	 be	 modified	 to	 receive	 data	 via	 an	 external	 I/O	 port.
Furthermore,	controller	hardware	can	be	designed	to	load	the	external	data	memory	from	a
PC	connected	to	the	development	board	that	is	being	used	for	this	filter.

8.3	Design	of	a	Microcontroller

The	 previous	 section	 developed	 an	 application	 hardware	 on	 a	 development	 board	 using

SAYEH.	We	selected	the	peripherals	we	needed	and	added	memory	and	other	necessary
devices	to	our	embedded	processor	system.	This	section	tries	to	become	more	generic	by
designing	 a	 microcontroller	 system	 that	 can	 be	 programmed	 to	 perform	 various
applications.	This	system	has	standard	IO	devices	and	memories	connected	to	it.

Programming	 of	 this	 system	 is	 done	 from	 a	 PC	 running	 a	 C	 compiler.	 The	 PC	 is
connected	to	the	board	through	its	serial	or	parallel	printer	port.	An	application	program
for	our	microcontroller	is	compiled	into	SAYEH	assembly	and	after	translation	to	SAYEH
machine	 language	 it	 is	 programmed	 into	 the	 embedded	 SAYEH	 on	 the	 FPGA	 of	 our
development	 board.	 This	 gives	 a	 high	 level	 programming	 interface	 for	 developing
programs	for	our	microcontroller.	The	overall	structure	of	this	system	is	shown	in	Figure
8.16.

Figure	8.16	Programming	Microcontroller

8.3.1	System	Platform

The	system	being	discussed	here	requires	a	C	compiler	and	an	assembler	for	our	SAYEH
processor.	These	programs	run	on	a	regular	PC.	The	CD	in	the	back	of	this	book	provides
a	preliminary	version	of	these	programs.

The	 microcontroller	 uses	 memory	 mapped	 IO	 devices	 and	 a	 memory	 for	 data	 and
instructions.	 The	 user	 programming	 this	 system	must	 be	 aware	 of	 memory	 and	 device
locations.	Programs	developed	on	the	PC	(Figure	8.16)	must	consider	these	locations.

Interface	logic	for	interfacing	to	the	PC	serial	or	parallel	port	is	done	on	the	FPGA	of
the	development	board	using	board	connecters	(serial	for	DE2	and	parallel	for	UP3).	Note
that	programming	 the	FPGA	 to	behave	 as	 a	microcontroller	 is	 done	 through	 the	 regular
programming	 pins	 (e.g.,	 USB	 Blaster),	 but	 programming	 the	 memory	 of	 the
microcontroller	 for	 a	 specific	 function	 of	 this	microcontroller	 is	 done	 through	 our	 own
designed	interface	logic	on	the	FPGA.

8.3.2	Microcontroller	Architecture

Figure	 8.17	 shows	 the	 architecture	 of	 our	 microcontroller.	 In	 addition	 to	 standard	 10
devices,	 this	 architecture	 has	 a	 dual	 port	 memory.	 While	 being	 programmed,	 the	 PC
interface	 logic	 takes	 control	 of	 this	memory	 and	writes	 the	 application	 program	 into	 it.
When	this	phase	is	complete,	SAYEH	will	take	over	and	uses	this	memory	for	its	data	and

instructions.

Figure	8.17	Microcontroller	System	Quartus	II	Implementation

The	dual-port	memory	shown	in	Figure	8.17	is	a	16-bit	word	256K	memory,	and	maps
to	locations	0000	to	00FF	of	SAYEH	address	space.

The	keyboard	shown	here	uses	a	buffer	and	it	is	mapped	to	locations	2000	and	2001.
Reading	from	2000	performs	a	read	operation	on	the	device	FIFO,	and	reading	from	2001
returns	the	status	of	FIFO.

An	LCD	driver	is	mapped	to	SAYEH	at	locations	3000	and	3001.	Writing	to	3000	and
3001	write	command	and	data	to	the	LCD,	respectively.	Reading	these	locations	return	the
LCD’s	status	word.

The	VGA	driver	of	our	system	is	mapped	to	locations	1000	to	1FFF.	Characters	to	be
displayed	can	directly	be	written	into	these	locations.

The	complete	implementation	of	this	system	in	Quartus	II	is	available	on	the	CD	on
the	back	of	this	book.	Figure	8.18.	Although	details	of	this	diagram	cannot	be	seen	here,
the	relative	positioning	of	its	components	is	the	same	as	that	of	Figure	8.18,	which	can	be
used	to	get	more	details	about	the	wiring	of	the	components	of	our	microcontroller.

Figure	8.18	Quartus	II	Implementation

8.4	Summary

This	 chapter	 showed	design	of	 embedded	 systems.	We	discussed	design	 steps	 that	were
needed	for	implementing	a	hardware	function	on	an	embedded	processor.	The	key	issue	in
this	 chapter	was	 presentation	 of	 design	 steps	without	 using	SoC	or	 SOPC	design	 tools.
The	chapter	focused	on	bare-bone	hardware	and	software	design.

The	steps	discussed	were	covered	in	a	complete	design;	this	design	was	an	FIR	filter
that	is	a	DSP	application.	The	design	was	simple	and	used	our	homemade	processor	and
its	 basic	 software	utilities.	Now	 that	we	 are	 familiar	with	 the	 actual	 steps	 of	 embedded
system	 design,	 the	 next	 chapter	 shows	 a	 complete	 hardware/software	 environment	 for
design	of	large	scale	applications	using	embedded	systems.

	

9

Design	of	an	Embedded	System

The	previous	chapter	showed	how	a	software	program	and	a	processor	that	runs	it	could
be	used	to	implement	a	function	that	would	otherwise	require	design	of	a	special	purpose
hardware	module.	We	also	showed	how	such	an	implementation	could	be	used	along	with
other	hardware	functions	for	assembly	and	implementation	and	of	a	complete	system	that
we	 refer	 to	 as	 an	 embedded	 system.	 The	 designs	 we	 used	 were	 generally	 small	 and
therefore	we	did	not	 require	many	sophisticated	design	 tools	or	 environments.	Actually,
the	design	of	 the	 structure	of	 the	hardware,	 and	assembly	of	 the	program	 to	 run	on	our
CPU	were	done	manually.

An	actual	design	of	an	embedded	system	cannot	be	done	as	easily	as	 the	designs	of
Chapter	8,	and	design	tools	and	environments	must	come	to	the	aid	of	the	designer.	This
chapter	shows	tools	and	environments	offered	by	Altera	for	design	of	embedded	systems.
Although	the	focus	is	on	Altera’s	environments,	but	such	tools	are	typical	of	most	today’s
embedded	 system	 design	 environments.	 This	 chapter	 also	 shows	 an	 embedded	 system
design	example	from	specification	to	FPGA	implementation.

Section	 1	 defines	 various	 pieces	 of	 an	 embedded	 system	 design	 environment.
Discussion	of	 the	hardware	 elements	of	 an	 embedded	 system	begins	with	presenting	 an
embedded	 processor	 in	 Section	 2.	 This	 discussion	 continues	 with	 presenting	 the	 bus
architecture	 of	 an	 embedded	 system	 in	 Section	 3.	 The	 design	 tool	 for	 assembling	 the
hardware	parts	of	an	embedded	processor	will	be	discussed	in	Section	4,	while	Section	5
is	dedicated	to	the	design	tool	for	design	of	the	software	part	of	an	embedded	processor.
Finally,	Section	6	shows	a	complete	design	done	with	elements	discussed	in	the	preceding
sections.

9.1	Designing	an	Embedded	System

A	 typical	 embedded	 system	 consists	 of	 several	 processors	 connected	 to	 memories	 and
other	devices	 through	a	bussing	 structure.	The	 first	 step	 in	design	of	 such	 systems	 is	 to
decide	what	parts	of	 a	 complete	 system	are	done	 in	hardware	using	hardware	blocks	or
Verilog	code,	and	what	parts	are	done	by	writing	a	program	to	run	on	a	given	processor.
Once	 this	 decision	 is	 made,	 functions	 that	 are	 to	 be	 implemented	 in	 hardware	 will	 be
designed	using	hardware	design	methods	and	synthesis	tools,	and	functions	implemented
with	a	software	program	running	on	a	processor	will	be	designed	using	the	C	language	and
compilers	and	other	software	tools.

In	 addition	 to	 writing	 the	 C	 program,	 development	 of	 the	 software	 part	 of	 an
embedded	 system	 requires	 general	 knowledge	 of	 the	 architecture	 of	 the	 processor	 the

software	 runs	 on,	 and	 its	 bussing	 structure.	 Furthermore,	 considered	 as	 pieces	 of	 an
embedded	 system	 design	 environment,	 an	 embedded	 system	 designer	 needs	 a	 tool	 for
design	and	configuration	of	the	hardware	of	the	embedded	processor	and	another	for	those
of	the	software	of	the	processor.

Figure	9.1	How	pieces	of	an	Embedded	Design	Fit	Together

Altera’s	 environment	where	 decisions	 regarding	 hardware	 and	 software	 partitioning
are	done	 is	 the	Quartus	 II	 software	 that	we	are	 already	 familiar	with.	This	environment
also	 provides	 tools	 and	 utili	 ties	 for	 design	 and	 implementation	 of	 the	 hardware	 parts.
Being	the	base	of	all	our	designs,	we	consider	Quartus	II	as	Altera’s	main	platform	of	an
embedded	system	design	environment.

Taking	 off	 from	Quartus	 II	 is	 the	 SOPC	 (System	On	 Programmable	 Chip)	 Builder
program	 that	 is	used	 for	putting	 together	our	embedded	processors	with	 their	memories
and	IO	devices	through	a	given	bus	structure.	Altera’s	processor	for	embedded	designs	is
Nios	 II,	 and	 the	bus	structure	 that	connects	all	 system	components	 is	 the	Avalon	switch
fabric.	Once	the	hardware	part	is	in	place,	IDE	(integrated	Design	Environment)	takes	off
from	SOPC	Builder.	IDE	allows	development	of	the	C	program	that	runs	on	the	processor.
It	includes	a	C	compiler,	and	necessary	program	entry	and	test	utilities.

Embedded	processors,	 interconnecting	busses,	hardware	builders,	and	software	 tools
are	considers	as	pieces	of	an	embedded	system	design	environment.	The	relation	between
these	facilities	is	shown	in	Figure	9.1.	Altera’s	versions	of	these	are	the	Nios	II	processor,
Avalon	bus,	SOPC	Builder,	and	IDE.	Figure	9.1	is	annotated	with	Altera’s	facilities	for	an

embedded	system	design.

9.2	Nios	II	Processor

This	 section	 is	 an	 introduction	 to	 the	 Nios	 II	 embedded	 processor	 family.	 The	 Nios	 II
processor	is	a	general-purpose	RISC	processor	core,	providing:

•	Full	32-bit	instruction	set,	data	path,	and	address	space

•	32	general-purpose	registers

•	32	external	interrupt	sources

•	Single-instruction	32	x	32	multiply	and	divide	producing	a	32bit	result

•	Dedicated	instructions	for	computing	64-bit	and	128-bit	products	of	multiplication

•	Floating-point	instructions	for	single-precision	floating-point	operations

•	Single-instruction	barrel	shifter

•	Access	to	a	variety	of	on-chip	peripherals,	and	interfaces	to	off-chip	memories	and
peripherals

•	 Hardware-assisted	 debug	 module	 enabling	 processor	 start,	 stop,	 step	 and	 trace
under	integrated	development	environment	(IDE)	control

•	 Software	 development	 environment	 based	 on	 the	 GNU	 C/C++	 tool	 chain	 and
Eclipse	IDE

•	Instruction	set	architecture	(ISA)	compatible	across	all	Nios	II	processor	systems

A	Nios	II	processor	system	is	equivalent	to	a	microcontroller	or	“computer	on	a	chip”
that	includes	a	CPU	and	a	combination	of	peripherals	and	memory	on	a	single	chip.	The
term	 “Nios	 II	 processor	 system”	 refers	 to	 a	 Nios	 II	 processor	 core,	 a	 set	 of	 on-chip
peripherals,	 on-chip	memory,	 and	 interfaces	 to	 off-chip	memory,	 all	 implemented	 on	 a
single	Altera	chip.	An	example	system	including	a	processor,	memories	 IO	devices,	and
their	interconnecting	bus	structure	is	shown	in	Figure	9.2.	Like	a	microcontroller	family,
all	Nios	II	processor	systems	use	a	consistent	instruction	set	and	programming	model.	The
term	“Nios	II	processor”	or	“Nios	II	CPU”	refers	to	a	Nios	II	processor	core	alone;	we	use
these	terms	to	discuss	it	from	its	architectural	or	programming	point	of	view.

Figure	9.2	An	Example	Nios	II	System

9.2.1	Configurability	Features	of	Nios	II

This	 section	 introduces	 Nios	 II	 concepts	 that	 define	 a	 Nios	 II	 based	 system	 as
configurable.	 These	 concepts	 are	 the	 major	 differences	 between	 an	 embedded	 system
design	using	Nios	II	and	discrete	microcontrollers.	For	the	most	part,	these	concepts	relate
to	 the	 flexibility	 for	 hardware	 designers	 to	 fine-tune	 system	 implementation.	 Software
programmers	generally	are	not	affected	by	the	hardware	implementation	details,	and	can
write	programs	without	awareness	of	the	configurable	nature	of	the	Nios	II	processor	core.

9.2.1.1	Configurable	 Soft-Core	 Processor.	 The	Nios	 II	 processor	 is	 a	 configurable	 soft-
core	 processor,	 as	 opposed	 to	 a	 fixed,	 off-the-shelf	 microcontroller.	 In	 this	 context,
“configurable”	means	that	features	can	be	added	or	removed	on	a	system-by-system	basis
to	 meet	 performance	 or	 price	 goals.	 “Soft-core”	 means	 the	 CPU	 core	 comes	 in	 “soft”
design	 form	 (i.e.,	 not	 fixed	 in	 silicon),	 and	 can	be	 targeted	 to	 any	Altera	 FPGA	 family.
Nios	 II	 comes	 in	 several	 versions	 as	 readymade	 processors.	 If	 these	 designs	 meet	 the
system	requirements,	there	is	no	need	to	configure	the	design	further.

9.2.1.2	Flexible	Peripheral	Set	&	Address	Map.	A	flexible	peripheral	set	is	one	of	the	most
notable	 differences	 between	 Nios	 II	 processor	 systems	 and	 fixed	 microcontrollers.
Because	of	the	soft-core	nature	of	the	Nios	II	processor,	designers	can	easily	build	made-
to-order	Nios	 II	 processor	 systems	with	 the	 exact	 peripheral	 set	 required	 for	 the	 target
applications.	 A	 corollary	 of	 flexible	 peripherals	 is	 a	 flexible	 address	 map.	 Software

constructs	 are	 provided	 to	 access	memory	 and	 peripherals	 generically,	 independently	 of
address	 location.	Therefore,	 the	 flexible	 peripheral	 set	 and	 address	map	 does	 not	 affect
application	developers.

Designers	 can	 choose	 from	Altera	 standard	peripherals,	 or	 design	 their	 own	custom
peripherals.	 Standard	 peripherals	 are	 those	 that	 are	 commonly	 used	 in	microcontrollers,
such	as	timers,	serial	communication	interfaces,	general-purpose	I/O,	SDRAM	controllers,
and	other	memory	interfaces.	Custom	peripherals	can	also	be	deigned	and	integrated	into
Nios	II	processor	systems.

For	 performance-critical	 systems	 that	 spend	 most	 CPU	 cycles	 executing	 a	 specific
section	of	code,	 it	 is	a	common	technique	to	create	a	custom	peripheral	 that	 implements
the	 same	 function	 in	 hardware.	 This	 approach	 offers	 performance	 benefit	 because	 the
hardware	 implementation	 is	 faster	 than	 software.	 In	 addition,	 it	 frees	 the	 processor	 to
perform	other	functions	in	parallel	while	the	custom	peripheral	operates	on	data.

9.2.1.3	Custom	Instructions.	Like	custom	peripherals,	custom	instructions	are	a	method	to
increase	 system	 performance	 by	 augmenting	 the	 processor	 with	 custom	 hardware.	 The
soft-core	nature	of	the	Nios	II	processor	enables	designers	to	integrate	custom	logic	into
the	arithmetic	logic	unit	(ALU).	Similar	to	native	Nios	II	instructions,	custom	instruction
logic	can	take	values	from	up	to	two	source	registers	and	optionally	write	back	a	result	to
a	destination	register.

By	 using	 custom	 instructions,	 designers	 can	 fine	 tune	 the	 system	hardware	 to	meet
performance	 goals.	 Because	 the	 processor	 is	 implemented	 on	 reprogrammable	 Altera
FPGAs,	 a	 hardware/software	 co-design	 can	 consider	 tradeoffs	 between	 implementing
various	parts	of	a	system	in	hardware	or	software.

From	 the	 software	 perspective,	 custom	 instructions	 appear	 as	 machine	 generated
assembly	macros	or	C	functions,	so	programmers	do	not	need	to	know	assembly	in	order
to	use	custom	instructions.

9.2.1.4	Automated	System	Generation.	Altera’s	SOPC	Builder	design	tool	fully	automates
the	process	of	configuring	processor	features	and	generating	a	hardware	design	that	can	be
programmed	 into	 an	 FPGA.	 The	 SOPC	 Builder	 graphical	 user	 interface	 (GUI)	 enables
hardware	designers	to	configure	Nios	II	processor	systems	with	any	number	of	peripherals
and	 memory	 interfaces.	 SOPC	 Builder	 can	 also	 import	 a	 designer’s	 HDL	 design	 files,
providing	an	easy	mechanism	to	integrate	custom	logic	into	a	Nios	II	processor	system.

