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Preface

Electrons in molecules . . . Both objects—electron and molecule—have a long,
rich, and complex history. Both words began to be used as elusive concepts
in the nineteenth century before gaining well-established scientific status at
the turn of the twentieth century. Several tens of years of common endeavour,
failures, and achievements by chemists and physicists, based on experimental
and theoretical work, were necessary to reach consensus. The word ‘electron’
(from the Greek élektron, amber) was proposed by Stoney in 1894, to name the
elementary negative charge of the particle, whereas ‘molecule’ comes from the
diminutive of the Latin moles (mass), introduced in modern Latin by Gassendi
as molecula. The emergence of the scientific concept of ‘molecule’, and its
clear distinction from atoms and equivalents, was the result of big controver-
sies (pros and cons in Karlsruhe Congress, 1860), but laid the foundations
of the basic understanding of chemistry, molecular chemistry, and associated
industrial synthetic processes. It opened the door to the understanding of com-
plex, highly organized, and biological matter. Elucidation of the nature of the
electron as a corpuscle and as a wave, and its role in atoms and molecules,
gave rise to quantum mechanics. Today, everyone knows that molecules are
quantum objects built from atoms sharing some of their electrons to establish
chemical bonds.

Electrons in molecules . . . The title can also be read as ‘understanding
the electronic structure and electronic properties of molecules’. Electrons are
dividing their roles in a molecular entity: some ensure the chemical bonds and
allow the stability of the molecules, while others are less bound to the atomic
core and provide the molecules with their fancy properties—magnetic, elec-
trical, photo-physical, colour, luminescence—allowing their use in molecular
electronics, nanosciences, and so on . . . This book is based on the simple
idea that such apparently different properties present a profound unity, rely-
ing on basic concepts of quantum mechanics and symmetry. This conclusion
emerged from informal discussions which we had many years ago with numer-
ous colleagues, and was fed by our teaching experiences at undergraduate and
graduate levels.

The backbone of the book was designed accordingly. Chapter 1 briefly
presents the basic quantum concepts as a common introduction to the broad
domain encompassed by the properties. The molecular orbital approach is
the red thread throughout the book, and its advantages and its limitations
are carefully discussed. We then treat consecutively the magnetic properties
(Chapter 2, ‘The localized electron’), electron transfer and electrical properties
(Chapter 3, ‘The moving electron’), the photo-physical properties (Chapter 4,
‘The excited electron’), and finally, molecular electronics (Chapter 5, ‘The
mastered electron’). So doing, we introduce the specific aspects of each of the
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subjects, and try to enlighten them by returning systematically to the basic con-
cepts. The goal is to better understand each topic and to show the transversal
connections between many of them.

The book’s content is shaped by a few specific features. First, it could be
important to specify what this book is not: it is not a compilation of recent
research results. There are many reviews in the specialized literature, which
periodically updates the huge amount of data and results associated with the
particular topics evoked here. We did not even consider the idea of being
exhaustive in a given field. Each of the chapters could have been, and in some
cases have already been, the subject of several books.

Second, we concentrate on concepts and use as little mathematics as pos-
sible. We try to give as much physical and chemical meaning as possible to
the equations. We try to explain the logic and goal of calculations—the price
being to skip some intermediate developments, which are left to the reader.

Third, we stress the importance of interdisciplinarity: to tackle ambitious
challenges, we think deeply that in this domain one has to mix together chem-
istry, physics, and materials science. The book performs constant trips between
these areas and between theory and experiment. Such a step appears com-
pulsory to achieve the breakthroughs, allowing the progress of knowledge and
the realization of practically useful materials and devices. Furthermore, in the
recently popularized field of nanosciences, the division between physics and
chemistry tends to vanish. But the round-trip ideas between chemist and phys-
icist, between theoretician and experimentalist, are essential for adapting the
molecule(s) to the instrument, or vice versa, and to be able finally to explore
and demonstrate new phenomena.

Fourth, the book is fed by our lifelong experience of molecular chemists,
synthesizing molecules and molecular assemblies specially designed to present
given physical properties. A few quantum concepts constitute the background.
Chemical synthesis provides the planned molecules (most often conceived
after discussion to fit the needs of the physicist, the machine, or the demon-
stration). Beautiful physics experiments follow, with innovative setups and
incredible enhanced sensitivities. Our book describes such experiments and
their results, but stresses the contribution of molecular chemistry, which has
sometimes been overlooked. It is indeed important to realize that this dis-
cipline has reached such a state of maturity that it can be considered as the
science of elaborating three-dimensional objects of sub-nanometre size by
rational design, with the possibility of predicting and fine-tuning their proper-
ties. A long time has passed since discoveries were made because a molecule
was available on the shelf. Now, more and more, they are extensively designed
before, and for, the experiment. The book is rich in many such examples. And
when it happens that unexpected molecules arise, the curious scientist is always
ready to foresee how they can be exploited to initiate new lines of research.

A fifth point is the importance of technology and instrumentation: huge pro-
gress has been made possible only because new equipment has been devised,
such as the STM and its multiple variants, or the squid and its miniaturized
evolutions. The race towards single-molecule properties, as opposed to the
study of statistical ensembles, is now a strong motivation of research in all
the fields covered in the book, as shown in the last chapter.
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Such integrated content was conceived for an audience of students in chem-
istry, physics, and materials sciences, having a preliminary basic knowledge
of the theory of symmetry and quantum mechanics. We taught most of the
content of the book at undergraduate and graduate levels in chemistry and
materials science courses in various places, French or foreign (European,
Asian, and American) universities or French ‘grandes écoles’. Our goal is to
provide fundamental knowledge and, above all, a solid understanding not only
to beginners to boost their curiosity and creativity to design and obtain new
materials with exciting new electronic properties, but also to already special-
ized researchers or engineers, to enlarge their vision to complementary fields
and favour cross-fertilizing of other disciplines. We would always appreciate
remarks and suggestions from our readers.”

The content of our lectures varied systematically from one year to another
to follow scientific trends and to integrate remarks and suggestions from our
students and from our colleagues in neighbouring specialities. We are grateful
to them. We also benefited from passionate discussions with coworkers and
colleagues in our respective laboratories: Centre d’Elaboration de Matériaux
et d’Etudes Structurales, CEMES (J.-P.L.) at Université Paul Sabatier in
Toulouse, and Chimie Inorganique et Matériaux Moléculaires, CIM2 (M. V.) at
Université Pierre et Marie Curie in Paris—both units of the Centre National de
la Recherche Scientifique, the French institution supporting scientific research.
Our colleagues will recognize their work, and fingerprints, here and there.
Many thanks!

Thus, starting from our initial project, such exchanges and experiences trans-
formed the book and its integrated content from principles to applications,
resulting in a volume which, it appears, is unique in the literature at this level.

Our final word is directed to our families: our wives, Marie-Hélene and
Jacqueline, and our daughters, sons, and grand-children, who endured, and
sometimes accepted with incredulous smiles, the too long gestation of this
volume.

Jean-Pierre Launay
Michel Verdaguer

Cordon, Escalquens, Palaiseau, Paris, Toulouse
September 2013
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Basic concepts

In this chapter we establish, in a progressive way, how to describe the quantum
properties of the constituents of matter—atoms, molecules, and extended
molecular solids—with an emphasis on the behaviour of electrons, starting
from first principles. Since the achievements of quantum mechanics, this step
is in principle feasible. In this manner, Paul A. M. Dirac wrote: ‘The funda-
mental physical laws necessary to the mathematical theory of most parts of the
physics and the whole of chemistry are completely known, and the difficulty is
only that the exact applications of these laws lead to equations too complex to
be solved exactly.’

It is true that the equation named after Schrodinger, under its stationary (1.1)
or time-dependent (1.2) forms

HY, = E, ¥, (1.1)

L

ih— = Aw (1.2)
at

allows theoretical determination of the eigenwavefunctions W, and the
eigenenergies E;, which define the system and its change with time. In these
formulae, H is an operator which operates on the wavefunction W, i is the
complex number iZ = —1, h is the Planck constant, and the % operator is the
partial derivative as a function of time t.

The ‘only’ difficulty, following Dirac, is that the operator must take
into account all the interactions—in particular, the interactions between
electrons—but we are unable to write them analytically in an exact way, two
thirds of a century after Dirac. To solve the problem, it is necessary to use some
approximations. It will be the purpose of the first part of this book to introduce
some models useful to the description of the structure and the electronic struc-
ture of molecules and solids. These models will then be used to forecast the
properties.

It is then possible to understand that the approximations realized, and the
predictions made from them, should be compared in a systematic way to
the experiments, source, and criterion of any model: the agreement model-
forecasting experiment leads us to ascertain the validity of the model and
presents the possibility of its safe use in a chosen experimental domain.
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Conversely, the absence of agreement indicates the limit of the model and leads
us to seek a more elaborate or different model for fitting the experiment and
allowing us to foresee the properties in a new experimental field. This intel-
lectual game is extremely fruitful. It is more and more practised by chemists,
especially in materials science. References [1.1-1.5] will help the reader to
become familiar with the most useful quantum models.

It is also easily understandable that the chemical reactivity of macroscopic
sets of molecules and ions is extremely complex, as are the laws to obtain
crystals with long-range order relying on very weak intermolecular interac-
tions. Indeed, wide activity domains exist where systematic synthetic attempts
are necessary to establish experimentally the correlations between structure
and properties. From these attempts there sometimes arise structures (and
properties) which cannot be a priori predicted or imagined. Far from being
contradictory to a rational approach relying on the use of theoretical models,
these endeavours complete and prepare more subtle new models and provide
more exciting discoveries for tomorrow.

In some cases, some of these activities are styled art rather than science. The
reader should not consider this comparison as pejorative, but rather, as a way
to bring closer and to celebrate two major endeavours of human creativity.

1.1 Electron: an old, complex, and exciting story

The electron is the central theme of this book. Its name derives from a
Greek word, élektron—amber—the electric properties of which are at the ori-
gin of the discovery of electricity (when you rub a piece of amber with some
woven material, you produce electrons and positive charges which can be
studied). It is known today that the electron can be described as a particle,
having a very small size, an elementary mass (m, = 9.109534 x 103! kg), a
negative elementary charge (e = —1.6021892 x 107! Coulomb), and a spin
(s = 1/2), associated with the elementary magnetic moment of the electron
(Le = 9.284832 x 1072* J T-!). The g Landé factor of the free electron is
g = 2 pe/pp = 2.0023193134. pnp is the Bohr magneton (see Chapter 2,
Section 2.2.2). The electron is stable, and its lifetime is estimated to be
2 x 10?2 years—Ilonger than the age of the Universe, 1-2 x 10'? years. As an
elementary particle it is accompanied by its antiparticle, the positron, with
the same mass but opposite charge. In atoms and molecules, the electron is
moving with a speed v around the nuclei. Its kinetic energy is K = mv?/2,
its kinetic momentum is p = mv, and the corresponding associated wave has
a wavelength A = h/p. It can indeed be described as a wave—a property of
quantum objects exhibiting wave/corpuscle duality. This property is currently
used in electron microscopes, which frequently reveal important aspects of the
structure of matter. The wavefunction W(x,y,z,t) associated with the electron
allows us to describe all its properties. The square of the wavefunction W2 rep-
resents the probability density in an elementary volume dv = dx dy dz. These
basic features of the electron are presented and discussed in many books of
quantum mechanics, to which the reader is referred [1.1-1.4], and we shall use
them when appropriate throughout this book. When accelerated, the electron
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emits an electromagnetic radiation. When its speed is relativistic, the emit-
ted radiation is called ‘synchrotron radiation’—white light from infrared to
X-rays—a light source unsurpassed for the spectroscopic study of matter. The
use of the properties of the electron, in the solid state and in devices, gave
rise to a particularly active branch of physics and technology: electronics
(electron-ics).

Today, therefore, the electron maintains an enviable scientific and social
status, though this status has been obtained very slowly. It is difficult to speak
of the ‘discovery’ of the electron, as the recognition of it as an elementary
particle covers practically more than half of a century: characterization of the
laws of electrolysis by Faraday (1833), implying ions; development of atomic
theory, in which a mole of ions consists of the same number N of ions bearing
an elementary charge; evaluation of the Avogadro constant N, particularly by
Johann Loschmidt and George J. Stoney (1870-74)—the latter giving, in 1891,
the name ‘electron’ to the elementary charge; recognition by Jean Perrin, in
1895, that cathodic rays are made of negative charges; determination of the
charge/mass ratio, e/m, in 1897, by Joseph J. Thomson for the particles of
cathodic rays, and by Pieter Zeeman for the ‘oscillating ion’; evaluation of
the elementary charge, in 1901, by Max Planck (from the Boltzmann constant
kg, the gas constant R = kg Ny, the Avogadro constant N, and the Faraday
F =Ny e...); identification, at the same time, by Pierre and Marie Curie of the
negative charge of the radioactive p rays for which Henri Becquerel measured
the same e/m ratio than for the cathodic rays; and precise measurement of the
charge e by Robert Andrews Millikan in 1909, which allows good determina-
tion of the Avogadro constant and of the mass of the electron. The history of the
electron becomes, at this point, that of atomic quantum theory, with the mod-
els of Lorentz—Thomson, the planetary model of Ernst Rutherford where the
electrons are at the periphery, the Bohr atom which uses the quantum model of
Max Planck and Albert Einstein, the full development of quantum mechanics
by Louis De Broglie, Erwin Schrodinger, Werner Heisenberg, Ernest Jordan,
and Paul A. M. Dirac during 1924-25, and the introduction of the wavefunc-
tion W quantified by the three quantum numbers n, /, and m. The parallel work
of Alfred Landé, Wolfgang Pauli, George Uhlenbeck, and Samuel Goudsmit
led to the introduction of a supplementary degree of freedom for the electron
and the introduction of a fourth quantum number, the spin s, fully interpreted
by Dirac’s relativistic equation.

The history of the electron, its evidence under the form of cathodic rays,
the determination of its corpuscular properties (mass, charge, spin), and its
description through the concepts of quantum and undulatory physics, were
therefore at the centre of progress of chemistry and physics at the end of the
nineteenth century and the beginning of the twentieth century, and one cannot
overestimate their importance. It is extraordinary that the periodic table of the
elements, fully based today on the atomic electronic structure and therefore on
the existence of the electrons in atoms, was proposed by Dimitri Mendeleev in
1869, without previous knowledge of the existence of electrons!

We shall utilize only a small part of these extraordinary properties of
the electron—essentially those related to quantum behaviour in atomic and
molecular entities—and will proceed smoothly, step by step. The reader should
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realize that the description of the polyelectronic macroscopic world—atomic,
molecular, or in the solid state—implies different levels of sophistication.
We can summarize the various levels as follows: first, neglecting the interelec-
tronic repulsion, we can build a ‘one-electron world’, with atomic orbitals
(atoms), molecular orbitals (molecules), or crystal orbitals (solids). Filling
these orbitals with electrons, we reach electronic configurations. Second,
taking into account interelectronic repulsion, and starting from electronic con-
figurations, we obtain states (atomic, molecular, or solid). Third, by mixing the
states we reach configuration interaction states.

We begin our journey in the ‘one-electron world” with the simplest species
involving electrons: atoms.

1.2 Electrons in atoms

Atoms are made of nucleons (neutrons and protons), building the nucleus,
and electrons running around the nucleus. Contrary to the macroscopic (or
classical) world surrounding us, the atomic world is quantized; it is a quantum
world.

1.2.1 The electron in the simplest atom: hydrogen

The hydrogen atom 1H is the simplest nuclide: a unique electron and a unique
proton in the nucleus. In a static, non-quantum system, the electron will be
attracted by and be precipitated on the nucleus and the atom will be over . . .
Instead, the hydrogen atom is stable. The electron’s energy is determined by
the Schrodinger eqn. (1.1), where the energy Hamiltonian H is simply the sum
of the kinetic energy K(1) and the potential energy U(1) of electron 1 in the
potential field created by the central proton (or Coulombic field).

This equation has solutions only for discrete values of the energy E, termed
eigenvalues, and the corresponding expressions of the wavefunctions are
termed eigenfunctions. The atomic wavefunctions will be represented by ¢
in the whole book. Energies E, are quantified by the quantum number n, the
‘principal’ quantum number (n > 1):

E, = — 2n’me*Z?/ h’n? (1.3)

where m is the electron mass at rest, e the electron charge, Z the atomic
number (= 1 for hydrogen), and h the Planck constant. The wavefunctions
¢ are also quantized and depend on three quantum numbers: n, 1, secondary
or orbital quantum number (0 < I < n) and m, magnetic quantum number
(_l =m=< +1): ¢n,],m~

Table 1.1 gives simplified expressions of the wavefunctions ¢, of the
electron in the hydrogen atom, neglecting constant prefactors. They are
expressed in the coordinate system shown in Fig. 1.1, which allows to write
the wavefunction ¢ in a convenient way as the product of a radial function
R(r), depending only on r, the radial vector of the electron, and an angular
function Y(6, ¢) which depends only on the two angles 6 et ¢: ¢ m = R(r) x
Y (O, ¢). The Y functions are termed spherical harmonics. The wavefunctions
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Table 1.1 Simple analytical expressions and symmetry for some atomic s, p, and d orbitals. All quantities are given without

their constant prefactors.

n 1 m R(r) Y(0,9) Transformed Y Wavefunction ¢ Name  Sym
1 0 0 exp(Lr) 1 exp(r) S g
2 1 0 1 exp(—¢r) cos 0 Z exp(—(r) P u
2 1 -1 r exp(—{r) sin 0 exp(-i¢) sin 0 cos ¢ X exp(-=Cr) Px u
2 1 1 1 exp(—¢r) sin 0 exp(ie) sin 0 sin ¢ y exp(=Cr) py u
3 2 2 exp(-Lr) 3cos? 6-1 (372 -1?) exp(Lr) dp g
3 2 -1 2 exp(~Lr) sin 6 cos 0 exp (—i¢) sin 6 cos 6 cos ¢ XZ exp(—¢r) dy, g
3 2 1 2 exp(-Lr) sin 0 cos 0 exp (ip) sin 6 cos 0 sin ¢ yz exp(-¢r) dy, g
3 2 -2 2 exp(—Lr) sin? 0 exp (-i2¢) sin? 0 (cos? ¢ — sin? ) (x2 — y?) exp(=tr) dxo-y2 g
3 2 2 2 exp(-Lr) sin? 0 exp (i2¢) sin? 6 sin ¢ cos ¢ Xy exp(=r) dyy g

¢ defined for a one electron system are termed atomic orbitals. In the hydrogen
atom, an orbital is an exact solution of the Schrodinger equation.
The radial functions R(r) are of the form:

R(r) = Constant x f(2Zr/n ap) exp (—Zr/nagp) (1.4)

where f(r) is a Laguerre polynomial and ag the radius of the electron orbit in
Bohr’s model. Exact expressions of the atomic orbitals, including numerical
constants, Laguerre polynomials and radial functions can be found in the bib-
liography (see [1.1-1.2] for example). For computations, when the expressions
of orbitals are written as A "' exp(—tr), they are termed Slater-type orbitals.
Other approximate expressions can be used [1.1-1.2].

As can be seen in Table 1.1, the angular wavefunctions Y(0,¢) emerging
from the calculation are generally complex quantities, as are the corresponding
wavefunctions. To represent geometrically the orbitals, one performs usually
unitary transformations generating real wavefunctions, which is a valid pro-
cedure if the energies are the same. Noting that the dependence versus ¢ is of
the form exp (im¢), this is achieved by combining 2 by 2 the angular functions
Yl,m and Yl,—m:

(Yim + Yi—m)/2 proportional to cos (m¢) (1.5a)
(Yim — Yi—m)/2i  proportional to sin (m¢) (1.5b)
z A

Fig. 1.1
Cartesian (X, y, z) and spherical (r, 6, ¢)
coordinates.



Fig. 1.2

Schematic angular representation of
atomic orbitals: a) s and p orbitals; b) d
orbitals; ¢) usual sign conventions.
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Combining these transformed functions (column 6 of Table 1.1) with the radial
function R(r) gives expressions in which one recognizes Cartesian coordinates
(column 7), and this is the basis of orbital denomination (for example, x leads
to the px denomination, zx to d,, and so on).

In most of this book we will use these transformed (real) orbitals. However,
in some cases we have to come back to the original complex orbitals, because
they correspond to defined values of the m quantum number.

For the sake of clarity, the representation of the orbitals can be radial (see
Section 1.3.6 for 3d orbitals) or angular (Fig. 1.2). In the figure, the lines are
drawn for a constant value of the wavefunction (equi-¢ curves). The positive
values of the wavefunction are shown with a + sign or in shaded grey, whereas
the negative values are shown by a — sign or white colour. This convention will
be applied in the whole book.

The mathematical expressions and the graphical representations of the orbit-
als show the existence of nodal surfaces (geometrical locus of the points
where ¢,1m equals zero). The total number of nodal surfaces is n — 1 (n if
one includes the one always present at infinity). The number of nodal sur-
faces in radial wavefunction R(r) is 1 (the secondary quantum number), and
the number of nodal surfaces in the angular wavefunction Y(6,¢) is therefore
n — 1 — 1. An important property of the atomic orbitals is their symmetry.
An atom itself has important symmetry properties. In a rigorous way, in
terms of group theory, one says that the eigenfunctions ¢, are basis func-
tions for the irreducible representation D? of the three-dimensional group
O*(3) (see [1.2]). More simply, they are often named after their sym-
metry properties—in particular, in the inversion operation (change x, y, z in
—X, -, —Z), associated with the inversion centre at the nucleus: the s orbitals are
spherical and symmetric in the inversion operation (¢s(X, y, z) = ds(—X, -y, —z))
or even (gerade in German). So s orbitals are said to be gerade (or g). p orbit-
als are ungerade, or u (¢p(X, y, z) = —Pp(—X, —y, —z)). Then d orbitals are g, f
orbitals are u, and so on. Such labels are shown in the last column of Table 1.1.

a)

Z z z V4 V4
XJ—y X)dy X&y Xvax/gfy
S Px Py Pz
b) z z z z
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Another important property of an orbital is its energy (see eqn. (1.3)). The
energy of the orbital increases with n, or with the number of nodal surfaces of
its wavefunction. The hydrogen atom is said to be in the ground state (the more
stable state) when the electron is located in ¢, the orbital with the lowest
energy (E;) or 1s orbital. The electronic configuration is then written (1s)'. The
energy of the ground state of the hydrogen atom is found to be E; =-21.8 1071°
Jor —13.6 eV. It is convenient to use electron-volts instead of Joules to avoid
manipulating too small numbers, such as —21.8 107, E; = —13.6 eV corres-
ponds to the ionization potential in volts of the hydrogen atom (to obtain one
proton H* and send the electron to infinity).

A final point concerns the spin of the electron. The hydrogen atom is para-
magnetic. The spin of the electron is s = 1/2, with two projections (mg = % 1/2,
‘up’, often called «, and ‘down’ or ). The spin multiplicity is defined as
2s + 1 (here = 2; that is, a spin doublet). It is possible then to introduce the
concept of spin—orbital, as the product of the orbital part ¢, and the spin
part o5, where o can take the values « or B).

Xspin—orbital = Gnlm X O (1.6)

Beyond our simple presentation of quantum numbers 1 and s, the reader should
remember that quantum mechanics defines them as angular momentum and
vectorial quantities, and manipulate them with quantum operators. We shall
return to this point in Sections 1.5 and 2.2.1.

1.2.2 The hydrogenoid ion

A hydrogenoid ion is an atomic entity with one electron and Z protons at the
nucleus. The solutions of the Schrodinger equation are obtained in the same
way as for the hydrogen atom. The number of protons Z is introduced in the
expressions of the energies and of the wavefunctions, as shown in Table 1.1.
and eqn. (1.3).

Two important consequences of the increase of the number of protons Z can
be noted: (i) the stabilization of a given electronic energy level by a factor
72; the electron is ‘going down’ in energy (for example, for He*, Z = 2,
E; =-54.4 eV); (ii) the contraction of the radial part of the wavefunction by a
factor exp(—Z/n); the electron is more attracted by the nucleus and becomes
closer to the nucleus. As in the hydrogen atom, the solutions are obtained
exactly. The spin status is the same.

1.2.3 Helium and other atoms

Helium is the second element of the periodic table (Z = 2), with four nuc-
leons, two protons, and two neutrons, and an electronic surrounding of two
electrons: ‘Z‘He

One electron more, and everything is changed! The mathematical equations
for the energies and the wavefunctions are no more exactly solvable! The



Basic concepts

reason for this is the repulsion energy between two electrons, e2/r;, in atomic
units, which leads to the Hamiltonian:

H=h(l) +h() +€*/r;y = K1) + U(]) + KQ2) + UQ) + ¥rp
(1.7)

h(1) is a one-electron Hamiltonian related to electron 1 only; h(2) deals only
with electron 2. Both are the sum of a kinetic energy term K and a potential
energy term U related to electron i: h(i) = K(i) + U(i). It is now impossible
to determine the exact solutions, since the distance rj, between the two elec-
trons depends on both electron coordinates, and furthermore, the electrons
are indistinguishable. The problem can be solved only if an approximation
is introduced.

A first idea would be to ignore the e%/r1, term. Thus if the electrons had
no interactions, the total energy would be twice the energy of an hydrogenoid
system with Z = 2—that is, 108.8 eV—while the true value is =79 eV [1.3],
showing a quite large difference! This approximation is clearly inapplicable.

A better approximation is to consider that the two-electron term can be
replaced by the sum of electronic terms V(i): e?/riy ~ V(1) + V(2). The
Hamiltonian can then be written as an effective Hamiltonian: h°f(i) = K(i) +
U() + V(i). The total Hamiltonian is then the sum of two effective one-electron
Hamiltonians:

H=%,[K@+ U@+ V@I = Z12h" () =h"" () +h©2)  (1.8)

The Schrodinger equation can then be solved. The previous approximation is
termed the ‘one-electron approximation’. The wavefunctions obtained in this
frame are also termed orbitals, and in this case an orbital is a solution of the
Schrodinger equation in the one-electron approximation.

We use here for the first but not the last time the concept of ‘effective’
Hamiltonian. We need to define it. An effective Hamiltonian is any oper-
ator whose energy spectrum reproduces that of the Hamiltonian operator for
the state of interest [1.6]. ‘Effective’ is also used for physical quantities.
An effective quantity is a fictitious physical quantity defined from an effective
Hamiltonian and which is substituted to the fundamental one. It is most often
defined empirically to fit experimental data effectively. We shall find many of
them in this book (effective atomic number, quantum number, spin, g-factor,
resonance integral B, and so on).

Relying on experimental results, chemists and physicists have defined
approximations to express wavefunctions and energies of the electrons in the
many-electron atom in a semi-empirical manner. The better known is the one
by Slater which introduces an effective atomic number Z¢, which is the atomic
number Z diminished by a ‘screening constant’, . Z° is determined by the so-
called ‘Slater rules’ where the o; for each electron depends on the electronic
configuration and has semi-empirical values determined from experiments.

2" =7—-06=7-% 0 (1.9)

An effective quantum number n°f is sometimes defined and used, so that when

replacing Z by Z°T and n par n°" in the expressions in Table 1.1. and eqn. (1.3),
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wavefunctions and energies can be obtained in this one-electron approxima-
tion. A simple electrostatic image allows us to understand why o and Z° can
represent the interelectronic repulsion: an external (peripheral) electron moves
in the electric potential created by Z protons, weakened or ‘screened’ by all
the other electrons moving between the nucleus and the external electron.

The second electron in the helium atom occupies the same orbital 1s as
the first one. The electronic configuration is (1s)2. The situation follows the
so-called ‘Aufbau principle’, or principle of stability: in the ground state
the electrons occupy the lowest-energy orbitals. Regarding the total elec-
tronic energy of the atom, a more complete discussion of this problem is
deferred to Section 1.5. (see also [1.2, 1.3]). Modern treatments of electron—
electron repulsion utilize orbitals which are corrected from the average effect
of other electrons. But the total electronic energy is no longer the sum of the
individual electron energies. We nevertheless continue with the simple one-
electron orbital picture as a starting point, and will introduce improvements
and refinements later in the book.

The last comment concerns the spin and the magnetic properties. The helium
atom is diamagnetic: the spins of the two electrons are opposite. If one is o,
the second is B. This is our first encounter with an electron pair. Furthermore,
the 1s orbital—as any orbital, atomic or molecular—can accommodate only
two electrons. One says also that it is ‘full’ with two electrons. The situ-
ation is described by Pauli’s principle [1.1-1.4], which states in its simplest
form that ‘two electrons cannot have the same four quantum numbers’ (a
more sophisticated and strictly equivalent statement is that ‘the total polyelec-
tronic wavefunction is antisymmetric—changes its sign—in the exchange of
two electrons’). This means that

W(1,2,3, .. 04, s N) = =W (1,2,3, ... Ly .. LN (1.10)

We shall use this formulation in Section 1.5, but we can pause a while on
this important point to understand better the interaction between electrons:
since an atomic orbital is defined by three quantum numbers n, 1, and m, the
first electron described by the orbital can have a spin quantum number mg =
(+ or —) 1/2. Instead, the spin of the second electron must have the opposite
mg = (— or +) 1/2. The spin configuration is a8 or B«. Pauli’s principle is
called an exclusion principle for that reason: it excludes from a given orbital
electrons which have the same spin quantum number as the first electron. This
is a very strong exclusion law. It is the basis of the formation of the fam-
ous ‘electron pair’ in an orbital. The two electrons have antiparallel magnetic
moments so that they couple to reach a total spin of the atom S = O (that is,
a spin singlet, 2S+1 = 1, Mg = 0). The electron pair is diamagnetic, which is
the basis of the diamagnetism of most molecular compounds. A rigorous way
to determine S and Mg related to the atom is presented in Section 2.4.1.1.

In the lithium atom, Z = 3, 3;Li, the third electron occupies the 2s orbital
just above the ‘full’ 1s. The electronic configuration is (1s)?(2s)!. The atom
is paramagnetic (S = 1/2). And so on for other elements . . . We shall leave
the ‘filling’ of atomic energy levels in the periodic table after a brief look at
another fundamental question of interelectronic interaction. After the boron,
Z =5, 5B, with an electronic configuration (1s)*(2s)>(2p;)', it is well known
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that the electronic configuration of carbon (Z = 6, ¢C) is (1s)*(2s)*(2p)? or
(1s)2(2s)2(2p1 )I(sz)l; the first p electron occupies orbital 2p; and the second
p electron, 2, occupies a second p orbital (2p,, same energy as 2p;), with its
magnetic moment parallel to the one of electron 1. The atom is paramagnetic.
The so-called ‘Hund’s rule’ is followed: the ground state is the highest spin
multiplicity state. The coupling of the two spins 1/2 gives rise to a spin S = 1 of
the atom (a spin triplet, 2S + 1 = 3, Mg = 0, & 1). It is important to realize
that ‘Hund’s rule’ is due to electron repulsion and more precisely to the two-
electron exchange integral k—defined in eqn. (1.58b)—which stabilizes the
triplet state compared to the ground state, as we shall see in Section 1.5. In the
p1(2) p2(1) configuration, electrons 1 and 2 have been exchanged compared
to p1(1) p2(2). We shall find once more the exchange integral k on our way
to ferromagnetic interactions (spins with parallel magnetic moments) when
studying the case of two electrons on two centres in orthogonal orbitals having
the same energy (see Chapter 2). The reader should consult [1.1-1.4] for more
rigorous treatments of the previous presentation.

We can now deal with the next level of quantum organization of matter,
which is central in this book: molecules.

1.3 Electrons in molecules

Molecules are built from atoms. One of the main achievements of quantum
theory, after the understanding of atomic structure, was the explanation of the
chemical bonding between atoms in the molecules. As for the atoms, other
models of bonding existed before the quantum description. The most known—
and the most popular until now—is the Lewis model. It is based on the use
of the valence electrons of atoms, which combine in pairs to give bonding
pairs when the electrons are shared between the atoms, or free pairs when
they lie on one of the atoms. The simplest homodiatomic molecule, H», is
then described by the simple schemes H--H or H-H (one bonding pair), the
dioxygen molecule by <O=0> (two bonding pairs and two free doublets on
each oxygen), the dinitrogen by |[N=N| (three bonding pairs, one free pair on
each nitrogen). For a given molecule, several bonding schemes are possible,
called mesomeric formulae. Useful rules are available for choosing the most
valuable bonding schemes to describe the molecule. In particular, the ‘octet
rule’ foresees that a formula which corresponds to eight electrons surrounding
each atom in the molecule (that is, completing the valence shell as an octet) is
particularly stable—at least for atoms of the second row. The electron count is
made by summing all the electrons in bonding pairs and free doublets around
the given atom.

Another very appealing application of the Lewis model of localized bonds
is the valence shell electronic pair repulsion model (VSEPR), designed by
Ronald Gillespie, which is used to foresee the geometry of simple polyatomic
molecules: the main parameter which imposes the geometry of a molecule
is the repulsion between the pairs of valence electrons in the molecule.
A quantum development of the localized bond approach has been developed
with success by Walter Heitler and Fritz London or Linus Pauling, as a valence
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bond theory with recent impetus from Sason Shaik and co-workers. Evidently,
valence bond theory has been and is still very useful in organic chemistry.
Nevertheless, in the following sections we shall focus on the model developed
by Friedrich Hund and Robert Mulliken: the model of delocalized molecu-
lar orbitals, known as the theory of molecular orbitals—linear combination
of atomic orbitals (MO-LCAO). It provides a convenient one-electron model
to describe the electronic structure of the molecules, and comprises several
levels of sophistication, taking more or less into account the important prob-
lem of interelectronic repulsion, discussed in Section 1.5. In Sections 1.3 and
1.4 we avoid the insoluble problem of the interelectronic repulsion—when sev-
eral electrons are present—by using a one-electron ‘effective’ Hamiltonian,
implying implicitly the interelectronic problem.

1.3.1 Dihydrogen molecule, H,

The two atomic orbitals of the two hydrogen atoms 1 and 2 are termed ¢; and
¢. In the following, we still use ¢ as the symbol for atomic orbitals and adopt
r for molecular orbitals (MOs). The chemical bond arises from the existence
of an overlap integral S between ¢; and ¢,. We shall work in the frame of the
Born—-Oppenheimer approximation; that is, the nuclei are fixed (since they are
heavier than the electrons, they are moving much more slowly).

The one-electron overlap integral S for ¢ and ¢, is computed over all space,
and can be expressed in two ways: a traditional one (using ¢; the conjugated
complex of ¢;; that is, if ¢; =a+ib, ¢ =a—1ib, so that ¢}.¢; = a2 + b?)
or the bra-ket notation introduced by Dirac, where <d¢i|= ¢¥ (bra) and

|bi> = ¢i (ket):
Si2 =38 = <o1(D[ha2(1)> = // d1" (D2(Ddv (1.11)

In these expressions the subscripted index refers to atoms, while the num-
ber in parentheses refers to electrons. The molecular orbitals s are linear
combinations of ¢ and ¢,:

V= ci¢1+ 22 (1.12)

The coefficients c; are termed molecular orbital coefficients. The probability
density function 11;2, associated with {, integrated over the whole space, is:

<PlP> = cf<bildi> + G<haldr> + 2cica<dildo>
= c%+ c§+ 2cic812

since S]] = <¢1|(I)1> = Szz = <(|)2|(I)2> =1and S12 =S= <(|)]|(I)2>.

To determine the wavefunctions and their energies, two methods are avail-
able: the use of a secular determinant, or a direct calculation using the
symmetry of the system (atoms 1 and 2 are equivalent). In the direct cal-
culation, symmetry implies that atoms 1 and 2 bear the same electronic
density so that ¢; = % c;. \ is normalized to unity. The coefficients are thus
cy ==+ 1/4/2(1 £ S). The two molecular orbitals are then:

/ 1
Yy = 1!ﬂ)onding: m (p1 + d2) (1.14a)

(1.13)

1
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/ 1
Yo = l!famibondingz m (d1 — (I)Z) (1.14b)

In the frame of Hiickel theory, the energies E. are determined with the help of
the effective Hamiltonian He®, written as:

Heff — Heff (1) + Heff (2) (115)

Two one-electron integrals are defined, the Coulomb integral o and the
resonance integral p:

a=<di(D) [H'D)| 1 (D> = <d>(2) [H(2)| 92(2)> (1.16)

B = <di(D) |[HT(D| dpa(D)> = <$(2) [HT(2)] $1(2)> (1.17)

The o integral is negative, meaning that the atom itself is stable. The f integral
is also negative here (but see in Section 1.3.3 the cases where p is >0).
Then are determined the energy values E. of bonding and antibonding MOs:

Ey = <Yy [HY|Yp>/<Py Vo> (1.18)
That is:
_ - @+p)
E, —Ebondmg = 1+_S ~(a + B) (1.19a)
E_= Eantibonding = ((lx: E,) ~ (o — B) (1.19b)

In eqns. (1.19), the first expression does not neglect the overlap integral S com-
pared to 1, whereas the last expression is written when neglecting S compared
to 1.

On the other hand, when using the secular determinant method, based on the
variation method (define the coefficients ¢; which minimize the energy), one
obtains the simultaneous equations [1.3]:

Hyp — EiSi) e+ Hiz — EiSi2) e =0 (1.20a)

(Hz1 — EiS21) cii + (Hp — EiS»n) ey =0 (1.20b)

where Hij = <(|)i|Heff| (I)j> and Sij = <¢i| d)j>.
The solutions are found when vanishing the determinant below (neglecting
or not neglecting S, or S, compared to 1):

Hip —E Hp B Hip —E Hiy — ESpp _0
Ho;, Hx —E Hy; —ES;; Hp —E (1.21)
(a) Determinant neglecting S (b) Determinant with §

The solutions for the energies E; are given by eqn. (1.22), obtained by equating
the product of the extreme and the middle terms:

(Hiy — E)y(Hy, — E) — (H;p — ES;p)* =0 (1.22)



Electrons in molecules

\2(1-8)

(a) ®) OO . - 1
1_!\

;
/
M .
M .
Bl 1
\ /
s ! 1-S
.
.

/ v
’ \
/ . [y
, / \
\ / \ /
. ' \ ’
’ ’ O ' B i
. N ’
.
\ A . .

0y \\‘ B R (o} N |1+S 0

" \—
o wQQ o=

\— ]
= v 00 T

For the hydrogen molecule the energies are easily computed, since initial orbit-
als are degenerate (that is, have the same energy), H;; = Hy = a; Hj, =
Hy; = B and Sj, = S5 = S. One finds, of course, the same results as in the
direct calculation (see eqns. (1.19)).

Figure 1.3 displays the energy diagram of the molecular orbitals of H;
in the two hypotheses (neglecting or not neglecting S). One observes that
when the overlap is not neglected, the antibonding MO is more destabilized
(by —B/(1 — S)) than the bonding MO is stabilized (by /(1 + 5)); the MO coef-

1

ficients of ¢; and ¢, are more important in Y_ (Vanibonding. m) than in

1
ll)‘+ (quonding’ W)

The ground state of the dihydrogen molecule corresponds to the occupation
of the bonding orbital by the two electrons.

1
Uy = Ubonding = , | m(dﬂ + $2)

The total wavefunction W, is the product of the wavefunctions (1.23) written
for electrons 1 and 2, which leads to:

Vo = Whonding = [P1(1) + $2(D[d1(2) + $2(D]/2(1 + )
= {[o1(D1(2) + G2(1)2(2)] + [d1(D2(2)
+ ¢01(D)d2(D]}/2(1 + )

We note that the wavefunction Wyondging i the sum of four terms with equal
weights. The first two correspond to an electron transfer between the two atoms
with two electrons in the same orbital ¢; or ¢,. For the last two terms, the
electrons remain in their orbitals or exchange their positions. The first two are
termed charge transfer terms or ionic terms. They correspond to a delocaliza-
tion of the electron of one atom to the other. We shall relate this expression to
the valence bond one in Section 1.5, and in Chapters 2 and 3 we shall comment
on its important meaning for physical properties.

(1.23)

(1.24)

How many bonds? Bond order
It is convenient to know how many ‘bonds’ are present between two atoms in a
molecule. The number of bonds or bond order or bond index w is defined as the

13

Fig. 1.3

Molecular orbitals energy diagrams of
Hj: (a) neglecting the overlap integral S
compared to 1; (b) without neglecting S.
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difference between the number of bonding electrons Nyonging and the number
of antibonding electrons Nanibonding divided by two, since two electrons are
necessary to build a bond:

o Nbonding - Nantibonding
B 2

For the dihydrogen molecule, w = (2 —0)/2 = 1. Since the bond is o type, it can
be said that in dihydrogen there is one o bond (electronic configuration 162).

(1.25)

Where stand the electrons? Population analysis

It is important to know ‘where the electrons are’ in a molecule: how many are
on centre 1?. .. on centre 2? How many are shared between 1 and 2? To answer
these questions, quantum chemists perform a ‘population analysis’.

If we take the general formulation of the orbital ¥ ineqn. (1.12), y =c; ¢; +
cy ¢, then the distribution of one electron in this orbital is given by eqn. 1.13
(with <[> = 1), where 7 is related to centre 1, 3 is related to centre 2,
and 2 c; ¢; Sy is a quantity associated with the interaction, termed the overlap
population. If one wants to distribute the electron density on the two centres
only, it is necessary to split the overlap population in two. Mulliken proposed
to share equally between the two centres so that the electron density on centre
1is ¢2 + ¢ ¢z S12, and on centre 2, ¢3 + ¢; ¢ S1p. This is known as Mulliken
population analysis.

To determine the electronic density on each atom of the molecule, it is
simple to sum the contributions of all the atomic orbitals over all the molecular
orbitals. For H, we can go further, analysing the overlap population in {; and
Y, by taking into account the value of the coefficients c. = + 1//2(1 £ 5)
in <PlP> = c% + c% + 2 ¢y ¢ Sip. In Y, the overlap population, found as
S/(1 + S), is positive, and the orbital is bonding. In {_ the overlap population
[- S/(1 - S)] is negative, and the orbital is antibonding.

Symmetry

A final comment deals with symmetry. The symmetries of the molecular orbit-
als are related to the symmetry of the molecule itself; that is, the one of the
skeleton of the atomic nuclei. The molecular symmetry is described in the
frame of the theory of symmetry or group theory. It relies on point group
symmetry, which is the set of the symmetry operations (rotation 6, reflection
o, inversion i, and so on) around the symmetry elements (rotation axis Cg/y,
reflection or mirror plane o, inversion centre i, and so on) transforming the
molecule in itself, without macroscopic changes. A group is a mathematical
being with perfectly defined properties, exactly adapted to the set of symmetry
operations in a molecule or in a crystal. A point group is a group leaving at
least one point of the molecule unchanged. Instead, a space group, based on
operations on the crystal (translations of the molecules for example) leaves
no point of the crystal unchanged. We consider here that the reader masters
the necessary knowledge about symmetry theory. Many textbooks about sym-
metry are available at various levels of mathematical sophistication (see, for
example, [1.7] and [1.8]). The systematic use of symmetry in the description
of the electronic structure of solids can be found in chapter 2 of [1.9b]—a
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companion book of the present volume. For the dihydrogen molecule the main
geometry features are gathered in Fig. 1.4.

The symmetry elements are the internuclear axis z (rotation axis C,, termed
vertical), a reflection plane o}, (termed horizontal), perpendicular to the z axis
at M, the centre of the H;—H; segment, an infinity of reflection planes o, con-
taining the vertical axis, and an infinity of rotation axes C, perpendicular to
the z axis at M and the inversion centre i at M. The symmetry operations, leav-
ing the molecule H;—H, unchanged, are the identity operation E (no change at
all), an infinity of ® rotations, whatever ®, around the z axis; the rotation axis
is termed Co; an infinity of reflections through the vertical reflection planes,
therefore termed oooy; one reflection through the horizontal plane, termed oy:
the reflection operation interchanges H; and Hj; an infinity of m rotations
(00C,) around the rotation axes perpendicular to the z axis at M: the C, opera-
tions interchange H; and H,; inversion through the inversion centre, termed i:
the i operation interchanges H; and H,. One of the most useful symmetry prop-
erties of the molecular orbitals of a molecule belonging to a given point group
is that the molecular orbitals build a basis for the irreducible representations
(RI) of the point group.

We summarize the symmetry properties of the wavefunctions of the dihydro-
gen molecule and related functions (x, y, z, x2 + y2, 72, Yy or {rp) in Table 1.2:
horizontally, the symmetry operations, assembled by nature (classes), corres-
ponding to columns, and vertically the different objects corresponding to the
symmetry labels. At the intersection we write a character which condenses the
symmetry property of the object/function under the given symmetry operation:
+1 if the object is unique and unchanged, —1 if the object is unique and changes
it sign, 2 if the object is double (the pairs (X, y) or (xz, yz)) and unchanged,
and so on.

Each line characterizes a given type of symmetry, and is termed an irredu-
cible representation (IR) identified by a symmetry label: E;(Alg) (symmetric
in all the symmetry operations or fully symmetric in particular in the C, rota-
tion (X label), in the inversion — g label, and so on); £ (A,,) (antisymmetric
in the inversion — u label . . .), Hg(Elg), doubly degenerate, IT,(Ey), Ag(Ezg),
and so on. Completed with all the possible IRs, the table is termed a character
table.

As for the molecular orbitals of the dihydrogen molecule, we derive the
symmetry labels Eg+ (Ayg) for Y and .1 (Ayy) for Y. Applied to molecular
orbitals, the symmetry labels are written as lower case subscripted symbols,
og+ and o, which are shown in Fig. 1.3a.

Table 1.2 Part of the character table of the Doy, point group.

Doon E ZC& we. 000y On i o00Cy ...Objects/Functions
SFA 11 1 1 1 1 X2 4+y2, 22, Py = 1sp + 1sp
l'Ig(Elg) 2 2cosd 1 0 2 0 .. .(xz,yz)

Ag(Bag) 2 2c0820 0 2 2 1 C(x2 -y, xy)

ELT(Alu) 1 1 1 -1 -1 -1 ...z, Iy =1Isp — Isp

M, (Erw) 2 2cosd 0 2 2 0 L(Xy)
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Fig 1.4
Symmetry elements for the dihydrogen
molecule, H;.



16

le v, QO

Op [~~~

og F—------- Ve e e e - - )—

E1_ ________ —

Fig. 1.5
Molecular orbitals energy diagram of an
AB diatomic molecule.

Basic concepts

We simply introduced here some definitions, notations, and the main results
about the physical quantities that we shall use later. Detailed demonstrations

and discussions are available in references [1.1-1.9], and character tables in
[1.8b].

1.3.2 AB molecules

Here we consider briefly a slightly more complex system: an AB heterodiat-
omic molecule (A # B), with an orbital ¢4, energy as, on A and ¢p, energy
ap, on B with ap # ap (aa > ap). It is important, as many of the interesting
molecular systems are built from atoms of different nature.

¢a and ¢p are two non-degenerate orbitals. Energies and wavefunctions
can be obtained by the secular equations (1.20), where H;; = aa, Hyy = ag,
Hj; =Hy; =B, and S;; = S»; = S. Energies follow from

(@a — E)op — B)— (b — ES)’ =0 (1.26a)
After some calculations and approximations we obtain
— S 2 _ S 2
(b)E; =ap — b~ a8y (© By =aa + (B —ond” (1.26b,c)
ap — OB oA — OB

These expressions are obtained under the assumption that |B| is << |as — a|,
which occurs if the orbitals have very different energies, or if their coupling is
small.

The molecular orbital coefficients can be computed from eqns. (1.20) and
(1.27). Neglecting terms greater than second order in t and S, one finds:

U1 =ciada +cipdp ~ tha + (1 —tS — /2) ¢ (1.27a)
2 = cndat oo~ (1= (5= ¢32)oa+ (s (1270)
with
—agS —apS
(= PmoBS g e PmS (1.27¢)
og — Ol oA — OB

t and t' are termed the mixing coefficients, since the bonding MO s is
mainly built from ¢p with some mixing of ¢ governed by t, whereas the
antibonding MO 1, is centred mainly on ¢, with some mixing of ¢ gov-
erned by t'. Figure 1.5 displays the molecular orbital energy diagram (MOED)
and a scheme of the orbitals.

One can observe in eqns. (1.27) that the more important the energy dif-
ference as — ap, the weaker are the mixing coefficients t and t'. Figure 1.6
illustrates qualitatively the change from a situation (a) where the electrons
are shared equally by A and B (a#p = ap, same electron density on A and
B (electron— or charge—density is defined in Section 1.5.2); covalent bond-
ing A-B, left) to a situation almost ionic (c), with a strong electronic density
on the electronegative atom B—that is, a practically complete electron transfer
from A to B (ap >> agp; ionic bonding A* B™)—through the intermediate case
(b) with a partial electron transfer (as > ag; ionocovalent bonding A*™ — B,
larger MOs coefficients in U, than in {r). The previous inequalities are in line
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Changes in molecular orbitals of an AB molecule with the relative energies of atomic orbitals.

with negative values of the orbitals’ energies. The different weights of A and
B atoms in molecular orbitals is important in HX molecules (X halogen) and
for m bonding in AB molecules such as CO or CN™ (d).

The resonance integral f is not so easy to evaluate. An approximate

but explicit formula is given in the frame of extended Hiickel framework
(Section 1.5.2.2).

1.3.3 Dioxygen molecule, O,

The dioxygen molecule is a widespread molecule, constituting 1/5 of the atmo-
sphere. It is the basis of all aerobic life and combustion reactions, and combines
with most of the known elements. It produces thermodynamically stable deriv-
atives through reactions with high activation energies (slow reactions), due to
its particular electronic structure, which therefore deserves particular atten-
tion. With the dioxygen molecule we arrive at a little more complex situation
to build the molecular energy diagram: on each oxygen atom, six valence elec-
trons are located in 2s, 2py, 2py, and 2p, atomic orbitals. We can forget the
Is core electrons, which have no significant role in the bonding scheme and
deal only with the 2s, 2p valence electrons. So we need to combine orbitals of
various symmetries and energies. The point group symmetry is Dy, with an
inversion centre in the middle of the O,—Og segment. The 2s and 2p, are of ¢
symmetry (rotational symmetry around the internuclear axis z, O—O), whereas
the px and py are of m symmetry (axis perpendicular to z axis). The 2s and
2p orbitals are far in energy (Exs = —33.86 eV; E;, = —17.19 €V). As a first
approximation we can neglect the s—p interaction and combine the 2s orbitals
together and the 2p, together. This is shown in Fig. 1.8 to obtain a bonding

og>0g
7 orbitals in CO

17
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Fig. 1.7

Signs of overlap S and resonance integ-
ral B between different kinds of orbitals
centred on A and B in the coordinates
system shown. Cases (b) and (e) corres-
pond to negative S and positive p.

Basic concepts

log and an antibonding 1o with 2s, and a bonding 20, and antibonding 20}
with 2p,:

U(loy) = |l >= 1oy = N(loy) [25(04) + 25(0g)] (1.28)

Here and in the following equations, N is a normalization constant.

A word about the notations used: 1o, means the first molecular orbital, in
order of increasing energy, built from valence electrons belonging to the o,
irreducible representation (IR) of point group symmetry Dyy: o, rotational
symmetry around the z axis; g, gerade (symmetric in the inversion operation).
log is the in-phase (bonding) combination of the 2s(O4) and 2s(Og) orbitals.
The out-of-phase combination of the 2s(0O4) and 2s(Op) orbitals lead to the
antibonding 1o} (1o, means the first molecular orbital belonging to the o, IR;
* is used to point out the MO antibonding character):

Y(loy) = |loy >= 1o} = N(loy) [2s(0x) — 2s(Op)] (1.29)

With the 2p, and the same notations, we get similarly:
V(20,) = |20, >= 20, = N(20,) [ZpZ(OA) — 2pZ(OB)] (1.30)
U(20y) = |20 >= 207 = N(Q20y)[2p,(Os) + 2p,(Os)] (1.31)

Note an important difference with the MOs built from the previous s orbitals
and the H, case (Section 1.3.1). When the coordinate system is the same for
the two atoms (see Fig. 1.7), the + sign of the 2p,(04) orbital faces the — sign
of the 2p,(Og) one (Fig. 1.7b). Thus the overlap integral S is now negative,
and the resonance integral f is positive. Inspection of the molecular orbitals
and calculation of their energies (still given by eqn. like (1.19)) show that
[2p,(Oa) —2p,(Op)] is now the bonding combination and [2p,(O4) + 2p,(Op)]
the antibonding one. Figure 1.7 gathers different important cases.
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We are now in a position to comment on the building of 7 symmetry MOs in
Fig. 1.8: to get the two bonding MOs belonging to the m, IR, we combine in
phase the two 2p, and the two 2p, (Fig. 1.7d):

Y(1my(x) = [1u(x) >= 1714(x) = N(17(x)) [2p4(Oa) + 2p(O8)] (1.32)

U(1mu(y) = [1mu(y) >= I7tu(y) = N(1mu(y)) [2py(Oa) + 2p,(Os)] (1.33)

The notations are self-evident. As 2py and 2py are degenerate, so are the 17t,(x)
and 1ty (y) MOs:

Y(dmy(x,y) = [Imu(x, y) >= Imu(x, y) = N(I7y(x, ¥)[2p5 y (Oa)+2py ,(Op)]
(1.34)
The out-of-phase combinations lead to:

Y(mg(x)") = [1715(x)* >= 1mg(x)* = N(174(x)) [2p4(Oa) — 2p,(Op)]
(1.35)

Y(1me(y)*) = [1my(y)* >= Img(y)" = N(1mg(y)) [ZPy(OA) — 2Py(OB)]
(1.36)

P(lIme(x,y)*) = [Ime(X,y)* > = Ime(X,y)*
= N(174(x,y)) [2p,,(O4a) — 2p, ,(Op)]
(1.37)

The relative energies of the 20, and 17, MOs and of the 20 and 17; MOs
deserve some comment. Figure 1.8 shows that 20, is below 11, whereas 2c};
is above lmy. In the absence of s—p interaction, this is a general situation:
everything being equal, for a given orbital, the ¢ interactions are stronger than
the w ones. Figure 1.9 illustrates this point and displays different possible inter-
actions (o, 7, 8) between s, p, and d orbitals, and a qualitative ranking of the o,
7, and 8 overlaps with the same distance between neighbours.

We can now establish and comment on the electronic structure of the dioxy-
gen molecule. To find it, we need to place the twelve valence electrons in the

MOs of Fig. 1.8, by using the basic principles of quantum chemistry. The first
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Fig. 1.8

Schematic molecular orbitals energy dia-
gram of the dioxygen molecule: build-
ing, schemes, symmetry labels, and occu-
pancy of the MOs.
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Fig. 1.9

Types of orbital interaction ranked by
symmetry (top) and by overlap mag-
nitude (bottom).
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four electrons are easily placed in log and loy, thanks to the Aufbau prin-
ciple (the electrons occupy the more stable MOs). The resulting electronic
configuration (104)*(10,)? is not bonding. The next six electrons can be accom-
modated in the 20, and the 17, MOs, following the same principle. At this
stage, the electronic configuration is (16,)?(16%)*(20,)*(1yx)*(17,y)*. Two
electrons are left and two (lngx*) and (lngy*) degenerate MOs are available.
Like in the case of the carbon atom (see Section 1.2.3.), we use Hund’s rule
(and exchange integral k) and the more stable configuration corresponds to
the triplet state; the two electrons, with the same spin, occupy the two orbit-
als, which become half-occupied with a resulting molecular spin Sp,= 1. The
MO-LCAO model leads directly to the experimental result: a dioxygen para-
magnetic molecule (contrary to the Lewis model). The electronic configuration
is then (1og)2(10j)2(20g)2(1nux)z(lnuy)z(lngx*)l(1ngy*)1.

The dioxygen molecule exemplifies how the electronic structure determines
magnetic properties, and in particular, how it is possible to force the rather
uncommon situation where two electrons adopt parallel spins. This situation
will be met with again in Section 1.5 and in Chapter 2 (‘magnetic’ orthogonal
orbitals). It is not simply a quantum peculiarity. The triplet ground state of the
dioxygen gives rise to many spin-forbidden reactions, which therefore presents
high activation energies, explaining why living organisms and human beings
are able to exist in a dioxygen atmosphere, even if they move around far above
the thermodynamically stable state.

Bond order

The number of bonds in the dioxygen molecule is obtained from eqn.
(1.25) and from the electronic configurations, with Nyonding = 8, [(1c7g)2
(zcg)z (ITEuX)2 (anY)z] and Namibonding =4, [(lcz)z(lngX*)l(lngy*)l]; that
is, (8 —4)/ 2 = 2. It can be detailed for o and 7 bonds: w;, = (4-2)2=10¢
bond, and w,; = (4 —2)/2 = 1 m bond. This is consistent with the Lewis picture,
except that the paramagnetism is explained in a straightforward manner.
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1.3.4 Water molecule, H,O

The water molecule is one of the most common and most useful molecules on
Earth. The main constituent of the oceans, seas, and rivers, it is the supporting
medium of many biological systems, indispensable to life. Its acidobasic and
redox properties and its physical properties rely on its electronic structure, and
it will help us to take another step in the orbital description of matter and in
understanding the relations between electronic structure and properties.

Figure 1.10 presents the geometrical structure: the two hydrogen atoms are
bonded to the central oxygen atom (dog = 95.7pm); the molecule is bent with
a H-O-H bond angle of 104.52°. The z axis bisects the H-O-H angle, and the
X axis is perpendicular to the molecule plane. The point group symmetry is
C,y. To get the MOs of the molecule, it is convenient to use the symmetry of
the orbitals of valence electrons (Fig. 1.10). The valence orbitals are 1s(Hy)
denoted 1s,, and 1s(Hg) denoted 1sg, 25(0), 2p,(O), 2py(O), 2p,(O). The two
hydrogen atoms Hp and Hg are equivalent in the molecule, and the oxygen
is alone of its kind. The symmetry labels for the oxygen orbitals are found
directly in the character table of the C,, point group (Table 1.3).

Y Point Group

\ CZV

Hao x| He
Oxygen atom
AL B R
2s 2p,

2Py 2p,
Hydrogen atoms

(0] O
Ha 0/15A\ 0, o/ \O b,

—1SA + 1SB

H, /125\0 6, O/O\O a

1SA+ 1SB

Atomic Orbitals —3» Symmetry Orbitals

Table 1.3 Character table of the Cy, point group.

Cay E C oy(xz) ov(yz)

Ay 1 1 1 1 z X2, y2, 2%
Aj 1 1 -1 -1 Xy

B 1 -1 1 -1 X XZ

B, 1 -1 -1 1 y yz

2]

Fig. 1.10

Water molecule: symmetry of the valence
orbitals. Building symmetry orbitals from
atomic orbitals.
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Fig. 1.11
Water molecule: building molecular
orbitals from symmetry orbitals.
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For the hydrogen atoms, each of the 1s5 or 1sg considered alone is not a
basis for an irreducible representation of the group; but their combinations
0+ = Isp £ lIsg are. The combinations adapted to the symmetry of the
molecules are termed symmetry orbitals (SO), and in this book these will be
termed 0. The symmetry labels of the basis orbitals are shown in Fig. 1.10.

We now need to find, for each irreducible representation, the appropriate
combinations of basis orbitals to get the MOs. Figure 1.11 displays how the
symmetry orbitals (SOs) can build the MOs: for symmetry b; there is only
one atomic orbital (AO), which becomes one symmetry orbital (SO) and one
molecular orbital (MO): 1b;; for symmetry b, there are two symmetry orbit-
als (2py and 0,), and their in-phase and out-of-phase combinations give two
molecular orbitals (MOs): 1b,, bonding, and 2b,", antibonding; for symmetry
a; the three symmetry orbitals (2s, 2p,, and 6;) combine to give three molecular
orbitals (MOs): 1a;, strongly bonding, 2a;, slightly bonding, 3a;, antibond-
ing. This procedure emphasizes that molecular orbitals (MOs) can be built
from symmetry orbitals (SOs), themselves built from atomic orbitals. In other
words, molecular orbitals can be built by a stepwise method. Figure 1.12 dis-
plays the schematic molecular orbital energy diagram and the occupation of
the orbitals by the electrons.

The electronic configuration is (1a;)?(1by)*(2a;)?(1b;)?. The last two occu-
pied orbitals (HOMO and HOMO-1) are 1b; and 2a; respectively, with two
electrons in each. Orbital 1b; is a pure 2p, orbital of the oxygen, non-bonding,
whereas the 2a; orbital is slightly bonding (practically non-bonding), mainly
composed of 2s and 2p, oxygen orbitals with some admixture of the a; sym-
metry orbital of hydrogen atoms 6, = 1sy + 1lsg. These two MOs are at
the origin of the important acidobasic properties of water. The two bonding
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orbitals are la; and 1b,, occupied by two electrons each. They ensure the
stability of the molecule.

The occupation of orbitals, with four bonding electrons and four non-
bonding electrons, has some relation with the traditional Lewis description
(two free doublets and two O-H bonds). However, in the MO-LCAO descrip-
tion, each bonding pair is delocalized on the whole molecule, and contributes
equally to the two OH bonds. Note that the MO method is the correct one
to deal with electron energies (in particular, photoelectron spectroscopy shows
that there are four different ionization potentials in H,O), and that MOs respect
the symmetry of the molecule, which is not the case for Lewis-type localized
orbitals.

1.3.5 Organic molecular systems

There is no particular reason to separate the orbital description of organic
molecules from others—inorganic ones. The same methods and rules apply
with the same conclusions: methane, CHy, is described using the same prin-
ciples as ammonia, NH3, or water, HyO. Nevertheless, organic chemistry
provides the quantum chemist with peculiar planar conjugated Tt systems, dis-
crete or extended, where it is possible to derive simple analytical expressions
of the energies and of the wavefunctions. This gives us the opportunity to make
a step further towards the one-electron orbital description of the solid.

Hiickel theory

The ideas at the basis of the Erich Hiickel’s theory are quite simple: in a planar
polyene molecule, the pm orbitals are antisymmetric with respect to the plane
of the molecule. They do not mix with the o orbitals framework and can be
studied separately. The parameterization is particularly simple, of the ‘all or
nothing’ type. Thus Coulomb energies for carbon atoms are taken as the same;
that is, H; = a for all p basis orbitals. Resonance energies are considered
as identical between adjacent pm orbitals; that is Hjj = B, and are assumed to
be zero as soon as atoms are not linked directly. Finally, overlap integrals S
are neglected (S<<1). This simple form of Hiickel theory is no longer used
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Fig. 1.12
Water molecule: schematic molecular
orbitals energy diagram.
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Fig. 1.13
Molecular orbitals of ethene (N = 2),
allyl radical, and longer linear models.

Basic concepts

for organic molecules, except for pedagogical purposes, because it gives the
general trend in the shape and energies of orbitals during their progressive
construction. It will be seen in Sections 1.4 and 1.5 that it corresponds to the
‘tight-binding” method used to describe solid-state systems.

A step further is provided by extended Hiickel theory, dealing with all
valence electrons, in which the overlap S;; is no more neglected and the res-
onance energies Hj; are approximated from overlap integrals. This method
is described in more detail in Section 1.5.2.2. Within the extended Hiickel
method, one is no longer confined to planar molecules with o/m separation,
and the reintroduction of orbital overlaps produces more realistic energies,
by strongly destabilizing antibonding orbitals. However, the method does not
treat explicitly electron—electron repulsion (it is indirectly and crudely taken
into account in the Hj; parameters). Thus the total electronic energy is simply
the sum of the electron energies (which is not correct at all), and the triplet
and singlet states arising from the same configuration have equal energies.
Despite these defects, the extended Hiickel method is the basis of a qualit-
ative description of orbitals and makes the link between intuitive arguments
(‘with the hands’) and sophisticated MO methods.

Qualitative approach of linear systems

The simplest 7 linear system is ethene, C,Hy, a planar symmetric molecule,
with an internuclear C—C z axis. The m system consists of two pm orbitals
with axes perpendicular to the plane (let us say 2py), both half-occupied by
one electron. The expressions of the wavefunctions (eqns. (1.14)) and energies
(egns. (1.19)) derived from the same determinant (eqn. (1.21)) (neglecting S)
are rigorously the same as for the dihydrogen molecule (see Section 1.3.1),
mutatis mutandis; that is, replacing the 1s o hydrogen orbital by the 2p, 7
orbitals. The resulting MOs are bonding (antisymmetric in the inversion oper-
ation, u) and antibonding (symmetric, g). This is shown in Fig. 1.13 (N = 2).
When we add a third 2py, 7 orbital in a linear molecule, we obtain an allyl rad-
ical (Fig. 1.13, N = 3). By linear combination, the three MOs are respectively
bonding (no node, u symmetry), non-bonding (one node on the central atom,
g symmetry) and antibonding (two nodes, u symmetry), with appropriate MOs
coefficients, not shown. The MOs for larger N in Fig. 1.13 will be commented
upon further in Section 1.4.
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Cyclic polyenes

The preceding observations can be extended to planar cyclic systems (CH)n
with very similar results. The point groups to be used are either the Dy, groups
(oy, is the molecular plane), or more simply but without loss of generality, the
cyclic groups C,,. Figure 1.14 displays the MOs 1s; built from the 2p, 7 orbitals
¢, with axis z perpendicular to the molecular plane, their energy levels, and
their symmetry labels in D, or C, groups, for planar cyclic systems from Cs
to Cg (benzene) (see character tables in references [1.7], [1.8], and [1.9]). The
following observations hold:

a) When the energy increases, the number of nodes increases by one on going
from one s; molecular orbital to the next higher in energy. The lowest MO
presents no node. Degenerate MOs present the same number of nodes.

b) The MO with the lowest energy is non-degenerate. The MOs at the highest
energy are degenerate pairs for odd-membered rings and non-degenerate
for even-membered ones.

These properties derive from the symmetry properties of the cyclic groups C,:
they all present a fully symmetric non-degenerate irreducible representation A
(corresponding to the most stable and bonding level) and doubly degenerate
irreducible representations E or E, E; . . . When N is even, a non-degenerate
irreducible representation B appears, which is antisymmetric with respect
to the C, rotations and corresponds to the most unstable and antibonding
level.
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Fig. 1.14

Planar cyclic (CH)n systems: energy
levels and top view of m-type molecular
orbitals (N = 3-6).
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Fig. 1.15
Planar cyclic (CH)N systems: use of the
Frost circle to obtain the energy levels.
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It is possible to determine the wavefunctions {s; and the energies E; of sys-
tems with N atoms, each presenting one orbital (¢,, half occupied), within the
frame of Hiickel’s approximations:

D SRR o oo (P00, s
: n=1 e ﬁ n=1 N !
2jm
Ej =a+2Bcos (F) (1.38b)

In eqn. (1.38a), i is the complex number i> = —1. The j parameter takes the val-
ues 0, £1, £2, £3, £(n'-1), n’ (with n’ = N/2, when N is even) according to the
symmetry properties. The complex form of the wavefunction {; comes from
the irreducible representations E; of the cyclic groups C,, whose characters
can be complex quantities. The energy levels E; after eqn. (1.38b) are shown
in Fig. 1.15, for N even (a) and odd (b). In c) is shown the Frost circle, with a
|2B| radius, whose usefulness is shown in d): an N-vertex polygon inscribed in
the Frost circle with one of its vertices at the bottom allows us to derive easily
the quantitative energy diagram for N = 3-6.

Stability of cyclic polyenes. Hiickel 4n + 2 rule
We have now to deal with the occupancy of the molecular orbitals. It should be
clear from Fig. 1.15 a), b), and d) that the molecule will be the most stable, or
will have a peculiar stability, when all the bonding and non-bonding levels are
filled. Above the lowest bonding level, the other levels occur in pairs. If n pairs
of these levels are occupied, 2n+1 orbitals will be filled with 4n+2 electrons.
One can check that it works for (CH);* and (CH)4** (2 electrons, n = 0),
(CH)s™ and (CH)g (six electrons, n = 1). We recognize the Hiickel 4n+2 rule
(ninteger, 0, 1,2 .. .). These peculiar electronic configurations are often termed
aromatic.

By contrast, the cyclobutadiene molecule (CH)4 present a different beha-
viour because there are four m electrons, of which two occupy the a level and
two the e levels, so that there is an incomplete filling of the e orbitals as a

a) — b) c)
—— —— R=12pl
J—— = —— @ P
p—— —=—  E=0+2Bcos QuN)
N even N odd Frost's Circle
d) —_ a-28
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whole. With 4n electrons, the system is called antiaromatic. As a result of its
peculiar electronic structure, it is subject to the Jahn—Teller effect, leading to a
distortion with a loss of the highly symmetrical square structure. This effect is
described in more detail in Section 1.3.7. We shall encounter a similar effect
in the case of solids: Peierls distortion (Section 1.4.3), which occurs also when
there is partial filling of a set of degenerate orbitals.

1.3.6 Coordination complexes

A coordination complex is a molecular entity resulting from the interaction of
a metallic ion M with ions or molecules L, termed ligands:

M + nL — ML, (1.39)

The ML, complex can be charged or neutral.

Transition elements

We focus on the case where the metal ions M are transition elements, since they
present distinct advantages for obtaining molecules with original properties
and new materials. Their electronic configuration is nsZ, (n — 1d", and they
have an incomplete d sub-shell in one of their oxidation states. Figure 1.16
shows their place in the periodic table.

1 2 34567289 101112 13 14 151617 18

s Elements p Elements
H He
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Fig. 1.16

d transition elements in the periodic table.



28

Fig. 1.17
Schematic angular (a) and radial (b) rep-
resentations of 3d orbitals.
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Table 1.4 Nodal surfaces in d orbitals.

Quantum number nd  Nodal surfaces: total Radial part Angular part

First line 3 2 0 2
Second line 4 3 1 2
Third line 5 4 2 2

d orbitals have a gerade symmetry, corresponding to the spherical harmonics
Xy, Xz, yz, x> — y?, and z?> (quantum number [ = 2). Their radial and angu-
lar representations are shown in Fig. 1.17. The total wavefunctions present
(n — 1) nodal surfaces, which are distributed as shown in Table 1.4 in the three
lines of the periodic table.

As metals, the transition elements are well-known good conductors (copper
is one of the most used metals for conducting wires), often magnetic (iron,
cobalt, and nickel are well-known ferromagnetic compounds). A point of par-
ticular interest for us is the way that the d orbitals of the metallic ion M interact
with the atomic or molecular orbitals of the neighbouring ligands L to produce
the molecular complex ML,,. Several theoretical models have been proposed
to describe the metal-ligand interaction. We reiterate only the main points, and
suggest that the reader consult inorganic chemistry textbooks [1.10] or ligand
field theory books [1.11].

Crystal field model

This is the simplest model, purely electrostatic in nature, which describes
the molecules or anions L. around the metallic ion as negative point charges
or dipoles, stabilizing or destabilizing the d orbitals in a specific manner,
depending on the symmetry. Figure 1.18 summarizes the main conclusions
of the model for an octahedral complex: a uniform spherical distribution of
six negative charges destabilizes the d orbitals in a uniform way (Fig. 1.18a,
then b); starting from that, gathering the negative charges as six octahedral
point charges removes the degeneracy and splits the d orbital energy into two
sets (Fig. 1.18c): the two e, orbitals (pointing along the M-L directions) are
destabilized, whereas the three ty, orbitals (pointing between the M—L direc-
tions) are stabilized. The difference in energy between the two sets of orbitals
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is termed A, or sometimes, and for historical reasons, 10 Dq. A simple cal-
culation, using the fact that the average orbital energy is conserved, leads to
the stabilization energy of the ty, orbitals —2A /5, whereas the destabilization
of e; orbitals is 3A /5. The model deals only with the splitting of the energies
of the d orbitals. It does not consider the nature of bonding between the metal
and the ligand, but uses fully the symmetry properties of the crystal field.

Molecular orbital model

The second model is the one of molecular orbitals, used in the preceding sec-
tions for molecules with s and p elements. The principles to obtain the MOs of
a coordination complex are the same as before. The building of MOs is tightly
bound to the symmetry properties of the molecular complex, and to the point
group: Oy, Tq, Dan, C4y, and so on. MOs are a basis for the irreducible repres-
entations of the group, so that the derivation of the energy diagram is simplified
[1.10-1.12].

Octahedral complex MLg (o-type ligand L orbitals, with M = Fe3*, electronic
configuration d)

The point group is Oy, and the ligand disposition and numbering is shown in
Fig. 1.19, with the X, y, z axes taken along the M-L bonds. The irreducible
representations follow from the character table of the Oy group (Table 1.5).
We start from fifteen initial orbitals—nine for the metal (five 3d orbitals, one
4s orbital and three 4p orbitals) and six o orbitals brought by the ligands. For
the metal, a direct reading of the table gives: tyy(Xy, Xz, yz); eg(xz—yz, 72);
a1g(4s); t1u(4px,4py,4p,). For the ligands, it is necessary to build the symmetry
orbitals as shown in Table 1.6.

We then perform the final combinations. It is found that a) the tp, orbitals
(xy, xz, yz) of the metal have no ligand counterpart: they remain unchanged
in the complex; b) the sign of the participation of ligand orbitals 1; in the sym-
metry orbitals depends on the conventions adopted for the numbering of the
ligand orbitals. The sign used here is in agreement with Fig. 1.19. Finally, fif-
teen MOs are found: three ty; (1) purely metallic and non-bonding, twelve o
MOs obtained by the linear combination of six symmetry orbitals of the lig-
ands (one ajg, tWo €, three ty,) and six from the metal with the same symmetry.
In this o set, six are bonding and six are antibonding. Figure 1.20 displays the
energy diagram, the schematic representation of the MOs, and the symmetry
labels. Regarding the electron count, for an Fe** complex the diagram must
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Fig. 1.18

Crystal field in an octahedral complex: a)
energy of the d orbitals in the free ion;
b) under the influence of a uniform dis-
tribution of negative charges; c) under the
influence of an octahedral distribution of
charges.
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Axes, ligands numbering, symmetry

orbitals, and molecular orbitals in an
ML octahedral complex (o ligands).
For a given symmetry: (a) metal orbitals;
(b) symmetry orbitals of the ligands; (a) py (b)

(c) bonding orbitals of the complex; (d) b c d
antibonding orbitals. Pz (b) (¢) T(d)

Table 1.5 Character table of the Oh point group.

O, E 8C3 6C; 6C4 3C, i 6Sq4 8S¢ 3op 60q

A 11 1 1 1 11 1 1 1 xX2+y?+22

Ay | 1 -1 -l 1 1 -1 1 1 -1

E, 2 -l 0 0 2 2 -1 2 0 (2-x>-y2,x2-y?
Ty 3 0o -1 1 -1 3 1 0 -1 -1 (xy, Xz, yz)

Ty 3 0 1 -1 -l 3 -1 0 -l 1

An 11 1 1 1 -1 -1 -1 -1 -

Ay 11 -1 -l 1 -1 1 -1 - 1

E, 2 -l 2 2 1 =2

Tw 3 0 -1 1 -1 3 - 0 1 1 (xy2)

Tow 3 O -1 -1 3 0 1 -1
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Table 1.6 Basis orbitals in an octahedral MLg complex.

Symmetry Ligands L (Symmetry orbitals 0) Metal M
a1g: 0 11+12+13+l4+15+16 4s

€0 Ii+h-l-1and (-lj -l 13- 14 +15 +1¢) X2 -y, 72
t: o (11 —1p), (I3 —14) and (I5 — 1) 4px, 4py, 4p,
thg! T no Xy, Xz, yz

Note that we use here and in Table 1.7 a different convention with respect to Fig. 1.7. The + and — signs in the
above combinations denote bonding and antibonding combinations respectively, regardless of axis orientations.

===
./ Qg €glyy

accommodate seventeen valence electrons (twelve from the six ligands L, and
five from the metal d°). Thus all orbitals with predominant ligand o character
are filled, and there are five electrons in the orbitals with predominant metal d
character—reminiscent of the ionic description of the system.

Two remarks arise from the comparison of the crystal field and the MO
models: on the one hand, the two models remove the degeneracy of the d
orbitals in the ligand field, Aq. On the other hand, the MO model gives the
wavefunctions and the energies of the whole set of MOs, and not only the
d ones. Inside the d domain the energy difference comes from the quantum
non-bonding or antibonding character, and not from classical electrostatic
arguments. For example, the e, MOs centred on the metal are described clearly
as antibonding (nodal surface between the metal and the ligands orbitals). They
are often termed e to emphasize their antibonding character, frequently used
in the following.
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Fig. 1.20

Molecular orbitals energy diagram of
an MLg octahedral complex (o ligands):
schematic energy diagram and build-
ing lines; MOs schemes and symmetry
labels.
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The ligands can be very different: water, halides X~, ammonia NH3, amines
RNH;, R;R;NH, R;R;R3N, phosphine PH3 and phosphines R{R,R3P, com-
plex biological ligands in metalloproteins . . . each ligand creates a different
ligand field A. Ligands giving rise to small Ay are termed ‘low-field lig-
ands’, and ligands giving rise to large A, are termed ‘high-field ligands’.
An example of a ‘spectrochemical series’, for the Cr** ion, is:

Ligands Cl™ <F~ <H,O0 <NH;3; <CN~
Aovalues/cm™! 13200 15200 17400 21600 26600

Complexes having only o ligands are quite rare. Thus it is important to eval-
uate the réle of the m bonding on the energy diagram of a MLg complex. It is
valuable to do it starting from the energy diagram of a MLg(c) complex and
to see the modifications introduced by the change of ligand. Two parameters
are important: the symmetry, as ever, and the relative energy of orbitals of the
ligand and of the metal. For the relative energies, most often, the energies of
the m occupied orbitals of the ligands lie lower in energy than the d orbitals (in
other words, ligands are more electronegative than the metallic ions). When
antibonding m" orbitals are implied, they lie generally higher in energy than
the d orbitals. For the symmetry, one introduces two T-type orbitals per lig-
and; that is, twelve supplementary orbitals, which are combined to 6 symmetry
orbitals as shown in Table 1.7 (the same work can be done for " orbitals).

The important point is the modification of the orbitals with preponderant
d character by the new symmetry orbitals. In particular, the three t; d MOs,
which are strictly metallic in the MLg complex with ¢ ligands, can combine
here with the three t, symmetry orbitals of the w ligands to give six MOs—
three bonding and three antibonding. Figure 1.21a specifies the nature of the
interaction and shows that the ligand field is decreased to a A’y value (which
happens, for instance, in halide complexes).

The observation holds also for ligands like CO or CN~, whose m occu-
pied MOs contribute to the destabilization of tp, orbitals and decrease A
(Fig. 1.21a). Nevertheless, these ligands present also vacant high-energy m*
orbitals, which contribute on the contrary to stabilize the t,; orbitals and to

Table 1.7 Symmetry orbitals of the ligands in an octahedral complex.

Symmetry 0 Symmetry orbitals of the ligands Metal
tlg: T (llL _IZL)_(ISX _16x) No
(]3x - 14)() - (]ly - 12y) No
(ISy - 16)/) = (I3 = laz) No
thg: T (Liy = loy) + (I3x = lax) Xy
(13L - 14L) + (15y - 16y) yz
(Isx —1l6x) + (liz = l2z) zX
tiy: @ (Iix +1ox) + (13x +lgx) - (15x + lox) 4px
(lly + l2y) + (l3y + 14y) - (ISy + 16y) 4Py
(llz + 121) + (131 + 142) - (152 + 162) 4pz
tou: T (Iiz +1p7) = (I3, + 14) No
(Iax + l4x) - (15x - 16x) No

(liy + 16y) - (lly + 12y) No
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increase Aq, as shown in Fig. 1.21b. In fact, it is not possible to separate 1
and m" effects; both are generally operating as shown in Fig. 1.21c. For lig-
ands such as CO and CN-, however, the 7" effect is by far the more important
(the weight of carbon directly linked to the metal is much larger in the 7"),
and this is why these ligands are ‘high-field’ ligands and lie at the right in the
spectrochemical series.

