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Preface

Electrons in molecules . . . Both objects—electron and molecule—have a long,
rich, and complex history. Both words began to be used as elusive concepts
in the nineteenth century before gaining well-established scientific status at
the turn of the twentieth century. Several tens of years of common endeavour,
failures, and achievements by chemists and physicists, based on experimental
and theoretical work, were necessary to reach consensus. The word ‘electron’
(from the Greek élektron, amber) was proposed by Stoney in 1894, to name the
elementary negative charge of the particle, whereas ‘molecule’ comes from the
diminutive of the Latin moles (mass), introduced in modern Latin by Gassendi
as molecula. The emergence of the scientific concept of ‘molecule’, and its
clear distinction from atoms and equivalents, was the result of big controver-
sies (pros and cons in Karlsruhe Congress, 1860), but laid the foundations
of the basic understanding of chemistry, molecular chemistry, and associated
industrial synthetic processes. It opened the door to the understanding of com-
plex, highly organized, and biological matter. Elucidation of the nature of the
electron as a corpuscle and as a wave, and its role in atoms and molecules,
gave rise to quantum mechanics. Today, everyone knows that molecules are
quantum objects built from atoms sharing some of their electrons to establish
chemical bonds.

Electrons in molecules . . . The title can also be read as ‘understanding
the electronic structure and electronic properties of molecules’. Electrons are
dividing their roles in a molecular entity: some ensure the chemical bonds and
allow the stability of the molecules, while others are less bound to the atomic
core and provide the molecules with their fancy properties—magnetic, elec-
trical, photo-physical, colour, luminescence—allowing their use in molecular
electronics, nanosciences, and so on . . . This book is based on the simple
idea that such apparently different properties present a profound unity, rely-
ing on basic concepts of quantum mechanics and symmetry. This conclusion
emerged from informal discussions which we had many years ago with numer-
ous colleagues, and was fed by our teaching experiences at undergraduate and
graduate levels.

The backbone of the book was designed accordingly. Chapter 1 briefly
presents the basic quantum concepts as a common introduction to the broad
domain encompassed by the properties. The molecular orbital approach is
the red thread throughout the book, and its advantages and its limitations
are carefully discussed. We then treat consecutively the magnetic properties
(Chapter 2, ‘The localized electron’), electron transfer and electrical properties
(Chapter 3, ‘The moving electron’), the photo-physical properties (Chapter 4,
‘The excited electron’), and finally, molecular electronics (Chapter 5, ‘The
mastered electron’). So doing, we introduce the specific aspects of each of the
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subjects, and try to enlighten them by returning systematically to the basic con-
cepts. The goal is to better understand each topic and to show the transversal
connections between many of them.

The book’s content is shaped by a few specific features. First, it could be
important to specify what this book is not: it is not a compilation of recent
research results. There are many reviews in the specialized literature, which
periodically updates the huge amount of data and results associated with the
particular topics evoked here. We did not even consider the idea of being
exhaustive in a given field. Each of the chapters could have been, and in some
cases have already been, the subject of several books.

Second, we concentrate on concepts and use as little mathematics as pos-
sible. We try to give as much physical and chemical meaning as possible to
the equations. We try to explain the logic and goal of calculations—the price
being to skip some intermediate developments, which are left to the reader.

Third, we stress the importance of interdisciplinarity: to tackle ambitious
challenges, we think deeply that in this domain one has to mix together chem-
istry, physics, and materials science. The book performs constant trips between
these areas and between theory and experiment. Such a step appears com-
pulsory to achieve the breakthroughs, allowing the progress of knowledge and
the realization of practically useful materials and devices. Furthermore, in the
recently popularized field of nanosciences, the division between physics and
chemistry tends to vanish. But the round-trip ideas between chemist and phys-
icist, between theoretician and experimentalist, are essential for adapting the
molecule(s) to the instrument, or vice versa, and to be able finally to explore
and demonstrate new phenomena.

Fourth, the book is fed by our lifelong experience of molecular chemists,
synthesizing molecules and molecular assemblies specially designed to present
given physical properties. A few quantum concepts constitute the background.
Chemical synthesis provides the planned molecules (most often conceived
after discussion to fit the needs of the physicist, the machine, or the demon-
stration). Beautiful physics experiments follow, with innovative setups and
incredible enhanced sensitivities. Our book describes such experiments and
their results, but stresses the contribution of molecular chemistry, which has
sometimes been overlooked. It is indeed important to realize that this dis-
cipline has reached such a state of maturity that it can be considered as the
science of elaborating three-dimensional objects of sub-nanometre size by
rational design, with the possibility of predicting and fine-tuning their proper-
ties. A long time has passed since discoveries were made because a molecule
was available on the shelf. Now, more and more, they are extensively designed
before, and for, the experiment. The book is rich in many such examples. And
when it happens that unexpected molecules arise, the curious scientist is always
ready to foresee how they can be exploited to initiate new lines of research.

A fifth point is the importance of technology and instrumentation: huge pro-
gress has been made possible only because new equipment has been devised,
such as the STM and its multiple variants, or the squid and its miniaturized
evolutions. The race towards single-molecule properties, as opposed to the
study of statistical ensembles, is now a strong motivation of research in all
the fields covered in the book, as shown in the last chapter.
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Such integrated content was conceived for an audience of students in chem-
istry, physics, and materials sciences, having a preliminary basic knowledge
of the theory of symmetry and quantum mechanics. We taught most of the
content of the book at undergraduate and graduate levels in chemistry and
materials science courses in various places, French or foreign (European,
Asian, and American) universities or French ‘grandes écoles’. Our goal is to
provide fundamental knowledge and, above all, a solid understanding not only
to beginners to boost their curiosity and creativity to design and obtain new
materials with exciting new electronic properties, but also to already special-
ized researchers or engineers, to enlarge their vision to complementary fields
and favour cross-fertilizing of other disciplines. We would always appreciate
remarks and suggestions from our readers.** Every effort has been made to con-

tact the holders of copyright in materials
reproduced in this book. Any omissions
will be rectified in future printings if
notice is given to the publisher.

The content of our lectures varied systematically from one year to another
to follow scientific trends and to integrate remarks and suggestions from our
students and from our colleagues in neighbouring specialities. We are grateful
to them. We also benefited from passionate discussions with coworkers and
colleagues in our respective laboratories: Centre d’Elaboration de Matériaux
et d’Etudes Structurales, CEMES (J.-P.L.) at Université Paul Sabatier in
Toulouse, and Chimie Inorganique et Matériaux Moléculaires, CIM2 (M.V.) at
Université Pierre et Marie Curie in Paris—both units of the Centre National de
la Recherche Scientifique, the French institution supporting scientific research.
Our colleagues will recognize their work, and fingerprints, here and there.
Many thanks!

Thus, starting from our initial project, such exchanges and experiences trans-
formed the book and its integrated content from principles to applications,
resulting in a volume which, it appears, is unique in the literature at this level.

Our final word is directed to our families: our wives, Marie-Hélène and
Jacqueline, and our daughters, sons, and grand-children, who endured, and
sometimes accepted with incredulous smiles, the too long gestation of this
volume.

Jean-Pierre Launay
Michel Verdaguer

Cordon, Escalquens, Palaiseau, Paris, Toulouse
September 2013
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Basic concepts

1
In this chapter we establish, in a progressive way, how to describe the quantum
properties of the constituents of matter—atoms, molecules, and extended
molecular solids—with an emphasis on the behaviour of electrons, starting
from first principles. Since the achievements of quantum mechanics, this step
is in principle feasible. In this manner, Paul A. M. Dirac wrote: ‘The funda-
mental physical laws necessary to the mathematical theory of most parts of the
physics and the whole of chemistry are completely known, and the difficulty is
only that the exact applications of these laws lead to equations too complex to
be solved exactly.’

It is true that the equation named after Schrödinger, under its stationary (1.1)
or time-dependent (1.2) forms

H�n = En�n (1.1)

ih
∂�

∂t
= Ĥ� (1.2)

allows theoretical determination of the eigenwavefunctions �n and the
eigenenergies En which define the system and its change with time. In these
formulae, H is an operator which operates on the wavefunction �, i is the
complex number i2 = –1, h is the Planck constant, and the ∂

∂ t operator is the
partial derivative as a function of time t.

The ‘only’ difficulty, following Dirac, is that the operator must take
into account all the interactions—in particular, the interactions between
electrons—but we are unable to write them analytically in an exact way, two
thirds of a century after Dirac. To solve the problem, it is necessary to use some
approximations. It will be the purpose of the first part of this book to introduce
some models useful to the description of the structure and the electronic struc-
ture of molecules and solids. These models will then be used to forecast the
properties.

It is then possible to understand that the approximations realized, and the
predictions made from them, should be compared in a systematic way to
the experiments, source, and criterion of any model: the agreement model-
forecasting experiment leads us to ascertain the validity of the model and
presents the possibility of its safe use in a chosen experimental domain.
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Conversely, the absence of agreement indicates the limit of the model and leads
us to seek a more elaborate or different model for fitting the experiment and
allowing us to foresee the properties in a new experimental field. This intel-
lectual game is extremely fruitful. It is more and more practised by chemists,
especially in materials science. References [1.1–1.5] will help the reader to
become familiar with the most useful quantum models.

It is also easily understandable that the chemical reactivity of macroscopic
sets of molecules and ions is extremely complex, as are the laws to obtain
crystals with long-range order relying on very weak intermolecular interac-
tions. Indeed, wide activity domains exist where systematic synthetic attempts
are necessary to establish experimentally the correlations between structure
and properties. From these attempts there sometimes arise structures (and
properties) which cannot be a priori predicted or imagined. Far from being
contradictory to a rational approach relying on the use of theoretical models,
these endeavours complete and prepare more subtle new models and provide
more exciting discoveries for tomorrow.

In some cases, some of these activities are styled art rather than science. The
reader should not consider this comparison as pejorative, but rather, as a way
to bring closer and to celebrate two major endeavours of human creativity.

1.1 Electron: an old, complex, and exciting story
The electron is the central theme of this book. Its name derives from a
Greek word, êlektron—amber—the electric properties of which are at the ori-
gin of the discovery of electricity (when you rub a piece of amber with some
woven material, you produce electrons and positive charges which can be
studied). It is known today that the electron can be described as a particle,
having a very small size, an elementary mass (me = 9.109534 × 10–31 kg), a
negative elementary charge (e = –1.6021892 × 10–19 Coulomb), and a spin
(s = 1/2), associated with the elementary magnetic moment of the electron
(μe = 9.284832 × 10–24 J T–1). The g Landé factor of the free electron is
g = 2 μe/μB = 2.0023193134. μB is the Bohr magneton (see Chapter 2,
Section 2.2.2). The electron is stable, and its lifetime is estimated to be
2 × 1022 years—longer than the age of the Universe, 1–2 × 1010 years. As an
elementary particle it is accompanied by its antiparticle, the positron, with
the same mass but opposite charge. In atoms and molecules, the electron is
moving with a speed v around the nuclei. Its kinetic energy is K = mv2/2,
its kinetic momentum is p = mv, and the corresponding associated wave has
a wavelength λ = h/p. It can indeed be described as a wave—a property of
quantum objects exhibiting wave/corpuscle duality. This property is currently
used in electron microscopes, which frequently reveal important aspects of the
structure of matter. The wavefunction �(x,y,z,t) associated with the electron
allows us to describe all its properties. The square of the wavefunction �2 rep-
resents the probability density in an elementary volume dv = dx dy dz. These
basic features of the electron are presented and discussed in many books of
quantum mechanics, to which the reader is referred [1.1–1.4], and we shall use
them when appropriate throughout this book. When accelerated, the electron
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emits an electromagnetic radiation. When its speed is relativistic, the emit-
ted radiation is called ‘synchrotron radiation’—white light from infrared to
X-rays—a light source unsurpassed for the spectroscopic study of matter. The
use of the properties of the electron, in the solid state and in devices, gave
rise to a particularly active branch of physics and technology: electronics
(electron-ics).

Today, therefore, the electron maintains an enviable scientific and social
status, though this status has been obtained very slowly. It is difficult to speak
of the ‘discovery’ of the electron, as the recognition of it as an elementary
particle covers practically more than half of a century: characterization of the
laws of electrolysis by Faraday (1833), implying ions; development of atomic
theory, in which a mole of ions consists of the same number NA of ions bearing
an elementary charge; evaluation of the Avogadro constant NA, particularly by
Johann Loschmidt and George J. Stoney (1870–74)—the latter giving, in 1891,
the name ‘electron’ to the elementary charge; recognition by Jean Perrin, in
1895, that cathodic rays are made of negative charges; determination of the
charge/mass ratio, e/m, in 1897, by Joseph J. Thomson for the particles of
cathodic rays, and by Pieter Zeeman for the ‘oscillating ion’; evaluation of
the elementary charge, in 1901, by Max Planck (from the Boltzmann constant
kB, the gas constant R = kB NA, the Avogadro constant NA, and the Faraday
F = NA e . . .); identification, at the same time, by Pierre and Marie Curie of the
negative charge of the radioactive β rays for which Henri Becquerel measured
the same e/m ratio than for the cathodic rays; and precise measurement of the
charge e by Robert Andrews Millikan in 1909, which allows good determina-
tion of the Avogadro constant and of the mass of the electron. The history of the
electron becomes, at this point, that of atomic quantum theory, with the mod-
els of Lorentz–Thomson, the planetary model of Ernst Rutherford where the
electrons are at the periphery, the Bohr atom which uses the quantum model of
Max Planck and Albert Einstein, the full development of quantum mechanics
by Louis De Broglie, Erwin Schrödinger, Werner Heisenberg, Ernest Jordan,
and Paul A. M. Dirac during 1924–25, and the introduction of the wavefunc-
tion � quantified by the three quantum numbers n, l, and m. The parallel work
of Alfred Landé, Wolfgang Pauli, George Uhlenbeck, and Samuel Goudsmit
led to the introduction of a supplementary degree of freedom for the electron
and the introduction of a fourth quantum number, the spin s, fully interpreted
by Dirac’s relativistic equation.

The history of the electron, its evidence under the form of cathodic rays,
the determination of its corpuscular properties (mass, charge, spin), and its
description through the concepts of quantum and undulatory physics, were
therefore at the centre of progress of chemistry and physics at the end of the
nineteenth century and the beginning of the twentieth century, and one cannot
overestimate their importance. It is extraordinary that the periodic table of the
elements, fully based today on the atomic electronic structure and therefore on
the existence of the electrons in atoms, was proposed by Dimitri Mendeleev in
1869, without previous knowledge of the existence of electrons!

We shall utilize only a small part of these extraordinary properties of
the electron—essentially those related to quantum behaviour in atomic and
molecular entities—and will proceed smoothly, step by step. The reader should
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realize that the description of the polyelectronic macroscopic world—atomic,
molecular, or in the solid state—implies different levels of sophistication.
We can summarize the various levels as follows: first, neglecting the interelec-
tronic repulsion, we can build a ‘one-electron world’, with atomic orbitals
(atoms), molecular orbitals (molecules), or crystal orbitals (solids). Filling
these orbitals with electrons, we reach electronic configurations. Second,
taking into account interelectronic repulsion, and starting from electronic con-
figurations, we obtain states (atomic, molecular, or solid). Third, by mixing the
states we reach configuration interaction states.

We begin our journey in the ‘one-electron world’ with the simplest species
involving electrons: atoms.

1.2 Electrons in atoms
Atoms are made of nucleons (neutrons and protons), building the nucleus,
and electrons running around the nucleus. Contrary to the macroscopic (or
classical) world surrounding us, the atomic world is quantized; it is a quantum
world.

1.2.1 The electron in the simplest atom: hydrogen

The hydrogen atom 1
1H is the simplest nuclide: a unique electron and a unique

proton in the nucleus. In a static, non-quantum system, the electron will be
attracted by and be precipitated on the nucleus and the atom will be over . . .
Instead, the hydrogen atom is stable. The electron’s energy is determined by
the Schrödinger eqn. (1.1), where the energy Hamiltonian H is simply the sum
of the kinetic energy K(1) and the potential energy U(1) of electron 1 in the
potential field created by the central proton (or Coulombic field).

This equation has solutions only for discrete values of the energy E, termed
eigenvalues, and the corresponding expressions of the wavefunctions are
termed eigenfunctions. The atomic wavefunctions will be represented by φ

in the whole book. Energies En are quantified by the quantum number n, the
‘principal’ quantum number (n ≥ 1):

En = − 2π2m e4Z2/ h2n2 (1.3)

where m is the electron mass at rest, e the electron charge, Z the atomic
number (= 1 for hydrogen), and h the Planck constant. The wavefunctions
φ are also quantized and depend on three quantum numbers: n, l, secondary
or orbital quantum number (0 ≤ l < n) and m, magnetic quantum number
(–l ≤ m ≤ +l): φn,l,m.

Table 1.1 gives simplified expressions of the wavefunctions φn,l,m of the
electron in the hydrogen atom, neglecting constant prefactors. They are
expressed in the coordinate system shown in Fig. 1.1, which allows to write
the wavefunction φ in a convenient way as the product of a radial function
R(r), depending only on r, the radial vector of the electron, and an angular
function Y(θ, ϕ) which depends only on the two angles θ et ϕ: φn,l,m = R(r) ×
Y(θ, ϕ). The Y functions are termed spherical harmonics. The wavefunctions
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Table 1.1 Simple analytical expressions and symmetry for some atomic s, p, and d orbitals. All quantities are given without
their constant prefactors.

n l m R(r) Y(θ,ϕ) Transformed Y Wavefunction φ Name Sym

1 0 0 exp(–ζr) 1 exp(–ζr) s g
2 1 0 r exp(–ζr) cos θ z exp(–ζr) pz u
2 1 –1 r exp(–ζr) sin θ exp(–iϕ) sin θ cos ϕ x exp(–ζr) px u
2 1 1 r exp(–ζr) sin θ exp(iϕ) sin θ sin ϕ y exp(–ζr) py u
3 2 0 r2 exp(–ζr) 3 cos2 θ – 1 (3z2 – r2) exp(–ζr) dz2 g
3 2 –1 r2 exp(–ζr) sin θ cos θ exp (–iϕ) sin θ cos θ cos ϕ xz exp(–ζr) dxz g
3 2 1 r2 exp(–ζr) sin θ cos θ exp (iϕ) sin θ cos θ sin ϕ yz exp(–ζr) dyz g
3 2 –2 r2 exp(–ζr) sin2 θ exp (–i2ϕ) sin2 θ (cos2 ϕ – sin2 ϕ) (x2 – y2) exp(–ζr) dx2–y2 g
3 2 2 r2 exp(–ζr) sin2 θ exp (i2ϕ) sin2 θ sin ϕ cos ϕ xy exp(–ζr) dxy g

φ defined for a one electron system are termed atomic orbitals. In the hydrogen
atom, an orbital is an exact solution of the Schrödinger equation.

The radial functions R(r) are of the form:

R(r) = Constant × f(2Zr/n a0) exp (−Zr/na0) (1.4)

where f(r) is a Laguerre polynomial and a0 the radius of the electron orbit in
Bohr’s model. Exact expressions of the atomic orbitals, including numerical
constants, Laguerre polynomials and radial functions can be found in the bib-
liography (see [1.1–1.2] for example). For computations, when the expressions
of orbitals are written as A rn–1 exp(–ζr), they are termed Slater-type orbitals.
Other approximate expressions can be used [1.1–1.2].

As can be seen in Table 1.1, the angular wavefunctions Y(θ,ϕ) emerging
from the calculation are generally complex quantities, as are the corresponding
wavefunctions. To represent geometrically the orbitals, one performs usually
unitary transformations generating real wavefunctions, which is a valid pro-
cedure if the energies are the same. Noting that the dependence versus ϕ is of
the form exp (imϕ), this is achieved by combining 2 by 2 the angular functions
Yl,m and Yl,–m: (

Yl,m + Yl,−m
)/

2 proportional to cos (mϕ) (1.5a)(
Yl,m − Yl,−m

)/
2i proportional to sin (mϕ) (1.5b)

r

x

y

z

M

θ

ϕ

m Fig. 1.1
Cartesian (x, y, z) and spherical (r, θ, ϕ)
coordinates.
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Combining these transformed functions (column 6 of Table 1.1) with the radial
function R(r) gives expressions in which one recognizes Cartesian coordinates
(column 7), and this is the basis of orbital denomination (for example, x leads
to the px denomination, zx to dzx, and so on).

In most of this book we will use these transformed (real) orbitals. However,
in some cases we have to come back to the original complex orbitals, because
they correspond to defined values of the m quantum number.

For the sake of clarity, the representation of the orbitals can be radial (see
Section 1.3.6 for 3d orbitals) or angular (Fig. 1.2). In the figure, the lines are
drawn for a constant value of the wavefunction (equi-φ curves). The positive
values of the wavefunction are shown with a + sign or in shaded grey, whereas
the negative values are shown by a – sign or white colour. This convention will
be applied in the whole book.

The mathematical expressions and the graphical representations of the orbit-
als show the existence of nodal surfaces (geometrical locus of the points
where φn,l,m equals zero). The total number of nodal surfaces is n – 1 (n if
one includes the one always present at infinity). The number of nodal sur-
faces in radial wavefunction R(r) is l (the secondary quantum number), and
the number of nodal surfaces in the angular wavefunction Y(θ,ϕ) is therefore
n – 1 – l. An important property of the atomic orbitals is their symmetry.
An atom itself has important symmetry properties. In a rigorous way, in
terms of group theory, one says that the eigenfunctions φn,l,m are basis func-
tions for the irreducible representation D(l) of the three-dimensional group
O+(3) (see [1.2]). More simply, they are often named after their sym-
metry properties—in particular, in the inversion operation (change x, y, z in
–x, –y, –z), associated with the inversion centre at the nucleus: the s orbitals are
spherical and symmetric in the inversion operation (φs(x, y, z) = φs(–x, –y, –z))
or even (gerade in German). So s orbitals are said to be gerade (or g). p orbit-
als are ungerade, or u (φp(x, y, z) = –φp(–x, –y, –z)). Then d orbitals are g, f
orbitals are u, and so on. Such labels are shown in the last column of Table 1.1.
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Schematic angular representation of
atomic orbitals: a) s and p orbitals; b) d
orbitals; c) usual sign conventions.
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Another important property of an orbital is its energy (see eqn. (1.3)). The
energy of the orbital increases with n, or with the number of nodal surfaces of
its wavefunction. The hydrogen atom is said to be in the ground state (the more
stable state) when the electron is located in φ1,0,0, the orbital with the lowest
energy (E1) or 1s orbital. The electronic configuration is then written (1s)1. The
energy of the ground state of the hydrogen atom is found to be E1 = –21.8 10–19

J or –13.6 eV. It is convenient to use electron-volts instead of Joules to avoid
manipulating too small numbers, such as –21.8 10–19. E1 = –13.6 eV corres-
ponds to the ionization potential in volts of the hydrogen atom (to obtain one
proton H+ and send the electron to infinity).

A final point concerns the spin of the electron. The hydrogen atom is para-
magnetic. The spin of the electron is s = 1/2, with two projections (mS = ± 1/2,
‘up’, often called α, and ‘down’ or β). The spin multiplicity is defined as
2s + 1 (here = 2; that is, a spin doublet). It is possible then to introduce the
concept of spin–orbital, as the product of the orbital part φn,l,m and the spin
part σs, where σs can take the values α or β).

χspin−orbital = φn,l,m × σs (1.6)

Beyond our simple presentation of quantum numbers l and s, the reader should
remember that quantum mechanics defines them as angular momentum and
vectorial quantities, and manipulate them with quantum operators. We shall
return to this point in Sections 1.5 and 2.2.1.

1.2.2 The hydrogenoid ion

A hydrogenoïd ion is an atomic entity with one electron and Z protons at the
nucleus. The solutions of the Schrödinger equation are obtained in the same
way as for the hydrogen atom. The number of protons Z is introduced in the
expressions of the energies and of the wavefunctions, as shown in Table 1.1.
and eqn. (1.3).

Two important consequences of the increase of the number of protons Z can
be noted: (i) the stabilization of a given electronic energy level by a factor
Z2; the electron is ‘going down’ in energy (for example, for He+, Z = 2,
E1 = –54.4 eV); (ii) the contraction of the radial part of the wavefunction by a
factor exp(–Z/n); the electron is more attracted by the nucleus and becomes
closer to the nucleus. As in the hydrogen atom, the solutions are obtained
exactly. The spin status is the same.

1.2.3 Helium and other atoms

Helium is the second element of the periodic table (Z = 2), with four nuc-
leons, two protons, and two neutrons, and an electronic surrounding of two
electrons: 4

2He
One electron more, and everything is changed! The mathematical equations

for the energies and the wavefunctions are no more exactly solvable! The
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reason for this is the repulsion energy between two electrons, e2/r12 in atomic
units, which leads to the Hamiltonian:

H = h(1) + h(2) + e2/r12 = K(1) + U(1) + K(2) + U(2) + e2/r12

(1.7)

h(1) is a one-electron Hamiltonian related to electron 1 only; h(2) deals only
with electron 2. Both are the sum of a kinetic energy term K and a potential
energy term U related to electron i: h(i) = K(i) + U(i). It is now impossible
to determine the exact solutions, since the distance r12 between the two elec-
trons depends on both electron coordinates, and furthermore, the electrons
are indistinguishable. The problem can be solved only if an approximation
is introduced.

A first idea would be to ignore the e2/r12 term. Thus if the electrons had
no interactions, the total energy would be twice the energy of an hydrogenoïd
system with Z = 2—that is, 108.8 eV—while the true value is –79 eV [1.3],
showing a quite large difference! This approximation is clearly inapplicable.

A better approximation is to consider that the two-electron term can be
replaced by the sum of electronic terms V(i): e2/r12 ≈ V(1) + V(2). The
Hamiltonian can then be written as an effective Hamiltonian: heff(i) = K(i) +
U(i) + V(i). The total Hamiltonian is then the sum of two effective one-electron
Hamiltonians:

H = �1,2 [K(i) + U(i) + V(i)] = �1,2 heff(i) = heff (1) + heff(2) (1.8)

The Schrödinger equation can then be solved. The previous approximation is
termed the ‘one-electron approximation’. The wavefunctions obtained in this
frame are also termed orbitals, and in this case an orbital is a solution of the
Schrödinger equation in the one-electron approximation.

We use here for the first but not the last time the concept of ‘effective’
Hamiltonian. We need to define it. An effective Hamiltonian is any oper-
ator whose energy spectrum reproduces that of the Hamiltonian operator for
the state of interest [1.6]. ‘Effective’ is also used for physical quantities.
An effective quantity is a fictitious physical quantity defined from an effective
Hamiltonian and which is substituted to the fundamental one. It is most often
defined empirically to fit experimental data effectively. We shall find many of
them in this book (effective atomic number, quantum number, spin, g-factor,
resonance integral β, and so on).

Relying on experimental results, chemists and physicists have defined
approximations to express wavefunctions and energies of the electrons in the
many-electron atom in a semi-empirical manner. The better known is the one
by Slater which introduces an effective atomic number Zeff, which is the atomic
number Z diminished by a ‘screening constant’, σ. Zeff is determined by the so-
called ‘Slater rules’ where the σi for each electron depends on the electronic
configuration and has semi-empirical values determined from experiments.

Zeff = Z − σ = Z − �i σi (1.9)

An effective quantum number neff is sometimes defined and used, so that when
replacing Z by Zeff and n par neff in the expressions in Table 1.1. and eqn. (1.3),
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wavefunctions and energies can be obtained in this one-electron approxima-
tion. A simple electrostatic image allows us to understand why σ and Zeff can
represent the interelectronic repulsion: an external (peripheral) electron moves
in the electric potential created by Z protons, weakened or ‘screened’ by all
the other electrons moving between the nucleus and the external electron.

The second electron in the helium atom occupies the same orbital 1s as
the first one. The electronic configuration is (1s)2. The situation follows the
so-called ‘Aufbau principle’, or principle of stability: in the ground state
the electrons occupy the lowest-energy orbitals. Regarding the total elec-
tronic energy of the atom, a more complete discussion of this problem is
deferred to Section 1.5. (see also [1.2, 1.3]). Modern treatments of electron–
electron repulsion utilize orbitals which are corrected from the average effect
of other electrons. But the total electronic energy is no longer the sum of the
individual electron energies. We nevertheless continue with the simple one-
electron orbital picture as a starting point, and will introduce improvements
and refinements later in the book.

The last comment concerns the spin and the magnetic properties. The helium
atom is diamagnetic: the spins of the two electrons are opposite. If one is α,
the second is β. This is our first encounter with an electron pair. Furthermore,
the 1s orbital—as any orbital, atomic or molecular—can accommodate only
two electrons. One says also that it is ‘full’ with two electrons. The situ-
ation is described by Pauli’s principle [1.1–1.4], which states in its simplest
form that ‘two electrons cannot have the same four quantum numbers’ (a
more sophisticated and strictly equivalent statement is that ‘the total polyelec-
tronic wavefunction is antisymmetric—changes its sign—in the exchange of
two electrons’). This means that

� (1, 2, 3, . . . , i, j, . . . , N) = −� (1, 2, 3, . . . , j, i, . . . , N) (1.10)

We shall use this formulation in Section 1.5, but we can pause a while on
this important point to understand better the interaction between electrons:
since an atomic orbital is defined by three quantum numbers n, l, and m, the
first electron described by the orbital can have a spin quantum number mS =
(+ or –) 1/2. Instead, the spin of the second electron must have the opposite
mS = (– or +) 1/2. The spin configuration is αβ or βα. Pauli’s principle is
called an exclusion principle for that reason: it excludes from a given orbital
electrons which have the same spin quantum number as the first electron. This
is a very strong exclusion law. It is the basis of the formation of the fam-
ous ‘electron pair’ in an orbital. The two electrons have antiparallel magnetic
moments so that they couple to reach a total spin of the atom S = 0 (that is,
a spin singlet, 2S+1 = 1, MS = 0). The electron pair is diamagnetic, which is
the basis of the diamagnetism of most molecular compounds. A rigorous way
to determine S and MS related to the atom is presented in Section 2.4.1.1.

In the lithium atom, Z = 3, 3Li, the third electron occupies the 2s orbital
just above the ‘full’ 1s. The electronic configuration is (1s)2(2s)1. The atom
is paramagnetic (S = 1/2). And so on for other elements . . . We shall leave
the ‘filling’ of atomic energy levels in the periodic table after a brief look at
another fundamental question of interelectronic interaction. After the boron,
Z = 5, 5B, with an electronic configuration (1s)2(2s)2(2p1)1, it is well known
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that the electronic configuration of carbon (Z = 6, 6C) is (1s)2(2s)2(2p)2 or
(1s)2(2s)2(2p1)1(2p2)1; the first p electron occupies orbital 2p1 and the second
p electron, 2, occupies a second p orbital (2p2, same energy as 2p1), with its
magnetic moment parallel to the one of electron 1. The atom is paramagnetic.
The so-called ‘Hund’s rule’ is followed: the ground state is the highest spin
multiplicity state. The coupling of the two spins 1/2 gives rise to a spin S = 1 of
the atom (a spin triplet, 2S + 1 = 3, MS = 0, ± 1). It is important to realize
that ‘Hund’s rule’ is due to electron repulsion and more precisely to the two-
electron exchange integral k—defined in eqn. (1.58b)—which stabilizes the
triplet state compared to the ground state, as we shall see in Section 1.5. In the
p1(2) p2(1) configuration, electrons 1 and 2 have been exchanged compared
to p1(1) p2(2). We shall find once more the exchange integral k on our way
to ferromagnetic interactions (spins with parallel magnetic moments) when
studying the case of two electrons on two centres in orthogonal orbitals having
the same energy (see Chapter 2). The reader should consult [1.1–1.4] for more
rigorous treatments of the previous presentation.

We can now deal with the next level of quantum organization of matter,
which is central in this book: molecules.

1.3 Electrons in molecules
Molecules are built from atoms. One of the main achievements of quantum
theory, after the understanding of atomic structure, was the explanation of the
chemical bonding between atoms in the molecules. As for the atoms, other
models of bonding existed before the quantum description. The most known—
and the most popular until now—is the Lewis model. It is based on the use
of the valence electrons of atoms, which combine in pairs to give bonding
pairs when the electrons are shared between the atoms, or free pairs when
they lie on one of the atoms. The simplest homodiatomic molecule, H2, is
then described by the simple schemes H••H or H–H (one bonding pair), the
dioxygen molecule by <O=O> (two bonding pairs and two free doublets on
each oxygen), the dinitrogen by |N≡N| (three bonding pairs, one free pair on
each nitrogen). For a given molecule, several bonding schemes are possible,
called mesomeric formulae. Useful rules are available for choosing the most
valuable bonding schemes to describe the molecule. In particular, the ‘octet
rule’ foresees that a formula which corresponds to eight electrons surrounding
each atom in the molecule (that is, completing the valence shell as an octet) is
particularly stable—at least for atoms of the second row. The electron count is
made by summing all the electrons in bonding pairs and free doublets around
the given atom.

Another very appealing application of the Lewis model of localized bonds
is the valence shell electronic pair repulsion model (VSEPR), designed by
Ronald Gillespie, which is used to foresee the geometry of simple polyatomic
molecules: the main parameter which imposes the geometry of a molecule
is the repulsion between the pairs of valence electrons in the molecule.
A quantum development of the localized bond approach has been developed
with success by Walter Heitler and Fritz London or Linus Pauling, as a valence
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bond theory with recent impetus from Sason Shaik and co-workers. Evidently,
valence bond theory has been and is still very useful in organic chemistry.
Nevertheless, in the following sections we shall focus on the model developed
by Friedrich Hund and Robert Mulliken: the model of delocalized molecu-
lar orbitals, known as the theory of molecular orbitals—linear combination
of atomic orbitals (MO-LCAO). It provides a convenient one-electron model
to describe the electronic structure of the molecules, and comprises several
levels of sophistication, taking more or less into account the important prob-
lem of interelectronic repulsion, discussed in Section 1.5. In Sections 1.3 and
1.4 we avoid the insoluble problem of the interelectronic repulsion—when sev-
eral electrons are present—by using a one-electron ‘effective’ Hamiltonian,
implying implicitly the interelectronic problem.

1.3.1 Dihydrogen molecule, H2

The two atomic orbitals of the two hydrogen atoms 1 and 2 are termed φ1 and
φ2. In the following, we still use φ as the symbol for atomic orbitals and adopt
ψ for molecular orbitals (MOs). The chemical bond arises from the existence
of an overlap integral S between φ1 and φ2. We shall work in the frame of the
Born–Oppenheimer approximation; that is, the nuclei are fixed (since they are
heavier than the electrons, they are moving much more slowly).

The one-electron overlap integral S for φ1 and φ2 is computed over all space,
and can be expressed in two ways: a traditional one (using φ∗

i the conjugated
complex of φi; that is, if φi = a + i b, φ∗

i = a – i b, so that φ∗
i .φi = a2 + b2)

or the bra-ket notation introduced by Dirac, where <φi|= φ∗
i (bra) and

|φi> = φi (ket):

S12 = S = <φ1(1)|φ2(1)> =
∫ ∫ ∫

φ1
∗(1)φ2(1)dv (1.11)

In these expressions the subscripted index refers to atoms, while the num-
ber in parentheses refers to electrons. The molecular orbitals ψ are linear
combinations of φ1 and φ2:

ψ = c1φ1 + c2φ2 (1.12)

The coefficients ci are termed molecular orbital coefficients. The probability
density function ψ2, associated with ψ, integrated over the whole space, is:

<ψ|ψ> = c2
1<φ1|φ1> + c2

2<φ2|φ2> + 2 c1c2<φ1|φ2>

= c2
1 + c2

2 + 2 c1c2S12
(1.13)

since S11 = <φ1|φ1> = S22 = <φ2|φ2> = 1 and S12 = S = <φ1|φ2>.
To determine the wavefunctions and their energies, two methods are avail-

able: the use of a secular determinant, or a direct calculation using the
symmetry of the system (atoms 1 and 2 are equivalent). In the direct cal-
culation, symmetry implies that atoms 1 and 2 bear the same electronic
density so that c1 = ± c2. ψ is normalized to unity. The coefficients are thus
c± = ± 1/

√
2(1 ± S). The two molecular orbitals are then:

ψ+ = ψbonding =

√
1

2(1 + S)
(φ1 + φ2) (1.14a)
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ψ− = ψantibonding =

√
1

2(1 − S)
(φ1 − φ2) (1.14b)

In the frame of Hückel theory, the energies E± are determined with the help of
the effective Hamiltonian Heff, written as:

Heff = Heff (1) + Heff (2) (1.15)

Two one-electron integrals are defined, the Coulomb integral α and the
resonance integral β:

α = <φ1(1)
∣∣Heff(1)

∣∣φ1(1)> = <φ2(2)
∣∣Heff(2)

∣∣φ2(2)> (1.16)

β = <φ1(1)
∣∣Heff(1)

∣∣φ2(1)> = <φ2(2)
∣∣Heff(2)

∣∣φ1(2)> (1.17)

The α integral is negative, meaning that the atom itself is stable. The β integral
is also negative here (but see in Section 1.3.3 the cases where β is >0).

Then are determined the energy values E± of bonding and antibonding MOs:

E± = <ψ±
∣∣Heff

∣∣ψ±>/<ψ± |ψ±> (1.18)

That is:

E + = Ebonding = (α + β)

1 + S
≈ (α + β) (1.19a)

E− = Eantibonding = (α − β)

1 − S
≈ (α − β) (1.19b)

In eqns. (1.19), the first expression does not neglect the overlap integral S com-
pared to 1, whereas the last expression is written when neglecting S compared
to 1.

On the other hand, when using the secular determinant method, based on the
variation method (define the coefficients ci which minimize the energy), one
obtains the simultaneous equations [1.3]:

(H11 − EiS11) c1i + (H12 − EiS12) c2i = 0 (1.20a)

(H21 − EiS21) c1i + (H22 − EiS22) c2i = 0 (1.20b)

where Hij = <φi|Heff| φj> and Sij = <φi| φj>.
The solutions are found when vanishing the determinant below (neglecting

or not neglecting S, or S12, compared to 1):∣∣∣∣∣H11 − E H12

H21 H22 − E

∣∣∣∣∣ = 0

∣∣∣∣∣H11 − E H12 − ES12

H21 − ES21 H22 − E

∣∣∣∣∣ = 0

(a) Determinant neglecting S (b) Determinant with S

(1.21)

The solutions for the energies Ei are given by eqn. (1.22), obtained by equating
the product of the extreme and the middle terms:

(H11 − E) (H22 − E) − (H12 − ES12)
2 = 0 (1.22)
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Fig. 1.3
Molecular orbitals energy diagrams of
H2: (a) neglecting the overlap integral S
compared to 1; (b) without neglecting S.

For the hydrogen molecule the energies are easily computed, since initial orbit-
als are degenerate (that is, have the same energy), H11 = H22 = α; H12 =
H21 = β and S12 = S21 = S. One finds, of course, the same results as in the
direct calculation (see eqns. (1.19)).

Figure 1.3 displays the energy diagram of the molecular orbitals of H2

in the two hypotheses (neglecting or not neglecting S). One observes that
when the overlap is not neglected, the antibonding MO is more destabilized
(by –β/(1 – S)) than the bonding MO is stabilized (by β/(1 + S)); the MO coef-
ficients of φ1 and φ2 are more important in ψ– (ψantibonding, 1√

2(1−S)
) than in

ψ+ (ψbonding, 1√
2(1+S)

).
The ground state of the dihydrogen molecule corresponds to the occupation

of the bonding orbital by the two electrons.

ψ+ = ψbonding =
√

1

2(1 + S)
(φ1 + φ2) (1.23)

The total wavefunction �+ is the product of the wavefunctions (1.23) written
for electrons 1 and 2, which leads to:

�+ = �bonding = [φ1(1) + φ2(1)][φ1(2) + φ2(2)]/2(1 + S)

= {[φ1(1)φ1(2) + φ2(1)φ2(2)] + [φ1(1)φ2(2)

+ φ1(2)φ2(1)]}/2(1 + S)

(1.24)

We note that the wavefunction �bonding is the sum of four terms with equal
weights. The first two correspond to an electron transfer between the two atoms
with two electrons in the same orbital φ1 or φ2. For the last two terms, the
electrons remain in their orbitals or exchange their positions. The first two are
termed charge transfer terms or ionic terms. They correspond to a delocaliza-
tion of the electron of one atom to the other. We shall relate this expression to
the valence bond one in Section 1.5, and in Chapters 2 and 3 we shall comment
on its important meaning for physical properties.

How many bonds? Bond order
It is convenient to know how many ‘bonds’ are present between two atoms in a
molecule. The number of bonds or bond order or bond index ω is defined as the
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difference between the number of bonding electrons Nbonding and the number
of antibonding electrons Nantibonding divided by two, since two electrons are
necessary to build a bond:

ω = Nbonding − Nantibonding

2
(1.25)

For the dihydrogen molecule, ω = (2 – 0)/2 = 1. Since the bond is σ type, it can
be said that in dihydrogen there is one σ bond (electronic configuration 1σ2).

Where stand the electrons? Population analysis
It is important to know ‘where the electrons are’ in a molecule: how many are
on centre 1? . . . on centre 2? How many are shared between 1 and 2? To answer
these questions, quantum chemists perform a ‘population analysis’.

If we take the general formulation of the orbital ψ in eqn. (1.12), ψ = c1 φ1 +
c2 φ2, then the distribution of one electron in this orbital is given by eqn. 1.13
(with <ψ|ψ> = 1), where c2

1 is related to centre 1, c2
2 is related to centre 2,

and 2 c1 c2 S12 is a quantity associated with the interaction, termed the overlap
population. If one wants to distribute the electron density on the two centres
only, it is necessary to split the overlap population in two. Mulliken proposed
to share equally between the two centres so that the electron density on centre
1 is c2

1 + c1 c2 S12, and on centre 2, c2
2 + c1 c2 S12. This is known as Mulliken

population analysis.
To determine the electronic density on each atom of the molecule, it is

simple to sum the contributions of all the atomic orbitals over all the molecular
orbitals. For H2 we can go further, analysing the overlap population in ψ1 and
ψ2 by taking into account the value of the coefficients c± = ± 1/

√
2(1 ± S)

in <ψ|ψ> = c2
1 + c2

2 + 2 c1 c2 S12. In ψ+ the overlap population, found as
S/(1 + S), is positive, and the orbital is bonding. In ψ– the overlap population
[– S/(1 – S)] is negative, and the orbital is antibonding.

Symmetry
A final comment deals with symmetry. The symmetries of the molecular orbit-
als are related to the symmetry of the molecule itself; that is, the one of the
skeleton of the atomic nuclei. The molecular symmetry is described in the
frame of the theory of symmetry or group theory. It relies on point group
symmetry, which is the set of the symmetry operations (rotation θ, reflection
σ, inversion i, and so on) around the symmetry elements (rotation axis Cθ/2π,
reflection or mirror plane σ, inversion centre i, and so on) transforming the
molecule in itself, without macroscopic changes. A group is a mathematical
being with perfectly defined properties, exactly adapted to the set of symmetry
operations in a molecule or in a crystal. A point group is a group leaving at
least one point of the molecule unchanged. Instead, a space group, based on
operations on the crystal (translations of the molecules for example) leaves
no point of the crystal unchanged. We consider here that the reader masters
the necessary knowledge about symmetry theory. Many textbooks about sym-
metry are available at various levels of mathematical sophistication (see, for
example, [1.7] and [1.8]). The systematic use of symmetry in the description
of the electronic structure of solids can be found in chapter 2 of [1.9b]—a
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companion book of the present volume. For the dihydrogen molecule the main
geometry features are gathered in Fig. 1.4.

•

σh

C2

C

σv

i zH1 H2

M

Fig 1.4
Symmetry elements for the dihydrogen
molecule, H2.

The symmetry elements are the internuclear axis z (rotation axis C∞, termed
vertical), a reflection plane σh (termed horizontal), perpendicular to the z axis
at M, the centre of the H1–H2 segment, an infinity of reflection planes σv con-
taining the vertical axis, and an infinity of rotation axes C2 perpendicular to
the z axis at M and the inversion centre i at M. The symmetry operations, leav-
ing the molecule H1–H2 unchanged, are the identity operation E (no change at
all), an infinity of � rotations, whatever �, around the z axis; the rotation axis
is termed C∞; an infinity of reflections through the vertical reflection planes,
therefore termed ∞σv; one reflection through the horizontal plane, termed σh:
the reflection operation interchanges H1 and H2; an infinity of π rotations
(∞C2) around the rotation axes perpendicular to the z axis at M: the C2 opera-
tions interchange H1 and H2; inversion through the inversion centre, termed i:
the i operation interchanges H1 and H2. One of the most useful symmetry prop-
erties of the molecular orbitals of a molecule belonging to a given point group
is that the molecular orbitals build a basis for the irreducible representations
(RI) of the point group.

We summarize the symmetry properties of the wavefunctions of the dihydro-
gen molecule and related functions (x, y, z, x2 + y2, z2, ψ1 or ψ2) in Table 1.2:
horizontally, the symmetry operations, assembled by nature (classes), corres-
ponding to columns, and vertically the different objects corresponding to the
symmetry labels. At the intersection we write a character which condenses the
symmetry property of the object/function under the given symmetry operation:
+1 if the object is unique and unchanged, –1 if the object is unique and changes
it sign, 2 if the object is double (the pairs (x, y) or (xz, yz)) and unchanged,
and so on.

Each line characterizes a given type of symmetry, and is termed an irredu-
cible representation (IR) identified by a symmetry label: �+

g (A1g) (symmetric
in all the symmetry operations or fully symmetric in particular in the C∞ rota-
tion (� label), in the inversion – g label, and so on); �+

u (A1u) (antisymmetric
in the inversion – u label . . .), �g(E1g), doubly degenerate, �u(E1u), �g(E2g),
and so on. Completed with all the possible IRs, the table is termed a character
table.

As for the molecular orbitals of the dihydrogen molecule, we derive the
symmetry labels �+

g (A1g) for ψ1 and �+
u (A1u) for ψ2. Applied to molecular

orbitals, the symmetry labels are written as lower case subscripted symbols,
σ+

g and σ+
u , which are shown in Fig. 1.3a.

Table 1.2 Part of the character table of the D∞h point group.

D∞h E 2C�∞ . . . ∞σ v σh i ∞C2 . . .Objects/Functions

�+
g (A1g) 1 1 . . . 1 1 1 1 . . .x2 + y2, z2, ψ1 = 1sA + 1sB

�g(E1g) 2 2cos� . . . 1 0 2 0 . . .(xz, yz)
�g(E2g) 2 2cos2� . . . 0 2 2 1 . . .(x2 – y2, xy)
�+

u (A1u) 1 1 . . . 1 –1 –1 –1 . . .z, ψ2 = 1sA – 1sB

�u(E1u) 2 2cos� . . . 0 2 –2 0 . . .(x, y)
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We simply introduced here some definitions, notations, and the main results
about the physical quantities that we shall use later. Detailed demonstrations
and discussions are available in references [1.1–1.9], and character tables in
[1.8b].

1.3.2 AB molecules

Here we consider briefly a slightly more complex system: an AB heterodiat-
omic molecule (A 
= B), with an orbital φA, energy αA, on A and φB, energy
αB, on B with αA 
= αB (αA > αB). It is important, as many of the interesting
molecular systems are built from atoms of different nature.

φA and φB are two non-degenerate orbitals. Energies and wavefunctions
can be obtained by the secular equations (1.20), where H11 = αA, H22 = αB,
H12 = H21 = β, and S12 = S21 = S. Energies follow from

(αA − E)(αB − E) − (β − ES)2 = 0 (1.26a)

After some calculations and approximations we obtain

(b) E1 = αB − (β − αBS)2

αA − αB
(c) E2 = αA + (β − αAS)2

αA − αB
(1.26b,c)

These expressions are obtained under the assumption that |β| is << |αA – αB|,
which occurs if the orbitals have very different energies, or if their coupling is
small.

The molecular orbital coefficients can be computed from eqns. (1.20) and
(1.27). Neglecting terms greater than second order in t and S, one finds:

ψ1 = c1AφA + c1BφB ≈ tφA + (
1 − t S − t2/2

)
φB (1.27a)

ψ2 = c2AφA + c2BφB ≈
(

1 − t′S − t′2/2
)

φA + t′φB (1.27b)

with

t = β − αBS

αB − αA
and t′ = β − αAS

αA − αB
(1.27c)

t and t′ are termed the mixing coefficients, since the bonding MO ψ1 is
mainly built from φB with some mixing of φA governed by t, whereas the
antibonding MO ψ2 is centred mainly on φA with some mixing of φB gov-
erned by t′. Figure 1.5 displays the molecular orbital energy diagram (MOED)
and a scheme of the orbitals.

AB

E

αA

αB

E1

E2

ψ1

ψ2

A B

Fig. 1.5
Molecular orbitals energy diagram of an
AB diatomic molecule.

One can observe in eqns. (1.27) that the more important the energy dif-
ference αA – αB, the weaker are the mixing coefficients t and t′. Figure 1.6
illustrates qualitatively the change from a situation (a) where the electrons
are shared equally by A and B (αA = αB, same electron density on A and
B (electron— or charge—density is defined in Section 1.5.2); covalent bond-
ing A–B, left) to a situation almost ionic (c), with a strong electronic density
on the electronegative atom B—that is, a practically complete electron transfer
from A to B (αA >> αB; ionic bonding A+ B–)—through the intermediate case
(b) with a partial electron transfer (αA > αB; ionocovalent bonding A+δ – B–δ,
larger MOs coefficients in ψ2 than in ψ1). The previous inequalities are in line
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αA = αB
covalent

αA > αB
ionocovalent

αA >> αB
almost ionic

αC > αO
π orbitals in CO

E

A+B–A+δB–δAB A B A BB C CO OA(a) (b) (c) (d)

Fig. 1.6
Changes in molecular orbitals of an AB molecule with the relative energies of atomic orbitals.

with negative values of the orbitals’ energies. The different weights of A and
B atoms in molecular orbitals is important in HX molecules (X halogen) and
for π bonding in AB molecules such as CO or CN– (d).

The resonance integral β is not so easy to evaluate. An approximate
but explicit formula is given in the frame of extended Hückel framework
(Section 1.5.2.2).

1.3.3 Dioxygen molecule, O2

The dioxygen molecule is a widespread molecule, constituting 1/5 of the atmo-
sphere. It is the basis of all aerobic life and combustion reactions, and combines
with most of the known elements. It produces thermodynamically stable deriv-
atives through reactions with high activation energies (slow reactions), due to
its particular electronic structure, which therefore deserves particular atten-
tion. With the dioxygen molecule we arrive at a little more complex situation
to build the molecular energy diagram: on each oxygen atom, six valence elec-
trons are located in 2s, 2px, 2py, and 2pz atomic orbitals. We can forget the
1s core electrons, which have no significant role in the bonding scheme and
deal only with the 2s, 2p valence electrons. So we need to combine orbitals of
various symmetries and energies. The point group symmetry is D∞h, with an
inversion centre in the middle of the OA–OB segment. The 2s and 2pz are of σ

symmetry (rotational symmetry around the internuclear axis z, O–O), whereas
the px and py are of π symmetry (axis perpendicular to z axis). The 2s and
2p orbitals are far in energy (E2s = –33.86 eV; E2p = –17.19 eV). As a first
approximation we can neglect the s–p interaction and combine the 2s orbitals
together and the 2pz together. This is shown in Fig. 1.8 to obtain a bonding
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1σg and an antibonding 1σ ∗
u with 2s, and a bonding 2σg and antibonding 2σ ∗

u
with 2pz:

ψ(1σg) = |1σg >= 1σg = N(1σg) [2s(OA) + 2s(OB)] (1.28)

Here and in the following equations, N is a normalization constant.
A word about the notations used: 1σg means the first molecular orbital, in

order of increasing energy, built from valence electrons belonging to the σg

irreducible representation (IR) of point group symmetry D∞h: σ, rotational
symmetry around the z axis; g, gerade (symmetric in the inversion operation).
1σg is the in-phase (bonding) combination of the 2s(OA) and 2s(OB) orbitals.
The out-of-phase combination of the 2s(OA) and 2s(OB) orbitals lead to the
antibonding 1σ ∗

u (1σu means the first molecular orbital belonging to the σu IR;
* is used to point out the MO antibonding character):

ψ(1σu) = |1σu >= 1σ ∗
u = N(1σu) [2s(OA) − 2s(OB)] (1.29)

With the 2pz and the same notations, we get similarly:

ψ(2σg) = |2σg >= 2σg = N(2σg)
[
2pz(OA) − 2pz(OB)

]
(1.30)

ψ(2σu) = |2σ ∗
u >= 2σ ∗

u = N(2σu)
[
2pz(OA) + 2pz(OB)

]
(1.31)

Note an important difference with the MOs built from the previous s orbitals
and the H2 case (Section 1.3.1). When the coordinate system is the same for
the two atoms (see Fig. 1.7), the + sign of the 2pz(OA) orbital faces the – sign
of the 2pz(OB) one (Fig. 1.7b). Thus the overlap integral S is now negative,
and the resonance integral β is positive. Inspection of the molecular orbitals
and calculation of their energies (still given by eqn. like (1.19)) show that
[2pz(OA) – 2pz(OB)] is now the bonding combination and [2pz(OA) + 2pz(OB)]
the antibonding one. Figure 1.7 gathers different important cases.

z

y A
s

pz

py

S β

pz(A) +pz(B)

pz(A) –pz(B)

dz,y dzy(A) +dzy(B)

dzy(A) –dzy(B)

>0<0

>0 <0

>0 <0

>0<0

>0 <0

>0 <0

(a)

(b)

(c)

(d)

(e)

(f)

B

Fig. 1.7
Signs of overlap S and resonance integ-
ral β between different kinds of orbitals
centred on A and B in the coordinates
system shown. Cases (b) and (e) corres-
pond to negative S and positive β.
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1σu∗
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z
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y

1σg

1σu∗

2σg
pz

1πu x,y 

1πg
∗x,y

2σu∗

1πu

1πg∗

Symmetry

E

O–O OB MOs

Fig. 1.8
Schematic molecular orbitals energy dia-
gram of the dioxygen molecule: build-
ing, schemes, symmetry labels, and occu-
pancy of the MOs.

We are now in a position to comment on the building of π symmetry MOs in
Fig. 1.8: to get the two bonding MOs belonging to the πu IR, we combine in
phase the two 2px and the two 2py (Fig. 1.7d):

ψ(1πu(x)) = |1πu(x) >= 1πu(x) = N(1πu(x))
[
2px(OA) + 2px(OB)

]
(1.32)

ψ(1πu(y)) = |1πu(y) >= 1πu(y) = N(1πu(y))
[
2py(OA) + 2py(OB)

]
(1.33)

The notations are self-evident. As 2px and 2py are degenerate, so are the 1πu(x)
and 1πu(y) MOs:

ψ(1πu(x, y)) = |1πu(x, y)>= 1πu(x, y) = N(1πu(x, y))[2px,y(OA)+2px,y(OB)]
(1.34)

The out-of-phase combinations lead to:

ψ(1πg(x)∗) = |1πg(x)∗ >= 1πg(x)∗ = N(1πg(x))
[
2px(OA) − 2px(OB)

]
(1.35)

ψ(1πg(y)∗) = |1πg(y)∗ >= 1πg(y)∗ = N(1πg(y))
[
2py(OA) − 2py(OB)

]
(1.36)

ψ(1πg(x, y)∗) = |1πg(x, y)∗ > = 1πg(x, y)∗
= N(1πg(x, y))

[
2px,y(OA) − 2px,y(OB)

]
(1.37)

The relative energies of the 2σg and 1πu MOs and of the 2σ∗
u and 1π∗

g MOs
deserve some comment. Figure 1.8 shows that 2σg is below 1πu, whereas 2σ∗

u
is above 1π∗

g. In the absence of s–p interaction, this is a general situation:
everything being equal, for a given orbital, the σ interactions are stronger than
the π ones. Figure 1.9 illustrates this point and displays different possible inter-
actions (σ, π, δ) between s, p, and d orbitals, and a qualitative ranking of the σ,
π, and δ overlaps with the same distance between neighbours.

We can now establish and comment on the electronic structure of the dioxy-
gen molecule. To find it, we need to place the twelve valence electrons in the
MOs of Fig. 1.8, by using the basic principles of quantum chemistry. The first



20 Basic concepts

x
z

y

σ type π type

δ type

>>

σpp

σss

σdd

σps

σds

σdp

πpp

πdd

πdp

>
σpp πpp σdd πdd δdd

δdd

A B A B A B

Fig. 1.9
Types of orbital interaction ranked by
symmetry (top) and by overlap mag-
nitude (bottom).

four electrons are easily placed in 1σg and 1σu, thanks to the Aufbau prin-
ciple (the electrons occupy the more stable MOs). The resulting electronic
configuration (1σg)2(1σu)2 is not bonding. The next six electrons can be accom-
modated in the 2σg and the 1πu MOs, following the same principle. At this
stage, the electronic configuration is (1σg)2(1σ∗

u)2(2σg)2(1πux)2(1πuy)2. Two
electrons are left and two (1πgx*) and (1πgy*) degenerate MOs are available.
Like in the case of the carbon atom (see Section 1.2.3.), we use Hund’s rule
(and exchange integral k) and the more stable configuration corresponds to
the triplet state; the two electrons, with the same spin, occupy the two orbit-
als, which become half-occupied with a resulting molecular spin SO2= 1. The
MO-LCAO model leads directly to the experimental result: a dioxygen para-
magnetic molecule (contrary to the Lewis model). The electronic configuration
is then (1σg)2(1σ∗

u)2(2σg)2(1πux)2(1πuy)2(1πgx*)1(1πgy*)1.
The dioxygen molecule exemplifies how the electronic structure determines

magnetic properties, and in particular, how it is possible to force the rather
uncommon situation where two electrons adopt parallel spins. This situation
will be met with again in Section 1.5 and in Chapter 2 (‘magnetic’ orthogonal
orbitals). It is not simply a quantum peculiarity. The triplet ground state of the
dioxygen gives rise to many spin-forbidden reactions, which therefore presents
high activation energies, explaining why living organisms and human beings
are able to exist in a dioxygen atmosphere, even if they move around far above
the thermodynamically stable state.

Bond order
The number of bonds in the dioxygen molecule is obtained from eqn.
(1.25) and from the electronic configurations, with Nbonding = 8, [(1σg)2

(2σg)2 (1πux)2 (1πuy)2] and Nantibonding = 4, [(1σ∗
u)2(1πgx*)1(1πgy*)1]; that

is, (8 – 4)/ 2 = 2. It can be detailed for σ and π bonds: ωσ = (4 – 2)/2 = 1 σ

bond, and ωπ = (4 – 2)/2 = 1 π bond. This is consistent with the Lewis picture,
except that the paramagnetism is explained in a straightforward manner.
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1.3.4 Water molecule, H2O

The water molecule is one of the most common and most useful molecules on
Earth. The main constituent of the oceans, seas, and rivers, it is the supporting
medium of many biological systems, indispensable to life. Its acidobasic and
redox properties and its physical properties rely on its electronic structure, and
it will help us to take another step in the orbital description of matter and in
understanding the relations between electronic structure and properties.

Figure 1.10 presents the geometrical structure: the two hydrogen atoms are
bonded to the central oxygen atom (dOH = 95.7pm); the molecule is bent with
a H-O-H bond angle of 104.52◦. The z axis bisects the H-O-H angle, and the
x axis is perpendicular to the molecule plane. The point group symmetry is
C2v. To get the MOs of the molecule, it is convenient to use the symmetry of
the orbitals of valence electrons (Fig. 1.10). The valence orbitals are 1s(HA)
denoted 1sA, and 1s(HB) denoted 1sB, 2s(O), 2px(O), 2py(O), 2pz(O). The two
hydrogen atoms HA and HB are equivalent in the molecule, and the oxygen
is alone of its kind. The symmetry labels for the oxygen orbitals are found
directly in the character table of the C2v point group (Table 1.3).

HA HB

O
y

z

x

O

Atomic Orbitals Symmetry Orbitals

Point Group
C2v

O
a1

b2

O

O

1sA

1sB
1sA + 1sB

–1sA + 1sB

2px2s 2py 2pz

Oxygen atom

Hydrogen atoms

b1
a1 b2 a1

θ1

θ2
H

A

H
B

Fig. 1.10
Water molecule: symmetry of the valence
orbitals. Building symmetry orbitals from
atomic orbitals.

Table 1.3 Character table of the C2v point group.

C2v E C2 σv(xz) σv(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 –1 –1 xy
B1 1 –1 1 –1 x xz
B2 1 –1 –1 1 y yz
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Fig. 1.11
Water molecule: building molecular
orbitals from symmetry orbitals.

For the hydrogen atoms, each of the 1sA or 1sB considered alone is not a
basis for an irreducible representation of the group; but their combinations
θ± = 1sA ± 1sB are. The combinations adapted to the symmetry of the
molecules are termed symmetry orbitals (SO), and in this book these will be
termed θ. The symmetry labels of the basis orbitals are shown in Fig. 1.10.

We now need to find, for each irreducible representation, the appropriate
combinations of basis orbitals to get the MOs. Figure 1.11 displays how the
symmetry orbitals (SOs) can build the MOs: for symmetry b1 there is only
one atomic orbital (AO), which becomes one symmetry orbital (SO) and one
molecular orbital (MO): 1b1; for symmetry b2 there are two symmetry orbit-
als (2py and θ2), and their in-phase and out-of-phase combinations give two
molecular orbitals (MOs): 1b2, bonding, and 2b2

*, antibonding; for symmetry
a1 the three symmetry orbitals (2s, 2pz, and θ1) combine to give three molecular
orbitals (MOs): 1a1, strongly bonding, 2a1, slightly bonding, 3a1, antibond-
ing. This procedure emphasizes that molecular orbitals (MOs) can be built
from symmetry orbitals (SOs), themselves built from atomic orbitals. In other
words, molecular orbitals can be built by a stepwise method. Figure 1.12 dis-
plays the schematic molecular orbital energy diagram and the occupation of
the orbitals by the electrons.

The electronic configuration is (1a1)2(1b2)2(2a1)2(1b1)2. The last two occu-
pied orbitals (HOMO and HOMO-1) are 1b1 and 2a1 respectively, with two
electrons in each. Orbital 1b1 is a pure 2px orbital of the oxygen, non-bonding,
whereas the 2a1 orbital is slightly bonding (practically non-bonding), mainly
composed of 2s and 2pz oxygen orbitals with some admixture of the a1 sym-
metry orbital of hydrogen atoms θ1 = 1sA + 1sB. These two MOs are at
the origin of the important acidobasic properties of water. The two bonding
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Fig. 1.12
Water molecule: schematic molecular
orbitals energy diagram.

orbitals are 1a1 and 1b2, occupied by two electrons each. They ensure the
stability of the molecule.

The occupation of orbitals, with four bonding electrons and four non-
bonding electrons, has some relation with the traditional Lewis description
(two free doublets and two O-H bonds). However, in the MO-LCAO descrip-
tion, each bonding pair is delocalized on the whole molecule, and contributes
equally to the two OH bonds. Note that the MO method is the correct one
to deal with electron energies (in particular, photoelectron spectroscopy shows
that there are four different ionization potentials in H2O), and that MOs respect
the symmetry of the molecule, which is not the case for Lewis-type localized
orbitals.

1.3.5 Organic molecular systems

There is no particular reason to separate the orbital description of organic
molecules from others—inorganic ones. The same methods and rules apply
with the same conclusions: methane, CH4, is described using the same prin-
ciples as ammonia, NH3, or water, H2O. Nevertheless, organic chemistry
provides the quantum chemist with peculiar planar conjugated π systems, dis-
crete or extended, where it is possible to derive simple analytical expressions
of the energies and of the wavefunctions. This gives us the opportunity to make
a step further towards the one-electron orbital description of the solid.

Hückel theory
The ideas at the basis of the Erich Hückel’s theory are quite simple: in a planar
polyene molecule, the pπ orbitals are antisymmetric with respect to the plane
of the molecule. They do not mix with the σ orbitals framework and can be
studied separately. The parameterization is particularly simple, of the ‘all or
nothing’ type. Thus Coulomb energies for carbon atoms are taken as the same;
that is, Hii = α for all pπ basis orbitals. Resonance energies are considered
as identical between adjacent pπ orbitals; that is Hij = β, and are assumed to
be zero as soon as atoms are not linked directly. Finally, overlap integrals S
are neglected (S<<1). This simple form of Hückel theory is no longer used
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for organic molecules, except for pedagogical purposes, because it gives the
general trend in the shape and energies of orbitals during their progressive
construction. It will be seen in Sections 1.4 and 1.5 that it corresponds to the
‘tight-binding’ method used to describe solid-state systems.

A step further is provided by extended Hückel theory, dealing with all
valence electrons, in which the overlap Sij is no more neglected and the res-
onance energies Hij are approximated from overlap integrals. This method
is described in more detail in Section 1.5.2.2. Within the extended Hückel
method, one is no longer confined to planar molecules with σ/π separation,
and the reintroduction of orbital overlaps produces more realistic energies,
by strongly destabilizing antibonding orbitals. However, the method does not
treat explicitly electron–electron repulsion (it is indirectly and crudely taken
into account in the Hii parameters). Thus the total electronic energy is simply
the sum of the electron energies (which is not correct at all), and the triplet
and singlet states arising from the same configuration have equal energies.
Despite these defects, the extended Hückel method is the basis of a qualit-
ative description of orbitals and makes the link between intuitive arguments
(‘with the hands’) and sophisticated MO methods.

Qualitative approach of linear systems
The simplest π linear system is ethene, C2H4, a planar symmetric molecule,
with an internuclear C–C z axis. The π system consists of two pπ orbitals
with axes perpendicular to the plane (let us say 2py), both half-occupied by
one electron. The expressions of the wavefunctions (eqns. (1.14)) and energies
(eqns. (1.19)) derived from the same determinant (eqn. (1.21)) (neglecting S)
are rigorously the same as for the dihydrogen molecule (see Section 1.3.1),
mutatis mutandis; that is, replacing the 1s σ hydrogen orbital by the 2py π

orbitals. The resulting MOs are bonding (antisymmetric in the inversion oper-
ation, u) and antibonding (symmetric, g). This is shown in Fig. 1.13 (N = 2).
When we add a third 2py π orbital in a linear molecule, we obtain an allyl rad-
ical (Fig. 1.13, N = 3). By linear combination, the three MOs are respectively
bonding (no node, u symmetry), non-bonding (one node on the central atom,
g symmetry) and antibonding (two nodes, u symmetry), with appropriate MOs
coefficients, not shown. The MOs for larger N in Fig. 1.13 will be commented
upon further in Section 1.4.
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Fig. 1.13
Molecular orbitals of ethene (N = 2),
allyl radical, and longer linear models.
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Cyclic polyenes
The preceding observations can be extended to planar cyclic systems (CH)N

with very similar results. The point groups to be used are either the Dnh groups
(σh is the molecular plane), or more simply but without loss of generality, the
cyclic groups Cn. Figure 1.14 displays the MOs ψj built from the 2pz π orbitals
φn with axis z perpendicular to the molecular plane, their energy levels, and
their symmetry labels in Dnh or Cn groups, for planar cyclic systems from C3

to C6 (benzene) (see character tables in references [1.7], [1.8], and [1.9]). The
following observations hold:

a) When the energy increases, the number of nodes increases by one on going
from one ψj molecular orbital to the next higher in energy. The lowest MO
presents no node. Degenerate MOs present the same number of nodes.

b) The MO with the lowest energy is non-degenerate. The MOs at the highest
energy are degenerate pairs for odd-membered rings and non-degenerate
for even-membered ones.

These properties derive from the symmetry properties of the cyclic groups Cn:
they all present a fully symmetric non-degenerate irreducible representation A
(corresponding to the most stable and bonding level) and doubly degenerate
irreducible representations E or E1, E2 . . . When N is even, a non-degenerate
irreducible representation B appears, which is antisymmetric with respect
to the Cn rotations and corresponds to the most unstable and antibonding
level.
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Fig. 1.14
Planar cyclic (CH)N systems: energy
levels and top view of π-type molecular
orbitals (N = 3–6).
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It is possible to determine the wavefunctions ψj and the energies Ej of sys-
tems with N atoms, each presenting one orbital (φn, half occupied), within the
frame of Hückel’s approximations:

ψj =
N∑

n=1

cn,j φn = 1√
N

N∑
n=1

[
exp

(
2 i j π (n − 1)

N

)]
φn (1.38a)

Ej = α + 2 β cos

(
2jπ

N

)
(1.38b)

In eqn. (1.38a), i is the complex number i2 = –1. The j parameter takes the val-
ues 0, ±1, ±2, ±3, ±(n′–1), n′ (with n′ = N/2, when N is even) according to the
symmetry properties. The complex form of the wavefunction ψj comes from
the irreducible representations Ei of the cyclic groups Cn, whose characters
can be complex quantities. The energy levels Ej after eqn. (1.38b) are shown
in Fig. 1.15, for N even (a) and odd (b). In c) is shown the Frost circle, with a
|2β| radius, whose usefulness is shown in d): an N-vertex polygon inscribed in
the Frost circle with one of its vertices at the bottom allows us to derive easily
the quantitative energy diagram for N = 3–6.

Stability of cyclic polyenes. Hückel 4n + 2 rule
We have now to deal with the occupancy of the molecular orbitals. It should be
clear from Fig. 1.15 a), b), and d) that the molecule will be the most stable, or
will have a peculiar stability, when all the bonding and non-bonding levels are
filled. Above the lowest bonding level, the other levels occur in pairs. If n pairs
of these levels are occupied, 2n+1 orbitals will be filled with 4n+2 electrons.
One can check that it works for (CH)3

+ and (CH)4
2+ (2 electrons, n = 0),

(CH)5
– and (CH)6 (six electrons, n = 1). We recognize the Hückel 4n+2 rule

(n integer, 0, 1, 2 . . .). These peculiar electronic configurations are often termed
aromatic.

By contrast, the cyclobutadiene molecule (CH)4 present a different beha-
viour because there are four π electrons, of which two occupy the a level and
two the e levels, so that there is an incomplete filling of the e orbitals as a

N even N odd Frost's Circle
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Ej = α + 2βcos (2jπ/N) 

R = |2β|

α + 2β α + 2β
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α – βα + 2βcos(4π/5)

α + 2βcos(2π/5)
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d)

E
...

...

α + 2β
Fig. 1.15
Planar cyclic (CH)N systems: use of the
Frost circle to obtain the energy levels.
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whole. With 4n electrons, the system is called antiaromatic. As a result of its
peculiar electronic structure, it is subject to the Jahn–Teller effect, leading to a
distortion with a loss of the highly symmetrical square structure. This effect is
described in more detail in Section 1.3.7. We shall encounter a similar effect
in the case of solids: Peierls distortion (Section 1.4.3), which occurs also when
there is partial filling of a set of degenerate orbitals.

1.3.6 Coordination complexes

A coordination complex is a molecular entity resulting from the interaction of
a metallic ion M with ions or molecules L, termed ligands:

M + n L → MLn (1.39)

The MLn complex can be charged or neutral.

Transition elements
We focus on the case where the metal ions M are transition elements, since they
present distinct advantages for obtaining molecules with original properties
and new materials. Their electronic configuration is ns2, (n – 1)dn, and they
have an incomplete d sub-shell in one of their oxidation states. Figure 1.16
shows their place in the periodic table.
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Schematic angular (a) and radial (b) rep-
resentations of 3d orbitals.

Table 1.4 Nodal surfaces in d orbitals.

Quantum number nd Nodal surfaces: total Radial part Angular part

First line 3 2 0 2
Second line 4 3 1 2
Third line 5 4 2 2

d orbitals have a gerade symmetry, corresponding to the spherical harmonics
xy, xz, yz, x2 – y2, and z2 (quantum number l = 2). Their radial and angu-
lar representations are shown in Fig. 1.17. The total wavefunctions present
(n – 1) nodal surfaces, which are distributed as shown in Table 1.4 in the three
lines of the periodic table.

As metals, the transition elements are well-known good conductors (copper
is one of the most used metals for conducting wires), often magnetic (iron,
cobalt, and nickel are well-known ferromagnetic compounds). A point of par-
ticular interest for us is the way that the d orbitals of the metallic ion M interact
with the atomic or molecular orbitals of the neighbouring ligands L to produce
the molecular complex MLn. Several theoretical models have been proposed
to describe the metal–ligand interaction. We reiterate only the main points, and
suggest that the reader consult inorganic chemistry textbooks [1.10] or ligand
field theory books [1.11].

Crystal field model
This is the simplest model, purely electrostatic in nature, which describes
the molecules or anions L around the metallic ion as negative point charges
or dipoles, stabilizing or destabilizing the d orbitals in a specific manner,
depending on the symmetry. Figure 1.18 summarizes the main conclusions
of the model for an octahedral complex: a uniform spherical distribution of
six negative charges destabilizes the d orbitals in a uniform way (Fig. 1.18a,
then b); starting from that, gathering the negative charges as six octahedral
point charges removes the degeneracy and splits the d orbital energy into two
sets (Fig. 1.18c): the two eg orbitals (pointing along the M–L directions) are
destabilized, whereas the three t2g orbitals (pointing between the M–L direc-
tions) are stabilized. The difference in energy between the two sets of orbitals
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M

2Δo/5
Δo(Δoct)

3Δo/5

b)a) c)

MM

Fig. 1.18
Crystal field in an octahedral complex: a)
energy of the d orbitals in the free ion;
b) under the influence of a uniform dis-
tribution of negative charges; c) under the
influence of an octahedral distribution of
charges.

is termed �oct, or sometimes, and for historical reasons, 10 Dq. A simple cal-
culation, using the fact that the average orbital energy is conserved, leads to
the stabilization energy of the t2g orbitals –2�oct/5, whereas the destabilization
of eg orbitals is 3�oct/5. The model deals only with the splitting of the energies
of the d orbitals. It does not consider the nature of bonding between the metal
and the ligand, but uses fully the symmetry properties of the crystal field.

Molecular orbital model
The second model is the one of molecular orbitals, used in the preceding sec-
tions for molecules with s and p elements. The principles to obtain the MOs of
a coordination complex are the same as before. The building of MOs is tightly
bound to the symmetry properties of the molecular complex, and to the point
group: Oh, Td, D4h, C4v, and so on. MOs are a basis for the irreducible repres-
entations of the group, so that the derivation of the energy diagram is simplified
[1.10–1.12].

Octahedral complex ML6 (σ-type ligand L orbitals, with M = Fe3+, electronic
configuration d5)
The point group is Oh, and the ligand disposition and numbering is shown in
Fig. 1.19, with the x, y, z axes taken along the M–L bonds. The irreducible
representations follow from the character table of the Oh group (Table 1.5).
We start from fifteen initial orbitals—nine for the metal (five 3d orbitals, one
4s orbital and three 4p orbitals) and six σ orbitals brought by the ligands. For
the metal, a direct reading of the table gives: t2g(xy, xz, yz); eg(x2–y2, z2);
a1g(4s); t1u(4px,4py,4pz). For the ligands, it is necessary to build the symmetry
orbitals as shown in Table 1.6.

We then perform the final combinations. It is found that a) the t2g orbitals
(xy, xz, yz) of the metal have no ligand counterpart: they remain unchanged
in the complex; b) the sign of the participation of ligand orbitals li in the sym-
metry orbitals depends on the conventions adopted for the numbering of the
ligand orbitals. The sign used here is in agreement with Fig. 1.19. Finally, fif-
teen MOs are found: three t2g (π) purely metallic and non-bonding, twelve σ

MOs obtained by the linear combination of six symmetry orbitals of the lig-
ands (one a1g, two eg, three t1u) and six from the metal with the same symmetry.
In this σ set, six are bonding and six are antibonding. Figure 1.20 displays the
energy diagram, the schematic representation of the MOs, and the symmetry
labels. Regarding the electron count, for an Fe3+ complex the diagram must
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Fig. 1.19
Axes, ligands numbering, symmetry
orbitals, and molecular orbitals in an
ML6 octahedral complex (σ ligands).
For a given symmetry: (a) metal orbitals;
(b) symmetry orbitals of the ligands;
(c) bonding orbitals of the complex; (d)
antibonding orbitals.

Table 1.5 Character table of the Oh point group.

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 –1 –1 1 1 –1 1 1 –1
Eg 2 –1 0 0 2 2 0 –1 2 0 (2z2 – x2 – y2, x2 – y2)
T1g 3 0 –1 1 –1 3 1 0 –1 –1 (xy, xz, yz)
T2g 3 0 1 –1 –1 3 –1 0 –1 1
A1u 1 1 1 1 1 –1 –1 –1 –1 –1
A2u 1 1 –1 –1 1 –1 1 –1 –1 1
Eu 2 –1 0 0 2 –2 0 1 –2 0
T1u 3 0 –1 1 –1 –3 –1 0 1 1 (x,y,z)
T2u 3 0 1 –1 –1 –3 1 0 1 –1
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Table 1.6 Basis orbitals in an octahedral ML6 complex.

Symmetry Ligands L (Symmetry orbitals θ) Metal M

a1g: σ l1 + l2 + l3 + l4 + l5 + l6 4s
eg: σ (l1 + l2 – l3 – l4) and (–l1 – l2 – l3 – l4 + l5 + l6) x2 – y2, z2

t1u: σ (l1 – l2), (l3 – l4) and (l5 – l6) 4px, 4py, 4pz

t2g: π no xy, xz, yz

Note that we use here and in Table 1.7 a different convention with respect to Fig. 1.7. The + and – signs in the
above combinations denote bonding and antibonding combinations respectively, regardless of axis orientations.
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Fig. 1.20
Molecular orbitals energy diagram of
an ML6 octahedral complex (σ ligands):
schematic energy diagram and build-
ing lines; MOs schemes and symmetry
labels.

accommodate seventeen valence electrons (twelve from the six ligands L, and
five from the metal d5). Thus all orbitals with predominant ligand σ character
are filled, and there are five electrons in the orbitals with predominant metal d
character—reminiscent of the ionic description of the system.

Two remarks arise from the comparison of the crystal field and the MO
models: on the one hand, the two models remove the degeneracy of the d
orbitals in the ligand field, �oct. On the other hand, the MO model gives the
wavefunctions and the energies of the whole set of MOs, and not only the
d ones. Inside the d domain the energy difference comes from the quantum
non-bonding or antibonding character, and not from classical electrostatic
arguments. For example, the eg MOs centred on the metal are described clearly
as antibonding (nodal surface between the metal and the ligands orbitals). They
are often termed e∗

g to emphasize their antibonding character, frequently used
in the following.
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The ligands can be very different: water, halides X–, ammonia NH3, amines
RNH2, R1R2NH, R1R2R3N, phosphine PH3 and phosphines R1R2R3P, com-
plex biological ligands in metalloproteins . . . each ligand creates a different
ligand field �oct. Ligands giving rise to small �oct are termed ‘low-field lig-
ands’, and ligands giving rise to large �oct are termed ‘high-field ligands’.
An example of a ‘spectrochemical series’, for the Cr3+ ion, is:

Ligands Cl− < F− < H2O < NH3 < CN−
�octvalues/cm−1 13200 15200 17400 21600 26600

Complexes having only σ ligands are quite rare. Thus it is important to eval-
uate the rôle of the π bonding on the energy diagram of a ML6 complex. It is
valuable to do it starting from the energy diagram of a ML6(σ) complex and
to see the modifications introduced by the change of ligand. Two parameters
are important: the symmetry, as ever, and the relative energy of orbitals of the
ligand and of the metal. For the relative energies, most often, the energies of
the π occupied orbitals of the ligands lie lower in energy than the d orbitals (in
other words, ligands are more electronegative than the metallic ions). When
antibonding π* orbitals are implied, they lie generally higher in energy than
the d orbitals. For the symmetry, one introduces two π-type orbitals per lig-
and; that is, twelve supplementary orbitals, which are combined to θ symmetry
orbitals as shown in Table 1.7 (the same work can be done for π* orbitals).

The important point is the modification of the orbitals with preponderant
d character by the new symmetry orbitals. In particular, the three t2g d MOs,
which are strictly metallic in the ML6 complex with σ ligands, can combine
here with the three t2g symmetry orbitals of the π ligands to give six MOs—
three bonding and three antibonding. Figure 1.21a specifies the nature of the
interaction and shows that the ligand field is decreased to a �′

oct value (which
happens, for instance, in halide complexes).

The observation holds also for ligands like CO or CN–, whose π occu-
pied MOs contribute to the destabilization of t2g orbitals and decrease �oct

(Fig. 1.21a). Nevertheless, these ligands present also vacant high-energy π*

orbitals, which contribute on the contrary to stabilize the t2g orbitals and to

Table 1.7 Symmetry orbitals of the ligands in an octahedral complex.

Symmetry θ Symmetry orbitals of the ligands Metal

t1g: π (l1z – l2z) – (l5x – l6x) No
(l3x – l4x) – (l1y – l2y) No
(l5y – l6y) – (l3z – l4z) No

t2g: π (l1y – l2y) + (l3x – l4x) xy
(l3z – l4z) + (l5y – l6y) yz
(l5x – l6x) + (l1z – l2z) zx

t1u: π (l1x + l2x) + (l3x + l4x) – (l5x + l6x) 4px

(l1y + l2y) + (l3y + l4y) – (l5y + l6y) 4py

(l1z + l2z) + (l3z + l4z) – (l5z + l6z) 4pz

t2u: π (l1z + l2z) – (l3z + l4z) No
(l3x + l4x) – (l5x – l6x) No
(l5y + l6y) – (l1y + l2y) No
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Fig. 1.21
Modification of the molecular orbitals
energy diagram of an ML6 octahedral
complex in presence of a) π donor lig-
ands, b) π* acceptors ligands, and c) both
π and π* ligands.

increase �oct, as shown in Fig. 1.21b. In fact, it is not possible to separate π

and π* effects; both are generally operating as shown in Fig. 1.21c. For lig-
ands such as CO and CN–, however, the π* effect is by far the more important
(the weight of carbon directly linked to the metal is much larger in the π*),
and this is why these ligands are ‘high-field’ ligands and lie at the right in the
spectrochemical series.

Hence, the ligands σ, π and π* allow (i) to tune quite precisely the ligand
field �oct around a transition metal ion in a complex, and (ii) to control there-
fore the reactivity of the complexes (acid–base, redox . . .) and the physical
properties (spectroscopy, colour, magnetism . . .). The understanding of the
symmetry and of the ligand field allows the chemist to finely control the prop-
erties thanks to the use of appropriate metallic ions and ligands. When adding
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Schematic molecular orbital energy dia-
gram of a ML6 octahedral complex with
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twelve π and twelve π* MOs orbitals, symmetry t1g, t2g, t1u, t2u, the energy dia-
gram presents the formidable aspect of Fig. 1.22, which is nevertheless easy to
understand from the preceding arguments.

A particularly spectacular application in the field of materials is the spin
cross-over phenomenon.

High-spin and low-spin complexes; spin cross-over
High-spin and low-spin situations arise from the two contradictory require-
ments: filling orbitals in the order of ascending energy (Aufbau principle), and
having as many electrons as possible with parallel spins (see the case of O2).
For weak ligand fields �, the high-spin situation prevails, while for strong �

it is the low spin.
Figure 1.23 displays the two possible situations for the ligand field in the

case of octahedral complexes of the FeII ion, d6: left, the low-field situation
is accompanied by a high spin state, S = 2. When the five orbitals are half-
filled, the sixth electron is paired in one of the t2g orbitals. Water, halogeno,
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Fig. 1.23
Weak (a), medium (b), and strong (c) ligand fields in an ML6 octahedral complex: electronic configuration of high-spin, spin cross-over, and
low-spin states of the complex; (d) t2g and eg orbitals.
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thiocyanato, or oxalato ligands favour such a high spin state: the hexaaqua
iron(II) complex [FeII(H2O)6]2+ is high spin, S = 2.

On the right, the opposite situation is shown: high field and low spin,
S = 0. Carbon monoxide CO, cyanide CN–, and more generally π* acceptors
ligands—aromatic amines (2,2′-bipyridine, 1,10-phenanthroline . . .), phos-
phines . . . favour such a low-spin situation: the hexacyanidoferrate(II) com-
plex [FeII(CN)6]4– or the deep red tris-1,10-phenanthroline iron(II) complex
[FeII(phen)3]2+ are low spin, S = 0.

In between there is a range of intermediate ligand fields for which the system
can ‘hesitate’ between the two types of filling. This is a situation called spin
equilibrium, spin cross-over, or spin transition. It is appealing from the point of
view of applications, because it can be abrupt and present hysteresis as a result
of cooperative effects. The spin cross-over is treated in detail in Section 2.4.3.
The intermediate spin (S = 1) is rare but possible.

1.3.7 Influence of the electronic structure on the geometric
structure: the Jahn–Teller effect

So far, we have started from a fixed molecular geometry and considered that it
determines the electronic structure, using, in particular, symmetry and Group
Theory arguments. However, the reverse can be true, because the geometry is
determined by the simple fact that it must correspond to a minimum of the total
energy of the molecule. Under certain circumstances this condition can lead to
a loss of symmetry for electronic reasons linked to the orbital filling. This is
the Jahn–Teller effect [1.13], presented in simplified form next.

Let us write the Hamiltonian of the molecule as

H = K + V(Q) (1.40)

where K is the kinetic energy operator and V the operator corresponding to the
interaction between charges (electrons and nuclei). V depends on deformation
coordinates Q, and we limit the discussion to deformations which break the
symmetry. A small deformation δQ around an initial position Q0 leads to a
new V potential which can be expressed in a Taylor series limited to second
order:

V(Q) = V(Q0) + (∂V/∂Q)Q0δQ + 1/2(∂
2V/∂Q2)δQ2 + · · · (1.41)

The energy change is then given by

�E = �E(1) + �E(2) (1.42a)

with

�E(1) = <�0|(∂V/∂Q)|�0> δQ (1.42b)

�E(2) =
[

1

2
<�0

∣∣(∂2V/∂Q2)∣∣�0> +
∑

i

<�0 |(∂V/∂Q)| �i>

E0 − Ei

]
δQ2

(1.42c)

In these expressions, �0 is the ground-state wavefunction, while � i are excited
states wavefunctions and the derivatives are taken for Q = Q0.
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First-order Jahn–Teller effect
Let us consider the first term �E(1). If the integral < �0| (∂V/∂Q) �0> is dif-
ferent from 0, a deformation δQ (either positive or negative) will necessarily
stabilize the molecule. The problem can be analysed by group-theory argu-
ments bearing on the symmetries of �0 and of the deformation. In 1937 it was
demonstrated by H. A. Jahn and E. Teller that for non-linear molecules, if the
electronic wavefunction �0 is degenerate, there exists at least one Q coordin-
ate for which the previous integral is different from zero. Then the distortion
(Jahn–Teller distortion) occurs necessarily. Once the distortion has occurred,
the degeneracy is lifted.

Electronic degeneracy occurs in a system when degenerate orbitals are
occupied by a different number of electrons. Many cases are found in
transition-metal chemistry, the most typical being copper(II) with a d9 elec-
tronic configuration. In a pure Oh symmetry, the configuration is (t2g)6(eg)3,
giving an unequal occupation of the two orbitals of the eg set, as shown in
Fig. 1.24

Thus the system must distort. Starting from the perfect Oh symmetry, if one
performs an elongation of the two bonds along z, the z2 orbital is stabilized
with respect to x2 – y2 (and also xz and yz with respect to xy, but this is not
important here). Thus the degeneracy is lifted, and orbital filling shows that the
system has been stabilized, because there are two electrons in the stabilized
orbital versus only one in the destabilized one. The converse is true for a com-
pression, so in principle either a compression or an elongation of two opposite
bonds could occur. However, experience shows that for the vast majority of
Cu(II) complexes the Jahn–Teller effect is manifested as an elongation of the
octahedron along one of its fourfold axes. Note that in the present case one
can limit investigations to orbital analysis, but strictly speaking one should
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octahedron
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regular 
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Oh

x2–y2    z2
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(b)
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Fig. 1.24
First-order Jahn–Teller effect in the
example of Cu(II), with the situations
before and after distortion: a) geometry
of the octahedron; b) last orbitals with eg

symmetry and their filling; c) electronic
states. The degenerate (eg)3 configuration
gives rise to a degenerate 2Eg state sub-
ject to Jahn–Teller distortion—here an
elongation along one of the octahedron
axes, yielding D4h symmetry. As a con-
sequence, the degeneracy between z2 and
x2–y2 is lifted, and their occupation is
shown at right.
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consider electronic states; that is, the total (polyelectronic) wavefunctions.
(The relation between orbitals and states is developed in Section 2.4.1).

Second-order Jahn–Teller effect
When the electronic wavefunction is not degenerate the first-order term is zero,
and thus the first derivative ∂E/∂Q. But according to the sign of the second-
order term �E(2), the geometry can correspond to a minimum or a maximum,
in this last case leading to a distortion. The different possibilities, including the
first-order effect, are displayed in Fig. 1.25.

Unfortunately, the prediction is not as simple as previously, because there
are several terms in �E(2), and each case must be studied in particular. The
complete analysis of the problem shows that �E(2) can be negative if there is
an excited state (energy Ei) of the proper symmetry not too high in energy,
because its effect depends on 1/(E0 – Ei). This is the second-order Jahn–
Teller effect (often termed the pseudo-Jahn–Teller effect) [1.13] shown in Fig.
1.25c. If the excited state is too high, one has simply �E(2) >0, and the high-
symmetry structure is stable (Fig. 1.25a). Finally, we note in Fig 1.25b,c the
fundamental difference between Jahn–Teller effects: for first-order there is
a curve-crossing, while for second-order effect there is an avoided crossing
showing the influence of the upper (excited) level.

Cyclobutadiene C4H4, evoked previously (see Section 1.3.5), is a special
case of the second-order Jahn–Teller effect. The molecular orbitals and ener-
gies of regular square cyclobutadiene are shown in Figs. 1.14 (N = 4) and
1.15d. The three orbitals a and e have to accommodate four electrons, two of
them being in the e set, which is incompletely filled. The complete derivation,
based on the properties of electronic states, will not be presented here, though
the reader can consult [1.13], and we shall discuss only the results. Four states,
designated by their symmetry, are obtained: 1A1g, 1B1g, 1B2g, and 3A2g (these
capital-letter symbols designate electronic states by their symmetry, with the

Q0Q0
QQ

E E

Q0
Q

E (a) (b) (c)

Fig. 1.25
Energy as a function of a deformation coordinate Q around a high-symmetry geometry (Q0): a) ∂E/∂Q = 0, ∂2E/∂Q2 > 0, stable structure;
b) ∂E/∂Q 
= 0 with double value due to degenerescence, first-order Jahn–Teller effect; c) ∂E/∂Q = 0, ∂2E/∂Q2 < 0 due to coupling with an
excited state, second-order Jahn–Teller effect.
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effect occurring in C4H4, with the situ-
ations before and after distortion: a) geo-
metry; b) π orbitals and their filling;
c) electronic states. Note that exception-
ally, the triplet state is not the ground
state. See the text for discussion.

spin multiplicity 2S+1 as upper index. Curiously, in the present case, the triplet
state is not the ground state (this is one of the rare exceptions to Hund’s rule).
Of the singlet states, 1B1g is the lowest, and the system is not electronically
degenerate. But the interaction with the nearby 1A1g state triggers a deforma-
tion, and it is found experimentally that C4H4 is rectangular (Fig. 1.26), with
the short bonds presenting essentially double-bond character and the long ones
essentially single-bond character.

A simplified (but alas not rigorous!) justification using orbitals can be
presented as follows. Figure 1.27 gives some details about the possible dis-
tortions of the regular cyclobutadiene. In a) are shown the MOs and energies

α – 2β

α + 2β

α

a) b)c)

3 4
1 2

3 4
1 2

ψ1

ψ2

ψ3

ψ4

ψ'2

ψ'3

ψ'3

ψ'2

x
y

a

e

b

Fig. 1.27
Jahn–Teller distortion in cyclobutadiene
(CH)4. For the initial symmetrical geo-
metry (a), and the two possible distorted
ones, (b) and (c), from top to bottom:
geometry, molecular orbitals of the π

framework.
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of the non-distorted square molecule. At the top, the two most efficient normal
modes of vibration are shown by black arrows and dotted arrows respectively.
In b) are shown the MOs and energies of the distorted molecule after the black-
arrows distortion: the square becomes a rectangle with longer y and shorter x
dimensions. In c) is displayed the situation after the dotted-arrows distortion:
the rectangle has now longer x and shorter y dimensions. The orbitals with a
and b symmetry play no significant role in the process. Instead, the degenerate
e orbitals, termed ψ2 and ψ3 in the figure, are determining. ψ3 is stabilized to
ψ3

′ in b), since the 1–2 and 3–4 bonding interactions become more bonding,
whereas the 1–3 and 2–4 antibonding interactions become less antibonding.
On the contrary, ψ2

′ is destabilized in b). Using the other mode of distortion in
c), the opposite situation occurs: ψ2

′ is stabilized, whereas ψ3
′ is destabilized.

Since one orbital is occupied and the other not, there is a net gain in energy,
which is why the distortion occurs only for these non-equilibrated electron
occupations.

As noted in Section 1.3.5, cyclobutadiene, and more generally the molecules
with an electronic configuration 4n (n integer), present such distortions
and are said to be ‘antiaromatic’ with alternating short and long bonds.
We shall encounter a very similar phenomenon in solids with partly filled
bands (Section 1.4.3), the most representative example being polyacetylene
(Section 3.3.3).

1.4 Electrons in molecular solids
The next and last step in our exploration of the ‘one-electron’ world is the
study of molecular objects placed in the solid state. As in preceding section
we proceed step by step, starting by extending molecules to infinite, up to
one-dimensional objects.

1.4.1 From molecular rings to infinite linear chains

We come back to the planar cyclic polyenes of Section 1.3.5. Figure 1.28a
shows the system under consideration: a cyclic polyene, with repeating units
Mm and numbered 0, ±1, ±2, ±3, ±(n′–1), n′ (n′ being N/2 if N is even, or
N/2 – 1 if N is odd). Each unit comprises a π atomic orbital φm having a
Coulomb energy α and interacting only with the two first nearest neighbours
φm±1 (resonance integral β). In a solid, the repeating units Mm are termed unit
cells or cells, since by a set of translations they are able to build completely the
solid (as will be seen).

The CN rotation axis is perpendicular to the molecular plane. The symmetry
operations are rotations. We name ϕ (or C1

n) the elementary rotation angle
transforming cell Mm in Mm+1, thus ϕm (Cm

n ) rotation (ϕm = m ϕ) transforms
cell M0 in cell Mm, and so on. The point group symmetry is CN, with N tending
to infinite. Table 1.8 gives the CN character table (for even N).

The basis of the representation is built from the N orbitals:

�φ = {(φ)n′−1, . . . , (φ)0, . . . (φ)1−n′ (φ)n′ } (1.43)
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Fig. 1.28
Infinite planar polyene: a) cyclic, cyc-
lic group CN; b) linear, obtained from
the cyclic one when N tends to infinite
(translation group).

Table 1.8 Point group symmetry Cn and irreducible representations.

Cn E C2 Cn Cn
–1 Cn

m . . . Cn
–m Cn

n′–1 Cn
–n′+1 . . .

�j 1 (–1)–j exp(–γ) exp(γ) exp(–mγ) exp(mγ) exp[(1–n′)γ] exp[(n′–1)γ]
�φ N 0 0 0 0 . . . 0 0 0 . . .

where exp (γ) = exp(2iπj/n).

The characters of this (reducible) representation are shown in Table 1.8: N for
the identity operation E, since the N orbitals remain unchanged; 0 for all other
operations, since no orbital is transformed in itself by any of the rotations.
The irreducible representations (IR) are �j, where j is an integer running from
0, ±1, ±2, ±3, ±(n′–1) to n′. The character of the rotation Cm

n in the �j IR
is exp

( 2iπmj
N

)
. It is then possible to get the N corresponding �j IRs from the

�φ and the corresponding symmetry orbitals (in the solid, we shall name them
Bloch orbitals, �, after Felix Bloch, a Swiss–American physicist, recipient of
the Nobel Prize in 1952) from φm, using the usual projection procedures of
group theory [1.7–1.8]:

�φ =
n′∑

j =−n′+1

�j (1.44)

�j = 1√
N

n′∑
m = −n′+1

cmφm = 1√
N

n′∑
m=−n′+1

[
exp

(
2iπmj

N

)]
φm (1.45a)

where 1/
√

N is a normalization factor, computed in the frame of the Hückel
method (neglecting S). The symmetry (Bloch) orbitals are linear combina-
tions of the atomic orbitals, with coefficients exp( 2iπmj

N ) depending on the
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position m. The �j functions take particularly simple expressions for j = 0 and
n′ = N/2 (remembering that exp(iπm) = (–1)m),

�′
j=0 = 1√

N

n′∑
m = −n′+1

φm = 1√
N

(φ−n+1 + · · · + φ−1 + φ0 + φ1 + · · · + φn′ )

(1.45b)
a fully bonding Bloch orbital, with no node, and conversely:

�′
j = N/2 = 1√

N

n′∑
m = −n′+1

(−1)mφm

= 1√
N

(φ−n+1 + · · · − φ−1 + φ0 − φ1 + · · · − φn′ ))
(1.45c)

a fully antibonding Bloch orbital with N – 1 nodes. The orbitals are shown in
Fig. 1.29.

The energies of Bloch orbitals are computed from

Ej = <�j|h|�j>

<�j|�j>
= < �j|h|�j > (1.46a)

Ej =< �j|h|�j >

= 1

N
<

n′∑
m=−n′+1

[
exp

(
2iπmj

N

)]
φm|h|

n′∑
m=−n′+1

[
exp

(
2iπmj

N

)]
φm>

(1.46b)

where h is an effective one-electron Hamiltonian. Eqn. (1.46b) becomes
simply, in the frame of the Hückel model:

Ej = α + 2 β cos
2π

N
j (1.46c)

since, for given j orbitals, there are N terms: < exp( 2iπmj
N )φm|h|

exp( 2iπmj
N )φm >= α and 2 N terms < exp( 2iπmj

N )φm|h| exp( 2iπ(m±1)j
N )φm±1 >=

β cos( 2π
N j). All the other terms imply pairs of orbitals φm and φm±p with p >1,

which are not interacting in our (simple Hückel) model (β = 0; E = 0). Eqn.
(1.46c) is indeed a very simple expression of the energy: when N tends to infin-
ite, the energy varies as a continuous cosine function from the energy value
α + 2β (j = –n′ + 1) to α –2 β (j = n′) through α (j = 0). The present case is
an extrapolation to infinite of the finite cyclic polyenes of Section 1.3.5 and a
convenient further step to the solid.

Towards linear chains
It is important to realize that when N tends to infinite, the ring’s radius tends to
infinite. The ring thus becomes a linear chain along some z axis (Fig. 1.29b).
The elementary rotation ϕ is transformed in an elementary translation a along
z and ϕm (= m ϕ) in a translation rm = m a. Consequently there is an exact
correspondence between the rotations in the molecular cyclic point group and
the translations in the translation group. One should be careful about the con-
ditions at the limits, since there is no discontinuity for the ring between the
–n′ + 1 and n′ cells, while there is one in the chain, since –n′ + 1 and n′ cells
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Fig. 1.29
Bloch orbitals for infinite polyenes; a)
cyclic, at j = 0 and j = N

2 ; b) linear at
k = 0 and k = π

a .

are found at the opposite ends of the chain. The so-called Born and Karman
conditions, for infinite systems, allow cells n′ + 1 and n′ to interact and solve
the problem. (Max Born was a German physicist, recipient of the Nobel Prize
in Physics in 1954.)