After	system	generation,	the	design	can	be	programmed	into	a	board,	and	software	can
be	 debugged	 executing	 on	 the	 board.	Once	 the	 design	 is	 programmed	 into	 a	 board,	 the
processor	architecture	is	fixed.	Software	development	proceeds	in	the	same	manner	as	for
traditional,	nonconfigurable	processors.

9.2.2	Processor	Architecture

This	 section	 describes	 the	 hardware	 structure	 of	 the	 Nios	 II	 processor,	 including	 a
discussion	of	all	 the	functional	units	of	 the	Nios	II	architecture	and	 the	fundamentals	of

the	Nios	II	processor	hardware	implementation.

The	Nios	 II	 architecture	 describes	 an	 instruction	 set	 architecture	 (ISA).	The	 ISA	 in
turn	 necessitates	 a	 set	 of	 functional	 units	 that	 implement	 the	 instructions.	 A	 Nios	 II
processor	core	is	a	hardware	that	implements	the	Nios	II	instruction	set	and	supports	the
functional	 units	 described	 in	 this	 document.	 The	 processor	 core	 does	 not	 include
peripherals	 or	 the	 connection	 logic	 to	 the	 outside	 world.	 It	 includes	 only	 the	 circuits
required	to	 implement	 the	Nios	II	architecture.	Figure	9.3	shows	a	block	diagram	of	 the
Nios	 II	processor	core.	Uservisible	 functional	units	of	 the	Nios	 II	 architecture	are	 listed
below.

•	Register	file

•	Arithmetic	logic	unit	and	interface	to	custom	instruction	logic

•	Resetting	signals

•	Exception	and	interrupt	controller

•	Instruction	and	data	buses

•	Instruction	and	data	cache	memories

0	Tightly	coupled	memory	interfaces	for	instructions	and	data

0	JTAG	debug	module

Figure	9.3	Nios	II	Processor	Block	Diagram

The	 functional	 units	 of	 the	Nios	 II	 architecture	 form	 the	 foundation	 for	 the	Nios	 II
instruction	set.	However,	this	does	not	indicate	that	any	unit	is	implemented	in	hardware.
The	 Nios	 II	 architecture	 describes	 an	 instruction	 set,	 not	 a	 particular	 hardware
implementation.	A	functional	unit	can	be	implemented	in	hardware,	emulated	in	software,
or	omitted	entirely.

A	Nios	II	implementation	is	a	set	of	design	choices	embodied	by	a	particular	Nios	II
processor	core.	All	implementations	support	the	instruction	set	defined	in	Altera’s	Nios	II
Processor	Reference	Handbook.	Each	 implementation	 achieves	 specific	 objectives,	 such
as	smaller	core	size	or	higher	performance.	This	allows	the	Nios	II	architecture	to	adapt	to
the	needs	of	different	target	applications.

In	the	sub-sections	that	follow,	we	discuss	hardware	implementation	details	related	to
each	functional	unit.

9.2.2.1	Register	 File.	 The	Nios	 II	 architecture	 supports	 a	 flat	 register	 file,	 consisting	 of
thirty	 two	 32-bit	 general-purpose	 integer	 registers,	 and	 six	 32-bit	 control	 registers.	 The
architecture	 supports	 supervisor	 and	 user	 modes	 that	 allow	 system	 code	 to	 protect	 the
control	 registers	 from	errant	 applications.	The	Nios	 II	 architecture	 allows	 for	 the	 future
addition	of	floating	point	registers.

9.2.2.2	Arithmetic	Logic	Unit.	The	Nios	II	arithmetic	 logic	unit	(ALU)	operates	on	data
stored	in	general-purpose	registers.	ALU	operations	take	one	or	two	inputs	from	registers,
and	 store	 a	 result	 back	 in	 a	 register.	 The	 ALU	 supports	 the	 data	 operations	 such	 as
arithmetic,	 relational,	 logical,	 and	 shift	 and	 rotate	 operations.	 To	 implement	 any	 other
operation,	software	computes	the	result	by	performing	a	combination	of	these	fundamental
operations.

Unimplemented	 Instructions.	 Some	Nios	 II	 processor	 cores	 do	 not	 provide	hardware	 to
perform	multiplication	or	division	operations	and	 are	 emulated	 in	 software.	 Instructions
that	the	processor	core	may	emulate	in	software:	mul,	muli,	mulxss,	mulxsu,	mulxuu,	div,
divu.	In	such	a	core,	these	are	known	as	unimplemented	instructions.	All	other	instructions
are	implemented	in	hardware.

The	 processor	 generates	 an	 exception	 whenever	 it	 issues	 an	 unimplemented
instruction,	 and	 the	 exception	 handler	 calls	 a	 routine	 that	 emulates	 the	 operation	 in
software.	Therefore,	unimplemented	instructions	do	not	affect	 the	programmer’s	view	of
the	processor.

Custom	Instructions.	The	Nios	 II	 architecture	 supports	user-defined	custom	instructions.
The	 Nios	 II	 ALU	 connects	 directly	 to	 custom	 instruction	 logic,	 enabling	 designers	 to
implement	 in	 hardware	 operations	 that	 are	 accessed	 and	 used	 exactly	 like	 native
instructions.

Floating	 Point	 Instructions.	 The	 Nios	 II	 architecture	 supports	 single	 precision	 floating
point	 instructions	 as	 specified	 by	 the	 IEEE	 Std	 7541985.	 These	 are	 implemented	 as
custom	instructions,	and	can	be	added	to	any	Nios	II	processor	core.	The	Nios	II	software
development	 tools	 recognize	 C	 code	 that	 can	 take	 advantage	 of	 the	 floating	 point
instructions	when	they	are	present	in	the	processor	core.

9.2.2.3	 Reset	 Signals.	 The	 Nios	 II	 CPU	 core	 supports	 two	 reset	 signals.	 The	 global
hardware	reset	signal	(reset)	forces	the	processor	core	to	reset	immediately.	On	the	other
hand,	the	cpu_resetrequest	reset	signal	is	a	local	reset	signal	that	causes	the	CPU	to	reset
without	affecting	other	components	 in	 the	Nios	 II	 system.	With	 this	 reset,	 the	processor
finishes	 executing	 any	 instructions	 in	 the	 pipeline,	 and	 then	 enters	 the	 reset	 state	 and
asserts	 the	 cpu_resettakeu	 signal	 for	 one	 cycle.	 When	 in	 this	 state,	 the	 processor
periodically	checks	if	cpu_resetrequest	remains	asserted,	and	remains	in	reset	for	as	long
as	cpu_resetrequest	is	asserted.	The	CPU	does	not	respond	to	cpu_resetrequest	when	it	is
under	the	control	of	the	JTAG	debug	module.

9.2.2.4	Exception	&	Interrupt	Controller.	The	Nios	II	architecture	provides	a	simple,	non-
vectored	 exception	 controller	 to	 handle	 all	 exception	 types.	 All	 exceptions,	 including
hardware	 interrupts,	 cause	 the	 processor	 to	 transfer	 execution	 to	 a	 single	 exception
address.	The	exception	handler	at	this	address	determines	the	cause	of	the	exception	and
dispatches	an	appropriate	exception	routine.	The	exception	address	is	specified	at	system
generation	time.

The	 Nios	 II	 architecture	 supports	 thirty	 two	 external	 hardware	 interrupts.	 The
processor	core	has	32	 level-sensitive	 interrupt	 request	 (IRQ)	 inputs,	 irqO	 through	 irg31,
providing	a	unique	input	for	each	interrupt	source.	IRQ	priority	is	determined	by	software.
The	 architecture	 supports	 nested	 interrupts.	 The	 software	 can	 enable	 and	 disable	 any
interrupt	 source	 individually	 through	 the	 ienable	 control	 register,	 which	 contains	 an
interrupt-enable	bit	for	each	of	the	IRQ	inputs.	Software	can	enable	and	disable	interrupts
globally	using	the	PIE	bit	of	the	status	control	register.

A	 hardware	 interrupt	 is	 generated	 only	 if	 the	 PIE	 bit	 of	 the	 status	 register	 is	 1,	 an
interrupt-request	input,	irqn,	is	asserted,	and	the	corresponding	bit	n	of	the	ienable	register
is	1.

9.2.2.5	Memory	&	I/O	Organization.	The	discussion	of	memory	and	I/O	organization	of
this	section	covers	both	general	concepts	true	of	all	Nios	II	processor	systems,	as	well	as
features	that	may	change	from	system	to	system.

Figure	9.4	Examples	of	Nios	II	Memory	and	I/O	Access

Figure	9.4	shows	several	ways	a	Nios	II	core	can	be	connected	to	its	memory	and	I/O
devices.	As	 shown,	 accessing	memory	 and	 I/O	devices	 can	be	done	 through	 instruction
and	 data	 master	 ports	 of	 the	 Avalon	 switch	 fabric,	 tightly	 coupled	 instruction	 or	 data
memory	 port,	 and	 fast	 cache	 memory	 internal	 to	 the	 Nios	 core.	 Connecting	 through
instruction	 and	 data	 master	 ports	 implies	 use	 of	 Avalon	 master	 ports	 (shown	 by	M	 in
Figure	9.4)	that	connect	to	the	corresponding	memories.	Such	memories	become	slaves	on
the	Avalon	bus.	The	paragraphs	that	follow	discuss	these	alternatives.

The	 Nios	 II	 architecture	 hides	 the	 hardware	 details	 from	 the	 programmer,	 so
programmers	 can	 develop	 Nios	 II	 applications	 without	 awareness	 of	 the	 hardware
implementation.

Instruction	&	Data	Buses.	The	Nios	II	architecture	supports	separate	instruction	and	data
buses,	 classifying	 it	 as	 a	 Harvard	 architecture.	 Both	 the	 instruction	 and	 data	 buses	 are
implemented	as	Avalon	master	ports	that	adhere	to	the	Avalon	interface	specification.	The
data	 master	 port	 connects	 to	 both	 memory	 and	 peripheral	 components,	 while	 the
instruction	master	port	connects	only	to	memory	components.

The	Nios	II	architecture	provides	memory-mapped	I/O	access.	Both	data	memory	and
peripherals	 are	 mapped	 into	 the	 address	 space	 of	 the	 data	 master	 port.	 The	 Nios	 II
architecture	 is	 little	 endian.	 Words	 and	 half	 words	 are	 stored	 in	 memory	 with	 the
moresignificant	bytes	at	higher	addresses.

The	 Nios	 II	 instruction	 bus	 is	 implemented	 as	 a	 32-bit	 Avalon	 master	 port.	 The
instruction	master	port	performs	a	single	function:	Fetch	instructions	that	will	be	executed

by	the	processor.	The	instruction	master	port	does	not	perform	any	write	operations.

The	 instruction	master	port	 is	a	pipelined	Avalon	master	port.	Support	 for	pipelined
Avalon	transfers	minimizes	the	impact	of	synchronous	memory	with	pipeline	latency	and
increases	the	overall	maximum	frequency	of	the	system.	The	instruction	master	port	can
issue	successive	 read	 requests	before	data	has	 returned	 from	prior	 requests.	The	Nios	 II
processor	can	pre-fetch	sequential	instructions	and	perform	branch	prediction	to	keep	the
instruction	pipe	as	active	as	possible.

The	 instruction	master	 port	 always	 retrieves	 32	 bits	 of	 data.	 The	 instruction	master
port	relies	on	dynamic	bus-sizing	logic	contained	in	the	Avalon	switch	fabric.	By	virtue	of
dynamic	bus	sizing,	every	 instruction	 fetch	 returns	a	 full	 instruction	word,	 regardless	of
the	width	of	 the	 target	memory.	Consequently,	programs	do	not	need	 to	be	aware	of	 the
widths	of	memory	in	the	Nios	II	processor	system.

The	 Nios	 II	 architecture	 supports	 on-chip	 cache	 memory	 for	 improving	 average
instruction	 fetch	 performance	when	 accessing	 slower	memory.	 The	Nios	 II	 architecture
supports	 tightly	 coupled	memory,	which	 provides	 guaranteed	 low	 latency	 access	 to	 on-
chip	memory.

The	Nios	II	data	bus	is	implemented	as	a	32-bit	Avalon	master	port.	The	two	functions
that	the	data	master	port	performs	are	reading	data	from	memory	or	a	peripheral	when	the
processor	executes	a	load	instruction,	and	writing	data	to	memory	or	a	peripheral	when	the
processor	executes	a	store	instruction.

Byte-enable	signals	on	the	master	port	specify	which	of	the	four	byte	lane	(s)	to	write
during	store	operations.	The	data	master	port	does	not	support	pipelined	Avalon	transfers,
because	it	is	not	meaningful	to	predict	data	addresses	or	to	continue	execution	before	data
is	 retrieved.	Consequently,	any	memory	pipeline	 latency	 is	perceived	by	 the	data	master
port	as	wait	states.	Load	and	store	operations	can	complete	in	a	single	clock-cycle	when
the	data	master	port	is	connected	to	zero	wait-state	memory.

The	Nios	II	architecture	supports	on-chip	cache	memory	for	improving	average	data
transfer	 performance	 when	 accessing	 slower	 memory.	 It	 also	 supports	 tightly	 coupled
memory,	which	provides	guaranteed	low-latency	access	to	on-chip	memory.

Cache	Memory.	The	Nios	 II	 architecture	 supports	 optional	 cache	memories	 on	 both	 the
instruction	master	 port	 (instruction	 cache)	 and	 the	 data	master	 port	 (data	 cache).	Cache
memory	 resides	 on-chip	 as	 an	 integral	 part	 of	 the	 Nios	 II	 processor	 core.	 The	 cache
memories	can	improve	the	average	memory	access	time	for	Nios	II	processor	systems	that
use	slow	off-chip	memory	such	as	SDRAM	for	program	and	data	storage.

A	Nios	 II	 processor	 core	may	 include	 one,	 both,	 or	 neither	 of	 the	 cache	memories.
Furthermore,	for	cores	that	provide	data	and/or	instruction	cache,	the	sizes	of	the	caches
are	user-configurable.

Tightly	 Coupled	 Memory.	 Tightly	 coupled	 memory	 provides	 guaranteed	 low-latency
memory	access	for	performance-critical	applications.	Compared	to	cache	memory,	tightly
coupled	memory	provides	performance	similar	to	cache	memory,	no	cache	overhead,	and

a	guarantee	that	code	or	data	is	always	available	with	the	same	latence.

Physically,	 a	 tightly	 coupled	memory	 port	 is	 a	 separate	master	 port	 on	 the	 Nios	 II
processor	core,	similar	to	the	instruction	or	data	master	port.	A	Nios	II	core	can	have	zero,
one,	 or	 multiple	 tightly	 coupled	 instruction	 and	 data	 memories.	 Each	 tightly	 coupled
memory	port	connects	directly	to	exactly	one	memory	with	guaranteed	low,	fixed	latency.
The	memory	is	external	to	the	Nios	II	core	and	is	usually	located	on	chip.

Tightly	coupled	memories	occupy	normal	address	 space,	 the	same	as	other	memory
devices	 connected	 via	 Avalon	 switch	 fabric.	 The	 address	 ranges	 for	 tightly	 coupled
memories	 (if	 any)	 are	 determined	 at	 system	 generation	 time.	 Software	 accesses	 tightly
coupled	 memory	 using	 regular	 load	 and	 store	 instructions.	 From	 the	 software’s
perspective,	 there	 is	 no	difference	 accessing	 tightly	 coupled	memory	compared	 to	other
memory.

9.2.2.6	 Addressing	 Modes.	 The	 Nios	 II	 architecture	 supports	 register	 addressing,
displacement	addressing,	immediate	addressing,	register	indirect	addressing,	and	absolute
addressing.

In	 register	 addressing,	 all	 operands	 are	 registers,	 and	 results	 are	 stored	 back	 to	 a
register.	In	displacement	addressing,	the	address	is	calculated	as	the	sum	of	a	register	and
a	 signed,	 16-bit	 immediate	 value.	 In	 immediate	 addressing,	 the	 operand	 is	 a	 constant
within	the	instruction	itself.	Register	indirect	addressing	uses	displacement	addressing,	but
the	displacement	is	the	constant	0.	Limited-range	absolute	addressing	is	achieved	by	using
displacement	addressing	with	register	r0,	whose	value	is	always	0x00.

9.2.2.7	JTAG	Debug	Module.	The	Nios	II	architecture	supports	a	JTAG	debug	module	that
provides	onchip	emulation	features	to	control	the	processor	remotely	from	a	host	PC.	PC-
based	software	debugging	tools	communicate	with	the	JTAG	debug	module	and	provide
facilities,	 such	 as	 downloading	 programs	 to	 memory,	 starting	 and	 stopping	 execution,
setting	breakpoints	and	watchpoints,	analyzing	registers	and	memory,	and	collecting	real-
time	execution	trace	data.

Soft-core	 processors	 such	 as	 the	 Nios	 II	 processor	 offer	 unique	 debug	 capabilities
beyond	 the	 features	 of	 traditional,	 fixed	 processors.	 The	 softcore	 nature	 of	 the	 Nios	 II
processor	allows	designers	to	debug	a	system	in	development	using	a	full-featured	debug
core,	 and	 later	 remove	 the	 debug	 features	 to	 conserve	 logic	 resources.	 For	 the	 release
version	of	a	product,	 the	JTAG	debug	module	 functionality	can	be	 reduced,	or	 removed
altogether.