Hence, the ligands o, 7w and ©" allow (i) to tune quite precisely the ligand
field Ao around a transition metal ion in a complex, and (ii) to control there-
fore the reactivity of the complexes (acid-base, redox . . .) and the physical
properties (spectroscopy, colour, magnetism . . .). The understanding of the
symmetry and of the ligand field allows the chemist to finely control the prop-
erties thanks to the use of appropriate metallic ions and ligands. When adding
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Fig. 1.21

Modification of the molecular orbitals
energy diagram of an MLg octahedral
complex in presence of a) m donor lig-
ands, b) o acceptors ligands, and c) both
mand 7" ligands.
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Fig. 1.22

Schematic molecular orbital energy dia-
gram of a ML¢ octahedral complex with
six 7 donor and 7" acceptor ligands.

Weak field
High spin
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Fig. 1.23
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twelve 1 and twelve 1° MOs orbitals, symmetry tig, bg, 1y, b2y, the energy dia-
gram presents the formidable aspect of Fig. 1.22, which is nevertheless easy to
understand from the preceding arguments.

A particularly spectacular application in the field of materials is the spin
cross-over phenomenon.

High-spin and low-spin complexes; spin cross-over

High-spin and low-spin situations arise from the two contradictory require-
ments: filling orbitals in the order of ascending energy (Aufbau principle), and
having as many electrons as possible with parallel spins (see the case of O,).
For weak ligand fields A, the high-spin situation prevails, while for strong A
it is the low spin.

Figure 1.23 displays the two possible situations for the ligand field in the
case of octahedral complexes of the Fel ion, d®: left, the low-field situation
is accompanied by a high spin state, S = 2. When the five orbitals are half-
filled, the sixth electron is paired in one of the t; orbitals. Water, halogeno,

y z
P | T gt
Aor:t )(z_y2 22
OCt
by p2 z
- it 4 68 68= 8
—-> - —
Medium field Strong fi_eld Xy Xz yz
Spin Cross-Over Low spin
f(T, P, hv, H) L=CN-
(b) (©) (d)

Weak (a), medium (b), and strong (c) ligand fields in an MLg octahedral complex: electronic configuration of high-spin, spin cross-over, and
low-spin states of the complex; (d) tog and e orbitals.
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thiocyanato, or oxalato ligands favour such a high spin state: the hexaaqua
iron(IT) complex [Fe''(H,0)s]** is high spin, S = 2.

On the right, the opposite situation is shown: high field and low spin,
S = 0. Carbon monoxide CO, cyanide CN~, and more generally " acceptors
ligands—aromatic amines (2,2’-bipyridine, 1,10-phenanthroline . . .), phos-
phines . . . favour such a low-spin situation: the hexacyanidoferrate(Il) com-
plex [Fe''(CN)g]* or the deep red tris-1,10-phenanthroline iron(II) complex
[Fe''(phen);]** are low spin, S = 0.

In between there is a range of intermediate ligand fields for which the system
can ‘hesitate’ between the two types of filling. This is a situation called spin
equilibrium, spin cross-over, or spin transition. It is appealing from the point of
view of applications, because it can be abrupt and present hysteresis as a result
of cooperative effects. The spin cross-over is treated in detail in Section 2.4.3.
The intermediate spin (S = 1) is rare but possible.

1.3.7 Influence of the electronic structure on the geometric
structure: the Jahn-Teller effect

So far, we have started from a fixed molecular geometry and considered that it
determines the electronic structure, using, in particular, symmetry and Group
Theory arguments. However, the reverse can be true, because the geometry is
determined by the simple fact that it must correspond to a minimum of the total
energy of the molecule. Under certain circumstances this condition can lead to
a loss of symmetry for electronic reasons linked to the orbital filling. This is
the Jahn—Teller effect [1.13], presented in simplified form next.
Let us write the Hamiltonian of the molecule as

H=K+ V(©Q) (1.40)

where K is the kinetic energy operator and V the operator corresponding to the
interaction between charges (electrons and nuclei). V depends on deformation
coordinates Q, and we limit the discussion to deformations which break the
symmetry. A small deformation 8Q around an initial position Q leads to a
new V potential which can be expressed in a Taylor series limited to second
order:

V(Q) = V(Qp) + (3V/3Q)q0dQ + h(3°V/3Q*)8Q* + - - - (1.41)
The energy change is then given by
AE = AEY + AE? (1.42a)
with
AEWD = <W|(dV/3Q)|Wy> §Q (1.42b)
AE® = [% <W, |(92V/0Q?)| wo> + Z =% 'g)oviag)l \Diﬂ 5Q
(1.42¢)

In these expressions, W is the ground-state wavefunction, while W; are excited
states wavefunctions and the derivatives are taken for Q = Q.
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Fig. 1.24

First-order Jahn-Teller effect in the
example of Cu(Il), with the situations
before and after distortion: a) geometry
of the octahedron; b) last orbitals with e,
symmetry and their filling; c) electronic
states. The degenerate (eg)3 configuration
gives rise to a degenerate 2Eg state sub-
ject to Jahn—Teller distortion—here an
elongation along one of the octahedron
axes, yielding D4, symmetry. As a con-
sequence, the degeneracy between z2 and
x?—y? is lifted, and their occupation is
shown at right.

Basic concepts

First-order Jahn—Teller effect

Let us consider the first term AE(!. If the integral < Wy| (3V/9Q) Wo> is dif-
ferent from 0, a deformation 3Q (either positive or negative) will necessarily
stabilize the molecule. The problem can be analysed by group-theory argu-
ments bearing on the symmetries of W and of the deformation. In 1937 it was
demonstrated by H. A. Jahn and E. Teller that for non-linear molecules, if the
electronic wavefunction Wy is degenerate, there exists at least one Q coordin-
ate for which the previous integral is different from zero. Then the distortion
(Jahn-Teller distortion) occurs necessarily. Once the distortion has occurred,
the degeneracy is lifted.

Electronic degeneracy occurs in a system when degenerate orbitals are
occupied by a different number of electrons. Many cases are found in
transition-metal chemistry, the most typical being copper(Il) with a d° elec-
tronic configuration. In a pure O, symmetry, the configuration is (t2)%(e,)’,
giving an unequal occupation of the two orbitals of the e, set, as shown in
Fig. 1.24

Thus the system must distort. Starting from the perfect Oy, symmetry, if one
performs an elongation of the two bonds along z, the z? orbital is stabilized
with respect to x> — y? (and also xz and yz with respect to xy, but this is not
important here). Thus the degeneracy is lifted, and orbital filling shows that the
system has been stabilized, because there are two electrons in the stabilized
orbital versus only one in the destabilized one. The converse is true for a com-
pression, so in principle either a compression or an elongation of two opposite
bonds could occur. However, experience shows that for the vast majority of
Cu(II) complexes the Jahn—Teller effect is manifested as an elongation of the
octahedron along one of its fourfold axes. Note that in the present case one
can limit investigations to orbital analysis, but strictly speaking one should

BEFORE AFTER
(a)
regular elongated
octahedron octahedron
On Dan
x2—y? 22 x2—y?
(b) €y oo —o— -~
-0
22
2E — A
(c) —= ’
— Byg
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consider electronic states; that is, the total (polyelectronic) wavefunctions.
(The relation between orbitals and states is developed in Section 2.4.1).

Second-order Jahn—Teller effect

When the electronic wavefunction is not degenerate the first-order term is zero,
and thus the first derivative dE/0Q. But according to the sign of the second-
order term AE®), the geometry can correspond to a minimum or a maximum,
in this last case leading to a distortion. The different possibilities, including the
first-order effect, are displayed in Fig. 1.25.

Unfortunately, the prediction is not as simple as previously, because there
are several terms in AE®, and each case must be studied in particular. The
complete analysis of the problem shows that AE® can be negative if there is
an excited state (energy E;) of the proper symmetry not too high in energy,
because its effect depends on 1/(Ey — E;). This is the second-order Jahn—
Teller effect (often termed the pseudo-Jahn-Teller effect) [1.13] shown in Fig.
1.25c¢. If the excited state is too high, one has simply AE® >0, and the high-
symmetry structure is stable (Fig. 1.25a). Finally, we note in Fig 1.25b,c the
fundamental difference between Jahn-Teller effects: for first-order there is
a curve-crossing, while for second-order effect there is an avoided crossing
showing the influence of the upper (excited) level.

Cyclobutadiene C4H4, evoked previously (see Section 1.3.5), is a special
case of the second-order Jahn-Teller effect. The molecular orbitals and ener-
gies of regular square cyclobutadiene are shown in Figs. 1.14 (N = 4) and
1.15d. The three orbitals a and e have to accommodate four electrons, two of
them being in the e set, which is incompletely filled. The complete derivation,
based on the properties of electronic states, will not be presented here, though
the reader can consult [1.13], and we shall discuss only the results. Four states,
designated by their symmetry, are obtained: 'Aj,, 'Bjg, By, and *A,, (these
capital-letter symbols designate electronic states by their symmetry, with the

A e (a) A e (b) A e

o

Qo

\

Fig. 1.25
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Energy as a function of a deformation coordinate Q around a high-symmetry geometry (Qo): a) dE/dQ = 0, d*E/0Q> > 0, stable structure;
b) dE/9Q # 0 with double value due to degenerescence, first-order Jahn-Teller effect; ¢c) 0E/0Q = O, 92E/0Q* < 0 due to coupling with an

excited state, second-order Jahn—Teller effect.
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Fig. 1.26

The special second-order Jahn—Teller
effect occurring in C4Hy, with the situ-
ations before and after distortion: a) geo-
metry; b) w orbitals and their filling;
c) electronic states. Note that exception-
ally, the triplet state is not the ground
state. See the text for discussion.

Fig. 1.27

Jahn-Teller distortion in cyclobutadiene
(CH)4. For the initial symmetrical geo-
metry (a), and the two possible distorted
ones, (b) and (c), from top to bottom:
geometry, molecular orbitals of the =
framework.

Basic concepts
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spin multiplicity 2S+1 as upper index. Curiously, in the present case, the triplet
state is not the ground state (this is one of the rare exceptions to Hund’s rule).
Of the singlet states, ‘Blg is the lowest, and the system is not electronically
degenerate. But the interaction with the nearby 'A|, state triggers a deforma-
tion, and it is found experimentally that C4H, is rectangular (Fig. 1.26), with
the short bonds presenting essentially double-bond character and the long ones
essentially single-bond character.

A simplified (but alas not rigorous!) justification using orbitals can be
presented as follows. Figure 1.27 gives some details about the possible dis-
tortions of the regular cyclobutadiene. In a) are shown the MOs and energies
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of the non-distorted square molecule. At the top, the two most efficient normal
modes of vibration are shown by black arrows and dotted arrows respectively.
In b) are shown the MOs and energies of the distorted molecule after the black-
arrows distortion: the square becomes a rectangle with longer y and shorter x
dimensions. In c) is displayed the situation after the dotted-arrows distortion:
the rectangle has now longer x and shorter y dimensions. The orbitals with a
and b symmetry play no significant role in the process. Instead, the degenerate
e orbitals, termed {r, and {3 in the figure, are determining. V3 is stabilized to
P53’ in b), since the 1-2 and 3-4 bonding interactions become more bonding,
whereas the 1-3 and 2—4 antibonding interactions become less antibonding.
On the contrary, {,’ is destabilized in b). Using the other mode of distortion in
c), the opposite situation occurs: \;’ is stabilized, whereas 3" is destabilized.
Since one orbital is occupied and the other not, there is a net gain in energy,
which is why the distortion occurs only for these non-equilibrated electron
occupations.

As noted in Section 1.3.5, cyclobutadiene, and more generally the molecules
with an electronic configuration 4n (n integer), present such distortions
and are said to be ‘antiaromatic’ with alternating short and long bonds.
We shall encounter a very similar phenomenon in solids with partly filled
bands (Section 1.4.3), the most representative example being polyacetylene
(Section 3.3.3).

1.4 Electrons in molecular solids

The next and last step in our exploration of the ‘one-electron’ world is the
study of molecular objects placed in the solid state. As in preceding section
we proceed step by step, starting by extending molecules to infinite, up to
one-dimensional objects.

1.4.1 From molecular rings to infinite linear chains

We come back to the planar cyclic polyenes of Section 1.3.5. Figure 1.28a
shows the system under consideration: a cyclic polyene, with repeating units
M,, and numbered 0, +1, £2, 43, £(n’-1), n’ (n’ being N/2 if N is even, or
N/2 — 1 if N is odd). Each unit comprises a 7 atomic orbital ¢, having a
Coulomb energy o and interacting only with the two first nearest neighbours
dm+1 (resonance integral B). In a solid, the repeating units M,, are termed unit
cells or cells, since by a set of translations they are able to build completely the
solid (as will be seen).

The Cy rotation axis is perpendicular to the molecular plane. The symmetry
operations are rotations. We name ¢ (or C}l) the elementary rotation angle
transforming cell My, in My, thus ¢y, (CY') rotation (¢ = m ¢) transforms
cell My in cell My,, and so on. The point group symmetry is Cy, with N tending
to infinite. Table 1.8 gives the Cy character table (for even N).

The basis of the representation is built from the N orbitals:

T = () s e s @y - (@), _ (D)1} (1.43)
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Fig. 1.28

Infinite planar polyene: a) cyclic, cyc-
lic group Cn; b) linear, obtained from
the cyclic one when N tends to infinite
(translation group).

Basic concepts

a)

M_n-i1 My
ma
Table 1.8 Point group symmetry C, and irreducible representations.
C. E O Cn o o o C! Ca™ L
I 1 (D7 exp(y) exply) exp-my) expmy) exp[(I-n)y]  exp[(n'~1)y]
'y N 0 0 0 0... 0 0 0...

where exp (y) = exp(2iwj/n).

The characters of this (reducible) representation are shown in Table 1.8: N for
the identity operation E, since the N orbitals remain unchanged; O for all other
operations, since no orbital is transformed in itself by any of the rotations.
The irreducible representations (IR) are I';, where j is an integer running from
0, £1, £2, £3, &(n'-1) to n'. The character of the rotation Cy' in the I'j IR
is exp (%) It is then possible to get the N corresponding I'; IRs from the
'y, and the corresponding symmetry orbitals (in the solid, we shall name them
Bloch orbitals, ®, after Felix Bloch, a Swiss—American physicist, recipient of
the Nobel Prize in 1952) from ¢p,, using the usual projection procedures of

group theory [1.7-1.8]:

n/
Ty = Z T (1.44)
j=7n,+1
1 v I 2inmj)i|
QO =— Cnbm = — ex m (1.45a)
v D B IS oo (5% Jo
m=-n +1 m=—n +1

where 1/,/N is a normalization factor, computed in the frame of the Hiickel
method (neglecting S). The symmetry (Bloch) orbitals are linear combina-

tions of the atomic orbitals, with coefficients exp( 2i;mj) depending on the
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position m. The ®; functions take particularly simple expressions for j = 0 and
n’ = N/2 (remembering that exp(itm) = (-1)™),

/
SOREILERS S S RUS S
N = TN :
" (1.45b)
a fully bonding Bloch orbital, with no node, and conversely:
©/] = i/: (=D"¢
TN S " (1.45¢)

1
= SR = bt o = b= 4y

a fully antibonding Bloch orbital with N — 1 nodes. The orbitals are shown in

Fig. 1.29.
The energies of Bloch orbitals are computed from
<®j |h|®]>
i = ———— = < 0j/h|®; > (1.46a)
<@j|®j>

E; =< ©;[h|®; >
:§< i [GXP(Zi;mj)hmlhl HZ/ [exp<2i§,mj>]d>m> (1.46b)

m:—n/+] m=-—n +1

where h is an effective one-electron Hamiltonian. Eqn. (1.46b) becomes
simply, in the frame of the Hiickel model:

27,
Ej=a+28 COSFJ (1.46¢)
since, for given ] orbitals, there are N terms: < exp(Zi’;,mj)d>m|h|
exp(%)cbm >=qaand 2 N terms < exp(%)cbmm exp(%)c})mil > =

6005(% ). All the other terms imply pairs of orbitals ¢, and ¢, With p >1,
which are not interacting in our (simple Hiickel) model (f = 0; E = 0). Eqn.
(1.46¢) is indeed a very simple expression of the energy: when N tends to infin-
ite, the energy varies as a continuous cosine function from the energy value
a+28(G=-n"+1)toa-2p (j=n') through a (j = 0). The present case is
an extrapolation to infinite of the finite cyclic polyenes of Section 1.3.5 and a
convenient further step to the solid.

Towards linear chains

It is important to realize that when N tends to infinite, the ring’s radius tends to
infinite. The ring thus becomes a linear chain along some z axis (Fig. 1.29b).
The elementary rotation ¢ is transformed in an elementary translation @ along
z and ¢, (= m @) in a translation T, = m a. Consequently there is an exact
correspondence between the rotations in the molecular cyclic point group and
the translations in the translation group. One should be careful about the con-
ditions at the limits, since there is no discontinuity for the ring between the
—n’ + 1 and n’ cells, while there is one in the chain, since —n’ + 1 and n’ cells
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Fig. 1.29

Bloch orbitals for infinite polyenes; a)
cyclic,at j =0and j = %; b) linear at
k=0andk = Z.

Basic concepts

a)

are found at the opposite ends of the chain. The so-called Born and Karman
conditions, for infinite systems, allow cells n’ + 1 and n’ to interact and solve
the problem. (Max Born was a German physicist, recipient of the Nobel Prize
in Physics in 1954.)

We are now in a position to introduce new concepts with a closer look at

the definition of the Bloch orbitals (eqns. 1.45). In the expression Zi;mj , m can

5 s
be replaced by T,,/a = rp/a, since Ty, and a are collinear. Then ””“J = Iﬁl?

Furthermore, we can remark that k = —J is homogeneous to a rec1pr0cal

length (a™') and can be considered as the projection k of a vector k on

z (a), so that 2”"‘” = 2&? I'm = iKfy. The quantity k, proportional to j, varies as

/
0, :I:%, :I:i]—fl,. o ,i%, f The expression of the Bloch orbital appears

then as the one of a plane wave with wavevector k:

!/
n

O =0="1L ¥ [exp (2‘“er)]¢m

/

m=—n+1 (1.47)
- 5 [ow(i)]e
m_7n+]

Tm and @ are vectors in the real space. k is a vector in the ‘reciprocal space’.

This point can be made even clearer if we introduce the vector a* defined by

- oy 2T
a*a=2n or a*= —a (1.48)
a
so that k= k,a* (k, is the projection of k on a* with k, = >k and varies as
0, iﬁ, i%, . :I:n 1 1) The a vector defines the direct space and charac-

terizes its per10d1c1ty. The a* vector defines the reciprocal space, the one of k
wavevectors and the periodicity of k.

Coming back to the expression of Bloch orbitals (eqn. 1.47), using either
variables j or k, one observes that it describes a linear combination of atomic
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orbitals ¢, (as for common molecules), welghted by a phase factor. For peri-
odlclty, check that when T, is replaced by T, + a or k by Kk + a* the functions
O; (k) are unchanged.
The energies of the Bloch orbitals ©;(k) simply follow from eqn. (1.46a):
<O:|h|®;>

B, 4 2
Ej(k) = w = <O [h|O>= o + 2Bcos§j = o + 2B cos(ka)
(1.49)

The last expression is particularly convenient to use, as will be shown later.
The ®;(k) wavefunctions at k = 0 (thatis,j =0)andk = X . (thatis, j _g)
are 51m11ar mutatis mutandis, to those of (1.45b,c) and are shown in Fig. 1.29b.

Bands

The results already reached deserve some comments and allow the introduction
of some new important concepts. The Bloch orbital ®(k = 0) is fully bonding
(no node). Its energy is a + 2 P, which is the lowest energy (in this case, p is
negative). On the contrary, the Bloch orbital ®(k = ) is the most antibonding
(N — 1 nodes). Its energy is o —2 P, which is the highest energy. All the other
Bloch orbitals lie between with intermediate energies, within the finite energy
interval W = 4 |B|, termed the bandwidth (shown already in Fig. 1.13). If the
number N of orbitals is finite, k varies by regular discrete steps. Instead, if
the number N of orbitals tends to infinite, k varies continuously and there is a
vanishing energy difference (Ae = %) between two successive levels. Such a
continuum of levels is called an energy band. The corresponding Bloch orbitals
are orthogonal. kisa wavevector, but defines also the symmetry of the cor-
responding Bloch orbital ®; (k) in the translation group. Hence, two different

orbitals having different symmetries Kk and K’ are orthogonal, and
<®j(f<)|h|@j/(1?)> =0 (1.50)

We suggest that the reader take time to grasp the real nature and important role
of k, in this book and in [1.9] and [1.14].

1.4.2 Brillouin zone, energy dispersion curve, Fermi level,
and density of states

1.4.2.1 Brillouin zone, energy dispersion curve
The N ©; (f() or more simply @(E) Bloch orbitals are defined in a k space

—%, a] which excludes k = —;, given our conditions at the limits. This
space is termed the (first) Brillouin zone (after the French—American physicist
Léon Brillouin). The point k = 0 is termed the zone centre and is represented
by the greek symbol I'. The point k = % is the zone edge, represented by Z
(when the axis of the system is Oz). The sinusoidal variation of the energy of
the Bloch orbitals in the Brillouin zone is shown in Fig. 1.30. It is also known as

the ‘energy dispersion curve’ or ‘band diagram’. Above k = T and below —7,
the @(E) values are the same as inside the first Brillouin zone. Furthermore,
the functions ®(k) and ®(—k) are degenerate (the points k and —k are phys-
ically equivalent), and it is then possible to reduce the representation to the
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Fig. 1.30
Energy dispersion curve within the (first)
Brillouin zone.
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Fig. 1.31

a) Energy dispersion curve and Bloch
orbitals at points I' and Z; b) density of
states; ¢) schematic representation of an
energy band and Fermi level Ef.

Wy
3 A

Fig. 1.32

Variation of overlap and bandwidth W
with the distance between nearest neigh-
bours. For the same orbitals, the band-
width increases (W3>W;>W ) when the
distance decreases (d3 <dp <dj).

Fig. 1.33
Bandwidth W and nature of the overlap.
Bands going ‘up’ (a) or ‘down’ (b).

Basic concepts

k interval [O, %] of the first Brillouin zone, without loss of information, as
shown in Fig. 1.31a.

1.4.2.2 Fermi level, density of states

It is now appropriate to “fill’ Bloch orbitals with electrons as we did for the
MOs. We apply once more the Aufbau principle. Each Bloch orbital accom-
modates two electrons at the maximum, so that the lowest g levels are doubly
filled and the above levels are vacant. The last occupied level is termed by
chemists the Fermi level and its energy the Fermi energy, Er, (after the Italian—
American physicist Enrico Fermi, recipient of the Nobel Prize in Physics in
1938). The occupancy of the Bloch orbitals has fundamental consequences on
the magnetic and electrical properties. Of particular interest for conductivity is
the partial filling of a band which gives rise to a 1D conductor (Section 3.3),
and for magnetism the filling of the N levels with one unpaired electron per
level, which gives a 1D magnetic chain (Section 2.7.1).

Another important concept is the density of states, abbreviated as DOS,
simply defined as the number of energy levels (or Bloch orbitals) dn per energy
0E; that is, (g—E)E The DOS can be approximated as DOS o 1/(0E/dk)g, the
reciprocal of the slope of the dispersion energy curve (Fig. 1.31a): atk =0
and 7, the slope is close to zero (see Fig. 1.31b) and there are many energy
levels for a given 9E, whereas at k = 7- the slope is steep and the number of
energy levels corresponding to the same energy variation 0E is smaller; there
is a minimum of the DOS at k = % (half of the band), as shown in Fig. 1.31b.
A very simple representation of an energy band, as a mere rectangle, is
given in Fig. 1.31c, with the filled levels in black and the Fermi level Eg
at half-band.

From the previous conclusions it is possible to realize that when the overlap
S and the resonance energy f between two neighbouring orbitals vary, so does
the bandwidth W. Figure 1.32 displays an example where the distance between
nearest neighbours decreases from chain 1 to chain 3. Consequently, the band-
width increases. It is also possible to observe on the scheme that when the
overlap § is not neglected, the antibonding levels are more destabilized than
the bonding ones are stabilized (as in dihydrogen, Fig. 1.3b).

We arrive at similar conclusions in Fig. 1.33 when the same neighbours
(bearing p orbitals) are at the same distance (a) but when the nature of the
overlap varies (from m,,_, overlap in a) to 6, , overlap in b). The width is much
larger for the o overlap (W, = |4 Bs| > W= |4 B |, as we expect from Fig. 1.9.

Nevertheless, the more important conclusion drawn from Fig. 1.33 is
another one. In b), the chain is made of p, orbitals (lying along the Oz axis).
On the one hand, at k = 0, the Bloch orbital ®y_o(¢p_pnyq + -+ d_1 + g +
¢1+ -+ ¢,) shows an antibonding interaction between nearest neighbours,
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contrary to what happens in a) between py orbitals (perpendicular to Oz).
On the other hand, at k = %, the Bloch orbital Oy—r/a(G_pny1 — -+ — b1 +
$o — ¢1 + -+ — ¢) is fully bonding. Due to the symmetry properties of the
basis orbitals, the most antibonding orbital occurs now at k = 0, whereas the
most bonding appears at k = . The band is ‘going down’ instead of ‘going
up’ as in Figs. 1.31 and 1.33a. This behaviour is found frequently, depending
on the symmetry of the basis orbitals. As for the case of p,—p, interactions
in the O, molecule (Section 1.3.3.) this comes from the fact that § is positive
(Fig. 1.7).

We suggest that the reader consult references [1.5], [1.9], and [1.14] for
further comments and detailed demonstrations.

1.4.3 Peierls distortion

Before studying more complex systems we would like to end this brief intro-
duction on energy bands by looking more closely at what happens when a band
is partially filled. We deal with a half-filled band for the sake of simplicity.
Figure 1.34 summarizes the situation: (a) the energy dispersion curve, (b) four
selected Bloch orbitals: the most bonding, k = 0 (no node, symmetric (S) in
the reflection through plane IT), the most antibonding, k =§ (N-1 nodes, anti-
symmetric (A) in the reflection), and the two frontier orbitals, the one below
the Fermi level (—1 + N/2 nodes, (A)), and the one just above (N/2 nodes, (S));
(c) the band filling.

Please note that we represent schemes of Bloch orbitals as if they were real
functions. In many cases, as other orbitals they are complex functions. They
can or must be written as © = Orey) + 1 Oimaginary @i =-1). Only for k = 0 and
k = m/a are the functions real mathematical objects.

The frontier orbitals are practically degenerate: the orbital degeneracy is
similar to the one introduced in Section 1.3.5. Then, as previously, the system
is unstable. As in Sections 1.3.5 and 1.3.7 we have to find the distortion; that
is, the appropriate lowering in symmetry (through some normal mode of vibra-
tions) able to remove the electronic degeneracy. A simple one is a dimerization
of the chain along the z-axis, as displayed in Fig. 1.35.

In (a) the situation is before distortion: a uniform distribution of the centres
1-8, with a translation vector a from one cell to another. The Bloch orbit-
als are termed ®g for k = 0, ®,,, for k =§ and ®, and ©j5 for the frontier
orbitals, and the arrows at the top of the numbering show the directions of
the displacements of the atoms in the dimerization which follows. In (b) is
shown the situation after dimerization; atoms 1-2, 3—4, 5-6, and 7-8 are
closer (enhanced overlap and interaction), whereas atoms 2-3, 4-5, and 6-7
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Fig. 1.34

a) Energy dispersion curve; b) Bloch
orbitals at points I" and Z and around k =
%, their number of nodes and symmetry;
¢) occupancy of the orbitals.
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Fig. 1.35
a) Bloch orbitals of the uniform 1D sys-
tem; b) Bloch orbitals after dimerization;
¢) removal of the orbital degeneracy;
d) opening of a gap at the Fermi level
(schematic).

Fig. 1.36

After dimerization a gap opens at the
Fermi level at k = 7. a) energy disper-
sion; b) density of states.

Basic concepts
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are farther (decreased overlap and interactions). The translation vector along
the chain is now 2a.

It is easy to show that the ‘dimerization’ has no consequences for the ener-
gies of ®¢ and ®,y,. But for ®, and ®; important modifications occur. In ®,
the bonding interactions become stronger between 1-2, 3—4 etc, while the
antibonding interactions become weaker between 2-3, 4-5, and so on, both
factors stabilizing the ®, orbital. The reverse holds for ®3, which is destabil-
ized. The overall result is the opening of a gap between the energies of ®, and
®3, at the Fermi level. As in the case of C4Hy (Sections 1.3.5 and 1.3.7), the
systems gains some energy because one of the orbitals is occupied, and the
other not.

Anyway, this distortion gives rise to a forbidden energy band or gap for the
electrons of the system, as shown in (c) and (d) with different graphical repres-
entations. Figure 1.36 depicts the new energy dispersion curve after distortion,
using the same tools as before.

We shall see in Chapter 3 that such gap opening changes a 1D system from
conducting to semiconducting. In molecules the phenomenon has been termed
a Jahn-Teller distortion, while in the 1D solid it is usually termed a Peierls
distortion or transition (after the German—British physicist Rudolf Peierls).
It is described by physicists as the ‘opening of a gap at the Fermi level through
electron—phonon coupling’, which is another way to talk about the influence
of nuclear motions (phonons) on the electronic structure. The present orbital
demonstration, due to Hoffmann [1.14], is more familiar to chemists.

1.4.4 Crystal orbitals: more than one orbital per cell

In our long way to the solid, the next step in complexity is the introduction
in the 1D system of several orbitals per cell: in a metallic oxide it can be a
d orbital of the metal and a p orbital of the oxide, and in a polyene it can be
1t orbitals of two non-equivalent carbon atoms. Generally, a cell will imply
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several non-equivalent orbitals ¢, ranging from 1 to Ny. Each of the £ non-
equivalent orbitals of the cell can be used to build N Bloch orbitals (®,); or
®(k), as shown in eqn. (1.47), leading to Bloch orbitals such as:

2im
(©0) = Oy(k) = f Xn: [GXP< )](d)z)m (1.51)

In eqn. (1.51) the notation of the orbitals used in eqn. (1.47) are changed
slightly to take into account the ¢ orbitals of a cell: atomic orbitals change
from ¢y, to (¢¢)m and Bloch orbitals from ©; to (Oy); or @g(k) It is now pos-
sible to bullg the crystal orbitals (Cps) from linear combinations of the Bloch
orbitals ®,(k). They are termed X(k) throughout the book:

No

X(k) = > c10,(K) (1.52)

(=1

The coefficients and the energies are computed by writing that X(E) obeys the
Schrodinger equation:

hX(K) = E(K)X(K) (1.53a)
or
Y c®)h{O(K)} — EK)O, (K] (1.53b)
=1
‘We obtain the coefficients CZ(E) € =1,...,Np) from the Ny equations:
No
> ce® e (k) — E®Se(®)] =0 (¢ =0,...,No) (1.54a)
=1
with
H, (&) = (0,0 h[0,®) S,/K = (©,K)]0,K) (1.54b)
H(k) — EK)SK)| =0 (1.54¢)

where H and S are matrices of the Hamiltonians and overlaps related to the
Bloch 0rb1tals @g(k) € =1,...,Np). It is then poss1ble to derive the ener-
gies E(k) and, after normahzat10n the coefficients ¢, (k) € =1,...,Np) of the
crystal orbitals X(k)

In the following we give a brief example to show that the building of crys-
tal orbitals is less complex than it can appear from the previous equations.
Suppose that we deal with a linear chain along Oz, built alternatively from one
transition element M and one ligand L —(M-L-)y, with a translation vector a
(Fig. 1.37a).

The transition element M has a dy, orbital able to interact (7 interaction)
with a neighbouring py orbital of a ligand L. In the chain, all the metals M are
equivalent, and so are the ligands L. The energies of the atomic orbitals are
a(d) and a(p) with oc(d) > a(p). We build the Bloch orbitals ®y (k) and ®L(k)
atk = 0 and k = 7 as before (Fig. 1.37b), and from them we want to obtain
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Fig. 1.37

A 1D system with two orbitals per cell:
a) description; b) Bloch orbitals (BOs)
built from the equivalent AOs (metal and
ligand) and their symmetry; c) crystal
orbitals (COs) at k = 0 and w/a, built
from the BOs and energy bands.

Basic concepts

a

a —_—

(@ yix Moo [Mo Lo | [Mq Ly ]eme
2

| 0 12
(f)t;)(k=0) 0 k=ma  eyk=ma)
; A % % 8@ A
+ - + -

9 % % S g 8 g A

+ + + - * -
@L(k=0) G)L(k:n/a)
()

ER X (k=ma)d3 8§ B8 33 8

%' %' +0c(d)

no interaction

"> bonding’" interactionIi K

OX, k=) § R § B §mwa

two crystal orbitals X(E) particularly at k = 0 and 7, from eqn. (1.52). As a
rough approximation:

X(K) o [@M(E) + @L(E)] (1.55)

We observe that the symmetry of the Bloch orbitals upon the reflection through
a plane perpendicular to Oz in My (IT in Fig. 1.37b) is the same at k = 7
(A) but is different at k = 0 (A for ®p(k =0) and S for O (k = 0)). There is
therefore no interaction at k = 0 and an interaction at k = 7. The two crystal
orbitals at k = 0 are simply the initial Bloch orbitals ®p (k = 0) at energy a(p)
and Oy (k = 0) at energy a(d). A scheme of the two X (k = wt/a) is given in
Fig. 1.37c: one is bonding, with a larger weight for p than for d orbitals (see
Section 1.3.2), and the other is antibonding, with larger weight for d than for
p orbitals. It is then possible to draw the energy dispersion curve and to show
the existence of two bands. The energy of the first one, X (k), changes from
non-bonding (a(p)) at k = 0 to bonding at k = %, with a strong participation
of the p orbitals of the ligand. It is occupied by the 2N-electrons of the ligand
orbitals, and is termed a ‘p bonding band’. It ensures the stability of the system.
The energy of the other band X_ (k) varies from non-bonding at k = 0 (a(d)) to
antibonding atk = =, with a strong participation of the d orbitals of the metal.
It is half-filled with N-electrons of the d orbitals of the metal, and ensures the
physical properties of the system.

1.4.5 Towards 3D systems

We have introduced some basic concepts in the frame of the ‘one-electron’
view of a 1D system. In particular, we have tried to show the deep similarity
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Table 1.9 Comparison between the approaches of molecular and solid electronic structures.

Electronic structure of a molecule Electronic structure of a 1D solid

Np orbitals (atomic or fragments), AOs ¢y Ny atomic orbitals to describe a cell m (N
cells) (¢)m

Combining equivalent AOs to build Ny Combining the equivalent AOs to build SOs

symmetry orbitals, SOs, 6 or Bloch orbitals (BOs), ©(k)

Combining SOs 6 with same IR to build Combining BOs ©(k) at each point k to

molecular orbitals, MOs {r build the crystal orbitals COs, X(k)

existing in building the useful wavefunctions to describe molecules and solids
using symmetry properties. The steps are summarized in Table 1.9 (see also
[1.9]).

Now, to describe real solids we should deal with two-dimensional (2D) or
three-dimensional (3D) systems. In the last case we should work in a 3D direct
space, based on three crystallographic axes a, b, ¢ instead of one. We should
work also in a reciprocal space defined by three vectors %, b, ¢* such as
a*ea=2m b *b=2m ¢* " =2, and the k wavevector should have
three components in this space. The Brillouin zone would become a surface
or a volume, and the Fermi level a Fermi surface. But the basic concepts, elab-
orated here with 1D examples, would remain. We shall introduce the necessary
modifications when appropriate in the book.

Nevertheless, before facing physical properties in the following chapters we
need to tune our ‘one-electron’ view of the solid, rather optimistically, with
some more delicate considerations on electronic repulsion and some of its
consequences.

1.5 Effects of interelectronic repulsion

We now tackle the most difficult problem: the explicit introduction of interelec-
tronic repulsion. The electrostatic (Coulomb) repulsion between two electrons,
whatever their spins, impedes them to be in the same place; the positions of
electrons are correlated, which can also be described as the electrons being
surrounded by a Coulomb hole. In this section the goal is double: (i) to go
beyond a qualitative description of the electronic structure to reach quantitat-
ive results, in particular on the wavefunctions and on the energy, taking into
account interelectronic repulsions; and (ii) to introduce the spin dimension in
the study of polyelectronic systems, through the example of two electrons on
two centres and comparing their singlet (1) and triplet (11) behaviour.

1.5.1 Position of the problem

1.5.1.1 Hamiltonians

It is a well-known fact in quantum chemistry that the existence of the interelec-
tronic repulsion renders impossible the exact solution of the Schrodinger
equation for a polyelectronic system. Indeed, the general Hamiltonian for
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an N-electron system in the frame of the Born—Oppenheimer approximation
(fixed nuclei) can be written as a sum of three parts:

H=H,+H, +H, (1.56a)
N N
Hy =) h() =) K@)+ Ud) (1.56b)
i=1 i=1
N N 2

H, = ZZ:‘— (1.56¢)

N
H, = Z cOIG)s(i) (1.56d)
i=1
We are already familiar with the one-electron part Hy, the sum of the kinetic
K and potential U energies of single electrons i. Hj is related to interelectronic
repulsion between two electrons i,j. It is our main concern here. Finally, H,
is the Hamiltonian related to spin—orbit interaction (¢). Until now we have
considered that there is no interaction between the orbital momentum of the
electron, defined by its operator 1(i) (and the quantum number 1(i)) and the spin
momentum operator s(i) (and the quantum number s(i)). But this is not the case,
particularly when the atomic number Z is increasing. For low-Z atoms the Hy
term is dominant over Hy, and H, can be treated as a perturbation. For high-
Z atoms the contrary is true. In the following, we centre on the Hamiltonian
formulated as

H=H,+H, (1.57)

Due to the interelectronic repulsion term Hj, the system is not separable into
one-electron descriptions. For example, in a two-orbital (¢, and ¢) and two-
electron (1, 2) system, where exist electronic configurations such as ¢,(1)dp(2)
(electron 1 in ¢, and 2 in ¢p) or ¢,(2)dp(1) (electron 2 in ¢, and 1 in ¢p)
or $,(1)d,(2) (both electrons 2 in ¢,), the calculations with the two-electron
operator H; (= e%/ry, in this case), imply new two-electron integrals such as
those defined in Table 1.10.

All of them are positive, since the electrostatic repulsion between the two
electrons destabilizes the system. The j integral corresponds simply to the self-
repulsion of the electronic configuration where electron 1 is in ¢, and electron
2 is in ¢yp. In physics it is often termed V. The integral is the same using the

Table 1.10 Definition of three two-electron integrals.

Definition Usual name and other abbreviations
j = <da(D)dp(2) |e2/r12 [da(DPp(2)> two-centre self-repulsion integral (1.58a)
k = <ha(DPp(2) |€? /112 |ha(2dp(D)> exchange integral (1.58b)

jo = <ba(Dda(2) |ez/r12 [da(Da(2)> one-centre self-repulsion integral (1.58¢c)
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$2(2) dp(1) configuration. The exchange integral k is more subtle. It corres-
ponds to the repulsion of ¢,(1) ¢ (2) with the configuration ¢,(2) (1), where
electrons 1 and 2 have changed their orbitals (hence the name ‘exchange’ integ-
ral). The j, integral corresponds to an excited configuration where the two
electrons are in the same orbital (¢,). The jj integral simply measures the self-
repulsion of the ¢,(1)d,(2) electronic configuration. The integral is the same
using the ¢p(1) dp(2) configuration. In physics it is often termed U.

Technically speaking, it is a many-body problem. No exact analytical solu-
tion exists, since rj, depends on both ¢, and ¢y, which precludes a separation
of variables. However, it is possible to approach the exact solutions as much
as possible by means of approximations. The only difficulty is to find the most
efficient method; that is, a method for which the computing effort does not
grow too rapidly with the complexity of the molecule.

It is useful to introduce here the concept of overlap density. The exchange
integral k in eqn. (1.58b) can be rewritten:

k = <da(Ddp(2) [€?/112 |9a(2)pp(1)>

1.59
_ e / (D (D06 1o o 2 / PP oy 19
I I
which evidences the product:
p(D) = a(i) Pv(i) (1.60)

which is termed the overlap density, defined at each point in space.

1.5.1.2 Polyelectronic wavefunctions, the Pauli principle, and Slater
determinants

In this section we state the general principles of construction of polyelectronic

wavefunctions. First we return to the Pauli exclusion principle and propose

a general formulation that will lead us to a useful tool to express N-electron

wavefunctions: the Slater determinant.

The total N-electron wavefunction W(1,2,3 . . .i,j, . . .N) is a mathemat-
ical object whose square gives the probability to find simultaneously electrons
1,2,3, and so on, in different volume elements. It depends on the coordinates
of the N-electrons, the spatial ones (i) and the spin ones o(i), that we term x(i)
(i varying from 1 to N). The spin functions are denoted « or 8, corresponding
to mg = Y, (or spin up 1) and mg = — ', (or spin down |,) respectively. As stated
in Section 1.2.3, the electrons are indistinguishable, so that the interchange of
two electrons i and j must not change the state of the system; that is, the square
of the wavefunction must not change. Actually, since electrons are fermions,
the wavefunction must be antisymmetric with respect to the interchange of two
electrons, so that, taking N = 2 for simplicity:

Y(x(1), x(2)) = —W(x(2), x(1)) (1.61)

This expression (see also eqn. (1.10)) is related to the Pauli principle, since
W vanishes when the spatial and spin coordinates of the two electrons are the
same.

When the spin—orbit coupling is absent (no H, term in the Hamiltonian
(1.56a)), the electronic wavefunction is an eigenfunction of a Hamiltonian
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without spin variables. So, it can be written as a spin—orbital; that is, a product
of a spatial wavefunction (¢ for an atom, \{ for a molecule) eigenfunction of
the Hamiltonian, by a spin function (o for an atom, n for a molecule) to be
defined. For an electron i, in a spatial molecular orbital (i), the molecular
spin—orbital numbered j is

xi(x®) = x50 = YHm;(@) (1.62)

with 1;() = a(@) or B(@).

At this stage the spatial wavefunction can be either an atomic orbital or a
molecular orbital. The construction rules are perfectly general and apply to all
methods—in particular, the MO and VB methods defined in the following.

The one-electron orbital approximation consists in building approximate
spatial wavefunctions as the product of one-electron wavefunctions x;(i); that
is, for two electrons, x;(1) x;(2), where the subscript is the orbital numbering
and the parentheses indicate the electron numbering. x;(1) x;(2) . . . is termed
a Hartree product. But this wavefunction would not obey the Pauli principle,
because it is not antisymmetric with respect to the interchange of two elec-
trons (as previously). Thus we build an antisymmetric wavefunction termed
the Hartree—Fock wavefunction (Wyr) as:

Yy = [xi(Dx;(2) — xi(2) x;(D] (1.632)
Wyr can be rewritten under the form of a Slater determinant:
L) x(h
Wyp = — | ) 1.63b
RV TH PG S (1.635)

The rows are labelled by the N-electrons (1 to 2), whereas the columns are
labelled by the N spin—orbitals (i, j). By generalization, for N-electrons, the
antisymmetric wavefunction is then given by a Slater determinant with rank N:

| xi() ) ..o xx(1)

_ X2 x5@2)... ... xx(2)

\IJH]: = _N! . 1 (163C)
XiN) i (N) ... ... xx(N)

It is easy to check that interchanging two electrons corresponds to interchan-
ging two rows of the determinant (and therefore changing its sign): the Slater
determinant meets the requirement of antisymmetry. Having two electrons in
the same spin—orbital leads to two identical columns and the determinant is
zero: only one electron can occupy a spin—orbital, which fulfils the Pauli prin-
ciple. A convenient linear notation for a Slater determinant shows only the
diagonal elements and includes the normalization constant:

Ypr = ¥ = [xi(D 52 ... xkct(N = DxMN)| = [x1x2 ... xnl (1.63d)

Such wavefunctions, built from orthonormal (that is, orthogonal and normal-
ized) spin—orbitals are normalized. Furthermore, if a Hartree product is an
electron-independent wavefunction (the electrons are fully independent), the
antisymmetrized Slater determinant introduces some exchange effect: it is
impossible to find two electrons with the same spin at the same place; that is,
the motion of two electrons with parallel spins is correlated—but the motion of
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electrons with antiparallel spins remains uncorrelated, so that a single determ-
inantal wavefunction is an uncorrelated wavefunction. An electron is said to
be surrounded by a Fermi hole, as demonstrated in [1.15]. The main origin of
error in the Hartree—Fock approach is the absence of correlation among elec-
trons bearing opposite spins. The difference between the exact energy, Eexact
(non-relativistic), and the Hartree—Fock energy Egr is then termed correlation
energy, Bcorr (Ecorr = Eexact — Exr). Its computation is the goal of all the post-
Hartree—Fock treatments (see Section 1.5.2.3). We would like to emphasize
that if the correlation between electrons (place, spin, and so on) are due to
physical phenomena (Coulombic electronic repulsion, antisymmetry, the Pauli
exclusion principle, and so on), the correlation energy is not a physical quantity
but a measure of the energy error due to the neglect of correlation in a certain
approximation.

We now have the necessary tools for the rational construction of a polyelec-
tronic wavefunction. Its energy can be computed from the usual expression:

E =<V H|V>/<V V> (1.64)

where H is the complete Hamiltonian now including interelectronic repulsion,
and where the wavefunction itself can be improved by choosing extended basis
sets of orbitals and through the variational procedure. Many strategies exist,
however. The detailed description of even a part of the innumerable quantum
methods that have been devised in the last eighty years would be a tremendous
task, well beyond the scope of this book. Taking the risk of being extremely
schematic, we present in Fig. 1.38 a considerably simplified landscape of the
quantum methods.

| MOLECULAR STRUCTURE
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e DFT method(s)
~
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Ext Hiickel of electronic
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VB wave functions Hartree-Fock SCF orbitals
RHF UHF
CI with excited stgtes Post Hartree-Fock CI MBPT
(e.g. ionic forms) treatment for (MPn) Kohn-Sham <— Total electron
electron correlation orbitals > density

Exactpolyelectronic
wave function

.
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Fig. 1.38
Schematic chart of the quantum methods
discussed in this section.
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In the next two sections we shall concentrate on the two ‘historical’ meth-
ods: molecular orbitals and valence bond. In common, they try to write the true
polyelectronic wavefunction, and then to extract properties through the con-
venient quantum-mechanical operators (Sections 1.5.2 and 1.5.3). A different
approach, based on electronic density—and not centred on wavefunctions—
the density functional theory (DFT), is presented in Section 1.5.4.

1.5.2 The quantitative molecular orbital (MO) method

The molecular orbital model relies on the definition of molecular orbitals as
a combination of atomic or symmetry orbitals. The quantitative MO method,
taking into account explicitly the interelectronic repulsion, requires two steps.
First, the electronic repulsion is introduced under the form of a mean field;
that is, a given electron is influenced by the average electronic density due
to all other electrons. This is the basis of the Hartree—Fock self-consistent
field procedure. The improvement is important but not sufficient, since it does
not describe correlation effects, due to the instantaneous repulsion between
electrons. Thus a second step is necessary, extending beyond Hartree—Fock
treatments. Presently, this is the most demanding step in terms of computing
power, since the length of calculations grows very rapidly with the number of
electrons in the molecule.

1.5.2.1 The Hartree—Fock and self-consistent field (SCF) methods

Our problem is to find a set of N occupied spin—orbitals {x,} (noted a, b, . . .)
that allows us to build a Slater determinant, obeying the Pauli principle:

W> =W = [XaxoXc --- XN| (1.65)

In the following, among the infinite number of spin—orbitals ¥, the occupied
orbitals y, are written with a, b, . . , N indices and the unoccupied ones ¥
withr, s . . . The spin—orbitals ¥; are orthonormal; that is, <X, |Xp > = Sab»
where 3, is the Kronecker symbol, 8,, = 1 if a =b and = 0 if a # b. We look
for the best possible approximation to reach the ground state of the N-electron
system, Wy, eigenfunction of the electronic Hamiltonian H (1.57), with the
lowest possible energy Eg, applying eqn. (1.64). Eg and W can be obtained by
the variational method: x; and ¥ depend on various parameters, which can be
optimized to satisfy the variational principle (0E should be zero if we want Eg
to be the minimum of E):

IE = d<W[H|V>=0 (1.66)

In the Hartree—Fock approach the electronic repulsion is taken explicitly into
account, while keeping the concept of spin—orbitals. The electron is assumed to
evolve in the field created by all nuclei of the molecule and the average charge
density created by all other electrons. The charge density p(r), in a closed-
shell molecule corresponding to a single determinant wavefunction, with N-
electrons distributed in doubly occupied orbitals W, is defined as:

o) =23 1ol (1.67)
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It is easy to find that the integral of the charge density over space is simply the
number of electrons N:

/ p(r)dr=22?zz] f [Wi(r)[*dr = N (1.68)

space

To present the essential arguments it is sufficient to take a two-electrons system
(electrons 1 and 2, spin—orbitals ¥, and ). Mathematically, each spin—orbital
Xa must be an eigenfunction of the Fock operator f:

flx. >=c¢eilxa> or fx,=c¢euxa (1.69a)

In the Hartree—Fock equation (1.69a), €, is the eigenvalue—the energy—of the
spin—orbital |x,>, and f is the effective one-electron operator:

f() =h()+VEO =h)+ ) In(1) = Kn(D)] (1.69b)
1, Za
h(l) = K1) +U(l) = —= V] — — (1.69¢)
2 N A
*(2) xp(2)dx(2
Jo(1) xa(1) = [ / W} () (1.69)
*(2) ya(2)dx(2
Ko(1) xa(1) = [/W}xb(l) (1.69%)

h(1) is the one-electron operator describing the kinetic energy K(1) of electron
(1) and its potential energy U(1) = — ) rzl—‘: in the field of the various nuclei A.
A

VHE(1) is an effective one-electron operator, termed the Hartree—Fock poten-
tial. VHF(1) can be written as a difference of two operators J,(1) and Kp(1),
defined by their effect when operating on the spin—orbital x,(1). Jp(1) and
Ky(1) are operators corresponding to the mean electrostatic repulsion of
electron 1 with all the other electrons in spin—orbitals X, # Xa-

Their significance can be commented upon briefly, as follows. J and K are
reminiscent of the two-electron integrals j and k defined in relations (1.58), but
are effective one-electron operators defined in eqns. (1.69d,e). Jp(1) is an oper-
ator acting on the spin—orbital x,(1), and represents the average local potential
seen by the electron 1 at position 1y, arising from an electron 2 in xp. Jp(1) is
a Coulomb operator. Ky (1) is instead an exchange operator. It is also acting on
the spin—orbital y,(1), but the average potential felt by electron 1 implies an
‘exchange’ between electrons 1 and 2, as shown in eqn. (1.69e).

In such a way, the description still uses one-electron functions, which are
solutions of (almost) independent eigen equations. However, since the know-
ledge of a given one-electron wavefunction requires the detailed knowledge of
all other one-electron wavefunctions, which themselves depend on the wave-
function of the considered electron, the system of equations can be solved only
by an iterative procedure starting from a reasonable set of guessed wavefunc-
tions. The procedure is then continued until a convergence is obtained, based
on a criterion such as the difference between successive values of the energy.
This method is known as the Hartree—Fock self-consistent field method.
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Returning to N-electron systems, after the minimization of the energy of
the determinant |Wo> = |Xa Xb Xec - - - Xn]» We obtain eigenvalue equations
flxa> = ea|Xa> and an infinite set of eigenfunctions flx;j> = ¢ |x;> (with
j=1,2,...00). The energy ; (orbital energy) can be computed from:

g = <xlfl x> (1.70a)

Replacing the Fock operator f by its expression (1.69b), one finds, after some
calculations, that:

g = <xilflxi> = <xilh+ > Jo — Kp)lxi>
b

1.70b
= <xilhlxi> + > (<xilJolxi> — <xilKplxi>) ( )
b
g = <xilh|xi> + Z (<iblib> — <ib|bi>) (1.70¢)
b
Occupied orbitals:
g, = <alhla> + Z(<ab|ab> — <ablba>) (1.70d)
b#a
Vacant orbitals:
& = <r|h|r> + Z(<rb|rb> — <rblbr>) (1.70e)

b

For occupied spin—orbitals, <alh|a> is the kinetic energy and the energy of
attraction by all the nuclei, <ablab> is the two-electron Coulomb repulsion
energy j, and <ablba> is the two-electron exchange repulsion energy k (run-
ning over the remaining N — 1 electrons in occupied spin—orbitals). For the
unoccupied orbitals the result is the same but the interaction is now with all
the N-electrons of the occupied orbitals as if an electron were added to ¥ to
give a N + 1 electronic configuration, ¢, being the energy of this supplementary
electron.

It is, then, almost straightforward to compute the total electronic energy E.
A naive conception would be to sum up the energies of the occupied orbitals:

N N N N
D ea=) <alhja>+ Y ) (<ablab> — <ab|ba>) (1.71a)
a a a b

but actually, using the standard procedure, Eg = <V |H|W >:

N N N
1
Ey = Xa: <alhla> + - Xa: Xb:(<ab|ab> — <ab|ba>) (1.71b)
N 1 N N
Ey = Za:ga -3 Xa: Xb:(<ab|ab> — <ab|ba>) (1.71¢c)

The factor % in eqn. (1.71b) avoids counting twice the electron—electron
repulsions present in eqn. (1.71a). Another form is eqn. (1.71c), which tells
us that the total electronic energy is the sum of orbital energies minus the
total repulsion energy, because adding orbital energies obtained by an SCF
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procedure would count twice the electron—electron repulsions. If we apply
relation (1.71b) to the case of the H, molecule, where Wy = |x1¥2| with
two spin—orbitals (x;(1) = Yo = Y13 x2(2) = P = V1; N = 2), we obtain
simply for Eg:

Eo = <x1 Ihl x1> + <xz2 hl x2> + <xixelx1 x2> — <xixelx2x1>
Eo= 2h + J; — Kp2
(1.71d)
where the expressions are given for spin—orbitals. It is then useful to express
the energies as a function of the spatial orbitals \{r, amenable to numerical
computation. For the demonstration we use once more the simplest case of the
H; molecule. Expression (1.71d) becomes, with 1\ space orbitals:

Eo = <¥n |h| o> + <y B [h| 41 B>
+ <Uio Ui Bl Yy B> — <l Uy Bl o>

The operators are not acting on the spin functions « and S, which are
orthonormal; that is:

(1.71e)

<ala> = <B|f> = 1;<u|f> = <Bla> =0, <a Bla > =1,
<o B|Ba>=0

One obtains:

Ep = < |h|{1><ala> + <@g [h|§1><BB> + <P [Pl >
<aBla > — <y [P h1><a plfa>
Eo = <¥ [h[ > + <y |h| ¥> + <P P[Pl > = 2hy + Ty
(1.71f)

The expressions are related to spatial orbitals. We can observe that the
exchange integral K has disappeared from the expression due to the ortho-
gonality of the spins @ and $. This is a general result: exchange integrals will
be zero when spins are opposite. Thus for different spins the repulsion is Jjj,
while for like spins it is J;; — Kj; (still positive). In other words, two electrons
always repel each other, but less so when they have like spins.

Eqns. (1.71e) can be extended to the general case of an N-electron closed-
shell Hartree—Fock function with N/2 space orbitals [Wo> = |Xa Xb Xc - - - X|
= [U1U oWy ... UnpUnse| (see [1.15] for a complete demonstration). The
expression of the energy becomes:

N2 N2 N2
Eo = 22 <Vi [h| > + Z Z(2<1lfi\|fj|llfillfj> — <l [0i>)
i-1 i
J (1.71g)

N/2 N/2 N/2

Eg=2) h+ Y Y QI;—Ky (1.71h)
J

i=1 i

If Ey is not the sum of the orbital energies e, what is the meaning of an
orbital energy? A simple answer is that the orbital energy ¢4 of a spin—orbital
Xd represents the negative of the ionization energy Ei,, when one electron
is withdrawn from the occupied spin—orbital x4 to reach an N — 1 electronic
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configuration with energy N"'Eg4. An equivalent equation can be derived for the
fixation of one electron in a vacant orbital ¥ to obtain an N + 1 electronic con-
figuration and determinant. The orbital energy ¢, is the negative of the fixation
energy Egy.

Eion =V 'Eq — NEg = —¢q (1.72a)

Eix = NEg — V1B, = —¢, (1.72b)

The two relations can be demonstrated at the expense of some calculations and
within the approximation that the spin—orbitals remain the same in the ioniz-
ation process (frozen orbital approximation). Eqns. (1.72) are the expression
of Koopman’s theorem. Nevertheless, if Koopman’s theorem is a good first
approximation for experimental ionization energies, it is not the case for fixa-
tion energies, since Hartree—Fock calculations on neutral molecules often give
positive energies for vacant orbitals [1.15].

Eqn. (1.71h) has something else to tell us. To minimize the ground-state
energy of the molecule, the composition of the orbitals should be such that the
J;j integrals are as small as possible and the Kj; as large as possible. How is
this feasible? By nature, both J;; and Kj; integrals are positive. Kj; is non-zero
only for spin—orbitals with the same spin. According to their definitions, the
integrals’ magnitude depends on the sum of products such as (cmcjmq)inq)jm)z,
where n and m are numbering the atoms of the molecule. J;; and K;; are non-
zero if the molecular orbitals ; and {; have large coefficients on the same
atoms of the molecule (ci, and cj,, for example). Therefore, to minimize the
energy of the molecule, spin—orbitals with the same spin tend to be centred on
the same atoms to maximize Kj;, and spin—orbitals with opposite spins tend to
segregate in different parts of the molecule to minimize J;. This observation is
the basis of the mechanism of spin polarization defined in the following using
the concept of unrestricted Hartree—Fock spin—orbitals (see Fig. 1.41) [1.15].

Density matrix ([1.15], p. 212)

At this stage it is useful to introduce the concept of the density matrix, com-
N

bining the expansion of a molecular orbital {; = )_ ¢; ¢; with that of charge

density: =

p(r) = 2 302 Wr W) = 23507 0, chdi ) X, €507 (1)
N2 (1.73a)
= Y 220 et |0, 0050

or
. . N/2 .
p(r) = Zw Ppu®, (D¢ (r) with P, = 2 Zi:l cuick; (1.73b)

P, is the density matrix, related directly to the expansion coefficients c;.
It defines completely the charge density p(r) and the results of the HF closed-
shell calculations. The diagonalization of the matrix leads to eigenvectors
which are termed natural orbitals, and to eigenvalues which are the occupation
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numbers—useful intermediates in quantum calculations. The density matrix is
used in the following to define the spin density and the related density matrices.
To summarize our steps up to now, the Hartree—Fock self-consistent field
(HF-SCF) procedure provides us with the way to find the best (within a vari-
ational procedure) ground-state determinant |[¥o> = |Xa Xb Xc - - - Xn| and
its energy Ey, which is not the sum of the energy of the spin—orbitals ¢,. The
spin—orbitals are ¢peo for an atom or Ve for a molecule. For example, for a
helium atom, 1s? (see Section 1.2.3) and the dihydrogen molecule V. (1)1, (2)
(see Section 1.3.1), the Hartree—Fock ground-state determinants, following the
spin—orbital scheme, are shown in Fig. 1.39. For helium, ¥, = 1so and x,=
1s8, whereas for H,, x, = ¥« and ¥, = V.8 (Fig. 1.39a), where the nature
of the spin («, 1 and B, | ) is made explicit. The number of vacant spin—orbitals
Xr depends on the number of orbitals in the basis set used in the Hartree—Fock
calculation (for helium, with a minimum basis of one 1s orbital, there is no
vacant ¥; in H,, with a minimum basis set of two 1s, they will be two vacant
¥r)- Figures 1.39b (for He) and ¢) (for H,) shows completely equivalent repres-
entations using spatial atomic (He) and molecular orbitals (H,) and expressions
of the determinant using the spatial orbitals and the bar notations for 8 spins.
At this point it is useful to introduce some new definitions (Fig. 1.40).
When the HF-SCF determinant of an N-electron system with an even
number of electrons can be written as Wog= |[x1X2... \N_IXN > =
WU UaWs ... Unp Wi > corresponding to a singlet state, we have a closed-
shell HF-SCF ground-state determinant (Fig. 1.40a) in which all electrons

: : : v
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Fig. 1.39

Hartree—Fock ground-state determinants
for a helium atom and an H, molecule:
(a) spin—orbitals representation: |y,
¥b>; (b) helium atom: |1s 1s >; (c) Ha
molecule |y >. (Adapted from
[1.15].)

Fig. 1.40

(a) Closed-shell HF-SCF ground-state
determinant, |'"Wo> = [Y U Py ...
YUn2WUN2>; (b) open-shell HF-SCF
doubletﬁgrounﬁd—state determinant, |2 Wy>
= [y P2P2¥3>;  (c)  open-shell
HF-SCF  triplet ground-state determ-
inant, W >= [P ¥ Pada>;  (d)
singll e)gited jeterminant, |1\l/£ >=
[l PPzl >; (e) doub]yixciwj
determinant, WIS > = [ by Yo Uy
YsPrz>.
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Fig. 1.41

Lithium atom. (a) Restricted Hartree—
Fock (RHF) doublet determinant
PWRrHE > = [d15P15d2s >; (b) unres-
tricted Hartree-Fock (UHF) doublet
determinant [2Wygp > = |¢‘f‘s$fs g >,
AB molecule. (c) and (d): the same
definitions in the AB molecule with a
net spin S = 1/2; (e) spin polarization
mechanism in AB, emphasizing the
different spatial distribution of « and 8
spin—orbitals; (f~h) M-L metal-ligand
bond with a net spin S in the metal
orbital; (f) no spin polarization; (c) spin
polarization of the bonding orbital M-L
according to (e); (g) resulting spin
polarization on the atoms M (positive)
and L (negative).
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occupy orbitals as pairs with opposite spins. When the determinant corres-
ponds to one unpaired electron (doublet, Fig. 1.40b) or a triplet (Fig. 1.40c),
we have an open-shell ground-state determinant. When one (two) electron(s)
is (are) promoted from one (two) ¥, occupied orbital(s) to one (two) virtual ¥,
orbital(s), we have a singly (doubly) excited determinant (Figs. 1.40d and e).

The description of open-shell systems is more complicated than that of
closed-shell systems, because one has to write the wavefunction as a combin-
ation of several Slater determinants. Unfortunately, this is the most interesting
case for us, because a number of processes studied in this book, such as
exchange magnetic coupling (in Chapter 2) or electron transfer (in Chapter 3),
imply open-shell systems.

The determinants in Fig. 1.40 are said to be restricted determinants because
the « and the B spins are constrained to have the same spatial orbital \s; that is,
{r and  have the same energy. This is also the case in Fig. 1.41a, related to a
lithium atom. When s and s are allowed to have different energies and spatial
definition, the determinant is unrestricted (Fig. 1.41b). This is an important
step on the way to taking into account explicitly the interelectronic repulsion.
Indeed, the 1so electron has an exchange interaction with 2s«, whereas the
IspB electron has not. Unrestricted spin—orbitals have different spatial orbitals
which allow us to relax this constraint and lower the energy of the system.
Figure 1.41(c, d) illustrates the case of an AB open-shell molecule with three
electrons. The price to pay to accomplish this process is that the set of orthonor-
mal spatial orbitals {\{){} is no more orthonormal to the set of orthonormal
spatial orbitals {llfiﬁ }:

<> =8 and <yl |Pf> =8 but <y [Uf> £0=157 (1.74)

bos —— 05 ——
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Furthermore, in open-shell systems there is some spin contamination between
the levels.

To comment further on Fig. 1.41(e-h) it is appropriate to introduce the
concepts of charge density and spin density.

Charge density and spin density

Following TUPAC, the spin density is the unpaired electron density. An elec-
tron with a spin « (1) is described at some point (r), by the molecular orbital
P;%(r). The probability of finding this electron in the elemental volume dr
is [V;#(r)]>.dr. The electronic (charge) density is |y*(r)]?. If there are N®
electrons with spin «, the total charge density of spin « is:

rm=Y [l (1.752)

The same relation applies for the N# electrons with spin 8 ({):

=Y [t (1.75b)

Then the total charge density is the sum: p(r) = p*(r) + p?(r), and is always
positive. By contrast, the spin density is the difference: pS(r) = p%(r) — p?(r),
and can be positive (in regions where there are more electrons with spin « than
with spin 8), or negative in the reverse case.

Let us consider the molecular system AB with three electrons and a net
spin S = 1/2 (Fig. 1.41(e-h)) [1.16c¢]. In an unrestricted Hartree—Fock (UHF)
approach, it is represented by three spin—orbitals (e). The unpaired electron
(o spin) is in the SOMO 1s{". We look at what happens when the o electron is
located mainly on A. To minimize the energy of AB by increasing the exchange
integrals Kj;, the presence of an « spin in the SOMO s ‘polarizes’ the ;
HOMO and favours more « spin density on A (). At the same time, to
minimize the energy by decreasing the repulsion integrals Jjj, there is more
spin density on B (llfjﬂ ). The unrestricted Hartree—Fock procedure allows the
spin—orbitals to have a different spatial localization, with 1];}" more centred on

A and ﬂff more centred on B. When applied to an M-L metal-ligand situation
with a net spin on the metal, the spin polarization of the bonding orbital M—
L (g) is preferred to an equal distribution of « and B spins (f). It results in
spin polarization on the atoms M (positive) and L (negative). Spin-polarized
neutron diffraction NMR, XMCD are good methods for measuring the atomic
spin densities (see Section 2.3.3).

The HF-SCF method can thus be stated as two variants: restricted Hartree—
Fock (RHF), and unrestricted Hartree—Fock (UHF)—the latter being recom-
mended for dealing with open-shell systems (see Chapter 2).

1.5.2.2 Semi-empirical computational methods: an overview

Before going further we present some approximate semi-empirical computa-
tional methods, whose objective is to shortcut the (long) process of computing
SCF MO energies and wavefunctions. They speed up the calculations, so that
larger systems can be studied. They differ in the way of computing, in a prac-
tical way, the numerous integrals associated with electronic repulsions. These
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methods are listed in the following in order of increasing refinement. The first
ones (Hiickel and extended Hiickel) do not compute these integrals at all, but
compensate the error by an empirical choice of other parameters. They have
been presented already in Section 1.3.5, and constitute the basis of simple
reasoning based on the construction and filling of molecular orbitals.

Hiickel method. This applies to 7 systems in planar molecules (butadiene,
benzene . . .): a one-electron effective Hamiltonian is written without explicit
treatment of the interelectronic repulsion. The w MOs are linear combina-
tions of atomic orbitals (LCAO) and the energies computed from a secular
determinant. Overlaps are neglected, and the electronic interaction (denoted
B) is considered only between nearest neighbours. This method is now used
mainly for pedagogical purposes.

Extended Hiickel method. This applies to all molecules, planar or not.
It was introduced by M. Wolfsberg and L. Helmholtz in 1952 and given a
strong impetus by R. Hoffmann in the 1960s, to become a widespread and
popular method. It considers valence electrons only. The valence electrons
Hamiltonian is a one-electron one (1.76a), again without explicit treatment
of the interelectronic repulsion.

H= )" He() (1.76a)
i valence

1/2
ds(r)=Ae™*"  with A=Ay, 6, ¢) = %r“‘lﬂm(e, ¢) (1.76b)
Herr(D () = (1) (1.76¢)
> HF—eS)eql =0 r=1,2,... (1.76d)
H; = KSj (Hi + Hj) /2 (1.76¢)
Evalence = Z & (176f)

The MOs are LCAOs of valence Slater-type orbitals ¢, with semi-empirical
A and ¢ orbital exponents (eqn. (1.76b)). The energies are computed using
secular equations, including all the overlaps between atoms (eqns. (1.76¢) and
(1.76d)). The H;; parameters are the orbital energies taken as the valence-state
ionization potential (VSIP, ionization potential of the atom in the valence state
that it presents in the molecule). The Hj; parameters are computed through
eqn. (1.76e) (with the K factor between 1 and 3, often = 1.75). There is no
SCEF step, and the total energy is the sum of orbital energies (eqn. (1.76f)).
The method is simple and efficient, and free user-friendly programmes are
available. The method provides a very good approximation of the ‘shapes’ of
MOs and a rough approximation of MOs energies. It has been extended to
calculations of the band structure of solids with the term tight-binding model
(see Section 1.4). It has been strongly criticized, since serious discrepancies are
observed in the quantitative computations of distances, geometries, transition
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energies, and even energies (the delocalization of electrons in the MOs is over-
emphasized). However, it is still the basis of many qualitative reasonings about
structures and reactivity of molecules (in particular, the Woodward—Hoffmann
rules).

Pariser—Parr—Pople method (PPP). This is the simplest SCF method, of his-
torical interest. It applies to planar systems, for which the o/m separation is
complete. The 1 system is treated with the two-electron repulsion terms, with
the SCF procedure.

CNDO, INDO, and NDDO methods. These SCF methods were designed by
Pople and coworkers, improving the two-electron PPP method. The goal is to
reproduce the results of ab initio calculations with much less computational
time. The methods treat only valence electrons, taking into account interelec-
tronic repulsion but neglecting the differential overlap (NDO): for CNDO
(complete neglect of differential overlap) the neglect is complete (S;s = 8y
and the repulsion integrals <rs|tu> = <rr|tt>, even on the same atom); each
atom (except hydrogen) have several basis valence AOs; for INDO (incom-
plete neglect of differential overlap), the repulsion integrals on the same atom
are taken into account, that improves the calculation when the electron spin
distribution is important (calculation of EPR spectra . . .); for NDDO (neglect
of diatomic differential overlap) the neglect bears on the overlap between AOs
on different atoms; the method was further developed as MNDO (Modified
NDO). Variants suitable for calculations of electronic spectra include some
configuration interaction. They are suffixed with /S (for example, INDO/S).

MINDO, MNDO, AM1, MNDO-PM3, SINDOI, and ZINDO methods
(Modified INDOs). These were implemented by Dewar and coworkers, not
necessarily to reproduce the ab initio SCF results, but to compute molecu-
lar binding energies usable by chemists. The methods focus, therefore, on the
modification of the preceding methods and on the choice of empirical para-
meters suitable for reproducing experimental physical quantities such as heats
of formation, molecular geometries, and properties of ground-state organic
molecules or potential-energy surfaces of chemical reactions. The MINDO/1,
2, 3 and MNDO and their derivatives AM1 (Austin Model 1) and PM3 (with
new parametrization) derivatives are various generations of the programmes
extending the accuracy of the calculations due to improved parameters defined
for more chemical elements. They are contained in computer packages such as
MOPAC and AMPAC. Results have been improving with time. The SINDO1
(symmetrically orthogonalized INDO) method was designed by Nanda and
Jug, with symmetrically orthogonalized AOs and pseudo-potentials to simu-
late the inner-shell electrons. Finally, ZINDO methods (Zerner’s intermediate
neglect of differential overlap) was designed by M. C. Zerner to treat spectro-
scopic properties—in particular, for transition elements. The main criticism of
these methods bears on the always present temptation of overparametrization.

1.5.2.3 Beyond Hartree-Fock: treatment of electron correlation

At the present stage we dispose of SCF MO computed with the best comprom-
ise between speed and accuracy. Is this the end of the story? Alas, no! It is
a well-known weakness of molecular orbital theory that it does not describe
electron correlation, due to the fact that it is a monodeterminantal method.
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Fig. 1.42

Electronic configurations and states of an
H, molecule as described in the frame
of MO and VB models: (A) Hund-
Mulliken (MO) scheme; (B) Heitler—
London (VB) scheme, excited states; (C)
Heitler-London (VB) scheme, ground
state.
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This is redhibitory in particular for weak interactions such as those occurring
during a bond dissociation process. This can be realized readily when looking
at the ground-state wavefunctions of the dihydrogen molecule HyHg, where
the two electrons are paired in the bonding MO 1. At the Slater determinant,
|x1x2| = [Wr1m1W1m2| corresponds the spatial wavefunction ®,:

Q4 =N i(DH1(2) = Ny [ha(1) + do(DI[Pa(2) + $p(2)] (1.77a)
@4 = Ny {[ha(Ddp(2) + dp(Da(2) I+ [ da(Dda(2) + do(Dp(2)]} (1.77b)

q)Jr = N+[cbcovalent + Dionic] (1.77¢)

The first term in eqn. (1.77b) is covalent (one electron per atom; see
Section 1.5.3), whereas the second term is a sum of the ionic terms Hy*Hg™~
or Hy"Hg™*, where the two electrons are on the same atom. The wavefunc-
tion @, is therefore the sum of two terms, with equal weight—one covalent
D ovalent and one ionic Pjgpic, as shown in eqn. (1.77c). The situation persists
whatever the distance between H, and Hg. The presence of the ionic terms
leads to a wrong description of the real dissociation situation, which obvi-
ously corresponds to two neutral atoms, Hx* + Hp*. To alleviate this difficulty,
the standard remedy has been for many years to write the wavefunction using
several determinants (multiconfigurational SCF wavefunctions—MCSCF), or
in other words, to perform configuration interaction (CI). Thus the total
electronic wavefunction W is developed as a function of several monode-
terminantal wavefunctions ®;, corresponding to the ground-state determinant
and to excited ones. In the case of a closed-shell singlet system, using the
notations introduced before:

'y = Z A0 = Z)vo |]<D0 > 4 'O > 4 [0 > + -

‘ (1.78)
where the \; coefficients can be obtained by a variational procedure. The
process can be illustrated by returning to the H, molecule. The ground-state
configuration and the singly and doubly excited states are shown in Fig. 1.42A.
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The only excited state which presents the same symmetry ng as the ground
state is the doubly excited one which allows their interaction (Fig. 1.42):

Q- = N_U2(D2(2) = N_[pa(1) = do(DI[Pa(2) — ¢p(2)] (1.79a)
O_ = N_{[$pa(Dda(2) + dp(DP6(2) I=[ da(D)Pb(2) + du(1)da(2)]} (1.79b)

P_ = N—[_Qcovalem + CI>ionic] (179C)

The interaction of the two determinants (configurations, states) So and S,
should improve the wavefunction and ground state (W = &, + \,®_), where
the fraction of the ionic terms has been tuned.

For a closed-shell molecule with a large HOMO-LUMO separation, the
dominating & describing the ground state is the one for which all electrons
occupy the orbitals following the Aufbau principle. But things are more com-
plicated when the HOMO-LUMO separation is weak and when considering
excited states. For such cases, the mixture of one-determinant wavefunctions
is so important that the notion of orbitals and their occupation tends to vanish.
We shall discuss this point in Section 2.6.

Although it is theoretically possible to reach excellent approximations of
the exact polyelectronic wavefunction and of the corresponding quantities
(total electronic energy) by this procedure, in practice the calculations are
extremely heavy. Many methods have been described in the literature to reach
the best compromise between accuracy and practicability of computation, and
the reader should consult books such as [1.15] and [1.16] for more details.
Note that with present computational methods it is this post-Hartree—Fock
step which is the most time-consuming. This derives from the fact that a
correct treatment by configuration interaction can mix as many as 10*-10°
excited-state configurations with the ground-state configuration.

Perturbation technique

Perturbation relies on the simple idea that the problem to be solved is only
slightly different from one which is already solved exactly. It starts with the
partition of the Hamiltonian (H = Hy + AV), where the reference part Hy
corresponds to the already solved problem, and V is a perturbation, small
compared to Hy. ) is a parameter determining the strength of the perturba-
tion (A = 0, unperturbed, \ = 1, real system). The Schrodinger equation for
the reference system is:

Ho®i = Eid; 1 =0,1,2,...0 (1.80a)
and for the perturbed system:
HY = WV (1.80b)

The solutions ®; of Hy build a complete orthonormal set. For the ground state
and time-independent perturbation, when X = 0, W= ®,, and W = Ej. When
A # 0, the energy W and the wavefunction W are written as an expansion at
different powers of \:

U= 20004+ A+ 22D+ AP+ - (1.80c)
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W = AW+ AW, + A2Wo + BPWy 4 (1.80d)

We check that for A = 0, ¥y = ®y, and Wy = E, this is the zeroth order,
unperturbed wavefunction Wy and energy Wy. W and W are the first-order
corrections, W, and W, the second-order corrections, and so on. Taking care
of working with normalized wavefunctions (¥ | ®y) = 1, it is possible to
use eqns. (1.80a)—(1.80d) to derive the nth-order perturbation equations by
gathering the terms having \ at the same power:

19 ¢ zeroth order HoWy = Wy (1.80e)
Al first order HoW, + V¥, = WoU; + W, (1.80f)
A% secondorder  HoW, + V¥, = WU, + W W, + W0, (1.80g)

A™: nth order HoU, + V¥, | = Zf]_owixpn_i (1.80h)
The nth-order energy correction follows:
Wi = (Po| V [Wn_1) (1.801)

In this approach, the (n—1)th wavefunction is needed to obtain the nth one.
As the first-order equation has two unknowns, a further hypothesis is needed.
In the frame of the Rayleigh—Schrodinger perturbation theory, the unknown
first-order wavefunction W is expressed as a linear combination of the
functions of the unperturbed Schrodinger equation ®;:

W=D ad; (1.80j)
Hence (after eqn. (1.80f)):
(Ho— Wo) ) ci®i+ (V= W1) @) =0 (1.80K)
and, after multiplying eqn. (1.80k) on the left by ®; # @y, and integrating:
Wi = (P |VI[Dg) (1.801)
¢ = % (1.80m)

The energy’s first-order correction is therefore an average of the perturbation V
on the unperturbed wavefunction ®,. We can obtain similarly the expressions
of W, and ®,, using eqn. (1.80k):

U, = Zi d; ®; (1.80n)

(Hy=Wo) ) didi +(V-W)Y i~ Wody=0  (1.80p)

(@o| V| ®3) (@1] V| Do)
Wa=D (@l Vie) =3 ECE = (1.80)

4= Zn (@] V [@1) (P3| V | Do) B (@] V [@o) (Dol V D) (1.800)
20 (Eg — E))(Eo — E)) (Eo — Ej)?
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And so on for higher-order perturbations, which increase in complexity. The
main point is that the corrections can be expressed by applying the perturbation
operator over unperturbed wavefunctions ®; and unperturbed energies E;.

The consistency of the process at the different perturbation orders is checked
through a diagrammatic representation proposed by Feynman. The advantage
over configuration interaction is a faster convergence, since the successive cor-
rections are usually ranked in order of decreasing energies. The method is used
by physicists to describe large systems (with many bodies), and it is therefore
commonly termed many-body perturbation theory (MBPT). The methods used
most commonly are referred to as Mgller—Plesset methods, with corrections to
second or fourth order (MP2 and MP4 respectively), which are presented and
used in Section 2.6.3.2.

1.5.3 The valence bond (VB) model: comparison

with the MO model

1.5.3.1 The valence bond (VB) model

The valence bond model takes its origin in the concept of electron pair pro-
posed by G. N. Lewis, in his pioneering work of 1916, to describe the chemical
bond, in its quantum equivalent suggested by Heitler and London in 1927 for
the hydrogen molecule, and its generalization to polyatomic molecules by
Linus Pauling during the 1930s [1.17].

To present it, let us take again the example of the H, molecule. When the two
atoms (A and B) are far away (at infinite distance), a first description corres-
ponds to electron 1 in atomic orbital ¢, or a (A) with spin «, whereas electron
2 is in atomic orbital ¢, or b (B) with spin 8 (configuration alf b2]). If elec-
trons 1 and 2 are exchanged (but not the spins, configuration a21bl}), the
situation can be described by the determinant |ab| (1.81a). Since the system is
fully symmetric, there is no reason to constrain the « spin to be only on A,
whereas spin B is only on B. The determinant [ab| (1.81b), where the spins
are allowed to exchange (configurations a| b?), is as valid as the first one.
Therefore, the Heitler—London function Wy is written as the sum of the two
determinants (1.81c), with a normalization term, because the two orbitals a and
b have an overlap integral S (or in other words, because the two determinants
are not orthogonal). Then, Wy is written as the product of a space function by
a spin function (1.81d):

|ab| = [a(1)bR)(1)B(2) — a()b(D(2)B(1)] (1.81a)

lab| = [a(1)b(2)B(1a(2) — a(2)b(1)B(2)ec(1)] (1.81b)
1 -

Wy, = ———— (|ab| + |ab]) (1.81¢c)

V2(1 +8%)

1

UL = ————=[a(1)b(2) + a@2)b(D][(1)B(2) — (D (2)]  (1.81d)
V2(1 4+ 8%)

An important remark is that Wy obeys the antisymmetry Pauli principle, the

space function being symmetric under the interchange of electrons, whereas
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the spin function is antisymmetric. A second remark is that Wy describes a
symmetric singlet state, S = 0 ('T'y).