We are now in a position to introduce new concepts with a closer look at
the definition of the Bloch orbitals (eqns. 1.45). In the expression 2iπmj

N , m can

be replaced by rm/a = rm/a, since rm and a are collinear. Then 2iπmj
N = 2iπj

Na rm.
Furthermore, we can remark that k = 2π

Na j is homogeneous to a reciprocal

length (a–1) and can be considered as the projection k of a vector k on
z (a), so that 2iπmj

N = 2iπj
Na rm = ikrm. The quantity k, proportional to j, varies as

0, ± 2π
Na , ± 4π

Na , . . . . , ± 2(n′−1)π
Na , π

a . The expression of the Bloch orbital appears

then as the one of a plane wave with wavevector k:

�j = �j(k) = 1√
N

n′∑
m=−n′+1

[
exp

(
2iπj
Na rm

)]
φm

= 1√
N

n′∑
m=−n′+1

[
exp

(
ikrm

)]
φm

(1.47)

rm and a are vectors in the real space. k is a vector in the ‘reciprocal space’.
This point can be made even clearer if we introduce the vector a∗ defined by

a∗a = 2π or a∗ = 2π

a2
a (1.48)

so that k= kaa∗ (ka is the projection of k on a∗ with ka = a
2π

k and varies as

0, ± 1
N , ± 2

N , . . . ± n′−1
N , 1

2 ). The a vector defines the direct space and charac-

terizes its periodicity. The a∗ vector defines the reciprocal space, the one of k
wavevectors and the periodicity of k.

Coming back to the expression of Bloch orbitals (eqn. 1.47), using either
variables j or k, one observes that it describes a linear combination of atomic
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orbitals φm (as for common molecules), weighted by a phase factor. For peri-
odicity, check that when rm is replaced by rm + a or k by k + a∗ the functions
�j(k) are unchanged.

The energies of the Bloch orbitals �j(k) simply follow from eqn. (1.46a):

Ej(k) = <�j|h|�j>

<�j|�j>
=<�j|h|�j>= α + 2 β cos

2π

N
j = α + 2 β cos(ka)

(1.49)

The last expression is particularly convenient to use, as will be shown later.
The �j(k) wavefunctions at k = 0 (that is, j = 0) and k = π

a (that is, j =N
2 )

are similar, mutatis mutandis, to those of (1.45b,c) and are shown in Fig. 1.29b.

Bands
The results already reached deserve some comments and allow the introduction
of some new important concepts. The Bloch orbital �(k = 0) is fully bonding
(no node). Its energy is α + 2 β, which is the lowest energy (in this case, β is
negative). On the contrary, the Bloch orbital �(k = π

a ) is the most antibonding
(N – 1 nodes). Its energy is α –2 β, which is the highest energy. All the other
Bloch orbitals lie between with intermediate energies, within the finite energy
interval W = 4 |β|, termed the bandwidth (shown already in Fig. 1.13). If the
number N of orbitals is finite, k varies by regular discrete steps. Instead, if
the number N of orbitals tends to infinite, k varies continuously and there is a
vanishing energy difference (�ε = 4β

N ) between two successive levels. Such a
continuum of levels is called an energy band. The corresponding Bloch orbitals
are orthogonal. k is a wavevector, but defines also the symmetry of the cor-
responding Bloch orbital �j(k) in the translation group. Hence, two different

orbitals having different symmetries k and k′ are orthogonal, and

<�j(k)|h|�j′ (k
′
)> = 0 (1.50)

We suggest that the reader take time to grasp the real nature and important role
of k, in this book and in [1.9] and [1.14].

E(k)

α+2β

α–2β

α W = 4β

k
0–π/a π/aΓ Z

Fig. 1.30
Energy dispersion curve within the (first)
Brillouin zone.

1.4.2 Brillouin zone, energy dispersion curve, Fermi level,
and density of states

1.4.2.1 Brillouin zone, energy dispersion curve
The N �j(k) or more simply �(k) Bloch orbitals are defined in a k space
[−π

a , π
a ], which excludes k = −π

a , given our conditions at the limits. This
space is termed the (first) Brillouin zone (after the French–American physicist
Léon Brillouin). The point k = 0 is termed the zone centre and is represented
by the greek symbol �. The point k = π

a is the zone edge, represented by Z
(when the axis of the system is Oz). The sinusoidal variation of the energy of
the Bloch orbitals in the Brillouin zone is shown in Fig. 1.30. It is also known as
the ‘energy dispersion curve’ or ‘band diagram’. Above k = π

a and below −π
a ,

the �(k) values are the same as inside the first Brillouin zone. Furthermore,
the functions �(k) and �(−k) are degenerate (the points k and –k are phys-
ically equivalent), and it is then possible to reduce the representation to the
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Fig. 1.31
a) Energy dispersion curve and Bloch
orbitals at points � and Z; b) density of
states; c) schematic representation of an
energy band and Fermi level EF.

k interval [0, π
a ] of the first Brillouin zone, without loss of information, as

shown in Fig. 1.31a.

1.4.2.2 Fermi level, density of states
It is now appropriate to ‘fill’ Bloch orbitals with electrons as we did for the
MOs. We apply once more the Aufbau principle. Each Bloch orbital accom-
modates two electrons at the maximum, so that the lowest N

2 levels are doubly
filled and the above levels are vacant. The last occupied level is termed by
chemists the Fermi level and its energy the Fermi energy, EF, (after the Italian–
American physicist Enrico Fermi, recipient of the Nobel Prize in Physics in
1938). The occupancy of the Bloch orbitals has fundamental consequences on
the magnetic and electrical properties. Of particular interest for conductivity is
the partial filling of a band which gives rise to a 1D conductor (Section 3.3),
and for magnetism the filling of the N levels with one unpaired electron per
level, which gives a 1D magnetic chain (Section 2.7.1).

Another important concept is the density of states, abbreviated as DOS,
simply defined as the number of energy levels (or Bloch orbitals) ∂n per energy
∂E; that is,

(
∂n
∂E

)
E
. The DOS can be approximated as DOS ∝ 1/(∂E/∂k)E, the

reciprocal of the slope of the dispersion energy curve (Fig. 1.31a): at k = 0
and π

a , the slope is close to zero (see Fig. 1.31b) and there are many energy
levels for a given ∂E, whereas at k = π

2a the slope is steep and the number of
energy levels corresponding to the same energy variation ∂E is smaller; there
is a minimum of the DOS at k = π

2a (half of the band), as shown in Fig. 1.31b.
A very simple representation of an energy band, as a mere rectangle, is
given in Fig. 1.31c, with the filled levels in black and the Fermi level EF

at half-band.
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Fig. 1.32
Variation of overlap and bandwidth W
with the distance between nearest neigh-
bours. For the same orbitals, the band-
width increases (W3>W2>W1) when the
distance decreases (d3<d2<d1).
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Fig. 1.33
Bandwidth W and nature of the overlap.
Bands going ‘up’ (a) or ‘down’ (b).

From the previous conclusions it is possible to realize that when the overlap
S and the resonance energy β between two neighbouring orbitals vary, so does
the bandwidth W. Figure 1.32 displays an example where the distance between
nearest neighbours decreases from chain 1 to chain 3. Consequently, the band-
width increases. It is also possible to observe on the scheme that when the
overlap S is not neglected, the antibonding levels are more destabilized than
the bonding ones are stabilized (as in dihydrogen, Fig. 1.3b).

We arrive at similar conclusions in Fig. 1.33 when the same neighbours
(bearing p orbitals) are at the same distance (a) but when the nature of the
overlap varies (from πp–p overlap in a) to σp–p overlap in b). The width is much
larger for the σ overlap (Wσ = |4 βσ| > Wπ= |4 βπ |, as we expect from Fig. 1.9.

Nevertheless, the more important conclusion drawn from Fig. 1.33 is
another one. In b), the chain is made of pz orbitals (lying along the Oz axis).
On the one hand, at k = 0, the Bloch orbital �k=0(φ−n+1 + · · · + φ−1 + φ0 +
φ1 + · · · + φn′ ) shows an antibonding interaction between nearest neighbours,
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contrary to what happens in a) between py orbitals (perpendicular to Oz).
On the other hand, at k = π

a , the Bloch orbital �k=π/a(φ−n+1 − · · · − φ−1 +
φ0 − φ1 + · · · − φn′ ) is fully bonding. Due to the symmetry properties of the
basis orbitals, the most antibonding orbital occurs now at k = 0, whereas the
most bonding appears at k = π

a . The band is ‘going down’ instead of ‘going
up’ as in Figs. 1.31 and 1.33a. This behaviour is found frequently, depending
on the symmetry of the basis orbitals. As for the case of pz–pz interactions
in the O2 molecule (Section 1.3.3.) this comes from the fact that β is positive
(Fig. 1.7).

We suggest that the reader consult references [1.5], [1.9], and [1.14] for
further comments and detailed demonstrations.

1.4.3 Peierls distortion

Before studying more complex systems we would like to end this brief intro-
duction on energy bands by looking more closely at what happens when a band
is partially filled. We deal with a half-filled band for the sake of simplicity.
Figure 1.34 summarizes the situation: (a) the energy dispersion curve, (b) four
selected Bloch orbitals: the most bonding, k = 0 (no node, symmetric (S) in
the reflection through plane �), the most antibonding, k =π

a (N–1 nodes, anti-
symmetric (A) in the reflection), and the two frontier orbitals, the one below
the Fermi level (–1 + N/2 nodes, (A)), and the one just above (N/2 nodes, (S));
(c) the band filling.

Please note that we represent schemes of Bloch orbitals as if they were real
functions. In many cases, as other orbitals they are complex functions. They
can or must be written as � = �real + i �imaginary (i2 = –1). Only for k = 0 and
k = π/a are the functions real mathematical objects.

The frontier orbitals are practically degenerate: the orbital degeneracy is
similar to the one introduced in Section 1.3.5. Then, as previously, the system
is unstable. As in Sections 1.3.5 and 1.3.7 we have to find the distortion; that
is, the appropriate lowering in symmetry (through some normal mode of vibra-
tions) able to remove the electronic degeneracy. A simple one is a dimerization
of the chain along the z-axis, as displayed in Fig. 1.35.

In (a) the situation is before distortion: a uniform distribution of the centres
1–8, with a translation vector a from one cell to another. The Bloch orbit-
als are termed �0 for k = 0, �π/a for k =π

a and �2 and �3 for the frontier
orbitals, and the arrows at the top of the numbering show the directions of
the displacements of the atoms in the dimerization which follows. In (b) is
shown the situation after dimerization; atoms 1–2, 3–4, 5–6, and 7–8 are
closer (enhanced overlap and interaction), whereas atoms 2–3, 4–5, and 6–7

E(k)

k
Γ Zπ/2a

Nodes

0

N/2
–1+N/2

Sym.
(a) (b) (c)

N–1

S

A

A
S

Π

Fig. 1.34
a) Energy dispersion curve; b) Bloch
orbitals at points � and Z and around k =
π
2a , their number of nodes and symmetry;
c) occupancy of the orbitals.
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Fig. 1.35
a) Bloch orbitals of the uniform 1D sys-
tem; b) Bloch orbitals after dimerization;
c) removal of the orbital degeneracy;
d) opening of a gap at the Fermi level
(schematic).
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Fig. 1.36
After dimerization a gap opens at the
Fermi level at k = π

2a : a) energy disper-
sion; b) density of states.

are farther (decreased overlap and interactions). The translation vector along
the chain is now 2a.

It is easy to show that the ‘dimerization’ has no consequences for the ener-
gies of �0 and �π/a. But for �2 and �3 important modifications occur. In �2

the bonding interactions become stronger between 1–2, 3–4 etc, while the
antibonding interactions become weaker between 2–3, 4–5, and so on, both
factors stabilizing the �2 orbital. The reverse holds for �3, which is destabil-
ized. The overall result is the opening of a gap between the energies of �2 and
�3, at the Fermi level. As in the case of C4H4 (Sections 1.3.5 and 1.3.7), the
systems gains some energy because one of the orbitals is occupied, and the
other not.

Anyway, this distortion gives rise to a forbidden energy band or gap for the
electrons of the system, as shown in (c) and (d) with different graphical repres-
entations. Figure 1.36 depicts the new energy dispersion curve after distortion,
using the same tools as before.

We shall see in Chapter 3 that such gap opening changes a 1D system from
conducting to semiconducting. In molecules the phenomenon has been termed
a Jahn–Teller distortion, while in the 1D solid it is usually termed a Peierls
distortion or transition (after the German–British physicist Rudolf Peierls).
It is described by physicists as the ‘opening of a gap at the Fermi level through
electron–phonon coupling’, which is another way to talk about the influence
of nuclear motions (phonons) on the electronic structure. The present orbital
demonstration, due to Hoffmann [1.14], is more familiar to chemists.

1.4.4 Crystal orbitals: more than one orbital per cell

In our long way to the solid, the next step in complexity is the introduction
in the 1D system of several orbitals per cell: in a metallic oxide it can be a
d orbital of the metal and a p orbital of the oxide, and in a polyene it can be
π orbitals of two non-equivalent carbon atoms. Generally, a cell will imply
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several non-equivalent orbitals �, ranging from 1 to N0. Each of the � non-
equivalent orbitals of the cell can be used to build N Bloch orbitals (��)j or
��(k), as shown in eqn. (1.47), leading to Bloch orbitals such as:

(��)j = ��(k) = 1√
N

n′∑
m=−n′+1

[
exp

(
2iπj

Na
rm

)]
(φ�)m (1.51)

In eqn. (1.51) the notation of the orbitals used in eqn. (1.47) are changed
slightly to take into account the � orbitals of a cell: atomic orbitals change
from φm to (φ�)m and Bloch orbitals from �j to (��)j or ��(k). It is now pos-
sible to build the crystal orbitals (COs) from linear combinations of the Bloch
orbitals ��(k). They are termed X(k) throughout the book:

X(k) =
N0∑
�=1

c���(k) (1.52)

The coefficients and the energies are computed by writing that X(k) obeys the
Schrödinger equation:

hX(k) = E(k)X(k) (1.53a)

or
N0∑
�=1

c�(k)[h{��(k)} − E(k)��(k)] (1.53b)

We obtain the coefficients c�(k) (� = 1, . . . , N0) from the N0 equations:

N0∑
�=1

c�(k)[H��′(k) − E(k)S��′(k)] = 0 (�′ = 0, . . . , N0) (1.54a)

with

H
��

′(k) = 〈��(k)|h|�
�
′(k)〉 S

��
′(k) = 〈��(k)|�

�
′(k)〉 (1.54b)∣∣∣H(k) − E(k)S(k)

∣∣∣ = 0 (1.54c)

where H and S are matrices of the Hamiltonians and overlaps related to the
Bloch orbitals ��(k) (� = 1, . . . , N0). It is then possible to derive the ener-
gies E(k) and, after normalization, the coefficients c�(k) (� = 1, . . . , N0) of the
crystal orbitals X(k).

In the following we give a brief example to show that the building of crys-
tal orbitals is less complex than it can appear from the previous equations.
Suppose that we deal with a linear chain along Oz, built alternatively from one
transition element M and one ligand L –(M–L–)N, with a translation vector a
(Fig. 1.37a).

The transition element M has a dyz orbital able to interact (π interaction)
with a neighbouring py orbital of a ligand L. In the chain, all the metals M are
equivalent, and so are the ligands L. The energies of the atomic orbitals are
α(d) and α(p) with α(d) > α(p). We build the Bloch orbitals �M(k) and �L(k)
at k = 0 and k = π

a as before (Fig. 1.37b), and from them we want to obtain
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Fig. 1.37
A 1D system with two orbitals per cell:
a) description; b) Bloch orbitals (BOs)
built from the equivalent AOs (metal and
ligand) and their symmetry; c) crystal
orbitals (COs) at k = 0 and π/a, built
from the BOs and energy bands.

two crystal orbitals X(k) particularly at k = 0 and π
a , from eqn. (1.52). As a

rough approximation:

X(k) ∝
[
�M(k) ± �L(k)

]
(1.55)

We observe that the symmetry of the Bloch orbitals upon the reflection through
a plane perpendicular to Oz in M0 (� in Fig. 1.37b) is the same at k = π

a
(A) but is different at k = 0 (A for �M(k = 0) and S for �L(k = 0)). There is
therefore no interaction at k = 0 and an interaction at k = π

a . The two crystal
orbitals at k = 0 are simply the initial Bloch orbitals �L(k = 0) at energy α(p)
and �M(k = 0) at energy α(d). A scheme of the two X±(k = π/a) is given in
Fig. 1.37c: one is bonding, with a larger weight for p than for d orbitals (see
Section 1.3.2), and the other is antibonding, with larger weight for d than for
p orbitals. It is then possible to draw the energy dispersion curve and to show
the existence of two bands. The energy of the first one, X+(k), changes from
non-bonding (α(p)) at k = 0 to bonding at k = π

a , with a strong participation
of the p orbitals of the ligand. It is occupied by the 2N-electrons of the ligand
orbitals, and is termed a ‘p bonding band’. It ensures the stability of the system.
The energy of the other band X−(k) varies from non-bonding at k = 0 (α(d)) to
antibonding at k = π

a , with a strong participation of the d orbitals of the metal.
It is half-filled with N-electrons of the d orbitals of the metal, and ensures the
physical properties of the system.

1.4.5 Towards 3D systems

We have introduced some basic concepts in the frame of the ‘one-electron’
view of a 1D system. In particular, we have tried to show the deep similarity



Effects of interelectronic repulsion 49

Table 1.9 Comparison between the approaches of molecular and solid electronic structures.

Electronic structure of a molecule Electronic structure of a 1D solid

N0 orbitals (atomic or fragments), AOs φm N0 atomic orbitals to describe a cell m (N
cells) (φl)m

Combining equivalent AOs to build N0

symmetry orbitals, SOs, θ

Combining the equivalent AOs to build SOs
or Bloch orbitals (BOs), �(k)

Combining SOs θ with same IR to build
molecular orbitals, MOs ψ

Combining BOs �(k) at each point k to
build the crystal orbitals COs, X(k)

existing in building the useful wavefunctions to describe molecules and solids
using symmetry properties. The steps are summarized in Table 1.9 (see also
[1.9]).

Now, to describe real solids we should deal with two-dimensional (2D) or
three-dimensional (3D) systems. In the last case we should work in a 3D direct
space, based on three crystallographic axes a, b, c instead of one. We should
work also in a reciprocal space defined by three vectors a∗, b∗

, c∗ such as
a∗ • a = 2π, b∗ • b = 2π, c∗ • c∗ = 2π, and the k wavevector should have
three components in this space. The Brillouin zone would become a surface
or a volume, and the Fermi level a Fermi surface. But the basic concepts, elab-
orated here with 1D examples, would remain. We shall introduce the necessary
modifications when appropriate in the book.

Nevertheless, before facing physical properties in the following chapters we
need to tune our ‘one-electron’ view of the solid, rather optimistically, with
some more delicate considerations on electronic repulsion and some of its
consequences.

1.5 Effects of interelectronic repulsion
We now tackle the most difficult problem: the explicit introduction of interelec-
tronic repulsion. The electrostatic (Coulomb) repulsion between two electrons,
whatever their spins, impedes them to be in the same place; the positions of
electrons are correlated, which can also be described as the electrons being
surrounded by a Coulomb hole. In this section the goal is double: (i) to go
beyond a qualitative description of the electronic structure to reach quantitat-
ive results, in particular on the wavefunctions and on the energy, taking into
account interelectronic repulsions; and (ii) to introduce the spin dimension in
the study of polyelectronic systems, through the example of two electrons on
two centres and comparing their singlet (↑↓) and triplet (↑↑) behaviour.

1.5.1 Position of the problem

1.5.1.1 Hamiltonians
It is a well-known fact in quantum chemistry that the existence of the interelec-
tronic repulsion renders impossible the exact solution of the Schrödinger
equation for a polyelectronic system. Indeed, the general Hamiltonian for
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an N-electron system in the frame of the Born–Oppenheimer approximation
(fixed nuclei) can be written as a sum of three parts:

H = H0 + H1 + H2 (1.56a)

H0 =
N∑

i = 1

h(i) =
N∑

i = 1

K(i) + U(i) (1.56b)

H1 =
N∑

i = 1

N∑
j > i

e2

rij
(1.56c)

H2 =
N∑

i = 1

ζ (i)l(i)s(i) (1.56d)

We are already familiar with the one-electron part H0, the sum of the kinetic
K and potential U energies of single electrons i. H1 is related to interelectronic
repulsion between two electrons i,j. It is our main concern here. Finally, H2

is the Hamiltonian related to spin–orbit interaction (ζ). Until now we have
considered that there is no interaction between the orbital momentum of the
electron, defined by its operator l(i) (and the quantum number l(i)) and the spin
momentum operator s(i) (and the quantum number s(i)). But this is not the case,
particularly when the atomic number Z is increasing. For low-Z atoms the H1

term is dominant over H2, and H2 can be treated as a perturbation. For high-
Z atoms the contrary is true. In the following, we centre on the Hamiltonian
formulated as

H = H0 + H1 (1.57)

Due to the interelectronic repulsion term H1, the system is not separable into
one-electron descriptions. For example, in a two-orbital (φa and φb) and two-
electron (1, 2) system, where exist electronic configurations such as φa(1)φb(2)
(electron 1 in φa and 2 in φb) or φa(2)φb(1) (electron 2 in φa and 1 in φb)
or φa(1)φa(2) (both electrons 2 in φa), the calculations with the two-electron
operator H1 (= e2/r12 in this case), imply new two-electron integrals such as
those defined in Table 1.10.

All of them are positive, since the electrostatic repulsion between the two
electrons destabilizes the system. The j integral corresponds simply to the self-
repulsion of the electronic configuration where electron 1 is in φa and electron
2 is in φb. In physics it is often termed V. The integral is the same using the

Table 1.10 Definition of three two-electron integrals.

Definition Usual name and other abbreviations

j = <φa(1)φb(2)
∣∣e2/r12 |φa(1)φb(2)> two-centre self-repulsion integral (1.58a)

k = <φa(1)φb(2)
∣∣e2/r12 |φa(2)φb(1)> exchange integral (1.58b)

j0 = <φa(1)φa(2)
∣∣e2/r12 |φa(1)φa(2)> one-centre self-repulsion integral (1.58c)
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φa(2) φb(1) configuration. The exchange integral k is more subtle. It corres-
ponds to the repulsion of φa(1) φb(2) with the configuration φa(2) φb(1), where
electrons 1 and 2 have changed their orbitals (hence the name ‘exchange’ integ-
ral). The j0 integral corresponds to an excited configuration where the two
electrons are in the same orbital (φa). The j0 integral simply measures the self-
repulsion of the φa(1)φa(2) electronic configuration. The integral is the same
using the φb(1) φb(2) configuration. In physics it is often termed U.

Technically speaking, it is a many-body problem. No exact analytical solu-
tion exists, since r12 depends on both φa and φb, which precludes a separation
of variables. However, it is possible to approach the exact solutions as much
as possible by means of approximations. The only difficulty is to find the most
efficient method; that is, a method for which the computing effort does not
grow too rapidly with the complexity of the molecule.

It is useful to introduce here the concept of overlap density. The exchange
integral k in eqn. (1.58b) can be rewritten:

k = <φa(1)φb(2)
∣∣e2/r12 |φa(2)φb(1)>

= e2

∫
φa(1)φb(1)φa(2)φb(2)

r12
d r1d r2 = e2

∫
ρ(1)ρ(2)

r12
d r1d r2

(1.59)

which evidences the product:

ρ(i) = φa(i) φb(i) (1.60)

which is termed the overlap density, defined at each point in space.

1.5.1.2 Polyelectronic wavefunctions, the Pauli principle, and Slater
determinants

In this section we state the general principles of construction of polyelectronic
wavefunctions. First we return to the Pauli exclusion principle and propose
a general formulation that will lead us to a useful tool to express N-electron
wavefunctions: the Slater determinant.

The total N-electron wavefunction �(1,2,3 . . .i,j, . . .N) is a mathemat-
ical object whose square gives the probability to find simultaneously electrons
1,2,3, and so on, in different volume elements. It depends on the coordinates
of the N-electrons, the spatial ones r(i) and the spin ones σ(i), that we term x(i)
(i varying from 1 to N). The spin functions are denoted α or β, corresponding
to mS = 1/2 (or spin up ↑) and mS = – 1/2 (or spin down ↓) respectively. As stated
in Section 1.2.3, the electrons are indistinguishable, so that the interchange of
two electrons i and j must not change the state of the system; that is, the square
of the wavefunction must not change. Actually, since electrons are fermions,
the wavefunction must be antisymmetric with respect to the interchange of two
electrons, so that, taking N = 2 for simplicity:

�(x(1), x(2)) = −�(x(2), x(1)) (1.61)

This expression (see also eqn. (1.10)) is related to the Pauli principle, since
� vanishes when the spatial and spin coordinates of the two electrons are the
same.

When the spin–orbit coupling is absent (no H2 term in the Hamiltonian
(1.56a)), the electronic wavefunction is an eigenfunction of a Hamiltonian
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without spin variables. So, it can be written as a spin–orbital; that is, a product
of a spatial wavefunction (φ for an atom, ψ for a molecule) eigenfunction of
the Hamiltonian, by a spin function (σ for an atom, η for a molecule) to be
defined. For an electron i, in a spatial molecular orbital ψj(i), the molecular
spin–orbital numbered j is

χj(x(i)) = χj(i) = ψj(i)ηj(i) (1.62)

with ηj(i) = α(i) or β(i).
At this stage the spatial wavefunction can be either an atomic orbital or a

molecular orbital. The construction rules are perfectly general and apply to all
methods—in particular, the MO and VB methods defined in the following.

The one-electron orbital approximation consists in building approximate
spatial wavefunctions as the product of one-electron wavefunctions χj(i); that
is, for two electrons, χi(1) χj(2), where the subscript is the orbital numbering
and the parentheses indicate the electron numbering. χi(1) χj(2) . . . is termed
a Hartree product. But this wavefunction would not obey the Pauli principle,
because it is not antisymmetric with respect to the interchange of two elec-
trons (as previously). Thus we build an antisymmetric wavefunction termed
the Hartree–Fock wavefunction (�HF) as:

�HF = [χi(1)χj(2) − χi(2)χj(1)] (1.63a)

�HF can be rewritten under the form of a Slater determinant:

�HF = 1√
2!

∣∣∣∣χi(1) χj(1)
χi(2) χj(2)

∣∣∣∣ (1.63b)

The rows are labelled by the N-electrons (1 to 2), whereas the columns are
labelled by the N spin–orbitals (i, j). By generalization, for N-electrons, the
antisymmetric wavefunction is then given by a Slater determinant with rank N:

�HF = 1√
N!

∣∣∣∣∣∣∣∣
χi(1) χj(1) . . . . . . χk(1)
χi(2) χj(2) . . . . . . χk(2)
. . .
χi(N) χj(N) . . . . . . χk(N)

∣∣∣∣∣∣∣∣ (1.63c)

It is easy to check that interchanging two electrons corresponds to interchan-
ging two rows of the determinant (and therefore changing its sign): the Slater
determinant meets the requirement of antisymmetry. Having two electrons in
the same spin–orbital leads to two identical columns and the determinant is
zero: only one electron can occupy a spin–orbital, which fulfils the Pauli prin-
ciple. A convenient linear notation for a Slater determinant shows only the
diagonal elements and includes the normalization constant:

�HF = � = |χi(1) χj(2) . . . χk−1(N − 1)χk(N)| = |χ1χ2 . . . χN| (1.63d)

Such wavefunctions, built from orthonormal (that is, orthogonal and normal-
ized) spin–orbitals are normalized. Furthermore, if a Hartree product is an
electron-independent wavefunction (the electrons are fully independent), the
antisymmetrized Slater determinant introduces some exchange effect: it is
impossible to find two electrons with the same spin at the same place; that is,
the motion of two electrons with parallel spins is correlated—but the motion of



Effects of interelectronic repulsion 53

electrons with antiparallel spins remains uncorrelated, so that a single determ-
inantal wavefunction is an uncorrelated wavefunction. An electron is said to
be surrounded by a Fermi hole, as demonstrated in [1.15]. The main origin of
error in the Hartree–Fock approach is the absence of correlation among elec-
trons bearing opposite spins. The difference between the exact energy, Eexact

(non-relativistic), and the Hartree–Fock energy EHF is then termed correlation
energy, Ecorr (Ecorr = Eexact – EHF). Its computation is the goal of all the post-
Hartree–Fock treatments (see Section 1.5.2.3). We would like to emphasize
that if the correlation between electrons (place, spin, and so on) are due to
physical phenomena (Coulombic electronic repulsion, antisymmetry, the Pauli
exclusion principle, and so on), the correlation energy is not a physical quantity
but a measure of the energy error due to the neglect of correlation in a certain
approximation.

We now have the necessary tools for the rational construction of a polyelec-
tronic wavefunction. Its energy can be computed from the usual expression:

E =<�|H|�>/<�|�> (1.64)

where H is the complete Hamiltonian now including interelectronic repulsion,
and where the wavefunction itself can be improved by choosing extended basis
sets of orbitals and through the variational procedure. Many strategies exist,
however. The detailed description of even a part of the innumerable quantum
methods that have been devised in the last eighty years would be a tremendous
task, well beyond the scope of this book. Taking the risk of being extremely
schematic, we present in Fig. 1.38 a considerably simplified landscape of the
quantum methods.

Fig. 1.38
Schematic chart of the quantum methods
discussed in this section.
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In the next two sections we shall concentrate on the two ‘historical’ meth-
ods: molecular orbitals and valence bond. In common, they try to write the true
polyelectronic wavefunction, and then to extract properties through the con-
venient quantum-mechanical operators (Sections 1.5.2 and 1.5.3). A different
approach, based on electronic density—and not centred on wavefunctions—
the density functional theory (DFT), is presented in Section 1.5.4.

1.5.2 The quantitative molecular orbital (MO) method

The molecular orbital model relies on the definition of molecular orbitals as
a combination of atomic or symmetry orbitals. The quantitative MO method,
taking into account explicitly the interelectronic repulsion, requires two steps.
First, the electronic repulsion is introduced under the form of a mean field;
that is, a given electron is influenced by the average electronic density due
to all other electrons. This is the basis of the Hartree–Fock self-consistent
field procedure. The improvement is important but not sufficient, since it does
not describe correlation effects, due to the instantaneous repulsion between
electrons. Thus a second step is necessary, extending beyond Hartree–Fock
treatments. Presently, this is the most demanding step in terms of computing
power, since the length of calculations grows very rapidly with the number of
electrons in the molecule.

1.5.2.1 The Hartree–Fock and self-consistent field (SCF) methods
Our problem is to find a set of N occupied spin–orbitals {χa} (noted a, b, . . .)
that allows us to build a Slater determinant, obeying the Pauli principle:

|�> = � = |χaχbχc . . . χN| (1.65)

In the following, among the infinite number of spin–orbitals χj, the occupied
orbitals χa are written with a, b, . . , N indices and the unoccupied ones χr

with r, s . . . The spin–orbitals χi are orthonormal; that is, <χa |χb > = δab,
where δab is the Kronecker symbol, δab = 1 if a = b and = 0 if a 
= b. We look
for the best possible approximation to reach the ground state of the N-electron
system, �0, eigenfunction of the electronic Hamiltonian H (1.57), with the
lowest possible energy E0, applying eqn. (1.64). E0 and �0 can be obtained by
the variational method: χi and � depend on various parameters, which can be
optimized to satisfy the variational principle (∂E should be zero if we want E0

to be the minimum of E):

∂E = ∂<�|H|�>= 0 (1.66)

In the Hartree–Fock approach the electronic repulsion is taken explicitly into
account, while keeping the concept of spin–orbitals. The electron is assumed to
evolve in the field created by all nuclei of the molecule and the average charge
density created by all other electrons. The charge density ρ(r), in a closed-
shell molecule corresponding to a single determinant wavefunction, with N-
electrons distributed in doubly occupied orbitals � i, is defined as:

ρ(r) = 2
∑N/2

i = 1
|ψi(r)|2 (1.67)
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It is easy to find that the integral of the charge density over space is simply the
number of electrons N:∫

space

ρ(r)dr = 2
∑N/2

i = 1

∫
|ψi(r)|2 dr = N (1.68)

To present the essential arguments it is sufficient to take a two-electrons system
(electrons 1 and 2, spin–orbitals χa and χb). Mathematically, each spin–orbital
χa must be an eigenfunction of the Fock operator f:

f|χa >= εa|χa > or fχa = εaχa (1.69a)

In the Hartree–Fock equation (1.69a), εa is the eigenvalue—the energy—of the
spin–orbital |χa>, and f is the effective one-electron operator:

f(1) = h(1) + VHF(1) = h(1) +
∑

b
=a
[Jb(1) − Kb(1)] (1.69b)

h(1) = K(1) + U(1) = −1

2
∇2

1 −
∑

A

ZA

r1A
(1.69c)

Jb(1) χa(1) =

[∫
χ∗

b (2) χb(2)dx(2)

r12

]
χa(1) (1.69d)

Kb(1) χa(1) =

[∫
χ∗

b (2) χa(2)dx(2)

r12

]
χb(1) (1.69e)

h(1) is the one-electron operator describing the kinetic energy K(1) of electron
(1) and its potential energy U(1) = −∑

A

ZA
r1A

in the field of the various nuclei A.

VHF(1) is an effective one-electron operator, termed the Hartree–Fock poten-
tial. VHF(1) can be written as a difference of two operators Jb(1) and Kb(1),
defined by their effect when operating on the spin–orbital χa(1). Jb(1) and
Kb(1) are operators corresponding to the mean electrostatic repulsion of
electron 1 with all the other electrons in spin–orbitals χb 
= χa.

Their significance can be commented upon briefly, as follows. J and K are
reminiscent of the two-electron integrals j and k defined in relations (1.58), but
are effective one-electron operators defined in eqns. (1.69d,e). Jb(1) is an oper-
ator acting on the spin–orbital χa(1), and represents the average local potential
seen by the electron 1 at position r1, arising from an electron 2 in χb. Jb(1) is
a Coulomb operator. Kb(1) is instead an exchange operator. It is also acting on
the spin–orbital χa(1), but the average potential felt by electron 1 implies an
‘exchange’ between electrons 1 and 2, as shown in eqn. (1.69e).

In such a way, the description still uses one-electron functions, which are
solutions of (almost) independent eigen equations. However, since the know-
ledge of a given one-electron wavefunction requires the detailed knowledge of
all other one-electron wavefunctions, which themselves depend on the wave-
function of the considered electron, the system of equations can be solved only
by an iterative procedure starting from a reasonable set of guessed wavefunc-
tions. The procedure is then continued until a convergence is obtained, based
on a criterion such as the difference between successive values of the energy.
This method is known as the Hartree–Fock self-consistent field method.
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Returning to N-electron systems, after the minimization of the energy of
the determinant |�0> = |χa χb χc . . . χN|, we obtain eigenvalue equations
f|χa> = εa|χa> and an infinite set of eigenfunctions f|χj> = εj |χj> (with
j = 1, 2, . . . ∞). The energy εj (orbital energy) can be computed from:

εj = <χj|f|χj> (1.70a)

Replacing the Fock operator f by its expression (1.69b), one finds, after some
calculations, that:

εi = <χi|f|χi> = <χi|h + ∑
b

(Jb − Kb)|χi>

= <χi|h|χi> + ∑
b

(<χi|Jb|χi> − <χi|Kb|χi>)
(1.70b)

εi = <χi|h|χi> +
∑

b

(<ib|ib> − <ib|bi>) (1.70c)

Occupied orbitals:

εa = <a|h|a> +
∑
b 
=a

(<ab|ab> − <ab|ba>) (1.70d)

Vacant orbitals:

εr = <r|h|r> +
∑

b

(<rb|rb> − <rb|br>) (1.70e)

For occupied spin–orbitals, <a|h|a> is the kinetic energy and the energy of
attraction by all the nuclei, <ab|ab> is the two-electron Coulomb repulsion
energy j, and <ab|ba> is the two-electron exchange repulsion energy k (run-
ning over the remaining N – 1 electrons in occupied spin–orbitals). For the
unoccupied orbitals the result is the same but the interaction is now with all
the N-electrons of the occupied orbitals as if an electron were added to �0 to
give a N + 1 electronic configuration, εr being the energy of this supplementary
electron.

It is, then, almost straightforward to compute the total electronic energy E0.
A naïve conception would be to sum up the energies of the occupied orbitals:

N∑
a

εa =
N∑
a

<a |h| a> +
N∑
a

N∑
b

(<ab|ab> − <ab|ba>) (1.71a)

but actually, using the standard procedure, E0 = <�|H|�>:

E0 =
N∑
a

<a |h| a> +
1

2

N∑
a

N∑
b

(<ab|ab> − <ab|ba>) (1.71b)

E0 =
N∑
a

εa − 1

2

N∑
a

N∑
b

(<ab|ab> − <ab|ba>) (1.71c)

The factor 1/2 in eqn. (1.71b) avoids counting twice the electron–electron
repulsions present in eqn. (1.71a). Another form is eqn. (1.71c), which tells
us that the total electronic energy is the sum of orbital energies minus the
total repulsion energy, because adding orbital energies obtained by an SCF
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procedure would count twice the electron–electron repulsions. If we apply
relation (1.71b) to the case of the H2 molecule, where �0 = |χ1χ2| with
two spin–orbitals (χ1(1) = ψ1α = ψ1; χ2(2) = ψ1β = ψ̄1; N = 2), we obtain
simply for E0:

E0 = <χ1 |h| χ1> + <χ2 |h| χ2> + <χ1χ2|χ1χ2> − <χ1χ2|χ2χ1>

E0 = 2h + J12 − K12

(1.71d)
where the expressions are given for spin–orbitals. It is then useful to express
the energies as a function of the spatial orbitals ψ, amenable to numerical
computation. For the demonstration we use once more the simplest case of the
H2 molecule. Expression (1.71d) becomes, with ψ space orbitals:

E0 = <ψ1α |h| ψ1α> + <ψ1β |h| ψ1β>

+<ψ1α ψ1β|ψ1α ψ1β> − <ψ1α ψ1β|ψ1β ψ1α>
(1.71e)

The operators are not acting on the spin functions α and β, which are
orthonormal; that is:

<α|α> = <β|β> = 1; <α|β> = <β|α> = 0, <α β|α β> = 1,
<α β| β α> = 0

One obtains:

E0 = <ψ1 |h| ψ1><α|α> + <ψ1 |h| ψ1><β|β> + <ψ1ψ1|ψ1ψ1>

<α β |α β> − <ψ1ψ1|ψ1ψ1><α β|β α>

E0 = <ψ1 |h| ψ1> + <ψ1 |h| ψ1> + <ψ1ψ1|ψ1ψ1> = 2h1 + J11

(1.71f)

The expressions are related to spatial orbitals. We can observe that the
exchange integral K has disappeared from the expression due to the ortho-
gonality of the spins α and β. This is a general result: exchange integrals will
be zero when spins are opposite. Thus for different spins the repulsion is Jij,
while for like spins it is Jij – Kij (still positive). In other words, two electrons
always repel each other, but less so when they have like spins.

Eqns. (1.71e) can be extended to the general case of an N-electron closed-
shell Hartree–Fock function with N/2 space orbitals |�0> = |χa χb χc . . . χN|
= |ψ1ψ̄1ψ2ψ̄2 . . . ψN/2ψ̄N/2| (see [1.15] for a complete demonstration). The
expression of the energy becomes:

E0 = 2
N/2∑
i = 1

<ψi |h| ψi> +
N/2∑

i

N/2∑
j

(2<ψiψj|ψiψj> − <ψiψj|ψjψi>)

(1.71g)

E0 = 2
N/2∑
i = 1

hi +
N/2∑

i

N/2∑
j

(2 Jij − Kij) (1.71h)

If E0 is not the sum of the orbital energies ε, what is the meaning of an
orbital energy? A simple answer is that the orbital energy εd of a spin–orbital
χd represents the negative of the ionization energy Eion when one electron
is withdrawn from the occupied spin–orbital χd to reach an N – 1 electronic
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configuration with energy N−1Ed. An equivalent equation can be derived for the
fixation of one electron in a vacant orbital χt to obtain an N + 1 electronic con-
figuration and determinant. The orbital energy εt is the negative of the fixation
energy Efix.

Eion = N−1Ed − NE0 = −εd (1.72a)

Efix = NE0 − N + 1Et = −εt (1.72b)

The two relations can be demonstrated at the expense of some calculations and
within the approximation that the spin–orbitals remain the same in the ioniz-
ation process (frozen orbital approximation). Eqns. (1.72) are the expression
of Koopman’s theorem. Nevertheless, if Koopman’s theorem is a good first
approximation for experimental ionization energies, it is not the case for fixa-
tion energies, since Hartree–Fock calculations on neutral molecules often give
positive energies for vacant orbitals [1.15].

Eqn. (1.71h) has something else to tell us. To minimize the ground-state
energy of the molecule, the composition of the orbitals should be such that the
Jij integrals are as small as possible and the Kij as large as possible. How is
this feasible? By nature, both Jij and Kij integrals are positive. Kij is non-zero
only for spin–orbitals with the same spin. According to their definitions, the
integrals’ magnitude depends on the sum of products such as (cincjmφinφjm)2,
where n and m are numbering the atoms of the molecule. Jij and Kij are non-
zero if the molecular orbitals ψi and ψj have large coefficients on the same
atoms of the molecule (cin and cjn, for example). Therefore, to minimize the
energy of the molecule, spin–orbitals with the same spin tend to be centred on
the same atoms to maximize Kij, and spin–orbitals with opposite spins tend to
segregate in different parts of the molecule to minimize Jij. This observation is
the basis of the mechanism of spin polarization defined in the following using
the concept of unrestricted Hartree–Fock spin–orbitals (see Fig. 1.41) [1.15].

Density matrix ([1.15], p. 212)
At this stage it is useful to introduce the concept of the density matrix, com-

bining the expansion of a molecular orbital ψi =
N∑

i=1
ci φi with that of charge

density:

ρ(r) = 2
∑N/2

i = 1 ψ∗
i (r)ψi(r) = 2

∑N/2
i = 1

∑
ν c∗

νiφ
∗
ν(r)

∑
μ cμiφ

∗
μ(r)

= ∑
μν

[
2
∑N/2

i = 1 cμic
∗
νi

]
φμ(r)φ∗

ν(r)
(1.73a)

or

ρ(r) =
∑

μν
Pμνφμ(r)φ∗

ν(r) with Pμν = 2
∑N/2

i = 1
cμic

∗
νi (1.73b)

Pμν is the density matrix, related directly to the expansion coefficients ci.
It defines completely the charge density ρ(r) and the results of the HF closed-
shell calculations. The diagonalization of the matrix leads to eigenvectors
which are termed natural orbitals, and to eigenvalues which are the occupation
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He or H2
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3s

Spin 
orbitals

Atomic 
orbitals

Molecular 
orbitals

χa χb 1s 1s

He H2

Fig. 1.39
Hartree–Fock ground-state determinants
for a helium atom and an H2 molecule:
(a) spin–orbitals representation: |χa

χb>; (b) helium atom: |1s 1s >; (c) H2

molecule |ψ+ψ+ >. (Adapted from
[1.15].)

numbers—useful intermediates in quantum calculations. The density matrix is
used in the following to define the spin density and the related density matrices.

To summarize our steps up to now, the Hartree–Fock self-consistent field
(HF-SCF) procedure provides us with the way to find the best (within a vari-
ational procedure) ground-state determinant |�0> = |χa χb χc . . . χN| and
its energy E0, which is not the sum of the energy of the spin–orbitals εa. The
spin–orbitals are φ•σ for an atom or ψ•η for a molecule. For example, for a
helium atom, 1s2 (see Section 1.2.3) and the dihydrogen molecule ψ+ (1)ψ+ (2)
(see Section 1.3.1), the Hartree–Fock ground-state determinants, following the
spin–orbital scheme, are shown in Fig. 1.39. For helium, χa = 1sα and χb=
1sβ, whereas for H2, χa = ψ+α and χb = ψ+β (Fig. 1.39a), where the nature
of the spin (α, ↑ and β, ↓) is made explicit. The number of vacant spin–orbitals
χr depends on the number of orbitals in the basis set used in the Hartree–Fock
calculation (for helium, with a minimum basis of one 1s orbital, there is no
vacant χr; in H2, with a minimum basis set of two 1s, they will be two vacant
χr). Figures 1.39b (for He) and c) (for H2) shows completely equivalent repres-
entations using spatial atomic (He) and molecular orbitals (H2) and expressions
of the determinant using the spatial orbitals and the bar notations for β spins.

At this point it is useful to introduce some new definitions (Fig. 1.40).
When the HF-SCF determinant of an N-electron system with an even
number of electrons can be written as �0 = |χ1χ2 . . . χN−1χN > =
|ψ1ψ1ψ2ψ2 . . . ψN/2ψN/2 > corresponding to a singlet state, we have a closed-
shell HF-SCF ground-state determinant (Fig. 1.40a) in which all electrons

(a)

ψ1

ψr

ψ2

ψN/2

•
•

(b) (c) (d)

ψ1

ψr

ψ2

ψ3

ψs

(e)

•
•

•
•

ψ1

ψr

ψ2

ψ3

Fig. 1.40
(a) Closed-shell HF-SCF ground-state
determinant, |1�0> = |ψ1ψ1ψ2ψ2 . . .
ψN/2ψN/2>; (b) open-shell HF-SCF
doublet ground-state determinant, |2�0>

= |ψ1ψ1ψ2ψ2ψ3>; (c) open-shell
HF-SCF triplet ground-state determ-
inant, |3�0 >= |ψ1ψ1ψ2ψ3>; (d)
singly excited determinant, |1�r

2 >=
|ψ1ψ1ψ2ψrψ3ψ3>; (e) doubly excited
determinant, |1�rs

23> = |ψ1ψ1ψ2ψr

ψsψ3>.
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occupy orbitals as pairs with opposite spins. When the determinant corres-
ponds to one unpaired electron (doublet, Fig. 1.40b) or a triplet (Fig. 1.40c),
we have an open-shell ground-state determinant. When one (two) electron(s)
is (are) promoted from one (two) χa occupied orbital(s) to one (two) virtual χr

orbital(s), we have a singly (doubly) excited determinant (Figs. 1.40d and e).
The description of open-shell systems is more complicated than that of

closed-shell systems, because one has to write the wavefunction as a combin-
ation of several Slater determinants. Unfortunately, this is the most interesting
case for us, because a number of processes studied in this book, such as
exchange magnetic coupling (in Chapter 2) or electron transfer (in Chapter 3),
imply open-shell systems.

The determinants in Fig. 1.40 are said to be restricted determinants because
the α and the β spins are constrained to have the same spatial orbital ψ; that is,
ψ and ψ have the same energy. This is also the case in Fig. 1.41a, related to a
lithium atom. When ψ and ψ are allowed to have different energies and spatial
definition, the determinant is unrestricted (Fig. 1.41b). This is an important
step on the way to taking into account explicitly the interelectronic repulsion.
Indeed, the 1sα electron has an exchange interaction with 2sα, whereas the
1sβ electron has not. Unrestricted spin–orbitals have different spatial orbitals
which allow us to relax this constraint and lower the energy of the system.
Figure 1.41(c, d) illustrates the case of an AB open-shell molecule with three
electrons. The price to pay to accomplish this process is that the set of orthonor-
mal spatial orbitals {ψα

i } is no more orthonormal to the set of orthonormal
spatial orbitals {ψβ

i }:

<ψα
i |ψα

j > = δij and <ψ
β

i |ψβ

j > = δij but <ψα
i |ψβ

j > 
= 0 = Sαβ

ij (1.74)
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Fig. 1.41
Lithium atom. (a) Restricted Hartree–
Fock (RHF) doublet determinant
|2�RHF > = |φ1sφ1sφ2s >; (b) unres-
tricted Hartree–Fock (UHF) doublet

determinant |2�UHF > = |φα
1sφ

β

1sφ
α
2s >.

AB molecule. (c) and (d): the same
definitions in the AB molecule with a
net spin S = 1/2; (e) spin polarization
mechanism in AB, emphasizing the
different spatial distribution of α and β

spin–orbitals; (f–h) M–L metal–ligand
bond with a net spin S in the metal
orbital; (f) no spin polarization; (c) spin
polarization of the bonding orbital M–L
according to (e); (g) resulting spin
polarization on the atoms M (positive)
and L (negative).
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Furthermore, in open-shell systems there is some spin contamination between
the levels.

To comment further on Fig. 1.41(e–h) it is appropriate to introduce the
concepts of charge density and spin density.

Charge density and spin density
Following IUPAC, the spin density is the unpaired electron density. An elec-
tron with a spin α (↑) is described at some point (r), by the molecular orbital
ψi

α(r). The probability of finding this electron in the elemental volume dr
is |ψi

α(r)|2.dr. The electronic (charge) density is |ψα(r)|2. If there are Nα

electrons with spin α, the total charge density of spin α is:

ρα(r) =
∑Nα

i

∣∣ψα
i (r)

∣∣2 (1.75a)

The same relation applies for the Nβ electrons with spin β (↓):

ρβ(r) =
∑Nβ

i

∣∣∣ψβ
i (r)

∣∣∣2 (1.75b)

Then the total charge density is the sum: ρ(r) = ρα(r) + ρβ(r), and is always
positive. By contrast, the spin density is the difference: ρS(r) = ρα(r) – ρβ(r),
and can be positive (in regions where there are more electrons with spin α than
with spin β), or negative in the reverse case.

Let us consider the molecular system AB with three electrons and a net
spin S = 1/2 (Fig. 1.41(e–h)) [1.16c]. In an unrestricted Hartree–Fock (UHF)
approach, it is represented by three spin–orbitals (e). The unpaired electron
(α spin) is in the SOMO ψα

i . We look at what happens when the α electron is
located mainly on A. To minimize the energy of AB by increasing the exchange
integrals Kij, the presence of an α spin in the SOMO ψα

i ‘polarizes’ the ψj

HOMO and favours more α spin density on A (ψα
j ). At the same time, to

minimize the energy by decreasing the repulsion integrals Jij, there is more β

spin density on B (ψβ

j ). The unrestricted Hartree–Fock procedure allows the
spin–orbitals to have a different spatial localization, with ψα

j more centred on

A and ψ
β

j more centred on B. When applied to an M–L metal–ligand situation
with a net spin on the metal, the spin polarization of the bonding orbital M–
L (g) is preferred to an equal distribution of α and β spins (f). It results in
spin polarization on the atoms M (positive) and L (negative). Spin-polarized
neutron diffraction NMR, XMCD are good methods for measuring the atomic
spin densities (see Section 2.3.3).

The HF–SCF method can thus be stated as two variants: restricted Hartree–
Fock (RHF), and unrestricted Hartree–Fock (UHF)—the latter being recom-
mended for dealing with open-shell systems (see Chapter 2).

1.5.2.2 Semi-empirical computational methods: an overview
Before going further we present some approximate semi-empirical computa-
tional methods, whose objective is to shortcut the (long) process of computing
SCF MO energies and wavefunctions. They speed up the calculations, so that
larger systems can be studied. They differ in the way of computing, in a prac-
tical way, the numerous integrals associated with electronic repulsions. These
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methods are listed in the following in order of increasing refinement. The first
ones (Hückel and extended Hückel) do not compute these integrals at all, but
compensate the error by an empirical choice of other parameters. They have
been presented already in Section 1.3.5, and constitute the basis of simple
reasoning based on the construction and filling of molecular orbitals.

Hückel method. This applies to π systems in planar molecules (butadiene,
benzene . . .): a one-electron effective Hamiltonian is written without explicit
treatment of the interelectronic repulsion. The π MOs are linear combina-
tions of atomic orbitals (LCAO) and the energies computed from a secular
determinant. Overlaps are neglected, and the electronic interaction (denoted
β) is considered only between nearest neighbours. This method is now used
mainly for pedagogical purposes.

Extended Hückel method. This applies to all molecules, planar or not.
It was introduced by M. Wolfsberg and L. Helmholtz in 1952 and given a
strong impetus by R. Hoffmann in the 1960s, to become a widespread and
popular method. It considers valence electrons only. The valence electrons
Hamiltonian is a one-electron one (1.76a), again without explicit treatment
of the interelectronic repulsion.

H =
∑

i valence

Heff(i) (1.76a)

φs(r) = Ae−ζ r with A = Anlm(r, θ, ϕ) = [2ζ /a0]1/2

[(2n!)]1/2
rn−1Ylm(θ, ϕ) (1.76b)

Heff(i)φ(i) = εiφ(i) (1.76c)∑
s

[Heff
rs −εiSrs)csi] = 0 r = 1, 2, . . . (1.76d)

Hij = KSij
(
Hii + Hjj

)
/2 (1.76e)

Evalence =
∑

i

εi (1.76f)

The MOs are LCAOs of valence Slater-type orbitals φs with semi-empirical
A and ζ orbital exponents (eqn. (1.76b)). The energies are computed using
secular equations, including all the overlaps between atoms (eqns. (1.76c) and
(1.76d)). The Hii parameters are the orbital energies taken as the valence-state
ionization potential (VSIP, ionization potential of the atom in the valence state
that it presents in the molecule). The Hij parameters are computed through
eqn. (1.76e) (with the K factor between 1 and 3, often = 1.75). There is no
SCF step, and the total energy is the sum of orbital energies (eqn. (1.76f)).

The method is simple and efficient, and free user-friendly programmes are
available. The method provides a very good approximation of the ‘shapes’ of
MOs and a rough approximation of MOs energies. It has been extended to
calculations of the band structure of solids with the term tight-binding model
(see Section 1.4). It has been strongly criticized, since serious discrepancies are
observed in the quantitative computations of distances, geometries, transition
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energies, and even energies (the delocalization of electrons in the MOs is over-
emphasized). However, it is still the basis of many qualitative reasonings about
structures and reactivity of molecules (in particular, the Woodward–Hoffmann
rules).

Pariser–Parr–Pople method (PPP). This is the simplest SCF method, of his-
torical interest. It applies to planar systems, for which the σ/π separation is
complete. The π system is treated with the two-electron repulsion terms, with
the SCF procedure.

CNDO, INDO, and NDDO methods. These SCF methods were designed by
Pople and coworkers, improving the two-electron PPP method. The goal is to
reproduce the results of ab initio calculations with much less computational
time. The methods treat only valence electrons, taking into account interelec-
tronic repulsion but neglecting the differential overlap (NDO): for CNDO
(complete neglect of differential overlap) the neglect is complete (Srs = δrs

and the repulsion integrals <rs|tu> = <rr|tt>, even on the same atom); each
atom (except hydrogen) have several basis valence AOs; for INDO (incom-
plete neglect of differential overlap), the repulsion integrals on the same atom
are taken into account, that improves the calculation when the electron spin
distribution is important (calculation of EPR spectra . . .); for NDDO (neglect
of diatomic differential overlap) the neglect bears on the overlap between AOs
on different atoms; the method was further developed as MNDO (Modified
NDO). Variants suitable for calculations of electronic spectra include some
configuration interaction. They are suffixed with /S (for example, INDO/S).

MINDO, MNDO, AM1, MNDO-PM3, SINDO1, and ZINDO methods
(Modified INDOs). These were implemented by Dewar and coworkers, not
necessarily to reproduce the ab initio SCF results, but to compute molecu-
lar binding energies usable by chemists. The methods focus, therefore, on the
modification of the preceding methods and on the choice of empirical para-
meters suitable for reproducing experimental physical quantities such as heats
of formation, molecular geometries, and properties of ground-state organic
molecules or potential-energy surfaces of chemical reactions. The MINDO/1,
2, 3 and MNDO and their derivatives AM1 (Austin Model 1) and PM3 (with
new parametrization) derivatives are various generations of the programmes
extending the accuracy of the calculations due to improved parameters defined
for more chemical elements. They are contained in computer packages such as
MOPAC and AMPAC. Results have been improving with time. The SINDO1
(symmetrically orthogonalized INDO) method was designed by Nanda and
Jug, with symmetrically orthogonalized AOs and pseudo-potentials to simu-
late the inner-shell electrons. Finally, ZINDO methods (Zerner’s intermediate
neglect of differential overlap) was designed by M. C. Zerner to treat spectro-
scopic properties—in particular, for transition elements. The main criticism of
these methods bears on the always present temptation of overparametrization.

1.5.2.3 Beyond Hartree–Fock: treatment of electron correlation
At the present stage we dispose of SCF MO computed with the best comprom-
ise between speed and accuracy. Is this the end of the story? Alas, no! It is
a well-known weakness of molecular orbital theory that it does not describe
electron correlation, due to the fact that it is a monodeterminantal method.



64 Basic concepts

This is redhibitory in particular for weak interactions such as those occurring
during a bond dissociation process. This can be realized readily when looking
at the ground-state wavefunctions of the dihydrogen molecule HAHB, where
the two electrons are paired in the bonding MO ψ1. At the Slater determinant,
|χ1χ2| = |ψ1η1ψ1η2| corresponds the spatial wavefunction �+:

�+ = N+ψ1(1)ψ1(2) = N+[φa(1) + φb(1)][φa(2) + φb(2)] (1.77a)

�+ = N+{[φa(1)φb(2) + φb(1)φa(2) ]+[ φa(1)φa(2) + φb(1)φb(2)]} (1.77b)

�+ = N+[�covalent + �ionic] (1.77c)

The first term in eqn. (1.77b) is covalent (one electron per atom; see
Section 1.5.3), whereas the second term is a sum of the ionic terms HA

+HB
–

or HA
–HB

+, where the two electrons are on the same atom. The wavefunc-
tion �+ is therefore the sum of two terms, with equal weight—one covalent
�covalent and one ionic �ionic, as shown in eqn. (1.77c). The situation persists
whatever the distance between HA and HB. The presence of the ionic terms
leads to a wrong description of the real dissociation situation, which obvi-
ously corresponds to two neutral atoms, HA

• + HB
• . To alleviate this difficulty,

the standard remedy has been for many years to write the wavefunction using
several determinants (multiconfigurational SCF wavefunctions—MCSCF), or
in other words, to perform configuration interaction (CI). Thus the total
electronic wavefunction � is developed as a function of several monode-
terminantal wavefunctions �i, corresponding to the ground-state determinant
and to excited ones. In the case of a closed-shell singlet system, using the
notations introduced before:

1� =
∑

i
λi

1�i =
∑

λ0

∣∣1�0 > + λ1

∣∣1�r
2 > + λ2

∣∣1�rs
23 > + · · ·

(1.78)
where the λi coefficients can be obtained by a variational procedure. The
process can be illustrated by returning to the H2 molecule. The ground-state
configuration and the singly and doubly excited states are shown in Fig. 1.42A.
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Fig. 1.42
Electronic configurations and states of an
H2 molecule as described in the frame
of MO and VB models: (A) Hund–
Mulliken (MO) scheme; (B) Heitler–
London (VB) scheme, excited states; (C)
Heitler–London (VB) scheme, ground
state.
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The only excited state which presents the same symmetry 1�g as the ground
state is the doubly excited one which allows their interaction (Fig. 1.42):

�− = N−ψ2(1)ψ2(2) = N−[φa(1) − φb(1)][φa(2) − φb(2)] (1.79a)

�− = N−{[φa(1)φa(2) + φb(1)φb(2) ]−[ φa(1)φb(2) + φb(1)φa(2)]} (1.79b)

�− = N−[−�covalent + �ionic] (1.79c)

The interaction of the two determinants (configurations, states) S0 and S2

should improve the wavefunction and ground state (1� = �+ + λ2�–), where
the fraction of the ionic terms has been tuned.

For a closed-shell molecule with a large HOMO–LUMO separation, the
dominating � describing the ground state is the one for which all electrons
occupy the orbitals following the Aufbau principle. But things are more com-
plicated when the HOMO–LUMO separation is weak and when considering
excited states. For such cases, the mixture of one-determinant wavefunctions
is so important that the notion of orbitals and their occupation tends to vanish.
We shall discuss this point in Section 2.6.

Although it is theoretically possible to reach excellent approximations of
the exact polyelectronic wavefunction and of the corresponding quantities
(total electronic energy) by this procedure, in practice the calculations are
extremely heavy. Many methods have been described in the literature to reach
the best compromise between accuracy and practicability of computation, and
the reader should consult books such as [1.15] and [1.16] for more details.
Note that with present computational methods it is this post-Hartree–Fock
step which is the most time-consuming. This derives from the fact that a
correct treatment by configuration interaction can mix as many as 104–106

excited-state configurations with the ground-state configuration.

Perturbation technique
Perturbation relies on the simple idea that the problem to be solved is only
slightly different from one which is already solved exactly. It starts with the
partition of the Hamiltonian (H = H0 + λV), where the reference part H0

corresponds to the already solved problem, and V is a perturbation, small
compared to H0. λ is a parameter determining the strength of the perturba-
tion (λ = 0, unperturbed, λ = 1, real system). The Schrödinger equation for
the reference system is:

H0�i = Ei�i i = 0, 1, 2, . . . ∞ (1.80a)

and for the perturbed system:

H� = W� (1.80b)

The solutions �i of H0 build a complete orthonormal set. For the ground state
and time-independent perturbation, when λ = 0, �= �0, and W = E0. When
λ 
= 0, the energy W and the wavefunction � are written as an expansion at
different powers of λ:

� = λ0�0 + λ1�1 + λ2�2 + λ3�3 + · · · (1.80c)
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W = λ0W0 + λ1W1 + λ2W2 + λ3W3 + · · · (1.80d)

We check that for λ = 0, �0 = �0, and W0 = E0, this is the zeroth order,
unperturbed wavefunction �0 and energy W0. �1 and W1 are the first-order
corrections, �2 and W2 the second-order corrections, and so on. Taking care
of working with normalized wavefunctions 〈� | �0〉 = 1, it is possible to
use eqns. (1.80a)–(1.80d) to derive the nth-order perturbation equations by
gathering the terms having λ at the same power:

λ0 : zeroth order H0�0 = W0�0 (1.80e)

λ1 : first order H0�1 + V�0 = W0�1 + W1�0 (1.80f)

λ2 : second order H0�2 + V�1 = W0�2 + W1�1 + W2�0 (1.80g)

λn : nth order H0�n + V�n−1 =
∑n

i = 0
Wi�n−i (1.80h)

The nth-order energy correction follows:

Wn = 〈�0| V |�n – 1〉 (1.80i)

In this approach, the (n–1)th wavefunction is needed to obtain the nth one.
As the first-order equation has two unknowns, a further hypothesis is needed.
In the frame of the Rayleigh–Schrödinger perturbation theory, the unknown
first-order wavefunction �1 is expressed as a linear combination of the
functions of the unperturbed Schrödinger equation �i:

�1 =
∑

i
ci�i (1.80j)

Hence (after eqn. (1.80f)):

(H0 − W0)
∑

i
ci�i + (V − W1)�0 = 0 (1.80k)

and, after multiplying eqn. (1.80k) on the left by �j 
= �0, and integrating:

W1 = 〈�0 |V |�0 〉 (1.80l)

cj =
〈
�j

∣∣V |�0〉
E0 − Ei

(1.80m)

The energy’s first-order correction is therefore an average of the perturbation V
on the unperturbed wavefunction �0. We can obtain similarly the expressions
of W2 and �2, using eqn. (1.80k):

�2 =
∑

i
di�i (1.80n)

(H0 − W0)
∑

i
di�i + (V − W1)

∑
i
ci�i − W2�0 = 0 (1.80p)

W2 =
∑

i
ci 〈�0| V |�i〉 =

∑
i
=0

〈�0| V |�i〉 〈�i| V |�0〉
E0 − Ei

(1.80q)

di =
∑n

i 
=0

〈
�j

∣∣V |�i〉 〈�i| V |�0〉
(E0 − Ei)(E0 − Ej)

−
〈
�j

∣∣V |�0〉 〈�0| V |�0〉
(E0 − Ej)2

(1.80r)
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And so on for higher-order perturbations, which increase in complexity. The
main point is that the corrections can be expressed by applying the perturbation
operator over unperturbed wavefunctions �i and unperturbed energies Ei.

The consistency of the process at the different perturbation orders is checked
through a diagrammatic representation proposed by Feynman. The advantage
over configuration interaction is a faster convergence, since the successive cor-
rections are usually ranked in order of decreasing energies. The method is used
by physicists to describe large systems (with many bodies), and it is therefore
commonly termed many-body perturbation theory (MBPT). The methods used
most commonly are referred to as Møller–Plesset methods, with corrections to
second or fourth order (MP2 and MP4 respectively), which are presented and
used in Section 2.6.3.2.

1.5.3 The valence bond (VB) model: comparison
with the MO model

1.5.3.1 The valence bond (VB) model
The valence bond model takes its origin in the concept of electron pair pro-
posed by G. N. Lewis, in his pioneering work of 1916, to describe the chemical
bond, in its quantum equivalent suggested by Heitler and London in 1927 for
the hydrogen molecule, and its generalization to polyatomic molecules by
Linus Pauling during the 1930s [1.17].

To present it, let us take again the example of the H2 molecule. When the two
atoms (A and B) are far away (at infinite distance), a first description corres-
ponds to electron 1 in atomic orbital φa or a (A) with spin α, whereas electron
2 is in atomic orbital φb or b (B) with spin β (configuration a1↑ b2↓). If elec-
trons 1 and 2 are exchanged (but not the spins, configuration a2↑b1↓), the
situation can be described by the determinant |ab| (1.81a). Since the system is
fully symmetric, there is no reason to constrain the α spin to be only on A,
whereas spin β is only on B. The determinant |a b| (1.81b), where the spins
are allowed to exchange (configurations a↓ b↑), is as valid as the first one.
Therefore, the Heitler–London function �HL is written as the sum of the two
determinants (1.81c), with a normalization term, because the two orbitals a and
b have an overlap integral S (or in other words, because the two determinants
are not orthogonal). Then, �HL is written as the product of a space function by
a spin function (1.81d):

|ab̄| = [a(1)b(2)α(1)β(2) − a(2)b(1)α(2)β(1)] (1.81a)

|āb| = [a(1)b(2)β(1)α(2) − a(2)b(1)β(2)α(1)] (1.81b)

�HL = 1√
2(1 + S2)

(∣∣ab̄
∣∣ + |āb|) (1.81c)

�HL = 1√
2(1 + S2)

[a(1)b(2) + a(2)b(1)][α(1)β(2) − β(1)α(2)] (1.81d)

An important remark is that �HL obeys the antisymmetry Pauli principle, the
space function being symmetric under the interchange of electrons, whereas
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the spin function is antisymmetric. A second remark is that �HL describes a
symmetric singlet state, S = 0 (1�g).

The corresponding energy EHL (or E+, reminiscent of the + sign in the space
function) can be found at the expense of some tedious but simple calculations
(using expressions (1.57), (1.58), and (1.81d)), as:

EHL(S=0) = E+ = <�HL|h(1) + h(2) + e2

r12
|�HL>/<�HL|�HL> (1.82a)

E+ = {2 α + 2 βS + j + k}/ (1 + S2
)

(1.82b)

We should remember that the one-electron Hamiltonian h(i) includes, in the
potential part, the attraction of electron 1 by all the nuclei, so that α becomes
equal to the energy of the hydrogen atom only at infinite distance.

A further insight into valence-bond theory can be gained by looking at the
other electronic configurations and determinants which can be built: |ab|–|a b|,
|a b|, |a b|, |a a|, and |b b|, shown in Fig. 1.42 and eqn. (1.83):

�− = 1√
2(1 − S2)

(∣∣ab̄
∣∣ − |āb|) (1.83a)

�− = 1√
2(1 − S2)

[a(1)b(2) − a(2)b(1)][α(1)β(2) + β(1)α(2)]

= �−(S=1, MS=0)

(1.83b)

We observe that �– obeys the antisymmetry Pauli principle, the space func-
tion being now antisymmetric under the interchange of electrons whereas the
spin function is symmetric, so that �– describes the MS = 0 component of an
antisymmetric spin triplet state (u symmetry), S = 1, 2S + 1 = 3 (3�u). The
MS = ± 1 components of the triplet are

|ab| = �−(S=1, MS=1) = 1√
2(1 − S2)

[a(1)b(2) − a(2)b(1)][α(1)α(2)] (1.83c)

∣∣āb̄
∣∣�−(S=1, MS=−1) = 1√

2(1 − S2)
[a(1)b(2) − a(2)b(1)][β(1)β(2)] (1.83d)

|aā| = a(1)a(2)[α(1)β(2) − α(2)β(1)] (1.83e)

|bb̄| = b(1)b(2)[α(1)β(2) − α(2)β(1)] (1.83f)

The last two determinants (1.83e–f and Fig. 1.42B) describe two new con-
figurations, termed charge transfer configurations since they correspond to
an electron transfer from HA to HB or from HB to HA (or ionic configura-
tions HA

+HB
– or HA

–HB
+). They are true spin eigenfunctions. A simple linear

combination leads to the states 1�g and 1�u:
1�g|aā |+| bb̄| = [a(1)a(2) + b(1)b(2)] [α(1)β(2) − α(2)β(1)] (1.83g)

1�u|aā |−| bb̄| = [a(1)a(2) − b(1)b(2)] [α(1)β(2) − α(2)β(1)] (1.83h)
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The states’ energies, after calculations similar to those for E+, are written
in eqns. (1.84a)–(1.84c) and allow us to compute the singlet-triplet splitting
EST = ES – ET = E+ – E–:

Triplet 3�u (from eqn. (1.72b)):

E (3�u) = E− = {2 α − 2 βS + j − k}/ (1 − S2
)

(1.84a)

Singlet 1�g (from eqn. (1.72g)):

E (1�u) = {2 α + 2 βS + j0 + k}/ (1 + S2) (1.84b)

Singlet 1�u (from eqn. (1.72h)):

E (1�g) = {2 α − 2 βS + j0 − k}/ (1 − S2) (1.84c)

The singlet–triplet gap EST from eqns. (1.82b) and (1.84a) is:

E+ − E− = [2k + 4 βS − 2S2(2 α + j)]/
(
1 − S4

)
(1.84d)

EST, at the first order in S, is: EST ≈ 2k + 4βS (1.84e)

We shall use these expressions, obtained very simply in the frame of the VB
model, in Chapter 2. Particularly, the last expression of the singlet–triplet gap
(1.84e)—an approximation at the first order in S—will be particularly useful
for the understanding the magnetic properties. Remembering that integrals α, β
are negative and integrals S, j, j0, and k are positive, it becomes obvious that
the two states 1�g and 3�u arising from the ground-state determinants |ab| and
|a b| are far below in energy than the ionic states 1�u and 1�g resulting from
electron transfer (since j0 >> j, k). Furthermore, among the lower 1�g and
3�u, 1�g is the ground state, since βS is negative and |2 βS| > k, when S 
= 0.
The ground state of H2 is a singlet, in agreement with experiment and com-
mon knowledge. In addition, when the molecule dissociates the VB energy
E+ tends to the energy of two separated hydrogen atoms, in contrast to the
MO model, which gives a wrong dissociation energy. Nevertheless, the VB
energy computed around the experimental equilibrium distance of H2 is not
fully satisfying: the wavefunction is too covalent, and the electrons are too
localized. In some way we need to introduce some ionic configuration (H+H–

or H–H+), as the exact opposite of the MO model. The combination with the
excited ionic 1�g state of Fig. 1.42 is an obvious solution. This is discussed
further in Section 1.5.3.3, where we compare the MO and VB approaches.

The VB model, corresponding to localized bonding, was extensively used
for polyatomic molecules by Pauling and others. Figure 1.43 displays very
simple examples of the VB description of chemical bonding through the so-
called canonical structures. The total wavefunction � is then written as a linear
combination of the wavefunctions of the canonical structures. Even if these
structures do not correspond to any physical reality, the representation in terms
of localized bonding is anchored more strongly in the chemists’ intuition and
tradition than the delocalized MO scheme.

One can realize from these examples some of the drawbacks of the VB
method, in its simplest expression, to implement calculations: for the H2

molecule (one bond), when the MO model works with one determinant
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Fig. 1.43
Valence-bond representations (canonical
structures) of some simple molecules:
(A) H2 molecule, covalent and ionic
forms; (B) H2 molecule, making expli-
cit the exchange of spins; (C) allyl rad-
ical and associated wavefunctions; (D)
benzene molecule: the first two are the
Kekulé structures with the associated
wavefunctions, and the last three are the
Dewar ones.

�HF = |χ1 χ2 |, the VB model needs two: �HL = 1√
2(1+S2)

(∣∣ab̄
∣∣ + |āb|). With

n bonds, the number of VB determinants reaches 2n. Furthermore, contrary to
the MO model where the MOs are orthogonal, the VB basis atomic orbitals
φa, φb . . . are non-orthogonal, and the non-zero overlap S increases the
heaviness of the calculations.

1.5.3.2 Generalized valence bond (GVB)
The need to improve the VB model near the bonding equilibrium distance led
to the introduction of a generalized VB model which basically consists (taking
once more the useful example of the H2 molecule) in replacing the simple
�VB wavefunction (1.81d) by a slightly modified one, �GVB, in eqn. (1.85a)
where the simple atomic wavefunctions a and b are replaced by non-orthogonal
GVB wavefunctions f and g, expanded in a basis set of atomic orbitals. The
expansion coefficients can be varied and chosen to minimize the energy EGVB

(forgetting the normalization constant and the spin part):

�GVB ∝ f(1)g(2) + f(2)g(1) (1.85a)

Let us take for example the following f and g functions:

f(i) = a(i) + λb(i); g(i) = b(i) + λ a(i) (1.85b)

It follows immediately that �GVB takes the new form (1.85c), where the ionic
terms a(1)a(2) and b(1)b(2) are included:

�GVB ∝ (1 + λ2) [a(1)b(2) + a(2)b(1)] + 2λ [a(1)a(2) + b(1)b(2)] (1.85c)

Other expressions have been proposed for f(i) and g(i), such as, following
Coulson and Fischer:

f(i) = cosθ a(i) − sinθ b(i); g(i) = sinθ a(i) + cosθ b(i) (1.85d)

The GVB method, first introduced by Coulson and Fischer and further
developed by Goddard and coworkers, allows us to change the AOs during
molecule formation due to the variation process to find the f and g wavefunc-
tions. At large distance, f and g tend to a and b and give the right dissociation
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energy. At bonding distance, the energy is improved. The GVB function is
much simpler than the one including resonance structures, and is easier to
compute. The GVB approach is one of the reasons of the revival of VB
methods.

1.5.3.3 Comparison of VB and MO models
We can now compare briefly the molecular orbital and valence bond models
[1.18]. We begin once more with the example of the H2 molecule. We have
shown that in the MO model the wavefunctions ψ± are built as symmetry
combinations ψ+ = N+ (φa + φb), ψ– = N– (φa – φb), the electrons are allocated
to the bonding orbital—in the general frame of the electronic configurations of
Fig. 1.42A—and the two-electron wavefunction � arises as the product of the
molecular spin–orbitals related to electron 1 and 2, �HF = |χ1 χ2| with a space
wavefunction �+ or �MO (1.77b) and (1.77c):

�MO = N+[φa(1)φb(2) + φb(1)φa(2) ]+[ φa(1)φa(2) + φb(1)φb(2)]

= N+[�covalent + �ionic]

For a polyatomic molecule, �MO spreads over all the atoms and is a basis for
the point group irreducible representation of the molecule.

The spirit of the Heitler–London treatment is just the reverse: first build
a two-electron wavefunction from atomic orbitals (simple Hartree product
φa(1)α φb(2)β), then perform a linear combination of two such products to
take into account the symmetry with a space wavefunction:

�HL = N+[φa(1)φb(2) + φa(2)φb(1)] = �covalent (1.86)

The representation needs two determinants. For a polyatomic molecule (N
atoms), �HL is the weighted sum of 2N such determinants.

When we deal with the simplest versions of the two models, therefore, a
strong contradiction appears between the two: on one side (MO) the electronic
structure of the molecule is described by molecular orbitals delocalized on the
whole molecule, based on the group symmetry of the system, fitting rather
well the ionization data. These results come from a polyelectronic monode-
terminantal wavefunction, relatively easy to compute but taking only partially
into account electron correlation and describing poorly the dissociation beha-
viour. On the other side (VB) the electronic description consists of bonds
localized between two atoms, having good dissociation behaviour, but with
a looser relation with symmetry. The large number of determinants and the
overlap between the non-orthogonal basis orbitals make the quantum calcula-
tions much heavier. This is probably one of the reasons why the VB approach
was eclipsed by its sister MO method for many decades. Figure 1.44 com-
pares the potential energy curves as a function of the HA–HB distance for
different wavefunctions: the antibonding triplet, the almost non-bonding case
corresponding to the Hartree product (that is, without exchange), Hartree–Fock
and its bad dissociation energy, Heitler–London and its weak representation
of the bonding region, and the result of an ‘exact’ calculation very close to
experiment.

Nevertheless, the contradiction is only apparent: we have seen that more
advanced versions of the two models, elaborated to rub out the defects of the
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Fig. 1.44
Variation of the energies of the ground
state of the H2 molecule as a function
of RAB (HA-HB) distance in the frame
of different binding models: triplet state
T, Hartree product (quasi-classical, QC),
simple Hartree–Fock HF, simple valence
bond (Heitler–London) HL, exact.

simplest formulations, converge to the same solutions. Upon proper correc-
tion the molecular orbital method can yield an almost exact polyelectronic
wavefunction. This is schematized in Fig. 1.38, where two steps are shown:
first the construction of the Hartree–Fock self-consistent field orbitals, then the
correction by two possible post-Hartree–Fock treatments (either configuration
interaction, CI, or many-body perturbation theory, MBPT). The configura-
tion interaction process mixes the HF-SCF ground state with excited states
of the same symmetry, decreases the weight of ionic terms, and gives the
proper dissociation energy. The VB model, on its side, includes ionic func-
tions (canonical structures) in the otherwise covalent wavefunction, and using a
variational method improves the behaviour in the region of bonding distances.
Finally, the two models converge to a space wavefunction such as:

� = λ �covalent + μ�ionic (1.87)

with constants λ ≈ 0.75 and μ ≈ 0.25, computed to give the ‘best’ wavefunc-
tion. More fundamentally, it can be demonstrated rigorously (see [1.15]) that
a Hartree–Fock determinant (MO scheme) can be changed into other determ-
inants by an infinity of unitary transformations which leave unchanged the
total polyelectronic wavefunction, the energy, the charge density, and so on.
Among the transformations, one corresponds to a localization process ending
with localized orbitals essentially localized between two atoms (and a very
weak contribution of the other atoms to ensure orthogonality). This is gener-
ally described through the hybridization process (sp, sp2, sp3 . . .) of atomic
orbitals in the frame of the VB scheme.

We will conclude with a brief historical survey which shows that science
does not proceed linearly and is submitted, as many human activities, to ideo-
logical fluctuations. The MO and VB methods appeared historically almost
at the same time. The valence bond model corresponds to a traditional rep-
resentation of chemical objects by simple localized bonds, and it was widely
disseminated by a charismatic Linus Pauling, able to rationalize most of the
chemistry of his time in his beautiful book The Nature of the Chemical Bond
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[1.17]. This model was thus extensively used and taught until the 1960s. After
World War II the molecular orbital method began to take a leading position
because of its direct relation with symmetry and as a result of easier and more
systematic implementation on computing machines. In addition, several ‘fail-
ures’ were attributed to the VB model (used in its crudest form), such as the
incorrect prediction of the triplet ground state of O2, while on the other hand
it appears naturally in the frame of MO theory, or the stability of the cyc-
lobutadiene molecule. During the 1970s the balance tilted clearly in favour of
the MO model, but from about 1980 VB theory began to rise from its ashes and
to offer an attractive alternative to MO theory. It was recognized in particular
that most ‘failures’ of VB theory are in fact due to the use of an incomplete
model. In particular, to the credit of the VB method, one can remark that the
final wavefunction is built by linear combination of chemically meaningful
structures. We have seen (relation (1.87) and Fig. 1.44) that at a sufficient level
the MO and VB methods converge towards the same polyelectronic wavefunc-
tion. Thus, contrary to common belief, the two methods are actually equivalent.
Today, choosing one rather than the other is mainly a matter of convenience,
simplicity, and beauty of demonstration.

1.5.4 Density-functional theory (DFT) methods [1.19]

Density-functional theory is presently one of the most popular and success-
ful quantum-mechanical approaches to electronic structure. It has proved a
viable alternative to the usual SCF–MO method, which is hampered by the
cumbersome treatment of electron correlation. The great advantage of DFT-
based methods is to allow the treatment of large complicated molecules at a
much lower computational cost [1.16b].

The basic principle of DFT relies on a central quantity: the total electron
density ρ(r), which has been shown by Hohenberg and Kohn to determine
completely the ground-state electronic energy (the Hohenberg–Kohn theorem).
It determines the total charge density through the use of a ‘functional’—
a mathematical object which allows ρ(r1, r2, . . . rN) → ρ(r) passage and
computation of the properties (see Fig. 1.38). (Note that if a function f is a
rule to go from a variable x to a number f(x), a functional F is a rule—or a
mapping—to go from a function f to a number F(f)). Unfortunately, there is no
universal functional. But, at the present time, after several decades of research,
there are excellent enough approximations of the (still unknown) exact func-
tional to allow an efficient implementation of the method. The first significant
improvement of the DFT was the introduction of orbitals by Kohn and Sham
(called Kohn–Sham orbitals—KS-DFT), which allow the exact introduction
of an important component of the kinetic energy in the functional for non-
interacting electrons. The rest of the kinetic energy remains to be introduced
with the exchange correlation terms. Thus, KS orbitals can be considered as
molecular orbitals corrected for correlation. An unrestricted version of the KS
orbitals is available (UKS-DFT). In principle, they should not be used to pre-
dict ionization energies (though their relation with experimental quantities is
still a subject of debate). As in the case of HF-SCF orbitals, the total electronic
energy is not the sum of the occupied orbital energies.
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Technically, most DFT methods use an iterative procedure in which one
starts with an initial guess of ρ(r) and then computes an effective potential,
which allows the determination of one-electron orbitals. From these, a new
electron density is computed and the process is repeated until convergence.
This self-consistency is reminiscent of the Hartree–Fock SCF method, but
the great difference is that there is a priori no need for post-treatment. The
most difficult point in DFT methods is how to incorporate in the functional
the interaction between electrons, exchange, and correlation. Different genera-
tions of DFT functionals have been elaborated to try to solve the problem: local
density approximation (LDA—the density is treated as uniform electron gas);
local spin density approximation (LSDA—with improvements and parametriz-
ations proposed by Slater, Vosko, Wilk, and Nusair (VWN), and Perdew and
Wang (PW)); gradient corrected methods by which the first derivative of the
density is included as a variable (generalized gradient approximation, GGA,
one of them proposed by Lee, Yang and Parr—LYP); inclusion of higher-order
derivatives to improve the exchange and correlation (meta-GGA); and hybrid
methods which introduce some parametrization for improving the exchange
potential. A typical hybrid functional is the popular and widely used B3LYP
proposed by Becke (B), starting with the LDSA model and successive cor-
rections introduced by three parameters fitted from experimental data (B3LYP
(for Becke-3–Lee–Yang–Parr)).

DFT methods can be applied to closed-shell or open-shell systems.
For fundamental reasons, the calculation is valid for ground-state proper-
ties. But modifications known as time-dependent density-functional methods
(TD-DFT) now allows the treatment of excited states. We shall see in
Chapter 2 that for open-shell system the main drawback of DFT methods
is that they are monodeterminantal, and unable to perform multideterminant
calculations.

To summarize, one can state that wavefunction-based methods use an exact
Hamiltonian operator and then approximations on the wavefunctions, whereas
density-functional methods introduce approximation in the energy functional
(Hamiltonian) and allow a free variation of the charge density.

1.6 A fundamental quantum effect: tunnelling
Before closing this chapter it appears useful to introduce a final quantum
concept: quantum tunnelling, which is specific to quantum mechanics.
In simple terms it states that a particle (typically an electron), present on one
side of a given energy barrier U, has a non-zero probability to cross the bar-
rier, even if its energy E < U. In classical mechanics, when a particle arrives
on a barrier it is simply sent back after an elastic collision, with no chance to
go through as long as E < U. In quantum mechanics the special properties of
wavefunctions (their spatial extension) allow the crossing of the barrier. The
tunnel effect is a physics concept, but is widely and implicitly used in chem-
istry because the chemical bond is one of its manifestations: in a molecular
orbital, the electron(s) have to cross a zone of high potential energy between
the atoms to go from one atom to the other.
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The tunnelling phenomenon is central in some important magnetic or con-
ducting properties of matter (Chapters 2, 3, 4, and 5). Here we present a
qualitative introduction.

U
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Fig. 1.45
a) A particle facing an energy barrier
U. A1, B1, and A3 are respectively the
incoming, reflected, and transmitted amp-
litudes (see the text); b) a system in a
symmetric double potential well defined
by the potential energy V(x); depending
on the physical problem, the x values out-
side the x1–x2 range may not be attained;
c) mixing of the wavefunctions, avoided
crossing and resulting tunnelling splitting
� near the top of the barrier.

The process is introduced simply using Fig. 1.45. The electron is moving in
a linear box along an axis x, with an energy E. It encounters an energy bar-
rier U between x = 0 and a. Its wavefunction � is described as a plane wave
A.eikx: �A for x < 0, �B for 0 < x < a, and �C for x > a. In part A there is an
incident and a reflected wave, �A = A1.eik1 x + B1.e–ik1 x with k1

2 = 8π2meE/h2

(where me is the rest mass of the electron). In part B (within the barrier) the
wavefunction becomes �B = A2.eik2 x + B2.e–ik2 x with k2

2 = 8π2me(U – E)/h2.
In part C (beyond the barrier) the wavefunction is written �C = A3.eik1 x. The
only problem then is to choose the coefficients Ai, Bj to ensure the continuity
of the wavefunctions and their first derivatives at the boundaries (x = 0 and a).
We leave the details of the calculation to the reader to arrive at the expression
of the probability P that the electron crosses the barrier, which is propor-
tional to the square of the amplitude ratios of the associated wavefunctions:
P =|A3/A1|2, and then

P =
[

1 + 1

4

(
k2

k1
+ k1

k2

)2

sinh2 k2a

]−1

or P =
⎡⎣ 4(

k2
k1

+ k1
k2

)
⎤⎦2

e−2k2a

(1.88)

The expression at right is written in the limit k2a >>1. If a or (U – E) tends
to infinity (infinite width or height of the barrier), P tends to zero and the
particle remains in the box. But for values such as a = 1 nm and E = U =
1 eV, the probability P for the particle to cross the barrier becomes larger
than 10–4. Other quantum particles (protons . . .) can tunnel, but the tunnel-
ling probability decreases exponentially with k2 (eqn. (1.88)), hence with m,
the mass of the particle. The tunnelling effect is then more important with the
lighter electron. It is indeed observed in a nanometer-size insulating junction
between two metals (Al–alumina–Al) or between a surface and a metallic tip
(the basis of the principle of the scanning tunnelling microscope, STM) or
between two superconducting wires (Josephson tunnelling), used in the mod-
ern and very sensitive superconducting quantum interference device (SQUID)
magnetometers.

Tunnelling is also encountered in the famous double-well problem (Fig.
1.45b). In this case, two wells are located on the two sides of the barrier.
By comparison with the case of Fig 1.45a, instead of travelling waves one can
have to a first approximation stationary wavefunctions localized on one or the
other well. But, unless the barrier is infinitely high or thick, they can interact,
and localized wavefunctions are not eigenfunctions of the system.

Detailed study of the problem [1.20] shows the following (i and ii).
i) In a static description, energy levels located on each side of the barrier

interact weakly, exactly in the same way as atomic orbitals produce molecular
orbitals (see eqns. (1.14) and (1.19)). If we call �1 and �2 the (localized)
wavefunctions in the absence of interaction, two new wavefunctions �+ and
�– are then obtained. For a symmetrical system:
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(a)ψ+ = 2−1/2 (ψ1 + ψ2) and (b)ψ− = 2−1/2 (ψ1 − ψ2) (1.89)

These new levels, now stationary eigenfunctions, are separated by � = 2 W,
where W is the coupling (see the β integral of MO theory) and � is the tunnel-
splitting (Fig. 1.45c, central part).

ii) In a dynamic description, if at time zero the system is prepared in a non-
stationary state, it will evolve in time according to the general law:

ψ(t) = c+ ψ+ exp (−i E+t/�) + c− ψ− exp (−i E−t/�) (1.90)

where E+ and E– are the energies of the stationary states, and c+ and c– are
coefficients determined by initial conditions. One recognizes the combination
of two oscillatory phenomena with slightly different frequencies, leading to a
beating process. In particular, if the system is prepared at time zero in a pure
localized state, then c+ = c– and the system oscillates between ψ1 and ψ2

as a result of the alternating in-phase or out-of-phase combination of �+ and
�−. The oscillation frequency ν is the difference between the frequencies of
the two oscillatory processes appearing in eqn. (1.90), which are of the form
(E+/h) and (E–/h), and one obtains the Rabi formula:

ν = �/h = 2 W/h (1.91)

This oscillation process is at the heart of the tunnelling process in single-
molecule magnets (Section 2.8), and intervenes also in two aspects of elec-
tron transfer: electron tunnelling (Section 3.2.1.2) and nuclear tunnelling
(Section 3.2.1.3).

Another feature of the quantum tunnelling effect with the same kind of sym-
metric barrier is revealed in Fig. 1.45c. The system is evolving as a function of
time under a given constraint H from a ground state described by a wavefunc-
tion �1 (H < 0) to a wavefunction �2 (H > 0). The corresponding energies
are linear in H (the dotted lines in Fig. 1.45c). They cross at H = 0. If there is
no tunnelling effect and if the system starts from H < 0, with increasing H, it
remains described by the wavefunction �1, an excited state when H > 0, and
does not transform in �2. Starting from �2 and decreasing H, it would remain
�2. But in quantum chemistry, when two functions of the same symmetry, like
�1 and �2, become close in energy (near H = 0), they combine to give rise to
two new functions �± = N± (�1 ± �2) with the corresponding energies E±.
The progressive mixing of the wavefunctions allows a smooth change from
�1 to �2, and the crossing is now avoided (the plain curves in Fig. 1.45c). The
mixing is maximum at H = 0. The difference in energy, � (tunnel splitting),
depends on �1 and �2 and their mixing (overlap).

For such a system the behaviour is dependent upon the rate of change of
H. If H changes slowly, the Rabi oscillation appears fast and the system can
‘equilibrate’ by exploring the two states �1 and �2. In other words, the smooth
change between �1 and �2 is possible, and the system stays on the lower
(dome-shaped) curve of Fig 1.45c. But if H changes rapidly, Rabi oscillations
have not enough time to become established, and the wavefunction remains the
initial one, �1. The system then follows the ascending dotted line. These two
types of behaviour will also be encountered in Chapters 2 and 3.
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The localized electron:
magnetic properties2
2.1 Introduction
This second chapter is devoted to the magnetic properties of molecular com-
pounds. This is an enormous domain, and we shall restrict ourselves to a few
selected topics. We discard the study of diamagnetic systems, which represent
most of the molecular systems, presenting only paired electrons (closed-shell
molecules)—by far the most frequent in organic chemistry. We are inter-
ested instead in paramagnetic molecular systems; that is, systems presenting
one or several unpaired electrons (or open-shell molecules) (Fig. 2.1). Let us
recall briefly the nomenclature introduced in Chapter 1: HOMO is the highest
occupied molecular orbital, LUMO the lowest unoccupied molecular orbital.
We need a third category : the singly occupied molecular orbital (SOMO),
carrying just one unpaired electron and responsible for the magnetic properties.

Localization, delocalization, electron transfer
Most of the chapter is devoted to so-called ‘localized electrons’—by which we
mean that each unpaired electron and its ‘spin’ is localized on one part of an
extended structure, called ‘site A’. The electron has no tendency to escape, to
‘jump’ on neighbouring sites B, contrary to the situation we shall encounter in
Chapter 3 with electron transfer and conducting materials.

Electrons are localized when the two-electron repulsion integral on one
centre j0 (or U) is larger than the resonance integral β between the two neigh-
bouring orbitals on A and B (see Section 1.5). Figure 2.2 distinguishes three
cases: (a) one electron per orbital on sites A and B; the two-centre repulsion is
j (or V); (b) one electron is transferred from A to B, the one-centre repulsion
is j0 (U); as the electrons are closer on one centre j0 >> j; U is a fundamental
physical quantity to understand and to study magnetism in insulating materi-
als, which is the case in this chapter; (c) the tendency of the electron to escape,
to communicate with its neighbours, to establish bonds, is provided by the res-
onance integral β; from the figure, it is easy to realize that the condition of
electron localization is:

j0 >> |β| (2.1)
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Fig. 2.1
Different open-shell systems: (a) schem-
atic molecular energy diagram empha-
sizing the frontier orbitals HOMO,
SOMO, and LUMO. Representation
of the SOMO in the case of (b) the
molecular radical NO•; (c–d) an organic
radical nitronylnitroxide; (e) a 1,2-
ethanediamine-Cu(II)-oxalate complex;
(f) a tetracyanoethylenide anion radical–
spin density map obtained by spin-
polarized neutrons diffraction. (Courtesy
of E. Ressouche.)

Let us take the example of a dinuclear complex of copper(II). Each copper
has an electronic configuration d9, S = 1/2 (orbital x2–y2) (Fig. 2.2d). The
two copper ions are surrounded by a terminal ligand (T, a diamine) and con-
nected by a bridging ligand (B, oxalate): T–Cu(II)–B–Cu(II)–T is the ground
state. The two copper are in oxidation state II and far apart (≈ 5.2Å). The
effective resonance integral between the two x2–y2 of Cu(II) is β (< 0.1eV).
The one-centre repulsion integral j0 is more than 5 eV. The electron transfer
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Fig. 2.2
(a) Energies of two electrons on two
centres A and B; (b) when gathered on
one centre (b); (c) when engaged in a
bond; (d) localized ground state of a cop-
per(II) dinuclear complex.

state T–{Cu(III)}+–B–{Cu(I)}––T (or the symmetric case) is an excited state,
strongly destabilized by the one-centre repulsion j0 on Cu(I). We have neg-
lected the weak attractive ionic term –e2/R. So the electrons ‘keep quiet’ on
their respective sites.

Nevertheless, on this localized site (see the mononuclear complex 1,2-
ethanediamine-Cu(II)-oxalate in Fig. 2.1e) the unpaired electron is described
by a singly occupied molecular orbital (SOMO), sometimes called a magnetic
orbital (discussed later). The wavefunction, and the corresponding spin dens-
ity, are centred on the metal and partly delocalized on the ligands, particularly
on the oxalate ligand (Fig. 2.1e). In a dinuclear metallic complex the delocaliz-
ation of the spin density on the ligands is different from the electron transfer of
one of the metallic centres to the other. We shall come to this point in Chapter 3.
In the present chapter we deal with systems where U (j0) is predominant, so
that the properties of the localized electrons will be varied by tuning β. Figure
2.3 illustrates the changes of the properties when the j0 / |β| ratio varies.

The roots of the scientific domain called molecular magnetism can be found
in magnetochemistry; that is, the study of magnetic properties of chemicals.
The main goal of magnetochemistry was to use magnetic measurements to
guess the unknown structure of molecules, especially molecular complexes
[2.1]. Instead, in the 1980s molecular magnetism grew as a discipline dealing
with the design, synthesis, study, and applications of new molecular magnetic

Delocalized
systems

Conducting 
materials

Localized
systems

Insulating
materials

β or Vab

λU or j0 

Fig. 2.3
Basic properties of materials according
to the predominance of j0 (U) versus β

(Vab). The λ parameter, located at the
third summit, which introduces dynam-
ics, will be defined in Chapter 3. See
Fig. 3.11.
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systems [2.2–2.6]. Deeply rooted in quantum chemistry and physics, it is now
an important aspect of materials science and molecular spintronics.

This chapter briefly reviews the basics, and is organized as follows. The
magnetic properties of the ‘naked’ electron itself are worthy of interest
(Section 2.2). We introduce a few new quantum concepts and basic defini-
tions concerning the controversial matter of units in magnetism (Section 2.3).
We switch then to the properties of the electron located on a molecule or
in a mononuclear complex. The spin cross-over phenomenon is explained in
some details (Section 2.4). When the unpaired electrons belong to two (or sev-
eral) centres, the story becomes even more exciting and more difficult and
we propose a phenomelogical approach to keep its description as simple as
possible, Spin Hamiltonian (Section 2.5). We spend some time, then, with
the basic understanding of why and how neighbouring electrons can ‘speak’
to each other and interact in a ferromagnetic ↑↑ or antiferromagnetic ↑↓
manner—through exchange interaction. Sections 2.6–2.8 describe the way
to foresee magnetic properties and to synthesize new materials with predict-
able properties in a ‘programmed’ manner for objects of increasing size and
complexity.

More information and deeper insights are found in references [2.2–2.6].

2.2 A new look at the electron
After a brief historical account of the electron in Section 1.1 and a phenomen-
ological approach of its properties in Section 1.2, we introduce new tools for
the description of this extraordinary elementary object, due to the Hamiltonian
operator H, its eigenfunctions (the electronic wavefunctions), and its eigenval-
ues (the energies). A complementary aspect is the total angular momentum,
important for the discussion of the magnetic properties.

2.2.1 Orbital and spin angular momenta of the electron

When looking at the angular momentum properties of the electron, we actu-
ally find two: the orbital angular moment and the spin angular moment (and
their sum).

Orbital angular momentum
The electron orbital angular moment can be introduced from the classical
equivalent of a particle running perpendicular to a given axis z: speed v,
momentum p = mv, and angular moment l = r ∧ p (where ∧ is a vectorial
product); see Fig. 2.4.

z
up x

y

r

p

px

py

x

y

Fig. 2.4
Vectors r and p and their x and y compon-
ents in a Cartesian frame x, y, z.

The z component of the angular moment reads therefore as in eqn. (2.2a).
The other components follow by cyclic permutation:

(a) lz = x.py − y.px (b) lx = y.pz − z.py (c) ly = z.px − x.pz
(2.2a–c)
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The quantum quantities are obtained with the usual correspondences between
classical and quantum coordinates (x to x) and angular momenta (p to p)
operators;

(a) lz = −i�

(
x

∂

∂y
− y

∂

∂x

)
(b) lx = −i�

(
y

∂

∂z
− z

∂

∂y

)
(c) ly = −i�

(
z

∂

∂x
− x

∂

∂z

) (2.3a–c)

The angular momentum is written as the sum of its components:

l = lx i + ly j + lz k (2.4)

where i, j, k, are the unit vectors on x, y, z.
The square of l will be of particular interest later:

l2 = l2x + l2y + l2z (2.5)

We then use the commutating properties to write the commutations relations,
notated [ ] as usual, of the orbital momentum operator:[

lx, ly
] = i h̄ lz

[
ly, lz

] = i h̄ lx [lz, lx] = i h̄ ly (2.6)

[
l2, lx

] = 0
[
l2, ly

] = 0
[
l2, lz

] = 0 (2.7)

The important conclusion is that even if the three components are non-
commuting between them (eqn. 2.6), l2 commutes with each of its three
components (eqn. 2.7). It follows immediately that l2 and one of its compon-
ents can be known at the same time, and that they have in common a set of
eigenfunctions. Such functions φ are defined for example by:

l2φ = a φ lzφ = b φ (2.8)

The eigenvalues a and b are expressed by the quantum numbers l and ml

already introduced in a phenomenological—and abrupt—way in Section 1.2:

l2φ = [
h̄2l (l + 1)

]
φ with: l = 0, 1, 2, . . . (2.9)

and

lzφ = [h̄ml] φ with: ml = l, l − 1, . . . , −l (2.10)

The multiplicity of the orbital angular momentum is then (2l + 1). Orbital
angular momenta are schematized in Fig. 2.5.

Neither the l nor the s vectors align completely with the z axis, because
this would mean that their components along x and y would be simultaneously
determined (= 0), in contradiction with the non-commuting rule (eqn. 2.6).
The physical picture is based on precession: the l vector of Fig. 2.5 has a def-
inite projection along z, say + 1h̄, but its extremity precesses around z, so that
its components along x and y are undetermined.
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Fig. 2.5
(a) Orbital angular momentum, analogy
with a current loop (running electron),
orientation of l, illustration of l modu-
lus and lz projections when l = 2; (b)
spin angular momentum, s modulus and
sz projections.

l2 eigenfunctions: a way to orbitals
At the expense of some more calculations, and using spherical polar
coordinates, r, θ, and ϕ, it is possible also to establish that the spherical
harmonics,Yl

ml
(θ, ϕ) = Yl

m (θ, ϕ) introduced in Section 1.3 to define atomic
orbitals, are also eigenfunctions of l2 and lz, and that:

l2
{
Yl

m (θ, ϕ)
} = [

�
2 l(l + 1)

] {
Yl

m (θ, ϕ)
}

(2.11)

lz
{
Yl

m (θ, ϕ)
} = [� ml]

{
Yl

m (θ, ϕ)
}

(2.12)

Indeed, the angular operators l2, lz and the Hamiltonian operator H commute;
that is, they share a common set of eigenfunctions. The angular part of the
atomic wavefunctions are therefore directly related to the angular momentum
properties. The connection to the atomic orbitals is then simply realized
by multiplying the spherical harmonics Yl

m (θ, ϕ) by the radial part of the
wavefunction Rn,l(r): φ(r, θ, ϕ) = Rn,(r)Yl

m (θ, ϕ) (see Section 1.2.1.).