9.2.3	Instruction	Set

This	 section	 introduces	 the	 Nios	 II	 instructions	 categorized	 by	 type	 of	 operation
performed.	We	will	give	a	general	overview	of	Nios	 II	 instructions.	More	details	of	 the
instructions	of	this	machine	can	be	found	in	Appendix	A	of	this	book	and	in	the	Nios	II
Processor	 Reference	 Handbook	 that	 is	 included	 in	 the	 CD	 in	 the	 back	 of	 this	 book.
Instruction	categories	that	we	will	discuss	are:	data	transfer,	arithmetic	and	logical,	move,
comparison,	shift	and	rotate,	program	control,	custom,	and	no-operation	instructions.

9.2.3.1	Data	 Transfer	 Instructions.	 The	Nios	 II	 architecture	 is	 a	 load-store	 architecture.
Load	 and	 store	 instructions	 handle	 all	 data	 movement	 between	 registers,	 memory,	 and
peripherals.	 Memories	 and	 peripherals	 share	 a	 common	 address	 space.	 Some	 Nios	 II
processor	 cores	 use	 memory	 caching	 and/or	 write	 buffering	 to	 improve	 memory
bandwidth.	The	architecture	provides	instructions	for	both	cached	and	uncached	accesses.

Data	 Transfer	 Instructions	 consists	 of	 Word	 Data	 Transfer	 Instructions	 (ldw,	 stw,
ldwio	&	stwio),	and	Byte	Data	Transfer	Instructions	(ldb,	ldbu,	stb,	ldh,	 ldhu,	sth,	 ldbio,
ldbuio,	stbio,	ldhio,	ldhuio,	sthio).	Details	of	these	instructions	are	discussed	in	Appendix
A.

9.2.3.2	Arithmetic	and	Logical	Instructions.	Nios	II	logical	instructions	support	AND,	OR,
XOR,	 and	 NOR	 operations.	 Arithmetic	 instructions	 support	 addition,	 subtraction,
multiplication	and	division.

Arithmetic	and	Logical	Instructions	consist	of	Standard	Logical	Instructions	(and,	or,
xor,	 nor),	 Immediate	 Logical	 Instructions	 (andi,	 on,	 xori),	 High	 Immediate	 Logical
Instructions	 (andhi,	 orhi,	 xorhi),	 Standard	 Arithmetic	 Instructions	 (add,	 sub,	 mul,	 div,
divu),	 Immediate	 Arithmetic	 Instructions	 (addi,	 subi,	 muli),	 Upper	 Multiplication
Instructions	(mulxss,	mulxuu),	and	Long	Multiplication	Instruction	(mulxsu).

9.2.3.3	Move	Instructions.	Move	instructions	provide	move	operations	to	copy	the	value
of	a	register	or	an	immediate	value	to	another	register.	This	group	of	instructions	consists
of	mov,	movhi,	movi,	movui	and,	movia.

9.2.3.4	 Comparison	 Instructions.	 The	 Nios	 II	 architecture	 supports	 a	 number	 of
comparison	instructions.	All	of	these	compare	two	registers	or	a	register	and	an	immediate
value,	and	write	either	1	(if	true)	or	0	to	the	result	register.	These	instructions	perform	all
the	equality	and	relational	operators	similar	to	those	of	the	C	programming	language.

Comparison	 Instructions	 consist	 of	 Basic	 Comparison	 Instructions	 (cmpeq,	 cmpne,
cmpge,	 cmpgeu,	 cmpgt,	 cmpgtu,	 cmple,	 cmpleu,	 cmplt),	 and	 Immediate	 Comparison
Instructions	 (cmpegi,	 cmpnei,	 cmpgei,	 cmpgeui,	 cmpgti,	 cmpgtui,	 cmplei,	 cmpleui,
cmplti).

9.2.3.5	 Shift	 and	 Rotate	 Instructions.	 The	 Nios	 II	 architecture	 supports	 standard	 and
immediate	 shift	 and	 rotate	 operations.	 Right	 and	 left	 versions	 of	 these	 instructions	 are
provided.	 The	 number	 of	 bits	 to	 rotate	 or	 shift	 can	 be	 specified	 in	 a	 register	 or	 an
immediate	value.

Shift	 and	Rotate	 Instructions	 consist	 of	Rotate	 Instructions	 (rol,	 ror,	 roli),	 and	Shift
Instructions	(rsll,	slli,	sra,	srl,	srai,	srli).

9.2.3.6	Program	Control	Instructions.	The	Nios	II	architecture	supports	the	unconditional
jump	and	call	instructions.	These	instructions	do	not	have	delay	slots.

Program	Control	Instructions	subgroups	are	Unconditional	Jump	and	Call	Instructions
(call,	 callr,	 ret,	 jmp,	 br)	 and	Conditional	Branch	 Instructions	 (bge,	 bgeu,	 bgt,	 bgtu,	 ble,
bleu,	blt,	bltu,	beq,	bne).

9.2.3.7	Other	Control	Instructions.	In	addition	to	the	standard	control	instructions,	Nios	II

supports	instructions	for	debugging,	status	register	manipulation,	exception	handling,	and
pipleline	related	instructions.

Exception	 Instructions	 (trap,	 eret),	Break	 Instructions	 (break,	bret),	Control	Register
Instructions	 (rdctl,	wrctl),	Cache	Control	 Instructions	 (flushd,	 flushi,	 initd,	 initi,	 flushp),
and	Synchronization	Instruction	(synch)	are	Other	Control	Instructions	of	Nios	II.

9.2.3.8	Custom	 Instructions.	The	 custom	 instruction	provides	 lowlevel	 access	 to	 custom
instruction	 logic.	The	 inclusion	 of	 custom	 instructions	 is	 specified	 at	 system	generation
time,	 and	 the	 function	 implemented	 by	 custom	 instruction	 logic	 is	 design	 dependent.
Machine-generated	 C	 functions	 and	 assembly	 macros	 provide	 access	 to	 custom
instructions,	 and	 hide	 implementation	 details	 from	 the	 user.	 Therefore,	 most	 software
developers	never	use	the	custom	assembly	instruction	directly.

9.2.3.9	No-Op	Instruction.	The	nop	instruction	is	provided	in	the	Nios	II	assembler,	and	is
the	no-operation	instruction.

9.2.3.10	 Potential	 Unimplemented	 Instructions.	 Some	 Nios	 II	 processor	 cores	 do	 not
support	 all	 instructions	 in	 hardware.	 In	 this	 case,	 the	 processor	 generates	 an	 exception
after	 issuing	 an	 unimplemented	 instruction.	 The	 only	 instructions	 that	may	 generate	 an
unimplemented-instruction	exception	are:	mul,	muli,	mulxss,	mulxsu,	mulxuu,	div,	divu.
All	 other	 instructions	 are	 guaranteed	 not	 to	 generate	 an	 unimplemented	 instruction
exception.	An	exception	routine	must	exercise	caution	if	it	uses	these	instructions,	because
they	 could	 generate	 another	 exception	 before	 the	 previous	 exception	 was	 properly
handled.

9.2.4	Nios	II	Alternative	Cores

The	Nios	 II	 processor	 comes	 in	 three	 flavors	 that	 can	 be	 selected	 in	 the	 SOPC	Builder
configuration	 wizard.	 These	 alternative	 cores	 set	 a	 base	 for	 the	 exact	 processor	 upon
which	other	configurations	and	customizations	may	be	done.	Currently,	Altera	offers	three
Nios	II	cores:	Nios	II/f,	Nios	II/s,	and	Nios	II/e.

Nios	IUf	“fast”	core	is	designed	for	fast	performance.	As	a	result,	 this	core	presents
the	most	 configuration	 options	 allowing	 you	 to	 finetune	 the	 processor	 for	 performance.
Options	 available	 for	 this	 core	 include	 instruction	 and	 data	 cache,	 dynamic	 branch
predication,	hardware	multiply	and	divide,	and	barrel	shifter.	This	core	uses	between	1400
and	 1600	 FPGA	 logic	 elements.	 It	 also	 uses	 three	 4K	memory	 blocks	 plus	whatever	 is
needed	for	its	caches.

Nios	 II/s-The	Nios	 II/s	“standard”	core	 is	designed	 for	small	size	while	maintaining
performance.	Options	available	for	this	core	include	instruction	cache,	branch	predication,
and	 hardware	multiply	 and	 divide.	 This	 core	 uses	 between	 1200	 and	 1400	 FPGA	 logic
elements.	It	also	uses	two	4K	memory	blocks	plus	whatever	is	needed	for	its	caches.

Nios	H/e-The	Nios	II/e	“economy”	core	is	designed	to	achieve	the	smallest	possible
core	size.	This	core	is	a	basic	32-bit	RISC	machine	without	any	of	the	features	mentioned
for	 the	other	 two	versions	of	 this	processor.	This	core	uses	between	600	and	700	FPGA

logic	elements,	and	two	4k	memory	blocks.

9.3	Avalon	Switch	Fabric

Avalon	 switch	 fabric	 is	 a	 high-bandwidth	 interconnect	 structure	 that	 consumes	minimal
logic	 resources	 and	 provides	 greater	 flexibility	 than	 a	 typical	 shared	 system	 bus.	 This
section	describes	 the	functions	of	Avalon	switch	 fabric	and	 the	 implementation	of	 those
functions.

9.3.1	Avalon	Specification

Avalon	switch	fabric	is	the	glue	that	binds	together	components	in	a	system	based	on	the
Avalon	 interface.	This	switch	fabric	 is	 the	collection	of	 interconnect	and	 logic	 resources
that	 connects	Avalon	master	and	 slave	ports	on	components	 in	 a	 system.	Avalon	 switch
fabric	encapsulates	the	connection	details	of	a	system.

An	example	Avalon	switch	fabric	is	shown	in	Figure	9.5.	This	bus	can	be	used	for	any
number	of	master	(M)	and	slave	(S)	components.	The	bus	allows	connection	of	any	master
to	 any	 slave	 that	 is	 on	 the	bus.	Various	 components	 on	 the	 bus	 can	operate	 in	 different
clock	domains,	have	different	data	widths,	and	have	big-	or	little-endian	data	orientation.
Avalon	 facilitates	 a	 master	 writing	 (solid	 lines	 in	 Figure	 9.5)	 and	 reading	 a	 slave	 port
through	the	bus.

Some	components	in	Figure	9.5	use	multiple	Avalon	ports,	i.e.,	processors	and	DMA.
Because	an	Avalon	component	can	have	multiple	Avalon	ports,	you	can	use	Avalon	switch
fabric	to	create	super	interfaces	that	provide	more	functionality	than	a	single	Avalon	port.
For	 example,	 an	 Avalon	 slave	 port	 can	 have	 only	 one	 interruptrequest	 (IRQ)	 signal.
However,	 by	 using	 three	Avalon	 slave	 ports	 together,	 you	 can	 create	 a	 component	 that
generates	 three	 separate	 IRQs.	 In	 this	 case,	 SOPC	Builder	 generates	 the	Avalon	 switch
fabric	to	connect	all	ports.

Figure	9.5	An	Example	Avalon	Switch	Fabric	Connecting	Components	and	Cores

Generating	Avalon	switch	fabric	is	SOPC	Builder’s	primary	purpose.	Because	SOPC
Builder	generates	Avalon	switch	fabric	auto	matically,	most	users	do	not	interact	directly
with	it	or	the	HDL	that	describes	it.	You	do	not	need	to	know	anything	about	the	internal
workings	 of	Avalon	 switch	 fabric	 to	 take	 advantage	 of	 the	 services	 it	 provides.	On	 the
other	hand,	a	basic	understanding	of	how	it	works	can	help	you	optimize	your	components
and	systems.	For	example,	knowledge	of	the	arbitration	mechanism	can	help	designers	of
multimaster	systems	minimize	the	impact	of	arbitration	on	the	system	throughput.

9.3.1.1	Avalon	Switch	Fabric	 Implementation.	Avalon	 switch	 fabric	uses	 active	 logic	 to
implement	 a	 switched	 interconnect	 structure	 that	 provides	 a	 dedicated	 path	 between
master	 and	 slave	 ports.	 This	 bus	 consists	 of	 synchronous	 logic	 and	 routing	 resources
inside	an	FPGA.

At	each	port	interface,	Avalon	switch	fabric	manages	Avalon	transfers,	responding	to
signals	 from	 the	 connected	 component.	 The	 signals	 that	 appear	 on	 the	master	 port	 and
corresponding	 slave	port	 during	 a	 transfer	 can	 be	 very	 different,	 depending	 on	 how	 the
Avalon	switch	fabric	transports	signals	between	the	master-slave	pair.	In	the	path	between
master	 and	 slave	 ports,	 the	 Avalon	 switch	 fabric	 can	 introduce	 registers	 for	 timing
synchronization,	 finite	state	machines	for	event	 sequencing,	or	nothing	at	all,	depending

on	the	services	required	by	those	ports.

9.3.1.2	 Functions	 of	 Avalon	 Switch	 Fabric.	 Avalon	 switch	 fabric	 logic	 provides	 the
following	functions:

•	Address	Decoding

•	Data-Path	Multiplexing

•	Wait-State	Insertion

•	Pipelining	and	Pipeline	Management

•	Endian	Conversion

•	Native	Address	Alignment	&	Dynamic	Bus	Sizing

•	Arbitration	for	Multi-Master	Systems

•	Burst	Management

•	Clock	Domain	Crossing

0	Interrupt	Controller

•	Reset	Distribution

The	behavior	 of	 these	 functions	 in	 a	 specific	SOPC	Builder	 system	depends	on	 the
design	of	the	components	in	the	system	and	the	settings	made	in	the	SOPC	Builder	GUI.
The	 sections	 that	 follow	 describe	 how	 SOPC	Builder	 implements	 each	 function.	 These
sections	can	be	skipped	if	a	reader	is	not	interested	in	the	implementation	details.

9.3.2	Address	Decoding	Logic

Address	decoding	logic	in	the	Avalon	switch	fabric	distributes	an	appropriate	address	and
produces	a	chip-select	signal	for	each	slave	port.	Avalon	selects	a	slave	port	whenever	it	is
being	 addressed	 by	 a	 master.	 Slave	 components	 do	 not	 need	 to	 decode	 the	 address	 to
determine	when	they	are	selected.	Slave	port	addresses	are	always	properly	aligned	for	the
data	width	of	the	slave	port.

Figure	9.6	Address	Decoding	in	Avalon

Figure	9.6	shows	a	block	diagram	of	 the	address-decoding	 logic	for	one	master	and
two	 slave	ports.	Separate	 address-decoding	 logic	 is	generated	 for	 every	master	 port.	As
shown,	 the	 address	 decoding	 logic	 handles	 the	 difference	 between	 the	 master	 address
width	 (M)	 and	 slave	 address	 widths	 (S	 &	 T).	 It	 also	 maps	 only	 the	 necessary	 master

address	bits	to	access	words	in	each	slave	port’s	address	space.

9.3.3	Data-path	Multiplexing

Data-path	multiplexing	logic	in	the	Avalon	switch	fabric	aggregates	read-data	signals
from	multiple	 slave	 ports	 during	 a	 read	 transfer,	 and	presents	 the	 signals	 from	only	 the
selected	slave	back	to	the	master	port.	Figure	9.7	shows	a	block	diagram	of	the	data-path
multiplexing	logic	for	one	master	and	two	slave	ports.

Figure	9.7	Data	Path	Multiplexing

Data-path	multiplexing	is	not	necessary	in	the	write-data	direction	for	write	transfers.
The	write-data	signals	are	distributed	equally	to	all	slave	ports,	and	each	slave	port	ignores
write-data	except	for	when	the	address-decoding	logic	selects	that	port.

9.3.4	Wait-state	Insertion

Wait	 states	 extend	 the	 duration	 of	 a	 transfer	 by	 one	 or	 more	 cycles	 for	 the	 benefit	 of
components	with	special	synchronization	needs.

Wait-state	 insertion	 logic	 accommodates	 the	 timing	 needs	 of	 each	 slave	 port,	 and
coordinates	 the	 master	 port	 to	 wait	 until	 the	 slave	 can	 proceed.	 Avalon	 switch	 fabric
inserts	wait	 states	 into	 a	 transfer	when	 the	 target	 slave	 port	 cannot	 respond	 in	 a	 single
clock	cycle.	Avalon	switch	fabric	also	inserts	wait	states	in	cases	when	slave	read-enable
and	write-enable	signals	have	setup	or	hold	time	requirements.

Wait-state	insertion	logic	is	a	small	finite-state	machine	that	translates	control	signal
sequencing	between	the	slave	side	and	the	master	side.	Figure	9.8	shows	a	block	diagram
of	the	wait-state	insertion	logic	between	one	master	and	one	slave.

Figure	9.8	Wait	State	Block	Diagram

9.3.5	Pipelining

SOPC	 Builder	 can	 pipeline	 the	 Avalon	 switch	 fabric	 by	 inserting	 stages	 of	 registers
between	 master-slave	 pairs,	 and	 appropriate	 pipeline	 management	 logic	 for	 taking
advantage	 these	 registers.	Adding	pipeline	 registers	 can	 increase	 the	performance	of	 the
system	and	 ensure	 that	 the	 critical	 timing	path	does	not	 occur	 inside	 the	Avalon	 switch
fabric.

The	pipeline	registers	introduce	one	or	more	clock	cycles	of	latency	between	master-
slave	pairs,	which	creates	a	trade-off	between	transfer	latency	and	maximum	frequency	of
operation.	 The	 pipeline	 registers	 can	 also	 increase	 logic	 utilization	 considerably,
depending	on	 the	 complexity	 of	 the	 system.	Components	 that	 support	 pipelined	Avalon
transfers	minimize	the	effects	of	the	pipeline	latency.

9.3.6	Endian	Conversion

In	 general,	 an	Avalon-based	 system	 can	 contain	 both	 big	 and	 little	 endian	 components.
The	endianness	of	an	Avalon	port	depends	on	the	component	design.	Endianness	affects
the	order	a	master	port	expects	individual	bytes	to	be	arranged	within	a	larger	word.	If	all
master	ports	 in	 the	system	use	 the	same	endianness,	 then	all	master	ports’	perception	of
byte	 addresses	 is	 consistent	 within	 the	 system.	 In	 this	 case	 there	 is	 no	 further	 endian-
related	design	consideration	required.