The corresponding energy Eyp (or E,, reminiscent of the + sign in the space
function) can be found at the expense of some tedious but simple calculations
(using expressions (1.57), (1.58), and (1.81d)), as:

2
Enrs—0) = E+ = <WyL|h(1) +h(2) + :_12|\I’HL>/<\I"HL|“I’HL> (1.82a)

E,={2a+2B5S+j + k}/(1+5?) (1.82b)

We should remember that the one-electron Hamiltonian h(i) includes, in the
potential part, the attraction of electron 1 by all the nuclei, so that o becomes
equal to the energy of the hydrogen atom only at infinite distance.

A further insight into valence-bond theory can be gained by looking at the
other electronic configurations and determinants which can be built: |abl-[ab|,
lab|, [abl, [aa], and [bb], shown in Fig. 1.42 and eqn. (1.83):

U_ = ;(|a5’—|éb|) (1.83a)
T 20 =82 '

1
v = \/ﬁ[a(l)bﬂ) —a@bIa(DAD) + D] | o

= W_(s=1, Ms=0)
We observe that W_ obeys the antisymmetry Pauli principle, the space func-
tion being now antisymmetric under the interchange of electrons whereas the
spin function is symmetric, so that W_ describes the Mg = 0 component of an
antisymmetric spin triplet state (u symmetry), S = 1, 2S + 1 = 3 (°I',). The
Ms = =+ 1 components of the triplet are

lab] = W_(s=1, Mg=1) = [a(1)b(2) — a2)b(D][er(De(2)] (1.83c)

1
V2(1 =%

|ab| W_(s=1. mg=—1) = [a(1)b(2) —a2)b(DI[B(DA(D)] (1.83d)

1
V2(1 = S?)

laa] = a(Da2)[a(1)B(2) — a(2)B(1)] (1.83¢)

bb] = b(b)[a(1)BQ2) — a(2)B(1)] (1.831)

The last two determinants (1.83e—f and Fig. 1.42B) describe two new con-
figurations, termed charge transfer configurations since they correspond to
an electron transfer from Hy to Hp or from Hp to Hp (or ionic configura-
tions Hy*Hg™ or Hy"Hg*). They are true spin eigenfunctions. A simple linear
combination leads to the states 'T' and 'T'y:

'Tglad |+] bb| = [a(1)a(2) + b(Hb2)] [a(1)B(2) —«(2)B()]  (1.83g)

'Tylad|—|bb| = [a(1)a(2) — b(Hb2)] [«(1)B2) — a(2)B(1)]  (1.83h)
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The states’ energies, after calculations similar to those for E,, are written
in eqns. (1.84a)—(1.84c) and allow us to compute the singlet-triplet splitting
EST =Es—ET =E+—E,Z

Triplet *T", (from eqn. (1.72b)):

ECT,) =B_ = {2a —2BS +j — k}/(1 =5 (1.84a)
Singlet 'T', (from eqn. (1.72g)):
E(Ty) = {20 +2BS + jo+ k}/ (1 +5?) (1.84b)
Singlet 'T', (from eqn. (1.72h)):

E(ng)z {20 —2BS + j,— k}/(l —Sz) (1.84¢)

The singlet—triplet gap Est from eqns. (1.82b) and (1.84a) is:
E, — E_ =[2k +4BS —25°Qa+ I/ (1 —5%) (1.84d)
Esr, at the first order in S, is:  Egt &~ 2k + 48S (1.84e)

We shall use these expressions, obtained very simply in the frame of the VB
model, in Chapter 2. Particularly, the last expression of the singlet—triplet gap
(1.84e)—an approximation at the first order in S—will be particularly useful
for the understanding the magnetic properties. Remembering that integrals o,
are negative and integrals S, j, jo, and k are positive, it becomes obvious that
the two states 'T'y and 3T, arising from the ground-state determinants |ab| and
[ab| are far below in energy than the ionic states 'T", and T, resulting from
electron transfer (since jo >> j, k). Furthermore, among the lower T’y and
3T, 'T is the ground state, since BS is negative and |2 BS| > k, when S # 0.
The ground state of H, is a singlet, in agreement with experiment and com-
mon knowledge. In addition, when the molecule dissociates the VB energy
E, tends to the energy of two separated hydrogen atoms, in contrast to the
MO model, which gives a wrong dissociation energy. Nevertheless, the VB
energy computed around the experimental equilibrium distance of H, is not
fully satisfying: the wavefunction is too covalent, and the electrons are too
localized. In some way we need to introduce some ionic configuration (H*H~
or H"H"), as the exact opposite of the MO model. The combination with the
excited ionic 'T'y state of Fig. 1.42 is an obvious solution. This is discussed
further in Section 1.5.3.3, where we compare the MO and VB approaches.

The VB model, corresponding to localized bonding, was extensively used
for polyatomic molecules by Pauling and others. Figure 1.43 displays very
simple examples of the VB description of chemical bonding through the so-
called canonical structures. The total wavefunction W is then written as a linear
combination of the wavefunctions of the canonical structures. Even if these
structures do not correspond to any physical reality, the representation in terms
of localized bonding is anchored more strongly in the chemists’ intuition and
tradition than the delocalized MO scheme.

One can realize from these examples some of the drawbacks of the VB
method, in its simplest expression, to implement calculations: for the H,
molecule (one bond), when the MO model works with one determinant
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Fig. 1.43

Valence-bond representations (canonical
structures) of some simple molecules:
(A) H; molecule, covalent and ionic
forms; (B) H, molecule, making expli-
cit the exchange of spins; (C) allyl rad-
ical and associated wavefunctions; (D)
benzene molecule: the first two are the
Kekulé structures with the associated
wavefunctions, and the last three are the
Dewar ones.
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Wyr = |X1 X2 |, the VB model needs two: Wy = \/ﬁ (‘al_)| + IE_lbl)- With

n bonds, the number of VB determinants reaches 2". Furthermore, contrary to
the MO model where the MOs are orthogonal, the VB basis atomic orbitals
b2, Op . . . are non-orthogonal, and the non-zero overlap S increases the
heaviness of the calculations.

1.5.3.2 Generalized valence bond (GVB)

The need to improve the VB model near the bonding equilibrium distance led
to the introduction of a generalized VB model which basically consists (taking
once more the useful example of the H, molecule) in replacing the simple
Wyp wavefunction (1.81d) by a slightly modified one, Wgys, in eqn. (1.85a)
where the simple atomic wavefunctions a and b are replaced by non-orthogonal
GVB wavefunctions f and g, expanded in a basis set of atomic orbitals. The
expansion coefficients can be varied and chosen to minimize the energy Egyp
(forgetting the normalization constant and the spin part):

Yovp o £(1)g(2) + £(2)g(1) (1.85a)
Let us take for example the following f and g functions:
f(i) = a(i) + Ab(i); g(i) = b(@i) + A a(i) (1.85b)

It follows immediately that Wgyg takes the new form (1.85c), where the ionic
terms a(1)a(2) and b(1)b(2) are included:

Wave & (14 2% [a(1)b(2) + a(2)b(1)] + 24 [a(D)a(2) + b(1)b(2)] (1.85¢)
Other expressions have been proposed for f(i) and g(i), such as, following
Coulson and Fischer:

f(i) = cosBa(i) — sinf b(i); g(i) = sinf a(i) + cos6 b(i) (1.85d)

The GVB method, first introduced by Coulson and Fischer and further
developed by Goddard and coworkers, allows us to change the AOs during
molecule formation due to the variation process to find the f and g wavefunc-
tions. At large distance, f and g tend to a and b and give the right dissociation
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energy. At bonding distance, the energy is improved. The GVB function is
much simpler than the one including resonance structures, and is easier to
compute. The GVB approach is one of the reasons of the revival of VB
methods.

1.5.3.3 Comparison of VB and MO models

We can now compare briefly the molecular orbital and valence bond models
[1.18]. We begin once more with the example of the H, molecule. We have
shown that in the MO model the wavefunctions {1 are built as symmetry
combinations . = N, (d, + dp), U~ = N_ (b, — dp), the electrons are allocated
to the bonding orbital—in the general frame of the electronic configurations of
Fig. 1.42A—and the two-electron wavefunction & arises as the product of the
molecular spin—orbitals related to electron 1 and 2, Wyr = |X1 X2| with a space
wavefunction ®, or @y (1.77b) and (1.77¢):

Dpo = Ni[¢a(DPp(2) + dp(1)ba(2) 14-[ pa(1)a(2) + du(1)dn(2)]
= N+[q)cnvalem + cI)ionic]

For a polyatomic molecule, ®\1o spreads over all the atoms and is a basis for
the point group irreducible representation of the molecule.

The spirit of the Heitler—London treatment is just the reverse: first build
a two-electron wavefunction from atomic orbitals (simple Hartree product
da(Da dp(2)B), then perform a linear combination of two such products to
take into account the symmetry with a space wavefunction:

PuL = N [9a(D)Pb(2) + a(2)b(1)] = Peovatent (1.86)

The representation needs two determinants. For a polyatomic molecule (N
atoms), @y is the weighted sum of 2N such determinants.

When we deal with the simplest versions of the two models, therefore, a
strong contradiction appears between the two: on one side (MO) the electronic
structure of the molecule is described by molecular orbitals delocalized on the
whole molecule, based on the group symmetry of the system, fitting rather
well the ionization data. These results come from a polyelectronic monode-
terminantal wavefunction, relatively easy to compute but taking only partially
into account electron correlation and describing poorly the dissociation beha-
viour. On the other side (VB) the electronic description consists of bonds
localized between two atoms, having good dissociation behaviour, but with
a looser relation with symmetry. The large number of determinants and the
overlap between the non-orthogonal basis orbitals make the quantum calcula-
tions much heavier. This is probably one of the reasons why the VB approach
was eclipsed by its sister MO method for many decades. Figure 1.44 com-
pares the potential energy curves as a function of the Hy—Hp distance for
different wavefunctions: the antibonding triplet, the almost non-bonding case
corresponding to the Hartree product (that is, without exchange), Hartree—Fock
and its bad dissociation energy, Heitler-London and its weak representation
of the bonding region, and the result of an ‘exact’ calculation very close to
experiment.

Nevertheless, the contradiction is only apparent: we have seen that more
advanced versions of the two models, elaborated to rub out the defects of the
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Fig. 1.44

Variation of the energies of the ground
state of the Hy molecule as a function
of Rag (Ha-Hp) distance in the frame
of different binding models: triplet state
T, Hartree product (quasi-classical, QC),
simple Hartree—Fock HF, simple valence
bond (Heitler—London) HL, exact.
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simplest formulations, converge to the same solutions. Upon proper correc-
tion the molecular orbital method can yield an almost exact polyelectronic
wavefunction. This is schematized in Fig. 1.38, where two steps are shown:
first the construction of the Hartree—Fock self-consistent field orbitals, then the
correction by two possible post-Hartree—Fock treatments (either configuration
interaction, CI, or many-body perturbation theory, MBPT). The configura-
tion interaction process mixes the HF-SCF ground state with excited states
of the same symmetry, decreases the weight of ionic terms, and gives the
proper dissociation energy. The VB model, on its side, includes ionic func-
tions (canonical structures) in the otherwise covalent wavefunction, and using a
variational method improves the behaviour in the region of bonding distances.
Finally, the two models converge to a space wavefunction such as:

D =2 q>covalent + W cDionic (187)

with constants A & 0.75 and p ~ 0.25, computed to give the ‘best” wavefunc-
tion. More fundamentally, it can be demonstrated rigorously (see [1.15]) that
a Hartree—Fock determinant (MO scheme) can be changed into other determ-
inants by an infinity of unitary transformations which leave unchanged the
total polyelectronic wavefunction, the energy, the charge density, and so on.
Among the transformations, one corresponds to a localization process ending
with localized orbitals essentially localized between two atoms (and a very
weak contribution of the other atoms to ensure orthogonality). This is gener-
ally described through the hybridization process (sp, sp®, sp° . . .) of atomic
orbitals in the frame of the VB scheme.

We will conclude with a brief historical survey which shows that science
does not proceed linearly and is submitted, as many human activities, to ideo-
logical fluctuations. The MO and VB methods appeared historically almost
at the same time. The valence bond model corresponds to a traditional rep-
resentation of chemical objects by simple localized bonds, and it was widely
disseminated by a charismatic Linus Pauling, able to rationalize most of the
chemistry of his time in his beautiful book The Nature of the Chemical Bond
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[1.17]. This model was thus extensively used and taught until the 1960s. After
World War II the molecular orbital method began to take a leading position
because of its direct relation with symmetry and as a result of easier and more
systematic implementation on computing machines. In addition, several ‘fail-
ures’ were attributed to the VB model (used in its crudest form), such as the
incorrect prediction of the triplet ground state of O,, while on the other hand
it appears naturally in the frame of MO theory, or the stability of the cyc-
lobutadiene molecule. During the 1970s the balance tilted clearly in favour of
the MO model, but from about 1980 VB theory began to rise from its ashes and
to offer an attractive alternative to MO theory. It was recognized in particular
that most ‘failures’ of VB theory are in fact due to the use of an incomplete
model. In particular, to the credit of the VB method, one can remark that the
final wavefunction is built by linear combination of chemically meaningful
structures. We have seen (relation (1.87) and Fig. 1.44) that at a sufficient level
the MO and VB methods converge towards the same polyelectronic wavefunc-
tion. Thus, contrary to common belief, the two methods are actually equivalent.
Today, choosing one rather than the other is mainly a matter of convenience,
simplicity, and beauty of demonstration.

1.5.4 Density-functional theory (DFT) methods [1.19]

Density-functional theory is presently one of the most popular and success-
ful quantum-mechanical approaches to electronic structure. It has proved a
viable alternative to the usual SCF-MO method, which is hampered by the
cumbersome treatment of electron correlation. The great advantage of DFT-
based methods is to allow the treatment of large complicated molecules at a
much lower computational cost [1.16b].

The basic principle of DFT relies on a central quantity: the total electron
density p(r), which has been shown by Hohenberg and Kohn to determine
completely the ground-state electronic energy (the Hohenberg—Kohn theorem).
It determines the total charge density through the use of a ‘functional’—
a mathematical object which allows p(rj, rp, . . . 1) — p(r) passage and
computation of the properties (see Fig. 1.38). (Note that if a function f is a
rule to go from a variable x to a number f(x), a functional F is a rule—or a
mapping—to go from a function f to a number F(f)). Unfortunately, there is no
universal functional. But, at the present time, after several decades of research,
there are excellent enough approximations of the (still unknown) exact func-
tional to allow an efficient implementation of the method. The first significant
improvement of the DFT was the introduction of orbitals by Kohn and Sham
(called Kohn—Sham orbitals—KS-DFT), which allow the exact introduction
of an important component of the kinetic energy in the functional for non-
interacting electrons. The rest of the kinetic energy remains to be introduced
with the exchange correlation terms. Thus, KS orbitals can be considered as
molecular orbitals corrected for correlation. An unrestricted version of the KS
orbitals is available (UKS-DFT). In principle, they should not be used to pre-
dict ionization energies (though their relation with experimental quantities is
still a subject of debate). As in the case of HF-SCF orbitals, the total electronic
energy is not the sum of the occupied orbital energies.
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Technically, most DFT methods use an iterative procedure in which one
starts with an initial guess of p(r) and then computes an effective potential,
which allows the determination of one-electron orbitals. From these, a new
electron density is computed and the process is repeated until convergence.
This self-consistency is reminiscent of the Hartree—Fock SCF method, but
the great difference is that there is a priori no need for post-treatment. The
most difficult point in DFT methods is how to incorporate in the functional
the interaction between electrons, exchange, and correlation. Different genera-
tions of DFT functionals have been elaborated to try to solve the problem: local
density approximation (LDA—the density is treated as uniform electron gas);
local spin density approximation (LSDA—with improvements and parametriz-
ations proposed by Slater, Vosko, Wilk, and Nusair (VWN), and Perdew and
Wang (PW)); gradient corrected methods by which the first derivative of the
density is included as a variable (generalized gradient approximation, GGA,
one of them proposed by Lee, Yang and Parr—LYP); inclusion of higher-order
derivatives to improve the exchange and correlation (meta-GGA); and hybrid
methods which introduce some parametrization for improving the exchange
potential. A typical hybrid functional is the popular and widely used B3LYP
proposed by Becke (B), starting with the LDSA model and successive cor-
rections introduced by three parameters fitted from experimental data (B3LYP
(for Becke-3-Lee—Yang—Parr)).

DFT methods can be applied to closed-shell or open-shell systems.
For fundamental reasons, the calculation is valid for ground-state proper-
ties. But modifications known as time-dependent density-functional methods
(TD-DFT) now allows the treatment of excited states. We shall see in
Chapter 2 that for open-shell system the main drawback of DFT methods
is that they are monodeterminantal, and unable to perform multideterminant
calculations.

To summarize, one can state that wavefunction-based methods use an exact
Hamiltonian operator and then approximations on the wavefunctions, whereas
density-functional methods introduce approximation in the energy functional
(Hamiltonian) and allow a free variation of the charge density.

1.6 A fundamental quantum effect: tunnelling

Before closing this chapter it appears useful to introduce a final quantum
concept: quantum tunnelling, which is specific to quantum mechanics.
In simple terms it states that a particle (typically an electron), present on one
side of a given energy barrier U, has a non-zero probability to cross the bar-
rier, even if its energy E < U. In classical mechanics, when a particle arrives
on a barrier it is simply sent back after an elastic collision, with no chance to
go through as long as E < U. In quantum mechanics the special properties of
wavefunctions (their spatial extension) allow the crossing of the barrier. The
tunnel effect is a physics concept, but is widely and implicitly used in chem-
istry because the chemical bond is one of its manifestations: in a molecular
orbital, the electron(s) have to cross a zone of high potential energy between
the atoms to go from one atom to the other.
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The tunnelling phenomenon is central in some important magnetic or con-
ducting properties of matter (Chapters 2, 3, 4, and 5). Here we present a
qualitative introduction.

The process is introduced simply using Fig. 1.45. The electron is moving in
a linear box along an axis x, with an energy E. It encounters an energy bar-
rier U between x = 0 and a. Its wavefunction W is described as a plane wave
A.e®: W, forx <0, Wg for 0 < x < a, and W¢ forx > a. In part A there is an
incident and a reflected wave, W = A;.e¥1* + B;.e % with k;2 = 8t?m.E/h?
(where my is the rest mass of the electron). In part B (within the barrier) the
wavefunction becomes Wg = A,.e*2* + B,.e XX with k> = 87t*m.(U — E)/h?.
In part C (beyond the barrier) the wavefunction is written W¢ = As.e®* The
only problem then is to choose the coefficients A;, B; to ensure the continuity
of the wavefunctions and their first derivatives at the boundaries (x = 0 and a).
We leave the details of the calculation to the reader to arrive at the expression
of the probability P that the electron crosses the barrier, which is propor-
tional to the square of the amplitude ratios of the associated wavefunctions:
P =|A3/A1|2, and then

-1
Lk k)
= 1+Z(k—?+é> sinh? kya or P=

(1.88)

The expression at right is written in the limit kya >>1. If a or (U — E) tends
to infinity (infinite width or height of the barrier), P tends to zero and the
particle remains in the box. But for values such asa =1 nm and E = U =
1 eV, the probability P for the particle to cross the barrier becomes larger
than 107, Other quantum particles (protons . . .) can tunnel, but the tunnel-
ling probability decreases exponentially with k, (eqn. (1.88)), hence with m,
the mass of the particle. The tunnelling effect is then more important with the
lighter electron. It is indeed observed in a nanometer-size insulating junction
between two metals (Al-alumina—Al) or between a surface and a metallic tip
(the basis of the principle of the scanning tunnelling microscope, STM) or
between two superconducting wires (Josephson tunnelling), used in the mod-
ern and very sensitive superconducting quantum interference device (SQUID)
magnetometers.

Tunnelling is also encountered in the famous double-well problem (Fig.
1.45b). In this case, two wells are located on the two sides of the barrier.
By comparison with the case of Fig 1.45a, instead of travelling waves one can
have fo a first approximation stationary wavefunctions localized on one or the
other well. But, unless the barrier is infinitely high or thick, they can interact,
and localized wavefunctions are not eigenfunctions of the system.

Detailed study of the problem [1.20] shows the following (i and ii).

i) In a static description, energy levels located on each side of the barrier
interact weakly, exactly in the same way as atomic orbitals produce molecular
orbitals (see eqns. (1.14) and (1.19)). If we call ¥| and W, the (localized)
wavefunctions in the absence of interaction, two new wavefunctions W, and
W_ are then obtained. For a symmetrical system:
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a) A particle facing an energy barrier
U. Ay, By, and A3 are respectively the
incoming, reflected, and transmitted amp-
litudes (see the text); b) a system in a
symmetric double potential well defined
by the potential energy V(x); depending
on the physical problem, the x values out-
side the x1—x range may not be attained;
¢) mixing of the wavefunctions, avoided
crossing and resulting tunnelling splitting
A near the top of the barrier.



76

Basic concepts

@Uy =272 +¥2) and O)Y_ = 272 — ) (1.89)

These new levels, now stationary eigenfunctions, are separated by A = 2 W,
where W is the coupling (see the § integral of MO theory) and A is the tunnel-
splitting (Fig. 1.45c¢, central part).

ii) In a dynamic description, if at time zero the system is prepared in a non-
stationary state, it will evolve in time according to the general law:

W(t) = cy Uy exp (—i ELt/h) + c_ y_exp (—i E_t/h) (1.90)

where E, and E_ are the energies of the stationary states, and c, and c_ are
coefficients determined by initial conditions. One recognizes the combination
of two oscillatory phenomena with slightly different frequencies, leading to a
beating process. In particular, if the system is prepared at time zero in a pure
localized state, then ¢, = c_ and the system oscillates between {r; and {,
as a result of the alternating in-phase or out-of-phase combination of W, and
W _. The oscillation frequency v is the difference between the frequencies of
the two oscillatory processes appearing in eqn. (1.90), which are of the form
(E./h) and (E_/h), and one obtains the Rabi formula:

v=A/h = 2W/h (1.91)

This oscillation process is at the heart of the tunnelling process in single-
molecule magnets (Section 2.8), and intervenes also in two aspects of elec-
tron transfer: electron tunnelling (Section 3.2.1.2) and nuclear tunnelling
(Section 3.2.1.3).

Another feature of the quantum tunnelling effect with the same kind of sym-
metric barrier is revealed in Fig. 1.45c. The system is evolving as a function of
time under a given constraint H from a ground state described by a wavefunc-
tion ¥; (H < 0) to a wavefunction W, (H > 0). The corresponding energies
are linear in H (the dotted lines in Fig. 1.45c). They cross at H = 0. If there is
no tunnelling effect and if the system starts from H < 0, with increasing H, it
remains described by the wavefunction W, an excited state when H > 0, and
does not transform in W,. Starting from W, and decreasing H, it would remain
W,. But in quantum chemistry, when two functions of the same symmetry, like
W, and W,, become close in energy (near H = 0), they combine to give rise to
two new functions W = Ny (V| £ W,) with the corresponding energies E_..
The progressive mixing of the wavefunctions allows a smooth change from
W, to W,, and the crossing is now avoided (the plain curves in Fig. 1.45¢). The
mixing is maximum at H = 0. The difference in energy, A (tunnel splitting),
depends on ¥, and W, and their mixing (overlap).

For such a system the behaviour is dependent upon the rate of change of
H. If H changes slowly, the Rabi oscillation appears fast and the system can
‘equilibrate’ by exploring the two states | and W,. In other words, the smooth
change between W, and W, is possible, and the system stays on the lower
(dome-shaped) curve of Fig 1.45c. But if H changes rapidly, Rabi oscillations
have not enough time to become established, and the wavefunction remains the
initial one, W;. The system then follows the ascending dotted line. These two
types of behaviour will also be encountered in Chapters 2 and 3.
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The localized electron:
magnetic properties

2.1 Introduction

This second chapter is devoted to the magnetic properties of molecular com-
pounds. This is an enormous domain, and we shall restrict ourselves to a few
selected topics. We discard the study of diamagnetic systems, which represent
most of the molecular systems, presenting only paired electrons (closed-shell
molecules)—by far the most frequent in organic chemistry. We are inter-
ested instead in paramagnetic molecular systems; that is, systems presenting
one or several unpaired electrons (or open-shell molecules) (Fig. 2.1). Let us
recall briefly the nomenclature introduced in Chapter 1: HOMO is the highest
occupied molecular orbital, LUMO the lowest unoccupied molecular orbital.
We need a third category : the singly occupied molecular orbital (SOMO),
carrying just one unpaired electron and responsible for the magnetic properties.

Localization, delocalization, electron transfer

Most of the chapter is devoted to so-called ‘localized electrons’—by which we
mean that each unpaired electron and its ‘spin’ is localized on one part of an
extended structure, called ‘site A’. The electron has no tendency to escape, to
‘jump’ on neighbouring sites B, contrary to the situation we shall encounter in
Chapter 3 with electron transfer and conducting materials.

Electrons are localized when the two-electron repulsion integral on one
centre jo (or U) is larger than the resonance integral § between the two neigh-
bouring orbitals on A and B (see Section 1.5). Figure 2.2 distinguishes three
cases: (a) one electron per orbital on sites A and B; the two-centre repulsion is
j (or V); (b) one electron is transferred from A to B, the one-centre repulsion
is jo (U); as the electrons are closer on one centre jo >> j; U is a fundamental
physical quantity to understand and to study magnetism in insulating materi-
als, which is the case in this chapter; (c) the tendency of the electron to escape,
to communicate with its neighbours, to establish bonds, is provided by the res-
onance integral §; from the figure, it is easy to realize that the condition of
electron localization is:

Jo >> 1Bl 2.1
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Let us take the example of a dinuclear complex of copper(Il). Each copper
has an electronic configuration d°, S = 1/2 (orbital x>~y?) (Fig. 2.2d). The
two copper ions are surrounded by a terminal ligand (T, a diamine) and con-
nected by a bridging ligand (B, oxalate): T-Cu(I[)-B—Cu(II)-T is the ground
state. The two copper are in oxidation state II and far apart (=~ 5.2A). The
effective resonance integral between the two x’>—y? of Cu(Il) is B (< 0.1eV).
The one-centre repulsion integral jy is more than 5 eV. The electron transfer
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Fig. 2.1

Different open-shell systems: (a) schem-
atic molecular energy diagram empha-
sizing the frontier orbitals HOMO,
SOMO, and LUMO. Representation
of the SOMO in the case of (b) the
molecular radical NO®; (c—d) an organic
radical nitronylnitroxide; (e) a 1,2-
ethanediamine-Cu(II)-oxalate complex;
(f) a tetracyanoethylenide anion radical—
spin density map obtained by spin-
polarized neutrons diffraction. (Courtesy
of E. Ressouche.)
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Fig. 2.2

(a) Energies of two electrons on two
centres A and B; (b) when gathered on
one centre (b); (c) when engaged in a
bond; (d) localized ground state of a cop-
per(Il) dinuclear complex.

Fig. 2.3

Basic properties of materials according
to the predominance of jo (U) versus B
(Vap). The N\ parameter, located at the
third summit, which introduces dynam-
ics, will be defined in Chapter 3. See
Fig. 3.11.
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state T—{Cu(IlI) }*-~B—{Cu(1)} T (or the symmetric case) is an excited state,
strongly destabilized by the one-centre repulsion jo on Cu(I). We have neg-
lected the weak attractive ionic term —e?/R. So the electrons ‘keep quiet’ on
their respective sites.

Nevertheless, on this localized site (see the mononuclear complex 1,2-
ethanediamine-Cu(II)-oxalate in Fig. 2.1e) the unpaired electron is described
by a singly occupied molecular orbital (SOMO), sometimes called a magnetic
orbital (discussed later). The wavefunction, and the corresponding spin dens-
ity, are centred on the metal and partly delocalized on the ligands, particularly
on the oxalate ligand (Fig. 2.1e). In a dinuclear metallic complex the delocaliz-
ation of the spin density on the ligands is different from the electron transfer of
one of the metallic centres to the other. We shall come to this point in Chapter 3.
In the present chapter we deal with systems where U (jg) is predominant, so
that the properties of the localized electrons will be varied by tuning p. Figure
2.3 illustrates the changes of the properties when the jo / |B| ratio varies.

The roots of the scientific domain called molecular magnetism can be found
in magnetochemistry; that is, the study of magnetic properties of chemicals.
The main goal of magnetochemistry was to use magnetic measurements to
guess the unknown structure of molecules, especially molecular complexes
[2.1]. Instead, in the 1980s molecular magnetism grew as a discipline dealing
with the design, synthesis, study, and applications of new molecular magnetic
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systems [2.2-2.6]. Deeply rooted in quantum chemistry and physics, it is now
an important aspect of materials science and molecular spintronics.

This chapter briefly reviews the basics, and is organized as follows. The
magnetic properties of the ‘naked’ electron itself are worthy of interest
(Section 2.2). We introduce a few new quantum concepts and basic defini-
tions concerning the controversial matter of units in magnetism (Section 2.3).
We switch then to the properties of the electron located on a molecule or
in a mononuclear complex. The spin cross-over phenomenon is explained in
some details (Section 2.4). When the unpaired electrons belong to two (or sev-
eral) centres, the story becomes even more exciting and more difficult and
we propose a phenomelogical approach to keep its description as simple as
possible, Spin Hamiltonian (Section 2.5). We spend some time, then, with
the basic understanding of why and how neighbouring electrons can ‘speak’
to each other and interact in a ferromagnetic 11 or antiferromagnetic 1
manner—through exchange interaction. Sections 2.6-2.8 describe the way
to foresee magnetic properties and to synthesize new materials with predict-
able properties in a ‘programmed’ manner for objects of increasing size and
complexity.

More information and deeper insights are found in references [2.2-2.6].

2.2 A new look at the electron

After a brief historical account of the electron in Section 1.1 and a phenomen-
ological approach of its properties in Section 1.2, we introduce new tools for
the description of this extraordinary elementary object, due to the Hamiltonian
operator H, its eigenfunctions (the electronic wavefunctions), and its eigenval-
ues (the energies). A complementary aspect is the total angular momentum,
important for the discussion of the magnetic properties.

2.2.1 Orbital and spin angular momenta of the electron

When looking at the angular momentum properties of the electron, we actu-
ally find two: the orbital angular moment and the spin angular moment (and
their sum).

Orbital angular momentum
The electron orbital angular moment can be introduced from the classical
equivalent of a particle running perpendicular to a given axis z: speed v,
momentum p = mv, and angular moment I =T A p (where A is a vectorial
product); see Fig. 2.4.

The z component of the angular moment reads therefore as in eqn. (2.2a).
The other components follow by cyclic permutation:

@ l,=xp,—yp, b k=yp,—zp, (c)ly=zp,— xp,
(2.2a—)
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Fig. 2.4
Vectors 7 and p and their x and y compon-
ents in a Cartesian frame x, y, z.
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The quantum quantities are obtained with the usual correspondences between
classical and quantum coordinates (x to x) and angular momenta (p to p)
operators;

(b) Iy =—ih <y % -z E)a_y> (2.3a—¢)

The angular momentum is written as the sum of its components:

I=1i+1j +1LKk (2.4)

> > -

where i, j, k, are the unit vectors on x, y, z.
The square of 1 will be of particular interest later:

P=E+L+1 (2.5)

We then use the commutating properties to write the commutations relations,
notated [ ] as usual, of the orbital momentum operator:

L] =ihl [l,L]=ihl [L,L]= ihl (2.6)

P.L]=0 [PL]=0 [PL]=0 (2.7)

The important conclusion is that even if the three components are non-
commuting between them (eqn. 2.6), 1> commutes with each of its three
components (eqn. 2.7). It follows immediately that 1? and one of its compon-
ents can be known at the same time, and that they have in common a set of
eigenfunctions. Such functions ¢ are defined for example by:

Po=ad Lo=bo (2.8)

The eigenvalues a and b are expressed by the quantum numbers 1 and m
already introduced in a phenomenological—and abrupt—way in Section 1.2:

Po=[n’1d+ D]d with:1 =0, 1, 2,... (2.9)
and
Lo =[hm]d withm=11-1,...,—1 (2.10)

The multiplicity of the orbital angular momentum is then (21 4 1). Orbital
angular momenta are schematized in Fig. 2.5.

Neither the 1 nor the § vectors align completely with the z axis, because
this would mean that their components along x and y would be simultaneously
determined (= 0), in contradiction with the non-commuting rule (eqn. 2.6).
The physical picture is based on precession: the 1 vector of Fig. 2.5 has a def-
inite projection along z, say + 1h, but its extremity precesses around z, so that
its components along x and y are undetermined.
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P eigenfunctions: a way to orbitals

At the expense of some more calculations, and using spherical polar

coordinates, r, 8, and ¢, it is possible also to establish that the spherical
. 1 1 . . . .

harmonics,Y,, (6, ¢) = Y, (6, ¢) introduced in Section 1.3 to define atomic

orbitals, are also eigenfunctions of 12 and 1,, and that:

P {Y, 6,0} = [F10 + D] {Y,,0,9)} (2.11)

L {YL 6.9} = [Am] {Y}, 6. ¢)} (2.12)

Indeed, the angular operators 12, 1, and the Hamiltonian operator H commute;
that is, they share a common set of eigenfunctions. The angular part of the
atomic wavefunctions are therefore directly related to the angular momentum
properties. The connection to the atomic orbitals is then simply realized
by multiplying the spherical harmonics Y! (6, ¢) by the radial part of the
wavefunction Ry (r): ¢(r, 0, ¢) = Rn,(r)Yln (0, ) (see Section 1.2.1.).

Spin angular momentum

The second part of the electron’s angular momentum is more difficult to intro-
duce, simply because it has no classical counterpart. The first experimental
evidence of the existence of spin was provided by the experiment of Stern and
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Fig. 2.5

(a) Orbital angular momentum, analogy
with a current loop (running electron),
orientation of ?, illustration of I modu-
lus and 1, projections when 1 = 2; (b)
spin angular momentum, s modulus and
s, projections.
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Gerlach in 1921 with silver atoms, but the interpretation in term of spin angular
momentum waited some years, as told in The Story of Spin [2.7].

The theoretical solution of the problem—beyond the scope of this book—
came later when Paul A. M. Dirac reconciled the theory of relativity (where
time and space coordinates play equivalent roles) and quantum mechanics
(where the time-dependent Schrodinger equation treats differently time and
space coordinates) in the ‘Dirac equation’ by postulating (i) the existence of a
positron, the antiparticle of electron, and (ii) the existence of an intrinsic angu-
lar momentum of the electron (in addition to the orbital angular momentum
introduced by the Schrédinger equation), the spin angular momentum, whose
properties fitted perfectly with the previously observed magnetic and spectro-
scopic experiments [2.8]. The image of a rotating particle (‘spin’), introduced
by Goudsmit and Uhlenbeck in 1925, agreed by Pauli and still used frequently,
is not strictly appropriate, because the electron has no measurable spatial
dimension [2.7].

We can remark that even if the amount of energy related to the spin is
in general tiny, its presence in quantum mechanics and therefore in physics
and chemistry has enormous everyday consequences. For the while, we shall
exploit the fact—without demonstration—that the spin angular momentum
obeys the same basic rules as the orbital one, so that we can write equations
similar to (2.9) and (2.10):

s’hs = [hs(s + D] ds  with: s =1/2 (2.13)
and
s, Gs = [hmg] ¢ with: mg = s, —s; that is, £1/2 (2.14)
where ¢ is a function of spin coordinates, s is a half-integer positive quantum
number labelling the eigenvalues of s?, and m is a quantum number labelling
the eigenvalues of the z component of the spin, s,, along the z axis. In Chapter 1
we represented mg either as mg = +1/2, o or 4, and mg = —-1/2, § or |.
As before, the multiplicity can be written (2s + 1); that is, 2 (a doublet) for
the isolated electron. As an electron can take different 1, my, s, and mg values
in an atom, it is possible and convenient to write the eigenfunctions of the
previous equations as |I, my, s, ms>, using Dirac bra-ket notation.

To complete our survey of the spin angular momentum, we suggest that the
reader check the following results derived from eqns. (2.13) and (2.14):

2 _§ 2 _l 2 _§ 2 _l
S*la) = 2R le) s la) = Shle) s71B) = W71B) s, 1) = ZhIB) (2.15)

Now, how does an electron behave when a magnetic field is applied?

2.2.2 Magnetic properties of one electron in an atom

For the one-electron atom one can define magnetic moment operators from the
angular momentum operators by:

w =—gmsl Mg = —&B S =P+ Ky (2.16a)
with eigenvalues:

M = —g KMy Hs = —8sWB My (2.16b)
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where

eh
(emu—cgs) =

SI 2.17
2meC 2m, D ( )

MB =
W is called the Bohr magneton, -1 < m; < +1, mg = £1/2, gy = 1, gg = 2
so that:

w=—ug A+ 2s) (2.18)
In a magnetic field (H) or induction (B), the energy Hamiltonian is then written:
H,, = —p.H (emu — cgs) H,, = —pn.B (SI) (2.19)

These relations deserve some comments: (i) L, the Bohr magneton, given by
eqn. (2.17) is the natural unit for magnetic moments (the formula comes from
a classical calculation for the current loop equivalent to an electron orbiting
around the nucleus); its numerical value is 9.2740 . .. 102* A m? in SI system
of units (and 9.2740 . . . 102! erg gauss™' in the cgs-emu system; see the next
section); (ii) the orbital angular momentum 1 gives rise to an orbital magnetic
moment p defined as an operator in eqn. (2.16). So we are going from the
simple classical physical image, where the electric current due to the moving
electron (—ev/2mr) creates the orbital magnetic moment ., perpendicular to
the orbit plane, to the quantum situation in the atom where |, is quantified by 1.
Note that 1) becomes zero when the quantum number 1 is zero (ns electrons);
(iii) the actual value of the spin magnetic moment ., is about twice as great as
would be anticipated from the angular momentum s. For the spin, eqn. (2.16a)
introduces a scalar quantity g termed the g-factor or Landé factor, which is
close to 2, while for an orbital electronic momentum, g; = 1.

This ‘anomaly’ is, of course, very intriguing. The g-factor (with a value
of 2) was first introduced on an empirical basis by Landé to fit experimental
data, and then by Thomas in 1926 [2.7]. In 1928, Dirac (Nobel Prize recipient
in 1933) succeeded in combining special relativity with quantum mechanics,
and predicted also a value of 2 for the g-factor. However, the exact value is
slightly different (g. = 2 + /27w + --- = 2.002319304.. ., it is known to
thirteen decimal places; in this formula, o is the fine structure constant o =
woe’co/2h = 1/137.036). This was explained later by the theory of quantum
electrodynamics of R. Feynman, J. Schwinger, and S.-I. Tomonaga (Nobel
Prize recipients in 1965) [2.7]. The deviation with respect to 2.000 comes
from the interaction of the electron with the surrounding electromagnetic field,
including its own field; (iv) a final comment bears on the minus sign appear-
ing in eqn. (2.16): it is due to the negative charge of the electron. This means
that the magnetic moments of the electron (orbital and spin) are antiparallel
to the respective angular momenta. When the electron is described by the 1s
orbital of a hydrogen atom, without orbital angular momentum (1 is zero), the
magnetic properties arise only from the spin. We have thus to live with this
strange concept, the spin, which is definitely different from a physical rotation
of matter. But its magnetic moment exists and has tremendous consequences,
even if it does not come from an equivalent electrical current.
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* In this chapter we shall use mainly
the cgs-emu units system for magnetic
quantities, because many quoted works
still use it. We try nevertheless to recall
the legal ST when useful. The correspond-
ence between cgs-emu and SI units are
recalled briefly at the end of this section.
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2.2.3 The total angular momentum

Up to now we have introduced the magnetic moment operator p; gener-
ated by the angular momentum of the electron (due to its movement, and
we therefore call it extrinsic) and the magnetic moment operator Ly created
by the spin angular momentum, which is an intrinsic property of the elec-
tron. Following Dirac, the two properties are independent of each other, at
zeroth order. Nevertheless, at first order the magnetic moments associated
with the angular and spin momenta 1 and s can interact. It can be seen as
the tendency of one of the magnetic moments to align in the field created
by the other, though the correct interpretation necessitates the more elaborate
quantum relativistic theory. The interaction is known as spin—orbit coupling.
This adds a first-order correction to all (energy) Hamiltonians proposed up to
now, as:

Hso = tls (2.20)

where ¢ is a quantity termed the one-electron spin—orbit coupling constant
(expressed in energy units). The spin—orbit coupling is a magnetic coupling in
origin, concerning one given electron. We define, therefore, the total electronic
angular momentum as:

j=1+s (2.21)
Jj presents all the properties of a quantum angular momentum, hence:
Po=[0%(G+D]¢ withjvalues:1+s,1+s—1,....,1—s (2.22a)

o= [hmj] ¢ withmj running fromjto — j (2.22b)

as | and s are quantum numbers labelling orbital and spin angular momentum
(1 integer, s half-integer), j labels the total angular momentum and takes either
integer or half integer values (j=0,1,2,...0rj = 1,302,502, . ).

The angular momentum operators 1, s, and j of the electron and their math-
ematical properties (among them, commutation) will be particularly useful for
describing the atomic electronic structure and the magnetic properties of many-
electron atoms (see Section 2.4.1). First, however, we present a brief account of
the fundamental physical quantities and units used in magnetism and molecular
magnetism.

2.3 Physical quantities, definitions, units,
and measurements

2.3.1 Physical quantities and definitions

This chapter is devoted to magnetic properties; that is, the behaviour of mat-
ter under the influence of a magnetic field.” In Section 2.2 we introduced
some concepts to describe the interaction of the electron and the magnetic
field. We give in the following a brief presentation of some important physical
quantities and a few words on the problem of units. We also suggest referring
to [2.9-2.13] and Chapter 1 in [2.3].
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We consider a small sample of volume dV subject to a magnetic field H.
It then acquires a magnetic moment (or magnetic dipole moment) djty and
behaves as a tiny magnet. The magnetization M is the magnetic moment per
unit volume M = %;L—VM. The interaction of this magnetic moment with ﬁ(or
]§) defining the z direction involves, for a unit volume, the magnetic energy

Emag:

Emye = —HM = —HM,(cgs—emu) Ep, = —BM = —BM,(SI)
(2.23)
which enters in the free enthalpy thermodynamic function G. We can define the
free enthalpy state function Gp,g, including the magnetic term, as (cgs-emu):

Gmg = U + PV — TS —HM (2.24)

It can be shown easily that the magnetization is the partial derivative of Gyag
related to H, T and P being constant:

M = —(3Gmag/dH)1p (2.25)

The definition of magnetic susceptibility, which is a generic name for the
system’s response divided by the applied excitation, follows:

x = (0M/dH)rp ~ M/H (2.26)

X = (8*Gunag/0H )1 (2.27)

The magnetization M is therefore the negative of the partial derivative of the
free enthalpy with H, everything being equal; that is, it represents the rate of
change in the free enthalpy with the magnetic field. The second derivative of G
is the magnetic susceptibility x per unit volume, which represents, therefore,
an acceleration in the change of G. In many simple cases, when the applied
field has weak values, the last expression on the right of eqn. (2.26), M/H,
gives a useful approximation for y. The susceptibility so defined is a dimen-
sionless quantity, but it refers to a unit volume (see Section 2.3.2 on units).
It is a common practice to use instead (i) the molar susceptibility Yy given by
X Vm, where V) is the molar volume, or (ii) the mass susceptibility ¥ mass by
multiplying by the massic volume V.

2.3.2 Units in magnetism

Physical quantities and units are a frequent source of confusion and misun-
derstanding in the domain of magnetic studies [2.11-2.13]. There are several
systems of units; but annoyingly, the physical quantities to which they refer
have different definitions and can bear different names, despite the efforts of
international committees such as IUPAC and IUPAP [2.12-2.13].
Philosophically, the coexistence of different systems is rooted in the birth
and development of magnetism, which started with the concepts of magnetic
poles (to which the cgs-emu system is well adapted) before the relation of
magnetic fields with electrical currents was fully realized (this last case being
well treated in the SI system). Thus the legal SI system is more modern and
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better suited to electromagnetic machines. But at the microscopic scale, not all
magnetic moments can be associated with currents, as shown by the strange-
ness of spin magnetic moments (see Section 2.2), and this is probably one of
the reasons of the reluctance of the chemistry community to use the SI system.

We cannot give here an extensive account on these problems, and we restrict
our discussion to the presentation of a few definitions in only two systems of
units: Systeme International d’Unités (SI), and unrationalized cgs-emu (emu =
electromagnetic units). In principle, only the first one should be used, but most
people working in molecular magnetism still have a strong habit of working
with the cgs-emu system.

The following simple considerations can prepare the reader to become famil-
iar with both systems and to make easier the transition from cgs-emu to SI
expressions and units. Three main difficulties must be overcome: (i) in the
cgs-emu system, Lo, the permeability of vacuum is equal to 1 and is dimen-
sionless, so it is most often omitted in the formulae; instead, in SI, o has a
dimensioned value 4 x 107 kg m s72 A~2; (ii) the cgs-emu system is unra-
tionalized, whereas SI is rationalized. ‘Rationalization’ was proposed to avoid
having 4m factors in electromagnetic expressions in systems without spherical
symmetry; (iii) the magnetization M is defined in different ways (see in the
following).

Let us recall and comment briefly on the definitions of the three funda-
mental vectorial quantities: ﬁ, 1\71, and B. If the field is generated by a current
loop, the important quantity is ﬁ(magnetic field strength), whose value at the
centre of the loop is I/2r (I, intensity: r, loop radius) and is expressed in A
m~! in the SI system. When matter is present there appears in each point a
magnetization (magnetic moment per unit volume) denoted M, whose unit is
also A m™. Unlike the macroscopic magnetic moment im of the sample, M
is an intensive quantity. H and M combine to generate the magnetic induc-
tion (magnetic flux density) B, which i is the entity really acting on matter (for
instance, by generating a force q.v A Bona moving charge). The important
relations are:

B = po(H + M) with wo = 471077 in SI (2.28a)
B= Mo(ﬁ + 4751\7[) = (ﬁ + 41':1\7[) since (Lo = 1 in cgs-emu (2.28b)

For the two systems, one has the relation g | c2=1.

In vacuum, B and H are proportional, and even identical in the cgs-emu
system, which has favoured the sloppy habit of confusing the two. But in the
presence of matter the distinction is important, and one should use the correct
terms and notations: field for H and induction for B. Note also that the M
definitions, in ST and cgs-emu, differ by a factor 4.

Table 2.1 is a minimal ‘survival kit’ for the domain, summarizing the
properties of the main quantities.

The magnetic susceptibility is written as in Van Vleck’s equation (2.45) in
cgs-emu units, and with an additional prefactor Ly (47 1077) in SI. Of course,
for numerical conversions one has, in addition, to take into account the change
in volume and mass units (see Table 2.1). Thus, for the frequently used
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Table 2.1 Some important quantities, their definitions, units, and conversion coefficients between the unrationalized cgs-
emu system and SI system. To derive the SI value from the cgs emu value, one has to multiply by the given coefficient; for
instance 10~ (first line, last column) means that 1 G corresponds to 10~ T (or 10* G correspond to 1 T).

Nomenclature Symbol Unrationalized cgs emu SI Conversion coefficients

Magnetic induction, or B Gauss (G) Tesla (T), or Weber m™2 10* (1IG=10*T)
Magnetic flux density

Magnetic field (strength) H Oersted (Oe) Am’! 103/47

Magnetization M emu cm™ Am™! 103

Permeability of vacuum Lo dimensionless = 1 Hm' (kgms2 A?2) 471077

Magnetic moment m, emu A m? 1073

Bohr magneton B erg Oe™! IT! 1073

Volume susceptibility X dimensionless dimensionless 4

Molar susceptibility XM cm? mol™! m? mol™! 4 71070

Mass susceptibility Xmass em? ¢! m? kg™! 4 11073

susceptibility standard Hg[Co(SCN),], for example, the numerical values of
mass susceptibility are respectively 20.66 10 m® kg™! in SI and 16.44 107°
cm?® g7l in cgs-emu.

2.3.3 Magnetic measurements

The measurement of magnetic properties of matter can be performed by a vari-
ety of methods, each offering its own advantages and drawbacks. In recent
years there has been tremendous progress in instrumentation, with huge gains
in sensitivity. This tendency is general, in the frame of the strong motivation for
going down to the nanoscale and the magnetic characterization of individual
quantum objects. We will only briefly present and discuss some of the main
methods. More can be found in [2.1, 2.4, 2.6, 2.10, 2.14].

One can broadly distinguish three classes of method (see Table 2.2). In ma-
croscopic methods some physical quantity is measured outside the sample,
and one relies on known macroscopic laws—for instance, electromagnetic
induction—to know what happens inside the sample. In spectroscopic meth-
ods the interior of the sample is directly probed by using constraints (for
example, ﬁ) and particles (photons, neutrons, muons, and so on) which interact

Table 2.2 Classification of some magnetic measurement methods.

Macroscopic methods Spectroscopic methods Diffraction method
Torque or force measurement EPR Spin-Polarized
Faraday balance X-ray magnetic circular dichroism Neutron
Flux measurement Muon spin resonance (relaxation) diffraction
VSM Inelastic neutron scattering
SQUID

Field measurement
Hall probe, flux gate
Thermodynamic measurement
Heat capacity
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locally with the magnetic moments. There is resonance with energy absorp-
tion. Finally, in diffraction methods, there is also a local interaction but without
resonance, and it concerns many identical sites at the same time.

Historically, the first and still widely used methods are of the macroscopic
type, based on a torque or force measurement. One can quote Ohm’s torsion
balance, then the Gouy balance, using a cylindrical sample entering partially
between the poles of a magnet. It was hampered by the need of a large quantity
(several grammes) of matter. Later measurements used the Faraday balance,
by which the sample is disposed in an inhomogeneous field with a gradient in
the z (vertical) direction and a constant H dH/0z. It is then subject to a force
related to the gradient of energy, itself given by eqn. (2.23).

F = —gradE = MJH/dz = xHOJH/dz (cgs-emu) (2.29)

The measurement of x thus relies on a force measurement, associated with a
proper calibration. Twenty years ago the Faraday method was still the work-
horse of magnetometry, due to its versatility. It requires only small amounts of
matter (a few mg), is reasonably sensitive and of low cost, and is well adap-
ted to measurements on a wide range of temperatures (from a few to several
hundred K).

A recent development, particularly adapted to the domain of single-molecule
magnets (SMM; Section 2.8) is AC susceptibility, which probes the dynamics
of magnetization. When a weak magnetic field oscillating at a particular fre-
quency v (pulsation w) is applied to the sample, the magnetic susceptibility
becomes a complex quantity x = x’ +1 x”, where y’ is the in-phase compon-
ent, and " the out-of-phase one. If the magnetization follows instantaneously
the drive field, or conversely does not follow at all, x” is zero. It takes large
values only when the relaxation rate of magnetization is comparable with the
AC pulsation. The experiment is generally performed at a fixed frequency and
variable temperature (thus a variable rate of magnetization relaxation). A peak
in the x”(T) curve is then observed when the following condition @ = k is
fulfilled, where w = 2mv and k is the magnetization relaxation rate.

Another way of measuring magnetic properties is based on flux measure-
ment by induction. In the vibrating sample magnetometer (VSM) method the
sample vibrates rapidly between detection coils, and the change in magnetic
flux induces an electromotive force. The system thus measures a magnetic
moment. The method—which initially was not very sensitive—is well adap-
ted to ferromagnetic materials, because they carry an important permanent
magnetic moment, in particular to the determination of their hysteresis curve.

Flux measurement is, however, the realm of superconducting quantum inter-
ference devices (SQUID) methods. The heart of SQUID is a superconducting
loop with two Josephson junctions (made of a very thin insulating barrier
between two superconductors). Theory shows that the magnetic flux through
the superconducting loop is quantized in units of the flux quantum &, where
®y=h/2e=2.0679 107> Wb (or 2.0679 107 G cm™2). The supercurrent can
cross the Josephson junctions by the tunnel effect, but quantum interferences
occur between the two possible pathways.

Due to the properties of Josephson junctions, if a constant bias current is
maintained, as shown in Fig. 2.6, a voltage is measured at the terminals, which
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Magnetic field

Superconductor
Biasing Biasing
current current

junction

oscillates as a result of quantization when the flux changes through the loop.
If one moves the sample starting from a remote position (no flux) through the
loop, it is then possible to count the number of quantum flux units due to the
presence of the sample. The SQUID method can thus be considered as a special
type of VSM with only a single passage of the sample, the SQUID loop acting
as a very sensitive detector.

The SQUID method exhibits the highest sensitivity and is prone to extreme
miniaturization, allowing the study of nano-objects or single-quantum objects.
In addition, its response to perturbations is very fast. The drawbacks are its
cost and complexity and the need for careful calibration (drift is frequent).
A microSQUID version contains an array of miniaturized SQUIDs, and its
sensitivity is still enhanced, but in a limited range in operation temperatures,
because all relies on superconductivity. The magnetization reversal of a 3-nm
cobalt nanoparticle (corresponding to 10° elementary spins) can be detected
(thatis, 107 ®y/,/Hz). A review is available [2.15].

A nanoSQUID version based on carbon nanotubes (CNT-SQUID) exists.
The main improvement is a much better flux coupling between the sample
(the size of a molecule being 0.6 nm) and the Inm? cross-section of the CNT
junction) (see Section 5.2.9.2). Calculations show that it should have enough
sensitivity to measure the magnetization reversal of a single high-spin Mn,
molecule; that is, S = 10 (20 ) (Section 2.8).

Magnetometers using field measurements are available but are less widely
spread. Hall probes and microprobes are able to measure down to 107° Teslas,
and flux gates down to 107° Teslas [2.10].

A few figures can help the reader to realize the enormous improvement
of magnetic sensitivity measurements. With the Gouy balance, grammes
were necessary, corresponding to &~ 10?! Bohr magnetons. Routine measure-
ments with a Faraday balance detected 10'8 g, with VSM 10'° e, SQUID
10'? 1. These are rough estimations, since for each technique, more sophist-
icated methods can improve, in time, the sensitivity by orders of magnitude.
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Fig. 2.6

Scheme of the principle of a SQUID
magnetometer. (Adapted from <http://
hyperphysics.phy-astr.gsu.edu/hbase/
solids/squid.html>)
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MicroSQUID (no more routine !) went down to 10° pp and the nanoSQUID
targets 20 pg.

We end this overview of macroscopic method by heat-capacity measure-
ments, based on thermodynamics. It cannot rival the previous ones with respect
to sensitivity, but it provides complementary information. The magnetic inter-
action between a field and a magnetic moment involves an energy (see eqn.
(2.23)) which is finally exchanged with the surroundings as heat. The detected
property is temperature, and in a typical measurement heat capacity is recorded
as a function of temperature.

Mathematically, the heat capacity at constant magnetic field is given by:

932G
Cy = —T( mag) (2.30)
H

aT?

In addition to magnetic interactions, the heat capacity of a sample contains
several contributions, such as atoms and lattice vibrations, or free electrons
contributions (if the sample is conducting). Thus one has to isolate the mag-
netic term by a proper modelization of the other terms or by reference
measurements. Then the magnetic term is interpreted using magnetic mod-
els compatible with other experimental methods. The method is well adapted
to cooperative phenomena such as long-range ordering occurring in phase
transitions, because it gives a sharp heat capacity anomaly at the ordering tem-
perature (critical temperature). It is a unique technique for determining the
entropy and enthalpy variations across a transition. However, it demands very
careful, accurate, and lengthy experiments, and relies on a proper modeliza-
tion of the processes occurring inside the sample (see R. Burriel in [2.14] or
M. Sorai in [2.6]).

We now consider spectroscopic methods. Here some local interaction occurs
between a photon or a particle and the magnetic centre. There is a resonance
process with energy absorption.

EPR: In electron paramagnetic resonance (EPR) one probes directly the
paramagnetic centres. The energy of an electron spin in a magnetic field H
is indeed split by the Zeeman interaction:

E = g.upmH (cgs-emu) E = g.upmgB (SI) (2.31)

where g. is the Landé factor, g is the Bohr magneton, and mg the spin
projection (mg = + Y% or —}). The energy difference between the two states,

AE = hv= g.ugH (2.32)

can be matched by a quantum of electromagnetic radiation of frequency v,
giving rise to absorption. For a magnetic field of about 3000 G (0.3 T) the
resonance occurs at a frequency of about 10 GHz, corresponding to a 3-cm
wavelength (termed the X-band). The Land€ factor g. determines the position
of the absorption signal. As seen previously, its value is 2.0023 for a pure
electron spin, but spin—orbit coupling can introduce some orbital contribution,
interactions with the nucleus spin often interfere, and g. can deviate markedly
from the spin-only value. It is often treated as a tensor. Note also that due to
this possibility of orbital contribution the correct name for the method should
be electron paramagnetic resonance (EPR) rather than electron spin resonance
(ESR).
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EPR is extremely rich in information, because the position of the signal
depends on the orientation of the magnetic field with respect to the molecular
axes, and also on the so-called hyperfine structure, resulting from the interac-
tion between the electron magnetic moment and nuclear spins—for example,
those of 'H, N, 3'P, 3V, and so on. The quality and quantity of informa-
tion is strongly enhanced by the use of different frequencies (Q- and W-bands)
and high-field and high frequency (HF-EPR), since the data at each frequency
provide a set of parameters which can be compared with those of other frequen-
cies (Section 2.7). Spin Hamiltonian analysis (Section 2.5) is extremely useful
here. Among the many books available we quote only one, directly concerned
with molecular magnetism [2.16].

X-ray MCD. This is also a spectroscopic method, based on X-ray absorption.
[2.17] It has been made possible through the unique properties of synchrotron
radiation, which provides intense, tunable, and monochromatic X-ray beams.
The method belongs to the general group of X-ray absorption methods for
which there is electron excitation from an inner electronic orbital (core orbital,
for instance 1s) towards either an empty state or a continuum of free elec-
tron states, depending on the photon energy. These possibilities correspond to
XANES and EXAFS respectively. The absorption spectra exhibit edges char-
acteristic of a given element and its core level. Synchrotron radiation can
in addition provide circularly polarized beams. In such a case the absorp-
tion becomes sensitive to the magnetic state of matter through the Faraday
effect. Magnetic circular dichroism is thus a difference measurement in which
one compares the absorption for the two circular polarizations (clockwise or
anti-clockwise), in the presence of a magnetic field parallel to the propaga-
tion direction of the radiation. Since an absorption edge is characteristic of a
given element, selective information can be obtained by changing the X-ray
wavelength. Using this specificity and the effect of the magnetic field, the
X-ray MCD spectrum carries information on the local magnetic properties of
the absorbing atoms—in particular, their spin and angular magnetic moment,
a unique complementary data of the bulk macroscopic magnetization meas-
urements. It is sensitive enough to measure monolayers of single-molecule
magnets on surfaces.

Inelastic neutron scattering. The method is based on the inelastic scattering
of neutrons, inelastic meaning that there can be an exchange of energy between
the neutrons and the sample. Neutrons have a great penetrating power, because
they are uncharged. Since they carry a spin (S = %) and thus a magnetic
moment, they constitute efficient probes to study magnetic effects. The exper-
iment necessitates a nuclear reactor and various devices to extract a neutron
beam with homogeneous velocity (monochromatic beam), available in sev-
eral countries. The neutron beam irradiates the sample with a given energy,
and the scattered neutrons loose or gain some energy in the interaction with
the sample. Exchanged energies can range from peV (quantum tunnelling) to
eV (electronic transitions). The method is used widely in studies of low-lying
levels of single-molecule magnets [2.18].

Muon spin relaxation, rotation, resonance or j1-SR. Muons are particles sim-
ilar to the electron or positron, with a spin Y%, but with a higher mass (about
207 times heavier) and a finite lifetime (2.2 s). They are produced by particle
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accelerators. As neutrons they can be spin-polarized—in this case with their
magnetic moment aligned in the direction of propagation. Due to their higher
mass, their penetration power is much greater than for electrons. Once thrown
on the sample, positive muons (analogous to small protons) implant in the
structure until they decay by emitting, in particular, a positron. Analysis of
the direction of the positron’s emission provides information on the interac-
tion between the muon and the sample—in particular, the direction of the local
magnetic field at the time of decay. The technique is expensive and is practiced
in a few places only, but it is well adapted to magnetic and superconducting
materials [2.19].

Spin polarized neutron diffraction. The method is based on diffraction; that
is, the macroscopic response of an array of identical objects (atoms, molecules)
arranged with a translation symmetry defining a lattice. In the well-known
X-ray diffraction method, X-ray photons interact with core or valence elec-
trons, and thus the scattering power of a given element increases with its atomic
number Z. In neutron diffraction the wave-like nature of the particle allows also
a diffraction process, because the associated wavelength can be tuned around
1-3 A. But, besides their sensitivity to magnetic structures, neutrons have a
complementary property with respect to X-rays: the neutron interacts with the
nucleus and there is no systematic privilege to heavy elements. First, the neut-
ron beam is polarized; that is, all neutron spins are aligned in the same direction
(up or down). After interaction with a magnetized sample, the neutron signal
is different for the two spin polarizations. The method is particularly adapted
to the determination of ordering phenomena, through the appearance of super-
lattice peaks, in analogy with conventional X-ray diffraction. It is unbeatable
for the determination of molecular spin densities (Fig. 2.1; J. Schweizer et al.
in [2.14]) also produced by XMCD and NMR.

As seen previously, there are a wide variety of methods to probe the mag-
netic properties of matter. However the most commonly studied property is still
susceptibility, in particular for paramagnetic systems. In the next section we
study the relation between this macroscopic property of susceptibility and the
microscopic quantities such as energy levels and molecular magnetic moments.

2.3.4 Understanding the susceptibilities: from Langevin
to Van Vleck’s formula

The reader is assumed to be familiar with elementary notions on magnetism of
a substance; that is, diamagnetism (no unpaired spins, sample weakly repelled
in a magnetic field), paramagnetism (the individual magnetic moments are
independent, weak attraction in a magnetic field), ferromagnetism (the mag-
netic moments are interacting and kept parallel, strong attraction in a magnetic
field), antiferromagnetism (identical magnetic moments are antiparallel), and
ferrimagnetism (different magnetic moments are antiparallel and the resultant
creates a remnant bulk moment). Precise definitions and developments can be
found in many texts [2.2, 2.9, 2.10].

It took a long time for scientists to arrive at this classification of the
magnetic properties. P. Curie studied experimentally the order—disorder
(ferromagnetic—paramagnetic) transition at the ‘Curie’ temperature Tc, and
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discovered what we know of today as the Curie law for ‘weakly magnetic’—
today paramagnetic—materials, x = C/T (with C, Curie constant). It took even
more time to understand these changes with temperature. After a brief recall of
the first attempts by P. Langevin, we derive a useful relation proposed by Van
Vleck, which takes into account fully the quantum nature of magnetism [2.20].

In paramagnetic substances, the individual magnetic moments are
uncoupled and interact independently with the magnetic field. The classical
treatment of Langevin (1905) relates the two quantities: susceptibility and
magnetic moment. It assumes that magnetic moments can orient in a con-
tinuous way and that there is a competition between the tendency for the
lowest-energy configuration and thermal agitation. This competition is treated
through Boltzmann statistics. The final result, valid for weak fields, is then for
a sample with N (Avogadro’s constant) magnetic centres:

2 2

n n
=N - b = woN
(a) x Ak T (cgs-emu) (b) x = o A3kgT

(SD) (2.33)

(a) in cgs-emu units; (b) in ST units, with Lo =4 107", Boltzmann constant kg
is dimensioned, and denoted k in the following. Its value in ST is 1.380658(12)
102 J K. Note that the ratio of numerical values of xs; and X csgs-emu is 10t
equal to 4 7 1077, because of the change in units between the two systems (see
Table 2.1 for the conversion factors).

This explains the experimental Curie law (y inversely proportional to
T). It shows qualitatively the relation between susceptibility and magnetic
moment. In particular, once the susceptibility is experimentally determined,
it can be used ‘backwards’ to compute an effective magnetic moment e,
thus providing a pictorial interpretation of the results. Despite that, Langevin’s
equation is now only occasionally used, since it does not take in account the
quantum nature of magnetic moments.

The modern way of treating theoretically paramagnetism, however, is to
skip the magnetic moment concept and to relate directly the energy levels with
susceptibility. This is made through the Van Vleck equation (1932) [2.20].

When a substance is subject to a magnetic field, to each magnetic centre
can be associated a microscopic moment along z, denoted ., below and an
energy level E,. In similarity with eqn. (2.25):

JdE,
JH

Mzn = — (2.34)

in cgs-emu. In SI, the expression would be —0E, / 9B.

The level occupation is governed by the Boltzmann distribution, so that the
total macroscopic magnetic moment along z can be written, for one mole of

substance:
oE, E,
N _ __n
2 () (i)

WzMm = UM
o kT

(2.35)
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To be more general, one can remark that the denominator is the partition
function Z, a fundamental quantity in statistical physics:

Z=> exp (-f—T) (2.36)

so that an expression equivalent to eqn. (2.35) is:

dlnZ
oH

and ym (molar magnetic susceptibility) can be computed from the partition
function by:

WM = NAkT

(2.37)

oM 3°InZ
=— = NpkT——— 2.38
o= (i), =T 2
Eqns. (2.37) and (2.38) are perfectly general and will be used later in the
book. For the while, we come back to (2.35). As an approximation, Van Vleck
proposed the development of the energies in powers of H:

E, =E)+EH+EH +- .. (2.39)

where EY is the energy of the level number n with a zero applied magnetic field,
while E} and E2 are respectively the first-order and the second-order Zeeman
coefficients. They can be obtained by a suitable analysis of the problem at the
quantum level. Thus:

oE,

— = —E! — 2E’H (2.40)
oH

Secondly, Van Vleck observed that generally the terms like E} H in (2.39) (and

a fortiori the second-order term) are small with respect to kT, so that one can
write using this approximation:

E, E!H E?
exp T = 1 - T exp ~¥T (2.41)

The molar macroscopic magnetic moment is then obtained as:
E!H E?
N —E! —2EXH) (1 - 2 -2
WX (-2 (1= S enp (-2
E'H E
J ——
= (15 e (i)

For usual magnetic fields, in paramagnetic systems, the macroscopic magnetic
moment y is linear in H and in addition py = O for H = 0. This corresponds
to the observation that the susceptibility is constant, and to the fact that we
exclude the case of substances with a permanent magnetization. We can thus
simplify eqn. (2.42) by keeping only the terms linear in H, and noting that
pMm = 0 at zero field requires that:

Z E! exp _E =0 (2.43)
no KT '

Hm = (2.42)
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We finally obtain:

(E1)° E)
A 9oR2 4
NJH), |: T 2En:| exp ( kT)
WM =
EO
Zn exp <_F;>

and the Van Vleck equation for the molar susceptibility:

El)’
Na2, ) — 2E; | exp <——
MM kT
= M . (2.45)

H E,
>, eXp (— ﬁ)
It is written in cgs-emu; in SI, the literal expression contains a prefactor .
The practical (numerical) conversion of cgs-emu values of ¥y to SI, must in
addition take into account the change in units. The conversion coefficient is
given in Table 2.1.

The equation is very general for paramagnetic systems. Its limitations are
the absence of permanent magnetization (thus no long-range ordered ferro-
or ferrimagnetic substance) and the condition of a weak applied field (or
high temperature, H/kT small), meaning that we are far from saturation (the
situation where all microscopic magnetic moments are aligned; see the end
of this section). The treatment no longer uses the concept of microscopic
magnetic moment. It is well adapted to molecular magnetism where the energy
levels are obtained by successive perturbations calculations. For instance,
one computes the eigenvalues of some zero-order Hamiltonian, and then
introduces successive perturbations such as ligand field, spin—orbit coupling,
and so on, ending with the effect of the magnetic field. Examples are given in
the following sections.

As an application, we consider the case of a set of pure spin angular
momenta S, without interaction. The possible energy levels come from a com-
mon level EY (the same for all centres), which is split by the Zeeman interaction
(Fig. 2.7). To be more general and anticipate the case of many-electron atoms,
we use the notation S instead of s and Mg instead of m. Thus:

E = E + Ms ,gupH (2.46)
where g ~ 2 and Mg, can take the values -S,-S 4 1, ... 4 S. Thus Erl1 = Mg,

g UB-
It is possible to make an energy translation and put EY = 0 without changing

the results, so that the susceptibility is given by:

(2.44)

552
SN———

gZMZB MSiJrS 2
kT ~ S 2,2

o = Na " = Na S S5 + 1) > n(n8¥ .
For the simplified expressions, (i) we use the fact that the summation on M%
in the numerator is identical to S (S + 1)(2S + 1)/3; (ii) we use the numerical
values of the constants, g = 2 and the number of unpaired electrons (n = 25),
in cgs-emu units. We retrieve the famous Curie’s law (x is inversely propor-

tional to T) and the relation between the Curie constant C and the number

(2.47)
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Zeeman splitting of an energy level E(n)

with a spin S
2S+1=5.

2. The degeneracy



98

Fig. 2.8

Brillouin function governing the sample
magnetization M as a function of the
y parameter, itself proportional to the
H /kgT ratio.
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n on unpaired electrons. Moreover, using eqn. (2.33) an effective magnetic
moment can be computed. At a temperature T it is constant, and corresponds
to a spin-only value.

Mett = €v/S (S + D = v/n(n+2)us (2.48)

For such a system the Van Vleck equation and the Curie law are valid only
when H/KT is small. What happens when H/KT reaches higher values? Let us
return to eqn. (2.37), giving the magnetization as a function of the partition
function Z. In our system:

Ms=+5 sinh [(2S + 1)x/2]
7 = M;S exp(—MsngBH/kT) = s1nh(x/2)

with x = gug H/kgT

(2.49)
Performing now the calculation without the Van Vleck approximation eqn.
(2.41), one obtains for the magnetization:

M = MsBs(y) (2.50)

where Mg 1S Mgunrarion, the magnetization at saturation (not to be confused
with a quantum number!) and y is an auxiliary variable. They are defined by:

Mg =ngpgSandy =x S (2.51)

where n is the number of paramagnetic centres in the considered volume. Bg
is the Brillouin function, whose shape is displayed in Fig. 2.8.

25+ 1 25+ 1 1 y
Bs(y) = th — — coth 2.52
sy) =g ( 28 y) 25 ““Mas 2:52)

The figure shows the phenomenon of saturation. If the H/kgT ratio is large
enough, the magnetization is no longer proportional to H (hence the sus-
ceptibility is not constant), and the magnetization tends towards a limit,
corresponding to the situation where all individual magnetic moments are

Bs(y)=M/Mg
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aligned in the field. However, this situation occurs only under extreme con-
ditions. If we want y > 2 (the plateau on Fig. 2.8), with S = ', g = 2, one
needs from eqns. (2.50) and (2.52), H/ T (cgs-emu) > 30,000; that is, for
T =2 K, afield of H = 60,000 Oe. In SI, B/T > 3 and B = 6 Teslas, achieved
with modern superconducting magnets. Conversely, at room temperature and
common magnetic fields (1 T), y is close to 2 107, and the system is described
by the linear (Van Vleck) regime. John Van Vleck was Nobel Prize recipient
in 1977. [2.20b]

Saturation measurements allow determination of the number of unpaired
spins, the properties of the ground state with eventually its change as a function
of the magnetic field.

2.4 Many-electron atoms, mononuclear
complexes, and spin cross-over

2.4.1 Many-electron atoms

The electronic structure of many electron atoms and of the mononuclear
coordination complexes is determined by many factors, such as interelectronic
repulsions, symmetry, and magnitude of the ligand field, spin—orbit coupling,
and so on. The topic is extensively treated elsewhere (see the references in
Chapter 1 and [2.21-2.26]), where the reader can find the detailed demon-
strations. In this section we simply recall some main results and give them a
physical/chemical meaning as much as possible.

The first step on our way to more complex systems is to use the angu-
lar momentum concepts introduced in the description of the unique electron
(Section 2.2), adapted to a many-electron atom. The physical picture is based
on the coupling of vectors (angular momenta) in ordinary 3D space, which
gives a pictorial interpretation to the results. The coupling can be made in two
ways: the LS (Russell-Saunders) coupling or the j—j coupling.

24.1.1 L-S or Russell-Saunders coupling

If the L.s spin—orbit coupling is weak it is possible to obtain the angular
momenta of the many-electron system through the vectorial sum of the n indi-
vidual electron angular momenta—orbital on one side and spin on the other.
We find:

e The x,y,z components of the orbital angular momentum L as:
@Lc=) L ®L=) §LO ©L=) L0 253
e The orbital angular momentum L as:
L= Zizl 1(i) (2.54)
e And its square L? as:

L’ = (Li FL2+ L§> (2.55)
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Fig. 2.9

Vectorial coupling of two orbital angu-
lar moments 1y and I, (grey vectors) to
provide L (vector triangle rule, adapted
from [2.21]).

The localized electron: magnetic properties

The eigenvalues of L2 and L, can be written, as in the case of one electron
(egns. (2.9) and (2.10)):

L’L,M. > =h’L(L+1)|L,M_ > (2.56)

L,JL, M. > = h M |L, M > (2.57)

L and My are quantum numbers labelling the operators L? and L,. L can take
the values: 0, 1, 2..., and My runs from L to —L. The orbital degeneracy is
therefore 2L + 1. We need, of course, at this stage to tell how the quantum
numbers |; (for one electron i) and L (for many) are related. In the case of two
electrons with quantum numbers 1; and 1,: L can take the values I; + 15, 1; + 1,
-1, ..., [} = I1|, sometimes named a Clebsch-Gordan series and schematized
under the ‘vector sum rule’ shown in Fig. 2.9. If more than two momenta are
present, the same rules apply by choosing a sequence: 1; + 1, to build 1;,. Then
112 + 15 gives 1j»3, and so on.

To the L quantum numbers are associated symbols, used to classify the terms
of the atom.

L= 0 1 2 3 4 5
Term symbols: S P D F G H

Upper-case letters are used instead of the lower-case s, p, d, . . . symbols intro-
duced for the one-electron systems (Chapter 1). Mutatis mutandis, we can
apply the same treatment to the spin angular momentum and find the spin
angular momentum S as:

S = Z;l s(i) (2.58)

with similar relation as eqn. (2.53) for its components Sy, Sy, S;.
The square S? is:

S? = (si +82 4 sﬁ) (2.59)

The eigenvalues of S? and S, can be written, as in the case of one electron
(eqns. (2.13) and (2.14)):

S%IS,Mg> =h>S (S + 1) |S,Ms > (2.60)

S,|S,Ms > = h Ms|S, Ms > (2.61)

S and Mg are the quantum numbers labelling S? and S,.

As for L, a Clebsch—Gordan series allows linking of the quantum numbers
s;j and S. For two electrons s; and s;, S can take the values s; + s, S| + S5 —1,
..., |s1 = s2; that is, S = 1 or 0. If more than two spins are present we proceed

I, I I,
L [
Iy L/Lo l
L * L
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as for L: 51 + s gives sy3. Then s1, + s3 builds s123, and so on. Then, for three
spins, S = 3/2 or Y. It is obvious to generalize, and to find that S takes values
0, 1, 2, ..., for an even number of electronic spins and 1,312,512, ..., for
an odd number. Mg runs by unit steps from S to -S: S, S—1, ..., =S. The spin
degeneracy is therefore 2S + 1, which allows completion of the expression of
aterm L: 2*L.

This constitutes a spectroscopic term. Until now, we have mainly discussed
its vector properties, but it has a defined energy and, of course, a wavefunction.
Unfortunately, this last one cannot generally be represented in a pictorial way,
for two reasons: (i) except for the case of one electron the wavefunction is a
many-electron wavefunction, and for n electrons it is a function of 3n space
variables; (ii) the degeneracy—the number of different wavefunctions with the
same energies—is usually very high, given by (2S + 1)(2L + 1).

A term is thus a set of several electron wavefunctions. Although this
mathematical object cannot be represented in ordinary 3D space, it has
well-defined symmetry properties, which are used in the following. Its energy
is a total electronic energy, not to be confused with orbital energies (see
Section 1.5).

We use these concepts in the following sections. The demonstrations giv-
ing the terms of a given electronic configuration of a transition element, the
microstates, the wavefunctions, and the energies in terms of Condon or Racah
parameters, can be found in [2.22-2.24]. Those ‘free-ion’ energies will be our
starting point in the (3d?) Tanabe—Sugano diagram in Fig. 2.12.

In many cases we want only to determine the ground term. Without calcula-
tions we can use the first two Hund’s rules, consecutively. Rule 1: the ground
term belongs to the set of terms with the highest S; Rule 2: among these terms
the ground term is the one with the highest L. Thus, for a (3d?) configuration,
among the available 'S, 'D, 'G, 3P, and F terms the first rule selects *F and P
and the second rule allows to pick 3F. Note that Hund’s rules are used to select
the ground term and only the ground term.

It is important to realize that this result comes from purely electrostatic
effects. Thus Hund’s first rule (Sp,x) means that a triplet state is more stable
than a singlet with the same orbital occupancy. As seen in Section 1.5, this
comes from the fact that in the triplet state electrons are on the average farther
apart than in the singlet state, and thus they repel less than when they have
opposite spins. For Hund’s second rule (Ly,.x, meaning that the two electrons
occupy two high L orbitals), a classical picture consists of two electrons in
approximately coplanar Bohr orbits, rotating in the same direction in order to
maximize at any time their distance and avoid encounters [2.11, p. 32].

Finally, we introduce the total angular momentum operator J, defined as:

J=L+S (2.62)

with the corresponding operators J and its associated quantum number J, J,
and its quantum number Mj (relations similar to the one of L). The total
quantum number J runs from L + S to |[L-S| and M; from J to —-J both by
unit steps. The degeneracy is then 2J + 1. As with j, J can take integer and
half-integer values.

This coupling is known as the L-S or Russell-Saunders coupling. As J
implies spin—orbit coupling, it is usual to complete the preceding term
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Fig. 2.10

Electron configuration, terms, and states:
splitting of the 3F term by spin—orbit
coupling for (a) d®> (. > 0, normal
multiplet and (b) ds configurations (:
< 0), inverted multiplet. (Adapted from
[2.25].)
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formulation 25*'L using J as subscript 25*!L;, which defines a level or a state
[2.21]. Hence, the free ion terms, created through electrostatic interactions, are
split by spin—orbit coupling to create states.