Spin angular momentum
The second part of the electron’s angular momentum is more difficult to intro-
duce, simply because it has no classical counterpart. The first experimental
evidence of the existence of spin was provided by the experiment of Stern and
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Gerlach in 1921 with silver atoms, but the interpretation in term of spin angular
momentum waited some years, as told in The Story of Spin [2.7].

The theoretical solution of the problem—beyond the scope of this book—
came later when Paul A. M. Dirac reconciled the theory of relativity (where
time and space coordinates play equivalent roles) and quantum mechanics
(where the time-dependent Schrödinger equation treats differently time and
space coordinates) in the ‘Dirac equation’ by postulating (i) the existence of a
positron, the antiparticle of electron, and (ii) the existence of an intrinsic angu-
lar momentum of the electron (in addition to the orbital angular momentum
introduced by the Schrödinger equation), the spin angular momentum, whose
properties fitted perfectly with the previously observed magnetic and spectro-
scopic experiments [2.8]. The image of a rotating particle (‘spin’), introduced
by Goudsmit and Uhlenbeck in 1925, agreed by Pauli and still used frequently,
is not strictly appropriate, because the electron has no measurable spatial
dimension [2.7].

We can remark that even if the amount of energy related to the spin is
in general tiny, its presence in quantum mechanics and therefore in physics
and chemistry has enormous everyday consequences. For the while, we shall
exploit the fact—without demonstration—that the spin angular momentum
obeys the same basic rules as the orbital one, so that we can write equations
similar to (2.9) and (2.10):

s2φs = [
h̄2s(s + 1)

]
φs with : s = 1/2 (2.13)

and

szφs = [h̄ms] φs with : ms = s, −s; that is, ±1/2 (2.14)

where φs is a function of spin coordinates, s is a half-integer positive quantum
number labelling the eigenvalues of s2, and ms is a quantum number labelling
the eigenvalues of the z component of the spin, sz, along the z axis. In Chapter 1
we represented ms either as ms = +1/2, α or ↑, and ms = –1/2, β or ↓.
As before, the multiplicity can be written (2s + 1); that is, 2 (a doublet) for
the isolated electron. As an electron can take different l, ml, s, and ms values
in an atom, it is possible and convenient to write the eigenfunctions of the
previous equations as |l, ml, s, ms>, using Dirac bra-ket notation.

To complete our survey of the spin angular momentum, we suggest that the
reader check the following results derived from eqns. (2.13) and (2.14):

s2 |α〉 = 3

4
�

2 |α〉 sz |α〉 = 1

2
� |α〉 s2 |β〉 = 3

4
�

2 |β〉 sz |β〉 = 1

2
� |β〉 (2.15)

Now, how does an electron behave when a magnetic field is applied?

2.2.2 Magnetic properties of one electron in an atom

For the one-electron atom one can define magnetic moment operators from the
angular momentum operators by:

μl = −gl μB l μs = −gsμB s μ = μl + μs (2.16a)

with eigenvalues:

μl = −gl μB ml μs = −gsμB ms (2.16b)
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where

μB = e�

2mec
(emu − cgs) μB = e�

2me
(SI) (2.17)

μB is called the Bohr magneton, –l < ml < +l, ms = ±1/2, gl = 1, gS ≈ 2
so that:

μ = −μB (l + 2s) (2.18)

In a magnetic field (H) or induction (B), the energy Hamiltonian is then written:

Hm = −μ.H (emu − cgs) Hm = −μ.B (SI) (2.19)

These relations deserve some comments: (i) μB, the Bohr magneton, given by
eqn. (2.17) is the natural unit for magnetic moments (the formula comes from
a classical calculation for the current loop equivalent to an electron orbiting
around the nucleus); its numerical value is 9.2740 . . . 10–24 A m2 in SI system
of units (and 9.2740 . . . 10–21 erg gauss–1 in the cgs-emu system; see the next
section); (ii) the orbital angular momentum l gives rise to an orbital magnetic
moment μl defined as an operator in eqn. (2.16). So we are going from the
simple classical physical image, where the electric current due to the moving
electron (–ev/2πr) creates the orbital magnetic moment μl, perpendicular to
the orbit plane, to the quantum situation in the atom where μl is quantified by l.
Note that μl becomes zero when the quantum number l is zero (ns electrons);
(iii) the actual value of the spin magnetic moment μs is about twice as great as
would be anticipated from the angular momentum s. For the spin, eqn. (2.16a)
introduces a scalar quantity gs termed the g-factor or Landé factor, which is
close to 2, while for an orbital electronic momentum, gl = 1.

This ‘anomaly’ is, of course, very intriguing. The g-factor (with a value
of 2) was first introduced on an empirical basis by Landé to fit experimental
data, and then by Thomas in 1926 [2.7]. In 1928, Dirac (Nobel Prize recipient
in 1933) succeeded in combining special relativity with quantum mechanics,
and predicted also a value of 2 for the g-factor. However, the exact value is
slightly different (ge = 2 + α/2π + · · · = 2.002319304. . ., it is known to
thirteen decimal places; in this formula, α is the fine structure constant α =
μ0e2c0/2h = 1/137.036). This was explained later by the theory of quantum
electrodynamics of R. Feynman, J. Schwinger, and S.-I. Tomonaga (Nobel
Prize recipients in 1965) [2.7]. The deviation with respect to 2.000 comes
from the interaction of the electron with the surrounding electromagnetic field,
including its own field; (iv) a final comment bears on the minus sign appear-
ing in eqn. (2.16): it is due to the negative charge of the electron. This means
that the magnetic moments of the electron (orbital and spin) are antiparallel
to the respective angular momenta. When the electron is described by the 1s
orbital of a hydrogen atom, without orbital angular momentum (l is zero), the
magnetic properties arise only from the spin. We have thus to live with this
strange concept, the spin, which is definitely different from a physical rotation
of matter. But its magnetic moment exists and has tremendous consequences,
even if it does not come from an equivalent electrical current.
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2.2.3 The total angular momentum

Up to now we have introduced the magnetic moment operator μl gener-
ated by the angular momentum of the electron (due to its movement, and
we therefore call it extrinsic) and the magnetic moment operator μs created
by the spin angular momentum, which is an intrinsic property of the elec-
tron. Following Dirac, the two properties are independent of each other, at
zeroth order. Nevertheless, at first order the magnetic moments associated
with the angular and spin momenta l and s can interact. It can be seen as
the tendency of one of the magnetic moments to align in the field created
by the other, though the correct interpretation necessitates the more elaborate
quantum relativistic theory. The interaction is known as spin–orbit coupling.
This adds a first-order correction to all (energy) Hamiltonians proposed up to
now, as:

HSO = ζ l.s (2.20)

where ζ is a quantity termed the one-electron spin–orbit coupling constant
(expressed in energy units). The spin–orbit coupling is a magnetic coupling in
origin, concerning one given electron. We define, therefore, the total electronic
angular momentum as:

j = l + s (2.21)

j presents all the properties of a quantum angular momentum, hence:

j2φ = [
h̄2j ( j + 1)

]
φ with j values : l + s, l + s − 1, . . . , l − s (2.22a)

jzφ = [
h̄mj

]
φ with mj running from j to − j (2.22b)

as l and s are quantum numbers labelling orbital and spin angular momentum
(l integer, s half-integer), j labels the total angular momentum and takes either
integer or half integer values ( j = 0, 1, 2, . . . or j = 1/2, 3/2, 5/2, . .).

The angular momentum operators l, s, and j of the electron and their math-
ematical properties (among them, commutation) will be particularly useful for
describing the atomic electronic structure and the magnetic properties of many-
electron atoms (see Section 2.4.1). First, however, we present a brief account of
the fundamental physical quantities and units used in magnetism and molecular
magnetism.

2.3 Physical quantities, definitions, units,
and measurements

2.3.1 Physical quantities and definitions

This chapter is devoted to magnetic properties; that is, the behaviour of mat-
ter under the influence of a magnetic field.** In this chapter we shall use mainly

the cgs-emu units system for magnetic
quantities, because many quoted works
still use it. We try nevertheless to recall
the legal SI when useful. The correspond-
ence between cgs-emu and SI units are
recalled briefly at the end of this section.

In Section 2.2 we introduced
some concepts to describe the interaction of the electron and the magnetic
field. We give in the following a brief presentation of some important physical
quantities and a few words on the problem of units. We also suggest referring
to [2.9–2.13] and Chapter 1 in [2.3].
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We consider a small sample of volume dV subject to a magnetic field H.
It then acquires a magnetic moment (or magnetic dipole moment) dμM and
behaves as a tiny magnet. The magnetization M is the magnetic moment per
unit volume M = dμM

dV . The interaction of this magnetic moment with H(or
B) defining the z direction involves, for a unit volume, the magnetic energy
Emag:

Emag = − H M = −H Mz(cgs−emu) Emag = −B M = −B Mz(SI)
(2.23)

which enters in the free enthalpy thermodynamic function G. We can define the
free enthalpy state function Gmag, including the magnetic term, as (cgs-emu):

Gmag = U + PV − TS − HM (2.24)

It can be shown easily that the magnetization is the partial derivative of Gmag

related to H, T and P being constant:

M = −(∂Gmag/∂H)T,P (2.25)

The definition of magnetic susceptibility, which is a generic name for the
system’s response divided by the applied excitation, follows:

χ = (∂M/∂H)T,P ≈ M/H (2.26)

χ = (∂2Gmag/∂H2)T,P (2.27)

The magnetization M is therefore the negative of the partial derivative of the
free enthalpy with H, everything being equal; that is, it represents the rate of
change in the free enthalpy with the magnetic field. The second derivative of G
is the magnetic susceptibility χ per unit volume, which represents, therefore,
an acceleration in the change of G. In many simple cases, when the applied
field has weak values, the last expression on the right of eqn. (2.26), M/H,
gives a useful approximation for χ. The susceptibility so defined is a dimen-
sionless quantity, but it refers to a unit volume (see Section 2.3.2 on units).
It is a common practice to use instead (i) the molar susceptibility χM given by
χ VM, where VM is the molar volume, or (ii) the mass susceptibility χmass by
multiplying by the massic volume Vm.

2.3.2 Units in magnetism

Physical quantities and units are a frequent source of confusion and misun-
derstanding in the domain of magnetic studies [2.11–2.13]. There are several
systems of units; but annoyingly, the physical quantities to which they refer
have different definitions and can bear different names, despite the efforts of
international committees such as IUPAC and IUPAP [2.12–2.13].

Philosophically, the coexistence of different systems is rooted in the birth
and development of magnetism, which started with the concepts of magnetic
poles (to which the cgs-emu system is well adapted) before the relation of
magnetic fields with electrical currents was fully realized (this last case being
well treated in the SI system). Thus the legal SI system is more modern and
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better suited to electromagnetic machines. But at the microscopic scale, not all
magnetic moments can be associated with currents, as shown by the strange-
ness of spin magnetic moments (see Section 2.2), and this is probably one of
the reasons of the reluctance of the chemistry community to use the SI system.

We cannot give here an extensive account on these problems, and we restrict
our discussion to the presentation of a few definitions in only two systems of
units: Système International d’Unités (SI), and unrationalized cgs-emu (emu =
electromagnetic units). In principle, only the first one should be used, but most
people working in molecular magnetism still have a strong habit of working
with the cgs-emu system.

The following simple considerations can prepare the reader to become famil-
iar with both systems and to make easier the transition from cgs-emu to SI
expressions and units. Three main difficulties must be overcome: (i) in the
cgs-emu system, μ0, the permeability of vacuum is equal to 1 and is dimen-
sionless, so it is most often omitted in the formulae; instead, in SI, μ0 has a
dimensioned value 4π × 10–7 kg m s–2 A–2; (ii) the cgs-emu system is unra-
tionalized, whereas SI is rationalized. ‘Rationalization’ was proposed to avoid
having 4π factors in electromagnetic expressions in systems without spherical
symmetry; (iii) the magnetization M is defined in different ways (see in the
following).

Let us recall and comment briefly on the definitions of the three funda-
mental vectorial quantities: H, M, and B. If the field is generated by a current
loop, the important quantity is H(magnetic field strength), whose value at the
centre of the loop is I/2r (I, intensity: r, loop radius) and is expressed in A
m–1 in the SI system. When matter is present there appears in each point a
magnetization (magnetic moment per unit volume) denoted M, whose unit is
also A m–1. Unlike the macroscopic magnetic moment μM of the sample, M
is an intensive quantity. H and M combine to generate the magnetic induc-
tion (magnetic flux density) B, which is the entity really acting on matter (for
instance, by generating a force q.v ∧ B on a moving charge). The important
relations are:

B = μ0( H + M) with μ0 = 4π10−7 in SI (2.28a)

B = μ0( H + 4π M) = ( H + 4π M) since μ0 = 1 in cgs-emu (2.28b)

For the two systems, one has the relation ε0 μ0 c2 = 1.
In vacuum, B and H are proportional, and even identical in the cgs-emu

system, which has favoured the sloppy habit of confusing the two. But in the
presence of matter the distinction is important, and one should use the correct
terms and notations: field for H and induction for B. Note also that the M
definitions, in SI and cgs-emu, differ by a factor 4π.

Table 2.1 is a minimal ‘survival kit’ for the domain, summarizing the
properties of the main quantities.

The magnetic susceptibility is written as in Van Vleck’s equation (2.45) in
cgs-emu units, and with an additional prefactor μ0 (4π 10–7) in SI. Of course,
for numerical conversions one has, in addition, to take into account the change
in volume and mass units (see Table 2.1). Thus, for the frequently used
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Table 2.1 Some important quantities, their definitions, units, and conversion coefficients between the unrationalized cgs-
emu system and SI system. To derive the SI value from the cgs emu value, one has to multiply by the given coefficient; for
instance 10–4 (first line, last column) means that 1 G corresponds to 10–4 T (or 104 G correspond to 1 T).

Nomenclature Symbol Unrationalized cgs emu SI Conversion coefficients

Magnetic induction, or
Magnetic flux density

B Gauss (G) Tesla (T), or Weber m–2 10–4 (1G = 10–4 T)

Magnetic field (strength) H Oersted (Oe) A m–1 103/4π

Magnetization M emu cm–3 A m–1 103

Permeability of vacuum μ0 dimensionless = 1 H m–1 (kg m s–2 A–2) 4π10–7

Magnetic moment m, μ emu A m2 10–3

Bohr magneton μB erg Oe–1 J T–1 10–3

Volume susceptibility χ dimensionless dimensionless 4
Molar susceptibility χM cm3 mol–1 m3 mol–1 4 π10–6

Mass susceptibility χmass cm3 g–1 m3 kg–1 4 π10–3

susceptibility standard Hg[Co(SCN)4], for example, the numerical values of
mass susceptibility are respectively 20.66 10–8 m3 kg–1 in SI and 16.44 10–6

cm3 g–1 in cgs-emu.

2.3.3 Magnetic measurements

The measurement of magnetic properties of matter can be performed by a vari-
ety of methods, each offering its own advantages and drawbacks. In recent
years there has been tremendous progress in instrumentation, with huge gains
in sensitivity. This tendency is general, in the frame of the strong motivation for
going down to the nanoscale and the magnetic characterization of individual
quantum objects. We will only briefly present and discuss some of the main
methods. More can be found in [2.1, 2.4, 2.6, 2.10, 2.14].

One can broadly distinguish three classes of method (see Table 2.2). In ma-
croscopic methods some physical quantity is measured outside the sample,
and one relies on known macroscopic laws—for instance, electromagnetic
induction—to know what happens inside the sample. In spectroscopic meth-
ods the interior of the sample is directly probed by using constraints (for
example, H) and particles (photons, neutrons, muons, and so on) which interact

Table 2.2 Classification of some magnetic measurement methods.

Macroscopic methods Spectroscopic methods Diffraction method

Torque or force measurement EPR Spin-Polarized
Neutron
diffraction

Faraday balance X-ray magnetic circular dichroism
Flux measurement Muon spin resonance (relaxation)

VSM Inelastic neutron scattering
SQUID

Field measurement
Hall probe, flux gate

Thermodynamic measurement
Heat capacity
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locally with the magnetic moments. There is resonance with energy absorp-
tion. Finally, in diffraction methods, there is also a local interaction but without
resonance, and it concerns many identical sites at the same time.

Historically, the first and still widely used methods are of the macroscopic
type, based on a torque or force measurement. One can quote Ohm’s torsion
balance, then the Gouy balance, using a cylindrical sample entering partially
between the poles of a magnet. It was hampered by the need of a large quantity
(several grammes) of matter. Later measurements used the Faraday balance,
by which the sample is disposed in an inhomogeneous field with a gradient in
the z (vertical) direction and a constant H ∂H/∂z. It is then subject to a force
related to the gradient of energy, itself given by eqn. (2.23).

F = −grad E = M ∂H/∂z = χH ∂H/∂z (cgs-emu) (2.29)

The measurement of χ thus relies on a force measurement, associated with a
proper calibration. Twenty years ago the Faraday method was still the work-
horse of magnetometry, due to its versatility. It requires only small amounts of
matter (a few mg), is reasonably sensitive and of low cost, and is well adap-
ted to measurements on a wide range of temperatures (from a few to several
hundred K).

A recent development, particularly adapted to the domain of single-molecule
magnets (SMM; Section 2.8) is AC susceptibility, which probes the dynamics
of magnetization. When a weak magnetic field oscillating at a particular fre-
quency ν (pulsation ω) is applied to the sample, the magnetic susceptibility
becomes a complex quantity χ = χ′ + i χ′′, where χ′ is the in-phase compon-
ent, and χ′′ the out-of-phase one. If the magnetization follows instantaneously
the drive field, or conversely does not follow at all, χ′′ is zero. It takes large
values only when the relaxation rate of magnetization is comparable with the
AC pulsation. The experiment is generally performed at a fixed frequency and
variable temperature (thus a variable rate of magnetization relaxation). A peak
in the χ′′(T) curve is then observed when the following condition ω = k is
fulfilled, where ω = 2πν and k is the magnetization relaxation rate.

Another way of measuring magnetic properties is based on flux measure-
ment by induction. In the vibrating sample magnetometer (VSM) method the
sample vibrates rapidly between detection coils, and the change in magnetic
flux induces an electromotive force. The system thus measures a magnetic
moment. The method—which initially was not very sensitive—is well adap-
ted to ferromagnetic materials, because they carry an important permanent
magnetic moment, in particular to the determination of their hysteresis curve.

Flux measurement is, however, the realm of superconducting quantum inter-
ference devices (SQUID) methods. The heart of SQUID is a superconducting
loop with two Josephson junctions (made of a very thin insulating barrier
between two superconductors). Theory shows that the magnetic flux through
the superconducting loop is quantized in units of the flux quantum �0, where
�0 = h / 2e = 2.0679 10–15 Wb (or 2.0679 10–7 G cm–2). The supercurrent can
cross the Josephson junctions by the tunnel effect, but quantum interferences
occur between the two possible pathways.

Due to the properties of Josephson junctions, if a constant bias current is
maintained, as shown in Fig. 2.6, a voltage is measured at the terminals, which
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Superconductor

Magnetic field

Biasing
current

Biasing
current

Josephson
junction

Fig. 2.6
Scheme of the principle of a SQUID
magnetometer. (Adapted from <http://
hyperphysics.phy-astr.gsu.edu/hbase/
solids/squid.html>)

oscillates as a result of quantization when the flux changes through the loop.
If one moves the sample starting from a remote position (no flux) through the
loop, it is then possible to count the number of quantum flux units due to the
presence of the sample. The SQUID method can thus be considered as a special
type of VSM with only a single passage of the sample, the SQUID loop acting
as a very sensitive detector.

The SQUID method exhibits the highest sensitivity and is prone to extreme
miniaturization, allowing the study of nano-objects or single-quantum objects.
In addition, its response to perturbations is very fast. The drawbacks are its
cost and complexity and the need for careful calibration (drift is frequent).
A microSQUID version contains an array of miniaturized SQUIDs, and its
sensitivity is still enhanced, but in a limited range in operation temperatures,
because all relies on superconductivity. The magnetization reversal of a 3-nm
cobalt nanoparticle (corresponding to 103 elementary spins) can be detected
(that is, 10–5 �0/

√
Hz). A review is available [2.15].

A nanoSQUID version based on carbon nanotubes (CNT-SQUID) exists.
The main improvement is a much better flux coupling between the sample
(the size of a molecule being 0.6 nm) and the 1nm2 cross-section of the CNT
junction) (see Section 5.2.9.2). Calculations show that it should have enough
sensitivity to measure the magnetization reversal of a single high-spin Mn12

molecule; that is, S = 10 (20 μB) (Section 2.8).
Magnetometers using field measurements are available but are less widely

spread. Hall probes and microprobes are able to measure down to 10–6 Teslas,
and flux gates down to 10–9 Teslas [2.10].

A few figures can help the reader to realize the enormous improvement
of magnetic sensitivity measurements. With the Gouy balance, grammes
were necessary, corresponding to ≈ 1021 Bohr magnetons. Routine measure-
ments with a Faraday balance detected 1018 μB, with VSM 1016 μB, SQUID
1012 μB. These are rough estimations, since for each technique, more sophist-
icated methods can improve, in time, the sensitivity by orders of magnitude.



92 The localized electron: magnetic properties

MicroSQUID (no more routine !) went down to 103 μB and the nanoSQUID
targets 20 μB.

We end this overview of macroscopic method by heat-capacity measure-
ments, based on thermodynamics. It cannot rival the previous ones with respect
to sensitivity, but it provides complementary information. The magnetic inter-
action between a field and a magnetic moment involves an energy (see eqn.
(2.23)) which is finally exchanged with the surroundings as heat. The detected
property is temperature, and in a typical measurement heat capacity is recorded
as a function of temperature.

Mathematically, the heat capacity at constant magnetic field is given by:

CH = −T

(
∂2Gmag

∂T2

)
H

(2.30)

In addition to magnetic interactions, the heat capacity of a sample contains
several contributions, such as atoms and lattice vibrations, or free electrons
contributions (if the sample is conducting). Thus one has to isolate the mag-
netic term by a proper modelization of the other terms or by reference
measurements. Then the magnetic term is interpreted using magnetic mod-
els compatible with other experimental methods. The method is well adapted
to cooperative phenomena such as long-range ordering occurring in phase
transitions, because it gives a sharp heat capacity anomaly at the ordering tem-
perature (critical temperature). It is a unique technique for determining the
entropy and enthalpy variations across a transition. However, it demands very
careful, accurate, and lengthy experiments, and relies on a proper modeliza-
tion of the processes occurring inside the sample (see R. Burriel in [2.14] or
M. Sorai in [2.6]).

We now consider spectroscopic methods. Here some local interaction occurs
between a photon or a particle and the magnetic centre. There is a resonance
process with energy absorption.

EPR: In electron paramagnetic resonance (EPR) one probes directly the
paramagnetic centres. The energy of an electron spin in a magnetic field H
is indeed split by the Zeeman interaction:

E = geμB msH (cgs-emu) E = geμB msB (SI) (2.31)

where ge is the Landé factor, μB is the Bohr magneton, and ms the spin
projection (ms = + 1/2 or –1/2). The energy difference between the two states,

�E = hv = geμB H (2.32)

can be matched by a quantum of electromagnetic radiation of frequency ν,
giving rise to absorption. For a magnetic field of about 3000 G (0.3 T) the
resonance occurs at a frequency of about 10 GHz, corresponding to a 3-cm
wavelength (termed the X-band). The Landé factor ge determines the position
of the absorption signal. As seen previously, its value is 2.0023 for a pure
electron spin, but spin–orbit coupling can introduce some orbital contribution,
interactions with the nucleus spin often interfere, and ge can deviate markedly
from the spin-only value. It is often treated as a tensor. Note also that due to
this possibility of orbital contribution the correct name for the method should
be electron paramagnetic resonance (EPR) rather than electron spin resonance
(ESR).
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EPR is extremely rich in information, because the position of the signal
depends on the orientation of the magnetic field with respect to the molecular
axes, and also on the so-called hyperfine structure, resulting from the interac-
tion between the electron magnetic moment and nuclear spins—for example,
those of 1H, 14N, 31P, 51V, and so on. The quality and quantity of informa-
tion is strongly enhanced by the use of different frequencies (Q- and W-bands)
and high-field and high frequency (HF-EPR), since the data at each frequency
provide a set of parameters which can be compared with those of other frequen-
cies (Section 2.7). Spin Hamiltonian analysis (Section 2.5) is extremely useful
here. Among the many books available we quote only one, directly concerned
with molecular magnetism [2.16].

X-ray MCD. This is also a spectroscopic method, based on X-ray absorption.
[2.17] It has been made possible through the unique properties of synchrotron
radiation, which provides intense, tunable, and monochromatic X-ray beams.
The method belongs to the general group of X-ray absorption methods for
which there is electron excitation from an inner electronic orbital (core orbital,
for instance 1s) towards either an empty state or a continuum of free elec-
tron states, depending on the photon energy. These possibilities correspond to
XANES and EXAFS respectively. The absorption spectra exhibit edges char-
acteristic of a given element and its core level. Synchrotron radiation can
in addition provide circularly polarized beams. In such a case the absorp-
tion becomes sensitive to the magnetic state of matter through the Faraday
effect. Magnetic circular dichroism is thus a difference measurement in which
one compares the absorption for the two circular polarizations (clockwise or
anti-clockwise), in the presence of a magnetic field parallel to the propaga-
tion direction of the radiation. Since an absorption edge is characteristic of a
given element, selective information can be obtained by changing the X-ray
wavelength. Using this specificity and the effect of the magnetic field, the
X-ray MCD spectrum carries information on the local magnetic properties of
the absorbing atoms—in particular, their spin and angular magnetic moment,
a unique complementary data of the bulk macroscopic magnetization meas-
urements. It is sensitive enough to measure monolayers of single-molecule
magnets on surfaces.

Inelastic neutron scattering. The method is based on the inelastic scattering
of neutrons, inelastic meaning that there can be an exchange of energy between
the neutrons and the sample. Neutrons have a great penetrating power, because
they are uncharged. Since they carry a spin (S = 1/2) and thus a magnetic
moment, they constitute efficient probes to study magnetic effects. The exper-
iment necessitates a nuclear reactor and various devices to extract a neutron
beam with homogeneous velocity (monochromatic beam), available in sev-
eral countries. The neutron beam irradiates the sample with a given energy,
and the scattered neutrons loose or gain some energy in the interaction with
the sample. Exchanged energies can range from μeV (quantum tunnelling) to
eV (electronic transitions). The method is used widely in studies of low-lying
levels of single-molecule magnets [2.18].

Muon spin relaxation, rotation, resonance or μ-SR. Muons are particles sim-
ilar to the electron or positron, with a spin 1/2, but with a higher mass (about
207 times heavier) and a finite lifetime (2.2 μs). They are produced by particle
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accelerators. As neutrons they can be spin-polarized—in this case with their
magnetic moment aligned in the direction of propagation. Due to their higher
mass, their penetration power is much greater than for electrons. Once thrown
on the sample, positive muons (analogous to small protons) implant in the
structure until they decay by emitting, in particular, a positron. Analysis of
the direction of the positron’s emission provides information on the interac-
tion between the muon and the sample—in particular, the direction of the local
magnetic field at the time of decay. The technique is expensive and is practiced
in a few places only, but it is well adapted to magnetic and superconducting
materials [2.19].

Spin polarized neutron diffraction. The method is based on diffraction; that
is, the macroscopic response of an array of identical objects (atoms, molecules)
arranged with a translation symmetry defining a lattice. In the well-known
X-ray diffraction method, X-ray photons interact with core or valence elec-
trons, and thus the scattering power of a given element increases with its atomic
number Z. In neutron diffraction the wave-like nature of the particle allows also
a diffraction process, because the associated wavelength can be tuned around
1–3 Å. But, besides their sensitivity to magnetic structures, neutrons have a
complementary property with respect to X-rays: the neutron interacts with the
nucleus and there is no systematic privilege to heavy elements. First, the neut-
ron beam is polarized; that is, all neutron spins are aligned in the same direction
(up or down). After interaction with a magnetized sample, the neutron signal
is different for the two spin polarizations. The method is particularly adapted
to the determination of ordering phenomena, through the appearance of super-
lattice peaks, in analogy with conventional X-ray diffraction. It is unbeatable
for the determination of molecular spin densities (Fig. 2.1; J. Schweizer et al.
in [2.14]) also produced by XMCD and NMR.

As seen previously, there are a wide variety of methods to probe the mag-
netic properties of matter. However the most commonly studied property is still
susceptibility, in particular for paramagnetic systems. In the next section we
study the relation between this macroscopic property of susceptibility and the
microscopic quantities such as energy levels and molecular magnetic moments.

2.3.4 Understanding the susceptibilities: from Langevin
to Van Vleck’s formula

The reader is assumed to be familiar with elementary notions on magnetism of
a substance; that is, diamagnetism (no unpaired spins, sample weakly repelled
in a magnetic field), paramagnetism (the individual magnetic moments are
independent, weak attraction in a magnetic field), ferromagnetism (the mag-
netic moments are interacting and kept parallel, strong attraction in a magnetic
field), antiferromagnetism (identical magnetic moments are antiparallel), and
ferrimagnetism (different magnetic moments are antiparallel and the resultant
creates a remnant bulk moment). Precise definitions and developments can be
found in many texts [2.2, 2.9, 2.10].

It took a long time for scientists to arrive at this classification of the
magnetic properties. P. Curie studied experimentally the order–disorder
(ferromagnetic–paramagnetic) transition at the ‘Curie’ temperature TC, and
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discovered what we know of today as the Curie law for ‘weakly magnetic’—
today paramagnetic—materials, χ = C/T (with C, Curie constant). It took even
more time to understand these changes with temperature. After a brief recall of
the first attempts by P. Langevin, we derive a useful relation proposed by Van
Vleck, which takes into account fully the quantum nature of magnetism [2.20].

In paramagnetic substances, the individual magnetic moments are
uncoupled and interact independently with the magnetic field. The classical
treatment of Langevin (1905) relates the two quantities: susceptibility and
magnetic moment. It assumes that magnetic moments can orient in a con-
tinuous way and that there is a competition between the tendency for the
lowest-energy configuration and thermal agitation. This competition is treated
through Boltzmann statistics. The final result, valid for weak fields, is then for
a sample with NA (Avogadro’s constant) magnetic centres:

(a) χ = NA
μ2

3kBT
(cgs-emu) (b) χ = μ0NA

μ2

3kBT
(SI) (2.33)

(a) in cgs-emu units; (b) in SI units, with μ0 = 4 π 10–7. Boltzmann constant kB

is dimensioned, and denoted k in the following. Its value in SI is 1.380658(12)
10–23 J K–1. Note that the ratio of numerical values of χSI and χcsgs-emu is not
equal to 4 π 10–7, because of the change in units between the two systems (see
Table 2.1 for the conversion factors).

This explains the experimental Curie law (χ inversely proportional to
T). It shows qualitatively the relation between susceptibility and magnetic
moment. In particular, once the susceptibility is experimentally determined,
it can be used ‘backwards’ to compute an effective magnetic moment μeff,
thus providing a pictorial interpretation of the results. Despite that, Langevin’s
equation is now only occasionally used, since it does not take in account the
quantum nature of magnetic moments.

The modern way of treating theoretically paramagnetism, however, is to
skip the magnetic moment concept and to relate directly the energy levels with
susceptibility. This is made through the Van Vleck equation (1932) [2.20].

When a substance is subject to a magnetic field, to each magnetic centre
can be associated a microscopic moment along z, denoted μz,n below and an
energy level En. In similarity with eqn. (2.25):

μz,n = −∂En

∂H
(2.34)

in cgs-emu. In SI, the expression would be –∂En / ∂B.
The level occupation is governed by the Boltzmann distribution, so that the

total macroscopic magnetic moment along z can be written, for one mole of
substance:

μzM = μM

NA
∑
n

(
−∂En

∂H

)
exp

(
− En

kT

)
∑
n

exp

(
− En

kT

) (2.35)
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To be more general, one can remark that the denominator is the partition
function Z, a fundamental quantity in statistical physics:

Z =
∑

n

exp

(
− En

kT

)
(2.36)

so that an expression equivalent to eqn. (2.35) is:

μM = NAkT
∂ ln Z

∂H
(2.37)

and χM (molar magnetic susceptibility) can be computed from the partition
function by:

χM =
(

∂μM

∂H

)
T,P...

= NAkT
∂2 ln Z

∂H2 (2.38)

Eqns. (2.37) and (2.38) are perfectly general and will be used later in the
book. For the while, we come back to (2.35). As an approximation, Van Vleck
proposed the development of the energies in powers of H:

En = E0
n + E1

nH + E2
nH2 + · · · (2.39)

where En
0 is the energy of the level number n with a zero applied magnetic field,

while En
1 and En

2 are respectively the first-order and the second-order Zeeman
coefficients. They can be obtained by a suitable analysis of the problem at the
quantum level. Thus:

−∂En

∂H
= −E1

n − 2E2
nH (2.40)

Secondly, Van Vleck observed that generally the terms like En
1 H in (2.39) (and

a fortiori the second-order term) are small with respect to kT, so that one can
write using this approximation:

exp

(
− En

kT

)
=
(

1 − E1
nH

kT

)
exp

(
− E0

n

kT

)
(2.41)

The molar macroscopic magnetic moment is then obtained as:

μM =
NA

∑
n

(−E1
n − 2E2

nH
) (

1 − E1
nH

kT

)
exp

(
− E0

n

kT

)
∑

n

(
1 − E1

nH

kT

)
exp

(
− E0

n

kT

) (2.42)

For usual magnetic fields, in paramagnetic systems, the macroscopic magnetic
moment μM is linear in H and in addition μM = 0 for H = 0. This corresponds
to the observation that the susceptibility is constant, and to the fact that we
exclude the case of substances with a permanent magnetization. We can thus
simplify eqn. (2.42) by keeping only the terms linear in H, and noting that
μM = 0 at zero field requires that:∑

n
E1

n exp

(
− E0

n

kT

)
= 0 (2.43)
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We finally obtain:

μM =
NAH

∑
n

[(
E1

n

)2

kT
− 2E2

n

]
exp

(
− E0

n

kT

)
∑

n exp

(
− E0

n

kT

) (2.44)

and the Van Vleck equation for the molar susceptibility:

χM = μM

H
=

NA
∑

n

[(
E1

n

)2

kT
− 2E2

n

]
exp

(
− E0

n

kT

)
∑

n exp

(
− E0

n

kT

) (2.45)

It is written in cgs-emu; in SI, the literal expression contains a prefactor μ0.
The practical (numerical) conversion of cgs-emu values of χM to SI, must in
addition take into account the change in units. The conversion coefficient is
given in Table 2.1.

The equation is very general for paramagnetic systems. Its limitations are
the absence of permanent magnetization (thus no long-range ordered ferro-
or ferrimagnetic substance) and the condition of a weak applied field (or
high temperature, H/kT small), meaning that we are far from saturation (the
situation where all microscopic magnetic moments are aligned; see the end
of this section). The treatment no longer uses the concept of microscopic
magnetic moment. It is well adapted to molecular magnetism where the energy
levels are obtained by successive perturbations calculations. For instance,
one computes the eigenvalues of some zero-order Hamiltonian, and then
introduces successive perturbations such as ligand field, spin–orbit coupling,
and so on, ending with the effect of the magnetic field. Examples are given in
the following sections.

As an application, we consider the case of a set of pure spin angular
momenta S, without interaction. The possible energy levels come from a com-
mon level En

o (the same for all centres), which is split by the Zeeman interaction
(Fig. 2.7). To be more general and anticipate the case of many-electron atoms,
we use the notation S instead of s and MS instead of ms. Thus:

E = E0
n + MS,ngμBH (2.46)

where g ≈ 2 and MS,n can take the values –S, –S + 1, . . . + S. Thus E1
n = MS,n

g μB.

E°n

(2S+1)

E

H

EMS,n
= gμB MS,n H MS,n=

−2

−1

0

+1

+2

Fig. 2.7
Zeeman splitting of an energy level E0

n
with a spin S = 2. The degeneracy
2S + 1 = 5.

It is possible to make an energy translation and put E0
n = 0 without changing

the results, so that the susceptibility is given by:

χM = NA

g2μ2
B

kT

MS =+S∑
MS =−S

M2
S

2S + 1
= NA

g2μ2
B

3kT
S(S + 1) ≈ n(n + 2)

8T
(2.47)

For the simplified expressions, (i) we use the fact that the summation on M2
S

in the numerator is identical to S (S + 1)(2S + 1)/3; (ii) we use the numerical
values of the constants, g = 2 and the number of unpaired electrons (n = 2S),
in cgs-emu units. We retrieve the famous Curie’s law (χ is inversely propor-
tional to T) and the relation between the Curie constant C and the number



98 The localized electron: magnetic properties

n on unpaired electrons. Moreover, using eqn. (2.33) an effective magnetic
moment can be computed. At a temperature T it is constant, and corresponds
to a spin-only value.

μeff = g
√

S (S + 1)μB = √
n (n + 2)μB (2.48)

For such a system the Van Vleck equation and the Curie law are valid only
when H/kT is small. What happens when H/kT reaches higher values? Let us
return to eqn. (2.37), giving the magnetization as a function of the partition
function Z. In our system:

Z =
MS=+S∑
MS=−S

exp(−MSgμBH/kT) = sinh
[
(2S + 1)x/2

]
sinh(x/2)

with x = g μB H/kBT

(2.49)
Performing now the calculation without the Van Vleck approximation eqn.
(2.41), one obtains for the magnetization:

M = MSBS(y) (2.50)

where MS is MSaturation, the magnetization at saturation (not to be confused
with a quantum number!) and y is an auxiliary variable. They are defined by:

MS = n g μBS and y = x S (2.51)

where n is the number of paramagnetic centres in the considered volume. BS

is the Brillouin function, whose shape is displayed in Fig. 2.8.

BS(y) = 2S + 1

2S
coth

(
2S + 1

2S
y

)
− 1

2S
coth

y

2S
(2.52)

The figure shows the phenomenon of saturation. If the H/kBT ratio is large
enough, the magnetization is no longer proportional to H (hence the sus-
ceptibility is not constant), and the magnetization tends towards a limit,
corresponding to the situation where all individual magnetic moments are

y

B
S
(y

) =
 M

/M
S

0

–1

1

0 1 2 3–1–2–3

S = 1/2 S = 1

S → ∞

Fig. 2.8
Brillouin function governing the sample
magnetization M as a function of the
y parameter, itself proportional to the
H / kBT ratio.
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aligned in the field. However, this situation occurs only under extreme con-
ditions. If we want y > 2 (the plateau on Fig. 2.8), with S = 1/2, g = 2, one
needs from eqns. (2.50) and (2.52), H / T (cgs-emu) > 30,000; that is, for
T = 2 K, a field of H = 60,000 Oe. In SI, B/T > 3 and B = 6 Teslas, achieved
with modern superconducting magnets. Conversely, at room temperature and
common magnetic fields (1 T), y is close to 2 10–3, and the system is described
by the linear (Van Vleck) regime. John Van Vleck was Nobel Prize recipient
in 1977. [2.20b]

Saturation measurements allow determination of the number of unpaired
spins, the properties of the ground state with eventually its change as a function
of the magnetic field.

2.4 Many-electron atoms, mononuclear
complexes, and spin cross-over

2.4.1 Many-electron atoms

The electronic structure of many electron atoms and of the mononuclear
coordination complexes is determined by many factors, such as interelectronic
repulsions, symmetry, and magnitude of the ligand field, spin–orbit coupling,
and so on. The topic is extensively treated elsewhere (see the references in
Chapter 1 and [2.21–2.26]), where the reader can find the detailed demon-
strations. In this section we simply recall some main results and give them a
physical/chemical meaning as much as possible.

The first step on our way to more complex systems is to use the angu-
lar momentum concepts introduced in the description of the unique electron
(Section 2.2), adapted to a many-electron atom. The physical picture is based
on the coupling of vectors (angular momenta) in ordinary 3D space, which
gives a pictorial interpretation to the results. The coupling can be made in two
ways: the LS (Russell–Saunders) coupling or the j–j coupling.

2.4.1.1 L–S or Russell–Saunders coupling
If the l.s spin–orbit coupling is weak it is possible to obtain the angular
momenta of the many-electron system through the vectorial sum of the n indi-
vidual electron angular momenta—orbital on one side and spin on the other.
We find:

• The x,y,z components of the orbital angular momentum L as:

(a) Lx =
∑n

i=1
lx(i) (b) Ly =

∑n

i=1
ly(i) (c) Lz =

∑n

i=1
lz(i) (2.53)

• The orbital angular momentum L as:

L =
∑n

i=1
l(i) (2.54)

• And its square L2 as:

L2 =
(

L2
x + L2

y + L2
z

)
(2.55)
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The eigenvalues of L2 and Lz can be written, as in the case of one electron
(eqns. (2.9) and (2.10)):

L2|L, ML > = h̄2L (L + 1) |L, ML > (2.56)

Lz|L, ML > = h̄ ML|L, ML > (2.57)

L and ML are quantum numbers labelling the operators L2 and Lz. L can take
the values: 0, 1, 2. . ., and ML runs from L to –L. The orbital degeneracy is
therefore 2L + 1. We need, of course, at this stage to tell how the quantum
numbers li (for one electron i) and L (for many) are related. In the case of two
electrons with quantum numbers l1 and l2: L can take the values l1 + l2, l1 + l2
–1, . . ., |l1 – l2|, sometimes named a Clebsch–Gordan series and schematized
under the ‘vector sum rule’ shown in Fig. 2.9. If more than two momenta are
present, the same rules apply by choosing a sequence: l1 + l2 to build l12. Then
l12 + l3 gives l123, and so on.

To the L quantum numbers are associated symbols, used to classify the terms
of the atom.

L = 0 1 2 3 4 5 . . .

Term symbols: S P D F G H . . .

Upper-case letters are used instead of the lower-case s, p, d, . . . symbols intro-
duced for the one-electron systems (Chapter 1). Mutatis mutandis, we can
apply the same treatment to the spin angular momentum and find the spin
angular momentum S as:

S =
∑n

i=1
s(i) (2.58)

with similar relation as eqn. (2.53) for its components Sx, Sy, Sz.
The square S2 is:

S2 =
(

S2
x + S2

y + S2
z

)
(2.59)

The eigenvalues of S2 and Sz can be written, as in the case of one electron
(eqns. (2.13) and (2.14)):

S2|S, MS > = h̄2S (S + 1) |S, MS > (2.60)

Sz|S, MS > = h̄ MS|S, MS > (2.61)

S and MS are the quantum numbers labelling S2 and Sz.
As for L, a Clebsch–Gordan series allows linking of the quantum numbers

si and S. For two electrons s1 and s2, S can take the values s1 + s2, s1 + s2 –1,
. . ., |s1 – s2|; that is, S = 1 or 0. If more than two spins are present we proceed

l1

l2

L
l1

l2

L
l1

l2

L l1

l2

L

Fig. 2.9
Vectorial coupling of two orbital angu-
lar moments l1 and l2 (grey vectors) to
provide L (vector triangle rule, adapted
from [2.21]).
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as for L: s1 + s2 gives s12. Then s12 + s3 builds s123, and so on. Then, for three
spins, S = 3/2 or 1/2. It is obvious to generalize, and to find that S takes values
0, 1, 2, . . ., for an even number of electronic spins and 1/2, 3/2, 5/2, . . ., for
an odd number. MS runs by unit steps from S to –S: S, S–1, . . ., –S. The spin
degeneracy is therefore 2S + 1, which allows completion of the expression of
a term L: 2S+1L.

This constitutes a spectroscopic term. Until now, we have mainly discussed
its vector properties, but it has a defined energy and, of course, a wavefunction.
Unfortunately, this last one cannot generally be represented in a pictorial way,
for two reasons: (i) except for the case of one electron the wavefunction is a
many-electron wavefunction, and for n electrons it is a function of 3n space
variables; (ii) the degeneracy—the number of different wavefunctions with the
same energies—is usually very high, given by (2S + 1)(2L + 1).

A term is thus a set of several electron wavefunctions. Although this
mathematical object cannot be represented in ordinary 3D space, it has
well-defined symmetry properties, which are used in the following. Its energy
is a total electronic energy, not to be confused with orbital energies (see
Section 1.5).

We use these concepts in the following sections. The demonstrations giv-
ing the terms of a given electronic configuration of a transition element, the
microstates, the wavefunctions, and the energies in terms of Condon or Racah
parameters, can be found in [2.22–2.24]. Those ‘free-ion’ energies will be our
starting point in the (3d2) Tanabe–Sugano diagram in Fig. 2.12.

In many cases we want only to determine the ground term. Without calcula-
tions we can use the first two Hund’s rules, consecutively. Rule 1: the ground
term belongs to the set of terms with the highest S; Rule 2: among these terms
the ground term is the one with the highest L. Thus, for a (3d2) configuration,
among the available 1S, 1D, 1G, 3P, and 3F terms the first rule selects 3F and 3P
and the second rule allows to pick 3F. Note that Hund’s rules are used to select
the ground term and only the ground term.

It is important to realize that this result comes from purely electrostatic
effects. Thus Hund’s first rule (Smax) means that a triplet state is more stable
than a singlet with the same orbital occupancy. As seen in Section 1.5, this
comes from the fact that in the triplet state electrons are on the average farther
apart than in the singlet state, and thus they repel less than when they have
opposite spins. For Hund’s second rule (Lmax, meaning that the two electrons
occupy two high L orbitals), a classical picture consists of two electrons in
approximately coplanar Bohr orbits, rotating in the same direction in order to
maximize at any time their distance and avoid encounters [2.11, p. 32].

Finally, we introduce the total angular momentum operator J, defined as:

J = L + S (2.62)

with the corresponding operators J and its associated quantum number J, Jz

and its quantum number MJ (relations similar to the one of L). The total
quantum number J runs from L + S to |L–S| and MJ from J to –J both by
unit steps. The degeneracy is then 2J + 1. As with j, J can take integer and
half-integer values.

This coupling is known as the L–S or Russell–Saunders coupling. As J
implies spin–orbit coupling, it is usual to complete the preceding term
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formulation 2S+1L using J as subscript 2S+1LJ, which defines a level or a state
[2.21]. Hence, the free ion terms, created through electrostatic interactions, are
split by spin–orbit coupling to create states.

The degeneracy of such a level is 2J + 1. The energies of the levels are found
using the spin–orbit Hamiltonian, applied to the many-electron atom:

HSO = λ L.S (2.63)

which is the many-electron counterpart of the one-electron spin–orbit
Hamiltonian ζ l.s. λ is the many-electron spin–orbit coupling constant and
has energy units. λ has the same value for all terms deriving from a given
configuration and is related to ζ through:

λ = ± ζ

2S
(2.64)

We know that ζ is positive, so that eqn. (2.64) tells us that λ can be either
positive or negative. Using definitions (2.56) and (2.60) and the Hamiltonian
(2.63) applied to a term wavefunction ψ, defined by the quantum numbers L,
S, and J, the spin–orbit splitting of the levels can be computed easily. We first
identify L.S with (J2 – L2 – S2)/2 as usual, and we find the eigenvalue (energy)
of the 2S+1LJ state:

E
(

2S+1LJ
) = <ψ |HSO| ψ>= �

2 λ

2
[J(J + 1) – L(L + 1) – S(S + 1)] (2.65)

The reader can check as an exercise that a similar expression is obtained for
E(2S+1LJ+1), and that the difference is:

E
(

2S+1LJ+1
) − E

(
2S+1LJ

) = �EJ+1,J = h̄2λ(J + 1) = λ (J + 1) (2.66)

The last expression at the right is in atomic units (h̄ = 1), and is known as the
Landé interval rule. With always the same (3d2) configuration the 3F ground
term gives rise to three states 3F2, 3F3, and 3F4 levels with respective energies(
/h̄2

) − 4λ, –λ, and 3λ. The set of levels form a multiplet. The lowest state is
determined by the sign of λ. Another Hund’s rule (the third) helps us to find it:
for a given term with a sub-shell half-filled or less, the level with the lowest J
value lies lowest (λ > 0); with a sub-shell more than half-filled, the level with
the highest J value lies lowest (λ < 0). See Fig. 2.10(a). The right-hand side of
the figure is related to a (3d8) configuration. One observes that the levels have
been inverted, with the change of sign of λ. This is an illustration of a more
general observation about the electron and hole analogy: the dn (n electrons)
and d10–n (n holes) configurations give rise to the same ground term and states,
but the states’ order is reversed.

3F2

3F3

3F4

3λ

4λ

−4λ

−λ

3λ

3d2 3F 3d8 3F

L = 3 S = 1L = 3 S = 1

3F2

3F3

3F4

3λ

4λ

 −4λ

−λ

3λ

E

(a, 3d2) (b, 3d8)

λ > 0 λ < 0

Fig. 2.10
Electron configuration, terms, and states:
splitting of the 3F term by spin–orbit
coupling for (a) d2 (λ > 0, normal
multiplet and (b) d8 configurations (λ
< 0), inverted multiplet. (Adapted from
[2.25].)
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Landé g-factor
In many-electrons atoms the magnetic moment operator is an extension of the
one of the electrons (eqn. 2.18):

μ = μB
(
gLL + gSS

) = μBgJJ (2.67)

where gL (=1), gS (=2) and gJ (given in the following) are the g-factors for
orbital, spin, and total momenta. To determine gJ, the new Landé g-factor, we
multiply eqn. (2.67) by J:

μ.J = μB
(
gLL.J + gSS.J

) = μBgJJ.J = μBgJJ (J + 1) (2.68)

and we use the properties of angular momenta to express L.J and S.J:

L2 = (J − S)2 = J2 + S2 − 2J.S or J.S = (J2 − L2 + S2)/ 2 (2.69a)

with eigenvalues

1

2
[J (J + 1) − L (L + 1) + S (S + 1)] (2.69b)

S2 = (J − L)2 = J2 + L2 − 2J.L or J.L = (J2 + L2 − S2)/ 2 (2.70a)

with eigenvalues

1

2
[J (J + 1) + L (L + 1) − S (S + 1)] (2.70b)

By inserting these values in eqn. (2.68), we obtain:

gJ = gL
J(J + 1) + L(L + 1) − S(S + 1)

2J(J + 1)
+ gs

J(J + 1) − L(L + 1) + S(S + 1)

2J(J + 1)
(2.71a)

gJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
(2.71b)

with gL= 1 and gS= 2. A detailed demonstration is given in appendix C of
[2.11].

We have just described the L–S coupling when the interelectronic electro-
static repulsion which defines the terms is larger than the magnetic spin–orbit
coupling. We move next to the reverse situation: the so-called j–j coupling.

2.4.1.2 j–j coupling
When the spin–orbit coupling is strong (this occurs in heavy atoms with large
Z), l and s couple into j. l and s are no longer good quantum numbers, so the
system must be described by j, defined in eqns. (2.21)–(2.22). The coupling of
the individual j(i) leads to a total angular momentum J:

J =
∑n

i=1
j(i) (2.72)

where J has the usual properties of an angular momentum. For heavy atoms
(high Z), this coupling scheme must be followed; that is, it fits better with the
experimental results. Let us illustrate the j–j coupling in our (3d)2 example.
From li = 2 and si = 1/2, we obtain ji = li ± si = 5/2 or 3/2. Then we have
three possible (j1j2) coupling and three energy levels: (3/2,3/2), (3/2,5/2), and
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Free ion Russell-Saunders coupling

H = Horb  +  e2
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+ λ L.S
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0
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Horb = H ζ Σli.si
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ri,ji<j
+ +

(a)
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ΣΣ

Fig. 2.11
Correlation diagram between the energy
levels obtained with the Hamiltonian (a),
through Russell–Saunders (LS) coupling
(starting from the left, b) or j–j coupling
(starting from the right, c); the middle
situation (d) constitutes the intermediate
coupling.

(5/2,5/2). This is schematized on the right-hand side of Fig. 2.11, which shows
the successive application of the two perturbations (repulsion and spin–orbit)
in different order and the correlation of their energy levels in an intermediate
coupling situation. The scheme to be followed (LS or j–j) depends on the rel-
ative importance of the perturbation—electron repulsion or spin–orbit. As λ ∝
Z4, low-Z atoms should follow LS coupling (L and S are good quantum num-
bers), high-Z atoms should follow j–j coupling (J good quantum number), but
in many cases one has to deal with an intermediate coupling. The j–j coupling
scheme never occurs in its pure form. But the spin–orbit contribution becomes
more and more important as the atomic number Z increases; that is, second
and third transition series. In this book, all examples are treated with the LS
model.

2.4.2 Mononuclear complexes, electronic structure

We now modify the preceding free-ion scheme by approaching different
molecules or ions (ligands L) to the metallic atom. Here we enter into the
domain of the electronic structure of coordination and organometallic com-
pounds. Many textbooks are available, and therefore we do not reproduce
material easily encountered elsewhere. Instead, we focus on a few points of
interest for our future developments [2.22–2.26].

Here we deal only with central metallic atoms M to form metallic com-
plexes MLn. The ligands create an electrostatic field which modifies the metal
energy levels. This is the crystal field approach directly related to the geometry
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(symmetry) of the complex. When M–L bonds are introduced into the model,
molecular orbital description allows us to define a more detailed ligand field
model (introduced in Section 1.3.6). The examples chosen in this section are
essentially octahedral complexes, with some indications of the related case of
tetrahedral systems.

The most efficient way of treating the problem is to write the Hamiltonian
with the different terms ranked by decreasing associated energies, so that,
when possible, one can use perturbation expressions systematically. In addi-
tion, symmetry properties are used to simplify the treatment by providing
convenient labels for the different states.

The Hamiltonian is thus written as:

H = Horb + He−e + HLF + HSO + Hm (2.73)

where Horb encompasses the effect of electron–nucleus attraction and mean
electron–electron repulsion (thus defining the orbitals), He–e is the electron
repulsion inside the valence shell (between 3d electrons for instance), HLF the
ligand field term, Hso the spin–orbit term, and finally Hm the Zeeman term
in presence of a magnetic field. As stated previously, these contributions are
ranked by decreasing energies, but He–e and HLF can be of similar magnitudes.
In Section 1.3.6 we saw the effect of the ligand field on orbitals (one-electron
levels); that is, we have taken into account only Horb and HLF.

2.4.2.1 Ligand field action
Let us return to a (3d)2 configuration and to the free-ion terms determined by
interelectronic repulsion in the LS coupling scheme and before the interven-
tion of spin–orbit coupling (Fig. 2.12 left). If the ligand field is now introduced
(the HLF term of the Hamiltonian), the energies are modified and some degen-
eracies are lifted. How? The analysis of the problem is greatly simplified by
the use of group theory. The precursor in this domain was H. Bethe, and the
methodology is now well established [2.27].

In Table 1.5 we presented the character table for the Oh group, and used it
to define the symmetries of orbitals (one-electron wavefunctions). On the one
hand, MOs are a basis for the irreducible representations of the point group.
On the other hand, the angular operators l2, lz commute with Hamiltonian oper-
ator H, so they share a common set of eigenfunctions. We can therefore use
the symmetry for terms as we do for orbitals. The important result is that a
given term behaves as an orbital characterized by the same l symbol: an S term
behaves as s orbitals, P as p, D as d, and so on. Let us take the simple example
of the O subgroup, retaining only the rotations of the Oh group. It can then be
shown [2.27] that the character χ for a rotation of an angle ϕ is given by χ(ϕ):

χ (ϕ) =
sin

(
Lϕ + 1

2

)
sin

ϕ

2

(2.74)

where L is the quantum number characterizing the term. When ϕ = 0,
χ(ϕ) = 2L + 1. Thus, considering the case of a D term (L = 2, 2L + 1 = 5),
the characters computed from eqn. (2.74) give a reduced version of Table 1.5
Oh → O:
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O E 8C3 6C2 6C4 3C2

�D 5 −1 1 −1 1

The representation �D of the D term is reducible and can be reduced as T2 + E,
exactly in the same way as d orbitals transform as t2 + e [2.27]. As the complete
Oh group contains, in addition, the inversion operation i, the exact result will
be T2g + Eg. Regarding the F ground term of a d2 configuration, it is split
into A2 + T2 + T1. The final labels are then obtained by adding the subscript
‘g’ (all terms derived from a dn configuration are symmetric—gerade—with
respect to the inversion centre), and the superscript 2S + 1, giving in this case
3A2g + 3T2g + 3T1g. When dealing with optical spectroscopic properties it is
enough to stop here, because the following perturbations (spin–orbit coupling
and eventual magnetic field) have little or no consequences.

The resulting energy levels depend on the ligand field-splitting �oct (or the
related parameter Dq, defined by �oct = 10 Dq, for historical reasons and
abridged as � in the following). More precisely, the behaviour depends on the
ratio �/B, where B is Racah’s parameter of interelectronic repulsion [2.22–
2.23]. Finally, it is useful to display the results pictorially as a Tanabe–Sugano
diagram [2.23], in which the energy is plotted in units of B against the �oct/B
ratio, the horizontal axis being the energy of the ground term taken as origin
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3T2

1A1
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(t2)1(e)1
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Fig. 2.12
An example of Tanabe–Sugano diagram.
Case of a d2 ion, showing for small
�/B values the junction with free ions
terms, and for strong �/B values the
asymptotic behaviour towards configura-
tion energies. Another example is given
in Fig. 2.13 (d6).
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Table 2.3 Ground terms for d1 to dn configurations in Oh symmetry.

n → 1 2 3 4 5 6 7 8 9

Term 2T2g
3T1g

4A2g
3A2g

2Eg

HS Term 5Eg
6A1g

5T2g
4T1g

LS Term 3T1g
2T2g

1A1g
2Eg

(Fig. 2.12). Due to this choice of adimensional coordinates, the diagram is
extremely versatile for a given configuration.

Table 2.3 lists the ground terms for configuration d1 to d9. From d4 to d7, two
main types of configuration are possible: a ‘low spin’ one in which orbitals are
filled according to the Aufbau principle, and a ‘high spin’ one in which one has
the maximum of parallel spins. We shall return on this point in Section 2.4.3 on
spin cross-over. As for the free ions, the left superscript is the spin multiplicity
(2S + 1). Other intermediate spin configurations are not shown.

Tanabe–Sugano diagrams are extremely versatile. Thus, changing the lig-
and field symmetry from Oh to Td is equivalent to changing the sign of �.
Then the sequence of terms issued from a free-ion term is reversed. Changing
the electronic configuration from dn to d10–n has the same effect, due to the
electron-hole formalism (a d9 system can be considered as a closed shell d10

system with one ‘electron hole’). As a consequence of these two equivalences,
the Tanabe–Sugano diagram related to Td dn is identical to that of Oh d10–n

(except than one drops the u and g from the symmetry labels due to the absence
of inversion centre in Td: e, t2 instead of eg and t2g).

The previous reasoning was based on the principle that the ligand field influ-
ence is a perturbation of the free-ion term energies. This is the ‘weak field
approach’. But actually, the two types of effect are of comparable magnitude.
So it is possible to start conversely from a ‘strong field approach’; that is,
consider first the ligand field effect and then the electrostatic repulsion, and
perform the correlation between the two approaches. The final result is still
represented by the Tanabe–Sugano diagram. Thus for low �/B one finds the
free-ion terms slightly perturbed by the ligand field. Conversely, for high �/B
it can be noticed that the term energies corresponding to the same electronic
configuration vary with the same slope (see Fig. 2.12, right-hand side). At very
high �/B the relative energy difference between terms issued from the same
configuration becomes negligible. The privileged way of reasoning is then to
start from the configuration; that is, to assign electrons to orbitals and then
introduce electronic repulsion as a perturbation.

When the symmetry is lower than Oh or Td, one starts generally from the
‘strong field’ approach, which is more intuitive for chemists. Then one looks
at the terms issued from each configuration, the analysis being simpler because
there are much fewer orbital degeneracies.

2.4.2.2 Spin–orbit influence
We now consider the influence of spin–orbit, assumed to be weaker than
ligand field and electrostatic repulsion effects because we are in the LS coup-
ling scheme. As for the free ion, spin–orbit coupling can lift some remaining
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degeneracies. Again, group theory can help prediction of the behaviour, but a
difficulty arises because the relevant formula for the rotation character is now
given by eqn. (2.74), with J replacing L.

χ (ϕ) =
sin

(
Jϕ + 1

2

)
sin

ϕ

2

(2.75)

Contrary to L, J can take half-integer values. Then a strange phenomenon
occurs: if J is half-integer (say J = 1/2; that is, L = 0, S = 1/2), a 2π rotation
does not bring back the system identical to itself . Instead, we have:

χ = (ϕ + 2π) = −χ (ϕ) (2.76)

This paradoxical result is rooted in the peculiar non-conventional nature of
the spin and its imperfect physical representation. The mathematical treatment
[2.27] (not presented here) uses ‘double groups’ with an additional operation,
the 2π rotation R, which is distinct from identity and brings back the system
to identity only after a 4π rotation.

In the theme of the book, the spin–orbit coupling will play a role by introdu-
cing small changes in energies (around 102 cm–1), and also anisotropy in some
properties. Indeed, the spin itself is an isotropic operator. For a pure spin the
effects are the same regardless of the orientation of the spin with respect to the
molecular axes. But the orientation of an angular orbital momentum is gener-
ally fixed by molecular structure. When the spin–orbit coupling mixes the two
kinds of momentum, it communicates some anisotropy to the spin properties.

2.4.2.3 Other degeneracies
We have seen a number of effects (electrostatic repulsions, ligand field effect,
spin–orbit coupling) leading to the progressive removal of electronic degen-
eracies. To these effects must be added the possible Jahn–Teller effect, which
occurs when the electronic state is degenerate or when the ground state can
mix with an excited state of suitable symmetry, and can also remove a degen-
eracy (see Section 1.3.7). Another important theorem, on the contrary, predicts
when a degeneracy cannot be lifted. This is the case for doublet states (S = 1/2)
obtained from the occupation of a non-degenerate orbital by a single electron.
Then the Kramers theorem states that this last degeneracy cannot be lifted by
an electric interaction, but only by a magnetic field. The mathematical details
are not given here, but this is a consequence of the time-reversal invariance at
the microscopic scale.

If the total spin is greater than 1/2 (for instance, S = 1 as in Ni(II), d8, com-
plexes), the Kramers theorem does not apply. Then the combined effects of
ligand field and spin–orbit can partly remove the degeneracy. This is the ‘zero-
field splitting’ (understood as ‘zero magnetic field splitting’), which is used in
following sections.

2.4.2.4 Influence of a magnetic field: the Zeeman effect.
We end up with the smallest effect: the influence of the magnetic field H. For a
paramagnetic system it can be assumed that the energy Em of one of the states
defined in Fig. 2.11 can be expressed as a power series of the magnetic field:
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Em = E0
m + E1

mH + E2
mH2 + · · · (2.77)

where E0
m is the energy in zero field, E1

m and E2
m are the first-order and second-

order Zeeman coefficients respectively. At the first order in H, the Hamiltonian
is:

Hm = −μ. H = μB gJ JH = μB
(
gL L + gS S

)
H (2.78a)

(in cgs-emu, for SI put B in place of H).
The eigenvalues are accordingly:

E = μB gJ MJ H (2.78b)

with MJ varying from –J to +J. The corresponding energy changes are in
the range ∼1 cm–1 per Tesla. The detailed study is dependent on the sys-
tem under investigation, because the relative contributions of the orbital and
spin momenta can be different from one case to another. The second-order
coefficient even implies the other levels. See references [2.22, 2.24].

2.4.2.5 Quenching of orbital momentum
In coordination complexes the orbital magnetic moment related to d elec-
trons can be manifested more or less according to the symmetry of the terms.
There is a process called ‘quenching of orbital moment’ which occurs under
certain circumstances and suppresses the contribution of the orbital moment.
In such cases the magnetic properties are due to spin only, which incidentally
simplifies greatly the behaviour.

The explanation is rooted in the basic properties of d orbitals. As seen
in Section 1.2.1, in a free ion the d orbitals, solutions of the hydrogenoid
Schrödinger equation, are initially obtained with angular parts of the form
�(θ) exp(imlϕ), where ml, the magnetic quantum number, can take the values
–2, –1, 0, 1, 2. The corresponding wavefunctions can be denoted in Dirac form:
|–2 >, |–1 >, |0 >, |1 > and |2 >. To each of these orbitals is associated an
orbital magnetic moment ml μB, but the problem is that we had to combine
these ‘raw’ wavefunctions to generate real wavefunctions. Thus to a real
orbital alone like |dxy> one cannot associate an orbital magnetic moment.
When the orbitals are degenerate, as in the free ion, the real orbitals can be
recombined at will to generate orbitals presenting a magnetic moment. This
process is not always possible in the presence of a ligand field. For instance,
in Oh symmetry |dxy> and |dx2–y2> no longer have the same energy (t2g, eg are
separated by �oct) and cannot be recombined. Detailed study leads to a simple
rule: terms with A or E symmetry have their magnetic moment ‘quenched’,
while this is not the case for terms of T1 or T2 symmetry. But again, the
spin–orbit coupling complicates this simple picture by introducing a mixing
of the orbital and spin moments.

2.4.3 Spin cross-over: phenomenon and models

2.4.3.1 Introduction
We can apply these ligand field considerations to a very appealing phe-
nomenon: the spin cross-over (also called spin transition), by which the metal
complex can change its spin from a high-spin to a low-spin configuration. This
phenomenon was discovered in 1931, and has been since the subject of a large



110 The localized electron: magnetic properties

Table 2.4 Electronic configurations, term, spin, and mean pairing energy for some first row dn HS and LS transition metal complexes.

HS LS

dn Ion Configuration Term Spin � a 10DqHS b Configuration Term Spin 10DqLS c

d4 Cr(II) (t2g)3(e∗
g)1 5E 2 23.5 13.9 (t2g)4(e∗

g)0 3T1 1 –
d4 Mn(III) (t2g)3(e∗

g)1 5E 2 28.0 21.0 (t2g)4(e∗
g)0 3T1 1 28c1

d5 Mn(II) (t2g)3(e∗
g)2 6A1 5/2 25.5 7.8 (t2g)5(e∗

g)0 2T2 1/2 –
d5 Fe(III) (t2g)3(e∗

g)2 6A1 5/2 30.0 13.7 (t2g)5(e∗
g)0 2T2 1/2 35c2

d6 Fe(II) (t2g)4(e∗
g)2 5T2 2 17.6 10.4 (t2g)6(e∗

g)0 1A 0 19.4c3

d7 Co(II) (t2g)5(e∗
g)2 4T1 3/2 22.5 9.3 (t2g)6(e∗

g)1 2E 1/2 15.5c4

a Mean pairing energy � /103 cm–1 for the free ion (to be reduced by 70–80% in complexes–the nephelauxetic effect); bHS 10Dq/103 cm–1 ligand field energy in
[M(H2O)6]n+ complexes; c LS 10Dq /103 cm–1 ligand field energy in selected complexes: c1[Mn(III)(CN)6]3–; c2[Fe(III)(CN)6]3–; c3[Fe(II)(ptz)6]2+; it is 33.5 for
[Fe(II)(CN)6]4–; c4[Co(II)(bpy)3]2+. (Adapted from Y. Garcia [2.28] (vol. II, p. 49), [2.22], [2.30].)

number of studies. Recent reviews on this topic are available [2.3, 2.28–2.31].
Let us consider an octahedral complex of a transition metal with dn electrons.
For n ≤ 3 only one configuration arises, (t2g)n; for n ≥ 8 only one configuration
is present: (t2g)6(e∗

g)n–6. In these cases the concept of high and low spin has no
real meaning. When we deal with 3 < n < 8 we can find at least two electronic
configurations, as shown in Table 2.4. Spin cross-over has been observed in
the first line of transition elements with d4, Cr(II), d5, Fe(III), d6, Fe(II) and d7,
Co(II). Rare examples are known in the second line and none in the third, due
to high ligand field energies and weak spin pairing energy. Here we limit this
simple analysis in terms of high/low spin, but matters can be more complicated
with the occurrence of ‘intermediate spin’—in particular, when the symmetry
is lowered [2.31].

A first description relies on the Tanabe–Sugano diagram (Section 2.4.2.1).
The example for Fe(II), d6, is shown in Fig. 2.13 , though for the sake of clarity,
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5T2 (t2g

4 eg
2)

Low Spin LS
1A1 (t2g

6 eg
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Fig. 2.13
Simplified Tanabe–Sugano diagram for
an octahedral Fe(II), d6 complex. Energy
and terms are given as a function of the
ligand field parameter 10Dq (see text).
The Racah parameters used are C =
4040 cm–1 and B = 917 cm–1.
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triplet terms are not shown. The only terms represented are the quintuplet (ori-
ginating from the 5D free-ion term and giving the 5T ground term at low field)
and the singlet (issued from the 1I free-ion term and giving the 1A1 ground
term at high ligand field). The ground terms are horizontal by convention. The
arrows show the spin-allowed electronic transitions (5T →5E) in the high-spin
regime and (1A1 →1T1 and 1A1 →1T2) in the low-spin regime. In the case
of the octahedral complex [Fe(II)(ptz)6](BF4)2 (ptz = 1-n-propyltetrazole) the
spectroscopic data allow us to obtain 10DqHS = 11,800 cm–1 (directly from
the transition 5T2 → 5E) and, from the transitions 1A→ 1T1 and 1A→ 1T2,
10DqLS = 19,410 cm–1 and B = 740 cm–1. Note that there are two possible
values (HS and LS) for the ligand field parameter (Hauser, in [2.28] vol. I,
p. 49, [2.29]).

The occurrence of two values of 10Dq is explained by the diagram in
Fig. 2.14, showing two wells of potential energy (such as enthalpy) as a
function of a nuclear coordinate (for example, metal–ligand distances). The
representation generally uses the harmonic oscillator model (E = 1/2 kx2, where
x is the variation of the metal–ligand distance from the equilibrium distance
and k a force constant). Figure 2.14 represents the case of an Fe(II) complex
in low- and high-spin forms (dFe–L(LS) < dFe–L(HS)). The quantized vibration
levels are represented in each well [νFe–L(LS) > νFe–L(HS)]. The electronic
interaction between the two systems, which allows the change from one to the
other, is not represented: the two curves cross without mixing. In this scheme
the lowest vibrational level of the HS form lies in enthalpy above the lowest
vibrational level of the LS form by �H◦, the zero-point enthalpy difference
(�H◦ = H◦

HS – H◦
LS). The LS state is then the quantum-mechanical ground

state. But if �Hº > 0 and within the reach of thermal energies (kT), the HS
state can become thermally populated when T increases, and the transition can
occur—in particular, when taking into account the entropy factor and cooper-
ativity (as in the following). Furthermore, the presence of an energy barrier
shows that LS and HS are distinct chemical forms.

High Spin    HSLow Spin   LS

5T2 (t2g
4 eg

2)1A1 (t2g
6 eg

0)

E

d (Fe-L)

ΔH°

d(Fe-L)LS d(Fe-L)HS

νLS νHS

H°LS

H°HS

Fig. 2.14
Low-spin and high-spin potential energy
wells of a Fe(II) complex as a function of
the metal–ligand distance, including the
vibrational levels in an harmonic oscil-
lator model, with no interaction between
the two systems.
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The relation between the energy of both forms and the metal–ligand dis-
tances is straightforward. For the high-spin configuration, compared to the
low-spin configuration, the e∗

g orbitals have a maximum occupation, thus the
metal–ligand distances are larger and the ligand field parameter �oct is weaker.
In addition (this will be useful later), the metal–ligand vibrational frequency
is lower, explaining the more closely spaced levels on the right-hand side of
Fig. 2.14. For a given metal ion and a set of similar ligands, a useful approx-
imate correlation exists between the ligand field �oct and the metal–ligand
distance r:

�LS
oct

�HS
oct

=
(

rHS

rLS

)n

(2.79)

with n = 5–6. In the archetypal spin cross-over complex [Fe(II)(ptz)6](BF4)2

quoted previously, the ratio is 1.64, in agreement with the usual Fe–N distances
rHS ≈ 216–220 pm rLS ≈ 196–200 pm (from Hauser in [2.28] vol. I, p. 49).

It is frequently stated that the relative stability of the high-spin and low-spin
forms depends on the comparison between �, the mean pairing energy, and the
ligand field parameter, and that spin cross-over occurs when they are of similar
magnitude (� ≈ 10Dq). But since there are two such ligand field parameters,
one has to look in more detail. Further insights can be gained with the repres-
entation of Fig. 2.15, where the zero-point enthalpy difference �H◦ between
HS and LS states (Fig. 2.14) is plotted as a function of 10Dq for a model com-
plex, [Fe(II)(ptz)6]2+, by varying the Fe–ligand distances, for example. Two
lines divide the diagram: (i) the vertical representing the pairing energy �,
which does not vary so much with the spin state; � is related to the cross-over
point in the Tanabe–Sugano diagram (Fig. 2.13); (ii) the horizontal �H◦ = 0.
Below this line (�H◦ < 0) the quantum-mechanical ground state is the HS
state. Above this line (�H◦ > 0) it is the LS state. The variation of �H◦ as
a function of 10Dq for the HS configuration (as 10DqHS) is displayed for low
10Dq values, and the similar curve for LS (as 10DqLS) is shown for high 10Dq
values.

When 10DqHS < 10.000 cm–1, �H◦ is negative, the ground state is HS, and
the LS state cannot be thermally populated (dotted line on 10DqLS). When
10DqLS > 23.000 cm–1, �H◦ is positive, and the ground state is LS. It is

10DqLS

0

–5000

+10000

+ 5000

10000 20000 30000

Spin cross-over

Π

10DqHS

10Dq/cm–1HS

LS
Δ H°/cm–1

Fig. 2.15
Zero-point enthalpy �H◦ as a func-
tion of ligand field energy 10Dq drawn
for the octahedral Fe(II), d6 complex
[Fe(II)(ptz)6](BF4)2 and a Racah para-
meter reduced by 75% compared to the
free ion value (nephelauxetic effect). The
narrow grey area exhibits the zone where
spin cross-over can occur (see text).
(Adapted from Hauser in [2.28] vol. I,
p. 49.)
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possible to populate thermally the HS state without destroying the complex
if �H◦ is not too large (say, �H◦ ≤ + 2000 cm–1). This zone, indicated in
grey, corresponds to the situation where HS and LS states are both present
and a spin cross-over can occur. Above this zone, �H◦ is too large for the HS
state to be populated (dotted line on 10DqHS). The spin cross-over transition
can occur, therefore, in the narrow band of ligand field energies [10DqHS ≈
10–12,500 cm–1, 10DqLS ≈ 19–22,000 cm–1].

Thus the true condition for spin cross-over is 10DqHS << � << 10DqLS—
quite different from the simple assertion that � ≈ 10Dq. Such a conclusion can
be extrapolated to other Fe–N octahedral complexes for the choice of proper
ligand and the method used mutatis mutandis for other metal dn ions (d4 < dn

< d7).

2.4.3.2 How do we follow the HS–LS cross-over?
The transition can be followed using any technique sensitive to the change
of one of the electronic, vibrational, and structural parameters during the
transition [2.29]. The magnetic susceptibility measurement by SQUID mag-
netometry is by far the most basic and most used technique (see Section 2.3).
It produces directly the HS/LS fractions. Heat capacity measurement is the
only technique able to provide the thermodynamical parameters �Hº and �Sº.
Mössbauer spectrometry is very useful to follow the spin state of iron(II) and
iron(III) complexes through the isomer shift displacement and the quadrupole
splitting. For each of the LS and HS states, infrared or Raman spectroscopy
produces the change in vibrational states, whereas electronic spectroscopy
produces the energy and intensity of the electronic transitions. The structural
changes can be followed using single crystal X-ray or neutron diffraction when
crystals are available and do not shrink at the transition. The local structure
(surroundings of the metal ion) can be followed, whatever the shape of the
sample, by X-ray absorption spectroscopy.

The most common way of depicting the spin transition is to plot the high-
spin fraction x as a function of temperature. As will be seen in the following,
it always increases with temperature, but the variation can take several forms
(Fig. 2.16). One can have a gradual transition, or an abrupt one occurring in
a small temperature interval (a few K). In some cases an hysteresis loop is
observed; that is, the trajectories x(T) are not the same when warming or cool-
ing. Finally, there are examples of two-step transitions for which in a given
temperature interval the high-spin fraction remains close to 50%.

2.4.3.3 Thermodynamics of the LS–HS equilibrium
The spin cross-over (spin transition) has been the subject of a large number of
theoretical studies, some of which are presented in reviews such as [2.28, 2.30].
A first aspect to consider is the thermodynamics—in particular, the relative
stabilities of the LS and HS forms. For the moment we compare these two
forms as pure solids. (In Section 2.4.3.4 we will consider the possibility of
solid solutions.)

The LS/HS conversion can be considered as a chemical equilibrium:

LS � HS (2.80)
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Fig. 2.16
Different behaviour types for a low-
spin–high-spin transition: (a) smooth;
(b) abrupt; (c) hysteresis; (d) two-step.

In the standard state (pure solids) the enthalpy, entropy, and free enthalpy
changes are �H◦

LS→HS (= H◦
HS – H◦

LS), �S◦
LS→HS and �G◦

LS→HS, defined simil-
arly. We note for simplicity, �H◦, �S◦, and �G◦ respectively. �S◦ is positive
because it encompasses an electronic term �H◦

el and a vibrational term �H◦
vib,

both positive. The electronic term is linked to the degeneracy of electronic
states. It is given by:

�S0
el = R ln (�HS/�LS) (2.81)

with

� = �spin�angular = (2S + 1) (2L + 1) (2.82)

At least, �spin is larger for the HS state. �S◦
vib is positive because the vibra-

tional states are more closely spaced and the bond lengths are higher in the
HS form. Broadly speaking, the bonds are weaker in the HS form, allowing
more degrees of freedom. In one of the most studied examples of iron(II) spin
cross-over systems, [FeII(phen)2(NCS)2], (phen = 1,10-phenanthroline), the
transition occurs between 5T (2S + 1 = 5; 2L + 1 = 3) and 1A (2S + 1 = 1;
2L + 1 = 1) states, thus �S◦

el = R ln (5 × 3/1) = 13.38 J K–1 mol–1, while
the total �Sº = 48.78 J K–1 mol–1, showing that most of the entropy change
derives from the vibrational term (intra- and intermolecular).

In order to observe a thermal spin transition, �H◦ must be positive (as shown
in Figs. 2.13 and 2.15), so that at low temperature the LS form is the most
stable, while at high enough temperature �G◦ = �H◦ – T �S◦ has a chance
to become negative. �G◦ = 0 for a peculiar temperature that we denote T1/2:

T1/2 = �H◦/�S◦ (2.83)
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T1/2 is the temperature for which the high and low spin fractions are equal to
1/2. Note that when an hysteresis is present, T1/2 cannot be measured directly,
because it is inside the loop (see in the following). In the case of the previously
mentioned [FeII(phen)2(NCS)2] complex, �Sº = 48.78 J K–1 mol–1, �Hº =
8.60 kJ mol–1, and T1/2 = 176.29 K.

From a chemical point of view, the first and immediate factor controlling the
T1/2 temperature is the magnitude of the ligand field. Thus, let us consider the
effect of substitution on the phen ligands of the [Fe(phen)3]2+ complex [2.28].
The starting compound is LS at all temperatures. Incorporation of a methyl
group in the 2-position of phenanthroline (adjacent to the N atom) reduces the
ligand field, because steric interligand repulsions preclude the close approach
of nitrogen to the metal. As a consequence, a spin cross-over is observed (that
is, the HS state begins to be of comparable stability with the LS). With Cl,
which is both bulky and electron-withdrawing, the ligand field still decreases
and only the HS form is observed at all temperatures.

Another example is provided by the series derived from [Fe(py)4(NCS)2],
the latter being HS at all temperatures. Substituting two pyridine molecules by
an 1,10-phenanthroline gives [Fe(py)2(phen)(NCS)2] with an increase of the
average ligand field, leading to a spin cross-over at T1/2 = 106 K. Substituting
two more pyridine molecules to yield [Fe(phen)2(NCS)2] still increases the
ligand field and thus the LS domain, the T1/2 temperature reaching 176 K.

In some cases the ligand field can be manipulated by an external excitation.
This happens in the ligand-driven light-induced spin cross-over (LD-LISC)
process (see Section 4.5.2.3). If the system is just at the borderline of LS/HS,
a photoisomerization of the ligand, changing its π-donor or acceptor character
can change the ligand field strength just enough to trigger an LS–HS transition.

2.4.3.4 Spin cross-over with cooperativity, models, and examples
The phenomenon of spin cross-over occurs here in the solid state, and is
strongly dependent on intermolecular interactions, giving rise to cooperativity.
This means that the behaviour of a given site is dependent on the status of the
neighbouring site. The experimental consequences are the more or less abrupt
character of the transition, and in many cases the occurrence of an hyster-
esis. The transition, however, is still governed by thermodynamics and occurs
around T1/2, defined by eqn. (2.83).

The two forms, HS and LS, are actually isomers of the same species, and
since their general structure is very similar we may expect them to be mutually
soluble (at least in part) in the solid state. The relevant thermodynamic treat-
ment of solid solutions [2.32] is very similar to that of liquid solutions. Before
dealing with specific models of the spin cross-over, we will recall some basic
concepts about solid solutions.

Calling LS and HS the two isomers, we have to evaluate the mixing
quantities �Smix, �Hmix, and �Gmix, corresponding to the process:

LS (pure) + HS (pure) → solution of LS and HS (1 mole) (2.84)

We can define XLS and XHS as the mole fractions, with XLS + XHS = 1. In the
remaining, we shall use XHS = x and XLS = (1 – x) for simplicity. �Smix
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is > 0, and thus �Gmix = �Hmix – T�Smix is frequently negative and mutual
solubility generally occurs.

For an ideal solution, �Hmix = 0, while �Smix is given by:

�Smix = −R XLS ln XLS − R XHS ln XHS = −R (1 − x) ln (1 − x) − R x ln x
(2.85)

Eqn. (2.85) can be obtained from a simple microscopic model in which
molecules of LS and HS are arranged at random on the lattice nodes, which
means that there is no privileged interaction between LS and HS molecules
with respect to pure LS or HS.

When the solution is no longer ideal but the deviations to ideality are mod-
erate, a frequently used model is that of regular solutions. In the definition
given by J. S. Hildebrand in 1927, eqn. (2.85) is retained, but now �Hmix 
= 0.
A simple microscopic interpretation can be given by considering the scheme in
Fig. 2.17, where hLS–LS, hHS–HS and hLS–HS represent the elementary enthalpies
(all negative) associated with the next-neighbours interactions.

hHSHS

hLSLS

hHSLS

= HS = LS

Fig. 2.17
Microscopic model for the calculation of
the enthalpies.

Assuming that the distribution of molecules on the network nodes is still
random, one obtains the following expression for the enthalpy of mixing per
mole of mixture:

�Hmix = �x (1 − x) (2.86a)

with

� = NAz
[
hLS−HS − 1/2 (hLS−LS + hHS−HS)

]
(2.86b)

where NA is Avogadro’s constant and z is the number of neighbours for a
given molecule. The � parameter determines the possibility of mixing. If � is
< 0 (LS–HS pairs more stable than the average of LS–LS and HS–HS pairs),
�Hmix is negative, as –T �Smix (always negative), and the mixture is always
possible. If � is > 0 (LS–HS pairs less stable than the average of LS–LS and
HS–HS pairs), a competition exists between the enthalpy and entropy terms.
The �Gmix curves = f(x) are shown in Fig. 2.18 for various values of the �/RT
parameter. Note that the entropic term always wins on the extreme range of
compositions (x ≈ 0 or 1), because of the form of eqn. (2.85), which presents
vertical tangents at its extremities. For � > 2 RT (this limit is demonstrated
later), the �Gmix curve presents two minima and a maximum for x = 0.5.
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Variation of �Gmix and its components
�Hmix and –T �Smix (dotted lines) as a
function of x for �Hmix > 0. Numbers
1, 2, and 3 refer to increasing values of
�Hmix. When �Hmix is large enough it
wins on the entropic term in the cent-
ral part of the diagram, but never at the
extremities. Thus the �Gmix curve (plain
lines) presents two minima and a max-
imum (see text). (Adapted from [2.32].)
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system represented by A′. A′ resides on
the common tangent to the two minima.

In such a situation a peculiar phenomenon may occur: demixing—that is,
the separation in two phases. In the central part of the diagram a system rep-
resented by point A (see Fig. 2.19) is less stable than the one constituted by
two phases with compositions XB1 and XB2 (point A′ located on the common
tangent). Thus miscibility occurs only between 0 and XB1 on one side and XB2

and 1 on the other side, and the system is biphasic between XB1 and XB2.
We now consider the specific models of spin cross-over, which differ in

describing intermolecular interactions [2.3, chapter 4].
Regular solution model (Slichter, Drickamer, 1972). Considering one mole

of substance existing as x moles of high-spin form and (1 – x) of low-spin
form:

G = (1 − x) G◦
LS + x G◦

HS + �Gmix = G◦
LS + x�G◦ + �Gmix (2.87)

The shape of the G = f(x) curve is thus obtained from the curve giving �Gmix

(see Figs. 2.18 or 2.19) by adding a linear ramp with slope �G◦, as shown
in Figs. 2.21 and 2.22. Since the HS and LS forms can interconvert, x varies
until a minimum in free enthalpy is found. The minimum can be computed by
putting to zero the derivative of eqn. (2.87):

∂G

∂x
= �G◦+∂�Gmix

∂x
= �G◦ + RT ln

(
x

1 − x

)
+ �(1 − 2x) = 0 (2.88)

There is no analytical solution for eqn. (2.88), only a graphical one, by
considering that it is satisfied when the two functions y1(x) and y2(x) are equal:

y1 = ln (1 − x) /x (2.89)

y2 = �G◦ + �(1 − 2x)

RT
= �H◦ + �(1 − 2x)

RT
− �S◦

R
(2.90)

y1(x) has a well-known sigmoid shape, while y2(x) is a straight line. As shown
in Fig. 2.20, when T varies, all y2 curves pass through the point P of coordin-
ates x = 1/2 + �H◦/2 � and y2 = – �S◦/R, and at T = T1/2 the y2 line also passes
through the point M, x = 0.5, y2 = 0. Figure 2.20 schematizes the situation for
different cases, � > 0 or < 0, and various temperatures.

If � = 0 (the state of a molecule is independent of the state of its neighbours)
there is only one intersection. When � < 0 (more attraction between HS–LS
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Fig. 2.20
Graphical solution of eqn. (2.88) by inter-
section of the curves y1(x) (grey curved
line) and y2(x) (black straight lines) (see
text). For � < 0 there is only one inter-
section. For � > 0 and large enough, mul-
tiple intersections can occur. The y2 lines
are shown for different increasing tem-
peratures: T = 0, T1, T2, T1/2. At T1/2, for
instance, the intersections occur at points
Q, M, and R, corresponding respectively
to minima, maxima, and minima in the
G(x) curves. Dotted line: tangent cor-
responding to the limiting case where
demixing can begin to appear (see text).

pairs than between like pairs), there is also only one intersection, correspond-
ing to a minimum in the G(x) curve. The behaviour is relatively simple, and is
depicted in Fig. 2.21.

When the temperature increases, �G◦ (= �H◦ – T�S◦) decreases and the
abscissa of the minimum of G = f(x) moves towards the right, as shown in the
sequence of schemes in Fig. 2.22.
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Fig. 2.21
Free enthalpy as a function of x for the
case � = 0 or < 0. Grey line: free
enthalpy of the mixture of pure solids.
Dotted line: free enthalpy of mixing.
Plain line: free enthalpy of the solid
solution.
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Evolution of the G = f(x) curves in the case where � is < 0 or 0, for various increasing temperatures T1 < T1/2 < T3, corresponding to
�G◦ > 0, 0 and < 0. The abscissa of the equilibrium point xeq moves smoothly to the right, corresponding to a gradual conversion of the LS
form in the HS form.

The resulting x = f(T) curve is shown in Fig. 2.23. The transition is gradual,
without hysteresis. If � = 0 the situation is the same as in a gas phase or
in solution, and corresponds to a Boltzmann population between two states,
separated in energy by �H◦ / NA at the scale of one molecule.

Now we consider the case where � is positive. At the microscopic level it
means that the LS molecules ‘prefer’ to be surrounded by LS molecules, and
the same applies for HS. There is thus a cooperative effect favouring another
kind of collective behaviour. In Fig. 2.20 it can be seen that since the slope of
the y2(x) curve is –2�/RT, multiple crossings with the y1 curve can occur if �

is large enough. When both �H◦ and �S◦ = 0, point P is merged with point
M, and a simple criterion for multiple crossing can be found: the limiting case
is obtained when the y2 curve is tangent to the y1 curve at x = 0.5 (see dotted

line on Fig. 2.20), and since
(

∂y1
∂x

)
x = 0.5

= −4, one obtains:

� = 2 RT (2.91)

That is, for � < 2RT only one extremum (a minimum) is observed in the
G(x) curve, while for � < 2RT three extrema are observed (two minima and a
maximum).
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Thermal variation of high spin fraction x,
corresponding to the minima in Fig. 2.22.
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Evolution of the G (x) curves and position of the representative point of the system (black dot) for a system characterized by � > 2 RT subject to
an excursion in temperature: a–d) increasing T1 < T1/2 < T3 < T4; d–f) decreasing T4 > T1/2 > T3. The grey dots represent the system at the
same energy and the white dot a metastable state (see text).

In Fig. 2.24 the G = f(x) curves are depicted for a system with � > 2RT,
subject to an excursion in temperature from low (T1) to high (T4) and back.
It is useful to follow the events in Fig. 2.25, where the loci of the extrema of
G(x) are plotted versus T. Starting from T1 (Fig. 2.24a, LS form more stable),
the system is represented by the dot on the left-hand side of the diagram. At
T = T2 = T1/2 (Fig. 2.24b), for which �G◦ = 0, the system can stay in the left-
hand well, though the right-hand one has the same energy (grey dot). From
then, two very different behaviours may arise.
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Loci of the extrema of x as a function
of temperature for a strongly cooperat-
ive system (� > 2 RT). The AB and
CD branches correspond to minima in the
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ponds to a maximum. From low temper-
ature to T1/2 the lower branch is the more
stable, while from T1/2 to T4 it is the
upper branch. At T = T1/2 the energies
are the same. Grey doted arrows: route
without demixing; black dotted arrows:
route with demixing.
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If no demixing occurs, for a temperature like T3, the system can remain
trapped in a metastable minimum (Fig. 2.24c, white dot); that is, the true
thermodynamic equilibrium is not achieved (black dot). At a sufficiently high
temperature, T4 (Fig. 2.24d), the secondary minimum disappears and the sys-
tem has no other choice than to move to the right and more stable minimum.
In Fig. 2.25 the corresponding trajectory of the system is HAEB. Then, almost
complete conversion to the HS state is achieved (point G). Returning from T4

to T3, T1/2, and T1 occurs through the trajectory DGFC, and then the LS state
arises (point H). There is an hysteresis effect; that is, the state of the system
depends on its past history.

Hysteresis is a very important process, providing properties of bistability
and memory, which are very appealing for applications. We return to this point
later.

If demixing occurs, the system moves from one branch to the other as soon as
the other one is more stable. In the G(x) diagram (Fig 2.24) it can evolve under
the central maximum, due to the demixing process (demixing may be seen
as the thermodynamic equivalent of the tunnel effect of quantum mechanics).
The trajectory in Fig. 2.25 is thus HAE followed by FGD, and the return occurs
along the same path (DGF-EAH). The transition can be particularly abrupt.

Actually, real systems can behave intermediately between these two extreme
behaviours—for instance, jumping from the lower to the upper branch on heat-
ing can occur somewhere between E and B in Fig. 2.25. This depends on
factors such as grain size, frontier domains, and rate of nucleation, which are
not included in the model, and this is one of the reasons why the occurrence
and magnitude of the hysteresis is relatively hard to predict.

Domain model (Sorai, Seki, 1974) [2.3, chapter 4]
In this model it is assumed that LS and HS molecules are not distributed at ran-
dom as in a solid solution, but form domains of the same spin (see Fig. 2.26).
The domains are assumed to have uniform size and contain n molecules, with
n typically between 10 and 100.

n

Fig. 2.26
Schematic representation of the domain
model with n molecules of the same spin
state (HS white spheres and LS grey
ones).

The mixing entropy is then given by:

�Smix = − (R/n) [x ln x + (1 − x) ln (1 − x)] (2.92)

That is, n times less than in eqn. (2.85), because the number of possibilities has
been reduced drastically by n, the number of molecule per domain. The �Hmix

term is now zero, because there the short-range environment of a molecule is
made of molecules of the same spin, as in pure solids (this assumption could,
of course, be questioned if n is too small). Thus in eqn. (2.87) the main term
is �G◦. Exploiting G = f(x) for different temperature curves, as previously,
shows that the transition can be sharp (the larger n, the sharper the transition),
but no hysteresis is predicted, which is the main drawback of this model.

Elastic model with internal pressure (Spiering, Gütlich, 1982) [2.28, 2.29]
First, we recall the main modification associated with the spin change, apart
from the magnetic property: due to the change in the number of electrons
occupying the e∗

g antibonding orbitals, �n(e∗
g), there is an increase in metal–

ligand distances from LS to HS. In the case of iron(II) complexes (�n(e∗
g) = 2),
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the increase can reach 21 pm, and correlatively the crystallographic cell dimen-
sions increase also, as well as the molar volume. With cobalt(II), �n(e∗

g) =
1 and the mean metal–ligand change is less—about 10 pm. Consequently, a
simple explanation of cooperativity is based on intermolecular steric inter-
actions; that is, the elastic energy due to the volume change accompanying
the spin change. Thus, in the elastic model of Spiering and Gütlich, when
most neighbours of a given molecule change their state, it is better for the
last molecule to also change its state. Expressed differently, crystal packing is
much easier and energetically more stable when all molecules have the same
dimensions (Fig. 2.27).

Fig. 2.27
Scheme of a lattice network in which all
molecules except one (in grey) are in the
LS state. Their influence on the remaining
HS molecule is equivalent to a pressure,
hence the concept of ‘internal pressure’.

In the example of Fig. 2.27—an isolated HS molecule surrounded by smaller
LS molecules—the effect of the environment is to mimic the role of pres-
sure. One can thus define an ‘internal pressure’ favouring the LS state, as in
the case of a true external pressure (see Section 2.4.3.5). Mathematically, the
enthalpic interaction term is written as �(x) – �(x) x2, instead of � x (1 – x) =
� x – � x2 as in the regular solution domain (see eqn. (2.86a)). However,
in this model � and � are functions of x, and the final result is qualitatively
similar, in that the enthalpic term also passes through a maximum when x
varies. Quantitatively there is a difference, because the elastic domain includes
long-range interactions which are not taken into account in the regular solution
model.

To conclude the discussion of models, we quote the recent model of Robert
et al., based on ab initio calculations [2.33]. Its main conclusion is that hys-
teretic effects appear to be governed by Madelung electrostatic energies. The
important parameters are �Q, the amount of charge which is transferred
between the metal and the ligands during the spin change, and (δVHS – δVLS),
the fluctuation of the electrostatic Madelung potential difference in the crystal
created by the environment of a given site. The authors propose that the � inter-
action parameter of the Slichter–Drickamer model (see previous) is given by
� = �Q (δVHS – δVLS) and therefore that their electrostatic model (in which
Madelung energies play a role) complements usefully the description based on
elastic-driven cooperativity. This is an interesting example of the contribution
of modern quantum methods to the problem.

We now consider some examples in which the degree of cooperativity can
be changed by chemical modifications.

The first idea is to change the nature of intermolecular contacts, which
has been achieved on the general structure of [Fe(L)2(NCS)2] complexes,
where L is a bidentate α-diimine ligand such as 2,2′-bipyridine (bpy), 1,10-
phenanthroline (phen), dipyrido [3,2-a:2′3′-c] phenazine (dpp), or 2,2′-bi-
4,5-dihydrothiazine (btz). Except btz, these ligands are conjugated aromatic
systems.

Contrasted behaviours are observed: thus with btz the transition is smooth,
showing no cooperative effect. With bpy and phen the transition is abrupt, but
without hysteresis. Finally, with dpp the transition is abrupt, with an hysteresis
of around 40 K (Fig. 2.28).

The structural data show that the FeN6 chromophore and its change upon
spin conversion are very similar in all complexes, and thus the reasons for
cooperativity must be sought elsewhere. Crystal packing analysis shows that
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Spin transition represented as χT = f(T)
curves for [Fe(L)2(NCS)2] complexes
with L = btz (a), phen (b), and dpp (c).
(Reproduced from [2.34].)

the intermolecular contacts are very limited with btz. For bpy and phen, some
π–π stacking is present, and it is more important with dpp because of its exten-
ded aromatic character. This is, among others, a clear example of the influence
of the intermolecular interactions on the nature of the transition. Large inter-
actions favour abrupt transitions and the appearance of hysteresis. The exact
mechanism is, however, still speculative.

Dimensionality of the lattice is also an important factor for cooperativity
[2.34, 2.35]. Thus the 2D coordination polymer [Fe(py)2M(CN)4] (M = Ni(II),
Pd(II), Pt(II), py = pyridine) is built from alternate square planar diamagnetic
[M(CN)4]2– anions and octahedral Fe(II) sites. Iron is surrounded by 4N of the
cyanide ligands and 2N of axial pyridine ligands (see Fig. 2.29). The structure
is thus made of metal–cyanide sheets with weak interactions between differ-
ent sheets. For these compounds a sharp spin transition is observed, with an
hysteresis of around 10 K.

Substituting pyridine by pyrazine allows linking of the different sheets by
pillars connecting the iron atoms, thus yielding a truly 3D structure with for-
mula [Fe(pz)M(CN)4] [2.34]. The comparison with the 2D structures shows an
increase not only in the T1/2 temperature but also in the width of the hysteresis
loops (Fig. 2.29). The T1/2 increase is attributed to the increased rigidity of
the 3D lattice with respect to the 2D lattice, rather than to the ligand change,
because pyrazine creates a smaller ligand field than pyridine. Regarding the
width, when going from the 2D to the 3D structure, cooperativity necessarily
increases, because the molecules are more connected and thus the influence of
neighbours on a given site increases.

These 3D materials can also be transformed at will from one form to the
other using light. This is the process of photo-induced phase transition (PIPT),
described in Section 4.5.2.2.

A last effect influencing cooperativity is the size of crystallites constitut-
ing the sample. Thus samples of [Fe(pz)Pt(CN)4] have been prepared by a
microemulsion method allowing the control of crystallites size in the nano-
meter range [2.34]. With two different sets of synthetic parameters it is possible
to obtain samples with the same crystal structures but with crystallite sizes of
either 230 × 230 × 55 or 60 × 60 × 20 nm. The width of the hysteresis loop
is 22 and 10 K respectively, showing that cooperativity decreases with particle
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Structures of the 2D [Fe(py)2M(CN)4] complex (a) and the 3D [Fe(pz)M(CN)4] complex (b), with the corresponding hysteresis loops. Although
the structure in (a) appears 3D, since pyridine ligands are not bridging, the covalent backbone is only 2D. (Reproduced from [2.34].)

size. This point is a crucial one in all studies and applications of spin cross-over
at nanometer size.

General remarks on hysteresis
From a practical point of view the consequences of hysteresis are important:
for a given temperature there are two possible states—usually one stable and
the other metastable—but since the rate of thermal conversion of the latter into
the former is usually immeasurably slow, one can speak of bistability. The two
forms have different properties (magnetic properties, of course, but also dif-
ferent colours), and it is thus possible to builddisplay devices. Demonstrators
have been realized (J. F. Letard, P. Guionneau, in [2.28, vol. 235, 221]).
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Here we have shown that an excursion in temperature can trigger the con-
version, but other physical parameters can be used. A photophysical excitation
is possible, since the two forms usually have different absorption spectra, as
shown by the LIESST or LD-LISC effects (see Chapter 4). But we can also
rely on pressure, or the magnetic field itself, as shown in Section 2.4.3.5.