Avalon	 switch	 fabric	provides	endian-conversion	 functionality	 to	allow	master	ports
of	differing	endianness	to	share	memory.	When	several	master	ports	of	equal	data	widths
access	a	common	memory,	the	Avalon	endian-conversion	logic	hides	the	endian	difference
of	master	 ports	 for	 as	 long	 as	 the	master	 ports	 read	 and	 write	 the	memory	 using	 only
native	width	units	(e.g.,	always	32-bit)	of	data.

9.3.7	Native	Address	Alignment	and	Dynamic	Bus	Sizing

SOPC	Builder	generates	Avalon	switch	fabric	to	accommodate	master	and	slave	ports	with
unmatched	data	widths.	Address	alignment	affects	how	slave	data	 is	aligned	 in	a	master
port’s	 address	 space,	 in	 the	 case	 that	 the	 master	 and	 slave	 data	 widths	 are	 different.
Address	alignment	is	a	property	of	each	slave	port,	and	it	may	be	different	for	each	slave
port	in	a	system.	A	slave	port	can	declare	itself	to	use	either	native	address	alignment,	or

dynamic	bus	sizing.

Slave	ports	 that	access	address-mapped	registers	 inside	 the	component	generally	use
native	address	alignment.	Native	address	alignment	is	when	each	slave	offset	(i.e.,	word)
is	smaller	than	and	maps	to	exactly	one	master	word,	regardless	of	the	data	width	of	the
ports,	and	one	transfer	on	the	master	port	generates	exactly	one	transfer	on	the	slave	port.

Slave	ports	 that	access	memory	devices	generally	use	dynamic	bus	sizing.	Dynamic
bus	sizing	hides	the	details	of	interfacing	a	narrow	memory	device	to	a	wider	master	port,
and	vice	versa.	When	an	N-bit	master	port	accesses	a	slave	port	with	dynamic	bus	sizing,
the	master	port	operates	exclusively	on	full	N-bit	words	of	data,	without	awareness	of	the
slave	data	width.

9.3.8	Arbitration	for	Multi-Master	Systems

Avalon	switch	fabric	supports	systems	with	multiple	master	components.	In	a	system	with
multiple	master	ports,	such	as	the	system	pictured	in	Figure	9.5,	the	Avalon	switch	fabric
provides	shared	access	to	slave	ports	using	a	technique	called	slave-side	arbitration.	Slave-
side	arbitration	determines	which	master	port	gains	access	 to	a	specific	slave	port	 in	 the
event	that	multiple	master	ports	attempt	to	access	the	same	slave	port	at	the	same	time.

9.3.9.1	Slave-Side	Arbitration.	The	multi-master	architecture	used	by	Avalon	switch	fabric
does	 not	 have	 shared	 bus	 lines;	 instead	 Avalon	 master-slave	 pairs	 are	 connected	 by
dedicated	paths.	A	master	port	never	waits	to	access	a	slave	port,	unless	a	different	master
port	attempts	to	access	the	same	slave	port	at	the	same	time.	As	a	result,	multiple	master
ports	can	simultaneously	transfer	data	with	independent	slave	ports.

A	 multi-master	 Avalon	 system	 requires	 arbitration,	 but	 only	 when	 two	 masters
contend	for	the	same	slave	port.	This	arbitration	is	called	slave-side	arbitration,	because	it
is	 implemented	at	 the	point	where	 two	(or	more)	master	ports	connect	 to	a	single	slave.
Master	 ports	 contend	 for	 individual	 slave	 ports,	 not	 for	 a	 shared	 bus	 resource.	 For
example,	 the	 example	 of	 Figure	 9.5	 shows	 a	 system	 with	 two	master	 ports	 (CPU	 and
DMA),	 sharing	 a	 slave	 port	 (SDRAM	 controller).	 Arbitration	 is	 performed	 on	 the
SDRAM	slave	port;	the	arbitrator	dictates	which	master	port	gains	access	to	the	slave	port
if	both	master	ports	initiate	a	transfer	with	the	slave	at	the	same	time.

Figure	9.9	Multi	Master	Connections

Figure	 9.9	 focuses	 on	 the	 two	 master	 ports	 and	 the	 shared	 slave	 port,	 and	 shows
additional	detail	of	the	data,	address,	and	control	paths.	The	arbitrator	logic	multiplexes	all
address,	data,	and	control	signals	from	a	master	port	to	a	shared	slave	port.

9.3.9.2	 Arbitrator	 Details.	 SOPC	 Builder	 generates	 an	 arbitrator	 for	 every	 slave	 port
connected	to	multiple	master	ports,	based	on	arbitration	parameters	specified	in	the	SOPC
Builder	GUI.

The	arbitrator	logic	evaluates	the	address	and	control	signals	from	each	master	port	at
every	 clock	 cycle	when	 a	 new	 transfer	 can	begin,	 and	determines	which	master	 port,	 if
any,	is	requesting	access	to	the	slave.	It	then	selects	the	mater	port	that	is	to	gain	access	to
the	slave	next.	Other	master	ports,	not	granted	access,	are	 forced	 to	wait.	The	arbitrator
logic	uses	multiplexers	 to	connect	address,	control,	and	data	paths	between	 the	multiple
master	ports	and	the	slave	port.	An	example	arbitration	logic	in	a	system	with	two	master
ports,	each	connected	to	two	slave	ports,	is	shown	in	Figure	9.10.

Figure	9.10	Arbitration	Logic

Arbitration	 rules	 based	 on	which	 the	 arbitrator	 grants	 access	 to	master	 ports	when	 they
contend	 are	 Fairness-Based	 Shares,	 Round-Robin	 Scheduling,	 Burst	 Transfers,	 and
Minimum	Share	Value.	In	a	fairness-based	arbitration	scheme,	each	master-slave	port	pair
has	an	integer	value	of	 transfer	shares.	 In	case	of	content,	 the	arbitrator	grants	access	 to

the	 master	 with	 smaller	 share.	 In	 a	 Minimum	 Share	 Value	 scheme,	 a	 component	 can
declare	 the	minimum	number	of	 transfers	 it	needs	when	given	access	 in	a	Round-Robin
cycle.

9.3.9	Burst	Management

Avalon	 switch	 fabric	 provides	 burst	 management	 logic	 to	 accommodate	 the	 burst
capabilities	of	each	port	in	the	system,	including	ports	that	do	not	support	burst	transfers.
Burst	management	logic	is	a	fi	nite	state	machine	that	translates	the	sequencing	of	address
and	control	signals	between	the	slave	side	and	the	master	side.

The	maximum	burst	length	for	each	port	is	determined	by	the	component	design	and
is	 independent	of	other	ports	 in	 the	system.	Therefore,	a	particular	master	port	might	be
capable	of	initiating	a	burst	longer	than	a	slave	port’s	maximum	supported	burst	length.	In
this	case,	the	burst	management	logic	translates	the	master	burst	into	smaller	slave	bursts,
or	into	individual	slave	transfers	if	the	slave	port	does	not	support	bursts.	Until	the	master
port	 completes	 the	 burst,	 the	 Avalon	 arbitrator	 logic	 prevents	 other	 master	 ports	 from
accessing	the	target	slave	port.

For	 example,	 if	 a	 master	 port	 initiates	 a	 burst	 of	 16	 transfers	 to	 a	 slave	 port	 with
maximum	burst	length	of	8,	the	burst	management	logic	initiates	two	bursts	of	length	8	to
the	slave	port.	If	a	master	port	initiates	a	burst	of	16	transfers	to	a	slave	port	that	does	not
support	bursts,	the	burst	management	logic	initiates	16	separate	transfers	to	the	slave	port.

9.3.10	Clock	Domain	Crossing

SOPC	 Builder	 generates	 clock-domain	 crossing	 (CDC)	 logic	 that	 hides	 the	 details	 of
interfacing	 components	 operating	 in	 asynchronous	 clock	 domains.	 The	 Avalon	 switch
fabric	 upholds	 the	 Avalon	 protocol	 with	 each	 port	 independently,	 and	 therefore	 each
Avalon	 port	 need	 only	 be	 aware	 of	 its	 own	 clock	 domain.	 Avalon	 switch	 fabric	 logic
propagates	transfers	across	clock	domain	boundaries	transparently	to	the	user.

The	CDC	logic	 in	Avalon	switch	 fabric	allows	component	 interfaces	 to	operate	at	a
different	 clock	 frequency	 than	 system	 logic.	 It	 eliminates	 the	 need	 to	 design	 CDC
hardware	manually.	It	allows	each	Avalon	port	to	operate	in	only	one	clock	domain,	which
reduces	design	complexity	of	components.	With	CDC,	master	ports	can	access	any	slave
port	without	awareness	of	the	slave	clock	domain.

9.3.10.1	 Clock	 Domain-Crossing	 Logic.	 The	 CDC	 logic	 consists	 of	 two	 finite	 state
machines	(FSM),	one	in	each	clock	domain,	which	use	a	simple	hand-shaking	protocol	to
propagate	transfer	control	signals	(read	request,	write	request,	and	the	master	wait-request
signals)	across	the	clock	boundary.

9.3.10.2	Master-Slave	 Communication.	With	 CDC,	 transfers	 proceed	 as	 normal	 on	 the
slave	 and	 the	master	 side,	without	 a	 special	 protocol	 to	 handle	 crossing	 clock	 domains.
From	the	perspective	of	a	slave	port,	there	is	nothing	different	about	a	transfer	initiated	by
a	master	port	in	a	different	clock	domain.	From	the	perspective	of	a	master	port,	a	transfer
across	clock	domains	simply	takes	extra	clock	cycles.	Similar	to	other	transfer	delay	cases

(for	 example,	 arbitration	 delay	 and/or	wait	 states	 on	 the	 slave	 side),	 the	Avalon	 switch
fabric	 simply	 forces	 the	 master	 port	 to	 wait	 until	 the	 transfer	 terminates.	 As	 a	 result,
latency-aware	master	ports	do	not	benefit	from	pipelining	when	performing	transfers	to	a
different	clock	domain.

9.3.11	Interrupt	Controller

In	 systems	 with	 one	 or	 more	 slave	 ports	 that	 generate	 IRQs,	 the	 Avalon	 switch	 fabric
includes	 interrupt	 controller	 logic.	 A	 separate	 interrupt	 controller	 is	 generated	 for	 each
master	port	 that	accepts	 interrupts.	The	 interrupt	controller	aggregates	 IRQ	signals	 from
all	 slave	 ports,	 and	maps	 slave	 IRQ	outputs	 to	user-specified	values	on	 the	master	 IRQ
inputs.

Each	 slave	 port	 optionally	 produces	 an	 IRQ	 output	 signal.	 There	 are	 two	 master
signals	 related	 to	 interrupts:	 irq	 and	 irgnumber.	 SOPC	 Builder	 generates	 the	 interrupt
controller	in	one	of	two	configurations,	software	priority	or	hardware	priority,	depending
on	the	interrupt	signals	present	on	the	master	port.

9.3.11.1	Software	Priority.	In	the	software	priority	configuration,	the	Avalon	switch	fabric
passes	 IRQs	 directly	 from	 slave	 to	master	 port,	without	making	 any	 assumptions	 about
IRQ	priority.	 In	 the	event	 that	multiple	 slave	ports	assert	 their	 IRQs	simultaneously,	 the
master	 logic	 (presumably	 under	 software	 control)	 determines	 which	 IRQ	 has	 highest
priority,	then	responds	appropriately.

Using	software	priority,	the	interrupt	controller	can	handle	up	to	32	slave	IRQ	inputs.
The	 interrupt	controller	generates	a	32-bit	 signal	 irq[31..0]	 to	 the	master	port,	and	maps
slave	IRQ	signals	to	bits	of	irq[31..0].	Any	unassigned	bits	of	irq[31..0]	are	permanently
disabled.

9.3.11.2	 Hardware	 Priority.	 In	 the	 hardware	 priority	 configuration,	 in	 the	 event	 that
multiple	slaves	assert	their	IRQs	simultaneously,	the	Avalon	switch	fabric	passes	the	IRQ
of	 highest	 priority	 to	 the	master	 port.	 An	 IRQ	 of	 lesser	 priority	 is	 undetectable	 until	 a
master	port	clears	all	IRQs	of	higher	priority.

Using	hardware	priority,	the	interrupt	controller	uses	a	priority	encoder	and	can	handle
up	 to	 64	 slave	 IRQ	 signals.	 The	 interrupt	 controller	 generates	 a	 1-bit	 irq	 signal	 to	 the
master	port,	signifying	that	one	or	more	slave	ports	have	generated	an	IRQ.	The	controller
also	generates	a	6-bit	 irqnumber	 signal,	which	outputs	 the	encoded	value	of	 the	highest
pending	IRQ.

9.3.12	Reset	Distribution

The	Avalon	switch	fabric	generates	and	distributes	a	system-wide	reset	pulse	to	all	logic	in
the	 system	 module.	 The	 switch	 fabric	 distributes	 the	 reset	 signal	 conditioned	 for	 each
clock	domain.	The	duration	of	the	reset	signal	is	at	least	one	clock	period.

9.4	SOPC	Builder	Overview

SOPC	Builder	 is	 a	 system	 development	 tool	 for	 creating	 systems	 based	 on	 processors,
peripherals,	 and	 memories.	 This	 software	 is	 included	 in	 Altera’s	 Quartus	 II	 and	 is	 for
defining	and	generating	a	complete	system-on-a-programmable-chip	(SOPC).

SOPC	Builder	is	a	general-purpose	tool	for	creating	arbitrary	SOPC	designs	that	may
or	 may	 not	 contain	 a	 processor.	 This	 tool	 automates	 the	 task	 of	 integrating	 hardware
components	 into	 a	 larger	 system.	 Using	 SOPC	 Builder,	 you	 specify	 the	 system
components	 in	 a	 graphical	 user	 interface	 (GUI),	 and	 SOPC	 Builder	 generates	 the
interconnect	 logic	 automatically.	 SOPC	 Builder	 outputs	 HDL	 files	 that	 define	 all
components	 of	 the	 system,	 and	 a	 top-level	 HDL	 design	 file	 that	 connects	 all	 the
components	together.	SOPC	Builder	can	generate	Verilog	HDL	or	VHDL.

In	addition	to	its	role	as	a	hardware	generation	tool,	SOPC	Builder	also	serves	as	the
starting	 point	 for	 system	 simulation	 and	 embedded	 software	 creation.	 SOPC	 Builder
provides	features	to	ease	writing	software	and	to	accelerate	system	simulation.

9.4.1	Architecture	of	SOPC	Builder	Systems

This	section	introduces	the	architectural	structure	of	systems	built	with	SOPC	Builder,	and
describes	its	primary	functions.	This	program	is	used	for	building	a	system	of	processors
and	 interfaces	 to	 be	 programmed	 into	 an	 Altera	 FPGA.	 Figure	 9.2	 is	 an	 example	 of	 a
system	that	has	been	put	together	with	SOPC	Builder.

An	SOPC	Builder	component	 is	a	design	module	that	SOPC	Builder	 recognizes	and
can	 automatically	 integrate	 into	 a	 system.	SOPC	Builder	 connects	multiple	 components
together	to	create	a	toplevel	HDL	file	called	the	system	module.	SOPC	Builder	generates
Avalon	switch	fabric	that	contains	logic	to	manage	the	connectivity	of	all	components	in
the	system.

9.4.1.1	SOPC	Builder	Components.	SOPC	Builder	components	are	the	building	blocks	of
the	system	module.	The	components	use	the	Avalon	interface	for	the	physical	connection
of	components.	This	tool	can	be	used	to	connect	any	logical	device	(either	on-chip	or	off-
chip)	that	has	an	Avalon	interface.	The	Avalon	interface	uses	an	addressmapped	read/write
protocol	that	allows	master	components	to	read	and/or	write	any	slave	component.

A	 component	 can	 be	 a	 logical	 device	 that	 is	 entirely	 contained	 within	 the	 system
module,	such	as	a	processor	component.	Alternately,	a	component	can	act	as	an	interface
to	an	off-chip	device,	such	as	an	SRAM	interface	component.	 In	addition	 to	 the	Avalon
interface,	 a	 component	 can	 have	 other	 signals	 that	 connect	 to	 logic	 outside	 the	 system
module.	 Non-Avalon	 signals	 can	 provide	 a	 special-purpose	 interface	 to	 the	 system
module.

Altera	 and	 third-party	 developers	 provide	 ready-to-use	 SOPC	 Builder	 components,
such	as:

•	Microprocessors,	such	as	the	Nios	II	processor

•	Microcontroller	peripherals

•	Timers

•	Serial	communication	interfaces,	such	as	a	UART	and	a	serial	peripheral	interface
(SPI)

•	General	purpose	I/O

•	Digital	signal	processing	(DSP)	functions

•	Communications	peripherals

•	Interfaces	to	off-chip	devices

o	Memory	controllers

o	Buses	and	bridges

o	Application-specific	standard	products	(ASSP)

o	Application-specific	integrated	circuits	(ASIC)

o	Processors

SOPC	 Builder	 Ready	 components	 are	 those	 intellectual	 property	 (IP)	 designs	 that
have	plug-and-play	integration	with	SOPC	Builder.	These	functions	may	be	accompanied
by	software	drivers,	low	level	routines,	or	other	software	design	files.