The degeneracy of such a level is 2J + 1. The energies of the levels are found
using the spin—orbit Hamiltonian, applied to the many-electron atom:

Hso = ALS (2.63)

which is the many-electron counterpart of the one-electron spin—orbit
Hamiltonian ¢ Ls. X is the many-electron spin—orbit coupling constant and
has energy units. N has the same value for all terms deriving from a given
configuration and is related to ¢ through:

A= :i:i (2.64)

28
We know that ¢ is positive, so that eqn. (2.64) tells us that A can be either
positive or negative. Using definitions (2.56) and (2.60) and the Hamiltonian
(2.63) applied to a term wavefunction Vs, defined by the quantum numbers L,
S, and J, the spin—orbit splitting of the levels can be computed easily. We first
identify L.S with (J*> — L? - S?)/2 as usual, and we find the eigenvalue (energy)

of the 28*11; state:
A
E (L)) = < ¥ [Hso| ¥ >= 525 JJ+1D-LIL+1)=SES+1)] (2.65)

The reader can check as an exercise that a similar expression is obtained for
E(*5*!L},)), and that the difference is:

E(® L) — ET'L) = AEy =0A0+ D =20 +1)  (2.66)

The last expression at the right is in atomic units (h = 1), and is known as the
Landé interval rule. With always the same (3d”) configuration the 3F ground
term gives rise to three states 3F,, 3F3, and 3F; levels with respective energies
(/ hz) — 4, =\, and 3. The set of levels form a multiplet. The lowest state is
determined by the sign of \. Another Hund’s rule (the third) helps us to find it:
for a given term with a sub-shell half-filled or less, the level with the lowest J
value lies lowest (A > 0); with a sub-shell more than half-filled, the level with
the highest J value lies lowest (A < 0). See Fig. 2.10(a). The right-hand side of
the figure is related to a (3d®) configuration. One observes that the levels have
been inverted, with the change of sign of \. This is an illustration of a more
general observation about the electron and hole analogy: the d" (n electrons)
and d'%" (n holes) configurations give rise to the same ground term and states,
but the states’ order is reversed.

(a, 3d?) (b, 3d8) 3
E 3, . —2
1 /Ta
, vy // 3F
323, \ 368 3F, o)
£ B
L=3S=1""--._""3 L=3S=1
3 * Y
\ 3 \
A>0 A<0 N %Fy
NEE s 3\
2 4,
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Landé g-factor
In many-electrons atoms the magnetic moment operator is an extension of the
one of the electrons (eqn. 2.18):

k=up (g L+ gS) = npgJ (2.67)

where g (=1), gs (=2) and gy (given in the following) are the g-factors for
orbital, spin, and total momenta. To determine gy, the new Landé g-factor, we
multiply eqn. (2.67) by J:

wJ =pp (g LI+ gSJ) = upgJ.J =ppgJd + 1) (2.68)
and we use the properties of angular momenta to express L.J and S.J:
L>=J-S?=J+8—2JSorJS=J?-L>+8)/2 (2.6%)

with eigenvalues

%[J(J+1)—L(L+1)+S(S+1)] (2.69b)

SP=J-L?=)+L>-2JLorJL=J*°+L*-S8%/2 (2.70a)
with eigenvalues
1
U+ DFLL+D=SES+D] (2.70b)

By inserting these values in eqn. (2.68), we obtain:
B J(J+1)+L(L+1)—S(S+1)+ JO+ 1) —LL+1)+S(S+1)
=8 200+ 1) & 200+ 1)

(2.71a)
N JA+1D+SS+ 1) —-LL+1)
2JJ+1)
with gr= 1 and gg= 2. A detailed demonstration is given in appendix C of
[2.11].
We have just described the L-S coupling when the interelectronic electro-

static repulsion which defines the terms is larger than the magnetic spin—orbit
coupling. We move next to the reverse situation: the so-called j—j coupling.

g =1 (2.71b)

2.4.1.2 j-j coupling

When the spin—orbit coupling is strong (this occurs in heavy atoms with large
Z), 1 and s couple into j. 1 and s are no longer good quantum numbers, so the
system must be described by j, defined in eqns. (2.21)—(2.22). The coupling of
the individual j(i) leads to a total angular momentum J:

J= Zf:] i) (2.72)

where J has the usual properties of an angular momentum. For heavy atoms
(high Z), this coupling scheme must be followed; that is, it fits better with the
experimental results. Let us illustrate the j—j coupling in our (3d)?> example.
From |; = 2 and s; = 1/2, we obtain j; = 1; £ s; = 5/2 or 3/2. Then we have
three possible (j;j») coupling and three energy levels: (3/2,3/2), (3/2,5/2), and
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Fig. 2.11

Correlation diagram between the energy
levels obtained with the Hamiltonian (a),
through Russell-Saunders (LS) coupling
(starting from the left, b) or j—j coupling
(starting from the right, c¢); the middle
situation (d) constitutes the intermediate
coupling.
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(5/2,5/2). This is schematized on the right-hand side of Fig. 2.11, which shows
the successive application of the two perturbations (repulsion and spin—orbit)
in different order and the correlation of their energy levels in an intermediate
coupling situation. The scheme to be followed (LS or j—j) depends on the rel-
ative importance of the perturbation—electron repulsion or spin—orbit. As A
Z*, low-Z atoms should follow LS coupling (L and S are good quantum num-
bers), high-Z atoms should follow j—j coupling (J good quantum number), but
in many cases one has to deal with an intermediate coupling. The j—j coupling
scheme never occurs in its pure form. But the spin—orbit contribution becomes
more and more important as the atomic number Z increases; that is, second
and third transition series. In this book, all examples are treated with the LS
model.

2.4.2 Mononuclear complexes, electronic structure

We now modify the preceding free-ion scheme by approaching different
molecules or ions (ligands L) to the metallic atom. Here we enter into the
domain of the electronic structure of coordination and organometallic com-
pounds. Many textbooks are available, and therefore we do not reproduce
material easily encountered elsewhere. Instead, we focus on a few points of
interest for our future developments [2.22-2.26].

Here we deal only with central metallic atoms M to form metallic com-
plexes ML,,. The ligands create an electrostatic field which modifies the metal
energy levels. This is the crystal field approach directly related to the geometry



Many-electron atoms, mononuclear complexes, and spin cross-over

(symmetry) of the complex. When M-L bonds are introduced into the model,
molecular orbital description allows us to define a more detailed ligand field
model (introduced in Section 1.3.6). The examples chosen in this section are
essentially octahedral complexes, with some indications of the related case of
tetrahedral systems.

The most efficient way of treating the problem is to write the Hamiltonian
with the different terms ranked by decreasing associated energies, so that,
when possible, one can use perturbation expressions systematically. In addi-
tion, symmetry properties are used to simplify the treatment by providing
convenient labels for the different states.

The Hamiltonian is thus written as:

H= Horb + He—e + Hig + HSO +Hp, (273)

where H,, encompasses the effect of electron—nucleus attraction and mean
electron—electron repulsion (thus defining the orbitals), H. . is the electron
repulsion inside the valence shell (between 3d electrons for instance), Hy g the
ligand field term, Hy, the spin—orbit term, and finally H,, the Zeeman term
in presence of a magnetic field. As stated previously, these contributions are
ranked by decreasing energies, but H, . and Hj ¢ can be of similar magnitudes.
In Section 1.3.6 we saw the effect of the ligand field on orbitals (one-electron
levels); that is, we have taken into account only Ho, and Hy .

2.4.2.1 Ligand field action

Let us return to a (3d)? configuration and to the free-ion terms determined by
interelectronic repulsion in the LS coupling scheme and before the interven-
tion of spin—orbit coupling (Fig. 2.12 left). If the ligand field is now introduced
(the Hy r term of the Hamiltonian), the energies are modified and some degen-
eracies are lifted. How? The analysis of the problem is greatly simplified by
the use of group theory. The precursor in this domain was H. Bethe, and the
methodology is now well established [2.27].

In Table 1.5 we presented the character table for the Oy, group, and used it
to define the symmetries of orbitals (one-electron wavefunctions). On the one
hand, MOs are a basis for the irreducible representations of the point group.
On the other hand, the angular operators 12,1, commute with Hamiltonian oper-
ator H, so they share a common set of eigenfunctions. We can therefore use
the symmetry for terms as we do for orbitals. The important result is that a
given term behaves as an orbital characterized by the same / symbol: an S term
behaves as s orbitals, P as p, D as d, and so on. Let us take the simple example
of the O subgroup, retaining only the rotations of the Oy group. It can then be
shown [2.27] that the character  for a rotation of an angle ¢ is given by x (¢):

sin (L(p + %)
_ (2.74)

sin —

2

where L is the quantum number characterizing the term. When ¢ = 0,
¥ (¢) = 2L + 1. Thus, considering the case of a D term (L =2,2L + 1 = 9),
the characters computed from eqn. (2.74) give a reduced version of Table 1.5
O, — O:

x(9) =
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Fig. 2.12

An example of Tanabe—Sugano diagram.
Case of a d? ion, showing for small
A/B values the junction with free ions
terms, and for strong A/B values the
asymptotic behaviour towards configura-
tion energies. Another example is given
in Fig. 2.13 (d°).

The localized electron: magnetic properties

o E 8Cs 6C, 6C4 3G,

I'p 5 —1 1 —1 1

The representation I'p of the D term is reducible and can be reduced as T, + E,
exactly in the same way as d orbitals transform as t, + e [2.27]. As the complete
Oy, group contains, in addition, the inversion operation i, the exact result will
be Ty, + E,. Regarding the F ground term of a d* configuration, it is split
into A, + T, + Ty. The final labels are then obtained by adding the subscript
‘g’ (all terms derived from a d" configuration are symmetric—gerade—with
respect to the inversion centre), and the superscript 2S + 1, giving in this case
3Asy + 3Ty + 3Ty,. When dealing with optical spectroscopic properties it is
enough to stop here, because the following perturbations (spin—orbit coupling
and eventual magnetic field) have little or no consequences.

The resulting energy levels depend on the ligand field-splitting Ay (or the
related parameter Dy, defined by Ay = 10 Dy, for historical reasons and
abridged as A in the following). More precisely, the behaviour depends on the
ratio A/B, where B is Racah’s parameter of interelectronic repulsion [2.22—
2.23]. Finally, it is useful to display the results pictorially as a Tanabe—Sugano
diagram [2.23], in which the energy is plotted in units of B against the A,./B
ratio, the horizontal axis being the energy of the ground term taken as origin

E/B
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Table 2.3 Ground terms for d! to d® configurations in Oy, symmetry.

n— 1 2 3 4 5 6 7 8 9
Term Ty 3Ty *Ag Ay 7B,
HS Term 3B, bAly Ty Ty,

LS Term 3Ty, T 'Alg  2E,

(Fig. 2.12). Due to this choice of adimensional coordinates, the diagram is
extremely versatile for a given configuration.

Table 2.3 lists the ground terms for configuration d' to d°. From d* to d’, two
main types of configuration are possible: a ‘low spin’ one in which orbitals are
filled according to the Aufbau principle, and a ‘high spin’ one in which one has
the maximum of parallel spins. We shall return on this point in Section 2.4.3 on
spin cross-over. As for the free ions, the left superscript is the spin multiplicity
(2S + 1). Other intermediate spin configurations are not shown.

Tanabe—Sugano diagrams are extremely versatile. Thus, changing the lig-
and field symmetry from Oy, to Ty is equivalent to changing the sign of A.
Then the sequence of terms issued from a free-ion term is reversed. Changing
the electronic configuration from d" to d'%" has the same effect, due to the
electron-hole formalism (a d° system can be considered as a closed shell d'°
system with one ‘electron hole’). As a consequence of these two equivalences,
the Tanabe-Sugano diagram related to Ty d" is identical to that of O d'*™
(except than one drops the u and g from the symmetry labels due to the absence
of inversion centre in Ty: e, t instead of e, and tp).

The previous reasoning was based on the principle that the ligand field influ-
ence is a perturbation of the free-ion term energies. This is the ‘weak field
approach’. But actually, the two types of effect are of comparable magnitude.
So it is possible to start conversely from a ‘strong field approach’; that is,
consider first the ligand field effect and then the electrostatic repulsion, and
perform the correlation between the two approaches. The final result is still
represented by the Tanabe—Sugano diagram. Thus for low A/B one finds the
free-ion terms slightly perturbed by the ligand field. Conversely, for high A/B
it can be noticed that the term energies corresponding to the same electronic
configuration vary with the same slope (see Fig. 2.12, right-hand side). At very
high A/B the relative energy difference between terms issued from the same
configuration becomes negligible. The privileged way of reasoning is then to
start from the configuration; that is, to assign electrons to orbitals and then
introduce electronic repulsion as a perturbation.

When the symmetry is lower than Oy or Ty, one starts generally from the
‘strong field” approach, which is more intuitive for chemists. Then one looks
at the terms issued from each configuration, the analysis being simpler because
there are much fewer orbital degeneracies.

2.4.2.2 Spin-orbit influence

We now consider the influence of spin—orbit, assumed to be weaker than
ligand field and electrostatic repulsion effects because we are in the LS coup-
ling scheme. As for the free ion, spin—orbit coupling can lift some remaining
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degeneracies. Again, group theory can help prediction of the behaviour, but a
difficulty arises because the relevant formula for the rotation character is now
given by eqn. (2.74), with J replacing L.

sin (J ¢+ %)
_ (2.75)
sin —
2
Contrary to L, J can take half-integer values. Then a strange phenomenon
occurs: if J is half-integer (say J = Y; that is, L = 0, S = '), a 27 rotation
does not bring back the system identical to itself. Instead, we have:

x = (@+27) = —x(9) (2.76)

This paradoxical result is rooted in the peculiar non-conventional nature of
the spin and its imperfect physical representation. The mathematical treatment
[2.27] (not presented here) uses ‘double groups’ with an additional operation,
the 27 rotation R, which is distinct from identity and brings back the system
to identity only after a 47 rotation.

In the theme of the book, the spin—orbit coupling will play a role by introdu-
cing small changes in energies (around 10> cm™), and also anisotropy in some
properties. Indeed, the spin itself is an isotropic operator. For a pure spin the
effects are the same regardless of the orientation of the spin with respect to the
molecular axes. But the orientation of an angular orbital momentum is gener-
ally fixed by molecular structure. When the spin—orbit coupling mixes the two
kinds of momentum, it communicates some anisotropy to the spin properties.

x(p) =

2.4.2.3 Other degeneracies

We have seen a number of effects (electrostatic repulsions, ligand field effect,
spin—orbit coupling) leading to the progressive removal of electronic degen-
eracies. To these effects must be added the possible Jahn—Teller effect, which
occurs when the electronic state is degenerate or when the ground state can
mix with an excited state of suitable symmetry, and can also remove a degen-
eracy (see Section 1.3.7). Another important theorem, on the contrary, predicts
when a degeneracy cannot be lifted. This is the case for doublet states (S = ')
obtained from the occupation of a non-degenerate orbital by a single electron.
Then the Kramers theorem states that this last degeneracy cannot be lifted by
an electric interaction, but only by a magnetic field. The mathematical details
are not given here, but this is a consequence of the time-reversal invariance at
the microscopic scale.

If the total spin is greater than ¥ (for instance, S = 1 as in Ni(II), d®, com-
plexes), the Kramers theorem does not apply. Then the combined effects of
ligand field and spin—orbit can partly remove the degeneracy. This is the ‘zero-
field splitting’ (understood as ‘zero magnetic field splitting’), which is used in
following sections.

2.4.2.4 Influence of a magnetic field: the Zeeman effect.

We end up with the smallest effect: the influence of the magnetic field H. For a
paramagnetic system it can be assumed that the energy E,, of one of the states
defined in Fig. 2.11 can be expressed as a power series of the magnetic field:
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En=E) +E'H+E2H> - - (2.77)
where E?, is the energy in zero field, EL and E2, are the first-order and second-

order Zeeman coefficients respectively. At the first order in H, the Hamiltonian
is:

H, =—w.H =ppgyJH=p3p (gLL + g S) H (2.78a)

(in cgs-emu, for SI put B in place of H).
The eigenvalues are accordingly:

with Mj varying from —J to +J. The corresponding energy changes are in
the range ~1 cm™ per Tesla. The detailed study is dependent on the sys-
tem under investigation, because the relative contributions of the orbital and
spin momenta can be different from one case to another. The second-order
coefficient even implies the other levels. See references [2.22, 2.24].

2.4.2.5 Quenching of orbital momentum

In coordination complexes the orbital magnetic moment related to d elec-
trons can be manifested more or less according to the symmetry of the terms.
There is a process called ‘quenching of orbital moment’ which occurs under
certain circumstances and suppresses the contribution of the orbital moment.
In such cases the magnetic properties are due to spin only, which incidentally
simplifies greatly the behaviour.

The explanation is rooted in the basic properties of d orbitals. As seen
in Section 1.2.1, in a free ion the d orbitals, solutions of the hydrogenoid
Schrodinger equation, are initially obtained with angular parts of the form
®(0) exp(im; @), where m;, the magnetic quantum number, can take the values
-2,-1,0, 1, 2. The corresponding wavefunctions can be denoted in Dirac form:
|-2 >, -1 >, 10 >, |1 > and |2 >. To each of these orbitals is associated an
orbital magnetic moment m; g, but the problem is that we had to combine
these ‘raw’ wavefunctions to generate real wavefunctions. Thus to a real
orbital alone like |dx,> one cannot associate an orbital magnetic moment.
When the orbitals are degenerate, as in the free ion, the real orbitals can be
recombined at will to generate orbitals presenting a magnetic moment. This
process is not always possible in the presence of a ligand field. For instance,
in O, symmetry |d, > and |d,>_y2> no longer have the same energy (ta, €, are
separated by A.) and cannot be recombined. Detailed study leads to a simple
rule: terms with A or E symmetry have their magnetic moment ‘quenched’,
while this is not the case for terms of T; or T, symmetry. But again, the
spin—orbit coupling complicates this simple picture by introducing a mixing
of the orbital and spin moments.

2.4.3 Spin cross-over: phenomenon and models

2.4.3.1 Introduction

We can apply these ligand field considerations to a very appealing phe-
nomenon: the spin cross-over (also called spin transition), by which the metal
complex can change its spin from a high-spin to a low-spin configuration. This
phenomenon was discovered in 1931, and has been since the subject of a large
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Table 2.4 Electronic configurations, term, spin, and mean pairing energy for some first row d" HS and LS transition metal complexes.

HS LS
da" Ion Configuration Term Spin mn2 10DHS b Configuration Term Spin 10Dq"S¢
d Cr(ID) (tae)(e})! E 2 23.5 139 () (e})° 3T, 1 -
a4 Mn(III) (t2g)*(ep)! SE 2 28.0 21.0 (t2g)*(e})° 3T, 1 28¢!
& Mn(II) (t2g)*(e})? 6A; 52 255 7.8 (t2g)(e})° T, 1/2 -
& Fe(III) (tae)¥(e})? N 5/2 30.0 13.7 (o) (e})° T, 12 35
ds Fe(II) (t2g)*(e})? T, 2 17.6 104 (t2g)°(e})° 'A 0 19.4¢3
d’ Co(Il) (t2g)(e})? 4Ty 32 225 9.3 (t2g)’(e])’ ’E 1/2 15.5¢4

2 Mean pairing energy IT /10> cm™! for the free ion (to be reduced by 70-80% in complexes—the nephelauxetic effect); "HS 10Dg/103 cm™ ligand field energy in
[M(H,0)5]™ complexes; ¢ LS 10Dq /10* cm™ ligand field energy in selected complexes: ¢! [Mn(II[)(CN)s ]~ “2[Fe(ILI)(CN)s]*~; 3 [Fe(ID)(ptz)s 1**: it is 33.5 for
[Fe(I)(CN)s]*"; “4[Co(I1)(bpy)3]1**. (Adapted from Y. Garcia [2.28] (vol. II, p. 49), [2.22], [2.30].)

Fig. 2.13

Simplified Tanabe—Sugano diagram for
an octahedral Fe(IT), d® complex. Energy
and terms are given as a function of the
ligand field parameter 10Dq (see text).
The Racah parameters used are C =
4040 cm™ and B =917 cm™'.

number of studies. Recent reviews on this topic are available [2.3, 2.28-2.31].
Let us consider an octahedral complex of a transition metal with d" electrons.
For n < 3 only one configuration arises, (t,)"; for n > 8 only one configuration
is present: (tzg)ﬁ(e;)“‘6. In these cases the concept of high and low spin has no
real meaning. When we deal with 3 < n < 8 we can find at least two electronic
configurations, as shown in Table 2.4. Spin cross-over has been observed in
the first line of transition elements with d*, Cr(Il), d>, Fe(III), d®, Fe(Il) and d’,
Co(II). Rare examples are known in the second line and none in the third, due
to high ligand field energies and weak spin pairing energy. Here we limit this
simple analysis in terms of high/low spin, but matters can be more complicated
with the occurrence of ‘intermediate spin’—in particular, when the symmetry
is lowered [2.31].

A first description relies on the Tanabe—Sugano diagram (Section 2.4.2.1).

The example for Fe(Il), d®, is shown in Fig. 2.13, though for the sake of clarity,

40000 - E/cm™ 5E T,
High Spin  HS S
5 442 P 5T
1 _ T2 (g eg) L o
30000 ~ &~ ; S
‘\\\\\‘~\‘T2 ,7' ,:/’
\\ N Se~al - Y 1T1 ,,»
3X E \\ \\~1T1 T ”:I
\ Mo I' A
20000 - — N N / R
\\\1A1 e g ’ ',
10000 X ,/ Low SpinLS
— 5 R4 \\ I/
E,’ N ’ 1A1 (t296 ego)
5o L T LA A 10 Dgjom™!
0 i 1 1 T [t
0 10000 20000 30000



Many-electron atoms, mononuclear complexes, and spin cross-over

triplet terms are not shown. The only terms represented are the quintuplet (ori-
ginating from the D free-ion term and giving the T ground term at low field)
and the singlet (issued from the 'I free-ion term and giving the 'A; ground
term at high ligand field). The ground terms are horizontal by convention. The
arrows show the spin-allowed electronic transitions (°T —>E) in the high-spin
regime and ('A; —'T; and 'A; —'T,) in the low-spin regime. In the case
of the octahedral complex [Fe(II)(ptz)s](BF4), (ptz = 1-n-propyltetrazole) the
spectroscopic data allow us to obtain 10Dg"S = 11,800 cm™ (directly from
the transition °T, — °E) and, from the transitions 'A— 'T; and 'A— 'T,,
10DG™S = 19,410 cm™' and B = 740 cm™!. Note that there are two possible
values (HS and LS) for the ligand field parameter (Hauser, in [2.28] vol. I,
p- 49, [2.29]).

The occurrence of two values of 10Dq is explained by the diagram in
Fig. 2.14, showing two wells of potential energy (such as enthalpy) as a
function of a nuclear coordinate (for example, metal-ligand distances). The
representation generally uses the harmonic oscillator model (E = ¥, kx?, where
X is the variation of the metal-ligand distance from the equilibrium distance
and k a force constant). Figure 2.14 represents the case of an Fe(II) complex
in low- and high-spin forms (dpe_.(LS) < dpe_r.(HS)). The quantized vibration
levels are represented in each well [vg. 1 (LS) > vg. 1 (HS)]. The electronic
interaction between the two systems, which allows the change from one to the
other, is not represented: the two curves cross without mixing. In this scheme
the lowest vibrational level of the HS form lies in enthalpy above the lowest
vibrational level of the LS form by AH°, the zero-point enthalpy difference
(AH° = H°yg — H°Ls). The LS state is then the quantum-mechanical ground
state. But if AH® > 0 and within the reach of thermal energies (kT), the HS
state can become thermally populated when T increases, and the transition can
occur—in particular, when taking into account the entropy factor and cooper-
ativity (as in the following). Furthermore, the presence of an energy barrier
shows that LS and HS are distinct chemical forms.

E
0 Low Spin LS High Spin  HS

'Aq (tag® eg”) 5T (tog* eg?)

111

Fig. 2.14

Low-spin and high-spin potential energy
wells of a Fe(II) complex as a function of
the metal-ligand distance, including the
vibrational levels in an harmonic oscil-
lator model, with no interaction between
the two systems.
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Fig. 2.15

Zero-point enthalpy AH° as a func-
tion of ligand field energy 10Dq drawn
for the octahedral Fe(II), de complex
[Fe(Il)(ptz)s](BF4); and a Racah para-
meter reduced by 75% compared to the
free ion value (nephelauxetic effect). The
narrow grey area exhibits the zone where
spin cross-over can occur (see text).
(Adapted from Hauser in [2.28] vol. I,
p-49.)
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The relation between the energy of both forms and the metal-ligand dis-
tances is straightforward. For the high-spin configuration, compared to the
low-spin configuration, the ¢ orbitals have a maximum occupation, thus the
metal-ligand distances are larger and the ligand field parameter A, is weaker.
In addition (this will be useful later), the metal-ligand vibrational frequency
is lower, explaining the more closely spaced levels on the right-hand side of
Fig. 2.14. For a given metal ion and a set of similar ligands, a useful approx-
imate correlation exists between the ligand field A, and the metal-ligand

distance r:
ALS rus \"
—od <E> (2.79)
Aot ILs

with n = 5-6. In the archetypal spin cross-over complex [Fe(Il)(ptz)s](BF4)»
quoted previously, the ratio is 1.64, in agreement with the usual Fe—-N distances
rgs ~ 216-220 pm r.g ~ 196-200 pm (from Hauser in [2.28] vol. L, p. 49).

It is frequently stated that the relative stability of the high-spin and low-spin
forms depends on the comparison between I1, the mean pairing energy, and the
ligand field parameter, and that spin cross-over occurs when they are of similar
magnitude (IT & 10Dq). But since there are two such ligand field parameters,
one has to look in more detail. Further insights can be gained with the repres-
entation of Fig. 2.15, where the zero-point enthalpy difference AH® between
HS and LS states (Fig. 2.14) is plotted as a function of 10Dq for a model com-
plex, [Fe(Il)(ptz)s]**, by varying the Fe-ligand distances, for example. Two
lines divide the diagram: (i) the vertical representing the pairing energy II,
which does not vary so much with the spin state; IT is related to the cross-over
point in the Tanabe—Sugano diagram (Fig. 2.13); (ii) the horizontal AH® = 0.
Below this line (AH® < 0) the quantum-mechanical ground state is the HS
state. Above this line (AH® > 0) it is the LS state. The variation of AH® as
a function of 10Dq for the HS configuration (as 10Dq"S) is displayed for low
10Dq values, and the similar curve for LS (as 10Dg"%) is shown for high 10Dq
values.

When 10DqHS < 10.000 cm™, AHC is negative, the ground state is HS, and
the LS state cannot be thermally populated (dotted line on 10Dg-%). When
10Dg™S > 23.000 cm™!, AH° is positive, and the ground state is LS. It is

B ’T‘ AH°/cm™
+10000 LS
10Dg"S 10Dg"S
+ 5000 — h
1 l_[
0 Spin cross-over
S HS 10Dg/cm™" —>
—5000/ | 4 | L |

10000 20000 30000
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possible to populate thermally the HS state without destroying the complex
if AH® is not too large (say, AH® < + 2000 cm™). This zone, indicated in
grey, corresponds to the situation where HS and LS states are both present
and a spin cross-over can occur. Above this zone, AH® is too large for the HS
state to be populated (dotted line on 10Dg"®). The spin cross-over transition
can occur, therefore, in the narrow band of ligand field energies [10Dg"® ~
10-12,500 cm™', 10Dg"S ~ 19-22,000 cm™!].

Thus the true condition for spin cross-over is 10Dg"S << IT << 10Dg"5—
quite different from the simple assertion that IT &~ 10Dq. Such a conclusion can
be extrapolated to other Fe—N octahedral complexes for the choice of proper
ligand and the method used mutatis mutandis for other metal d" ions (d* < d"
<d.

2.4.3.2 How do we follow the HS-LS cross-over?

The transition can be followed using any technique sensitive to the change
of one of the electronic, vibrational, and structural parameters during the
transition [2.29]. The magnetic susceptibility measurement by SQUID mag-
netometry is by far the most basic and most used technique (see Section 2.3).
It produces directly the HS/LS fractions. Heat capacity measurement is the
only technique able to provide the thermodynamical parameters AH® and AS°.
Mbossbauer spectrometry is very useful to follow the spin state of iron(II) and
iron(IT) complexes through the isomer shift displacement and the quadrupole
splitting. For each of the LS and HS states, infrared or Raman spectroscopy
produces the change in vibrational states, whereas electronic spectroscopy
produces the energy and intensity of the electronic transitions. The structural
changes can be followed using single crystal X-ray or neutron diffraction when
crystals are available and do not shrink at the transition. The local structure
(surroundings of the metal ion) can be followed, whatever the shape of the
sample, by X-ray absorption spectroscopy.

The most common way of depicting the spin transition is to plot the high-
spin fraction x as a function of temperature. As will be seen in the following,
it always increases with temperature, but the variation can take several forms
(Fig. 2.16). One can have a gradual transition, or an abrupt one occurring in
a small temperature interval (a few K). In some cases an hysteresis loop is
observed; that is, the trajectories x(T) are not the same when warming or cool-
ing. Finally, there are examples of two-step transitions for which in a given
temperature interval the high-spin fraction remains close to 50%.

2.4.3.3 Thermodynamics of the LS—-HS equilibrium

The spin cross-over (spin transition) has been the subject of a large number of
theoretical studies, some of which are presented in reviews such as [2.28, 2.30].
A first aspect to consider is the thermodynamics—in particular, the relative
stabilities of the LS and HS forms. For the moment we compare these two
forms as pure solids. (In Section 2.4.3.4 we will consider the possibility of
solid solutions.)

The LS/HS conversion can be considered as a chemical equilibrium:

LS = HS (2.80)
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Fig. 2.16

Different behaviour types for a low-
spin—high-spin transition: (a) smooth;
(b) abrupt; (c) hysteresis; (d) two-step.
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In the standard state (pure solids) the enthalpy, entropy, and free enthalpy
changes are AH}y_, g (= Hpg —Hig), AS{g_ s and AG{g_, g, defined simil-
arly. We note for simplicity, AH®, AS°, and AG® respectively. AS® is positive
because it encompasses an electronic term AHg, and a vibrational term AHY;,,
both positive. The electronic term is linked to the degeneracy of electronic
states. It is given by:

ASY = RIn (Qus/Qus) (2.81)
with
Q= Szspingzangular =@S+1)2L+ 1D (2.82)

At least, Qi is larger for the HS state. ASy; is positive because the vibra-
tional states are more closely spaced and the bond lengths are higher in the
HS form. Broadly speaking, the bonds are weaker in the HS form, allowing
more degrees of freedom. In one of the most studied examples of iron(Il) spin
cross-over systems, [Fe''(phen),(NCS),], (phen = 1,10-phenanthroline), the
transition occurs between T 2S +1 =5;2L+ 1 =3)and 'A 2S +1 = 1;
2L + 1 = 1) states, thus AS; = R In (5 x 3/1) = 13.38 ] K~! mol™!, while
the total AS® = 48.78 J K~! mol™!, showing that most of the entropy change
derives from the vibrational term (intra- and intermolecular).

In order to observe a thermal spin transition, AH® must be positive (as shown
in Figs. 2.13 and 2.15), so that at low temperature the LS form is the most
stable, while at high enough temperature AG® = AH® — T AS°® has a chance
to become negative. AG® = 0 for a peculiar temperature that we denote T/»:

T, = AH/AS® (2.83)
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Ty, is the temperature for which the high and low spin fractions are equal to
1. Note that when an hysteresis is present, T, cannot be measured directly,
because it is inside the loop (see in the following). In the case of the previously
mentioned [Fe''(phen),(NCS),] complex, AS® = 48.78 J K~! mol™!, AH® =
8.60 kJ mol™!, and Ty, = 176.29 K.

From a chemical point of view, the first and immediate factor controlling the
Ty, temperature is the magnitude of the ligand field. Thus, let us consider the
effect of substitution on the phen ligands of the [Fe(phen)s;]** complex [2.28].
The starting compound is LS at all temperatures. Incorporation of a methyl
group in the 2-position of phenanthroline (adjacent to the N atom) reduces the
ligand field, because steric interligand repulsions preclude the close approach
of nitrogen to the metal. As a consequence, a spin cross-over is observed (that
is, the HS state begins to be of comparable stability with the LS). With Cl,
which is both bulky and electron-withdrawing, the ligand field still decreases
and only the HS form is observed at all temperatures.

Another example is provided by the series derived from [Fe(py)4(NCS),],
the latter being HS at all temperatures. Substituting two pyridine molecules by
an 1,10-phenanthroline gives [Fe(py)»(phen)(NCS),] with an increase of the
average ligand field, leading to a spin cross-over at Ty, = 106 K. Substituting
two more pyridine molecules to yield [Fe(phen),(NCS),] still increases the
ligand field and thus the LS domain, the T}, temperature reaching 176 K.

In some cases the ligand field can be manipulated by an external excitation.
This happens in the ligand-driven light-induced spin cross-over (LD-LISC)
process (see Section 4.5.2.3). If the system is just at the borderline of LS/HS,
a photoisomerization of the ligand, changing its t-donor or acceptor character
can change the ligand field strength just enough to trigger an LS—HS transition.

2.4.3.4 Spin cross-over with cooperativity, models, and examples

The phenomenon of spin cross-over occurs here in the solid state, and is
strongly dependent on intermolecular interactions, giving rise to cooperativity.
This means that the behaviour of a given site is dependent on the status of the
neighbouring site. The experimental consequences are the more or less abrupt
character of the transition, and in many cases the occurrence of an hyster-
esis. The transition, however, is still governed by thermodynamics and occurs
around Ty, defined by eqn. (2.83).

The two forms, HS and LS, are actually isomers of the same species, and
since their general structure is very similar we may expect them to be mutually
soluble (at least in part) in the solid state. The relevant thermodynamic treat-
ment of solid solutions [2.32] is very similar to that of liquid solutions. Before
dealing with specific models of the spin cross-over, we will recall some basic
concepts about solid solutions.

Calling LS and HS the two isomers, we have to evaluate the mixing
quantities ASpix, AHpix, and AGpix, corresponding to the process:

LS (pure) + HS (pure) — solution of LS and HS (1 mole) (2.84)

We can define X; s and Xys as the mole fractions, with X; g + Xgs = 1. In the
remaining, we shall use Xys = x and Xy s = (1 — x) for simplicity. ASpix
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Fig. 2.17
Microscopic model for the calculation of
the enthalpies.

Fig. 2.18

Variation of AGpx and its components
AHpix and =T ASpix (dotted lines) as a
function of x for AHpix > 0. Numbers
1, 2, and 3 refer to increasing values of
AHpix. When AHp,x is large enough it
wins on the entropic term in the cent-
ral part of the diagram, but never at the
extremities. Thus the AGpix curve (plain
lines) presents two minima and a max-
imum (see text). (Adapted from [2.32].)
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is > 0, and thus AGp,ix = AHuix — TAShix is frequently negative and mutual
solubility generally occurs.
For an ideal solution, AHp,ix = 0, while ASy,ix is given by:

ASmix = —RXlel’lXLs —RXHslnXHs = —R (1 —X)h’l(l —X) —RxInx
(2.85)

Eqn. (2.85) can be obtained from a simple microscopic model in which
molecules of LS and HS are arranged at random on the lattice nodes, which
means that there is no privileged interaction between LS and HS molecules
with respect to pure LS or HS.

When the solution is no longer ideal but the deviations to ideality are mod-
erate, a frequently used model is that of regular solutions. In the definition
given by J. S. Hildebrand in 1927, eqn. (2.85) is retained, but now AHpx # 0.
A simple microscopic interpretation can be given by considering the scheme in
Fig. 2.17, where hy s 15, hys_gs and hy s ys represent the elementary enthalpies
(all negative) associated with the next-neighbours interactions.

Assuming that the distribution of molecules on the network nodes is still
random, one obtains the following expression for the enthalpy of mixing per
mole of mixture:

AHpix =I'x (1 — Xx) (2.86a)

with

I' = Naz [his_ns — V2 (his—is + hus—ns) ] (2.86b)

where Nj is Avogadro’s constant and z is the number of neighbours for a
given molecule. The I parameter determines the possibility of mixing. If I is
< 0 (LS—HS pairs more stable than the average of LS-LS and HS-HS pairs),
AHpx is negative, as —T AS;x (always negative), and the mixture is always
possible. If T" is > 0 (LS—HS pairs less stable than the average of LS-LS and
HS—-HS pairs), a competition exists between the enthalpy and entropy terms.
The AGpx curves = f(x) are shown in Fig. 2.18 for various values of the I'/RT
parameter. Note that the entropic term always wins on the extreme range of
compositions (x & 0 or 1), because of the form of eqn. (2.85), which presents
vertical tangents at its extremities. For I' > 2 RT (this limit is demonstrated
later), the AGy,ix curve presents two minima and a maximum for x = 0.5.
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In such a situation a peculiar phenomenon may occur: demixing—that is,
the separation in two phases. In the central part of the diagram a system rep-
resented by point A (see Fig. 2.19) is less stable than the one constituted by
two phases with compositions Xg; and Xp; (point A’ located on the common
tangent). Thus miscibility occurs only between 0 and Xg; on one side and Xg,
and 1 on the other side, and the system is biphasic between Xp; and Xg;.

We now consider the specific models of spin cross-over, which differ in
describing intermolecular interactions [2.3, chapter 4].

Regular solution model (Slichter, Drickamer, 1972). Considering one mole
of substance existing as x moles of high-spin form and (1 — x) of low-spin
form:

G =(1 — %) Gis+ x G+ AGpix = G+ XAG® + AGp  (2.87)

The shape of the G = f(x) curve is thus obtained from the curve giving AGyy;x
(see Figs. 2.18 or 2.19) by adding a linear ramp with slope AG®, as shown
in Figs. 2.21 and 2.22. Since the HS and LS forms can interconvert, x varies
until a minimum in free enthalpy is found. The minimum can be computed by
putting to zero the derivative of eqn. (2.87):
E = AG°_|-8AGH“X
ox
There is no analytical solution for eqn. (2.88), only a graphical one, by
considering that it is satisfied when the two functions y;(x) and y,(x) are equal:

yi=In (1 — x)/x (2.89)

- AG°+RT1n<1 x >+F(1 20 =0 (2.89)

_AG°4+T(1—2x)  AH°+T(1-2x) AS°

2= RT = RT R

y1(x) has a well-known sigmoid shape, while y,(x) is a straight line. As shown
in Fig. 2.20, when T varies, all y, curves pass through the point P of coordin-
atesx = ', + AH°/2T and y, =— AS°/R, and at T = T}, the y, line also passes
through the point M, x = 0.5, y, = 0. Figure 2.20 schematizes the situation for
different cases, ' > 0 or < 0, and various temperatures.

If ' = 0 (the state of a molecule is independent of the state of its neighbours)
there is only one intersection. When I' < 0 (more attraction between HS-LS

(2.90)

1 V4

Fig. 2.19

The demixing process. When the sys-
tem is represented by a point like A, it
evolves towards a more stable biphasic
system represented by A’. A’ resides on
the common tangent to the two minima.
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Fig. 2.20

Graphical solution of eqn. (2.88) by inter-
section of the curves y;(x) (grey curved
line) and y»(x) (black straight lines) (see
text). For I' < O there is only one inter-
section. For I" > 0 and large enough, mul-
tiple intersections can occur. The y; lines
are shown for different increasing tem-
peratures: T =0, Ty, T2, T1/2. At Ty, for
instance, the intersections occur at points
Q, M, and R, corresponding respectively
to minima, maxima, and minima in the
G(x) curves. Dotted line: tangent cor-
responding to the limiting case where
demixing can begin to appear (see text).

Fig. 2.21

Free enthalpy as a function of x for the
case ' = 0 or < 0. Grey line: free
enthalpy of the mixture of pure solids.
Dotted line: free enthalpy of mixing.
Plain line: free enthalpy of the solid
solution.
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A >0 A

increasing T

pairs than between like pairs), there is also only one intersection, correspond-
ing to a minimum in the G(x) curve. The behaviour is relatively simple, and is
depicted in Fig. 2.21.

When the temperature increases, AG® (= AH°® — TAS®) decreases and the
abscissa of the minimum of G = f(x) moves towards the right, as shown in the
sequence of schemes in Fig. 2.22.

A€ “A

pure HS _ _
mixture of pure solids
pure LS AGP
0 4 - 0
solid solution - ' /|
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Fig. 2.22

Evolution of the G = f(x) curves in the case where I" is < 0 or 0, for various increasing temperatures T; < Ty < T3, corresponding to
AG® > 0, 0 and < 0. The abscissa of the equilibrium point xeq moves smoothly to the right, corresponding to a gradual conversion of the LS
form in the HS form.

The resulting x = f(T) curve is shown in Fig. 2.23. The transition is gradual,
without hysteresis. If I' = 0 the situation is the same as in a gas phase or
in solution, and corresponds to a Boltzmann population between two states,
separated in energy by AH® / N, at the scale of one molecule.

Now we consider the case where I' is positive. At the microscopic level it
means that the LS molecules ‘prefer’ to be surrounded by LS molecules, and
the same applies for HS. There is thus a cooperative effect favouring another
kind of collective behaviour. In Fig. 2.20 it can be seen that since the slope of
the y»(x) curve is —2I'/RT, multiple crossings with the y; curve can occur if I’
is large enough. When both AH® and AS° = 0, point P is merged with point
M, and a simple criterion for multiple crossing can be found: the limiting case
is obtained when the y; curve is tangent to the y; curve at x = 0.5 (see dotted

line on Fig. 2.20), and since (‘%) 0s = —4, one obtains:

= 2RT (2.91)

That is, for I' < 2RT only one extremum (a minimum) is observed in the
G(x) curve, while for I' < 2RT three extrema are observed (two minima and a
maximum).

1.0

high spin fraction x

Fig. 2.23
Ty Tie T3 Thermal variation of high spin fraction x,
Temperature corresponding to the minima in Fig. 2.22.
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Evolution of the G (x) curves and position of the representative point of the system (black dot) for a system characterized by I' > 2 RT subject to
an excursion in temperature: a—d) increasing T1 < Ty < T3 < Ty; d—f) decreasing T4 > Ty, > T3. The grey dots represent the system at the

same energy and the white dot a metastable state (see text).

Fig. 2.25

Loci of the extrema of x as a function
of temperature for a strongly cooperat-
ive system (I' > 2 RT). The AB and
CD branches correspond to minima in the
G(x) curve, while the BC branch corres-
ponds to a maximum. From low temper-
ature to Ty, the lower branch is the more
stable, while from T, to Ty it is the
upper branch. At T = Ty, the energies
are the same. Grey doted arrows: route
without demixing; black dotted arrows:
route with demixing.

In Fig. 2.24 the G = f(x) curves are depicted for a system with I' > 2RT,
subject to an excursion in temperature from low (T)) to high (T4) and back.
It is useful to follow the events in Fig. 2.25, where the loci of the extrema of
G(x) are plotted versus T. Starting from T; (Fig. 2.24a, LS form more stable),
the system is represented by the dot on the left-hand side of the diagram. At
T =T, = Ty, (Fig. 2.24b), for which AG® = 0, the system can stay in the left-
hand well, though the right-hand one has the same energy (grey dot). From

then, two very different behaviours may arise.

high spin fraction x
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If no demixing occurs, for a temperature like T3, the system can remain
trapped in a metastable minimum (Fig. 2.24c, white dot); that is, the true
thermodynamic equilibrium is not achieved (black dot). At a sufficiently high
temperature, T4 (Fig. 2.24d), the secondary minimum disappears and the sys-
tem has no other choice than to move to the right and more stable minimum.
In Fig. 2.25 the corresponding trajectory of the system is HAEB. Then, almost
complete conversion to the HS state is achieved (point G). Returning from T4
to T3, Ty, and T} occurs through the trajectory DGFC, and then the LS state
arises (point H). There is an hysteresis effect; that is, the state of the system
depends on its past history.

Hysteresis is a very important process, providing properties of bistability
and memory, which are very appealing for applications. We return to this point
later.

If demixing occurs, the system moves from one branch to the other as soon as
the other one is more stable. In the G(x) diagram (Fig 2.24) it can evolve under
the central maximum, due to the demixing process (demixing may be seen
as the thermodynamic equivalent of the tunnel effect of quantum mechanics).
The trajectory in Fig. 2.25 is thus HAE followed by FGD, and the return occurs
along the same path (DGF-EAH). The transition can be particularly abrupt.

Actually, real systems can behave intermediately between these two extreme
behaviours—for instance, jumping from the lower to the upper branch on heat-
ing can occur somewhere between E and B in Fig. 2.25. This depends on
factors such as grain size, frontier domains, and rate of nucleation, which are
not included in the model, and this is one of the reasons why the occurrence
and magnitude of the hysteresis is relatively hard to predict.

Domain model (Sorai, Seki, 1974) [2.3, chapter 4]
In this model it is assumed that LS and HS molecules are not distributed at ran-
dom as in a solid solution, but form domains of the same spin (see Fig. 2.26).
The domains are assumed to have uniform size and contain n molecules, with
n typically between 10 and 100.

The mixing entropy is then given by:

ASpix =—R/n)[xInx +(1 — x) In (1 — x)] (2.92)

That is, n times less than in eqn. (2.85), because the number of possibilities has
been reduced drastically by n, the number of molecule per domain. The AHyx
term is now zero, because there the short-range environment of a molecule is
made of molecules of the same spin, as in pure solids (this assumption could,
of course, be questioned if n is too small). Thus in eqn. (2.87) the main term
is AG°. Exploiting G = f(x) for different temperature curves, as previously,
shows that the transition can be sharp (the larger n, the sharper the transition),
but no hysteresis is predicted, which is the main drawback of this model.

Elastic model with internal pressure (Spiering, Giitlich, 1982) [2.28, 2.29]

First, we recall the main modification associated with the spin change, apart
from the magnetic property: due to the change in the number of electrons
occupying the e antibonding orbitals, An(ey), there is an increase in metal—
ligand distances from LS to HS. In the case of iron(Il) complexes (An(eZ) =12),
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Schematic representation of the domain
model with n molecules of the same spin
state (HS white spheres and LS grey
ones).
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Fig. 2.27

Scheme of a lattice network in which all
molecules except one (in grey) are in the
LS state. Their influence on the remaining
HS molecule is equivalent to a pressure,
hence the concept of ‘internal pressure’.

The localized electron: magnetic properties

the increase can reach 21 pm, and correlatively the crystallographic cell dimen-
sions increase also, as well as the molar volume. With cobalt(II), An(eg) =
1 and the mean metal-ligand change is less—about 10 pm. Consequently, a
simple explanation of cooperativity is based on intermolecular steric inter-
actions; that is, the elastic energy due to the volume change accompanying
the spin change. Thus, in the elastic model of Spiering and Giitlich, when
most neighbours of a given molecule change their state, it is better for the
last molecule to also change its state. Expressed differently, crystal packing is
much easier and energetically more stable when all molecules have the same
dimensions (Fig. 2.27).

In the example of Fig. 2.27—an isolated HS molecule surrounded by smaller
LS molecules—the effect of the environment is to mimic the role of pres-
sure. One can thus define an ‘internal pressure’ favouring the LS state, as in
the case of a true external pressure (see Section 2.4.3.5). Mathematically, the
enthalpic interaction term is written as A — I'x) x°, instead of I" x (1 —x) =
I' x — I x? as in the regular solution domain (see eqn. (2.86a)). However,
in this model A and I' are functions of x, and the final result is qualitatively
similar, in that the enthalpic term also passes through a maximum when x
varies. Quantitatively there is a difference, because the elastic domain includes
long-range interactions which are not taken into account in the regular solution
model.

To conclude the discussion of models, we quote the recent model of Robert
et al., based on ab initio calculations [2.33]. Its main conclusion is that hys-
teretic effects appear to be governed by Madelung electrostatic energies. The
important parameters are AQ, the amount of charge which is transferred
between the metal and the ligands during the spin change, and (3Vys — 3Vys),
the fluctuation of the electrostatic Madelung potential difference in the crystal
created by the environment of a given site. The authors propose that the I' inter-
action parameter of the Slichter—Drickamer model (see previous) is given by
I' = AQ (8Vus — 8VLs) and therefore that their electrostatic model (in which
Madelung energies play a role) complements usefully the description based on
elastic-driven cooperativity. This is an interesting example of the contribution
of modern quantum methods to the problem.

We now consider some examples in which the degree of cooperativity can
be changed by chemical modifications.

The first idea is to change the nature of intermolecular contacts, which
has been achieved on the general structure of [Fe(L),(NCS),] complexes,
where L is a bidentate a-diimine ligand such as 2,2'-bipyridine (bpy), 1,10-
phenanthroline (phen), dipyrido [3,2-a:2'3'-c] phenazine (dpp), or 2,2'-bi-
4,5-dihydrothiazine (btz). Except btz, these ligands are conjugated aromatic
systems.

Contrasted behaviours are observed: thus with btz the transition is smooth,
showing no cooperative effect. With bpy and phen the transition is abrupt, but
without hysteresis. Finally, with dpp the transition is abrupt, with an hysteresis
of around 40 K (Fig. 2.28).

The structural data show that the FeNg chromophore and its change upon
spin conversion are very similar in all complexes, and thus the reasons for
cooperativity must be sought elsewhere. Crystal packing analysis shows that
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(Reproduced from [2.34].)

the intermolecular contacts are very limited with btz. For bpy and phen, some
n— stacking is present, and it is more important with dpp because of its exten-
ded aromatic character. This is, among others, a clear example of the influence
of the intermolecular interactions on the nature of the transition. Large inter-
actions favour abrupt transitions and the appearance of hysteresis. The exact
mechanism is, however, still speculative.

Dimensionality of the lattice is also an important factor for cooperativity
[2.34,2.35]. Thus the 2D coordination polymer [Fe(py)>M(CN)4] (M = Ni(Il),
Pd(I), Pt(Il), py = pyridine) is built from alternate square planar diamagnetic
[M(CN)4]> anions and octahedral Fe(II) sites. Iron is surrounded by 4N of the
cyanide ligands and 2N of axial pyridine ligands (see Fig. 2.29). The structure
is thus made of metal-cyanide sheets with weak interactions between differ-
ent sheets. For these compounds a sharp spin transition is observed, with an
hysteresis of around 10 K.

Substituting pyridine by pyrazine allows linking of the different sheets by
pillars connecting the iron atoms, thus yielding a truly 3D structure with for-
mula [Fe(pz)M(CN)4] [2.34]. The comparison with the 2D structures shows an
increase not only in the Ty, temperature but also in the width of the hysteresis
loops (Fig. 2.29). The Ty, increase is attributed to the increased rigidity of
the 3D lattice with respect to the 2D lattice, rather than to the ligand change,
because pyrazine creates a smaller ligand field than pyridine. Regarding the
width, when going from the 2D to the 3D structure, cooperativity necessarily
increases, because the molecules are more connected and thus the influence of
neighbours on a given site increases.

These 3D materials can also be transformed at will from one form to the
other using light. This is the process of photo-induced phase transition (PIPT),
described in Section 4.5.2.2.

A last effect influencing cooperativity is the size of crystallites constitut-
ing the sample. Thus samples of [Fe(pz)Pt(CN)4] have been prepared by a
microemulsion method allowing the control of crystallites size in the nano-
meter range [2.34]. With two different sets of synthetic parameters it is possible
to obtain samples with the same crystal structures but with crystallite sizes of
either 230 x 230 x 55 or 60 x 60 x 20 nm. The width of the hysteresis loop
is 22 and 10 K respectively, showing that cooperativity decreases with particle
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Fig. 2.29
Structures of the 2D [Fe(py)2 M(CN)4] complex (a) and the 3D [Fe(pz)M(CN)4] complex (b), with the corresponding hysteresis loops. Although
the structure in (a) appears 3D, since pyridine ligands are not bridging, the covalent backbone is only 2D. (Reproduced from [2.34].)

size. This point is a crucial one in all studies and applications of spin cross-over
at nanometer size.

General remarks on hysteresis

From a practical point of view the consequences of hysteresis are important:
for a given temperature there are two possible states—usually one stable and
the other metastable—but since the rate of thermal conversion of the latter into
the former is usually immeasurably slow, one can speak of bistability. The two
forms have different properties (magnetic properties, of course, but also dif-
ferent colours), and it is thus possible to builddisplay devices. Demonstrators
have been realized (J. F. Letard, P. Guionneau, in [2.28, vol. 235, 221]).
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Here we have shown that an excursion in temperature can trigger the con-
version, but other physical parameters can be used. A photophysical excitation
is possible, since the two forms usually have different absorption spectra, as
shown by the LIESST or LD-LISC effects (see Chapter 4). But we can also
rely on pressure, or the magnetic field itself, as shown in Section 2.4.3.5.

An interesting question concerns the possibility of observing bistability at
the scale of one molecule. By comparison with the case of an interacting
ensemble of molecules discussed previously, it seems very difficult and chal-
lenging. In the solid-state examples given previously, bistability is related to
the extreme slowness of the thermodynamically allowed conversion from a
metastable minimum to a stable one. At the scale of one molecule or a non-
interacting population of molecules, one has to rely on the activation energy for
the chemical reaction (isomerization) to keep the two states. Experimentally,
however, it is found that the conversion of an LS to an HS form is very fast
in solution (about 10® — 10% s7!). Thus bistability—the possible existence
of two different forms of one molecule for the same values of the external
parameters—would be limited to a very short time in the case of spin trans-
ition systems. To date, in the domain of magnetic molecules, bistability with
hysteresis has been observed only for sets of single magnet molecules at very
low temperature (see Section 2.8).

2.4.3.5 Influence of other physical parameters (pressure, magnetic field,
light)

Since the spin transition is accompanied by a volume change, it is sensitive to

pressure—high pressures favouring the more dense LS state. One has, indeed:

(3G/dP)r = AV (2.93)

with AV = Vys — Vis > 0 for the LS — HS reaction.

The effect is small, but it has been demonstrated clearly for many com-
plexes. We give here the example of the [Fe(phen),(NCS),] complex [2.34].
At room temperature the complex is 100% high spin, but upon application
of a 1.3 GPa pressure (1.3 10* atm), an almost complete conversion to LS is
observed (Fig. 2.30).

The magnetic field itself can have an influence because it introduces an addi-
tional term: B M in the free enthalpy [2.28, vol. III]. Since the magnetization
M = x H(M = x B/ in SI) is proportional to H (B), after integration between
H = 0 and H, one obtains —y H?/2 (—x B2/2 ¢ in SI) for the extra term. Thus,
in the presence of a magnetic field, AG® can be written as:

AG® = AH® — TAS® — (AY)H?/2  [...(Ax)B?/2uoin SI]  (2.94)

where Ax = Yus — Xrs 1S > 0. The new (T;,;)g temperature for AG® = 0,
within an applied field H, is:

(T12)y = (T12), — (Ax)H?/2AS° [...(Ax)B?/29 AS®in SI] (2.95)

where (T)o = AH°/AS® is the Ty, temperature in the absence of magnetic
field, and the second term is negative. Logically, the magnetic field expands the
existence domain of the high-spin form by decreasing T,,. The expected effect
is small (typically a 1.8 K change for 30 T from theoretical calculations). It is
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Fig. 2.30

High-spin fraction x as a function of pres-
sure for the [Fe(phen),(NCS),] complex.
(Adapted from [2.34].)

Fig. 2.31

Free enthalpy G = f(x) curves for a point
in the ascending part of the hysteresis
loop. B = poH = 0, plain curve and black
dot; B = Bpax, dotted curve and grey dot.
(Adapted from Bousseksou et al. in [2.28,
vol. II1].)
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proportional to the square of H (B), hence high magnetic fields are valuable in
revealing it.

In the region of the hysteresis curve a pulsed magnetic field can even trig-
ger an irreversible conversion of one spin state into another. This has been
observed in the case of [Fe(phen),(NCS);], using pulsed magnetic fields (32 T
with a duration of around 75 ms) [2.28, vol. III]. In the ascending part of the
hysteresis loop, conditions for which the LS state is metastable, applying the
strong magnetic field increases the proportion the HS state, and this change
subsists after the end of the pulse. The thermodynamics of the phenomenon
can be described by Fig. 2.31. At high magnetic field, either the bump in the
G(x) function has disappeared, or the ‘tunnelling’ (actually demixing) has been
favoured, allowing the motion of the system towards the HS state, where it
remains trapped after the end of the pulse.

A last physical parameter is light. By absorbing energy emanating from an
electromagnetic radiation in the visible, the system can overcome the activa-
tion barrier at the molecular scale (see Fig. 2.14), or even surmount an energy
maximum at the scale of an interacting ensemble of molecules. Several such
processes are well documented, but are treated extensively in Chapter 4: these

Free enthalpy G

0.0 0.5 1.0
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are the light-induced excited spin state trapping (LIESST) in which one moves
from a potential energy curve to another (Section 4.5.2.1), the photo-induced
phase transition (PIPT) in which the excursion occurs from one branch to
the other of an hysteresis curve (Section 4.5.2.2), and the ligand-driven light-
induced spin cross-over (LD-LISC) where the photochemical transformation
of a ligand triggers the spin cross-over (Section 4.5.2.3).

As a conclusion of this section, we mention that the spin cross-over process
can also be found coupled to an electron transfer. Thus, in the complexes of
general formula [Co(sq)(cat)(phen)], where cat is a catecholate dianion, sq is
a semiquinone anion-radical (the 1-electron oxidized form of the latter), and
phen is 1,10-phenanthroline, the following equilibrium has been established
by Hendrickson and Pierpont ([2.28], vol. II]):

Is — [Co™(sq™*) (cat) (phen)] = hs — [Co'(sq~*)> (phen)] (2.96)

Following an intramolecular electron transfer where Co' oxidizes the

catecholate?” into semiquinone™, the central cobalt atom changes from low
spin to high spin. As for spin cross-over, the process can be thermally activ-
ated but also triggered by light, and for polycrystalline samples, susceptibility
studies show abrupt transitions typical of cooperative effects.

2.5 Spin Hamiltonian (SH) approach

The spin Hamiltonian approach is a method widely used for modelling spectro-
scopic data and computing energies of magnetic systems. It was first developed
by Abragam, Pryce, Bleaney, Griffith, and Stevens to analyse the huge amount
of data arising from electron paramagnetic resonance and nuclear magnetic
resonance when these methods appeared after World War II [2.36]. As pointed
out by Griffith: “The spin Hamiltonian is a convenient resting place during the
long trek from fundamental theory to the squiggles on an oscilloscope which
are the primary result of electron resonance experiments’ [2.23]. It was then
developed by many others to reach its present status, schematized in Fig. 2.32.

Basically, there are two steps: (i) the spin Hamiltonian is written and
empirical SH parameters are obtained from spectroscopic data; (ii) the SH
parameters are related to the theoretical description of the electronic structure.
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Fig. 2.32

The spin Hamiltonian (SH) approach
between experimental data and theory.
(Adapted from E. Solomon and F. Neese
in [2.6, vol IV, p. 345].)
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The feasibility of the SH approach relies on two bases: (i) the Pauli principle,
which closely connects the spin part of a wavefunction to the orbital one;
and (ii) the fact that the spin operators S* and S, commute with the orbital
Hamiltonian—that is, they have common eigenfunctions and eigenvalues. The
spin Hamiltonian is an operator which is polynomial in S (S spin operator). It is
acting on spin states (S, Mg, Iy — Iy, nuclear spin) that, in short, we denote
as X. It recovers effectively the energies that can be computed from the orbital
Hamiltonian (2.97a and b) (Es = Eqp):

(@) Hypin (£) = Es. X (b) Horp (W) = Eorp- (2.97)

To be efficient, it is necessary that the spin can be considered a pertinent
parameter of the system (no orbital moment, no spin—orbit coupling, or weak
enough to be considered a perturbation). If the spin Hamiltonian is suitably
defined it allows the extraction of significant parameters and relating them to
the orbital Hamiltonian eigenvalues E, and eigenfunctions .

The second part of the task (connecting SH parameters to fundamental the-
ory) is much more difficult than extracting parameters from data, and is beyond
the scope of this book. We shall only approach the problem in some spe-
cific cases. More information is given by Solomon and Neese in [2.6, vol. IV,
p. 345].

In the following we discuss a few examples of spin Hamiltonians: those
related to one magnetic centre (Section 2.5.1), and those describing the
interaction between centres (Section 2.5.2) [2.4], [2.16].

2.5.1 One-centre spin Hamiltonian

In many circumstances the Hamiltonian (2.98) has been used to effectively
describe a molecule with an electronic spin operator S and nuclear spin operat-
ors I; on different atoms i and their interaction with an external magnetic field
(induction) B:

Hypin = SDS + upSgB + ZiungnliB + TiSAL (2.98)

The first term is the zero-field splitting, and D is a tensor; the second term is
the Zeeman term, where g is the Bohr magneton and g is a tensor; the third
term describes similarly the interaction between the applied field and nuclear
magnetic moment operators by = N-gn-I) (Jin, nuclear magneton; gy, nuc-
lear g-factor considered as uniform; I, nuclear spin operator), summed on all
the i nuclei; and the fourth term is the hyperfine coupling between the elec-
tronic and nuclei spins, and A is the related tensor. Other terms are not shown
(nuclear spin—spin coupling, quadrupole nuclear interactions, and Mossbauer
isomer shifts). The empirical parameters to be determined from Hamiltonian
in eqn. (2.98) (g-values, zero-field splittings, and hyperfine couplings) depend
on the scientific field. The third and fourth terms, for example, are used widely
in nuclear magnetic resonance (NMR) spectroscopy. We discuss only the first
two terms—the most useful of them in the following of the chapter.
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2.5.1.1 The Zeeman effect

We begin with the Zeeman effect, introduced in Section 2.4.2.4, and also
comment briefly on a new quantity, g, introduced in eqn. (2.98), with the
example of an EPR experiment which allows determination of the g-values.
In Section 2.2.2 the g-factor is a scalar for a unique electron, g., or for the
many-electrons atoms, gj. In a molecule, the unpaired electron will experience
not only the magnetic induction By of the EPR spectrometer, but all the mag-
netic fields of the surroundings. The effective field experienced by the spin
can be written Bf = By(1-0). The resonance condition in the EPR exper-
iment is hy = ge.MB.BEff = g..u.Bo(l —0) = g .up.Bo (in SI units; see
eqn. (2.31)), where g.¢ is now an effective quantity defined by gefr = ge (1 — 0).
As the resonance depends on the orientation in the three directions of space of
the induction and of the spin, the best way to link vectorial quantities, spin, and
induction is a tensor, g. It is generally written as a 3 x 3 matrix and the Zeeman
term expressed as a product of matrices (magnetic induction and spin). Without
entering into mathematical details, the general 3 x 3 matrix corresponding to
the g tensor can be transformed by a suitable axes change in a diagonal matrix
with principal values of g, gx, gy, g,, which can be related to g, (gx = ge +
Agy, and so on).

The g-values can then be compared with the measured spectroscopic values
and correlated in a second step with the structural and electronic characteristics
of the compound, often in terms of the spin—orbit coupling parameter A and
excitations’ energies. For example, to obtain the g-values in pseudo-octahedral
complexes, Gatteschi et al. [2.4] propose a perturbation treatment of the spin—
orbit parameters for orbitally non-degenerate ground states using the following
formula:

g=gl— 20AorAg=g— gI=—-2)AA (2.99)
A\, the many electron spin—orbit constant, was defined in eqn. (2.64):

e (W L) (W ST )
A= Z E!. —E,

exc

(2.100)
where W, is the wavefunction of the ground state with energy E,, W is one
of the excited states with energy E[,. and the sum runs over the n excited
states, and L is the orbital angular momentum operator. The elements of A
are positive, and '\ depends on the filling of the d" configuration (< 0 if n <
5; > 0if n > 5; see Section 2.4.1). For example, in a Cu(Il) complex, &, in
an elongated octahedral geometry (square planar), a x> — y> ground state, the
expressions of g; are g, = g. —2 MA3, gy = g. =2 MA3, and gy = g -8 M A,.
The A; are the excitation energies shown in Fig. 2.33 (electron jump from a
doubly occupied orbital to the SOMO, A, from xy (By, excited state), Az from
xz and yz (Eq excited state)). It should be remarked that A3 = A, hence g =
gy = g1 and A, = Ay, hence g, = g|. Frequently encountered values are g =
2.20and g, =2.08.

2.5.1.2 Zero-field splitting

We come now to the first term of eqn. (2.98), SDS, related to the zero-field
splitting. D is a tensor, symmetric and real, with three orthogonal eigenvectors,
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Fig. 2.33

Splitting of the energy levels of a 3d°
transition metal ion, Cu(II). See also Fig
1.24 in Section 1.3.7. (a) Dy Structure;
(b) free ion; (c) octahedral symmetry,
Op (ligand field A); (d) square planar
symmetry Dy after Jahn-Teller distor-
tion (elongation along z) with orbitals
fillings and symmetry labels; (e) further
splitting by the Zeeman effect (EPR spec-
troscopy). In (d) Ay, Ay, Az are the ener-
gies of the transitions in the electronic
spectrum.
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D, ,ﬂ xy By
) Ly
Freeion T, \ﬂ ﬁ Xz,yz Eg4

(c) Octahedral
field Oy,

(d) Jahn-Teller
elongation Dy,

and S is the spin operator. It is convenient to take the X, y, z coordinates axes
parallel to the eigenvectors of D, so that:

Hzps = SDS = DyS; + Dy,S; + D..S; (2.101a)

The Dj; are the diagonal components of ]3, and the S; are the components of
spin operators.

Using the properties of spin operators and tensors, the spin Hamiltonian can
be manipulated to obtain an expression easier to handle in a matrix form. The
addition of a well-chosen constant (C) to the Hamiltonian shifts all the levels
without changing the physical properties of the system:

C == D+ Dy) (ST +82+82) /2 == (Do + Dy) S(S + 1)/2

(2.101b)
Hzps =DS? + E (Si - S§) (2.101¢)

with:
D =D,, — (Dxx + Dyy) /2and E = (Dy — Dyy) /2 (2.101d)

The same trick is used with the addition of a new constant —-D S(S + 1)/3 in
eqn. (2.101c¢):

Hyrs = D[S — DS(S + 1)/3] + E (s§ — s§) (2.102)

Among other advantages, in eqn. (2.101a) (i): the trace of the Hamiltonian is
zero; (ii) in cubic symmetry (where X, y, z are equivalent), D,, = Dyx = Dyy,
D = 0 (from eqn. (2.101d)); (iii) in axial symmetry (X, y equivalent), Dy =
Dyy, E =0, and D = D,, (from eqn. (2.101d)); and in this case eqn. (2.101a)
becomes:

Hzrs =DS?  Ezps = DM} (2.103)

Given a spin S, its energy levels within this approximation are described by
D only. The (2S + 1) spin levels of the S multiplet are therefore split, even
if there is no applied magnetic field, hence the term zero-field splitting (ZFS)
given to the effect. The eigenvalues range from Mg to -Mg and Ezgs = DM%
(Mg running from S to —S). For example:
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AE (a) (b)

ForS=1,Ms=0,Ep)=0;Ms ==+1,E1; =D.ForS =2, Mg =0, Eg = 0;
Mg ==41,E4+1 =D; Mg =+2,E47> =4D.For S =3, Mg =0, Ejg = 0; Mg = %1,
Eil :D; Ms::lzz, E12:4D, Ms::|:3,Ei3:9D, andsoon...

Figs. 2.34 and 2.35 display graphically some important consequences of the
presence of zero-field splitting: in a uniaxial system (Fig. 2.34, D # 0, E = 0),
the stabilization of the components Mg = 0 and 1 depends on the sign of D.
When D < 0 (Fig. 2.34a) the components with the highest |[Ms| ([Mg|max = S)
lie lowest, the spin tends to align along z, and the system presents ‘easy-axis
anisotropy’. When D > 0 (Fig. 2.34b) the component(s) with the lowest [Mg|
(Ms|min = 0 if S integer or Y% if S half-integer) lie(s) lowest, the spin tends
to orient in the Xy plane, which is described as ‘easy-plane anisotropy’. The
application of the magnetic field splits the degeneracy of the £1 levels (Fig.
2.34). For larger spins the splitting is larger (Fig. 2.35a). An important point is
that when D < 0 it appears an energy barrier to reverse the spin from to -Mgmax
t0 +Mgmax (AE = DMgpqx for integer spins, Fig. 2.35b). The reader can check
that with a half-integer spin, AE = D(Msmax” — Yy). The presence of this barrier,
directly related to the sign of D, its height, will have important consequences
for the very peculiar objects termed single-molecule magnets (SMM), presen-
ted and discussed in Section 2.8. By contrast, when D > 0 there is no barrier.
The sign of D and its magnitude will also be discussed in Section 2.8.

It is possible to play with the geometry of the complex and with the D and
E values. First, it is obvious that E should be less than D. If not, the easy axis
of anisotropy will change z to x. Using eqn. (2.101d) and playing with the
components Dyx, Dyy, D;;, and E/D, the reader can demonstrate as an exer-
cise that (i) the maximum rhombicity (splitting between the three components
D) is achieved for E/D = 1/3 (Dy = 0; Dy, = -2D/3; D,, = 2D/3), and
(ii) for E/D = 1 the anisotropy axis has simply changed. Therefore, it is wise
to operate in conditions where |E/D| < 1/3.

EAMg= (a) (o) A E=DM;?
00 — ..
DF 1 — --2-2C oAl o

3D
4D 2 —— --- 0 g o

5D Mg
9D |- +3 oL LI L L O

-3-2-10 1 2 3
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Fig. 2.34

Zero-field splitting for a uniaxial S =
1 system and Zeeman effect (dotted lines)
after applying a magnetic induction poH;
(a) D < 0, the Mg = %1 levels lie the low-
est; (b) D > 0, the Mg = 0 level lies the
lowest.

Fig. 2.35

Zero-field splitting for a uniaxial S =
3 system when D < 0. (a) Energy levels
and energy intervals; the highest Mg lie
the lowest; (b) graph giving the variation
of the energy D.Ms? of the Mg levels as
a function of Mg with an energy barrier
AE.
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Besides this elementary presentation, the interested reader can find more
in [2.4], section 2.1.1, on (i) the splitting of the Mg uniaxial level when the
rhombicity (E/D) increases; (ii) the ZFS spin Hamiltonians with higher orders
in S (S%, S°, ...), often necessary to fit the energy levels; and (iii) the effects
of a crystal field on magnetic anisotropy. Important recent developments in
molecular magnetism rest on those anisotropy properties (Section 2.8).

2.5.2 Two-centre spin Hamiltonians with spin operators S;

and S,

In most cases the magnetic system comprises more than one spin, and the spin
Hamiltonian must add to the individual spin Hamiltonians described previ-
ously the interaction between the neighbouring spins. Let us begin with the
simplest system with two spins, S| and S,. The Hamiltonian is simply the
sum of (i) the individual Hamiltonians of centre 1 (Sy) and 2 (S;), and (ii)
the Hamiltonian describing the interaction between the two spins. The latter is
written:

H=-S-Ji$S (2.104)

J12 is the interaction matrix. Eqn. (2.104) can be written in a more readable
form, to evidence three kinds of coupling between the two vector operators Sy
and S, (scalar, tensor, and vector products):

H=—J;SS; +S1D1S; +dnSi A S, (2.105)
Isotropic Anisotropic Antisymmetric

where J;» = —Tr(J12)/3. Tr is the trace of the interaction matrix (sum of
the diagonal elements J%¢). Dy, is a tensor, such as: D% = 155 + 1715 —

%“Tr(]lz). 2112 is a vector, such as: dj, = %(J‘;’g —J}'g). a, B, and y are the

Cartesian components (X, y, z), and 3, is the Kronecker symbol.
When J12| >> [Diz| >> |dia],

H= —J1281.82 (210621)

is the simplest possible, isotropic, Hamiltonian describing the interaction
between two spins by a simple scalar product. As S1.S; = S1S;co0s6, it is some-
times called a cosine coupling. It was worked out successively by Heisenberg
(1926), Dirac (1929), and Van Vleck (1932), and is known from the first
letters of their names (HDVV Hamiltonian) [2.7]. Before working out the
Hamiltonian we should warn the reader about different formulations by various
authors (H = —2J1,51.S; or + J1251.S;). In general there is no possible confu-
sion, but it is always necessary to look at the Hamiltonian defining J;, before
comparing different data in the literature. To find the solutions we use our usual
tools. After introducing S = S; + S, and its square S = S% + Sg +281.S,, we
obtain:

H=-J581.8=-17[$*—ST—S3] /2 (2.106b)

The total spin S can take all the values comprised between |[S; — S| and
(S1 +S5). The corresponding eigenvalues in zero-field Eg® are:

EQ = — 15086 + D=S$iSi 4+ =SS+ DI/2 (2.106c)
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This equation holds, whatever the values of S| and S,.

For two spins S; = S, = 1/2, the two spin states S arising from the inter-
action are S = 0 (antiparallel magnetic moments, singlet) and S = 1 (parallel
magnetic moments, triplet). The energy levels are then:

E?, =EY = —31/4 (2.107a)
E(soil _ E(TO) = +1/4 (2.107b)

The state of zero spin (S = 0) corresponds to a spin degeneracy 2S + 1 = 1.
It is a singlet S. The state of spin one (S = 1) corresponds to a spin degeneracy
2S + 1 =3.Itis atriplet T. It is easy to find that:

EY —EY =7 (2.107¢)

Fig. 2.36 shows the corresponding energy states. One can observe in the figure
that when the singlet is at the ground state, J is negative. It is said that the
coupling between the two spins is antiferromagnetic (Fig. 2.36a and b). When
the triplet is at the ground state (Fig. 2.36¢), J is positive and the coupling is
said to be ferromagnetic.

J, coupling constant between the two spins, when defined by Hamiltonian
(2.106a), is the energy difference between the singlet and the triplet states,
and is a physical observable. The spin Hamiltonian approach provides it by a
very simple calculation. We emphasize its usefulness in Bleaney and Bowers’
study of the magnetic properties of copper acetate—an inescapable historical
example in molecular magnetism (see Box ‘Copper acetate’). Isotropic coup-
ling tends to make the spins parallel (ferromagnetic coupling) or antiparallel
(antiferromagnetic coupling).

This is, furthermore, a good example for achieving the second part of our
programme, to go from the spin Hamiltonian to its theoretical orbital coun-
terpart, using our preceding calculations (Sections 1.5.2.3 and 1.5.3.1). The
reader will realize that there is an exact correspondence between the eigenval-
ues of the HDV'V spin Hamiltonian and those obtained by the Heitler—London
approach described in Section 1.5.3.1. Indeed, combining eqn. (1.84d) and eqn.
(2.107¢) we find:

J = EY — EY = [2k+48S — 25°Qa+ jI/ (1 —5Y) (2.108a)

J=EY —EY ~ 2k + 4pS (2.108b)

The latter equation is an approximation at first order in S. In many cases, when
the overlap integrals S are negligible compared to 1, it is accurate enough. It is

AE (a) AE (b) AE (0 ¢

—-J/4—M Er —J —M Er—J T Es
J<0 J>0

J=Es-Er antiferro ferro

L 3J/4 H Es 0 H Es o H =
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Fig. 2.36

Energy diagram of singlet and triplet
states: (a) antiferromagnetic coupling; (b)
antiferromagnetic interaction (J < 0) tak-
ing the singlet energy as origin of energy;
(c) ferromagnetic coupling (J > 0). J is
shown by the grey arrow.
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a very important relationship between J, the energy between the singlet and
the triplet (spin approach), and the integrals describing the quantum interaction
between two orbitals (orbital approach): S, the overlap integral, B, the reson-
ance or transfer integral, and k, the two-electron exchange integral. Indeed, the
relation between J, a magnetic property, and k, 8, and S electrostatic quantities
depending on the structure of the molecule, is the fundamental bridge between
magnetism and structure in the solid and a key to build new molecular mag-
netic materials. This useful correlation will be found in the theoretical model
by Kahn and Briat (See Section 2.6.1.1).

The second term in eqn. (2.105), anisotropic exchange, can be approached
in the case of the so-called ‘strong exchange’ limit; that is, when |Jj5| >>
IDi], D2, |D12], |di2|, ... This is a rather frequently encountered situation.
In this case, Bencini and Gatteschi have shown [2.16] that it is possible to
relate the spin Hamiltonian parameters of spin S (after coupling) to those of
the original spins by the following relations:

g5 =C1g; + 28 (2.109a)

Ds = d;D; + d2D; + dDin (2.109b)
with:
o=+ 0)/2; co=(—-¢)/2; dy = (cy + ¢)/2;
dy=(cy —c)/2;din=(1 —cy)/2

Here, d;; is a coefficient, not to be confused with the antisymmetric vector d;;.
And:

(2.109¢)

. SiSi+1D—=8xS+ 1)

SSTD (2.109d)

cr e 3[S1(S141) — Sa(S2+ DI+ S(SH+DI3S(S + 1) — 3 — 281 (S1 + 1) — 282(S2+ 1]
T 2S+3)2S-1SS+1)

(2.109¢)

4SS+ DISi(S1 + 1) = Sa(S2 + )] = 3[S1(S1 + 1) — S1(S2 + 1]
- (2S+3)2S — DS(S + 1)

(2.1091)

The full demonstration and examples of applications can be found in [2.4] and
[2.16]. Anisotropic exchange tends to align the spins in a privileged direction
in space.

When the strong exchange conditions are not realized or when the ground
state is orbitally degenerate, the situation becomes much more difficult to
describe. A possible shortcut is to write eqn. (2.106a) in a different way, evid-
encing the Cartesian components of the spins S; and S, in the scalar product,
and introducing different values Jy, Jy, and J,. Thus the following expression:

H = —JS1.S2 = —J [SixSax + SiySay + S1252] (2.110a)
is replaced by
H=- [stlxs2x + Jyslys2y + JlezSZZ] (2110b)

When ]y, Iy, and J, are equal the exchange is isotropic: the coupling between
the x, y, and z components of the spins are the same. But eqn. (2.110b) allows
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Table 2.5 Isotropic and anisotropic exchange.

Ji values Nature of exchange Name
Lk=ly=1, Isotropic Heisenberg
Lrly <<, Uniaxial (easy axis) Ising
ILrly>>1, Planar (easy plane) XY

Ik # )y #I. XYZ

having different J, Jy, and J,, which is a convenient way of describing an
anisotropic exchange situation, frequently used by solid state physicists. Table
2.5 gathers different experimentally encountered situations.

The Ising situation corresponds to an easy axis of the magnetization: in a
magnetic field the spins are aligned more easily in the z direction that in the
two others; the XY situation corresponds to an easy plane of magnetization:
the spin orients more easily in the XY plane than in the z direction. Other
elegant approaches of exchange in the case of orbital degeneracy of the ground
state have been proposed by Borras—Almenar and Tsukerblat et al. in [2.6].
Exchange anisotropy is an important property in magnetic materials, as we
shall see in Section 2.8.

The last term in eqn. (2.105) is antisymmetric exchange. This term describes
the tendency of S; and S, to orient at 90° (See Fig. 2.64). It was developed
by Dzyaloshinskii and Moriya. To occur, it needs systems with very low
symmetry; but we do not tackle it in this book.

2.5.3 More than two centres

2.5.3.1 Uniform isotropic interaction between several spins:

the Kambe method
After the simple case of two spins in interaction, we give the example of several
spins (i or j from 1 to n), interacting between them with the same interac-
tion, J;;. We consider first that anisotropic and antisymmetric coupling can be
neglected, so that we can generalize the Hamiltonian (2.106a) by summing
Jij. S;.S; terms:

HZ_Z; Y Sisi=-1 Y SiS (2.111a)
J>i neighbours

where all the J;; are equal. As before, we write the total spin operator and its
square:

2
S=YLSi  S=(LS) =XLSi+2 XSS (2111b)

neighbours

H=-1 ) S§8= % [52 -3 s?] Q.111¢)

neighbours
Then, after Van Vleck [2.20a], the eigenvalues are:
—zJ

B =m0 [S(S +D =) SiSi+ 1)] 2.111d)
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where z is the number of neighbours, and n is the number of interacting spins.

To compute the susceptibility through the Van Vleck equation (2.45), we
need to know the degeneracy of the levels S’ that is, the number of times Q(S")
a level appears with a given spin S’. Van Vleck suggests the following solution:

Q) =oS) — oS+ 1) (2.111e)
where w(S’) is the coefficient of S’ in the following expansion:
(xs 4+ ST S xS x_s)n (2.111f)

It is easy to become familiar with the use of the last three equations to
determine the energy levels and their degeneracy in a copper(Il) binuc-
lear complex: S=1/2, n = 2, S’ = 0 or 1, so that: (x'/2 + x"/z)2 = x'+
2x° + x L w(?2) =0;0(1) = 1 and w(0) = 2. Then, Q(1) = w(l) — w(2) =
1-0=1, and Q(0) = »(0) —w(l) =2 —1 = 1. We find again the trivial
result that the triplet energy is E(S=1) = —J/4; the singlet E(S = 1) = 3J/4;
and both levels are non-degenerate.