An interesting question concerns the possibility of observing bistability at
the scale of one molecule. By comparison with the case of an interacting
ensemble of molecules discussed previously, it seems very difficult and chal-
lenging. In the solid-state examples given previously, bistability is related to
the extreme slowness of the thermodynamically allowed conversion from a
metastable minimum to a stable one. At the scale of one molecule or a non-
interacting population of molecules, one has to rely on the activation energy for
the chemical reaction (isomerization) to keep the two states. Experimentally,
however, it is found that the conversion of an LS to an HS form is very fast
in solution (about 106 – 108 s–1). Thus bistability—the possible existence
of two different forms of one molecule for the same values of the external
parameters—would be limited to a very short time in the case of spin trans-
ition systems. To date, in the domain of magnetic molecules, bistability with
hysteresis has been observed only for sets of single magnet molecules at very
low temperature (see Section 2.8).

2.4.3.5 Influence of other physical parameters (pressure, magnetic field,
light)

Since the spin transition is accompanied by a volume change, it is sensitive to
pressure—high pressures favouring the more dense LS state. One has, indeed:

(∂G/∂P)T = �V (2.93)

with �V = VHS − VLS > 0 for the LS → HS reaction.
The effect is small, but it has been demonstrated clearly for many com-

plexes. We give here the example of the [Fe(phen)2(NCS)2] complex [2.34].
At room temperature the complex is 100% high spin, but upon application
of a 1.3 GPa pressure (1.3 104 atm), an almost complete conversion to LS is
observed (Fig. 2.30).

The magnetic field itself can have an influence because it introduces an addi-
tional term: B M in the free enthalpy [2.28, vol. III]. Since the magnetization
M = χ H (M = χ B/μ0 in SI) is proportional to H (B), after integration between
H = 0 and H, one obtains –χ H2/2 (–χ B2/2 μ0 in SI) for the extra term. Thus,
in the presence of a magnetic field, �G◦ can be written as:

�G◦ = �H◦ − T�S◦ − (�χ )H2/2 [. . . (�χ )B2/2μ0 in SI] (2.94)

where �χ = χHS – χLS is > 0. The new (T1/2)H temperature for �G◦ = 0,
within an applied field H, is:(

T1/2
)

H = (
T1/2

)
0 − (�χ )H2/2�S◦ [. . . (�χ )B2/2μ0 �S◦in SI] (2.95)

where (T1/2)0 = �H◦/�S◦ is the T1/2 temperature in the absence of magnetic
field, and the second term is negative. Logically, the magnetic field expands the
existence domain of the high-spin form by decreasing T1/2. The expected effect
is small (typically a 1.8 K change for 30 T from theoretical calculations). It is
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Fig. 2.30
High-spin fraction x as a function of pres-
sure for the [Fe(phen)2(NCS)2] complex.
(Adapted from [2.34].)

proportional to the square of H (B), hence high magnetic fields are valuable in
revealing it.

In the region of the hysteresis curve a pulsed magnetic field can even trig-
ger an irreversible conversion of one spin state into another. This has been
observed in the case of [Fe(phen)2(NCS)2], using pulsed magnetic fields (32 T
with a duration of around 75 ms) [2.28, vol. III]. In the ascending part of the
hysteresis loop, conditions for which the LS state is metastable, applying the
strong magnetic field increases the proportion the HS state, and this change
subsists after the end of the pulse. The thermodynamics of the phenomenon
can be described by Fig. 2.31. At high magnetic field, either the bump in the
G(x) function has disappeared, or the ‘tunnelling’ (actually demixing) has been
favoured, allowing the motion of the system towards the HS state, where it
remains trapped after the end of the pulse.

A last physical parameter is light. By absorbing energy emanating from an
electromagnetic radiation in the visible, the system can overcome the activa-
tion barrier at the molecular scale (see Fig. 2.14), or even surmount an energy
maximum at the scale of an interacting ensemble of molecules. Several such
processes are well documented, but are treated extensively in Chapter 4: these
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Fig. 2.31
Free enthalpy G = f(x) curves for a point
in the ascending part of the hysteresis
loop. B = μ0H = 0, plain curve and black
dot; B = Bmax, dotted curve and grey dot.
(Adapted from Bousseksou et al. in [2.28,
vol. III].)
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are the light-induced excited spin state trapping (LIESST) in which one moves
from a potential energy curve to another (Section 4.5.2.1), the photo-induced
phase transition (PIPT) in which the excursion occurs from one branch to
the other of an hysteresis curve (Section 4.5.2.2), and the ligand-driven light-
induced spin cross-over (LD-LISC) where the photochemical transformation
of a ligand triggers the spin cross-over (Section 4.5.2.3).

As a conclusion of this section, we mention that the spin cross-over process
can also be found coupled to an electron transfer. Thus, in the complexes of
general formula [Co(sq)(cat)(phen)], where cat is a catecholate dianion, sq is
a semiquinone anion-radical (the 1-electron oxidized form of the latter), and
phen is 1,10-phenanthroline, the following equilibrium has been established
by Hendrickson and Pierpont ([2.28], vol. II]):

ls − [CoIII(sq−•) (cat) (phen)] � hs − [
CoII(sq−•)2 (phen)

]
(2.96)

Following an intramolecular electron transfer where CoIII oxidizes the
catecholate2– into semiquinone–•, the central cobalt atom changes from low
spin to high spin. As for spin cross-over, the process can be thermally activ-
ated but also triggered by light, and for polycrystalline samples, susceptibility
studies show abrupt transitions typical of cooperative effects.

2.5 Spin Hamiltonian (SH) approach
The spin Hamiltonian approach is a method widely used for modelling spectro-
scopic data and computing energies of magnetic systems. It was first developed
by Abragam, Pryce, Bleaney, Griffith, and Stevens to analyse the huge amount
of data arising from electron paramagnetic resonance and nuclear magnetic
resonance when these methods appeared after World War II [2.36]. As pointed
out by Griffith: ‘The spin Hamiltonian is a convenient resting place during the
long trek from fundamental theory to the squiggles on an oscilloscope which
are the primary result of electron resonance experiments’ [2.23]. It was then
developed by many others to reach its present status, schematized in Fig. 2.32.

Basically, there are two steps: (i) the spin Hamiltonian is written and
empirical SH parameters are obtained from spectroscopic data; (ii) the SH
parameters are related to the theoretical description of the electronic structure.

Molecular
Structure

Spectra
and Data

Electronic
Hamiltonian 

Operator

Spin
Hamiltonian 

Operator

Fit

Simulation

Helectron

Hspin

Direct
CalculationsExperiments Theory

Fig. 2.32
The spin Hamiltonian (SH) approach
between experimental data and theory.
(Adapted from E. Solomon and F. Neese
in [2.6, vol IV, p. 345].)
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The feasibility of the SH approach relies on two bases: (i) the Pauli principle,
which closely connects the spin part of a wavefunction to the orbital one;
and (ii) the fact that the spin operators S2 and Sz commute with the orbital
Hamiltonian—that is, they have common eigenfunctions and eigenvalues. The
spin Hamiltonian is an operator which is polynomial in S (S spin operator). It is
acting on spin states f(S, MS, IN – IN, nuclear spin) that, in short, we denote
as �. It recovers effectively the energies that can be computed from the orbital
Hamiltonian (2.97a and b) (ES = Eorb):

(a) Hspin (�)= ES·� (b) Horb(ψ) = Eorb· ψ (2.97)

To be efficient, it is necessary that the spin can be considered a pertinent
parameter of the system (no orbital moment, no spin–orbit coupling, or weak
enough to be considered a perturbation). If the spin Hamiltonian is suitably
defined it allows the extraction of significant parameters and relating them to
the orbital Hamiltonian eigenvalues Eorb and eigenfunctions ψ.

The second part of the task (connecting SH parameters to fundamental the-
ory) is much more difficult than extracting parameters from data, and is beyond
the scope of this book. We shall only approach the problem in some spe-
cific cases. More information is given by Solomon and Neese in [2.6, vol. IV,
p. 345].

In the following we discuss a few examples of spin Hamiltonians: those
related to one magnetic centre (Section 2.5.1), and those describing the
interaction between centres (Section 2.5.2) [2.4], [2.16].

2.5.1 One-centre spin Hamiltonian

In many circumstances the Hamiltonian (2.98) has been used to effectively
describe a molecule with an electronic spin operator S and nuclear spin operat-
ors Ii on different atoms i and their interaction with an external magnetic field
(induction) B:

Hspin = SD̃S + μBSgB + �iμNgNIi B + �iSÃiIi (2.98)

The first term is the zero-field splitting, and D̃ is a tensor; the second term is
the Zeeman term, where μB is the Bohr magneton and g is a tensor; the third
term describes similarly the interaction between the applied field and nuclear
magnetic moment operators μN = μN.gN.I) (μN, nuclear magneton; gN, nuc-
lear g-factor considered as uniform; I, nuclear spin operator), summed on all
the i nuclei; and the fourth term is the hyperfine coupling between the elec-
tronic and nuclei spins, and Ã is the related tensor. Other terms are not shown
(nuclear spin–spin coupling, quadrupole nuclear interactions, and Mössbauer
isomer shifts). The empirical parameters to be determined from Hamiltonian
in eqn. (2.98) (g-values, zero-field splittings, and hyperfine couplings) depend
on the scientific field. The third and fourth terms, for example, are used widely
in nuclear magnetic resonance (NMR) spectroscopy. We discuss only the first
two terms—the most useful of them in the following of the chapter.
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2.5.1.1 The Zeeman effect
We begin with the Zeeman effect, introduced in Section 2.4.2.4, and also
comment briefly on a new quantity, g, introduced in eqn. (2.98), with the
example of an EPR experiment which allows determination of the g-values.
In Section 2.2.2 the g-factor is a scalar for a unique electron, ge, or for the
many-electrons atoms, gJ. In a molecule, the unpaired electron will experience
not only the magnetic induction B0 of the EPR spectrometer, but all the mag-
netic fields of the surroundings. The effective field experienced by the spin
can be written Beff = B0(1–σ). The resonance condition in the EPR exper-
iment is hv = ge.μB.Beff = ge.μB.B0(1 − σ ) = geff.μB.B0 (in SI units; see
eqn. (2.31)), where geff is now an effective quantity defined by geff = ge (1 – σ).
As the resonance depends on the orientation in the three directions of space of
the induction and of the spin, the best way to link vectorial quantities, spin, and
induction is a tensor, g̃. It is generally written as a 3 × 3 matrix and the Zeeman
term expressed as a product of matrices (magnetic induction and spin). Without
entering into mathematical details, the general 3 × 3 matrix corresponding to
the g̃ tensor can be transformed by a suitable axes change in a diagonal matrix
with principal values of g, gx, gy, gz, which can be related to ge (gx = ge +
�gx, and so on).

The g-values can then be compared with the measured spectroscopic values
and correlated in a second step with the structural and electronic characteristics
of the compound, often in terms of the spin–orbit coupling parameter λ and
excitations’ energies. For example, to obtain the g-values in pseudo-octahedral
complexes, Gatteschi et al. [2.4] propose a perturbation treatment of the spin–
orbit parameters for orbitally non-degenerate ground states using the following
formula:

g = geI − 2λ� or �g = g − geI = − 2λ� (2.99)

λ, the many electron spin–orbit constant, was defined in eqn. (2.64):

� =
∑

n

〈
ψg |L| ψn

exc

〉 〈
ψg |S| ψn

exc

〉
En

exc − Eg
(2.100)

where �g is the wavefunction of the ground state with energy Eg, �n
exc is one

of the excited states with energy En
exc and the sum runs over the n excited

states, and L is the orbital angular momentum operator. The elements of �

are positive, and λ depends on the filling of the dn configuration (< 0 if n <

5; > 0 if n > 5; see Section 2.4.1). For example, in a Cu(II) complex, d9, in
an elongated octahedral geometry (square planar), a x2 – y2 ground state, the
expressions of gi are gx = ge –2 λ/�3, gy = ge –2 λ/�3, and gx = ge –8 λ/�2.
The �i are the excitation energies shown in Fig. 2.33 (electron jump from a
doubly occupied orbital to the SOMO, �2 from xy (B2g excited state), �3 from
xz and yz (Eg excited state)). It should be remarked that �3 = �⊥, hence gx =
gy = g⊥ and �2 = �||, hence gz = g||. Frequently encountered values are g|| =
2.20 and g⊥ = 2.08.

2.5.1.2 Zero-field splitting
We come now to the first term of eqn. (2.98), SD̃S, related to the zero-field
splitting. D̃ is a tensor, symmetric and real, with three orthogonal eigenvectors,
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Fig. 2.33
Splitting of the energy levels of a 3d9

transition metal ion, Cu(II). See also Fig
1.24 in Section 1.3.7. (a) D4h Structure;
(b) free ion; (c) octahedral symmetry,
Oh (ligand field �); (d) square planar
symmetry D4h after Jahn–Teller distor-
tion (elongation along z) with orbitals
fillings and symmetry labels; (e) further
splitting by the Zeeman effect (EPR spec-
troscopy). In (d) �1, �2, �3 are the ener-
gies of the transitions in the electronic
spectrum.

and S is the spin operator. It is convenient to take the x, y, z coordinates axes
parallel to the eigenvectors of D̃, so that:

HZFS = SD̃S = DxxS2
x + DyyS2

y + DzzS2
z (2.101a)

The Dii are the diagonal components of D̃, and the Si are the components of
spin operators.

Using the properties of spin operators and tensors, the spin Hamiltonian can
be manipulated to obtain an expression easier to handle in a matrix form. The
addition of a well-chosen constant (C) to the Hamiltonian shifts all the levels
without changing the physical properties of the system:

C = − (
Dxx + Dyy

) (
S2

x + S2
y + S2

z

)
/ 2 = − (

Dxx + Dyy
)

S (S + 1) / 2

(2.101b)

HZFS = D S2
z + E

(
S2

x − S2
y

)
(2.101c)

with:

D = Dzz − (
Dxx + Dyy

)
/2 and E = (

Dxx − Dyy
)
/ 2 (2.101d)

The same trick is used with the addition of a new constant –D S(S + 1)/3 in
eqn. (2.101c):

HZFS = D[S2
z − D S(S + 1)/3] + E

(
S2

x − S2
y

)
(2.102)

Among other advantages, in eqn. (2.101a) (i): the trace of the Hamiltonian is
zero; (ii) in cubic symmetry (where x, y, z are equivalent), Dzz = Dxx = Dyy,
D = 0 (from eqn. (2.101d)); (iii) in axial symmetry (x, y equivalent), Dxx =
Dyy, E = 0, and D = Dzz (from eqn. (2.101d)); and in this case eqn. (2.101a)
becomes:

HZFS = D S2
z EZFS = D.M2

S (2.103)

Given a spin S, its energy levels within this approximation are described by
D only. The (2S + 1) spin levels of the S multiplet are therefore split, even
if there is no applied magnetic field, hence the term zero-field splitting (ZFS)
given to the effect. The eigenvalues range from MS to –MS and EZFS = DM2

S
(MS running from S to –S). For example:
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MS = 0 MS = 0

MS = ±1

MS = ±1

E

D < 0
0

(a) (b)

μ0H

D > 0

μ0H

Fig. 2.34
Zero-field splitting for a uniaxial S =
1 system and Zeeman effect (dotted lines)
after applying a magnetic induction μ0H;
(a) D < 0, the MS = ±1 levels lie the low-
est; (b) D > 0, the MS = 0 level lies the
lowest.

For S = 1, MS = 0, E0 = 0; MS = ±1, E±1 = D. For S = 2, MS = 0, E0 = 0;
MS = ±1, E±1 = D; MS = ±2, E±2 = 4D. For S = 3, MS = 0, E0 = 0; MS = ±1,
E±1 = D; MS = ±2, E±2 = 4D, MS = ±3, E±3 = 9D, and so on . . .

Figs. 2.34 and 2.35 display graphically some important consequences of the
presence of zero-field splitting: in a uniaxial system (Fig. 2.34, D 
= 0, E = 0),
the stabilization of the components MS = 0 and ±1 depends on the sign of D.
When D < 0 (Fig. 2.34a) the components with the highest |MS| (|MS|max = S)
lie lowest, the spin tends to align along z, and the system presents ‘easy-axis
anisotropy’. When D > 0 (Fig. 2.34b) the component(s) with the lowest |MS|
(|MS|min = 0 if S integer or 1/2 if S half-integer) lie(s) lowest, the spin tends
to orient in the xy plane, which is described as ‘easy-plane anisotropy’. The
application of the magnetic field splits the degeneracy of the ±1 levels (Fig.
2.34). For larger spins the splitting is larger (Fig. 2.35a). An important point is
that when D < 0 it appears an energy barrier to reverse the spin from to –MSmax

to +MSmax (�E = DMSmax
2 for integer spins, Fig. 2.35b). The reader can check

that with a half-integer spin, �E = D(MSmax
2 – 1/4). The presence of this barrier,

directly related to the sign of D, its height, will have important consequences
for the very peculiar objects termed single-molecule magnets (SMM), presen-
ted and discussed in Section 2.8. By contrast, when D > 0 there is no barrier.
The sign of D and its magnitude will also be discussed in Section 2.8.

It is possible to play with the geometry of the complex and with the D and
E values. First, it is obvious that E should be less than D. If not, the easy axis
of anisotropy will change z to x. Using eqn. (2.101d) and playing with the
components Dxx, Dyy, Dzz, and E/D, the reader can demonstrate as an exer-
cise that (i) the maximum rhombicity (splitting between the three components
Dii) is achieved for E/D = 1/3 (Dxx = 0; Dyy = –2D/3; Dzz = 2D/3), and
(ii) for E/D = 1 the anisotropy axis has simply changed. Therefore, it is wise
to operate in conditions where |E/D| < 1/3.

 MS =
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± 2

± 3

0
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Fig. 2.35
Zero-field splitting for a uniaxial S =
3 system when D < 0. (a) Energy levels
and energy intervals; the highest MS lie
the lowest; (b) graph giving the variation
of the energy D.MS

2 of the MS levels as
a function of MS with an energy barrier
�E.
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Besides this elementary presentation, the interested reader can find more
in [2.4], section 2.1.1, on (i) the splitting of the MS uniaxial level when the
rhombicity (E/D) increases; (ii) the ZFS spin Hamiltonians with higher orders
in S (S4, S6, . . .), often necessary to fit the energy levels; and (iii) the effects
of a crystal field on magnetic anisotropy. Important recent developments in
molecular magnetism rest on those anisotropy properties (Section 2.8).

2.5.2 Two-centre spin Hamiltonians with spin operators S1
and S2

In most cases the magnetic system comprises more than one spin, and the spin
Hamiltonian must add to the individual spin Hamiltonians described previ-
ously the interaction between the neighbouring spins. Let us begin with the
simplest system with two spins, S1 and S2. The Hamiltonian is simply the
sum of (i) the individual Hamiltonians of centre 1 (S1) and 2 (S2), and (ii)
the Hamiltonian describing the interaction between the two spins. The latter is
written:

H = − S1 • J12 • S2 (2.104)

J12 is the interaction matrix. Eqn. (2.104) can be written in a more readable
form, to evidence three kinds of coupling between the two vector operators S1

and S2 (scalar, tensor, and vector products):

H = −J12S1S2 + S1D̃12S2 + d12S1 ∧ S2 (2.105)

Isotropic Anisotropic Antisymmetric

where J12 = –Tr(J12)/3. Tr is the trace of the interaction matrix (sum of
the diagonal elements Jαα

12
). D̃12 is a tensor, such as: Dαα

12 = 1
2 (Jαβ

12 + Jβα

12) −
δαβ

3 Tr(J12). d12 is a vector, such as: d12 = 1
2 (Jβγ

12 − Jγβ

12). α, β, and γ are the
Cartesian components (x, y, z), and δαβ is the Kronecker symbol.

When |J12| >> |D12| >> |d12|,
H = −J12S1.S2 (2.106a)

is the simplest possible, isotropic, Hamiltonian describing the interaction
between two spins by a simple scalar product. As S1.S2 = S1S2cosθ, it is some-
times called a cosine coupling. It was worked out successively by Heisenberg
(1926), Dirac (1929), and Van Vleck (1932), and is known from the first
letters of their names (HDVV Hamiltonian) [2.7]. Before working out the
Hamiltonian we should warn the reader about different formulations by various
authors (H = −2J12S1.S2 or + J12S1.S2). In general there is no possible confu-
sion, but it is always necessary to look at the Hamiltonian defining J12 before
comparing different data in the literature. To find the solutions we use our usual
tools. After introducing S = S1 + S2 and its square S2 = S2

1 + S2
2 + 2S1.S2, we

obtain:

H = −J12S1.S2 = − J
[
S2 − S2

1 − S2
2

]
/2 (2.106b)

The total spin S can take all the values comprised between |S1 − S2| and
(S1 + S2). The corresponding eigenvalues in zero-field ES

(0) are:

E(0)
S = − J12 [S(S + 1) − S1(S1 + 1) − S2(S2 + 1)] /2 (2.106c)
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This equation holds, whatever the values of S1 and S2.
For two spins S1 = S2 = 1/2, the two spin states S arising from the inter-

action are S = 0 (antiparallel magnetic moments, singlet) and S = 1 (parallel
magnetic moments, triplet). The energy levels are then:

E(0)
S=0 = E(0)

S = −3J/4 (2.107a)

E(0)
S=1 = E(0)

T = +J/4 (2.107b)

The state of zero spin (S = 0) corresponds to a spin degeneracy 2S + 1 = 1.
It is a singlet S. The state of spin one (S = 1) corresponds to a spin degeneracy
2S + 1 = 3. It is a triplet T . It is easy to find that:

E(0)
S − E(0)

T = J (2.107c)

Fig. 2.36 shows the corresponding energy states. One can observe in the figure
that when the singlet is at the ground state, J is negative. It is said that the
coupling between the two spins is antiferromagnetic (Fig. 2.36a and b). When
the triplet is at the ground state (Fig. 2.36c), J is positive and the coupling is
said to be ferromagnetic.

J, coupling constant between the two spins, when defined by Hamiltonian
(2.106a), is the energy difference between the singlet and the triplet states,
and is a physical observable. The spin Hamiltonian approach provides it by a
very simple calculation. We emphasize its usefulness in Bleaney and Bowers’
study of the magnetic properties of copper acetate—an inescapable historical
example in molecular magnetism (see Box ‘Copper acetate’). Isotropic coup-
ling tends to make the spins parallel (ferromagnetic coupling) or antiparallel
(antiferromagnetic coupling).

This is, furthermore, a good example for achieving the second part of our
programme, to go from the spin Hamiltonian to its theoretical orbital coun-
terpart, using our preceding calculations (Sections 1.5.2.3 and 1.5.3.1). The
reader will realize that there is an exact correspondence between the eigenval-
ues of the HDVV spin Hamiltonian and those obtained by the Heitler–London
approach described in Section 1.5.3.1. Indeed, combining eqn. (1.84d) and eqn.
(2.107c) we find:

J = E(0)
S − E(0)

T = [2k + 4βS − 2S2(2α + j)]/
(
1 − S4

)
(2.108a)

J = E(0)
S − E(0)

T ≈ 2k + 4βS (2.108b)

The latter equation is an approximation at first order in S. In many cases, when
the overlap integrals S are negligible compared to 1, it is accurate enough. It is

E

J = ES − ET 

−J/4

3J/4 ES

ET

0

J

ES

ET ES

ET0

J

E E(a) (b) (c)

J < 0 
antiferro

J > 0 
ferro

Fig. 2.36
Energy diagram of singlet and triplet
states: (a) antiferromagnetic coupling; (b)
antiferromagnetic interaction (J < 0) tak-
ing the singlet energy as origin of energy;
(c) ferromagnetic coupling (J > 0). J is
shown by the grey arrow.
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a very important relationship between J, the energy between the singlet and
the triplet (spin approach), and the integrals describing the quantum interaction
between two orbitals (orbital approach): S, the overlap integral, β, the reson-
ance or transfer integral, and k, the two-electron exchange integral. Indeed, the
relation between J, a magnetic property, and k, β, and S electrostatic quantities
depending on the structure of the molecule, is the fundamental bridge between
magnetism and structure in the solid and a key to build new molecular mag-
netic materials. This useful correlation will be found in the theoretical model
by Kahn and Briat (See Section 2.6.1.1).

The second term in eqn. (2.105), anisotropic exchange, can be approached
in the case of the so-called ‘strong exchange’ limit; that is, when |J12| >>

|D1|, |D2|, |D12|, |d12|, . . . This is a rather frequently encountered situation.
In this case, Bencini and Gatteschi have shown [2.16] that it is possible to
relate the spin Hamiltonian parameters of spin S (after coupling) to those of
the original spins by the following relations:

gS = c1g1 + c2g2 (2.109a)

DS = d1D1 + d2D1 + d12D12 (2.109b)

with:

c1 = (1 + c)/2; c2 = (1 − c)/2; d1 = (c+ + c−)/2;

d2 = (c+ − c−)/2; d12 = (1 − c+)/2
(2.109c)

Here, d12 is a coefficient, not to be confused with the antisymmetric vector d12.
And:

c = S1(S1 + 1) − S2(S2 + 1)

S(S + 1)
(2.109d)

c+ = 3[S1(S1+1) − S2(S2+1)]2+ S(S+1)[3S(S + 1) − 3 − 2S1(S1+ 1) − 2S2(S2+ 1)]

(2S + 3)(2S − 1)S(S + 1)
(2.109e)

c− = 4S(S + 1)[S1(S1 + 1) − S2(S2 + 1)] − 3[S1(S1 + 1) − S2(S2 + 1)]

(2S+3)(2S − 1)S(S + 1)
(2.109f)

The full demonstration and examples of applications can be found in [2.4] and
[2.16]. Anisotropic exchange tends to align the spins in a privileged direction
in space.

When the strong exchange conditions are not realized or when the ground
state is orbitally degenerate, the situation becomes much more difficult to
describe. A possible shortcut is to write eqn. (2.106a) in a different way, evid-
encing the Cartesian components of the spins S1 and S2 in the scalar product,
and introducing different values Jx, Jy, and Jz. Thus the following expression:

H = −JS1.S2 = −J
[
S1xS2x + S1yS2y + S1zS2z

]
(2.110a)

is replaced by

H = − [
JxS1xS2x + JyS1yS2y + JzS1zS2z

]
(2.110b)

When Jx, Jy, and Jz are equal the exchange is isotropic: the coupling between
the x, y, and z components of the spins are the same. But eqn. (2.110b) allows
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Table 2.5 Isotropic and anisotropic exchange.

Ji values Nature of exchange Name

Jx = Jy = Jz Isotropic Heisenberg
Jx ≈ Jy << Jz Uniaxial (easy axis) Ising
Jx ≈ Jy >> Jz Planar (easy plane) XY
Jx 
= Jy 
= Jz XYZ

having different Jx, Jy, and Jz, which is a convenient way of describing an
anisotropic exchange situation, frequently used by solid state physicists. Table
2.5 gathers different experimentally encountered situations.

The Ising situation corresponds to an easy axis of the magnetization: in a
magnetic field the spins are aligned more easily in the z direction that in the
two others; the XY situation corresponds to an easy plane of magnetization:
the spin orients more easily in the XY plane than in the z direction. Other
elegant approaches of exchange in the case of orbital degeneracy of the ground
state have been proposed by Borras–Almenar and Tsukerblat et al. in [2.6].
Exchange anisotropy is an important property in magnetic materials, as we
shall see in Section 2.8.

The last term in eqn. (2.105) is antisymmetric exchange. This term describes
the tendency of S1 and S2 to orient at 90◦ (See Fig. 2.64). It was developed
by Dzyaloshinskii and Moriya. To occur, it needs systems with very low
symmetry; but we do not tackle it in this book.

2.5.3 More than two centres

2.5.3.1 Uniform isotropic interaction between several spins:
the Kambe method

After the simple case of two spins in interaction, we give the example of several
spins (i or j from 1 to n), interacting between them with the same interac-
tion, Jij. We consider first that anisotropic and antisymmetric coupling can be
neglected, so that we can generalize the Hamiltonian (2.106a) by summing
Jij. Si.Sj terms:

H = −
∑n

i=1

∑
j>i

Jij Si Sj = −J
∑

neighbours

Si Sj (2.111a)

where all the Jij are equal. As before, we write the total spin operator and its
square:

S = ∑n
i=1 Si S2 = (∑n

i=1 Si
)2 = ∑n

i=1 S2
i + 2

∑
neighbours

Si Sj (2.111b)

H = −J
∑

neighbours

Si Sj = 1

2

[
S2 −

∑n

i=1
S2

i

]
(2.111c)

Then, after Van Vleck [2.20a], the eigenvalues are:

Es = −zJ

2(n − 1)

[
S(S + 1) −

∑n

i=1
Si(Si + 1)

]
(2.111d)
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where z is the number of neighbours, and n is the number of interacting spins.
To compute the susceptibility through the Van Vleck equation (2.45), we

need to know the degeneracy of the levels S′ that is, the number of times �(S′)
a level appears with a given spin S′. Van Vleck suggests the following solution:

�(S′) = ω(S′) − ω(S′ + 1) (2.111e)

where ω(S′) is the coefficient of S′ in the following expansion:(
xS + xS−1 + xS−2 + · · · + x−S+1 + x−S

)n
(2.111f)

It is easy to become familiar with the use of the last three equations to
determine the energy levels and their degeneracy in a copper(II) binuc-
lear complex: S=1/2, n = 2, S′ = 0 or 1, so that:

(
x1/2 + x−1/2

)2 = x1 +
2x0 + x−1; ω(2) = 0; ω(1) = 1 and ω(0) = 2. Then, �(1) = ω(1) − ω(2) =
1 − 0 = 1, and �(0) = ω(0) − ω(1) = 2 − 1 = 1. We find again the trivial
result that the triplet energy is E(S=1) = –J/4; the singlet E(S = 1) = 3J/4;
and both levels are non-degenerate.

The method was proposed first by K. Kambe [2.37] for trinuclear complexes
of Fe3+ and Cr3+, and can be found also in various places [2.25]. It can be
applied to write concise analytical formula of the energy of the spin levels
in high-symmetry systems when the coupling constant J is uniform among the
neighbours. It can be used also in some cases with different coupling constants.
To avoid lengthy equations we consider only a very simple system of three ions
A1, A2, A3 in a linear (or isosceles) molecule with spins S1, S2, S3, with an
interaction J1 between S2 and S1 and S2 and S3, and an interaction J2 between
S1 and S3. It is convenient to rename J1 as J and J2 as αJ. The spin Hamiltonian
is then written:

H = − J [S1.S2 + S2.S3 + αS1.S3] (2.112a)

The trick is to introduce an intermediate spin operator S∗:

S∗ = S1 + S3 and S = S∗ + S2 (2.112b)

The choice of the intermediate spin is generally determined by the symmetry of
the system, but it can be chosen arbitrarily. In any case, once chosen it is com-
pulsory to keep the same coupling scheme during the whole calculation. Using
the properties of S2 operators, the reader can easily find that the Hamiltonian,
and its related eigenvalues E(S, S∗), can be written as:

H = −J [S2 − S∗2(1 − α) − S2
2 − α

(
S2

1 + S2
3

)
]/2 (2.112c)

E
(
S, S∗) = − J[(S(S + 1) − S∗ (S∗ + 1

)
(1 − α) − S2(S2 + 1)

− αS1(S1 + 1) − αS3(S3 + 1)]/2
(2.112d)

An even more compact equation is obtained when S1 = S2 = S3 = Si. The
eigenvalues depend now on S∗ and S. With the usual rules, |S2 − S3| ≤
S∗ ≤ S2 + S3 and |S∗ − S2| ≤ S ≤ S∗ + S2. It is useful to build a table to
find the values of S∗ and S, to determine the various states (S, S∗), their
energies E(S, S∗) and their degeneracies as before. The reader can check as
an exercise that the energies of a three spin 1/2 systems present the following
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energies: E (3/2, 1) = −J/2 + 3αJ/4; E(1/2, 1) = + J − αJ/4; E (1/2, 0) =
+ 3αJ/4.

Another powerful method useful for larger but highly symmetric clusters
relies on the formalism of irreducible tensors, fully exploiting the symmetry of
the spin system, and can be found in [2.4], section 2.5.

2.5.3.2 Exchange anisotropy in clusters
We close this section on spin Hamiltonians by extending the results obtained
on the anisotropy of binuclear objects to cluster objects. The main goal is
to relate the spin Hamiltonian parameters of the cluster to those of the indi-
vidual constituents with closed-form equations. This can be done ‘easily’ only
in the case of the strong exchange limit. Otherwise, it is necessary to apply
more cumbersome computation methods. We simply give the principles, since
more detailed calculations can be found in [2.4] section 2.5. Basically, the total
spin is approached through intermediary spins as introduced in Section 2.5.3.1.
If there are n = 4 spins one can write: S12 = S1 + S2; S123 = S12 + S3; S =
S123 + S4. n – 2 intermediate spins are needed. The g̃ and D̃ tensors for the
different intermediates are written successively. The spin Hamiltonian for the
spin–spin interaction of the whole system is composed of the sum of terms
involving the individual local anisotropy D̃i tensors and of terms implying the
anisotropy interactions D̃ij between spins i and j, as in eqn. (2.109b) for two
centres:

Hss =
∑n

i=1
Si D̃iSi +

∑n

i=1,j>1
Si D̃ijSj (2.113a)

D̃S =
∑n

i=1
diD̃i +

∑n

i=1,j>i
dijD̃ij (2.113b)

D̃S is the anisotropy tensor of the ground spin state S. The coefficients di and dij

can be computed from the characteristics of the system. For example, Gatteschi
et al. proposed the following simple formulae for the coefficients, in the case
of a ferromagnetic coupling between n spins Si (Section 2.5.2 of [2.4]):

(c) di = 2Si − 1

n(2nSi − 1)
(d) dij = 2Si

n(2nSi − 1)
(2.113c,d)

More than the details of the calculation, we are interested in the results of
this spin Hamiltonian approach in simple anisotropic situations. For example,
when identical individual spins have their anisotropy axis parallel, the single-
ion participation in the DS parameter of the ground spin is:

DS = 2Si − 1

2nSi − 1
Di (2.114)

Then, within the spin ground state S, when DS is negative, an energy bar-
rier � will arise (see Section 2.5.1.2.). It will prove central in the physics of
single-molecule magnets (Section 2.8). More generally, the spin Hamiltonian
approach briefly introduced here will be used in different contexts throughout
this chapter.
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2.6 Orbital interactions and exchange
In the preceding section the spin Hamiltonian provided a tool for determin-
ing the spin states and the energy levels of a magnetic system. The coupling
constant J was a phenomenological parameter; that is, it described only the
coupling phenomenon, not the underlying mechanism. In the present sec-
tion we propose describing and understanding in more depth the nature of
the J coupling between two electrons. This fundamental problem has raised
the interest of many scientists, from the beginning of quantum mechanics to the
applied study of magnetic materials. The problem is not fundamentally differ-
ent from the problem of bonding for which we provided solutions in Chapter
1. A famous book by J. Goodenough is indeed entitled Magnetism and the
Chemical Bond [2.38].

But the focus here is not on the bond but on the magnetic properties, and
more precisely on the singlet–triplet energy separation, J. And we know that
the coupling’s origin is not magnetic but electrostatic, orbital.

We start with the simple case of two unpaired electrons, involving two orbit-
als and two spins in a molecule. The two unpaired electrons considered will be
named active, in opposition to all other electrons in the system, named passive,
even if this is not strictly the case.

The two unpaired electrons are described by orbitals a and b having an over-
lap integral S. For the while, a and b are pure atomic orbitals of the 1s type, and
the system is symmetrical (a and b have equal energies and the same nature).
These two orbitals build the molecular orbitals ψ1 and ψ2 with energies ε1 and
ε2 respectively, and � = ε1 – ε2 (Fig. 2.37a):

ψ1 = N+ (a + b) (2.115a)

ψ2 = N− (a − b) (2.115b)

When the overlap is weak (|ε1 − ε2| weak) the Heitler–London model
(HL) was found to be preferred to the Hund–Mulliken (HM) scheme (see
Section 1.5.3).

The different electronic configurations and states were given in Fig. 1.42.
They constitute our starting point to present briefly, without extensive calcula-
tions, a few models of the exchange interaction in molecules.

a b
ψ1

ψ2

ψ1

ψ2
–

ψ1

ψ2

+ =

(a)

(c) (d)

a' b'

< I >< a' I b' > ≡ ≡ 0(e)

< I > = S< a I b >  ≡(b)

=

E ε2

ε1

Δ

Fig. 2.37
(a) Two molecular orbitals ψ1 and ψ2

built from two basis orbitals a and b. ψ1

and ψ2 are orthogonal; (b) a and b orbit-
als have a non-zero overlap integral S; (c)
and (d) obtention of orthogonalized basis
orbitals a′ and b′ from the linear combin-
ation of ψ1 and ψ2; (e) there is a unique
solution corresponding to a′ and b′ having
a zero overlap integral.
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Copper acetate

Copper acetate can be considered a cornerstone in molecular magnetism and the
first example of the study of magnetic exchange occurring within a molecule. The
story began in 1951, before the crystallographic structure was known. Since then,
the interpretation of the magnetic properties has attracted tremendous interest, and
the saga continues with new materials based on the same structure.

In 1951, Guha published the temperature dependence of susceptibility [1]. Upon
cooling, instead of presenting the Curie law, it showed a broad maximum near
250 K, and then dropped almost to zero. A year later, Bleaney and Bowers reported
the decrease of the EPR signal intensity at low temperature, and concluded to an
‘anomalous paramagnetism of copper acetate’ [2]. Without knowing the structure,
they proposed that ‘isolated pairs of copper ions interact strongly through exchange
forces, each pair forming a lower singlet state and an upper triplet state, the latter
only being paramagnetic’. The ‘anomalous’ EPR results came from the triplet state,
which behaves as a diradical (while the singlet state is EPR silent), and the decrease
of both EPR signal and susceptibility at low temperature was nicely explained
by the Boltzmann distribution over the different energy levels. The most relevant
information is gathered in Fig. 1.
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Copper acetate: (a) structure; (b) recent
susceptibility data (black triangles); (c)
Curie law susceptibility behaviour for
two spins without interaction; (d) the
two-level spin model of Bleaney and
Bowers.
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The susceptibility data can be fitted with a Bleaney–Bowers law and singlet–
triplet gap value, J = –296 cm–1. Using the energy levels in Fig. 2, it is a good
exercise for the reader to apply the Van Vleck equation and find the law proposed by
Bleaney and Bowers (here in cgs-emu units):

χM = 2NAg2 μ2
B

kT(3 + e−J/kT)

The X-ray crystal structure, determined in 1953 by Van Niekerk and Schoening,
confirmed the dinuclear nature of the compound [3]: the two copper(II) ions are
bridged by four carboxylates (Fig. 1a). A water molecule is coordinated to each cop-
per(II) achieving a square pyramidal geometry. The metal–metal distance is 2.64 Å.
For that distance, and taking into account the orientation of dx2–y2 orbitals, there is no
significant direct overlap (contrary to the chromium(II) analogue, where the t2g–t2g

overlap is so strong that the complex is diamagnetic). It is now recognized that the
interaction occurs through the four bridging ligands.

Over the years, copper acetate has served as a reference compound to test
exchange theories (not without a struggle!), computational techniques including
‘premières’ ([4] and see the following), and new types of experiment. Thus the
singlet–triplet transition, which is unobservable by infrared or Raman spectro-
scopy because the corresponding transition is forbidden, was determined directly
by inelastic neutron scattering in 1979 [5]. The result confirms magnetic measure-
ments and provide a separation of 298 ± 4 cm–1. A nice summary of the magnetic
story of copper acetate can be found in [4].

Today, the beautiful dinuclear structure is used as a precursor for materials—
either magnetic frameworks where the copper pairs are substituted by dissymmetric
AB pairs, or porous materials by replacing the acetate by extended carboxylates and
water by bridging ligands, whereas theoreticians continue to unravel the details of
the electronic structure. Guihéry et al. recently solved the calculation of the sign of
zero-field splitting, D = –0.335 cm–1 [6].
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2.6.1 Basic theoretical background

2.6.1.1 Heitler–London model, non-orthogonal orbitals
We start here with the model by Kahn and Briat [2.3, 2.39], based on the
Heitler–London scheme presented in Section 1.5.3.1. In Fig. 2.38, left-hand
side, are shown the orbitals a on centre A and b on centre B (A); their overlap
integral is S = <a|b>; the electronic configurations and energies (B) provided
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Fig. 2.38
Energies of the singlet and triplet states created by the interaction of non-orthogonalized orbitals a, b (A, B, C left) and orthogonalized ones a′,
b′ (D, E, F right) in the frame of the Heitler–London model. In the middle are shown the orbitals a and b (A) and a′ and b′ (D). At the bottom
are represented the low-lying configurations, energies, and states [ab (B) and a′b′ (E)]. At the top, the excited states obtained by electron transfer
from one site to the other, aā and bb̄ (C) and a′ā′ and b′b̄′ (F). In the centre are shown the energy levels obtained by configuration interaction (CI,
grey arrows) between the ground and excited states of same symmetry (1�g). The constant x which appears in (B) is defined in the text. (Adapted
from [2.39].)

by eqns. (1.81) and (1.82a,b). Their interaction defines a ground-state sing-
let 1�g (ES energy) and a triplet 3�u (ET energy) (Figs. 1.42C and 2.38B). The
coupling constant J is already defined as (ES – ET). The electron transfer of one
electron to the other orbital creates two singlet charge-transfer excited states,
1�g and 1�u (Figs. 1.42B and 2.38C).

In a second step, the two ground and excited states 1�g of same sym-
metry interact through configuration interaction (CI); they repel each other
and give rise to slightly modified—and better—energy levels. Between the
ground and the excited states the energy difference is U = (j0 – j)/(1 + S2).
The CI process stabilizes slightly the ground state by −4x2U

(
1 + S2

)4
with

x = (β − αS)
(
1 − S2

) + �
(
1 + S2

) − (j + k) S; the calculation of the energy
stabilization can be found in reference [2.39]. An improved J value is then
obtained.

J = [
2k + 4βS − 2S2(2α + j)

]
/
(
1 − S4

) − 4
[
(β − αS + � − (j + k)S

]2
/U

(2.116a)
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The two-electron integral � (the repulsion between a(1)b(2) and b(1)b(2) con-
figurations) is:

� = <a(1)b(2)

∣∣∣∣ e2

r12

∣∣∣∣ b(1)b(2)> = <φa(1)φb(2)

∣∣∣∣ e2

r12

∣∣∣∣φb(1)φb(2)> (2.116b)

The most important conclusion is that the Heitler–London model, with a priori
non-orthogonal orbitals, provides the proper ground state 1�g without the need
of configuration interaction. Eqn. (2.116a) provides the J value, which can be
reduced at the first order in S (the overlap integral) as:

J = [2k + 4βS − 2S2(2α + j)]/
(
1 − S4) ≈ 2k + 4βS (2.117a)

J = JF + JAF (2.117b)

The term βS (< 0 when S > 0 and β < 0) can be substituted by equivalent
quantities βS ∝ β2 ∝ S 2 ∝ �2 since |β| ∝ S (an approximation suggested by
Mulliken) and β ≈ −|�|/2 (� is the energy difference between ψ1 and ψ2).

The sign of J is determined by the sum of a positive term, 2k, favour-
ing ferromagnetism and a negative one, 4βS, favouring antiferromagnetic
coupling.

2.6.1.2 Heitler–London model, orthogonalized orbitals
What happens if we use the orthogonalized orbitals a′ and b′, instead of over-
lapping orbitals a and b? The answer suggested by Girerd et al. [2.39] is shown
on the right-hand side of Fig. 2.38. How do we obtain orthogonalized orbitals
a′ and b′? We simply start from the bonding and antibonding molecular orbit-
als ψ1 and ψ2 of Fig. 2.37 (assumed to be the result of a quantum-chemical
calculation of the complete system), and combine them with the following
transformation maintaining orthogonality (eqns. (2.118a–c)):

a′ = √
2(ψ1 + ψ2)/2 (2.118a)

b′ = √
2(ψ1 − ψ2)/2 (2.118b)

and:

<a′|b′> ≡ 0 (2.118c)

The new orbitals a′ and b′ are orthogonal by definition, and they look as shown
in Fig. 2.37c, d, e. (a′ is centred mainly on A with a small antibonding—
participation of B—and the opposite for b′).

We can then compute the energy levels of the coupled system with a′ and
b′ as basis orbitals. The energies are still given by eqns. (1.81) and (1.82a,b)
by simply dropping the term in S since now the overlap integral S is zero.
We should introduce a prime on all the integrals, S′, and so on, since they are
defined with different orbitals and their values are different. Nevertheless, the
change of basis orbitals, using such a unitary transformation, does not change
the final energies of the system [2.39]. We drop the primes.

The energies of the ground states singlet 1�g and triplet 3�u are:

E(1�g) = 2α + j + k (2.119a)
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E(3�u) = 2 α + j − k (2.119b)

ES − ET = J = 2k (> 0) (2.119c)

The result is drastically different. The triplet state is now the ground state!
The interaction is expected to be ferromagnetic. As before, we can proceed
further and take into account the configuration interaction between the two
1�g states of the ground and excited charge-transfer states. The lower 1�g state
is strongly stabilized. The triplet state does not move, and we reach an energy
scheme in agreement with the one obtained with non-orthogonal orbitals, due
to the configuration interaction:

ES − ET = J = 2k − 4(β + �)2/U (2.119d)

The singlet–triplet gap is still the sum of a positive term (exchange integral k)
and a negative one, introduced due to configuration interaction. The denom-
inator in the stabilization term is U, and the difference in energy between the
ground and the excited (charge transfer) states is, as usual, CI. The result allows
us to understand the first quantum calculations of Heisenberg, who arrived,
with orthogonal orbitals, at rigorously the same conclusion as eqn. (2.119c).
J = 2k is positive, and the interaction is ferromagnetic. It was necessary to
await the thesis of L. Néel in 1932 to realize on an empirical basis that J could
be negative and the interaction antiferromagnetic. The world was no longer
a big magnet. It is also rewarding to note that the negative term in (2.119c)
(which comprises the integral � defined in eqn. (2.116b)) is very similar that of
β2/U introduced by Anderson to help solve the ‘great question of the sign of
exchange interaction’.

2.6.1.3 Hund–Mulliken model, orthogonalized orbitals
Similar (and complementary) conclusions can be reached using the Hund–
Mulliken model, as proposed by Hoffmann and coworkers [2.40]. One starts
with the states obtained from molecular orbitals (scheme (a) in Fig. 1.42, where
ψ1 and ψ2 are defined as in Fig. 2.37). The triplet state is uniquely defined
(ψ1 ↑ and ψ2 ↑ and other triplet components). This is useful to allow an SCF
calculation of the orbitals on the high-spin (triplet) state. It is more difficult to
define the singlet ground state (GS), since in general it will be represented by
linear combination of the two singlets S0 and S2 of same symmetry 1�g [2.40].

�GS = c1�S0 + c2�S2 (2.120)

A strong interaction between orbitals a and b leads to a large energy difference
ε1 – ε2 and c1 >> c2 in eqn. (2.120). In such a case, the singlet state S0 can
be considered a good approximation for the ground-state singlet GS. But if the
interaction is weak (small ε1 – ε2), it becomes clear that the ground-state singlet
will obey eqn. (2.120) with c1 ≈ c2. In other words, a configuration interaction
will necessary be between S0 and S2 to obtain the appropriate ground state.
Using the usual quantities (i) hi, the one-electron energy Hamiltonian for elec-
tron i in the system (kinetic and potential energies, nuclear repulsion); (ii) the
usual Coulomb and exchange two-electron interactions (see Section 1.5).

hi = <ψ1 (1) |hi|ψ1 (1)> (2.121a)
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Jij = <ψi (1) ψj (2)

∣∣∣∣ e2

rij

∣∣∣∣ψi (1)ψj (2)> (2.121b)

Kij = <ψi (1) ψj (2)

∣∣∣∣ e2

rij

∣∣∣∣ψi (2) ψj (1)> (2.121c)

We skip here the calculations (the diagonalization of the 2 x 2 matrix implying
S0 and S2, which can be found in [2.40] and [1.15]).

After reasonable approximations, neglecting non-significant weak terms
[2.40], it arrives at:

ET = h1 + h2 + J12 − K12 (2.122a)

ES = h1 + h2 + (J11 + J22) /2 − (1/2)
[
(2h1 + J11 − 2h2 − J22)

2 + 4K2
12

]1/2

(2.122b)

ES − ET ≈ −J12 + K12 + (J11 + J22) /2 − (h1 − h2)
2 /2K12 (2.122c)

where remain the main ingredients. As it is difficult to extract easily useful
information from the last expression, R. Hoffmann and coworkers introduced
orthogonalized localized orbitals a′ and b′, as we did previously. They write
the identities between the integrals J12, K12, . . . (defined as previously from
the molecular orbitals ψ1 and ψ2) and their equivalent Ja′b′ , Ka′b′ . . . (defined
from the a′ and b′ orbitals):

J11 = (1/2)
(
Ja′a′ + Ja′b′

) + Ka′b′ + 2 < a′a′|a′b′ > (2.123a)

J22 = (1/2)
(
Ja′a′ + Ja′b′

) + Ka′b′ − 2 < a′a′|a′b′ > (2.123b)

J12 = (1/2)
(
Ja′a′ + Ja′b′

) − Ka′b′ (2.123c)

K12 = (1/2)
(
Ja′a′ − Ja′b′

)
(2.123d)

Then, the orbitals’ energies εi are expressed as a function of the hi

(Section 1.5):

ε1 = h1 + J12 − K12 and ε2 = h2 + J12 − K12, ε1 − ε2 = h1 − h2

(2.123e)
It comes after some new calculations and approximations:

J = ES − ET ≈ 2Ka′b′ − (ε1 − ε2)2/
(
Ja′a′ − Ja′b′

)
(2.124)

The singlet–triplet gap is once more the sum, or the competition, of a positive
term JF (always related to an exchange integral Ka′b′ > 0) and a negative term
JAF built from the square of the energy difference between the molecular orbit-
als and the difference of two Coulomb integrals (in general, Ja′a′ > Ja′b > Ka′b′).
It is easy to recognize under the name Ka′b′ , Ja′a′ , Ja′b′ and <a′a′|a′b′>, our pre-
vious two-electron repulsion integrals k, j0, j, and l, defined on other quantum
objects. When ε1 = ε2 the preceding result related to orthogonal orbitals is
recovered: J is positive and the interaction is ferromagnetic. In series of com-
pounds where Ka′b′ , Ja′a′ , Ja′b′ can be considered as constant (weak variation
of the structure), J depends only on the square of � = ε1 − ε2—a quantity
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easily accessible to simple molecular quantum calculations (extended Hückel
MOs for example). In the case where the denominator is reasonably constant
(a same system with smooth geometry changes, for example), it is possible to
correlate J (the magnetic properties) to the geometry changes.

2.6.2 From hydrogen to transition metal complexes

2.6.2.1 Interaction between d orbitals
If we replace 1s orbitals by 3d orbitals, the problem and the conclusions are
rigorously the same, in the frame of the HL scheme. This kind of exchange
interaction has been called ‘direct exchange’ (with no need for intermedi-
ary ligand). But the symmetry begins to play a crucial role. Everything being
equal—distance in particular—the overlap integral S is decreasing for σ, π, or
δ overlaps, reaching zero for orthogonality, as shown in Fig. 2.39. This means
that we can move with the same orbitals from a situation displaying strong
antiferromagnetism to ferromagnetism, depending on symmetry.

2.6.2.2 Interaction through a monoatomic bridge in an A-X-B entity
To be closer to real problems we need to introduce a diamagnetic ligand
between the two singly occupied orbitals (SOMO). Such a bridge raises a dif-
ficult problem: how could a diamagnetic ligand participate to the exchange?
The A-X-B problem is still a controversial topic for some. Figure 2.40 sets the
scene: the SOMOs are two x2 – y2 orbitals φA and φB of a Cu(II) ion, electronic
configuration d9, and the ligand X is simply a px orbital. This example corres-
ponds to an imaginary linear symmetric oxide bridge between two copper(II)
ions, Cu(II)–O–Cu(II). We forget for the while the ancillary ligands necessary
to allow the Cu(II) unpaired electron to be described by a x2 – y2 orbital (for
example, in a square planar geometry). The σ overlap is chosen accordingly
(see Section 1.3.6). An inversion centre is at the oxygen site in the middle of
the two metallic ions. The symmetry is D∞h, but for simplicity we use the u
and g notations related to the inversion operation.

We start from three a priori non-orthogonal orbitals, two x2 – y2 orbitals of
the metallic ions, and a px orbital of the ligand. The px orbital (symmetry u) is
lower in energy than the d orbitals, since the oxygen is more electronegative
than the metals. To obtain the three molecular orbitals ψ0, ψ1, and ψ2 it is
helpful to build two u and g symmetry orbitals by a ± combination of the d
orbitals. The u symmetry orbital combines with the px orbital to give a bonding
MO (ψ0) and an antibonding one (ψ2). The g symmetry orbital, unchanged,
becomes the molecular orbital ψ1. The bonding MO ψ0 is fully occupied with
two electrons, and the two other MOs share two electrons. Figure 2.40 displays
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Weak

S = 0
Orthogonality

x2–y2 ... x2–y2 xy  ... xy x2–y2...xy

>

yz  ... yz

Fig. 2.39
Tuning the overlap between d orbitals
with symmetry, from strong σ overlap to
zero (orthogonality).
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Fig. 2.40
Illustration of non-orthogonal and ortho-
gonalized basis orbitals in the case of
d orbitals and a bridging ligand X. (a)
Three molecular orbitals ψ0, ψ1, and
ψ2 built from three non-orthogonal basis
orbitals: the u and g symmetry orbitals
built from φa and φb on the left and px

on the right; ψ0, ψ1, and ψ2 are ortho-
gonal; (b) non-orthogonalized orbitals a
and b and (c) orthogonalized orbitals a′
and b′ built from the linear combination
of ψ1 and ψ2. There is a unique solution
corresponding to a zero overlap integral
for a′ and b′, since the overlap integral S
is zero (c), which is not the case for a and
b (b).

a triplet configuration ψ0(↑↓)ψ1(↑)ψ2(↑). Then the problem can be tackled as
in the preceding HM and HL cases. Two singlets S0 and S2 are built from ψ1

and ψ2 and combine to give the ground state. The two molecular orbitals ψ1

and ψ2 can be localized and orthogonalized to give a′ and b′, and the results for
J are given by eqn. (2.124) (Hund–Mulliken situation, Section 2.6.1.3). On the
other hand, to build ψ1 and ψ2 one can start alternatively from the two orbitals
a and b, of the A-X and X-B fragments, centred on A and B and partially
delocalized on the ligand oxide (obtained by ligand field theory) (Fig. 2.41).
They are a priori non-orthogonal (they can be computed, for example, using
a molecular orbital calculation of the Cu–O fragments). We are back to the
Heitler–London situation (Section 2.6.1.1). The result for J is given by eqn.
(2.117a). But if the a′ and b′ orbitals (HM) are clearly defined, it is not the case
for a and b (HL), which are less rigorously defined.

The magnetic orbital concept allows use of the same expressions as for pure
d orbitals, and this is the reason of its great heuristic power. Note, however,

a = A–x

A–X–B

Ψ2 u

Ψ1 g
b = x–B

Ψ1 = a+b

Ψ2 = a–b

A–X X–B

Fig. 2.41
Two localized orbitals a and b interact to
give molecular orbitals ψ1 and ψ2 (upper
part of Fig. 2.40)
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that in using expressions such as eqn. (2.117a), β is now an effective quantity
(see Section 1.2.3). We shall re-encounter this concept of effective resonance
integral in Chapter 3.

This situation is known in the literature as superexchange interaction; that
is, exchange through a diamagnetic bridging ligand. We see that introducing
the localized orbitals a′ and b′ or a, b, demonstrates that there is no difference
in nature between ‘direct exchange’ between localized d orbitals (a, b or a′, b′)
and ‘superexchange’.

Superexchange

The concept of superexchange is defined by the IUPAC as an ‘electronic interac-
tion between two molecular entities mediated by one or more different molecules or
ions’.

We meet it here for the first time in the frame of magnetic exchange interactions,
but it will also occur in the case of electron transfer in Chapter 3. In both cases,
the mediator entity plays a role by quantum-mechanical mixing of its wavefunctions
with those of the terminal entities.

For magnetic exchange interactions we have to explain why two paramag-
netic centres, which are too far to interact directly, can nevertheless present an
exchange interaction. As seen previously, there are two ways to describe this indirect
interaction:

• Use a full description of the system, as in the molecular orbital scheme of
Fig. 2.40, starting from atomic orbitals. Here the role of the bridging ligand is
taken into account explicitly, at the expense of some complexity.

• Use a reduced model as in Fig. 2.41. In this case one defines first magnetic
orbitals, to take into account the partial delocalization between the ions and the
bridging ligand, and then combines them as in the case of just two paramagnetic
centres. The advantage of this (more pedagogical) approach is that there is no dif-
ference in nature between exchange and superexchange. The role of the bridging
ligand is taken into account in the definition of magnetic orbitals.

Superexchange is described in a natural way by theory, because the process of mix-
ing or perturbing wavefunctions is a common ingredient of quantum-mechanical
methods. One has simply to avoid assigning too much importance to limiting forms
or configurations, which have no real existence and actually contribute little to the
overall state. An example of misconception is given later.

Using the simple qualitative scheme of Fig. 2.42 (three schematized versions of
Fig. 2.40), we can illustrate an important aspect of the exchange phenomenon
through the ligand concerning the electronegativity of the bridge X (F–, Cl–,

p

(a) (b) (c)

dA, dBdA, dBdA, dB

ψ0

ψ1

ψ2

p
p

ψ0

ψ1

ψ2

ψ0

ψ1

ψ2
Fig. 2.42
Influence of the electronegativity of the
bridging atom on the coupling: the lar-
ger the electronegativity, the weaker
the interaction and the antiferromagnetic
coupling.
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Br–, I– or O2–, S2–, ..). Increase of electronegativity means that the p orbital
energy decreases, and its interaction with the d orbitals (higher in energy)
is weakened. Everything else being equal, the weight of the bridging orbital
decreases in the ψ2 orbital (Fig. 2.42 a, b, c, top). ψ2 becomes less and less
antibonding, the difference in energy between ψ2 (ε2) and ψ1 (ε1) decreases,
and the antiferromagnetic component of the coupling is expected to decrease,
as shown by eqn. (2.124).

Another important factor is the geometry. Figure 2.43 schematizes the situ-
ation for a bent AXB bridge with a 90-degree angle. The two localized orbitals
a and b built from the d orbitals and suitable p orbitals of X do not overlap
(Fig. 2.43c). They remain as such in the molecular entity (Fig. 2.43, centre).
In the HL model, eqn. (2.117a) with S = 0 tells immediately that J = 2k > 0.
In the HM model, ε2 – ε1 = 0, and eqn. (2.124) tells that J = 2Ka′b′ > 0, and
the coupling is ferromagnetic.

A final remark will deal with a frequently encountered misunderstanding.
The exchange interaction through a bridge (or superexchange) is sometimes
presented as shown in Fig. 2.44, considered as a crude pictorial represent-
ation of the superexchange mechanism, ‘explaining’ the antiferromagnetism
observed in a linear A-X-B bridge. Basically, the phenomenon is explained by
the fact that a spin ‘up’ on the metal A can interact with a spin ‘down’ of the
p orbital, leaving a spin ‘up’ in the electron pair able in turn to interact with
a spin down on B, as if it were possible and enough to separate an electron
pair and to distribute the two spins in each of the two orbital lobes to under-
stand exchange interaction. This is a misinterpretation of pioneering schemes,
implying excited states with virtual electron transfer. We suggest that such a
short cut be avoided.

XA–X X–BA B

ba

90°
px py

xy

Orthogonality of a and b 

(a)

(b)

(c)

Fig. 2.43
Influence of the geometry: (a) the AXB
entity is bent by 90◦; x, y axes are chosen
as shown; (b) the localized orbitals a and
b built from d x2–y2 orbitals and the suit-
able p orbitals of the bridging ligand; (c)
orthogonality of the basis orbitals.

x2–y2 x2–y2px

pyxy xy

(a)

(b)

A X B

x

y

Fig. 2.44
A frequently encountered misunderstand-
ing of magnetic superexchange.
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2.6.2.3 Interaction through a molecular bridge
The final step is to replace the atomic bridge by a molecular one, which is cru-
cial for understanding the magnetic systems studied in this chapter. We apply
the same reasoning as before to the case of a dinuclear μ-oxalato copper(II)
complex. The oxalate dianion, [C2O4]2–, is the simplest dicarboxylate, and one
of the favourite ligands among molecular magnetism chemists due to its very
versatile bonding properties.

Kahn’s model starts with non-orthogonal localized orbitals. The appealing
feature is that such an orbital can be found in a mononuclear complex like the
ethanediamine-oxalato-copper(II) complex, the structure of which is shown
in Fig. 2.45a. It is one of the reasons why Kahn and coworkers named them
‘natural magnetic orbitals’ (NMO). The orbital is built from a molecular orbital
of the oxalate dianion of adapted symmetry and a d orbital (Fig. 2.45b).

Two molecular orbitals arise, φbonding and φantibonding or φa. The higher in
energy, φa, describes the unpaired electron. It presents a nodal surface between
the metal and the oxygen atoms of the ligand. It is then antibonding. We shall
see in this chapter that this is a common feature of SOMOs: being the highest in
energy, they are quite often slightly antibonding or non-bonding. The unpaired

φa

d

Oxalate

Bonding

Antibonding

(b)

(c)

O O

O O

z

x

Cu

N

N

(a)

Fig. 2.45
‘Natural’ magnetic orbital (NMO) in a
mononuclear complex of copper(II): (a)
structure; b) symmetry of the molecu-
lar orbital; in a C2 point group, with
the chosen axes, the symmetry of the
orbital is b1; (c) molecular orbital energy
diagram.
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electrons do not participate to the bonding in the molecule. Another observa-
tion is that the ‘magnetic orbital’ is centred on the metal but widely delocalized
on the ligand. The spin density is spread over the oxalate, including the oxygen
atoms opposite to those directly bound to the metal.

The dinuclear complex (Fig. 2.46a) comprises two copper(II) cations
bridged by the oxalate in a symmetric bis-bidentate way. Two terminal ethane-
diamine derivative molecules bind the copper(II) trans to the oxalate. A water
molecule completes the coordination of each copper in axial position, but it is
not essential for our purpose, and we consider that the point group symmetry
is C2.

2.6.2.4 Unsymmetrical molecule AB
Here we need to adapt the preceding singlet–triplet calculations
(Section 2.6.1) to the AB unsymmetrical case. The system presents a
magnetic orbital aμ on site A and the orbital bν on site B, each occupied by
one unpaired electron (spin operator s). μ and ν are the symmetry labels of the
orbitals. The spin Hamiltonian is H = −J12s1.s2. The electronic Hamiltonian
is H = h(1) + h(2) + e2

r12
with h (1) 
= h (2). The orbital energies are αA and

αB (with δμ = αA − αB).
The overlap integral is Sμv = 〈aμ(1)|bν(2)〉. The molecular orbitals of such

an AB molecule were studied in Section 1.3.2. We can face two situations:
(i) the symmetries of aμ and bν are different (μ 
= ν), the orbitals are ortho-
gonal, the overlap integral Sμν ≡ 0 and the AB molecular orbitals are identical
to the original aμ and bν; (ii) the symmetries are the same (μ = ν). In this case,
the overlap integral Sμμ 
= 0, the two basis orbitals aμ and bμ build the two
molecular orbitals ψ1 and ψ2, shown in Fig. 2.47, with an energy gap �μ.

Kahn’s HL and Hoffmann’s HM models (Sections 2.6.1 and 2.6.2) are based
on the definition of a pair of symmetric, equivalent magnetic orbitals, centred
on A and B. In the Hoffmann’s model this symmetry is compulsory; there is
no general treatment when the sites A and B are different. For the HL model
we report briefly the results given by Kahn [2.3, p. 189]. The calculations are
lengthy, but the conclusion (when neglecting terms in S2 in the development of
J—which means that S <<1) is a simple extension of the symmetric case:

J = 2kμν − 2
[
�2

μ − δ2
μ

]1/2
Sμν (2.125a)

When compared with the expression for a symmetrical case (eqn. (2.117a))

J = 2k + 4βS ≈ 2k − 4|�|S/2 ≈ 2k − 2|�|S (2.125b)

it is seen that the expression −[�2
μ − δ2

μ]1/2 plays the role of 2β. In other
words, the quantities appearing in Fig. 2.47 can be used to define an effective
β, which, in the unsymmetrical case, is no longer given directly by half the
energy gap between a bonding and an antibonding orbital.

As for the symmetrical case, it is easy to recognize from eqn. (2.125b)
that when Sμν ≡ 0 (orthogonality), J = 2kμν > 0, and the interaction is
ferromagnetic.
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(a) Structure of the dinuclear copper(II) complex (top view); (b) coordinates and symmetry, C2 axis, mirror plane π and inversion centre i, D2h

point group; (c) molecular orbitals built from non-orthogonal localized orbitals (HL model); (d) molecular orbital energy diagram; the tails on
the terminal ligand are not shown. The symmetry labels are those in the D2h group or g and u for simplicity; (e) orthogonalized localized orbitals
a′ and b′ (HM model).
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Fig. 2.47
Schematic molecular orbital energy dia-
gram in an A–B unsymmetrical molecule
(simplified to a case of two d orbitals of
different energies belonging to the same
symmetry representation μ).

2.6.2.5 Interaction between several electrons per centre: concept
of exchange pathway

We proceed further by examining dinuclear complexes having nA unpaired
electrons in ai orbitals on centre A and nB unpaired electrons in bj orbitals on
centre B with a total number of electrons n = nA + nB and a total number
of interactions nA.nB. Only a qualitative analysis will be given here, but the
full treatment can be found in [2.3, p. 186]. The magnetic behaviour can be
analysed as follows: (i) on each centre, there is a magnetic exchange inter-
action between electron spins (for example, a local Hund rule if there are
several quasidegenerate orbitals), so that a total local spin SA or SB can still
be defined; (ii) by looking at the orbital overlaps, one can determine the Jij

couplings between electron pairs (one electron of site A with one electron of
site B). The interactions are additive, and finally one can write:

H = −J.SA.SB (2.126a)

J = 1

nAnB

∑nA

i=1

∑nB

j=1
Jij (2.126b)

J, the coupling between spins SA and SB, is defined as the sum of the Jij, coup-
ling for electron pairs i,j, divided by the number of exchange pathways. Note
that the interaction energy scales as J.nA.nB.

We illustrate the concept of exchange pathway, interaction between pairs of
orbitals in Fig. 2.48 for a dinuclear system AB with an oxo bridge (for cyanido,
see Section 2.6.5.3).

We shall use this analysis in our study of polynuclear complexes in
Section 2.6.5, The reader familiar with solid-state magnetism will have recog-
nized in Fig. 2.48 a translation of the famous Goodenough–Kanamori rules
(see the following).
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(a) Coordinates of a molecular dinuclear
system AB with a μ-oxo bridge and an
octahedral ligand field around transition
metals A and B; (b) magnetic orbitals
on A and B; the ligands orbitals are not
shown for clarity; (c) building of the pairs
of molecular orbitals from the magnetic
orbitals on A and B, emphasizing their
symmetry, the gap in energy, the nature
of the overlap (σ, π, δ), the importance
of their contribution to the antiferromag-
netic coupling (see also Fig. 2.39); the xy
pairs are not shown (the same conclusion
as for the x2–y2 pairs); (d) table of the
exchange pathways jμν, with their sym-
metries and the nature of exchange (f as
ferro- and af as antiferromagnetic). The
antiferromagnetic pathways for pairs of
identical orbitals are in italics.
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2.6.3 Other models: from the pioneers to modern computations

2.6.3.1 The precursors: Kramers, Anderson, Goodenough,
and Kanamori

We have developed at length Hoffmann’s and Kahn’s models, conceived for
molecules, but previous exchange models, established for solids, inspired the
molecular ones.

Kramers was the first, in 1934, to stress the role of a diamagnetic ligand
to mediate the magnetic interaction between paramagnetic centres. Later, in
1950, P. W. Anderson (Nobel Prize recipient, 1977 [2.41]) exploited the idea
of virtual electron transfer, which we can compare to configuration interaction
with an excited charge transfer state. To describe the electronic structure of the
solid, he used ‘running waves’ or Bloch orbitals—defined in Section 1.4.1 and
used intensively in Chapter 3—(the Bloch orbitals are defined by an SCF cal-
culation in the ferromagnetic state); these wavefunctions are then localized and
orthogonalized (and then named Wannier orbitals). They can be considered as
a three-dimensional version of the Hoffmann ones. In the Anderson formalism
the ferromagnetic term like 2 Ka′b′ (eqn. 2.124) is called ‘potential exchange’,
while the antiferromagnetic term like −(ε1 − ε2)2/

(
Ja′a′ − Ja′b′

)
(formulated

–β2/U by Anderson) is called ‘kinetic exchange’ because it is linked to the
possibility of an electron on site a to delocalize on site b, and thus decrease its
kinetic energy.

The model was later completed and refined by Goodenough and Kanamori.
One conclusion of Anderson is of particular interest: ‘there is no distinction

in principle between exchange caused by direct overlap of the wavefunc-
tions on magnetic ions without intermediate atoms present, and exchange
through non-magnetic groups; thats is, between what used to be called ‘direct’
exchange and ‘superexchange’.

The Goodenough–Kanamori rules
The ‘rules’ were coined by Goodenough using the same basic concepts as
Anderson, and completing them (in a Hund–Mulliken approach) to find an
explanation for the huge amount of magnetic properties of oxides, with nA

electrons on A and nB electrons on B. Kanamori distilled the rules by using
more systematically the symmetry and using a Heitler–London approach.
At that time the rules gave an impressive valuable qualitative interpretation
of most of the data. Goodenough emphasised (i) the 180-degree geometry
(see Fig. 2.48) where the antiferromagnetic interaction is the largest (σ over-
lap between eg orbitals (d8–d8, for example) and π overlap between the t2g

orbitals (d3–d3, for example) with our present notations, and (ii) the 90-degree
geometry where orthogonality gives rise to ferromagnetic interactions (see
Fig. 2.43). The real geometry is always more complex, especially in molecules.
The reader can examine the Goodenough–Kanamori rules, having simply in
mind the basic concepts of overlap and orthogonality between pairs of mag-
netic orbitals developed previously. The references to the original pioneering
works can be found in Anderson [2.41] and Goodenough [2.38].

To summarize, five main models describing the exchange interaction
between two transition metals through a diamagnetic ligand are gathered in
Table 2.6.
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Table 2.6 Models to describe the exchange interaction in transition metal derivatives.

Models Bonding/Exchange Hund–Mulliken Heitler–London

Solids Anderson [2.41] Kanamori [see 2.38, 2.41]
Goodenough [2.38]

Molecules Haÿ, Thibeault, Hoffmann [2.40] Kahn, Briat [2.3, 2.39]

In these approaches the configuration interaction used essentially excited
states based on metal-to-metal charge transfer (MMCT) characterized by the
one-site electron repulsion U. Other models have been developed since, using
in particular ligand-to-metal charge transfer (LMCT) excited states both in the
HL or HM approaches. Many references can be found in the recent reviews
[2.42].

2.6.3.2 Numerical computation of J values
In the preceding sections we proposed heuristic solutions for understanding
the main components of J; that is, a qualitative approach. The problem is much
more difficult when a quantitative output is searched, as close as possible to
the experimental values. First, because beyond two electrons there is no exact
solution to the electronic Hamiltonian, and the determination of the correlation
energy between two electrons must be found by some ersatz or approxima-
tion. Second, one has indeed to determine a small energy difference (typically
1–300 cm–1) between singlet and triplet levels, while the total electronic energy
of these states in a molecule can be 105–107 times greater. These constraints
constitute a strong motivation for the conception of smart methods using the
most recent resources of computational chemistry.

Modern quantitative methods rely on either post-Hartree–Fock quantum
treatments (also known as wavefunction theory, WFT) or density functional
theory (DFT) calculations. As seen in Chapter 1, the post-Hartree–Fock treat-
ment necessitates an extensive use of configuration interaction with excited
states to improve the ground state (hence the introduction of many determin-
ants), while DFT is basically a monodeterminantal method.

In both, the computation of the singlet ground state, a priori the easiest, is
one of the difficult points. Let us return to the simple scheme of the ‘active
electrons’ model limited to two magnetic orbitals a and b. Figure 2.49 displays
three spin configurations or determinants.

We know that the singlet ground state is a linear combination of |ab̄| (a)
and |āb| (b): 1�0(Ms = 0) = |ab̄|+|āb|√

2
. Hence two determinants are needed

to describe the singlet, which therefore necessitates a multideterminantal

a b

a b(a)

ba

a b(b)

a b

a b(c)

A B A B A B

Fig. 2.49
Three spin configurations and determin-
ants. Note the lack of symmetry in (a)
and (b).
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approach (thus beyond Hartree-Fock). There is no such problem for the triplet
(or more generally for a configuration where all the spins are parallel). For
instance, the MS = 1 component of the triplet is defined uniquely by the single
determinant |ab| (Fig. 2.49c).

We begin with Hartree–Fock (WFT) treatments. In a seminal paper pub-
lished in 1981, Malrieu and coworkers tackled the problem with the example
of copper acetate (strongly antiferromagnetic, J = –286 cm–1) [2.43] [2.3 sec-
tion 8.5]. They used ab initio methods based on the computation of SCF MO
orbitals, followed by a configuration interaction (CI) with a Møller–Plesset
perturbation treatment (see Section 1.5.2.2). The method was adapted to cal-
culate directly the contribution of CI to the singlet–triplet energy difference,
rather than use a brute force technique of computing independently the ener-
gies of the two states and making the difference. The beginning of their
expression for J was similar to the Hay–Thibeault–Hoffmann (HTH) model,
because they used orthogonalized magnetic orbitals (see Section 2.6.1.3) but
went further by introducing various perturbative corrections. J was given by:

J = 2Kab − (2hab)2

Jaa − Jab
+ other second - order terms + fourth - order terms

(2.127)

in which one recognizes the first two terms of eqn. (2.124). Other second-order
corrections are introduced, implying higher-energy configurations involving
various kinds of charge transfer and ligand excitations. Finally, it was neces-
sary to go to fourth order to approach experimental results.

The numerical results illustrate the difficulties of obtaining quantitative
values. The ferromagnetic term 2Kab (potential exchange) is computed as
+233 cm–1, which is surprisingly high, taking into account the metal–metal
distance. The next term (kinetic exchange) just compensates the first, and at
this stage J is still slightly positive. Introducing the other second-order terms
and the fourth-order terms yields at last a negative J value (–120 cm–1), but
still far from the experimental –286 cm–1. The agreement is better in the case
of oxalate-bridged system, the total value up to fourthorder (–295 cm–1) being
closer to the experimental one (–385 cm–1).

The method thus suffered from at least two difficulties: (i) the perturba-
tion expansion of the CI is not unique, and (ii) where should the perturbation
expansion be stopped? It was nevertheless the methodological starting point of
many computational endeavours which are more and more successful even if
they are demanding of computer time. Among them are the methods based on
CASSCF (complete active space SCF) and their developments: definition of an
active space (a few frontier orbitals including the singly occupied ones), com-
putation using all the configurations of the active space compatible with space
and spin symmetries, eventually completed by other selected configurations
of the inactive space (DDCI, difference dedicated configuration interaction)
[2.44, 2.45].

In the last twenty years, various alternatives have been devised, less demand-
ing of machine time. One of the most fruitful is called the ‘broken symmetry’
approach, which can be declined in two variants: a simplified Hartree–Fock
treatment and a DFT treatment.
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The principle of the broken symmetry (BS) approach, introduced in 1981 by
Noodleman [2.46], is to circumvent the previously mentioned difficulty in
computing correctly the singlet energy. One defines a fictitious state, which
is a mixed spin state. It has MS = 0, but is not an eigenfunction of the triplet
nor the singlet. It can be depicted schematically as one of the determinants (a)
or (b) in Fig. 2.49.

Mathematically, the BS state is a determinant describing an electron on site
A with spin ‘up’ and the other electron on site B with spin ‘down’. It is not
symmetric (hence the name ‘broken symmetry’), because it associates a given
spin state, say ‘up’, with one half only of the molecule, and thus presents a
mixed spin symmetry. The great advantage of the broken symmetry state is that
it can be computed from a simple SCF procedure taking into account only one
determinant, without need of the CI step. Due to its mixed nature, its energy is
in principle the average of the pure spin state energies:

EBS = 1

2
(ES + ET) (2.128a)

which would give:

J = ES − ET = 2 (EBS − ET) (2.128b)

Technically, the BS state is computed at the unrestricted level, which suf-
fers from ‘spin contamination’ (the computed levels are no more pure spin
levels). We cannot enter into the conceptual and technical problems that arise,
which are still an object of debate. Other expressions for J have been proposed
(Yamaguchi, Ruiz, Caballol). The difficulties can be solved when some care is
taken [2.47–2.49]. In these conditions, DFT calculations, with selected func-
tionals, can be compared successfully with the most sophisticated ab initio
calculations, in simple A-X-B models (H–He–H for example). If we return to
the reference compound [Cu2(acetate)4] (see Box ‘Copper acetate’), a value
of –299 cm–1 (experiment: –296) was obtained by DFT. Nowadays, DFT is
used increasingly to tackle the computation of J values in extended polynuclear
systems, at the moment unreachable by WFT calculations.

2.6.4 Ferromagnetic and antiferromagnetic coupling
in dinuclear complexes with one spin per centre

In the two following subsections we present a few examples of real transition
metal complexes where theoretical models allow understanding and predicting
the magnetic properties. Our main tools in this heuristic approach are the con-
cepts by Kahn and Hoffmann, condensed in eqns. (2.117) and (2.124). We start
with very simple homometallic dinuclear complexes with one electron on each
metallic centre where it is possible to tune, practically at will, the overlap
between the magnetic orbitals. In the next section we proceed to the case of
several electrons per centre.

2.6.4.1 Overlap and symmetry
A beautiful pioneering example was provided by the bis-μ-hydroxo copper(II)
dinuclear complexes with the first attempts of ‘magneto-structural’ correla-
tion between the bridging angle θ and the J values, by W. Hatfield and others,
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Exchange interaction in dinuclear
bis-μ-hydroxo-copper(II) complexes.
(a) schematic idealized planar structure;
(b) variation of the singly occupied
molecular orbital energies as a function
of the bridging angle θ.

as already extensively presented in [2.2] and [2.3, p. 159sq]. When two cop-
per(II) ions are bridged by two hydroxo groups (Fig. 2.50a), and when diamine
terminal ligands N. . .N are varied to induce sterical constraint and modify
the geometry around the copper(II), the N–Cu–N angle (α) is changing and
induces large variations of the bridging Cu1–X–Cu2 θ angle. The J value varies
accordingly, as shown by Table 2.7.

The phenomenon is explained nicely either by Kahn’s or Hoffmann’s
models.

(a) J = JF + JAF (b) J = 2k + 4βS

(c) J = 2Kab − (ε1 − ε2)2

jaa − jab
= 2Kab − �2

j0 − j

(2.129)

The two singly occupied molecular orbitals are built from the + + and – +
combination of the magnetic orbitals around Cu1 and Cu2 (Fig. 2.50) in a way
completely similar to Fig. 2.46. In a D2h point group they have b1g and b2u sym-
metry. The b1g orbital comprises the 2px of the bridging oxygen, whereas the
b2u orbital includes the 2py oxygen orbital. When the θ angle varies, the energy
of the two orbitals is changing, as shown in Fig. 2.50b (which was obtained
by a simple semi-empirical extended Hückel calculation). Please note that in
all the θ domain, the Hoffmann MOs (b1g and b2u) are of course orthogonal.

Table 2.7 Variation of the coupling constant J as a function of the bridging
angle.

Compound Cu1–O–Cu2 / degrees J / cm–1

[Cu(bpy)(OH)]2(NO3)2 95.5 +172
[Cu(dmaep)(OH)]2(ClO4)2 98.4 –2.3
[Cu(tmen)(OH)]2(NO3)2 101.9 –367
[Cu(tmen)(OH)]2Br2 104.1 –509
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At some θ angle, slightly larger than 90 degrees, the energies are the same,
and the MOs energy levels are degenerate. In eqn. (2.124), � = ε1 – ε2 =
0 and J = 2 Kab. The triplet state is favoured by exchange interaction. When
θ increases the antiferromagnetic term becomes larger, and can eventually
become equal to the ferromagnetic one (this is practically achieved at 98.4◦ in
Table 2.7, and then becomes preponderant). The interaction is then more and
more antiferromagnetic. In terms of Kahn’s model, the angle where the MOs
energy levels are degenerate corresponds to the special situation where the
magnetic orbitals are orthogonal (hence S = 0 and J = 2k in eqn. (2.117a).).

Tunable exchange in copper(II) μ-oxalato dinuclear complexes [2.3, p. 167sq]
Another textbook example is given by oxalate-bridged complexes which can be
treated simply using Kahn’s model. We can formulate this family of complexes
as TCu(II)-Ox-Cu(II)T (Ox = oxalate bridging ligand, T = various polyamines
terminal ligand (en = 1,2-ethanediamine, tmen = N,N,N′,N′-tetramethyl-1,2-
ethanediamine, dien = diethylenetriamine). The mononuclear tmenCu(II)Ox
is shown in Fig. 2.45a. The schematic structures of the dinuclear complexes
are shown in Fig. 2.51: 1 (a), 2 (b), 3 (c). The coupling constants J, fit from
experimental susceptibilities, are very different for 1–3: J1 = –385 cm–1, J2 =
–13 cm–1, J3 = –75 cm–1.

(a)

(b)

(c)

Fig. 2.51
Ball-and-stick structures of copper(II)
complexes down the xy plane. a)
dinuclear tmenCu(II)OxCu(II)tmen, 1;
b) dinuclear tmen-MeImCu(II)OxCu(II)
MeIm-tmen, 2; c) dinuclear tmenCu(II)
OxCu(II)dien, 3; Copper, medium grey
sphere, oxygen, large black sphere,
nitrogen, small grey sphere, carbon,
small black sphere.

In the three complexes 1, 2, and 3, the surrounding of the copper(II) can
be described essentially by a square planar geometry formed by oxygen atoms
of the oxalate and nitrogen atoms from the ligands at short distances (≈ 2Å),
ensuring the presence of ‘x2–y2 type’ magnetic orbitals. The presence in axial
position of a water molecule (in 1) or an oxygen atom of the oxalate (in 2
and 3) at longer distance (≈ 2.35Å) slightly modifies the copper geometry to
square pyramidal but does not influence our simple semi-quantitative demon-
stration. The intramolecular Cu–Cu distances are close to 5.2 Å in the three
cases. Kahn’s model allows a straightforward explanation of the tuning of the
J values. We use the orbitals’ overlaps displayed in Fig. 2.52 and the fact that in
this model, J = 2k + 4βS; that is, J ≈ 4βS(∝ S2 ∝ β2 ∝ �2) when neglecting
k [2.50].

s
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∝

∝

Fig. 2.52
Exchange interaction in dinuclear cop-
per(II) μ-oxalato complexes. Schematic
overlap, experimental and computed J
values in (a) complex 1, (b) complex 2,
(c) complex 3 (adapted from [2.50]).
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In the symmetric dinuclear complex 1 [tmenCuOxCutmen]2+ (Fig. 2.51a),
the two magnetic orbitals a and b are in the oxalato plane. They overlap
significantly (integral overlap S1) (Fig. 2.52a). If we define s as the over-
lap between the two atoms O1 and O2 on one side of the carboxylate bridge
COO, S1 = 2s and J1 ∝ 4s2. In the non-planar symmetric dinuclear complex
2, [tmen-MeImCu(II)OxCu(II)MeIm-tmen]2+, (Fig. 2.51b), the two magnetic
orbitals a and b are in planes roughly perpendicular to the oxalate bridge.
They overlap very weakly (the overlap integral S2 ≈ 0) (Fig. 2.52b), and the
coupling constant J2 ≈ 0. In the non-planar disymmetric dinuclear complex
3, [tmenCu(II)OxCu(II)dien]2+, an intermediate situation occurs (Fig. 2.52c).
The magnetic orbital a is in the oxalato plane, while b is in a perpendicular
plane, so that they overlap only on one side of oxalate, S3 = s, J3 ∝ s2 should
be ≈ J1/4 whereas the experimental ratio is J3 / J1 ≈ 5.

Thus the model appears to work properly for understanding and fore-
seeing antiferromagnetic situations on a semi-quantitative basis. What about
ferromagnetic coupling?

Symmetry, orthogonality, and ferromagnetic coupling
With the example of bis-μ-hydroxo copper(II) complexes, we showed that
orthogonality of the magnetic orbitals and then ferromagnetic interaction could
be achieved for a given θ angle, but this was (after Kahn) an accidental
orthogonality. Orthogonality (and ferromagnetic interaction) can be achieved
instead by a strict control of symmetry. An elegant approach was to use simple
ions with one unpaired electron: copper(II), d9 and vanadyl(IV), d1. We warn
the reader not to confuse ‘ferromagnetism’, often used as a contraction of
‘ferromagnetic interaction’ between two neighbours, with ‘ferromagnetism’,
the usual meaning of which is ‘long-range ferromagnetic order’ found in
ferromagnets.

Ferromagnetic coupling in a copper(II)–vanadyl(IV) binuclear system [2.3,
p. 174–81]
Here we use the very convenient ligand H4(fsa)en (H4(fsa)en = N,N′-(2-
hydroxy-3-carboxybenzilidene)-ethanediamine) which presents two different
binding sites A and B (Fig. 2.53a). It is not easy, but is possible, to fill the
A site with a cation A (CuII, for example, d9) and the B site with different
cations: CuII(Fig. 2.53b); VIVO d1, (Fig. 2.53c); M = Cr(III) d3; and Fe(III) d5

(Fig. 2.53d). We admit that the only symmetry element is the xy plane (‘hori-
zontal’ plane in the Ch point group) (Fig. 2.53a). With A = B = Cu(II), the
two magnetic orbitals have the same symmetry a′. As the θ angle = 100.2◦,
they overlap and the interaction is antiferromagnetic (J = –650 cm–1). In the
CuVO(fsa)en complex (Fig. 2.53c), an axial methanol molecule coordinated
to the copper(II) is, for clarity, not shown. The VO group is perpendicular
to the mean plane of the molecule. The magnetic orbitals are x2– z2, a′, for
VIVO (symmetric in the reflection through the xy plane) and xz, a", for Cu(II)
(antisymmetric) (Fig. 2.53c).

These orbitals are orthogonal by symmetry, and thus both Kahn’s and
Hoffmann’s models predict a ferromagnetic interaction. This is the case, and
J is quite high (J = + 118 cm–1). This result, obtained at the beginning of
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Interactions in AB(fsa)en complex. (a)
Schematic structure of the molecule. The
dotted line is the projection of xy sym-
metry plane. Also shown are the coordin-
ates axes corresponding to point group
Ch. Magnetic orbitals: (b) Cu–Cu, over-
lap and antiferromagnetism; (c) Cu–VO,
orthogonality and ferromagnetism; (d)
Cu–M with M = Cr(III) orthogonality
and ferromagnetism; M = Fe(III), over-
lap and ferrimagnetism (Section 2.6.5.2);
(e) Cu and VO magnetic orbitals emphas-
izing their delocalization on the oxygen
bridges and the signs of the wavefunc-
tions. The oxygen p orbitals belonging to
the two magnetic orbitals have been arti-
ficially separated to better display their
signs; (f) schematic representation of the
overlap density pointing out the sign on
the oxygen bridges.

the 1980s, was an important step in demonstrating the feasibility of ferromag-
netic coupling at the molecular level, and by extension in complex objects.
Furthermore, Kahn and Charlot provided a simple (pictorial) explanation of
the magnitude of the J coupling constant. Looking at the expression of the
exchange integral k, one realizes that k is related to the one-electron quantity
ρ(i), named overlap density, and defined in each point of space by the product
ρ(i) = a(i).b(i):

J = 2 k = 2 < a (1) b (2) |e2/r12|a (2) b (1)> =
∫

ρ(1)ρ(2)

r12
dr1dr2 (2.130)

The delocalization of the two magnetic orbitals of Cu and VO is strong on
the oxygen bridge; pay attention to the antibonding character of the two mag-
netic orbitals (Fig. 2.53e). The overlap density ρ is important around the two
oxygen bridges (Fig. 2.51f), and then the ferromagnetic coupling J is import-
ant. Instead, when the spin density is delocalized on a large polyatomic bridge
(oxalate, for example), orthogonality still creates ferromagnetism but the weak
overlap density ρ gives only weak J values. It is amazing to observe that in the
ab initio calculation of the CuVO complex ([2.3, p. 178sq], the orthogonalized
orbital a′ and b′, related to CuII and VIVO, have delocalization tails on the other
metal, whereas the non-orthogonalized orbitals are orthogonal without need of
the tails.

Our conclusion is therefore that ferromagnetic interaction can be achieved
through orthogonality, and that the larger the overlap density (the smaller
the bridge), the larger the effect. Other means to reach ferromagnetic coup-
ling at the molecular level, through ‘double exchange’, are commented on in
Section 3.2.2.4.

2.6.4.2 Influence of the energy of the bridge orbitals [2.51]
The second important parameter to understand the coupling constant between
two unpaired electrons is the energy of the orbitals of the bridge. We already
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had an answer for the case of a monoatomic bridge (Fig. 2.42): the closer the
energy of the ligand is from the energy of the metallic orbitals, the larger the
mixing with the d orbitals is and the larger the antiferromagnetic interaction
is. Mutatis mutandis, the conclusion is the same for a molecular bridge, as
shown in the following example. We compare oxalate-like bridges, oxamide
(oa), dithiooxalate (dto), dithiooxamide (dta), and tetrathiooxalate (tto), form-
ing dinuclear copper(II) complexes of similar structure (Fig. 2.54A). Extended
Hückel calculations are performed on crystallographic geometries.

Fig. 2.54 displays the bridges’ HOMOs (Fig. 2.54B), the SOMOs of the
complex, obtained by the combinations (u and g) of the bridging HOMOs
and of symmetry orbitals from the metals (+– and ++) (Fig. 2.54C) and
the energies’ changes (Fig. 2.54D). When the oxygen atoms of the oxalate
bridge are progressively replaced by atoms of nitrogen and sulphur, less elec-
tronegative than oxygen (from left to right): (i) the bridges’ HOMOs energies
(Fig. 2.54D, bottom) increase and so does the difference between the ener-
gies of the bridge’s g and u orbitals; (ii) the u and g bridging HOMOs interact
more and more with the symmetry orbitals of the metals to give SOMOs of
increasing energy; that is, the weight of the atoms of the bridge increases in the
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Influence of the energy of the orbitals of
the molecular bridge on the J value. (A)
Schematic structure of the bis-chelating
bridges and of the dinuclear copper com-
plexes. The bridges are: (a) X=Y=O,
oxalate (Ox), (b) X=O; Y=NH,
oxamide (Oa), (c) X=O, Y=S, dithio-
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oxalate(tto). (B) Scheme of the highest
occupied molecular orbitals (HOMOs)
of the bridge (u and g symmetry). i is
the location of the inversion centre. (C)
Scheme of the resulting antibonding
(*) singly occupied molecular orbitals
(SOMOs) (u and g). (D) Results of exten-
ded Hückel calculations on copper(II)
dinuclear complexes. Lower: energy of
the bridges’ HOMOs (grey). The dotted
lines are guides for the eyes. Upper:
energy of the SOMOs. The small arrows
and the grey vertical lines evidence the
energy gap � between the u* and g*
SOMOs. (E) Qualitative comparison of
the two (u) SOMOs with oxalate
(Ox) and tetrathiooxalate (tto) bridges
emphasizing the larger participation of
the bridge to the SOMO with sulphur
(tto).
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SOMOs (O < N < S); (iii) the energy gap � = ε1 – ε2 between the SOMOs
of the complex increases accordingly (Fig. 2.54D top). In the frame of the
Hoffmann’s model (J varies as (ε1 – ε2)2), the computed trend explains nicely
the experimentally observed antiferromagnetism and the enhancement of the
absolute values of J from oxalate to tetrathiooxalate: Jox = –385 cm–1, Joa =
–580 cm–1, Jdta = –594 cm–1, |Jtto| > 1000 cm–1.

2.6.5 Complexes with several spins per centre

A new step in our way to more elaborated magnetic molecular materials con-
sists in introducing metallic ions with more than one electron on each centre.
We use molecular bridges already known and the concept of exchange path-
way introduced in Section 2.6.2.5. We deal first with dinuclear compounds and
then polynuclear ones. In this way, we shall introduce the important concept
of molecular ferrimagnetism and propose a rational approach to high-spin
molecules.

2.6.5.1 Exchange pathways
The usefulness of this concept will be illustrated by the example of dinuclear
μ-oxalato complexes of the general type A-Ox-B with A, B = Cu(II), Ni(II),
Co(II), Fe(II), Mn(II). In our model (Fig. 2.55) the A and B ions and the oxal-
ate bridge lie in the same plane. The surrounding of the two sites A and B is
quasi-octahedral because of the presence of terminal ligands (not shown here).
We use the symmetry point group C2v to be able to describe the case A 
= B
without loss of generality. The coordinates’ axes and the orbitals symmetry
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(a) Coordinates of a molecular μ-oxalato
dinuclear system AB and an octahedral
ligand field around transition metals A
and B; (b) table with the magnetic orbit-
als on site A (column) and B (row); the
ligands’ orbitals are not shown for clar-
ity; the orbitals are represented as viewed
down y; expectation of the contribution
of the different exchange pathways to the
coupling (notations af and f as in Fig.
2.48, AF means strong af); the boxes cor-
respond to different experimental cases,
homodinuclear Cu(II)–Cu(II), d9–d9 1,
Ni(II)–Ni(II), d8–d8, 2, Mn(II)–Mn(II)
or Fe(III)–Fe(III), d5–d5, 3. Also shown
are boxes for heterodinuclear Cu(II)–
V(IV)O, d9–d1, 4, Cu(II)–Cr(III), d9–d3,
5 and Cr(III)–Mn(II), d3–d5, 6, used in
Section 2.6.5.3.
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Table 2.8 Structural and magnetic data for homometallic μ-oxalato dinuclear complexes. The
values are the average for different terminal ligands.

A=B= Mn(II) Fe(II) Co(II) Ni(II) Cu(II) Zn(II)

dn d5 d6 d7 d8 d9 d10

dAB / Å ≈ 5.6 na 5.4 5.4 5.2 (to 5.6) –
J / cm–1 ≈ –2 –6 –10 –33(4) –390(20) 0
nAnB.J ≈ –50 –96 –90 –132 –390 0

(na: non available)

labels are different from Fig. 2.48. Furthermore, xy and yz are linear combin-
ations of real orbitals. A very similar diagram would be obtained in the D2h

point group.
The experimental J for homodinuclear complexes are gathered in Table 2.8.
The J values—all negative—increase strongly from Mn(II) to Cu(II). This

trend can be understood qualitatively using our preceding theoretical mod-
els. The interaction between two copper(II) ions (box 1 in Fig. 2.55b), with
a strong |J| value, was extensively discussed in Section 2.6.4.1. It relies on
one exchange pathway implying a strong overlap of the xz magnetic orbitals
through the oxalato bridge (noted AF in the figure). With two nickel(II) ions
(box 2), the J value is much smaller that for Cu(II), JAF(Ni-Ni) ≈ –33(4) cm–1.
J(Ni–Ni) corresponds to four exchange pathways (nA = 2; nB = 2): (i) xz–
xz (b1), antiferromagnetic, (af), as in the Cu(II) derivative; (ii) y2–y2 (a1) also
antiferromagnetic (af); and (iii) two ferromagnetic ones (f), xz–y2 and y2–xz.

Following eqn. (2.125b) the coupling constant J can be written:

J = [
jb1b1 + ja1a1 + ja1b1 + jb1a1

]
/4 (2.131a)

with:

jb1b1 = 2kb1b1 − 2�b1Sb1b1; ja1a1 = 2ka1a1 − 2�a1Sa1a1; ja1b1 = jb1a1 = 2ka1b1

(2.131b)

The competition implies two rather large negative antiferromagnetic terms and
two rather weak ferromagnetic ones (exchange integrals kij). The observed
experimental antiferromagnetism can therefore be understood. Why is it so
weak compared to the copper derivative? The d orbitals of nickel are higher in
energy than those of copper (minor Z), and interact less with oxalate HOMOs
(then |jb1b1(Ni)| <|jb1b1(Cu)|), y2 orbitals are spreading much less than the xz
orbitals on the oxalate bridge, so Sa1a1 < Sb1b1, �a1 < �b1 and |�a1Sa1a1| <

|�b1Sb1b1|. Similar considerations can be used to rationalize the other cases.

2.6.5.2 Molecular ferrimagnetism
Molecular ferrimagnetism is another efficient way to achieve molecular mag-
netic ground states. Note that we use here ‘molecular ferrimagnetism’ as a
shortcut to designate actually ‘antiferromagnetic interaction between two spins
of different magnitudes in a molecular system’.

The idea is a priori very simple. In nature, overlap is the general rule
(and therefore antiferromagnetic coupling). It is then possible to use two
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Interactions in CuM(fsa)en complexes.
(a) Scheme of the molecular bimetallic
fragment and axes. (b) site A (column),
copper(II) magnetic orbital a"; site B,
row: box 1, complex Cu(II)Fe(III)(fsa)en,
five magnetic iron(III) orbitals, and
expected contributions to the coup-
ling constant J; grey box 2, com-
plex Cu(II)Cr(III)(fsa)en, three magnetic
orbitals of chromium(III). The notations
are the same as in Fig. 2.55 (and F means
strong ferromagnetic interaction).

spins SA(↓) and SB(↑) of different magnitudes on centres A and B, antifer-
romagnetically coupled, to get a ground spin state SGS

(
↓ ↑) which is still

magnetic, SGS = |SA – SB|. The total spin is lower than in the case of fer-
romagnetic coupling (SGS = SA + SB) (↑ ↑), but it is non-zero. This is
another example of a dialectic situation when a phenomenon (antiferromag-
netic interaction) gives rise to its ‘contrary’ (magnetic ground state). The idea
is not new, since it was evidenced in the late 1940s, by Néel, in perovskites,
to characterize their three-dimensional ferrimagnetic ordering [2.52]. It was
one of the achievements which lead him to be awarded the Nobel Prize.
The concept of exchange pathway is particularly appealing for a straightfor-
ward interpretation of the first molecular ferrimagnetic example provided by
Kahn: the Cu(II)(CH3OH)Fe(III)(H2O)Cl(fsa)en binuclear complex—a text-
book example [2.3, p. 126]. The structure of the complex was given in
Fig. 2.53d with A = Cu(II) and M = Fe(III). A chloride is bound to Fe(III)
in the y direction, opposite to a water molecule. The point group is close to
C2v, with the model geometry and the axes shown in Fig. 2.56a and symmetry
labels as in Fig. 2.55.

In CuFe(fsa)en there is one magnetic orbital on copper(II), xz, b1 symmetry.
The Fe(III) ion is high spin d5. Its five magnetic orbitals belong to symmet-
ries b1(xz), a1 (y2), a1(x2– z2), a2(xy), b2(yz). One of them, xz, b1, is strongly
overlapping with the one of copper(II). It provides a strong antiferromagnetic
pathway (AF), larger than the ferromagnetic ones (F or f). An antiferro-
magnetic coupling between the copper(II) and the iron(III) is thus observed
(JCuFe = –78 cm–1), with a ground state, SGS = 2 (5/2 – 1/2). Note that actu-
ally the energetic effects depend on nA.nB.J, and since nA = 1 and nB = 5,
the previous product amounts to –390 cm–1. It is meaningful for the synthesis
of future magnetic materials that ferrimagnetism in CuFe(fsa)en provides the
same spin ground state SGS = 2 (3/2 + 1/2) as ferromagnetic coupling in the
Cu(II)Cr(III)(fsa)en complex (grey box 2 in Fig. 2.56b).