Users	 can	 also	 define	 their	 own	 components	 to	 be	 used	 in	 an	SOPC	 design.	 SOPC
Builder	provides	an	easy	method	to	develop	and	connect	new	custom	components.	With
the	Avalon	 interface,	 userdefined	 logic	need	only	 adhere	 to	 a	 simple	 interface	based	on
address,	 data,	 read	 enable,	 and	 write	 enable	 signals.	 The	 following	 summarizes	 steps
needed	for	integrating	custom	logic	into	an	SOPC	Builder	system:

1.	Define	the	interface	to	the	user-defined	component.

2.	If	the	component	logic	resides	on-chip,	write	HDL	files	describing	the	component
in	either	Verilog	HDL	or	VHDL.

3.	 Use	 the	 SOPC	 Builder	 component	 editor	 wizard	 to	 specify	 the	 interface	 and
optionally	package	your	HDL	files	into	an	SOPC	Builder	component.

4.	 Instantiate	 your	 component	 in	 the	 same	manner	 as	 other	 SOPC	Builder	 Ready
components.

Once	an	SOPC	Builder	component	is	created,	it	can	be	reused	in	other	SOPC	Builder
systems,	and	shared	with	other	design	teams.

9.4.1.2	 Avalon	 Switch	 Fabric.	 The	 Avalon	 switch	 fabric	 is	 the	 glue	 that	 binds	 SOPC
Builder-generated	 systems	 together.	As	 discussed	 in	 the	 previous	 section,	Avalon	 is	 the
collection	 of	 signals	 and	 logic	 that	 connects	 master	 and	 slave	 components,	 including
address	 decoding,	 data-path	 multiplexing,	 wait-state	 generation,	 arbitration,	 interrupt
controller,	 and	 data-width	 matching.	 SOPC	 Builder	 generates	 this	 switch	 fabric
automatically,	to	free	designers	from	manually	performing	the	tedious,	error-prone	task	of
connecting	hardware	modules.

SOPC	Builder	 abstracts	 the	 complexity	 of	 interconnect	 logic,	 allowing	 designers	 to
focus	on	 the	details	 of	 their	 custom	components	 and	 the	high-level	 system	architecture.

Automatically	 generating	 the	 Avalon	 switch	 fabric	 is	 the	 keystone	 to	 achieving	 this
purpose.

9.4.2	Functions	of	SOPC	Builder

The	purpose	of	 the	SOPC	Builder	GUI	is	 to	allow	designers	 to	define	the	structure	of	a
hardware	 system,	 and	 then	generate	 the	 system.	This	 involves	 generating	 the	 hardware,
creating	a	memory	map	for	software	development,	and	creating	a	simulation	model.

9.4.2.1	 Hardware	 Generation.	 The	 GUI	 of	 SOPC	 Builder	 is	 designed	 for	 the	 tasks	 of
adding	 components	 to	 a	 system,	 configuring	 the	 components,	 and	 specifying	 how	 they
connect	together.

After	 all	 components	 are	 added	 and	 all	 necessary	 system	 parameters	 are	 specified,
SOPC	Builder	is	ready	to	generate	the	Avalon	switch	fabric	and	output	the	HDL	files	that
describe	the	system.	During	system	generation,	SOPC	Builder	outputs	an	HDL	file	for	the
toplevel	system	module	and	for	each	component	in	the	system.	In	addition,	it	generates	a
Block	Symbol	File	(.bsf)	representation	of	the	toplevel	system	module	for	use	in	Quartus
II	 Block	 Diagram	 Files	 (.bdf).	 Optionally,	 SOPC	 Builder	 generates	 software	 files	 for
embedded	 software	 development,	 such	 as	 a	 memory-map	 header	 file	 and	 component
drivers,	 as	well	 as	 a	 testbench	 for	 the	 system	module	 and	ModelSim	 simulation	project
files.

After	 a	 system	module	 is	 generated,	 it	 can	 be	 compiled	 directly	 by	 the	 Quartus	 II
software,	or	instantiated	in	a	larger	FPGA	design.

9.4.2.2	Memory	Map	for	Software	Development.	For	each	microprocessor	in	the	system,
SOPC	Builder	 optionally	 generates	 a	 header	 file	 that	 defines	 the	 address	 of	 each	 slave
component.	 In	 addition,	 each	 slave	 component	 can	 provide	 software	 drivers	 and	 other
software	functions	and	libraries	for	the	processor.

The	process	for	writing	software	for	the	system	depends	heavily	on	the	nature	of	the
processor	 in	 the	 system.	For	 example,	Nios	 II	 processor	 systems	use	Nios	 II	 processor-
specific	 software	 development	 tools.	 These	 tools	 are	 separate	 from	 SOPC	 Builder,	 but
they	do	use	the	output	of	SOPC	Builder	as	the	foundation	for	software	development.

9.4.2.3	Creating	a	Simulation	Model.	During	system	generation,	SOPC	Builder	optionally
outputs	 a	 push-button	 simulation	 environment	 for	 system	 simulation.	 SOPC	 Builder
generates	 both	 a	 simulation	model	 and	 a	 testbench	 for	 the	 entire	 system.	The	 testbench
instantiates	 the	 system	 module,	 assigns	 values	 and	 drives	 all	 clocks	 and	 resets
appropriately,	and	optionally	instantiates	simulation	models	for	off-chip	devices.

9.5	IDE	Integrated	Development	Environment

As	 discussed	 in	 Section	 9.1,	 another	 piece	 necessary	 for	 putting	 an	 embedded	 system
together	is	an	environment	for	development	and	testing	of	the	software	programs	that	run
on	the	processors	of	the	embedded	system.	Altera	uses	IDE	for	this	purpose.	This	section

discusses	 the	main	 features	 of	 this	 development	 environment.	The	main	 features	 of	 this
design	 tool	 are	 its	 project	 definition	 utility,	 editor	 and	 compiler,	 debugger,	 and	 flash
programmer.	These	tools	will	be	discussed	here.

9.5.1	IDE	Project	Manager

The	Nios	II	IDE	provides	several	project	management	tasks	that	speed	up	the	development
of	embedded	applications.	A	project	wizard	is	used	to	automate	 the	set-up	of	 the	C/C++
application	project	and	system	library	projects.

Additionally,	 the	Nios	 II	 IDE	provides	 software	code	examples	 that	 are	 available	 in
the	 form	 of	 project	 templates.	 These	 templates	 help	 software	 engineers	 use	 tested
templates	instead	of	starting	from	scratch.	Each	template	is	a	collection	of	software	files
and	project	settings.	Designers	can	add	their	own	source	code	to	the	project	by	placing	the
code	in	the	project	directory	or	importing	the	files	into	the	project.

Another	 form	 of	 ready-made	 software	 modules	 provided	 in	 IDE	 is	 its	 software
components,	 also	 known	 as	 “system	 software”.	 System	 software	 components	 provide
designers	with	 an	 easy	way	 to	 configure	 their	 system	 for	 their	 specific	 target	 hardware.
Components	included	are	Nios	II	run-time	library	(also	known	as	the	hardware	abstraction
layer	 (HAL)),	 Lightweight	 IP	 TCP/IP	 stack,	 MicroC/OS-II	 real-time	 operating	 system
(RTOS),	and	Altera	Zip	file	system.

9.5.2	Source	Code	Editor

Altera’s	 Nios	 II	 IDE	 provides	 a	 full-featured	 C/C++	 source	 editor.	 The	 editor	 has	 the
syntax	 highlighting	 feature,	 and	 is	 linked	 to	 the	C/C++	 compiler	 of	 IDE	 for	 debugging
error	correcting.	Standard	features	of	C/C++	source	editors	are	available	in	IDE’s	editor.

9.5.3	C/C++	Compiler

IDE	includes	a	C/C++	compiler	for	compiling	programs	that	are	to	run	on	the	Nios	II	core
of	an	embedded	system.	This	compiler	is	based	on	the	industry-standard	GNU	tool	chain.

The	Nios	II	IDE	provides	a	graphical	user	interface	to	the	GCC	compiler.	The	Nios	II
IDE	build	environment	is	designed	to	facilitate	software	development	for	Altera’s	Nios	II
processors,	providing	an	easy-to-use	 push-button	 flow,	while	 also	 allowing	 designers	 to
manipulate	advanced	build	settings.

The	Nios	 II	 IDE	build	environment	automatically	produces	a	makefile	based	on	 the
user’s	 specific	 system	 configuration	 (the	 SOPC	 Builder-generated	 PTF	 file).	 Changes
made	in	the	Nios	II	IDE	compiler/linker	settings	are	automatically	reflected	in	this	auto-
generated	 makefile.	 These	 settings	 can	 include	 options	 for	 the	 generation	 of	 memory
initialization	 files	 (MIF),	 flash	 content,	 simulator	 initialization	 files	 (DAT/HEX),	 and
profile	summary	files.

9.5.4	Debugger

The	Nios	 II	 IDE	contains	a	 software	debugger	based	on	 the	GNU	debugger,	GDB.	The
debugger	provides	basic	debug	features,	as	well	as	several	 advanced	 features.	The	basic
features	include	the	following:

•	Run	control

•	Call	stack	view

•	Software	breakpoints

•	Disassembly	code	view

0	Debug	information	view

0	Instruction	set	simulator	(ISS)	target

In	 addition	 to	 the	 basic	 debug	 features,	 the	Nios	 II	 IDE	 debugger	 also	 has	 several
advanced	 debugging	 capabilities,	 such	 as	 Hardware	 breakpoints	 for	 debugging	 code	 in
ROM	or	flash,	Data	triggers,	and	Instruction	trace.

The	 Nios	 II	 IDE	 debugger	 connects	 to	 the	 target	 hardware	 using	 a	 JTAG	 debug
module.	Altera	UP3	and	DE	series	development	boards	are	acceptable	debugger	 targets.
The	debug	 information	view	provides	 the	users	with	access	 to	 local	variables,	 registers,
memory,	breakpoints,	and	expression	evaluation	functions.

9.5.5	Flash	Programmer

Many	designs	that	utilize	Nios	II	processors	also	incorporate	flash	memory	on	the	board
as	a	means	to	store	an	FPGA	configuration	and/or	Nios	II	program	data.	The	Nios	II	IDE
includes	 a	 convenient	method	 of	 programming	 this	 flash.	 Any	 common	 flash	 interface
(CFI)	compliant	flash	device	connected	to	the	FPGA	can	be	programmed	using	the	Nios	II
IDE	 flash	programmer.	 In	 addition	 to	CFI	 flash,	 the	Nios	 II	 IDE	 flash	 programmer	 can
program	any	Altera	serial	configuration	device	connected	to	the	FPGA.

The	Nios	 II	 IDE	 flash	programmer	 is	pre-configured	 to	work	with	all	of	 the	boards
available	 with	 the	 Nios	 II	 development	 kits,	 but	 can	 be	 easily	 ported	 to	 any	 custom
hardware.

9.6	An	Embedded	System	Design:	Calculator

Material	 presented	 in	 the	 previous	 sections	 showed	 all	 the	 pieces	 that	 are	 needed	 for
putting	an	embedded	system	together.	This	section	uses	what	has	been	presented	to	design
an	embedded	system	using	the	Nios	II	processor	and	its	related	tools.

The	example	embedded	system	we	design	here	is	a	calculator	that	we	will	implement
it	an	Altera	FPGA.	The	calculator	design	 involves	a	processor,	 its	 interfaces,	a	software
program	and	its	IO	devices.	This	example	shows	the	complete	flow	of	a	design,	as	well	as
the	methodology	and	design	tools.

In	addition	 to	being	a	 comprehensive	example,	 this	design	also	utilizes	some	of	 the

hardware	 cores	 discussed	 in	 the	 previous	 chapter.	 The	 methodology	 presented	 here
complements	 the	 material	 of	 Chapter	 6	 in	 presenting	 design	 of	 a	 complete
hardware/software	system.

9.6.1	System	Specification

The	system	we	are	designing	has	a	keyboard	a	processor	and	an	LCD,	as	shown	in	Figure
9.11.	 Data	 and	 operations	 to	 be	 performed	 are	 entered	 on	 the	 keyboard.	 The	 keyboard
driver	prepares	parallel	data	for	the	processor	to	read.	The	processor	reads	this	information
through	 its	 interface,	performs	 the	specified	operations,	and	puts	 it	on	 its	LCD	interface
for	display.	When	alerted,	the	LCD	driver	takes	data	from	its	parallel	port	and	displays	it
on	its	LCD.

Figure	9.11	Calculator	Components	and	Interfaces

The	keyboard	and	LCD	of	Figure	9.11	are	the	physical	devices	that	are	attached	to	our
FPGA	pins.	Keyboard	and	LCD	drivers	will	be	implemented	on	the	FPGA	and	they	have
already	been	discussed	in	Chapter	7.	The	calculating	engine	is	a	Nios	II	based	system	that
includes	a	Nios	II	processor,	necessary	memories,	and	IO	devices.	The	design	of	this	part
is	discussed	next.

9.6.2	Calculating	Engine

A	general	schematic	diagram	of	the	calculating	engine	part	of	our	calculator	is	shown	in
Figure	 9.12.	 The	 central	 part	 of	 this	 engine	 is	 a	Nios	 II	 processor	with	 a	 program	 that
handles	 communication	 with	 the	 keyboard	 driver,	 collection	 of	 data,	 performing
calculation	tasks,	and	displaying	results	on	the	LCD	through	its	driver.

The	program	memory	of	 this	system	will	be	programmed	with	 the	 compiled	C/C++
program	 that	we	will	 develop	 for	 performing	 IO	 operations	 and	 calculation	 tasks.	 This
program	is	the	software	part	of	our	embedded	processor	system.	The	data	memory	is	used
for	storing	intermediate	data	used	and	needed	by	the	program	in	the	instruction	memory.
All	systems	shown	here	connect	to	the	Nios	II	processor	through	the	Avalon	bus	system.

The	keyboard	and	the	LCD	are	connected	to	the	processor	through	PIO	interfaces	of
the	interconnecting	bus	of	this	system.

Figure	9.12	Calculating	Engine

9.6.3	Calculator	10	Interface

The	keyboard	driver	of	Chapter	7	reads	keyboard	codes	from	the	keyboard	and	generates
ASCII	 codes.	 When	 a	 key	 is	 released	 it	 puts	 the	 ASCII	 code	 of	 the	 character	 that
corresponds	 to	 the	 uppercase	 character	 of	 the	 key	 pressed	 on	 its	 output	 and	 issues	 the
KeyReleased	signal	for	one	clock	duration.

The	Nios	II	processor	of	Figure	9.12	has	two	PIO	(Parallel	IO)	interfaces	that	handle	the
keyboard.	 Through	 a	 1-bit	 PIO,	 Nios	 II	 continuously	 monitors	 KeyReleased.	 When
detected,	 through	 another	 input	 PIO	 (an	 8-bit	 one),	 it	 reads	 the	 parallel	 output	 of	 the
keyboard	driver.	When	this	is	read,	the	Nios	II	program	decides	on	its	next	step	depending
on	whether	byte	read	is	data	or	operation.

The	LCD	display	of	Chapter	7	has	an	8-bit	input,	a	write	enable	(E)	and	a	reset	input
(RS).	Through	the	LCD	PIO	interface,	the	Nios	II	processor	puts	the	8-bit	ASCII	code	of	a
character	 to	 be	 displayed	 on	 its	 output	 port,	 and	 issues	write	 enable	 to	 the	 LCD	 driver
through	 another	 PIO.	 When	 resetting	 needs	 to	 be	 done,	 Nios	 II	 issues	 reset	 to	 LCD
through	another	of	its	PIO	interfaces.

Summarizing	the	above,	through	its	Avalon	bus,	the	Nios	II	processor	in	Figure	9.12
has	 two	 input	 PIOs	 for	 the	 keyboard.	 One	 is	 1-bit	 and	 the	 other	 is	 an	 8-bit	 PIO.	 This
processor	has	three	output	PIOs	on	its	LCD	side.	One	is	an	8-bit	one,	and	the	other	two	are
1-bit	PIOs.

9.6.4	Design	of	Calculating	Engine

We	 use	 the	 SOPC	 Builder	 discussed	 in	 Section	 9.4	 for	 the	 design	 of	 our	 Calculating
Engine.	The	complete	design	including	keyboard	and	LCD	drivers	is	defined	as	a	Quartus
II	project,	and	the	calculating	engine	becomes	an	SOPC	Builder	design	file.	Using	screen

shots,	this	section	shows	all	necessary	steps	for	definition	of	this	design	file.

9.6.4.1	Calculator	Project.	We	define	a	calculator	project	in	Quartus	II.	The	central	part	of
this	is	the	calculating	engine	which	we	define	as	an	SOPC	file	named:	NIOSII	CPU.

A	new	SOPC	file	can	be	created	from	the	New	item	of	Quartus	II	File	menu	just	like
defining	 a	 new	 schematic	 or	 a	Verilog	 file.	 Figure	9.13	 shows	 the	New	menu	 in	which
SOPC	Builder	System	is	selected.

Figure	9.13	A	New	SOPC	System	Design	File

The	next	window	in	creating	a	new	SOPC	system	asks	whether	we	want	Verilog	or
VHDL	for	our	target	HDL.	In	this	window	(Figure	9.14),	we	select	Verilog.

Figure	9.14	Target	Language	Selection

After	completion	of	 this	 task,	a	new	blank	SOPC	Builder	window	(shown	in	Figure
9.15)	 opens.	 In	 this	 window,	 for	 the	 target	 board,	 we	 specify	 Nios	 Evaluation	 Board,
Cyclone	 (EP1C12),	 or	 any	 other	 development	 board	 we	 are	 using	 or	 developing	 this
example.

Figure	9.15	New	Blank	SOPC	System

9.6.4.2	 Processor	 Specification.	 The	 first	 component	 to	 place	 in	 our	 new	NIOSII	 CPU
SOPC	system	is	a	Nios	II	processor.	This	is	done	by	double-clicking	“NIOS	II	Processor”
in	the	window	of	Figure	9.15.