The method was proposed first by K. Kambe [2.37] for trinuclear complexes
of Fe** and Cr**, and can be found also in various places [2.25]. It can be
applied to write concise analytical formula of the energy of the spin levels
in high-symmetry systems when the coupling constant J is uniform among the
neighbours. It can be used also in some cases with different coupling constants.
To avoid lengthy equations we consider only a very simple system of three ions
A1, Ay, Aj in a linear (or isosceles) molecule with spins Sy, S,, S3, with an
interaction J; between S, and S; and S, and S3, and an interaction J, between
S and S3. It is convenient to rename J; as J and J, as aJ. The spin Hamiltonian
is then written:

H=-J[S.S; +S,.83 + aS;.S5] (2.112a)
The trick is to introduce an intermediate spin operator S*:
S*=8,+S; and S=S"+S; (2.112b)

The choice of the intermediate spin is generally determined by the symmetry of
the system, but it can be chosen arbitrarily. In any case, once chosen it is com-
pulsory to keep the same coupling scheme during the whole calculation. Using
the properties of S? operators, the reader can easily find that the Hamiltonian,
and its related eigenvalues E(S, S*), can be written as:

H=-J[S* S —a)—S; —a(S]+8S5)1/2 (2.112¢)

E(S,S*) == JISS + D=S*(S"+ 1) (I —a) — Sx(S2+ 1)

(2.112d)
—aSi(S; + 1) —aS;(S; + 1D]/2

An even more compact equation is obtained when S| = S, = S3 = S;. The
eigenvalues depend now on S* and S. With the usual rules, |S, — S3| <
S*<S,+S3 and |S*—S,| <S <S*+S,. It is useful to build a table to
find the values of S* and S, to determine the various states (S, S*), their
energies E(S, S*) and their degeneracies as before. The reader can check as
an exercise that the energies of a three spin % systems present the following
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energies: E (3/2,1) = —J/2 + 3aJ/4; E(1/2,1) =+J —aJ/4; E(1/2,0) =
+ 3aJ/4.

Another powerful method useful for larger but highly symmetric clusters
relies on the formalism of irreducible tensors, fully exploiting the symmetry of
the spin system, and can be found in [2.4], section 2.5.

2.5.3.2 Exchange anisotropy in clusters

We close this section on spin Hamiltonians by extending the results obtained
on the anisotropy of binuclear objects to cluster objects. The main goal is
to relate the spin Hamiltonian parameters of the cluster to those of the indi-
vidual constituents with closed-form equations. This can be done ‘easily’ only
in the case of the strong exchange limit. Otherwise, it is necessary to apply
more cumbersome computation methods. We simply give the principles, since
more detailed calculations can be found in [2.4] section 2.5. Basically, the total
spin is approached through intermediary spins as introduced in Section 2.5.3.1.
If there are n = 4 spins one can write: S; = S; + S3; S123 = S12 + 53, S =
Si23 + S4. n — 2 intermediate spins are needed. The g and D tensors for the
different intermediates are written successively. The spin Hamiltonian for the
spin—spin interaction of the whole system is composed of the sum of terms
involving the individual local anisotropy D; tensors and of terms implying the
anisotropy interactions ﬁij between spins i and j, as in eqn. (2.109b) for two
centres:

Hgs = Zizl S; DiS; + Zi=1j>1 S; ﬁiij (2.113a)

Ds = Z;l diD; + Zr:l,j>i dDj; (2.113b)

D is the anisotropy tensor of the ground spin state S. The coefficients d; and d;
can be computed from the characteristics of the system. For example, Gatteschi
et al. proposed the following simple formulae for the coefficients, in the case
of a ferromagnetic coupling between n spins S; (Section 2.5.2 of [2.4]):
2Si—1 2S;
©di=—FF—— @@dj=—"77"— (2.113c,d)
n(2nS; — 1) n(2nS; — 1)
More than the details of the calculation, we are interested in the results of
this spin Hamiltonian approach in simple anisotropic situations. For example,
when identical individual spins have their anisotropy axis parallel, the single-
ion participation in the Dg parameter of the ground spin is:
Ds= i Llp 2.114
ST S — 1 @119

Then, within the spin ground state S, when Dg is negative, an energy bar-
rier A will arise (see Section 2.5.1.2.). It will prove central in the physics of
single-molecule magnets (Section 2.8). More generally, the spin Hamiltonian
approach briefly introduced here will be used in different contexts throughout
this chapter.
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Fig. 2.37

(a) Two molecular orbitals {; and
built from two basis orbitals a and b.
and 1, are orthogonal; (b) a and b orbit-
als have a non-zero overlap integral S; (c)
and (d) obtention of orthogonalized basis
orbitals a’ and b’ from the linear combin-
ation of | and 7; (e) there is a unique
solution corresponding to a’ and b’ having
a zero overlap integral.

The localized electron: magnetic properties

2.6 Orbital interactions and exchange

In the preceding section the spin Hamiltonian provided a tool for determin-
ing the spin states and the energy levels of a magnetic system. The coupling
constant J was a phenomenological parameter; that is, it described only the
coupling phenomenon, not the underlying mechanism. In the present sec-
tion we propose describing and understanding in more depth the nature of
the J coupling between two electrons. This fundamental problem has raised
the interest of many scientists, from the beginning of quantum mechanics to the
applied study of magnetic materials. The problem is not fundamentally differ-
ent from the problem of bonding for which we provided solutions in Chapter
1. A famous book by J. Goodenough is indeed entitled Magnetism and the
Chemical Bond [2.38].

But the focus here is not on the bond but on the magnetic properties, and
more precisely on the singlet—triplet energy separation, J. And we know that
the coupling’s origin is not magnetic but electrostatic, orbital.

We start with the simple case of two unpaired electrons, involving two orbit-
als and two spins in a molecule. The two unpaired electrons considered will be
named active, in opposition to all other electrons in the system, named passive,
even if this is not strictly the case.

The two unpaired electrons are described by orbitals a and b having an over-
lap integral S. For the while, a and b are pure atomic orbitals of the 1s type, and
the system is symmetrical (a and b have equal energies and the same nature).
These two orbitals build the molecular orbitals {r; and {r, with energies €; and
g, respectively, and A = ¢; — &, (Fig. 2.37a):

Y= Ni(a+b) (2.115a)

Y, =N_(a—b) (2.115b)

When the overlap is weak (|e; —e;| weak) the Heitler-London model

(HL) was found to be preferred to the Hund—Mulliken (HM) scheme (see
Section 1.5.3).

The different electronic configurations and states were given in Fig. 1.42.

They constitute our starting point to present briefly, without extensive calcula-
tions, a few models of the exchange interaction in molecules.
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Copper acetate

Copper acetate can be considered a cornerstone in molecular magnetism and the
first example of the study of magnetic exchange occurring within a molecule. The
story began in 1951, before the crystallographic structure was known. Since then,
the interpretation of the magnetic properties has attracted tremendous interest, and
the saga continues with new materials based on the same structure.

In 1951, Guha published the temperature dependence of susceptibility [1]. Upon
cooling, instead of presenting the Curie law, it showed a broad maximum near
250 K, and then dropped almost to zero. A year later, Bleaney and Bowers reported
the decrease of the EPR signal intensity at low temperature, and concluded to an
‘anomalous paramagnetism of copper acetate’ [2]. Without knowing the structure,
they proposed that ‘isolated pairs of copper ions interact strongly through exchange
forces, each pair forming a lower singlet state and an upper triplet state, the latter
only being paramagnetic’. The ‘anomalous’ EPR results came from the triplet state,
which behaves as a diradical (while the singlet state is EPR silent), and the decrease
of both EPR signal and susceptibility at low temperature was nicely explained
by the Boltzmann distribution over the different energy levels. The most relevant
information is gathered in Fig. 1.
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B 0.003
] . r
g (d) "
5 )
< 0.002 J
=
Es— 4y
0.001 [ (b)
0.
0 50 100 150 200 250 300 350
T/K
H=Hp+Hg -JS,Sg +gS.H gugMgH
s B +gugH
Ty .-
ET,/_ :: b O
. S———gugH
o
‘\ J = ES_ET
\“ 1
ES - 9____
Exchange Zeeman

Fig. 1

Copper acetate: (a) structure; (b) recent
susceptibility data (black triangles); (c)
Curie law susceptibility behaviour for
two spins without interaction; (d) the
two-level spin model of Bleaney and
Bowers.

Fig. 2

Energy splitting in copper acetate
through the successive action of ex-
change and Zeeman effect.
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The susceptibility data can be fitted with a Bleaney—Bowers law and singlet—
triplet gap value, J = —296 cm™'. Using the energy levels in Fig. 2, it is a good
exercise for the reader to apply the Van Vleck equation and find the law proposed by
Bleaney and Bowers (here in cgs-emu units):

2NAg®
" KT(3 + e~ V/AT)

The X-ray crystal structure, determined in 1953 by Van Niekerk and Schoening,
confirmed the dinuclear nature of the compound [3]: the two copper(Il) ions are
bridged by four carboxylates (Fig. 1a). A water molecule is coordinated to each cop-
per(Il) achieving a square pyramidal geometry. The metal-metal distance is 2.64 A.
For that distance, and taking into account the orientation of d,»_y» orbitals, there is no
significant direct overlap (contrary to the chromium(Il) analogue, where the ty;—ty,
overlap is so strong that the complex is diamagnetic). It is now recognized that the
interaction occurs through the four bridging ligands.

Over the years, copper acetate has served as a reference compound to test
exchange theories (not without a struggle!), computational techniques including
‘premieres’ ([4] and see the following), and new types of experiment. Thus the
singlet—triplet transition, which is unobservable by infrared or Raman spectro-
scopy because the corresponding transition is forbidden, was determined directly
by inelastic neutron scattering in 1979 [5]. The result confirms magnetic measure-
ments and provide a separation of 298 + 4 cm™'. A nice summary of the magnetic
story of copper acetate can be found in [4].

Today, the beautiful dinuclear structure is used as a precursor for materials—
either magnetic frameworks where the copper pairs are substituted by dissymmetric
AB pairs, or porous materials by replacing the acetate by extended carboxylates and
water by bridging ligands, whereas theoreticians continue to unravel the details of
the electronic structure. Guihéry et al. recently solved the calculation of the sign of
zero-field splitting, D = —0.335 cm™ [6].
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2.6.1 Basic theoretical background

2.6.1.1 Heitler-London model, non-orthogonal orbitals

We start here with the model by Kahn and Briat [2.3, 2.39], based on the
Heitler-London scheme presented in Section 1.5.3.1. In Fig. 2.38, left-hand
side, are shown the orbitals a on centre A and b on centre B (A); their overlap
integral is § = <a|b>; the electronic configurations and energies (B) provided
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Fig. 2.38

Energies of the singlet and triplet states created by the interaction of non-orthogonalized orbitals a, b (A, B, C left) and orthogonalized ones a’,
b’ (D, E, F right) in the frame of the Heitler-London model. In the middle are shown the orbitals a and b (A) and a’ and b’ (D). At the bottom
are represented the low-lying configurations, energies, and states [ab (B) and a'b’ (E)]. At the top, the excited states obtained by electron transfer
from one site to the other, ai and bb (C) and a’a’ and b’b’ (F). In the centre are shown the energy levels obtained by configuration interaction (CI,
grey arrows) between the ground and excited states of same symmetry (! I"g). The constant x which appears in (B) is defined in the text. (Adapted
from [2.39].)

by eqns. (1.81) and (1.82a,b). Their interaction defines a ground-state sing-
let 'T'y (Es energy) and a triplet *I", (Et energy) (Figs. 1.42C and 2.38B). The
coupling constant J is already defined as (Es — Er). The electron transfer of one
electron to the other orbital creates two singlet charge-transfer excited states,
'T'y and 'T" (Figs. 1.42B and 2.38C).

In a second step, the two ground and excited states 'I'y of same sym-
metry interact through configuration interaction (CI); they repel each other
and give rise to slightly modified—and better—energy levels. Between the
ground and the excited states the energy difference is U = (jo — j)/(1 + S?).
The CI process stabilizes slightly the ground state by —4x°U (1 + SZ)4 with
x=(p —aS) (1 - SZ) + ¢ (1 + S2) — (j + k) S; the calculation of the energy
stabilization can be found in reference [2.39]. An improved J value is then
obtained.

J=[2k +4BS —28°Qu+)]/(1 =) —4[B—aS+£—( + bS]’ /U
(2.116a)
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The two-electron integral £ (the repulsion between a(1)b(2) and b(1)b(2) con-
figurations) is:

2
¢ = <a(1)b2)

— dp(Ddp(2)> (2.116b)
I

2
b(HBR2)> = <ha(1)dp(2) ‘:—12

The most important conclusion is that the Heitler—London model, with a priori
non-orthogonal orbitals, provides the proper ground state ' ", without the need
of configuration interaction. Eqn. (2.116a) provides the J value, which can be
reduced at the first order in S (the overlap integral) as:

J=[2k +4BS —25*Q2a + I/ (1 —S*) ~ 2k + 4pS (2.117a)

J=Jr+Jar (2.117b)

The term BS (< 0 when S > 0 and B < 0) can be substituted by equivalent
quantities BS oc B> o< S 2 oc A? since |B| o< S (an approximation suggested by
Mulliken) and B &~ —|A|/2 (A is the energy difference between {r; and ;).

The sign of J is determined by the sum of a positive term, 2k, favour-
ing ferromagnetism and a negative one, 48S, favouring antiferromagnetic
coupling.

2.6.1.2 Heitler—London model, orthogonalized orbitals

What happens if we use the orthogonalized orbitals a’ and b’, instead of over-
lapping orbitals a and b? The answer suggested by Girerd et al. [2.39] is shown
on the right-hand side of Fig. 2.38. How do we obtain orthogonalized orbitals
a’ and b’? We simply start from the bonding and antibonding molecular orbit-
als Py and {r, of Fig. 2.37 (assumed to be the result of a quantum-chemical
calculation of the complete system), and combine them with the following
transformation maintaining orthogonality (eqns. (2.118a—c)):

a'= /201 +12)/2 (2.118a)
b = 21 —2)/2 (2.118b)

and:
<db'>=0 (2.118¢)

The new orbitals a’ and b’ are orthogonal by definition, and they look as shown
in Fig. 2.37¢c, d, e. (a’ is centred mainly on A with a small antibonding—
participation of B—and the opposite for b’).

We can then compute the energy levels of the coupled system with a’ and
b’ as basis orbitals. The energies are still given by eqns. (1.81) and (1.82a,b)
by simply dropping the term in § since now the overlap integral S is zero.
We should introduce a prime on all the integrals, §’, and so on, since they are
defined with different orbitals and their values are different. Nevertheless, the
change of basis orbitals, using such a unitary transformation, does not change
the final energies of the system [2.39]. We drop the primes.

The energies of the ground states singlet 'T', and triplet °T', are:

E('Ty) = 2a +j+k (2.119a)
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ECT) =2a+j—k (2.119b)

Es — Er =J =2k (> 0) (2.119¢)

The result is drastically different. The triplet state is now the ground state!
The interaction is expected to be ferromagnetic. As before, we can proceed
further and take into account the configuration interaction between the two
1T, states of the ground and excited charge-transfer states. The lower T, state
is strongly stabilized. The triplet state does not move, and we reach an energy
scheme in agreement with the one obtained with non-orthogonal orbitals, due
to the configuration interaction:

Es— BEr =T =2k — 4B + £)*/U (2.119d)

The singlet—triplet gap is still the sum of a positive term (exchange integral k)
and a negative one, introduced due to configuration interaction. The denom-
inator in the stabilization term is U, and the difference in energy between the
ground and the excited (charge transfer) states is, as usual, CI. The result allows
us to understand the first quantum calculations of Heisenberg, who arrived,
with orthogonal orbitals, at rigorously the same conclusion as eqn. (2.119c).
J = 2k is positive, and the interaction is ferromagnetic. It was necessary to
await the thesis of L. Néel in 1932 to realize on an empirical basis that J could
be negative and the interaction antiferromagnetic. The world was no longer
a big magnet. It is also rewarding to note that the negative term in (2.119c¢)
(which comprises the integral £ defined in eqn. (2.116b)) is very similar that of
B2/U introduced by Anderson to help solve the ‘great question of the sign of
exchange interaction’.

2.6.1.3 Hund-Mulliken model, orthogonalized orbitals

Similar (and complementary) conclusions can be reached using the Hund—
Mulliken model, as proposed by Hoffmann and coworkers [2.40]. One starts
with the states obtained from molecular orbitals (scheme (a) in Fig. 1.42, where
Y; and {, are defined as in Fig. 2.37). The triplet state is uniquely defined
(P; 1 and Y, 1 and other triplet components). This is useful to allow an SCF
calculation of the orbitals on the high-spin (triplet) state. It is more difficult to
define the singlet ground state (GS), since in general it will be represented by
linear combination of the two singlets Sy and S, of same symmetry ‘Fg [2.40].

Wgs = ¢1Wso + c2Wso (2.120)

A strong interaction between orbitals a and b leads to a large energy difference
€] — & and ¢; >> ¢, in eqn. (2.120). In such a case, the singlet state Sy can
be considered a good approximation for the ground-state singlet GS. But if the
interaction is weak (small 1 — €;), it becomes clear that the ground-state singlet
will obey eqn. (2.120) with ¢; = c,. In other words, a configuration interaction
will necessary be between Sy and S, to obtain the appropriate ground state.
Using the usual quantities (i) h;, the one-electron energy Hamiltonian for elec-
tron i in the system (kinetic and potential energies, nuclear repulsion); (ii) the
usual Coulomb and exchange two-electron interactions (see Section 1.5).

hi = <y (1) [hidry (1) > (2.121a)
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2

B = < (1) 0 2) f— Wi (1) 0 (2) > (2.121b)
ij
2

Kij = <bi (D) ¥ (2) :— Vi (2) U (1) > (2.121c)
ij

We skip here the calculations (the diagonalization of the 2 x 2 matrix implying
So and S,, which can be found in [2.40] and [1.15]).

After reasonable approximations, neglecting non-significant weak terms
[2.40], it arrives at:

Er=h + h+Jp—Kp (2.122a)
12
Es =h; +hy + (J11 +J2) /2 — (1/2) [Rhy +T;; — 2hy — Tn)? +4K%2] /
(2.122b)
Es —Er &~ —J;p + Ko + (11 +J2) /2 — (h; —hy)? /2K, (2.122¢)

where remain the main ingredients. As it is difficult to extract easily useful
information from the last expression, R. Hoffmann and coworkers introduced
orthogonalized localized orbitals a’ and b’, as we did previously. They write

the identities between the integrals Ji,, Ki,, ... (defined as previously from

the molecular orbitals {r; and ;) and their equivalent Jy, Ky ... (defined
from the a’ and b’ orbitals):

Ju=/2) (0 + Jy)+Ky+2<aaat > (2.123a)

Jon = (1/2) (Ja/a, —+ Ja,b/) =+ Ka,b/ -2 < a/a/|a’b/ > (2.123b)

Jn=(1/2) (Ja/a/ —+ Ja/b/) — Ka/b/ (2.123¢)

K=/ =) (2.123d)

Then, the orbitals’ energies & are expressed as a function of the h;
(Section 1.5):

e1=h +Jp—Kpp and &= hy+Jp—Kp, & —e=h—-h
(2.123e)
It comes after some new calculations and approximations:

J =Es—Er~ 2K,y — (&1 —)*/ (J1y — T1/) (2.124)

The singlet—triplet gap is once more the sum, or the competition, of a positive
term Jp (always related to an exchange integral K,y > 0) and a negative term
Jar built from the square of the energy difference between the molecular orbit-
als and the difference of two Coulomb integrals (in general, Jyy > Jyp > Kypy).
It is easy to recognize under the name Ky, Jyw, Joy and <a'a’|a’b’>, our pre-
vious two-electron repulsion integrals k, jo, j, and /, defined on other quantum
objects. When ¢; = ¢, the preceding result related to orthogonal orbitals is
recovered: J is positive and the interaction is ferromagnetic. In series of com-
pounds where Ky, Jyy, Jyy can be considered as constant (weak variation
of the structure), J depends only on the square of A = ¢; — e;—a quantity
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easily accessible to simple molecular quantum calculations (extended Hiickel
MOs for example). In the case where the denominator is reasonably constant
(a same system with smooth geometry changes, for example), it is possible to
correlate J (the magnetic properties) to the geometry changes.

2.6.2 From hydrogen to transition metal complexes

2.6.2.1 Interaction between d orbitals

If we replace s orbitals by 3d orbitals, the problem and the conclusions are
rigorously the same, in the frame of the HL scheme. This kind of exchange
interaction has been called ‘direct exchange’ (with no need for intermedi-
ary ligand). But the symmetry begins to play a crucial role. Everything being
equal—distance in particular—the overlap integral S is decreasing for o, T, or
d overlaps, reaching zero for orthogonality, as shown in Fig. 2.39. This means
that we can move with the same orbitals from a situation displaying strong
antiferromagnetism to ferromagnetism, depending on symmetry.

2.6.2.2 Interaction through a monoatomic bridge in an A-X-B entity

To be closer to real problems we need to introduce a diamagnetic ligand
between the two singly occupied orbitals (SOMO). Such a bridge raises a dif-
ficult problem: how could a diamagnetic ligand participate to the exchange?
The A-X-B problem is still a controversial topic for some. Figure 2.40 sets the
scene: the SOMOs are two x> — y? orbitals ¢ and ¢g of a Cu(Il) ion, electronic
configuration d°, and the ligand X is simply a p, orbital. This example corres-
ponds to an imaginary linear symmetric oxide bridge between two copper(Il)
ions, Cu(I)-O—-Cu(II). We forget for the while the ancillary ligands necessary
to allow the Cu(II) unpaired electron to be described by a x> — y? orbital (for
example, in a square planar geometry). The ¢ overlap is chosen accordingly
(see Section 1.3.6). An inversion centre is at the oxygen site in the middle of
the two metallic ions. The symmetry is Doop, but for simplicity we use the u
and g notations related to the inversion operation.

We start from three a priori non-orthogonal orbitals, two x> — y? orbitals of
the metallic ions, and a px orbital of the ligand. The py orbital (symmetry u) is
lower in energy than the d orbitals, since the oxygen is more electronegative
than the metals. To obtain the three molecular orbitals g, J;, and {r, it is
helpful to build two u and g symmetry orbitals by a & combination of the d
orbitals. The u symmetry orbital combines with the py orbital to give a bonding
MO ({r9) and an antibonding one ({r,). The g symmetry orbital, unchanged,
becomes the molecular orbital {r;. The bonding MO s is fully occupied with
two electrons, and the two other MOs share two electrons. Figure 2.40 displays

Socoverlap > moverlap > 6 overlap > S=0
Strong Medium Weak  Orthogonality

BB BH- 403k

X2—
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Fig. 2.39

Tuning the overlap between d orbitals
with symmetry, from strong o overlap to
zero (orthogonality).
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Fig. 2.40

Tlustration of non-orthogonal and ortho-
gonalized basis orbitals in the case of
d orbitals and a bridging ligand X. (a)
Three molecular orbitals {9, {1, and
2 built from three non-orthogonal basis
orbitals: the u and g symmetry orbitals
built from ¢, and ¢, on the left and px
on the right; Yo, Py, and y are ortho-
gonal; (b) non-orthogonalized orbitals a
and b and (c) orthogonalized orbitals a’
and b’ built from the linear combination
of Y and V2. There is a unique solution
corresponding to a zero overlap integral
for a’ and b/, since the overlap integral S
is zero (c), which is not the case for a and
b (b).

Fig. 2.41

Two localized orbitals a and b interact to
give molecular orbitals | and {r (upper
part of Fig. 2.40)
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a triplet configuration Yo(1J )Y (1)W2(1). Then the problem can be tackled as
in the preceding HM and HL cases. Two singlets Sy and S, are built from s,
and {r, and combine to give the ground state. The two molecular orbitals U,
and Vs, can be localized and orthogonalized to give a’ and b/, and the results for
J are given by eqn. (2.124) (Hund-Mulliken situation, Section 2.6.1.3). On the
other hand, to build {s; and {r, one can start alternatively from the two orbitals
a and b, of the A-X and X-B fragments, centred on A and B and partially
delocalized on the ligand oxide (obtained by ligand field theory) (Fig. 2.41).
They are a priori non-orthogonal (they can be computed, for example, using
a molecular orbital calculation of the Cu—O fragments). We are back to the
Heitler—London situation (Section 2.6.1.1). The result for J is given by eqn.
(2.117a). But if the a’ and b’ orbitals (HM) are clearly defined, it is not the case
for a and b (HL), which are less rigorously defined.

The magnetic orbital concept allows use of the same expressions as for pure
d orbitals, and this is the reason of its great heuristic power. Note, however,
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that in using expressions such as eqn. (2.117a), p is now an effective quantity
(see Section 1.2.3). We shall re-encounter this concept of effective resonance

integral in Chapter 3.

This situation is known in the literature as superexchange interaction; that
is, exchange through a diamagnetic bridging ligand. We see that introducing
the localized orbitals a’ and b’ or a, b, demonstrates that there is no difference
in nature between ‘direct exchange’ between localized d orbitals (a, b or a’, b’)

and ‘superexchange’.

Superexchange

The concept of superexchange is defined by the IUPAC as an ‘electronic interac-
tion between two molecular entities mediated by one or more different molecules or
ions’.

We meet it here for the first time in the frame of magnetic exchange interactions,
but it will also occur in the case of electron transfer in Chapter 3. In both cases,
the mediator entity plays a role by quantum-mechanical mixing of its wavefunctions
with those of the terminal entities.

For magnetic exchange interactions we have to explain why two paramag-
netic centres, which are too far to interact directly, can nevertheless present an
exchange interaction. As seen previously, there are two ways to describe this indirect
interaction:

e Use a full description of the system, as in the molecular orbital scheme of
Fig. 2.40, starting from atomic orbitals. Here the role of the bridging ligand is
taken into account explicitly, at the expense of some complexity.

e Use a reduced model as in Fig. 2.41. In this case one defines first magnetic
orbitals, to take into account the partial delocalization between the ions and the
bridging ligand, and then combines them as in the case of just two paramagnetic
centres. The advantage of this (more pedagogical) approach is that there is no dif-
ference in nature between exchange and superexchange. The role of the bridging
ligand is taken into account in the definition of magnetic orbitals.

Superexchange is described in a natural way by theory, because the process of mix-
ing or perturbing wavefunctions is a common ingredient of quantum-mechanical
methods. One has simply to avoid assigning too much importance to limiting forms
or configurations, which have no real existence and actually contribute little to the
overall state. An example of misconception is given later.

Using the simple qualitative scheme of Fig. 2.42 (three schematized versions of
Fig. 2.40), we can illustrate an important aspect of the exchange phenomenon
through the ligand concerning the electronegativity of the bridge X (F~, CI,
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Fig. 2.42

Influence of the electronegativity of the
bridging atom on the coupling: the lar-
ger the electronegativity, the weaker
the interaction and the antiferromagnetic
coupling.
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Fig. 2.43

Influence of the geometry: (a) the AXB
entity is bent by 90°; x, y axes are chosen
as shown; (b) the localized orbitals a and
b built from d x?>—y? orbitals and the suit-
able p orbitals of the bridging ligand; (c)
orthogonality of the basis orbitals.

Fig. 2.44
A frequently encountered misunderstand-
ing of magnetic superexchange.

The localized electron: magnetic properties

Br-, I or 0%, S?, ..). Increase of electronegativity means that the p orbital
energy decreases, and its interaction with the d orbitals (higher in energy)
is weakened. Everything else being equal, the weight of the bridging orbital
decreases in the {, orbital (Fig. 2.42 a, b, c, top). 1, becomes less and less
antibonding, the difference in energy between U, () and {; () decreases,
and the antiferromagnetic component of the coupling is expected to decrease,
as shown by eqn. (2.124).

Another important factor is the geometry. Figure 2.43 schematizes the situ-
ation for a bent AXB bridge with a 90-degree angle. The two localized orbitals
a and b built from the d orbitals and suitable p orbitals of X do not overlap
(Fig. 2.43c). They remain as such in the molecular entity (Fig. 2.43, centre).
In the HL. model, eqn. (2.117a) with § = 0 tells immediately that J = 2k > 0.
In the HM model, ¢, — &1 = 0, and eqn. (2.124) tells that J] = 2K, > 0, and
the coupling is ferromagnetic.

A final remark will deal with a frequently encountered misunderstanding.
The exchange interaction through a bridge (or superexchange) is sometimes
presented as shown in Fig. 2.44, considered as a crude pictorial represent-
ation of the superexchange mechanism, ‘explaining’ the antiferromagnetism
observed in a linear A-X-B bridge. Basically, the phenomenon is explained by
the fact that a spin ‘up’ on the metal A can interact with a spin ‘down’ of the
p orbital, leaving a spin ‘up’ in the electron pair able in turn to interact with
a spin down on B, as if it were possible and enough to separate an electron
pair and to distribute the two spins in each of the two orbital lobes to under-
stand exchange interaction. This is a misinterpretation of pioneering schemes,
implying excited states with virtual electron transfer. We suggest that such a
short cut be avoided.
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2.6.2.3 Interaction through a molecular bridge

The final step is to replace the atomic bridge by a molecular one, which is cru-
cial for understanding the magnetic systems studied in this chapter. We apply
the same reasoning as before to the case of a dinuclear w-oxalato copper(Il)
complex. The oxalate dianion, [C,04]%, is the simplest dicarboxylate, and one
of the favourite ligands among molecular magnetism chemists due to its very
versatile bonding properties.

Kahn’s model starts with non-orthogonal localized orbitals. The appealing
feature is that such an orbital can be found in a mononuclear complex like the
ethanediamine-oxalato-copper(II) complex, the structure of which is shown
in Fig. 2.45a. It is one of the reasons why Kahn and coworkers named them
‘natural magnetic orbitals’ (NMO). The orbital is built from a molecular orbital
of the oxalate dianion of adapted symmetry and a d orbital (Fig. 2.45b).

Two molecular orbitals arise, dponding and Pantibonding O ¢a. The higher in
energy, ¢,, describes the unpaired electron. It presents a nodal surface between
the metal and the oxygen atoms of the ligand. It is then antibonding. We shall
see in this chapter that this is a common feature of SOMOs: being the highest in
energy, they are quite often slightly antibonding or non-bonding. The unpaired

®
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Fig. 2.45

‘Natural’ magnetic orbital (NMO) in a
mononuclear complex of copper(Il): (a)
structure; b) symmetry of the molecu-
lar orbital; in a C, point group, with
the chosen axes, the symmetry of the
orbital is by; (c) molecular orbital energy
diagram.
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electrons do not participate to the bonding in the molecule. Another observa-
tion is that the ‘magnetic orbital’ is centred on the metal but widely delocalized
on the ligand. The spin density is spread over the oxalate, including the oxygen
atoms opposite to those directly bound to the metal.

The dinuclear complex (Fig. 2.46a) comprises two copper(Il) cations
bridged by the oxalate in a symmetric bis-bidentate way. Two terminal ethane-
diamine derivative molecules bind the copper(Il) trans to the oxalate. A water
molecule completes the coordination of each copper in axial position, but it is
not essential for our purpose, and we consider that the point group symmetry
is Cz.

2.6.2.4 Unsymmetrical molecule AB

Here we need to adapt the preceding singlet—triplet calculations
(Section 2.6.1) to the AB unsymmetrical case. The system presents a
magnetic orbital a, on site A and the orbital b, on site B, each occupied by
one unpaired electron (spin operator s). i and v are the symmetry labels of the
orbitals. The spin Hamiltonian is H = —J;,s;.s,. The electronic Hamiltonian
is H=h(1) + h(2) + % with h (1) # h (2). The orbital energies are ay and
op (with 8H = 0p — OR).

The overlap integral is S,y = (a,, (1)|b,(2)). The molecular orbitals of such
an AB molecule were studied in Section 1.3.2. We can face two situations:
(i) the symmetries of a,, and b, are different (. # v), the orbitals are ortho-
gonal, the overlap integral S,,, = 0 and the AB molecular orbitals are identical
to the original a, and b,; (ii) the symmetries are the same (. = v). In this case,
the overlap integral S, # 0, the two basis orbitals a, and b, build the two
molecular orbitals y; and {r,, shown in Fig. 2.47, with an energy gap A,.

Kahn’s HL and Hoffmann’s HM models (Sections 2.6.1 and 2.6.2) are based
on the definition of a pair of symmetric, equivalent magnetic orbitals, centred
on A and B. In the Hoffmann’s model this symmetry is compulsory; there is
no general treatment when the sites A and B are different. For the HL. model
we report briefly the results given by Kahn [2.3, p. 189]. The calculations are
lengthy, but the conclusion (when neglecting terms in S? in the development of
J—which means that S <<1) is a simple extension of the symmetric case:

1/2
I =2k —2[A) — 8] S (2.125a)

When compared with the expression for a symmetrical case (eqn. (2.117a))
J =2k +4BS ~ 2k — 4|A|S/2 = 2k — 2|A|S (2.125b)

it is seen that the expression _[Aﬁ — 8&]1/ 2 plays the role of 2f. In other
words, the quantities appearing in Fig. 2.47 can be used to define an effective
B, which, in the unsymmetrical case, is no longer given directly by half the
energy gap between a bonding and an antibonding orbital.

As for the symmetrical case, it is easy to recognize from eqn. (2.125b)
that when S, = 0 (orthogonality), J] = 2k, > 0, and the interaction is
ferromagnetic.
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(a) Structure of the dinuclear copper(II) complex (top view); (b) coordinates and symmetry, C; axis, mirror plane 7 and inversion centre i, Doy

point group; (c) molecular orbitals built from non-orthogonal localized orbitals (HL model); (d) molecular orbital energy diagram; the tails on

the terminal ligand are not shown. The symmetry labels are those in the Doy, group or g and u for simplicity; (e) orthogonalized localized orbitals
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Fig. 2.47

Schematic molecular orbital energy dia-
gram in an A-B unsymmetrical molecule
(simplified to a case of two d orbitals of
different energies belonging to the same
symmetry representation ).
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2.6.2.5 Interaction between several electrons per centre: concept
of exchange pathway

We proceed further by examining dinuclear complexes having ns unpaired
electrons in a; orbitals on centre A and np unpaired electrons in b; orbitals on
centre B with a total number of electrons n = na + ng and a total number
of interactions na.ng. Only a qualitative analysis will be given here, but the
full treatment can be found in [2.3, p. 186]. The magnetic behaviour can be
analysed as follows: (i) on each centre, there is a magnetic exchange inter-
action between electron spins (for example, a local Hund rule if there are
several quasidegenerate orbitals), so that a total local spin Sp or Sp can still
be defined; (ii) by looking at the orbital overlaps, one can determine the J;
couplings between electron pairs (one electron of site A with one electron of
site B). The interactions are additive, and finally one can write:

H=-JS,\Ss (2.1262)

1 na ng
YUY (2.126b)
nang “—i=l =1

J, the coupling between spins S, and Sg, is defined as the sum of the J;;, coup-
ling for electron pairs 1,j, divided by the number of exchange pathways. Note
that the interaction energy scales as J.na.ng.

We illustrate the concept of exchange pathway, interaction between pairs of
orbitals in Fig. 2.48 for a dinuclear system AB with an oxo bridge (for cyanido,
see Section 2.6.5.3).

We shall use this analysis in our study of polynuclear complexes in
Section 2.6.5, The reader familiar with solid-state magnetism will have recog-
nized in Fig. 2.48 a translation of the famous Goodenough—Kanamori rules
(see the following).

J =
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2.6.3 Other models: from the pioneers to modern computations

2.6.3.1 The precursors: Kramers, Anderson, Goodenough,
and Kanamori

We have developed at length Hoffmann’s and Kahn’s models, conceived for
molecules, but previous exchange models, established for solids, inspired the
molecular ones.

Kramers was the first, in 1934, to stress the role of a diamagnetic ligand
to mediate the magnetic interaction between paramagnetic centres. Later, in
1950, P. W. Anderson (Nobel Prize recipient, 1977 [2.41]) exploited the idea
of virtual electron transfer, which we can compare to configuration interaction
with an excited charge transfer state. To describe the electronic structure of the
solid, he used ‘running waves’ or Bloch orbitals—defined in Section 1.4.1 and
used intensively in Chapter 3—(the Bloch orbitals are defined by an SCF cal-
culation in the ferromagnetic state); these wavefunctions are then localized and
orthogonalized (and then named Wannier orbitals). They can be considered as
a three-dimensional version of the Hoffmann ones. In the Anderson formalism
the ferromagnetic term like 2 Ky (eqn. 2.124) is called ‘potential exchange’,
while the antiferromagnetic term like —(g; — €)%/ (Ja/a/ — Ja/b/) (formulated
—B%/U by Anderson) is called ‘kinetic exchange’ because it is linked to the
possibility of an electron on site a to delocalize on site b, and thus decrease its
kinetic energy.

The model was later completed and refined by Goodenough and Kanamori.

One conclusion of Anderson is of particular interest: ‘there is no distinction
in principle between exchange caused by direct overlap of the wavefunc-
tions on magnetic ions without intermediate atoms present, and exchange
through non-magnetic groups; thats is, between what used to be called ‘direct’
exchange and ‘superexchange’.

The Goodenough—Kanamori rules
The ‘rules’ were coined by Goodenough using the same basic concepts as
Anderson, and completing them (in a Hund—Mulliken approach) to find an
explanation for the huge amount of magnetic properties of oxides, with ny
electrons on A and ng electrons on B. Kanamori distilled the rules by using
more systematically the symmetry and using a Heitler-London approach.
At that time the rules gave an impressive valuable qualitative interpretation
of most of the data. Goodenough emphasised (i) the 180-degree geometry
(see Fig. 2.48) where the antiferromagnetic interaction is the largest (o over-
lap between e, orbitals (d®-d®, for example) and m overlap between the tog
orbitals (d*~d3, for example) with our present notations, and (ii) the 90-degree
geometry where orthogonality gives rise to ferromagnetic interactions (see
Fig. 2.43). The real geometry is always more complex, especially in molecules.
The reader can examine the Goodenough—Kanamori rules, having simply in
mind the basic concepts of overlap and orthogonality between pairs of mag-
netic orbitals developed previously. The references to the original pioneering
works can be found in Anderson [2.41] and Goodenough [2.38].

To summarize, five main models describing the exchange interaction
between two transition metals through a diamagnetic ligand are gathered in
Table 2.6.
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Table 2.6 Models to describe the exchange interaction in transition metal derivatives.

Models Bonding/Exchange Hund-Mulliken Heitler-London

Solids Anderson [2.41] Kanamori [see 2.38, 2.41]
Goodenough [2.38]

Molecules Hay, Thibeault, Hoffmann [2.40] Kahn, Briat [2.3, 2.39]

In these approaches the configuration interaction used essentially excited
states based on metal-to-metal charge transfer (MMCT) characterized by the
one-site electron repulsion U. Other models have been developed since, using
in particular ligand-to-metal charge transfer (LMCT) excited states both in the
HL or HM approaches. Many references can be found in the recent reviews
[2.42].

2.6.3.2 Numerical computation of J values

In the preceding sections we proposed heuristic solutions for understanding
the main components of J; that is, a qualitative approach. The problem is much
more difficult when a quantitative output is searched, as close as possible to
the experimental values. First, because beyond two electrons there is no exact
solution to the electronic Hamiltonian, and the determination of the correlation
energy between two electrons must be found by some ersatz or approxima-
tion. Second, one has indeed to determine a small energy difference (typically
1-300 cm™") between singlet and triplet levels, while the total electronic energy
of these states in a molecule can be 103107 times greater. These constraints
constitute a strong motivation for the conception of smart methods using the
most recent resources of computational chemistry.

Modern quantitative methods rely on either post-Hartree—Fock quantum
treatments (also known as wavefunction theory, WFT) or density functional
theory (DFT) calculations. As seen in Chapter 1, the post-Hartree—Fock treat-
ment necessitates an extensive use of configuration interaction with excited
states to improve the ground state (hence the introduction of many determin-
ants), while DFT is basically a monodeterminantal method.

In both, the computation of the singlet ground state, a priori the easiest, is
one of the difficult points. Let us return to the simple scheme of the ‘active
electrons’ model limited to two magnetic orbitals a and b. Figure 2.49 displays
three spin configurations or determinants.

We know that the singlet ground state is a linear combination of lab| (a)

and |ab| (b): 'Wo(M = 0) = l"‘f"#. Hence two determinants are needed

to describe the singlet, which therefore necessitates a multideterminantal

@@ labl () labl © labl
A B A B A B
A v v } } }
a b a b a b
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Fig. 2.49

Three spin configurations and determin-
ants. Note the lack of symmetry in (a)
and (b).
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approach (thus beyond Hartree-Fock). There is no such problem for the triplet
(or more generally for a configuration where all the spins are parallel). For
instance, the Mg = 1 component of the triplet is defined uniquely by the single
determinant |ab| (Fig. 2.49¢).

We begin with Hartree—Fock (WFT) treatments. In a seminal paper pub-
lished in 1981, Malrieu and coworkers tackled the problem with the example
of copper acetate (strongly antiferromagnetic, J = —286 cm™) [2.43] [2.3 sec-
tion 8.5]. They used ab initio methods based on the computation of SCF MO
orbitals, followed by a configuration interaction (CI) with a Mgller—Plesset
perturbation treatment (see Section 1.5.2.2). The method was adapted to cal-
culate directly the contribution of CI to the singlet—triplet energy difference,
rather than use a brute force technique of computing independently the ener-
gies of the two states and making the difference. The beginning of their
expression for J was similar to the Hay—Thibeault-Hoffmann (HTH) model,
because they used orthogonalized magnetic orbitals (see Section 2.6.1.3) but
went further by introducing various perturbative corrections. J was given by:

2hy)?
J =2K,p — A + other second - order terms + fourth - order terms

foa = o (2.127)

in which one recognizes the first two terms of eqn. (2.124). Other second-order
corrections are introduced, implying higher-energy configurations involving
various kinds of charge transfer and ligand excitations. Finally, it was neces-
sary to go to fourth order to approach experimental results.

The numerical results illustrate the difficulties of obtaining quantitative
values. The ferromagnetic term 2K,, (potential exchange) is computed as
+233 cm™', which is surprisingly high, taking into account the metal-metal
distance. The next term (kinetic exchange) just compensates the first, and at
this stage J is still slightly positive. Introducing the other second-order terms
and the fourth-order terms yields at last a negative J value (—120 cm™), but
still far from the experimental —286 cm™'. The agreement is better in the case
of oxalate-bridged system, the total value up to fourthorder (-295 cm™") being
closer to the experimental one (385 cm™).

The method thus suffered from at least two difficulties: (i) the perturba-
tion expansion of the CI is not unique, and (ii) where should the perturbation
expansion be stopped? It was nevertheless the methodological starting point of
many computational endeavours which are more and more successful even if
they are demanding of computer time. Among them are the methods based on
CASSCEF (complete active space SCF) and their developments: definition of an
active space (a few frontier orbitals including the singly occupied ones), com-
putation using all the configurations of the active space compatible with space
and spin symmetries, eventually completed by other selected configurations
of the inactive space (DDCI, difference dedicated configuration interaction)
[2.44, 2.45].

In the last twenty years, various alternatives have been devised, less demand-
ing of machine time. One of the most fruitful is called the ‘broken symmetry’
approach, which can be declined in two variants: a simplified Hartree—Fock
treatment and a DFT treatment.
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The principle of the broken symmetry (BS) approach, introduced in 1981 by
Noodleman [2.46], is to circumvent the previously mentioned difficulty in
computing correctly the singlet energy. One defines a fictitious state, which
is a mixed spin state. It has Mg = 0, but is not an eigenfunction of the triplet
nor the singlet. It can be depicted schematically as one of the determinants (a)
or (b) in Fig. 2.49.

Mathematically, the BS state is a determinant describing an electron on site
A with spin ‘up’ and the other electron on site B with spin ‘down’. It is not
symmetric (hence the name ‘broken symmetry’), because it associates a given
spin state, say ‘up’, with one half only of the molecule, and thus presents a
mixed spin symmetry. The great advantage of the broken symmetry state is that
it can be computed from a simple SCF procedure taking into account only one
determinant, without need of the CI step. Due to its mixed nature, its energy is
in principle the average of the pure spin state energies:

1
Eps = E(ES + Er) (2.128a)
which would give:

J = Es — Er = 2 (Egs — Er) (2.128b)

Technically, the BS state is computed at the unrestricted level, which suf-
fers from ‘spin contamination’ (the computed levels are no more pure spin
levels). We cannot enter into the conceptual and technical problems that arise,
which are still an object of debate. Other expressions for J have been proposed
(Yamaguchi, Ruiz, Caballol). The difficulties can be solved when some care is
taken [2.47-2.49]. In these conditions, DFT calculations, with selected func-
tionals, can be compared successfully with the most sophisticated ab initio
calculations, in simple A-X-B models (H-He-H for example). If we return to
the reference compound [Cu,(acetate),] (see Box ‘Copper acetate’), a value
of 299 cm™! (experiment: —296) was obtained by DFT. Nowadays, DFT is
used increasingly to tackle the computation of J values in extended polynuclear
systems, at the moment unreachable by WFT calculations.

2.6.4 Ferromagnetic and antiferromagnetic coupling
in dinuclear complexes with one spin per centre

In the two following subsections we present a few examples of real transition
metal complexes where theoretical models allow understanding and predicting
the magnetic properties. Our main tools in this heuristic approach are the con-
cepts by Kahn and Hoffmann, condensed in eqns. (2.117) and (2.124). We start
with very simple homometallic dinuclear complexes with one electron on each
metallic centre where it is possible to tune, practically at will, the overlap
between the magnetic orbitals. In the next section we proceed to the case of
several electrons per centre.

2.6.4.1 Overlap and symmetry

A beautiful pioneering example was provided by the bis-p-hydroxo copper(Il)
dinuclear complexes with the first attempts of ‘magneto-structural’ correla-
tion between the bridging angle 6 and the J values, by W. Hatfield and others,
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Fig. 2.50

Exchange interaction in dinuclear
bis-p-hydroxo-copper(Il) complexes.

(a) schematic idealized planar structure;
(b) variation of the singly occupied
molecular orbital energies as a function
of the bridging angle 6.
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as already extensively presented in [2.2] and [2.3, p. 159sg]. When two cop-
per(Il) ions are bridged by two hydroxo groups (Fig. 2.50a), and when diamine
terminal ligands N...N are varied to induce sterical constraint and modify
the geometry around the copper(Il), the N-Cu—N angle (o) is changing and
induces large variations of the bridging Cu;—X—Cu, 6 angle. The J value varies
accordingly, as shown by Table 2.7.
The phenomenon is explained nicely either by Kahn’s or Hoffmann’s
models.
@J=Jg+Jar (b)J=2k+4pS
2 2
(©)J=2Kqp — M = 2K — .A
Jaa — Jab
The two singly occupied molecular orbitals are built from the + + and — +
combination of the magnetic orbitals around Cu; and Cu, (Fig. 2.50) in a way
completely similar to Fig. 2.46. In a Dy, point group they have by and by, sym-
metry. The b, orbital comprises the 2p, of the bridging oxygen, whereas the
by, orbital includes the 2p, oxygen orbital. When the 6 angle varies, the energy
of the two orbitals is changing, as shown in Fig. 2.50b (which was obtained
by a simple semi-empirical extended Hiickel calculation). Please note that in
all the 6 domain, the Hoffmann MOs (b;,; and by,) are of course orthogonal.

(2.129)

Table 2.7 Variation of the coupling constant J as a function of the bridging

angle.

Compound Cu;—-0-Cu; / degrees J/em™
[Cu(bpy)(OH)]2(NO3)2 95.5 +172
[Cu(dmaep)(OH)]2(ClO4)> 98.4 2.3
[Cu(tmen)(OH)]2(NO3)» 101.9 -367

[Cu(tmen)(OH)],Br; 104.1 -509
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At some 6 angle, slightly larger than 90 degrees, the energies are the same,
and the MOs energy levels are degenerate. In eqn. (2.124), A = ¢ — & =
0 and J = 2 K,,. The triplet state is favoured by exchange interaction. When
6 increases the antiferromagnetic term becomes larger, and can eventually
become equal to the ferromagnetic one (this is practically achieved at 98.4° in
Table 2.7, and then becomes preponderant). The interaction is then more and
more antiferromagnetic. In terms of Kahn’s model, the angle where the MOs
energy levels are degenerate corresponds to the special situation where the
magnetic orbitals are orthogonal (hence S = 0 and J = 2k in eqn. (2.117a).).

Tunable exchange in copper(Il) \.-oxalato dinuclear complexes [2.3, p. 167sq]
Another textbook example is given by oxalate-bridged complexes which can be
treated simply using Kahn’s model. We can formulate this family of complexes
as TCu(II)-Ox-Cu(II)T (Ox = oxalate bridging ligand, T = various polyamines
terminal ligand (en = 1,2-ethanediamine, tmen = N,N,N’,N’-tetramethyl-1,2-
ethanediamine, dien = diethylenetriamine). The mononuclear tmenCu(IT)Ox
is shown in Fig. 2.45a. The schematic structures of the dinuclear complexes
are shown in Fig. 2.51: 1 (a), 2 (b), 3 (c). The coupling constants J, fit from
experimental susceptibilities, are very different for 1-3: J; = -385cm™, J, =
—13 em™, J3 =-75 cm™!.

In the three complexes 1, 2, and 3, the surrounding of the copper(Il) can
be described essentially by a square planar geometry formed by oxygen atoms
of the oxalate and nitrogen atoms from the ligands at short distances (& 2R),
ensuring the presence of ‘x>—y” type’ magnetic orbitals. The presence in axial
position of a water molecule (in 1) or an oxygen atom of the oxalate (in 2
and 3) at longer distance (=~ 2.35A) slightly modifies the copper geometry to
square pyramidal but does not influence our simple semi-quantitative demon-
stration. The intramolecular Cu—Cu distances are close to 5.2 A in the three
cases. Kahn’s model allows a straightforward explanation of the tuning of the
J values. We use the orbitals’ overlaps displayed in Fig. 2.52 and the fact that in
this model, J = 2k + 4BS; that is, J ~ 4BS(cx S? o B> o< A?) when neglecting
k [2.50].

J;=-385cm™’
1J4] o< 482
(b)
Joy=—13 cm™
b S 1l—0
a 0
05 S~ O4 (c)
AV Jy=-75cm™
b 15l oc &
a0,y 04
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Fig. 2.51

Ball-and-stick structures of copper(Il)
complexes down the xy plane. a)
dinuclear tmenCu(I)OxCu(II)tmen, 1;
b) dinuclear tmen-MeImCu(IT)OxCu(II)
Melm-tmen, 2; c¢) dinuclear tmenCu(II)
OxCu(Il)dien, 3; Copper, medium grey
sphere, oxygen, large black sphere,
nitrogen, small grey sphere, carbon,
small black sphere.

Fig. 2.52

Exchange interaction in dinuclear cop-
per(Il) p-oxalato complexes. Schematic
overlap, experimental and computed J
values in (a) complex 1, (b) complex 2,
(c) complex 3 (adapted from [2.50]).
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In the symmetric dinuclear complex 1 [tmenCuOxCutmen]** (Fig. 2.51a),
the two magnetic orbitals a and b are in the oxalato plane. They overlap
significantly (integral overlap S;) (Fig. 2.52a). If we define s as the over-
lap between the two atoms O; and O, on one side of the carboxylate bridge
COO, S| = 2s and J; o 4s%. In the non-planar symmetric dinuclear complex
2, [tmen-MeImCu(IN)OxCu(Il)MeIm-tmen]**, (Fig. 2.51b), the two magnetic
orbitals a and b are in planes roughly perpendicular to the oxalate bridge.
They overlap very weakly (the overlap integral S, =~ 0) (Fig. 2.52b), and the
coupling constant J, ~ 0. In the non-planar disymmetric dinuclear complex
3, [tmenCu(I1)OxCu(II)dien]**, an intermediate situation occurs (Fig. 2.52c).
The magnetic orbital a is in the oxalato plane, while b is in a perpendicular
plane, so that they overlap only on one side of oxalate, S3 = s,J3 o s> should
be & J; /4 whereas the experimental ratio is J3 / J; &~ 5.

Thus the model appears to work properly for understanding and fore-
seeing antiferromagnetic situations on a semi-quantitative basis. What about
ferromagnetic coupling?

Symmetry, orthogonality, and ferromagnetic coupling

With the example of bis-p-hydroxo copper(Il) complexes, we showed that
orthogonality of the magnetic orbitals and then ferromagnetic interaction could
be achieved for a given 6 angle, but this was (after Kahn) an accidental
orthogonality. Orthogonality (and ferromagnetic interaction) can be achieved
instead by a strict control of symmetry. An elegant approach was to use simple
ions with one unpaired electron: copper(Il), d° and vanadyl(IV), d'. We warn
the reader not to confuse ‘ferromagnetism’, often used as a contraction of
‘ferromagnetic interaction’ between two neighbours, with ‘ferromagnetism’,
the usual meaning of which is ‘long-range ferromagnetic order’ found in
ferromagnets.

Ferromagnetic coupling in a copper(Il)-vanadyl(1V) binuclear system [2.3,
p. 174-81]
Here we use the very convenient ligand Hy(fsa)en (Hy(fsa)en = N,N’-(2-
hydroxy-3-carboxybenzilidene)-ethanediamine) which presents two different
binding sites A and B (Fig. 2.53a). It is not easy, but is possible, to fill the
A site with a cation A (Cu!, for example, d®) and the B site with different
cations: Cu'(Fig. 2.53b); VIVO d!, (Fig. 2.53¢c); M = Cr(III) d*; and Fe(1II) &
(Fig. 2.53d). We admit that the only symmetry element is the xy plane (‘hori-
zontal’ plane in the Cy point group) (Fig. 2.53a). With A = B = Cu(l), the
two magnetic orbitals have the same symmetry a’. As the 6 angle = 100.2°,
they overlap and the interaction is antiferromagnetic (J = —650 cm™). In the
CuVO(fsa)en complex (Fig. 2.53c), an axial methanol molecule coordinated
to the copper(Il) is, for clarity, not shown. The VO group is perpendicular
to the mean plane of the molecule. The magnetic orbitals are x2— 72, @/, for
VIVO (symmetric in the reflection through the xy plane) and xz, a", for Cu(II)
(antisymmetric) (Fig. 2.53c).

These orbitals are orthogonal by symmetry, and thus both Kahn’s and
Hoffmann’s models predict a ferromagnetic interaction. This is the case, and
J is quite high (J = + 118 cm™). This result, obtained at the beginning of
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the 1980s, was an important step in demonstrating the feasibility of ferromag-
netic coupling at the molecular level, and by extension in complex objects.
Furthermore, Kahn and Charlot provided a simple (pictorial) explanation of
the magnitude of the J coupling constant. Looking at the expression of the
exchange integral k, one realizes that k is related to the one-electron quantity
p(i), named overlap density, and defined in each point of space by the product

p(1) = a(i).b():
p()p2) d
I

J=2k=2<a()b@2)|e*/rnla@)b(l)> = / ridr, (2.130)
The delocalization of the two magnetic orbitals of Cu and VO is strong on
the oxygen bridge; pay attention to the antibonding character of the two mag-
netic orbitals (Fig. 2.53e). The overlap density p is important around the two
oxygen bridges (Fig. 2.51f), and then the ferromagnetic coupling J is import-
ant. Instead, when the spin density is delocalized on a large polyatomic bridge
(oxalate, for example), orthogonality still creates ferromagnetism but the weak
overlap density p gives only weak J values. It is amazing to observe that in the
ab initio calculation of the CuVO complex ([2.3, p. 1784], the orthogonalized
orbital a’ and b/, related to Cu™! and VIVO, have delocalization tails on the other
metal, whereas the non-orthogonalized orbitals are orthogonal without need of
the tails.

Our conclusion is therefore that ferromagnetic interaction can be achieved
through orthogonality, and that the larger the overlap density (the smaller
the bridge), the larger the effect. Other means to reach ferromagnetic coup-
ling at the molecular level, through ‘double exchange’, are commented on in
Section 3.2.2.4.

2.6.4.2 Influence of the energy of the bridge orbitals [2.51]

The second important parameter to understand the coupling constant between
two unpaired electrons is the energy of the orbitals of the bridge. We already
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Fig. 2.53

Interactions in AB(fsa)en complex. (a)
Schematic structure of the molecule. The
dotted line is the projection of xy sym-
metry plane. Also shown are the coordin-
ates axes corresponding to point group
Ch. Magnetic orbitals: (b) Cu—Cu, over-
lap and antiferromagnetism; (c) Cu-VO,
orthogonality and ferromagnetism; (d)
Cu-M with M = Cr(IIl) orthogonality
and ferromagnetism; M = Fe(IlI), over-
lap and ferrimagnetism (Section 2.6.5.2);
(e) Cu and VO magnetic orbitals emphas-
izing their delocalization on the oxygen
bridges and the signs of the wavefunc-
tions. The oxygen p orbitals belonging to
the two magnetic orbitals have been arti-
ficially separated to better display their
signs; (f) schematic representation of the
overlap density pointing out the sign on
the oxygen bridges.
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Fig. 2.54

Influence of the energy of the orbitals of
the molecular bridge on the J value. (A)
Schematic structure of the bis-chelating
bridges and of the dinuclear copper com-
plexes. The bridges are: (a) X=Y=O0,
oxalate (Ox), (b) X=0; Y=NH,
oxamide (Oa), (c) X=0, Y=S, dithio-
oxalate (dto), (d) X=S, Y=NH, dithio-
oxamide(dta), (e) X=Y=S, tetrathio-
oxalate(tto). (B) Scheme of the highest
occupied molecular orbitals (HOMOs)
of the bridge (u and g symmetry). i is
the location of the inversion centre. (C)
Scheme of the resulting antibonding
(*) singly occupied molecular orbitals
(SOMOs) (u and g). (D) Results of exten-
ded Hiickel calculations on copper(Il)
dinuclear complexes. Lower: energy of
the bridges” HOMOs (grey). The dotted
lines are guides for the eyes. Upper:
energy of the SOMOs. The small arrows
and the grey vertical lines evidence the
energy gap A between the u* and g*
SOMOs. (E) Qualitative comparison of
the two (u) SOMOs with oxalate
(Ox) and tetrathiooxalate (tto) bridges
emphasizing the larger participation of
the bridge to the SOMO with sulphur
(tto).
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had an answer for the case of a monoatomic bridge (Fig. 2.42): the closer the
energy of the ligand is from the energy of the metallic orbitals, the larger the
mixing with the d orbitals is and the larger the antiferromagnetic interaction
is. Mutatis mutandis, the conclusion is the same for a molecular bridge, as
shown in the following example. We compare oxalate-like bridges, oxamide
(0a), dithiooxalate (dto), dithiooxamide (dta), and tetrathiooxalate (tto), form-
ing dinuclear copper(Il) complexes of similar structure (Fig. 2.54A). Extended
Hiickel calculations are performed on crystallographic geometries.

Fig. 2.54 displays the bridges’ HOMOs (Fig. 2.54B), the SOMOs of the
complex, obtained by the combinations (u and g) of the bridging HOMOs
and of symmetry orbitals from the metals (+— and ++) (Fig. 2.54C) and
the energies’ changes (Fig. 2.54D). When the oxygen atoms of the oxalate
bridge are progressively replaced by atoms of nitrogen and sulphur, less elec-
tronegative than oxygen (from left to right): (i) the bridges” HOMOs energies
(Fig. 2.54D, bottom) increase and so does the difference between the ener-
gies of the bridge’s g and u orbitals; (ii) the u and g bridging HOMOs interact
more and more with the symmetry orbitals of the metals to give SOMOs of
increasing energy; that is, the weight of the atoms of the bridge increases in the

® o
N \ / \ /
HY =X / \ / \

'4_ dCuCu _>'
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(C) SOMOs (*
(D)
70 L Energy / eV A 0_9*
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Aox 4 ~_L’ - + g
—10.0 |« - T
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(E) (a)ox (e) tto
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SOMOs (O < N < S); (iii) the energy gap A = ¢; — & between the SOMOs
of the complex increases accordingly (Fig. 2.54D top). In the frame of the
Hoffmann’s model (J varies as (g, — €,)?), the computed trend explains nicely
the experimentally observed antiferromagnetism and the enhancement of the
absolute values of J from oxalate to tetrathiooxalate: Jox = —385 cm™, Jo, =
—580 cm™!, Jgu =594 cm™!, |Tyo| > 1000 cm™'.

2.6.5 Complexes with several spins per centre

A new step in our way to more elaborated magnetic molecular materials con-
sists in introducing metallic ions with more than one electron on each centre.
We use molecular bridges already known and the concept of exchange path-
way introduced in Section 2.6.2.5. We deal first with dinuclear compounds and
then polynuclear ones. In this way, we shall introduce the important concept
of molecular ferrimagnetism and propose a rational approach to high-spin
molecules.

2.6.5.1 Exchange pathways

The usefulness of this concept will be illustrated by the example of dinuclear
p-oxalato complexes of the general type A-Ox-B with A, B = Cu(Il), Ni(I),
Co(ID), Fe(I), Mn(II). In our model (Fig. 2.55) the A and B ions and the oxal-
ate bridge lie in the same plane. The surrounding of the two sites A and B is
quasi-octahedral because of the presence of terminal ligands (not shown here).
We use the symmetry point group C,, to be able to describe the case A # B
without loss of generality. The coordinates’ axes and the orbitals symmetry

@

N o N
(b)
Coupling B % @ 8 o
through
oxalate | xz,by y%a; x*-2%a; xy,a, yz, b,
A % AF| o) f  f
1 5
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Q |+ e | a Pt
2
y21a1 R ittt
: °
v f af af f f
x?—2, a, E :
8  f f f af fi
xy, by |1 ‘
o | f f f f af |
Y2, 8p |V i3
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Fig. 2.55

(a) Coordinates of a molecular p-oxalato
dinuclear system AB and an octahedral
ligand field around transition metals A
and B; (b) table with the magnetic orbit-
als on site A (column) and B (row); the
ligands’ orbitals are not shown for clar-
ity; the orbitals are represented as viewed
down y; expectation of the contribution
of the different exchange pathways to the
coupling (notations af and f as in Fig.
2.48, AF means strong af); the boxes cor-
respond to different experimental cases,
homodinuclear Cu(ID-Cu(ll), d°-d° 1,
Ni(ID-Ni(Il), d®-d®, 2, Mn(II)-Mn(II)
or Fe(Il)-Fe(Ill), d>-d°, 3. Also shown
are boxes for heterodinuclear Cu(II)-
V(aV)0, d°-d', 4, Cu(ID-Cr(IT), d°—d3,
5 and Cr(IlH)-Mn(Il), d3°-d>, 6, used in
Section 2.6.5.3.
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Table 2.8 Structural and magnetic data for homometallic j1-oxalato dinuclear complexes. The
values are the average for different terminal ligands.

A=B— Mn(IT) Fe(Il) Co(I) Ni(II) Cu(Il) Zn(ID)
4 4’ d6 d7 d8 d9 le
dap /A~ 5.6 na 54 54 5.2 (to 5.6) -
J/em™ ~ -2 -6 -10 -33(4) -390(20) 0
nang.J = =50 -96 -90 -132 -390 0

(na: non available)

labels are different from Fig. 2.48. Furthermore, xy and yz are linear combin-
ations of real orbitals. A very similar diagram would be obtained in the Dy
point group.

The experimental J for homodinuclear complexes are gathered in Table 2.8.

The J values—all negative—increase strongly from Mn(II) to Cu(Il). This
trend can be understood qualitatively using our preceding theoretical mod-
els. The interaction between two copper(Il) ions (box 1 in Fig. 2.55b), with
a strong |J| value, was extensively discussed in Section 2.6.4.1. It relies on
one exchange pathway implying a strong overlap of the xz magnetic orbitals
through the oxalato bridge (noted AF in the figure). With two nickel(II) ions
(box 2), the J value is much smaller that for Cu(II), Jor(Ni-Ni) &~ —33(4) cm™!.
J(Ni-Ni) corresponds to four exchange pathways (na = 2; ng = 2): (i) xz—
xz (by), antiferromagnetic, (af), as in the Cu(Il) derivative; (ii) y>-y? (a;) also
antiferromagnetic (af); and (iii) two ferromagnetic ones (f), xz—y? and y>—xz.

Following eqn. (2.125b) the coupling constant J can be written:

3= [oror + Jatal + Jator + Jorar] /4 (2.131a)

with:

jblbl = 2kpib1 — 2Ap1Shib1s ja]a1 = 2Ka1a1 — 224154141 jalbl Zjb]al = 2Ka1b1

(2.131b)
The competition implies two rather large negative antiferromagnetic terms and
two rather weak ferromagnetic ones (exchange integrals k;j). The observed
experimental antiferromagnetism can therefore be understood. Why is it so
weak compared to the copper derivative? The d orbitals of nickel are higher in
energy than those of copper (minor Z), and interact less with oxalate HOMOs
(then [jp151 (Ni)| <ljp1p1(Cu)|), y? orbitals are spreading much less than the xz
orbitals on the oxalate bridge, s0 Saja1 < Spibl, Aal < Apr and |Ag;Saral| <
| Ab1Sbib1|- Similar considerations can be used to rationalize the other cases.

2.6.5.2 Molecular ferrimagnetism

Molecular ferrimagnetism is another efficient way to achieve molecular mag-
netic ground states. Note that we use here ‘molecular ferrimagnetism’ as a
shortcut to designate actually ‘antiferromagnetic interaction between two spins
of different magnitudes in a molecular system’.

The idea is a priori very simple. In nature, overlap is the general rule
(and therefore antiferromagnetic coupling). It is then possible to use two
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spins Sa(4) and Sg(1) of different magnitudes on centres A and B, antifer-
romagnetically coupled, to get a ground spin state Sgs ( ! T) which is still
magnetic, Sgs = |Sa — Sp|- The total spin is lower than in the case of fer-
romagnetic coupling (Sgs = Sa + Sg) (4 1), but it is non-zero. This is
another example of a dialectic situation when a phenomenon (antiferromag-
netic interaction) gives rise to its ‘contrary’ (magnetic ground state). The idea
is not new, since it was evidenced in the late 1940s, by Néel, in perovskites,
to characterize their three-dimensional ferrimagnetic ordering [2.52]. It was
one of the achievements which lead him to be awarded the Nobel Prize.
The concept of exchange pathway is particularly appealing for a straightfor-
ward interpretation of the first molecular ferrimagnetic example provided by
Kahn: the Cu(II)(CH30H)Fe(IIT)(H,O)Cl(fsa)en binuclear complex—a text-
book example [2.3, p. 126]. The structure of the complex was given in
Fig. 2.53d with A = Cu(Il) and M = Fe(Ill). A chloride is bound to Fe(III)
in the y direction, opposite to a water molecule. The point group is close to
C,y, with the model geometry and the axes shown in Fig. 2.56a and symmetry
labels as in Fig. 2.55.

In CuFe(fsa)en there is one magnetic orbital on copper(Il), xz, b; symmetry.
The Fe(III) ion is high spin d°. Its five magnetic orbitals belong to symmet-
ries by (xz), a; (y?), a;(x>— z2), a,(Xy), ba(yz). One of them, xz, by, is strongly
overlapping with the one of copper(I). It provides a strong antiferromagnetic
pathway (AF), larger than the ferromagnetic ones (F or f). An antiferro-
magnetic coupling between the copper(Il) and the iron(IIl) is thus observed
(Jeure = =78 cm™), with a ground state, Sgs = 2 (5/2 — '%). Note that actu-
ally the energetic effects depend on na.ng.J, and since ny = 1 and ng = 5,
the previous product amounts to =390 cm™. It is meaningful for the synthesis
of future magnetic materials that ferrimagnetism in CuFe(fsa)en provides the
same spin ground state Sgs = 2 (3/2 + ') as ferromagnetic coupling in the
Cu(IDCr(II)(fsa)en complex (grey box 2 in Fig. 2.56b).

2.6.5.3 Polynuclear complexes and high-spin molecules

We now consider larger and larger systems, with the goal of producing
molecules with higher and higher spin, with expected but original properties.
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Fig. 2.56

Interactions in CuM(fsa)en complexes.
(a) Scheme of the molecular bimetallic
fragment and axes. (b) site A (column),
copper(Il) magnetic orbital a"; site B,
row: box 1, complex Cu(Il)Fe(IlI)(fsa)en,
five magnetic iron(Ill) orbitals, and
expected contributions to the coup-
ling constant J; grey box 2, com-
plex Cu(IDCr(III)(fsa)en, three magnetic
orbitals of chromium(IIl). The notations
are the same as in Fig. 2.55 (and F means
strong ferromagnetic interaction).
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Fig. 2.57

Schematic structures and topology for
high nuclearity and high spin molecules.
(a) Linear; (b) triangular; (c) tetrahedral,
ligand-centred; (d) tetrahedral, cubic; (e)
square; (f) cubic; (g) ring; (h) propeller;
(i) star: octahedral; (j) star: dodecahedral
or square antiprism; (k) star or onion-
shaped. A, B, C are different metallic spin
bearers. X is a ligand. Shaded spheres:
A. White spheres: B. Most of the metal
coordination spheres of the metallic ions
are not completed for clarity. In (k), a
BgAg complex, the grey spheres are B
metal ions at the centre and capping the
faces of the Ag octahedron.

Fig. 2.58

Complexes used as ligands: (a)
copper(II)1,3-propanebis(oxamate) dian-
ion [Cu(pba)]>; (b) trisoxalatochro-
mate(IIl) trianion (A  enantiomer),
[Cr(0x)31%;  (©) hexacyanidochro-
mate(I), trianion [Cr(CN)s]*>~; (d—e)
Schematic Lewis acid-base reaction
between an hexacyanidochromate(III)
and metal(IT) complexes to form cationic
polynuclear complexes.
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This is a way of bridging the gap between small molecules, generally binuc-
lear systems seen previously, and extended solids (next section). Schematic
structures of polynuclear systems are shown in Fig. 2.57.

There are many synthetic strategies for building large polynuclear sys-
tems: multistep synthesis, recipes from supramolecular chemistry, and even
‘serendipidity’; that is, using the spontaneous and unexpected emergence of a
complex structure from a simple combination of reactants. We just stress here
the use of building blocks made of coordination complexes, playing thus the
role of either ‘complex-as-ligand’ or ‘complex-as-metal’ (Fig. 2.58a, b, ¢). The
corresponding synthetic process (Fig 2.58, d—e) is a simple Lewis acid-base
reaction, and is written:

[MX, P~ +n[M = T]*" - [M(X - MT) ]+ (2.132)

To avoid the formation of extended networks (Section 2.7) and stop the
coordination process at the high-spin molecule stage, suitable terminal ligands
T are introduced.

A first example is the T-Mn(II)[Cu(I)(pba) IMn(I)-T trinuclear Mn;—Cu—
Mn, complex (T denotes ‘terminal ligand’, and pba is the abbreviation of
1,3-propanebis(oxamate)), or {CuMn,}. The number of metallic neighbours
of copper is 2, and the one of manganese is 1 (Fig. 2.59a).

The Cu-Mn coupling can be foreseen from Fig. 2.56. There are five
exchange pathways through the oxamate ligand between the central xz d orbital
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Complex {CuMn,}. (a) Ball and stick representation of the crystallographic structure; copper(Il) large grey, manganese(lI) large white, carbon,
small black, oxygen, small dark grey, nitrogen small light grey balls; (b) spin state structure of {CuMn; } (black) and of { CuMn} (light grey); hori-
zontal bars represent the energy levels; dotted lines are guides for the eye; (c) experimental thermal variation of the molar magnetic susceptibility

as xmT (adapted from [2.3, p. 223]).

on copper and the five d orbitals of manganese on each side of the copper:
one is strongly antiferromagnetic (xz-xz), whereas the four others are weakly
ferromagnetic. The Cu—Mn interaction is then expected to be antiferromag-
netic with a ground spin configuration (1 1) and a spin ground state Sgs =
2 x 5/2 — Y% = 9/2, which is indeed observed experimentally. This value is
higher than the highest spin provided by nature in the periodic table, Gd(III),
S="1772.
The spin Hamiltonian is:

H = —J (Svn1Scu + ScuSmn2) = —TScu (Smni + Swmnz) = =T ScuS*
(2.133a)

where we use Kambe’s method introduced in Section 2.5.3.1. We define the
intermediate spin operator S* = Sy + Synz and the total spin operator St =
Scu + S*. The Hamiltonian and the eigen energies are then written:
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H = —JSc,S* = — (J/2) [$F — $¥] (2.133b)

E(St, $*)=—{/2)[St(St+ 1) —S*(S*+ 1)] (2.133¢)

For each value of S*, St spans values between (S* + Sc,) and |S* — Scy|. The
S* values range from 5 to 0 by unit steps. For S* =5, St = 11/2 (energy E (S,
S*) = E (11/2, 5)) and 9/2 (energy E(9/2, 5)). For S* = 4, St = 9/2, and 7/2,
and so on, down to E(1/2, 0)]. It is then easy to find the energy levels which
range between —23J/8 and +21J/8 (Fig. 2.59b).

The spin-state structure (that is, the energy of the spin levels E(S) as a func-
tion of their spin) is represented in Fig. 2.59 for the expected antiferromagnetic
interaction. Also shown for comparison is the spin-state structure of a { CuMn}
dinuclear complex with an antiferromagnetic interaction between copper (II)
and manganese(Il): the reader can easily find that in this case there are two spin
states only: S = 2 (ground state, E(2) = 7J/4) and S = 3 (excited state, E(3)=
—5J/4), separated by 3J. In the case of {CuMn, }, the most salient feature is that
for each spin value there are two energy levels, and two branches—the lower
one with energies ascending regularly by |J|/2 steps when the spin decreases
by unit step from 9/2 to 1/2, and the upper branch ascending in the same way
when the spin increases from 1/2 to the highest spin 11/2.

This spin-state structure and its Boltzmann distribution is the key for under-
standing the thermal variation of the molar susceptibility displayed as the xyT
product in Fig. 2.59¢, and in particular its curious minimum observed around
170 K. At very low T (kT << |J|/2), the only populated level is the Sgs =
9/2 ground state, corresponding to a number n of unpaired electrons, n = 9.
The approximate value (with g = 2) of the xuT product using eqn. (2.51b) is
ymT = n(n + 2)/8 = 12.375 (in cgs-emu units, cm?.mol~! .K). When the tem-
perature increases, the excited levels on the lower branch of Fig. 2.59b begin
to populate. As their spins are lower than 9/2, the xMmT product decreases.
Conversely, if we start from the high temperature (kT >> 9 J/2), all the energy
levels are equally populated. This state is precisely the paramagnetic limit; that
is, the situation where the spin of copper(Il) and manganese(Il) behave inde-
pendently. The corresponding approximate value of the xuT product is then
(withamean g =2): xmMT = (XmD ey + 2(xmDvin =1 X 3+2 x5 x 7)/8 =
9.125. When the temperature decreases, the first level to be depopulated is S =
11/2, and then those of the upper branch in Fig. 2.59b. As their spins are lower
than 11/2, here also the xmT decreases. There is thus a minimum somewhere
in the xMT curve, and this constitutes a signature of extended ferrimagnetic
compounds. The quantitative analysis of the curve using Van Vleck formula
yields Jeumn = —36.6 cm™! [2.3, p. 223].

As a second example we consider systems built from hexacyanidochro-
mate(I11) [B(CN)¢ ]~ (Fig. 2.58cd). Note the interest of chromium(III) precurs-
ors: the metal has a d* half-filled shell configuration which confers inertness
to the complex; the three chromium(IIl) t, orbitals are spreading in the three
X,y,z directions favouring exchange with neighbours. The hexacyanidochro-
mate(III) is able to produce complexes with different nuclearities with a same
metallic partner {Cr(CN)¢_,(CN-A-T),} withn =1 to 6 (A = Ni, T terminal
polyamine, quite often tetra- or pentadentate) or different ones. The structure
of a {CrAg} complex is shown in Fig. 2.58e. In such a way, in {CrAg¢}, are
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obtained ground-state spins as different as S = 9/2, {CrCug }, Cr—Cu ferromag-
netic interaction, S = 15/2, {CrNig}, also ferromagnetic interaction and S =
27/2 in the ferrimagnetic { CrMng }, with Cr—Mn antiferromagnetic interaction.
These results can be understood easily with our usual tools.

Fig. 2.60a,b displays part of the molecular orbital energy diagrams for the
B-CN-A unit, supposed linear. In the {B(CN)¢}P~ complex, cyanide is bound
to B through carbon. The ligand field around B is very strong. The electronic
configuration of B is limited to d'-¢ (tzg)1‘6. For instance Cr(III), (tzg)3, S =
3/2; Mn(11D), (tag)*, S = 1; Fe(IID), (tze)°, S = 1/2); Fe(II), Co(II) (t2,)%, S = 0.
Hence, the symmetry of the central B orbitals is always tp, (or 7 ) and a,, by,
b, if the BCNA unit is Cy, symmetry (Figs. 2.60 and 2.61). On the A(NC) side,
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Fig. 2.60

Exchange in a linear cyanido-bridged
B-CN-A unit. (a) Interaction between two
overlapping orbitals and antiferromagnet-
ism; (b) ferromagnetic exchange between
two orthogonal magnetic orbitals.

Fig. 2.61

Exchange pathways in cyanido-bridged
B-CN-A complexes, analysed in Cpy
symmetry point group. (a) Structural
scheme and axes; (b) table of the
exchange pathways and interactions for
{CrCu;} (box 1, light grey), {CrNi;}
(box 2, grey) and{CrMne¢ } (box 3, black).
Capitals correspond to the stronger
interactions.
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Fig. 2.62

Magnetization in Bohr magnetons versus
iwoH of high-spin molecules described in
the text. The curve of Gd(III) is given
for comparison. The saturation value at
high field gives directly the number of
unpaired spins of the ground state (figure
above the curves).
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the bonding is through the nitrogen of cyanide, which is a weak-field ligand. to,
(m) and e, (o) orbitals are available, depending on the electronic configuration
d". The two kinds or possible interactions are shown in Fig. 2.60. The overlap
of the two m magnetic orbitals build two SOMOs, {;, and , (Fig. 2.60a),
and leads to antiferromagnetic interaction, whereas, when the magnetic orbit-
als are 7 and o, they are orthogonal (2.60b), they remain unchanged, and
ferromagnetic interaction results.

These considerations can be illustrated by the three complexes {CrCug}
{CrNig} and {CrMng }, with the help of Fig. 2.61, similar to Fig. 2.48 (we sup-
pose a Cp, symmetry of the B-CN-A unit, but the symmetry is indeed lower)
[2.53]. In {CrCug} the surrounding of copper is bipyramid trigonal, the mag-
netic orbital is z? ( ‘e;’, 0) and the interaction is between this orbital and the
three tpg (1) orbitals of chromium (Fig. 2.61, box 1) with three ferromagnetic
exchange pathways (Experimental: Jc,c, = +45.5 cm™). The spin ground state
is Sgs = 3/2 (Cr) + 6 x 1/2 (Cu) = 9/2. In {CrNig} the interaction is between
the three tp, (1) orbitals of chromium and the two e, (o) orbitals of nickel(II).
They are orthogonal. The interaction is expected ferromagnetic (Fig. 2.59, box
2) (Experimental: Joni = + 17.3 cm™). The spin ground state is Sgg = 3/2 (Cr)
+ 6 x 1 (Ni) = 15/2. For {CrMng} the situation is shown in Fig. 2.61, box 3,
with fifteen competing exchange pathways—six ferromagnetic as in {CrNig},
mutatis mutandis, and nine antiferromagnetic. An overall antiferromagnetic
interaction is expected. Indeed, the experimental J value is Jeam = —9.0 cm™.
The spin ground state is Sgs = |3/2 (Cr) — 6 x 5/2 (Mn)| = 27/2—an appealing
ferrimagnetic situation, [1(1)g]. The spin-state structure (not shown) is much
more complex than in {CuMn,}.