2.6.5.3 Polynuclear complexes and high-spin molecules
We now consider larger and larger systems, with the goal of producing
molecules with higher and higher spin, with expected but original properties.
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Schematic structures and topology for
high nuclearity and high spin molecules.
(a) Linear; (b) triangular; (c) tetrahedral,
ligand-centred; (d) tetrahedral, cubic; (e)
square; (f) cubic; (g) ring; (h) propeller;
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B9A6 complex, the grey spheres are B
metal ions at the centre and capping the
faces of the A6 octahedron.

This is a way of bridging the gap between small molecules, generally binuc-
lear systems seen previously, and extended solids (next section). Schematic
structures of polynuclear systems are shown in Fig. 2.57.

There are many synthetic strategies for building large polynuclear sys-
tems: multistep synthesis, recipes from supramolecular chemistry, and even
‘serendipidity’; that is, using the spontaneous and unexpected emergence of a
complex structure from a simple combination of reactants. We just stress here
the use of building blocks made of coordination complexes, playing thus the
role of either ‘complex-as-ligand’ or ‘complex-as-metal’ (Fig. 2.58a, b, c). The
corresponding synthetic process (Fig 2.58, d–e) is a simple Lewis acid–base
reaction, and is written:

[MXn]p− + n
[
M′ − T

]q+ → [
M
(
X − M′T

)
n

](nq−p)+
(2.132)

To avoid the formation of extended networks (Section 2.7) and stop the
coordination process at the high-spin molecule stage, suitable terminal ligands
T are introduced.

A first example is the T–Mn(II)[Cu(II)(pba)]Mn(II)–T trinuclear Mn1–Cu–
Mn2 complex (T denotes ‘terminal ligand’, and pba is the abbreviation of
1,3-propanebis(oxamate)), or {CuMn2}. The number of metallic neighbours
of copper is 2, and the one of manganese is 1 (Fig. 2.59a).

The Cu–Mn coupling can be foreseen from Fig. 2.56. There are five
exchange pathways through the oxamate ligand between the central xz d orbital

Fig. 2.58
Complexes used as ligands: (a)
copper(II)1,3-propanebis(oxamate) dian-
ion [Cu(pba)]2–; (b) trisoxalatochro-
mate(III) trianion (� enantiomer),
[Cr(Ox)3]3–; (c) hexacyanidochro-
mate(III), trianion [Cr(CN)6]3–; (d–e)
Schematic Lewis acid–base reaction
between an hexacyanidochromate(III)
and metal(II) complexes to form cationic
polynuclear complexes.
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Fig. 2.59
Complex {CuMn2}. (a) Ball and stick representation of the crystallographic structure; copper(II) large grey, manganese(II) large white, carbon,
small black, oxygen, small dark grey, nitrogen small light grey balls; (b) spin state structure of {CuMn2} (black) and of {CuMn} (light grey); hori-
zontal bars represent the energy levels; dotted lines are guides for the eye; (c) experimental thermal variation of the molar magnetic susceptibility
as χMT (adapted from [2.3, p. 223]).

on copper and the five d orbitals of manganese on each side of the copper:
one is strongly antiferromagnetic (xz-xz), whereas the four others are weakly
ferromagnetic. The Cu–Mn interaction is then expected to be antiferromag-
netic with a ground spin configuration (↑↓↑) and a spin ground state SGS =
2 × 5/2 – 1/2 = 9/2, which is indeed observed experimentally. This value is
higher than the highest spin provided by nature in the periodic table, Gd(III),
S = 7/2.

The spin Hamiltonian is:

H = −J (SMn1SCu + SCuSMn2) = −J SCu (SMn1 + SMn2) = −J SCuS∗
(2.133a)

where we use Kambe’s method introduced in Section 2.5.3.1. We define the
intermediate spin operator S∗ = SMn1 + SMn2 and the total spin operator ST =
SCu + S∗. The Hamiltonian and the eigen energies are then written:
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H = −J SCuS∗ = − (J/2)
[
S2

T − S∗2] (2.133b)

E
(
ST, S∗) = − (J/2)

[
ST (ST + 1) − S∗ (S∗ + 1

)]
(2.133c)

For each value of S∗, ST spans values between (S∗ + SCu) and |S∗ – SCu|. The
S∗ values range from 5 to 0 by unit steps. For S∗ = 5, ST = 11/2 (energy E (ST,
S∗) = E (11/2, 5)) and 9/2 (energy E(9/2, 5)). For S∗ = 4, ST = 9/2, and 7/2,
and so on, down to E(1/2, 0)]. It is then easy to find the energy levels which
range between –23J/8 and +21J/8 (Fig. 2.59b).

The spin-state structure (that is, the energy of the spin levels E(S) as a func-
tion of their spin) is represented in Fig. 2.59 for the expected antiferromagnetic
interaction. Also shown for comparison is the spin-state structure of a {CuMn}
dinuclear complex with an antiferromagnetic interaction between copper (II)
and manganese(II): the reader can easily find that in this case there are two spin
states only: S = 2 (ground state, E(2) = 7J/4) and S = 3 (excited state, E(3)=
–5J/4), separated by 3J. In the case of {CuMn2}, the most salient feature is that
for each spin value there are two energy levels, and two branches—the lower
one with energies ascending regularly by |J|/2 steps when the spin decreases
by unit step from 9/2 to 1/2, and the upper branch ascending in the same way
when the spin increases from 1/2 to the highest spin 11/2.

This spin-state structure and its Boltzmann distribution is the key for under-
standing the thermal variation of the molar susceptibility displayed as the χMT
product in Fig. 2.59c, and in particular its curious minimum observed around
170 K. At very low T (kT << |J|/2), the only populated level is the SGS =
9/2 ground state, corresponding to a number n of unpaired electrons, n = 9.
The approximate value (with g = 2) of the χMT product using eqn. (2.51b) is
χMT = n(n + 2)/8 = 12.375 (in cgs-emu units, cm3.mol–1.K). When the tem-
perature increases, the excited levels on the lower branch of Fig. 2.59b begin
to populate. As their spins are lower than 9/2, the χMT product decreases.
Conversely, if we start from the high temperature (kT >> 9 J/2), all the energy
levels are equally populated. This state is precisely the paramagnetic limit; that
is, the situation where the spin of copper(II) and manganese(II) behave inde-
pendently. The corresponding approximate value of the χMT product is then
(with a mean g = 2): χMT = (χMT)Cu + 2(χMT)Mn = [1 × 3 + 2 × 5 × 7]/8 =
9.125. When the temperature decreases, the first level to be depopulated is S =
11/2, and then those of the upper branch in Fig. 2.59b. As their spins are lower
than 11/2, here also the χMT decreases. There is thus a minimum somewhere
in the χMT curve, and this constitutes a signature of extended ferrimagnetic
compounds. The quantitative analysis of the curve using Van Vleck formula
yields JCuMn = –36.6 cm–1 [2.3, p. 223].

As a second example we consider systems built from hexacyanidochro-
mate(III) [B(CN)6]3– (Fig. 2.58cd). Note the interest of chromium(III) precurs-
ors: the metal has a d3 half-filled shell configuration which confers inertness
to the complex; the three chromium(III) t2g orbitals are spreading in the three
x,y,z directions favouring exchange with neighbours. The hexacyanidochro-
mate(III) is able to produce complexes with different nuclearities with a same
metallic partner {Cr(CN)6–n(CN-A-T)n} with n = 1 to 6 (A = Ni, T terminal
polyamine, quite often tetra- or pentadentate) or different ones. The structure
of a {CrA6} complex is shown in Fig. 2.58e. In such a way, in {CrA6}, are
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Exchange in a linear cyanido-bridged
B-CN-A unit. (a) Interaction between two
overlapping orbitals and antiferromagnet-
ism; (b) ferromagnetic exchange between
two orthogonal magnetic orbitals.

obtained ground-state spins as different as S = 9/2, {CrCu6}, Cr–Cu ferromag-
netic interaction, S = 15/2, {CrNi6}, also ferromagnetic interaction and S =
27/2 in the ferrimagnetic {CrMn6}, with Cr–Mn antiferromagnetic interaction.
These results can be understood easily with our usual tools.

Fig. 2.60a,b displays part of the molecular orbital energy diagrams for the
B-CN-A unit, supposed linear. In the {B(CN)6}p– complex, cyanide is bound
to B through carbon. The ligand field around B is very strong. The electronic
configuration of B is limited to d1–6 (t2g)1–6. For instance Cr(III), (t2g)3, S =
3/2; Mn(III), (t2g)4, S = 1; Fe(III), (t2g)5, S = 1/2); Fe(II), Co(III) (t2g)6, S = 0.
Hence, the symmetry of the central B orbitals is always t2g (or π ) and a2, b1,
b2 if the BCNA unit is C2v symmetry (Figs. 2.60 and 2.61). On the A(NC) side,
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Exchange pathways in cyanido-bridged
B–CN–A complexes, analysed in C2v

symmetry point group. (a) Structural
scheme and axes; (b) table of the
exchange pathways and interactions for
{CrCu1} (box 1, light grey), {CrNi1}
(box 2, grey) and{CrMn6} (box 3, black).
Capitals correspond to the stronger
interactions.
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the bonding is through the nitrogen of cyanide, which is a weak-field ligand. t2g

(π) and eg (σ) orbitals are available, depending on the electronic configuration
dn. The two kinds or possible interactions are shown in Fig. 2.60. The overlap
of the two π magnetic orbitals build two SOMOs, ψ1, and ψ2 (Fig. 2.60a),
and leads to antiferromagnetic interaction, whereas, when the magnetic orbit-
als are π and σ, they are orthogonal (2.60b), they remain unchanged, and
ferromagnetic interaction results.

These considerations can be illustrated by the three complexes {CrCu6}
{CrNi6} and {CrMn6}, with the help of Fig. 2.61, similar to Fig. 2.48 (we sup-
pose a C2v symmetry of the B-CN-A unit, but the symmetry is indeed lower)
[2.53]. In {CrCu6} the surrounding of copper is bipyramid trigonal, the mag-
netic orbital is z2 (‘eg’, σ) and the interaction is between this orbital and the
three t2g (π) orbitals of chromium (Fig. 2.61, box 1) with three ferromagnetic
exchange pathways (Experimental: JCrCu = + 45.5 cm–1). The spin ground state
is SGS = 3/2 (Cr) + 6 x 1/2 (Cu) = 9/2. In {CrNi6} the interaction is between
the three t2g (π) orbitals of chromium and the two eg (σ) orbitals of nickel(II).
They are orthogonal. The interaction is expected ferromagnetic (Fig. 2.59, box
2) (Experimental: JCrNi = + 17.3 cm–1). The spin ground state is SGS = 3/2 (Cr)
+ 6 x 1 (Ni) = 15/2. For {CrMn6} the situation is shown in Fig. 2.61, box 3,
with fifteen competing exchange pathways—six ferromagnetic as in {CrNi6},
mutatis mutandis, and nine antiferromagnetic. An overall antiferromagnetic
interaction is expected. Indeed, the experimental J value is JCrMn = –9.0 cm–1.
The spin ground state is SGS = |3/2 (Cr) – 6 x 5/2 (Mn)| = 27/2—an appealing
ferrimagnetic situation, [↓(↑)6]. The spin-state structure (not shown) is much
more complex than in {CuMn2}.

We finish this section with examples of very high spin molecules. The
rational approach described previously with {CrMn6} lead to S = 27/2, far
above the 7/2 of the Gd(III) provided by nature, though still higher values have
been obtained. Figure 2.62 displays some magnetization curves versus μ0H.

The ferrimagnetic high-spin molecule {Mo6Mn9} deserves a spe-
cial comment. {Mo6Mn9} stands for [Mn(II)[Mn(II)(MeOH)3]8(μ-CN)30-
[Mo(V)(CN)3]6].5MeOH.2H2O. [2.54]. A similar complex is {W6Mn9}. This
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Fig. 2.62
Magnetization in Bohr magnetons versus
μ0H of high-spin molecules described in
the text. The curve of Gd(III) is given
for comparison. The saturation value at
high field gives directly the number of
unpaired spins of the ground state (figure
above the curves).
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(a) (b)

(c)

Fig. 2.63
Ferrimagnetism in {Mo6Mn9}. (a)
Crystallographic structure; Mo large grey
spheres; Mn, large white sphere, carbon,
black, nitrogen light grey; external lig-
ands are omitted for clarity. (b) Escher’s
view of the interweaving of a octahedron
and a cube. See the polyhedron at the
upper left the engraving. (M. C. Escher’s
Stars (1948) c© 2013 The M. C. Escher
Company, The Netherlands. All rights
reserved. <http://www.mcescher.com>)
(c) Spin density map, positive density
is light grey, negative spin density, dark
grey. (b and c reproduced from [2.54].)

is an example of the use of a second and third series of transition metal ion
to the benefit of the larger spreading of the d orbitals with increasing Z to
enhance the J values. The structure is shown in Fig. 2.63a. The building block
is an octacyanidometalate [Mo(V)(CN)8]3–, spin S = 1/2. A central Mn(II) ion,
S = 5/2, is surrounded by an octahedron of Mo(V), the eight faces of which are
capped by one Mn(II). The structure can be also described as a centred cube of
Mn(II) capped by an octahedron of Mo(V). To design such a beautiful structure
the scientist competes with the artist (Fig. 2.63b). The result is a ferrimag-
netic molecule {Mo6Mn9} or {W6Mn9} with antiferromagnetic interactions
Mo(V)–Mn(II) and W(V)–Mn(II). In {Mo6Mn9}, DFT calculations show that
there is a distribution of negative J values from ≈ –20 cm–1 for the central Mn–
NC–Mo linear units to ≈ –12 cm–1 for the peripheral Mn–Mo–NC–Mo bent
ones. The experimentally determined ground state (magnetization and spin
polarized neutron diffraction) is SGS = 39/2, in line with the simple calculation:
SGS = |−6 x 1/2 (Mo or W) + 9 x 5/2 (Mn)| [(↓)6(↑)9]. Figure 2.61 displays the
DFT computed spin density—a beautiful illustration of the antiferromagnetic
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coupling: spherical positive spin density of the d5 manganese(II) ions and neg-
ative spin density of the unique Mo(V) unpaired electron in x2–y2 type orbital
on the six Mo centres.

Finally, let us mention some very high spin values shown in Fig. 2.62 with
a {Mn25} complex by Murugesu and Christou which paved the way to the
present molecular spin record achieved with the ferromagnetic mixed val-
ency aggregate [Mn(III)12Mn(II)7(μ4-O)8(μ3-η1-N3)8(HL)12-(MeCN)6]Cl12.
10MeOH.MeCN (H3L = 2,6-bis(hydroxy-methyl-4-methylphenol), {Mn19},
with a SGS = 83/2 by Powell [2.55]. In this very complex structure (not shown),
the interactions between Mn(II) and Mn(III) are weakly ferromagnetic, but the
large number of magnetic sites permits the very high spin ground state.

The next section illustrates the use of the same molecular building blocks in
the construction of extended structures.

2.7 Extended molecular magnetic systems
Up to now we have dealt with zero-dimension (0D) systems; i.e. molecules
and clusters where magnetic properties could be understood and described
through a finite set of atoms, isolated from their surroundings. In fact, beyond
the molecules exist extended lattices. Extended molecular magnetic lattices are
objects whose magnetic properties present a dimensionality one (1D, chain),
two (2D, planes) or three (3D, networks). In this section we present a few
considerations to show how it is possible to fill the gap between the isolated
molecule and the well-organized 3D solid. We start by a brief description
on the complex specificity of the exciting 1D world. We present, then, an
example of a new kind of 1D material displaying a cross-over to 3D beha-
viour, and, using our previous knowledge, we discuss the conditions to obtain
a room-temperature molecule-based magnet.

2.7.1 The one-dimensional world: a Hamiltonian
and synthesis factory

The one-dimensional world is an attractive common playground for math-
ematicians, physicists, chemists, experimentalists, and theoreticians. A simple
reason is the possibility to solve exactly in 1D non-trivial physical problems too
complex to solve in 3D. Significant examples can be found in [2.2] (de Jongh
p. 1–35; J. C. Bonner, p. 157–205; W. Hatfield, p. 555–602), [2.3] (Chapter 11),
[2.6] (vol. I, E. Coronado et al., p. 1sq, J.-P. Renard et al., p. 49sq).

We begin with a few definitions useful in the following section.

2.7.1.1 The magnetic chains zoo
A magnetic chain is a one-dimensional array of spin bearers Si and Sj
=i with
an interaction (coupling constant) Jij between them. i and j define the positions
of the spins in the chain. The mean direction of the chain is often chosen as the
z axis.
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• A homospin or homometallic chain is made of identical spins (radical or
metallic). The usual spin Hamiltonian is the sum of terms Hij = –Jij.Si.Sj

(Si and Sj are vector spin operators, Ji,i+1 the coupling constant). In most
cases the exchange interaction occurs only between nearest neighbours (nn)
Si and Si+1, since it is short-range. The conclusions of Section 2.6 relative
to exchange are then fully valid here.

• A uniform chain is a chain where the intrachain coupling Ji,i+1 between
identical spin bearers Ai is constant, Jintra = J. For example, if (A)N is a
monometallic chain made of N spins, the Hamiltonian is written:

H = −J
∑N−1

i=1
SiSi+1 − g μBμ0H

∑N

i=1
Si (2.134)

The first term corresponds to an isotropic interaction. The second is the
Zeeman term in the presence of an external field H, with our usual notations.

• Nature of the coupling (Fig. 2.64). The sign of J determines if the chain is
ferromagnetic (F, J > 0) or antiferromagnetic (AF, J < 0).

• Nature and magnitude of the spin. The value of Si determines if the chain
can be treated as a quantum chain (defined by quantum spin operators S,
with well-defined MS values—for low value of the spin) or as a classical
chain (spin with an infinite value and presenting an infinite continuum of
spatial orientations, as a classical vector). The spin Si can take any value,
half-integer or integer from 1/2 [copper(II) or organic radical] (full quantum
treatment for a spin Si = 1/2, mS = ±1/2) to 5/2 [Fe(III], Mn(II)] or 7/2
[Gd(III] (quasi-classical treatment for Si = 7/2, corresponding to eight val-
ues of MS: –7/2 ≤ MS ≤ +7/2). A copper(II) chain is a typical example of
a quantum 1D object [catena-μ-oxalato-Cu(II), {Cu(Ox}N or tetramethyl-
ammonium catena-tris-μ-chlorocuprate(II) [N(CH3)4

+{CuCl3–]N]. The first
one is neutral and the chains are close to each other. The second one is
anionic and the chains are well separated by the bulky organic cations which
ensure electroneutrality of the crystal.

• Infinite and finite chains. The chains can be described as infinite (N →
∞) or finite; i.e. built from finite segments of spins. Only finite chains
exist in the real world, since defects always interrupt the infinite chains,
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Different kinds of chains. Spin struc-
ture, nearest-neighbour interaction (F or
AF, name and total spin value for (a)
uniform, ferromagnetic (F); (b) uniform
antiferromagnetic (AF); (c) alternating,
antiferromagnetic (AF); (d) bimetallic,
antiferromagnetic between to successive
spins (AF) hence ferrimagnetic, ST =
N|SA–SB| (N number of pairs); (e–g)
schematic illustration of the antisym-
metric exchange; (f) right-handed hel-
ical configuration; (g) left-handed helical
configuration.
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create ‘ends of chains’, and perturb the ideal 1D behaviour. The longer
segments ever observed comprise 104 spins in carefully grown crystals of
tetramethylammonium catena-tris-μ-manganate(II) [N(CH3)4

+{MnCl3–]N,
TMMC. On the other hand, the hypothesis of infinite chains makes easier
theoretical treatments. For example, a linear infinite chain can be considered
as the limit of spins’ rings of radius R when R → ∞. In this case the
boundary conditions become SN+1 ≡ S1. This presents a valuable way of
computing the thermodynamic properties of chains by extrapolating results
obtained in finite-size rings.

• Fermions and bosons. Another description focus of the value of the spin,
half-integer (fermions) or integer (bosons). The thermodynamics of the
chain is quite different in both cases. There is a continuum of spin ener-
gies for half-integer spins, but a gap opens between the singlet ground state
and the first excited state (a triplet) for integer spins. This was conjectured
by Haldane in the 1980s and later checked experimentally (J. P. Renard et al.
in [2.6], vol. I, pp. 49–93). The physics of such a kind of ‘gapped’ system
has been known since an important development in the study of ladders and
strongly coupled electrons in superconductivity (see Section 3.3.4.4).

• Alternating chains. A chain of identical spins (homospin or homometallic)
is said to be alternating when there is a periodic alternation of the J values:
J1 = J between Si and Si+1, and J2 = αJ between Si+1 and Si+2. An import-
ant phenomenon, theoretically documented and experimentally observed, is
the spin–Peierls transition when a homometallic uniform chain (uniform J)
becomes an alternating chain (J, αJ). The transition occurs at a spin–Peierls
temperature TSP when the vibrations (phonons) of the system couples with
the exchange energy. An equivalent Peierls transition will appear in Chapter
3 for conducting systems.

• Bimetallic chains. The chain is said to be bimetallic when it is built from
two ordered transition metals A and B: (A–B)N (N number of pairs),
with bridging ligands. Such species appeared only recently in the 1D zoo.
We present a brief account on them in Section 2.7.2.

• Anisotropic chains. When the metal ion A presents a local anisotropy Di

and anisotropic exchange Di,i+1 between neighbours, the chain is said to be
anisotropic. The anisotropy in 1D also finds its origin in the through-space
spin–spin magnetic dipolar interaction at any distance r between the spins
(different along the chain and in other directions). This term is generally
weak. It appears at low temperature when its energy becomes close to kT.
The Hamiltonian (2.134) is then completed, as in eqn. (2.105), by a local
anisotropy term such as:

Hani = D
∑N

i=1
(Sz

i )2 (2.135)

Other terms describing the long-range magnetic dipolar interaction between
the spin magnetic moments considered as point dipoles can be added. The
dipolar term reads:

Hdipolar = −4μ2
B

a3

∑N−1

i=1

∑N−1

r=i

1

r3

[
SiSi+r − 3Sz

i Sz
i+r

]
(2.136)
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a is the repeating distance along the chain, and r.a the distance between spins
i and i + r.

As for a pair of spins (eqn. 2.110), it is often simpler to describe the
anisotropy by expressing the product Si.Si+1, J, H (and eventually g) by their
components along x, y, z. The Hamiltonian (2.134) then becomes:

H = −
∑N−1

i=1

[
JzSz

i Sz
i+1 + JxSx

i Sx
i+1 + JySy

i Sy
i+1

]
− gμBμ0

∑N

i=1

[
HzSz

i + HxSx
i + HySy

i

] (2.137)

The names corresponding to various relative values of the effective Jz, Jx, Jy

are as in Table 2.5. The most often used are the isotropic Heisenberg (Jz =
Jx = Jy) and the Ising models (Jz 
= 0; Jx = Jy = 0). The dynamic properties
of anisotropic chains are original, and will be considered in Section 2.8.

• Chains with antisymmetric exchange. The antisymmetric exchange already
present in eqn. (2.105) can be introduced in the Hamiltonian by terms such
as:

Hanti = di,i + 1.Si ∧ Si + 1 (2.138)

This term is tilting the direction of neighbouring spins by an angle θ (or –θ)
(Fig. 2.64e). The spins in the chain are then adopting a canted configuration
which can give rise to helical magnetism. The helical spins can turn right of
left, depending on the θ value (Fig. 2.64f, g).

• More Hamiltonians. The Hamiltonian can be further modified (either to fit
some set of data or to find an exact solution) by introducing other terms:
next-nearest neighbours (nnn), interaction αJ Si.Si+2 (generally, α is small
<< 1), quadratic terms, βJ (Si.Si+1)2 (where β is also small << 1), and so
on, to infinity.

• Interaction between chains. In real systems, each chain has neighbours.
The coupling constant between two neighbouring chains is called Jinter.
The ratio Jinter/Jintra determines how much the system is really 1D (the
lower the ratio, the better 1D is a chain). One of the best 1D systems is
[N(CH3)4

+{MnCl3–]N (TMMC) with a Jinter/Jintra ≈ 10–4. When Jinter/Jintra is
not << 1, the 1D properties can be hidden, and even a transition (cross-over)
from 1D to 2D or 3D behaviours can occur, as we shall see soon (Fig. 2.73,
Section 2.7.2).

2.7.1.2 Dynamics of 1D systems
Besides thermodynamics, the most studied aspect of 1D chains—impossible
to develop here—is their dynamics; that is, their behaviour when excitations
are considered. We shall give an example in Section 2.8.

2.7.1.3 No long-range order in 1D at T �= 0K
Low-dimensional physics, therefore 1D physics, is dimension-specific, and the
1D exact results cannot be simply extrapolated to other dimensionalities and to
the real solid. For example, 1D thermodynamics implies that there is no long-
range order in 1D at T 
= 0K, whereas the everyday life magnet (3D) is based
on a long-range magnetic order between the spins.
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Δ H = J

(a) Initial state (b) Final state
J J J J J J J J J

Fig. 2.65
Ferromagnetic 1D chain with N spins. (a)
Initial ordered state; (b) excited state with
spin reversal in one position, costing an
enthalpy J.

Let us take a ferromagnetic chain (Fig. 2.64a). The ground state should cor-
respond to a configuration where all the spins S are aligned parallel, due to the
ferromagnetic interaction JF > 0 between neighbouring spins (Fig. 2.65a). The
total spin is simply SGS = N.S. An excited state can be built by reversing part
of the spins (Fig. 2.65b). The enthalpy cost is the coupling constant, �H = J.
For any system, change is determined by the free enthalpy �G = �H – T.�S,
where �S is the entropy change. As the previous spin-reversing process can
occur at N–1 positions along the chain, �S = k.ln(N–1). Then:

�G = �H − T.�S = J − kT.ln (N − 1) Z (2.139)

which means that when the number of spins N is large enough (and clearly
for N → ∞), at a given temperature T 
= 0 K, the negative entropy term can
become higher in absolute value than the positive enthalpy one, J. Then, �G <

0. Spontaneously, the system abandons the ordered configuration (a) for a dis-
ordered one (b). There is no long range in 1D at T 
= 0 K. This demonstration,
due to Landau, can be extended to 2D systems.

For a long time nevertheless, synthetic chemists thought that 1D chemistry
could be a possible way to reach molecule-based magnets. It is rewarding to
understand why and how this a priori impossible route proved successful.

2.7.2 Bimetallic ferrimagnetic chains: an improbable route
to 3D magnets

2.7.2.1 From molecular engineering to 1D lattice fabrication
It is a priori simple to imagine how to build a 1D system using the bridging
ligands of Section 2.6. For example, divalent cations A(II) combine easily with
oxalate dianion to give catena μ-oxalato [A-Ox]◦n neutral chains. It works well.
The reader can apply the arguments of Section 2.6.5.1 to foresee that anti-
ferromagnetic chains are obtained. But it is a synthetic challenge to obtain a
perfectly ordered bimetallic object {-A-X-B-X}n from a solution containing a
mixture of A and B metallic ions and a bridging ligand X. The most probable
is to obtain instead homometallic chains {-A-X-}n and {B-X}n or a random
mixture of A/B inserted in a B/A chain. The general synthetic, spin and orbital
strategies to get an ordered bimetallic chain are illustrated in Fig. 2.66a–i [2.3,
Chapter 11], [2.56, 2.57].

An example of a suitable ligand is dithiooxalate, dto, encountered in
Section 2.6.4.2 and Fig. 2.54, a possible suitable pair is Cu(II)–Mn(II),
and the desired ordered bimetallic chain is Cu(II)(Mn(II)(S2C2O2)(H2O)7.5

(MnCudto), first synthesized by Gleizes in 1981. The structure consist of infin-
ite chains (Mn(II))(H2O)3(O2C2S2)Cu(II)(S2C2O2) stretched along the b axis,
stacking at van der Waals distances in the bc glide planes. A fragment of the
structure of the chain in shown in Fig. 2.67a.
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Fig. 2.66
Strategies towards ordered bimetallic fer-
rimagnetic chains. Synthetic strategy: a
symmetric bridging ligand X′ (a) inter-
acts with metal A (white ball) on both
sides (b) and provides a homometallic
uniform chain (AX′)N (c). So does sym-
metric ligand X′′ to give (BX′′)N with
metal B (grey ball) (d–f). A dissymmetric
ligand X (g) leads to ordered hetero-
metallic chains (XAXB)N (i) thanks to
selective acid–base Lewis interaction at
each side of the bridge (h). Spin strategy:
(j) uniform antiferromagnetic chain with
spin SA (J’AF) as in (c); with spin SB

(J’AF) as in (f); (l) ordered bimetallic fer-
rimagnetic chain (JAF) with alternating
spins SA and SB (SA 
= SB) as in (i).
Orbital strategy (m): schematic overlap of
two magnetic orbitals through the ligand.

The two sulphur atoms of the dto (in cis configuration) interact more readily
with a Cu2+ ion than with an Mn2+ ion, which, on the contrary, binds pref-
erentially to the oxygen atoms of dto. The trans bis-dithiooxalatecuprate(II)
[dto-Cu-dto)]2– reacts then with the Mn2+ ion, and in aqueous medium the
neutral chain can precipitate (crystallize). This is well understood in the frame
of hard and soft acid–base HSAB theory with privileged soft–soft (Cu–S) and
hard–hard (Mn–O) interactions. This is now known as a ‘complex-as-ligand’
synthetic strategy. Eqns. (2.140) summarize the synthetic process:

Cu2+ + 2 [dto]2− → [
Cu (dto)2

]2−
(2.140a)

(a)

(b)

Fig. 2.67
(a) Fragment of the ordered bimetal-
lic {MnCudto} chain emphasizing the
precursor complex, [Cu(II)(dto)2]2–, and
the soft–soft Cu–S and hard–hard Mn–O
bonds; (b) stacks of CuS4 units belonging
to neighbouring chains down the c axis.
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n
{[

Cu (dto)2

]2− + Mn2+ + 7.5 H2O
}

→ n {Mn (H2O)3 Cu (dto)2 · 4.5 H2O}
(2.140b)

To derive the ferrimagnetic properties and 1D ferromagnetic spin structure, we
still need to deploy the spin strategy of up and down unequal spins (↓ ↑)n as
shown in Fig. 2.66j–l. We use the considerations about overlapping magnetic
orbitals of Cu(II) and Mn(II) (Fig. 2.66m), as in Section 2.6.5.2. {MnCudto}
indeed presents all the features foreseen for a ferrimagnetic chain (experi-
mental datapoints in Fig. 2.70): a minimum of χMT (≈ 3.5 cm3 mol–1 K–1)
at 130 K, and a strong increase at lower temperature up to 7.9 K (χMT
≈ 11.5 cm3 mol–1 K–1). Unfortunately, at lower temperature, instead of the
expected divergence a rapid decrease occurs—a sign of 3D antiferromagnetic
ordering.

2.7.2.2 New magnetic objects, new Hamiltonians
We give in the following a brief account of the methods used to fit the magnetic
data of these new systems [2.3, chapter 11], [2.56].

If the (CuMn)∞ (or AB)∞ infinite chain is considered as the limit of ordered
bimetallic (CuMn)n (or AB)n rings when N→∞, the Hamiltonian for a ring N
is written:

H = – J
∑2N

i = 1
SiSi + 1 (2.141)

with S2N+1 = S1; S2i–1= SA = SCu and S2i = SB = SMn

When J < 0, the lowest energy level has SGS = n| SA – SB |, the ring is ferri-
magnetic, and the highest energy level has a spin SHS = n(SA + SB). Carrying
out the same kind of calculations as in Section 2.6.5.3 (Fig. 2.59), it is possible
to find the spin energy levels and to obtain the spin-state structures reported in
Fig. 2.68.

For the two (CuMn)n rings (n = 2, 3) the situation is more complex than for
the trinuclear unit MnCuMn of Fig. 2.59, but the same qualitative conclusions
can be drawn from Fig. 2.68. At very high temperature (kT >> |J| the spins
SA and SB behave independently (which is equivalent to stating that all the
energy levels are equally populated), the paramagnetic limit is reached, and
the susceptibility χM per AB unit (in cgs-emu units) is:

(χMT)HT = (NAμ2
Bg2/3k) [SA (SA + 1) + SB (SB + 1)] (2.142)

+5

–5

0

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9

Energy / |J|

(a)   (CuMn)2 (b)    (CuMn)3

Spin of the energy levels

Fig. 2.68
Spin-state structure of ordered (CuMn)n

rings (a) with n = 2 and (b) n = 3. The
ground state SGS is magnetic. The pres-
ence of many levels having a spin < SGS

allows us to understand the minimum in
the χMT = f(T) curve (see Fig. 2.69).
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Fig. 2.69
Reduced molar magnetic susceptibility
per CuMn pair as a function of kT/|J| for
finite rings (CuMn)n of increasing sizes
(n = 2, 3) and for the infinite chain. Black
diamonds are experimental data. The spin
correlation is also shown schematically.
The minimum in χMT is a signature of
ferrimagnetism. The data at low T (dot-
ted line) reveal the presence of weak
interchain interactions.

where we assume that the local g factors gA and gB have the same value g.
(With NAμB

2/3k = 1/8 and g = 2, check that for A = Cu and B = Mn
(χMT)HT = 4.75). At very low temperature only the ground state is populated
(SGS = n|SA – SB|). The susceptibility, per AB unit, is then (cgs-emu):

(χMT)LT = (NAμ2
Bg2/3k) [SGS (SGS + 1)]

= (NAμ2
Bg2/3k) [n(SA − SB)2 + |SA − SB|] (2.143)

The (χMT)LT value tends to infinite for N→∞, since (χMT)LT ∝ n (Fig. 2.69).
Following the same arguments as for the ferrimagnetic MnCuMn complex
(Section 2.6.5.3), one arrives at the conclusion that in a ferrimagnetic chain,
when T decreases, χMT decreases from the paramagnetic limit (χMT)HT, goes
through a minimum, and then increases rapidly to diverge at low T. The min-
imum in χMT is the signature of a ferrimagnetic chain. The susceptibility for
the chain is obtained by extrapolation of the susceptibility values for (CuMn)n

rings of increasing n. The correlation between the spins SA and SB provides
another qualitative description of the ferrimagnetic chain. There is no correl-
ation at high T (paramagnetic limit); when T decreases the correlation begins
between two neighbouring spins SA and SB. At Tmin, corresponding to the min-
imum of χMT (χMT)min, one can consider approximately that each SA–SB pair
is correlated (↓↑) but that the pairs are not correlated between them. When T
< Tmin the pairs begin to correlate (↓↑ ↓↑), (↓↑ ↓↑ ↓↑) and (↓↑)m. m is the
number of correlated pairs. The corresponding mean spin is Sm = m|SA – SB |,
increasing at low T and reaching infinite when (↓↑)m→∞, where χMT diverges.
Such a trend allows us to understand that if there is (even a weak) antiferro-
magnetic interaction Jinter between z neighbouring chains, it exists at a critical
temperature Tc, where kTc = Jinter.z.Sm(Sm + 1), below which an antiferro-
magnetic 3D ordering of the chains should occur (see Fig. 2.70b). The system
is no more 1D. This cross-over from 1D to ordered AF 3D is a general feature
(see Fig. 2.70a for uniform unimetallic chains). It is revealed by a drop of χMT
curves at low T.

In some rare cases, exchange or long-range dipolar interactions (always
present) can provide a ferromagnetic coupling between the chains (Fig. 2.70c,
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commented on in the following). Other methods have been designed for the
quantitative analysis of the magnetic data of ferrimagnetic chains. The inter-
ested reader can find a valuable summary of most of the original work in [2.3,
chapter 11] and [2.6, vol. I, p. 1].

The strong decrease of χMT with T at low temperature in Fig. 2.69 is the
sign of antiferromagnetic coupling between the chains and of the appearance
of a 3D antiferromagnetic ordering. The ratio Jinter/Jintra was evaluated at 0.024.
The chains are rather well isolated from each other, and behave as a quasi-
1D ferrimagnetic chain at high temperature, allowing the observation of the
χMT minimum. But at low temperature, weak interchain interactions (see Fig.
2.67b) are revealed and 3D ordering occurs.

J"inter

(a)

J'inter

(b)

J'inter

(c)

Fig. 2.70
Spin strategy. (a, b) Antiferromagnetic
interaction between two parallel neigh-
bouring spin chains. (a) (A)n uniform
chains, spin SA (black arrow). The inter-
action J′

inter is between two spins SA. The
resulting spin is null. (b) (A–B)n uniform
bimetallic chains, alternating large spin
SA (black) and small SB (grey). On two
neighbouring chains, similar spins are
face to face (SA–SA and SB–SB). The
interaction J′

inter is between two sim-
ilar spins SA. The resulting spin is null.
(c) (A–B)n uniform bimetallic chains
where one chain is displaced along the
direction of the chain by a/2, half the unit
cell. On two neighbouring chains, differ-
ent spins are facing each other (SA–SB).
The interaction Jinter is between two dif-
ferent spins SA and SB. The resulting spin
is p.m|SA–SB| (p number of chains, m
number of pairs in the chains.)

Deceivingly, but without surprise therefore, {CuMndto} does not exhibit
long-range ferrimagnetic ordering: (i) Landau’s thermodynamics forbids long-
range order in 1D; (ii) the AF interaction between the chains switches the
system to a disappointing 3D antiferromagnet.

Can we go further and obtain 3D magnets through such a 1D chemical
approach? If we understand that at some point a cross-over from 1D to 3D
ferrimagnetism must be imagined and chemically prepared, a possible clever
(and lucky) answer is discussed in the following.

2.7.2.3 From 1D lattice to crystal (supramolecular) engineering
Instead of dto, the ligand 1,3-propylene-bis-oxamate (pba), already used to
derive the finite {MnCuMn} system (Section 2.6.5.3, Fig. 2.59), can be
used—without introducing the terminal ligand—to prepare the infinite chain
MnCu(pba)(H2O)3.2H2O or {MnCupba}. Its crystal structure is shown in
Fig. 2.71a. The ordered Mn–Cu chains are aligned along the b axis with
Cu–Mn distances 5.412 Å. The expected quasi-1D ferrimagnetic properties
are indeed observed (χMT minimum at 115 K, χTM increase at low T,
JCuMn= –23.4 cm–1). Nevertheless, as for MnCudto, weak interchain interac-
tions due to hydrogen bonds and short Cu–Cu and Mn–Mn interchain distances
(5.22 Å) in the a direction (Fig. 2.70b) provoke 3D antiferromagnetic ordering
(Fig. 2.70b).

To overcome this difficulty, Kahn proposed shifting one of the chains by half
a cell distance along the direction of the chain (Fig. 2.70c), so that different
spins of two neighbouring chains are now facing each other. The ferrimag-
netic configuration is extended to the neighbouring chain(s) and successively
to the whole plane: in Fig. 2.70c, all the large (black) spins are aligned paral-
lel (contrary to Fig. 2.70b) and antiparallel to all the small (grey) spins. This
shift can be chemically achieved by introducing an OH group on the central
carbon atom of the propylene bridge of the oxamate ligand, in an attempt to
modify the hydrogen bond network in the crystal. This can be termed crys-
tal or supramolecular engineering. The result is a new ferrimagnetic chain
MnCu(pbaOH)(H2O)3 (pbaOH = 2-hydroxy-1,3-propylene-bis-oxamato) or
MnCu(pbaOH), the structure of which is displayed in Fig. 2.71b. It is very sim-
ilar to MnCu(pba), and the 1D ferrimagnetism is the same at high temperature.
But now there is a short Cu–Mn distance (at 5.75Å) in the a direction:
the strategy to displace the chains was (partially) successful (Fig. 2.71b).
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Fig. 2.71
Crystallographic structures of two
closely related ferrimagnetic Cu–Mn
chains down the c axis (a, vertical
axis; b, horizontal axis). The bold
lines schematize the largest antifer-
romagnetic interchain interactions in
the ab plane. The thin dotted lines
schematize the hydrogen bond network
between the chains. (a) Structure of
MnCu(pba)(H2O)3.2H2O. (b) Structure
of MnCu(pba-OH)(H2O)3.2H2O. In (b),
white arrows point out the displacement
of the MnCu(pbaOH) chains compared
to the MnCu(pba) chains. Compare with
the ideal spin configurations in Fig.
2.70b, c.

Hydrogen bonds involving the OH group of pbaOH, close to copper and a
water molecule coordinated to manganese, help in providing weak overlap
and antiferromagnetic interaction between magnetic orbitals of copper(II) and
manganese(II) belonging to neighbouring chains to finally provide the required
ferrimagnetic planes. The magnetic consequence is the strong χMT increase at
low temperature, χMT = 100 cm3 mol–1 K–1 at 4.3K (Fig. 2.72a), preliminary
indication of a 3D ferrimagnetic order. Magnetization measurements versus
temperature (Fig. 2.72b) confirm a ferrimagnetic long-range ordering with a
Curie temperature TC = 4.6 K. The magnetization is strongly anisotropic, with
an easy axis along c; that is, perpendicular to the chains. The molar magnetiz-
ation per {MnCu} unit versus applied magnetic induction (not shown) is close
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Fig. 2.72
Magnetic properties of MnCu(pbaOH).
(a) Thermal variation of the product χMT
per MnCu unit. The insert shows the
expected minimum for a ferrimagnetic
chain. Note the high χMT value at low
T. (b) Thermal variation of the magnetiz-
ation of MnCu(pbaOH) along the a (O),
b (�) and c (�) axes, in an applied
magnetic induction of 10–3 T. The Curie
temperature is TC ≈ 4.6K. The magnet-
ization is very anisotropic. c is the easy
axis (the grey line is a guide for the eye).
(Adapted from [2.57].)

to the value expected for a spin 2 |SMn – SCu| = 2, confirming the ferrimagnetic
nature of the whole solid.

MnCu(pbaOH) can be considered the first molecule-based ferrimagnet
obtained by rational design. The ordering temperature is low, but the com-
pound was obtained through a rational, methodical step, rather than through
serendipity, as the famous V(TCNE)x by Manriquez and coworkers, obtained
in 1991 when working on metallocene-based magnets [2.6] (G. T. Yee,
J. S. Miller, in vol. V, p. 223–60).

An important aspect of the cross-over from 2D ferrimagnetism to 3D mag-
netic order is still missing. The synthetic strategy led us to ab ferrimagnetic
planes (2D ferrimagnetism), but the interaction between the ab planes, neces-
sary to reach 3D order, is still uncontrolled. The ab planes are not connected
by hydrogen bonds, and exchange interactions should be very weak. Luckily,
in the present case, the magnetic dipolar interaction (Hamiltonian (2.136)),
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Fig. 2.73
Schematic spin configuration in a crys-
tal of MnCu(pbaOH). 1D ferrimagnetic
chain along b axis (grey lines). 2D fer-
rimagnetic ab planes 1, 2, 3 distant by
c = 5.023 Å. The exchange interaction
between the ab planes in the c direction
is very weak. In plane 2 a hole (black
circle) replaces a central manganese ion.
At this point, all other spins of the crys-
tal, acting as elementary dipoles, gener-
ate a magnetic field by magnetic dipolar
effect. The long-range ordering of the
spins in the crystal, ferrimagnetic or anti-
ferromagnetic, depends on this dipolar
field. If the dipolar field is parallel to the
large (black) spins, the 3D order is fer-
rimagnetic (as shown and observed); if
the dipolar field is antiparallel to the large
spins, a final antiferromagnetic structure
would result.

a weaker but long-range interaction, has the right influence. The geometry is
such that the dipolar field created by the spins of a manganese unit (perpendic-
ular to the ab plane) tends to align the magnetic moment of the next plane in
the same direction (Fig. 2.73).

Thus the clever orbital, spin, and supermolecular strategy was very suc-
cessful for the first two steps, 1D and 2D, but necessitated the help of an
uncontrolled dipolar interaction to reach the required 3D ferrimagnetic order.
Unfortunately, the dipolar interaction is beyond precise chemical control,
because it depends on the geometrical distribution of the spins and their ori-
entation in the cell. In Section 2.7.3 we shall encounter a genuine 3D strategy
to rationally reach molecule-based magnets.

2.7.2.4 About order, dimensionality, and anisotropy
3D ordering (and magnetization reversal) is one of the most studied problems
in solid-state magnetism. In the following we mention briefly some general
principles governing the transitions between the paramagnetic state and the
3D ordered states such as ferromagnetic or antiferromagnetic.

We consider an ensemble of magnetic moments connected by a next-
neighbour interaction J. At high temperature (kT >> (|J|) one has a disordered
paramagnetic phase, and at low temperature (kT � (|J|) an ordered magnetic
phase. The two temperature ranges are separated by a critical temperature
where |J| ≈ kTc. For ferro- or ferrimagnetic orders, Tc is the Curie temper-
ature, TC (named after Pierre Curie), and for antiferromagnetic order Tc is the
Néel temperature, TN, after Louis Néel).

In most cases such magnetic transitions are not accompanied by a change
in the crystallographic structure, and belong to the category of second-order
transitions. Let us recall that if the free enthalpy G depends on an external
parameter x, when ∂G/∂x is discontinuous at the transition, it is first order;
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T >> TC T  →  TCT < TC 

M = 0

ξ

M ≠ 0

M

Fig. 2.74
Microscopic picture of a ferromagnetic
transition. The arrows represent indi-
vidual magnetic moments. From right to
left: T >> TC, paramagnetic disordered
phase; T → TC appearance of a cor-
relation length; T < TC, ferromagnetic
ordered phase and appearance of a spon-
taneous magnetization M. (Adapted from
J.-P. Renard [2.58].)

when the first derivative is continuous, but ∂2G/∂x2 is discontinuous, the trans-
ition is second order. In our case, x = H (magnetic field), the first derivative
(the magnetization; see Section 2.3.1) is continuous, and the second derivative
(the susceptibility) is discontinuous at the transition.

From a microscopic point of view, Fig. 2.74 schematizes the situation in
the paramagnetic phase (disordered phase, M = 0, correlation length x ∼
0) to the ferromagnetic phase (ordered, M 
= 0, correlation length diverges—a
keystone of second-order transition). The magnetic system has spherical sym-
metry above TC, and cylindrical symmetry below TC. The symmetry breaking
at T = TC is a general feature of phase transitions.

In literature—particularly in the physics domain—results are presented fre-
quently as 1/χ plots versus T (Fig. 2.75). For independent magnetic objects
this corresponds to the Curie law, χM

–1 = T/C (C Curie constant) (Fig. 2.75a).
When there is an interaction, the Curie–Weiss modification χM

–1 = (T – θ)/C
is used, but it has a weak theoretical justification and should be considered as
essentially empirical. It is generally valid far from the critical temperature and
allows the evaluation of θ by extrapolation. For a ferromagnetic order, θ > 0
and is close to TC (Fig. 2.75b). For an antiferromagnetic order, θ < 0; TN cor-
responds to χM

–1 infinite (Fig. 2.75c). For a ferrimagnetic order, θ < 0; TC is
obtained when χM diverges; that is, χM

–1 = 0 (Fig. 2.75d).
We now ask how a magnetic molecular system can transform in a

magnetically ordered solid. At the microscopic level, two main paramet-
ers control this transition: (i) the dimensionality of the magnetic network

χM
–1

θ < 0 θ > 0

T

AF

Ferro

Ferri

0

(a)

(b)

(c)

TC TCTN

(d)

Curie

Fig. 2.75
Schematic thermal variation of the
inverse of the molar susceptibility
for Curie behaviour and different
kinds of magnetic order (circled:
spin configurations). (a) Curie beha-
viour (grey line). (b–d) Curie–Weiss
behaviour: (b) Ferromagnetic order.
(c) Antiferromagnetic order. (d)
Ferrimagnetic order. Dotted lines are
guide for the eye to evaluate θ and TN.
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Table 2.9 Existence of long-range order at T 
= 0K in a magnetic system with short-range
interactions, as a function of its dimensionality and anisotropy.

Dimensionality/anisotropy Name 1D 2D 3D

Jz >> Jx ≈ Jy Ising No Yes Yes
Jx ≈ Jy >> Jz XY No KTa Yes
Jx = Jy = Jz Heisenberg No No Yes

a A special transition bearing the name Kosterlitz–Thouless. (Adapted from J.-P. Renard [2.58].)

(1D chains; 2D planes; 3D frameworks); (ii) the anisotropy of the interac-
tion according to the relative values of the effective components of J: Jx,
Jy, Jz. Table 2.9 summarizes—without demonstration—the most frequently
encountered situations.

The conclusion is thus clear. 1D chains—first considered as a conceptual
step between isolated molecules to magnetic ordered solid—are a practical
dead-end. 2D planes can work within some constraints (Ising). The chemist
willing to synthesize magnets should then create 3D networks, which present
long-range order whatever the anisotropy. We present a few examples in the
following.

Finally, if we want to increase as much as possible the critical temperature,
a useful classical approximation relates the TC temperature to the properties
of the two subnetwoks having spins SA (Curie constant CA) and SB (CB), a
number of magnetic neighbours Z, and a coupling J. With our usual notations:

kTC = Z|J| [SA(SA + 1)SB(SB + 1)]1/2/NAg2μ2
B = Z|J| [CACB)]1/2/NAg2μ2

B
(2.144)

Even approximate, eqn. (2.144) shows clearly that TC can be maximized by
increasing the number of magnetic neighbours Z, by increasing the magnitude
of J and by increasing SA and SB [2.52].

2.7.3 Three-dimensional frameworks, Prussian blue analogues

We reach here an enormous field, where the interaction between the spin bear-
ers is directed in the three directions of space, building a 3D magnetic lattice.
To save space, we limit ourselves to a unique family, a priori very simple,
synthesized from hexacyanidometalates, the Prussian blue analogues (PBA).
Prussian blue itself is a blue pigment discovered in Berlin around 1704, first
announced in a publication in 1710, and often considered as the first syn-
thetic coordination compound: FeIII

4[FeII(CN)6]3 • 14–16H2O. The magnetic
Prussian blue analogues (referred to in the following as MPB) are a ‘simple’
3D extension of what we have already described about high-spin molecules
based on hexacyanidometalates (Section 2.6.5.3). The main lines of the story
can be found in [2.6, vol. V, 283sq].

2.7.3.1 Formulation and structure
Prussian blue and its analogues can be synthesized easily by the reaction of
the Lewis bases hexacyanidometalates [B(CN)6]p– with transition metal Lewis
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acids Aq+ in aqueous solution to give neutral three-dimensional networks
{Ap[B(CN)6]q}0.nH2O:

q[B(CN)6]p− + n H2O + pAq+ → {
Ap[B(CN)6]q

}0
.nH2O (2.145a)

The compounds are very insoluble and poorly crystalline, and comprise
often extrinsic components (solvent, ions, and so on). Among the different
ways of writing the MPB formulae (with A(II), B(III), and C(I)), we use
C4xA(II)4[B(III)(CN)6]4z �4(1–z) • nH2O, (C+, alkali metal cation), where � is
a [B(CN)6] vacancy (check that x + 2 = 3z):

4
{
xC+ + z [B(CN)6]3− + n/4 H2O + A2+}
→ C4xA4[B(CN)6]4z�4(1−z)•nH2O

(2.145b)

The equation is based on the cubic conventional cell shown in Fig. 2.76. For
x = z = 1, the MPB adopt face-centred cubic ( fcc) structures. The unit cell
comprises eight octants corresponding to interstitial or tetrahedral sites. There
are two types of octahedral metal site: strong ligand-field sites [BCN)6] and
weak ligand-field sites [A(NC)6].

For z < 1, and therefore for Prussian blue, Lüdi and coworkers proposed,
from powder diffraction and density measurements, that the A sites are fully
occupied and the [B(CN)6] sites are fractionally occupied. Accordingly, the
A centres surrounding the vacant [B(CN)6] sites have one (or more) water
molecules in their coordination spheres, depending on the stoichiometry z
(Fig. 2.76). Zeolitic water molecules and/or charge-balancing cations generally
occupy the interstitial sites with an extensive hydrogen bond network.

In Prussian blue, FeIII
4[FeII(CN)6]3 • 14–16H2O, the [Fe(CN)6] vacancies

are most often disordered in the crystal, giving an apparent high-symmetry
structure (Fm3m) with a fractional occupancy (3/4) of the [Fe(CN)6] sites. The

(a) (b)

Fig. 2.76
Schematic ball-and-stick structure of
a conventional cell of Prussian blue
analogues: (a) A(II)4[B(III)(CN)6]4z

�4(1–z)•nH2O, {A4B4z}. [B(CN)6]:
grey octahedron. Other balls: A, large
white; carbon, small black, nitrogen,
small white; oxygen, medium grey.
Coordination and zeolithic water
molecules fill the [B(CN)6] vacancies.
(b) C4A4[B(CN)6]4 �0 or {C4A4B4}: C
cation, large black balls in the tetrahedral
cavities {C4A4B4}.
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presence of vacancies is intrinsic to PBAs whenever z < 1. It is not a ‘defect’
structure, as is often claimed. Some important properties are determined by
these vacancies (discussed in the following).

The Prussian blue structural framework is closely related to that of per-
ovskites ABO3, such as CaTiO3, where the octahedral metal centres are
connected by oxide ions instead of cyanide bridges. But the hexacyanido-
metalate precursor exists in solution, which is not the case for the hypothetical
[TiIVO6]4– unit. Prussian blue and its analogues can therefore be considered
as molecule-based materials. They are synthesized directly from preassembled
molecular precursors in water.

Finally, from a preparative point of view, Prussian blue is obtained by the
addition of an iron(III) salt to potassium hexacyanidoferrate(II). A long his-
torical debate occurred about its relationship to a similar substance known as
Turnbull’s blue, which was obtained by addition of an iron(II) salt to potassium
hexacyanidoferrate(III). The problem was solved by Mössbauer spectroscopy,
which revealed that the two compounds are actually identical: very rapid
electron-transfer between the iron(II) and the hexacyanidoferrate(III) ions
gives rise to the same mixed-valence PB compound with low-spin iron(II)
(diamagnetic) in the C6 environment and high spin iron(III) in the N6 environ-
ment. The so-called ‘soluble forms’ of PB are actually colloidal suspensions of
KxFeIII[FeII(CN)6]z • nH2O. The intervalence origin of the bright blue colour
of the mixed-valence PB is commented on in Section 3.2.2.2.

In such a context, Prussian blues (PBs) have stimulated an astonishing
rebirth of interest in their magnetism and a revival of the chemistry of cyanide
inorganic chemistry.

2.7.3.2 Magnetic Prussian blue analogues: the models
To design high-TC MPBs, we combine in this section our knowledge of
short-range interaction between nearest neighbours, governed by overlap and
orthogonality (see Section 2.6) and the considerations resulting from eqn.
(2.144). Prussian blue presents a ferromagnetic order at a deceiving TC =
5.6 K. The J coupling constant is very small, because the distance between the
Fe(III) spin-bearers (S = 5/2) across the [NC–Fe(II)–CN] diamagnetic bridge
is large (∼10.4 Å). The ferromagnetic coupling is due to electron delocaliza-
tion and double exchange (see Section 3.2.2). If we use instead systems where
both A and B ions are magnetic, we have to choose the best combinations given
by Fig. 2.61b, and also try to increase Z (we limit the discussion to exchange
interaction between nearest neighbours) (2.6 Vol. V, 283sq).

The MPBs structure (Fig. 2.76) shows that the number of magnetic neigh-
bours is always ZB = 6 around the B site, and depends on the stoichiometry z
for the A site: ZA = 6z (for example, ZA = 6 for z = 1 in {C(I)4A(II)4B(III)4}0

a, and ZA = 4 for z = 2/3 in{A(II)4B(III)8/3}0—a frequent case). It follows that
the mean coordination sphere of A can be formulated as A(NC)6z(H2O)6(1–z)

(that is, A(NC)6 for z = 1 and A(NC)4(H2O)2, for z = 2/3). This is another
approximation. In reality, for a given stoichiometry, the A sites present a
distribution of coordination spheres A(NC)6–p(H2O)p (p integer), as recently
demonstrated by (paramagnetic) NMR. Nevertheless, we consider that the
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mean number of magnetic neighbours depends on the stoichiometry and there-
fore on the amount of C+ cation inserted in the structure. This can be governed
by the C+ concentration in the synthetic solution.

A wide range of results is presented in Table 2.10, and the main conclusions
are developed in the following.

(1) When only eg magnetic orbitals are present on A, all the exchange inter-
actions with the t2g magnetic orbitals present on [B(CN)6] are expected to be
ferromagnetic. Thus, if a Prussian blue is prepared by adding a d8 or d9 A(II)
cation such as Ni2+ or Cu2+ to a paramagnetic [B(CN)6] anion, a ferromagnet
should result. (Compounds 10 and 11 in Table 2.10).

(2) When only t2g magnetic orbitals are present on A, all the exchange inter-
actions with the t2g magnetic orbitals present on [B(CN)6] are expected to
be antiferromagnetic. In this case, if the Prussian blue analogue is prepared
by adding a d2 or d3 cation to a paramagnetic [B(CN)6] anion, a ferrimagnet
should result. (Compounds 1 and 2 in Table 2.10.)

(3) When both t2g and eg magnetic orbitals are simultaneously present on A,
ferromagnetic and antiferromagnetic interactions with the t2g magnetic orbitals
on [B(CN)6] coexist and compete. Here, the overall nature of the interac-
tion is not so simple to predict. Usually, the nn antiferromagnetic interactions
dominate and a ferrimagnetic order arises. (Compounds 3–7, 9, and 12 in
Table 2.10.)

(4) Needless to say, when one of the ions (A or B) is diamagnetic and
the partner paramagnetic, the resulting compounds are predicted (and shown
experimentally) to be simple paramagnets in most of the accessible temperat-
ure range: for example, [CsZn(II)Cr(III), CsA(II)Co(III) with A = Ni, Co, Fe,
Mn] [2.6, vol. V, 283sq].

Looking in more detail at the results gathered in Table 2.10 and Fig. 2.77
[2.6, vol. V, 283sq], one can reach additional conclusions.

Table 2.10 Curie temperatures TC of selected magnetic Prussian blues (decreasing TCs).

Compound CxA 1[B(CN)6]z • nH2O (a) Electronic structure Ordering nature TC/K N◦(b)

K1VII
1[CrIII(CN)6]1 d3– d3 Ferri 376 1

V1[CrIII(CN)6]0.86 • 2.8 H2O d3– d3 Ferri 315 2
CrII

1[CrIII(CN)6]2/3 • 10/3 H2O d4– d3 Ferri 240 3
Cs2/3CrII

1[Cr(CN)6]8/9 • 40/9 H2O d4– d3 Ferri 190 4
Cs2MnII

1[VII(CN)6]1 d5– d3 Ferri 125 5
(VIVO)1[CrIII(CN)6]2/3 • 4.5 H2O d1– d3 Ferri 115 6
Cs1MnII

1[CrIII(CN)6]1 d5– d3 Ferri 90 7
Cs1NiII1[CrIII(CN)6]1 • 2–4 H2O d8– d3 Ferro 90 8
MnII

1[CrIII(CN)6]2/3 • 5–6 H2O d5– d3 Ferri 66 9
CuII

1[CrIII(CN)6]2/3 • 5–6 H2O d9– d3 Ferro 66 10
NiII1[CrIII(CN)6]2/3 • 4 H2O d8– d3 Ferro 53 11
MnII

1[MnIV(CN)6]1 d5– d3 Ferri 49 12
FeIII

1[FeII(CN)6]3/4 • 3.7H2O d5– d6(LS) Ferro 5.6 13

(a) The formulae given in the Table are adapted from the literature to be related to one A cation: A1[B(CN)6]z
• n H2O. We do not display

explicitly the vacancies A1[BIII(CN)6]z�1–z
• n H2O.

(b) References are given in [2.6, vol. V, 283sq]. First reports by Lüdi (13), Babel (7), Gadet (8–11), Mallah (3,4), Ferlay (2,6), and Girolami
(1,5).
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Fig. 2.77
Curie temperatures as a function of the
atomic number Z in a few selected series
of magnetic Prussian blues. AB2/3 stoi-
chiometry: B is kept constant and the Z
of A is varied (©, B=Fe; �, B=Cr). AB
stoichiometry (�, B=Cr; A varies). AB
stoichiometry, A is kept constant, the Z
of B is changed (�). Lines are guides for
the eye.

(5) If we compare, in Fig. 2.77, the TCs of MPBs obtained in the AB2/3

stoichiometry with B = Fe(III) (t2g)5, one unpaired electron (©) and B =
Cr(III), (t2g)3, three unpaired electrons (�), with the same metal A, the TCs
are clearly higher with Cr(III), since the three t2g electrons are available for
exchange in the x, y, and z direction (three jAB pathways instead of one, JAB is
increased). Hence the interest in working with Cr(III) for higher TCs.

(6) If we examine the influence of the stoichiometry for identical A–B pairs
(compounds 1–2, 7–9, 8–11), the TCs are higher in the A1B1 stoichiometry.
This is fairly well understood using the kTC ∝ Z |J| relation. A1B1 systems
have six magnetic neighbours, while A1B2/3 have only four. The ratio of the
TCs should be 4/6. This is rather accurately satisfied for Mn1Cr1 (7, �, TC =
90 K), Mn1Cr2/3 (9, �, TC = 60 K), Ni1Cr1 (8, �, TC = 90 K), and Ni1Cr2/3

(11, �, TC = 53 K). Hence, for higher TCs, the usefulness of working with an
A1B1 stoichiometry.

2.7.3.3 High TC magnetic Prussian blues
Taking into account the previous observations, to achieve really high TC tem-
peratures the best choice is to associate the [Cr(III)(CN)6]3– with an A(II)
partner. The electronic configurations and orbital pathways are gathered in
Fig. 2.78, and the critical temperatures are presented in Table 2.11. A simple
mixture of the precursors in aqueous solution leads to a CrA2/3 stoichiometry.

The simplest idea would be to choose systems presenting only ferromag-
netic interactions, with A = Cu (3f)(10) and Ni (6f)( 11) (Fig. 2.78). The
compounds are indeed ferromagnets, but with modest TC (Table 2.11) and J.
Actually, it is better to choose systems with antiferromagnetic interactions.
This is at first sight surprising, since both Cr(III) and V(II) have a spin S =
3/2, but recall that the actual stoichiometry is CrV2/3, and thus a ferrimagnetic
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Fig. 2.78
Exchange pathways in a fragment
Cr(III)–C≡N–A(II) of a magnetic
Prussian blue. A is a metal of the
first transition series. Left: electronic
configuration and orbitals’ occupancy of
Cr(III). Right, electronic configuration
and orbitals’ occupancy of A(II), from
Cu(II) to V(II). Centre, along the arrows,
the nature of the exchange pathways (f
ferromagnetic, af antiferromagnetic) and
their numbers.

order [(↑)1 (↓)2/3] results. In this logic one has to select the strongest antifer-
romagnetic couplings, thus choosing V(II), because it gives nine af pathways
and no f pathways (Fig 2.78, top). Table 2.11 summarizes the situation. A Curie
temperature above room temperature (315 K) is reached for compound 2, due
to a simple reasoning based on our heuristic rules [2.59].

The vanadium-hexacyanidochromate association can even lead to a higher
TC by simply applying eqn. (2.144) and enhancing the number of magnetic
neighbours Z from 4 to 6, in inserting a caesium cation in the tetrahedral sites
of the PB structure, Cs1V1Cr1 compound 1, which present the record tem-
perature of 376 K, above the boiling point of water. Note that in this case
the stoichiometry is V1Cr1 (which should lead to zero magnetization), but the
ferrimagnetic behaviour is due to some V(III) impurity, some stoichiometry’s
deviation, and possibly a small difference between the g values of the metals.

Table 2.11 Experimental electronic structures, exchange interactions, long-range orders and Curie temperatures as a function of A in
A(II)4[Cr(III)(CN)6]8/3 • xH2O.

AII ion V, d3 Cr, d4 Mn, d5 Fe, d6 Co, d7 Ni, d8 Cu, d9

Conf. (t2g)x(eg)n–x (t2g)3 (t2g)3(eg)1 (t2g)3(eg)2 (t2g)4(eg)2 (t2g)5(eg)2 (t2g)6(eg)2 (t2g)6(eg)1

Interactiona af af af f b f b f f
TC / K 315 240 66 16 23 60 66

a af = antiferromagnetic interaction and ferrimagnetic order, f = ferromagnetic interaction and order;
b in disagreement with the too-simple heuristic model. See [2.6, vol. V, 283sq] for a deeper interpretation.
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Is it possible to go still higher? Simple reasoning and DFT calculations show
that with other selected pairs such as Mo(III)–V(II) (the Mo orbitals more
diffuse than the Cr ones), one can expect higher J and TC. Up to now, such
attempts have been unsuccessful. The expected MPB material is not forming.

In this section we have tried to transform a set of molecules in a three-
dimensionally ordered (classical) magnet by optimizing the exchange inter-
action between the spin bearers in the solid. On a completely different
background we show in the next section how to transform one ion, one
molecule, and one chain in a magnet, without interaction between the entities,
by focusing on the magnetic anisotropy of the system.

2.8 Magnetic anisotropy and slow relaxation
of the magnetization

In this section we introduce a new kind of magnetic object: the so-called
single-molecule magnet (SMM), single-chain magnet (SCM), or single-ion
magnet (SIM). Such new compounds were discovered from 1993, and from
that time the domain exhibits a quick development. The three kinds of
molecules/systems present a common feature: a slow relaxation of the mag-
netization, without significant interaction between neighbouring species. This
raises the hope of one day being able to store information on the ultimate,
molecular, size. We present the basic features of the molecular anisotropy at
the origin of the phenomenon.

Several books and reviews are available [2.4, 2.60–2.63].

2.8.1 Single-molecule magnets (SMM)

2.8.1.1 Discovery and main features: Mn12 [2.4, 2.62–2.64]
The story of single-molecule magnets began in 1993 with the study by
Gatteschi et al. of an {Mn12} cluster [2.4, 2.64]. Actually, {Mn12} is
a generic name for a family of compounds with the general formula
[Mn12O12(O2CR)16(H2O)4], where O2CR is a carboxylate anion [2.62]. The
compound is a mixed valence system with formal valence states MnIV

4MnIII
8.

(Such compounds are studied in detail in Section 3.2.2). The structure is organ-
ized around a central MnIVO4 cubane core, around which are found the 8 MnIII,
additional O2– bridges, and the sixteen carboxylate ligands (Fig. 2.79). The
overall structure exhibits S4 symmetry. Crystallographically, MnIV is denoted
as Mn1, while the MnIII ions are of two types with pseudo-octahedral envir-
onments: Mn2 surrounded by two oxo ligands and four oxygen atoms of
carboxylate molecules, and Mn3 surrounded by two oxo ligands, three oxygen
atoms of carboxylate ligands, and a water molecule.

In this structure, MnIV, d3 has S = 3/2, while MnIII, high-spin d4 has S = 2.
The latter is subject to a strong Jahn–Teller effect (see Section 1.3.7), because
the eg set contains only one electron. As for CuII, it is manifested most often
as an elongation of the octahedron. This introduces a strong anisotropy in
the magnetic properties through spin–orbit coupling. Importantly, the elong-
ation axes make angles of 11◦ for Mn2 and 37◦ for Mn3 with the S4(z) axis
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Fig. 2.79
Structure of the {Mn12} core, down
(a) and roughly perpendicular (b) to
the S4(z) axis. For clarity, the peri-
pheral carboxylates are not shown. Large
white spheres are MnIII ions (Mn2 and
Mn3). Large grey spheres are MnIV ions
(Mn1). The small grey spheres are oxy-
gen atoms. The darkest ones underline the
MnIII Jahn–Teller axes (see text). In (a),
the double-headed arrows indicate the
exchange interactions between the differ-
ent kinds of manganese ions. In (b), the
spins S = 2 borne by MnIII are schem-
atized by long black arrows (up). The S
= 3/2 of MnIV are shown by small open
arrows (down).

(Fig. 2.79b), so that their general direction is close to the z axis, which is, by
symmetry, a privileged axis for the overall anisotropy.

Regarding static magnetic properties, the different spin centres are coupled
through oxygen and carboxylate bridges. Without entering into details (a
complete analysis is presented in [2.65]), the four central MnIV are weakly
ferromagnetically coupled (JIV–IV ≈ +8K) due to the M–O–M angles near 90◦
(orthogonality; Section 2.6.3.1). The strongest interactions are antiferromag-
netic between the central MnIV and the peripheral MnIII (JIII–IV ≈ –120K)
(overlap between magnetic orbitals). Thus, although the interaction between
MnIII is antiferromagnetic (JIII–III ≈ –23K), the spin structure consists of eight
S = 2 ions with spin ‘up’, and four S = 3/2 ions with spin ‘down’; that is, a
ferrimagnetic situation with S = 16 – 6 = 10 (Fig. 2.79b), as observed. The
calculations [2.65] also give a first S = 9 excited state at 35 K above the ground
state.
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Fig. 2.80
Experimental magnetic properties of {Mn12}. (a) AC susceptibility measurements at various frequencies as a function of temperature. The dotted
line is the Curie law for the ground state S = 10 spin. The plain curves are the χ′ susceptibilities. The dotted grey curves are the χ′′ susceptibilities.
(b) Hysteresis loop at 2.1 K of a single crystal with a magnetic field applied along the z anisotropic axis. Msat is the magnetization at saturation,
RM the remnant magnetization, Hc the coercive field. The black plain horizontal arrows point out the vertical steps due to quantum magnetic
tunnelling, whereas the grey dotted arrows show the magnetization’s plateaux when tunnelling is not allowed. (Adapted from Sessoli [2.61].)

Standard (static) magnetic susceptibility measurements show the signature
of ferrimagnetic spin structure (not shown) [2.61]. Furthermore, magnetization
measurements present the two peculiar phenomena illustrated in Fig. 2.80:
(a) the appearance of a maximum in the AC susceptibility curves, announ-
cing exciting dynamic properties; and (b) a remarkably wide hysteresis loop,
reminiscent of a classical magnet accompanied by an unusual succession of
plateaux and steps within the loop. The next two sections are devoted to simple
explanations of these properties.

2.8.1.2 Anisotropy barrier and magnetization dynamics
A technique of choice for studying the dynamics of magnetization is AC sus-
ceptibility (Section 2.3.3). When the magnetization instantaneously follows the
oscillating field, χ′ behaves as the static susceptibility, and χ′′ is zero. A Curie
law is observed (Fig. 2.80a, upper dotted line). When the field oscillates too
quickly the magnetization follows with a delay, and the χ′ signal departs from
the Curie behaviour, presents a maximum, and tends to zero when T decreases.
The most useful is the χ′′ signal, because it presents a maximum when the
relaxation rate k equals the AC pulsation ω and allows the determination of
the anisotropy barrier through a study as a function of temperature. The results
for the {Mn12} system are shown in Fig. 2.80a [2.62].

The non-instantaneous establishment of equilibrium magnetization is an
indication of the presence of an energy barrier, due to zero-field splitting of
the ground state and a negative D, as seen in Fig. 2.81. The Hamiltonian
corresponding to a uniaxial anisotropy with an applied field Hz (Section 2.5) is:

H0 = D
[
S2

z − S(S + 1)/3
] + gμBHzSz. (2.146)
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Fig. 2.81
Double-well energy representation of a
spin state S having an easy axis mag-
netic anisotropy. Here, as in Fig. 2.35, the
abscissa axis corresponds to MS, varying
only from –S to +S and the physically
significant points are shown by white
spheres. The superimposed double-well
curve represents the classical potential
energy as a function of the angle between
the magnetic field and the easy axis.
A grey ball represents a set of molecules
in a given MS state. MS < 0 are in the
left well. MS > 0 are in the right well.
(a) After cooling down in zero field: equal
population in the two wells; (b) cool-
ing down in an applied magnetic field
populates the left well (Zeeman effect,
up to magnetizations’ saturation, Msat);
c) returning to zero field at low temper-
ature, the system is either trapped in the
well (remnant magnetization RM close to
the saturation value, Msat) if kT << EB

or, if kT is high enough, it tends to
equilibrium through a series of thermally
activated steps (small vertical arrows—
Orbach process) and a slow relaxation of
the magnetization. (Adapted from Sessoli
[2.61].)

For {Mn12}, S = 10, the energy of the spin levels (–S ≤ MS ≤ + S) are E(MS)
= D[MS

2 – 110/3] + gμB MSHz (Fig. 2.81):
In {Mn12} the two lowest energy states are MS = –10 and MS = +10,

while the MS = 0 state is the highest level (Fig 2.81a). Since S is an integer
(Section 2.5) there is an energy barrier EB, given by EB = |D|S2. With D =
–0.46 cm–1 and S = 10, it amounts to 46 cm–1 (or 66 K in temperature units,
by using the ratio EB / kB).

The relaxation rate of magnetization (or magnetization reversal rate) can be
measured as a function of temperature from AC susceptibility data, and follows
generally an Arrhenius law:

k = k0 exp (−EB/kBT) (2.147)

with, in the case of Mn12 k0 = 4.8 106 s–1 and EB / kB = 62 K in the 2–10 K
temperature range. kB is the Boltzmann constant. This value is very close
to the barrier height expressed in K units, showing that in this temperature
range the process is essentially thermally activated. In other words, one has to
climb to the top of the barrier to perform the magnetization reversal. The slight
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difference between the two values indicates that some other minor processes
(tunnelling) are operating (see Fig 2.83a, process 2). For practical applications
such a k0 rate is too high (or the corresponding characteristic relaxation time τ0

(= 1/ k0) is too small). At the common cryogenic temperature of 4.2 K (liquid
He), the rate is still about 0.9 s–1, thus a bit of information is kept for no longer
than τ = 1 s. This is why huge efforts were and are made to find systems with
higher barriers (see Section 2.8.1.4).

2.8.1.3 Remnant magnetization, hysteresis, and quantum tunnelling
When the temperature is low enough, the magnetization reversal rate can drop
to very low values; for example, 10–7 s–1 at 2 K, corresponding to a char-
acteristic time τ = 1/k of the order of months. Then, in our time-scale, the
system is frozen and can be considered as a memory element (Fig. 2.81c).
Experimentally it exhibits an hysteresis cycle when the magnetic field is swept
in both directions, with a remnant magnetization RM (Fig. 2.80b), because the
thermodynamic equilibrium is not established. Since the response involves the
relaxation rate, the width of the hysteresis (characterized by the coercive field)
increases when decreasing the temperature or when increasing the sweep rate
(Fig. 2.82). At some temperature (depending upon the sweep rate), the hyster-
esis disappears (at 3.7 K in Fig. 2.82), because equilibrium is attained in the
time-scale of the experiment.

Thus, the main characteristics of a classical magnet are obtained (remnant
magnetization, coercive field). But contrary to other applications of magnetic
molecules, SMM do not need to be associated in large number to constitute
a material; they are the material. At variance with macroscopic magnets, the
magnetization reversal does not rely on the motion of domain walls, but is
a truly monomolecular process. But, while the motion of domain walls in a
classical magnet can be immeasurably slow, for SMM it is extremely difficult
to achieve kT << EB and to bring the magnetization reversal rate to or near
zero.

3.7 K

2.8 K

2.4 K

4mT s–1 

μ0H/T

–1 –0.5 0 0.5 1

0

–1

1

1.3 K

2.0 K

M
/M

S

Fig. 2.82
Hysteresis curves of a {Mn12} single
crystal with an applied magnetic field
Hz, at a fixed sweep rate (4mT s–1)
at different temperatures. (Adapted from
Christou [2.62].)
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The second obvious characteristic of the hysteresis curve (Figs. 2.80b and
2.82) is that it displays steps. These features are completely different from
those observed in usual magnets whose origin is the reversal of magnetic
domains. Here the steps occur when M′

S levels of the S = 10 manifold on
one side of the double-well diagram are degenerate with MS levels of the other
side (Fig. 2.83c). When this happens, quantum tunnelling can occur, increas-
ing the rate of magnetic relaxation, and a vertical step results on the hysteresis
curve. The successive coincidences of energy levels of the right and left wells
occur for H = nD/gμB (n integer = 0, 1, 2 . . ., as can be easily computed from
the uniaxial H0 Hamiltonian, eqn. (2.146), giving the energy levels in presence
of a magnetic field) (dotted lines in Fig. 2.82). The step height and the width
of the overall hysteresis depend on the magnetic field sweep rate, allowing a
detailed explanation taking into account the dynamics of the tunnel effect.

MS = +S

MS = +S

MS = +S

No
tunnelling

X

Tunnelling

H ≠ nD/gμB

MS = –S

MS = –S

MS = –S

μ0H = 0

H = nD/gμB

μ0H ≠ 0

(a)

(b)

E

3

2

1

E

(c)

E

MS

–S +S0

μ0H ≠ 0

Fig. 2.83
Different magnetic relaxation processes.
Same representation as in Fig. 2.81. (a) In
zero magnetic field: 1, quantum tunnel-
ling in the ground state; 2, quantum tun-
nelling between thermally excited states
(grey balls); 3, relaxation through thermal
activation. In a non-zero magnetic field,
(b) without coincidence between the
levels, no tunnelling (dotted arrow, mag-
netization plateau), (c) with energy coin-
cidence between one level from the right
manifold (MS = +S) and one level of the
left manifold (MS = – S + 3), quantum
tunnelling (horizontal plain arrow, step).
(Adapted from [2.61].)
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(b)
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(a)

I–S*>

Ψ±

Ψ± = [l+S*> ± I–S*>]/√2

Ψ±
Δ

I+S*>

E

Fig. 2.84
Tunnel splitting in a double-well sys-
tem. Same representation as in Fig. 2.81.
(a) Non-interacting, perfectly localized
energy states |+S*> and –S*>; (b) inter-
acting states �±, delocalized on the two
wells, with tunnel splitting �. The split-
ting width � is exaggerated for clarity.

Quantum tunnelling can occur also in absence of a magnetic field, as shown
in Figs. 2.83a and 2.84, which deserve a few comments. Assume that two levels
are degenerate, but that the system has been prepared in one of the localized
states; for example, M′

S = + S, denoted |+S∗> (right well). The corresponding
state in the left well is MS = –S, denoted |–S∗>. This localized state |+S∗> is
not stationary, and quantum oscillation begins to develop between states |+S∗>
and |–S∗>, with a frequency determined by the tunnel splitting �, as seen in
Section 1.6 (Fig. 2.84).

The wavefunction �(t) is then given by:

|�(t)> = |+S∗> cos(2πνt) + |− S∗> sin(2πνt) (2.148)

with ν = � / h (eqn. 1.91). In the absence of relaxation the oscillation should
last indefinitely. The system would then be named coherent. In practice, how-
ever, this is not the case, because there is an exchange of energy with the
environment. The main couplings to the surrounding ‘bath’ are (i) dipolar
interactions with the spins of the different molecules (such interactions change
when one of the surrounding molecules is switching its spin); (ii) the interac-
tion of the electronic spin with the nuclear spins of the atoms of the molecule,
when they exist. Of course, when the magnetic field is swept the degeneracy is
rapidly lost and the system evolves towards the lowest localized energy state
(Fig. 2.85).

The overall behaviour thus depends on the comparison of two time-scales:
(i) the time during which the energy levels are almost in coincidence; and
(ii) the period of quantum oscillations. If the sweep rate is fast, quantum oscil-
lations do not have enough time to establish, and thus the system remains in the
initial electronic state. If the sweep rate is small, quantum oscillations develop,
so that the system explores permanently the two electronic states, and finally
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Δ

A
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I MS >

I MS >I M'S >

I M'S >Hz

E

PMS–M'S

(1–PMS–M'S) Fig. 2.85
Energy of a pair of levels MS and M′

S

as a function of a magnetic field applied
along z. The two levels are coupled by an
interaction giving an avoided crossing in
the centre with energy levels separated by
the tunnel splitting �. The possible tra-
jectories are denoted A (adiabatic) or NA
(non-adiabatic). (Adapted from Sessoli
[2.61]). See also Fig. 3.12.

evolves towards the most stable. These scenarios are depicted in Fig. 2.85.
They are called, respectively, non-adiabatic and adiabatic processes.

Mathematically, the tunnelling probability PMS,M′
S to evolve from state

|MS > to |M′
S > can be computed [2.15], [2.61] in the frame of the Landau–

Zener–Stückelberg model [2.66], and is given by:

PMS−M′
S
= 1 − exp

(
− π�2

2�gμB

∣∣MS − M′
S

∣∣ (dH/dt)

)
(2.149)

where � is the tunnel splitting and dH/dt the sweep rate. One reaches the
same conclusion as in the qualitative previous argument: for large dH/dt or
small � (slow oscillations), P → 0 (non-adiabatic process), and in the oppos-
ite situation, P → 1 (adiabatic process). We shall encounter similar schemes
and equations in the case of electron transfer in Section 3.2.1.2. An important
property of the tunnel splittings � is that they are very small at the bottom of
the wells (MS large) and increase near the top of the barrier (MS weak). Tunnel
process 2 in Fig. 2.83a is expected to be more efficient that process 1, even if
the thermal process 3 is predominant.

We now understand why the sweep rate can influence the hysteresis width
in the pure tunnelling regime (no thermal activation). For fast sweep rates the
equilibrium cannot be established at the first coincidence of MS and M′

S levels,
and the evolution is delayed until the next coincidence, generally more efficient
because � and P are higher. This increases the hysteresis.

Returning to the situation in the absence of field (or weak AC field like
in relaxation experiments), one can remark that at zero K there should be
a residual magnetization reversal rate through tunnelling between the low-
est MS = ± S levels (Figs. 2.83 and 2.84), while the Arrhenius equation
(2.147) would predict a zero rate. Thus the Arrhenius equation should break
down at low temperatures, and the relaxation should become temperature-
independent. Practically, this is not observed in {Mn12}, because the tunnel
splitting between ±S is much too small (it is estimated to be about 10–10 cm–1).
This derives from the fact that when a system obeys the Hamiltonian H0,
eqn. (2.146), the two localized levels |+10∗> and |–10∗> are orthogonal to
each other. Thus the temperature-independent rate cannot be experimentally
measured.
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There is, however, a system for which the quantum tunnelling is
observed in the ground state: [Fe8O2(OH)12(tacn)6Br8(H2O)8] (tacn:1,4,7-
triazacyclononane), abbreviated as {Fe8} [2.4, 2.61]. At variance with {Mn12},
it presents a rhombic component described by the following perturbation
Hamiltonian H1 (written with the corresponding Zeeman terms):

H1 = E
[
S2

x − S2
y

]
+ gμBHxSx + gμBHySy (2.150)

with 0 ≤ E/D ≤ 1/3. Such a Hamiltonian directly couples the MS with MS ±2
components (MS = 10 with MS = 8, MS = –10 with MS = –8, and so on,
and finally MS = 10 with MS = –10 at the tenth order). The {Fe8} complex
provides a wealth of information about the mechanisms of the tunnel effect in
SMM (influence of dipolar interactions, hyperfine interactions, and so on) [2.4,
2.61]. The tunnel effect in the ground state will be encountered also in the case
of electron transfer (Section 3.2.1.2).

2.8.1.4 How can the anisotropy barrier be increased?
To increase the barrier, DS2, there are several approaches: increase S, increase
D, or both. The most appealing approach appeared first to increase S, since
the barrier height should scale as S2. This explains the search for high-
spin molecules (Section 2.6.5.3), and what we have learned about exchange
interaction can be fully used here to produce ferromagnetic or ferrimagnetic
states. The search for 1D compounds (Section 2.8.2) follows the same line
of reasoning (increase S). As for D, an anisotropic molecular structure is
a prerequisite. Eqns. (2.109) and (2.113) can be used. Ignoring the smaller
exchange anisotropy terms dij Dij we find that D of the complex is the sum of
the local anisotropy tensor terms Di, weighted by di coefficients. Choosing
transition-metal ions possessing large local Di parameters [Cr(II), Mn(III),
Co(II), lanthanides . . .] is a logical approach, but the difficulty is to assemble
them so that the effects reinforce and do not cancel. Indeed, the di coefficients
can take positive, negative, or zero values, depending on the topology of the
complex, and it is therefore difficult to anticipate the D value. Furthermore,
experiments and theory show that, everything being equal, D is not independ-
ent of S and can even scale as S–2 (see eqns. (2.109) and (2.113)). Thus, D
should decrease with S, so that the |D|S2 product could be, in fact, independent
of S [2.67–2.68]. Hence the new endeavours to explore new systems, either
1D with SCMs, or mononuclear complexes (SIM) by optimizing the local
anisotropy (choice of the ion and tuning of the structure) [2.69].

2.8.2 Single-chain magnets (SCM)

To reach a high spin, the single-molecule magnet approach uses several mag-
netic centres associated in a cluster. A related approach is to use a single-chain
magnet. It can be expected that the large number of magnetic centres correlated
within the chain will give a high-spin ground state S, and that, the structural
anisotropy of the chain associated with Ising type magnetic anisotropy of the
spins (that is, with spins Si able to take only up and down orientation, ±1 along
z, for example), higher anisotropy barriers can be achieved. The domain was
launched by Sessoli et al. in 2001 [2.70], soon followed by Miyashita and
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Clérac (who coined the SCM acronym), and Julve et al. Hundreds of SCM are
now available [2.4, 2.60, 2.71].

Single-chain magnets (SCM) are 1D objects magnetically isolated from
each other, presenting a slow relaxation of the magnetization. As shown in
Section 2.7.1.3, they cannot present a long-range magnetic order, but they can
exhibit a short-range order; that is, the occurrence of domains where the N
spins are oriented in the same direction (Fig. 2.86a), interrupted by a reversed
spin or by chain defects ( • ). A finite magnetization can thus be frozen at low
temperature in the absence of an applied magnetic field. The analysis of the
slow relaxation of the magnetization, of the thermal activated behaviour, and
of the quantum tunnel effect in SCM, relies on the anisotropic Ising model
elaborated by R. J. Glauber [2.72] (recipient of the Nobel Prize in Physics,
2005). The main concept of Glauber’s dynamics is the probability for a spin
to flip within the chain, taking into account only the nearest-neighbours inter-
actions, with an Hamiltonian of the kind H = –J

∑
i=1
N–1 SiSi+1. The essential

features are shown in Fig. 2.86 in the case of a ferromagnetic coupling (J > 0).
Starting with a system prepared in a saturated ferromagnetic configuration (by
cooling in an applied magnetic field for example (Fig. 2.86a)), the complete
reversal of the magnetization consists of several successive events. The first
is the reversal of one spin in position i, Si, which breaks two interactions
with its two neighbours, at an energy cost of 4J. Indeed, reversing the local
magnetization necessitates struggle against J, a key parameter in this model,
which tends to keep a spin in a given direction under the influence of exchange
with its neighbours. The other steps, to flip the Si±1 spins, do not need fur-
ther energy, since their neighbouring spins are now up and down (negative and
positive interactions). The activation energy is then � = 4J (and � = 4JS2

when S 
= 1). The relaxation time is τ = τ0 exp (4JS2/kT), where τ0 is the
value for an isolated spin. Figure 2.86c displays the special case of a spin flip
beginning at an end of chain, where the barrier is only � = 2J (or 2J S2).
Finally, Figs. 2.86e–f show the probability of the reversal of Si, ωSi→–Si, as a
function of: (i) α, the probability of reversal of an isolated spin, and (ii) γ (=
tanh(2J/kT), a factor depending on the energy J the nearest neighbours inter-
action, in the three cases when the two neighbouring spins are both parallel to
spin Si (d), both antiparallel to spin Si (f), and one parallel and the other anti-
parallel (e). The final result is an anisotropy barrier 4JS2, which can be much
higher than in SMMs. Many other aspects of SCM dynamics are discussed in
[2.4, 2.60 and 2.71].

Δ = 2JΔ = 4J

(a) (b) (c)i 1

. . . . . .

ωSi → −Si
 = α(1–γ)/2

ωSi → −Si
 = α(1–γ)/2

ωSi → −Si
 = α/2 γ = tanh (2J/kT)

(d)

(e)

(f)

i–1  i  i+1
Fig. 2.86
Ising model of a single-chain magnet.
(a) Finite segment of oriented spins.
Activation energy to reverse a spin at site
i within the chain (b) or at one end of
chain (i = 1 or N) (c). (d–f) Probability ω

to flip a spin (light grey) in the three pos-
sible configurations of the neighbouring
spins. (Adapted from [2.4], section 15.2.)



Magnetic anisotropy and slow relaxation of the magnetization 201

2.8.3 Single-ion magnets (SIM)

In this approach we return to mononuclear complexes, but with several favour-
able factors due to the use of rare-earth (RE) elements. First, RE involve f
orbitals—orbitals with a large angular momentum (l = 3) and many electrons,
thus a high S. Second, the spin–orbit coupling is large (Z between 57 and 71;
see third row of transition metals). When this is combined to the anisotropy of
the ligand field, it can produce large negative D values.

The prototype is provided by sandwich complexes (also called ‘double-
decker’) such as [Tb(III)Pc2]–/0, (Pc = dianion of phthalocyanine) represented
in Fig. 2.87. In the anionic form one has Tb(III), f8, and two Pc2– ligands, while
the neutral form contains also Tb(III), but one of the two ligands is formally
oxidized by one electron, and the complex can be written [Tb(III)(Pc2–)(Pc– •].
The RE metal environment is a square antiprism, conferring D4d symmetry to
the complex.

In the case of Tb(III), for the free ion, the eight electrons occupy seven
degenerate f orbitals. The resulting ground term is characterized by L = 3 and
S = 3, thus 7F. After the intervention of spin–orbit coupling the ground state
has J = 6, and is written 7F6, in agreement with the rule for more than half-
filled shells (Section 2.4.1.1) [2.73]. With rare earths and at variance with the
case of transition metals, the ligand field is very weak and must be introduced
after spin–orbit coupling. The action of the ligand field requires specific math-
ematical tools and is not detailed here, but can be found in [2.74, 2.75]. It lifts
partially the 2J + 1 degeneracy of the free-ion ground state (term), and the
lowest substates have Jz = ± 6, consistent with a negative D parameter.

This can be justified by a simple argument. Due to the strong spin–orbit
coupling, the L and S vectors are ‘locked’ in parallel position, while the ligand
field acts only on L by lifting the degeneracy between f orbitals. When filling
the f8 configuration, one puts first 1 electron in each orbital (thus at this stage
all angular momenta cancel), but the eighth electron, responsible for the final
L, enters the lowest energy orbital(s). With the environment of Fig. 2.87, these
orbitals are x(x2–3y2) and y(3x2–y2), because they lie in the xy plane [2.75],
and since they are associated to ml = ± 3, there is a tendency for L, and thus
J, to align with z.

Finally, [TbPc2]– presents attractive features for a single-ion magnet.
Starting from the ground levels (Jz = ± 6), the first pair of excited levels (Jz =
± 5) lies more than 400 cm–1 above (Fig. 2.88). Without the tunnelling effect
one should climb really high in energy to achieve a magnetization reversal.
Even if the barrier is lower than what can be expected, as a matter of fact, the

Tb

z

Fig. 2.87
Structure of a {TbPc2}– sandwich com-
pound (Pc = phthalocyanine), displaying
the z anisotropy axis.
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Fig. 2.88
Energy levels of the ground-state mul-
tiplets of {LnPc2}–. (Redrawn from
[2.73b].)

maximum of χ′′ at 1000 Hz is obtained for 40 K (versus 6 K for Mn12), and
for the neutral species the figure is even 50 K. [TbPc2] can be used as active
element in a spintronic device described in Section 5.2.9. The use of lanthan-
ides to create new quantum magnets—exploiting their very peculiar electronic
structure (Fig. 2.88)—is emphasized in [2.74, 2.75] and many recent papers.
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The moving electron:
electrical properties 3
In Chapter 1 we saw that electrons are running in the field created by the
nuclei, that their energy in the atom is quantized, and that their speed can
be very high. Nevertheless, they remain localized around a given nucleus or
in a given molecule (that is, a well-defined site). In the present chapter we
introduce and study another kind of mobility of the electrons: from one site to
another, which ensures conductivity in the case of a solid. This movement is
a result, in most cases, of external perturbations (electric or magnetic fields,
electromagnetic radiation, and so on). It depends on the interplay of a num-
ber of structural and electronic factors which are analysed in Section 3.1.
In Section 3.2 we consider the case of electron transfer in discrete molecu-
lar systems, and in Section 3.3 the delocalization of electrons in solids with the
resulting conducting properties.

3.1 Basic parameters controlling electron
transfer

Electron transfer depends essentially upon three parameters: one is the elec-
tronic interaction between sites (this favours electron transfer), a second one
is the change in geometrical structure of the surrounding induced by the
presence or absence of an electron (this hinders electron transfer), and
the third one (also unfavourable) is the interelectronic repulsion precluding
the simultaneous presence of two electrons on the same site. The follow-
ing discussion will be useful for the study of electron transfer in solution or
in discrete molecular systems, as well as in extended solids. However, for
reasons of simplicity the parameters will be defined using simple examples
taken from discrete systems. Discrete systems will be in general of the
Mn+ – M(n+1)+ type; that is, two neighbouring transition metal ions whose
oxidation states differ by one unit. When the two ions are permanently linked
by covalent bonds, they constitute a mixed valence compound—a type of com-
pound which will play a crucial role in the concept of electron transfer (see
Section 3.2.2).
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3.1.1 The electronic interaction between neighbouring sites:
the Vab parameter

The basic reason for the possibility of electron transfer is the existence of
an electronic interaction between different sites (atoms or nearby molecules).
In the simplest case of the interaction between two atoms in vacuum, it is
described by the resonance integral β =< φa|H|φb > as seen in eqn. (1.17).
The interaction can be illustrated by a diagram, familiar to physicists, in which
one plots the energy of an electron as a function of its position (Fig. 3.1).

In Fig. 3.1 are shown the electronic energy levels for each atom and for the
complete system (molecule). For the latter, there is a splitting 2 | β | (neglect-
ing the overlap; see Section 1.3.1) between the bonding and the antibonding
combination of atomic orbitals. The bonding and antibonding combinations
are given by (neglecting overlap):

ψbond = ψ1 = 2−1/2(φa + φb) (3.1a)

ψantibond = ψ2 = 2−1/2 (φa − φb) (3.1b)

A typical situation for electron transfer occurs when there is just one electron
present in the system. Since the electron total energy is always below the poten-
tial energy in the region between A and B, it is said that the electron can move
by tunnel effect between A and B. Actually, talking about the tunnel effect
(here an electronic tunnel effect because Fig 3.1 deals with electron energies)
is the same as talking about the birth of a chemical bond between A and B. For
other aspects of tunnelling, see Sections 1.6 and 2.8.

Real systems are, of course, much more complex, for two reasons: (i) there
is more than one electron, so that the quantum-mechanical description must
involve total wavefunctions and energies instead of one-electron ones, and (ii)
in most studied cases there is a bridging ligand linking the two metal sites, and
the analysis must take into account the electronic delocalization on this ligand.

We temporarily get rid of difficulty (i) by assuming that in the system upon
investigation the electronic interaction results from the mixing of only one
orbital from each site—the one which is occupied by either one or zero elec-
tron. Below in energy are found occupied orbitals which do not play a role in
a first approximation. We are thus brought back to a one-electron-two-orbitals
analysis (Fig. 3.2). This approach has the immense advantage of allowing a
pictorial approach based on orbital topologies. The problem will be discussed
further in Section 3.2.2.6.

2  β

A B

ε

r

Fig. 3.1
Electron energy (denoted ε) for a sys-
tem with two localization sites, A and B.
Thin curved lines represent the potential
energy, while bold horizontal lines rep-
resent the total energy. As a result of elec-
tronic interaction, the electron energies
are split in two levels separated by 2 |β|.
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We now consider difficulty (ii). As a result of the presence of the bridging
ligand, the intervening orbitals have extensions on the bridge (as well as on
ancillary ligands). Thus the problem must be analysed by considering the com-
plete system. Let us take the example of two transition metal ions linked by a
simple monoatomic bridge with just one active bridge orbital: many systems
contain the centrosymmetric M–O–M framework, with a linear bridge con-
sidered formally as the oxide ion O2– (Fig. 3.3). With the coordinate system
of the figure, the dxz orbitals of the metals can mix only with the px orbital
of the oxide. Taking into account the electronegativity difference between
metal and oxygen, one derives the qualitative diagram of Fig. 3.3, in which
one recognizes the standard way of construction of molecular orbitals; that is,
by building first symmetry-adapted linear combinations (SALC or SO) of dxz

orbitals, namely 2–1/2(dxzA + dxzB) and 2–1/2(dxzA − dxzB), and then allowing
them to interact with oxygen. (See also Section 2.6.2.2 on exchange interaction
where a similar reasoning was used for a linear M–O–M bridge but involving
dx2–y2 orbitals.)

ε

Fig. 3.2
A polyelectronic system in which only
one orbital on each site plays a role in
electron transfer.

Thus, in the upper part of the final diagram one recognizes two orbitals, ψ1,
energy ε1, ψ2, energy ε2, with strong metal character and opposite symmet-
ries u and g, as in the case of the two-site system (eqns. (3.1a) and (3.1b)).
For a mixed valence situation there is only one electron in these orbitals.
Calling them ψ1 and ψ2, the electronic interaction is defined, by analogy as
previously, by:

Vab = |β| = 1/2(|ε2 − ε1|) (3.2)

so that Vab is always a positive quantity. This way of defining the electronic
interaction is called the dimer-splitting method.

In this chapter we shall use either Vab or β to characterize the electronic
interaction. When using β we must keep in mind that it is an effective quantity
because, as in Section 2.6.2.2, we are not dealing with the interaction between

M O M

x

z

d

2 Vab

SALC

ψ1

ψ2

g

u

u

u

g

u

Fig. 3.3
Qualitative MO diagram for a mixed
valence system with a linear oxygen
bridge. The d orbitals of the two metals
are assumed to bring just one electron
(case of a vanadium(V)–vanadium(IV)
system for instance). g and u refer to the
gerade and the ungerade symmetry of the
orbitals.
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pure metal orbitals. Orbitals such as ψ1 and ψ2 could indeed be obtained by
in-phase and out-of-phase combinations of localized orthogonal orbitals ψ′

a

and ψ′
b (see orthogonal magnetic orbitals in Section 2.6.1.2); that is, orbitals

with a strong weight on a metal atom and tails on the neighbouring ligands and
even on the other metal site. Such orbitals are defined by:

ψ′
a = 2−1/2 (ψ1 + ψ2) and ψ′

b = 2−1/2 (ψ1 − ψ2) (3.3)

and with this definition

Vab = ∣∣< ψ′
a |H| ψ′

b >
∣∣ (3.4)

where H is the complete Hamiltonian of the molecule. Once again, we note the
analogy with the problem of exchange interaction, except that in the present
case the electronic filling is different because of the mixed valence nature.

The previous definitions can be used only for symmetrical systems. For
non-symmetrical systems a more general procedure is necessary, because the
splitting between MO levels such as �1 and �2 depends not only on |β| but
also on the initial energy difference between interacting orbitals (see Fig. 1.5).
We can use a suitable effective Hamiltonian. We have already seen an example
in Section 1.2.3, but here the purpose is different. The effective Hamiltonian
adapted to electron transfer is defined in such a way that:

Vab =< φa

∣∣Heff
∣∣φb > (3.5)

Note the difference compared with eqn. (3.4). Here the orbitals entering in the
Vab expression are atomic orbitals located on atoms A and B, but H has been
replaced by Heff, the definition of which is [3.1]:

Heff = P U−1H U P (3.6)

where P is the projection operator of the wavefunctions space on the subspace
defined by φa and φb, and U is an operator performing linear combinations
of the wavefunctions (basis change) [3.1b]. U is chosen in such a way that it
minimizes the distance between some wavefunctions and the φa, φb subspace,
or, in other words, it allows partitioning the Hamiltonian matrix. (The term
‘distance’ has no geometrical meaning here, but refers to the vectorial space of
wavefunctions).

We shall not detail here the mathematics of this effective Hamiltonian,
which can be found elsewhere [3.1]. We can just perform a qualitative check-
ing, assuming that a molecular orbital calculation has been performed on the
complete metal–ligand–metal system, giving MOs of the form:

ψi = ciaφa + cibφb +
∑

ciLφL (3.7)

where φa and φb are pure atomic orbitals located on A and B (now A and B are
no longer equivalent) and φL are orbitals belonging to the ligand. The effective
coupling is then given by [3.2]:

Vab =
∣∣∣∣ c1a c1b − c2b c2a

2 (c1a c2b − c1b c2a )
(ε1 − ε2)

∣∣∣∣ (3.8)

where indexes 1 and 2 refer to the two orbitals with the highest contributions
coming from A and B. Thus, let us take the example of the combination of just
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two orbitals with very different energies (φa much more stable than φb). Then
one has:

c1a ≈ 1 , c1b ≈ κ, c2a ≈ −κ, c2b ≈ 1 (3.9a)

with κ a mixing coefficient << 1. Substituting in eqn. (3.8) gives

Vab ≈ |κ(ε1 − ε2)| (3.9b)

showing that Vab is now much lower than the energy difference (ε1 – ε2), in
qualitative agreement with Fig. 1.5.