When	this	is	done,	in	a	series	of	windows,	the	SOPC	Builder	helps	us	decide	on	the
options	we	want	for	our	new	processor.	Figure	9.16	shows	the	first	such	window.

Figure	9.16	Processor	Type	Selection

Any	of	the	three	Nios	II	processor	types,	/e,	Is,	or	If	can	be	selected.	Nios	We	is	the
basic	processor.	Nios	II/s	is	more	advanced	than	/e,	and	has	hardware	divide	and	multiply
plus	an	instruction	cache.	Nios	II/f	is	the	most	advanced	Nios	II	processor	type.	Options	of
these	 three	 processor	 types	 are	 shown	 in	 Figure	 9.16.	 We	 choose	 Nios	 II/e	 for	 the

processor	of	our	calculator	design.

In	 the	 next	 three	windows	 after	 that	 of	Figure	 9.16,	 processor	 cache,	 JTAG	Debug,
and	custom	 instructions	can	be	 specified.	Because	our	processor	does	not	have	a	cache,
nothing	can	be	selected	under	the	cache	tab.	To	keep	our	design	simple,	we	choose	“No
Debugger”	 in	 the	window	 that	 appears	under	 the	 JTAG	 tab.	The	 last	 tab	of	Figure	9.16
brings	up	Custom	Instructions.	For	our	choice	of	processor	we	have	a	very	limited	set	of
custom	instructions,	from	which	we	select	none.

After	 completion	 of	 this	 customization,	 the	Nios	 II	 processor	 of	 our	 choice	will	 be
added	to	our	NIOSII	CPU	SOPC	Builder	page.	Part	of	this	page	is	shown	in	Figure	9.17.
Note	here	 that,	placement	of	 the	processor	automatically	causes	placement	of	an	Avalon
bus	master	for	 the	 instruction	memory	and	one	for	 the	data	memory.	Connections	 to	 the
memory	will	be	shown	when	we	place	our	system’s	memories.

Figure	9.17	Completing	Placement	of	CPU

9.6.4.3	Memory	Specification.	For	selection	and	addition	of	memory	to	our	system,	scroll
down	in	the	system	contents	part	of	the	main	SOPC	Builder	window	until	memory	choices
appear.	As	shown	in	Figure	9.18	we	can	select	various	types	of	SDRAM,	SRAM,	flash,	or
on-chip	 memories.	 Double-clicking	 on	 the	 memory	 type	 selects	 it,	 and	 as	 indicated	 in
Figure	9.18	we	have	 selected	on-chip	memory	 for	 this	processor’s	memory.	This	means
that	the	memory	the	processor	uses	will	be	that	of	the	FPGA.

Figure	9.18	Memory	Selection

When	 this	 memory	 is	 selected,	 a	 memory	 specification	 window	 appears,	 in	 which
memory	details	can	be	specified.	We	are	using	this	first	memory	for	our	program	memory.
As	shown	in	Figure	9.19,	we	use	a	memory	width	of	32	bits	and	total	size	of	8	K	bytes.

Figure	9.19	Memory	Specification	Window

When	we	click	on	Finish	in	Figure	9.19,	 the	specified	memory	will	be	added	 to	our
NIOSII	CPU	SOPC	system.	We	will	use	this	memory	for	the	program	memory.	We	follow
the	 same	 exact	 procedure	 to	 add	 a	 32-bit	 4	K	 byte	memory	 for	 the	 data	memory.	Both
these	memories	will	now	appear	on	our	SOPC	system	page,	as	shown	in	Figure	9.20.

When	both	program	and	data	memories	are	placed,	several	changes	must	be	made	to
their	default	configurations.	The	first	thing	is	to	use	names	that	indicate	which	memory	is
used	 for	 data	 and	which	 one	 is	 for	 program.	This	 can	 be	 done	 by	 right-clicking	 on	 the
memory	entry	and	selecting	the	rename	option.

We	change	the	names	as	shown	in	Figure	9.20.	The	first	memory	(the	8	K	memory)	is
used	 for	 data	 and	 it	 is	 named	 onchip	 program,	 and	 the	 second	 memory	 is
onchip_data_rum.

Figure	9.20	Complete	Memory	Specification

Next	 in	 the	 design	 process	 is	 specification	 of	 the	 connection	 of	 Avalon	 instruction
master	 and	 data	master	 to	 the	 new	memories.	 Since	 the	 SOPC	Builder	 does	 not	 know
which	memory	is	used	for	data	or	program,	it	connects	instruction	master	and	data	master
to	 all	 memories	 that	 are	 placed.	 This	 may	 cause	 an	 extra	 overhead	 that	 we	will	 never
utilize.	To	avoid	this	extra	hardware	we	can	remove	the	bus	connections	that	we	are	not
using.	To	do	this	we	can	move	the	screen	curser	to	the	connection	that	is	to	be	removed
and	click	it	off.	See	in	Figure	9.20	that	instruction	master	of	Avalon	bus	only	connects	to
the	 memory	 we	 are	 using	 for	 program,	 and	 the	 data	 master	 only	 connects	 to	 the	 data
RAM.

Another	item	we	may	need	to	change	in	the	so-far	configuration	of	our	system	is	the
Base	 address	 of	 our	 memories.	 The	 SOPC	 Builder	 uses	 some	 default	 base	 addresses
starting	 from	 0x00000000.	 This	 address	 serves	 fine	 for	 starting	 the	 program	 RAM.
However,	since	we	are	yet	unsure	of	the	size	of	our	program,	we	may	need	to	leave	some
room	 for	 increasing	 the	 size	 of	 the	 program	 memory.	 This	 means	 that	 the	 next	 base
address	 default	 used	 for	 the	 data	 memory	 may	 be	 too	 close	 to	 our	 program	 memory.
Therefore	 we	 have	 changed	 the	 starting	 address	 of	 data	 RAM	 to	 0x00003000.	 Since
Figure	9.20	only	shows	a	portion	of	the	complete	window,	this	change	is	not	shown.	This

new	address	will	show	in	another	screen-shot	later	in	this	section.	With	this	change,	if	at	a
later	 time,	 after	 all	memories	 and	 interfaces	 have	 been	 placed,	we	 decide	 that	we	 need
more	program	memory,	we	will	not	be	forced	to	change	base	addresses	of	all	our	Avalon
switch	fabric	connections.

9.6.4.4	Parallel	10	Devices.	The	next	step	in	this	design	is	selection	and	placement	of	10
interfaces.	 For	 this	 purpose	 we	 can	 choose	 from	 one	 of	 the	 existing	 interfaces	 and
configure	 it,	 or	 develop	 our	 own	 custom	 interface	 using	 the	 Create	 New	 Component
option	of	System	Contents	tab	of	the	main	SOPC	window.

For	this	design,	we	use	Parallel	I/O	(PIO)	for	all	one-bit,	8-bit,	input	and	output	ports
of	our	system.	PIO	is	a	simple	IO	interface	that	can	be	configured	for	size,	input	or	output.
This	interface	has	status	and	data	registers,	as	well	as	address	decoders	and	multiplexers.
The	hardware	of	this	interface	is	already	part	of	the	Avalon	switch	fabric.

Figure	9.21	PIO	Definition

Our	design	needs	the	following	PIOs:

•	A	1-bit	input	PIO	for	keyboard	KeyReleased	output

•	A	8-bit	input	PIO	for	keyboard	data	output

•	A	1-bit	output	PIO	for	LCD	reset	input

•	A	1-bit	output	PIO	for	LCD	write	enable	input

•	An	8-bit	output	PIO	for	LCD	data	input

For	specifying	a	PIO	(one	of	 the	above),	 in	 the	System	Contents	 tab	of	 the	main	SOPC
Builder	window,	select	PIO	and	double-click	it	(see	Figure	9.21).

In	the	next	series	of	windows	that	appear,	details	of	the	PIO	that	is	being	configured
are	specified.	The	first	such	window	is	shown	in	Figure	9.22.	In	this	window	size	and	IO

direction	 of	 the	 port	 are	 specified.	 Depending	 on	 the	 choices	 here,	 other	 configuration
windows	may	appear.

Figure	9.22	PIO	Specification

We	 are	 using	 the	 PIO	 shown	 in	 Figure	 9.22	 for	 the	 KeyReleased	 input	 from	 the
keyboard.	This	is	a	1-bit	input	port.	In	our	case,	this	input	is	being	polled	by	the	CPU.	If
needed,	 in	one	of	 the	configuration	windows,	we	could	specify	this	as	an	interrupt	 input
port.

9.6.4.5	Completing	the	Design.	Figure	9.23	shows	our	NIOSII	CPU	that	is	our	calculating
engine	of	our	calculator	project	after	placement	of	all	necessary	PIOs,	and	completing	our
system	contents.	As	shown,	the	base	location	of	various	components	are	automatically	set
according	to	their	required	registers	and	address	decoding.

Figure	9.23	System	Contents,	Complete

Now	that	specification	of	our	system	contents	is	complete,	we	go	on	to	the	next	step
by	clicking	Next	in	the	main	SOPC	Builder	window	(see	bottom	of	Figure	9.15).	This	next
step	 is	 for	 the	CPU	settings.	As	shown	in	Figure	9.24,	 this	window	allows	us	 to	change

reset	address,	exception	address,	and	break	 location.	For	 larger	Nios	 II	options	 (Is	or	 /t)
more	choices	would	be	available	in	this	window.	We	keep	these	values	as	they	are	and	will
not	modify	them	for	this	design.

Figure	9.24	CPU	Settings	Window

Clicking	Next	 in	 the	SOPC	Builder	brings	up	 the	System	Gener-	 tion	window	from
which	 selecting	 the	 Generate	 button	 begins	 the	 generation	 of	 the	 system	 for	 which
contents	 and	 options	 have	 been	 set.	 Figure	 9.25	 shows	 a	 portion	 of	 the	 SOPC	Builder
window	after	the	generation	of	the	system.	Note	in	this	window	directories	of	files	that	are
generated	 for	 simulation	 and	 testing	of	 our	 design.	With	 a	 successful	 completion	of	 the
system,	a	symbol	will	be	generated	for	our	SOPC	system.

Figure	 9.26	 shows	 the	 NIOSII	 CPU	 symbol	 after	 some	 editing.	 Like	 any	 library
component,	this	component	can	be	placed	in	a	Quartus	II	block	diagram	file	and	used	in
an	upper	level	design.

Figure	9.25	Completion	of	System	Generation

Figure	9.26	Our	SOPC	System	Symbol

Going	back	to	Figure	9.25,	see	the	button	for	running	the	Nios	II	IDE	on	the	upper	left
side	of	this	window.	Clicking	on	this	starts	the	Altera	Nios	II	IDE	that	we	use	for	entering
the	C/C++	code	that	runs	in	our	NIOSII	CPU	system.

9.6.5	Building	Calculator	Software

The	environment	 for	editing	and	 running	C/C++	code	 in	our	 system	 is	 the	Nios	II	 IDE.
This	 can	 run	 from	 the	 SOPC	 Builder	 as	 shown	 in	 Figure	 9.25,	 or	 independently.	 This
section	shows	how	a	software	project	is	started,	how	it	is	linked	with	the	hardware	that	we
have	designed	and	how	a	complete	hardware/software	project	is	built.

9.6.5.1	Software	Project	Definition.	Figure	9.27	shows	the	menu	part	of	the	first	window
that	 opens	 after	 the	 welcome	window	 of	 the	 Nios	 II	 IDE.	 From	 the	 File	 menu	 of	 this
window	select	New	and	in	the	menu	that	opens	select	C/C++	Application.

Figure	9.27	Nios	II	IDE	First	Window

This	will	allow	you	to	start	a	new	C/C++	application	project	 in	a	selected	directory.
The	window	that	opens	as	a	result	of	this	selection	is	shown	in	Figure	9.28.

In	 Figure	 9.28	we	 use	CalculatorSoftware	 for	 the	 name	 of	 the	 software	 part	 of	 our
calculator.	To	link	this	software	with	 the	NIOSII	CPU	SOPC	system	that	we	have	built,
under	Select	Target	Hardware,	 select	 this	SOPC	 system	 as	 the	 target	 hardware.	Note	 in
this	figure	that	our	SOPC	system	has	ptf	file	extension.	As	shown	here,	CPU	is	the	name
we	used	for	the	processor	part	of	NIOSII	CPU	SOPC	system,	which	is	consistent	with	the
name	shown	in	Figure	9.23.

We	 have	 now	 defined	 the	 CPU	 and	 the	 CPU	 system	 of	 our	 software	 project.	 The
program	for	this	CPU	system	will	be	defined	next.	Before	entering	the	code,	we	have	to
define	our	program	and	data	memories.	For	 this	purpose,	as	shown	in	Figure	9.29,	 right
click	on	CalculatorSoftwaresyslib	to	bring	up	the	properties	window.

Figure	9.28	Software	Project	Definition

In	 the	 properties	 window	 that	 opens	 after	 Properties	 is	 selected	 you	 can	 specify
memories	 for	data	 and	program.	Referring	back	 to	Figure	9.23	note	 that	 our	 instruction
master	is	only	connected	to	onchip	program	and	data	master	of	the	Avalon	switch	fabric	is
only	connected	to	ouchip_data_ram.	This	means	that	we	only	have	one	choice	for	our	data
memory	and	only	one	for	the	program	memory.	Had	we	had	multiple	data	and	instruction
master	connections,	we	had	to	decide	on	the	specific	memories	for	our	data	and	program.
Figure	9.30	shows	the	part	of	the	Properties	window	that	allows	selection	of	memories	for
data	and	program.

Figure	9.29	Properties	of	Software	Project

Figure	9.30	Data	and	Program	Memory	Selection

9.6.5.2	C	program	Hardware	Interaction.	The	software	program	we	are	developing	reads
keyboard	status	and	data,	processes	data,	and	writes	the	results	to	the	LCD	output.	There
are	two	parts	to	the	C	program	that	we	are	developing.	One	is	interaction	with	hardware,

i.e.,	keyboard	and	LCD;	and	the	other	is	performing	proper	operations	on	data	that	is	read.
The	 latter	 part	 is	 a	 C	 program	 that	 will	 be	 discussed	 in	 the	 next	 section.	 The	 former,
however,	must	consider	parameters	of	the	SOPC	system	that	the	software	is	going	into.

Note	in	Figure	9.23	that	we	have	defined	PIO	ports	for	our	keyboard	and	LCD.	Our
software	program	must	 do	 all	 readings	 and	writings	 to	 these	ports.	For	 this	purpose	we
define	C	pointers	for	reading	and	writing	these	locations.	Definitions	shown	in	Figure	9.31
define	pointers	to	keyboard	and	LCD	ports.

Figure	9.31	Hardware	Interface	Definitions

With	 the	definitions	 shown,	 reading	data	 from	 the	keyboard	 and	writing	data	 to	 the
LCD	display	can	be	done	by	the	C	statements	shown	below:

Definitions	 shown	 in	 Figure	 9.31	 can	 go	 in	 a	 header	 file,	 or	 at	 the	 beginning	 of	 the	C
program.

When	 the	 SOPC	 builder	 builds	 our	 system,	 it	 creates	 a	 file	 named	 system.h	 in	 its
directory	that	contains	the	above	definitions	and	other	system	related	parameters.	Instead
of	 defining	our	 own	parameters,	we	 could	 use	 the	 system.h	 header	 file.	However,	 for	 a
small	example	like	ours,	using	our	own	definitions	is	not	a	complex	task.	If	DMAs	were
used,	more	complex	parameters	would	have	been	defined,	which	would	necessitate	the	use
of	the	system.h	header	file.

The	C/C++	Nios	 II	 IDE	 (Figure	9.27)	 allows	us	 to	define	our	C/C++	 files	using	 its
syntax-highlighted	editor.	For	defining	our	new	calculator	C	file,	go	to	 the	File	menu	of
the	IDE	window	and	select	a	new	file	as	shown	in	Figure	9.32.

Once	 this	 is	 done,	 a	 new	 file,	 which	 we	 name	 program.c	 will	 open	 in	 our
CalculatorSoftware	directory.	Figure	9.33	shows	the	header	part	of	our	C	program	for	the
calculator.

Figure	9.32	Defining	a	New	C	File

Figure	9.33	Calculator	C	Program

9.6.5.3	Project	Built.	Building	the	software	part	is	the	last	part	of	building	our	calculator.
This	 phase	 compiles	 our	 C	 program	 and	 generates	 memory	 contents	 for	 the	 program
memory	of	NIOSII	CPU	SOPC	project.

Figure	9.34	Building	Software	Part

As	shown	in	Figure	9.34,	the	CalculatorSoftware	project	is	built	by	right-clicking	it	in
the	Nios	II	IDE	and	selecting	Build	Project.	After	completion	of	project	build,	a	report	of
the	 software	 is	 created	 in	 the	 environment’s	 console.	 This	 report	 indicates	 the	memory
usage	and	 if	our	 allocated	memory	was	 sufficient	 for	 our	 software	 program.	Had	 it	 not
been,	an	error	would	be	issued	alarming	us	of	this.	Figure	9.35	shows	the	build	report	in
the	Console	window.

Figure	9.35	Build	Report

9.6.6	Calculator	Program

The	program	that	is	loaded	in	our	Nios	II	processor	memory	reads	keyboard	data	through
its	 keyboard	PIO,	 performs	 calculations	 and	 displays	 the	 result	 on	 the	LCD	 through	 its
LCD	PIO.	This	 section	 discusses	 the	 details	 of	 this	 program,	which	 is	 shown	 in	Figure
9.36.