We finish this section with examples of very high spin molecules. The
rational approach described previously with {CrMng} lead to S = 27/2, far
above the 7/2 of the Gd(III) provided by nature, though still higher values have
been obtained. Figure 2.62 displays some magnetization curves versus poH.

The ferrimagnetic high-spin molecule {MogMny} deserves a spe-
cial comment. {MogMng} stands for [Mn(II)[Mn(II)(MeOH);]g(jt-CN)3p-
[Mo(V)(CN)3]6].5MeOH.2H, 0. [2.54]. A similar complex is { WeMny }. This

A Magnetization / Natig {Mn,g} 83
80 |-
60 |-
{Mnys} 51
woll {MogMng} 39
{CrMng} 27
20 {CrNig} 15
{CrCug} 9
| | | Gd(ll), 7, -
1 2 3 4 5

uoH /T
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is an example of the use of a second and third series of transition metal ion
to the benefit of the larger spreading of the d orbitals with increasing Z to
enhance the J values. The structure is shown in Fig. 2.63a. The building block
is an octacyanidometalate [Mo(V)(CN)g]*~, spin S = 1/2. A central Mn(II) ion,
S = 5/2, is surrounded by an octahedron of Mo(V), the eight faces of which are
capped by one Mn(II). The structure can be also described as a centred cube of
Mn(1II) capped by an octahedron of Mo(V). To design such a beautiful structure
the scientist competes with the artist (Fig. 2.63b). The result is a ferrimag-
netic molecule {MogMng} or {W¢Mng} with antiferromagnetic interactions
Mo(V)-Mn(II) and W(V)-Mn(II). In {MogMny }, DFT calculations show that
there is a distribution of negative J values from ~ —20 cm™! for the central Mn—
NC-Mo linear units to &~ —12 cm™" for the peripheral Mn—-Mo-NC-Mo bent
ones. The experimentally determined ground state (magnetization and spin
polarized neutron diffraction) is Sgs = 39/2, in line with the simple calculation:
Sgs = |—6 x 1/2 (Mo or W) + 9 x 5/2 (Mn)| [(1)6(1)s]. Figure 2.61 displays the
DFT computed spin density—a beautiful illustration of the antiferromagnetic
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Fig. 2.63

Ferrimagnetism in  {MogMng}. (a)
Crystallographic structure; Mo large grey
spheres; Mn, large white sphere, carbon,
black, nitrogen light grey; external lig-
ands are omitted for clarity. (b) Escher’s
view of the interweaving of a octahedron
and a cube. See the polyhedron at the
upper left the engraving. (M. C. Escher’s
Stars (1948) © 2013 The M. C. Escher
Company, The Netherlands. All rights
reserved. <http://www.mcescher.com>)
(c) Spin density map, positive density
is light grey, negative spin density, dark
grey. (b and ¢ reproduced from [2.54].)
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coupling: spherical positive spin density of the d> manganese(II) ions and neg-
ative spin density of the unique Mo(V) unpaired electron in x>~y? type orbital
on the six Mo centres.

Finally, let us mention some very high spin values shown in Fig. 2.62 with
a {Mnys} complex by Murugesu and Christou which paved the way to the
present molecular spin record achieved with the ferromagnetic mixed val-
ency aggregate [Mn(IID);2Mn(IT)7(j4-O)g(jr3-11-N3)g(HL)12-(MeCN)6]Cly.
10MeOH.MeCN (H3;L = 2,6-bis(hydroxy-methyl-4-methylphenol), {Mn;9},
with a Sgs = 83/2 by Powell [2.55]. In this very complex structure (not shown),
the interactions between Mn(II) and Mn(IIl) are weakly ferromagnetic, but the
large number of magnetic sites permits the very high spin ground state.

The next section illustrates the use of the same molecular building blocks in
the construction of extended structures.

2.7 Extended molecular magnetic systems

Up to now we have dealt with zero-dimension (0D) systems; i.e. molecules
and clusters where magnetic properties could be understood and described
through a finite set of atoms, isolated from their surroundings. In fact, beyond
the molecules exist extended lattices. Extended molecular magnetic lattices are
objects whose magnetic properties present a dimensionality one (1D, chain),
two (2D, planes) or three (3D, networks). In this section we present a few
considerations to show how it is possible to fill the gap between the isolated
molecule and the well-organized 3D solid. We start by a brief description
on the complex specificity of the exciting 1D world. We present, then, an
example of a new kind of 1D material displaying a cross-over to 3D beha-
viour, and, using our previous knowledge, we discuss the conditions to obtain
a room-temperature molecule-based magnet.

2.7.1 The one-dimensional world: a Hamiltonian
and synthesis factory

The one-dimensional world is an attractive common playground for math-
ematicians, physicists, chemists, experimentalists, and theoreticians. A simple
reason is the possibility to solve exactly in 1D non-trivial physical problems too
complex to solve in 3D. Significant examples can be found in [2.2] (de Jongh
p- 1-35; J. C. Bonner, p. 157-205; W. Hatfield, p. 555-602), [2.3] (Chapter 11),
[2.6] (vol. I, E. Coronado et al., p. 14, J.-P. Renard et al., p. 49).

We begin with a few definitions useful in the following section.

2.7.1.1 The magnetic chains zoo

A magnetic chain is a one-dimensional array of spin bearers S; and S;; with
an interaction (coupling constant) J;; between them. i and j define the positions
of the spins in the chain. The mean direction of the chain is often chosen as the
Z axis.
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e A homospin or homometallic chain is made of identical spins (radical or

metallic). The usual spin Hamiltonian is the sum of terms Hj; = -J;;.5;.S;
(S; and §; are vector spin operators, J;;,; the coupling constant). In most
cases the exchange interaction occurs only between nearest neighbours (nn)
Si and Si4, since it is short-range. The conclusions of Section 2.6 relative
to exchange are then fully valid here.

e A uniform chain is a chain where the intrachain coupling J;;.; between

identical spin bearers A; is constant, Jiyra = J. For example, if (A)x is a
monometallic chain made of N spins, the Hamiltonian is written:

N-1 N
H=-1)  'SSii—gusioH) S (2.134)
The first term corresponds to an isotropic interaction. The second is the
Zeeman term in the presence of an external field H, with our usual notations.
Nature of the coupling (Fig. 2.64). The sign of J determines if the chain is
ferromagnetic (F, J > 0) or antiferromagnetic (AF, J < 0).

Nature and magnitude of the spin. The value of S; determines if the chain
can be treated as a quantum chain (defined by quantum spin operators S,
with well-defined Mg values—for low value of the spin) or as a classical
chain (spin with an infinite value and presenting an infinite continuum of
spatial orientations, as a classical vector). The spin S; can take any value,
half-integer or integer from 1/2 [copper(Il) or organic radical] (full quantum
treatment for a spin S; = 1/2, mg = +1/2) to 5/2 [Fe(Il], Mn(II)] or 7/2
[GA(III] (quasi-classical treatment for S; = 7/2, corresponding to eight val-
ues of Mg: =7/2 < Mg < +7/2). A copper(Il) chain is a typical example of
a quantum 1D object [catena--oxalato-Cu(Il), {Cu(Ox}y or tetramethyl-
ammonium catena-tris-pu-chlorocuprate(IT) [N(CHj3)4* { CuCl3~]x]. The first
one is neutral and the chains are close to each other. The second one is
anionic and the chains are well separated by the bulky organic cations which
ensure electroneutrality of the crystal.

Infinite and finite chains. The chains can be described as infinite (N —
oo) or finite; i.e. built from finite segments of spins. Only finite chains
exist in the real world, since defects always interrupt the infinite chains,

(a) ﬁ]’%’ﬁfi‘éﬁj Uniform  F Sr=NS

ST=0

o 1\29 Si+5/> Si+e S ‘%SHS
9 St S
‘-’\/4 Si+2 Si+4(( ) H I+1( )jsi+4

4\
L Y N Ny
1 Si-+—1 S\ </SiJrZ Si+2\> S/i:S

i+3
(f) Right, A (g) Left, A
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Fig. 2.64

Different kinds of chains. Spin struc-
ture, nearest-neighbour interaction (F or
AF, name and total spin value for (a)
uniform, ferromagnetic (F); (b) uniform
antiferromagnetic (AF); (c) alternating,
antiferromagnetic (AF); (d) bimetallic,
antiferromagnetic between to successive
spins (AF) hence ferrimagnetic, St =
N|Sa—Sg| (N number of pairs); (e-g)
schematic illustration of the antisym-
metric exchange; (f) right-handed hel-
ical configuration; (g) left-handed helical
configuration.
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create ‘ends of chains’, and perturb the ideal 1D behaviour. The longer
segments ever observed comprise 10* spins in carefully grown crystals of
tetramethylammonium catena-tris-p-manganate(II) [N(CH3)4* {MnCl;5 ]y,
TMMC. On the other hand, the hypothesis of infinite chains makes easier
theoretical treatments. For example, a linear infinite chain can be considered
as the limit of spins’ rings of radius R when R — oo. In this case the
boundary conditions become Sni; = S;. This presents a valuable way of
computing the thermodynamic properties of chains by extrapolating results
obtained in finite-size rings.

Fermions and bosons. Another description focus of the value of the spin,
half-integer (fermions) or integer (bosons). The thermodynamics of the
chain is quite different in both cases. There is a continuum of spin ener-
gies for half-integer spins, but a gap opens between the singlet ground state
and the first excited state (a triplet) for integer spins. This was conjectured
by Haldane in the 1980s and later checked experimentally (J. P. Renard et al.
in [2.6], vol. I, pp. 49-93). The physics of such a kind of ‘gapped’ system
has been known since an important development in the study of ladders and
strongly coupled electrons in superconductivity (see Section 3.3.4.4).

e Alternating chains. A chain of identical spins (homospin or homometallic)

is said to be alternating when there is a periodic alternation of the J values:
J; = J between S; and S;;, and J, = oJ between S;;; and S;;». An import-
ant phenomenon, theoretically documented and experimentally observed, is
the spin—Peierls transition when a homometallic uniform chain (uniform J)
becomes an alternating chain (J, aJ). The transition occurs at a spin—Peierls
temperature Tsp when the vibrations (phonons) of the system couples with
the exchange energy. An equivalent Peierls transition will appear in Chapter
3 for conducting systems.

Bimetallic chains. The chain is said to be bimetallic when it is built from
two ordered transition metals A and B: (A-B)x (N number of pairs),
with bridging ligands. Such species appeared only recently in the 1D zoo.
We present a brief account on them in Section 2.7.2.

Anisotropic chains. When the metal ion A presents a local anisotropy D;
and anisotropic exchange D;;;; between neighbours, the chain is said to be
anisotropic. The anisotropy in 1D also finds its origin in the through-space
spin—spin magnetic dipolar interaction at any distance r between the spins
(different along the chain and in other directions). This term is generally
weak. It appears at low temperature when its energy becomes close to kT.
The Hamiltonian (2.134) is then completed, as in eqn. (2.105), by a local
anisotropy term such as:

H,, = DZ,N_1 (8> (2.135)

Other terms describing the long-range magnetic dipolar interaction between
the spin magnetic moments considered as point dipoles can be added. The
dipolar term reads:

ApZ ~N—1 N-1 1 e
Hapoiw = ——32 > D 5 [SSu—38187,]  2130)
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ais the repeating distance along the chain, and r.a the distance between spins
iandi+r.

As for a pair of spins (eqn. 2.110), it is often simpler to describe the
anisotropy by expressing the product S;.S;1, J, H (and eventually g) by their
components along X, y, z. The Hamiltonian (2.134) then becomes:

N-1
H= -} [LS{SL, + 5SSy, +1,8]8],]
N (2.137)
— giBio Zi:l [H*S! 4+ H*S} + H'S]

The names corresponding to various relative values of the effective J,, Iy, Jy
are as in Table 2.5. The most often used are the isotropic Heisenberg (J, =
J = Jy) and the Ising models (J, # 0; J, = J, = 0). The dynamic properties
of anisotropic chains are original, and will be considered in Section 2.8.

o Chains with antisymmetric exchange. The antisymmetric exchange already
present in eqn. (2.105) can be introduced in the Hamiltonian by terms such
as:

Hang = dij+1.Si A Sis1 (2.138)

This term is tilting the direction of neighbouring spins by an angle 6 (or —0)
(Fig. 2.64e). The spins in the chain are then adopting a canted configuration
which can give rise to helical magnetism. The helical spins can turn right of
left, depending on the 6 value (Fig. 2.64f, g).

o More Hamiltonians. The Hamiltonian can be further modified (either to fit
some set of data or to find an exact solution) by introducing other terms:
next-nearest neighbours (nnn), interaction oJ S;.S;;» (generally, o is small
<< 1), quadratic terms, BJ (S;.Si;1)? (where B is also small << 1), and so
on, to infinity.

e [nteraction between chains. In real systems, each chain has neighbours.
The coupling constant between two neighbouring chains is called Jiyer-
The ratio Jiper/Jinga determines how much the system is really 1D (the
lower the ratio, the better 1D is a chain). One of the best 1D systems is
[N(CH3)4+{MHC137]N (TMMC) with a Jinler/Jinlra ~ 104~ When Jinter/Jimra is
not << 1, the 1D properties can be hidden, and even a transition (cross-over)
from 1D to 2D or 3D behaviours can occur, as we shall see soon (Fig. 2.73,
Section 2.7.2).

2.7.1.2 Dynamics of 1D systems

Besides thermodynamics, the most studied aspect of 1D chains—impossible
to develop here—is their dynamics; that is, their behaviour when excitations
are considered. We shall give an example in Section 2.8.

2.7.1.3 No long-range order in 1D at T # 0K

Low-dimensional physics, therefore 1D physics, is dimension-specific, and the
1D exact results cannot be simply extrapolated to other dimensionalities and to
the real solid. For example, 1D thermodynamics implies that there is no long-
range order in 1D at T # OK, whereas the everyday life magnet (3D) is based
on a long-range magnetic order between the spins.
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Fig. 2.65
Ferromagnetic 1D chain with N spins. (a)
Initial ordered state; (b) excited state with
spin reversal in one position, costing an
enthalpy J.
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NN AN AN

(a) Initial state (b) Final state

Let us take a ferromagnetic chain (Fig. 2.64a). The ground state should cor-
respond to a configuration where all the spins S are aligned parallel, due to the
ferromagnetic interaction Jg > 0 between neighbouring spins (Fig. 2.65a). The
total spin is simply Sgs = N.S. An excited state can be built by reversing part
of the spins (Fig. 2.65b). The enthalpy cost is the coupling constant, AH = J.
For any system, change is determined by the free enthalpy AG = AH - T.AS,
where AS is the entropy change. As the previous spin-reversing process can
occur at N—1 positions along the chain, AS = k.In(N-1). Then:

AG=AH —TAS=J—kTIn(N—1)Z (2.139)

which means that when the number of spins N is large enough (and clearly
for N — 00), at a given temperature T # 0K, the negative entropy term can
become higher in absolute value than the positive enthalpy one, J. Then, AG <
0. Spontaneously, the system abandons the ordered configuration (a) for a dis-
ordered one (b). There is no long range in 1D at T # 0 K. This demonstration,
due to Landau, can be extended to 2D systems.

For a long time nevertheless, synthetic chemists thought that 1D chemistry
could be a possible way to reach molecule-based magnets. It is rewarding to
understand why and how this a priori impossible route proved successful.

2.7.2 Bimetallic ferrimagnetic chains: an improbable route
to 3D magnets

2.7.2.1 From molecular engineering to 1D lattice fabrication

It is a priori simple to imagine how to build a 1D system using the bridging
ligands of Section 2.6. For example, divalent cations A(II) combine easily with
oxalate dianion to give catena p-oxalato [A-Ox]} neutral chains. It works well.
The reader can apply the arguments of Section 2.6.5.1 to foresee that anti-
ferromagnetic chains are obtained. But it is a synthetic challenge to obtain a
perfectly ordered bimetallic object {-A-X-B-X}, from a solution containing a
mixture of A and B metallic ions and a bridging ligand X. The most probable
is to obtain instead homometallic chains {-A-X-}, and {B-X}, or a random
mixture of A/B inserted in a B/A chain. The general synthetic, spin and orbital
strategies to get an ordered bimetallic chain are illustrated in Fig. 2.66a—i [2.3,
Chapter 11], [2.56, 2.57].

An example of a suitable ligand is dithiooxalate, dto, encountered in
Section 2.6.4.2 and Fig. 2.54, a possible suitable pair is Cu(I)-Mn(II),
and the desired ordered bimetallic chain is Cu(ID(Mn(II)(S,C,0,)(H,0)7 5
(MnCudto), first synthesized by Gleizes in 1981. The structure consist of infin-
ite chains (Mn(II))(H,0)3(0,C,S,)Cu(I)(S,C,0,) stretched along the b axis,
stacking at van der Waals distances in the bc glide planes. A fragment of the
structure of the chain in shown in Fig. 2.67a.



e—V

Extended molecular magnetic systems

(a) (b)
= o0
: (d) : O: (e) : o

(9) (h) [

=

() SaSaSaSA (k) SgSgSeSs (1) SaSESASs

o UL L

Jar J"aF Jar

el

The two sulphur atoms of the dto (in cis configuration) interact more readily
with a Cu®* ion than with an Mn?* ion, which, on the contrary, binds pref-
erentially to the oxygen atoms of dto. The trans bis-dithiooxalatecuprate(II)
[dto-Cu-dto)]* reacts then with the Mn?* ion, and in aqueous medium the
neutral chain can precipitate (crystallize). This is well understood in the frame
of hard and soft acid—base HSAB theory with privileged soft—soft (Cu—S) and
hard-hard (Mn—O) interactions. This is now known as a ‘complex-as-ligand’
synthetic strategy. Eqns. (2.140) summarize the synthetic process:

(2.140a)

Cu** + 2[dto]>” — [Cu (dto),]*”
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Fig. 2.66

Strategies towards ordered bimetallic fer-
rimagnetic chains. Synthetic strategy: a
symmetric bridging ligand X’ (a) inter-
acts with metal A (white ball) on both
sides (b) and provides a homometallic
uniform chain (AX')y (c). So does sym-
metric ligand X” to give (BX”)y with
metal B (grey ball) (d—f). A dissymmetric
ligand X (g) leads to ordered hetero-
metallic chains (XAXB)N (i) thanks to
selective acid-base Lewis interaction at
each side of the bridge (h). Spin strategy:
(j) uniform antiferromagnetic chain with
spin Spo (J’ar) as in (c); with spin Sp
(I’ ar) as in (f); (1) ordered bimetallic fer-
rimagnetic chain (Jap) with alternating
spins Sp and Sp (Sa # Sp) as in (i).
Orbital strategy (m): schematic overlap of
two magnetic orbitals through the ligand.

Fig. 2.67

(a) Fragment of the ordered bimetal-
lic {MnCudto} chain emphasizing the
precursor complex, [Cu(Il)(dto),]*", and
the soft-soft Cu—S and hard—hard Mn-O
bonds; (b) stacks of CuS4 units belonging
to neighbouring chains down the c axis.
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Fig. 2.68

Spin-state structure of ordered (CuMn),
rings (a) with n = 2 and (b) n = 3. The
ground state Sgs is magnetic. The pres-
ence of many levels having a spin < Sgs
allows us to understand the minimum in
the xmT = f(T) curve (see Fig. 2.69).
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n {[Cu (dt0),]”” +Mn** +7.5 HQO} — 1 {Mn (H,0); Cu (dto), - 4.5 H,O)
(2.140b)

To derive the ferrimagnetic properties and 1D ferromagnetic spin structure, we
still need to deploy the spin strategy of up and down unequal spins (; 1), as
shown in Fig. 2.66j—1. We use the considerations about overlapping magnetic
orbitals of Cu(Il) and Mn(Il) (Fig. 2.66m), as in Section 2.6.5.2. {MnCudto}
indeed presents all the features foreseen for a ferrimagnetic chain (experi-
mental datapoints in Fig. 2.70): a minimum of xuT (& 3.5 cm® mol™' K1)
at 130 K, and a strong increase at lower temperature up to 7.9 K (ymT
~ 11.5 cm® mol™! K™'). Unfortunately, at lower temperature, instead of the
expected divergence a rapid decrease occurs—a sign of 3D antiferromagnetic
ordering.

2.7.2.2 New magnetic objects, new Hamiltonians

We give in the following a brief account of the methods used to fit the magnetic
data of these new systems [2.3, chapter 11], [2.56].

If the (CuMn), (or AB) infinite chain is considered as the limit of ordered
bimetallic (CuMn), (or AB), rings when N— oo, the Hamiltonian for a ring N
is written:

2N
H= - JZFISiSHl (2.141)

with Song1 = S1; Soisi=Sa = Scy and Sy; = Sg = Swy

When J < 0, the lowest energy level has Sgs = n| Sy — Sg |, the ring is ferri-
magnetic, and the highest energy level has a spin Sys = n(Sa + Sg). Carrying
out the same kind of calculations as in Section 2.6.5.3 (Fig. 2.59), it is possible
to find the spin energy levels and to obtain the spin-state structures reported in
Fig. 2.68.

For the two (CuMn), rings (n = 2, 3) the situation is more complex than for
the trinuclear unit MnCuMn of Fig. 2.59, but the same qualitative conclusions
can be drawn from Fig. 2.68. At very high temperature (kT >> |J| the spins
Sa and Sg behave independently (which is equivalent to stating that all the
energy levels are equally populated), the paramagnetic limit is reached, and
the susceptibility xnm per AB unit (in cgs-emu units) is:

(xmDur = Napie?/3k) [Sa (Sa + 1) + Sg (Sg + 1)] (2.142)
A Energy / |J|

(a) (CuMn),

+5 -

0123456 012345%783
Spin of the energy levels -
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where we assume that the local g factors g4 and gg have the same value g.
(With Napg?/3k = 1/8 and g = 2, check that for A = Cu and B = Mn
(xmTDur = 4.75). At very low temperature only the ground state is populated
(Sgs = n|Ss — Sg|). The susceptibility, per AB unit, is then (cgs-emu):

OoiDir = Napge®/3k) [Ses (Sgs + D]
= (Nap3g?/3k) [n(Sa — Sp)? + Sa — Sgl]

The (xmT)rr value tends to infinite for N— oo, since (xmT)rr o n (Fig. 2.69).
Following the same arguments as for the ferrimagnetic MnCuMn complex
(Section 2.6.5.3), one arrives at the conclusion that in a ferrimagnetic chain,
when T decreases, ¥ v T decreases from the paramagnetic limit (X pT)gyr, goes
through a minimum, and then increases rapidly to diverge at low T. The min-
imum in YT is the signature of a ferrimagnetic chain. The susceptibility for
the chain is obtained by extrapolation of the susceptibility values for (CuMn),
rings of increasing n. The correlation between the spins Sy and Sg provides
another qualitative description of the ferrimagnetic chain. There is no correl-
ation at high T (paramagnetic limit); when T decreases the correlation begins
between two neighbouring spins S5 and Sg. At Ty, corresponding to the min-
imum of X mT (XMT)min, ONe can consider approximately that each Sy—Sp pair
is correlated (y 1) but that the pairs are not correlated between them. When T
< Thin the pairs begin to correlate (44 1 1), (11 +1 1 1) and (| ). m is the
number of correlated pairs. The corresponding mean spin is S, = m|Sa — Sg |,
increasing at low T and reaching infinite when (4 1)m— o0, Where YT diverges.
Such a trend allows us to understand that if there is (even a weak) antiferro-
magnetic interaction Jiyr between z neighbouring chains, it exists at a critical
temperature T., where kT, = Jiper-Z2.Sm(Sm + 1), below which an antiferro-
magnetic 3D ordering of the chains should occur (see Fig. 2.70b). The system
is no more 1D. This cross-over from 1D to ordered AF 3D is a general feature
(see Fig. 2.70a for uniform unimetallic chains). It is revealed by a drop of xmT
curves at low T.

In some rare cases, exchange or long-range dipolar interactions (always
present) can provide a ferromagnetic coupling between the chains (Fig. 2.70c,

(2.143)
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Fig. 2.69

Reduced molar magnetic susceptibility
per CuMn pair as a function of kT/|J| for
finite rings (CuMn), of increasing sizes
(n =2, 3) and for the infinite chain. Black
diamonds are experimental data. The spin
correlation is also shown schematically.
The minimum in xmT is a signature of
ferrimagnetism. The data at low T (dot-
ted line) reveal the presence of weak
interchain interactions.
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Fig. 2.70

Spin strategy. (a, b) Antiferromagnetic
interaction between two parallel neigh-
bouring spin chains. (a) (A), uniform
chains, spin Sp (black arrow). The inter-
action Jier is between two spins Sa. The
resulting spin is null. (b) (A-B), uniform
bimetallic chains, alternating large spin
Sa (black) and small Sg (grey). On two
neighbouring chains, similar spins are
face to face (Sp—Sa and Sp-Sgp). The
interaction Jer is between two sim-
ilar spins Sa. The resulting spin is null.
(¢) (A-B), uniform bimetallic chains
where one chain is displaced along the
direction of the chain by a/2, half the unit
cell. On two neighbouring chains, differ-
ent spins are facing each other (Spo—Sp).
The interaction Jiper is between two dif-
ferent spins Sp and Sg. The resulting spin
is p.m|Sao—Sg| (p number of chains, m
number of pairs in the chains.)
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commented on in the following). Other methods have been designed for the
quantitative analysis of the magnetic data of ferrimagnetic chains. The inter-
ested reader can find a valuable summary of most of the original work in [2.3,
chapter 11] and [2.6, vol. I, p. 1].

The strong decrease of xuT with T at low temperature in Fig. 2.69 is the
sign of antiferromagnetic coupling between the chains and of the appearance
of a 3D antiferromagnetic ordering. The ratio Jipeer/Jinra Was evaluated at 0.024.
The chains are rather well isolated from each other, and behave as a quasi-
1D ferrimagnetic chain at high temperature, allowing the observation of the
¥mT minimum. But at low temperature, weak interchain interactions (see Fig.
2.67b) are revealed and 3D ordering occurs.

Deceivingly, but without surprise therefore, {CuMndto} does not exhibit
long-range ferrimagnetic ordering: (i) Landau’s thermodynamics forbids long-
range order in 1D; (ii) the AF interaction between the chains switches the
system to a disappointing 3D antiferromagnet.

Can we go further and obtain 3D magnets through such a 1D chemical
approach? If we understand that at some point a cross-over from 1D to 3D
ferrimagnetism must be imagined and chemically prepared, a possible clever
(and lucky) answer is discussed in the following.

2.7.2.3 From 1D lattice to crystal (supramolecular) engineering

Instead of dto, the ligand 1,3-propylene-bis-oxamate (pba), already used to
derive the finite {MnCuMn} system (Section 2.6.5.3, Fig. 2.59), can be
used—without introducing the terminal ligand—to prepare the infinite chain
MnCu(pba)(H,0)3.2H,0 or {MnCupba}. Its crystal structure is shown in
Fig. 2.71a. The ordered Mn—Cu chains are aligned along the b axis with
Cu-Mn distances 5.412 A. The expected quasi-1D ferrimagnetic properties
are indeed observed (¥mT minimum at 115 K, Ty increase at low T,
Jeumn= —23.4 cm™!). Nevertheless, as for MnCudto, weak interchain interac-
tions due to hydrogen bonds and short Cu—Cu and Mn—Mn interchain distances
(5.22 A) in the a direction (Fig. 2.70b) provoke 3D antiferromagnetic ordering
(Fig. 2.70b).

To overcome this difficulty, Kahn proposed shifting one of the chains by half
a cell distance along the direction of the chain (Fig. 2.70c), so that different
spins of two neighbouring chains are now facing each other. The ferrimag-
netic configuration is extended to the neighbouring chain(s) and successively
to the whole plane: in Fig. 2.70c, all the large (black) spins are aligned paral-
lel (contrary to Fig. 2.70b) and antiparallel to all the small (grey) spins. This
shift can be chemically achieved by introducing an OH group on the central
carbon atom of the propylene bridge of the oxamate ligand, in an attempt to
modify the hydrogen bond network in the crystal. This can be termed crys-
tal or supramolecular engineering. The result is a new ferrimagnetic chain
MnCu(pbaOH)(H,0); (pbaOH = 2-hydroxy-1,3-propylene-bis-oxamato) or
MnCu(pbaOH), the structure of which is displayed in Fig. 2.71b. It is very sim-
ilar to MnCu(pba), and the 1D ferrimagnetism is the same at high temperature.
But now there is a short Cu—Mn distance (at 5.75A) in the a direction:
the strategy to displace the chains was (partially) successful (Fig. 2.71b).
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Hydrogen bonds involving the OH group of pbaOH, close to copper and a
water molecule coordinated to manganese, help in providing weak overlap
and antiferromagnetic interaction between magnetic orbitals of copper(Il) and
manganese(I) belonging to neighbouring chains to finally provide the required
ferrimagnetic planes. The magnetic consequence is the strong x T increase at
low temperature, xuT = 100 cm?® mol™! K! at 4.3K (Fig. 2.72a), preliminary
indication of a 3D ferrimagnetic order. Magnetization measurements versus
temperature (Fig. 2.72b) confirm a ferrimagnetic long-range ordering with a
Curie temperature Tc = 4.6 K. The magnetization is strongly anisotropic, with
an easy axis along c; that is, perpendicular to the chains. The molar magnetiz-
ation per {MnCu} unit versus applied magnetic induction (not shown) is close
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Fig. 2.71

Crystallographic ~ structures of two
closely related ferrimagnetic Cu—-Mn
chains down the c axis (a, vertical
axis; b, horizontal axis). The bold
lines schematize the largest antifer-
romagnetic interchain interactions in
the ab plane. The thin dotted lines
schematize the hydrogen bond network
between the chains. (a) Structure of
MnCu(pba)(H,0)3.2H,0. (b) Structure
of MnCu(pba-OH)(H,0)3.2H,0. In (b),
white arrows point out the displacement
of the MnCu(pbaOH) chains compared
to the MnCu(pba) chains. Compare with
the ideal spin configurations in Fig.
2.70b, c.
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Fig. 2.72

Magnetic properties of MnCu(pbaOH).
(a) Thermal variation of the product ymT
per MnCu unit. The insert shows the
expected minimum for a ferrimagnetic
chain. Note the high ymT value at low
T. (b) Thermal variation of the magnetiz-
ation of MnCu(pbaOH) along the a (O),
b () and ¢ (A) axes, in an applied
magnetic induction of 1073 T. The Curie
temperature is Tc = 4.6K. The magnet-
ization is very anisotropic. c is the easy
axis (the grey line is a guide for the eye).
(Adapted from [2.57].)
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to the value expected for a spin 2 [Sy, — Scu| = 2, confirming the ferrimagnetic
nature of the whole solid.

MnCu(pbaOH) can be considered the first molecule-based ferrimagnet
obtained by rational design. The ordering temperature is low, but the com-
pound was obtained through a rational, methodical step, rather than through
serendipity, as the famous V(TCNE)y by Manriquez and coworkers, obtained
in 1991 when working on metallocene-based magnets [2.6] (G. T. Yee,
J. S. Miller, in vol. V, p. 223-60).

An important aspect of the cross-over from 2D ferrimagnetism to 3D mag-
netic order is still missing. The synthetic strategy led us to ab ferrimagnetic
planes (2D ferrimagnetism), but the interaction between the ab planes, neces-
sary to reach 3D order, is still uncontrolled. The ab planes are not connected
by hydrogen bonds, and exchange interactions should be very weak. Luckily,
in the present case, the magnetic dipolar interaction (Hamiltonian (2.136)),
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a weaker but long-range interaction, has the right influence. The geometry is
such that the dipolar field created by the spins of a manganese unit (perpendic-
ular to the ab plane) tends to align the magnetic moment of the next plane in
the same direction (Fig. 2.73).

Thus the clever orbital, spin, and supermolecular strategy was very suc-
cessful for the first two steps, 1D and 2D, but necessitated the help of an
uncontrolled dipolar interaction to reach the required 3D ferrimagnetic order.
Unfortunately, the dipolar interaction is beyond precise chemical control,
because it depends on the geometrical distribution of the spins and their ori-
entation in the cell. In Section 2.7.3 we shall encounter a genuine 3D strategy
to rationally reach molecule-based magnets.

2.7.2.4 About order, dimensionality, and anisotropy

3D ordering (and magnetization reversal) is one of the most studied problems
in solid-state magnetism. In the following we mention briefly some general
principles governing the transitions between the paramagnetic state and the
3D ordered states such as ferromagnetic or antiferromagnetic.

We consider an ensemble of magnetic moments connected by a next-
neighbour interaction J. At high temperature (kT >> (|J]) one has a disordered
paramagnetic phase, and at low temperature (kT < (|J|) an ordered magnetic
phase. The two temperature ranges are separated by a critical temperature
where |J| &~ kT,. For ferro- or ferrimagnetic orders, T, is the Curie temper-
ature, T¢ (named after Pierre Curie), and for antiferromagnetic order T, is the
Néel temperature, Ty, after Louis Néel).

In most cases such magnetic transitions are not accompanied by a change
in the crystallographic structure, and belong to the category of second-order
transitions. Let us recall that if the free enthalpy G depends on an external
parameter x, when dG/0x is discontinuous at the transition, it is first order;
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Fig. 2.73

Schematic spin configuration in a crys-
tal of MnCu(pbaOH). 1D ferrimagnetic
chain along b axis (grey lines). 2D fer-
rimagnetic ab planes 1, 2, 3 distant by
¢ = 5.023 A. The exchange interaction
between the ab planes in the c direction
is very weak. In plane 2 a hole (black
circle) replaces a central manganese ion.
At this point, all other spins of the crys-
tal, acting as elementary dipoles, gener-
ate a magnetic field by magnetic dipolar
effect. The long-range ordering of the
spins in the crystal, ferrimagnetic or anti-
ferromagnetic, depends on this dipolar
field. If the dipolar field is parallel to the
large (black) spins, the 3D order is fer-
rimagnetic (as shown and observed); if
the dipolar field is antiparallel to the large
spins, a final antiferromagnetic structure
would result.
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Fig. 2.74

Microscopic picture of a ferromagnetic
transition. The arrows represent indi-
vidual magnetic moments. From right to
left: T >> Tc, paramagnetic disordered
phase; T — Tc¢ appearance of a cor-
relation length; T < Tc, ferromagnetic
ordered phase and appearance of a spon-
taneous magnetization M. (Adapted from
J.-P. Renard [2.58].)

Fig. 2.75

Schematic thermal variation of the
inverse of the molar susceptibility
for Curie behaviour and different
kinds of magnetic order (circled:
spin configurations). (a) Curie beha-
viour (grey line). (b—d) Curie—Weiss
behaviour: (b) Ferromagnetic order.
(¢)  Antiferromagnetic  order.  (d)
Ferrimagnetic order. Dotted lines are
guide for the eye to evaluate 6 and T.
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when the first derivative is continuous, but 82G / 9x? is discontinuous, the trans-
ition is second order. In our case, x = H (magnetic field), the first derivative
(the magnetization; see Section 2.3.1) is continuous, and the second derivative
(the susceptibility) is discontinuous at the transition.

From a microscopic point of view, Fig. 2.74 schematizes the situation in
the paramagnetic phase (disordered phase, M = 0, correlation length x ~
0) to the ferromagnetic phase (ordered, M # 0, correlation length diverges—a
keystone of second-order transition). The magnetic system has spherical sym-
metry above T¢, and cylindrical symmetry below T¢. The symmetry breaking
at T = Tc is a general feature of phase transitions.

In literature—particularly in the physics domain—results are presented fre-
quently as 1/x plots versus T (Fig. 2.75). For independent magnetic objects
this corresponds to the Curie law, ¥y~! = T/C (C Curie constant) (Fig. 2.75a).
When there is an interaction, the Curie-Weiss modification ! = (T — 6)/C
is used, but it has a weak theoretical justification and should be considered as
essentially empirical. It is generally valid far from the critical temperature and
allows the evaluation of 6 by extrapolation. For a ferromagnetic order, 6 > 0
and is close to T¢ (Fig. 2.75b). For an antiferromagnetic order, 6 < 0; Ty cor-
responds to Xy~ infinite (Fig. 2.75¢). For a ferrimagnetic order, < 0; Tc is
obtained when ¥ diverges; that is, XM‘l = 0 (Fig. 2.75d).

We now ask how a magnetic molecular system can transform in a
magnetically ordered solid. At the microscopic level, two main paramet-
ers control this transition: (i) the dimensionality of the magnetic network

i O
()
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Table 2.9 Existence of long-range order at T # OK in a magnetic system with short-range
interactions, as a function of its dimensionality and anisotropy.

Dimensionality/anisotropy Name 1D 2D 3D
I, >> =]y Ising No Yes Yes
Lixly>>1, XY No KT? Yes
Lk=ly=1I, Heisenberg No No Yes

% A special transition bearing the name Kosterlitz—Thouless. (Adapted from J.-P. Renard [2.58].)

(1D chains; 2D planes; 3D frameworks); (ii) the anisotropy of the interac-
tion according to the relative values of the effective components of J: J,
Iy, J;. Table 2.9 summarizes—without demonstration—the most frequently
encountered situations.

The conclusion is thus clear. 1D chains—first considered as a conceptual
step between isolated molecules to magnetic ordered solid—are a practical
dead-end. 2D planes can work within some constraints (Ising). The chemist
willing to synthesize magnets should then create 3D networks, which present
long-range order whatever the anisotropy. We present a few examples in the
following.

Finally, if we want to increase as much as possible the critical temperature,
a useful classical approximation relates the T¢ temperature to the properties
of the two subnetwoks having spins S5 (Curie constant C,) and Sg (Cp), a
number of magnetic neighbours Z, and a coupling J. With our usual notations:

KTc = Z|J| [Sa(Sa + 1Se(Sg + D1"%/Nag?ity = Z|J| [CACr)]"*/Nag? 13
(2.144)

Even approximate, eqn. (2.144) shows clearly that T¢ can be maximized by
increasing the number of magnetic neighbours Z, by increasing the magnitude
of J and by increasing S and Sg [2.52].

2.7.3 Three-dimensional frameworks, Prussian blue analogues

We reach here an enormous field, where the interaction between the spin bear-
ers is directed in the three directions of space, building a 3D magnetic lattice.
To save space, we limit ourselves to a unique family, a priori very simple,
synthesized from hexacyanidometalates, the Prussian blue analogues (PBA).
Prussian blue itself is a blue pigment discovered in Berlin around 1704, first
announced in a publication in 1710, and often considered as the first syn-
thetic coordination compound: Fe'''4[Fe''/(CN)g]3 * 14-16H,0. The magnetic
Prussian blue analogues (referred to in the following as MPB) are a ‘simple’
3D extension of what we have already described about high-spin molecules
based on hexacyanidometalates (Section 2.6.5.3). The main lines of the story
can be found in [2.6, vol. V, 283sq].

2.7.3.1 Formulation and structure

Prussian blue and its analogues can be synthesized easily by the reaction of
the Lewis bases hexacyanidometalates [B(CN)g [P~ with transition metal Lewis
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Fig. 2.76

Schematic ball-and-stick structure of
a conventional cell of Prussian blue
analogues: (a) A(ID4[BUI)(CN)gla,
Ua1zenH20,  {A4B4z}.  [B(CN)el:
grey octahedron. Other balls: A, large
white; carbon, small black, nitrogen,
small white; oxygen, medium grey.
Coordination and  zeolithic  water
molecules fill the [B(CN)g] vacancies.
(b) C4A4[B(CN)gla Uo or {C4A4B4}: C
cation, large black balls in the tetrahedral
cavities {C4A4B4}.
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acids AY* in aqueous solution to give neutral three-dimensional networks
{Ap[B(CN)ﬁ]q}O-nH2O

q[B(CN) P~ +n Hy0 + A% — {A[B(CN)s] )" nH,O  (2.145a)

The compounds are very insoluble and poorly crystalline, and comprise
often extrinsic components (solvent, ions, and so on). Among the different
ways of writing the MPB formulae (with A(I), B(III), and C(I)), we use
Cux A(ID)4[BUII)(CN)g 14, Ua(1—) *nH,0, (C*, alkali metal cation), where [ is
a [B(CN)g] vacancy (check that x + 2 = 3z):

4{xC* +z[B(CN)s]’~ + n/4 H,0 + A**}

(2.145b)
— CuxA4[B(CN)glaz 41—, *nH, O

The equation is based on the cubic conventional cell shown in Fig. 2.76. For
x = z = 1, the MPB adopt face-centred cubic (fcc) structures. The unit cell
comprises eight octants corresponding to interstitial or tetrahedral sites. There
are two types of octahedral metal site: strong ligand-field sites [BCN)¢] and
weak ligand-field sites [A(NC)g].

For z < 1, and therefore for Prussian blue, Liidi and coworkers proposed,
from powder diffraction and density measurements, that the A sites are fully
occupied and the [B(CN)s] sites are fractionally occupied. Accordingly, the
A centres surrounding the vacant [B(CN)g] sites have one (or more) water
molecules in their coordination spheres, depending on the stoichiometry z
(Fig. 2.76). Zeolitic water molecules and/or charge-balancing cations generally
occupy the interstitial sites with an extensive hydrogen bond network.

In Prussian blue, Fe,[Fe''(CN)s]5 * 14—16H,0, the [Fe(CN)y] vacancies
are most often disordered in the crystal, giving an apparent high-symmetry
structure (Fm3m) with a fractional occupancy (3/4) of the [Fe(CN)¢] sites. The
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presence of vacancies is intrinsic to PBAs whenever z < 1. It is not a ‘defect’
structure, as is often claimed. Some important properties are determined by
these vacancies (discussed in the following).

The Prussian blue structural framework is closely related to that of per-
ovskites ABOjs, such as CaTiOs, where the octahedral metal centres are
connected by oxide ions instead of cyanide bridges. But the hexacyanido-
metalate precursor exists in solution, which is not the case for the hypothetical
[Ti"™VOg]* unit. Prussian blue and its analogues can therefore be considered
as molecule-based materials. They are synthesized directly from preassembled
molecular precursors in water.

Finally, from a preparative point of view, Prussian blue is obtained by the
addition of an iron(IIl) salt to potassium hexacyanidoferrate(Il). A long his-
torical debate occurred about its relationship to a similar substance known as
Turnbull’s blue, which was obtained by addition of an iron(II) salt to potassium
hexacyanidoferrate(IIT). The problem was solved by Mossbauer spectroscopy,
which revealed that the two compounds are actually identical: very rapid
electron-transfer between the iron(I) and the hexacyanidoferrate(Ill) ions
gives rise to the same mixed-valence PB compound with low-spin iron(II)
(diamagnetic) in the Cg environment and high spin iron(IIl) in the Ng environ-
ment. The so-called ‘soluble forms’ of PB are actually colloidal suspensions of
K Fe"[Fe'(CN)s], * nH,O. The intervalence origin of the bright blue colour
of the mixed-valence PB is commented on in Section 3.2.2.2.

In such a context, Prussian blues (PBs) have stimulated an astonishing
rebirth of interest in their magnetism and a revival of the chemistry of cyanide
inorganic chemistry.

2.7.3.2 Magnetic Prussian blue analogues: the models

To design high-T¢ MPBs, we combine in this section our knowledge of
short-range interaction between nearest neighbours, governed by overlap and
orthogonality (see Section 2.6) and the considerations resulting from eqn.
(2.144). Prussian blue presents a ferromagnetic order at a deceiving T¢ =
5.6 K. The J coupling constant is very small, because the distance between the
Fe(II) spin-bearers (S = 5/2) across the [NC—Fe(I)-CN] diamagnetic bridge
is large (~10.4 A). The ferromagnetic coupling is due to electron delocaliza-
tion and double exchange (see Section 3.2.2). If we use instead systems where
both A and B ions are magnetic, we have to choose the best combinations given
by Fig. 2.61b, and also try to increase Z (we limit the discussion to exchange
interaction between nearest neighbours) (2.6 Vol. V, 283sq).

The MPBs structure (Fig. 2.76) shows that the number of magnetic neigh-
bours is always Zg = 6 around the B site, and depends on the stoichiometry z
for the A site: Z, = 6z (for example, Z, = 6 for z =1 in {C(I);A(I)4B(III)4}°
a, and Z, = 4 for z = 2/3 in{ A(I1)4B(IIT)g/3 } —a frequent case). It follows that
the mean coordination sphere of A can be formulated as A(NC)g,(H2O)g(1—)
(that is, A(NC)g for z = 1 and A(NC)4(H,0),, for z = 2/3). This is another
approximation. In reality, for a given stoichiometry, the A sites present a
distribution of coordination spheres A(NC)s_,(H,0), (p integer), as recently
demonstrated by (paramagnetic) NMR. Nevertheless, we consider that the
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mean number of magnetic neighbours depends on the stoichiometry and there-
fore on the amount of C* cation inserted in the structure. This can be governed
by the C* concentration in the synthetic solution.

A wide range of results is presented in Table 2.10, and the main conclusions
are developed in the following.

(1) When only e, magnetic orbitals are present on A, all the exchange inter-
actions with the #,, magnetic orbitals present on [B(CN)g] are expected to be
ferromagnetic. Thus, if a Prussian blue is prepared by adding a d® or d° A(II)
cation such as Ni** or Cu?* to a paramagnetic [B(CN)g] anion, a ferromagnet
should result. (Compounds 10 and 11 in Table 2.10).

(2) When only #,, magnetic orbitals are present on A, all the exchange inter-
actions with the t; magnetic orbitals present on [B(CN)g] are expected to
be antiferromagnetic. In this case, if the Prussian blue analogue is prepared
by adding a d? or d> cation to a paramagnetic [B(CN)s] anion, a ferrimagnet
should result. (Compounds 1 and 2 in Table 2.10.)

(3) When both #,, and e, magnetic orbitals are simultaneously present on A,
ferromagnetic and antiferromagnetic interactions with the #,, magnetic orbitals
on [B(CN)g] coexist and compete. Here, the overall nature of the interac-
tion is not so simple to predict. Usually, the nn antiferromagnetic interactions
dominate and a ferrimagnetic order arises. (Compounds 3-7, 9, and 12 in
Table 2.10.)

(4) Needless to say, when one of the ions (A or B) is diamagnetic and
the partner paramagnetic, the resulting compounds are predicted (and shown
experimentally) to be simple paramagnets in most of the accessible temperat-
ure range: for example, [CsZn(II)Cr(III), CsA(II)Co(III) with A = Ni, Co, Fe,
Mn] [2.6, vol. V, 283sq].

Looking in more detail at the results gathered in Table 2.10 and Fig. 2.77
[2.6, vol. V, 283sq], one can reach additional conclusions.

Table 2.10 Curie temperatures Tc of selected magnetic Prussian blues (decreasing Tcs).

K VI [Cr™(CN)g],

V1 [CrT(CN)slo.86 * 2.8 H20

cr'ly [Cr™(CN)g /3 * 10/3 H,O
CSz/3 CI‘II 1 [CI‘(CN)@]g/g *40/9 HZO
Cs;Mn" [VII(CN)s ],

(VIVO) [Cr(CN)g 123 * 4.5 H.0
Cs;Mn'!; [Cr(CN)g ],

Cs;Nill, [Cr'(CN)s]; * 2—4 H,0
Mn!; [Cr'™(CN)g]as3 * 5-6 H,O
CllH] [CI‘III(CN)6]2/3 *5-6 HzO
Nil'; [Cr'™(CN)g]o/3 * 4 H,0
Mn'!; [Mn!Y (CN)g],

Compound C4A 1[B(CN)¢], *nH,0 @) Electronic structure Ordering nature Tc/K Ne®
- d? Ferri 376 1
dB-d3 Ferri 315 2
d*-d? Ferri 240 3
d*-d3 Ferri 190 4
&d-d3 Ferri 125 5
dl-d3 Ferri 115 6
&d-d? Ferri 90 7
dé-d3 Ferro 90 8
d-ad3 Ferri 66 9
d-d3 Ferro 66 10
8- a3 Ferro 53 11
&d-d3 Ferri 49 12
d>-do(LS) Ferro 5.6 13

Fell'; [Fe'(CN)g 1314 * 3.7H,0

@ The formulae given in the Table are adapted from the literature to be related to one A cation: A;[B(CN)s], * n HO. We do not display
explicitly the vacancies A;[B™(CN)s],(0;_, * n H,0.
(®) References are given in [2.6, vol. V, 283sq]. First reports by Liidi (13), Babel (7), Gadet (8-11), Mallah (3,4), Ferlay (2,6), and Girolami

(1,5).
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(5) If we compare, in Fig. 2.77, the Tcs of MPBs obtained in the ABy/3
stoichiometry with B = Fe(Ill) (tgg)5, one unpaired electron () and B =
Cr(III), (tzg)3, three unpaired electrons (V), with the same metal A, the Tcs
are clearly higher with Cr(IIl), since the three t, electrons are available for
exchange in the x, y, and z direction (three jog pathways instead of one, Jap is
increased). Hence the interest in working with Cr(III) for higher Tcs.

(6) If we examine the influence of the stoichiometry for identical A-B pairs
(compounds 1-2, 7-9, 8-11), the T¢s are higher in the A;B; stoichiometry.
This is fairly well understood using the kTc o Z |J| relation. A;B; systems
have six magnetic neighbours, while A;B,/;; have only four. The ratio of the
Tcs should be 4/6. This is rather accurately satisfied for Mn;Cr; (7, A, Tc =
90 K), Mn1Cr2/3 (9, v, TC =60 K), Ni1CI'1 (8, A, TC =90 K), and N11Cr2/3
(11, v, Tc = 53 K). Hence, for higher T¢s, the usefulness of working with an
AB; stoichiometry.

2.7.3.3 High T¢ magnetic Prussian blues
Taking into account the previous observations, to achieve really high T¢ tem-
peratures the best choice is to associate the [Cr(III)(CN)¢]*>~ with an A(II)
partner. The electronic configurations and orbital pathways are gathered in
Fig. 2.78, and the critical temperatures are presented in Table 2.11. A simple
mixture of the precursors in aqueous solution leads to a CrA,; stoichiometry.
The simplest idea would be to choose systems presenting only ferromag-
netic interactions, with A = Cu (3f)(10) and Ni (6f)( 11) (Fig. 2.78). The
compounds are indeed ferromagnets, but with modest T¢ (Table 2.11) and J.
Actually, it is better to choose systems with antiferromagnetic interactions.
This is at first sight surprising, since both Cr(IIl) and V(II) have a spin S =
3/2, but recall that the actual stoichiometry is CrVy3, and thus a ferrimagnetic
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Fig. 2.77

Curie temperatures as a function of the
atomic number Z in a few selected series
of magnetic Prussian blues. ABy/3 stoi-
chiometry: B is kept constant and the Z
of A is varied (O, B=Fe; v, B=Cr). AB
stoichiometry (A, B=Cr; A varies). AB
stoichiometry, A is kept constant, the Z
of B is changed (V). Lines are guides for
the eye.
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Fig. 2.78

Exchange pathways in a fragment
Cr(IM)-C=N-A{I) of a magnetic
Prussian blue. A is a metal of the
first transition series. Left: electronic
configuration and orbitals’ occupancy of
Cr(IT). Right, electronic configuration
and orbitals’ occupancy of A(II), from
Cu(II) to V(II). Centre, along the arrows,
the nature of the exchange pathways (f
ferromagnetic, af antiferromagnetic) and
their numbers.
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Exchange Pathways d°
in a pair (tog)®

Cr(ll)-C=N-A(ll)
9af
(t29
9af
f

d5
)°(eg)!

d5
f (t2g)3(eg)2

3f (t2g)6(eg)2

dQ

(12g)6 (eg)1

order [(1); ({)2/3] results. In this logic one has to select the strongest antifer-
romagnetic couplings, thus choosing V(II), because it gives nine af pathways
and no f pathways (Fig 2.78, top). Table 2.11 summarizes the situation. A Curie
temperature above room temperature (315 K) is reached for compound 2, due
to a simple reasoning based on our heuristic rules [2.59].
The vanadium-hexacyanidochromate association can even lead to a higher
Tc by simply applying eqn. (2.144) and enhancing the number of magnetic
neighbours Z from 4 to 6, in inserting a caesium cation in the tetrahedral sites
of the PB structure, Cs;V;Cr; compound 1, which present the record tem-
perature of 376 K, above the boiling point of water. Note that in this case
the stoichiometry is V;Cr; (which should lead to zero magnetization), but the
ferrimagnetic behaviour is due to some V(III) impurity, some stoichiometry’s
deviation, and possibly a small difference between the g values of the metals.

Table 2.11 Experimental electronic structures, exchange interactions, long-range orders and Curie temperatures as a function of A in

A(ID4[Cr(III)(CN)gg/3 « xH, O.

All'ion Vv, d3 Cr, a* Mn, d3 Fe, d° Co, d’
Conf. (Qg)x(eg)mx (tZg)3 (tZg)3(eg)l (t2g)3 (eg)z (t2g)4 (eg )2 (tZg)S(eg)z
Interaction? af af af Vi Vi

Tc/K 315 240 66 16 23

Ni, 48

(t2g )6 (eq )2
f

60

Cu, &°
(t26)%(eg)!
f

66

¢ af = antiferromagnetic interaction and ferrimagnetic order, f = ferromagnetic interaction and order;
b in disagreement with the too-simple heuristic model. See [2.6, vol. V, 283sq] for a deeper interpretation.
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Is it possible to go still higher? Simple reasoning and DFT calculations show
that with other selected pairs such as Mo(IIl)-V(I) (the Mo orbitals more
diffuse than the Cr ones), one can expect higher J and T¢. Up to now, such
attempts have been unsuccessful. The expected MPB material is not forming.

In this section we have tried to transform a set of molecules in a three-
dimensionally ordered (classical) magnet by optimizing the exchange inter-
action between the spin bearers in the solid. On a completely different
background we show in the next section how to transform one ion, one
molecule, and one chain in a magnet, without interaction between the entities,
by focusing on the magnetic anisotropy of the system.

2.8 Magnetic anisotropy and slow relaxation
of the magnetization

In this section we introduce a new kind of magnetic object: the so-called
single-molecule magnet (SMM), single-chain magnet (SCM), or single-ion
magnet (SIM). Such new compounds were discovered from 1993, and from
that time the domain exhibits a quick development. The three kinds of
molecules/systems present a common feature: a slow relaxation of the mag-
netization, without significant interaction between neighbouring species. This
raises the hope of one day being able to store information on the ultimate,
molecular, size. We present the basic features of the molecular anisotropy at
the origin of the phenomenon.
Several books and reviews are available [2.4, 2.60-2.63].

2.8.1 Single-molecule magnets (SMM)

2.8.1.1 Discovery and main features: Mny; [2.4, 2.62-2.64]

The story of single-molecule magnets began in 1993 with the study by
Gatteschi et al. of an {Mnj,} cluster [2.4, 2.64]. Actually, {Mn,} is
a generic name for a family of compounds with the general formula
[Mn;,01,(0,CR);6(H,0)4], where O,CR is a carboxylate anion [2.62]. The
compound is a mixed valence system with formal valence states Mn"",;Mn"s.
(Such compounds are studied in detail in Section 3.2.2). The structure is organ-
ized around a central Mn'Y O, cubane core, around which are found the 8 Mn'"!,
additional O*~ bridges, and the sixteen carboxylate ligands (Fig. 2.79). The
overall structure exhibits S; symmetry. Crystallographically, Mn'Y is denoted
as Mn1, while the Mn™™ ions are of two types with pseudo-octahedral envir-
onments: Mn2 surrounded by two oxo ligands and four oxygen atoms of
carboxylate molecules, and Mn3 surrounded by two oxo ligands, three oxygen
atoms of carboxylate ligands, and a water molecule.

In this structure, Mn'Y, d* has S = 3/2, while Mn"!, high-spin d* has S = 2.
The latter is subject to a strong Jahn—Teller effect (see Section 1.3.7), because
the e, set contains only one electron. As for Cu'l, it is manifested most often
as an elongation of the octahedron. This introduces a strong anisotropy in
the magnetic properties through spin—orbit coupling. Importantly, the elong-
ation axes make angles of 11° for Mn2 and 37° for Mn3 with the S4(z) axis
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Fig. 2.79

Structure of the {Mnj;} core, down
(a) and roughly perpendicular (b) to
the S4(z) axis. For clarity, the peri-
pheral carboxylates are not shown. Large
white spheres are Mn!! jons (Mn, and
Mn;). Large grey spheres are Mn'Y ions
(Mny). The small grey spheres are oxy-
gen atoms. The darkest ones underline the
Mn'™ Jahn-Teller axes (see text). In (a),
the double-headed arrows indicate the
exchange interactions between the differ-
ent kinds of manganese ions. In (b), the
spins S = 2 borne by Mn"! are schem-
atized by long black arrows (up). The S
= 3/2 of Mn'V are shown by small open
arrows (down).
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g

(Fig. 2.79b), so that their general direction is close to the z axis, which is, by
symmetry, a privileged axis for the overall anisotropy.

Regarding static magnetic properties, the different spin centres are coupled
through oxygen and carboxylate bridges. Without entering into details (a
complete analysis is presented in [2.65]), the four central Mn'V are weakly
ferromagnetically coupled (Jiy_rv & +8K) due to the M—O-M angles near 90°
(orthogonality; Section 2.6.3.1). The strongest interactions are antiferromag-
netic between the central Mn!'V and the peripheral Mn™ (Jyv &~ —120K)
(overlap between magnetic orbitals). Thus, although the interaction between
Mn'" is antiferromagnetic (Ji_m & —23K), the spin structure consists of eight
S = 2 ions with spin ‘up’, and four S = 3/2 ions with spin ‘down’; that is, a
ferrimagnetic situation with S = 16 — 6 = 10 (Fig. 2.79b), as observed. The
calculations [2.65] also give a first S = 9 excited state at 35 K above the ground
state.
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Fig. 2.80

Experimental magnetic properties of {Mnj2}. (a) AC susceptibility measurements at various frequencies as a function of temperature. The dotted
line is the Curie law for the ground state S = 10 spin. The plain curves are the %’ susceptibilities. The dotted grey curves are the ¥ susceptibilities.
(b) Hysteresis loop at 2.1 K of a single crystal with a magnetic field applied along the z anisotropic axis. Mg, is the magnetization at saturation,
RM the remnant magnetization, H. the coercive field. The black plain horizontal arrows point out the vertical steps due to quantum magnetic
tunnelling, whereas the grey dotted arrows show the magnetization’s plateaux when tunnelling is not allowed. (Adapted from Sessoli [2.61].)

Standard (static) magnetic susceptibility measurements show the signature
of ferrimagnetic spin structure (not shown) [2.61]. Furthermore, magnetization
measurements present the two peculiar phenomena illustrated in Fig. 2.80:
(a) the appearance of a maximum in the AC susceptibility curves, announ-
cing exciting dynamic properties; and (b) a remarkably wide hysteresis loop,
reminiscent of a classical magnet accompanied by an unusual succession of
plateaux and steps within the loop. The next two sections are devoted to simple
explanations of these properties.

2.8.1.2 Anisotropy barrier and magnetization dynamics

A technique of choice for studying the dynamics of magnetization is AC sus-
ceptibility (Section 2.3.3). When the magnetization instantaneously follows the
oscillating field, x’ behaves as the static susceptibility, and x” is zero. A Curie
law is observed (Fig. 2.80a, upper dotted line). When the field oscillates too
quickly the magnetization follows with a delay, and the x’ signal departs from
the Curie behaviour, presents a maximum, and tends to zero when T decreases.
The most useful is the x” signal, because it presents a maximum when the
relaxation rate k equals the AC pulsation w and allows the determination of
the anisotropy barrier through a study as a function of temperature. The results
for the {Mn,} system are shown in Fig. 2.80a [2.62].

The non-instantaneous establishment of equilibrium magnetization is an
indication of the presence of an energy barrier, due to zero-field splitting of
the ground state and a negative D, as seen in Fig. 2.81. The Hamiltonian
corresponding to a uniaxial anisotropy with an applied field H, (Section 2.5) is:

Hy =D[S] — S(S + 1)/3] + gusH,S,. (2.146)
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Fig. 2.81

Double-well energy representation of a
spin state S having an easy axis mag-
netic anisotropy. Here, as in Fig. 2.35, the
abscissa axis corresponds to Mg, varying
only from -S to +S and the physically
significant points are shown by white
spheres. The superimposed double-well
curve represents the classical potential
energy as a function of the angle between
the magnetic field and the easy axis.
A grey ball represents a set of molecules
in a given Mg state. Mg < 0 are in the
left well. Mg > O are in the right well.
(a) After cooling down in zero field: equal
population in the two wells; (b) cool-
ing down in an applied magnetic field
populates the left well (Zeeman effect,
up to magnetizations’ saturation, Msat);
¢) returning to zero field at low temper-
ature, the system is either trapped in the
well (remnant magnetization RM close to
the saturation value, Msat) if kT << Eg
or, if kT is high enough, it tends to
equilibrium through a series of thermally
activated steps (small vertical arrows—
Orbach process) and a slow relaxation of
the magnetization. (Adapted from Sessoli
[2.61])

The localized electron: magnetic properties

MS=O

For {Mnj,}, S = 10, the energy of the spin levels (=S < Mg < + S) are E(Ms)
= D[Ms 2 — 110/3] + gug MgH, (Fig. 2.81):

In {Mnj,} the two lowest energy states are Mg = —10 and Mg = +10,
while the Mg = O state is the highest level (Fig 2.81a). Since S is an integer
(Section 2.5) there is an energy barrier Eg, given by Eg = |D|S?. With D =
—0.46 cm™ and S = 10, it amounts to 46 cm™! (or 66 K in temperature units,
by using the ratio Eg / kg).

The relaxation rate of magnetization (or magnetization reversal rate) can be
measured as a function of temperature from AC susceptibility data, and follows
generally an Arrhenius law:

k = ko exp (—Eg/kpT) (2.147)

with, in the case of Mnj, kg = 4.8 10° s™! and Eg / kg = 62 K in the 2-10 K
temperature range. kg is the Boltzmann constant. This value is very close
to the barrier height expressed in K units, showing that in this temperature
range the process is essentially thermally activated. In other words, one has to
climb to the top of the barrier to perform the magnetization reversal. The slight
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difference between the two values indicates that some other minor processes
(tunnelling) are operating (see Fig 2.83a, process 2). For practical applications
such a kg rate is too high (or the corresponding characteristic relaxation time t¢
(= 1/ ko) is too small). At the common cryogenic temperature of 4.2 K (liquid
He), the rate is still about 0.9 s~!, thus a bit of information is kept for no longer
than t = 1 s. This is why huge efforts were and are made to find systems with
higher barriers (see Section 2.8.1.4).

2.8.1.3 Remnant magnetization, hysteresis, and quantum tunnelling

When the temperature is low enough, the magnetization reversal rate can drop
to very low values; for example, 10~ s7! at 2 K, corresponding to a char-
acteristic time t = 1/k of the order of months. Then, in our time-scale, the
system is frozen and can be considered as a memory element (Fig. 2.81c).
Experimentally it exhibits an hysteresis cycle when the magnetic field is swept
in both directions, with a remnant magnetization RM (Fig. 2.80b), because the
thermodynamic equilibrium is not established. Since the response involves the
relaxation rate, the width of the hysteresis (characterized by the coercive field)
increases when decreasing the temperature or when increasing the sweep rate
(Fig. 2.82). At some temperature (depending upon the sweep rate), the hyster-
esis disappears (at 3.7 K in Fig. 2.82), because equilibrium is attained in the
time-scale of the experiment.

Thus, the main characteristics of a classical magnet are obtained (remnant
magnetization, coercive field). But contrary to other applications of magnetic
molecules, SMM do not need to be associated in large number to constitute
a material; they are the material. At variance with macroscopic magnets, the
magnetization reversal does not rely on the motion of domain walls, but is
a truly monomolecular process. But, while the motion of domain walls in a
classical magnet can be immeasurably slow, for SMM it is extremely difficult
to achieve kT << Ep and to bring the magnetization reversal rate to or near
ZEero.

1F

M/Mg

o
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Fig. 2.82

Hysteresis curves of a {Mnj2} single
crystal with an applied magnetic field
H,, at a fixed sweep rate (4mT s’l)
at different temperatures. (Adapted from
Christou [2.62].)
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Fig. 2.83
Different magnetic relaxation processes.
Same representation as in Fig. 2.81. (a) In
zero magnetic field: 1, quantum tunnel-
ling in the ground state; 2, quantum tun-
nelling between thermally excited states
(grey balls); 3, relaxation through thermal
activation. In a non-zero magnetic field,
(b) without coincidence between the
levels, no tunnelling (dotted arrow, mag-
netization plateau), (c) with energy coin-
cidence between one level from the right
manifold (Mg = +S) and one level of the
left manifold (Mg = — S + 3), quantum
tunnelling (horizontal plain arrow, step).
(Adapted from [2.61].)
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The second obvious characteristic of the hysteresis curve (Figs. 2.80b and
2.82) is that it displays steps. These features are completely different from
those observed in usual magnets whose origin is the reversal of magnetic
domains. Here the steps occur when M’g levels of the S = 10 manifold on
one side of the double-well diagram are degenerate with Mg levels of the other
side (Fig. 2.83c). When this happens, quantum tunnelling can occur, increas-
ing the rate of magnetic relaxation, and a vertical step results on the hysteresis
curve. The successive coincidences of energy levels of the right and left wells
occur for H = nD/gup (ninteger =0, 1,2 .. ., as can be easily computed from
the uniaxial Hy Hamiltonian, eqn. (2.146), giving the energy levels in presence
of a magnetic field) (dotted lines in Fig. 2.82). The step height and the width
of the overall hysteresis depend on the magnetic field sweep rate, allowing a
detailed explanation taking into account the dynamics of the tunnel effect.
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(b)

W, =[1+8*> £ -S*>]A2
| | | -

-S 0 +S

Quantum tunnelling can occur also in absence of a magnetic field, as shown
in Figs. 2.83a and 2.84, which deserve a few comments. Assume that two levels
are degenerate, but that the system has been prepared in one of the localized
states; for example, M's = + S, denoted |+S*> (right well). The corresponding
state in the left well is Mg = —S, denoted |-S*>. This localized state [+S*> is
not stationary, and quantum oscillation begins to develop between states [+S*>
and |-S*>, with a frequency determined by the tunnel splitting A, as seen in
Section 1.6 (Fig. 2.84).

The wavefunction W(t) is then given by:

[W(t)> = |+S*> cos(2mvt) + | — S*> sin(2mvt) (2.148)

with v = A /h (eqn. 1.91). In the absence of relaxation the oscillation should
last indefinitely. The system would then be named coherent. In practice, how-
ever, this is not the case, because there is an exchange of energy with the
environment. The main couplings to the surrounding ‘bath’ are (i) dipolar
interactions with the spins of the different molecules (such interactions change
when one of the surrounding molecules is switching its spin); (ii) the interac-
tion of the electronic spin with the nuclear spins of the atoms of the molecule,
when they exist. Of course, when the magnetic field is swept the degeneracy is
rapidly lost and the system evolves towards the lowest localized energy state
(Fig. 2.85).

The overall behaviour thus depends on the comparison of two time-scales:
(i) the time during which the energy levels are almost in coincidence; and
(ii) the period of quantum oscillations. If the sweep rate is fast, quantum oscil-
lations do not have enough time to establish, and thus the system remains in the
initial electronic state. If the sweep rate is small, quantum oscillations develop,
so that the system explores permanently the two electronic states, and finally
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Fig. 2.84

Tunnel splitting in a double-well sys-
tem. Same representation as in Fig. 2.81.
(a) Non-interacting, perfectly localized
energy states [+S*> and —S*>; (b) inter-
acting states W, delocalized on the two
wells, with tunnel splitting A. The split-
ting width A is exaggerated for clarity.
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Fig. 2.85

Energy of a pair of levels Mg and M§
as a function of a magnetic field applied
along z. The two levels are coupled by an
interaction giving an avoided crossing in
the centre with energy levels separated by
the tunnel splitting A. The possible tra-
jectories are denoted A (adiabatic) or NA
(non-adiabatic). (Adapted from Sessoli
[2.61]). See also Fig. 3.12.
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|Mls> |Ms>

evolves towards the most stable. These scenarios are depicted in Fig. 2.85.
They are called, respectively, non-adiabatic and adiabatic processes.

Mathematically, the tunnelling probability Py, mto evolve from state
[Ms > to [M’s > can be computed [2.15], [2.61] in the frame of the Landau—
Zener—Stiickelberg model [2.66], and is given by:

A2
Pue—m, =1—¢ — 2.149

where A is the tunnel splitting and dH/dt the sweep rate. One reaches the
same conclusion as in the qualitative previous argument: for large dH/dt or
small A (slow oscillations), P — 0 (non-adiabatic process), and in the oppos-
ite situation, P — 1 (adiabatic process). We shall encounter similar schemes
and equations in the case of electron transfer in Section 3.2.1.2. An important
property of the tunnel splittings A is that they are very small at the bottom of
the wells (Mg large) and increase near the top of the barrier (Mg weak). Tunnel
process 2 in Fig. 2.83a is expected to be more efficient that process 1, even if
the thermal process 3 is predominant.

We now understand why the sweep rate can influence the hysteresis width
in the pure tunnelling regime (no thermal activation). For fast sweep rates the
equilibrium cannot be established at the first coincidence of Mg and Mg levels,
and the evolution is delayed until the next coincidence, generally more efficient
because A and P are higher. This increases the hysteresis.

Returning to the situation in the absence of field (or weak AC field like
in relaxation experiments), one can remark that at zero K there should be
a residual magnetization reversal rate through tunnelling between the low-
est Mg = £ S levels (Figs. 2.83 and 2.84), while the Arrhenius equation
(2.147) would predict a zero rate. Thus the Arrhenius equation should break
down at low temperatures, and the relaxation should become temperature-
independent. Practically, this is not observed in {Mn,}, because the tunnel
splitting between =£S is much too small (it is estimated to be about 10710 cm™).
This derives from the fact that when a system obeys the Hamiltonian Hy,
eqn. (2.146), the two localized levels |[+10*> and |-10*> are orthogonal to
each other. Thus the temperature-independent rate cannot be experimentally
measured.
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There is, however, a system for which the quantum tunnelling is
observed in the ground state: [FegO,(OH),(tacn)sBrg(H,O)g] (tacn:1,4,7-
triazacyclononane), abbreviated as {Feg} [2.4, 2.61]. At variance with {Mn;, },
it presents a rthombic component described by the following perturbation
Hamiltonian H; (written with the corresponding Zeeman terms):

H =E [Si — s§] + gisH Sy + gipH,S, (2.150)

with 0 < E/D < 1/3. Such a Hamiltonian directly couples the Mg with Mg £2
components (Mg = 10 with Mg = 8, Mg = —10 with Mg = -8, and so on,
and finally Mg = 10 with Mg = —10 at the tenth order). The {Feg} complex
provides a wealth of information about the mechanisms of the tunnel effect in
SMM (influence of dipolar interactions, hyperfine interactions, and so on) [2.4,
2.61]. The tunnel effect in the ground state will be encountered also in the case
of electron transfer (Section 3.2.1.2).

2.8.1.4 How can the anisotropy barrier be increased?

To increase the barrier, DSZ, there are several approaches: increase S, increase
D, or both. The most appealing approach appeared first to increase S, since
the barrier height should scale as S?. This explains the search for high-
spin molecules (Section 2.6.5.3), and what we have learned about exchange
interaction can be fully used here to produce ferromagnetic or ferrimagnetic
states. The search for 1D compounds (Section 2.8.2) follows the same line
of reasoning (increase S). As for D, an anisotropic molecular structure is
a prerequisite. Eqns. (2.109) and (2.113) can be used. Ignoring the smaller
exchange anisotropy terms d;; Dy; we find that D of the complex is the sum of
the local anisotropy tensor terms Dj, weighted by d; coefficients. Choosing
transition-metal ions possessing large local D; parameters [Cr(Il), Mn(III),
Co(Il), lanthanides . ..] is a logical approach, but the difficulty is to assemble
them so that the effects reinforce and do not cancel. Indeed, the d; coefficients
can take positive, negative, or zero values, depending on the topology of the
complex, and it is therefore difficult to anticipate the D value. Furthermore,
experiments and theory show that, everything being equal, D is not independ-
ent of S and can even scale as S (see eqns. (2.109) and (2.113)). Thus, D
should decrease with S, so that the [D|S? product could be, in fact, independent
of S [2.67-2.68]. Hence the new endeavours to explore new systems, either
1D with SCMs, or mononuclear complexes (SIM) by optimizing the local
anisotropy (choice of the ion and tuning of the structure) [2.69].

2.8.2 Single-chain magnets (SCM)

To reach a high spin, the single-molecule magnet approach uses several mag-
netic centres associated in a cluster. A related approach is to use a single-chain
magnet. It can be expected that the large number of magnetic centres correlated
within the chain will give a high-spin ground state S, and that, the structural
anisotropy of the chain associated with Ising type magnetic anisotropy of the
spins (that is, with spins S; able to take only up and down orientation, &1 along
z, for example), higher anisotropy barriers can be achieved. The domain was
launched by Sessoli et al. in 2001 [2.70], soon followed by Miyashita and
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Fig. 2.86

Ising model of a single-chain magnet.
(a) Finite segment of oriented spins.
Activation energy to reverse a spin at site
i within the chain (b) or at one end of
chain (i = 1 or N) (c). (d—f) Probability w
to flip a spin (light grey) in the three pos-
sible configurations of the neighbouring
spins. (Adapted from [2.4], section 15.2.)
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Clérac (who coined the SCM acronym), and Julve et al. Hundreds of SCM are
now available [2.4, 2.60, 2.71].

Single-chain magnets (SCM) are 1D objects magnetically isolated from
each other, presenting a slow relaxation of the magnetization. As shown in
Section 2.7.1.3, they cannot present a long-range magnetic order, but they can
exhibit a short-range order; that is, the occurrence of domains where the N
spins are oriented in the same direction (Fig. 2.86a), interrupted by a reversed
spin or by chain defects (*). A finite magnetization can thus be frozen at low
temperature in the absence of an applied magnetic field. The analysis of the
slow relaxation of the magnetization, of the thermal activated behaviour, and
of the quantum tunnel effect in SCM, relies on the anisotropic Ising model
elaborated by R. J. Glauber [2.72] (recipient of the Nobel Prize in Physics,
2005). The main concept of Glauber’s dynamics is the probability for a spin
to flip within the chain, taking into account only the nearest-neighbours inter-
actions, with an Hamiltonian of the kind H = —J Y N §;S;,;. The essential
features are shown in Fig. 2.86 in the case of a ferromagnetic coupling (J > 0).
Starting with a system prepared in a saturated ferromagnetic configuration (by
cooling in an applied magnetic field for example (Fig. 2.86a)), the complete
reversal of the magnetization consists of several successive events. The first
is the reversal of one spin in position i, S;, which breaks two interactions
with its two neighbours, at an energy cost of 4J. Indeed, reversing the local
magnetization necessitates struggle against J, a key parameter in this model,
which tends to keep a spin in a given direction under the influence of exchange
with its neighbours. The other steps, to flip the Sit; spins, do not need fur-
ther energy, since their neighbouring spins are now up and down (negative and
positive interactions). The activation energy is then A = 4] (and A = 4JS?
when S s 1). The relaxation time is T = 1y exp (4JS?/kT), where 1y is the
value for an isolated spin. Figure 2.86¢ displays the special case of a spin flip
beginning at an end of chain, where the barrier is only A = 2J (or 2J S?).
Finally, Figs. 2.86e—f show the probability of the reversal of S;, ws;j—_si, as a
function of: (i) a, the probability of reversal of an isolated spin, and (ii) y (=
tanh(2J/kT), a factor depending on the energy J the nearest neighbours inter-
action, in the three cases when the two neighbouring spins are both parallel to
spin S; (d), both antiparallel to spin S; (f), and one parallel and the other anti-
parallel (e). The final result is an anisotropy barrier 4JS?, which can be much
higher than in SMMs. Many other aspects of SCM dynamics are discussed in
[2.4,2.60 and 2.71].

ST
i~ 0 i+ A= A=2]
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2.8.3 Single-ion magnets (SIM)

In this approach we return to mononuclear complexes, but with several favour-
able factors due to the use of rare-earth (RE) elements. First, RE involve f
orbitals—orbitals with a large angular momentum (1 = 3) and many electrons,
thus a high S. Second, the spin—orbit coupling is large (Z between 57 and 71;
see third row of transition metals). When this is combined to the anisotropy of
the ligand field, it can produce large negative D values.

The prototype is provided by sandwich complexes (also called ‘double-
decker’) such as [Tb(III)Pc,]™, (Pc = dianion of phthalocyanine) represented
in Fig. 2.87. In the anionic form one has Tb(III), 8, and two Pc?- ligands, while
the neutral form contains also Tb(III), but one of the two ligands is formally
oxidized by one electron, and the complex can be written [Tb(IID)(Pc2 ) (Pc*].
The RE metal environment is a square antiprism, conferring D4g symmetry to
the complex.

In the case of Tb(III), for the free ion, the eight electrons occupy seven
degenerate f orbitals. The resulting ground term is characterized by L = 3 and
S = 3, thus 'F. After the intervention of spin—orbit coupling the ground state
has J = 6, and is written 'Fg, in agreement with the rule for more than half-
filled shells (Section 2.4.1.1) [2.73]. With rare earths and at variance with the
case of transition metals, the ligand field is very weak and must be introduced
after spin—orbit coupling. The action of the ligand field requires specific math-
ematical tools and is not detailed here, but can be found in [2.74, 2.75]. It lifts
partially the 2J + 1 degeneracy of the free-ion ground state (term), and the
lowest substates have J, = &+ 6, consistent with a negative D parameter.

This can be justified by a simple argument. Due to the strong spin—orbit
coupling, the L and S vectors are ‘locked’ in parallel position, while the ligand
field acts only on L by lifting the degeneracy between f orbitals. When filling
the 8 configuration, one puts first 1 electron in each orbital (thus at this stage
all angular momenta cancel), but the eighth electron, responsible for the final
L, enters the lowest energy orbital(s). With the environment of Fig. 2.87, these
orbitals are x(x>-3y?) and y(3x?—y?), because they lie in the xy plane [2.75],
and since they are associated to m; = =& 3, there is a tendency for i, and thus
J, to align with z.

Finally, [TbPc,]” presents attractive features for a single-ion magnet.
Starting from the ground levels (J, = % 6), the first pair of excited levels (J, =
+ 5) lies more than 400 cm™' above (Fig. 2.88). Without the tunnelling effect
one should climb really high in energy to achieve a magnetization reversal.
Even if the barrier is lower than what can be expected, as a matter of fact, the

<y
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Fig. 2.87

Structure of a {TbPc,}~ sandwich com-
pound (Pc = phthalocyanine), displaying
the z anisotropy axis.
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Fig. 2.88

Energy levels of the ground-state mul-
tiplets of {LnPcy}”. (Redrawn from
[2.73b].)
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maximum of x” at 1000 Hz is obtained for 40 K (versus 6 K for Mnj,), and
for the neutral species the figure is even 50 K. [TbPc;] can be used as active
element in a spintronic device described in Section 5.2.9. The use of lanthan-
ides to create new quantum magnets—exploiting their very peculiar electronic
structure (Fig. 2.88)—is emphasized in [2.74, 2.75] and many recent papers.
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The moving electron:
electrical properties

In Chapter 1 we saw that electrons are running in the field created by the
nuclei, that their energy in the atom is quantized, and that their speed can
be very high. Nevertheless, they remain localized around a given nucleus or
in a given molecule (that is, a well-defined site). In the present chapter we
introduce and study another kind of mobility of the electrons: from one site to
another, which ensures conductivity in the case of a solid. This movement is
a result, in most cases, of external perturbations (electric or magnetic fields,
electromagnetic radiation, and so on). It depends on the interplay of a num-
ber of structural and electronic factors which are analysed in Section 3.1.
In Section 3.2 we consider the case of electron transfer in discrete molecu-
lar systems, and in Section 3.3 the delocalization of electrons in solids with the
resulting conducting properties.