On the other hand, for a symmetrical system, the two selected orbitals are
such that:

c1a ≈ 2−1/2, c1b ≈ 2−1/2, c2a ≈ 2−1/2, c2b ≈ − 2−1/2 (3.9c)

and the substitution in eqn. (3.8) gives eqn. (3.2).
The effective Hamiltonian (3.6) is thus efficient and of general purpose. Its

structure can be qualitatively justified as follows: the projection operator P on
the φa φb subspace is equivalent to the operation of selecting in the complete
MO diagram those orbitals (�1 and �2) which have strong weights on A and
B. The U operation, corresponding to a rotation in a vectorial space, corrects
the energy calculation (H) to take into account that �1 and �2 are unevenly
distributed on φa and φb.

In this chapter we shall use mainly definition (3.2) based on the symmetry
splitting of energy levels. For non-symmetrical systems, eqn. (3.2) cannot
be used, and one has to fall back to the less intuitive formula (3.8). For the
moment we use a definition of electronic coupling based on one-electron ener-
gies (hence the notation εi in all formulae). In Section 3.2.2.6 we shall say a few
words about more advanced treatments, taking into account the polyelectronic
nature of the wavefunctions.

3.1.2 The structural change of the surrounding:
the λ parameter

Electron motion from a localized site (such as a metal atom) to another is
always accompanied by some structural change. The process is well doc-
umented for electron transfer in solution, and in what follows, the basic
principles will be established from this example.

We consider the system formed by two hexaaqua complexes of Fe2+ and
Fe3+ in close proximity. It is known, from X-ray structures in the solid state,
that the iron–oxygen bond lengths are 1.99 Å for [Fe(H2O)6]3+, (t2g)3(eg)2,
and 2.12 Å for [Fe(H2O)6]2+, (t2g)4(eg)2 [3.3]. This length variation with oxid-
ation state is general in transition metal chemistry: frequently the addition of
one electron populates an e∗

g antibonding orbital (see Section 1.3.6), and thus
weakens the metal–ligand bonds. But even when a t2g orbital is populated,
there is also a weakening because of the general expansion of the electronic
cloud, leading to an increase in metal–ligand distances. Anyway, owing to this
difference the electron transfer is impossible with the initial ground-state geo-
metry. Electron transfer must indeed obey two constraints: (i) since electronic
motions are much faster than nuclear motions, the system geometry cannot
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Fig. 3.4
(Left) initial geometry of the
[Fe(H2O)6]3+. . . [Fe(H2O)6]2+ pair, sho-
wing (right) the impossibility to achieve
an electron transfer at constant energy.
S = ‘small’ (coordination sphere adapted
to FeIII); L = ‘large’ (coordination
sphere adapted to FeII).

be modified during the electron transfer act; this restriction is very analog-
ous to the Franck–Condon principle, which governs electronic transitions (see
Section 4.2.3); (ii) also as a consequence of slow nuclear motion, the system
has no time to exchange thermal energy with the surroundings; the system
behaves as if isolated, and energy conservation prevails. But transferring an
electron while keeping the initial geometry would result in the creation of a
[Fe(H2O)6]3+ ion with the geometry of [Fe(H2O)6]2+ and vice versa, which is
impossible at constant energy (see Fig. 3.4). Thus a change in geometry is a
prerequisite for electron transfer.

A simple way to represent the nuclear state of the system consists in plotting
the potential energy of the [Fe(H2O)6]3+. . . [Fe(H2O)6]2+ pair as a function of
two variables, dA and dB, describing the bond lengths around the iron atoms
labelled A and B (Fig. 3.5). The energy is then represented as contour lines.
The initial state, corresponding to the FeA

2+FeB
3+ situation, is then associated

to a point I (dA = dII; dB = dIII) located away from the dA = dB diagonal, and
the final state FeA

3+FeB
2+ to a symmetrical point with respect to this diagonal,

denoted F (dA = dIII; dB = dII). Starting from these minimal energy situations,
any modification of a bond length gives rise to an increase in energy, which is
given, in the harmonic oscillator approximation, by �E = 1

2 k �d2, where k is
the force constant of the bond, and �d the bond length change with respect to
the equilibrium situation.

I

M

F

dA

dB

d A
 =

 d B

dIII dII

dIII

dII

dm

dm

dA dB

A B

Fig. 3.5
Potential energy map for the
[Fe(H2O)6]3+. . . [Fe(H2O)6]2+ pair as
a function of dA and dB. I: Initial state
corresponding to the FeA

2+FeB
3+ situ-

ation; F: Final state corresponding to the
FeA

3+FeB
2+ situation; M: intermediate

state. Note that the reaction trajectory
I → M → F is not generally linear.
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To achieve electron transfer while obeying the previous constraints, one has
to cross at some time the dA = dB diagonal; that is, to bring the dA and dB

distances to a common value, dm. The problem is now to determine which
dm value will lead to the lowest energetic cost. Starting from the initial state,
bringing all the Fe–O distances to a common value d requires the following
energy:

�E = (n/2) kIII (d − dIII)
2 + (n/2) kII (dII − d)2 (3.10)

where n is the number of bonds around iron (here n = 6), kII and kIII are the
force constants in oxidation states II and III, and dII and dIII are the correspond-
ing equilibrium distances. Taking the derivative of eqn. (3.10) with respect to
d, and searching for the extremum, yields:

dm = kIIdII + kIIIdIII

kII + kIII
(3.11)

That is, the best ‘compromise’ distance is a weighted average of the dII and dIII

distances corresponding to the two oxidation states. When the force constants
are equal, one has the intuitive result:

dm = dII + dIII

2
(3.12)

If now we introduce the value of dm in expression (3.10), we find, after
rearrangement:

�E = n kII kIII

2(kII + kIII)
(dII − dIII)

2 (3.13)

which reduces, when kII = kIII to:

�E = n k

4
(dII − dIII)

2 (3.14)

Thus, there is an activation energy which is proportional to the square of the
difference dII – dIII.

The interplay between structural rearrangement and electron transfer itself
is illustrated in Fig. 3.6, showing the sequence of events: first the structural
rearrangement leading to a ‘compromise’ geometry, which is symmetrical with
respect to A and B sites, then electron transfer at constant geometry and energy,
and finally a relaxation of the coordination spheres with adaptation to the new
oxidation states.

However, to be complete one has to take into account an additional contribu-
tion to the activation energy coming from the solvent. In the same way as the
metal–ligand distances are different around the Fe2+ and Fe3+ sites, the state
of solvent polarization is different around the [Fe(H2O)6]3+ and [Fe(H2O)6]2+

entities, as a result of their charge difference. Solvent molecules are more
strongly polarized around a 3+ charge than around a 2+ charge, due to the
higher electrostatic field.

Thus the activation energy in solution contains two contributions, one due
to the internal coordination sphere (the hexaaqua complex itself), and one due
to the external coordination sphere, namely the solvent, so that:

Eact = �E = �Eint + �Eext (3.15)
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Fig. 3.6
Sequence of events occurring during
electron transfer.

�Eint is the term computed by eqn. (3.13) from microscopic quantities. On the
contrary, to evaluate �Eext a common practice is to use a ‘macroscopic’ model
in which the solvent is considered as a continuous dielectric medium [3.4].
�Eext derives from the interaction between the dielectric medium and the huge
electric field created by charged species in their vicinities. Of course, such a
model could be questioned, because it does not take into account explicitly the
true molecular structure of the solvent around the ions, but this phenomenolo-
gical approach has been successful for several decades in producing realistic
estimations of the energies involved.

Thus the activation process can be imagined as follows at the level of the
solvent: starting from the initial state, where the external coordination spheres
present a polarization state adapted to the initial electronic configuration
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2+ 3+

2.5+ 2.5+

Fig. 3.7
Rearrangement of external coordination
spheres constituted by the solvent. For
electron transfer to occur, the solvent
must reach an ‘average’ polarization
state, intermediate between the one pre-
vailing around [Fe(H2O)6]3+ and the one
around [Fe(H2O)6]2+. However, this con-
cerns only the orientation polarization
(see text).

(Fig. 3.7.), one has to reach an activated state where the polarization is a com-
promise between the one of a 2+ charge and the one of a 3+ charge; that is a
2.5+ / 2.5+ distribution (note the analogy of the previous argument with the
case of the internal coordination sphere).

The calculation is complex, since we are dealing with a non-equilibrium
polarization. One has indeed to distinguish two contributions to the solvent
polarization energy: (i) an orientation contribution, due to the partial align-
ment of polar molecules along the strong electric field created by the charge,
and (ii) an electronic contribution, due to the displacement of electrons inside
the solvent molecules; that is, the electric polarization of solvent molecules
themselves. The first process requires nuclear motions, which are slow with
respect to the electronic motion, while the second process is fast and can adapt
at any time to the motion of the transferred electron. Thus only the first com-
ponent intervenes in the activation process, because it must be achieved before
the electron transfer, for the same reasons as for the rearrangements of bond
lengths. Concerning the electronic polarization, since it is fast, it can be modi-
fied during the electron transfer, and thus does not contribute to the activation
energy.

Only an outline of the calculation will be given here. The interaction energy
between a sphere of charge q and radius a, immersed into a dielectric medium
of static dielectric constant εs is usually given by the Born expression:

E = 1

4π ε0

q2

2a

(
1 − 1

εS

)
(3.16)
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Since this expression uses εs (ε ‘static’), it encompasses the two components of
the polarization. Now, if we are interested in the sole electronic polarization,
we just have to replace εs by εop, which is the dielectric constant at optical
frequencies (1014 – 1015 Hz). This comes from the fact that at these very high
frequencies of the electromagnetic field of optical radiations, only the electrons
can follow the field changes, while the nuclear motions are frozen. εop is, of
course, much lower than εs. From electromagnetic theory, εop equals the square
of the index of refraction; that is, (1.33)2 = 1.77 in the case of water. Thus it
appears that the orientation contribution to the ion–solvent interaction must
involve a difference term (1/εop – 1/εs) called Pekar’s factor [3.5]. Taking into
account the detailed geometry of the system, the contribution of the solvation
sphere to the activation energy is finally given by the following formula, due
to Marcus [3.6] and Hush [3.7]:

�Eext = �e2

4π ε0

(
1

εop
− 1

εS

) (
1

2aA
+ 1

2aB
− 1

R

)
(3.17)

In this expression, �e is the amount of charge transferred in the transition state;
thats is, 0.5 e–, aA and aB are the Van der Waals radii of the interacting ions
(see Fig. 3.8), and R is their centre-to-centre distance (generally R = aA + aB).

Since the activation process implies two simultaneous and correlated
changes, it is convenient to define a reaction coordinate Q, which describes at
the same time the internal and external rearrangements. When this coordinate
varies, the nuclei position changes gradually, and one evolves in a continuous
way from the initial-state geometry to the final state one, the changes bearing
simultaneously on the metal–ligand distances and on the solvent molecules
orientation and disposition. This makes the Q coordinate difficult to visualize
because, strictly speaking, the reaction path is a cross-section in a multidi-
mensional diagram where the potential energy depends upon a large number
of geometrical parameters. However, some feeling of the Q coordinate can
be grasped from Fig. 3.9. An important guide for the following is that, for a
given electronic configuration, the potential energy varies with Q according to
a quadratic law of the form m (Q−Q◦

i )2 or m (Q−Q◦
f )2 (Fig. 3.9), where Q◦

i
and Q◦

f are the equilibrium values for the initial and final state respectively, and
m is a constant which does not need to be explained for the moment.

R

aA aB

Fig. 3.8
Geometrical parameters used in the cal-
culation of the solvent contribution in the
Marcus–Hush model.



Basic parameters controlling electron transfer 215

Q

E

2+ 2.5+ 2.5+ 2+3+ 3+

λ

λ/4

Q°i Q°f

FeII – FeIII FeIII – FeII

Fig. 3.9
Representation of the electron trans-
fer by potential energy curves; namely,
parabolae as functions of the reaction
coordinate Q. As shown in the frames,
moving along Q results in a concer-
ted motion of the nuclei, those of
the internal coordination sphere (expan-
sion/contraction), and those of the solvent
molecules. Q◦

i and Q◦
f are the equilib-

rium values for the initial and final state
respectively. λ designates the ‘vertical’
rearrangement energy.

Remark: This quadratic dependence is obvious for the �Eint term,
according to eqn. (3.10). Regarding �Eext, all happens as if the solvent
were polarized by a fictitious charge �e (see eqn. (3.17)) able to vary
continuously. This fictitious charge describes the solvent polarization
state, and plays the same rôle as the bond lengths in �Eint. Now, the
dependence of �Eext upon �e is also quadratic.

We now present the basic diagram universally used for describing electron
transfer reactions. It is made of two displaced parabolae in the E = f(Q) plane,
one corresponding to each electronic configuration (Fig. 3.9). With respect to
internal modes, it can be considered as a cross-section in Fig. 3.5 from I to
F, and moving from left to right realizes the scenario of Fig. 3.6. To avoid a
frequent misconception, it is important to realize that each parabola describes
the total energy of the whole system, not the one of a subunit. (It is also import-
ant not to become confused with a figure like 3.1, in which the energy of one
electron is plotted against a spatial coordinate.) The key parameter here is λ: it
is the vertical distance in energy between the bottom of one parabola and the
curve corresponding to the other electronic state.

Due to the parabolic nature of the curves, the difference in energy between
the bottom of a curve and the crossing point is λ/4. Note that in the previous
treatments, what we have computed in eqn. (3.13) (or (3.14)) and (3.17) was
actually λ/4.

This type of diagram is extremely general, and can be used for any system,
inorganic, organic, and even very complex systems such as proteins bearing
redox groups. The internal geometry changes are, of course, more complex
and harder to visualize than in the case of coordination complexes, though the
general behaviour is the same.

In the solid state, a similar coupling between nuclear motion and electronic
motion occurs: the presence of an extra electron on a given site generates a
local distortion, and the electron can be ‘self-trapped’ by its own modification
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of the medium, which considerably reduces its mobility. The association of the
electron and its distortion constitutes a pseudo-particle called a polaron.

The concept of polaron was introduced by Landau in 1933 [3.8] and later
discussed by Mott [3.9]. One can distinguish two situations: (i) polarons in
molecular lattices, where the basic parameter is the bond length change upon
addition/removal of one electron, and (ii) polarons in ionic lattices, which
are described by phenomenological quantities, as in the previous case of the
solvent.

For molecular lattices the treatment defines a polaron energy Wp, which
is the change in energy when the system relaxes after the introduction of an
additional electron. As previously, the energy change is a quadratic function
of internuclear distances. Electron transfer between adjacent sites occurs by
‘hopping’ with an activation energy denoted WH. The process is similar to the
one depicted in Fig. 3.6. Each site distorts to adopt a ‘compromise geometry’,
halfway between the geometries of the two oxidation states, and due to the
quadratic law the energetic cost for a site is 1/4 Wp; but since there are two sites
involved, the final result is:

WH = 1/2 Wp (3.18)

Comparison with Fig. 3.9 shows the correspondence between the solution-state
model and the solid-state model:

Wp = λ/2 (3.19)

In the solid-state literature, this process, by which the presence of an electron
induces geometrical distortions, is called electron–phonon interaction, because
the phonon is the quasi-particle associated with vibrations in solids.

For ionic lattices a simple picture can be presented if we consider the effect
of introducing an additional charge on a given ion of the same sign. The nearby
ions of opposite charge are attracted and move inwards, while the next ion
neighbours are repelled and move outwards (Fig. 3.10).

(a)

(b)

Fig. 3.10
Scheme of the motions of the ionic spe-
cies associated to the formation of a
polaron in an ionic lattice (white spheres
are anions, black spheres are cations).
(a) Initial positions of the ions; (b) an
additional negative charge is introduced
increasing the charge of the ion at the
centre (grey sphere). The arrows show the
resulting motions of the ions.

In ionic lattices, polaron theory has been formulated in terms of static and
optical dielectric constants εS and εop respectively, exactly in the same way as
the polarization of a solvent. And as for the solvent, one has to separate the two
components of polarization: the ion displacements (slow) and the electronic
polarization (fast).

A simple calculation produces for Wp [3.9]:

Wp = − 1

2

1

4 π ε0

(
1

εop
− 1

εS

)
e2

rp
(3.20)

where rp is the polaron radius, defined approximately as the radius of the zone
in which appreciable ion displacements occur. If rp is of the same magnitude
as the inter-ionic distance, then one has a small polaron, and this will be the
case considered in this book. The other possibility is to have a much greater rp,
corresponding to a large polaron.

One can notice the analogy with eqn. (3.17)—in particular, the intervention
of the Pekar factor.
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3.1.3 The interelectronic repulsion: the U parameter

The last important factor in electron transfer is the one-centre interelectronic
repulsion parameter, already encountered in Chapters 1 and 2 and denoted as
j0 or U, and responsible inter alia for electron correlation. It is a major limit-
ing factor for having electrons freely moving in a lattice or in a polymetallic
system, because transferring an electron from one site to a nearby site already
occupied by another electron necessitates overcoming the one-centre interelec-
tronic repulsion energy. A more ‘chemical’ way to formulate this problem is
to note that in a system with localized valence states, moving an electron from
one site to another one is a disproportionation process:

Mn+ + Mn+ → M(n+1)+ + M(n−1)+ (3.21)

for which there is an energetic cost �E = U–V, due to the proximity of
charges. V, or j, is the electrostatic repulsion between charges located on
adjacent sites, introduced in Section 1.5.1.

3.1.4 The interplay of parameters

The different situations resulting from the competition between the three para-
meters can be summarized with the ‘ternary diagram’ of Fig. 3.11, where the
three summits correspond to the zone where a given interaction prevails.

In this chapter we shall study successively discrete systems; that is, sys-
tems with a limited number of electronic localization sites (generally studied
in solution), and then extended solids.

For discrete systems the most typical examples involve two possible localiz-
ation sites and just one exchangeable electron—for instance, two metallic sites
with oxidation states differing by one unit. Thus the U parameter does not play
any role, and the useful part of the diagram in Fig. 3.11 is the right one, show-
ing the competition between Vab and λ. There will be more or less electronic
delocalization and mobility according to the relative values of Vab and λ.

For extended systems the key experimental observable is conductivity, and
thus the metallic, semi-conducting or insulating behaviour. Metallic conduct-
ivity occurs when Vab is the dominant interaction, and standard band theory
applies. In the mixed valence situation the role of U can be neglected because

Vab

λ

mixed valence
systems

metallic conductors

Mott insulators semiconductors

intermolecular
electron transfer
in solution

semiconductors

U

Fig. 3.11
Triangle representation of the competi-
tion between Vab (or β), λ, and U (or j0),
with the consequences for the conductiv-
ity in solids.
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the stoichiometry corresponds to less than one active electron per site, and
the competition is between Vab and λ, giving either a metallic or semicon-
ducting character. In the homovalent situation, one cannot ignore U. When U
predominates, the systems are called ‘Mott insulators’: despite the formation
of incompletely filled bands, the energy cost for the electron to move from one
site to another is too large, and the systems are not conducting. The fourth para-
meter, V, the two-centre repulsion energy, will play a role in Section 3.3.4.3 and
will be commented on there.

3.2 Electron transfer in discrete molecular
systems

As a first step we will consider what happens in the transient association of
two metal ions in different valence states. The electron transfer is then inter-
molecular and is generally studied in solution. As a second step we will study
mixed valence compounds, where the two ions are permanently associated by
a covalent link, so that the transfer is intramolecular.

3.2.1 Intermolecular transfer

3.2.1.1 Introduction
The simplest examples of intermolecular electron transfer are provided by
self-exchange reactions, because they involve just one redox couple in which
the reduced and the oxidized form exchange only one electron. The classical
example is the following:[∗Fe (H2O)6

]2+ + [
Fe (H2O)6

]3+ �
[∗Fe (H2O)6

]3+ + [
Fe (H2O)6

]2+

(3.22)
Since this reaction is accompanied by no net chemical change, one has to resort
to special methods for monitoring, such as isotopic labelling, and here the
* symbol designates a radioactive isotope of iron. Other methods, based on
spectroscopy, are also possible (EPR, NMR, optical activity) [3.10]. Note that
obviously, for such reactions the resulting free enthalpy change �G◦ = 0.

In the case of the Fe3+/2+ system, discussed previously, the reaction is exper-
imentally found second-order, with a rate constant of 1.1 mol–1 l s–1 at 25◦ C
[3.3]. The activation energy is relatively high—greater than 50 kJ mol–1 [3.3,
3.11].

First of all, let us remark that the redox reaction between the [Fe(H2O)6]3+

and [Fe(H2O)6]2+ species must result from two consecutive processes:

• The association of reactants as an ion pair, with a very weak stability, as the
ion charges are of same sign.[

Fe (H2O)6

]3+ + [
Fe (H2O)6

]2+ �
[
Fe (H2O)6

]3+
. . .

[
Fe (H2O)6

]2+

(3.23)
• The electron transfer reaction itself, with a first-order rate constant ket:[

Fe (H2O)6

]3+
. . .

[
Fe (H2O)6

]2+ �
[
Fe (H2O)6

]2+
. . .

[
Fe (H2O)6

]3+

(3.24)
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If the first step is fast with respect to the second (fast pre-equilibrium situation),
the overall rate constant is then given by:

k = K ket (3.25)

where K is the equilibrium constant of reaction (3.23). Expression (3.25)
requires also that K be small, and this condition is fulfilled for ions bearing
charges of the same sign. Throughout the rest of this chapter we shall concen-
trate on reaction (3.24), considered as the limiting step; that is, the one which
determines the kinetics of the reaction.

The activation energy of electron transfer is due to the necessity of rearran-
ging the internal and external coordination spheres, as shown in Section 3.1.2.
The contributions of �Eint and �Eext are frequently comparable, considering
the following calculations. For the [Fe(H2O)6]3+. . . [Fe(H2O)6]2+ system, one
has dII = 212 pm, dIII = 199 pm, from reference [3.3], kII = 149 N.m–1,
kIII = 235 N.m–1 from reference [3.11], from which dm= 204 pm, and finally
�Eint = 27.8 kJ.mol–1. Regarding �Eint, one has aA ≈ aB = 345 pm, R =
690 pm, εs = 80, and εop = 1.77, leading to �Eext = 27 kJ. mol–1. The total
activation energy is then computed as 27.8 + 27 = 54.8 kJ. mol–1, close to the
experimental value (57 kJ mol–1) [3.11].

Remark: Later in this chapter we will assimilate �E and �G. There are
indeed some justifications to such an approximation [3.11] [3.12] which
is widely used in the literature: (i) in condensed phases, �E ≈ �H, so
the main problem is between �H and �G; (ii) in the case of the solvent
contribution, since the calculation deals with the macroscopic work of
electrical forces, what is computed is actually �G, and in cases such as
those referred to, this represents about 50% of the activation energy; (iii)
the �S term is zero for symmetrical reactions such as exchange in eqn.
(3.22). Nevertheless, the reactions with a strong �S◦ require a special
adaptation of the theory.

The electron transfer is depicted in Fig. 3.12, which is a completed version of
Fig. 3.9.

NA

A

Q

E

λ

λ/4

Q°i Q°f

2 Vab 

FeII–FeIII FeIII–FeII

Fig. 3.12
Potential energy curves describing the
electron transfer process, showing the
avoided crossing with splitting 2Vab in
the central part. Two different traject-
ories are possible (grey arrows): in the
adiabatic process (A) the system stays
always on the lowest curve. In the non-
adiabatic process (NA) it can go through
the crossing zone while staying on the
same initial potential energy curve (see
also Fig. 2.85).
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The activation process (see Fig. 3.12) consists in reaching the crossing zone
of the E = f(Q) curves. At the crossing point the geometrical structure is per-
fectly symmetrical, so that the electronic states are degenerate. However, due to
the electronic interaction between the two electronic states, there is an ‘avoided
crossing’ giving two new states with two new energies separated by 2 Vab (see
also Sections 1.6 and 2.8). In this section on intermolecular electron transfer,
Vab is small and the avoided crossing will not always be represented on the
diagram. But it governs the possibility of electron transfer when reaching the
central region.

One has to distinguish, indeed, two limiting cases (see Fig. 3.12): the ‘adia-
batic’ case (A) when the system always stays on the lowest energy curve, and
thus moves from one parabola to the other in the crossing region, and the ‘non-
adiabatic’ case (NA) when the system remains on the initial (reactants) curve,
so that no net electron transfer occurs. The calculation of the rate constant for
step (3.24) must take into account these two eventualities. This will be per-
formed in the following, using first two variants of a ‘semi-classical’ model,
then a quantum model.

3.2.1.2 Rate in the semi-classical Marcus–Hush model
The simplest model is called ‘semi-classical’ because it is based on the concept
of activation energy, itself computed with the previous expressions, into which
enter only classical parameters (force and dielectric constants). The represent-
ative point of the system evolves on a potential-energy surface, and quantum
aspects are introduced only in the activated complex zone. As will be shown in
the following, there is a more rigorous but mathematically more cumbersome
approach: the quantum model, in which quantum aspects are introduced from
the beginning.

In the semi-classical model, the rate constant ket of step (3.24) is computed
from a variant of the activated complex theory:

ket = νn κ exp

(
− �G‡

RT

)
(3.26)

where �G‡ is assimilated to the total �E computed previously and νn is a nuc-
lear vibration frequency. This is as an effective frequency taking into account
both nuclear processes discussed previously [3.13, 3.14]:

ν2
n = ν2

ext �Eext + ν2
int �Eint

�Eext + �Eint
(3.27)

This expression is indeed a weighted average based on the frequencies and
reorganization energies associated with the intramolecular modes νint, �Eint

(bond vibrations, typically 1013 sec–1), and intermolecular, or external, modes
νext, �Eext (solvent motion, typically 1012 sec–1). A typical value for νn is
5.1012 s–1. νn can be seen as the number of times per second the system arrives
in the crossing region. κ is the transmission coefficient; that is, the probabil-
ity for the system to pass effectively from one parabola to the other, once in
the curves’ crossing area (Fig. 3.12). As a matter of fact, reaching the cross-
ing zone is not enough for the electron transfer to occur, because one needs in
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addition that the two electronic states be connected by an electronic interac-
tion. Think, for instance, what would happen if one metal site were on Earth
and the other on the Moon: the system would still be described by a figure very
close to 3.12(!), with a vanishingly small Vab, but of course the rate of reaction
would be immeasurably small! Thus κ can take any value between 0 and 1,
depending on the electronic coupling occurring in the system.

Thus κ describes the possibility for an electron, initially localized on one
site, to pass on the neighbouring site through empty space, or more generally
through a region of high potential energy. This is an electronic tunnel effect
(see also Sections 1.6 and 2.8), which should not be confused with the nuclear
tunnel effect, evoked in the following (quantum model).

The theoretical treatment is generally based on Landau–Zener∗ ∗Although the name of Stückelberg is
also associated to Landau and Zener
in the case of magnetic properties
(Section 2.8.1.3 and [2.66]), it is custom-
ary to quote only the first two names in
electron transfer literature.

formalism
[3.15]: when the system, initially in the localized electronic state Fe2+–Fe3+

reaches the crossing zone, this state is no longer stationary. Calling ψA and ψB

the wavefunctions describing respectively an electron localized on site A (ini-
tial state) and on site B (final state), the stationary wavefunctions now become,
as a result of symmetry:

ψ+ = 2−1/2 (ψA + ψB) and ψ− = 2−1/2 (ψA − ψB) (3.28)

This is the origin of the avoided crossing in the energy diagram. The dynamic
evolution can be described by a time-dependent wavefunction taking the form:

ψ(t) = c+ψ+ exp(−i E+t /�) + c−ψ−exp(−i E−t/�) (3.29)

where E+ and E– are the energies of the (delocalized) stationary states, and c+

and c– are coefficients determined by initial conditions. The result is a beating
process between the ψA and ψB states, with the frequency [3.16]

ν = �E/h, where �E = | E+ − E−| = 2 Vab (3.30)

Thus the system evolves periodically from the initial to the final state and vice
versa (see Fig. 3.13). This behaviour is typical of any symmetrical two-state
system when two equivalent states are coupled by some interaction.

Actually, this behaviour would be the real one if the nuclei were fixed
exactly at a position corresponding to the intersection. But since the nuclei
move rather than stay fixed, an irreversibility occurs; that is, there is a given
probability for the system to evolve definitively from the electronic configur-
ation of the reactants towards the one of the products. The net result depends
on the amount of time the system stays in the crossing region. In fact, this is

PB

t
0

1

h/ΔE

Fig. 3.13
Dynamic behaviour of a two-state sys-
tem. PB is the probability to find the sys-
tem in state B, once it has been prepared
in state A and allowed to evolve.



222 The moving electron: electrical properties

the same problem as encountered in Section 2.8.1.3 for Landau–Zener tunnel-
ling. The only difference is that in this earlier section the evolution along the
abscissa could be controlled entirely by scanning the magnetic field H and its
rate of change, while here the system evolves spontaneously by the effect of
thermal motion. There is thus a probability P of conversion per single passage
through the intersection, which is given by:

P = 1 − exp

(
− 4π2V2

ab

h v |sA − sB|
)

(3.31)

where sA and sB are the slopes of the surfaces in the intersection region (sA =
– sB for an exchange reaction), and v is the average velocity with which the
system moves through the intersection region [3.11, 3.17]. One can note the
analogy with eqn. (2.149).

The detailed calculation is more complicated because it must take into
account multiple crossings and back transformations [3.11]. The complete
treatment shows that κ, the true probability for electron transfer, is not equal to
P but is given by:

κ = 2 P/ (1 + P) (3.32)

The calculation can be continued by evaluating v by a Boltzmann averaged
velocity, which introduces temperature into the model. The treatment, which
is not detailed here, gives:

P = 1 − exp

(
−

(
V2

ab

h νn

) (
π3

λ RT

)1/2
)

(3.33a)

where λ encompasses the two components of the activation energy [3.11].
Eqns. (3.26), (3.32), and (3.33a) allow the calculation of the rate constant in
a range of situations, from adiabatic (P ≈ 1, κ ≈ 1) to strongly non-adiabatic
ones (κ small, ≈ 2P), where P is approximated by:

P =
(

V2
ab

h νn

) (
π3

λ RT

)1/2

(3.33b)

A more ‘chemical’ derivation of this model has been proposed by Sutin et al.
[3.13, 3.14], who define an ‘electronic frequency’, νel, which depends on the
electronic coupling parameter Vab:

νel = 2V2
ab

h

(
π3

λ RT

)1/2

(3.34)

Expression (3.34) takes into account the multiple crossings evoked previously
[3.11, 3.17]. As a result, the electronic frequency is proportional to Vab

2, and
not to Vab as would be suggested by (3.30). Note that strictly speaking, νel

is not a purely electronic factor, but encompasses nuclear parameters through
the (λ kT)1/2 denominator, because electronic and nuclear motions are inter-
mingled. The final result for the probability κ, given in the following, reflects
the competition between the electronic and the nuclear frequencies:

κ = 2
[
1 − exp(− νel / 2 νn)

]
2 − exp(− νel / 2 νn)

(3.35)
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Note the resemblance with eqn. (3.32). If νel >> 2νn, then κ → 1 (adiabatic
limit). On the contrary, if νel << 2νn, then κ → νel / νn. Once this value is
reported in (3.26), the expression for the electron transfer rate becomes:

ket = νel exp

(
−�G‡

RT

)
(3.36)

That is, the electron transfer rate is determined by the slowest process, the
electronic frequency, itself proportional to Vab

2. This is the non-adiabatic limit,
where κ is small, so that the electron transfer occurs rarely in the crossing
region (see Fig 3.12). The full expression for ket is then, from (3.34) and (3.36):

ket = 2V2
ab

h

(
π3

λRT

)1/2

exp

(
−�G‡

RT

)
(3.37)

which could be also obtained from eqns. (3.33b), (3.32), and (3.26).

The semi-classical Hush–Marcus model is supported by a large amount of
experimental data. Thus there is a clear relation between the self-exchange
reaction rate and the parameters describing the internal reorganization—in
particular, �d (Table 3.1).

Note the remarkable case of the [Co(NH3)6]3+/2+ system, with a particularly
high �d value, and thus an extremely low rate of reaction. This is due to the
spin change from CoIII, (t2g)6 (S = 0, ground term 1A1g) to CoII, (t2g)5(eg)2

(S = 3/2, ground term 4T1g) provoking a variation of two electrons in the pop-
ulation of eg* antibonding orbitals, and thus a high �d. (A similar effect will be
encountered in Section 4.5). The [Co(NH3)6]3+/2+ system has been one of the
most studied problems in electron transfer, because the process is frequently
qualified as ‘spin-forbidden’. Actually this is a misnomer, since there is no
change in the overall spin quantum number S = 3/2 for the complete system,
and there are only local spin changes. The expected difficulty derives from
the fact that three electrons are involved in the overall process, which raises
the question of which occurs first: a local spin change or an electron trans-
fer? It is now agreed that the electron exchange occurs via an excited state
of CoII, (t2g)6(eg)1 (S = 1/2,

2Eg) which becomes more stable than the 4T1g

state in the transition state region. Note that the activation energy has not been
measured, due to the extreme sluggishness of the reaction. Only a theoretical
estimation is given in Table 3.1. It is lower than one would expect for a direct
mechanism without the 4T1g state. To summarize, it is now admitted that the
spin-state change presents little intrinsic barrier to the electron transfer, and

Table 3.1 Parameters for self-exchange reactions [3.3] [3.18].

System �d / Å Eact / kJ. mol–1 k / mol–1.l.s–1 �S‡ / J. K–1 mol–1

[Ru(bpy)3]3+/2+ ≈ 0 32 4 × 108 –28
[Ru(NH3)6]3+/2+ 0.04 43 6 × 103 –46
[Ru(H2O)6]3+/2+ 0.09 46 20 –66
[Fe(H2O)6]3+/2+ 0.13 46 1.1 –88
[Cr(H2O)6]3+/2+ 0.20 < 2 × 10–5

[Co(NH3)6]3+/2+ 0.22 > 68 (calc) 6 × 10–6 at 40◦ C (!)
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G

x
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ΔG°

δ(ΔG°)
δ(ΔG‡)

x‡

GR GP

ΔG‡

Fig. 3.14
Establishing Marcus cross-relation. GR:
reactants free enthalpy; GP: products free
enthalpy. Note that for a δ(�G◦) change
of the reaction free enthalpy, the activa-
tion free enthalpy changes by a smaller
quantity δ(�G‡), frequently one half of
δ(�G◦).

that its effect is essentially indirect, by inducing large structural differences
between [Co(NH3)6]3+and [Co(NH3)6]2+ [3.18].

The role of solvent on the reaction rate has been established clearly in the
case of the [Cr(C6H6)2]+/0 system [3.19]. There is indeed a linear dependence
of log k as a function of the Pekar factor (1/εop – 1/εs).

We now consider the case of a ‘true’ chemical reaction, involving two differ-
ent redox couples. The correlation with self-exchange rates of the two couples
is due to Marcus. We start again from potential energy curves (Fig. 3.14), neg-
lecting the avoided crossing, which is not necessary here. The potential energy
curves of reactants (R) and products (P) are written respectively as:

ER = ARx2 (3.38)

EP = AP (1 − x)2 + �E◦ (3.39)

where x is a reaction coordinate describing in the same time the status of the
internal coordination sphere, and the one of the solvent. The difference with the
Q coordinate used in Section 3.1.2 is that now x is dimensionless, so that for
x = 0 we have the nuclear configuration of reactants at equilibrium, while for
x = 1 we have the configuration of products. This change in variables greatly
simplifies the equations. �E◦ is the difference in energy between the relaxed
reactants and products. As explained previously, we now identify all �E terms
with �G [3.12].

AR and AP are constants characteristic of reactants and products respect-
ively. In the following, they will be assumed equal and denoted as:

AR = AP = A (3.40)

Finally, �G◦ will be assumed negative (products more stable than reactants).
Thus to pass from the case of an exchange reaction (�G◦ = 0) to the case
of a ‘true’ chemical reaction (�G◦ < 0), one has just to perform a vertical
translation of the products curve with respect to the reactants curve.
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It can be seen in Fig. 3.14 that the value of the reaction coordinate at the
crossing point, x‡, is such that:

A x‡2 = A
(
1 − x‡

)2 + �G◦ (3.41)

which leads to:

x‡ = 1

2

(
1 + �G◦

A

)
(3.42)

Introducing eqn. (3.42) into eqn. (3.38) yields the value of the activation free
enthalpy:

�G‡ = 1

4
A

(
1 + �G◦

A

)2

(3.43)

In the case of an exchange reaction, �G◦ = 0, and thus �G‡ = A/4.
Let us consider now the two exchange reactions, and the corresponding

redox chemical reaction:

Ox1 + Red1 � Red1 + Ox1 k11

Ox2 + Red2 � Red2 + Ox2 k22

Ox1 + Red2 � Ox2 + Red1 k12 equilibrium constant K12

(3.44)

One has:

�G‡
11 = A11/4, �G‡

22 = A22/4, and �G‡
12 = 1

4
A12

(
1 + �G◦

12

A12

)2

(3.45)

The Aij terms are determined by the rearrangements of the different species.
Since the final reaction of eqn. (3.44) involves both couples, one can assume
that:

A12 = 1

2
(A11 + A22) (3.46)

which leads to:

�G‡
12 = 1

2

(
�G‡

11 + �G‡
22

)⎛⎝1 + �G◦
12

2
(
�G‡

11 + �G‡
22

)
⎞⎠2

(3.47)

Development of eqn. (3. 47) leads to:

�G‡
12 = 1

2

(
�G‡

11 + �G‡
22

)
+ 1

2
�G◦

12 + �G◦
12

2

8
(
�G‡

11 + �G‡
22

) (3.48)

In this expression the third term is usually small, because most common reac-
tions are only weakly exoergic. Under these circumstances the free enthalpy of
activation decreases as the reaction is more exoergic, with a linear dependence
on �G◦

12—a point to which we will return later.
Now, assuming the full adiabatic regime, and in the frame of activated com-

plex theory, each rate constant can be written according to eqn. (3.26) with
κ = 1. Taking the nuclear frequency factor νn as (kBT / h) (as usual in activ-
ated complex theories), and replacing �G◦

12 by –RT ln K12, one obtains, after
some rearrangement:

k12 = (k11 k22 K12 f)1/2 (3.49)
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where f is a corrective term given by:

ln f = (ln K12)2

4 ln

[
k11k22

/(
kBT

h

)2
] (3.50)

f is close to 1 for reactions with small �G◦, which represent the majority of
cases.

This constitutes the Marcus cross-relation [3.5, 3.20]. An experimental veri-
fication is possible at the level of eqn. (3.48), if one can vary the reaction �G◦
in an almost continuous way. This has been achieved with a series of reactions
involving reactants of similar structures, for instance [3.21]:

[Fe(H2O)6]2+ + [Fe(phenR)3]3+ → [Fe(H2O)6]3+ + [Fe (phenR)3]2+
(3.51)

where phenR is an 1,10-phenanthroline ligand substituted by donor or acceptor
groups. In this case, �G◦ can vary from –20 to –50 kJ mol–1. The �G‡ =
f(�G◦) curve is linear, with a slope very close to 0.5, [3.21] in agreement with
eqn. (3.48) for small �G◦. Note that this relation between �G◦ and �G‡ can
be found qualitatively from Fig. 3.14.

To end this section, we consider what happens when �G◦ has a large neg-
ative value. Then, from Fig. 3.15, it is clear that the activation energy must go
to zero, and then increase again. Thus the rate of reaction must go through a
maximum, and then decrease. This can also be established from eqn. (3.48),
where the third term is no longer negligible. Such behaviour is contrary to
intuition, because the more the reaction is thermodynamically favoured, the
slower it becomes. This paradoxical prediction is termed ‘Marcus inverted
region behaviour’.

The decrease of reaction rates for highly exoergic reactions is more than
an academic curiosity. It means that it is possible to store energy, at least
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Fig. 3.15
Marcus inverted region. GR and GP

represent the free enthalpy of reactants
and products respectively. As �G◦
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crossing point with (GP)1). For case
2 the activation free enthalpy is just zero
(maximum rate). For case 3, (�G‡)3

increases again: this is the inverted
region.
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temporarily, and it has been soon suspected that it could be involved in the pho-
tosynthesis mechanism, where high-energy charge-separated species, created
by the photon absorption, must not disappear too fast by an electron transfer
back-reaction. However, the ‘Marcus inverted regime’, although predicted the-
oretically as soon as the end of the 1950s, was observed experimentally only
from 1984 [3.5].

The study of highly exoergic reactions is indeed hampered by many dif-
ficulties. First, one has to generate extremely strong reductants or oxidants,
hence very reactive, even in the inverted region, and whose existence is lim-
ited by the solvent electroactivity domain; that is, the range of redox potentials
values for which side reactions with the solvent can be neglected. This point
can be addressed by the transient generation of reactive species by either
photochemistry or pulse radiolysis. But this is not enough. Since the studied
reactions are still very fast, it is difficult to separate the electron transfer step
stricto sensu from the previous step involving reactants encounter (see eqns.
(3.23) and (3.24)). Thus several early attempts failed to observe the predicted
decrease in rate constant, because people were actually measuring the reactant
encounter step (eqn. (3.23)), which is diffusion-limited.

The problem could be solved only with the advent of studies involving an
intramolecular electron transfer. The first well-characterized example was a
biphenyl-steroid spacer–acceptor system (Fig. 3.16), in which the biphenyl
moiety could be reduced radiolytically as an anion radical and could trans-
fer its extra electron to the acceptor A through the steroid spacer [3.22]. Since
then, many other series showing Marcus inverted behaviour have been identi-
fied, in compounds as diverse as proteins, reactive species generated in glasses,
and inorganic complexes [3.5].

To give just one example, the photosynthetic reaction centre is a very com-
plex protein, which is the siege of many successive electron transfer reactions,
after the primary photochemical excitation. By proper modifications of amino
acids of the structure, it has been possible to vary the �G◦ of some of these
reactions, and to show that they occur in the inverted region [3.23].

A

O

O

Cl

Cl

O

O

A =

Fig. 3.16
The biphenyl–steroid spacer–acceptor
series, showing for the first time Marcus
inverted behaviour [3.22].
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3.2.1.3 Quantum model
The previous semi-classical model (under its two variants) has the advantage
of simplicity, and is prone to a pictorial representation in terms of displace-
ments on potential energy curves. Unfortunately, reality is more complex.
Many experimental results are not compatible with the concept of a constant
activation energy, independent of temperature. In some cases [3.24], the rate
at low temperature is greater than the value given by expression (3.26), and
can even become independent of temperature, so that it does not vanish at 0 K
(Fig. 3.17).

To describe this effect one must consider the possibility for the system to
pass under the activation barrier. This necessitates taking into account expli-
citly the quantification of nuclear motions; that is, the existence of discrete
vibrational levels. We thus consider that for each electronic configuration a
or b (electron on site a or b respectively) there is a set of vibrational levels,
solutions of the harmonic oscillator problem. The wavefunction describing the
system is then the product of an electronic wavefunction, for instance �◦

a , by
a vibrational function �v

aj, where j is an index describing the vibrational state
of configuration a.

Mathematically, the Hamiltonian describing the system can be written as:

H = H0 + V (3.52)

where H0 corresponds to the two subunits without interaction, and V is the
coupling term due to wavefunction overlap between the two sub-units. In the
absence of interaction, V = 0, and the functions describing the system are of
the form �◦

a �v
aj for the initial state (electron on a, and vibrational state j), and

�◦
b �v

bn for the final state (electron on b, vibrational state n). Functions such as
�◦

a �v
aj or �◦

b �v
bn, which describe both the vibrational and electronic state of

the system, are called vibronic functions.
Under the influence of V, the functions noted previously are no longer sta-

tionary. There can be an evolution from a �◦
a �v

aj level towards the �◦
b �v

bn
level(s) of same energy. The electron transfer process can then be explained

Ln
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Fig. 3.17
An example of electron transfer reac-
tion, the rate of which does not vanish
at low temperature and displays instead
a tunnelling effect. The reaction is a cyto-
chrome c oxidation induced by flash pho-
tolysis. (Adapted from B. Chance et al.
[3.24].)
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a b

1

2

34

Fig. 3.18
Quantum model showing the different
vibrational levels associated with the ini-
tial (a) and final (b) configurations. There
is electron transfer if the system evolves
from one of the vibrational levels of ‘a’
(reactants) towards one of the levels of ‘b’
(products). The shape of the vibrational
functions is shown for some levels only.
Two types of process may occur, depend-
ing on conditions: i) at high temperature
a thermal population of an excited vibra-
tional level (1), followed by transfer in
the crossing region (2) and finally vibra-
tional relaxation (3); ii) at low temperat-
ure the transfer can occur only by direct
nuclear tunnelling (4).

by the successive following steps: (i) fast Boltzmann equilibration between the
different vibrational levels associated to the initial electronic configuration; (ii)
passage from one of the vibrational levels associated with the initial electronic
configuration towards the vibrational level of same energy belonging to the set
of the final electronic configuration (this is the rate determining step); (iii) fast
relaxation in the set of the final vibrational levels (see Fig. 3.18).

The rate of electron transfer is then given by the following general expres-
sion

k = 2 π

�
V2

ab (FCWDS) (3.53)

where FCWDS is the thermally averaged Franck–Condon weighted density of
nuclear states. This expression comes from the so-called Fermi Golden Rule
[3.25], which governs the rate of transition from a given initial state to a mani-
fold of final states. For an elementary process such as evolving from the �◦

a �v
aj

level towards one level of the other set, the Fermi Golden Rule states that the
transition probability per unit time is given by:

kaj = (2π/�) V2
abρf

(
E◦

bn= E◦
aj

) (3.54)

where ρf designates the density of states for the final levels. ρf is a function of
E◦

bn, the energy of the vibronic function of the product, defined by b and n, and
we consider its value for E◦

bn = E◦
aj to fulfil the requirement of electron transfer

at constant energy.
The Fermi Golden Rule is a very general result, and will be encountered

again in the treatment of energy transfer, in Section 4.4—in particular, eqn.
(4.21).

In the present case, since we are concerned with a vibronic problem—that
is, an interplay of electronic and nuclear factors—the density of states must be
weighted by the nuclear Franck–Condon factors, and by thermal population.
The Franck–Condon factors FC are of the form:

FC =< �v
aj|�v

bn > (3.55)
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and thermal population is taken into account by the usual Boltzmann distribu-
tion factors for the reactants. Thus the FCWDS term is given by:

FCWDS =
�j exp

(
−E0

aj/kT
)

< �v
aj | �v

bn >2 ρ
f
(

E◦
bn=E◦

aj

)
�j exp

(
−E0

aj/kT
) (3.56)

The final expression for the rate is thus [3.26]:

k = 2π

�
V2

ab

�j exp
(
−E0

aj/kT
)

< �v
aj | �v

bn >2 ρ
f
(

E◦
bn=E◦

aj

)
�j exp

(
−E0

aj/kT
) (3.57)

Inspection of the expression (3.57) leads to the following conclusions:

• The rate constant k is proportional to the square of Vab, as in the non-
adiabatic limit of the semi-classical treatment (eqn. (3.37)).

• Arrhenius’ law is no longer followed: ln k is no longer a linear function of
1/T, so that there is no more a constant, temperature-independent, activation
energy.

Thus, the temperature dependence is now complicated, because the electron
transfer can occur from levels of different energies. Transfer from the highest
levels is favoured by the Franck–Condon overlap factor FC. The latter is
optimal in the crossing area of the classical model (see Fig. 3.18), but this needs
a temperature sufficiently high that the corresponding levels are thermally
populated. This is a thermally activated process.

At very low temperatures the thermal population of these levels is not sig-
nificant. The only possibility is then to pass directly from the lowest levels of
the initial state towards a level of the final state. Since these levels have an
energy below the top of the barrier, one has again a tunnel effect, but this is
now a nuclear tunnelling effect, because the E = f(Q) diagram involves nuc-
lear coordinates. This is not to be confused with the electronic tunnelling effect
(Section 3.1.1), which is already taken into account in the model through the
Vab parameter.

The nuclear tunnelling effect introduces into the global rate constant a
component which is independent of temperature. This component always
exists but is masked at high temperatures by the thermally activated process.
Experimentally, the apparent activation energy, defined as:

Eact = − R d(ln k)/d (1/T) (3.58)

decreases at low temperature and tends towards zero, as observed in the case
of the photochemical oxidation of cytochrome [3.27] (see Fig. 3.17).

A theoretical investigation of the model system [Fe(H2O)6]2+/3+ [3.11] has
shown that at 300 K the transfer occurs essentially through the fifth excited
vibrational level, the energy of which is close to the crossing point, in agree-
ment with the classical concept of activation energy. On the contrary, at 100 K
the reaction proceeds essentially through the lowest two vibrational levels, and
thus occurs in the tunnel regime.
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3.2.2 Intramolecular transfer: mixed valence compounds

Mixed valence compounds are, by definition, compounds containing the same
element in different oxidation states. The existence of mixed valence was
first noticed more than a century ago, due to their particular composition and
their very specific properties such as additional colourations, as well as new
electrical or magnetic properties [3.28]. In 1967, two simultaneous seminal art-
icles (by Robin and Day, and also Allen and Hush) brought together the then
available evidence [3.28b,c] and formulated the mixed-valence phenomenon
with modern concepts. These articles laid the foundations for understanding
the physical properties of such compounds and how the latter correlate with
molecular and crystal structures.

The early recognized cases belonged to the solid state, typical examples
being magnetite, Fe3O4 or Prussian blue. The extension of the mixed valence
concept to molecular systems was triggered by the discovery, in 1969, of the
Creutz–Taube complex [(NH3)5Ru-pz-Ru(NH3)5]5+ (pz = pyrazine), which
could be studied in solution [3.29]. This relatively simple compound raised
in a particularly acute way the fundamental question of electron localization:
since the overall charge is 5+ and the ligands are neutral, do we consider the
ruthenium atoms as Ru2+ and Ru3+, or two Ru2.5+? Considerable efforts have
been spent to address this question in the Creutz–Taube complex, and also in
the large number of analogous compounds which have been synthesized since
then. Figure 3.19 shows some other typical binuclear mixed valence systems,
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Fig. 3.19
Examples of mixed valence compounds.
(a) The Creutz–Taube complex; (b)
another ruthenium binuclear system, with
4,4′-bipyridine as linker; (c) an organo-
metallic bis-ferrocene system; (d) a
purely organic mixed valence compound.
These complexes contain formally a
reduced site and an oxidized site. In case
(d) the oxidized site is the whole triphen-
ylamine moiety on one side.
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and it can be seen that the phenomenon can be encountered not only in inor-
ganic chemistry but also in organometallic chemistry and organic chemistry.
Several reviews have gathered a large body of experimental and theoretical
data over the last thirty years [3.13] [3.30].

We know now that the peculiar properties of mixed valence compounds
arise from the possibility of electronic exchange, as in the ion pairs in solu-
tion noted in the previous paragraph. But with respect to the ion pairs, they
exhibit two advantages: the permanent character of the association between
the two redox centres, and the larger electronic coupling. However, before we
deal with the electronic properties we have to look carefully at the circum-
stances under which mixed valence can form in solution—in particular, the
thermodynamic and kinetic aspects.

3.2.2.1 Fundamentals: thermodynamic and kinetic aspects
Let us consider a homovalent binuclear complex of the symmetric type
[(NH3)5RuIII – L – RuIII(NH3)5]6+, where L is a neutral bridging ligand.
We wish to prepare the mixed valence species resulting from the addition of
one electron to the system—this addition resulting either from the action of a
chemical reducing agent or from an electrochemical reduction. The two sites
being identical, the addition of one equivalent of reducing agent does not guar-
antee the quantitative formation of the RuII – RuIII species; indeed, one can
form, as well an equimolar mixture, RuIII – RuIII + RuII – RuII corresponding
to the same average oxidation state. Thus one has to worry about the situation
of the comproportionation/disproportionation equilibrium:

RuIII − RuIII + RuII − RuII � 2 RuII − RuIII (3.59)

Kc = ∣∣ RuII − RuIII
∣∣2 /

∣∣ RuIII − RuIII
∣∣ ∣∣ RuII − RuII

∣∣ (3.60)

Starting from this relation and from the 1aw of conservation of matter, one can
show that at half-reduction—that is, when one equivalent of reducing agent has
been added per mole of binuclear complex—the proportion of mixed valence
complex P is given by:

P = K1/2
c /

(
2 + K1/2

c

)
(3.61)

In other respects, the Kc constant is linked to the difference between the two
redox potentials relative to the equilibria:

RuIII − RuIII + e− � RuII − RuIII E◦
1 (3.62)

RuII − RuIII + e− � RuII − RuII E◦
2 (3.63)

with

(RT/F) ln Kc = E◦
1 − E◦

2 (3.64)

In principle, all Kc values are possible depending on the system. One observes,
however, two general types of behaviour according to the nature of the bridge
linking the metal atoms.
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When the bridge is short enough, the two sites are in interaction and do not
behave independently. This interaction arises from different effects [3.31], the
main ones being:

• The electrostatic effect Reduction (resp oxidation) of one site consists in
adding a negative (resp positive) charge, which renders the neighbouring
site a little bit more difficult to reduce (resp oxidize). This effect is of
electrostatic nature and thus depends on the distance between sites, and
on the dielectric constant of the medium. A model taking into account
the heterogeneity of the medium (composed of an intramolecular medium
and of a solvent, with different local dielectric constants) has even been
proposed.

• The electronic effect The partial delocalization from one site to another
yields an extra stabilization (resonance energy). This phenomenon is of
quantum nature and depends on the overlap between the different orbitals
of the metals and of the bridge; it is more important for conjugated bridges,
but can be neglected for saturated bridges.

In the vast majority of cases, this interaction, regardless its nature, makes E◦
1

markedly greater than E◦
2; that is, the reduction of the first site renders the

second one more difficult to reduce. This is very analogous to the case of sym-
metrical diacids, such as H2SO4 or oxalic acid, for which pKa1 and pKa2 are
different. As a consequence, the Kc constant is large and so is the propor-
tion P of mixed valence compound at half-reduction. Finally if the difference
E◦

1 − E◦
2 is large enough, the reduction of the homovalent complex occurs by

two distinct electrochemical processes, with the appearance of well-separated
peaks in cyclic voltammetry. These conditions are, of course, favourable for
the quantitative preparation of the mixed valence complex by partial reduction
of the starting oxidized complex.

When the bridge becomes very long, the interactions of any nature between
the metal sites vanish. Thus they behave independently, and simultaneously
the E◦

1 – E◦
2 difference becomes very small (but not null, as will be seen in

what follows). Then one observes in cyclic voltammetry a single peak with a
height corresponding to two electrons, which leads frequently to the erroneous
conclusion that the reduction occurs by a direct two-electron process.

RuIII − RuIII + 2 e− � RuII − RuII (3.65)

Actually this is not the case, as can be shown by the simple following demon-
stration. Let us consider a half-reduced solution. The sides being independent,
each one has exactly one chance over two to exist as RuII, and one chance
over two to exist as RuIII. The proportion of homovalent derivatives is 25%
for each of these species and 50% for the mixed valence species (this double
proportion is explained by the fact that it can exist as RuIII–RuII or RuII–RuIII).
Putting into expressions (3.61) and (3.64), one obtains Kc = 4 and E◦

1 − E◦
2 =

36 mV. These values constitute the statistical limit.

Remark: Note the analogy with the case of symmetrical diacids, of the
type COOH–(CH2)n–COOH, for which the ratio between acidity con-
stants, which is the equivalent of the comproportionation constant, tends
towards 4 (thus pKa2 – pKa1 → 0.6) when n tends towards infinity.
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Cyclic voltammetry

Cyclic voltammetry is an efficient way to study electrochemical processes. It con-
sists in applying a triangular variation of potential to a stationary electrode. Starting
from a reduced species (Red), if the applied potential increases and exceeds a given
value, the current increases as a result of the onset of an electrochemical oxida-
tion (Fig. 1). But, since the diffusion layer is not renewed, there is a depletion
in electroactive substance near the electrode, so that the current passes through
a maximum and then decreases. The major interest of the method is that the
reaction product, the oxidized form (Ox), accumulates near the electrode, so that
when the scan is reversed one can observe the electrochemical response of this
form.

If the system is reversible (fast), one observes two peaks, located on both sides
of the standard potential E◦ of the Red/Ox couple, with a separation �Ep given
theoretically by 60/n mV, where n is the number of exchanged electrons.

If the system is irreversible (slow), the rate of the electrochemical reaction
becomes noticeable only well after the standard potential E◦, so that during the return
scan one observes only the end of the oxidation process. The back-reduction of the
formed product occurs then at a markedly different potential, located on the other
side of E◦ (Fig. 1b).

i

EE°

Red ® Ox

Red ® Ox

Red  ¬  Ox

i

EE°

(a)

(b)

Red ¬ Ox

Fig.1
Typical cyclic voltammetry curves for a
fast (a) and slow (b) redox system.

Thus, even in this apparently unfavourable case, the proportion of mixed
valence species still reaches 50%. From the point of view of electrochemistry,
the height of the cyclic voltammetry wave corresponds to two electrons, but
the profile corresponds to one electron (it will be, in particular, wider than a
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ΔEp = 60 mV

Ep = 30 mVΔ  

(a)

(b)

(c) Fig. 3.20
Cyclic voltammetry curves for several
cases. (a) Two separated one-electron
processes; (b) two one-electron pro-
cesses occurring independently; (c) genu-
ine two-electron process without interme-
diate. Note that the distinction between
cases (b) and (c) relies only on the separ-
ation �Ep between anodic and cathodic
peaks.

genuine two-electron wave, as shown in Fig. 3.20). Indeed, all happens as if
one had a solution of mono-nuclear complex with a concentration twice the
actual concentration in binuclear complex. The deconvolution of this wave in
two one-electron waves has no meaning, the current additivity not being valid
(see Box ‘Cyclic voltammetry’).

Thus in principle one can distinguish experimentally the case of ‘two
one-electron transfers between independent sites’ from the case of ‘direct two-
electron transfer’. In practice, however, this distinction is difficult because it
is based on the comparison of the curve profile in cyclic voltammetry, and
particularly the separation �Ep between anodic and cathodic peaks, which is
theoretically 60/n mV, where n is the number of exchanged electrons. This
separation can be perturbed by other phenomena: the kinetics of electron
transfer (if the transfer is not very fast, the �Ep gap is increased), and the
uncompensated ohmic drop influence (which also increases �Ep).
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Taking into account the previous considerations, one can ask the follow-
ing question: can we have Kc = 0, or simply Kc below the statistical limit?
This requires a particular mechanism, which ensures the following counter-
intuitive behaviour: the reduction (resp oxidation) of a site must make the
neighbouring site easier to reduce (resp oxidize). First let us note that this
is never observed for an extended bridge. For short bridges, such an effect may
appear if the reduction process is accompanied by a chemical reaction or a
structural rearrangement.

A last point to consider is the kinetic one. One could think that during the
electrochemical reduction of a symmetrical complex presenting a weak inter-
action, it would not be possible to stop at the mixed valence stage, because this
species, once formed, could immediately fix a second electron at almost the
same potential. This is probably true at the electrode, but actually the totally
reduced species diffuses towards the bulk solution where it reacts with the
starting species to yield the mixed valence form according to the compropor-
tionation reaction (3.59). The corresponding kinetics is generally very fast, as
a consequence of the correlation established by Marcus between the rates of
the electrochemical and chemical processes [3.32]. Thus, under usual condi-
tions (working in solution at room temperature), the processes are driven by
thermodynamics.

3.2.2.2 Thermal and optical transfers
A mixed valence compound is the equivalent of an ion pair as studied in
Section 3.2.1, except that the two ions are connected by a covalent link. Thus
the electron transfer is intramolecular. With respect to the ion pair case, the
electronic coupling Vab is stronger, which results in a larger splitting in the
avoided crossing zone. However, as long as the electronic coupling is not
strong enough, the lower potential energy curve still presents two minima.
In the present paragraph we will assume that this condition is always fulfilled.

The stronger electronic coupling now makes possible a new phenomenon: an
optical electron transfer (Fig. 3.21). In the diagram giving the potential energy
as a function of the reaction coordinate, it is a transition qualified as ‘vertical’,
because it occurs at constant nuclear coordinate, according to the Franck–
Condon principle (see Chapter 4 on photophysics). During this transition one
evolves from the potential energy curve related to one of the electronic con-
figurations towards the other one, which corresponds indeed to an electron
transfer. This transition is called ‘intervalence transition’, and it occurs at the
energy λ defined previously.

Remark: Strictly speaking, this phenomenon is also possible in the
case of ion pairs, but it is generally unobservable: first the electronic
coupling is very weak and consequently the corresponding transition
has a very low intensity (the intensity of the transition is discussed in
Section 3.2.2.5), and secondly the effective ion pairs concentration is
always very small.

There are thus two possible processes for electron transfer: a thermal one,
with activation energy Eth, and an optical one (intervalence transition) with
an energy Eop = λ. Due to the parabolic nature of the potential energy curves,
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Q°1 Q°2
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Fig. 3.21
The two types of electron transfer pro-
cess in a mixed valence complex: thermal
transfer and optical transfer. Labels 1 and
2 correspond to the two possible elec-
tronic states. The figure is the same as
Figs. 3.9 and 3.12, but now λ corres-
ponds to a real process. Eop = λ, and
Eth ≈ λ/4 if the avoided crossing can be
neglected.

one has, for a symmetrical system when neglecting the avoided crossing effect,
the very simple and popular relation:

Eth

Eop
= 1

4
(3.66)

Intervalence transitions are responsible for the colour of mixed valence spe-
cies, which were first noticed more than a century ago [3.28]. Very often,
the transition energy occurs in the 0.8–1.5 eV range, which corresponds to
an absorption culminating in the red or the near infrared (with, in this last case,
a ‘band-tail’ extending in the visible). As a consequence, mixed valence com-
pound frequently exhibit a blue colour. Note that the energy of intervalence
transitions is unusually small for electronic transitions. This derives from the
fact that the fundamental state and the excited state are chemically equivalent,
because in the case of a bimetallic mixed valence compound of ruthenium, one
can write one state as RuII–RuIII and the other one as RuIII–RuII . By contrast,
a species such as [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine) yields, after excita-
tion, a state which can be written [RuIII(bpy)2(bpy–•)]2+, and is thus chemically
very different from the ground state. Thus the transition involves a much larger
energy (2–3 eV), as will be discussed in Chapter 4.

Historically, the first example of mixed valence species noted for its colour
was the so-called Prussian blue, obtained as early as 1704, by grinding together
animal wastes and sodium carbonate in iron pots. (Note that it was identified
later as the first example of a coordination compound) [3.33]. We have already
met this intriguing substance in Section 2.7.3 let us recall that it is a solid (dur-
ing the preparation in solution, it is obtained as a colloïdal suspension), and
that it exhibits a cubic structure in which iron atoms are linked by cyanide lig-
ands FeIII

4[FeII(CN)6]3, �1 • 15H2O, where � denotes a [FeII(CN)6] vacancy
(see Fig. 2.76). Low-spin Fe(II) atoms are in a carbon environment, while high-
spin Fe(III) atoms are surrounded by the nitrogen atoms of cyanide and by the
oxygen of water molecules.

Note that, contrary to a common belief, the electronic structure of Prussian
blue [iron(III) hexacyanidoferrate(II)] is the same, regardless of the method of
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preparation; that is, either when Fe3+
aq is added to [FeII(CN)6]4– (method A),

or when Fe2+
aq is added to [FeIII(CN)6]3– (method B). The electronic struc-

ture agrees with method A. When the preparation is made by method B, a fast
intramolecular electron transfer occurs to produce the same stable distribu-
tion of oxidation states [iron(III) hexacyanidoferrate(II)]. This final electronic
structure has been proved by a number of physical methods, among which,
Mössbauer spectroscopy produced the decisive arguments [3.34]: two absorp-
tions with isomeric shifts characteristic of ferric ions and ferrocyanide were
indeed observed.

The basic dinuclear unit necessary to understand the mixed valence proper-
ties is depicted in Fig. 3.22.

The deep blue colour of Prussian blue is due to an intervalence transition
occurring at 14,100 cm–1 [3.35, 3.28b]. The transition is very intense (ε ≈
10,000 L mol–1 cm–1 for the colloïdal dispersion), and corresponds as a first
approximation to the transfer of one t2g electron of a FeII site to a t2g orbital of
the nearby FeIII site. The two orbitals are indeed strongly overlapping through
the bridging CN– ligand. Actually, matters are a little more complicated, since
each FeII is surrounded by six FeIII ions. Thus the electron is actually trans-
ferred on a linear combination of FeIII t2g orbitals taking into account the
symmetry of the system [3.28b]. From a practical point of view, since Prussian
blue is extremely stable and non-toxic (ferrocyanide is very stable and inert), it
has been for centuries one of the most-used blue pigments for painting, dyeing,
decoration, and eye make-up, and is still in use by artists.

Many minerals exhibit colours due to intervalence transitions. (We quote
them here, though they are more solid-state systems than molecular ones,
because the short-range description of the mixed valence compounds is
also applicable locally to three-dimensional solids). One can cite vivianite
Fe3(PO4)2, which contains theoretically Fe2+, but the latter is always con-
taminated by a small amount of Fe3+. In particular, a freshly cleaved crystal
turns blue in air at the break. Some precious minerals (sapphire, beryl, garnet)
also illustrate the mixed valence effect. Thus some blue sapphires are made of
Al2O3 with a substitution of two Al3+ by Fe2+ and Ti4+ [3.36]. The colour is
then due to the heteronuclear intervalence electron transfer:

Fe2+ − O − Ti4+ → Fe3+ − O − Ti3+

Incidentally, the colour of sapphires can be modified by suitable oxidizing or
reducing treatments.

Fig. 3.22
Ball-and-stick representation of
the binuclear unit (NC)5FeII–CN–
[FeIII(NC)3(H2O)2], part of the Prussian
blue structure depicted in Fig. 2.76.
Large balls: FeII(white), FeIII (grey).
Small balls: carbon (black), nitrogen
(white), oxygen (grey). Two water
molecules are bound to FeIII.
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In some cases the composition can be manipulated by an electrochemical
process. This is in particular the case for tungsten bronzes, which can be
generated at an electrode by the following reaction:

WVIO3 + x Li+ + x e− � LixWV
x WVI

1−xO3

This converts the yellow WO3 oxide into a blue tungsten bronze, with the
possibility of realizing an electrochromic display device (Fig. 3.23) [3.37].

Fig. 3.23
Rear-view mirror equipped with a device
using an electrochromic thin layer.
(Information available at <http://mito-
auto.com/> and <http://www.gentex.
com/automotive/mirror-module>)

Blue colours, or more generally additional absorptions, are also encountered
in partly reduced polyoxometallates, which are molecular compounds, but
whose structure can be considered as oxide fragments. The more typical are
of general formula [XM12O40]n–, X = Si, P, and so on . . . M = Mo, W (for
instance, the so-called Keggin structure) [3.38]. Once partly reduced, these
species indeed present a coexistence of oxidation states VI and V for Mo or W.
Their blue colour has been noted since 1826 and used for analytical purposes.

Mixed valence is also encountered in purely organic compounds (see
example (d) in Fig. 3.19), in molecules bearing at least two groups able to
undergo a 1-electron reduction or oxidation. Such redox groups can be tri-
arylamines, triphenylmethane radicals, TTF units (TTF = tetrathiafulvalene),
hydrazyl groups, and so on, and are generally linked by conjugated spacers
[3.39]. The same basic processes as in inorganic mixed valence systems are
observed—in particular, intervalence transitions. The main difference, how-
ever, is that there is more delocalization of the electron (or hole) on the
molecular redox site. For instance, when a ruthenium redox group is oxid-
ized the oxidation bears essentially on the ruthenium atom, while when a
triarylamine redox site is oxidized the electron is taken out of an orbital with
some weight on the nitrogen atom, but importantly tails on the adjacent groups
(Fig. 3.24). This does not change the general behaviour, but complicates the
quantitative analysis of the processes.

We shall see in Section 3.3 that the mixed valence formalism is also used to
describe some molecular conducting solids.

3.2.2.3 The different classes of mixed valence compound
So far we have implicitly considered systems for which the electronic coupling
is small. But actually, mixed valence compounds present a wide variety of
behaviours according to the degree of mixing between the two electronic states.
A very convenient, and still frequently used, classification was proposed in
1967 by Robin and Day [3.28b]. They distinguish three classes.

N
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(a) (b)
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H

H

H
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H H

H

H

H
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Fig. 3.24
Comparison of the delocalization in (a) a
Ru(NH3)5 redox group. and (b) a triphen-
ylamine redox group. The sketch shows
the shape of the orbital in which an elec-
tron has been removed upon oxidation.
In (a) the orbital is mainly localized on
Ru (dxy), with a very small admixture of
σ orbitals of NH bonds. For (b), the main
contribution comes from the pπ orbital
of N (only one lobe visible since the
drawing is along the C3 axis), but import-
ant contributions are found on the phenyl
rings (two lobes visible for each atomic
orbital since the pheny rings adopt a pro-
peller shape). The notion of redox site is
more difficult to define in case (b).
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Class I. The properties (spectroscopic, magnetic, and so on) are simply the
sum of the properties of constituent ions. This corresponds to the case where the
electronic interaction is null or very weak.

Class II. The properties are those of constituent ions, who keep a certain indi-
viduality, but in addition new properties are observed. These new properties are
generally colouration (due to intervalence transitions), and conducting properties
in the case of extended systems. Here the electronic interaction is moderate.

Class III. The properties are entirely new, and one does not recognize the con-
tributions of constituent ions. This last case corresponds to a very strong electronic
interaction.

We now have to specify what is meant by weak, moderate, or strong interac-
tion. The Robin–Day classification was initially qualitative, but later a rigorous
formulation has allowed quantitative definitions [3.40]. Class I systems consti-
tute a limiting case with few interest, and the more pertinent is the distinction
between classes II and III. For that we consider a symmetrical two-site system
(Fig. 3.25) presenting initially a very weak interaction. If the electronic interac-
tion parameter Vab increases, the splitting of the curves increases in the avoided
crossing zone, and the central bump of the lowest curve in the Epot = f(Q) dia-
gram finally disappears, so that the lowest potential energy curve present only

class I

class II

class III

Eop

(a)

(b)

(c)

2 Vab

2 Vab

Eop

Eth

E

E

EFig. 3.25
Potential energy curves for the three
classes of mixed valence compounds. (a)
Class I, weak or null electronic inter-
action; (b) class II, moderate electronic
interaction retaining the existence of two
minima; (c) class III, strong electronic
interaction making the activation barrier
to disappear.
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one minimum. We then define as class II the systems described by a curve of
the type displayed in Fig. 3.25b, and as class III those displayed on 3.25c.

The evolution from one type to the other can be analysed by the following
calculation, adapted from [3.40]. We consider a system made of two sub-
units A and B, able to adopt oxidation states II and III (for instance, RuII and
RuIII). One of the electronic configurations is for instance AII–BIII and the other
AIII–BII. If there is no electronic interaction between these states they can be
described by quadratic curves (see Section 3.1.2 ), and by wavefunctions ψa

and ψb, and we can write their energies Ea for AII – BIII and Eb for AIII – BII

as:

Ea = λ (x + 1/2)
2 (3.67a)

Eb = λ (x − 1/2)
2 (3.67b)

In these expressions we use again an adimensional x coordinate, as in eqns.
(3.38) and (3.39), but now, to respect the symmetry of the problem, the min-
ima of the curves are located at x = 1/2 and x = –1/2, instead of 0 and 1. λ is
the vertical reorganization energy, corresponding to the intervalence band (see
Fig. 3.26).

We now introduce the electronic interaction β between these two electronic
states. This leads to new energies, which are obtained by diagonalizing the
energy matrix.

β is the electronic interaction parameter, which can be positive or negative,
as seen in Section 3.1.1. It mixes the two electronic states, and thus favours
delocalization. On the other hand, λ encompasses all effects leading to local-
ization; that is, the rearrangement of the internal coordination sphere, network
vibrations (phonons) and of the solvent, when in solution. Following the gen-
eral variational method, the eigenvalues of the energies are obtained by putting
to zero the determinant:∣∣∣∣∣λ(x + 1/2)2 − E β

β λ(x − 1/2)2 − E

∣∣∣∣∣ = 0 (3.68)

This leads to the following secular equation:

E2 − E λ
(
2 x2 + 1/2

) + λ2
(
x2 − 1/4

)2 − β2 = 0 (3.69)

E

x

−1/2 1/2

λ

Ea Eb

Fig. 3.26
Definitions of the parabolae for electronic
states AII–BIII (Ea) and AIII–BII (Eb)
before electronic interaction.
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the solutions to which are:

E = λ
(
x2 + 1/4

) ± (λ2x2 + β2)1/2 (3.70)

The corresponding wavefunctions (unnormalized) are given by:

ψ1 = − − λ x + (λ2x2 + β2)1/2

β
ψa + ψb (3.71a)

ψ2 = − − λ x − (λ2x2 + β2)1/2

β
ψa + ψb (3.71b)

Thus for x = 0 (central part of the diagram in the avoided crossing zone), the
wavefunctions are, after normalization, and if β < 0:

ψ1 = 2−1/2 (ψa + ψb) (3.72a)

ψ2 = 2−1/2 (−ψa + ψb) (3.72b)

Energies and a sketch of wavefunctions are given in Fig 3.27 for the most
interesting case, a class II system, assuming that the redox sites are transition
metal ions intervening by their d orbitals.

For x = –1/2, bottom of the left parabola, and for |β|<< λ one finds
(unnormalized wavefunctions):

ψ1 ≈ − (λ/β)ψa + ψb (3.73a)

ψ2 ≈ (β/λ)ψa + ψb (3.73b)

so that the wavefunctions ψ1 and ψ2 are dominated by ψa and ψb respectively.
The converse is true for x = 1/2. A better formulation for ψ1, giving symmetrical
expressions for ψ1 and ψ2, is:

ψ1 ≈ −ψa + (β/λ)ψb (3.73c)

E

x

Eop = λ

2 Vab

−1/2 1/2

Ea Eb

ψG

ψE

Eth

Fig. 3.27
Curves E = f(x) before (plain) and
after (dashed) taking into account the
electronic interaction (Vab parameter).
The displayed case corresponds to class
II. Sketches of the molecular orbitals
involved in the different states are also
given, neglecting any contribution from
the bridging ligand. The optical inter-
valence transition (Eop = λ) from the
ground-state function �G to the excited
state one �E is also shown at x = –1/2.
Ground and excited states are centred on
A and B respectively.
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showing that a key parameter is the ground-state delocalization coefficient
δ (<<1), defined as:

δ = |β|/λ = Vab/λ (3.73d)

Thus, for x = ± 1/2 one clearly sees the charge transfer nature of the optical
transition.

When Vab increases, the lowest potential energy curve evolves from a two-
minima curve towards a one-minimum curve. We call these situations class
II and class III respectively. There is thus a simple mathematical criterion to
define these classes: taking the derivative of the lowest potential energy curve
(eqn. (3.70) with the – sign), we obtain:

dE/dx = 2λx − λ2x (λ2x2 + β2)−1/2 (3.74)

This expression vanishes for x = 0 in all cases, and also for:

x = ±
(

λ2 − 4 β2

4 λ2

)1/2

(3.75)

which is possible only if |β|< λ/2.
The nature of the compound thus depends upon the competition between the

electronic coupling, favouring delocalization, and the reorganization energy,
favouring localization. For |β| < λ/2, one has a class II compound, and
conversely for |β| > λ/2 a class III compound.

As long as the system is class II, the energy of the optical transition is λ (note
that it does not depend at all on Vab). The activation energy for the thermal
process is given by:

Eth = λ/4 − |β| + β2/λ (3.76)

When |β| (Vab) is small, one recovers the classical relation Eth =λ/4=
(1/4)Eop. When |β| increases while remaining small, the activation energy
decreases in first approximation by the quantity |β|. But due to the second-
order term in eqn. (3.76), the barrier disappears for |β| > λ/ 2, and not for
|β| > λ/4, as could be anticipated from a naïve reasoning.

When the compound is class III there is no longer any conceivable thermal
process, since the system is intrinsically delocalized. But the optical transition
is still present, at an energy 2 |β|. In this case the optical transition corres-
ponds to a transition between a fundamental state described by a wavefunction
such as eqn. (3.72a) and an excited state such as eqn. (3.72b). Thus the charge
transfer character of the transition has disappeared, since these two functions
are equally distributed on the subunits A and B. However, it is in this case that
the electronic transition presents the highest intensity (see Section 3.2.2.5).

Remark: The previous model is similar to the semi-classical model used
in Section 3.1.2, because it is based on the shape of potential energy
curves, and does not take into account the quantification of nuclear
motions. A vibronic model exists (the PKS model, [3.40]), which is more
complete but mathematically more complex, and its study is outside the
scope of this book.
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3.2.2.4 Magnetic mixed valence systems
We now consider systems where the two subunits A and B bear magnetic
moments [3.41]. The typical example is provided by the FeII–FeIII system,
where FeII and FeIII are both high-spin. Until now (see Section 3.2.1) this sys-
tem has been treated in a simplified way, by just introducing an electronic
interaction between the system states FeII–FeIII and FeIII–FeII. But actually
there are two effects in such a system: the magnetic exchange interaction and
the electronic interaction (this term designating the one which is responsible
of electron transfer). If the electronic interaction were zero the energy levels
on each subunit would be described by a Heisenberg Hamiltonian H = – J
SFeII .SFeIII , with SFe(II) = 2 and SFe(III) = 5/2 S. This would give a spin-energy
diagram E(S) with states ranging from S = 1/2 to S = 9/2 and energies E1/2 = –
3 J/8, E3/2 = – 15 J/8, E5/2 = – 35 J/8, E7/2 = – 63 J/8, E9/2 = – 99 J/8. The spin
S = 1/2 or 9/2 are the ground states according to the sign of J (see Fig. 3.29a,b,
commented on later). Since there are two possible electronic configurations,
FeA

II–FeB
III and FeA

III–FeB
II, we have actually degenerate levels, which can

be coupled by the electronic interaction.
To introduce useful definitions and formalism, let us consider a simpler sys-

tem with two equivalent sites A and B, having each two kinds of orbitals a1

and a2 on A or b1 and b2 on B (a1 and a2 having different symmetry, a1 = b1 =
dx2–y2 and a2 = b2 = dz2 , for example). The orbitals can be occupied by zero,
one, or two electrons. If there is one electron per orbital, the most stable situ-
ation on each site is a S = 1 triplet state a1αa2α and b1αb2α for MS = +1, and
the other configurations for MS = 0 and MS = –1, because the on-site exchange
interaction between the orthogonal orbitals a1 and a2, or b1 and b2 is ferromag-
netic. The local triplet state on A (and B) is stabilized by the exchange integral
k between a1 and a2 (and b1 and b2) (see Sections 2.5.2 and 2.6.1) (Fig. 3.28a).
Then the coupling between spins S = 1 on sites A and B to give the total spin
ST can be antiferromagnetic (ST = 0 ground state), inexistent (two independ-
ent spin S = 1), or ferromagnetic (ST = 2), depending on the overlap between
the two sites. This four-electrons case with four singly occupied orbitals is not
at all favourable to electron transfer, since it would imply not only a forbidden
flip of the transferred electron—according to the Pauli principle—but also a
strong one-centre two-electron repulsion U, due to the presence of two paired
electrons in the same orbital leading to an highly excited state (Fig. 3.28b).

We shall learn much more from the case where the preceding system con-
tains only three electrons and is mixed valence (Fig. 3.28c–f). On site A we
have a triplet, spin S = 1, and on site B we have a doublet, S = 1/2. As previ-
ously, without electron transfer (electrons localized on sites A and B), we can
have either no interaction (independent spins S = 1 and S = 1/2), antiferro-
magnetic AF interaction (Fig 3.28c, resulting spin ST = 1/2), or ferromagnetic
F interaction (Fig 3.28e, resulting spin ST = 3/2). In the presence of elec-
tron transfer we have the two situations of Fig. 3.28d and f. In configuration
(d) (antiferromagnetic interaction) the transferred electron has accomplished
a spin flip (the on-site exchange interaction is much larger than the electronic
interaction |β|), whereas in case (f) (ferromagnetic interaction) the transferred
electron has kept its spin: we can qualitatively conclude that the electron
transfer favours the ferromagnetic interaction and the high-spin ground state
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Fig. 3.28
Spin configurations of two equivalent
sites A and B with two different orbit-
als a and b, before electron transfer
(left) and after electron transfer (right).
The transferred electron is depicted by a
dashed arrow. (a) Four unpaired electrons
in four orbitals leading to (b) a highly
excited state after electron transfer; (c–f)
three-electron system with antiferromag-
netic AF interaction (c–d) and an S =
1/2 ground state (c) and with a ferromag-
netic F interaction (e–f), stabilizing an
S = 3/2 ground state by electron transfer.

ST = 3/2, in contrast to the localized electrons situation with a ground spin
state ST = 1/2. The system gains more delocalization energy when the two
spins are parallel than when they are antiparallel. This spin dependence of the
electron transfer process has been called ‘double exchange’ (Anderson [3.42])
or ‘spin-dependent delocalization’ (Kahn [3.43]). The physical reason of the
larger delocalization for the highest spin state is that the transferable electron
can move from one site to the other without spin flip, and the system gains
exchange energy when there are many parallel spins (see Fig. 3.28).

The problem is simple only in appearance. It has been quantitatively tackled
by many researchers: Zener, Anderson, Girerd, the Kishinev school, Malrieu,
and their coworkers [3.42–3.45], among others, and the interaction model has
been successively refined during the past sixty years. The following treatment
describes, in a very simplified way, the approach proposed by Girerd [3.41].

It starts by the definition of a complete electrostatic Hamiltonian HR

between orbitals on the two sites, including electron kinetic energy, elec-
tron attraction by nuclei, and electron–electron repulsion, since the exchange
phenomenon (spin) and the electron transfer are both electrostatic in origin
(see Sections 2.5.2 and 2.6.1 for exchange, and Section 3.2.1 for electron
transfer). This complete Hamiltonian HR is quite heavy to manipulate, and
it is wise to seek a simplified model Hamiltonian, keeping, if possible, the
most important features of the problem. The approximations chosen to define
the model Hamiltonians and the subsequent treatments lead, of course, to
different results. An efficient model Hamiltonian HM is the so-called Hubbard–
Anderson one. It relies on the use of the Hückel Hamiltonian H as defined in
Section 1.3.1, implying only one-electron integrals α and β (interaction energy
between orbitals a (and b) located on sites A and B i.e. β = βAB). A simplified
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modelization of the electron–electron repulsion is implemented by introducing
only the one-centre electron–electron repulsion integral U (U = <aiai|e2/r12|
aiai > = <bibi|e2/r12|bibi >, with i =1, 2). As in many cases, only the ground
state and a few first excited states of the system are necessary for the descrip-
tion, and thus a perturbation treatment can be used to model the experimental
properties. The model Hamiltonian HM is decomposed into two parts H0 (cor-
responding to one-centre terms, orbital energies αi and repulsion energy U)
and V (corresponding to the interaction between orbitals on the two sites,
βAB). Thus HM = H0 + V. V, being weak, can be treated as a perturbation.
The most interesting situation occurs when the ground state E0 originating
from Hamiltonian H0 is degenerate and is split by the perturbation V: the
energy gaps between the split levels corresponds to physical observables. This
allows building an effective Hamiltonian Heff acting only on the ground state
E0 and reproducing the levels generated by V. The final step is to put in cor-
respondence the spin–orbitals functions of the ground state with the spin-only
functions and to arrive at a spin Hamiltonian HS acting only on the spins and
much easier to handle. We present a very brief account of the main results.

Starting from a perturbative treatment of the Hubbard–Anderson model
Hamiltonian, Girerd [3.41] arrived at the following spin Hamiltonian:

H = − J (SASBOA + SASBOB) + B TAB (3.77)

where B is the electronic interaction parameter Vab (or |β|) weighted by the spin
multiplicity of the core spin S0 (the local spin in the absence of transferable
electron); that is:

B = Vab/ (2 S0 + 1) (3.78)

TAB, OA, and OB are operators with the following actions:

TAB
∣∣SA, SB, S>A = (S + 1/2)

∣∣ SA, SB, S>B (3.79)

TAB
∣∣SA, SB, S>B = (S + 1/2)

∣∣ SA, SB, S >A (3.80)

OA
∣∣SA, SB, S >A = ∣∣SA, SB, S>A (3.81)

OA|SA, SB, S >B = 0 (3.82)

and similar relations for OB. The ket symbol |SA, SB, S>A represents a wave-
function with local spins SA on site A and SB on site B and total spin S, with
an extra particle localized on site A (by particle, we mean an extra electron
for half-filled or less than half-filled dn configurations (without the transfer-
able electron) and an extra hole for more than half-filled one). Thus TAB is a
transfer operator, while OA or OB are occupation operators. The Hamiltonian
has been called an exchange–double exchange Hamiltonian.

The eigenvalues of (3.77) are then:

E = −1/2 J S (S + 1) ± B (S + 1/2) (3.83)

There are thus two effects encompassed in eqns. (3.77) and (3.83): the first term
is related to magnetic exchange (through the J term) and the second term to
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Fig. 3.29
Eigenvalues E of the exchange–double exchange Hamiltonian in units of |J| as a function of |B/J|. (a) For J < 0 (antiferromagnetic case); (b) for
J > 0 (ferromagnetic case). (Adapted from Girerd [3.41].)

double exchange; that is, spin-dependent delocalization (through the B term).
The remarkable effect of the double exchange term is to split the exchange
energy levels in two, stabilizing one and destabilizing the other.

The combined effects of B and J are shown on Fig. 3.29 for the mixed
valence FeII–FeIII system. On the left axis are displayed the ladder of
spin energy levels computed from the exchange term only (Heisenberg
Hamiltonian, no electron transfer, B = 0). When |B| increases the spin levels
are more and more split, and thus crossings between the spin states occur. For
sufficiently large values of |B| the S = 9/2 state becomes the ground state.
It is important to realize that the situation depicted in Fig. 3.29 is valid only
when the two configurations FeII

A–FeB
III and FeIII

A–FeB
II have exactly the

same energy; in other words, at the crossing point of the Hush–Marcus curves.
One of the interests of the previous treatment is that the model and spin

Hamiltonians are rather simple to handle. They were, up to now, widely
accepted. In a recent study of a simple mixed valence dinuclear compound
[Ni2(napy)4Br2]+ (napy denotes naphtypyridine), Malrieu and coworkers
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[3.45] have used ab initio configuration interaction (time-consuming) calcu-
lations. They carefully analysed and compared their results (unfortunately
impossible to reproduce in the limited space available here) with those res-
ulting from the preceding perturbative treatment. They conclude that at least
for this Ni2 case the perturbative treatment cannot be applied safely, since the
interaction between the ground state and the excited states is quite strong.
Furthermore, the orbitals implied in the electron transfer process cannot be
limited to the singly occupied 3d metallic orbitals, since the Ni 4s orbitals
appear to play an unexpected important role. Therefore, their energy spacings
and wavefunctions deviate significantly from those of the generally accep-
ted model Hamiltonian. Additional calculations on other systems are therefore
needed, and new exciting developments can be expected.

If now we take into account the effect of vibronic coupling, we start from
two potential energy parabolae with spin S1, and two with spin S2 (S2 > S1),
as shown in Fig. 3.30. Then we couple each pair of parabolae by the B (S + 1/2)
interaction. The abscissa is defined in Fig. 3.30.

Several cases can appear, depending on the sign of J, as analysed in [3.41].
As an example showing the richness of behaviours, we consider the case of
the [Fe2bpmp(RCO2)2]2+ complex, where bpmp is the anion of 2,6-bis[bis(2-
pyridylmethyl)aminomethyl]4-methylphenol [3.46]. For this mixed valence
FeII–FeIII complex, the J parameter is estimated as –10 cm–1, and the ground
state is assumed to be localized (class II). Taking into account that the effects
of delocalization are smaller when the structure departs from symmetry, for
x near to ± 1/2 we have antiferromagnetically coupled FeII (S = 2) and FeIII

(S = 5/2) sites, with a total spin ST = 1/2. But the electronic interaction, mani-
fested in the avoided crossing zone, is larger for the higher spin states than for
S = 1/2. Thus level crossings occur, giving the complex behaviour depicted in
Fig. 3.31.

In such a system the activation energy for electron transfer is clearly much
lower for the higher spin states. The electron transfer involves probably a com-
plex mechanism, with thermal population of the higher spin states, followed
by electron transfer and then spin conversion.

E

x

2|B|(S1+1/2)2|B|(S2+1/2)

S1S1

S2 S2

–1/2 +1/20

Fig. 3.30
Two pairs of potential-energy parabolae
coupled by the electronic interaction.
In this example the coupling is greater
for the S2 spin state than for S1, because
S2 > S1. x is an adimensional coordinate
as in Fig. 3.27.
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Assumed potential energy curves for the
lowest states of [Fe2bpmp(RCO2)2]2+.
x is an adimensional coordinate as in
Fig. 3.30. (Redrawn from [3.41].)

An application: colossal magnetoresistance in Mn3+–Mn4+ systems
The interplay of magnetism and electron transfer is important for some applica-
tions in solid three-dimensional solid oxides. Our local approach, implying two
neighbouring centres, can be used to understand the basic physics of some phe-
nomena. Thus a number of solid oxides contain both high spin d3 Mn4+ (S =
3/2) and high spin d4 Mn3+ (S = 2) [3.47]. A typical example is Ln1–xAxMnO3,
where Ln3+ is a lanthanide, A2+ a divalent cation (Ba, Sr, Ca), and 0 ≤ x ≤ 1.
The structure is of the perovskite type with MnO6 octahedra. There is thus the
possibility of exchange magnetic coupling between Mn3+ and Mn4+ centres,
and also of electron exchange leading to conductivity. Electron–phonon inter-
action also plays a role (see Sections 3.1.2 and 3.3.3 for the definition and use
of this term), because the MnIIIO6 octahedra are strongly distorted as a result of
Jahn–Teller effect. (As already seen in Section 2.8.1.1, the Jahn–Teller effect
is important in high-spin MnIII because there is one electron in an antibonding
orbital belonging to the e∗

g orbital set and the octahedral geometry is unstable
due to orbital degeneracy.)

At both ends of the composition diagram of Ln1–xAxMnO3, Mn is present
respectively as MnIII (x = 0) and as MnIV (x = 1). The compounds are then
antiferromagnetic insulators. Between (0 ≤ x ≤ 1) the conductivity is import-
ant, due to the mixed valence composition. But the electron transfer is sensitive
to the relative spin orientation of nearest neighbours MnIII and MnIV centres:
as seen previously, the electron transfer is easier when the spins are paral-
lel (double exchange; see Fig. 3.28). Conversely, the electron transfer has an
influence on the privileged type of magnetic coupling (ferro versus antiferro)
because mobile electrons can play the role of ‘messengers’, forcing the spins to
align. The final result is that in the intermediate x range (0.15 < x < 0.50) a fer-
romagnetic and metallic phase is observed at low temperature. In the regions
close to the transition between phases the system is very sensitive to an addi-
tional perturbation, such as a magnetic field. Thus the conductivity increases
dramatically upon application of a magnetic field, because it forces the par-
allel alignment of neighbouring spins. This effect has been called ‘colossal
magnetoresistance’. The relations between structure (short and long ranges),
electronic structure (Jahn–Teller, mixed valence), applications of a magnetic
field, and physical properties are actively studied [3.47].



250 The moving electron: electrical properties

3.2.2.5 Experimental aspects: spectroscopic studies
The experimental study of mixed valence compounds must take into account
the dynamic aspect of the investigation method. If the compound is class
III, the only dynamical process is purely electronic—extremely fast—and all
experimental methods point towards a total delocalization. But for a class II
system there is a dynamical exchange between the two possible forms, corres-
ponding to wells in the potential energy surface. These two forms are indeed
genuine chemical species (isomers). The interchange process can be charac-
terized by the intramolecular first-order rate constant ket, or the corresponding
characteristic time τet = 1/ket, both being generally dependent on temperat-
ure. τet represents the average time of residence of the extra electron on a
given site. Now, to each spectroscopic method, one can assign a ‘characteristic
time’ τmeth, which represents the average equivalent duration of the interaction
between the radiation and the system [3.48]. The experimental result depends
on the relative magnitudes of τet and τmeth:

If τet >> τmeth the electron has not enough time to jump during the equi-
valent duration of the interaction, and the experiment concludes that the state
is ‘localized’, in the same way as a short-time flash freezes the motion in a
photograph.

If τet << τmeth the electron has time enough to perform a large number of
transfers back and forth between the two sites, and the experiment concludes
that the state is ‘delocalized’, as a photograph of a rapidly moving object taken
with a long exposure gives only the object’s average position. Hence, the same
situation can be considered as ‘localized’ or ‘delocalized’, depending on the
characteristic time of the measurement method. Thus one has to be careful in
interpreting experimental data. In particular, when a method shows equivalent
sites it is not possible to decide immediately between the two possibilities:
either the system is class III, or is class II with τet << τmeth.

We have now to specify in more detail the definition of the ‘characteristic
time of a method’ (see also Box ‘Time-scales of investigation methods’). In the
following, we will consider mainly the case of resonance methods, the most
typical being EPR and NMR spectroscopies, which can be treated by a com-
mon formalism [3.49]. If there are two localization sites, denoted A and B,
they can be associated with two different resonance signals with frequencies
νA and νB respectively. In the case of EPR, for instance, the unpaired electron
does not exhibit the same resonance frequency when it passes from an initial
site to a site with a different orientation or with a different hyperfine coupling.
In the case of NMR one generally follows the resonance of a nucleus close
to the metallic site on which electron transfer occurs, using the influence of
the metal oxidation state on the nearby NMR active nucleus. A related case is
Mössbauer spectroscopy, where the absorption frequencies in the γ domain are
dependent on the oxidation state of the considered element.

The interconversion between the two chemical species A and B corres-
ponding to the two possible electron localizations introduces a new relaxation
pathway, which modifies the signal shape. The detailed theory of resonant
absorption in the presence of this new process shows that the characteristic
time of the method is given by:

τmeth = �/�E = 1/(2π �ν) (3.84)
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frequency

νA νB(νA + νB)/2

Low T

ket<<2πΔν
τet>>τmeth

High T
ket>>2πΔν
τet<<τmeth

Fig. 3.32
Thermal variation of the shape of the sig-
nals characteristic of two species, A and
B, in the presence of a dynamic exchange.

where �E is the difference in energy resonances between the two A and
B states, and �ν is the difference between the two resonance frequencies
[3.50a].

Thus, in the case of NMR, τmeth is not equal to the reciprocal of the NMR
frequency, but is proportional to the reciprocal of the difference in chemical
shifts observed for the A and B states. As a consequence, τmeth is not constant
for a given spectrometer, but depends on the system under investigation. The
case of Mössbauer spectroscopy is different: here the time-scale of the method
is given by the lifetime of the nuclear excited state.
Consider now a system for which the ket constant can be varied, for instance, by
a change in temperature, so that one can cross the temporal ‘window’ associ-
ated with the investigation method, then the following behaviours are observed
successively (Fig. 3.32):

• For ket << 2π �ν (τet >> τmeth at low temperature), two signals at frequen-
cies νA and νB are observed, as if the sample were constituted by a mixture
of two species without interconversion.

• When ket increases and becomes close to 2π �ν, the signals widen and then
coalesce. The unique resulting signal is located midway between νA and νB.
Then it narrows.

• Finally, when ket >> 2π �ν a single sharp signal remains. Its characteristics
(position, width) are the averages of those of A and B signals.

In the intermediate zone where ket ≈ 2π �ν, detailed analysis of the signal
shape by numerical simulation can yield the rate constant ket. Conversely, when
ket is much lower or much greater than 2π �ν, the signal shape is independent
of ket.
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Time-scales of investigation methods

Each experimental method can be characterized by its time-scale—the effective dur-
ation during which the system is probed. The situation is analogous to the case of
photography, where, according to the shutter speed or the duration of the flash, a
photograph of a moving object can be sharp or blurred. In many cases the time-scale
is defined by the difference in frequency between two signals characteristic of two
distinct chemical forms (see eqn. (3.84)).

The table summarizes the time-scale of some common spectroscopic techniques.

Method Characteristic time scale (s) Remarks

NMR 10–3 to 10–8 (1)
Mossbauër 10–7 to 10–10 (2)
EPR 10–7 to 10–11 (1)
Infrared, Raman 10–12 to 10–13 (3)
Visible–ultraviolet 10–14 (4)
Solvent effects 10–10 (5)
Dielectric relaxation 104 to 10–6 (6)

(1) For NMR and EPR, there are strictly speaking several time scales, depending
on the investigated system, and even on the part of the spectrum which is examined.
They are estimated from the frequency shifts (spreading of the spectrum) of signals
influenced by the electron transfer. The frequency shifts can be due to differences in
chemical shifts or to couplings (case of NMR), to the anisotropy of the g factor or the
presence of hyperfine lines (case of EPR), or finally to the modulation of relaxation
times (all techniques).

(2) In Mössbauer, one uses the lifetime of the excited absorbing nucleus, rather
than the spectrum spreading.

(3) Usually and approximately evaluated from the average duration of a vibration,
but recent experiments show that the same formalism as for NMR is valid [3.52].
This time scale corresponds more or less to the class II / III distinction, because
nuclear motions cease to follow electronic motions when the latter exceed a critical
frequency which is of the order of the molecular vibrations frequency.

(4) Evaluated from the reciprocal of the frequency of electromagnetic radiation in
the visible–ultraviolet.

(5) This concerns the solvent effect on the position of intervalence transitions.
If such a dependence exists, it means that the solvent molecules (reorientation time
near 10–10 s) have enough time to reorient between two electron transfers, and thus
can contribute to Eop. [3.13]

(6) This is the dielectric response of a material disposed between the two plates of
a capacitor submitted to an alternate voltage of variable frequency. The modern vari-
ant is called ‘time-domain reflectometry’ [1]. The frequency range can be extremely
wide (from 10–4 Hz to 106 Hz), but the method is sensitive to any cause of dipolar
relaxation (polar groups motion, counter ions motion, and so on), and not only to
electron transfer.

Reference

[1] B. C. Bunker, R. S. Drago, M. K. Kroeger, J. Am. Chem. Soc. 104 (1982), 4593.
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One of the earlier examples of a dynamic study of electron transfer in a mixed
valence system was provided by europium sulphide Eu3S4, not a molecular
compound. This solid contains formally Eu2+ and Eu3+ in a 1:2 ratio, and the
two valence states produce Mossbauër signals of 151Eu at different isomeric
shifts. At low temperature (80 K), two types of signal are obtained in the
expected 1:2 ratio, while at room temperature a single signal is observed at
an average position of the chemical shift (Fig. 3.33) [3.51].

Since the electron transfer process is thermally activated, changing the tem-
perature realizes the different cases discussed previously; that is, τet >, ≈ or
< τmeth, with τmeth = 8.8 ns, fixed by the lifetime of the nuclear excited state.
By proper analysis of the signal shape, it is even possible to determine the rate

Eu2+ Eu3+

Velocity/mms−1

−20 −10 0 10

τet= 10−7 s

τet = 3.5 10−8 s

τet = 3.5 10−9 s

τet = 1.7 10−9 s

τet = 8.5 10−10 s

τet = 8.5 10−11 s

τet = 3.5 10−11 s

τn = 8.8 10−9 s

325 K

275 K

250 K

228 K

213 K

200 K

83 K

Fig. 3.33
Mössbauer spectrum of Eu3S4 as a func-
tion of temperature. τn = 8.8 ns is the
lifetime of the nuclear excited state (time-
scale of the method). (Adapted from
[3.51].)
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Structure of a mixed valence compound
built from two trinuclear Ru3O units,
with ancillary CO ligands and a pyrazine
bridge. (Adapted from Kubiak [3.52].)

constant, which is found to vary from around 107 s–1 at 80 K to 1010 s–1 at
room temperature.