Figure	9.36	Calculation	C	Program

Lines	in	the	listing	of	Figure	9.36	are	numbered	and	we	will	refer	to	them	accordingly.
Lines	001	to	005	define	pointers	for	keyboard	and	LCD	PIO	ports.	As	mentioned	in	 the

preceding	sections,	these	addresses	are	defined	by	our	hardware	setup	by	SOPC	Builder.

Lines	 007	 to	 012	 define	 ASCII	 characters	 for	 operations	 of	 the	 calculator.	We	 are
using	A,	S,	M,	D	and	=	for	add,	subtract,	multiply,	divide	and	equal.	Since	our	keyboard
interface	only	reads	keys	without	the	shift-key	held,	we	are	using	A,	S,	M,	and	D	for	+,	-,
*	and	respectively.

The	 READ-KEY	 definition	 begins	 on	 line	 014.	 This	 parameterized	 definition
continues	reading	KB	RELEASED	until	a	positive	pulse	is	detected.	When	this	happens,
KB	DATA	PIO	is	read	into	the	key_ualue	parameter.

Definition	 beginning	 on	 line	 022	writes	 the	 data	 parameter	 into	LCD.	The	DELAY
definition	 on	 line	 026	 is	 for	 generating	 real	 time	delays.	This	 definition	 is	 used	 for	 the
LCD	 reset-	 and	writeoperations.	 The	 delay	 value	 is	 generated	 by	 k=k+2	 operation	 that
takes	approximately	10	clock	cycles.	This	repeats	for	10,000	times	giving	a	total	delay	of
approximately	100,000	clocks.	The	definition	on	line	029	resets	 the	LCD	by	putting	a	1
into	its	reset	PIO	and	holding	it	for	a	given	delay	value.

The	main	code	of	our	calculation	program	begins	on	 line	035.	The	 first	part	of	 this
code	 declares	 the	 necessary	 variables,	 which	 is	 then	 followed	 by	 initial	 values.	 The
readoperandJlug	is	0	when	the	program	is	reading	the	first	operand	of	an	operation,	and	it
is	1	when	reading	the	second	operand.

The	main	calculation	loop	begins	on	line	056.	Lines	058	to	067	read	the	first	operand
and	the	operator	code.	For	the	operand,	0	to	9	ASCII	characters	are	read	and	operand]	is
calculated.	As	characters	are	read,	 they	are	written	 into	 the	LCD.	As	shown	on	 line	061
writing	 into	 the	 LCD	must	 be	 followed	 by	 a	 delay	 period	 that	 is	 achieved	 by	DELAY.
Completion	 of	 the	 first	 operand	 in	 detected	 on	 line	 062	 when	 a	 key	 for	 one	 of	 the
operators	is	pressed.	The	operator	code	is	captured	in	opcode	on	line	064.	Note	the	delay
after	writing	operator	code	to	the	LCD.

Lines	068	to	072	read	the	second	operand	and	calculate	operand2.	Completion	of	the
second	operand	in	detected	on	line	072	when	the	=	sign	code	is	detected,	in	which	case	the
LCD	is	reset,	and	made	ready	for	display	of	the	results.

Lines	074	to	076	display	an	Error	if	the	operation	is	divide	and	operand2	is	0.

Lines	078	to	085	calculate	the	result	based	on	the	operation	being	performed.	When
done,	function	WriteNumOnLCD	on	line	088	writes	the	multi-character	result	to	the	LCD
port.

Following	this,	on	lines	095	to	099,	if	character	C	is	pressed,	a	new	operation	begins
and	the	LCD	is	reset.

The	 remaining	 part	 of	 code	 of	 Figure	 9.36	 is	 the	WriteNu,mOnLCD	 function.	 This
function	 counts	 the	number	 of	 digits	 of	 its	 number	 argument	 and	 displays	 them	one	 by
one.	 If	 the	 result	 is	 negative,	 lines	 112	 to	 116	 write	 a	 minus	 sign	 to	 the	 LCD	 before
writings	of	the	result	digits	begin.	Lines	121	to	127	calculate	result	digits	and	display	them
on	the	LCD.	Note	that	with	each	LCD	write	there	is	a	wait	delay	defined	by	DELAY.

9.6.7	Completing	the	Calculator	System

The	sections	above	described	how	the	processing	unit	of	our	calculator	example	is	formed.
We	showed	its	hardware	part	and	its	software	part	and	tools	and	utilities	for	formation	of
the	 complete	machine.	As	 discussed	 above,	 and	 as	 shown	 in	 Figure	 9.26,	 a	 Quartus	 II
symbol	is	generated	for	the	calculating	machine.

To	complete	this	system,	we	use	the	calculator	symbol	in	Quartus	II	 to	connect	 it	 to
the	keyboard	and	the	LCD	drivers	of	Chapter	7.	This	configuration	is	done	according	to
the	 diagram	 of	 Figure	 9.11.	 The	 complete	 Quartus	 II	 schematic	 diagram	 is	 shown	 in
Figure	9.37.

The	complete	system	shown	in	this	diagram,	has	serial	keyboard	inputs	and	generates
parallel	 data	 and	 the	 corresponding	 handshaking	 signals	 for	writing	 to	 the	 LCD.	As	 an
alternative,	the	output	could	be	displayed	on	a	VGA	display	monitor	using	the	VGA	driver
that	we	developed	in	Chapter	7.

9.7	Summary

This	chapter	showed	the	complete	top-down	design	of	an	embedded	system	with	hardware
and	software	components.	We	showed	how	a	design	that	started	from	a	schematic	capture
environment	such	as	Quartus	II	could	be	used	to	define,	not	only	hardware	components,
but	also	components	that	were	implemented	as	a	software	program	running	on	a	processor.
We	presented	SOPC	Builder	and	IDE	as	tools	that	branch	out	from	Quartus	II	for	aiding
the	design	of	an	embedded	processor.	The	first	part	of	this	chapter	discussed	Altera	tools
for	 putting	 an	 embedded	 system	 together.	 We	 then	 used	 an	 example	 to	 exercise	 the
methodology	of	creating	such	a	system.	Although	Altera	environment	was	discussed,	an
embedded	system	design	environment	generally	includes	tools	similar	to	those	discussed
in	this	chapter.

	

A

Nios	II	Instruction	Set

This	 appendix	 introduces	 the	 Nios	 II	 instructions	 categorized	 by	 type	 of	 operation
performed.	More	details	 of	 the	 instructions	of	 this	machine	 can	be	 found	 in	 the	Nios	 II
Processor	 Reference	 Handbook	 that	 is	 included	 in	 the	 CD	 in	 the	 back	 of	 this	 book.
Instruction	categories	that	we	will	discuss	are:	data	transfer,	arithmetic	and	logical,	move,
comparison,	shift	and	rotate,	program	control,	custom,	and	nooperation	instructions.

A.1	Data	Transfer	Instructions

The	Nios	II	architecture	is	a	load-store	architecture.	Load	and	store	instructions	handle	all
data	 movement	 between	 registers,	 memory,	 and	 peripherals.	 Memories	 and	 peripherals
share	a	common	address	space.	Some	Nios	II	processor	cores	use	memory	caching	and/or
write	buffering	to	improve	memory	bandwidth.	The	architecture	provides	instructions	for
both	cached	and	uncached	accesses.

Word	Data	Transfer	Instructions	(ldw,	stw,	ldwio	&	stwio).	The	ldw	and	stw	instructions
load	and	store	32-bit	data	words	 from/to	memory.	The	effective	address	 is	 the	sum	of	a
register’s	 contents	 and	 a	 signed	 immediate	 value	 contained	 in	 the	 instruction.	Memory
transfers	may	be	cached	or	buffered	 to	 improve	program	performance.	This	caching	and
buffering	may	cause	memory	cycles	to	occur	out	of	order,	and	caching	may	suppress	some
cycles	entirely.

Data	 transfers	 for	 I/O	 peripherals	 should	 use	 ldwio	 and	 stwio.	 ldwio	 and	 stwio
instructions	 load	 and	 store	 32-bit	 data	 words	 from/to	 peripherals	 without	 caching	 and
buffering.	 Access	 cycles	 for	 ldwio	 and	 stwio	 instructions	 are	 guaranteed	 to	 occur	 in
instruction	order	and	never	will	be	suppressed.

Byte	Data	Transfer	Instructions	(1db,	ldbu,	stb,	ldh,	ldhu,	sth,	 ldbio,	 ldbuio,	stbio,	 ldhio,
ldhuio,	 sthio).	 Load	 instructions	 ldb,	 ldbu,	 ldh	 and	 ldhu	 load	 a	 byte	 or	 half-word	 from
memory	to	a	register.	ldb	and	ldh	sign-extend	the	value	to	32	bits,	and	ldbu	and	ldhu	zero-
extend	 the	 value	 to	 32	 bits.	 stb	 and	 sth	 store	 byte	 and	 half-word	 values,	 respectively.
Memory	accesses	may	be	cached	or	buffered	to	improve	performance.	To	transfer	data	to
I/O	peripherals,	use	 the	“io”	versions	of	 the	 instructions,	 i.e.,	 ldbio,	 ldbuio,	 stbio,	 ldhio,
ldhuio,	and	sthio.

A.2	Arithmetic	and	Logical	Instructions

Nios	 II	 logical	 instructions	 support	 AND,	 OR,	 XOR,	 and	 NOR	 operations.	 Arithmetic
instructions	support	addition,	subtraction,	multiplication	and	division.

Standard	Logical	Instructions	(and,	or,	xor,	nor).	Instructions,	and,	or,	xor,	and	nor	are	the
standard	32-bit	logical	operations.	These	operations	take	two	register	values	and	combine
them	bit-wise	to	form	a	result	for	a	third	register.

Immediate	 Logical	 Instructions	 (andi,	 on,	 xori).	 Instructions,	 andi,	 on,	 and	 xori	 are	 the
immediate	versions	of	and,	or,	and	xor	instructions.

High	 Immediate	 Logical	 Instructions	 (andhi,	 orhi,	 xorhi).	 Instructions,	 andhi,	 orhi,	 and
xorhi	 take	 16-bit	 data,	 right	 jusatify	 them	 to	 a	 32-bit	word	 and	 use	 them	 as	 immediate
data.

Standard	Arithmetic	 Instructions	 (add,	 sub,	mul,	 div,	 divu).	 Instructions,	 add,	 sub,	mul,
div,	 and	 divu	 are	 the	 standard	 32-bit	 arithmetic	 operations.	 These	 operations	 take	 two
register	 values	 as	 input	 and	 store	 the	 result	 in	 the	 third	 register.	 The	 divu	 instruction
performs	the	divide	unsigned	operation.

Immediate	Arithmetic	Instructions	(addi,	subi,	muli).	Instructions,	addi,	subi,	and	muli	are
the	immediate	versions	of	add,	sub,	and	mul.	The	instruction	word	includes	a	16-bit	signed
value.

Upper	 Multiplication	 Instructions	 (mulxss,	 mulxuu).	 Instructions,	 mulxss,	 and	 mulxuu,
and	muli	provide	access	to	the	upper	32	bits	of	a	32x32	multiplication	operation.	Choose
the	appropriate	instruction	depending	on	whether	the	operands	should	be	treated	as	signed
or	unsigned	values.	It	is	not	necessary	to	precede	these	instructions	with	a	mul.

Long	Multiplication	 Instructions	 (mulxsu).	The	mulxsu	 instruction	used	 in	 computing	 a
128-bit	result	of	a	64x64	signed	multiplication.

A.3	Move	Instructions

Move	instructions	provide	move	operations	to	copy	the	value	of	a	register	or	an	immediate
value	to	another	register.

Move	 Instructions	 (mov,	 movhi,	 movi,	 movui,	 movia).	 The	mov	 instruction	 copies	 the
value	of	one	register	to	another	register.	movi	moves	a	16-bit	signed	immediate	value	to	a
register,	and	sign-extends	the	value	to	32	bits.	movui	and	movhi	move	an	immediate	16-
bit	value	into	the	lower	or	upper	16-bits	of	a	register,	inserting	zeros	in	the	remaining	bit
positions.	Use	movia	to	load	a	register	with	an	address.

A.4	Comparison	Instructions

The	 Nios	 II	 architecture	 supports	 a	 number	 of	 comparison	 instructions.	 All	 of	 these
compare	two	registers	or	a	register	and	an	immediate	value,	and	write	either	1	(if	true)	or	0
to	the	result	register.	These	instructions	perform	all	the	equality	and	relational	operators	of
the	C	programming	language.

Basic	Comparison	 Instructions	 (cmpeq,	 cmpne,	 cmpge,	 cmpgeu,	 cmpgt,	 cmpgtu,	 cmple,
cmpleu,	 cmplt).	All	 compare	 instructions	begin	with	“cmp”.	Following	 this,	 “eq”,	 “ne”,

“ge”,	 “gt”,	 “le”,	 and	 “It”	 are	 for	 equal,	 not-equal,	 greater-than-or-equal,	 greater-than,
lessthan-or-equal,	and	less-than,	respectively.	The	use	of	“u”	at	the	end	of	the	 instruction
is	for	unsigned	comparison,	versus	signes	2’s	complement.	In	this	case,	the	arguments	are
treated	as	32-bit	unsigned	numbers.

Immediate	Comparison	Instructions	(cmpeqi,	cmpnei,	cmpgei,	cmpgeui,	cmpgti,	cmpgtui,
cmplei,	cmpleui,	cmplti).	Compare	instructions	ending	with	“i”	are	immediate	versions	of
the	comparison	operations.	They	compare	the	value	of	a	register	and	a	16-bit	 immediate
value.	Signed	operations	sign-extend	the	immediate	value	to	32bits.	Unsigned	operations
fill	the	upper	bits	with	zero.

A.5	Shift	and	Rotate	Instructions

The	 Nios	 II	 architecture	 supports	 standard	 and	 immediate	 shift	 and	 rotate	 operations.
Right	and	left	versions	of	these	instructions	are	provided.	The	number	of	bits	to	rotate	or
shift	can	be	specified	in	a	register	or	an	immediate	value.

Rotate	Instructions	(rol,	ror,	roli).	The	rol	and	roli	instructions	provide	left	bit-rotation.	roli
uses	 an	 immediate	 value	 to	 specify	 the	 number	 of	 bits	 to	 rotate.	 The	 ror	 instruction
provides	right	bitrotation.	There	is	no	immediate	version	of	ror,	because	roli	can	be	used
to	implement	the	equivalent	operation.

Shift	Instructions	(rsll,	slli,	sra,	srl,	srai,	srii).	The	shift	instructions	implement	the	<<	and
>>	operators	of	the	C	programming	language.	The	sil,	sili,	sri,	srli	instructions	provide	left
and	 right	 logical	 bit-shifting	 operations,	 inserting	 zeros.	 The	 sra	 and	 srai	 instructions
provide	arithmetic	right	bit-shifting,	duplicating	the	sign	bit	in	the	most	significant	bit.	slli,
srli	and	srai	use	an	immediate	value	to	specify	the	number	of	bits	to	shift.

A.6	Program	Control	Instructions

The	 Nios	 II	 architecture	 supports	 the	 unconditional	 jump	 and	 call	 instructions.	 These
instructions	do	not	have	delay	slots.

Unconditional	 Jump	 and	Call	 Instructions	 (call,	 callr,	 ret,	 jmp,	 br).	 The	 call	 instruction
calls	 a	 subroutine	 using	 an	 immediate	 value	 as	 the	 subroutine’s	 absolute	 address,	 and
stores	the	return	address	in	register	ra.	callr	 instruction	calls	a	subroutine	at	 the	absolute
address	contained	in	a	register,	and	stores	the	return	address	in	register	ra.	This	instruction
serves	the	roll	of	dereferencing	a	C	function	pointer.	The	ret	instruction	is	used	to	return
from	subroutines	called	by	call	or	callr.	This	instruction	loads	and	executes	the	instruction
specified	by	 the	address	 in	register	 ra.	The	jmp	instruction	 jumps	to	an	absolute	address
contained	 in	a	 register.	This	 instruction	 is	used	 to	 implement	switch	statements	of	 the	C
programming	language.	The	br	instruction	is	for	branch	relative	to	the	current	in	struction.
With	this	instruction,	a	signed	immediate	value	gives	the	offset	of	the	next	instruction	to
execute.

Conditional	Branch	Instructions	(bge,	bgeu,	bgt,	bgtu,	ble,	bleu,	b1t,	b1tu,	beq,	bne).	The

conditional-branch	 instructions	 compare	 register	 values	 directly,	 and	 branch	 if	 the
expression	 is	 true.	 The	 conditional	 branches	 support	 the	 equality	 and	 relational
comparisons	of	the	C	programming	language.	Notations:	“eq”,	“ne”,	“ge”,	“gt”,	“le”,	“lt”,
and	 “u”	 used	 with	 these	 instructions	 have	 the	 same	 meanings	 as	 those	 of	 compare
instructions.	These	instructions	provide	relative	branches	that	compare	two	register	values
and	branch	if	the	expression	is	true.

A.7	Other	Control	Instructions

In	 addition	 to	 the	 standard	 control	 instructions,	 Nios	 II	 supports	 instructions	 for
debugging,	 status	 register	 manipulation,	 exception	 handling,	 and	 pipleline	 related
instructions.	These	instructions	are	discussed	below.

Exception	Instructions	(trap,	eret).	The	trap	and	eret	instructions	generate	and	return	from
exceptions.	These	instructions	are	similar	to	the	call/ret	pair,	but	are	used	for	exceptions.
trap	 saves	 the	 status	 register	 in	 the	 estatus	 register,	 saves	 the	 return	 address	 in	 the	 ea
register,	and	then	transfers	execution	to	the	exception	handler.	eret	returns	from	exception
processing	by	restoring	status	from	estatus,	and	executing	the	instruction	specified	by	the
address	in	ea.