3.1 Basic parameters controlling electron
transfer

Electron transfer depends essentially upon three parameters: one is the elec-
tronic interaction between sites (this favours electron transfer), a second one
is the change in geometrical structure of the surrounding induced by the
presence or absence of an electron (this hinders electron transfer), and
the third one (also unfavourable) is the interelectronic repulsion precluding
the simultaneous presence of two electrons on the same site. The follow-
ing discussion will be useful for the study of electron transfer in solution or
in discrete molecular systems, as well as in extended solids. However, for
reasons of simplicity the parameters will be defined using simple examples
taken from discrete systems. Discrete systems will be in general of the
M™ — M(™D* type; that is, two neighbouring transition metal ions whose
oxidation states differ by one unit. When the two ions are permanently linked
by covalent bonds, they constitute a mixed valence compound—a type of com-
pound which will play a crucial role in the concept of electron transfer (see
Section 3.2.2).
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Fig. 3.1

Electron energy (denoted €) for a sys-
tem with two localization sites, A and B.
Thin curved lines represent the potential
energy, while bold horizontal lines rep-
resent the total energy. As a result of elec-
tronic interaction, the electron energies
are split in two levels separated by 2 |B].
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3.1.1 The electronic interaction between neighbouring sites:
the V4, parameter

The basic reason for the possibility of electron transfer is the existence of
an electronic interaction between different sites (atoms or nearby molecules).
In the simplest case of the interaction between two atoms in vacuum, it is
described by the resonance integral p =< ¢,|H|dp > as seen in eqn. (1.17).
The interaction can be illustrated by a diagram, familiar to physicists, in which
one plots the energy of an electron as a function of its position (Fig. 3.1).

In Fig. 3.1 are shown the electronic energy levels for each atom and for the
complete system (molecule). For the latter, there is a splitting 2 | B | (neglect-
ing the overlap; see Section 1.3.1) between the bonding and the antibonding
combination of atomic orbitals. The bonding and antibonding combinations
are given by (neglecting overlap):

Upond = U1 = 272(dy + bb) (3.1a)
Vantibond = V2 = 272 (5 — bp) (3.1b)

A typical situation for electron transfer occurs when there is just one electron
present in the system. Since the electron total energy is always below the poten-
tial energy in the region between A and B, it is said that the electron can move
by tunnel effect between A and B. Actually, talking about the tunnel effect
(here an electronic tunnel effect because Fig 3.1 deals with electron energies)
is the same as talking about the birth of a chemical bond between A and B. For
other aspects of tunnelling, see Sections 1.6 and 2.8.

Real systems are, of course, much more complex, for two reasons: (i) there
is more than one electron, so that the quantum-mechanical description must
involve total wavefunctions and energies instead of one-electron ones, and (ii)
in most studied cases there is a bridging ligand linking the two metal sites, and
the analysis must take into account the electronic delocalization on this ligand.

We temporarily get rid of difficulty (i) by assuming that in the system upon
investigation the electronic interaction results from the mixing of only one
orbital from each site—the one which is occupied by either one or zero elec-
tron. Below in energy are found occupied orbitals which do not play a role in
a first approximation. We are thus brought back to a one-electron-two-orbitals
analysis (Fig. 3.2). This approach has the immense advantage of allowing a
pictorial approach based on orbital topologies. The problem will be discussed
further in Section 3.2.2.6.

Y-
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We now consider difficulty (ii). As a result of the presence of the bridging
ligand, the intervening orbitals have extensions on the bridge (as well as on
ancillary ligands). Thus the problem must be analysed by considering the com-
plete system. Let us take the example of two transition metal ions linked by a
simple monoatomic bridge with just one active bridge orbital: many systems
contain the centrosymmetric M—O-M framework, with a linear bridge con-
sidered formally as the oxide ion O~ (Fig. 3.3). With the coordinate system
of the figure, the dy, orbitals of the metals can mix only with the px orbital
of the oxide. Taking into account the electronegativity difference between
metal and oxygen, one derives the qualitative diagram of Fig. 3.3, in which
one recognizes the standard way of construction of molecular orbitals; that is,
by building first symmetry-adapted linear combinations (SALC or SO) of dy,
orbitals, namely 27Y2(dy,a + dypp) and 272 (dgza — dyyp), and then allowing
them to interact with oxygen. (See also Section 2.6.2.2 on exchange interaction
where a similar reasoning was used for a linear M—O-M bridge but involving
dy2_,2 orbitals.)

Thus, in the upper part of the final diagram one recognizes two orbitals, y,
energy €;, p, energy €, with strong metal character and opposite symmet-
ries # and g, as in the case of the two-site system (eqns. (3.1a) and (3.1b)).
For a mixed valence situation there is only one electron in these orbitals.
Calling them {; and s,, the electronic interaction is defined, by analogy as
previously, by:

Va = Bl = 1a(le2 — 1))

so that V,, is always a positive quantity. This way of defining the electronic
interaction is called the dimer-splitting method.

In this chapter we shall use either Vg, or f to characterize the electronic
interaction. When using f we must keep in mind that it is an effective quantity
because, as in Section 2.6.2.2, we are not dealing with the interaction between

3.2)
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Fig. 3.2

A polyelectronic system in which only
one orbital on each site plays a role in
electron transfer.

Fig. 3.3

Qualitative MO diagram for a mixed
valence system with a linear oxygen
bridge. The d orbitals of the two metals
are assumed to bring just one electron
(case of a vanadium(V)-vanadium(IV)
system for instance). g and u refer to the
gerade and the ungerade symmetry of the
orbitals.
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pure metal orbitals. Orbitals such as {r; and {r, could indeed be obtained by
in-phase and out-of-phase combinations of localized orthogonal orbitals {’,
and V' (see orthogonal magnetic orbitals in Section 2.6.1.2); that is, orbitals
with a strong weight on a metal atom and tails on the neighbouring ligands and
even on the other metal site. Such orbitals are defined by:

Wa =221 + ) and ¥y =272 (Yry — P2) (3.3)

and with this definition
Vo = |< W HIW, >| (3.4)

where H is the complete Hamiltonian of the molecule. Once again, we note the
analogy with the problem of exchange interaction, except that in the present
case the electronic filling is different because of the mixed valence nature.

The previous definitions can be used only for symmetrical systems. For
non-symmetrical systems a more general procedure is necessary, because the
splitting between MO levels such as W and W, depends not only on |B| but
also on the initial energy difference between interacting orbitals (see Fig. 1.5).
We can use a suitable effective Hamiltonian. We have already seen an example
in Section 1.2.3, but here the purpose is different. The effective Hamiltonian
adapted to electron transfer is defined in such a way that:

Vab = < g [H] p > (3.5)

Note the difference compared with eqn. (3.4). Here the orbitals entering in the
Vab expression are atomic orbitals located on atoms A and B, but H has been
replaced by H*, the definition of which is [3.1]:

H"= PUT'THUP (3.6)

where P is the projection operator of the wavefunctions space on the subspace
defined by ¢, and ¢, and U is an operator performing linear combinations
of the wavefunctions (basis change) [3.1b]. U is chosen in such a way that it
minimizes the distance between some wavefunctions and the ¢,, ¢, subspace,
or, in other words, it allows partitioning the Hamiltonian matrix. (The term
‘distance’ has no geometrical meaning here, but refers to the vectorial space of
wavefunctions).

We shall not detail here the mathematics of this effective Hamiltonian,
which can be found elsewhere [3.1]. We can just perform a qualitative check-
ing, assuming that a molecular orbital calculation has been performed on the
complete metal-ligand—metal system, giving MOs of the form:

Pi = Ciada + Civdp + Z ciLdL 3.7

where ¢, and ¢, are pure atomic orbitals located on A and B (now A and B are
no longer equivalent) and ¢, are orbitals belonging to the ligand. The effective
coupling is then given by [3.2]:
C1aC1b — €2 C2
Va = - “— (&1 — £2)
2(C1aCab — CibC2)

where indexes 1 and 2 refer to the two orbitals with the highest contributions
coming from A and B. Thus, let us take the example of the combination of just

(3.8)
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two orbitals with very different energies (¢, much more stable than ¢,). Then
one has:

Cla™ 1, Ccip ®K, Coa ® —K, Cop X 1 (3.9a)
with k a mixing coefficient << 1. Substituting in eqn. (3.8) gives
Vab X k(e — €2)] (3.9b)

showing that V,, is now much lower than the energy difference (¢; — €;), in
qualitative agreement with Fig. 1.5.

On the other hand, for a symmetrical system, the two selected orbitals are
such that:

cla 272 ey 272 e 272 gy — 2712 (3.9¢)

and the substitution in eqn. (3.8) gives eqn. (3.2).

The effective Hamiltonian (3.6) is thus efficient and of general purpose. Its
structure can be qualitatively justified as follows: the projection operator P on
the ¢, dp subspace is equivalent to the operation of selecting in the complete
MO diagram those orbitals (¥; and W,) which have strong weights on A and
B. The U operation, corresponding to a rotation in a vectorial space, corrects
the energy calculation (H) to take into account that W and W, are unevenly
distributed on ¢, and ¢y,

In this chapter we shall use mainly definition (3.2) based on the symmetry
splitting of energy levels. For non-symmetrical systems, eqn. (3.2) cannot
be used, and one has to fall back to the less intuitive formula (3.8). For the
moment we use a definition of electronic coupling based on one-electron ener-
gies (hence the notation ¢; in all formulae). In Section 3.2.2.6 we shall say a few
words about more advanced treatments, taking into account the polyelectronic
nature of the wavefunctions.

3.1.2 The structural change of the surrounding:
the \ parameter

Electron motion from a localized site (such as a metal atom) to another is
always accompanied by some structural change. The process is well doc-
umented for electron transfer in solution, and in what follows, the basic
principles will be established from this example.

We consider the system formed by two hexaaqua complexes of Fe?* and
Fe®* in close proximity. It is known, from X-ray structures in the solid state,
that the iron-oxygen bond lengths are 1.99 A for [Fe(H,0)6]**, (t2e)*(eo)?,
and 2.12 A for [Fe(H,0)s]%*, (t2g)*(eg)? [3.3]. This length variation with oxid-
ation state is general in transition metal chemistry: frequently the addition of
one electron populates an e, antibonding orbital (see Section 1.3.6), and thus
weakens the metal-ligand bonds. But even when a ty, orbital is populated,
there is also a weakening because of the general expansion of the electronic
cloud, leading to an increase in metal-ligand distances. Anyway, owing to this
difference the electron transfer is impossible with the initial ground-state geo-
metry. Electron transfer must indeed obey two constraints: (i) since electronic
motions are much faster than nuclear motions, the system geometry cannot
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Fig. 3.4

(Left)  initial geometry of the
[Fe(H,0)613". . . [Fe(H20)4]>* pair, sho-
wing (right) the impossibility to achieve
an electron transfer at constant energy.
S = ‘small’ (coordination sphere adapted
to Felll), L = ‘large’ (coordination
sphere adapted to Fe!l).

Fig. 3.5

Potential  energy map for the
[Fe(H,0)61%F. . . [Fe(H20)6]?t pair as
a function of dp and dg. I: Initial state
corresponding to the Fea2*Feg3* situ-
ation; F: Final state corresponding to the
Fea*Fep?* situation; M: intermediate
state. Note that the reaction trajectory
I — M — Fis not generally linear.
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be modified during the electron transfer act; this restriction is very analog-
ous to the Franck—Condon principle, which governs electronic transitions (see
Section 4.2.3); (ii) also as a consequence of slow nuclear motion, the system
has no time to exchange thermal energy with the surroundings; the system
behaves as if isolated, and energy conservation prevails. But transferring an
electron while keeping the initial geometry would result in the creation of a
[Fe(H,0)s]** ion with the geometry of [Fe(H,0)4]>* and vice versa, which is
impossible at constant energy (see Fig. 3.4). Thus a change in geometry is a
prerequisite for electron transfer.

A simple way to represent the nuclear state of the system consists in plotting
the potential energy of the [Fe(H,0)6]%*. . . [Fe(H,0)6]** pair as a function of
two variables, d4 and dg, describing the bond lengths around the iron atoms
labelled A and B (Fig. 3.5). The energy is then represented as contour lines.
The initial state, corresponding to the Fea2*Fep3* situation, is then associated
to a point I (dp = dyr; dg = dpp) located away from the dy = dp diagonal, and
the final state Fe,**Feg?* to a symmetrical point with respect to this diagonal,
denoted F (dp = dyy; dg = dyp). Starting from these minimal energy situations,
any modification of a bond length gives rise to an increase in energy, which is
given, in the harmonic oscillator approximation, by AE = %k Ad?, where k is
the force constant of the bond, and Ad the bond length change with respect to
the equilibrium situation.
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To achieve electron transfer while obeying the previous constraints, one has
to cross at some time the dy = dp diagonal; that is, to bring the ds and dg
distances to a common value, dy,. The problem is now to determine which
dp, value will lead to the lowest energetic cost. Starting from the initial state,
bringing all the Fe—O distances to a common value d requires the following
energy:

AE = (n/2) ki (d — dm)* + (n/2) ky (dy — d)? (3.10)

where n is the number of bonds around iron (here n = 6), ky; and ky; are the
force constants in oxidation states II and III, and dy; and dyyy are the correspond-
ing equilibrium distances. Taking the derivative of eqn. (3.10) with respect to
d, and searching for the extremum, yields:

_ kpdn + kmdm
" kn + km
That is, the best ‘compromise’ distance is a weighted average of the dy; and dyy
distances corresponding to the two oxidation states. When the force constants
are equal, one has the intuitive result:
_dp + dir
N 2

If now we introduce the value of d, in expression (3.10), we find, after
rearrangement:

@3.11)

dm (3.12)

_ nkyky
2(ky + k)

which reduces, when ky; = kyjj to:

AE (dy — dm)? (3.13)

nk )
AE = T(dn — dqp) (3.14)

Thus, there is an activation energy which is proportional to the square of the
difference dn - dm.

The interplay between structural rearrangement and electron transfer itself
is illustrated in Fig. 3.6, showing the sequence of events: first the structural
rearrangement leading to a ‘compromise’ geometry, which is symmetrical with
respect to A and B sites, then electron transfer at constant geometry and energy,
and finally a relaxation of the coordination spheres with adaptation to the new
oxidation states.

However, to be complete one has to take into account an additional contribu-
tion to the activation energy coming from the solvent. In the same way as the
metal-ligand distances are different around the Fe?t and Fe3* sites, the state
of solvent polarization is different around the [Fe(H,0)¢]** and [Fe(H,0)¢]*
entities, as a result of their charge difference. Solvent molecules are more
strongly polarized around a 3+ charge than around a 2+ charge, due to the
higher electrostatic field.

Thus the activation energy in solution contains two contributions, one due
to the internal coordination sphere (the hexaaqua complex itself), and one due
to the external coordination sphere, namely the solvent, so that:

Eact = AE = AEinl + AEext (315)
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Fig. 3.6
Sequence of events occurring during
electron transfer.
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rearrangement

electron transfer

relaxation

AE;y, is the term computed by eqn. (3.13) from microscopic quantities. On the
contrary, to evaluate AE.y a common practice is to use a ‘macroscopic’ model
in which the solvent is considered as a continuous dielectric medium [3.4].
AE derives from the interaction between the dielectric medium and the huge
electric field created by charged species in their vicinities. Of course, such a
model could be questioned, because it does not take into account explicitly the
true molecular structure of the solvent around the ions, but this phenomenolo-
gical approach has been successful for several decades in producing realistic
estimations of the energies involved.

Thus the activation process can be imagined as follows at the level of the
solvent: starting from the initial state, where the external coordination spheres
present a polarization state adapted to the initial electronic configuration
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(Fig. 3.7.), one has to reach an activated state where the polarization is a com-
promise between the one of a 24- charge and the one of a 34 charge; that is a
2.5+ / 2.5+ distribution (note the analogy of the previous argument with the
case of the internal coordination sphere).

The calculation is complex, since we are dealing with a non-equilibrium
polarization. One has indeed to distinguish two contributions to the solvent
polarization energy: (i) an orientation contribution, due to the partial align-
ment of polar molecules along the strong electric field created by the charge,
and (ii) an electronic contribution, due to the displacement of electrons inside
the solvent molecules; that is, the electric polarization of solvent molecules
themselves. The first process requires nuclear motions, which are slow with
respect to the electronic motion, while the second process is fast and can adapt
at any time to the motion of the transferred electron. Thus only the first com-
ponent intervenes in the activation process, because it must be achieved before
the electron transfer, for the same reasons as for the rearrangements of bond
lengths. Concerning the electronic polarization, since it is fast, it can be modi-
fied during the electron transfer, and thus does not contribute to the activation
energy.

Only an outline of the calculation will be given here. The interaction energy
between a sphere of charge q and radius a, immersed into a dielectric medium
of static dielectric constant g is usually given by the Born expression:

2
R (1 - l) (3.16)

4mey 2a £s
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Fig. 3.7

Rearrangement of external coordination
spheres constituted by the solvent. For
electron transfer to occur, the solvent
must reach an ‘average’ polarization
state, intermediate between the one pre-
vailing around [Fe(H20)6]°* and the one
around [Fe(H20)6]%". However, this con-
cerns only the orientation polarization
(see text).
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Since this expression uses € (¢ ‘static’), it encompasses the two components of
the polarization. Now, if we are interested in the sole electronic polarization,
we just have to replace ¢ by g.p, which is the dielectric constant at optical
frequencies (10'* — 103 Hz). This comes from the fact that at these very high
frequencies of the electromagnetic field of optical radiations, only the electrons
can follow the field changes, while the nuclear motions are frozen. g, is, of
course, much lower than ;. From electromagnetic theory, &, equals the square
of the index of refraction; that is, (1.33)? = 1.77 in the case of water. Thus it
appears that the orientation contribution to the ion—solvent interaction must
involve a difference term (1/eop — 1/g;) called Pekar’s factor [3.5]. Taking into
account the detailed geometry of the system, the contribution of the solvation
sphere to the activation energy is finally given by the following formula, due
to Marcus [3.6] and Hush [3.7]:

AEg = A (L _ 1)y (L, Lt ! (3.17)
T dmeg €op €5 2aa 2ag R ’

In this expression, Ae is the amount of charge transferred in the transition state;
thats is, 0.5 €7, ap and ag are the Van der Waals radii of the interacting ions
(see Fig. 3.8), and R is their centre-to-centre distance (generally R = a + ag).

Since the activation process implies two simultaneous and correlated
changes, it is convenient to define a reaction coordinate Q, which describes at
the same time the internal and external rearrangements. When this coordinate
varies, the nuclei position changes gradually, and one evolves in a continuous
way from the initial-state geometry to the final state one, the changes bearing
simultaneously on the metal-ligand distances and on the solvent molecules
orientation and disposition. This makes the Q coordinate difficult to visualize
because, strictly speaking, the reaction path is a cross-section in a multidi-
mensional diagram where the potential energy depends upon a large number
of geometrical parameters. However, some feeling of the Q coordinate can
be grasped from Fig. 3.9. An important guide for the following is that, for a
given electronic configuration, the potential energy varies with Q according to
a quadratic law of the form m (Q—Q¢)? or m (Q—Q3)* (Fig. 3.9), where Q7
and Q7 are the equilibrium values for the initial and final state respectively, and
m is a constant which does not need to be explained for the moment.

Fig. 3.8

Geometrical parameters used in the cal-
culation of the solvent contribution in the
Marcus—Hush model.

|
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Remark: This quadratic dependence is obvious for the AE;, term,
according to egn. (3.10). Regarding AE,,, all happens as if the solvent
were polarized by a fictitious charge Ae (see eqn. (3.17)) able to vary
continuously. This fictitious charge describes the solvent polarization
state, and plays the same role as the bond lengths in AE;,;. Now, the
dependence of AE,,, upon Ae is also quadratic.

We now present the basic diagram universally used for describing electron
transfer reactions. It is made of two displaced parabolae in the E = f(Q) plane,
one corresponding to each electronic configuration (Fig. 3.9). With respect to
internal modes, it can be considered as a cross-section in Fig. 3.5 from I to
F, and moving from left to right realizes the scenario of Fig. 3.6. To avoid a
frequent misconception, it is important to realize that each parabola describes
the total energy of the whole system, not the one of a subunit. (It is also import-
ant not to become confused with a figure like 3.1, in which the energy of one
electron is plotted against a spatial coordinate.) The key parameter here is \: it
is the vertical distance in energy between the bottom of one parabola and the
curve corresponding to the other electronic state.

Due to the parabolic nature of the curves, the difference in energy between
the bottom of a curve and the crossing point is A/4. Note that in the previous
treatments, what we have computed in eqn. (3.13) (or (3.14)) and (3.17) was
actually \/4.

This type of diagram is extremely general, and can be used for any system,
inorganic, organic, and even very complex systems such as proteins bearing
redox groups. The internal geometry changes are, of course, more complex
and harder to visualize than in the case of coordination complexes, though the
general behaviour is the same.

In the solid state, a similar coupling between nuclear motion and electronic
motion occurs: the presence of an extra electron on a given site generates a
local distortion, and the electron can be ‘self-trapped’ by its own modification
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Fig. 3.9

Representation of the electron trans-
fer by potential energy curves; namely,
parabolae as functions of the reaction
coordinate Q. As shown in the frames,
moving along Q results in a concer-
ted motion of the nuclei, those of
the internal coordination sphere (expan-
sion/contraction), and those of the solvent
molecules. Q7 and Qg are the equilib-
rium values for the initial and final state
respectively. N designates the ‘vertical’
rearrangement energy.
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Fig. 3.10

Scheme of the motions of the ionic spe-
cies associated to the formation of a
polaron in an ionic lattice (white spheres
are anions, black spheres are cations).
(a) Initial positions of the ions; (b) an
additional negative charge is introduced
increasing the charge of the ion at the
centre (grey sphere). The arrows show the
resulting motions of the ions.

The moving electron: electrical properties

of the medium, which considerably reduces its mobility. The association of the
electron and its distortion constitutes a pseudo-particle called a polaron.

The concept of polaron was introduced by Landau in 1933 [3.8] and later
discussed by Mott [3.9]. One can distinguish two situations: (i) polarons in
molecular lattices, where the basic parameter is the bond length change upon
addition/removal of one electron, and (ii) polarons in ionic lattices, which
are described by phenomenological quantities, as in the previous case of the
solvent.

For molecular lattices the treatment defines a polaron energy W, which
is the change in energy when the system relaxes after the introduction of an
additional electron. As previously, the energy change is a quadratic function
of internuclear distances. Electron transfer between adjacent sites occurs by
‘hopping’ with an activation energy denoted Wy. The process is similar to the
one depicted in Fig. 3.6. Each site distorts to adopt a ‘compromise geometry’,
halfway between the geometries of the two oxidation states, and due to the
quadratic law the energetic cost for a site is ¥, Wp; but since there are two sites
involved, the final result is:

Wy = 1AW, (3.18)

Comparison with Fig. 3.9 shows the correspondence between the solution-state
model and the solid-state model:

W, =1/2 (3.19)

In the solid-state literature, this process, by which the presence of an electron
induces geometrical distortions, is called electron—phonon interaction, because
the phonon is the quasi-particle associated with vibrations in solids.

For ionic lattices a simple picture can be presented if we consider the effect
of introducing an additional charge on a given ion of the same sign. The nearby
ions of opposite charge are attracted and move inwards, while the next ion
neighbours are repelled and move outwards (Fig. 3.10).

In ionic lattices, polaron theory has been formulated in terms of static and
optical dielectric constants €5 and &, respectively, exactly in the same way as
the polarization of a solvent. And as for the solvent, one has to separate the two
components of polarization: the ion displacements (slow) and the electronic
polarization (fast).

A simple calculation produces for W, [3.9]:

W — 1 1 1 1\ e (3.20)
P2 dmey \eop es/) 1p ’

where r;, is the polaron radius, defined approximately as the radius of the zone
in which appreciable ion displacements occur. If 1, is of the same magnitude
as the inter-ionic distance, then one has a small polaron, and this will be the
case considered in this book. The other possibility is to have a much greater rp,
corresponding to a large polaron.

One can notice the analogy with eqn. (3.17)—in particular, the intervention
of the Pekar factor.
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3.1.3 The interelectronic repulsion: the U parameter

The last important factor in electron transfer is the one-centre interelectronic
repulsion parameter, already encountered in Chapters 1 and 2 and denoted as
jo or U, and responsible inter alia for electron correlation. It is a major limit-
ing factor for having electrons freely moving in a lattice or in a polymetallic
system, because transferring an electron from one site to a nearby site already
occupied by another electron necessitates overcoming the one-centre interelec-
tronic repulsion energy. A more ‘chemical’ way to formulate this problem is
to note that in a system with localized valence states, moving an electron from
one site to another one is a disproportionation process:

Mn++ Mt — M(n+1)++ M(n—])+ (321)

for which there is an energetic cost AE = U-V, due to the proximity of
charges. V, or j, is the electrostatic repulsion between charges located on
adjacent sites, introduced in Section 1.5.1.

3.1.4 The interplay of parameters

The different situations resulting from the competition between the three para-
meters can be summarized with the ‘ternary diagram’ of Fig. 3.11, where the
three summits correspond to the zone where a given interaction prevails.

In this chapter we shall study successively discrete systems; that is, sys-
tems with a limited number of electronic localization sites (generally studied
in solution), and then extended solids.

For discrete systems the most typical examples involve two possible localiz-
ation sites and just one exchangeable electron—for instance, two metallic sites
with oxidation states differing by one unit. Thus the U parameter does not play
any role, and the useful part of the diagram in Fig. 3.11 is the right one, show-
ing the competition between V,, and . There will be more or less electronic
delocalization and mobility according to the relative values of V,, and \.

For extended systems the key experimental observable is conductivity, and
thus the metallic, semi-conducting or insulating behaviour. Metallic conduct-
ivity occurs when V,, is the dominant interaction, and standard band theory
applies. In the mixed valence situation the role of U can be neglected because

mixed valence
systems

R intermolecular
Mott i .\ }; - - - electron transfer
in solution

217

Fig. 3.11

Triangle representation of the competi-
tion between Vg, (or ), A, and U (or jo),
with the consequences for the conductiv-
ity in solids.
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the stoichiometry corresponds to less than one active electron per site, and
the competition is between V,, and X, giving either a metallic or semicon-
ducting character. In the homovalent situation, one cannot ignore U. When U
predominates, the systems are called ‘Mott insulators’: despite the formation
of incompletely filled bands, the energy cost for the electron to move from one
site to another is too large, and the systems are not conducting. The fourth para-
meter, V, the two-centre repulsion energy, will play arole in Section 3.3.4.3 and
will be commented on there.

3.2 Electron transfer in discrete molecular
systems

As a first step we will consider what happens in the transient association of
two metal ions in different valence states. The electron transfer is then inter-
molecular and is generally studied in solution. As a second step we will study
mixed valence compounds, where the two ions are permanently associated by
a covalent link, so that the transfer is intramolecular.

3.2.1 Intermolecular transfer

3.2.1.1 Introduction

The simplest examples of intermolecular electron transfer are provided by
self-exchange reactions, because they involve just one redox couple in which
the reduced and the oxidized form exchange only one electron. The classical
example is the following:

[*Fe (Hx0)]”" + [Fe (H20)]"" = [*Fe (H,0)]"" + [Fe (H20)q] "
(3.22)
Since this reaction is accompanied by no net chemical change, one has to resort
to special methods for monitoring, such as isotopic labelling, and here the
* symbol designates a radioactive isotope of iron. Other methods, based on
spectroscopy, are also possible (EPR, NMR, optical activity) [3.10]. Note that
obviously, for such reactions the resulting free enthalpy change AG® = 0.

In the case of the Fe3*/?* system, discussed previously, the reaction is exper-
imentally found second-order, with a rate constant of 1.1 mol™!' 1s7! at 25° C
[3.3]. The activation energy is relatively high—greater than 50 kJ mol™' [3.3,
3.11].

First of all, let us remark that the redox reaction between the [Fe(H,O)¢]**
and [Fe(H,0)s]** species must result from two consecutive processes:

e The association of reactants as an ion pair, with a very weak stability, as the
ion charges are of same sign.

[Fe (H,0)6]"" + [Fe (H20)6]" = [Fe H:0)6]"" ... [Fe (H,0)6]*"
(3.23)
e The electron transfer reaction itself, with a first-order rate constant ke;:

[Fe H,0)6]™" ... [Fe(M,0)6]"" = [Fe(,0)6]""... [Fe(H0)]""
(3.24)
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If the first step is fast with respect to the second (fast pre-equilibrium situation),
the overall rate constant is then given by:

k = Kke (3.25)

where K is the equilibrium constant of reaction (3.23). Expression (3.25)
requires also that K be small, and this condition is fulfilled for ions bearing
charges of the same sign. Throughout the rest of this chapter we shall concen-
trate on reaction (3.24), considered as the limiting step; that is, the one which
determines the kinetics of the reaction.

The activation energy of electron transfer is due to the necessity of rearran-
ging the internal and external coordination spheres, as shown in Section 3.1.2.
The contributions of AE;,; and AE; are frequently comparable, considering
the following calculations. For the [Fe(H,0)s]%*. . . [Fe(H,0)6]** system, one
has dy = 212 pm, dyy = 199 pm, from reference [3.3], ky = 149 N.m™!,
ki = 235 N.m™! from reference [3.11], from which d,= 204 pm, and finally
AE;y = 27.8 kJ.mol . Regarding AE;,, one has ay ~ ag = 345 pm, R =
690 pm, &5 = 80, and &,, = 1.77, leading to AEc = 27 KJ. mol™!. The total
activation energy is then computed as 27.8 4+ 27 = 54.8 kJ. mol™!, close to the
experimental value (57 kJ mol™") [3.11].

Remark: Later in this chapter we will assimilate AE and AG. There are
indeed some justifications to such an approximation [3.11] [3.12] which
is widely used in the literature: (i) in condensed phases, AE ~ AH, so
the main problem is between AH and AG; (ii) in the case of the solvent
contribution, since the calculation deals with the macroscopic work of
electrical forces, what is computed is actually AG, and in cases such as
those referred to, this represents about 50% of the activation energy; (iii)
the AS term is zero for symmetrical reactions such as exchange in eqn.
(3.22). Nevertheless, the reactions with a strong AS° require a special
adaptation of the theory.

The electron transfer is depicted in Fig. 3.12, which is a completed version of
Fig. 3.9.

E

FeII_Felll FeIII_FeII
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Fig. 3.12

Potential energy curves describing the
electron transfer process, showing the
avoided crossing with splitting 2Vyp in
the central part. Two different traject-
ories are possible (grey arrows): in the
adiabatic process (A) the system stays
always on the lowest curve. In the non-
adiabatic process (NA) it can go through
the crossing zone while staying on the
same initial potential energy curve (see
also Fig. 2.85).
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The activation process (see Fig. 3.12) consists in reaching the crossing zone
of the E = f(Q) curves. At the crossing point the geometrical structure is per-
fectly symmetrical, so that the electronic states are degenerate. However, due to
the electronic interaction between the two electronic states, there is an ‘avoided
crossing’ giving two new states with two new energies separated by 2 V,, (see
also Sections 1.6 and 2.8). In this section on intermolecular electron transfer,
Vab is small and the avoided crossing will not always be represented on the
diagram. But it governs the possibility of electron transfer when reaching the
central region.

One has to distinguish, indeed, two limiting cases (see Fig. 3.12): the ‘adia-
batic’ case (A) when the system always stays on the lowest energy curve, and
thus moves from one parabola to the other in the crossing region, and the ‘non-
adiabatic’ case (NA) when the system remains on the initial (reactants) curve,
so that no net electron transfer occurs. The calculation of the rate constant for
step (3.24) must take into account these two eventualities. This will be per-
formed in the following, using first two variants of a ‘semi-classical’ model,
then a quantum model.

3.2.1.2 Rate in the semi-classical Marcus—Hush model

The simplest model is called ‘semi-classical’ because it is based on the concept
of activation energy, itself computed with the previous expressions, into which
enter only classical parameters (force and dielectric constants). The represent-
ative point of the system evolves on a potential-energy surface, and quantum
aspects are introduced only in the activated complex zone. As will be shown in
the following, there is a more rigorous but mathematically more cumbersome
approach: the quantum model, in which quantum aspects are introduced from
the beginning.

In the semi-classical model, the rate constant ke, of step (3.24) is computed
from a variant of the activated complex theory:

AG*
ket = vy k exp (— ﬁ) (3.26)

where AG* is assimilated to the total AE computed previously and v, is a nuc-
lear vibration frequency. This is as an effective frequency taking into account
both nuclear processes discussed previously [3.13, 3.14]:

2 v? AEex + \)iZm AE;y

= = 3.27
Y AEexl + AEint ( )

This expression is indeed a weighted average based on the frequencies and
reorganization energies associated with the intramolecular modes Vint, AEin
(bond vibrations, typically 103 sec™"), and intermolecular, or external, modes
Vext» AEex (solvent motion, typically 10'? sec™!). A typical value for v, is
5.10'2 s7!. v, can be seen as the number of times per second the system arrives
in the crossing region. k is the transmission coefficient; that is, the probabil-
ity for the system to pass effectively from one parabola to the other, once in
the curves’ crossing area (Fig. 3.12). As a matter of fact, reaching the cross-
ing zone is not enough for the electron transfer to occur, because one needs in
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addition that the two electronic states be connected by an electronic interac-
tion. Think, for instance, what would happen if one metal site were on Earth
and the other on the Moon: the system would still be described by a figure very
close to 3.12(!), with a vanishingly small V,,, but of course the rate of reaction
would be immeasurably small! Thus k can take any value between 0 and 1,
depending on the electronic coupling occurring in the system.

Thus k describes the possibility for an electron, initially localized on one
site, to pass on the neighbouring site through empty space, or more generally
through a region of high potential energy. This is an electronic tunnel effect
(see also Sections 1.6 and 2.8), which should not be confused with the nuclear
tunnel effect, evoked in the following (quantum model).

The theoretical treatment is generally based on Landau—Zener* formalism
[3.15]: when the system, initially in the localized electronic state Fe?*—Fe**
reaches the crossing zone, this state is no longer stationary. Calling {5 and {rg
the wavefunctions describing respectively an electron localized on site A (ini-
tial state) and on site B (final state), the stationary wavefunctions now become,
as a result of symmetry:

Wy = 272 (Ya + W) and Yo = 272 (Ys — p) (3.28)

This is the origin of the avoided crossing in the energy diagram. The dynamic
evolution can be described by a time-dependent wavefunction taking the form:

Y(t) = cyypexp(—i Ext /) + c_V_exp(—iE_t/h) (3.29)

where E, and E_ are the energies of the (delocalized) stationary states, and c,
and c_ are coefficients determined by initial conditions. The result is a beating
process between the 5 and g states, with the frequency [3.16]

v = AE/h, where AE = |E; — E_| =2 Vg (3.30)

Thus the system evolves periodically from the initial to the final state and vice
versa (see Fig. 3.13). This behaviour is typical of any symmetrical two-state
system when two equivalent states are coupled by some interaction.

Actually, this behaviour would be the real one if the nuclei were fixed
exactly at a position corresponding to the intersection. But since the nuclei
move rather than stay fixed, an irreversibility occurs; that is, there is a given
probability for the system to evolve definitively from the electronic configur-
ation of the reactants towards the one of the products. The net result depends
on the amount of time the system stays in the crossing region. In fact, this is

o
| A

h/AE
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*Although the name of Stiickelberg is
also associated to Landau and Zener
in the case of magnetic properties
(Section 2.8.1.3 and [2.66]), it is custom-
ary to quote only the first two names in
electron transfer literature.

Fig. 3.13

Dynamic behaviour of a two-state sys-
tem. Pp is the probability to find the sys-
tem in state B, once it has been prepared
in state A and allowed to evolve.
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the same problem as encountered in Section 2.8.1.3 for Landau—Zener tunnel-
ling. The only difference is that in this earlier section the evolution along the
abscissa could be controlled entirely by scanning the magnetic field H and its
rate of change, while here the system evolves spontaneously by the effect of
thermal motion. There is thus a probability P of conversion per single passage
through the intersection, which is given by:

P=1—exp | ATV (3.31)
hv |sp — sg|

where sa and sp are the slopes of the surfaces in the intersection region (sy =
— sg for an exchange reaction), and v is the average velocity with which the
system moves through the intersection region [3.11, 3.17]. One can note the
analogy with eqn. (2.149).

The detailed calculation is more complicated because it must take into
account multiple crossings and back transformations [3.11]. The complete
treatment shows that k, the true probability for electron transfer, is not equal to
P but is given by:

k= 2P/(1+P) (3.32)

The calculation can be continued by evaluating v by a Boltzmann averaged
velocity, which introduces temperature into the model. The treatment, which
is not detailed here, gives:

V2 3 1/2
P=1-— — (2 (—= 3.33
eXp( (h\)n> (ART) ) (3.332)

where A encompasses the two components of the activation energy [3.11].
Eqns. (3.26), (3.32), and (3.33a) allow the calculation of the rate constant in
a range of situations, from adiabatic (P ~ 1, k = 1) to strongly non-adiabatic
ones (k small, & 2P), where P is approximated by:

12
po (Vo) (™ (3.33b)
hv, ART

A more ‘chemical’ derivation of this model has been proposed by Sutin et al.
[3.13, 3.14], who define an ‘electronic frequency’, v, which depends on the
electronic coupling parameter V,p:

v = Do <“—3)]/2 (3.34)
¢ »RT '

Expression (3.34) takes into account the multiple crossings evoked previously
[3.11, 3.17]. As a result, the electronic frequency is proportional to V2, and
not to V,, as would be suggested by (3.30). Note that strictly speaking, v
is not a purely electronic factor, but encompasses nuclear parameters through
the (A kT)"? denominator, because electronic and nuclear motions are inter-
mingled. The final result for the probability k, given in the following, reflects
the competition between the electronic and the nuclear frequencies:
2 [1 — exp(— \)61/2\),])]

K = (3.35)
2 — exp(—ve /2 vy)
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Note the resemblance with eqn. (3.32). If v, >> 2v,, then k — 1 (adiabatic
limit). On the contrary, if v << 2v,, then kK — v / vy. Once this value is
reported in (3.26), the expression for the electron transfer rate becomes:

AGH
Ket = Ver €XP <—ﬁ) (3.36)

That is, the electron transfer rate is determined by the slowest process, the
electronic frequency, itself proportional to V2. This is the non-adiabatic limit,

where k is small, so that the electron transfer occurs rarely in the crossing
region (see Fig 3.12). The full expression for ke is then, from (3.34) and (3.36):

2v2 o\ AG*
= 2Va _AY 3.37
«= Ty <ART) xp ( RT > (3-37)

which could be also obtained from eqns. (3.33b), (3.32), and (3.26).

The semi-classical Hush—-Marcus model is supported by a large amount of
experimental data. Thus there is a clear relation between the self-exchange
reaction rate and the parameters describing the internal reorganization—in
particular, Ad (Table 3.1).

Note the remarkable case of the [Co(NH3)s]>*?* system, with a particularly
high Ad value, and thus an extremely low rate of reaction. This is due to the
spin change from Co', (tzg)6 (S = 0, ground term 1Alg) to Co', (tzg)S(eg)2
(S = 3/2, ground term *T,) provoking a variation of two electrons in the pop-
ulation of e, * antibonding orbitals, and thus a high Ad. (A similar effect will be
encountered in Section 4.5). The [Co(NH3)s]**?* system has been one of the
most studied problems in electron transfer, because the process is frequently
qualified as ‘spin-forbidden’. Actually this is a misnomer, since there is no
change in the overall spin quantum number S = 3/2 for the complete system,
and there are only local spin changes. The expected difficulty derives from
the fact that three electrons are involved in the overall process, which raises
the question of which occurs first: a local spin change or an electron trans-
fer? It is now agreed that the electron exchange occurs via an excited state
of Col, (tzg)ﬁ(eg)1 S =1, 2Eg) which becomes more stable than the 4T1g
state in the transition state region. Note that the activation energy has not been
measured, due to the extreme sluggishness of the reaction. Only a theoretical
estimation is given in Table 3.1. It is lower than one would expect for a direct
mechanism without the 4T1g state. To summarize, it is now admitted that the
spin-state change presents little intrinsic barrier to the electron transfer, and

Table 3.1 Parameters for self-exchange reactions [3.3] [3.18].

System Ad/A  Eg/kJ.mol?  Kk/mollLs! AS*/J. K mol™
[Ru(bpy)3 %+ ~0 32 4 % 108 -28
[Ru(NH3)6]**2t  0.04 43 6 x 10° —46
[Ru(H,0)1****  0.09 46 20 —66
[Fe(H,0)*?*  0.13 46 1.1 -88

[Cr(H,0)6 "2t 0.20 <2x 107

[Co(NH3)6*H2t 022 > 68 (calc) 6 x 107 at 40° C (1)
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Fig. 3.14

Establishing Marcus cross-relation. Gg:
reactants free enthalpy; Gp: products free
enthalpy. Note that for a §(AG®) change
of the reaction free enthalpy, the activa-
tion free enthalpy changes by a smaller
quantity 3(AG¥), frequently one half of
3(AG®).
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AG

8(AG®)

that its effect is essentially indirect, by inducing large structural differences
between [Co(NH3)g]3*and [Co(NH3)6]** [3.18].

The role of solvent on the reaction rate has been established clearly in the
case of the [Cr(Cg¢Hg),]™° system [3.19]. There is indeed a linear dependence
of log k as a function of the Pekar factor (1/eo, — 1/¢5).

We now consider the case of a ‘true’ chemical reaction, involving two differ-
ent redox couples. The correlation with self-exchange rates of the two couples
is due to Marcus. We start again from potential energy curves (Fig. 3.14), neg-
lecting the avoided crossing, which is not necessary here. The potential energy
curves of reactants (R) and products (P) are written respectively as:

Er = Agx’ (3.38)

Ep= Ap(1 — x)>+ AE° (3.39)

where X is a reaction coordinate describing in the same time the status of the
internal coordination sphere, and the one of the solvent. The difference with the
Q coordinate used in Section 3.1.2 is that now x is dimensionless, so that for
x = 0 we have the nuclear configuration of reactants at equilibrium, while for
x = 1 we have the configuration of products. This change in variables greatly
simplifies the equations. AE® is the difference in energy between the relaxed
reactants and products. As explained previously, we now identify all AE terms
with AG [3.12].

Agr and Ap are constants characteristic of reactants and products respect-
ively. In the following, they will be assumed equal and denoted as:

AR = Ap= A (3.40)

Finally, AG® will be assumed negative (products more stable than reactants).
Thus to pass from the case of an exchange reaction (AG® = 0) to the case
of a ‘true’ chemical reaction (AG® < 0), one has just to perform a vertical
translation of the products curve with respect to the reactants curve.
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It can be seen in Fig. 3.14 that the value of the reaction coordinate at the
crossing point, x*, is such that:

Ax? =A(1 = x)’ + AG° (3.41)
which leads to:
L SR AG” (3.42)
X" = = .
2 A

Introducing eqn. (3.42) into eqn. (3.38) yields the value of the activation free
enthalpy:

.1 AG®\?
AGF=-A(1 3.43
1 ( + 3 ) (3.43)
In the case of an exchange reaction, AG® = 0, and thus AG*H = A/4.

Let us consider now the two exchange reactions, and the corresponding
redox chemical reaction:

Ox; + Red; = Red; + Ox; ki
Ox, + Red, = Red, + Ox, koo (3.44)
Ox; + Red; = Ox; + Red;  kj2 equilibrium constant K,

One has:

1 AGS,\?

AGi, = Ay1/4,AGS, = Ag/4, and AGH, = 2An (1 + A;) (3.45)
The Aj; terms are determined by the rearrangements of the different species.
Since the final reaction of eqn. (3.44) involves both couples, one can assume
that:

1
Ap = E(A“ + Ap) (3.46)
which leads to:

AGY,

1
; : :
AGH = 3 (ac} +ach) 1+ . ¢ (3.47)
2(AGH, + Ach,)
Development of eqn. (3. 47) leads to:
g _ 1 t £\ o L Ao AGY,’
AGH = 5 (aG}, +ach,) + SAGH + (3.48)

8 (AGT1 + AG§2)

In this expression the third term is usually small, because most common reac-
tions are only weakly exoergic. Under these circumstances the free enthalpy of
activation decreases as the reaction is more exoergic, with a linear dependence
on AGj,—a point to which we will return later.

Now, assuming the full adiabatic regime, and in the frame of activated com-
plex theory, each rate constant can be written according to eqn. (3.26) with
k = 1. Taking the nuclear frequency factor v, as (kgT / h) (as usual in activ-
ated complex theories), and replacing AGj}, by —RT In K, one obtains, after
some rearrangement:

ki = (kij ko Kip H'/2 (3.49)
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Fig. 3.15

Marcus inverted region. Gr and Gp
represent the free enthalpy of reactants
and products respectively. As AG°
become more and more negative
(|AGS| < |AGS| < |AGS]), the cross-
ing point moves from 1 (Gp);, to 2
(Gp); and then 3 (Gp)s. For case 1 there
is an activation free enthalpy (AGH),
(free enthalpy difference between the
minimum of the Gr parabola and the
crossing point with (Gp);). For case
2 the activation free enthalpy is just zero
(maximum rate). For case 3, (AG%)3
increases again: this is the inverted
region.
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where f is a corrective term given by:

(InKj,)?

kpT\’
4 1n k11k22/ (BT)

f is close to 1 for reactions with small AG®°, which represent the majority of
cases.

This constitutes the Marcus cross-relation [3.5, 3.20]. An experimental veri-
fication is possible at the level of eqn. (3.48), if one can vary the reaction AG®
in an almost continuous way. This has been achieved with a series of reactions
involving reactants of similar structures, for instance [3.21]:

Inf =

(3.50)

[Fe(H,0)]*" + [Fe(phenR)3]** — [Fe(H,0)s]*" + [Fe (phenR);]**
(3.5
where phenR is an 1,10-phenanthroline ligand substituted by donor or acceptor
groups. In this case, AG® can vary from —20 to —50 kJ mol™!. The AG* =
f(AG®) curve is linear, with a slope very close to 0.5, [3.21] in agreement with
eqn. (3.48) for small AG°. Note that this relation between AG° and AG* can
be found qualitatively from Fig. 3.14.

To end this section, we consider what happens when AG® has a large neg-
ative value. Then, from Fig. 3.15, it is clear that the activation energy must go
to zero, and then increase again. Thus the rate of reaction must go through a
maximum, and then decrease. This can also be established from eqn. (3.48),
where the third term is no longer negligible. Such behaviour is contrary to
intuition, because the more the reaction is thermodynamically favoured, the
slower it becomes. This paradoxical prediction is termed ‘Marcus inverted
region behaviour’.

The decrease of reaction rates for highly exoergic reactions is more than
an academic curiosity. It means that it is possible to store energy, at least

AG

increasingly
negative
AG®
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temporarily, and it has been soon suspected that it could be involved in the pho-
tosynthesis mechanism, where high-energy charge-separated species, created
by the photon absorption, must not disappear too fast by an electron transfer
back-reaction. However, the ‘Marcus inverted regime’, although predicted the-
oretically as soon as the end of the 1950s, was observed experimentally only
from 1984 [3.5].

The study of highly exoergic reactions is indeed hampered by many dif-
ficulties. First, one has to generate extremely strong reductants or oxidants,
hence very reactive, even in the inverted region, and whose existence is lim-
ited by the solvent electroactivity domain; that is, the range of redox potentials
values for which side reactions with the solvent can be neglected. This point
can be addressed by the transient generation of reactive species by either
photochemistry or pulse radiolysis. But this is not enough. Since the studied
reactions are still very fast, it is difficult to separate the electron transfer step
stricto sensu from the previous step involving reactants encounter (see eqns.
(3.23) and (3.24)). Thus several early attempts failed to observe the predicted
decrease in rate constant, because people were actually measuring the reactant
encounter step (eqn. (3.23)), which is diffusion-limited.

The problem could be solved only with the advent of studies involving an
intramolecular electron transfer. The first well-characterized example was a
biphenyl-steroid spacer—acceptor system (Fig. 3.16), in which the biphenyl
moiety could be reduced radiolytically as an anion radical and could trans-
fer its extra electron to the acceptor A through the steroid spacer [3.22]. Since
then, many other series showing Marcus inverted behaviour have been identi-
fied, in compounds as diverse as proteins, reactive species generated in glasses,
and inorganic complexes [3.5].

To give just one example, the photosynthetic reaction centre is a very com-
plex protein, which is the siege of many successive electron transfer reactions,
after the primary photochemical excitation. By proper modifications of amino
acids of the structure, it has been possible to vary the AG® of some of these
reactions, and to show that they occur in the inverted region [3.23].

e

o oy @
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Fig. 3.16

The biphenyl-steroid spacer—acceptor
series, showing for the first time Marcus
inverted behaviour [3.22].
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Fig. 3.17

An example of electron transfer reac-
tion, the rate of which does not vanish
at low temperature and displays instead
a tunnelling effect. The reaction is a cyto-
chrome ¢ oxidation induced by flash pho-
tolysis. (Adapted from B. Chance et al.
[3.24])
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3.2.1.3 Quantum model

The previous semi-classical model (under its two variants) has the advantage
of simplicity, and is prone to a pictorial representation in terms of displace-
ments on potential energy curves. Unfortunately, reality is more complex.
Many experimental results are not compatible with the concept of a constant
activation energy, independent of temperature. In some cases [3.24], the rate
at low temperature is greater than the value given by expression (3.26), and
can even become independent of temperature, so that it does not vanish at 0 K
(Fig. 3.17).

To describe this effect one must consider the possibility for the system to
pass under the activation barrier. This necessitates taking into account expli-
citly the quantification of nuclear motions; that is, the existence of discrete
vibrational levels. We thus consider that for each electronic configuration a
or b (electron on site a or b respectively) there is a set of vibrational levels,
solutions of the harmonic oscillator problem. The wavefunction describing the
system is then the product of an electronic wavefunction, for instance W7, by
a vibrational function W, where j is an index describing the vibrational state
of configuration a.

Mathematically, the Hamiltonian describing the system can be written as:

H=H+V (3.52)

where Hy corresponds to the two subunits without interaction, and V is the
coupling term due to wavefunction overlap between the two sub-units. In the
absence of interaction, V = 0, and the functions describing the system are of
the form W¥; \11;3 for the initial state (electron on a, and vibrational state j), and
W Wy for the final state (electron on b, vibrational state n). Functions such as
Wy Wy or Wy Wy, which describe both the vibrational and electronic state of
the system, are called vibronic functions.

Under the influence of V, the functions noted previously are no longer sta-
tionary. There can be an evolution from a W3 W, level towards the Wy Wy
level(s) of same energy. The electron transfer process can then be explained

T/K
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by the successive following steps: (i) fast Boltzmann equilibration between the
different vibrational levels associated to the initial electronic configuration; (ii)
passage from one of the vibrational levels associated with the initial electronic
configuration towards the vibrational level of same energy belonging to the set
of the final electronic configuration (this is the rate determining step); (iii) fast
relaxation in the set of the final vibrational levels (see Fig. 3.18).

The rate of electron transfer is then given by the following general expres-
sion

2m

k = - V2 (FCWDS) (3.53)

where FCWDS is the thermally averaged Franck—Condon weighted density of
nuclear states. This expression comes from the so-called Fermi Golden Rule
[3.25], which governs the rate of transition from a given initial state to a mani-
fold of final states. For an elementary process such as evolving from the Wy \Il;’J

level towards one level of the other set, the Fermi Golden Rule states that the
transition probability per unit time is given by:

ky = (2n/h) Vibpf(Egnz ) (3.54)

where pr designates the density of states for the final levels. py is a function of
E;,, the energy of the vibronic function of the product, defined by b and n, and
we consider its value for Ey, = Ej; to fulfil the requirement of electron transfer
at constant energy.

The Fermi Golden Rule is a very general result, and will be encountered
again in the treatment of energy transfer, in Section 4.4—in particular, eqn.
(4.21).

In the present case, since we are concerned with a vibronic problem—that
is, an interplay of electronic and nuclear factors—the density of states must be
weighted by the nuclear Franck—Condon factors, and by thermal population.
The Franck—Condon factors FC are of the form:

FC =< Wl|Wy, > (3.55)
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Fig. 3.18

Quantum model showing the different
vibrational levels associated with the ini-
tial (a) and final (b) configurations. There
is electron transfer if the system evolves
from one of the vibrational levels of ‘a’
(reactants) towards one of the levels of ‘b’
(products). The shape of the vibrational
functions is shown for some levels only.
Two types of process may occur, depend-
ing on conditions: i) at high temperature
a thermal population of an excited vibra-
tional level (1), followed by transfer in
the crossing region (2) and finally vibra-
tional relaxation (3); ii) at low temperat-
ure the transfer can occur only by direct
nuclear tunnelling (4).
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and thermal population is taken into account by the usual Boltzmann distribu-
tion factors for the reactants. Thus the FCWDS term is given by:

¥ exp (—Egj/kT) < Wiy >2 pf(Eg":E:j>

FCWDS = (3.56)
X exp (—Egj/kT)
The final expression for the rate is thus [3.26]:
3 exp (—EO-/kT) W wy 2
2 ] aj aj bn f (Ep,=E::
k=2 G (3.57)

b
ho? ¥ exp (—E%/kT)
Inspection of the expression (3.57) leads to the following conclusions:

e The rate constant k is proportional to the square of V,,, as in the non-
adiabatic limit of the semi-classical treatment (eqn. (3.37)).

e Arrhenius’ law is no longer followed: In k is no longer a linear function of
1/T, so that there is no more a constant, temperature-independent, activation
energy.

Thus, the temperature dependence is now complicated, because the electron
transfer can occur from levels of different energies. Transfer from the highest
levels is favoured by the Franck—Condon overlap factor FC. The latter is
optimal in the crossing area of the classical model (see Fig. 3.18), but this needs
a temperature sufficiently high that the corresponding levels are thermally
populated. This is a thermally activated process.

At very low temperatures the thermal population of these levels is not sig-
nificant. The only possibility is then to pass directly from the lowest levels of
the initial state towards a level of the final state. Since these levels have an
energy below the top of the barrier, one has again a tunnel effect, but this is
now a nuclear tunnelling effect, because the E = f(Q) diagram involves nuc-
lear coordinates. This is not to be confused with the electronic tunnelling effect
(Section 3.1.1), which is already taken into account in the model through the
Vab parameter.

The nuclear tunnelling effect introduces into the global rate constant a
component which is independent of temperature. This component always
exists but is masked at high temperatures by the thermally activated process.
Experimentally, the apparent activation energy, defined as:

Eu = — Rd(Ink)/d (1/T) (3.58)

decreases at low temperature and tends towards zero, as observed in the case
of the photochemical oxidation of cytochrome [3.27] (see Fig. 3.17).

A theoretical investigation of the model system [Fe(H,0)g]**** [3.11] has
shown that at 300 K the transfer occurs essentially through the fifth excited
vibrational level, the energy of which is close to the crossing point, in agree-
ment with the classical concept of activation energy. On the contrary, at 100 K
the reaction proceeds essentially through the lowest two vibrational levels, and
thus occurs in the tunnel regime.
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3.2.2 Intramolecular transfer: mixed valence compounds

Mixed valence compounds are, by definition, compounds containing the same
element in different oxidation states. The existence of mixed valence was
first noticed more than a century ago, due to their particular composition and
their very specific properties such as additional colourations, as well as new
electrical or magnetic properties [3.28]. In 1967, two simultaneous seminal art-
icles (by Robin and Day, and also Allen and Hush) brought together the then
available evidence [3.28b,c] and formulated the mixed-valence phenomenon
with modern concepts. These articles laid the foundations for understanding
the physical properties of such compounds and how the latter correlate with
molecular and crystal structures.

The early recognized cases belonged to the solid state, typical examples
being magnetite, Fe304 or Prussian blue. The extension of the mixed valence
concept to molecular systems was triggered by the discovery, in 1969, of the
Creutz—Taube complex [(NH3)5Ru-pz-Ru(NH3)5]5+ (pz = pyrazine), which
could be studied in solution [3.29]. This relatively simple compound raised
in a particularly acute way the fundamental question of electron localization:
since the overall charge is 5+ and the ligands are neutral, do we consider the
ruthenium atoms as Ru?* and Ru?*, or two Ru%>*? Considerable efforts have
been spent to address this question in the Creutz—Taube complex, and also in
the large number of analogous compounds which have been synthesized since
then. Figure 3.19 shows some other typical binuclear mixed valence systems,

NH,

5+
NHg NH,
5% 0 NH,
@  HyN ~F;ul_N Q N— Iq\Li~NH3
NH; )

NH;
\"
(b) H3NfRu%N©>—@Nf
{5
NH,
(c) > S
Fe
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Fig. 3.19

Examples of mixed valence compounds.
(a) The Creutz—Taube complex; (b)
another ruthenium binuclear system, with
4,4 -bipyridine as linker; (c) an organo-
metallic bis-ferrocene system; (d) a
purely organic mixed valence compound.
These complexes contain formally a
reduced site and an oxidized site. In case
(d) the oxidized site is the whole triphen-
ylamine moiety on one side.
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and it can be seen that the phenomenon can be encountered not only in inor-
ganic chemistry but also in organometallic chemistry and organic chemistry.
Several reviews have gathered a large body of experimental and theoretical
data over the last thirty years [3.13] [3.30].

We know now that the peculiar properties of mixed valence compounds
arise from the possibility of electronic exchange, as in the ion pairs in solu-
tion noted in the previous paragraph. But with respect to the ion pairs, they
exhibit two advantages: the permanent character of the association between
the two redox centres, and the larger electronic coupling. However, before we
deal with the electronic properties we have to look carefully at the circum-
stances under which mixed valence can form in solution—in particular, the
thermodynamic and kinetic aspects.

3.2.2.1 Fundamentals: thermodynamic and kinetic aspects

Let us consider a homovalent binuclear complex of the symmetric type
[(NH3)sRu™ — L — Ru™(NH3)s5]%*, where L is a neutral bridging ligand.
We wish to prepare the mixed valence species resulting from the addition of
one electron to the system—this addition resulting either from the action of a
chemical reducing agent or from an electrochemical reduction. The two sites
being identical, the addition of one equivalent of reducing agent does not guar-
antee the quantitative formation of the Rul — Ry species; indeed, one can
form, as well an equimolar mixture, Ru™ — Ru™ + Ru'* — Ru" corresponding
to the same average oxidation state. Thus one has to worry about the situation
of the comproportionation/disproportionation equilibrium:

Ru™ — Ru™ + Ru" — Ru" = 2Ru" — Ru" (3.59)

K. = | Ru" — Ru"|* /| Ru"™ — Ru™| | Ru" — Ru"| (3.60)

Starting from this relation and from the law of conservation of matter, one can
show that at half-reduction—that is, when one equivalent of reducing agent has
been added per mole of binuclear complex—the proportion of mixed valence
complex P is given by:

P = K!?/(2+K!?) (3.61)

In other respects, the K, constant is linked to the difference between the two
redox potentials relative to the equilibria:

Ru — Ru™ 4+ e~ = Ru" — Ru™  ES (3.62)
Ru' — Ru"™ 4+ e =Ru" - R  E; (3.63)

with
(RT/F) InK, = E — E3 (3.64)

In principle, all K. values are possible depending on the system. One observes,
however, two general types of behaviour according to the nature of the bridge
linking the metal atoms.
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When the bridge is short enough, the two sites are in interaction and do not
behave independently. This interaction arises from different effects [3.31], the
main ones being:

e The electrostatic effect Reduction (resp oxidation) of one site consists in
adding a negative (resp positive) charge, which renders the neighbouring
site a little bit more difficult to reduce (resp oxidize). This effect is of
electrostatic nature and thus depends on the distance between sites, and
on the dielectric constant of the medium. A model taking into account
the heterogeneity of the medium (composed of an intramolecular medium
and of a solvent, with different local dielectric constants) has even been
proposed.

o The electronic effect The partial delocalization from one site to another
yields an extra stabilization (resonance energy). This phenomenon is of
quantum nature and depends on the overlap between the different orbitals
of the metals and of the bridge; it is more important for conjugated bridges,
but can be neglected for saturated bridges.

In the vast majority of cases, this interaction, regardless its nature, makes E}
markedly greater than E3; that is, the reduction of the first site renders the
second one more difficult to reduce. This is very analogous to the case of sym-
metrical diacids, such as HySO4 or oxalic acid, for which pK,; and pK,, are
different. As a consequence, the K. constant is large and so is the propor-
tion P of mixed valence compound at half-reduction. Finally if the difference
E} — E; is large enough, the reduction of the homovalent complex occurs by
two distinct electrochemical processes, with the appearance of well-separated
peaks in cyclic voltammetry. These conditions are, of course, favourable for
the quantitative preparation of the mixed valence complex by partial reduction
of the starting oxidized complex.

When the bridge becomes very long, the interactions of any nature between
the metal sites vanish. Thus they behave independently, and simultaneously
the Ef — E3 difference becomes very small (but not null, as will be seen in
what follows). Then one observes in cyclic voltammetry a single peak with a
height corresponding to two electrons, which leads frequently to the erroneous
conclusion that the reduction occurs by a direct two-electron process.

RUM— Ru™ + 2e~ = Ru' — Ru" (3.65)

Actually this is not the case, as can be shown by the simple following demon-
stration. Let us consider a half-reduced solution. The sides being independent,
each one has exactly one chance over two to exist as Ru", and one chance
over two to exist as Ru™. The proportion of homovalent derivatives is 25%
for each of these species and 50% for the mixed valence species (this double
proportion is explained by the fact that it can exist as Ru™-Ru'" or Ru"-Ru'™),
Putting into expressions (3.61) and (3.64), one obtains K. =4 and E{ — E5 =
36 mV. These values constitute the statistical limit.

Remark: Note the analogy with the case of symmetrical diacids, of the
type COOH—(CH,),—COOH, for which the ratio between acidity con-
stants, which is the equivalent of the comproportionation constant, tends
towards 4 (thus pK,; — pK,; — 0.6) when n tends towards infinity.
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Fig.1
Typical cyclic voltammetry curves for a
fast (a) and slow (b) redox system.

Cyclic voltammetry

Cyclic voltammetry is an efficient way to study electrochemical processes. It con-
sists in applying a triangular variation of potential to a stationary electrode. Starting
from a reduced species (Red), if the applied potential increases and exceeds a given
value, the current increases as a result of the onset of an electrochemical oxida-
tion (Fig. 1). But, since the diffusion layer is not renewed, there is a depletion
in electroactive substance near the electrode, so that the current passes through
a maximum and then decreases. The major interest of the method is that the
reaction product, the oxidized form (Ox), accumulates near the electrode, so that
when the scan is reversed one can observe the electrochemical response of this
form.

If the system is reversible (fast), one observes two peaks, located on both sides
of the standard potential E° of the Red/Ox couple, with a separation AE, given
theoretically by 60/n mV, where n is the number of exchanged electrons.

If the system is irreversible (slow), the rate of the electrochemical reaction
becomes noticeable only well after the standard potential E°, so that during the return
scan one observes only the end of the oxidation process. The back-reduction of the
formed product occurs then at a markedly different potential, located on the other
side of E° (Fig. 1b).

Red — Ox

Red — Ox

Red « Ox

Thus, even in this apparently unfavourable case, the proportion of mixed
valence species still reaches 50%. From the point of view of electrochemistry,
the height of the cyclic voltammetry wave corresponds to two electrons, but
the profile corresponds to one electron (it will be, in particular, wider than a
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>' -
AE,=60 mV

->' -
AE,=30 mV

genuine two-electron wave, as shown in Fig. 3.20). Indeed, all happens as if
one had a solution of mono-nuclear complex with a concentration twice the
actual concentration in binuclear complex. The deconvolution of this wave in
two one-electron waves has no meaning, the current additivity not being valid
(see Box ‘Cyclic voltammetry’).

Thus in principle one can distinguish experimentally the case of ‘two
one-electron transfers between independent sites’ from the case of ‘direct two-
electron transfer’. In practice, however, this distinction is difficult because it
is based on the comparison of the curve profile in cyclic voltammetry, and
particularly the separation AE, between anodic and cathodic peaks, which is
theoretically 60/n mV, where n is the number of exchanged electrons. This
separation can be perturbed by other phenomena: the kinetics of electron
transfer (if the transfer is not very fast, the AE, gap is increased), and the
uncompensated ohmic drop influence (which also increases AE,).
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Fig. 3.20

Cyclic voltammetry curves for several
cases. (a) Two separated one-electron
processes; (b) two one-electron pro-
cesses occurring independently; (c) genu-
ine two-electron process without interme-
diate. Note that the distinction between
cases (b) and (c) relies only on the separ-
ation AE;, between anodic and cathodic
peaks.
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Taking into account the previous considerations, one can ask the follow-
ing question: can we have K. = 0, or simply K. below the statistical limit?
This requires a particular mechanism, which ensures the following counter-
intuitive behaviour: the reduction (resp oxidation) of a site must make the
neighbouring site easier to reduce (resp oxidize). First let us note that this
is never observed for an extended bridge. For short bridges, such an effect may
appear if the reduction process is accompanied by a chemical reaction or a
structural rearrangement.

A last point to consider is the kinetic one. One could think that during the
electrochemical reduction of a symmetrical complex presenting a weak inter-
action, it would not be possible to stop at the mixed valence stage, because this
species, once formed, could immediately fix a second electron at almost the
same potential. This is probably true at the electrode, but actually the totally
reduced species diffuses towards the bulk solution where it reacts with the
starting species to yield the mixed valence form according to the compropor-
tionation reaction (3.59). The corresponding kinetics is generally very fast, as
a consequence of the correlation established by Marcus between the rates of
the electrochemical and chemical processes [3.32]. Thus, under usual condi-
tions (working in solution at room temperature), the processes are driven by
thermodynamics.

3.2.2.2 Thermal and optical transfers

A mixed valence compound is the equivalent of an ion pair as studied in
Section 3.2.1, except that the two ions are connected by a covalent link. Thus
the electron transfer is intramolecular. With respect to the ion pair case, the
electronic coupling V, is stronger, which results in a larger splitting in the
avoided crossing zone. However, as long as the electronic coupling is not
strong enough, the lower potential energy curve still presents two minima.
In the present paragraph we will assume that this condition is always fulfilled.

The stronger electronic coupling now makes possible a new phenomenon: an
optical electron transfer (Fig. 3.21). In the diagram giving the potential energy
as a function of the reaction coordinate, it is a transition qualified as ‘vertical’,
because it occurs at constant nuclear coordinate, according to the Franck—
Condon principle (see Chapter 4 on photophysics). During this transition one
evolves from the potential energy curve related to one of the electronic con-
figurations towards the other one, which corresponds indeed to an electron
transfer. This transition is called ‘intervalence transition’, and it occurs at the
energy A defined previously.

Remark: Strictly speaking, this phenomenon is also possible in the
case of ion pairs, but it is generally unobservable: first the electronic
coupling is very weak and consequently the corresponding transition
has a very low intensity (the intensity of the transition is discussed in
Section 3.2.2.5), and secondly the effective ion pairs concentration is
always very small.

There are thus two possible processes for electron transfer: a thermal one,
with activation energy Ey,, and an optical one (intervalence transition) with
an energy E,, = \. Due to the parabolic nature of the potential energy curves,
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one has, for a symmetrical system when neglecting the avoided crossing effect,
the very simple and popular relation:
Eth 1

= - 3.66
Eqp 4 (3.66)

Intervalence transitions are responsible for the colour of mixed valence spe-
cies, which were first noticed more than a century ago [3.28]. Very often,
the transition energy occurs in the 0.8—1.5 eV range, which corresponds to
an absorption culminating in the red or the near infrared (with, in this last case,
a ‘band-tail’ extending in the visible). As a consequence, mixed valence com-
pound frequently exhibit a blue colour. Note that the energy of intervalence
transitions is unusually small for electronic transitions. This derives from the
fact that the fundamental state and the excited state are chemically equivalent,
because in the case of a bimetallic mixed valence compound of ruthenium, one
can write one state as Ru'=Ru! and the other one as Ru™-Ru'! . By contrast,
a species such as [Ru(bpy);]** (bpy = 2,2'-bipyridine) yields, after excita-
tion, a state which can be written [Ru™(bpy),(bpy*)]?*, and is thus chemically
very different from the ground state. Thus the transition involves a much larger
energy (2-3 eV), as will be discussed in Chapter 4.

Historically, the first example of mixed valence species noted for its colour
was the so-called Prussian blue, obtained as early as 1704, by grinding together
animal wastes and sodium carbonate in iron pots. (Note that it was identified
later as the first example of a coordination compound) [3.33]. We have already
met this intriguing substance in Section 2.7.3 let us recall that it is a solid (dur-
ing the preparation in solution, it is obtained as a colloidal suspension), and
that it exhibits a cubic structure in which iron atoms are linked by cyanide lig-
ands Fe'l'y[Fe'"(CN)s13, OJ; « 15H,0, where [ denotes a [Fe''(CN)g] vacancy
(see Fig. 2.76). Low-spin FeV atoms are in a carbon environment, while high-
spin Fe™ atoms are surrounded by the nitrogen atoms of cyanide and by the
oxygen of water molecules.

Note that, contrary to a common belief, the electronic structure of Prussian
blue [iron(IIT) hexacyanidoferrate(II)] is the same, regardless of the method of
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Fig. 3.21

The two types of electron transfer pro-
cess in a mixed valence complex: thermal
transfer and optical transfer. Labels 1 and
2 correspond to the two possible elec-
tronic states. The figure is the same as
Figs. 3.9 and 3.12, but now )\ corres-
ponds to a real process. Eqp = X, and
Ew ~ M4 if the avoided crossing can be
neglected.
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Fig. 3.22

Ball-and-stick representation of
the binuclear unit (NC)sFe"-CN-
[Fe"'(NC)3(H20)51, part of the Prussian
blue structure depicted in Fig. 2.76.
Large balls: Fel'(white), Fe'l' (grey).
Small balls: carbon (black), nitrogen
(white), oxygen (grey). Two water
molecules are bound to Fe!ll.

The moving electron: electrical properties

preparation; that is, either when Fe3+aq is added to [Fe"(CN)s]* (method A),
or when Fe?*,, is added to [Fe™(CN)s]*~ (method B). The electronic struc-
ture agrees with method A. When the preparation is made by method B, a fast
intramolecular electron transfer occurs to produce the same stable distribu-
tion of oxidation states [iron(IIT) hexacyanidoferrate(II)]. This final electronic
structure has been proved by a number of physical methods, among which,
Mossbauer spectroscopy produced the decisive arguments [3.34]: two absorp-
tions with isomeric shifts characteristic of ferric ions and ferrocyanide were
indeed observed.

The basic dinuclear unit necessary to understand the mixed valence proper-
ties is depicted in Fig. 3.22.

The deep blue colour of Prussian blue is due to an intervalence transition
occurring at 14,100 cm™ [3.35, 3.28b]. The transition is very intense (¢ &
10,000 L mol™! ¢cm™ for the colloidal dispersion), and corresponds as a first
approximation to the transfer of one t,, electron of a Fe!® site to a tp, orbital of
the nearby Fe!! site. The two orbitals are indeed strongly overlapping through
the bridging CN™ ligand. Actually, matters are a little more complicated, since
each Fe!! is surrounded by six Fe'! ions. Thus the electron is actually trans-
ferred on a linear combination of Fe' t;, orbitals taking into account the
symmetry of the system [3.28b]. From a practical point of view, since Prussian
blue is extremely stable and non-toxic (ferrocyanide is very stable and inert), it
has been for centuries one of the most-used blue pigments for painting, dyeing,
decoration, and eye make-up, and is still in use by artists.

Many minerals exhibit colours due to intervalence transitions. (We quote
them here, though they are more solid-state systems than molecular ones,
because the short-range description of the mixed valence compounds is
also applicable locally to three-dimensional solids). One can cite vivianite
Fe3(PO,),, which contains theoretically Fe>*, but the latter is always con-
taminated by a small amount of Fe**. In particular, a freshly cleaved crystal
turns blue in air at the break. Some precious minerals (sapphire, beryl, garnet)
also illustrate the mixed valence effect. Thus some blue sapphires are made of
Al,O3 with a substitution of two AI** by Fe?* and Ti** [3.36]. The colour is
then due to the heteronuclear intervalence electron transfer:

Fe’™ — 0 — Ti*t — Fe’t — 0 — Ti®t

Incidentally, the colour of sapphires can be modified by suitable oxidizing or
reducing treatments.

“——® oll ey e"[ +—®
S

.
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In some cases the composition can be manipulated by an electrochemical
process. This is in particular the case for tungsten bronzes, which can be
generated at an electrode by the following reaction:

WYI0; + xLit + xe” = Li,WYW)! 03

This converts the yellow WO3 oxide into a blue tungsten bronze, with the
possibility of realizing an electrochromic display device (Fig. 3.23) [3.37].

Blue colours, or more generally additional absorptions, are also encountered
in partly reduced polyoxometallates, which are molecular compounds, but
whose structure can be considered as oxide fragments. The more typical are
of general formula [XM;,04]", X = Si, P, and soon ... M = Mo, W (for
instance, the so-called Keggin structure) [3.38]. Once partly reduced, these
species indeed present a coexistence of oxidation states VI and V for Mo or W.
Their blue colour has been noted since 1826 and used for analytical purposes.

Mixed valence is also encountered in purely organic compounds (see
example (d) in Fig. 3.19), in molecules bearing at least two groups able to
undergo a 1-electron reduction or oxidation. Such redox groups can be tri-
arylamines, triphenylmethane radicals, TTF units (TTF = tetrathiafulvalene),
hydrazyl groups, and so on, and are generally linked by conjugated spacers
[3.39]. The same basic processes as in inorganic mixed valence systems are
observed—in particular, intervalence transitions. The main difference, how-
ever, is that there is more delocalization of the electron (or hole) on the
molecular redox site. For instance, when a ruthenium redox group is oxid-
ized the oxidation bears essentially on the ruthenium atom, while when a
triarylamine redox site is oxidized the electron is taken out of an orbital with
some weight on the nitrogen atom, but importantly tails on the adjacent groups
(Fig. 3.24). This does not change the general behaviour, but complicates the
quantitative analysis of the processes.

We shall see in Section 3.3 that the mixed valence formalism is also used to
describe some molecular conducting solids.

3.2.2.3 The different classes of mixed valence compound

So far we have implicitly considered systems for which the electronic coupling
is small. But actually, mixed valence compounds present a wide variety of
behaviours according to the degree of mixing between the two electronic states.
A very convenient, and still frequently used, classification was proposed in
1967 by Robin and Day [3.28b]. They distinguish three classes.

b
@ g (b)
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Fig. 3.23

Rear-view mirror equipped with a device
using an electrochromic thin layer.
(Information available at <http://mito-

auto.com/> and <http://www.gentex.
com/automotive/mirror-module>)

Fig. 3.24

Comparison of the delocalization in (a) a
Ru(NH3)s5 redox group. and (b) a triphen-
ylamine redox group. The sketch shows
the shape of the orbital in which an elec-
tron has been removed upon oxidation.
In (a) the orbital is mainly localized on
Ru (dyy), with a very small admixture of
o orbitals of NH bonds. For (b), the main
contribution comes from the pr orbital
of N (only one lobe visible since the
drawing is along the C3 axis), but import-
ant contributions are found on the phenyl
rings (two lobes visible for each atomic
orbital since the pheny rings adopt a pro-
peller shape). The notion of redox site is
more difficult to define in case (b).
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Fig. 3.25

Potential energy curves for the three
classes of mixed valence compounds. (a)
Class I, weak or null electronic inter-
action; (b) class II, moderate electronic
interaction retaining the existence of two
minima; (c) class III, strong electronic
interaction making the activation barrier
to disappear.

The moving electron: electrical properties

Class I. The properties (spectroscopic, magnetic, and so on) are simply the
sum of the properties of constituent ions. This corresponds to the case where the
electronic interaction is null or very weak.

Class II. The properties are those of constituent ions, who keep a certain indi-
viduality, but in addition new properties are observed. These new properties are
generally colouration (due to intervalence transitions), and conducting properties
in the case of extended systems. Here the electronic interaction is moderate.

Class III. The properties are entirely new, and one does not recognize the con-
tributions of constituent ions. This last case corresponds to a very strong electronic
interaction.

We now have to specify what is meant by weak, moderate, or strong interac-
tion. The Robin—Day classification was initially qualitative, but later a rigorous
formulation has allowed quantitative definitions [3.40]. Class I systems consti-
tute a limiting case with few interest, and the more pertinent is the distinction
between classes II and III. For that we consider a symmetrical two-site system
(Fig. 3.25) presenting initially a very weak interaction. If the electronic interac-
tion parameter V,, increases, the splitting of the curves increases in the avoided
crossing zone, and the central bump of the lowest curve in the Ep = f(Q) dia-
gram finally disappears, so that the lowest potential energy curve present only

@ AE

class |

class Il

class Il
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one minimum. We then define as class II the systems described by a curve of
the type displayed in Fig. 3.25b, and as class III those displayed on 3.25c.

The evolution from one type to the other can be analysed by the following
calculation, adapted from [3.40]. We consider a system made of two sub-
units A and B, able to adopt oxidation states II and III (for instance, Ru and
Ru'™). One of the electronic configurations is for instance A"™-B™ and the other
A"_BI_If there is no electronic interaction between these states they can be
described by quadratic curves (see Section 3.1.2 ), and by wavefunctions {r,
and Py, and we can write their energies E, for Al — BI and E;, for AT — BI
as:

E,=A(x + 1h)? (3.67a)

Ey = A (x — 1h)? (3.67b)

In these expressions we use again an adimensional x coordinate, as in eqns.
(3.38) and (3.39), but now, to respect the symmetry of the problem, the min-

ima of the curves are located at x = Y% and x = —Y%, instead of 0 and 1. \ is
the vertical reorganization energy, corresponding to the intervalence band (see
Fig. 3.26).

We now introduce the electronic interaction p between these two electronic
states. This leads to new energies, which are obtained by diagonalizing the
energy matrix.

B is the electronic interaction parameter, which can be positive or negative,
as seen in Section 3.1.1. It mixes the two electronic states, and thus favours
delocalization. On the other hand, \ encompasses all effects leading to local-
ization; that is, the rearrangement of the internal coordination sphere, network
vibrations (phonons) and of the solvent, when in solution. Following the gen-
eral variational method, the eigenvalues of the energies are obtained by putting
to zero the determinant:

Mx+1/2)* —E
(x+1/2) 62 =0 (3.68)
g Ax—1/2)" —E
This leads to the following secular equation:
B2 — EAQ2% 4 1)+ 2> (x* = 1)’ —p> =0 (3.69)
AE  E Ep
A
A
Y -
-1/2 1/2
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Fig. 3.26

Definitions of the parabolae for electronic
states AI-BI (E,) and A-BI (E,)
before electronic interaction.
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Fig. 3.27

Curves E = f(x) before (plain) and
after (dashed) taking into account the
electronic interaction (V,, parameter).
The displayed case corresponds to class
II. Sketches of the molecular orbitals
involved in the different states are also
given, neglecting any contribution from
the bridging ligand. The optical inter-
valence transition (Eqp, = ) from the
ground-state function Wq to the excited
state one W is also shown at x = —1/2.
Ground and excited states are centred on
A and B respectively.

The moving electron: electrical properties

the solutions to which are:

E =)(+ ) £ W% 4pH? (3.70)
The corresponding wavefunctions (unnormalized) are given by:
—Ax + W2 4pHl2
V= - B i Va+ Yo (3.71a)
—ax — (022 4 B2
U= — B Va+ Uy (3.71b)

Thus for x = 0 (central part of the diagram in the avoided crossing zone), the
wavefunctions are, after normalization, and if § < O:

Ui = 272 (W, + )
Yo = 2712 (=Y, + Up)

Energies and a sketch of wavefunctions are given in Fig 3.27 for the most
interesting case, a class II system, assuming that the redox sites are transition
metal ions intervening by their d orbitals.