Infrared spectroscopy has been used only recently for the dynamic study of
mixed valence systems. In the series of compounds depicted in Fig. 3.34, two
trinuclear moieties of the Ru3O type are linked by a bridging ligand, and one
of the ruthenium atoms bears an ancillary carbonyl ligand [3.52]. The mixed
valence effect arises from the possibility of reducing one of the trinuclear units.
Interestingly, the carbonyl ligand displays an infrared stretching band, the fre-
quency of which changes by about 50 cm–1, according to the oxidation state of
the moiety to which it is attached.

Varying the bridging ligand, or even the solvent, modifies the rate of
intramolecular electron transfer between the trinuclear moieties and real-
izes the sequence of broadening and coalescence, as for other methods (Fig.
3.32). However, such examples are extremely rare in vibrational spectroscopy.
Since the frequencies associated with vibrational motions are very high, as
are the differences in frequency between two oxidation sates, the range of
rate constants probed by dynamic infrared studies can be extremely high and
thus complementary with respect to other methods. In the present examples,
intramolecular rate constants between 1012 and 5 × 1012 s–1 have been determ-
ined [3.52]. Another advantage of the infrared method (or more generally of
vibrational methods, like Raman spectroscopy) is to probe the process of nuc-
lear motions—the very process which is responsible for the eventual valence
trapping. Thus if a system appears ‘delocalized’ by the vibrational study, the
rate of electron transfer is so fast that the system is very probably of class III
nature.

One of the most frequently used methods for the study of mixed valence
compounds is ultraviolet–visible–near-infrared spectroscopy, since the char-
acteristic intervalence transitions appear in this domain. This method can be
qualified as ‘fast’, with a characteristic time near 10–14 s. This method plays
a particular role, however, since the photon energy is high enough to promote
electron transfers, and thus modify the system upon investigation. Therefore,
rather than dealing directly with dynamic aspects, electronic spectroscopy
in the domain of intervalence transitions (visible–near-infrared) is a way of
obtaining information on the degree of electronic coupling, as shown in the
following.
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In the case of a class II system the intensity of the intervalence transition
carries some information on the ground-state delocalization, and thus on the
electronic coupling parameter Vab. The root of the theoretical treatment, due
to Hush [3.53], is in fact an adaptation of Mulliken’s charge transfer theory.
The molecule is reduced to its two terminal sites, A and B; that is, the partial
delocalization on the bridging ligand is not explicitly introduced, which con-
stitutes a rough approximation. The electronic coupling is assumed to be small
with respect to λ. Under these conditions, the wavefunctions describing the
ground state |�G > and the excited state |�E > are of the form (3.73b) and
(3.73c):

|�G >= − |�a > + (β/λ) |�b > (3.85a)

|�E > = (β/λ) |�a > +|�b > (3.85b)

The intensity of the transition depends on the transition moment, defined by:

M = < �G|er|�E > (3.86)

where er is the dipole moment operator, and M is an integral over space. When
developing eqn. (3.86), quantities such as < �a|r|�a > and < �b|r|�b >

appear, corresponding to these r values when the wavefunction is �a or �b;
these values are separated by R, the metal–metal distance (the significance of
R is discussed in what follows). Thus one finds:

M = e (|β|/ λ) R = e (Vab/λ) R (3.87a)

or, alternatively,

Vab = Mλ/eR (3.87b)

To make the link with experimental quantities such as extinction coefficient,
band position, and so on, one makes use of an intermediate quantity, the
oscillator strength of the transition, denoted f. It is defined as [3.50b]:

f =
(

4 me c ε0

NA e2
ln 10

)
A (3.88)

where me and e are the electron mass and charge, c the velocity of light,
ε0 the permittivity of vacuum, NA the Avogadro constant, and A the area of
the absorption curve

∫
ε(ν)dν, where ν is the frequency. For a Gaussian band

profile, this area is given by:

A = (1/2) (π/ ln 2)1/2 εmax�ν1/2 ≈ 1.06 εmax�ν1/2 (3.89)

where εmax is the maximum molar absorption coefficient, and �ν1/2 the width
at half-maximum of the transition (in frequency units).

The oscillator strength is also related to the transition dipole moment by
[3.50b]:

f = 8π2m ν

3 h e2
|M|2 (3.90)

Finally, by combining eqns. (3.87b) and (3.90), one obtains an expression of
Vab which depends on the experimental parameters εmax, νmax, and �ν1/2 (the
band position and width in frequency units). This is Hush’s equation [3.53]:
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Vab = h
[
3 h C ε0(ln 10) / 4π2 NA e2

]1/2
(π/ln2)1/4

√
εmax νmax �ν1/2

R
(3.91)

Combining all numerical factors and expressing the band position and width
in wavenumbers yields the practical formula:

Vab = 2.05 10−2
√

εmax ν̄max �ν̄1/2

R
(3.92)

In this frequently used expression, Vab is now in cm–1, and the parameters of
the intervalence band are in the usual units: εmax in L mol–1 cm–1, and v̄max and
�v̄1/2 in cm–1. The definitions are recalled in Fig. 3.35. Since the intervalence
band overlaps frequently with band tails originating from other transitions
such as metal-to-ligand and ligand-to-metal transitions, a deconvolution of the
mixed valence compound spectrum is often necessary.

Curiously, although eqn. (3.91) relies on a number of rough approximations,
and in particular ignores partial delocalization on the bridging or ancillary lig-
ands, its range of validity is wider than expected. It has been shown that it
remains valid even for relatively strong couplings [3.54].

However, a known difficulty in the use of eqn. (3.91) is the value of
the R parameter, which represents an effective distance between the loc-
alized donor’s and acceptor’s charge centroids. It is usually taken as the
through-space geometrical distance between sites A and B, but delocalization
effects (extensive wavefunction mixing in the ground and excited states) and
polarization effects (changes in electron distribution) can introduce marked
differences. This difficulty is discussed in the ‘generalized Mulliken–Hush
model’ (GMH) model [3.55]. According to this model, a more rigorous for-
mulation is obtained by using the following expression for Vab instead of
(3.87b):

Vab = Mλ/�μab (3.93)

where �μab = μa – μb is the diabatic change in dipole moment; that is, the
difference in dipole moments for two non-interacting sites (full localization).
The previous treatment leading to eqn. (3.91) was valid for a full transfer on
one electron along a distance R (thus �μab = e R) but in the frame of the GMH
model one uses instead:

�μab = [(�μ12)2 + 4 (M)2]1/2 (3.94)

12000100008000
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Δ ν1/2

νmax

ε

ν/ cm–1

6000
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transitionFig. 3.35

Parameters defining the intervalence
band: position (in wavenumbers), max-
imum molar absorption coefficient, and
full width at half-maximum
(in wavenumbers).
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where �μ12 is the difference between eigenvalues of the adiabatic dipole
moment matrix [3.55]. The interest of eqn. (3.94) lies in the fact that �μ12 and
M can be evaluated experimentally, respectively from Stark effect measure-
ments [3.56] and from the intensity of the intervalence transition. Once �μab is
known from these measurements one can define an effective distance by Reff =
�μab/e. Note, however, that this more rigorous procedure has been used very
scarcely, due to the paucity of Stark effect experiments.

In the case of a class III mixed valence compound, the transition occurs
between fully delocalized levels, given by eqns. (3.72a) and (3.72b). In this
case, Vab is not obtained from the band intensity, but merely from the band
position: it is simply one half of the optical transition energy (see Fig 3.25).
The transition moment is then given, from (3.86), by:

M = eR/2 (3.95)

which is much larger than in eqn. (3.87a), since in this last expression the
ground-state delocalization coefficient Vab / λ is necessarily small. Thus, in a
class III system, while there is no more thermal transfer, one observes a par-
ticularly intense electronic transition. But it does not correspond to a charge
transfer, since the initial and final levels are fully delocalized with equal
weights on the two sites, and is actually similar to a bonding-to-antibonding
transition.

This difference of nature of the transitions can be used as a criterion for the
class II/class III distinction. For a class II system, as a consequence of eqns.
(3.17) and (3.66), the energy of the intervalence transition must depend on
the solvent, and this has been experimentally established [3.13, 3.57]. On the
contrary, for a class III system there is no appreciable charge redistribution
during the electronic excitation, and thus the solvent influence on the transition
is very small.

Another criterion to distinguish class II from class III systems is based on
the bandwidth of the intervalence transition. In a class II compound (see Figs.
3.21 and 3.25b) the vertical transition reaches the excited state curve in a region
where the slope of the E = f(Q) curve is large. Thus, as a result of fluctu-
ations in the initial Q value, there is an important dispersion in the transition
energy. The detailed calculation was performed by Hush, and gives the energy
bandwidth �E1/2 of the transition as:

�E1/2 = [16 kT (ln2) λ]1/2 (3.96)

That is, numerically at 298 K, when the band position and width are in cm–1:

�ν1/2 = [2310 νmax]1/2 (3.97)

By contrast, in a class III compound the vertical transition reaches the upper
curve on a rather flat region (Fig. 3.25c), and the corresponding band is much
narrower.

We can now discuss in more detail the properties of some systems for which
the simultaneous determination of Eth and Eop has been possible. The best
examples are found in organic mixed valence systems, using EPR spectroscopy
to determine the rate of intramolecular electron transfer, and from its variation
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Two examples of mixed valence com-
pounds for which the simultaneous
determination of Eop and Eth is available.
a) half-oxidized bis-hydrazines [3.58];
b) half-reduced perchlorinated bi-radical
[3.59].

with temperature, the activation energy for the thermal process. Two examples
are shown in Fig. 3.36.

In the case of the bis-perchlorinated radicals (Fig. 3.36b) the partial reduc-
tion generates a monoradical, which can be considered formally as the
association of an EPR-active radical on one side and an EPR-silent carbanion
on the other side [3.59]. For this system, all parameters can be experiment-
ally determined. Thus an intervalence transition is observed near 1400 nm,
corresponding to Eop = 0.78 eV. From the intensity of the transition, a value
of Vab = 0.015 eV is obtained, using Hush’s equation (see eqn. (3.92)). The
thermal electron transfer can be monitored by EPR, because of the hyper-
fine splitting due to the coupling with a vinylic proton on each side. At low
temperature (200 K) the EPR spectrum presents two lines, showing that the
unpaired electron interacts with only one proton; that is, it is localized on
only one half of the molecule. When the temperature is raised, the spectrum
evolves gradually towards a three-line spectrum, characteristic of an interac-
tion with two equivalent 1H nuclei, meaning that the electron transfer becomes
fast in the EPR time-scale. The detailed analysis of the spectrum by computer
simulation gives the electron transfer rate constant (found in the range 107–
108 s–1), and from its variation with temperature, an activation energy Eth =
0.117 eV can be obtained. This value is appreciably lower than one fourth of
the optical energy (Eop/4 = 0.197 eV). Even taking into account the effect of
Vab which decreases the thermal activation energy (see eqn. (3.76)), the agree-
ment is not perfect. The conclusion is thus that eqn. (3.66) is certainly a rough
approximation and reality is more complicated. For instance, as seen previ-
ously, quantum effects (nuclear tunnelling) can exist and would perturb the
extraction of the barrier height from the relation between the rate constant and
temperature. Another possibility, which has been proposed in the literature,
is that the potential energy curves depart from the ideal harmonic oscillator
model [3.58].

In the methods mentioned previously the electron transfer is not followed in
real time. The rate is obtained from a spectrum which is recorded for a duration
which can be as long as several minutes or hours. Conversely, in time-resolved
studies one tries to follow instantaneously the system evolution between an
initial and a final state. This necessitates several conditions:



Electron transfer in discrete molecular systems 259

(i) The analysis method must be ‘fast’ in order to monitor instantan-
eously the composition of the mixture. One uses almost exclusively
visible–ultraviolet absorption, or fluorescence emission, making use of
the almost instantaneous response of photosensitive detectors (diodes,
photomultipliers).

(ii) The initial and final states must have different spectroscopic character-
istics, which implies an unsymmetrical system. In most of the cases this
introduces an energy difference between the two states.

(iii) It is necessary to be able to define precisely the ‘zero time’: the system,
initially in the more stable state, is rapidly brought in in the other possible
(less stable) electronic state, from which it will relax towards the fun-
damental state, by an electron transfer reaction. This preparation step is
crucial, and is usually achieved through ultra-fast laser-pulse techniques.

There have been very few well-characterized examples of time-resolved
intramolecular electron transfer in mixed valence systems. Note that it is
not in general possible to trigger the electron transfer by excitation on the
intervalence transition, and one has rather to perform an excitation on a higher-
energy charge transfer transition. One of the best examples is provided by
ruthenium–osmium binuclear systems with a rigid spacer [3.60] (Fig. 3.37).

The starting complex exists as RuII–L–OsII, where L is the bridging ligand,
which incorporates a bicyclo[2.2.2.]octane unit in order to reduce the elec-
tronic interaction, and thus slow down any intramolecular reaction. The mixed
valence RuII–L–OsIII species can be formed quantitatively by chemical oxida-
tion with 1 equivalent of oxidant, since OsII is easier to oxidize by 0.4 V than
RuII for the same environment. Upon excitation of the RuII chromophore on a
metal-to-ligand charge transfer band (MLCT), an electron is transferred from
RuII to a symmetry-adapted combination of π* orbitals of neighbouring lig-
ands, thus generating an excited state which can be considered as RuIII(bpy–•)
anion radical (see Section 4.3.1). The high-energy electron can then move to
the remote OsIII site, thus generating temporarily the mixed valence isomer
RuIII–L–OsII, which is thermodynamically unstable with respect to RuII–L–
OsIII (see the sequence of events on Fig. 3.38). Finally, back-electron-transfer
is observed with a rate constant 1.0 × 106 s–1 [3.60]. This sequence of
events was followed by time-resolved absorption spectroscopy which allowed
identification of the RuIII–L–OsII intermediate species.

As mentioned previously, there are few studies of this type. This is because
many processes can compete with electron transfer, in particular energy trans-
fer, and also non-radiative deactivation. The observation of time-resolved
intervalence electron transfer is not a routine experiment, but requires the
fine-tuning of many parameters in a carefully chosen system.

N N

NN

Ru(bpy)2

Os(bpy)2

Fig. 3.37
Structure of a rigid Ru–Os binuclear
complex.
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(bpy)2RuII-L-OsIII(bpy)2

(bpy)2RuIII-L-OsII(bpy)2

(bpy)(bpy-•)RuIII-L-OsIII(bpy)2

excited Ru(bpy)

1.0 × 106 s−1

Fig. 3.38
Reaction scheme following the excitation
of the RuII–L–OsIII binuclear complex
on a RuII-to-ligand charge transfer trans-
ition. Plain black arrow, excitation; plain
grey arrow, luminescence; dashed arrows,
radiationless processes.

3.2.2.6 The electronic interaction and mechanism of electron transfer
in mixed valence systems

At this stage it is useful to discuss in more detail the electronic interaction in
mixed valence compounds, and more generally in strongly coupled systems.
This has important consequences for the detailed mechanism by which an elec-
tron is transferred through a bridge, and addresses contemporary issues on the
long-range transmission of electronic effects.

As discussed in Section 3.1.1, in a one-electron model, such as the exten-
ded Hückel model, Vab is simply taken as half the energy difference between
two orbitals having high weights on the metal atoms, and presenting opposite
symmetries, such as ψg and ψu in Fig. 3.39. Although crude, this method gives
very satisfactory orders of magnitudes of the electronic coupling, and is par-
ticularly well adapted to qualitative chemical-based discussion. It is important
to notice that the interaction is measured by the difference in energy between
these two orbitals, and not by the properties of a single orbital, even when it
shows an important delocalization on the bridging ligand.

To be more specific, let us consider the typical example of a system
bridged by a conjugated organic ligand. As in Section 3.1.1, we start from the
symmetry-adapted linear combinations of dxz orbitals, and look at their inter-
action with the HOMO and the LUMO of the ligand. We restrict ourselves to
the π system shown in Fig. 3.39. (Compare also with Figs. 2.40 and 3.3)

In general, for conjugated systems the energy of the metal orbitals falls in
the HOMO-LUMO gap, and the HOMO and LUMO have opposite u and g
symmetries (Fig. 3.39). Thus in the example represented the (dxzA + dxzB)
combination is stabilized by a bonding interaction with the LUMO, while the
(dxzA – dxzB) combination is destabilized by an antibonding interaction with the
HOMO. These effects add up to produce a splitting. However, it remains mod-
est because the mixing is relatively weak due to the energy difference between
metal and ligand orbitals. Thus the ground-state description contains a contri-
bution of a configuration in which either the metal is oxidized and the ligand
is reduced, or the reverse. This mechanism increases dramatically the coupling
with respect to the case of a direct (through space) interaction of the metal
orbitals. This is called superexchange—a general concept already met with in
Chapter 2 (see Section 2.6.2.2, Box ‘Superexchange’).
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Molecular orbital energy diagram of a
mixed valence system bridged by a con-
jugated ligand. At left, the dxz orbitals
of metals A and B build two symmetry-
adapted linear combinations (SALC),
u and g. They are assumed to bring
three electrons (as in a ruthenium(II)–
ruthenium(III) system). At right are
shown the u and g MOs of the π lig-
and, reduced to the coordinating atoms.
In the middle are shown the energies and
schemes of the � i MOs of the MA–L–MB

fragment. Count the number of nodes in
the MOs’ schemes.

If the metal orbitals are closer in energy to one of the frontier orbitals (say
the ligand’s LUMO), then the mixing increases rapidly, and consequently the
Vab coupling, though mainly one of the ligand orbitals contribute to the effect.
The large increase of Vab is called resonance. Taking the example of a RuII–
L–RuIII mixed valence system, it means that the RuIII–L––RuIII configuration
is increasingly important in the description of the ground state. As a limiting
case, it may happen that this configuration becomes a true intermediate. Then
the electron transfer becomes a two-step process:

RuII − L − RuIII → RuIII − L− − RuIII

RuIII − L− − RuIII → RuIII − L − RuII

The intermediate now has a transient existence. This means that the bond
lengths have time to relax and adapt to the electronic state, and this species
corresponds to a local minimum in a potential energy surface.
Thus when the electronic mixing with the bridge is important, there are two
possible mechanisms, whose characteristics are summarized in Fig. 3.40:

true intermediate
(relaxed)

RuII – L – RuIII

RuII – L – RuIII

RuIII – L – RuII

RuIII – L(–) – RuIII

RuIII – L(–) – RuIII

RuIII – L – RuII

quantum mechanical
mixing

(a)

(b)

Fig. 3.40
The two possible mechanisms for elec-
tron transfer through a bridge. (a) Single
step, superexchange mechanism, imply-
ing a quantum-mechanical mixing with
an intermediate configuration; (b) two-
step mechanism with transient formation
of a real intermediate.
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• A single step, superexchange mechanism, in which the intermediate con-
figuration is only virtual, i.e. it participates in the quantum mechanical
description of the initial and final ground states, with a variable weight.

• A two-step mechanism, also called ‘sequential’, or ‘chemical mechanism’,
or ‘hopping-type mechanism’, in which the intermediate configuration is
‘real’, i.e. it can be observed experimentally as a transient state.

Considerable work has been devoted to the distinction between these two types
of mechanisms [3.4, 3.61, 3.62]. A recent problem was raised by the properties
of DNA, and the possibility that this fundamental molecule, support of hered-
ity, could have special electronic properties favouring long distance electron
transfer. (See Box ‘Electron transfer through DNA’).

The duality between both mechanisms will also be encountered in Section
5.2.2 when a molecule will be inserted between two ultra-thin metallic
conductors, so as to mediate the passage of an electrical current.

Decay law of Vab with distance
A final concern is the question of the decrease of Vab with distance. Since Vab

determines the electron transfer rate in the non-adiabatic regime (eqn. (3.37)),
this question has strong implications in various domains of chemistry, biology,
physics, nanosciences, and so on, and will be evoked again in Chapters 4 and
5. The experimental study of series of compounds with different lengths has
allowed some progress in this direction. The Vab coupling can be determined
by the intervalence band method, using Hush’s eqn. (3.92), provided that the
coupling is large enough, which requires in practice a conjugated bridge [3.30].

It is generally found that the Vab coupling decreases with the distance R
between redox sites according to an exponential law, with a decay coefficient
γ depending on the bridge and defined by:

Vab = V◦
ab exp (−γ R) (3.98)

Thus, according to eqn. (3.98), in the non-adiabatic regime the intramolecular
electron transfer rate constant varies also according to an exponential law, but
with a doubled decay coefficient, because k varies as V2

ab (see eqns. (3.37) and
(3.57)):

k = k◦ exp (−2γ R) (3.99)

Curiously, for many compounds with diverse structures the γ decay coefficient
falls in a rather narrow range: 0.07 to 0.10 Å–1 [3.30c]. This is a rather slow rate
of decay, and is much smaller than if the interaction between the redox sites
occurs through empty space (in such a case γ would be about 0.5 Å–1) (Fig.
3.41). The big challenge for achieving long-range electron transfer is to realize
simultaneously a strong initial coupling V◦

ab and a weak attenuation factor γ,
but these requirements are in a first approximation mutually exclusive [3.30c].
Looking more closely, however, there are interesting deviations of this general
law, and some groups, such as anthracene, are particularly efficient as bridge
components to ensure a strong interaction between terminal sites. The search
for more efficient structure is an active field of research.
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Electron transfer through DNA

The electronic properties of DNA have received considerable attention since 1993,
when the first measurements showed that it could be the siege of electron transfer
reactions [1]. Modified DNA molecules were prepared with a photosensitive metal
complex such as Rh(phi)2(dmb), (phi = 9,10-phenanthrenequinone diimine, dmb =
4,4′-dimethyl-2,2′-bipyridine), which is used as an intercalator within the π stack
of DNA pairs. Upon photophysical excitation the tethered complex acts as a hole
generator; that is, it can receive an electron from a distant place such as a thymine
dimer. This constitutes a model for the biologically important reaction of thymine
dimer repair. (A thymine dimer is a pair of abnormally chemically bonded adjacent
thymine bases. Oxidation of the thymine pair breaks the dimer, thus restoring their
normal mode of bonding).

A T G T T G A C G A5' C G TT

T A C A A C T G C T G C AA 5'Rh

hν

Repair Fig. 1
Scheme of the intercalator rhodium
complex-DNA-thymine dimer. The
thymine dimer is shown in light grey.
Following the photoexcitation of the
tethered intercalated rhodium complex,
oxidative repair of the thymine dimer
occurs at 26 Å distance. (Adapted from
Genereux and Barton [1b].)

Several other modifications of DNA have been performed by grafting various
photosensitive groups and detecting chemical reactions at distance, either by strand
cleavage or by generation of cation radicals [2]. The nucleobases do not have
the same redox properties (guanine is more easily oxidized than adenine and the
pyrimidine nucleobases), making possible the selective oxidation of guanine by
adapted excited acceptors, electronically coupled to the DNA, which do not also
oxidize adenine. Continuous improvement of detection methods led to the resolution
of the enormous initial discrepancies between different measurements.

An intriguing fact was that for some systems the electron transfer rate constant
ket decreased very slowly with distance. This was shown indirectly by the yield
of a given reaction occurring at distance, away from the centre of a local excita-
tion. Thus, in a modified DNA double strand containing an acylated photosensitive
intercalator, the photochemical excitation generates a cation radical and the positive
charge can migrate until it is trapped by a remote triplet of guanine bases. The effect
is observable at distances of up to 50 Å. Since the stacked base pairs present weak
electronic couplings between the π systems, one expects a rapid rate of decay of the
Vab interaction between donor and acceptor with distance, at least more rapid than
in the following examples with conjugated bridges (see, in particular, Fig. 3.41).

Theoretical investigations agree that electron transfer is actually a hole transfer
mechanism, for which oxidizable bases such as guanine present in the DNA strands
must play a role. The superexchange mechanism would lead to a rapid attenuation
of ket with distance, and thus present interpretations favour a ‘hopping mechanism’
using several intermediates including some unavoidable disorder [3]. Thus the hole
(actually a polaron—a hole + distortion) would migrate by a series of diffusive steps
ending on the final site. Calculations show that this would indeed lead to a much
slower rate of decay than by direct superexchange.

An improvement of the model, due to Renger and Marcus [3b], is to consider
that in the intermediate species the hole is not located on a single base but rather
delocalized on several bases. This increases the effective size of the polaron and
renders the system less sensitive to static disorder.



264 The moving electron: electrical properties

P

P

O
O

Bu

O

G C

O

C G22

C G

A T

C G

C G

A T

t

n A --- T
base pairs

hν h+

h+

cleavage
products
yield PG

cleavage
products
yield PGGG

n A --- T
base pairs

lo
g 

(r
el

at
iv

e 
yi

el
d 

P
G

G
G

/P
G

)

1

2

2 4 6 8 10 12 14

n

(a)

(b)

Fig. 2
Long-distance hole transfer in a modi-
fied DNA double strand: (a) structure of
the synthetic double strand, with a pho-
tosensitive acylated group, generating a
positive charge, and subsequent reac-
tions; h+ designates a hole; (b) decay
law of the relative yield of long-distance
products as a function of the number n
of A–T pairs, showing the two regimes,
superexchange for n < 3, hopping for
n > 3. (Adapted from Giese [2b].)

References

[1] a) C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro,
J. K. Barton, Science 262 (1993), 1025; b) J. C. Genereux, J. K. Barton, Chem. Rev.
110 (2010), 1642.

[2] a) D. Ly, L. Sanii, G. B. Schuster, J. Am. Chem. Soc. 121 (1999), 9400; b) B. Giese,
J. Amaudrut, A.-K. Köhler, M. Spormann, S. Wessely, Nature 412 (2001), 318.

[3] a) M. Bixon, J. Jortner, J. Am. Chem. Soc. 123 (2001), 12556; b) T. Renger, R. A.
Marcus, J. Phys. Chem. A 107 (2003), 8404.

A last question about electronic interaction is of theoretical nature. Up to
now we have used qualitative monoelectronic models. But to be more precise
on the role of the bridging ligand, we should take into account the polyelec-
tronic nature of the wavefunctions. We consider what happens at the avoided
crossing point, when the system’s geometry is perfectly symmetrical.
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Fig. 3.41
The decay of the electronic interaction
Vab with distance. (Upper) structure of
the studied molecular systems; (lower)
corresponding typical decay laws, with a
comparison with vacuum. Special cases:
1: complex of the type b) with anthracene
in the spacer; 2: bis ferrocene of the type
d) with three phenylene and four vinylene
as spacer.

In principle one should compute the total energy of the mixed valence sys-
tem for the two possible electronic states at Q = 0 (see Fig. 3.42, showing in
particular the distinction between total wavefunctions such as �g, �u, and one-
electron wavefunctions such as ψg, ψu). This rigorous approach necessitates
the full many-electron treatment with evaluation of total electronic energies,
including correlation effects. At this level, two variants can be considered: (i)
from adiabatic energy splitting (dimer splitting)—calculating the energy dif-
ference between the two possible electronic states—and (ii) from the direct
calculation of the matrix element < �a|H|�b >, where �a and �b repres-
ent diabatic total electronic wavefunctions. These wavefunctions correspond
to the unperturbed basis states RuII–RuIII and RuIII–RuII, and can be obtained
by a symmetry-broken SCF calculation [3.63]. They derive in particular from
symmetry-adapted wavefunctions such as �g, �u by the standard unitary
transformation �± = 2–1/2(�g ± �u) [3.64].
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Fig. 3.42
Definition of the electronic interaction
at the crossing point (Q = 0) in the
‘dimer splitting’ method. ‘d’ designates
molecular orbitals with preponderant d
character centred on A and B metal
sites. �g and �u are total polyelectronic
wavefunctions, and the associated rectan-
gular frames show the electronic filling
of one-electron wavefunctions ψg and
ψu (molecular orbitals). The electronic
filling corresponds to a system such as
RuII–RuIII.

There are, however, only a few examples of exact calculation, at the ab initio
SCF level with account of electron correlation, or even at simpler DFT level.
This comes from the fact that for such complicated molecules with many elec-
tronic and nuclear degrees of freedom, several artefact solutions may appear in
the calculations. Thus in ab initio SCF methods, anomalous symmetry break-
ing of the Hartree–Fock solutions can appear even for a perfectly symmetrical
system, while conversely, DFT methods tend to favour artificially delocalized
structures [3.65]. This is why, for lack of something better, simple methods
based on orbital semi-empirical models are still very useful today for a basic
illustration of the phenomena.

3.3 Conductivity in extended molecular solids
3.3.1 Conductivity: definitions, models, and significant

parameters

So far, we have considered mainly discrete mixed valence molecules, typic-
ally with two redox sites, which were essentially studied in solution, so that
no macroscopic electronic conduction could occur. We now examine the trans-
port properties in extended systems in the solid state (mixed valence or not).
Metallic conducting materials (most of them are non-molecular, metals, alloys,
oxides) allow electron motion in a circuit, giving rise to a transport of electric
charge Q (in Coulomb, C), during a time t (in seconds, s), corresponding to an
electrical current with intensity I (in ampères, A):

Q = I • t (3.100)
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This occurs when a potential difference U (in volts, V) is applied to the system.
Ohm’s law relates the electric parameters, intensity I and applied potential U,
to the resistance of the material R (in ohms, �):

U = R • I (3.101)

The inverse of the resistance is the conductance C (in siemens, S or ohm–1,
�–1). The resistivity ρ of a material having a length l and a uniform section s
(Fig. 3.43a) is defined by:

R = ρ
1

s
(3.102)

and is expressed in ohm cm. The conductivity is simply the inverse of the
resistivity:

σ = 1/ρ (3.103)

It is expressed in ohm–1 cm–1, �–1 cm–1. Since I = U/R = Us/ρl
= Uσ (s/l), the conductivity measures the ability of a material to conduct the
current: everything being equal, the intensity I increases with σ. Another famil-
iar expression of Ohm’s law, expressed in terms of the current density j (j =
I/s) and the applied electric field E (= U/l), is thus easily derived:

j = σE (3.104)

The current density can be expressed alternatively as a function of n, the num-
ber of charge carriers per unit volume (in cm–3), the charge q of the carriers,
and the drift velocity v of the charge carriers:

j = nqv (3.105)

If we define the mobility of the carriers as u (u = v/E) (in cm2.V–1.s–1), the
conductivity is expressed by:

σ = j/E = nqu (3.106)

The expression will prove useful for identifying the nature of the charge car-
riers, electrons (q = e, negative) or holes (q positive, also noted h), or both
(see Section 3.3.2.2). If there are several types of carrier, the contributions are
additive.

From the conductivity point of view, one can distinguish four important
categories of materials: insulators, semiconductors, conductors, and supercon-
ductors. The four categories are distinct not only through the value of the
conductivity, which increases from insulators to superconductors, but also by
the thermal variation of the conductivity.

We shall return in more detail on these behaviours in the corresponding sec-
tions, and the reader is prompted to refer to physics textbooks. At present, we
need only to state the following:

• The insulators have a very weak conductivity (σ < 10–6 �–1 cm–1, for
example), without important change with temperature.

• The semiconductors have a medium conductivity (10–6 �–1 cm–1 < σ < 1
�–1 cm–1) and the conductivity is thermally activated (Fig. 3.43c).
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σ = σ0 exp

(
− EA

RT

)
(3.107)

• The conductors have a large conductivity (1 �–1 cm–1 < σ < 106 �–1 cm–1),
and furthermore, the conductivity increases when the temperature decreases
(Fig. 3.43b and Section 3.3.2).

σ = σTref

Tα
with α > 1 (3.108)

where σTref is the conductivity at a given reference temperature Tref.
• The superconductors have, a priori, an infinite conductivity below a critical

temperature Tc (zero resistivity!) (Fig. 3.43d).

The problem for the chemist is that molecular systems in the solid state are
generally insulating. Obtaining a high conductivity with molecular materials
represents a challenge, but the issue is important for potential applications
(low-density conductors, for example, are very appealing), and have given rise
to many research endeavours, some of them distinguished by the Nobel Prize in
Chemistry in 2000 (A.J. Heeger, A.G. MacDiarmid, and H. Shirakawa). Many
molecular conducting systems have now been found, and it is possible to estab-
lish and use some rules to produce molecular materials exhibiting remarkable
conducting properties (Fig. 3.44).

It is useful to investigate conduction phenomena, having in mind the dis-
cussion in Section 3.1 concerning the resonance integral β (termed Vab in
Section 3.2), the one-centre electronic repulsion integral U (termed j0 in
Chapter 2), and λ parameters (Figs. 2.3 and 3.11) . The resonance integral β

is sometimes termed the transfer integral t in the context of conducting mater-
ials, but in this section we will retain the notations β, U, and λ. Two general
situations can lead to conduction: (i) the extended system can be described
by sufficiently wide bands (β relatively large and |β| >> U), with an incom-
plete filling, leading to metallic conduction. This is the standard ‘band model’,
and in this case the role of U is ignored. From the beginning the description
utilizes delocalized levels, so that the λ parameter also disappears. One can
consider in this case that the delocalization of electrons proceeds via a tun-
nelling mechanism from one site to another; (ii) the extended system can be
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Conductivity of molecular systems com-
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of mixed valence composition. In such a case, the one-centre repulsion U is
small and does not play a role (see Fig. 3.11), and the properties depend on
the competition between β and λ, as in the case of discrete mixed valence sys-
tems discussed previously. Note that in these systems the starting point for the
description is the reverse of the band model: instead of using delocalized levels
from the beginning, we start from localized levels. Then β favours conduction,
while λ hinders it. The conduction occurs by ‘hops’ between localized states,
as in class II molecular discrete systems, and the electron transfer is thermally
activated—the typical behaviour of a semiconductor.

More complex situations can exist. For instance, systems described by nar-
row bands (weak β and |β| ≈ U or |β| << U) present a particular behaviour.
In such cases, even the two-centres repulsion integral V (or j as defined in
Chapter 2) can also play a role. We deal with such narrow-band systems in
Section 3.3.4.

3.3.2 Extended metallic molecular systems and band theory

Here we are dealing with solids which are metallic; that is, with a conductiv-
ity which is high and obeys eqn. (3.108): the conductivity increases when the
temperature decreases.

In this case the useful tool is the band model. In the following we present
a brief account of it, as an extension of the molecular orbital approach to the
solid, with the same advantages and limits as before. The work by Hoffmann
and coworkers [1.14] and the recent book by Canadell et al. [1.9b] are par-
ticularly illuminating in bridging the gap between the molecule and the solid.
Simple schemes of electron transfer between centres in a solid are shown in
Fig. 3.45 and Fig. 3.46.

Conductor

1 2 3
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Occupied

(a)

(b)

Partially
Occupied

(c)

(d)

1 2 3

Insulator (e) (f)

Fig. 3.45
Schematic description of insulator and
conducting materials. Three sites, 1, 2, 3,
with one orbital per site: (a) no electron
(vacant orbitals), no conduction; (b) two
electrons per orbital, no conduction; (c)
one electron in three orbitals: the conduc-
tion becomes possible, through electron
mobility; (d) five electrons and one hole
in three orbitals: the conduction becomes
possible, through hole mobility; (e) and
(f) ‘band’ representation of cases (c) and
(d): the conduction occurs due to partially
occupied bands.
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(A) Schematic electron transfer in 1D
systems and cost in energy: at left, before
electron transfer; at right, after electron
transfer. (a) One electron per orbital. The
electron transfer energy cost is the dif-
ference between the one-centre electronic
repulsion integral U(j0) and the two-
centre electronic repulsion integral, V(j).
When an electron is withdrawn (b) or
added (c), there is no energy cost for the
electron transfer; the transferred electron
is in grey. (B) A mechanical analogy to
stress simply the importance of holes: it
is possible to displace the grey numbered
squares (electrons) only if at least one of
the positions is vacant (hole). (Adapted
from A.J. Heeger, A.G. MacDiarmid, H.
Shirakawa [3.66].)

The two figures reveal the nature of the species allowing the conduction
(electron or hole), the energy cost for the electron transfer, in terms of the two-
electron repulsion integrals U and V, and suggest a link to the quantities IP,
the standard ionization enthalpy, and AE, the electronic affinity (or better, the
negative of the standard enthalpy for electronic fixation), better known among
chemists.

We deal hereunder with three examples: oxidized potassium tetracyanido-
platinate (KCP), doped polyacetylene, and 1D organic conductors. We rely on
simple ideas on the electron–electron interactions, on the electronic structure
of the molecules, and on the structure of the materials to show how it is pos-
sible to obtain molecular materials exhibiting the expected conductivity. The
interested reader may consult the general references [1.9, 1.14, 3.66–3.70] to
acquire a deeper insight (and different approaches) of the field.

3.3.2.1 KCP: oxidized potassium tetracyanidoplatinate
KCP is the abbreviation for oxidized potassium tetracyanidoplatinate (kalium
tetracyanoplatinat in German), which is representative of a wide family
of compounds with formula C2

[
Pt (CN)4

] (
X−)

x
• nH2O (C = K, Rb, Cs;

X = Cl, Br, FHF; x = 0.2 − 0.4; n = 0 − 7). The system was first invest-
igated by Knop as early as 1842, and approached by Levy in 1912, but it
was Krogmann, in 1968, who was responsible for the main progress. The
compounds are often denoted as Krogmann salts. One of the typical solid
known as KCP is K2

[
Pt (CN)4

] (
Br−

)
0.3

• 2H2O. The other compounds in
the family present slight variations in the properties (to be discussed), but
the basic features remain the same. K2

[
Pt (CN)4

] (
Br−

)
0.3

• 2H2O is produced
either by chemical oxidation of a solution of potassium tetracyanidoplatinate,
K2

[
PtII (CN)4

]
, by dibromine:
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K2
[
PtII (CN)4

]
• 2H2O + 0.15 Br2 → K2

[
Pt (CN)4

] (
Br−

)
0.3

• 2H2O
(3.109)

or by electrocrystallization. Fine black needles with a metallic lustre grow
slowly on a platinum anode when crossed by a controlled constant current.

Whereas K2
[
PtII (CN)4

]
• 2H2O is an insulator (σ = 5 10–7 �–1 cm–1),

K2
[
Pt (CN)4

] (
Br−

)
0.3

• 2H2O (KCP) is a metallic conductor at room tem-
perature. The conductivity parallel to the z axis σz// = σz ≈ 300–800 �–1

cm–1 at room temperature (depending on the samples), and increases when
T decreases. KCP becomes a semiconductor at lower temperatures (around
270 K), with an activation energy �E = 70 meV. Furthermore, the conductiv-
ity is highly anisotropic, being much larger along the z axis (stacking axis of
the molecules) than in the perpendicular plane: σ///σ⊥ ≈ 105 (see Fig. 3.47).
The striking change in electrical properties can be interpreted in a rather
simple way, using the band-structure description, providing some illuminating
insights into our study of conducting molecular materials.

The first observation is that in both compounds the structure is made of
[Pt(CN)4] anionic units stacked along the z axis in a staggered configura-
tion. The potassium ions and the water molecules are located between the
stacks. The angle between successive Pt–CN units along z is around 16º in
K2[PtII(CN)4] • 2H2O and 45º in KCP. Two important differences occur in
the oxidized KCP structure: 0.3 bromide ions appear between the [Pt(CN)4]
stacks, and the Pt–Pt distance decreases strongly from 350 pm to 289 pm
(indeed, close to the Pt–Pt distance in platinum metal, 277.5 pm). The aniso-
tropy of the structure is clearly related to the anisotropy of the conductivity,
with a prominent role of the z axis. Without loss of generality, for interpret-
ation of the electrical properties it is possible to simplify the description of
the system by making the two approximations shown in Fig. 3.48f,g, as sug-
gested by Hoffmann [1.14]. First, the real staggered conformation in (d, e)
can be replaced by the eclipsed model in (f); the cell parameter along the z
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Fig. 3.47
Variation of the conductivity (log scale)
versus 1/T of a single crystal of KCP
measured parallel to the z axis (σ//) and in
a perpendicular direction (σ⊥). (Adapted
from [3.70].)
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model structure (cell parameter a); (g)
[PtII(H)4]2– model in which the cyanides
have been replaced by hydrides.

axis changes accordingly from 2a to a. Second, the cyanide ion CN– in the
real [PtII(CN)4]2– complex is replaced by the hydride H– (Fig. 3.48g). The
square planar model [PtII(H)4]2–, D4h symmetry results. Its electronic structure
is shown in Fig. 3.49. The symmetry labels shown are those of the C4v point
group, for simple reasons that will appear soon. The metal brings eight d elec-
trons, and the ligands also eight (two electrons per hydride). In the molecule,
the sixteen electrons occupy the four bonding MOs (a1, b1, e), ensuring the
bonding, the three non-bonding xy (b2), xz, and yz (e) d orbitals and the slightly
antibonding dz2 (a1).

The molecular orbitals of the precursor interact in the solid to build the sym-
metry orbitals, or Bloch orbitals defined in Section 1.4 by eqns. (1.44), with
energies defined by eqn. (1.46). It is obvious from the structure that the only
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Schematic molecular orbital energy dia-
gram of square planar [PtII(H)4]4–, D4h

symmetry (the symmetry labels corres-
pond to C4v; see text). At left are the
atomic levels of 5d8 Pt(II), and at right
are the four symmetry orbitals of the
four hydride ions, and in the centre are
the molecular orbitals of [PtII(H)4]2–.
The significant MOs for the discussion
are shown at right, including the highest
doubly occupied MO, based on Pt 5dz2.

significant interactions take place along the z axis and not in the perpendicu-
lar plane. The band structure arises from the overlap of the molecular orbitals
centred on the metal. We begin with the interaction of the z2 MOs. We name
αz2 the energy of the z2 MOs in the complex, and βz2z2 the resonance energy
between two neighbouring z2 MOs along the z axis. The Bloch orbitals built
from the overlap of the z2 MOs are shown in Fig. 3.50: one recognizes, at k =
0, the fully bonding Bloch orbital �k=0(z2) with no node, at energy αz2 + 2 βz2z2

and, at k = π/a, the fully antibonding orbital, �k=π/a (z2) with N – 1 nodes, at
energy αz2 – 2βz2z2 .

�′
k=0 = 1√

N

n′∑
m=−n′+1

(1)mφm

= 1√
N

(φ−n′+1 + . . . + φ−1 + φ0 + φ1 + . . . + φn′)

(3.110a)

�′
k=π/a = 1√

N

n′∑
m=−n′+1

(−1)mφm

= 1√
N

(φ−n′+1 − . . . − φ−1 + φ0 − φ1 + . . . − φn′)

(3.110b)

Furthermore, Fig. 3.50 displays the two Bloch orbitals just below k = π/2a
(N/2 – 1 nodes) and just above (N/2 nodes), practically non-bonding. These
orbitals will play an important role later. The Bloch orbitals built from the
other metal-centred orbitals are shown in Fig. 3.51.

Two qualitative observations should be made here: (i) the overlap decreases
from σ overlap (pz–pz > z2–z2) to π overlap (xz–xz, yz–yz) and δ overlap
[xy–xy and (x2–y2)–(x2–y2)]; the width of the corresponding Bloch orbitals
will behave accordingly, very wide for pz, wide for z2, narrow for xz and yz,
and very narrow for xy and x2–y2; (ii) the z2, xy and x2–y2 Bloch orbitals
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Bloch orbitals generated by the metal-
centred orbitals; at left, centre of the
Brillouin zone, k = 0; at right, border of
the Brillouin zone, k = π/a. The stacking
axis z is horizontal.

are bonding at k = 0 and antibonding at k = π/a, and they will run ‘up’;
the pz, xz, and yz Bloch orbitals behave at the opposite, and the bands will run
‘down’. Both effects are illustrated in the dispersion energy curve of Fig. 3.52a,
based on semi-empirical extended Hückel calculations. The pz band is so wide
that the bottom at k = π/a lies below the energy of the very narrow x2–y2

band, above the top of the z2 band. One can observe that the energy values
of the bands at k = π/2a correspond to energy levels in the isolated complex
(Fig. 3.50).

Our qualitative approach allows us to find the main features of the band
diagram, but the relative position of the z2 and the pz band needs calculations
to be established. We then fill in the bands, according to the electronic structure
of the complex, as shown in Fig. 3.49: the electrons of the d orbitals fill four
d bands. The highest occupied level, or Fermi level, is the top of the z2 band,
whereas the lowest unoccupied level is the bottom of the pz band. Between
the two there is a forbidden energy gap. Calculations show that the gap is
wide so that the compound is an insulator. We have reached a first step in
our interpretation of the properties of K2[PtII(CN)4] • 2H2O: the d bands are
filled, bonding and antibonding levels are occupied, and do not contribute to
the bonding scheme, so that there is no d–d bonding along the stack, which
allows us to understand the rather large Pt–Pt distance, in the range of Van der
Waals interactions. The forbidden energy 5dz2–6pz gap explains the insulating
properties of the material.
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orbitals generated by the metal-centred
orbitals; at left, centre of the Brillouin
zone at k = 0; at right, border of the
Brillouin zone at k = π/a; (b) density of
states and filling of the bands. (Adapted
from Hoffmann [1.14].)

We now turn to the oxidized material, KCP, K2[Pt(CN)4](Br–)0.3 • 2H2O. A
simple analysis of the formal oxidation state of platinum (using the common
oxidation states for the other elements, +1 for potassium, –1 for bromide and
cyanide) leads to an unusual non-integer number, Pt+2.3: platinum appears to
have been partially oxidized. Using a local view of oxidation states, it could be
interpreted by the presence of some Pt(III) or Pt(IV) in the stacks. Nevertheless
the band structure is more appealing: the oxidation corresponds to the with-
drawing of electrons of the filled bands and more precisely to withdrawing of
electrons at the top of the highest occupied band which is z2. The band then
becomes partially occupied, which is one of the conditions of conduction: the
partial oxidation of platinum leads to a partial occupancy of the band and to
an easy interpretation of the high-temperature metallic conducting properties
of KCP (Fig. 3.45f). Furthermore, the band which is partially emptied is the
z2 band. The conduction is important, and metallic, along the z axis only, and
allows explaining in a straightforward way the anisotropy of the conductiv-
ity. The band model has something else to reveal: the structural change upon
oxidation. The levels at the top of the z2 band are antibonding levels: empty-
ing them strengthens the z2–z2 bonding in the z direction, and the decrease of
Pt–Pt distance follows.

KCP is the prototype of a large family of similar compounds which exhibit
a metallic character with conductivities reaching 2300 �–1 cm–1 at 300 K in
some cases.

When the temperature decreases, KCP and all these one-dimensional con-
ductors undergo a transition to a semiconducting state (termed a Peierls
transition). We study this important feature and more complex phenomena in
Section 3.3.3.3.

3.3.2.2 Conducting polymers: the case of doped polyacetylene
The discovery of the metallic conduction of doped polyacetylene was an
important event in the field of organic materials. For the first time, it was
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shown in a convincing manner that organic matter can behave as a metal,
without metallic elements and without conducting d electrons. KCP was indeed
the first evidenced conducting molecular material, but we have seen that the
mechanism of the conductivity implies essentially the metal dz2 orbitals. With
polyacetylene, only carbon and hydrogen atoms are implied. Polyacetylene is
a polymer (or plastic, in everyday language) with formula –(CH–)n. It exists
under various isomer forms. The pure cis and trans isomers are shown in
Fig. 3.53. Generally, ‘plastics’ are used around conducting metallic wires to
insulate the metal from the environment. But in the present case, by a simple
redox reaction, the conductivity of the ‘plastic’ can be multiplied by a factor of
one billion (1012), and becomes as conducting as some metals. This important
step in the chemistry of molecular materials was distinguished in 2000 by the
Nobel Prize in Chemistry [3.66].

In the following we try to use the band theory concepts introduced previ-
ously as a first approximation to explain simply the conducting properties of
doped polyacetylene.

Regular trans-polyacetylene
We first address trans-polyacetylene, and more precisely the regular form
shown as 1A in Fig. 3.53, supposed to be a planar crystalline ribbon without
interaction between the chains. Indeed, one can understand that even if the
chains are individually good conductors, the overall conductivity will be lim-
ited by the fact that the electrons have to ‘jump’ from one chain to the next.
Hence, the chains have to be ordered and well packed. The orbitals of interest
are the valence carbon π orbitals. Each atom has one such orbital in a plane
perpendicular to the polymer ribbon (2py). For the sake of simplicity we rep-
resent the orbitals viewed from the top, as shown in Fig. 3.54 for ethylene (a),
π bonding orbitals (b), and π∗ antibonding (c). We illustrate the building of the
crystal orbitals—as shown in Section 1.4—and their dispersion energy curves
in Fig. 3.55.
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C C
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H H

H

H

H H

H

(a)

(b) (c)

C C C C

Fig. 3.54
Conventional representations of ethylene
(a) and π orbitals: π bonding (b) and π*
antibonding (c).

An ideal regular trans-polyacetylene (1A), with a partially occupied band
(half-filled with one electron per carbon) should therefore be a metallic
conductor. Indeed, such an ideal compound does not exist. Trans-polyacetylene
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The discovery of polyacetylene

The discovery came from work in Shirakawa’s laboratory in the Tokyo Institute of
Technology in the 1970s. A new catalytic procedure allowed control of the amount
of cis- and trans- polyacetylenes in the black film deposited in the reaction vessel:
with an excess of catalyst, trans-polyacetylene appeared as a silvery film, whereas,
in different conditions, cis-polyacetylene was obtained as a copper-coloured film.
The discovery is narrated in the Nobel committee documents, as follows:

‘In another part of the world, chemist MacDiarmid and physicist Heeger were
experimenting with a metallic-looking film of the inorganic polymer sulphur nitride,
(SN)x. MacDiarmid referred to this at a seminar in Tokyo. Here the story could
have come to a sudden end, had not Shirakawa and MacDiarmid happened to meet,
accidentally, during a coffee break. When MacDiarmid heard about Shirakawa’s dis-
covery of an organic polymer that also gleamed like silver, he invited Shirakawa
to the University of Pennsylvania in Philadelphia. They set about modifying
polyacetylene by oxidation with iodine vapour. Shirakawa knew that the optical
properties changed in the oxidation process, and MacDiarmid suggested that they
ask Heeger to have a look at the films. One of Heeger’s students measured the
conductivity of the iodine-doped trans-polyacetylene and . . . eureka! The conduct-
ivity had increased ten million times! In the summer of 1977, Heeger, MacDiarmid,
Shirakawa, and coworkers published their discovery in the article “Synthesis of elec-
trically conducting organic polymers: Halogen derivatives of polyacetylene (CH)n”.’
Journal of the Chemical Society, Chemical Communications.
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exists instead as the alternant 1B and 1C semiconducting forms (Fig. 3.53),
as a result of the Peierls distortion in a 1D system with a half-filled band (see
Section 1.4.3). This process is very general, and is discussed in more detail in
Sections 3.3.3.1 and 3.3.3.2.

3.3.2.3 Charge transfer salts (TTF-TCNQ and related systems)
Another class of molecular conductors (or semiconductors) is provided by
the charge transfer salts. By ‘charge transfer salts’ we mean molecular solids
made of electrons donors D and acceptors A. They are essentially made of
planar molecules. Such molecules exhibit a strong tendency to stack along
one dimension in the solid state. The most typical components are tetrathiaful-
valene (TTF) and tetracyanoquinodimethane (TCNQ) and their combination
TTF-TCNQ, but many other examples can be found, as shown in Fig. 3.56.
The constituent units are closed-shell systems, with an extended system of π

delocalized electrons. The electron donors D can be oxidized (the case of TTF),
while electron acceptors A can be reduced (the case of TCNQ).

The oxidized and reduced species are charged and open-shell species. The
oxidized donor is written D+•; a cation-radical, and the reduced acceptor
A–•, an anion-radical. The possible reactions and the standard redox poten-
tials versus SCE (saturated calomel electrode) for the TTF-TCNQ system in
acetonitrile are given in the following:

D → D+• + e− TTF → TTF+• + e− E0
TTF+/TTF = 0.31 V (3.111a)

A + e− → A−• TCNQ + e− → TCNQ−• E0
TCNQ/TCNQ− = 0.17 V

(3.111b)

D + A → D+•A−• D + A → Dδ+Aδ− (3.111c)

From these constituents, many types of 1D system can be prepared. When the
donor and acceptor are associated, the question arises of the possible redox
reaction. Although we are in the solid state we can make use, for qualitative
purposes, of the standard redox potentials E0

D+/D and E0
A/A– in solution, and

then:

D + A → D+•A−•
(

if E0
D+/D << E0

A/A−

)
(3.112a)

D + A → Dδ+Aδ− (if E0
D+/D ∼ E0

A/A− ) (3.112b)

Thus, depending on the relative values of the redox potentials, the electron
transfer can be complete (δ = 1, D+A–, ionic situation), ineffective (δ = 0,
DA, D and A remain unchanged, neutral situation) or partial (δ, Dδ+Aδ–, par-
tial charge transfer). δ is the fraction or degree of charge transfer, sometimes
termed DPO, degree of partial oxidation.

The latter situation is by far the more interesting in giving rise to conducting
properties, as we shall see soon. In the solid, these planar molecules can lead to
1D structures in which the π electronic clouds interact weakly, thus producing
narrow bands (the typical bandwidth is 0.5–1 eV). The stack can be considered
as a mixture of neutral and charged molecules (D/D+•; A/A–•), a molecular
mixed valence state, reminiscent to the situation of platinum in KCP.
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At left, donor molecules D: (D1) R = H,
X = S, Tetrathiafulvalene (TTF); R =
H, X = Se, tetraselenofulvalene (TSF);
R = methyl, X = S, tetramethyltetra-
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dibenzotetrathiafulvalene DBTTF;
R,R = benzene, X = Se, dibenzotet-
raselenofulvalene DBTSF. (D2) X = S,
bis(ethylenedithio)tetrathiafulvalene
BEDTTTF or ET; X = O,
bis(ethylenedioxo) tetrathiaful-
valene BEDOTTF. (D3) X = CH,
N-methylacridinium (NMAd) X = N,
N-methylphenazinium (NMP). At right,
acceptor molecules A: (A1) R = H,
tetracyanoquinodimethane (TCNQ); R =
F, tetrafluorotetracyanoquinodimethane
(TCNQF4); central ring = naphtalene:
tetracyanonaphtoquinodimethane
(TNAP). (A2) [M(dmit)2], M = Ni(II),
Pd(II), Pt(II); dmit = 4,5-dimercapto-
1,3-dithiol-2-thione. (A3) anions:
triodide I3

–; hexafluorophosphate, PF6
–.

The crystallographic structures vary, but in many cases the donor–acceptor
D–A combination produces segregated stacks (Dδ+)n and (Aδ–)n, or alternated
ones (Dδ+Aδ–)n (Fig. 3.57a,b). Segregation occurs in solid TTF-TCNQ with
distinct stacks of TTF.59+ and TCNQ.59– moieties, as shown in Fig. 3.57c,d.

Alternation occurs in anthracene-TCNQ, where there is no electron transfer
(Fig. 3.57e). The molecules build a molecular solid in which all the compon-
ents are neutral. The main source of crystal stability is the van der Waals
energy. Conversely, in the case of K+TCNQ– (Fig. 3.57f) the electron trans-
fer is complete (D+A–)n; the primary interactions are ionic, and they ensure
the stability of the solid with Madelung energy.

Figure 3.58 shows the conductivity versus temperature curve for a num-
ber of 1:1 TCNQ salts. Some compounds, such as the ionic alkaline salts,
present a low conductivity in the 10–2–10–4 �–1 cm–1 range, increasing with
temperature, characteristic of semiconductors.

Other systems, such as TTF-TCNQ, or HMTSF-TCNQ (HMTSF is
hexamethylenetetra-selenofulvalene) exhibit a much higher conductivity, near
102–104 �–1 cm–1, increasing with temperature, and thus can be ranked as
metals. They are named ‘mixed valency’ in Figs. 3.58 and 3.59. Some others,
such as anthracene-TCNQ (not shown), present no electron transfer and are
practically insulators.

A first simple explanation of these differences is based on the redox poten-
tials of the two molecules associated in the 1:1 salts. The room-temperature
conductivity of the compounds (as pellets) is displayed schematically in
Fig. 3.59 as a function of the standard redox potential of the donor D. The
figure reveals, remarkably, a classification in three groups, according to the
possibility of charge transfer ρ between the donor D and the TCNQ acceptor,
due to a redox process: the ionic compounds, for which the transfer is complete
(ρ = 1), are semiconducting or insulating; the ‘mixed-valency’ ones, for which
the electron transfer is partial (0 < ρ < 1), are metallic conductors, and finally,
the neutral ones, in which no charge transfer occurs (ρ = 0), are insulating.

Why we encounter such as clear-cut situation is not easy to answer. Indeed,
the amount of electron transfer and the energy of the solid are determined not
only by the redox properties of the components in solution, but also by the
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Stacks of donor–acceptor solids: (a) segregated [donor D+δ (plain line) and acceptor A–δ (dotted line)]; (b) alternated; (c) perspective view of
the TTF-TCNQ structure down the b axis, demonstrating the segregation of TTF and TCNQ stacks; (d) view of TTF-TCNQ down the a axis,
displaying the dihedral angle between TTF and TCNQ stacks; (e) view of anthracene-TCNQ, a neutral molecular solid with alternated (mixed)
stacking of anthracene and TCNQ down the b axis; (f) perspective view of K+TCNQ– •

, an ionic solid; the TCNQ– segregated stacks are down
the a axis.
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Madelung energy of the crystal (not discussed until now). We shall address
these questions in more detail in Section 3.3.3. But it is rewarding at this stage
to observe that (i) the neutral systems are almost insulating (σ ≤ 10–6 �–1

cm–1) because they correspond to filled molecular orbitals and bands; (ii) the
ionic systems exhibit only a slightly higher conductivity (10–6–10–4 �–1 cm–1),
though they correspond to a half-filled band, because they correspond to solids
with a large Madelung energy created by the ionic components, with electrons
localized due to large interelectronic repulsive interactions U and narrow bands
(we shall see in Section 3.3.4 that they are termed Mott insulators); (iii) only
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Conductivity of 1:1 TCNQ-based charge
transfer complexes as a function of the
standard redox potential of the donors.
Abbreviations as in Fig. 3.56, and as
follows: 1, TEA+ (triethylammonium);
2, NMQn

+ (N-methylquinolinium);
3, NMPz+ (N-methylpyrazinium); 4,
TTFH2

+; 5, DBTTF+ (dibenzotet-
rathiafulvalenium); 6, TTFH4

+; 7,
perylene+; 8, pyrene+ or anthracene+;
BTP = 4,4′-bithiopyrazinium; HMTSF
= hexamethylene-tetraselenofulvalene;
NMP+ = N-methylphenazinium;
NMPy+ = N-methylpyridinium; Py+ =
pyridinium; TSF = tetraselenofulvalene.
(Adapted from Torrance [3.67].)
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the ‘mixed valency’ systems present a high conductivity, above 1 �–1 cm–1,
because electron transfer can occur between the oxidized and reduced sites of
a same entity (see Figs. 3.45 and 3.46). The evidence of the role of partial
electron transfer for creating metallic conductivity in charge transfer salts was
an important step in the understanding and design of new molecular metals in
the 1980s. An archetypal example is TTF-TCNQ, which highlights the most
important features of conducting mixed valence systems.

The TTF-TCNQ system
‘TTF-TCNQ is the first molecular crystal to show a conductivity approaching
that of conventional metals at room temperature and exhibiting a metal-like
behaviour on cooling’, wrote Jerôme [3.69j]. But how do we obtain it?

When mixing TTF and TCNQ neutral molecules in an organic solvent such
as tetrachloromethane or acetonitrile, a black solid soon appears. TCNQ was
first synthesized by Melby and Acker and coworkers in 1962, TTF and TTF
chloride were prepared by Wudl and coworkers in 1970, and TTF-TCNQ
was discovered by Heeger, Ferraris and coworkers in 1973. In the solid
state, both pure TTF and TCNQ produce crystallographic structures with
one-dimensional stacks. TTF-TCNQ single crystals can be grown easily using
electrocrystallization, allowing detailed physical studies. The crystallographic
structure corresponds to a monoclinic system, space group P21/c, with
crystallographic parameters: a = 122.9 pm; b = 382 pm; c = 184.2 pm;
and β = 104.49º. Views of the structure down the b and a axes are shown in
Fig. 3.57c,d.

The electronic properties are strongly dependent on δ—the degree of charge
transfer from the donor to the acceptor—which is determined largely by the
redox properties of TTF and TCNQ in solution. As seen before, the standard
redox potential for TTF+•/TTF, EºTTF+/TTF is 0.31 volts. Here we can forget
the second oxidation step giving TTF2+, stabilized by aromaticity in the two
rings, as shown in Fig. 3.60. The standard redox potential for TCNQ/TCNQ–•,
EºTCNQ–/TCNQ is 0.17 volts. The thermodynamically favoured reaction is thus
reaction 2 in eqn. (3.113).

When starting from TTF and TCNQ in solution, the equilibrium is initially
displaced far to the left, but owing to the insolubility of the TTF-TCNQ salt the
equilibrium is displaced smoothly to grow crystalline TTF-TCNQ (or better,
TTFδ+–TCNQδ–).

TTF + TCNQ
1
�
2

TTF+• + TCNQ−• −→ (TTF0.59+ − TCNQ0.59−)solid

(3.113)

TTF+/TTF

TCNQ/TCNQ−

+ 0.31

+ 0.17
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Fig. 3.60
(a) Scheme of the standard redox
potentials of TTF and TCNQ and
the related thermodynamically favoured
reaction (arrows); (b) electronic structure
of different oxidation states of TTF and
reversible redox reactions.
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The electric properties of TTF-TCNQ in solid state are shown in Fig. 3.58.
Above about 60 K, TTF-TCNQ is a good molecular metallic conductor. The
conductivity is metallic and highly anisotropic, with a value in the 500–103 �–1

cm–1 range (the exact value depending on the quality of the crystals). Below
this temperature the conductivity decreases in a complex way, since several
transitions occur, but the general behaviour is one of a semiconductor. As in the
preceding examples, one-dimensional Peierls instabilities appear (discussed in
Section 3.3.3).

Electronic structure of TTF-TCNQ and interpretation of the metallic
conductivity
An important parameter necessary to understand the charge transfer δ is the
band structure. We begin with the components: TTF and TCNQ. The energy
diagrams of the molecular orbitals of neutral TTF and TCNQ are shown in
Fig. 3.61. The two orbitals of interest are the HOMO of TTF, filled, which
becomes half-occupied in TTF+•, and the LUMO of TCNQ, empty, which
becomes half-filled in TCNQ–•.

In the solid there are uniform molecular stacks along the b axis. The overlap
between two adjacent molecules is schematized in Fig. 3.62A. The overlap
between the π molecular orbitals along the stacking direction is of σ type
(axial) and rather strong. The consequences for the Bloch orbitals are shown in
Fig. 3.62B–D for TTF and TCNQ at the centre (k = 0) and the edge (k = π/b)
of the Brillouin zone.

At the centre of the Brillouin zone, at k = 0 (Fig. 3.62B,C), the Bloch
orbitals are built from the in-phase (+ +) combination of the molecular orbit-
als; the interaction between two successive TTF HOMOs is antibonding
(column a) whereas the interaction between two successive TCNQ LUMOs
is bonding (column b). At the edge of the Brillouin zone, at k = π/b (D),
the Bloch orbitals are built from the out-of-phase (+ –) combination of the
molecular orbitals; the interaction between two successive TTF HOMOs is
bonding (a), whereas the interaction between two successive TCNQ LUMO
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Schematic molecular orbital energy dia-
gram of (a) TTF, with the scheme of its
HOMO; (b) TCNQ, with the scheme of
its LUMO.
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(A)

(B)

(C)

(D)

k = 0

k = π/b

+

+

–

+

(a) TTF HOMO (b) TCNQ LUMO

Fig. 3.62
(a) At left, TTF; (b) at right, TCNQ.
(A) Molecular overlap along the stacks
(b axis). (B) Schematic overview and (C)
perspective view of the overlap between
the wavefunctions of two neighbouring
molecules at the centre of the Brillouin
zone (k = 0). (D) Perspective view of
the overlap at the edge of Brillouin zone
(k = π/b). The rectangles point out the
locations of maximum overlap.

is antibonding (b). The resulting resonance integral β is different for TTF
and TCNQ, giving rise to the energy bandwidths, ranging from 0.4 to 0.8 eV
(≈ 38–76 kJ mol–1).

Detailed explanation based on semi-empirical calculations and band struc-
ture are presented in Fig. 3.63. At the Brillouin zone centre (k = 0) we have
the bottom of the LUMO TCNQ band (bonding) and the top of the HOMO
TTF band (antibonding). At the Brillouin zone edge (k = π/b) we have the
reverse situation (top of the LUMO TCNQ band, antibonding, and bottom of
the HOMO TTF band, bonding). Then, when k increases from the centre of
the Brillouin zone (k = 0) to the edge (k = π/b), the LUMO TCNQ’s band
runs up, whereas the HOMO TTF’s band runs down (it is also said to be inver-
ted). Given the initial energies of the TTF’s HOMO and the TCNQ’s LUMO
(note that the energies are different for neutral molecules in the gas phase and
the partially charged units in the solid—stabilized for TTF+δ and destabilized
for TCNQ–δ) and the values of the resonance (transfer) integrals β within the
stacks (βTTF ≈ 0.11 eV ≈ 10 kJ mol–1) (βTCNQ ≈ 0.19 eV ≈ 18 kJ mol–1), the
two bands cross at the Fermi level EF, at wavevector kF. The Fermi level is
thus determined by the partial charge transfer from TTF to TCNQ stacks. The
available charge density δ for the conduction is determined by the value of kF,
and is written simply as:

2kF = δπ/b (3.114)

where b is the unit cell length.
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TTF+δ TCNQ–δ TTF.+ TCNQ.– Fig. 3.63
Band structure and electron transfer in
TTF-TCNQ: (a) schematic representation
of the bands built from the TTF’s HOMO
(occupied) and the TCNQ’s LUMO
(empty); (b) energy dispersion curves
of the relevant two frontier orbitals: the
TCNQ LUMO curve runs up and the TTF
HOMO curve runs down; they cross at the
Fermi level (energy EF and wavevector
kF); (c) band scheme with electron trans-
fer adjusted at the Fermi level (TTFδ+–
TCNQδ–); (d) band scheme with an hypo-
thetical one-electron transfer (TTF+•–
TCNQ–•). (Adapted from Canadell and
Whangbo [3.68] and Jerôme [3.69j].)

Thus, each stack can be considered as a mixture of neutral TCNQ and
charged TCNQ– for one, and TTF and TTF+ for the other; that is, in a mixed
valence state.

Finally, we can note that owing to the inverted behaviour of the TTF and
TCNQ bands, there is a unique kF vector, common to the two bands, because
the number of states between the � point and kF is the same for the HOMO
and the LUMO bands. The main features allowing the phenomenon are that (i)
the two bands run in different ways (up and down); (ii) the energy of the top
of the donor’s band is above the one of the bottom of the acceptor’s LUMO
band, so that their dispersion curves cross. To generalize the phenomenon we
need systems having LUMO’s donor and HOMO’s acceptor close in energy,
and their bandwidths larger than this energy difference. This can be provided
by large flat molecules presenting at the same time extended delocalized bonds
and appropriate intermolecular contacts. Canadell even predicted that a single
component molecular metal could be achieved in this way, using the bands
related to the LUMO and HOMO of the same molecule. We show in Fig. 3.64
an extraordinary neutral molecule, [NiII(tmdt)2]0 (tmdt = trimethylenetetrath-
iafulvalenedithiolate), synthesized and studied by A. and H. Kobayashi et al.
[3.69e], which indeed behaves in the solid as a single-component molecular
metal (400 �–1 cm–1 at room temperature and a metallic behaviour down to
0.6 K!), without any need of a donor or an acceptor partner! Similar systems
are described in [3.69e].
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A single-component molecular metal.
The Ni(tmdt)2 (tmdt = trimethylenetet-
rathiafulvalenedithiolate) molecule: (a)
molecular scheme; (b) schematic con-
tacts and overlaps in the solid, within
the stacks (black and light grey), within
a plane (black and dark grey). (Adapted
from Kobayashi et al. [3.69e].)
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This is a nice example of the interplay between theory and experiment in
molecular materials, when the lucid predictions of theoreticians encounter the
ingenious skills of synthetic chemists.

The previous analysis is somewhat simplified, and more details on the sub-
tleties of the behaviour of these systems can be found in texts such as [1.9]
[3.68] [3.69a–c,j]. Clearly, the gross behaviour is determined by the previ-
ous band structure, but we have now to refine the model by introducing two
effects which compete with the band formation and tend to hinder conductivity.
As stated in the introduction (Section 3.3.1), they are: (i) the coupling of dis-
tortions (static aspect) or even vibrations (dynamic aspects) with the electronic
structure. The stabilization of one-dimensional systems at low temperature by
electron–phonon coupling is one of the major sources of complexity of con-
ducting molecular systems. The resulting Peierls instabilities are studied in
Section 3.3.3; (ii) the interelectronic repulsion energy U (or j0). In a system
like TTF-TCNQ it could be approximated from electrochemical or optical data
and found to be 1.3 eV in a solution of TCNQ–• and 1.0 eV in the solid state:
in other words, U is of the same order of magnitude or even slightly larger
than the bandwidth of the TCNQ HOMO (0.7–0.8 eV). In the next section we
approach the first effect: the role of Peierls instability.

3.3.3 Peierls instability in 1D: electron–phonon interactions

The Peierls distortion is based on a very general process: the influence of
electronic filling on bond lengths. The distortion is unavoidable because upon
distortion an occupied orbital is stabilized while a vacant orbital is destabilized.
This simple way of reasoning was introduced in Section 1.4.3. We now look
in more detail at the consequences upon conductivity; namely, the transition
of a metallic to a semiconducting regime. We need to introduce a few more
concepts to achieve an overall clearer picture: Fermi surface, nesting vector,
and charge density wave (CDW).

3.3.3.1 Fermi surface, nesting vector, charge and spin density waves
Fermi surface
The concept is a simple extension of what we have already termed a Fermi
level. It is conveniently introduced when examining an array of molecules
stacking along the a direction (intermolecular distance, a) and also along the
b direction (intermolecular distance, b) [Fig. 3.65, Part A(a)]. The resonance
integral β resulting from the overlap S of a given molecular orbital of the
molecules in the a direction is denoted βa, and the resonance integral in the
b direction is denoted βb. The wavevector along a* is ka, and along b* is kb.
The first Brillouin zone is shown in Fig. 3.65, Part A(b). Part A(c) of the fig-
ure displays the energy dispersion curve for a 1D system, pointing the 2kF

wavevector at the Fermi level for a half-filled band between –π/2a and +π/2a.
We admit, without demonstration, that the energy dispersion expression for the
2D system can be extrapolated from the 1D system (eqn. (1.49)) through:

Ej(
−→
k ) = α + 2βa cos(kaa) + 2βb cos(kbb) (3.115)
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Fig. 3.65
Fermi surface in 1D and 2D systems: (A)
(a) 2D array of molecules (white spheres)
and resonance integrals in a and b dir-
ections; (b) first Brillouin zone with the
characteristic points � (ka = 0, kb = 0),
X(ka = π/a, kb = 0), Y(ka = 0, kb =
π/b) and M (ka = π/a, kb = π/b); (c)
1D Energy dispersion curve along ka. (B)
1D Energy dispersion curve: (a) ka frame;
ka–kb frame. (C) 1D to 2D Energy dis-
persion curves: (a) purely 1D; (b) 1D
with weak interactions between chains;
(c) purely 2D; the horizontal dashed lines
show the Fermi level for the half-filled
band. (D) Fermi surfaces corresponding
to (C). (E) Fermi surfaces of an ideal 2D
system with a band less than half-filled
(a), exactly half-filled (b), more than half-
filled (c). Light grey surfaces represent
occupied levels. (Adapted from Canadell
and Whangbo [3.68].)

A third term, 2βc cos(kcc), should be added for the 3D case. It is then a trivial
task to draw the energy dispersion curves corresponding to �→ X→ M→
Y→ � pathway for different significant cases, as shown in Fig. 3.65, part C:
(a) a strictly 1D case with interactions only in the a direction (βa< 0, βb =
0); (b) imperfectly 1D, with an interaction in the b direction, weaker in mag-
nitude than in the a direction (βb< βa < 0), and (c) fully 2D with interactions
of the same magnitude in both directions (βa = βb < 0). The convention βb < 0
denotes a bonding interaction, whereas βb > 0 should denote an antibonding
interaction (but is not treated here). In case (a), βb = 0, so the curve is disper-
sionless for �→ Y and X→ M. The horizontal dashed lines show the Fermi
level for a half-filled band.
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It is convenient to introduce a slightly different representation, as in Part
B of Fig. 3.65, which shows for a perfect 1D system in a ka frame (a) or a
ka–kb frame (b) that there is no dispersion in the b* direction, and that below
the Fermi level, for a half-filled band, there are wavevectors q (grey zone)
joining occupied levels. The ka–kb representation is fully developed in part
(D) in the case of a half-filled band for 1D (a), 1D with interchain interac-
tion (b), and 2D (c). The grey surface represents wavevectors corresponding
to occupied levels, and the white zone to wavevectors of vacant levels. The
grey zone (filled levels) represents half of the total surface. Part (E) is related
to the pure 2D system with a band less than half filled (a), half filled (b),
and more than half filled (c). The boundary surfaces between the grey and
the white zone—between wavevectors corresponding to occupied levels and
wavevectors of vacant levels—are known as Fermi surfaces. The wavevectors
on the Fermi surface are the Fermi vectors kF. Figure 3.66 represents several
Brillouin zones in the reciprocal space of a 2D system with a band less than
half filled (a) and more than half filled (b), so that it becomes obvious that
the corresponding Fermi surfaces are closed loops. Fermi surfaces as that of
case (a) are often called electron Fermi surfaces, whereas the Fermi surfaces
of case (b) are called hole Fermi surfaces. A Fermi surface corresponding to a
3D system built on a, b, c axes where βa = βb < 0, βc = 0, and a reciprocal
space a*, b*, c* with a first Brillouin zone �-X-Y-Z, is shown in Fig. 3.66c.
The topology of the Fermi surfaces varies with the dimensionality of the sys-
tem: 1D Fermi surfaces in a 1D representation are simply two points at ± kF

(Fig. 3.65, case B,a). If we introduce the 2D ka–kb representation they are two
isolated parallel lines perpendicular to �→X (Fig. 3.65, cases D, a–b). In a
3D representation (ka–kb–kc) they will be two planes perpendicular to �→X.
2D Fermi surfaces in a 2D representation are closed loops (Fig. 3.65, cases E
and Fig. 3.66a,b). In a 3D representation the Fermi surface of Fig. 3.66a will
become the cylinder of Fig. 3.66c).

The Fermi surfaces can be used to illustrate important properties dealing
with the conductivity of the system. The current carriers in metals are the elec-
trons at the Fermi level. When a dispersion energy curve in a given wavevector
direction (�→X in Fig. 3.65, cases Ca,b, or �→X, �→Y in Fig. 3.65, case
Cc) crosses the Fermi energy level, there are electrons with metallic proper-
ties along that direction. The larger the Fermi surface, the larger the number
of carriers and the larger the conductivity. Finally, Fermi surfaces can be used
to explain electronic instabilities, when the bands are partially filled, which is
precisely our concern in this section. The crucial concept here is one of nesting.

Fig. 3.66
Closed loops of 2D Fermi surfaces in
a 2D representation over four Brillouin
zones: (a) less than half-filled band (elec-
tron Fermi surface); (b) more than half-
filled (hole Fermi surface); (c) in a 3D
representation the Fermi surface in (a)
transforms in a cylinder. (Adapted from
E. Canadell and M. Whangbo [3.68].)
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Fermi surface nesting
First we give the definition: when a fraction of a Fermi surface can be translated
by a wavevector q so that it can be superimposed on another fragment of the
Fermi surface, it is said that the Fermi surface is nested. For example, the 1D
Fermi surface of an ideal 1D system in Fig. 3.67a, consisting of two parallel
lines, is nested by an infinite number of vectors q. To determine whether the
surface is nested or not, it is often useful to consider several neighbouring
Brillouin zones, as in Fig. 3.67b, where two Brillouin zones along �→Y are
necessary to evidence the nesting vector q, or as in Fig. 3.67c, where four
Brillouin zones, along �→X and �→Y, are necessary to evidence the two
orthogonal sets of parallel lines, which allows finding many nesting vectors.

The importance of nesting is related to the fact that a metallic system with a
nested Fermi surface presents an electronic instability which leads to a metal-
to-insulator or metal-to-semiconducting transition due to the opening of a gap
at the Fermi level, as shown in Section 1.4.3. Indeed, we arrive here at the same
basic results as in Section 1.4.3, with new tools, new concepts, and a deeper
understanding. Below the transition there is no more Fermi surface (since the
occupied and vacant states are separated in energy)! Let us examine the 1D
metallic system in Fig. 3.68a. We relate an occupied Bloch orbital �ºk to a
vacant one �ºk′ with a nesting vector q (= k–k′). �ºk and �ºk′ are eigen-
functions of the Hamiltonian Hº in the metallic state. When we apply some
perturbation (V) to the system—for example, a distortion related to the vibra-
tions (phonons)—the eigenfunctions of the new Hamiltonian Hº + V are no
more the eigenfunctions of Hº, �ºk, and �ºk′ , but a combination of them (c is
a complex mixing coefficient):

�k ∝ �ºk + c�ºk′ (3.116a)

�k′ ∝ −c�ºk + �ºk′ (3.116b)

As in Section 1.4.3, with a half-filled band we arrive at the situation sketched
in Fig. 3.68. The mixing of the occupied �ºk and unoccupied �ºk′ levels leads
to new Bloch orbitals, named �k and �k′ , separated in energy. The interaction
is the largest when k and k′ belong to the Fermi level (q = k–k′= 2kF) and the
Bloch orbitals �ºk and �ºk′ are degenerate. A gap opens at the Fermi level as
shown in Fig. 3.68. Its value is 2�, with � = <�ºk|V|�ºk′> (at kF).

We can now compute the new electronic density associated to �k and �k′ .
We express therefore <�k|�k> and <�k′ |�k′>:

Fig. 3.67
(a) 1D Fermi surface of an ideal 1D sys-
tem, examples of nesting vectors among
an infinity (q1 and q2 at the Fermi sur-
face). q is relating an occupied state k and
an unoccupied one k′); (b) 1D Fermi sur-
face of a non-ideal system (with lateral
interaction) and nesting vector q; (c) 2D
Fermi surface showing two orthogonal
sets of parallel lines and the possibilities
of many nesting vectors. (Adapted from
Canadell and Whangbo [3.68].)
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Fig. 3.68
Different aspects of a Peierls distortion from metallic to semiconducting states. Under a V perturbation, (a) combination of occupied (k) and
vacant (k′) Bloch orbitals in the general case when the levels are non-degenerate; (b) particular case when k and k′ are at the Fermi level with
degenerate Bloch orbitals. For a system with a half-filled band (kF = π/2a) (occupied levels in grey): (c) energy dispersion curve in the metallic
state; (d) energy dispersion curve in the semiconducting state (opening of a gap at the Fermi level, no more Fermi surface). (Adapted from
Canadell et al. [1.9].)

<�k|�k> = <(�ºk + c�ºk′ )|(�ºk + c�ºk′ )>

= <�ºk|�ºk> + c2<�ºk′ |�ºk′> + 2c<�ºk|�ºk′>
(3.117a)

<�k|�k> = <�ºk|�ºk> + c2<�ºk′ |�ºk′> + �ρ = ρº + �ρ (3.117b)

<�k′ |�k′> = <(−c�ºk + �ºk′ )|(−c�ºk + �ºk′ )> = ρº − �ρ (3.117c)

�ρ = 2c<�k|�k′> = (2c/N)
∑

m
<φ (rm) |φ(rm)> cos[rm(k − k′)]

= (2c/N)
∑

m
<φ (rm) |φ(rm)> cos (qr) (3.117d)

We introduce ρº, the charge density before perturbation, and �ρ, the change in
charge density induced by perturbation, defined in eqn. (3.117d). In the same
equation we use the expression of the Bloch orbital �ºk introduced in eqn.
(1.45), as a sum of φ(rm)exp(ikrm) terms. The orbital φ(rm) is an orbital φ loc-
ated at site m, position rm along the a axis, and exp(ikrm) is its coefficient. The
main conclusion is that the modulation of charge density follows a cosine law,
cos(q • r + ϕ): it represents a charge density wave (CDW), shown schematically
in Fig. 3.69e–f. To derive the total modulation of the charge density one must,
of course, integrate over all the occupied levels �k. Another conclusion from
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(a) Schematic representation of the uni-
form charge density in the metallic state;
(b) scheme of the modulation of the
charge density in the semiconducting
state compared to metallic, and appear-
ance of a charge density wave (CDW);
(c) scheme of the modulation of the spin
density after the appearance of a spin
density wave (SDW); the length of an
arrow represents the magnitude of the (up
or down) spin density; (d) non-distorted
metallic system, uniform charge density
ρ0 in Bloch orbitals �0

k and �0
k′ ; (e–f)

after distortion, charge density wave; λ is
the wavelength: (e) �ρ in the occupied
Bloch orbital �k; (f) –�ρ in the vacant
Bloch orbital �k′ . Observe the phase
opposition between (e) and (f). (Adapted
from Canadell et al. [1.9].)eqns. (3.117b,c) is that when there is a local charge density enhancement in a

Bloch orbital �k (�ρ) there is a charge density depletion in �k′ (–�ρ).
In 1D systems the Fermi surface is fully nested; that is, the superposition of

surfaces occurs on all the surface, not only on a fragment. Then the mixing of
the (k, k′) pairs of Bloch orbitals operates on a wide range of k values around
the Fermi level, hence a favourable condition to open a band gap. As we shall
see in what follows, perfect nesting is much less frequent in 2D or 3D systems.

We have introduced in Fig. 3.69c, without demonstration, the case where
the two electrons each occupy a different orbital—one spin up the other down.
This leads to a modulation of the spin density in the chain called a spin density
wave (SDW). SDW is favoured by the same circumstances as the CDW wave:
low temperature, low dimensionality, and high density of states at the Fermi
level. It occurs when |β| << U, inducing a strong electron correlation in the
chain. This type of wave is more difficult to observe than a CDW—in particular
because the structural changes are less important than in the CDW case (see
Section 3.3.4.4).

We now generalize the previous discussion. The illustrations in Fig. 3.68c–d
deal with the half-filled band case, when kF = π/2a and the initial band is split
into two bands. But the Peierls instability in 1D is a very general process, not
limited to half-filled bands. Due to the full nesting, the instability can occur
for any q value (Fig. 3.67a). If a band has a partial electronic filling δ, the
Fermi level is at kF = πδ/a and the Peierls instability will occur at kF with a
wavelength of the charge density wave λ = 2a/δ. It is called a 2 kF distortion,
since q = 2 kF. When δ = 1/n the band will split into n bands and the system
will suffer an n-merization. The Fermi level will be between the lowest split
band (occupied) and the second (vacant). If δ = (n–1)/n, the system suffers an
n-merization also (n bands), but the Fermi level is between the (n–1)th split
band (last occupied) and the nth (vacant). When such partial filling occurs
followed by an n-merization, it is convenient to introduce a more compact
representation of the Brillouin zone, as shown in Fig. 3.70 and Fig. 3.71.

Figure 3.70a displays the usual energy dispersion curve, from –π/a to +π/a,
for one centre (orbital) per unit cell and half-filled band. In Fig. 3.70b the same
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Fig. 3.70
Representations of energy dispersion
curves of a half-filled system: (a) one
orbital per cell, interval ]–π/a, π/a]; (b)
two orbitals per cell, interval ]–π/2a,
π/2a]; (c) two orbitals per cell, interval
]0, π/2a]; (d) two orbitals per cell, inter-
val ]–π/2a, π/2a], Peierls distortion. The
occupied levels are grey. (Adapted from
Canadell et al. [1.9].)

dispersion curve is drawn for a double cell (two centres—and orbitals—per
cell, hence a′ = 2a), from ]–π/2a to +π/2a]. The dispersion curves appear as
if they have been folded from Fig. 3.70(a). A more accurate treatment shows
the correspondence between the 1, 2, 3, 4 parts of the dispersion curves as
indicated in the Fig. 3.70ab. Figure 3.70c still reduces the representation of the
dispersion to the ]0, π/2a] interval, due to symmetry. Figure 3.70d represents
the gap opening when using the double cell representation, in the interval ]–
π/2a, π/2a].

Figure 3.71 uses extensively the representation with a cell containing six
centres with one orbital per centre, and a reduced energy dispersion diagram
(interval ]0, π/6a]) (b), Peierls hexamerization, in the case of a partial band
filling δ = 1/6 (a–d) or 5/6 (e–f). These schemes will be useful for study-
ing the Peierls transition in KCP (which follows). It is important to realize
that in general the combination between two �0

k and �0
k′ Bloch orbitals

having different energies leads to an antibonding situation. Only the combina-
tion between occupied and vacant Bloch orbitals close in energy (hence close
to the Fermi level) has a stabilizing influence. This occurs only at the gap
opened at the Fermi level [δ = 1/6 (c–d) or 5/6 (e–f)]. The Peierls instability
will therefore be observed only when the electronic stabilization at the Fermi
level exceeds all the destabilizing interactions, including the repulsive nucleus–
nucleus interactions. This is an aspect of the competition between β and λ

parameters.
Interesting situations can arise when the nesting of the Fermi surface is not

complete, as shown in Fig. 3.72. Here, upon translation, the coincidence does
not occur on the entire surface. In this case the Fermi surface does not disap-
pear completely. The Fermi surface is smaller, it presents less carriers, and the
metallic conductivity will decrease but will not be suppressed.

The last but not the least point is the observation that the Peierls transition
appears at kF = πδ/a. The corresponding crystallographic distortion associ-
ated with the charge density wave is detected easily by high-resolution X-ray

Fig. 3.71
Representations of energy dispersion
curves of a partially filled system (δ =
1/6, a–d) or δ = 5/6 (e–f): (a) tradi-
tional bar representation with EF at 1/6 of
the bandwidth; (b) six centres (orbitals)
per cell, interval ]0, π/6a], EF at 1/6 of
the bandwidth; (c) six centres per cell,
interval ]0, π/6a] with Peierls instabil-
ity, hexamerization, EF just below 1/6 of
the bandwidth; (d) traditional bar rep-
resentation of case (c); (e) δ = 5/6, six
centres per cell, interval ]0, π/6a] with
Peierls instability, hexamerization, EF is
just below 5/6 of the bandwidth; (f) tradi-
tional bar representation of case (e). The
occupied levels are in grey in the dis-
persion curves and in black in the bar
representations. (Adapted from Canadell
et al. [1.9].)
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Fig. 3.72
Incomplete Fermi surface nesting:
(a) Fermi surface presenting different
curvatures; (b) formation of Fermi poc-
kets after partial Fermi surface nesting
as shown in (c) and (d). (Adapted from
Canadell and Whangbo [3.68].)

diffraction measurements. Since λ = 2a/δ, the determination of λ allows deriv-
ation of the band filling δ, hence the charge transfer ρ in DA charge transfer
complexes or the degree of partial oxidation (DPO) for cyanidoplatinates com-
plexes such as KCP. It is then possible to compare them with value arising
from chemical analysis. When δ = p/n (irreducible fraction, p and n integers,
p < n), the distortion is said to be commensurate. If not, the distortion is said
to be incommensurate. This distinction is important because commensurate
distortions have a tendency to ‘lock′ on fixed positions in the lattice, while
incommensurate ones are more mobile.

At this stage it is interesting to note that the influence of distortions
on the electronic structure is a very general phenomenon which we have
encountered already in the discussion of molecular mixed valence compounds
(see Section 3.2.2.3). The main difference is that in molecular mixed valence
compounds the distortion concerned a single metallic site, and thus the fate of
one electron, which was either trapped or delocalized. In the case of the Peierls
distortion, two adjacent sites are concerned by a concerted motion, and thus a
pair of electrons is localized (see, for instance, the ultimate case of the infinite
H∞ chain, actually giving H2 molecules). This arises from the fact that while
mixed valence system are generally open-shell systems with an odd number of
electrons, 1D conjugated systems are closed-shell ones with an even number of
electrons. But it is possible here also to build a nuclear coordinate describing
the state of the molecular skeleton, as with the Q coordinate in Section 3.1.2.
The energy change upon reorganization could also be denoted as λ through
a proper definition, and enters in the general discussion on the β, λ, and U
competition presented at the beginning of the present chapter.

Peierls instability and the role of temperature
Most of the demonstrations proposed previously assume that the temperature
is T = 0 K, so that a �(k) orbital, below EF, is doubly occupied (occupancy
f = 1), and a �(k′) orbital, above EF, is vacant (occupancy f = 0). When
the temperature is different from zero, the population of the levels follows the
Fermi–Dirac distribution function:
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E

(a)

T = 0K 0<T<Tc Tc<T

(b) (c)

vacant

partially occupied

occupied

r

–req +req

EExcited
state

Ground
states

+r–r
(d)

1

1 1

Fig. 3.73
Peierls instability and temperature: (a) at
T = 0 K the system is distorted and semi-
conducting; (b) at 0 < T < Tc the levels
near Fermi energy becomes partially pop-
ulated, since electrons are excited from
the lower valence band to the upper con-
duction one. The system remains distor-
ted and semiconducting; (c) above Tc

the partially occupied levels fill the gap
and build a band, the regular geometry
becomes more stable, and the system is
metallic; (d) total energy of the system
along a distortion ± r applied to atoms
labelled 1. (Adapted from Canadell et al.
[1.9].)

f(E) = 1

1 + exp

(
E − EF

kBT

) (3.118)

The most concerned levels are those near the Fermi level; that is, with an
energy E, such as EF – 4 kBT < E < EF + 4 kBT, which are precisely those
of interest for the Peierls instability. Since at T > 0 K, f(E)<1 for E(k)<EF

and f(E)>0 for E(k′)>EF, the interaction between �(k) and �(k′), maximum
at T = 0 K will be reduced at higher temperature. We illustrate the role of the
temperature in Fig. 3.73 with a band representation (a–c) and with the total
energy of the system (electronic + nuclear) when some distortion ±r is applied
to atom 1 (d). The competition is between the stabilization of the electronic
energy, which favours a dimerization (the two potential wells of Fig. 3.73d),
and the nuclear repulsion (and rigidity of the system), opposite to any displace-
ment. At T = 0 K the system is distorted, semiconducting, and the gap is open
(a). It is in the lowest vibrational level of one of the two potential wells. When
the temperature increases the excited vibrational levels become populated, and
the top of the valence band and the bottom of the conduction bands become
partially populated (b). At a given critical temperature Tc the loosely bound
dimers become a uniform chain at the top of the energy barrier (r = 0). The
energy gap disappears (c). Note the analogy between Fig. 3.73d and Fig. 3.25b
(class II compound).

Fluctuations and charge density wave instabilities
Here we focus on another important role of the temperature, due to the dynamic
fluctuations which occur in the system, even above the critical temperature Tc.
It affects the dynamics within one chain, as shown on Fig 3.74(A), and also the
instabilities in the solid, when the chains are weakly interacting Fig 3.74(B).
In (A) is shown the situation of one metallic chain, assumed isolated, running
in the a direction; (a) at high temperature, Thigh, chain in the metallic state;
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(a) (b) (c) (d)

b

a

ξa(T) ξa(T)

ξa(T) ξb(T)

a
(A)

(B)

Fig. 3.74
Dynamic formation and ordering of
charge density waves upon a decrease
in temperature from (a) to (d). (A) Case
of an isolated chain; (B) case of several
interacting chains. In (a), high temperat-
ure, several neighbouring metallic chains
with uniform charge density distribution
(straight lines); (b) along direction a, for
TPeierls < Ta < Thigh, formation of intra-
chain CDW fragments (wavy segments);
(c) T3D < T < TPeierls, along direction b,
interchain correlation of the CDW frag-
ments; (d) below T < T3D, intra- and
interchain 3D ordering of the CDWs.
(Adapted from Canadell and Whangbo
[3.68].)

(b) at a given lower temperature, Ta and above the Peierls critical temperat-
ure, TPeierls < Ta < Thigh, it appears at different places in the chain, in the
a direction, a beginning of charge density wave (CDW). There is a dynamic
formation of small segments of the chain with a mean correlation length ξa(T),
depending on the temperature. Typically, ξa is varying as T–1 (increases when
T decreases); (c–d) when decreasing the temperature the CDW is fully formed
at TPeierls together with the opening of the gap. In (B) is shown the situation of
weakly interacting chains: (a–b) at high temperature, same situation as previ-
ously, independent chains; (c) when decreasing the temperature, at T < TPeierls,
interchain interactions manifest themselves, and correlation occurs between
the CDW segments of neighbouring chains with a correlation length ξb(T),
perpendicular to the chains; (d) a 3D order eventually appears at a temperature
termed T3D. The appearance of the Peierls transition or of the 3D ordered state
depends on the relative value of the intra- and interchain interactions.

Experimental techniques such as single-crystal X-ray diffuse diffraction and
vibrational spectroscopy allow us to follow the previous dynamic fluctuations,
as shown in Fig. 3.75. In (a), the diffraction spots corresponding to the perfect
single crystal of Fig. 3.74a can be observed (Thigh); in (b), at TPeierls < Ta <

Thigh, diffuse lines perpendicular to ka appear at ± 2kF due to the dynamic
creation of CDW fragments, with correlation length ξa. The width of the lines
is given by ξa

–1; in (c), at T3D < T < TPeierls, with non-negligible interchain
interactions, interchain correlations appear along kb; the diffuse lines transform
into diffuse spots centred at 2kF, qb; the width of the spots is given by ξb

–1; (d)
a 3D order appears with condensation of the CDW along ka, and interaction
between the CDW along kb, distinct from the 1D CDW only (e).

ka

kb

> <

ξb
–1

2kF

2kF

ω(k)

k

0 π/aq

(a) (b) (c)

(d) (e) (f)

> < ξa
–1ξa

–1

qb Fig. 3.75
(a) Bragg peaks of the single crystal
at high T; (b) T < Ta, appearance of
diffuse lines at ± 2kF perpendicular to
ka (dynamic CDW fragments, correla-
tion length ξa); (c) diffuse spots at points
(2kF, qb) due to the interchain correlation
between chains; (d) superlattice peaks
due to a 3D order; (e) appearance of a 1D
CDW; (f) ‘Kohn anomaly’ at wavevector
q = 2kF. (Adapted from Canadell and
Whangbo [3.68].)
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Finally, the right-hand part of Fig. 3.75f displays the ‘Kohn anomaly’ which
appears in the phonon spectrum ω(k) when q = 2kF. The phonon spectrum
can be determined experimentally via X-ray, neutron, or electron diffuse scat-
tering. The CDW formation is associated with a lattice vibration (phonon) ω

at wavevector k = q = 2kF. When the CDW appears the vibration ‘softens’,
giving rise to the peak at ω(q), as shown.

We now examine more closely the 1D conductors of the preceding sec-
tion when they become semiconducting. A large part of the discussion will
be devoted to polyacetylene, which has been the subject of a huge amount
of investigation, owing to its central position as a prototype of conducting
polymers.

3.3.3.2 Alternant trans-polyacetylene
We begin by the alternant trans-polyacetylene, since it is a beautiful example
of Peierls instability: the regular structure (Fig. 3.53, 1A) does not even exist!
The electronic structure of the alternant trans-polyacetylene can be deduced
easily from that of the regular case. It is possible to foresee, in Fig. 3.55, from
the orbital degeneracy of X+(π/a), the highest occupied level of X+(k), and
of X–(π/a), the lowest vacant level of X–(k) (Fig. 3.55c), that the regular sys-
tem is not stable and is ready to experience a Jahn–Teller effect, as explained
in Section 1.4.3 (which is another way to talk about the Peierls transition).
The alternant configuration is preferred, even at room temperature (Fig. 3.76).
The structure shows alternating ‘long’ (144 pm) and ‘short’ (136 pm) bonds
(a). These values are between the usual values for simple (154 pm) and double

(a) (b)

(c)

1.36 Å 1.44 Å 

1

2

–1
1'

2'

0
1

2

+1

(d)

X–(K = 0)

X+(K = 0)

X–(K = π/a)

X+(K = π/a)

X–
X–

X+

Fig. 3.76
Alternant trans-polyacetylene: (a) Bond lengths; (b) schematic structure; (c) charge density wave of π electrons; (d) numbering scheme of the
two different sites in the cell and neighbouring cells; (e) crystal orbitals X±(k)=N± [�1(k) ± �2(k)] and their dispersion energy curves; the
degeneracy of X+(π /a) and of X–(π/a) of the regular compound is removed; f) bar representation of band energies and evidence of the gap.
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(132 pm) carbon–carbon bonds. Alternation is a very general phenomenon: the
dihydrogen molecule (extreme case of alternation) is more stable than a regular
hydrogen chain. Figure 3.76 also displays the alternant scheme (b), the charge
density wave of π electrons (c), the numbering scheme (d), and the electronic
structure of the alternant trans-polyacetylene (d–f). It can be compared use-
fully with Fig. 3.55 for regular (hypothetical) trans-polyacetylene. The energy
dispersion diagram is obtained as previously, using two resonance integrals—
one of them, β12, for 1–2 interactions, and the other, β′

21′ , for 2-1’ interactions.
Since |β12| > |β′

21′ |, the crystal orbitals X+(π/a) and X–(π/a) are no longer
degenerate, and a gap opens at k = π/a. The forbidden energy gap evidenced
in the usual bar representation (f) allows us to understand why, without doping,
alternant trans-polyacetylene is a semiconductor.

Let us insist on the following idea. It is frequently believed that the presence
of delocalized double bonds (‘conjugated’ double bonds) is a sufficient condi-
tion for obtaining conducting materials. This is indeed not true, as exemplified
by undoped alternant trans-polyacetylene.

We now understand why several kinds of doping can, in principle, transform
the semiconducting alternant trans-polyacetylene into a conductor. First, we
begin with redox processes: oxidation of polyacetylene withdraws electrons
from the top of the filled band of the material (that we can term the highest
occupied crystal orbital, HOCO) and creates positive holes. With the diodine
I2, reduced to the tri-iodide I3

–, we obtain:

trans - [CH]n + 3 nx/2 I2 → [
(CH)x+ (

I−3
)

x

]
n

(x < 0.7) (3.119a)

The process is accompanied by a jump of the conductivity σ from ≈ 10–5

�–1 cm–1 to ≈ 103 �–1 cm–1. When the polymer is stretched before dop-
ing, conductivities parallel to the stretching and chain direction can reach 105

�–1 cm–1. Doping can also be realized by electrochemistry by immersing a
trans-[CH]n film linked to an anode in a solution of support-electrolyte such
as LiClO4 in propylene carbonate.

trans - [CH]n + nx ClO−
4 → [

(CH)x+ (
ClO−

4

)
x

]
n
+ nx e− (3.119b)

Oxidation, by halogen or by electrochemistry, and creation of positive holes
is known as p-doping (p as positive). Conversely, reduction injects electrons
into the bottom of the upper empty band, which we can term the lowest vacant
crystal orbital (LVCO). It creates negative centres in the polymer. With liquid
sodium amalgam or sodium naphthalide, Na+(Napht)–•, we obtain:

trans - [CH]n + nx Na0 → [
Na+

x (CH)x−]
n (x < 0.10) (3.119c)

trans - [CH]n + nx Na+ (Napht)−• → [
Na+

x (CH)x−]
n + nx Napht

(3.119d)

The reduction process can also be performed electrochemically, with the
polymer connected to a cathode in a solution of LiClO4 in tetrahydrofuran.
Reduction and creation of negative carriers is known as n-doping (n as neg-
ative). In the salts formed in this way, and in a perfectly organized solid,
the polymer becomes conducting. The interpretation using an ideal version
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Fig. 3.77
Band theory and doping in alternant poly-
acetylene models: (a) energy dispersion
curve with opening of a gap; (b) density
of states of the undoped semiconduct-
ing material (valence band fully occu-
pied, conduction band empty); (c) density
of states after p-doping (oxidation emp-
ties the HOCO at the top of the valence
band); (d) density of states after n-doping
(reduction fills the LVCO at the bot-
tom of the conduction band); (e) reduced
gap with localized acceptor levels; (f)
reduced gap with localized donor levels.
Small black vertical arrows schematize
the energy gap.

of band theory is shown in Fig. 3.77c,d: doping induces partially filled bands
and conduction; and the conductivity can be increased by a factor 1010!