Break	Instructions	(break,	bret).	The	break	and	bret	instructions	generate	and	return	from
breaks.	 break	 and	 bret	 are	 used	 exclusively	 by	 software	 debugging	 tools.	 Programmers
never	use	these	instructions	in	application	code.

Control	Register	Instructions	(rdctl,	wrcti).	The	rdctl	and	wrctl	instructions	read	and	write
control	registers,	such	as	the	status	register.	The	value	is	read	from	or	stored	to	a	general-
purpose	register.

Cache	 Control	 Instructions	 (flushd,	 flushi,	 initd,	 initi,	 flushp).	 The	 instructions	 flushd,
flushi,	initd,	initi	are	used	to	manage	the	data	and	instruction	cache	memories.	The	flushp
instruction	flushes	all	pre-fetched	instructions	from	the	pipeline.	This	is	necessary	before
jumping	to	recently-modified	instruction	memory.

Synchronization	 Instructions	 (synch).	 The	 sync	 instruction	 ensures	 that	 all	 previously-
issued	operations	have	completed	before	allowing	execution	of	subsequent	load	and	store
operations.

A.8	Custom	Instructions

The	 custom	 instruction	 provides	 low-level	 access	 to	 custom	 instruction	 logic.	 The
inclusion	of	custom	 instructions	 is	 specified	at	 system	generation	 time,	and	 the	function
implemented	 by	 custom	 instruction	 logic	 is	 design	 dependent.	 Machine-generated	 C
functions	 and	 assembly	 macros	 provide	 access	 to	 custom	 instructions,	 and	 hide
implementation	details	from	the	user.	Therefore,	most	software	developers	never	use	 the
custom	assembly	instruction	directly.

A.9	No-Op	Instruction

The	 nop	 instruction	 is	 provided	 in	 the	 Nios	 II	 assembler,	 and	 is	 the	 no-operation
instruction.

A.10	Potential	Unimplemented	Instructions

Some	Nios	II	processor	cores	do	not	support	all	instructions	in	hardware.	In	this	case,	the
processor	 generates	 an	 exception	 after	 issuing	 an	 unimplemented	 instruction.	 The	 only
instructions	 that	 may	 generate	 an	 unimplemented-instruction	 exception	 are:	 mul,	 muli,
mulxss,	mulxsu,	mulxuu,	div,	divu.	All	other	instructions	are	guaranteed	not	to	generate	an
unimplemented	 instruction	 exception.	 An	 exception	 routine	 must	 exercise	 caution	 if	 it
uses	these	instructions,	because	they	could	generate	another	exception	before	the	previous
exception	was	properly	handled.

	

Additional	Resources

The	 early	 chapters	 of	 this	 book	 provided	 the	 necessary	 background	 material	 for
understanding	 design	 of	 embedded	 systems.	 For	 the	 readers	 requiring	 more	 in-depth
reading	 material,	 or	 alternative	 ways	 of	 presentations,	 this	 appendix	 provides	 a	 list	 of
references	and	books	sorted	by	their	subject	areas.

Listed	 below	 are	 two	 comprehensive	 books	 on	 logic	 design.	 The	 web	 site	 shown
provides	 simple	 review	 of	 many	 electrical	 and	 computer	 engineering	 topics,	 including
logic	design.

•	Brown,	S.,	and	Z.	Vranesic,	Fundamentals	of	Digital	Logic	with	Verilog	Design,
McGraw-Hill,	New	York,	2002,	ISBN:	007-283878-7.

•	Nelson,	V.	P.,	H.	T.	Nagle,	B.	D.	Carroll,	et	al.,	Digital	Logic	Circuit	Analysis	&
Design,	Prentice-Hall,	Inc.,	New	Jersey,	1996,	ISBN:	0134638948..

•	www.play-hookey.com

Many	books	and	 references	are	available	on	Verilog	and	RTL	design	with	hardware
description	languages.	Listed	below	are	several	books	and	IEEE	references.

•	Bening,	L.,	and	H.	D.	Foster,	Principles	of	Verifiable	RTL	Design	Second	Edition
A	 Functional	 Coding	 Style	 Supporting	 Verification	 Processes	 in	 Verilog,
Springer,	Boston,	2001,	ISBN:	0792373685.

•	 IEEE	 Std	 1364-2001,	 IEEE	 Standard	 Verilog	 Language	 Reference	 Manual,
SH94921-TBR	 (print)	 SS94921-TBR	 (electronic),	 ISBN	 0-7381-2827-9	 (print
and	electronic),	2001.

•	 IEEE	 Std	 1076-2002,	 IEEE	 Standard	 VHDL	 Language	 Reference	 Manual,
SH94983-TBR	 (print)	 SS94983-TBR	 (electronic),	 ISBN	 0-7381-3247-0	 (print)
0-7381-3248-9	(electronic),	2002.

•	Navabi,	Z.,	Digital	Design	and,	Implementation	with	Field	Programmable	Devices,
Kluwer	Academic	Publishers,	Boston,	2005,	ISBN:	1-4020-8011-5.

•	Navabi,	Z.,	“Verilog	Computer-Based	Training	Course”;	CBT	CD	with	hardcopy
user’s	manual,	McGraw-Hill,	New	York,	2002,	ISBN	0-07-137473-6.

•	Navabi,	Z.,	VHDL:	Analysis	and	Modeling	of	Digital	Systems	(Series	in	Electrical
and	Computer	Engineering),	McGraw-Hill	College	Division,	New	York,	 1992,
ISBN:	0070464723.

•	 Navabi,	 Z.,	 Verilog	 Digital	 System	 Design:	 Register	 Transfer	 Level	 Synthesis,
Testbench,	 and	 Verification	 (Series	 in,	 Electrical	 and	 Computer	 Engineering),
McGraw-Hill	College	Division,	New	York,	2006,	ISBN:	007144564-1.

•	Palnitkar,	S.,	Verilog	HDL,	2d	ed,	Prentice	Hall	PTR,	New	Jersey,	 2003,	 ISBN:

0130449113.

•	 Thomas,	 P.	 R.,	 and	 P.	 Moorby,	 The	 Verilog	 Hardware	 Description	 Language,
Springer,	Boston,	2002,	ISBN:	1402070896.

The	following	textbook	is	a	comprehensive	book	on	computer	architectures.

•	Patterson,	D.A.,	J.L.	Hennessy,	P.J.	Ashenden,	et	al.,	Computer	Organization,	and
Design:	 The	 Hardware/Software	 Interface,	 Third	 Edition,	 Morgan	 Kaufmann,
San	Francisco,	2004,	ISBN:	1558606041.

	

Index

LICENSE	AGREEMENT

THIS	PRODUCT	(THE	“PRODUCT”)	CONTAINS	PROPRIETARY	SOFTWARE,
DATA	AND	INFORMATION	(INCLUDING	DOCUMENTATION)	OWNED	BY
THE	McGRAW-HILL	COMPANIES,	INC.	(“McGRAW-HILL”)	AND	ITS
LICENSORS.	YOUR	RIGHT	TO	USE	THE	PRODUCT	IS	GOVERNED	BY	THE
TERMS	AND	CONDITIONS	OF	THIS	AGREEMENT.

LICENSE:	Throughout	this	License	Agreement,	“you”	shall	mean	either	the
individual	or	the	entity	whose	agent	opens	this	package.	You	are	granted	a	non-
exclusive	and	non-transferable	license	to	use	the	Product	subject	to	the	following
terms:

(i)	If	you	have	licensed	a	single	user	version	of	the	Product,	the	Product	may	only	be
used	on	a	single	computer	(i.e.,	a	single	CPU).	If	you	licensed	and	paid	the	fee
applicable	to	a	local	area	network	or	wide	area	network	version	of	the	Product,	you
are	subject	to	the	terms	of	the	following	subparagraph	(ii).

(ii)	If	you	have	licensed	a	local	area	network	version,	you	may	use	the	Product	on
unlimited	workstations	located	in	one	single	building	selected	by	you	that	is	served
by	such	local	area	network.	If	you	have	licensed	a	wide	area	network	version,	you
may	use	the	Product	on	unlimited	workstations	located	in	multiple	buildings	on	the
same	site	selected	by	you	that	is	served	by	such	wide	area	network;	provided,
however,	that	any	building	will	not	be	considered	located	in	the	same	site	if	it	is
more	than	five	(5)	miles	away	from	any	building	included	in	such	site.	In	addition,
you	may	only	use	a	local	area	or	wide	area	network	version	of	the	Product	on	one
single	server.	If	you	wish	to	use	the	Product	on	more	than	one	server,	you	must
obtain	written	authorization	from	McGraw-Hill	and	pay	additional	fees.

(iii)	You	may	make	one	copy	of	the	Product	for	back-up	purposes	only	and	you	must
maintain	an	accurate	record	as	to	the	location	of	the	back-up	at	all	times.

COPYRIGHT;	RESTRICTIONS	ON	USE	AND	TRANSFER:	All	rights	(including
copyright)	in	and	to	the	Product	are	owned	by	McGraw-Hill	and	its	licensors.	You
are	the	owner	of	the	enclosed	disc	on	which	the	Product	is	recorded.	You	may	not
use,	copy,	decompile,	disassemble,	reverse	engineer,	modify,	reproduce,	create
derivative	works,	transmit,	distribute,	sublicense,	store	in	a	database	or	retrieval
system	of	any	kind,	rent	or	transfer	the	Product,	or	any	portion	thereof,	in	any	form
or	by	any	means	(including	electronically	or	otherwise)	except	as	expressly	provided
for	in	this	License	Agreement.	You	must	reproduce	the	copyright	notices,	trademark
notices,	legends	and	logos	of	McGraw-Hill	and	its	licensors	that	appear	on	the
Product	on	the	back-up	copy	of	the	Product	which	you	are	permitted	to	make
hereunder.	All	rights	in	the	Product	not	expressly	granted	herein	are	reserved	by
McGraw-Hill	and	its	licensors.

TERM:	This	License	Agreement	is	effective	until	terminated.	It	will	terminate	if	you
fail	to	comply	with	any	term	or	condition	of	this	License	Agreement.	Upon
termination,	you	are	obligated	to	return	to	McGraw-Hill	the	Product	together	with
all	copies	thereof	and	to	purge	all	copies	of	the	Product	included	in	any	and	all
servers	and	computer	facilities.

DISCLAIMER	OF	WARRANTY:	THE	PRODUCT	AND	THE	BACK-UP	COPY
ARE	LICENSED	“AS	IS.”	McGRAW-HILL,	ITS	LICENSORS	AND	THE
AUTHORS	MAKE	NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AS	TO	THE
RESULTS	TO	BE	OBTAINED	BY	ANY	PERSON	OR	ENTITY	FROM	USE	OF
THE	PRODUCT,	ANY	INFORMATION	OR	DATA	INCLUDED	THEREIN

AND/OR	ANY	TECHNICAL	SUPPORT	SERVICES	PROVIDED	HEREUNDER,
IF	ANY	(“TECHNICAL	SUPPORT	SERVICES”).	McGRAW-HILL,	ITS
LICENSORS	AND	THE	AUTHORS	MAKE	NO	EXPRESS	OR	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	OR	FITNESS	FOR	A	PARTICULAR
PURPOSE	OR	USE	WITH	RESPECT	TO	THE	PRODUCT.	McGRAW-HILL,	ITS
LICENSORS,	AND	THE	AUTHORS	MAKE	NO	GUARANTEE	THAT	YOU
WILL	PASS	ANY	CERTIFICATION	EXAM	WHATSOEVER	BY	USING	THIS
PRODUCT.	NEITHER	McGRAW-HILL,	ANY	OF	ITS	LICENSORS	NOR	THE
AUTHORS	WARRANT	THAT	THE	FUNCTIONS	CONTAINED	IN	THE
PRODUCT	WILL	MEET	YOUR	REQUIREMENTS	OR	THAT	THE	OPERATION
OF	THE	PRODUCT	WILL	BE	UNINTERRUPTED	OR	ERROR	FREE.	YOU
ASSUME	THE	ENTIRE	RISK	WITH	RESPECT	TO	THE	QUALITY	AND
PERFORMANCE	OF	THE	PRODUCT.

LIMITED	WARRANTY	FOR	DISC:	To	the	original	licensee	only,	McGraw-Hill
warrants	that	the	enclosed	disc	on	which	the	Product	is	recorded	is	free	from	defects
in	materials	and	workmanship	under	normal	use	and	service	for	a	period	of	ninety
(90)	days	from	the	date	of	purchase.	In	the	event	of	a	defect	in	the	disc	covered	by
the	foregoing	warranty,	McGraw-Hill	will	replace	the	disc.

LIMITATION	OF	LIABILITY:	NEITHER	McGRAW-HILL,	ITS	LICENSORS
NOR	THE	AUTHORS	SHALL	BE	LIABLE	FOR	ANY	INDIRECT,	SPECIAL	OR
CONSEQUENTIAL	DAMAGES,	SUCH	AS	BUT	NOT	LIMITED	TO,	LOSS	OF
ANTICIPATED	PROFITS	OR	BENEFITS,	RESULTING	FROM	THE	USE	OR
INABILITY	TO	USE	THE	PRODUCT	EVEN	IF	ANY	OF	THEM	HAS	BEEN
ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGES.	THIS	LIMITATION
OF	LIABILITY	SHALL	APPLY	TO	ANY	CLAIM	OR	CAUSE	WHATSOEVER
WHETHER	SUCH	CLAIM	OR	CAUSE	ARISES	IN	CONTRACT,	TORT,	OR
OTHERWISE.	Some	states	do	not	allow	the	exclusion	or	limitation	of	indirect,
special	or	consequential	damages,	so	the	above	limitation	may	not	apply	to	you.

U.S.	GOVERNMENT	RESTRICTED	RIGHTS:	Any	software	included	in	the
Product	is	provided	with	restricted	rights	subject	to	subparagraphs	(c),	(1)	and	(2)	of
the	Commercial	Computer	Software-Restricted	Rights	clause	at	48	C.F.R.	52.227-
19.	The	terms	of	this	Agreement	applicable	to	the	use	of	the	data	in	the	Product	are
those	under	which	the	data	are	generally	made	available	to	the	general	public	by
McGraw-Hill.	Except	as	provided	herein,	no	reproduction,	use,	or	disclosure	rights
are	granted	with	respect	to	the	data	included	in	the	Product	and	no	right	to	modify	or
create	derivative	works	from	any	such	data	is	hereby	granted.

GENERAL:	This	License	Agreement	constitutes	the	entire	agreement	between	the
parties	relating	to	the	Product.	The	terms	of	any	Purchase	Order	shall	have	no	effect
on	the	terms	of	this	License	Agreement.	Failure	of	McGrawHill	to	insist	at	any	time
on	strict	compliance	with	this	License	Agreement	shall	not	constitute	a	waiver	of
any	rights	under	this	License	Agreement.	This	License	Agreement	shall	be
construed	and	governed	in	accordance	with	the	laws	of	the	State	of	New	York.	If	any

provision	of	this	License	Agreement	is	held	to	be	contrary	to	law,	that	provision	will
be	enforced	to	the	maximum	extent	permissible	and	the	remaining	provisions	will
remain	in	full	force	and	effect.

	Preface
	Introduction
	Acknowledgments
	Elements of Embedded Design
	1.1 Abstraction Levels
	1.1.2 Mixed Level Hardware ……………………………………………… 3
	1.1.3 Design Specification ………………………………………………….. 4
	1.2.2 Hardware Part …………………………………………………………. 5
	1.2.3 Software Part
	1.2.6 Hardware Synthesis
	1.2.8 Interconnection Hardware Generation ………………………. 8
	1.3 Design Tools
	1.3.5 Instruction Set Simulator
	1.4.1 Configurable Processors ………………………………………….. 11
	2 Logic Design Concepts ………………………………………13
	2.1 Number Systems …………………………………………………………….14
	2.1.2 Hexadecimal Numbers ……………………………………………. 15
	2.2 Binary Arithmetic ……………………………………………………………16
	2.2.3 Binary Subtraction
	2.2.5 Overflow …………………………………………………………………18
	2.2.7 Floating Point Numbers
	2.3 Basic Logic Gates and Structures ……………………………………. 20
	2.3.2 Logic Function Representation …………………………………21
	2.3.3 Transistors
	2.3.4 CMOS Inverter
	2.3.7 AND and OR gates …………………………………………………..24
	2.3.8 XOR gate
	2.3.10 Three-State Gates …………………………………………………… 26
	2.3.11 Look-up Tables (LUT) ………………………………………………28
	2.4.2 Karnaugh Maps
	2.4.3 Don’t Care Values …………………………………………………… 35
	2.4.4 Minimal Coverage …………………………………………………… 36
	2.4.5 Iterative Hardware …………………………………………………. 38
	2.4.6 Multiplexers and Decoders ……………………………………….41
	2.4.7 Activity Levels ………………………………………………………… 43
	2.4.8 Enable / Disable Inputs …………………………………………… 44
	2.5 Storage Elements ……………………………………………………………. 45
	2.5.1 The Basic Latch ……………………………………………………… 46
	2.5.2 Clocked D Latch
	2.5.3 Flip-Flops ……………………………………………………………….48
	2.5.4 Flip-Flop Control …………………………………………………….. 49
	2.5.5 Registers ………………………………………………………………… 51
	2.6.1 Finite State Machines
	2.6.2 Designing State Machines ……………………………………….. 53
	2.6.3 Mealy and Moore Machines …………………………………….. 58
	2.6.4 One-Hot Realization ……………………………………………….. 59
	2.7 Memories ……………………………………………………………………….. 63
	2.7.1 Static RAM Structure
	2.9 A Comprehensive Example: Serial Adder ………………………….65
	2.9.3 Datapath Design …………………………………………………….. 66