For x = —1/2, bottom of the left parabola, and for |B|<< X\ one finds
(unnormalized wavefunctions):

Uy~ — (A/B)a + Py
Yo & B/ + Uy

so that the wavefunctions {/; and 1\, are dominated by 1, and s}, respectively.
The converse is true for x = %. A better formulation for (s, giving symmetrical
expressions for yr; and \V, is:

(3.72a)

(3.72b)

(3.73a)

(3.73b)

Ui & =P+ B/

(3.73¢)

-
@

......
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showing that a key parameter is the ground-state delocalization coefficient
d (<<1), defined as:

§ =I[BI/A = Vap/A (3.73d)

Thus, for x = £ % one clearly sees the charge transfer nature of the optical
transition.

When V,;, increases, the lowest potential energy curve evolves from a two-
minima curve towards a one-minimum curve. We call these situations class
IT and class III respectively. There is thus a simple mathematical criterion to
define these classes: taking the derivative of the lowest potential energy curve
(eqn. (3.70) with the — sign), we obtain:

dE/dx = 2ax — A2x (A\2x2 4+ p2)"1/2 (3.74)

This expression vanishes for x = 0 in all cases, and also for:

)\’2 _4 Bz 12

which is possible only if |B|< /2.

The nature of the compound thus depends upon the competition between the
electronic coupling, favouring delocalization, and the reorganization energy,
favouring localization. For |B| <X\/2, one has a class II compound, and
conversely for |B| > A/2 a class III compound.

As long as the system is class II, the energy of the optical transition is A (note
that it does not depend at all on V). The activation energy for the thermal
process is given by:

Ey = A/4 — B + B*/A (3.76)

When |B| (V) is small, one recovers the classical relation Ey=A/4=
(1/4)Eop. When |B| increases while remaining small, the activation energy
decreases in first approximation by the quantity |B|. But due to the second-
order term in eqn. (3.76), the barrier disappears for |3| > N/2, and not for
|B| > /4, as could be anticipated from a naive reasoning.

When the compound is class III there is no longer any conceivable thermal
process, since the system is intrinsically delocalized. But the optical transition
is still present, at an energy 2 |B|. In this case the optical transition corres-
ponds to a transition between a fundamental state described by a wavefunction
such as eqn. (3.72a) and an excited state such as eqn. (3.72b). Thus the charge
transfer character of the transition has disappeared, since these two functions
are equally distributed on the subunits A and B. However, it is in this case that
the electronic transition presents the highest intensity (see Section 3.2.2.5).

Remark: The previous model is similar to the semi-classical model used
in Section 3.1.2, because it is based on the shape of potential energy
curves, and does not take into account the quantification of nuclear
motions. A vibronic model exists (the PKS model, [3.40]), which is more
complete but mathematically more complex, and its study is outside the
scope of this book.
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3.2.2.4 Magnetic mixed valence systems

We now consider systems where the two subunits A and B bear magnetic
moments [3.41]. The typical example is provided by the Fe'-Fe system,
where Fe!! and Fe!!' are both high-spin. Until now (see Section 3.2.1) this sys-
tem has been treated in a simplified way, by just introducing an electronic
interaction between the system states Fe'-Fe!' and Fe'-Fe''. But actually
there are two effects in such a system: the magnetic exchange interaction and
the electronic interaction (this term designating the one which is responsible
of electron transfer). If the electronic interaction were zero the energy levels
on each subunit would be described by a Heisenberg Hamiltonian H = —J
Sget.Sgem, with Sp.n = 2 and Sgeam = 5/2 S. This would give a spin-energy
diagram E(S) with states ranging from S = % to S = 9/2 and energies B, = —
3 J/S, E3/2 =-15 J/S, E5/2 =-35 J/S, E7/2 =-63 J/8, E9/2 =-99J/8. The spin
S = 1/2 or 9/2 are the ground states according to the sign of J (see Fig. 3.29a,b,
commented on later). Since there are two possible electronic configurations,
Feal-Feg™ and Fes™M-Feg!!, we have actually degenerate levels, which can
be coupled by the electronic interaction.

To introduce useful definitions and formalism, let us consider a simpler sys-
tem with two equivalent sites A and B, having each two kinds of orbitals a;
and a; on A or by and b, on B (a; and a, having different symmetry, a; =b; =
dy_y» and 2 = by = d2, for example). The orbitals can be occupied by zero,
one, or two electrons. If there is one electron per orbital, the most stable situ-
ation on each site is a S = 1 triplet state a;xao and byabyo for Mg = 41, and
the other configurations for Mg = 0 and Mg = —1, because the on-site exchange
interaction between the orthogonal orbitals a; and a,, or b; and b, is ferromag-
netic. The local triplet state on A (and B) is stabilized by the exchange integral
k between a; and a, (and b; and b,) (see Sections 2.5.2 and 2.6.1) (Fig. 3.28a).
Then the coupling between spins S = 1 on sites A and B to give the total spin
St can be antiferromagnetic (St = 0 ground state), inexistent (two independ-
ent spin S = 1), or ferromagnetic (St = 2), depending on the overlap between
the two sites. This four-electrons case with four singly occupied orbitals is not
at all favourable to electron transfer, since it would imply not only a forbidden
flip of the transferred electron—according to the Pauli principle—but also a
strong one-centre two-electron repulsion U, due to the presence of two paired
electrons in the same orbital leading to an highly excited state (Fig. 3.28b).

We shall learn much more from the case where the preceding system con-
tains only three electrons and is mixed valence (Fig. 3.28c—f). On site A we
have a triplet, spin S = 1, and on site B we have a doublet, S = 1/2. As previ-
ously, without electron transfer (electrons localized on sites A and B), we can
have either no interaction (independent spins S = 1 and S = 1/2), antiferro-
magnetic AF interaction (Fig 3.28c, resulting spin St = 1/2), or ferromagnetic
F interaction (Fig 3.28e, resulting spin St = 3/2). In the presence of elec-
tron transfer we have the two situations of Fig. 3.28d and f. In configuration
(d) (antiferromagnetic interaction) the transferred electron has accomplished
a spin flip (the on-site exchange interaction is much larger than the electronic
interaction |B|), whereas in case (f) (ferromagnetic interaction) the transferred
electron has kept its spin: we can qualitatively conclude that the electron
transfer favours the ferromagnetic interaction and the high-spin ground state
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St = 3/2, in contrast to the localized electrons situation with a ground spin
state St = 1/2. The system gains more delocalization energy when the two
spins are parallel than when they are antiparallel. This spin dependence of the
electron transfer process has been called ‘double exchange’ (Anderson [3.42])
or ‘spin-dependent delocalization’ (Kahn [3.43]). The physical reason of the
larger delocalization for the highest spin state is that the transferable electron
can move from one site to the other without spin flip, and the system gains
exchange energy when there are many parallel spins (see Fig. 3.28).

The problem is simple only in appearance. It has been quantitatively tackled
by many researchers: Zener, Anderson, Girerd, the Kishinev school, Malrieu,
and their coworkers [3.42-3.45], among others, and the interaction model has
been successively refined during the past sixty years. The following treatment
describes, in a very simplified way, the approach proposed by Girerd [3.41].

It starts by the definition of a complete electrostatic Hamiltonian Hg
between orbitals on the two sites, including electron kinetic energy, elec-
tron attraction by nuclei, and electron—electron repulsion, since the exchange
phenomenon (spin) and the electron transfer are both electrostatic in origin
(see Sections 2.5.2 and 2.6.1 for exchange, and Section 3.2.1 for electron
transfer). This complete Hamiltonian Hy is quite heavy to manipulate, and
it is wise to seek a simplified model Hamiltonian, keeping, if possible, the
most important features of the problem. The approximations chosen to define
the model Hamiltonians and the subsequent treatments lead, of course, to
different results. An efficient model Hamiltonian Hy is the so-called Hubbard—
Anderson one. It relies on the use of the Hiickel Hamiltonian H as defined in
Section 1.3.1, implying only one-electron integrals o and f (interaction energy
between orbitals a (and b) located on sites A and B i.e. § = Bap). A simplified
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Fig. 3.28

Spin configurations of two equivalent
sites A and B with two different orbit-
als a and b, before electron transfer
(left) and after electron transfer (right).
The transferred electron is depicted by a
dashed arrow. (a) Four unpaired electrons
in four orbitals leading to (b) a highly
excited state after electron transfer; (c—f)
three-electron system with antiferromag-
netic AF interaction (c—d) and an S =
1/2 ground state (c) and with a ferromag-
netic F interaction (e—f), stabilizing an
S = 3/2 ground state by electron transfer.
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modelization of the electron—electron repulsion is implemented by introducing
only the one-centre electron—electron repulsion integral U (U = <a;a;|e*/r 5|
aa > = <bibi|e2/r12|bibi >, with i =1, 2). As in many cases, only the ground
state and a few first excited states of the system are necessary for the descrip-
tion, and thus a perturbation treatment can be used to model the experimental
properties. The model Hamiltonian Hy; is decomposed into two parts Hy (cor-
responding to one-centre terms, orbital energies a; and repulsion energy U)
and V (corresponding to the interaction between orbitals on the two sites,
Bas)- Thus Hyy = Hy + V. V, being weak, can be treated as a perturbation.
The most interesting situation occurs when the ground state E originating
from Hamiltonian Hy is degenerate and is split by the perturbation V: the
energy gaps between the split levels corresponds to physical observables. This
allows building an effective Hamiltonian He¢ acting only on the ground state
Ep and reproducing the levels generated by V. The final step is to put in cor-
respondence the spin—orbitals functions of the ground state with the spin-only
functions and to arrive at a spin Hamiltonian Hg acting only on the spins and
much easier to handle. We present a very brief account of the main results.
Starting from a perturbative treatment of the Hubbard—Anderson model
Hamiltonian, Girerd [3.41] arrived at the following spin Hamiltonian:

H = — J(SaSgOa + SaSgOg) + B Tap (3.77)

where B is the electronic interaction parameter V, (or |B|) weighted by the spin
multiplicity of the core spin Sy (the local spin in the absence of transferable
electron); that is:

B=V,/2So+ 1) (3.78)
Tasp, Oa, and Op are operators with the following actions:
Tas [Sa, SB,S>"= (S +1/)|Sa, Sp,S>" (3.79)
Tag [Sa, Sp, S>®= (S +15)|Sa, S, S>* (3.80)
04 [Sa. Sp, S>"=S4, S, S>* (3.81)
O4lSa, Sp, S>B= 0 (3.82)

and similar relations for Og. The ket symbol [S4, Sg, S>A represents a wave-
function with local spins S5 on site A and Sg on site B and total spin S, with
an extra particle localized on site A (by particle, we mean an extra electron
for half-filled or less than half-filled d" configurations (without the transfer-
able electron) and an extra hole for more than half-filled one). Thus Tyg is a
transfer operator, while O or Op are occupation operators. The Hamiltonian
has been called an exchange—double exchange Hamiltonian.
The eigenvalues of (3.77) are then:

E =—14JSS + 1) £ B(S + 1h) (3.83)

There are thus two effects encompassed in eqns. (3.77) and (3.83): the first term
is related to magnetic exchange (through the J term) and the second term to
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Fig. 3.29
Eigenvalues E of the exchange—double exchange Hamiltonian in units of |J| as a function of [B/J|. (a) For J < 0 (antiferromagnetic case); (b) for
J > 0 (ferromagnetic case). (Adapted from Girerd [3.41].)

double exchange; that is, spin-dependent delocalization (through the B term).
The remarkable effect of the double exchange term is to split the exchange
energy levels in two, stabilizing one and destabilizing the other.

The combined effects of B and J are shown on Fig. 3.29 for the mixed
valence Fe'l-Fe' system. On the left axis are displayed the ladder of
spin energy levels computed from the exchange term only (Heisenberg
Hamiltonian, no electron transfer, B = 0). When |B| increases the spin levels
are more and more split, and thus crossings between the spin states occur. For
sufficiently large values of |B| the S = 9/2 state becomes the ground state.
It is important to realize that the situation depicted in Fig. 3.29 is valid only
when the two configurations Fe''y—Feg and Fe',—Fep!" have exactly the
same energy; in other words, at the crossing point of the Hush—-Marcus curves.

One of the interests of the previous treatment is that the model and spin
Hamiltonians are rather simple to handle. They were, up to now, widely
accepted. In a recent study of a simple mixed valence dinuclear compound
[Niy(napy)4Br;]+ (napy denotes naphtypyridine), Malrieu and coworkers
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Fig. 3.30

Two pairs of potential-energy parabolae
coupled by the electronic interaction.
In this example the coupling is greater
for the Sy spin state than for Sy, because

S»> > S;. x is an adimensional coordinate
as in Fig. 3.27.
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[3.45] have used ab initio configuration interaction (time-consuming) calcu-
lations. They carefully analysed and compared their results (unfortunately
impossible to reproduce in the limited space available here) with those res-
ulting from the preceding perturbative treatment. They conclude that at least
for this Ni, case the perturbative treatment cannot be applied safely, since the
interaction between the ground state and the excited states is quite strong.
Furthermore, the orbitals implied in the electron transfer process cannot be
limited to the singly occupied 3d metallic orbitals, since the Ni 4s orbitals
appear to play an unexpected important role. Therefore, their energy spacings
and wavefunctions deviate significantly from those of the generally accep-
ted model Hamiltonian. Additional calculations on other systems are therefore
needed, and new exciting developments can be expected.

If now we take into account the effect of vibronic coupling, we start from
two potential energy parabolae with spin S|, and two with spin S, (S, > Sy),
as shown in Fig. 3.30. Then we couple each pair of parabolae by the B (S + ')
interaction. The abscissa is defined in Fig. 3.30.

Several cases can appear, depending on the sign of J, as analysed in [3.41].
As an example showing the richness of behaviours, we consider the case of
the [Feszmp(RCOz)z]2+ complex, where bpmp is the anion of 2,6-bis[bis(2-
pyridylmethyl)aminomethyl]4-methylphenol [3.46]. For this mixed valence
Fe"_Fe'" complex, the J parameter is estimated as —10 cm™', and the ground
state is assumed to be localized (class II). Taking into account that the effects
of delocalization are smaller when the structure departs from symmetry, for
X near to &= 1/2 we have antiferromagnetically coupled Fe!! (S = 2) and Fe!!
(S = 5/2) sites, with a total spin St = 1. But the electronic interaction, mani-
fested in the avoided crossing zone, is larger for the higher spin states than for
S = Y. Thus level crossings occur, giving the complex behaviour depicted in
Fig. 3.31.

In such a system the activation energy for electron transfer is clearly much
lower for the higher spin states. The electron transfer involves probably a com-
plex mechanism, with thermal population of the higher spin states, followed
by electron transfer and then spin conversion.

AE
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An application: colossal magnetoresistance in Mn’*-Mn** systems

The interplay of magnetism and electron transfer is important for some applica-
tions in solid three-dimensional solid oxides. Our local approach, implying two
neighbouring centres, can be used to understand the basic physics of some phe-
nomena. Thus a number of solid oxides contain both high spin d* Mn** (S =
3/2) and high spin d* Mn** (S = 2) [3.47]. A typical example is Ln;_xA,MnO3,
where Ln?* is a lanthanide, A+ a divalent cation (Ba, Sr, Ca), and 0 < x < 1.
The structure is of the perovskite type with MnOg octahedra. There is thus the
possibility of exchange magnetic coupling between Mn** and Mn** centres,
and also of electron exchange leading to conductivity. Electron—phonon inter-
action also plays a role (see Sections 3.1.2 and 3.3.3 for the definition and use
of this term), because the Mn"!Og octahedra are strongly distorted as a result of
Jahn-Teller effect. (As already seen in Section 2.8.1.1, the Jahn—Teller effect
is important in high-spin Mn"™ because there is one electron in an antibonding
orbital belonging to the e; orbital set and the octahedral geometry is unstable
due to orbital degeneracy.)

At both ends of the composition diagram of Ln;_xAxMnO3, Mn is present
respectively as Mn'™ (x = 0) and as Mn"Y (x = 1). The compounds are then
antiferromagnetic insulators. Between (0 < x < 1) the conductivity is import-
ant, due to the mixed valence composition. But the electron transfer is sensitive
to the relative spin orientation of nearest neighbours Mn'! and Mn!V centres:
as seen previously, the electron transfer is easier when the spins are paral-
lel (double exchange; see Fig. 3.28). Conversely, the electron transfer has an
influence on the privileged type of magnetic coupling (ferro versus antiferro)
because mobile electrons can play the role of ‘messengers’, forcing the spins to
align. The final result is that in the intermediate x range (0.15 < x < 0.50) a fer-
romagnetic and metallic phase is observed at low temperature. In the regions
close to the transition between phases the system is very sensitive to an addi-
tional perturbation, such as a magnetic field. Thus the conductivity increases
dramatically upon application of a magnetic field, because it forces the par-
allel alignment of neighbouring spins. This effect has been called ‘colossal
magnetoresistance’. The relations between structure (short and long ranges),
electronic structure (Jahn-Teller, mixed valence), applications of a magnetic
field, and physical properties are actively studied [3.47].
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Fig. 3.31

Assumed potential energy curves for the
lowest states of [Feszmp(RC02)2]2+.
x is an adimensional coordinate as in
Fig. 3.30. (Redrawn from [3.41].)
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3.2.2.5 Experimental aspects: spectroscopic studies

The experimental study of mixed valence compounds must take into account
the dynamic aspect of the investigation method. If the compound is class
III, the only dynamical process is purely electronic—extremely fast—and all
experimental methods point towards a total delocalization. But for a class II
system there is a dynamical exchange between the two possible forms, corres-
ponding to wells in the potential energy surface. These two forms are indeed
genuine chemical species (isomers). The interchange process can be charac-
terized by the intramolecular first-order rate constant ke, or the corresponding
characteristic time t; = 1/ke;, both being generally dependent on temperat-
ure. T represents the average time of residence of the extra electron on a
given site. Now, to each spectroscopic method, one can assign a ‘characteristic
time’ Tmem, Which represents the average equivalent duration of the interaction
between the radiation and the system [3.48]. The experimental result depends
on the relative magnitudes of te; and Tmem:

If Tet >> Tmen the electron has not enough time to jump during the equi-
valent duration of the interaction, and the experiment concludes that the state
is ‘localized’, in the same way as a short-time flash freezes the motion in a
photograph.

If Tt << Tmeth the electron has time enough to perform a large number of
transfers back and forth between the two sites, and the experiment concludes
that the state is ‘delocalized’, as a photograph of a rapidly moving object taken
with a long exposure gives only the object’s average position. Hence, the same
situation can be considered as ‘localized’ or ‘delocalized’, depending on the
characteristic time of the measurement method. Thus one has to be careful in
interpreting experimental data. In particular, when a method shows equivalent
sites it is not possible to decide immediately between the two possibilities:
either the system is class III, or is class II with T¢y << Treth-

We have now to specify in more detail the definition of the ‘characteristic
time of a method’ (see also Box ‘Time-scales of investigation methods’). In the
following, we will consider mainly the case of resonance methods, the most
typical being EPR and NMR spectroscopies, which can be treated by a com-
mon formalism [3.49]. If there are two localization sites, denoted A and B,
they can be associated with two different resonance signals with frequencies
va and vg respectively. In the case of EPR, for instance, the unpaired electron
does not exhibit the same resonance frequency when it passes from an initial
site to a site with a different orientation or with a different hyperfine coupling.
In the case of NMR one generally follows the resonance of a nucleus close
to the metallic site on which electron transfer occurs, using the influence of
the metal oxidation state on the nearby NMR active nucleus. A related case is
Maossbauer spectroscopy, where the absorption frequencies in the y domain are
dependent on the oxidation state of the considered element.

The interconversion between the two chemical species A and B corres-
ponding to the two possible electron localizations introduces a new relaxation
pathway, which modifies the signal shape. The detailed theory of resonant
absorption in the presence of this new process shows that the characteristic
time of the method is given by:

Tmeth = 1/ AE = 1/(21 Av) (3.84)
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Ket>>2mAV
Tet<<Tmeth
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where AE is the difference in energy resonances between the two A and
B states, and Av is the difference between the two resonance frequencies
[3.50a].

Thus, in the case of NMR, 1 is not equal to the reciprocal of the NMR

frequency, but is proportional to the reciprocal of the difference in chemical
shifts observed for the A and B states. As a consequence, Tye 1S ot constant
for a given spectrometer, but depends on the system under investigation. The
case of Mossbauer spectroscopy is different: here the time-scale of the method
is given by the lifetime of the nuclear excited state.
Consider now a system for which the k¢ constant can be varied, for instance, by
a change in temperature, so that one can cross the temporal ‘window’ associ-
ated with the investigation method, then the following behaviours are observed
successively (Fig. 3.32):

o Forke << 21 AV (Ter >> Tmem at low temperature), two signals at frequen-
cies v and vg are observed, as if the sample were constituted by a mixture
of two species without interconversion.

e When k, increases and becomes close to 21t Av, the signals widen and then
coalesce. The unique resulting signal is located midway between v, and vg.
Then it narrows.

e Finally, when k¢, >> 27 Av asingle sharp signal remains. Its characteristics
(position, width) are the averages of those of A and B signals.

In the intermediate zone where ko &~ 27 Av, detailed analysis of the signal
shape by numerical simulation can yield the rate constant k¢;. Conversely, when
ke is much lower or much greater than 27t Av, the signal shape is independent
of ket-
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Fig. 3.32

Thermal variation of the shape of the sig-
nals characteristic of two species, A and
B, in the presence of a dynamic exchange.
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Time-scales of investigation methods

Each experimental method can be characterized by its time-scale—the effective dur-
ation during which the system is probed. The situation is analogous to the case of
photography, where, according to the shutter speed or the duration of the flash, a
photograph of a moving object can be sharp or blurred. In many cases the time-scale
is defined by the difference in frequency between two signals characteristic of two
distinct chemical forms (see eqn. (3.84)).

The table summarizes the time-scale of some common spectroscopic techniques.

Method Characteristic time scale (s) Remarks
NMR 103 to 1078 1)
Mossbauér 107 to 10710 2)
EPR 1077 to 10711 1)
Infrared, Raman 1012 t0 10713 A3)
Visible—ultraviolet 10714 4)
Solvent effects 10710 5)
Dielectric relaxation 10* to 107° (6)

(1) For NMR and EPR, there are strictly speaking several time scales, depending
on the investigated system, and even on the part of the spectrum which is examined.
They are estimated from the frequency shifts (spreading of the spectrum) of signals
influenced by the electron transfer. The frequency shifts can be due to differences in
chemical shifts or to couplings (case of NMR), to the anisotropy of the g factor or the
presence of hyperfine lines (case of EPR), or finally to the modulation of relaxation
times (all techniques).

(2) In Mossbauer, one uses the lifetime of the excited absorbing nucleus, rather
than the spectrum spreading.

(3) Usually and approximately evaluated from the average duration of a vibration,
but recent experiments show that the same formalism as for NMR is valid [3.52].
This time scale corresponds more or less to the class II / III distinction, because
nuclear motions cease to follow electronic motions when the latter exceed a critical
frequency which is of the order of the molecular vibrations frequency.

(4) Evaluated from the reciprocal of the frequency of electromagnetic radiation in
the visible—ultraviolet.

(5) This concerns the solvent effect on the position of intervalence transitions.
If such a dependence exists, it means that the solvent molecules (reorientation time
near 107'° s) have enough time to reorient between two electron transfers, and thus
can contribute to Ep. [3.13]

(6) This is the dielectric response of a material disposed between the two plates of
a capacitor submitted to an alternate voltage of variable frequency. The modern vari-
ant is called ‘time-domain reflectometry’ [1]. The frequency range can be extremely
wide (from 10~ Hz to 10° Hz), but the method is sensitive to any cause of dipolar
relaxation (polar groups motion, counter ions motion, and so on), and not only to
electron transfer.

Reference

[1] B.C. Bunker, R. S. Drago, M. K. Kroeger, J. Am. Chem. Soc. 104 (1982), 4593.
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One of the earlier examples of a dynamic study of electron transfer in a mixed
valence system was provided by europium sulphide Eu3S,4, not a molecular
compound. This solid contains formally Eu?>* and Eu** in a 1:2 ratio, and the
two valence states produce Mossbauér signals of '3'Eu at different isomeric
shifts. At low temperature (80 K), two types of signal are obtained in the
expected 1:2 ratio, while at room temperature a single signal is observed at
an average position of the chemical shift (Fig. 3.33) [3.51].

Since the electron transfer process is thermally activated, changing the tem-
perature realizes the different cases discussed previously; that is, te >, & or
< Tmeth, With Tpeqy = 8.8 ns, fixed by the lifetime of the nuclear excited state.
By proper analysis of the signal shape, it is even possible to determine the rate

Eu2+ Eu3+

T=8.510"10s

T4=8.510"""s

-20 -10 0 10
Velocity/mms™"
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Fig. 3.33

Mossbauer spectrum of EuzSy as a func-
tion of temperature. T, = 8.8 ns is the
lifetime of the nuclear excited state (time-
scale of the method). (Adapted from
[3.51].)
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Fig. 3.34

Structure of a mixed valence compound
built from two trinuclear Ru3zO units,
with ancillary CO ligands and a pyrazine
bridge. (Adapted from Kubiak [3.52].)
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constant, which is found to vary from around 107 s™' at 80 K to 10'° s7! at
room temperature.

Infrared spectroscopy has been used only recently for the dynamic study of
mixed valence systems. In the series of compounds depicted in Fig. 3.34, two
trinuclear moieties of the RuzO type are linked by a bridging ligand, and one
of the ruthenium atoms bears an ancillary carbonyl ligand [3.52]. The mixed
valence effect arises from the possibility of reducing one of the trinuclear units.
Interestingly, the carbonyl ligand displays an infrared stretching band, the fre-
quency of which changes by about 50 cm™!, according to the oxidation state of
the moiety to which it is attached.

Varying the bridging ligand, or even the solvent, modifies the rate of
intramolecular electron transfer between the trinuclear moieties and real-
izes the sequence of broadening and coalescence, as for other methods (Fig.
3.32). However, such examples are extremely rare in vibrational spectroscopy.
Since the frequencies associated with vibrational motions are very high, as
are the differences in frequency between two oxidation sates, the range of
rate constants probed by dynamic infrared studies can be extremely high and
thus complementary with respect to other methods. In the present examples,
intramolecular rate constants between 10'> and 5 x 10'? s~! have been determ-
ined [3.52]. Another advantage of the infrared method (or more generally of
vibrational methods, like Raman spectroscopy) is to probe the process of nuc-
lear motions—the very process which is responsible for the eventual valence
trapping. Thus if a system appears ‘delocalized’ by the vibrational study, the
rate of electron transfer is so fast that the system is very probably of class III
nature.

One of the most frequently used methods for the study of mixed valence
compounds is ultraviolet—visible-near-infrared spectroscopy, since the char-
acteristic intervalence transitions appear in this domain. This method can be
qualified as ‘fast’, with a characteristic time near 10~'* s. This method plays
a particular role, however, since the photon energy is high enough to promote
electron transfers, and thus modify the system upon investigation. Therefore,
rather than dealing directly with dynamic aspects, electronic spectroscopy
in the domain of intervalence transitions (visible-near-infrared) is a way of
obtaining information on the degree of electronic coupling, as shown in the
following.
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In the case of a class II system the intensity of the intervalence transition
carries some information on the ground-state delocalization, and thus on the
electronic coupling parameter V,,. The root of the theoretical treatment, due
to Hush [3.53], is in fact an adaptation of Mulliken’s charge transfer theory.
The molecule is reduced to its two terminal sites, A and B; that is, the partial
delocalization on the bridging ligand is not explicitly introduced, which con-
stitutes a rough approximation. The electronic coupling is assumed to be small
with respect to A. Under these conditions, the wavefunctions describing the
ground state | > and the excited state |Wg > are of the form (3.73b) and
(3.73¢):

WG >=— ¥, > + B/1) ¥, > (3.85a)

Vg > = (B/A) Vo > +|W > (3.85b)
The intensity of the transition depends on the transition moment, defined by:
M= < \I/(;|er|\IJE > (386)

where er is the dipole moment operator, and M is an integral over space. When
developing eqn. (3.86), quantities such as < W,|r|¥, > and < Wy|r|¥,, >
appear, corresponding to these r values when the wavefunction is W, or Wy;
these values are separated by R, the metal-metal distance (the significance of
R is discussed in what follows). Thus one finds:

M =ce(Bl/MR = e(Vap/MDR (3.87a)
or, alternatively,
Va = MA/eR (3.87b)

To make the link with experimental quantities such as extinction coefficient,
band position, and so on, one makes use of an intermediate quantity, the
oscillator strength of the transition, denoted f. It is defined as [3.50b]:

4meceg
f=(———ml10) A (3.88)
NA62

where m, and e are the electron mass and charge, ¢ the velocity of light,
€9 the permittivity of vacuum, N the Avogadro constant, and A the area of
the absorption curve | &(v)dv, where v is the frequency. For a Gaussian band
profile, this area is given by:

A = (1/2) (1/ In2)"? gax Avija & 1.06 emax Avy ) (3.89)

where €, is the maximum molar absorption coefficient, and Avy,, the width
at half-maximum of the transition (in frequency units).

The oscillator strength is also related to the transition dipole moment by
[3.50b]:

_ 8n’my MP
3he’

Finally, by combining eqns. (3.87b) and (3.90), one obtains an expression of
V. which depends on the experimental parameters €max, Vmax, and Avyy, (the
band position and width in frequency units). This is Hush’s equation [3.53]:

(3.90)
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Fig. 3.35

Parameters defining the intervalence
band: position (in wavenumbers), max-
imum molar absorption coefficient, and
full width at half-maximum
(in wavenumbers).
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v €max Vmax A\)1/2

(3.91)
Combining all numerical factors and expressing the band position and width
in wavenumbers yields the practical formula:

_ 2.05 10_2,/8max Vimax A\_)I/Z
B R

Va = h [3hCe(ln 10)/ 47 Ny €] (r/In2)"*

ab (3.92)
In this frequently used expression, Vy, is now in cm™, and the parameters of
the intervalence band are in the usual units: ey, in L mol™! cm™, and v« and
AVy in cm™!. The definitions are recalled in Fig. 3.35. Since the intervalence
band overlaps frequently with band tails originating from other transitions
such as metal-to-ligand and ligand-to-metal transitions, a deconvolution of the
mixed valence compound spectrum is often necessary.

Curiously, although eqn. (3.91) relies on a number of rough approximations,
and in particular ignores partial delocalization on the bridging or ancillary lig-
ands, its range of validity is wider than expected. It has been shown that it
remains valid even for relatively strong couplings [3.54].

However, a known difficulty in the use of eqn. (3.91) is the value of
the R parameter, which represents an effective distance between the loc-
alized donor’s and acceptor’s charge centroids. It is usually taken as the
through-space geometrical distance between sites A and B, but delocalization
effects (extensive wavefunction mixing in the ground and excited states) and
polarization effects (changes in electron distribution) can introduce marked
differences. This difficulty is discussed in the ‘generalized Mulliken—Hush
model’ (GMH) model [3.55]. According to this model, a more rigorous for-
mulation is obtained by using the following expression for Vg, instead of
(3.87b):

Vap = MA/Apgp (3.93)

where A, = [y — Wy 1S the diabatic change in dipole moment; that is, the
difference in dipole moments for two non-interacting sites (full localization).
The previous treatment leading to eqn. (3.91) was valid for a full transfer on
one electron along a distance R (thus Ap,, = € R) but in the frame of the GMH
model one uses instead:

Alay = [(Ap)* + 4 (M)*]'2 (3.94)

Intervalence
transition

V/cr;n*1

6000 8000 10000 12000
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where Awp, is the difference between eigenvalues of the adiabatic dipole
moment matrix [3.55]. The interest of eqn. (3.94) lies in the fact that A, and
M can be evaluated experimentally, respectively from Stark effect measure-
ments [3.56] and from the intensity of the intervalence transition. Once A, is
known from these measurements one can define an effective distance by Regr =
Apap/e. Note, however, that this more rigorous procedure has been used very
scarcely, due to the paucity of Stark effect experiments.

In the case of a class III mixed valence compound, the transition occurs
between fully delocalized levels, given by eqns. (3.72a) and (3.72b). In this
case, V,, is not obtained from the band intensity, but merely from the band
position: it is simply one half of the optical transition energy (see Fig 3.25).
The transition moment is then given, from (3.86), by:

M = eR/2 (3.95)

which is much larger than in eqn. (3.87a), since in this last expression the
ground-state delocalization coefficient Vy, / N is necessarily small. Thus, in a
class IIT system, while there is no more thermal transfer, one observes a par-
ticularly intense electronic transition. But it does not correspond to a charge
transfer, since the initial and final levels are fully delocalized with equal
weights on the two sites, and is actually similar to a bonding-to-antibonding
transition.

This difference of nature of the transitions can be used as a criterion for the
class Il/class III distinction. For a class II system, as a consequence of eqns.
(3.17) and (3.66), the energy of the intervalence transition must depend on
the solvent, and this has been experimentally established [3.13, 3.57]. On the
contrary, for a class III system there is no appreciable charge redistribution
during the electronic excitation, and thus the solvent influence on the transition
is very small.

Another criterion to distinguish class II from class III systems is based on
the bandwidth of the intervalence transition. In a class I compound (see Figs.
3.21 and 3.25b) the vertical transition reaches the excited state curve in a region
where the slope of the E = f(Q) curve is large. Thus, as a result of fluctu-
ations in the initial Q value, there is an important dispersion in the transition
energy. The detailed calculation was performed by Hush, and gives the energy
bandwidth AE;), of the transition as:

AE;;; = [16 kT (In2) A]"/2 (3.96)
That is, numerically at 298 K, when the band position and width are in cm™:
AV = [2310 Vel '/? (3.97)

By contrast, in a class III compound the vertical transition reaches the upper
curve on a rather flat region (Fig. 3.25¢), and the corresponding band is much
narrower.

We can now discuss in more detail the properties of some systems for which
the simultaneous determination of Ey, and Eg, has been possible. The best
examples are found in organic mixed valence systems, using EPR spectroscopy
to determine the rate of intramolecular electron transfer, and from its variation
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Fig. 3.36

Two examples of mixed valence com-
pounds for which the simultaneous
determination of Eop and Ey, is available.
a) half-oxidized bis-hydrazines [3.58];
b) half-reduced perchlorinated bi-radical
[3.59].
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with temperature, the activation energy for the thermal process. Two examples
are shown in Fig. 3.36.

In the case of the bis-perchlorinated radicals (Fig. 3.36b) the partial reduc-
tion generates a monoradical, which can be considered formally as the
association of an EPR-active radical on one side and an EPR-silent carbanion
on the other side [3.59]. For this system, all parameters can be experiment-
ally determined. Thus an intervalence transition is observed near 1400 nm,
corresponding to Ey, = 0.78 eV. From the intensity of the transition, a value
of Va, = 0.015 eV is obtained, using Hush’s equation (see eqn. (3.92)). The
thermal electron transfer can be monitored by EPR, because of the hyper-
fine splitting due to the coupling with a vinylic proton on each side. At low
temperature (200 K) the EPR spectrum presents two lines, showing that the
unpaired electron interacts with only one proton; that is, it is localized on
only one half of the molecule. When the temperature is raised, the spectrum
evolves gradually towards a three-line spectrum, characteristic of an interac-
tion with two equivalent ' H nuclei, meaning that the electron transfer becomes
fast in the EPR time-scale. The detailed analysis of the spectrum by computer
simulation gives the electron transfer rate constant (found in the range 10—
103 s7), and from its variation with temperature, an activation energy Ey, =
0.117 eV can be obtained. This value is appreciably lower than one fourth of
the optical energy (Eop/4 = 0.197 eV). Even taking into account the effect of
Vap which decreases the thermal activation energy (see eqn. (3.76)), the agree-
ment is not perfect. The conclusion is thus that eqn. (3.66) is certainly a rough
approximation and reality is more complicated. For instance, as seen previ-
ously, quantum effects (nuclear tunnelling) can exist and would perturb the
extraction of the barrier height from the relation between the rate constant and
temperature. Another possibility, which has been proposed in the literature,
is that the potential energy curves depart from the ideal harmonic oscillator
model [3.58].

In the methods mentioned previously the electron transfer is not followed in
real time. The rate is obtained from a spectrum which is recorded for a duration
which can be as long as several minutes or hours. Conversely, in time-resolved
studies one tries to follow instantaneously the system evolution between an
initial and a final state. This necessitates several conditions:
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(i) The analysis method must be ‘fast’ in order to monitor instantan-
eously the composition of the mixture. One uses almost exclusively
visible—ultraviolet absorption, or fluorescence emission, making use of
the almost instantaneous response of photosensitive detectors (diodes,
photomultipliers).

(i) The initial and final states must have different spectroscopic character-
istics, which implies an unsymmetrical system. In most of the cases this
introduces an energy difference between the two states.

(iii) It is necessary to be able to define precisely the ‘zero time’: the system,
initially in the more stable state, is rapidly brought in in the other possible
(less stable) electronic state, from which it will relax towards the fun-
damental state, by an electron transfer reaction. This preparation step is
crucial, and is usually achieved through ultra-fast laser-pulse techniques.

There have been very few well-characterized examples of time-resolved
intramolecular electron transfer in mixed valence systems. Note that it is
not in general possible to trigger the electron transfer by excitation on the
intervalence transition, and one has rather to perform an excitation on a higher-
energy charge transfer transition. One of the best examples is provided by
ruthenium—osmium binuclear systems with a rigid spacer [3.60] (Fig. 3.37).

The starting complex exists as Ru"-L-Os'!, where L is the bridging ligand,
which incorporates a bicyclo[2.2.2.]octane unit in order to reduce the elec-
tronic interaction, and thus slow down any intramolecular reaction. The mixed
valence Ru™-L-Os™ species can be formed quantitatively by chemical oxida-
tion with 1 equivalent of oxidant, since Os'! is easier to oxidize by 0.4 V than
Ru'" for the same environment. Upon excitation of the Ru'' chromophore on a
metal-to-ligand charge transfer band (MLCT), an electron is transferred from
Ru! to a symmetry-adapted combination of * orbitals of neighbouring lig-
ands, thus generating an excited state which can be considered as Ru™(bpy~)
anion radical (see Section 4.3.1). The high-energy electron can then move to
the remote Os'! site, thus generating temporarily the mixed valence isomer
Ru™-L-Os", which is thermodynamically unstable with respect to Ru''-L—
Os'" (see the sequence of events on Fig. 3.38). Finally, back-electron-transfer
is observed with a rate constant 1.0 x 10% s™' [3.60]. This sequence of
events was followed by time-resolved absorption spectroscopy which allowed
identification of the Ru'"-L-Os" intermediate species.

As mentioned previously, there are few studies of this type. This is because
many processes can compete with electron transfer, in particular energy trans-
fer, and also non-radiative deactivation. The observation of time-resolved
intervalence electron transfer is not a routine experiment, but requires the
fine-tuning of many parameters in a carefully chosen system.

Os(bpy),
N N

N/
Ru(bpy),
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Fig. 3.37
Structure of a rigid Ru-Os binuclear
complex.
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Fig. 3.38

Reaction scheme following the excitation
of the Ru"-L-Os" binuclear complex
on a Rul-to-ligand charge transfer trans-
ition. Plain black arrow, excitation; plain
grey arrow, luminescence; dashed arrows,
radiationless processes.
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3.2.2.6 The electronic interaction and mechanism of electron transfer
in mixed valence systems

At this stage it is useful to discuss in more detail the electronic interaction in
mixed valence compounds, and more generally in strongly coupled systems.
This has important consequences for the detailed mechanism by which an elec-
tron is transferred through a bridge, and addresses contemporary issues on the
long-range transmission of electronic effects.

As discussed in Section 3.1.1, in a one-electron model, such as the exten-
ded Hiickel model, V,;, is simply taken as half the energy difference between
two orbitals having high weights on the metal atoms, and presenting opposite
symmetries, such as g and {r, in Fig. 3.39. Although crude, this method gives
very satisfactory orders of magnitudes of the electronic coupling, and is par-
ticularly well adapted to qualitative chemical-based discussion. It is important
to notice that the interaction is measured by the difference in energy between
these two orbitals, and not by the properties of a single orbital, even when it
shows an important delocalization on the bridging ligand.

To be more specific, let us consider the typical example of a system
bridged by a conjugated organic ligand. As in Section 3.1.1, we start from the
symmetry-adapted linear combinations of dy, orbitals, and look at their inter-
action with the HOMO and the LUMO of the ligand. We restrict ourselves to
the m system shown in Fig. 3.39. (Compare also with Figs. 2.40 and 3.3)

In general, for conjugated systems the energy of the metal orbitals falls in
the HOMO-LUMO gap, and the HOMO and LUMO have opposite u and g
symmetries (Fig. 3.39). Thus in the example represented the (dx,a + dxzB)
combination is stabilized by a bonding interaction with the LUMO, while the
(dx,a —dx,8) combination is destabilized by an antibonding interaction with the
HOMO. These effects add up to produce a splitting. However, it remains mod-
est because the mixing is relatively weak due to the energy difference between
metal and ligand orbitals. Thus the ground-state description contains a contri-
bution of a configuration in which either the metal is oxidized and the ligand
is reduced, or the reverse. This mechanism increases dramatically the coupling
with respect to the case of a direct (through space) interaction of the metal
orbitals. This is called superexchange—a general concept already met with in
Chapter 2 (see Section 2.6.2.2, Box ‘Superexchange’).
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If the metal orbitals are closer in energy to one of the frontier orbitals (say
the ligand’s LUMO), then the mixing increases rapidly, and consequently the
Vab coupling, though mainly one of the ligand orbitals contribute to the effect.
The large increase of Vyy, is called resonance. Taking the example of a Ru!'-
L-Ru™ mixed valence system, it means that the Ru"'-L"—Ru'"" configuration
is increasingly important in the description of the ground state. As a limiting
case, it may happen that this configuration becomes a true intermediate. Then
the electron transfer becomes a two-step process:

Ru' — L —Ru"™ - Ry — L~ — RJ™

Ru — L™ —Ru™ - Ru" — L — Ru"

The intermediate now has a transient existence. This means that the bond
lengths have time to relax and adapt to the electronic state, and this species
corresponds to a local minimum in a potential energy surface.

Thus when the electronic mixing with the bridge is important, there are two
possible mechanisms, whose characteristics are summarized in Fig. 3.40:

(@) Rull — LO) — R
o quantum mechanical
Ru'— L — Ry mixing > Rul'—L—Ru"
X
(b) RU = LO — Ry
N true intermediate\ AU — L — Ry

Ru''—L - Ru (relaxed)
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Fig. 3.39

Molecular orbital energy diagram of a
mixed valence system bridged by a con-
jugated ligand. At left, the dy, orbitals
of metals A and B build two symmetry-
adapted linear combinations (SALC),
u and g. They are assumed to bring
three electrons (as in a ruthenium(Il)—
ruthenium(Ill) system). At right are
shown the u and g MOs of the m lig-
and, reduced to the coordinating atoms.
In the middle are shown the energies and
schemes of the W; MOs of the Mpo—L-Mp
fragment. Count the number of nodes in
the MOs’ schemes.

Fig. 3.40

The two possible mechanisms for elec-
tron transfer through a bridge. (a) Single
step, superexchange mechanism, imply-
ing a quantum-mechanical mixing with
an intermediate configuration; (b) two-
step mechanism with transient formation
of areal intermediate.



262

The moving electron: electrical properties

e A single step, superexchange mechanism, in which the intermediate con-
figuration is only virtual, i.e. it participates in the quantum mechanical
description of the initial and final ground states, with a variable weight.

e A two-step mechanism, also called ‘sequential’, or ‘chemical mechanism’,
or ‘hopping-type mechanism’, in which the intermediate configuration is
‘real’, i.e. it can be observed experimentally as a transient state.

Considerable work has been devoted to the distinction between these two types
of mechanisms [3.4, 3.61, 3.62]. A recent problem was raised by the properties
of DNA, and the possibility that this fundamental molecule, support of hered-
ity, could have special electronic properties favouring long distance electron
transfer. (See Box ‘Electron transfer through DNA”).

The duality between both mechanisms will also be encountered in Section
5.2.2 when a molecule will be inserted between two ultra-thin metallic
conductors, so as to mediate the passage of an electrical current.

Decay law of V,, with distance
A final concern is the question of the decrease of V,, with distance. Since V
determines the electron transfer rate in the non-adiabatic regime (eqn. (3.37)),
this question has strong implications in various domains of chemistry, biology,
physics, nanosciences, and so on, and will be evoked again in Chapters 4 and
5. The experimental study of series of compounds with different lengths has
allowed some progress in this direction. The V,, coupling can be determined
by the intervalence band method, using Hush’s eqn. (3.92), provided that the
coupling is large enough, which requires in practice a conjugated bridge [3.30].
It is generally found that the V,, coupling decreases with the distance R
between redox sites according to an exponential law, with a decay coefficient
y depending on the bridge and defined by:

Vo = Vg, exp (—yR) (3.98)

Thus, according to eqn. (3.98), in the non-adiabatic regime the intramolecular
electron transfer rate constant varies also according to an exponential law, but
with a doubled decay coefficient, because k varies as V2, (see eqns. (3.37) and
(3.57)):

k = k°exp (—2yR) (3.99)

Curiously, for many compounds with diverse structures the y decay coefficient
falls in a rather narrow range: 0.07 to 0.10 A [3.30c]. This is a rather slow rate
of decay, and is much smaller than if the interaction between the redox sites
occurs through empty space (in such a case y would be about 0.5 A™') (Fig.
3.41). The big challenge for achieving long-range electron transfer is to realize
simultaneously a strong initial coupling V;, and a weak attenuation factor vy,
but these requirements are in a first approximation mutually exclusive [3.30c].
Looking more closely, however, there are interesting deviations of this general
law, and some groups, such as anthracene, are particularly efficient as bridge
components to ensure a strong interaction between terminal sites. The search
for more efficient structure is an active field of research.
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Electron transfer through DNA

The electronic properties of DNA have received considerable attention since 1993,
when the first measurements showed that it could be the siege of electron transfer
reactions [1]. Modified DNA molecules were prepared with a photosensitive metal
complex such as Rh(phi),(dmb), (phi = 9,10-phenanthrenequinone diimine, dmb =
4,4'-dimethyl-2,2'-bipyridine), which is used as an intercalator within the 7w stack
of DNA pairs. Upon photophysical excitation the tethered complex acts as a hole
generator; that is, it can receive an electron from a distant place such as a thymine
dimer. This constitutes a model for the biologically important reaction of thymine
dimer repair. (A thymine dimer is a pair of abnormally chemically bonded adjacent
thymine bases. Oxidation of the thymine pair breaks the dimer, thus restoring their
normal mode of bonding).

Repair

5---A-T-G-T-T-G-T-A-C-G-A—C-G-T
I A N N
---T-A-C-A-A-C-A-T-G-C-TgrG-C-A 5

M"’Wh:

Several other modifications of DNA have been performed by grafting various
photosensitive groups and detecting chemical reactions at distance, either by strand
cleavage or by generation of cation radicals [2]. The nucleobases do not have
the same redox properties (guanine is more easily oxidized than adenine and the
pyrimidine nucleobases), making possible the selective oxidation of guanine by
adapted excited acceptors, electronically coupled to the DNA, which do not also
oxidize adenine. Continuous improvement of detection methods led to the resolution
of the enormous initial discrepancies between different measurements.

An intriguing fact was that for some systems the electron transfer rate constant
ke, decreased very slowly with distance. This was shown indirectly by the yield
of a given reaction occurring at distance, away from the centre of a local excita-
tion. Thus, in a modified DNA double strand containing an acylated photosensitive
intercalator, the photochemical excitation generates a cation radical and the positive
charge can migrate until it is trapped by a remote triplet of guanine bases. The effect
is observable at distances of up to 50 A. Since the stacked base pairs present weak
electronic couplings between the 1 systems, one expects a rapid rate of decay of the
V. interaction between donor and acceptor with distance, at least more rapid than
in the following examples with conjugated bridges (see, in particular, Fig. 3.41).

Theoretical investigations agree that electron transfer is actually a hole transfer
mechanism, for which oxidizable bases such as guanine present in the DNA strands
must play a role. The superexchange mechanism would lead to a rapid attenuation
of k., with distance, and thus present interpretations favour a ‘hopping mechanism’
using several intermediates including some unavoidable disorder [3]. Thus the hole
(actually a polaron—a hole + distortion) would migrate by a series of diffusive steps
ending on the final site. Calculations show that this would indeed lead to a much
slower rate of decay than by direct superexchange.

An improvement of the model, due to Renger and Marcus [3b], is to consider
that in the intermediate species the hole is not located on a single base but rather
delocalized on several bases. This increases the effective size of the polaron and
renders the system less sensitive to static disorder.

Fig. 1

Scheme of the intercalator rhodium
complex-DNA-thymine dimer. The
thymine dimer is shown in light grey.
Following the photoexcitation of the
tethered intercalated rhodium complex,
oxidative repair of the thymine dimer
occurs at 26 A distance. (Adapted from
Genereux and Barton [1b].)
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A last question about electronic interaction is of theoretical nature. Up to
now we have used qualitative monoelectronic models. But to be more precise
on the role of the bridging ligand, we should take into account the polyelec-
tronic nature of the wavefunctions. We consider what happens at the avoided
crossing point, when the system’s geometry is perfectly symmetrical.
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In principle one should compute the total energy of the mixed valence sys-
tem for the two possible electronic states at Q = 0 (see Fig. 3.42, showing in
particular the distinction between total wavefunctions such as W, W, and one-
electron wavefunctions such as g, ). This rigorous approach necessitates
the full many-electron treatment with evaluation of total electronic energies,
including correlation effects. At this level, two variants can be considered: (i)
from adiabatic energy splitting (dimer splitting)—calculating the energy dif-
ference between the two possible electronic states—and (ii) from the direct
calculation of the matrix element < W,|H|W;, >, where ¥, and Wy, repres-
ent diabatic total electronic wavefunctions. These wavefunctions correspond
to the unperturbed basis states Ru'-Ru™ and Ru™-Ru", and can be obtained
by a symmetry-broken SCF calculation [3.63]. They derive in particular from
symmetry-adapted wavefunctions such as Wy, W, by the standard unitary
transformation Wy = 2712(W, + W) [3.64].
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Fig. 3.41

The decay of the electronic interaction
Vab with distance. (Upper) structure of
the studied molecular systems; (lower)
corresponding typical decay laws, with a
comparison with vacuum. Special cases:
1: complex of the type b) with anthracene
in the spacer; 2: bis ferrocene of the type
d) with three phenylene and four vinylene
as spacer.
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Fig. 3.42

Definition of the electronic interaction
at the crossing point (Q = 0) in the
‘dimer splitting’ method. ‘d’ designates
molecular orbitals with preponderant d
character centred on A and B metal
sites. Wy and Wy are total polyelectronic
wavefunctions, and the associated rectan-
gular frames show the electronic filling
of one-electron wavefunctions 1, and
Jry (molecular orbitals). The electronic
filling corresponds to a system such as
Ru”—Rul”.
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There are, however, only a few examples of exact calculation, at the ab initio
SCF level with account of electron correlation, or even at simpler DFT level.
This comes from the fact that for such complicated molecules with many elec-
tronic and nuclear degrees of freedom, several artefact solutions may appear in
the calculations. Thus in ab initio SCF methods, anomalous symmetry break-
ing of the Hartree—Fock solutions can appear even for a perfectly symmetrical
system, while conversely, DFT methods tend to favour artificially delocalized
structures [3.65]. This is why, for lack of something better, simple methods
based on orbital semi-empirical models are still very useful today for a basic
illustration of the phenomena.

3.3 Conductivity in extended molecular solids

3.3.1 Conductivity: definitions, models, and significant

parameters

So far, we have considered mainly discrete mixed valence molecules, typic-
ally with two redox sites, which were essentially studied in solution, so that
no macroscopic electronic conduction could occur. We now examine the trans-
port properties in extended systems in the solid state (mixed valence or not).
Metallic conducting materials (most of them are non-molecular, metals, alloys,
oxides) allow electron motion in a circuit, giving rise to a transport of electric
charge Q (in Coulomb, C), during a time t (in seconds, s), corresponding to an
electrical current with intensity I (in amperes, A):

Q =1I-t (3.100)
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This occurs when a potential difference U (in volts, V) is applied to the system.
Ohm’s law relates the electric parameters, intensity I and applied potential U,
to the resistance of the material R (in ohms, 2):

U =R-I (3.101)

The inverse of the resistance is the conductance C (in siemens, S or ohm™,
Q). The resistivity p of a material having a length 1 and a uniform section s
(Fig. 3.43a) is defined by:

R=p- (3.102)
S

and is expressed in ohm cm. The conductivity is simply the inverse of the
resistivity:

o= 1/p (3.103)

It is expressed in ohm™ cm™, @' em™'. Since I = U/R = Us/pl
= Uo (s/1), the conductivity measures the ability of a material to conduct the
current: everything being equal, the intensity I increases with o. Another famil-
iar expression of Ohm’s law, expressed in terms of the current density j (j =
I/s) and the applied electric field E (= U/l), is thus easily derived:

j =oE (3.104)

The current density can be expressed alternatively as a function of n, the num-
ber of charge carriers per unit volume (in cm™), the charge q of the carriers,
and the drift velocity v of the charge carriers:

j = nqv (3.105)

If we define the mobility of the carriers as u (u = v/E) (in cm?.V~'.s7!), the
conductivity is expressed by:

o =j/E=nqu (3.106)

The expression will prove useful for identifying the nature of the charge car-
riers, electrons (q = e, negative) or holes (q positive, also noted h), or both
(see Section 3.3.2.2). If there are several types of carrier, the contributions are
additive.

From the conductivity point of view, one can distinguish four important
categories of materials: insulators, semiconductors, conductors, and supercon-
ductors. The four categories are distinct not only through the value of the
conductivity, which increases from insulators to superconductors, but also by
the thermal variation of the conductivity.

We shall return in more detail on these behaviours in the corresponding sec-
tions, and the reader is prompted to refer to physics textbooks. At present, we
need only to state the following:

e The insulators have a very weak conductivity (¢ < 10°° Q! cm™, for
example), without important change with temperature.

e The semiconductors have a medium conductivity (10 Q! cm™
Q' cm™) and the conductivity is thermally activated (Fig. 3.43c).

1 1

<o<1

267



268

Fig. 3.43

Useful definitions for electrical proper-
ties. (a) Length and section of a sample.
Ratio R/R,p (resistance/ambient resist-
ance) versus temperature for (b) a con-
ductor; (¢) for a semiconductor; (d) for a
superconductor.
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e The conductors have a large conductivity (1 Q7' ecm™ <o < 10° Q7' cm™),
and furthermore, the conductivity increases when the temperature decreases
(Fig. 3.43b and Section 3.3.2).

OTref
o

Tc T/K Tamb

(3.107)

o= with o > 1

(3.108)

where oTrs 1S the conductivity at a given reference temperature Tiey.
e The superconductors have, a priori, an infinite conductivity below a critical
temperature T (zero resistivity!) (Fig. 3.43d).

The problem for the chemist is that molecular systems in the solid state are
generally insulating. Obtaining a high conductivity with molecular materials
represents a challenge, but the issue is important for potential applications
(low-density conductors, for example, are very appealing), and have given rise
to many research endeavours, some of them distinguished by the Nobel Prize in
Chemistry in 2000 (A.J. Heeger, A.G. MacDiarmid, and H. Shirakawa). Many
molecular conducting systems have now been found, and it is possible to estab-
lish and use some rules to produce molecular materials exhibiting remarkable
conducting properties (Fig. 3.44).

It is useful to investigate conduction phenomena, having in mind the dis-
cussion in Section 3.1 concerning the resonance integral B (termed V,, in
Section 3.2), the one-centre electronic repulsion integral U (termed jy in
Chapter 2), and \ parameters (Figs. 2.3 and 3.11) . The resonance integral p
is sometimes termed the transfer integral t in the context of conducting mater-
ials, but in this section we will retain the notations f, U, and . Two general
situations can lead to conduction: (i) the extended system can be described
by sufficiently wide bands (B relatively large and |B| >> U), with an incom-
plete filling, leading to metallic conduction. This is the standard ‘band model’,
and in this case the role of U is ignored. From the beginning the description
utilizes delocalized levels, so that the \ parameter also disappears. One can
consider in this case that the delocalization of electrons proceeds via a tun-
nelling mechanism from one site to another; (ii) the extended system can be
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of mixed valence composition. In such a case, the one-centre repulsion U is
small and does not play a role (see Fig. 3.11), and the properties depend on
the competition between f and A, as in the case of discrete mixed valence sys-
tems discussed previously. Note that in these systems the starting point for the
description is the reverse of the band model: instead of using delocalized levels
from the beginning, we start from localized levels. Then f favours conduction,
while N hinders it. The conduction occurs by ‘hops’ between localized states,
as in class II molecular discrete systems, and the electron transfer is thermally
activated—the typical behaviour of a semiconductor.

More complex situations can exist. For instance, systems described by nar-
row bands (weak p and |B| &~ U or |B| << U) present a particular behaviour.
In such cases, even the two-centres repulsion integral V (or j as defined in
Chapter 2) can also play a role. We deal with such narrow-band systems in
Section 3.3.4.

3.3.2 Extended metallic molecular systems and band theory

Here we are dealing with solids which are metallic; that is, with a conductiv-
ity which is high and obeys eqn. (3.108): the conductivity increases when the
temperature decreases.

In this case the useful tool is the band model. In the following we present
a brief account of it, as an extension of the molecular orbital approach to the
solid, with the same advantages and limits as before. The work by Hoffmann
and coworkers [1.14] and the recent book by Canadell ef al. [1.9b] are par-
ticularly illuminating in bridging the gap between the molecule and the solid.
Simple schemes of electron transfer between centres in a solid are shown in
Fig. 3.45 and Fig. 3.46.
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Fig. 3.44

Conductivity of molecular systems com-
pared to traditional materials: the con-
ductivity spans an incomparable range of
values.

Fig. 3.45
Schematic description of insulator and
conducting materials. Three sites, 1, 2, 3,
with one orbital per site: (a) no electron
(vacant orbitals), no conduction; (b) two
electrons per orbital, no conduction; (c)
one electron in three orbitals: the conduc-
tion becomes possible, through electron
mobility; (d) five electrons and one hole
in three orbitals: the conduction becomes
possible, through hole mobility; (e) and
(f) ‘band’ representation of cases (c) and
(d): the conduction occurs due to partially
occupied bands.
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Fig. 3.46

(A) Schematic electron transfer in 1D
systems and cost in energy: at left, before
electron transfer; at right, after electron
transfer. (a) One electron per orbital. The
electron transfer energy cost is the dif-
ference between the one-centre electronic
repulsion integral U(jo) and the two-
centre electronic repulsion integral, V(j).
When an electron is withdrawn (b) or
added (c), there is no energy cost for the
electron transfer; the transferred electron
is in grey. (B) A mechanical analogy to
stress simply the importance of holes: it
is possible to displace the grey numbered
squares (electrons) only if at least one of
the positions is vacant (hole). (Adapted
from A.J. Heeger, A.G. MacDiarmid, H.
Shirakawa [3.66].)
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The two figures reveal the nature of the species allowing the conduction
(electron or hole), the energy cost for the electron transfer, in terms of the two-
electron repulsion integrals U and V, and suggest a link to the quantities IP,
the standard ionization enthalpy, and Ag, the electronic affinity (or better, the
negative of the standard enthalpy for electronic fixation), better known among
chemists.

We deal hereunder with three examples: oxidized potassium tetracyanido-
platinate (KCP), doped polyacetylene, and 1D organic conductors. We rely on
simple ideas on the electron—electron interactions, on the electronic structure
of the molecules, and on the structure of the materials to show how it is pos-
sible to obtain molecular materials exhibiting the expected conductivity. The
interested reader may consult the general references [1.9, 1.14, 3.66-3.70] to
acquire a deeper insight (and different approaches) of the field.

3.3.2.1 KCP: oxidized potassium tetracyanidoplatinate

KCP is the abbreviation for oxidized potassium tetracyanidoplatinate (kalium
tetracyanoplatinat in German), which is representative of a wide family
of compounds with formula C, [Pt (CN)4] (X’)X +nH,0 (C = K, Rb, Cs;
X =Cl, Br, FHF; x =0.2 —0.4; n =0 — 7). The system was first invest-
igated by Knop as early as 1842, and approached by Levy in 1912, but it
was Krogmann, in 1968, who was responsible for the main progress. The
compounds are often denoted as Krogmann salts. One of the typical solid
known as KCP is K; [Pt (CN)4] (Br’)o_3 +2H,0. The other compounds in
the family present slight variations in the properties (to be discussed), but
the basic features remain the same. K, [Pt (CN), | (Br™), , *2H,0 is produced
either by chemical oxidation of a solution of potassium tetracyanidoplatinate,
K> [PtII (CN )4], by dibromine:
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K, [Pt (CN),] +2H,0 + 0.15 Br, — K; [Pt(CN),] (Br7),; * 2H,0
(3.109)

or by electrocrystallization. Fine black needles with a metallic lustre grow
slowly on a platinum anode when crossed by a controlled constant current.

Whereas K [Pt" (CN),] +2H,0 is an insulator (c = 5 107 ' em™),
K; [Pt (CN),] (Br™),, *2H,0 (KCP) is a metallic conductor at room tem-
perature. The conductivity parallel to the z axis o, = 0, ~ 300-800 Q!
cm™' at room temperature (depending on the samples), and increases when
T decreases. KCP becomes a semiconductor at lower temperatures (around
270 K), with an activation energy AE = 70 meV. Furthermore, the conductiv-
ity is highly anisotropic, being much larger along the z axis (stacking axis of
the molecules) than in the perpendicular plane: o/, ~ 10° (see Fig. 3.47).
The striking change in electrical properties can be interpreted in a rather
simple way, using the band-structure description, providing some illuminating
insights into our study of conducting molecular materials.

The first observation is that in both compounds the structure is made of
[Pt(CN)4] anionic units stacked along the z axis in a staggered configura-
tion. The potassium ions and the water molecules are located between the
stacks. The angle between successive Pt—CN units along z is around 16° in
K, [Pt'(CN)4]+ 2H,0 and 45° in KCP. Two important differences occur in
the oxidized KCP structure: 0.3 bromide ions appear between the [Pt(CN)4]
stacks, and the Pt-Pt distance decreases strongly from 350 pm to 289 pm
(indeed, close to the Pt—Pt distance in platinum metal, 277.5 pm). The aniso-
tropy of the structure is clearly related to the anisotropy of the conductivity,
with a prominent role of the z axis. Without loss of generality, for interpret-
ation of the electrical properties it is possible to simplify the description of
the system by making the two approximations shown in Fig. 3.48f,g, as sug-
gested by Hoffmann [1.14]. First, the real staggered conformation in (d, e)
can be replaced by the eclipsed model in (f); the cell parameter along the z

A o/(Qcm)”!
4 metallic

semiconducting
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10710 |

-12 [
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] | | |
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Fig. 3.47

Variation of the conductivity (log scale)
versus 1/T of a single crystal of KCP
measured parallel to the z axis (o) and in
a perpendicular direction (o ). (Adapted
from [3.70].)
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Fig. 3.48

Crystallographic structures down the
z axis: (a) Kp[P(CN)4]*2H,0; (b)
K2 [Pt(CN)4](Br™)o.3 *2H,O. Perspective
views of the stacks: (c) Ko[Pt(CN),4]*
2H70; (d) Kz[Pt(CN)4](Br o3 *2H20.
Schematic ~ structures: (e) staggered
stacks of Kj[Pt(CN)4](Br )3 *2H,0
(cell parameter 2a); (f) eclipsed
model structure (cell parameter a); (g)
[Pt (H)4]> model in which the cyanides
have been replaced by hydrides.
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axis changes accordingly from 2a to a. Second, the cyanide ion CN™ in the
real [Pt(CN)4]* complex is replaced by the hydride H™ (Fig. 3.48g). The
square planar model [Pt"(H),4]%~, D4, symmetry results. Its electronic structure
is shown in Fig. 3.49. The symmetry labels shown are those of the Cg4, point
group, for simple reasons that will appear soon. The metal brings eight d elec-
trons, and the ligands also eight (two electrons per hydride). In the molecule,
the sixteen electrons occupy the four bonding MOs (a;, by, e), ensuring the
bonding, the three non-bonding xy (b;), Xz, and yz (e) d orbitals and the slightly
antibonding dz? (a;).

The molecular orbitals of the precursor interact in the solid to build the sym-
metry orbitals, or Bloch orbitals defined in Section 1.4 by eqns. (1.44), with
energies defined by eqn. (1.46). It is obvious from the structure that the only
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significant interactions take place along the z axis and not in the perpendicu-
lar plane. The band structure arises from the overlap of the molecular orbitals
centred on the metal. We begin with the interaction of the z>Z MOs. We name
a,> the energy of the z2 MOs in the complex, and B,2,> the resonance energy
between two neighbouring z> MOs along the z axis. The Bloch orbitals built
from the overlap of the z> MOs are shown in Fig. 3.50: one recognizes, at k =
0, the fully bonding Bloch orbital ®y_y(z?) with no node, at energy a,> +2 2,2

and, at k = 7/a, the fully antibonding orbital, Oy_,/, (z%) with N — 1 nodes, at
energy o, — 20,22

1 &
@/_: lmm
k=0 S Z M

N me—n'+1 (3.110a)
_%(d)n%l +.o b+ b+ b+ dy)
Okmnsa = % Z (=)™
me—n'+1 (3.110b)
_%(q)—n/-ﬁ-l —o— bt bo -+ — )

Furthermore, Fig. 3.50 displays the two Bloch orbitals just below k = m/2a
(N/2 — 1 nodes) and just above (N/2 nodes), practically non-bonding. These
orbitals will play an important role later. The Bloch orbitals built from the
other metal-centred orbitals are shown in Fig. 3.51.

Two qualitative observations should be made here: (i) the overlap decreases
from o overlap (p,—p, > z°-z%) to m overlap (xz—xz, yz—yz) and § overlap
[xy—xy and (x’—y?)—(x?>-y?)]; the width of the corresponding Bloch orbitals
will behave accordingly, very wide for p,, wide for z2, narrow for xz and yz,
and very narrow for xy and x>-y?; (ii) the z2, xy and x?>-y?> Bloch orbitals
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Fig. 3.49

Schematic molecular orbital energy dia-
gram of square planar [PE(H)41*, Dap
symmetry (the symmetry labels corres-
pond to Cy4y; see text). At left are the
atomic levels of 5d® Pt(Il), and at right
are the four symmetry orbitals of the
four hydride ions, and in the centre are
the molecular orbitals of [PtI(H)4]%.
The significant MOs for the discussion
are shown at right, including the highest
doubly occupied MO, based on Pt 5dz2.
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Fig. 3.50

Bloch orbitals generated by the z> orbit-
als and energy dispersion curve. The
stacking axis z is horizontal; a denotes
a2, and B denotes B,2,2. At the bottom,
the Or—o(z2) Bloch orbital is fully bond-
ing, whereas at the top of the band the
Ox=rn/a(z?) is fully antibonding. The
Bloch orbitals around k = m/2a (O
and ®.) are practically non-bonding.
Atright, a scheme of the density of states.

Fig. 3.51

Bloch orbitals generated by the metal-
centred orbitals; at left, centre of the
Brillouin zone, k = 0; at right, border of
the Brillouin zone, k = m/a. The stacking
axis z is horizontal.
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are bonding at k = 0 and antibonding at k = w/a, and they will run ‘up’;
the p,, xz, and yz Bloch orbitals behave at the opposite, and the bands will run
‘down’. Both effects are illustrated in the dispersion energy curve of Fig. 3.52a,
based on semi-empirical extended Hiickel calculations. The p, band is so wide
that the bottom at k = m/a lies below the energy of the very narrow x>—y>
band, above the top of the z> band. One can observe that the energy values
of the bands at k = m/2a correspond to energy levels in the isolated complex
(Fig. 3.50).

Our qualitative approach allows us to find the main features of the band
diagram, but the relative position of the z> and the p, band needs calculations
to be established. We then fill in the bands, according to the electronic structure
of the complex, as shown in Fig. 3.49: the electrons of the d orbitals fill four
d bands. The highest occupied level, or Fermi level, is the top of the z> band,
whereas the lowest unoccupied level is the bottom of the p, band. Between
the two there is a forbidden energy gap. Calculations show that the gap is
wide so that the compound is an insulator. We have reached a first step in
our interpretation of the properties of K, [PT(CN)4] - 2H,0: the d bands are
filled, bonding and antibonding levels are occupied, and do not contribute to
the bonding scheme, so that there is no d—d bonding along the stack, which
allows us to understand the rather large Pt—Pt distance, in the range of Van der
Waals interactions. The forbidden energy 5dz>—6p, gap explains the insulating
properties of the material.
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We now turn to the oxidized material, KCP, K, [Pt(CN)4](Br )3 +2H,0. A
simple analysis of the formal oxidation state of platinum (using the common
oxidation states for the other elements, +1 for potassium, —1 for bromide and
cyanide) leads to an unusual non-integer number, Pt*>3: platinum appears to
have been partially oxidized. Using a local view of oxidation states, it could be
interpreted by the presence of some Pt(III) or Pt(IV) in the stacks. Nevertheless
the band structure is more appealing: the oxidation corresponds to the with-
drawing of electrons of the filled bands and more precisely to withdrawing of
electrons at the top of the highest occupied band which is z>. The band then
becomes partially occupied, which is one of the conditions of conduction: the
partial oxidation of platinum leads to a partial occupancy of the band and to
an easy interpretation of the high-temperature metallic conducting properties
of KCP (Fig. 3.45f). Furthermore, the band which is partially emptied is the
z% band. The conduction is important, and metallic, along the z axis only, and
allows explaining in a straightforward way the anisotropy of the conductiv-
ity. The band model has something else to reveal: the structural change upon
oxidation. The levels at the top of the z* band are antibonding levels: empty-
ing them strengthens the z2—z> bonding in the z direction, and the decrease of
Pt-—Pt distance follows.

KCEP is the prototype of a large family of similar compounds which exhibit
a metallic character with conductivities reaching 2300 ' cm™ at 300 K in
some cases.

When the temperature decreases, KCP and all these one-dimensional con-
ductors undergo a transition to a semiconducting state (termed a Peierls
transition). We study this important feature and more complex phenomena in
Section 3.3.3.3.

3.3.2.2 Conducting polymers: the case of doped polyacetylene

The discovery of the metallic conduction of doped polyacetylene was an
important event in the field of organic materials. For the first time, it was
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Fig. 3.52

(a) Energy dispersion curves for Bloch
orbitals generated by the metal-centred
orbitals; at left, centre of the Brillouin
zone at k = 0; at right, border of the
Brillouin zone at k = m/a; (b) density of
states and filling of the bands. (Adapted
from Hoffmann [1.14].)



276

Fig. 3.53

Different representations of bond-
ing in polyacetylene: at left, trans-
polyacetylene; at right, cis-
polyacetylene: 1A and 2A: regular
structures; 1B and 1C equivalent
alternant structures for the frans-isomer;
2B and 2C non-equivalent alternant
structures for the cis-isomer.
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Fig. 3.54
Conventional representations of ethylene

(a) and T orbitals: m bonding (b) and m*
antibonding (c).
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shown in a convincing manner that organic matter can behave as a metal,
without metallic elements and without conducting d electrons. KCP was indeed
the first evidenced conducting molecular material, but we have seen that the
mechanism of the conductivity implies essentially the metal dz* orbitals. With
polyacetylene, only carbon and hydrogen atoms are implied. Polyacetylene is
a polymer (or plastic, in everyday language) with formula —(CH-),. It exists
under various isomer forms. The pure cis and trans isomers are shown in
Fig. 3.53. Generally, ‘plastics’ are used around conducting metallic wires to
insulate the metal from the environment. But in the present case, by a simple
redox reaction, the conductivity of the ‘plastic’ can be multiplied by a factor of
one billion (10'?), and becomes as conducting as some metals. This important
step in the chemistry of molecular materials was distinguished in 2000 by the
Nobel Prize in Chemistry [3.66].

In the following we try to use the band theory concepts introduced previ-
ously as a first approximation to explain simply the conducting properties of
doped polyacetylene.

Regular trans-polyacetylene
We first address trans-polyacetylene, and more precisely the regular form
shown as 1A in Fig. 3.53, supposed to be a planar crystalline ribbon without
interaction between the chains. Indeed, one can understand that even if the
chains are individually good conductors, the overall conductivity will be lim-
ited by the fact that the electrons have to ‘jump’ from one chain to the next.
Hence, the chains have to be ordered and well packed. The orbitals of interest
are the valence carbon m orbitals. Each atom has one such orbital in a plane
perpendicular to the polymer ribbon (2py). For the sake of simplicity we rep-
resent the orbitals viewed from the top, as shown in Fig. 3.54 for ethylene (a),
1 bonding orbitals (b), and t* antibonding (c). We illustrate the building of the
crystal orbitals—as shown in Section 1.4—and their dispersion energy curves
in Fig. 3.55.

An ideal regular trans-polyacetylene (1A), with a partially occupied band
(half-filled with one electron per carbon) should therefore be a metallic
conductor. Indeed, such an ideal compound does not exist. Trans-polyacetylene
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The discovery of polyacetylene

The discovery came from work in Shirakawa’s laboratory in the Tokyo Institute of
Technology in the 1970s. A new catalytic procedure allowed control of the amount
of cis- and trans- polyacetylenes in the black film deposited in the reaction vessel:
with an excess of catalyst, trans-polyacetylene appeared as a silvery film, whereas,
in different conditions, cis-polyacetylene was obtained as a copper-coloured film.
The discovery is narrated in the Nobel committee documents, as follows:

‘In another part of the world, chemist MacDiarmid and physicist Heeger were
experimenting with a metallic-looking film of the inorganic polymer sulphur nitride,
(SN)x. MacDiarmid referred to this at a seminar in Tokyo. Here the story could
have come to a sudden end, had not Shirakawa and MacDiarmid happened to meet,
accidentally, during a coffee break. When MacDiarmid heard about Shirakawa’s dis-
covery of an organic polymer that also gleamed like silver, he invited Shirakawa
to the University of Pennsylvania in Philadelphia. They set about modifying
polyacetylene by oxidation with iodine vapour. Shirakawa knew that the optical
properties changed in the oxidation process, and MacDiarmid suggested that they
ask Heeger to have a look at the films. One of Heeger’s students measured the
conductivity of the iodine-doped trans-polyacetylene and . . . eureka! The conduct-
ivity had increased ten million times! In the summer of 1977, Heeger, MacDiarmid,
Shirakawa, and coworkers published their discovery in the article “Synthesis of elec-
trically conducting organic polymers: Halogen derivatives of polyacetylene (CH),”.”
Journal of the Chemical Society, Chemical Communications.
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Fig. 3.55
Crystal orbitals in regular trans-
polyacetylene: a) axes, numbering

scheme of the two different sites in the
cell and neighbouring cells; (b) Bloch
orbitals built from atoms 1, at k = 0 ®;
(k = 0) and at 7t/a ®(k = 7t/a) and from
atoms 2, ®>(k = 0) and ©,(k = /a); (¢)
crystal orbitals x4+(k) = Ni [O;(k) £
©,(k)] and their dispersion energy
curves; (d) occupancy of the crystal
orbitals and degeneracy of y.(m/a),
highest occupied level of y4(k) and of
X-(7/a), lowest vacant level of x_(k).



278

The moving electron: electrical properties

exists instead as the alternant 1B and 1C semiconducting forms (Fig. 3.53),
as a result of the Peierls distortion in a 1D system with a half-filled band (see
Section 1.4.3). This process is very general, and is discussed in more detail in
Sections 3.3.3.1 and 3.3.3.2.

3.3.2.3 Charge transfer salts (TTF-TCNQ and related systems)

Another class of molecular conductors (or semiconductors) is provided by
the charge transfer salts. By ‘charge transfer salts’ we mean molecular solids
made of electrons donors D and acceptors A. They are essentially made of
planar molecules. Such molecules exhibit a strong tendency to stack along
one dimension in the solid state. The most typical components are tetrathiaful-
valene (TTF) and tetracyanoquinodimethane (TCNQ) and their combination
TTF-TCNQ, but many other examples can be found, as shown in Fig. 3.56.
The constituent units are closed-shell systems, with an extended system of
delocalized electrons. The electron donors D can be oxidized (the case of TTF),
while electron acceptors A can be reduced (the case of TCNQ).

The oxidized and reduced species are charged and open-shell species. The
oxidized donor is written D**; a cation-radical, and the reduced acceptor
A™*, an anion-radical. The possible reactions and the standard redox poten-
tials versus SCE (saturated calomel electrode) for the TTF-TCNQ system in
acetonitrile are given in the following:

D—- D™+ e TIF— TTF™* 4+ e~ E! =031V (3.111a)

TTF'/TTF
A+e > A TCNQ + e — TCNQ™* Ef reng- = 017V
(3.111b)
D+ A—>D™A™ D+ A— DA (3.111c)

From these constituents, many types of 1D system can be prepared. When the
donor and acceptor are associated, the question arises of the possible redox
reaction. Although we are in the solid state we can make use, for qualitative
purposes, of the standard redox potentials E%+p and E%4/s- in solution, and
then:

D+A— DA™ (ifB)., << B}, ) (3.112a)
D + A — DAY (if E°D+/D ~ EOA/A,) (3.112b)

Thus, depending on the relative values of the redox potentials, the electron
transfer can be complete (3 = 1, D*A™, ionic situation), ineffective (3 = 0,
DA, D and A remain unchanged, neutral situation) or partial (3, DA%, par-
tial charge transfer). 3 is the fraction or degree of charge transfer, sometimes
termed DPO, degree of partial oxidation.

The latter situation is by far the more interesting in giving rise to conducting
properties, as we shall see soon. In the solid, these planar molecules can lead to
1D structures in which the  electronic clouds interact weakly, thus producing
narrow bands (the typical bandwidth is 0.5-1 eV). The stack can be considered
as a mixture of neutral and charged molecules (D/D**; A/A™*), a molecular
mixed valence state, reminiscent to the situation of platinum in KCP.
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The crystallographic structures vary, but in many cases the donor—acceptor
D-A combination produces segregated stacks (D%), and (A%),, or alternated
ones (D¥A%), (Fig. 3.57a,b). Segregation occurs in solid TTF-TCNQ with
distinct stacks of TTF** and TCNQ~°~ moieties, as shown in Fig. 3.57c,d.

Alternation occurs in anthracene-TCNQ, where there is no electron transfer
(Fig. 3.57¢). The molecules build a molecular solid in which all the compon-
ents are neutral. The main source of crystal stability is the van der Waals
energy. Conversely, in the case of KYTCNQ™ (Fig. 3.57f) the electron trans-
fer is complete (D*A7),; the primary interactions are ionic, and they ensure
the stability of the solid with Madelung energy.

Figure 3.58 shows the conductivity versus temperature curve for a num-
ber of 1:1 TCNQ salts. Some compounds, such as the ionic alkaline salts,
present a low conductivity in the 102-10~* Q7! cm™ range, increasing with
temperature, characteristic of semiconductors.

Other systems, such as TTF-TCNQ, or HMTSF-TCNQ (HMTSF is
hexamethylenetetra-selenofulvalene) exhibit a much higher conductivity, near
10>-10* @' ecm™!, increasing with temperature, and thus can be ranked as
metals. They are named ‘mixed valency’ in Figs. 3.58 and 3.59. Some others,
such as anthracene-TCNQ (not shown), present no electron transfer and are
practically insulators.

A first simple explanation of these differences is based on the redox poten-
tials of the two molecules associated in the 1:1 salts. The room-temperature
conductivity of the compounds (as pellets) is displayed schema