If we examine more closely the chains themselves, the width of the valence
and conduction bands is large (≈ 5 eV), and the interchain band dispersion
is weak (≈ 0.3 eV), demonstrating good 1D behaviour. The forbidden energy
band gap Eg, from absorption measurements, is evaluated at 1.4–1.7 eV (excit-
ation of one electron from the valence to the conduction band). These figures
can be obscured by extrinsic impurities within the gap. The activation energy
Ea from conductivity measurements (corresponding to the energy gap Eg) can
be found as low as 0.3–0.5 eV, and the onset of photoconductivity as 0.8 eV
(the energy of the photon necessary for the material to become conducting).
Tight binding and DFT calculations confirm the large width of the valence
and conduction bands, the weak interchain band dispersion, and the forbidden
energy gap.

As for the doped materials, the main point is the enormous increase of
the conductivity upon doping. Important complementary information derives
from optical and spectroscopic conductivity and other transport measurements
(thermoelectric power and the Hall effect).

Figure 3.78 shows optical results in the infrared–visible range, and their
interpretation. In (A), in the undoped material the onset of absorption occurs
at 1.4–1.7 eV, whereas in the doped material a new transition appears around
0.7 eV. The intensity of transition 1 decreases when the intensity of transition
2 increases with the doping level (following the small vertical arrows). In the
band scheme (Fig. 3.78B), transition 1 corresponds to a HOMO-LUMO (or
HOCO-LVCO) transition, from the top of the valence band to the bottom of the
conduction band. Also shown in (B) are the ‘localized’ states present within the
gap (or ‘midgap’ states). They are created by defects in the undoped polymer,
such as neutral solitons (Fig. 3.79): they are perfectly localized; Fig. 3.78B
case a. They can also be created by doping.

The width of the midgap states increases with doping (c > b). Depending
on the nature of the doping (n or p), the midgap states can be filled or empty.
Transition 2 is a transition between these states and the bands of the polymer
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Fig. 3.78
(A) Optical absorption for the undoped
(continuous line) and doped with 10%
AsF5 (dotted line) material; (B) schem-
atic density of states around the Fermi
level, with different filled localized
midgap states a, b, and c (see text).
(Adapted from Roth and Bleier [3.71].)

(either valence band-midgap when the midgap states are acceptors (empty) (the
situation shown in the figure), or midgap conduction band when the midgap
states are donors (filled). Transition 2 is hence at lower energy than transition
1 [3.66, 3.70].

The transport measurements are sample dependent. The thermal variation
of the conductivity follows quite well, in general, the expression σ = σ0

exp[–(T0/T)γ] with γ = 1/3. The conductivity is much higher for oriented,
stretched films ≥ 2000 �–1 cm–1, and increases rapidly with doping, due to
the decrease of activation energy from 0.5 eV to 0.02 eV (at 20% doping).
In some cases, metallic conductivity is reached. This last statement can appear
contradictory with the previous ones—but it is not. We shall examine this point
subsequently (Fig. 3.83).

We turn now to another fruitful model using the topological consequences of
the existence of bond alternation in real polyacetylene. Bond alternation can
give rise to a special class of defect, named solitons—the subject of intense
research. The possible defects which might occur in a polyacetylene chain are
summarized in the glossary/dictionary in Fig. 3.79. The figure makes the lin-
guistic link between the chemists’ and physicists’ communities, each bringing
its own cultural background—chemical bonding and reactivity for the former,
and semiconductor physics for the latter.

Figure 3.79(a) shows a chain of an ideal trans-polyacetylene, ‘in vacuum’
(without interaction between the chains). The ground state of trans-
polyacetylene is degenerated: two ground-state configurations are possible—
the one represented where the double bonds ‘run down’ from even to odd
carbons (A configuration), and the one where the double bonds ‘run up’ from
odd to even (B configuration) (b). When the two ground states are present (b),
one at each end of a chain with an odd number of carbon atoms, a ‘defect’ in
the conjugation scheme is present with one unpaired electron surrounded by
two single bonds. This is known as a neutral soliton, with a spin 1/2. Such a
creature is described by physicists as a ‘dangling bond’ or a ‘quasi-particle’
(named using the postfix ‘on’—solit-on). The soliton is moving without any
loss in energy. It obeys a non-linear equation with a non-dispersive shape-
conserving motion. If such a development is outside the scope of this book, it
is useful to examine nevertheless how it modifies the picture that we have of
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Fig. 3.79
Solitons and polarons—a schematic
‘microscopic’ view of some events
implied in the conductivity of trans-
polyacetylene. A and B designate the two
possible organizations of the alternation
(configurations). Centre: representation
of the species in a chain; (a) numbering of
the carbon sites; (b–i) different species,
black dots are electrons, electrostatic
charges are shown by their sign. Left,
physicist’s description. Right: chemist’s
nomenclature. The spin state is shown
in parentheses. See text. (Adapted from
Roth and Bleier [3.71].)

trans-polyacetylene. When the neutral soliton’s electron is removed by oxid-
ation, a positive soliton appears (carbocation, singlet state) (c), whereas upon
reduction a negative soliton is created (carbanion, also singlet state) (d).

Figure 3.80 displays some important features of the neutral soliton (a), in
terms of charge density wave (b), where the soliton appears as a peak in the
density wave, alternation parameter (c), where the soliton marks the inversion
of the alternation parameter from positive (associated with the A configuration)
to negative (B configuration), and energy bands (d), where the isolated soliton
creates a level exactly at the centre of the forbidden energy gap (‘midgap’
level), occupied either by a spin up or a spin down. This localized description

(a)

(b)

(c)

A

B

(e)

E
(d)

(f)

A

A

B

B

Fig. 3.80
Neutral soliton in trans-polyacetylene:
(a) ‘localized’ representation as an
unpaired electron between two different
alternating bonds segments; (b) charge
density wave representation; (c) alterna-
tion parameter; (d) creation of a midgap
energy level with spin up or down, within
the forbidden energy gap; (e–f) two
different delocalized representations, as
a wall between two chain segments with
opposite configurations of alternating
bonds. See text. (Adapted from Roth and
Bleier [3.71].)
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should be adapted, as calculations have shown that solitons are not exactly
localized but extend over approximately fifteen atoms where the alternation
parameter is tuned, acting as a ‘wall’ between two different conjugation seg-
ments A and B (as shown in e and f). It can be understood that when electrons
are removed from the chain there are some bond length changes where the
oxidation takes place. The doping modifies the geometrical structure. Note
that in (f) the soliton’s charge density peaks only at the even sites.

When the neutral soliton’s electron is removed by oxidation, a positive
soliton appears (carbocation, singlet state) Fig. 3.79(c), whereas upon reduc-
tion a negative soliton is created (carbanion, also singlet state) Fig. 3.79 (d).
Figure 3.79 and 3.81 extend the soliton’s concepts to positive (c) and negat-
ive (d) solitons. One can observe the significant changes in charge and spin
(if spin, no charge, and if charge, no spin). The midgap level can be empty
(positive soliton), and behaves as an acceptor level for electron transfer from
the filled valence band (Figs. 3.78B and 3.81a (3)). It can be doubly occu-
pied (negative soliton) (Fig. 3.81a (4)), which allows electron transfer to the
conduction band. Both cases contribute to decrease the energy of the trans-
itions in the optical spectrum (Fig. 3.78A). On the other hand, the variation of
the alternation parameter remains the same in all kinds of soliton (Fig. 3.81d
(2–4)).

Continuing our examination of the different species in trans-polyacetylene,
we return to Fig. 3.79e), which displays a diradical or broken bond, also termed
by physicists as a soliton–antisoliton pair. Indeed, a soliton is able to move
along the chain on even sites; for example, (4, 6, 8), as shown in Fig. 3.82a,
whereas an antisoliton can move only on odd sites (7, 9 . . .). Thus the two
kinds of soliton cannot interchange. The oxidation of the pair gives a cation
radical (Fig. 3.79f), with a positive charge on one site and a radical on the
neighbouring site. This is a positive polaron, having a spin 1/2. The negative
polaron is obtained likewise by the chain reduction (g).

How can solitons and polarons be created? Neutral solitons are defects
occurring in chains with an odd number of sites, as prepared (solitons can be
created, for example, when a chain changes from cis to trans configuration).
Positive and negative solitons are obtained from the neutral ones by (electro-)
chemical oxidation or reduction respectively. The two kinds of species appear
through weak doping (p-doping for positive polaron, n-doping for negative
polaron). Positive (negative) polarons are obtained similarly from the ideal
chain through weak oxidation (reduction). Further doping allows the creation

Eg
(a)

(b)

(c)

(d)

(1) (2) (3) (4)

AA A A BBBA

Fig. 3.81
Solitons in trans-polyacetylene: (1) ideal
chain; (2) neutral soliton (S = 1/2);
(3) positive soliton (S = 0); (4) negative
soliton (S = 0). (a) Energy band scheme;
(b) structure of the chain; (c) charge dens-
ity wave representation; (d) alternation
parameter. See text. (Adapted from Roth
and Bleier [3.71].)
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of several polarons that in turn can combine into bipolarons (or bisolitons),
positive or negative, all having a singlet state. In bipolarons, electrostatic
interactions between the charges occur and should be taken into account.

As for the role of these species for the transport properties, we need examine
their mobility (Fig. 3.82):
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Fig. 3.82
Movements of solitons and polarons: (a)
a soliton can move freely on one kind
of site; the alternation parameter is dis-
placed accordingly; (b) displacement of
a positive polaron; (c–d) at low dop-
ing level the polarons interact with the
associated counterion (here I3

–) with
limited mobility: (c) localized, and (d)
delocalized representation, showing the
decrease of bond alternation towards reg-
ular trans-polyacetylene; (e) at heavier
doping, polarons can interact between
themselves, providing a wider domain
of regular chain with metallic conductiv-
ity, and less interactions with the dopant;
(f–g) possible mechanism for interchain
electron transfer: interaction between a
neutral soliton on one chain and a positive
soliton on a neighbouring chain.

The displacement of neutral solitons is free, not thermally activated, but has
no influence on the conductivity, as solitons are neutral (a). The displacement
of a positive polaron (b) should contribute to the intrachain mobility (through
holes), and a displacement of a negative polaron should contribute through
electrons. Nevertheless, since they are charged species, their interaction with
the counterions of the dopant present between the chains limits their mobil-
ity, at low doping level, as shown in (c), even if the decrease of the bond
alternation (d) weakens the electrostatic interaction. Heavier doping creates
more polarons. It extends the segments where the alternation configuration
becomes closer to that of regular trans-polyacteylene. The doping modifies the
geometrical structure (bond lengths) and modifies the electronic structure by
increasing the width of the midgap states, by mixing them with the valence
and conduction bands (as shown in Fig. 3.78B). Finally, schemes (f) and (g) in
Fig. 3.82 provide examples of the possibility of interchain charge transfer due
to the interaction of a neutral and charged solitons located on neighbouring
chains.

The previous developments illustrate the enormous experimental and the-
oretical endeavours and skills involved in conducting polyacetylene. But,
as frequently observed in materials science, the properties of bulk samples
depend not only on the molecular structure but also on the presence of defects
and impurities, and on the processing method. The polyacetylene chains run
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Fig. 3.83
Schemes of possible conductivity path-
ways in real polyacetylene. Different
chains (wavy lines) run parallel in a fibril
(curved grey ribbon). Dots 1 to 4 rep-
resent probes that could allow measure-
ment of the conductivity, intrachain (1-2),
interchain (2-3), interfibril (3-4).

parallel to each other and are organized in fibrils, which can themselves be
aligned parallel by stretching and special preparation treatments (Fig. 3.83).

Thus we are faced with the problem of conductivity in an heterogeneous
medium, as schematized in Fig. 3.83. The only resistance which can be really
measured is R1–4, between dots 1 and 4, the sum of the different resistances
R1–2 + R2–3 + R3–4. It depends, of course, in a complex way, on the structure
(disorder, stretching ..) and level of doping.

As a conclusion to this section about polyacetylene, we can stress again
the long conceptual journey necessary to link the molecular structure and the
properties of the real bulk material, where unexpected effects such as fibril
contacts and presence of impurities play a big role. But the effort has been
worthwhile, due to interest in the conducting polymers for applications. The
simple fact that the same system can provide n-doped and p-doped materials
by simply changing the dopant opens the route to p-n junctions and to all the
related applications developed in the traditional semiconductor industry.

3.3.3.3 Peierls instability in KCP derivatives and other conducting
materials

We return to the example of KCP, as it remains to be understood why the
compound becomes a semiconductor at lower temperatures.

The same principles as in polyacetylene are valid, since the Peierls distortion
is a general process in 1D conductors, resulting from competition between
the stabilization of the electronic structure and the stiffness of the material.
In KCP, each platinum has lost 0.3 electron (formal oxidation state Pt2.3), the
dz2 band is 0.15 emptied; the Fermi level is then at kF = 0.85 and the structural
change associated with the transition is now an n-merization, with n = 1/.15 =
6.6667, which is not an integer. It is said that the distortion is incommensurate.
To simplify, we take n = 6, and obtain the band diagram in Fig. 3.71f, showing
the existence of a gap at the Fermi level. Experimentally, the Peierls distortion
occurs below 150 K, with loss of the metallic character [3.69a]. The distortion
can be revealed by accurate X-ray diffraction measurements [3.69k, 3.72].

In other 1D conducting material like TTF-TCNQ, the Peierls transition is
even observed twice, at TPeierls(TCNQ) on the TCNQ stacks and at TPeierls
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(TTF) on the TTF ones, giving rise to a rich and complex physics, beyond
the scope of this book [3.69].

3.3.4 Beyond the one-electron description: narrow-band
systems or no band at all

Until now in this Section 3.3 we have privileged a one-electron view based
mainly on molecular orbital (band) theory where the resonance integral,
whatever its name (β, Vab, or t—transfer integral) was much larger than the
other electronic effects, the interelectronic repulsion integrals, U (one centre,
alias j0), and V (two centres, alias j), or the electron–phonon interaction λ. The
band picture relying on the delocalized molecular orbital model was satisfy-
ing. We were even able to understand in this frame that in one-dimensional or
quasi-one-dimensional conducting materials the conducting state (relying on
β) is not stable due to the competition of β with electron–phonon interaction
(λ). Even when a band is partially filled the metallic conduction can disap-
pear due to Peierls distortion and charge density waves (CDW). Reality is,
of course, more complex: (i) the world is not one-dimensional, and (ii) other
instabilities and important phenomena occur when β competes with the other
electronic effects (U, V, λ). ‘Competition’ means that β is becoming close in
energy to one, or several, of the λ, U, and V parameters. In these cases we
deal with weak |β| values (around or below 1 eV), and therefore with systems
described by not-very-wide bands or narrow bands, or even systems where
the band model (molecular orbital theory) collapses. For example, if |β| <<

U, electrons become localized on one site (Mott–Hubbard localization; see
Section 3.3.4.1). The valence bond description is then a better model, as we
showed in Chapter 2 for magnetic properties.

This scientific area has undergone an incredible burst over in the past forty
years, both experimentally and theoretically (quasi-particles, Fermi liquids,
Luttinger liquids . . .). A wide variety of structures, physical behaviour, and
theoretical models—as a function of composition, temperature, and pressure—
is available. For the more exotic materials—and some of the most promising,
including superconductors—challenges remain in synthesis and new physical
tools or interpretation [3.69].

To compute the energy of the systems, the Hamiltonian should be built to
describe the different aspects:

H = Hkin/pot(β) + He−e (U, V, . . . ) + He−ph(λ) + Hexch(J, D . . . ) (3.120)

where Hkin/pot is the kinetic and potential energy term, He–e is the
electron–electron repulsion Hamiltonian, He–ph is the electron–phonon energy
Hamiltonian, and Hexch is the exchange energy Hamiltonian.

The first term on the right is proportional to the resonance integral β between
nearest neighbours i and i ± 1 (one-electron band description). The second
term, introduced by Mott and Hubbard, depends on the repulsion integrals U,
for the doubly occupied sites ni↑↓, and on V, for neighbouring singly occu-
pied sites by electrons with spin σ and σ′, niσn(i+1)σ′ . The third term relies
on the λ electron–phonon interactions and the phonon energy, suggested by
Peierls. The fourth term is the exchange term that we used extensively in
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Chapter 2, following Heisenberg, Dirac, and van Vleck. This Hamiltonian is
often termed the extended Mott–Hubbard Hamiltonian, since it includes repul-
sion terms (leading to Mott and Hubbard electron localization). It is also known
as Peierls–Hubbard, due to electron–phonon terms (leading in particular to
Peierls distortion).

We cannot deal with all these cases. Rather than formal mathematical devel-
opments which can be found in [3.69a–c, 3.73], we present some examples,
beginning with simple cases, where just one effect enters in competition with
the resonance integral β: β and U in Section 3.3.4.1; β and λ in Section 3.3.4.2.
Then, in Section 3.3.4.3 we consider a more complex case where several
effects compete. Finally, in 3.3.4.4 we present some perspectives opened by
the organic metals and superconductors. We hope, with these simple consid-
erations, to allow the interested reader (i) to grasp the spectacular interplay
between chemistry and physics in the field, (ii) to enter in a more special-
ized literature, and (iii) to synthesize or to study, at some time, exciting new
materials.

3.3.4.1 Mott insulators
This case corresponds to the Hamiltonian in eqn. (3.120), limited to the first
two terms:

HHubbard = Hkin/pot + He−e = β
∑

i, j=i+1

nij + U
∑

i

ni↑↓ + V
∑

i

niσn(i+1)σ+

(3.121)
Hkin/pot corresponds to the potential energy and kinetic energy gained by elec-
tron jump from one site i to its nearest neighbour j = i + 1, and He–e describes
the one-centre repulsion U when two electrons with different spins are present
on the same site i. This very simplified way to write the Hamiltonian retains
the basic physical features and avoids the usual introduction of second quant-
ization notations. The first part of the Hamiltonian leads to a description in the
frame of band theory, but the second part would require the introduction of
the ‘split band’ concept; that is, the definition of two sub-bands separated by
U, each one being filled by one electron per orbital with same spins, the spins
being opposite from one band to the other. For reasons of space limitation we
shall not use it here, as since a too brief introduction could induce conceptual
dangers for the reader. This approach can be found in [2.11], [3.74].

We begin with the ionic compound K+TCNQ–•, the structure of which is
depicted in Fig. 3.57 and the electrical properties in Fig. 3.58. At high temper-
ature, above TC = 395 K, the TCNQ–• anion radicals are uniformly stacking,
building a narrow band. On each TCNQ–• radical lies an electron. The band is
half-filled, but K+TCNQ–• is an insulator. We need to consider the one-centre
repulsion integral U and the two-centre one, V. The transfer of one electron
from site i to site i + 1 costs an energy U–V (Fig. 3.84a).

If |β| << U–V << U, the state with one electron localized on each site
is the more stable; it is the ground state (an estimate of U is ≈ 4 eV, and V
≈ 3 eV). When U imposes such electron localization, the system is a Mott
insulator (Fig. 3.84a). In this case we return to the situation encountered with
most of the compounds of Chapter 2 (the localized electron). Depending on
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(a) Mott insulators for half-filling; a grey
sphere represents a site with one electron;
U impedes the electron transfer from i
site to the i ± 1 one; (b) with one elec-
tron fewer (site i + 1 vacant, shown by
a square) or (c) one electron more than
half filled (a pair of electrons on site i, the
arrows represent the spins), the electron
transfer costs no energy and is allowed;
(d) overview of the different cases of
band fillings and conductivity.

exchange, the interaction between the spins leads either to a ferromagnetic,
antiferromagnetic, or random chain. As soon as the compound presents a site
without an electron (b) or with two spins (c), the model foresees that electron
transfer from site i to i ± 1 is allowed, as it costs no energy, and there is hope
of again having a conductor as generalized in (d).

We can analyse the problem in another way. Let us return (see Section 1.4) to
a simpler 1D chain, in which each unit bears one electron—for instance, the
hypothetical regular and infinite hydrogen chain (H•)n or ..H•..H•.. H•..—and
see what happens when we stretch uniformally all bonds. Obviously, if the
H•...H• distance becomes very large, the electrons must remain localized on
each H atom, and no conduction can be expected, though the band made with
1s orbitals is half-filled. Where is the mistake? It comes from the use of a
band model, which is for solids the counterpart of the simple molecular orbital
model, and we saw in Section 1.5.2.3 that the method is no longer valid for
large H•...H• separations and weak β. We are in a situation where β << U, and
in such a case the valence-bond method is better adapted (see Section 1.5.3.1).

Let us roughly estimate U in the case of the hydrogen chain. It is simply
the energy necessary to transfer one electron from an atom to the other, thus
creating H+ and H–. We have already seen (Fig. 3.46) that for an H2 molecule,
U–V = IP – AE ≈ U (IP is the ionization potential, AE the electron affinity,
and when the ions are far enough, V << U). In the case of dihydrogen, IP =
13.6 eV, AE = 0.8 eV, and thus U = 12.8 eV, which is a huge quantity, much
higher than the usual values of β resonance integrals. In the chain there are
two neighbours for each H• site, and thus the cost in energy for the electron
transfer, by pair, is U–2V ≈ 12 eV (see also Section 3.3.4.3). The effects of
electrostatic repulsion are not at all negligible, and explain simply the electron
localization!
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We have seen, nevertheless, that the major instability in this case is due to
electron–phonon interaction (the stable system is the ‘dimerized chain’—the
dihydrogen molecule). In molecular compounds able to produce 1D systems,
such as TTF and TCNQ, the U–V quantity is much lower, of the order of
1 eV (as seen previously), because the orbitals containing the active unpaired
electrons are spread over many atoms; but anyway, the U–V value is fre-
quently of the same magnitude as |β|. It was enough to explain the electron
localization in K+TCNQ–•. A final remark is necessary to point out the import-
ant role of temperature when vibrations and phonons are concerned. Below
Tc = 395 K, the TCNQ–• anion radical stacks undergo a Peierls dimeriza-
tion. The narrow band is split, and the system is semiconducting (Fig. 3.58).
The two neighbouring radicals couple antiferromagnetically (↑↓) to produce
a singlet ground state. The situation is very reminiscent of that described in
Fig. 3.73, but here the high-temperature state is not a conductor but a Mott
insulator.

Is half-filling (one electron, one hole per site) the only band filling giving
rise to Mott insulators? No. We can consider the situation of a 1/4th filling or
1/6th filling (either with electrons or holes), and more generally to any filling
commensurate with the structure (Fig. 3.85). For one electron per site at dis-
tance a (Fig 3.85a), corresponding to a ρ = 1 charge transfer (ionic situation)
in a charge transfer salt, the electrons (and also spins) are localized on each
site. A transfer on the neighbouring sites i ± 1 costs U–V. For a quarter-filled
band (Fig 3.85b), with ρ = 1/2, the transfer from site i to site i ± 1 costs
an energy V which localizes the electrons on one site over two (i, i + 2, ...),
every 2a, achieving a charge density having a 2a periodicity. Considering now
1/6th filling (Fig 3.85c), with ρ = 1/3, the Mott insulator situation is achieved
with one charge every three sites (i and i + 3, distant of 3a) if the interelec-
tronic repulsion integral V2 between two next nearest neighbours (i and i ±
2) is operative and efficient. In simple cases the band filling is determined by
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(a–c) 1D Mott insulators taking into
account, U, V, and V2 with (a) elec-
tron half-filling (order imposed by U), (b)
1/4 filling (order imposed by V, repul-
sion between sites i + 1 and i + 2),
(c) 1/6 filling (order imposed by V2—
repulsion between i + 1 and i + 3—and
V—repulsion between i + 2 and i + 3).
(d–e) 2D Mott insulators; with electron
half-filling (d), or 1/4 filling with a charge
ordered (CO) state (e). A grey sphere cor-
responds to a one-electron site, and � to
a vacant site. Similar schemes apply for
holes. (Adapted from Fukuyama [3.69b]
and Giamarchi [3.69c].)
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the stoichiometry of charge transfer salts. For D2X salts (D, donor, X, anion),
the quarter-filled case is realized with a hole (three electrons and one hole per
two molecules, ρ = 1/2). D4X composition should produce an eighth-filled
case, and so on (see Section 3.3.4.4 on superconductors). The 2D charge-
ordered (CO) state is presented in Figs. 3.85d (for half-filling) and 3.85e (for
quarter-filling).

The main conclusion here is that for narrow-band 1D systems with a charge
transfer commensurate with the structure, U, V, V2, and so on, must be taken
into account to understand why Mott insulators arise, and obtain a clear picture
of their electronic structure. The longer the interaction range, the higher the
commensurability presented by a Mott insulator.

Other good examples of insulators produced by electron localization and
large U values are provided by some transition-metal oxides—typically, MO
with M = Mn to Ni. The nickel oxide NiO has a rocksalt structure. The Ni2+

ions are in an octahedral environment, with the configuration (t2g)6(eg)2. The
eg set being half-filled, it gives rise to a half-filled band, and thus metallic con-
ductivity is anticipated in a one-electron picture. In reality, pure stoichiometric
NiO has negligible conductivity due to large U and electron localization [3.75].

3.3.4.2 Semiconducting systems and mixed valence
The band model also fails when β < λ, without the direct influence of U and V.
The appropriate simplified Hamiltonian after eqn. (3.120) is:

H = Hkin/pot + He−ph (3.122)

Many examples can be found in molecular or solid-state chemistry. This situ-
ation is encountered in particular in many transition-metal oxides when they
exhibit non-stoichiometry with a mixed valence composition [3.75]. In this
case, the existence of different valence states makes the geometry of the sites
different, and the translational symmetry is lost. Such systems are thus exten-
ded analogues of class II binuclear mixed valence compounds, and cannot be
described with the band model. When two different valence states, such as V5+

and V4+, are present (this occurs, for instance, in non-stoichiometric V2O5,
which contains small quantities of V4+), it can be considered that a V4+ site cor-
responds to one extra electron. Thus the presence of an extra electron distorts
the corresponding site and expands the metal–oxygen distances, and the elec-
tron can be considered as ‘self-trapped’ by its own modification of the medium,
which considerably reduces its mobility. The association of the electron and
its distortion constitutes a polaron—a concept introduced in Section 3.1.2, and
characterized by its energy Wp.

The structural consequence of oxidation or reduction has also been
encountered in the case of polyacetylene, where the Peierls distortion is indeed
influenced by electronic filling (doping). In polyacetylene, however, the distor-
tion involves at least two centres and leads to dimerization, while in polaron
formation only one centre is involved. On the other hand, the mixed valence
situation is a way of escaping the deleterious influence of U. When there is less
than one electron per site, the transfer of an electron is possible at a much lower
cost (see Figs. 3.46 and 3.84b). There is no longer an influence of U—only the
influence of the relaxation of the surrounding medium.
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In these solids, conduction occurs by discrete jumps of electrons between
localized states (hopping), and the process is thermally activated, giving rise to
semiconducting behaviour. The conductivity in such solids depends, therefore,
on the number of charge carriers and their mobility, as seen in eqn. (3.106).
The mobility u is related to the diffusion coefficient D of the carrier, through
Einstein’s equation:

D = kB T

e
u (3.123)

where kB is Boltzmann’s constant. Note that Einstein’s equation connects
conductivity—in which the charge carriers are subject to an electric field and
have an overall motion—to diffusion, which is a purely random process. In the
diffusion process, a particle (here the electron) stays for an average time τ on a
site, and then executes a random jump on a nearby site located at a distance a
(Fig. 3.86). The process is said to be Markovian, which means without memory
between two jumps (drunken-sailor walk). For a one-dimensional system, D is
given by:

D = a2

2 τ
(3.124)

a

Fig. 3.86
Markovian process consisting of a series
of independent jumps, without memory.

where the factor 2 arises from the two directions of motion when leaving a site
i to site i – 1 or i + 1 (it would be 6 for a 3D system). The average residence
time on a site is related to the rate constant of the hopping process νh by:

τ = 1/νh (3.125)

νh is a first-order rate constant (the hopping frequency), identical to the rate
ket which governs the electron transfer in solution between the precursor and
successor complexes (see eqn. 3.26). By combining eqns. (3.123)–(3.125) with
(3.106) we obtain for a 1D system:

σ = 1

2
n e2 a2 νh

kB T
(3.126)

and the same equation with a factor of 1/6 for a 3D system.
Thus eqn. (3.126) relates conductivity (a macroscopic quantity) to the

dynamic process of hopping between two sites (a microscopic quantity). Note
that νh can be measured independently—for instance, by EPR or dielectric
relaxation. As far as ‘n’ is concerned, it is actually the concentration in pairs
associating an occupied and a vacant site, because electron transfer is only
possible under these conditions. Thus for a mixed valence solid containing nT

total metal sites, of which a fraction α are in one of the valence states, the n
value in eqn. (3.126) is:

n = nT α(1 − α) (3.127)

Accordingly, the hopping conduction is thus impossible for a homovalent sys-
tem (α = 0 or 1). For these systems, either there are no charge carriers (empty
band), or the electrons are localized by electron–electron repulsions described
by the U factor (narrow half-filled band, Mott insulators). There is a close ana-
logy between solids containing small polarons and molecular mixed valence
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The ‘shish-kebab’ structure. The macro-
cycle can be either a substituted phthalo-
cyanin or porphyrin, while the metal is
Fe, Ru, Os. Axial ligands L–L are either
pyrazine or 4,4′-bipyridine, and so on.
(Adapted from Collman [3.76].)

systems. Thus an optical excitation of a polaron can send an electron out of
its trap to a neighbouring site, at constant nuclear geometry. This necessitates
the energy λ = 2 Wp (see eqn. (3.19)), and the process can be termed an inter-
valence transition. In the same way, there is also a thermally activated process:
the ‘hopping frequency’ νh entering into eqns. (3.125) and (3.126) is temper-
ature dependent according to an exponential law exp(–Ea/kT), with a hopping
activation energy Ea equal to Wp/2; that is, one fourth of the optical energy, as
in molecular systems.

These considerations can be extended to inorganic complexes, such as the
‘shish-kebab’ polymers made of metallic macrocycles linked by axial ligands,
allowing some electron delocalization in one dimension (Fig. 3.87).

For these compounds the conductivity is extremely low in the purely reduced
state of the metallic ion MII, and increases upon partial oxidation to MIII, by
doping. The occurrence of a hopping mechanism is nicely demonstrated by the
evolution of the conductivity which passes through a maximum as a function
of the fraction of oxidized centres (Fig. 3.88), in agreement with eqn. (3.127),
thus showing that both oxidation states are necessary for conduction. The val-
ues, however, remain low compared to conductors. On the two extreme parts
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Fig. 3.88
Evolution of conductivity as a function
of the fraction of oxidized centres in
[Os(OEP)(pz)]n. (Adapted from Collman
et al. [3.76].)
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of the curve the conduction is extremely small, because the hopping process
is no longer possible, and there is no alternative mechanism for current trans-
port. For the MII composition (d6, t2g

6 in pseudo-octahedral environment), the
band created from the metal t2g levels is full. For the MIII composition, (d5,
t2g

5 in a pseudo-octahedral environment), one has a partially filled band. As it
is extremely narrow, the situation is that of a Mott insulator (U >> |β|).

In this example the conductivity was measured on pressed pellets of
powdered material. It can be influenced by intramolecular as well as
intermolecular electron transfer, and also by interparticle contact resist-
ances. This problem is reminiscent of that of fibril contacts in polyacetylene
(Section 3.3.3.2). However, the dependence upon the nature of the axial
bridging ligand correlates well with their known ability to mediate electron
transfer, so that it is reasonable to conclude that conductivity is determined in
large part by intramolecular processes occurring along the ‘shish-kebab’ chain.

We conclude by quoting two other examples of hopping conduction in
compounds with a mixed valence composition. In non-stoichiometric iron
oxide Fe1–x O, for which several iron sites are vacant, the charge compens-
ation is realized by the existence of Fe3+ sites; the exact formula is written
Fe2+

1–3xFe3+
2x�xO (� is an iron vacancy). Thus Fe3+ sites can be considered

as additional positive charges in small concentration in a ‘sea’ of normal Fe2+

sites. The conductivity is thermally activated and is proportional to the concen-
tration of Fe3+ sites. The reverse situation is provided by TiO2 and V2O5—two
oxides which contain mainly Ti4+ and V5+, but with small amounts of the lower
valence states, Ti3+ and V4+ respectively. In these cases there are thus extra
electrons, stabilized by the polaron effect.

Such systems are, however, difficult to characterize from a structural point of
view, because polarons are species which are present in small concentrations.
A nice example illustrating the geometrical differences on a given site as the
result of the presence or absence of an electron is provided by K3[MnO4]2. This
mixed valence double salt is made of alternating MnO4 tetrahedra of two types,
with Mn–O bond lengths similar to those in the structure of K[MnVIIO4] and
K2[MnVIO4] (mean distances 160.7 and 164.6 pm respectively) [3.77a]. This is
a class I mixed valence system, because the electronic interaction between Mn
atoms is extremely small. Thus extra electrons corresponding to [MnVIO4]2–

are trapped, and the compound is semiconducting. The hopping frequency
νh = 105 s–1 can be measured directly by dielectric relaxation (see Box ‘Time-
scales of investigation methods’), and is in good agreement with the value
obtained from the conductivity by the use of the 3D version of eqn. (3.126)
[3.77].

Note that the K3[MnO4]2 structure also provides a model of the ion pair
involved in outer-sphere electron transfer exchange in solution, and detailed
study shows the profound unity of the solid-state and solution processes [3.77].

3.3.4.3 Competition between |β|, λ, and U
In this section we consider a more complex situation where several
parameters—the resonance integral |β|, the reorganization energy λ (electron–
phonon interaction), the on-site Coulomb interaction U, and finally the
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Fig. 3.89
Schematic structure of [M(AA)2X]2+

chains (a) and relevant metallic dz2 and
halogen bridge pz orbitals (b).

inter-site Coulomb energy V—compete or cooperate with one another. In a
first simplified reasoning, we discard this last one.

A typical example is provided by [M(AA)2X]2+ chains aligned along the
metal–metal direction z, where M = Pt, Pd, or Ni with a mean d7 filling,
X = halide (Cl–, Br–, I–) in axial position, and AA = a chelating equatorial
ligand such as 1,2 ethanediamine providing a square surrounding perpendicu-
lar to the chain (Fig. 3.89a) [3.78]. The alternating relevant M(dz2 ) and X(pz)
orbitals are shown in (3.89b), in a bonding overlap situation. Electroneutrality
is provided by anions between the chains (not shown). In the following, we
abridge [M(AA)2X]2+ to {MX}.

The chain can exist as univalent (MIII–X–I–MIII–X–I)n units built by altern-
ating half-occupied M (dz2 )1 and filled (pz)2 orbitals (M = Ni; X = Br; AA =
chxn, cyclohexanediamine; counter ion bromide; Ni–Ni = 516 pm, Ni–Br =
258 pm) (Fig. 3.90 A), class III in the Robin–Day classification. It can also be
mixed valence (MII–X–I–MIV–X–I) units, built by alternating filled MII(dz2 )2,
filled (pz)2, empty MIV(dz2 )0, and filled (pz)2 orbitals (M = Pt, Pd; X = Cl, Br,
I; AA= chxn, counter ion bromide; Pt–Pt = 576 pm, Pt–I = 272 and 296 pm)
(Fig. 3.90), Robin–Day class II. β, λ, and U can vary by choosing M and X, or
by ‘doping’ (substituting M with M′, or X with X′).

We start with the uniform symmetrical chain (MIII–X–I–MIII–X–I)n (M =
Ni, X = Br), with all metal–halogen distances equal and bridging halogens
located mid-way of the metal atoms (Fig. 3.90A). In a band model the chain
should be metallic, because MIII corresponds to a (dz2 )1 configuration with
half-filled band. But with nickel bridged by bromide, the repulsion parameter
U (evaluated to be 5.5 eV) wins both λ and β, compelling the chain to be
uniform (no break of symmetry) (Fig. 3.90Aa), and the dz2 unpaired Ni(III)
electrons to be localized (b). The system is an insulator. (Rather than a Mott
insulator, it is said to be a charge transfer insulator, as a charge transfer absorp-
tion from bromide to metal has been identified in the optical conductivity

MIII X X MIII X MIII XMIII MIV X MII X MIV X MII X(a)

a

(c) ρ(charge)

2a

CDW

AF
(b)

(a)

(b)

(c) ρ(charge)

(d) ρ(spin)
(d) ρ(spin)

(A) (B)

Fig. 3.90
(A) Univalent uniform (MIII–X–MIII–
X)n chain, for instance with Ni. (B)
Mixed valence dimerized (MIV–X–MII–
X)n chain, for instance with Pd or Pt.
(a) Structure; (b) electronic structure; (c)
charge density; (d) spin density.
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spectrum.) Overlap occurs between neighbouring localized dz2 Ni(III) orbit-
als (Fig. 3.89b), through the bridging halogen pz orbitals, giving rise to strong
antiferromagnetic (AF) interaction (J ≈ –2700 K) with alternating up and down
spins (Fig. 3.90Ab). Of course, the charge density on the nickel is uniform (c).

With platinum or palladium chains (Fig. 3.90B) we still have a mean d7

filling, but such a filling can be subject to polaron-type distortion. Given
the choice of softer, less electronegative, metallic constituents, the balance
is now in favour of λ, as the U repulsion integral is weakened compared to
nickel (1.5 eV for Pd, 1eV for Pt). There is now the possibility of transfer-
ring one electron from one metal to the other, thus generating MIV and MII,
provided that stabilization of these oxidation states by distortion of the coordin-
ation spheres occurs. The situation is reminiscent of the examples studied
in Section 3.3.4.2, except that there is a two-electron difference between the
oxidation states.

Considered in more detail, the halide is displaced towards the more positive
metallic ion MIV building octahedral sites around MIV and nearly square-planar
ones around MII (a). A gap is open, the conductivity is very weak, the system
is semiconducting, and a charge density wave appears (c). The spin density
on the metal is obviously zero (d). The energy gap, opened by the distortion,
changes with the metal and the bridging halide, everything being equal, {Pt–
Cl}: 2.8 eV, {Pt–Br}: 1.88 eV, {Pt–I}: 1.53 eV, {Pd–Cl}: 1.94 eV, {Pd–Br}:
1,61 eV as do the M...M and the alternating M–X...M distances (the larger
the gap, the larger the distortion and the larger the λ parameter). To give an
example, in the least distorted {Pt–I} derivative, d = Pt–Pt = 567.2 pm; l1 =
PtIV–I = 296 pm; l2 = PtII–I = 272 pm, and the distortion parameter (l1 – l2)/d
≈ 0.042.

These different behaviours can be rationalized by using an extension of the
diagram in Fig. 3.11 (using β instead of Vab to conform to current literature).
We add the V parameter, so that the resulting diagram is a tetrahedron, consti-
tuting a phase diagram (Fig. 3.91). The theoretical treatment by Nasu [3.73d],
using a mean field theory, delimitates zones in which either the Mott–Hubard
(MH) or the CDW situations are the most stable. As a first approximation, the
border is defined by a plane passing through the apex of the tetrahedron (β) and
two points corresponding to situations U = 2V (point L) and U = S (point N).
In this treatment the S parameter corresponds actually to λ/4. There are also
intermediate regions where the two phases can exist (one stable and the other
metastable), but they are not shown here.

Broadly speaking, when the system is dominated by U, the MH situation
prevails. When S or V are important, the CDW situation is obtained. The
first case is achieved for Ni derivatives (all atoms NiIII), while the second is
obtained for Pt (present as PtII–PtIV chains). As will be seen in the follow-
ing, Pd is an intermediate case for which the MH-CDW transition has been
observed.

In fact, the general characteristics of the tetrahedral phase diagram can be
recovered using potential energy curves of the type seen in Section 3.2.2.3.
To simplify, we neglect the influence of β. We then have three parabolae
corresponding to the electronic configurations MII–MIV, MIV–MII, and MIII–
MIII (Fig. 3.92). At the centre of the diagram (Q = 0, symmetrical nuclear



314 The moving electron: electrical properties

CDW

V

MH

U

β

S(λ / 4) 

S(λ / 4) 

L

N

U

β

N

CDWMH

(a)

(b)

P

Fig. 3.91
Schematic ground-state domains of the
1D MX system as a function of β, U, and
λ parameters (a), or β, U, λ, and V (V/U
< 0.5) (b). The conventions are the same
as in Fig. 3.11. In (a) is shown the divi-
sion of the domain by the line βN (where
U = λ/4) separating charge density wave
(CDW) systems (light grey surface on the
right) from Mott–Hubbard (MH) local-
ized systems (grey surface at left). The
double arrow corresponds to the trans-
ition found in the palladium complexes
(see text). In (b) is shown the schem-
atic division of the domains by the βNL
plane (where U = 2V) (grey) separating
CDW (at right) and MH systems (at left).
(Adapted from [3.73d].)

configuration), the most stable situation is MIII–MIII, but the others can be
stabilized by the polaron distortion, λ/4. At Q = 0 the difference between MIII–
MIII and MIV–MII or MII–MIV is U–2V, because in an infinite chain where all
the centres participate to electron transfer, for each M–M pair, there is one U
interaction and two V interactions. We see that electrostatic repulsions inter-
vene only by the U–2V parameter, which is certainly positive, and that the
diagram depends only on the competition between U–2V and λ/4. It is easily
seen in Fig. 3.92 that for U–2V > λ/4 the MIII–MIII state is the more stable,
while for U–2V < λ/4 it is the MII–MIV state. This last situation is sometimes
called the ‘negative U effect’, because the bottom of the MII–MIV is below the
one of MIII–MIII. In our opinion this expression should be avoided. In fact, the
effect of U has been simply overwhelmed by the effect of V and λ.

The previous conditions fit nicely with the conclusions of the tetrahedral
phase diagram (Fig. 3.91).

Based on this diagram, the fine chemical tuning of the U/λ ratio allowed
going from one case to the other, using one of the two following strategies:

• Strategy 1 allows movement from an MH state to a CDW state by decreas-
ing U through a progressive doping of the MH [NiIII(chxn)2Br]+ chain
(U = 5.5 eV for Ni) by palladium (U = 1.5 eV for Pd), keeping the same 1D
structure up to x = 1 ([PdII(chxn)2Br, PdIV(chxn)2Br]+. In the doped sys-
tem [NiIII(1–x)Pdx (chxn)2Br]+ the MH to CDW transition appears around
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U–2 V>λ/4
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MIV–MII
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Fig. 3.92
Potential energy curves for the three
possible electronic configurations of an
M–M pair within an infinite chain. (a)
U–2V > λ/4, MIII–MIII ground state,
M = Ni; (b) U–2V = λ/4, two possible
ground states M = Pd; (c) U–2V < λ / 4,
MII–MIV ground state, M = Pd, Pt.

x = 0.9. Below x = 0.9, PdIII is observed in an MH state, whereas above
x = 0.9 the dimerized CDW PdII–PdIV is favoured. The Pd–Pd distance at
the transition is 526 pm.

• Strategy 2 consists in moving from a CDW state to an MH state by decreas-
ing λ due to a sterical trick: the anions ensuring the electroneutrality
around the Pd–Br chain, [PdII(en)2Br]+ (en = ethanediamine), are dialkyl-
sulphosuccinates, which present long organic tails (alkyl varying from butyl
to octyl) which can bring closer and closer the palladium ions in the chain
when the temperature decreases. With a pentyl derivative the Pd–Pd dis-
tance varies from 531 pm at room temperature to 521 pm at 160 K. The
sterical constraint is enough to produce the first-order phase transition (that
is, with a structural change) CDW to MH at 206 K. Once again the Pd–Pd
distance at the transition is 526 pm, which appears as the limit between the
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two phases (corresponding to line βN in Fig. 3.91a or to the plane βNL in
Fig. 3.91b).

Even if we did not describe the many experimental techniques—including
STM ones—and the different theoretical endeavours which allow us to arrive
at such a degree of understanding, the reader can realize how the inter-
play between experimentalists and theoreticians is fruitful for analyzing such
complex systems. For more details, see [3.78].

3.3.4.4 Other kinds of instability in 1D organic conductors:
towards superconductivity

As seen previously, the detailed description of the synthesis and physical
behaviour of 1D conductors is an extremely wide subject. We end this sec-
tion on narrow-band systems with an evocation of a last challenge: reaching
superconductivity with molecular materials.

Superconductivity is a peculiar state of matter discovered in Kammerling–
Onnes’ laboratory in Leiden in 1911. It opened the possibility of transporting
electricity with zero energy loss, and led to important industrial applications.
A century after its discovery, mastery of superconductivity remains an import-
ant scientific and technological challenge, especially at high temperature. Let
us begin with a brief reminder about conventional superconductivity, before
presenting a few examples of molecular superconductors. Superconductivity
is characterized by a zero value of the resistance below a critical temperature
Tc (Fig. 3.43d). It is accompanied by the Meissner effect (strong expulsion
of magnetic lines of flux from the superconducting matter). Application of
a magnetic field suppresses the Meissner effect at some critical field Hc, in
ways different for class I and II conventional superconductors. (This nomen-
clature derives from the phenomenological Ginzburg–Landau model. In 2003,
Abrikosov and Ginzburg shared the Nobel Prize with Leggett.) A satisfying
microscopic interpretation of superconductivity at very low temperature was
given by Bardeen, Cooper, and Schrieffer (Nobel Prize recipients in 1972),
and is known as the BCS model.

In the BCS model, superconductivity appears at low temperature when the
electrons condense in a particular state: Cooper pairs, made of two electrons,
1 and 2, travelling in opposite directions but linked by an attractive interac-
tion despite the electron–electron repulsion (which is not easy to see in real
space! Nevertheless, see an attempt in Fig. 3.93). The attractive interaction res-
ults from the electron–phonon interaction and its time-lag with respect to the

-

+kF+kF

Network distortion
(a) (b)

11

–kF
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+ + + +

+ + + +
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Fig. 3.93
A naive sketch of a Cooper pair form-
ation in a conventional low-temperature
superconducting material. (a) Electron
1 (light grey sphere, negative charge,
spin up) located at the Fermi surface,
moves in a 3D array of ionic species
(crossed white balls, positively charged)
with a wavevector +kF; (b) electron
1 distorts the ionic network (grey balls)
and electron 2, also at the Fermi level,
with a wavevector –kF (moving in the
opposite direction, negative charge, spin
down) creates a Cooper pair through
a weak, long-distance electron–phonon
interaction.
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perturbation due to a travelling electron. Thus, if the lattice distorts to accom-
modate the passage of one electron, it is possible that a second electron could
be attracted by this distortion, even though the first electron has gone, and
move more easily. This provides an indirect attraction between the two elec-
trons. Superconductivity is a weak, long-distance effect due to the coupling of
two electrons (spin 1/2, fermions) into a Cooper pair (a boson, spin S = 0).

Until 1986 the known superconductors were metals or metallic alloys
with a critical temperature around 23 K. In 1986 a major and unexpected
breakthrough was the discovery of the so-called ‘high-temperature’ cuprate
superconductor (Tc = 35 K in a lanthanide copper oxide) by Bednorz and
Muller (Nobel Prize recipients in 1987). This triggered an incredible burst of
activity in the physicists’ and chemists’ community in the 1980s–90s, cul-
minating with a record temperature of 138 K. But it was a failure for the
BCS theory, unable to explain such high critical temperatures by the indir-
ect electron–phonon attraction evoked previously. Thus, a century after its
discovery, and despite huge theoretical endeavours, no universal model for
superconductivity is available. Cuprate oxides are therefore considered as
unconventional superconductors.

Let us return to organic superconductors, which are also considered as
unconventional. Actually, the first molecular organic superconductor was dis-
covered in 1979, shortly before the discovery of cuprates (but of course,
part of the interest shifted on the latter because of their ‘high Tc’). The
key molecular compound is tetramethyltetraselenofulvalenium hexafluoro-
phosphate (TMTSF)2(PF6) (Jerôme in [3.69j]), which is a metallic conductor
from ambient to 12 K (with a very high conductivity of 105 �–1 cm–1), and
becomes a superconductor at 0.9 K under 9 kbar (Fig. 3.94). It is part of the
(TMTSF)2X family built from different anions (X = PF6, AsF6 (octahedral),
ClO4, ReO4 (tetrahedral) and NO3, triangular). They are known as Bechgaard
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Fig. 3.94
1980s first evidence of molecular super-
conductivity in the Bechgaard salt orga-
nic conductor (TMTSF)2(PF6). The two
curves correspond to two different
samples. (Adapted from Jerôme [3.69j].)
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Fig. 3.95
Donor molecules used to build organic
metals and superconductors. (a) TMTTF
(X = S), TMTSF (X = Se); (b) ET or
BEDT-TTF (X = S) and BETS (X =
Se); (c) TTM-TTP; (d) MDT-TTF; (e)
DMTSA. Abbreviations: TMTTF =
tetramethyltetrathiafulvalene; TMTSF =
tetramethyltetraseleno fulvalene;
ET or BEDT-TTF = bis(ethylene-
dithio)tetrathiafulvalene; BETS =
bis(ethylene-dithio)tetraselenofulvalene;
(c) TTM-TTP = 2,5-bis(4,5-
bis(methylthio)-1,3-dithiol-2-ylidene;
(d) MDT-TTF = methylenedithiotet-
raselenafulvalene; (e) DMTSA =
2,3-dimethyltetraselenoanthracene.
(Adapted from Mori [3.69a].)

salts, and the parent derivatives based on the tetramethyltetrathiafulvalenium
salt (TMTTF)2X are known as Fabre salts (Fig. 3.95). Their crystal structures
are very different, and are named after some typical stackings, as shown in
Fig. 3.96. Both the molecular and the crystal structure are at the origin of the
conducting and physical behaviours, since they control the molecular orbitals
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Fig. 3.96
(A) Some typical frequent molecular phases of organic conductors, named with Greek letters: θ-phase, β-phase, κ-phase, and so on. The molecules
are grey cylinders. For one of the phases are shown the intermolecular contacts giving rise to different intra- and interstack resonance integrals βi

between the HOMOs, essential for building the energy dispersion curves and for obtaining the Fermi surface. (B) Some examples of the physical
properties of organic materials DnX as a function of stoichiometry, band filling, and n-merization. Abbreviations as in Fig. 3.95.
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(here HOMO) and the intermolecular resonance integrals β between them.
Some of them are sketched in the Fig. 3.96.

The low-temperature physics of these metallic conductors is extremely rich
and therefore intricate. Figure 3.96B shows some typical examples of the phys-
ical properties related to the stoichiometry, the band filling, and the distortion
of the 1D system (dimer, tetramer, and so on). As for the magnetic prop-
erties, they are readily understood using the models defined in Chapter 2:
overlap between magnetic orbitals on neighbouring sites leads to antiferro-
magnetic interaction. At room pressure the superconductivity does not appear
systematically, and most of the ground states are insulating. This is the case
for (TMTSF)2PF6, which undergoes a sudden metal–insulator transition at
12 K, contrary to the perchlorate derivative, which becomes directly super-
conductor at ambient pressure (the only one). The reader is now familiar
with such instabilities in organic conductors: Peierls transition, charge density
wave (Section 3.3.3.1), and Hubbard electron localization (Section 3.3.4.1).
Superconductivity represents a new kind of instability, which we present in the
case of (TMTSF)2PF6.

According to the stoichiometry there is one positive charge shared by two
TMTSF molecules. In D2X systems, contrary to the donor–acceptor DA salts,
only the organic donor molecules D contribute to the conductivity, and we need
to concentrate on them. (TMTSF)2PF6 crystallizes in the triclinic system. The
TMTSF molecules are stacking along the a axis with the hexafluorophosphate
anion on the side, as shown in Fig. 3.97a,b. The P–P distance of 702 pm cor-
responds to the a parameter. A slight dimerization in the molecular stack is
observed, assigned to the periodicity of the TMTSF molecules—twice that of
the anions. The closest intermolecular contacts are shown in Fig. 3.97c. Within
the stacks, down a, they are Se1–Se4–Se1... and Se2–Se3–Se2... contacts. The
mean intrastack Se–Se distance is 383 ± 5 pm. Contacts are present along
b, such as Se1–Se3, Se3–Se1, Se2–Se2, and Se3–Se3. The mean interstacks
Se–Se distance is 366 ± 1 pm, and Se3–Se3 is 375 pm. In the c direction the
contacts are less important, some being through the fluorophosphate.

This information, along with the anisotropy of the single-crystal room-
temperature conductivity (σa|| = 510; σb⊥ = 1.5; σc⊥ = 0.015 in �–1 cm–1),
shows that (TMTSF)2PF6 is a fairly good 1D organic metal at room tem-
perature. At the same time, they indicate the existence of several short
interstack distances, which will appear of the utmost importance (i) to avoid
the deleterious 1D Peierls distortion and (ii) to allow the appearance of
superconductivity.

The electronic structure is determined by the highest occupied molecular
orbital (HOMO) of TMTSF (Fig. 3.98a) and its resonance integrals with its
neighbours, parallel to the stacks (β||a, along a; indeed β1 and β2) or perpen-
dicular (β⊥b, along b and β⊥c along c). The energy dispersion curves and the
Fermi surface of (TMTSF)2PF6 are shown in Fig. 3.98b,c. They were obtained
from three-dimensional tight-binding calculations based on ambient temper-
ature and pressure crystallographic structure, and interpreted in a simplified
orthorhombic model. The salient features are that the bandwidths are aniso-
tropic, 4β||a (495 meV) >> 4β⊥b (70 meV) > 4β⊥c (2 meV), so they are large
in the �X domain (a*) and medium for �Y (b*). For �Z (c*) the dispersion
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(b)

(a)

(c)
Fig. 3.97
Schematic structure of (TMTSF)2PF6. (a)
Perspective view of the stacking of the
TMTSF molecules along the a axis; (b)
overlap of two neighbouring molecules
down the a axis with numbering of the
selenium atoms; (c) closest molecular
contacts: intrastack along the a axis (plain
lines) and interstacks roughly perpendic-
ular to the a axis, along b (dashed lines).

curves are flat. The Fermi level is determined by the charge on the TMTSF
molecule: one positive charge on two molecules means three electrons and
one hole in the two HOMOs, which corresponds to a three-quarter filling
of the band. The dimerization’s gap � opening at X is small: 66 meV. It is
located below the Fermi level. It transforms the 3/4 filled system (d) in a form-
ally 1/2 filled one (e). The Fermi surface Fig. 3.98c is rather flat and almost
perfectly nested, since β⊥b is much smaller than β||a. This creates a perfect
situation for an instability.

Based on previous experiences, the reader (and at the end of the 1970s,
the scientific community) should foresee that the instability is a CDW. It is
not. There is no fluctuation above Tc, and no detectable Peierls distortion, but
conversely, peculiar magnetic properties. The instability appears to be a rare
spin density wave (SDW) (see Section 3.3.3.1). The functions �kF and �–kF
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describing the two electrons at the Fermi level (one spin up, the other down)
combine and create a modulation of the spin density in the chain, or in other
words, ‘itinerant antiferromagnetism’. Since there is no important Peierls dis-
tortion but antiferromagnetic coupling of electrons, this state appears as a good
precursor state for superconductivity. Application of 9 kbar pressure and 0.9 K
temperature finally led to the goal, as shown in Figs. 3.94 and 3.99.

Over the years a wealth of data have been gathered on similar compounds,
which can be summarized in a phase diagram in a temperature–pressure space
(Fig. 3.99). Many electronic states can appear, and superconductivity is only
one among many others. It is important to notice that the abscissa is a relative
pressure axis. A given compound is characterized by a given abscissa, which
can be changed by application of pressure. Changing the compound’s formula
(for example, substituting PF6

– by Br–) has an effect similar to a change in the
real pressure. In the metallic state, decreasing the temperature and increasing
the pressure (the curved arrow in Fig. 3.99) changes the nature of conductivity
from 1D to 2D and 3D. It does so by increasing the interstack contacts in the
b and c directions and therefore avoiding 1D instabilities (σ⊥b and σ⊥c are
increasing with P, as does σ||a). The influence of the pressure on the resonance
integrals β has been estimated as dln β /dP = 2.2 (% kbar–1).

The main lessons drawn from the diagram are that (i) superconductivity
appears in the same area as spin density wave (SDW). Unfortunately, the
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3). This allows drawing the present gen-
eric phase diagram for D2X derivatives.
(Adapted from Jerôme [3.69j].)
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latter is an insulating state and must be avoided, but at the microscopic level
one could hope to discover some hidden analogy between the SDW or other
instabilities and the formation of Cooper pairs; (ii) the 3D character of con-
ductivity appears necessary. Regarding this last condition, the standard recipes
have in common the introduction of some additional dimensionality in the sys-
tem; that is, to increase the interaction between neighbouring chains, because
this is antagonistic to the Peierls distortion in particular. The following tools
have been used:

• Chemically modify the structure to have less 1D character; for instance, by
introducing polarizable atoms such as sulphur and selenium at the periphery
of the molecules (see Fig. 3.97c). These atoms interact and introduce some
interaction between chains. This is efficient even if the relation between the
molecular structure and the crystal structure is not at all direct.

• Work under pressure to increase the overlap between adjacent chains (see
Fig. 3.96). This has proved necessary for many 1D organic conductors to
obtain superconductivity. Practical applications, of course, would need to
eradicate the high pressure.

Thus at the present time, superconductivity in quasi-1D organic systems has
reached modest critical temperatures (about 10 K for κ (ET)2Cu(NCS)2 sys-
tem, far from the record molecular superconductivity in the three-dimensional
cubic Cs3C60 molecular system (Tc = 38 K at 7 kbar). But perhaps more
important, it represents a huge playground for physicists and chemists to test
new concepts in a rational way. To take just one example: mathematically,
Cooper pairs are built with mixtures of wavefunctions describing occupied
pairs and unoccupied ones. Thus there is a mixing of band levels above and
below the Fermi level (at ± kF), as for the formation of CDW and SDW.
As a consequence, Cooper pair formation, CDW, and SDW tend to occur
under the same conditions, in particular at low temperature, and which one
effectively appears is determined by subtle characteristics of the system and
delicate effects of temperature and pressure. As remarked previously, how-
ever, the CDW and SDW lead to a metal–insulator transition, while we seek
just the reverse, thus the path is narrow between success and failure! In other
respects, reality appears more complex than suggested by the simple concepts
and schemes presented here. Over the last twenty years, many other ‘exotic’
systems have appeared, with other kinds of competition at play between U, V,
and λ parameters. For example, when anions are magnetic, such as X =
FeIIICl4–, magnetic field-induced superconductivity has been observed [3.69f];
and when X takes the shape of an anionic oxalato-based two-dimensional mag-
netic network, molecular conducting magnets or superconducting magnets are
obtained [3.69h].

We think that quasi-1D organic systems can contribute efficiently to solving
the superconductivity problem, because of the extreme flexibility of molecular
chemistry, playing with the precursors, the stoichiometry (band-filling), the
counterions, and so on. Once superconductivity is better understood, this type
of chemistry will be in a good position to build, on demand, the architectures
necessary for stabilizing Cooper pairs or probably other strange entities that
might appear necessary.
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The excited electron:
photophysical
properties4
4.1 Introduction
After localized electrons and magnetism (Chapter 2), and delocalized elec-
trons, electron transfer, and conductivity (Chapter 3), in this chapter we
consider the process of electronic excitation and its consequences. Electronic
excitation results in most cases from the absorption of a photon, and the
resulting state can generally (but not always) be described by an electronic
configuration where the arrangement of electrons does not follow the Aufbau
principle. Therefore, in the first part we will recall a few basic concepts
in photophysics—in particular, absorption and emission and the properties
of excited states. Then we will consider successively excited state electron
transfer, energy transfer, and photomagnetism.

There are many photoprocesses which can occur after an electronic excita-
tion, because the system is in a high-energy state. Rather than being exhaustive,
we shall concentrate more on photophysical processes than on photochem-
ical ones (leading to chemical products). We shall focus on intramolecular
processes, which are easier to handle, because they do not require an asso-
ciation or diffusion step of reactants, and they can occur inside a cleverly
designed molecule or supramolecule. But we shall also provide some examples
of more complex systems. We shall use the expression chromophore (from
the Greek, ‘colour bringer’) to design a group (part of a molecule, molecule)
whose electronic transition energy (corresponding to a characteristic ‘colour’)
is transferable from one compound to another.

First, we shall present the problems related to the spin of the excited states,
taking the simple example of a molecule with an even number of paired elec-
trons (singlet ground state) and no orbital degeneracy: here the excited state can
be a singlet or triplet. The overall scheme (singlet ground state, excited singlet
and triplet states) can be described by the so-called Jablonski diagram, which
features most of the important photophysical basic phenomena (Fig. 4.1).

Second, we shall consider the case of excited state electron transfer. In this
process, an electron moves away from the excited chromophore, thus leaving
behind him an electron hole (usually a positive charge). If the system is ini-
tially neutral, there is thus a charge separation. The corresponding systems
are potentially appealing for energy conversion: excited state electron transfer
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occurs in photosynthesis as well as in artificial light harvesting systems, or in
new molecular-based devices such as organic light-emitting diodes.

Third, another important process after excitation is energy transfer. As pre-
viously, the distribution of the electrons among the various energy levels is
modified in the process, but there is no net charge modification on the different
parts of the molecule. Thus only energy, not matter, is transferred. Of course,
since the energetic state of the molecule depends on the status of electrons,
there is a relation between energy transfer and electron transfer. In some cases
we shall see that the two processes are actually intermingled.

Finally, a last topic will be photomagnetism, which can be considered as a
simple extension of the Jablonski diagram. When the photoexcitation is fol-
lowed by a cross-over to another spin state, the new spin state can become a
metastable state; that is, a state which is trapped for some time in a poten-
tial well, unable to overcome an activation barrier to return to the ground
state. Photomagnetism—a very recent discipline—is indeed developing rap-
idly, with the hope of photocontrolled high-density storage of information.
We shall present some trends and examples, extending the scope of the chapter.

4.2 Fundamentals in photophysics: absorption,
emission, and excited states

The fundamental concepts of absorption, emission, and excited states can be
found in a number of textbooks [4.1]. They are most easily introduced start-
ing from the example of closed-shell systems. For instance, the vast majority
of organic molecules present a configuration in which two spin-paired elec-
trons occupy the highest occupied molecular orbital (HOMO), and somewhere
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above in energy lies the LUMO (see Fig. 4.1). This electronic configura-
tion is the lowest-energy one, in agreement with the Aufbau principle, and
corresponds to a singlet (S = 0) ground state. Note that in the following it
will be important (i) to make the distinction between the energies of orbit-
als and the total energy of the resulting state, and (ii) to notice that for all
electronic states (excited or not) there are several possible vibrational levels.
The interval between these levels is of the order of vibrational wavenumbers
(102–103 cm–1)—much less than the interval between different electronic
levels (104–105 cm–1).

4.2.1 Energy levels

Upon excitation by photon absorption, the system can reach a high-energy
(excited) state. In many cases this is the result of an electron promotion to a
higher-energy orbital, here from the HOMO to the LUMO. For reasons that
will be explained subsequently, in a first step we reach a singlet excited state;
that is, there has been an electron promotion without spin flip.

The singlet excited state, S1, and more generally any excited state, can
evolve according to different possibilities. First of all, it relaxes by molecular
motions or interaction with the surrounding (solvent) molecules, and rapidly
reaches the lowest vibrational level. Then (i) it can return to the ground state
with photon emission. When the excited state has the same spin state as the
ground state, the process is called fluorescence. It occurs at a slightly lower
energy (higher wavelength) than the absorption process, because of the relax-
ation process (see Fig. 4.1); (ii) it can return to the ground state without
photon emission. This is a non-radiative process. In such a case the energy
is dissipated as heat along the different intramolecular vibration modes and/or
processes involving the surrounding (solvent) molecules; (iii) it can transform
finally into a different excited state with a different spin. This is called inter-
system crossing. The simplest and the most typical of such processes is the
conversion to a triplet state (Fig. 4.1). As seen in Chapter 1, for two elec-
trons in two degenerate orbitals the triplet state is more stable than the singlet
state, because of the exchange term k. From the triplet state we can return
to the ground state by either a non-radiative process or a radiative process.
This last case is called phosphorescence. As a result of the relative position of
excited states, phosphorescence occurs at a lower energy (higher wavelength)
than fluorescence. Fluorescence and phosphorescence are encompassed in the
general term luminescence.

An important property of excited states is their lifetime. For an excited
singlet state it is typically a few nanoseconds, while for triplet states it is
longer—typically a few microseconds, though it can reach seconds. The life-
time determines the possibility of the excited state evolving and transforming
before disappearing. This is particularly important for photochemical trans-
formations, but they are not considered here, the present chapter being devoted
essentially to photophysical transformations. The most direct consequence of
the difference in lifetimes is to make the time-scales of fluorescence and phos-
phorescence also different. Fluorescence disappears very rapidly after the end
of excitation, while phosphorescence remains for a longer time.



Fundamentals in photophysics: absorption, emission, and excited states 329

PhosphorescenceFluorescenceAbsorption

Intersystem
crossing

hν hν' hν''

Quadruplet 4A2
Ground State

Quadruplet 4T2
Excited State Doublet 2E

Excited State

t2g

eg

t2g

eg

t2g

eg

Non-radiative Transitions

Absorption
Emission (luminescence)

Relaxation

Fig. 4.2
Jablonski diagram for an open-shell
system—here the hexaaqua-
chromium(III) coordination complex,
[Cr(H2O)6]3+.

When dealing with open-shell systems the general principles and definitions
remain the same. To be more concrete, we shall consider the case of a coordin-
ation complex such as the octahedral hexaaqua-chromium(III) [Cr(H2O)6]3+,
with three unpaired d electrons (t2g

3 configuration, S = 3/2, quartet ground
state 4A2g, Fig. 4.2). The difference between state and term has been stressed
in Chapter 2. Throughout this entire chapter we shall use the terminology
‘state’, which is commonly used in molecular photochemistry, even if a symbol
like 4A2g is stricto sensu a ‘term’ from the point of view of atomic spectro-
scopy. The excitation by promotion of an electron to an eg orbital produces a
4T2g state. By an intersystem crossing (with spin-flip) one can reach a lower-
energy excited state which is a doublet, 2Eg. Emission from 4T2g to 4A2g is
called fluorescence (no spin change), and from 2Eg to 4A2g, phosphorescence
(with spin change). For compounds containing heavy elements, such as heavy
transition metals, there is, however, some difficulty in defining rigorously a
spin state, because the spin–orbit coupling is important and allows mixing
of states having different spins, and thus prevents distinguishing fluorescence
from phosphorescence.

In the absence of chemical reactions, excited states, whatever their nature,
decay by a combination of radiative and non-radiative processes. Thus they
present a finite lifetime τ, related to the radiative and non-radiative constants
kr and knr by:

τ−1 = kr + knr (4.1)

Another important definition in photochemistry or photophysics is the
quantum yield. This is the probability (usually expressed in percentage) that
an excited state evolves according to a given process. Thus the quantum yield
for emission �m is given by:
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�m = kr

kr + knr
(4.2)

In the same way, one can define quantum yields for other processes, such as
intersystem crossing, or photochemical reactions.

In transition metal complexes, several types of electronic transition may
occur. They are broadly sorted according to the nature of the molecular orbitals
involved in the excitation process (Fig. 4.3). Thus transitions between molecu-
lar orbitals with predominant d character are called d–d transitions. Other types
of transition imply an electron transfer from a predominant ligand orbital L
(more properly from a symmetry orbital, combination of ligand-based orbit-
als) towards metallic d orbitals (M). They are called ligand-to-metal charge
transfer (LMCT) transitions. The reverse case is a metal-to-ligand charge
transfer (MLCT) transition. Finally, there is a possibility of ligand-centred
transitions (Fig. 4.3). In polynuclear complexes containing M–Bridge–M′ units
metal-to-metal charge transfer (MMCT), transitions are also important.

d
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σL

eg*

t2g

π∗

π

σ

E

πL

Metal Complex Ligands

12 3 4

Fig. 4.3
Different types of transition in a coordin-
ation complex: 1, d–d; 2, LMCT; 3,
MLCT; 4, ligand-centred.

4.2.2 Transition probabilities

The absorbance Aλ of a substance at wavelength λ is:

Aλ = log10
I0

I
= ελc l (4.3)

where I and I0 are the light intensities before and after absorption respect-
ively; ελ, the molar absorption (or extinction) coefficient—L mol–1 cm–1; c,
the concentration—mol L–1; l, the length of optical path—cm. A is dimension-
less. The curve Aλ = f(λ) or ελ = f(λ) is termed the absorption spectrum of
the substance. The relations between the wavelength λ, the period T, the fre-
quency ν, and the wavenumber ν of the electromagnetic wave and the celerity
of the light c are well known (λ = cT = c/ν; ν = 1/T; ν= 1/λ = ν/c). For
a given transition between ground and excited levels, G and E, the oscillator
strength fEG is the area under the curve between two wavenumbers ν1 and ν2

surrounding the transition:

fEG = 4ε0mec2ln10

NAe2

v̄2∫
v̄1

ε(ν̄)dν̄ (4.4)

Note that this equation was given in a slightly different form in Chapter 3
(eqn. (3.88)) because there the area was expressed with frequencies instead of
wavenumbers.

Absorption and emission obey selection rules. The interaction of the ground
or excited state with the electromagnetic radiation of light is due essentially
to the electric vector component. The detailed theory of the interaction can
be found in textbooks [4.1], and here we provide just a few, very simple,
guidelines. The mathematics is in fact quite simple: the intensity of a trans-
ition is proportional to the square of the transition dipole moment M, which is
given by:

M = <�gr|Odip|�ex> (4.5)
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where the wavefunctions—�gr for the ground state and �ex for the excited
state—are the product of a space function by a spin function, � = � �, while
Odip is the electric dipole operator, e.r, with components e.rx, e.ry, and e.rz.

Developing eqn. (4.5), one finds:

M = <�gr�gr

∣∣Odip
∣∣�ex�ex> = <�gr

∣∣Odip
∣∣�ex><�gr

∣∣ �ex> (4.6)

because the electric dipole operator does not act on the spin wavefunctions.
A first immediate consequence is the following: the transition moment is

different from zero only if the spin functions �gr and �ex are the same for the
ground and excited states. If we use the convention α for spin up (↑) and β for
spin down (↓), we obtain the simple relations:

<↑|↑> = <α|α> = 1 and <β|β> = <↓|↓> = 1 (4.7a)

<↑|↓> = <α|β> and <↓|↑> = <β|α> = 0 (4.7b)

With respect to this rule, singlet-to-singlet transitions are allowed, while
singlet-to-triplet transitions are forbidden. The experimental consequence is
that the transition from a singlet to a triplet has very weak intensity, and
is generally not observed (Fig. 4.1). As far as emission is concerned, the
spin interdiction acts as a bottleneck and strongly reduces the probability
of transition. This is why phosphorescence has a much longer lifetime than
fluorescence.

If we now consider the simplified version of eqn. (4.5) in which the spin
parts of the wavefunctions have been removed:

M = <�gr|Odip|�ex> (4.8)

we are able to understand the additional condition (besides the spin condition)
necessary for a transition to be allowed. The integral in eqn. (4.8) must be
different from zero. The analysis of the problem is facilitated by the use of
group theory. The electric dipole moment operator can be characterized by
a defined symmetry, that of the x,y,z coordinates; that is, for instance t1u in
octahedral symmetry. For expression (4.8) to be non-zero it is necessary that
the direct product of the irreducible representations �, associated with the �gr

and �ex wavefunctions and the Odip operator, contains the totally symmetric
representation A1 (see Chapter 1). This necessitates that the direct product
�(�gr) ⊗ �(�ex) is the same or contains the same symmetry as the dipolar
electric operator.

The rule allows a simple and pictorial interpretation, taking as an example
the case of an octahedral complex (Oh point group). A transition from a s (a1g)
to a p (t1u) orbital is allowed (Fig. 4.4). Conversely, a transition from a d orbital
to another d orbital is forbidden. In Oh symmetry the d orbitals are centrosym-
metric (gerade, g), so their direct product g ⊗ g is also of g symmetry, while
the dipolar electric operator is of u symmetry. This very important and general
result is known as the Laporte rule.

1s orbital

E

E

g uu

2pz orbital

z

Fig. 4.4
Schematic representation of an electron
in a 1s orbital (g symmetry) submit-
ted to the dipole of the electric field E
of an electromagnetic wave oscillating
along z (u symmetry): it gives rise to an
electronic distribution with a mirror sym-
metry in the xy plane, as a p orbital (u
symmetry).

In transition metal complexes displaying octahedral symmetry and more
generally having an inversion centre, d–d transitions are thus forbidden by the
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Laporte rule (and in some cases also by the spin conservation rule), and thus
exhibit a low intensity.

Typical values of the extinction coefficients for d–d transitions ελ are about
10–100 L mol–1 cm–1 if there is no spin restriction. Charge transfer transitions,
on the other hand, are generally allowed. The detailed inventory of the states
shows that in the manifolds of states coming from the ground and excited
configurations, one can generally find a couple of states with the right sym-
metry to produce a non-zero transition dipole moment. Thus the corresponding
extinction coefficients for allowed LMCT or MLCT transitions are in the range
103–104 L mol–1 cm–1.

4.2.3 Nuclear relaxation after excitation

As noted previously, the energy of the states depends also on the vibra-
tional state, and more generally on the instantaneous geometry of the system.
This is taken into account, either by displaying the vibrational progression
on the energy diagram (Fig. 4.1), or by plotting the total energy as a func-
tion of a nuclear coordinate (Fig. 4.5). This gives potential energy curves, or
more generally potential energy surfaces when several nuclear coordinates are
involved. Usually, there is a simple potential energy surface for the ground
state, with a single minimum, which means that the molecule has a defined
geometry. In the excited state the situation is generally more complex, as
there are frequently different electronic configurations with nearby energies.
Several potential energy curves (or surfaces) arise with their own minimum,
and they are connected by avoided crossing interactions (cf Sections 3.2.1.1
and 3.2.2.3). We now have a more complete tool for interpreting the different
processes occurring after an excitation.

First, in the energy versus nuclear coordinate representation (Fig. 4.5) an
electronic transition is vertical. It occurs, indeed, at constant geometry as a
result of the Franck–Condon principle, which states that nuclei have no time to
move during the transition (nuclei are much more massive than electrons) [4.2].
Now, in the excited state, since the distribution and localization of electrons
is different, the energy minima do not generally occur for the same abscissa

hν

R ΨR

R*
ΨR*

I

P

P*I*

hν'

ΨP

ΨP*
E

Nuclear coordinate

Photophysics Photochemistry

Fig. 4.5
Potential energy surfaces as a func-
tion of nuclear coordinate for the
ground state (black) and excited state
(grey). Chemistry works in the ground
state (from reactant R to product P).
Photophysics plays with excited states
(R∗, P∗) after photoexcitation (hν or
hν′). Photochemistry provides products P
through excited species R∗, intermediates
I∗ or P∗.
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than in the ground state. For example, if the excited electron were initially
in a bonding orbital, the bond is weakened and the equilibrium distance is
increased. Therefore, a vertical transition reaches an excited vibrational state,
and the system then relaxes to the energy minimum with a different geometry.
This explains the relaxation process, responsible for the shift in fluorescence
energy. With respect to the reactivity of the excited states, it can be considered
an exploration of the different possibilities offered by the manifold of excited
state surfaces.

In the following we shall look mainly at two general classes of photophys-
ical processes. In both cases we move from one excited-state potential energy
curve to another one. Actually, since the two curves are connected by non-
crossing zones, it is more correct to say that we move from a local minimum
to another one. In one case the two excited states differ by the formal charges
borne by different sub-moieties constituting the molecule: this corresponds to
excited state electron transfer, with variants such as charge separation and
charge recombination. In another case the excited states do not differ in an
obvious way by electron motion, but by distribution of the electronic energy.
This corresponds to energy transfer.

4.3 Electron transfer in the excited state
In this section we describe a number of electron transfer reactions in the excited
state. This is by no means an exhaustive inventory, and we have selected a
few representative examples. From the point of view of theory, excited state
electron transfer obeys the same general rules as more conventional electron
transfer and the general treatment in Chapter 3 is valid. Only Section 4.3.6,
devoted to ultra-fast electron transfer, will introduce new concepts.

4.3.1 Properties of the excited state: the example
of [Ru(bpy)3]2+∗

To explain the properties of excited states we consider in detail a very
instructive example from coordination chemistry, [Ru(bpy)3]2+∗, where bpy =
2,2′-bipyridine [4.3]. This is a complex with pseudo-Oh symmetry (actually
D3; see Fig. 4.6), where the low oxidation state of ruthenium is stabilized by
the π-acceptor ligand 2,2′-bipyridine, giving a (t2g)6 low-spin configuration.

The absorption spectrum is dominated by a metal-to-ligand charge trans-
fer transition (MLCT) occurring in the visible near 452 nm (in CH3CN), and
providing an intense orange colour (ε = 13,000 L mol–1 cm–1). The d–d trans-
itions are not observed, due to their much lower intensity, and occur at higher
energy than the MLCT, which is, incidentally, a rather unusual situation: in
[Ru(bpy)3]2+ the energy of the metal-centred e(d)∗ orbitals is above the one of
the ligand-centred a2 π(L)∗ orbitals (Fig. 4.6b).

Upon excitation a singlet state is first obtained 1(d5π(L)∗) or 1(d5π∗), but
is converted rapidly (τ<1ps), due to spin–orbit coupling, into a triplet state
3(d5π∗), with vibrational relaxation (Fig. 4.7). The triplet state is indeed split
in three low-lying states separated by 30 cm–1 and mixed with higher singlet
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a) Crystallographic structure of
[Ru(bpy)3]2+; b) energy scheme of the
molecular orbitals of [Ru(bpy)3]2+,
d6: on the left, the d metal-centred
MOs named after their symmetry in
the D3 symmetry point group; the six
electrons are paired—black grey; on the
right the ligand-centred MOs; arrows
show the electronic transitions; from
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means antibonding level, as usual; c–f)
schematic electronic configuration of
[Ru(bpy)3]2+ using the frontier orbitals:
three d orbitals and the a2 π(L)∗ ligand
orbital: c) Ru(II); d) excited Ru(II)∗;
e) Ru(III); f) Ru(I). � schematizes an
electronic hole.

states. This excited state has been the subject of a large number of stud-
ies because of its appealing properties: it is strongly luminescent and emits
at 600 nm (red emission), and has very interesting chemical properties that
are detailed subsequently. The first problem is to understand its electronic
structure.

Singlets Triplets

Other
states

IC1(d5π*)
3(d5π*)

1(d6)

τ < 1ps 

Fluorescence

Phosphorescence

τ = 600 ns 

λ = 600 nm

Fig. 4.7
Basic features of the luminescence of
[Ru(bpy)3]2+.

The molecular orbital theory states that the MLCT transition involves an
electron motion from one of the a1 or e orbitals towards a symmetry combin-
ation of the LUMOs of the three equivalent bpy ligands, a2 π∗(L). Thus the
excited state could be viewed as a ruthenium(III) species with a collectively
reduced set of ligands; that is, three bpy sharing a negative charge. Actually,
detailed experimental studies have shown that the system distorts in the excited
state, and loses its threefold symmetry, with localization of the excited elec-
tron on one particular bpy ligand. The final state is thus better written as
[RuIII(bpy)2(bpy–)]2+∗, where the asterisk denotes an electronically excited
state. This way of writing stresses the important characteristics of the excited
state: it is a species in which charge separation has occurred—one hole on
the ruthenium, one electron on one ligand—which heralds the simultaneous
occurrence of an oxidizing character (through RuIII) and a reducing character
(through bpy–). This is shown schematically in Fig. 4.6c–f.
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Redox potentials involving the ground and the excited states of [Ru(bpy)3]2+. (a) different species and redox couples; (b) scale of redox potentials.

The excited state is easily monitored by its characteristic luminescence at
600 nm. The corresponding energy, 2.1 eV, represents the useful energy content
of the excited state. Another important characteristic is the lifetime, found to
be 600 ns, in well-degassed solutions. In non-degassed solutions the presence
of dioxygen partially quenches the luminescence and reduces the lifetime. This
600-ns lifetime is long enough to permit specific reactions of the excited state,
which are quite different from the reactions of the ground state. Thus an excited
state can be considered as an isomer of the ground state, with its own geometry,
and more important, its own reactivity.

The reactivity of the excited state is followed by the disappearance (quench-
ing) of luminescence when a suitable reagent is added. With [Ru(bpy)3]2+∗ this
occurs when adding oxidants ([Fe(CN)6]3–, Fe3+

aq, methylviologen) as well as
reductants ([Fe(CN)6]4–, ferrocene, Eu2+

aq), because of the ubiquitous nature
of the excited state (reducing and oxidizing). It is thus possible to define redox
potentials involving the excited state, as shown in Fig. 4.8.

We note that for ground-state species ([Ru(bpy)3]3+/2+/1+ sequence, lower
part of Fig. 4.8a) the redox potentials lie in the ‘normal’ order; that is, the
most oxidized species correspond to the highest potential. Thus [Ru(bpy)3]2+

is stable with respect to disproportionation into [Ru(bpy)3]3+ and [Ru(bpy)3]+.
But when the excited state [Ru(bpy)3]2+∗ is involved the potentials are
‘reversed’, showing the high reactivity compared to [Ru(bpy)3]2+; it becomes
both (i) more reducing, due to the a2 π(L)∗ electron, and (ii) more oxidiz-
ing, due to the d hole (Fig. 4.6d). At pH = 8 it can therefore oxidize water
(E = –0.76V) and reduce CO2 (E = –0.67V). Such properties will be used in
variants of [Ru(bpy)3]2+, described in the next section.

4.3.2 Molecular photodiodes

A compound in which photoinduced charge separation occurs can be con-
sidered a molecular photodiode. A photodiode is a semiconducting device
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based on a p-n junction (a junction made from p and n semiconductors;
see Section 3.3.3.2), and such that upon irradiation at a suitable wavelength
the junction generates electron–hole pairs which are then dissociated by the
internal electrical field. With molecular systems, as well as with semiconduct-
ing devices, the game is to achieve a large spatial separation between electrons
and holes, in order to avoid recombination, and to use them independently.
Two such systems are presented in Fig. 4.9a,b and different molecular donors
and acceptors in Fig. 4.9c.

Starting from the [Ru(bpy)3]2+ structure, an obvious development is to graft
acceptor and donor groups which could react within the molecule with the
bpy– and the RuIII moieties respectively [4.4]. Thus the triad [PTZ–RuII–
MV2+] has been prepared (Fig. 4.9a). PTZ is phenothiazine (donor) and MV2+

is methylviologen (acceptor), grafted on different bpy ligands. Excitation of
the RuII(bpy)3 chromophore triggers a series of intramolecular electron trans-
fers that eventually produce a charge-separated state [PTZ+•–RuII–MV+•]
(+• denotes a cation radical). This species is still 1.14 eV above the ground
state and has a lifetime of 160 ns. Note that the back electron transfer occurs
in the inverted region (Section 3.2.1.2, Fig. 3.15), which is certainly a factor
slowing down the reaction.

In the previous example the topology is not completely mastered, because
many isomers are possible, and even when a separation is performed one has
to cope with the existence of many conformers (Fig. 4.9a). A better design
starts from the related [Ru(tpy)2]2+ moiety, where tpy = 2,2′:6′2′′-terpyridine,
because it is possible to functionalize the terpyridine units in the 4′ position
[4.5], so that the donor and acceptor groups lie on opposite directions at 180◦
from each other, with a rigid geometry (Fig. 4.9b, with M = Ru).
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Examples of molecular photodiodes based on polypyridine metal complexes. a) triad based on [Ru(bpy)3]2 (with PTZ on the left and MV2+ on the
right); b) triads based on a [M(tpy)2]3+ complex with R1 and R2 substituents on two perpendicular terpyridine ligands, in 4′ positions; (c) Ligands,
donors and acceptors for the synthesis of photoactive triads: (1) 2, 2′-bipyridine, bpy; (2) terpyridine, tpy; (3) Methylviologen dication, MV2+;
(4) methyl-phenothiazine, Me–PTZ; (5) di(p-anisyl)amine, DPAA; (6) metalloporphyrin, MPp, M = zinc, ZnPp, M=gold, AuPp.



Electron transfer in the excited state 337

The unsubstituted [Ru(tpy)2]2+ moiety is not luminescent at room temperat-
ure because the lifetime of the possible triplet emitting state (the energy after
relaxation is about 2 eV) is too short (250 ps only). This derives from the
fact that the d–d excited states are only slightly above the triplet metal-to-
ligand (3MLCT) state, and thus provide an efficient pathway for radiationless
deactivation, once thermally populated. Thus the situation appears at first sight
worse than in the case of the [Ru(bpy)3]2+ chromophore. Nevertheless, interest-
ing triads [R1–Ru–R2] have been prepared; for instance, [DPAA–Ru–MV2+].
They are studied at low temperature to limit the effect of the radiationless
deactivation. After excitation of the [Ru(tpy)2]2+ unit a series of electron trans-
fer reactions yields the [DPAA+•–Ru–MV+•] charge-separated state, with an
energy of 1.15 eV above the ground state and a lifetime of 27 ns. More spectac-
ular results are obtained starting from the [Ir(tpy)2]3+ chromophore (Fig. 4.9b,
with M = Ir) [4.5b]. Ir(III), d6, is isoelectronic with Ru(II). Iridium has two
advantages with respect to ruthenium: the ligand field states are much higher
in energy, and so is the 3MLCT state. Thus they are much less prone to compete
with the formation of the interesting charge-separated state. Starting from this
structure, the grafting in 4′ positions of R1 = a zinc porphyrin, ZnPp, and R2

= a gold porphyrin, AuPp (Fig. 4.9c), acting respectively as electron donor
and electron acceptor, provides a triad molecule with an edge-to-edge dis-
tance of 20 Å between the two porphyrin rings. After excitation of the Ir(tpy)2

chromophore, electron transfers occur to give a fully charge-separated species
denoted formally ZnPp+–Ir–AuPp–with a unity quantum yield. The energy of
this charge-separated state is 1.35 eV, and its lifetime is 450 ns.

Another beautiful example is provided by carotene–porphyrin–quinone tri-
ads (C–P–Q), where the porphyrin P (Fig. 4.10a) is the photosensitizer, the
carotene C (Fig. 4.10c) the electron donor, and the quinone Q (Fig. 4.10b)
the electron acceptor [4.6]. The mechanism is shown in Fig. 4.10d. As for
ruthenium complexes, the porphyrin is a closed-shell molecule (see box 1 in
Fig 4.10d) which, once excited, acts as an oxidant and a reductant (box 2).
After a series of electron transfers one finally obtains a C+•–P–Q–• charge-
separated state (box 4), where the electron and the ‘hole’ (positive charge) are
separated by more than 20 Å. When the molecule is connected to two wires,
the diode function is achieved (box 5). With such a distance it is possible to
build a prototype of a device performing the actual use of the photochemical
energy, as follows.

For this purpose, in a demonstrative experiment, triad molecules of the
C–P–Q type were embedded in the wall of a vesicle; that is, the lipid bilayer of
a liposome. The triads have a preferential orientation and span the membrane,
with the carotene part inside the vesicle. After excitation the C+•–P–Q–• state
with charge separation can undergo electron transfer with a soluble quinone
which can fix a proton and transport it from the outside to the inside of the
liposome. The final result is the building of a proton motive force—the same
process that occurs in natural photosynthesis. Thus in fine these ‘photodiodes’
do not provide electrical energy as their semiconductor analogues, but chem-
ical energy. But the primary process after excitation is a genuine electronic
process.
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triad (CPQ); (d) schematic mechanism
of electron–hole separation: (1) photo-
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4.3.3 Light-emitting diodes (LED)

Light-emitting diodes function in the reverse way with respect to photodiodes:
electrons and holes are injected from opposite ends of the device, and their
recombination generates light. Once again the [Ru(bpy)3]2+ component can be
used as a model of a molecular light-emitting diode. This is the domain of
chemiluminescence or electrochemiluminescence.

Let us consider what happens when the oxidized and the reduced form of
[Ru(bpy)3]2+ are mixed. Clearly, looking at the potentials displayed in the
lower part of Fig. 4.8a, and at Fig. 4.11, the reaction:

[
Ru(bpy)3

]3+ + [
Ru(bpy)3

]+ → 2
[
Ru(bpy)3

]2+
(4.9a)

is thermodynamically allowed (�Gº = –2.6 eV), and will be the final overall
transformation (Fig. 4.11a,c). But another reaction is possible, though it has a
smaller driving energy (�Gº = –0.5 eV) (Fig. 4.11b,c):

[
Ru(bpy)3

]3+ + [
Ru(bpy)3

]+ → [
Ru(bpy)3

]2+ + [
Ru(bpy)3

]2+∗
(4.9b)
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Fig. 4.11
Reaction of [Ru(bpy)3]+ and [Ru(bpy)3]3+: (a,b) molecular orbital reactions schemes and (c) thermodynamic interpretations of the chemilumin-
escence.

The molecular interpretation of eqn. (4.9b) is very simple: an electron transfer
occurs from the singly occupied molecular orbital (SOMO) of [Ru(bpy)3]+

(this is essentially a π∗ bpy orbital) towards a vacant π∗(bpy) orbital of
[Ru(bpy)3]3+, thus generating the excited state [Ru(bpy)3]2+∗ (see Fig. 4.11b).
The a2 π∗(bpy) orbital in [Ru(bpy)3]3+ is at a lower energy than in [Ru(bpy)3]+,
because of the stabilization by the larger positive charge on ruthenium, and this
difference provides the driving energy for the reaction. Interestingly, reaction
(4.9b) occurs with a 100% efficiency at the expense of reaction (4.9a); that
is, there is a strong kinetic preference, certainly because reaction (4.9a) has a
large negative �G◦ value, and is slowed down by the Marcus inverted region
(see Section 3.2.1.2).

From a practical point of view, reaction (4.9b) can be achieved by mixing
the oxidized and reduced forms of [Ru(bpy)3]2+, these forms being prepared
independently by passing the complex on a PbO2 column for oxidation, or by
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reacting it with borohydride for reduction. Other possibilities involve the oxid-
ation of [Ru(bpy)3]+ by the very reactive SO4

–• species, itself generated from
S2O8

2–, and several variations adapted to classroom demonstrations have been
described. These experiments constitute examples of chemiluminescence—
luminescence originating from a chemical reaction. Another possibility is to
generate these forms electrochemically by cycling the potential of a platinum
electrode at a frequency of arouns 0.2 Hz between the reduction and the oxida-
tion potentials of [Ru(bpy)3]2+ (from 2.4 to 1.8 V), thus providing an example
of electrochemiluminescence—luminescence produced by an electrochemical
reaction. The beautiful red luminescence appears on the electrodes. It is weak,
but can be seen clearly in a darkened room.

The concept of the light-emitting diode has now become popular because
of commercial applications based on the organic light-emitting diode (OLED).
The subject began in the 1960s, and then major progress was made by teams at
Kodak using small organic molecules [4.7a], and later by Friend’s Cambridge
Group, using polymers [4.7b]. Considerable improvements have been achieved
recently from the point of view of colour gamut, luminance efficiency, and
device reliability. The use of OLED for flat panel displays is now a commer-
cial reality, including television screens (Sony, Samsung), and are said to offer
significant advantages over the known solutions such as liquid crystal displays
(LCD) and plasma panels.

OLED devices function according to the same general principle of electron–
hole recombination as the luminescent systems described previously. For
practical reasons, however, their structure is more complex. An OLED is an
electrically driven light-emitting device designed from organic molecules or
polymers. OLEDs are based on extremely thin layers (10–100 nm) of different
organic materials, so they can be considered as supramolecular systems. The
detailed technological description of these arrangements is clearly outside the
scope of this book, and the reader is invited to consult texts such as [4.7c].
Briefly, a typical OLED device is made in most cases of three layers: (i) an
electron transport layer (ETL), bringing electrons from the cathode; (ii) a hole
transport layer (HTL), bringing holes from the anode; and (iii) between, an
emitting material layer (EML) in which recombination of holes and electrons
takes place with fluorescence emission (singlet–singlet) or phosphorescence
emission (triplet–singlet). The layers are sandwiched between two electrodes
which allow injection of charges and application of a small potential differ-
ence (2–10 volts) to facilitate transport and enhance light emission intensity.
The general design of an OLED is shown in Fig. 4.12a,b. The transparent
anode lies on a transparent substrate (rigid glass or flexible plastic), ensur-
ing mechanical strength and transparency. The scheme of the energy levels of
the different layers is shown in Fig. 4.12c, whereas typical energy values are
shown in Fig. 4.12d. This figure uses the concept of ‘work function’, defined
in Section 5.2.2.1.

Some of the main characteristics of an OLED are the colour emit-
ted/wavelength (nm), the luminance (the luminous flux/lumen (lm); that is, the
luminous intensity/candela (cd) in a given solid angle/steradian (sr), cd.sr), the
quantum efficiency Z—the ratio of the number of emitted photons per num-
ber of charge carriers—the luminous efficiency—the ratio of the luminous
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Fig. 4.12
Organic light-emitting diode (OLED): a) sandwich structure displaying RGB (red, green, blue) emission; � are electrons, h+ are holes; b) emitting
face; c) schematic energetic scheme emphasizing the electrodes work functions φ (darkened surfaces), the changes in energy of the LUMO and
HOMO of the molecular material of the hole transport (HTL) of the emitting material (EML) and of the electron transport (ETL) layers; arrows
show the direction of the charges’ displacement; the double arrow indicates the recombination of holes and electrons with light emission from the
emitting layer EML; d) typical values of metallic electrodes work function φ and LUMO and LUMO energies of molecular components (ITO:
indium tin oxide; for other abbreviations, see Fig. 4.13); arrows emphasize the energy barriers to overcome for holes’ and electrons’ injection
from electrodes to the transport layers.

flux emitted per consumed electric power—and the stability in time. These
characteristics (some fundamental, some technical) depend strongly on (i) the
properties of the individual components that can be worked out separately and
(ii) the overall structure of the cell. Considerable work is underway to optimize
these characteristics.

The flexibility of molecular chemistry was essential for adjusting the mater-
ials properties and ensuring rapid progress in the field. Some molecular
materials with best performances are displayed in Fig. 4.13.

The electron transport material is generally tris(8-hydroxyquinolinato)
aluminum (Alq3) (Fig. 4.13a). It is also a green emitter. Hole trans-
port materials are frequently based on polyaromatic amines, such as NPB
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Organic molecules used in OLEDs:
a) fluorescence green emitter (and
electron transport material), tris-(8-
hydroxyquinolato)aluminum complex,
Alq3; b) phosphorescence emitter,
tris(2-phenylpyridine)-iridium, Ir(ppy)3;
in both cases substituents R1, R2, R3

are used to finely tune the properties
of the complexes; c) blue emitter:
distyrylarylene derivatives (DSA);
d) hole transport materials and blue
emitter: N,N′-bis(l-naphthyl)-N,N′-
diphenyl-1,1′-biphenyl-4,4′-diamine
(NPB); e) Red emitter: derivative of 1,1′-
dicyano-bis-styrylnaphthalene (BSN).

(Fig. 4.13d) or the parent N,N′-diphenyl-N,N′-bis(3-methylphenyl)(1,1′-
biphenyl)-4,4′-diamine (TPD). Finally, for the emitting material itself one
uses luminescent organic dyes such as red-emitting BSN (Sony) (Fig. 4.13e),
green-emitting coumarins 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-
tetrahydro-1H,5H,11H-[l]benzo-pyrano[6,7,8-ij]quinolizin-11-one, known as
C-545T, and blue-emitting NPB or DSA (Idemitsu Kosan Co) (Fig. 4.13c,d),
with a proper choice to generate the basic red, green, and blue (RGB) colours,
and white when combined. There is a large variety of possible dyes. Dopants
are also used to tune the properties (adjust emission wavelengths, increase
quantum and luminous efficiencies). More recently, it was found that emission
from a triplet state—phosphorescence—is a better solution than fluores-
cence, because it gives a higher yield of conversion. Heavy transition-metal
complexes present important spin–orbit coupling and easier singlet–triplet
crossing, and allow the formation of triplet excitons. Many systems based on
iridium compounds have been described (Fig. 13b).

4.3.4 Photovoltaic devices

The process of photoinduced charge separation in molecular systems, treated in
Section 4.3.2, has led to another important practical development in the form of



Electron transfer in the excited state 343

photovoltaic cells using sensitizing dyes. The starting point is the structure of
transition-metal complexes of the [Ru(bpy)3]2+ family, but the device is actu-
ally supramolecular, as it associates different components in interaction in the
form of layers or liquids. The major contribution and development began dur-
ing the 1980s with the impetus of Michael Grätzel at the Ecole Polytechnique
Fédérale de Lausanne [4.8a].

The [Ru(bpy)3]2+ structure itself is not well adapted, because charge separa-
tion is not directional, the three bpy ligands being chemically equivalent. In the
related neutral complex [Ru(bpy)2(NCS)2], (NCS is the N-bonded thiocyanate)
on the other hand, some directionality is found. The LUMO is localized on the
bpy ligands, while the HOMO has comparable contributions on the ruthenium
atom and the thiocyanate ligands (Fig. 4.14).

(a)

(b)

(c)

Fig. 4.14
Structure of [Ru(bpy)2(NCS)2] (a), and
schemes of the HOMO (b) and of the
LUMO (c).

If the excited complex is near an electrode one may think of collecting
electrons (or holes). But near a metallic electrode a rapid quenching (deac-
tivation) of an excited state occurs. This is not the case near a semiconductor
electrode.

The major breakthrough from Grätzel’s team was the idea of adsorbing
this complex on a semiconductor in the form of nanocrystalline TiO2—
‘nanocrystalline’ meaning that TiO2 is present in the form of particles of
10–30 nm diameter. The fixation is easily done by using functionalized bpy
ligands; for instance 4,4′-dicarboxy-2,2′-bipyridine (dcbpy), which permit
anchoring of the complex on the surface of TiO2 (see Fig. 4.15a). The use
of nanocrystalline TiO2 ensures a high effective surface, and thus an intim-
ate interaction between the metallic complex (qualified in the following as
the ‘dye’) and the semiconductor. Thus when [Ru(dcbpy)2(NCS)2] is excited,
the excited electron can jump in the conduction band of the semiconductor,
because its energy is high enough, and also because of the spatial proxim-
ity between the modified bpy ligand and the surface. To use energy it is then
necessary to collect the holes. Noting that the NCS groups point in the opposite
direction, the idea was to soak the system by an electrolyte containing a redu-
cing substance such as the iodide I–, to play the role of a redox shuttle through
the I3

–/I– couple. In the final device (Fig. 4.15b) the TiO2 semiconductor is
contacted by a transparent electrode (usually tin oxide), and on the solution
side a counterelectrode closes the circuit. The reaction scheme corresponding
to the exchange of one electron is shown in Fig. 4.15c.

Note that the energy scale in Fig. 4.15b is a hybrid representation of the
one-electron energies of the valence and conduction band of TiO2 and of the
redox standard potentials (plotted upside down) of the redox semi-equation
(that corresponds to free enthalpy energies, as �Gº = –nFEº).

The first realization of this principle was reported in 1988, and over
the years, many improvements have been achieved on the practical realiz-
ation of the cell. The most significant parameter is the overall conversion
efficiency of the dye-sensitized cell, that is, the solar-to-electric energy
conversion efficiency, ηglobal, defined as the ratio of the electrical power
obtained (output) divided by the intensity of the incident light (input). Its
definition is:

ηglobal = Pmax/Is (4.10a)
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where Pmax is the maximal electrical power output, and Is is the intensity of the
incident light. Pmax is empirically obtained from the expression:

Pmax = IscVoc ff (4.10b)

where Isc is the photocurrent density measured at short circuit, Voc is the open-
circuit photovoltage, and ff is the fill factor of the cell. This last term is lower
than 1 to take into account that the maximum electrical power is obtained
neither under open-circuit nor short-circuit conditions (see Fig. 4.16).
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Fig. 4.16
Density current vs voltage curves for dif-
ferent light intensities showing the short-
circuit current density JSC, the open-
circuit voltage VOC, and the working
point ensuring the maximum power Pmax,
when the J.V product (grey area) is max-
imum. As can be seen, Pmax is lower than
the JSC.VOC product, in agreement with
eqn. (4.10b).
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Typical values are JSC = 16–22 mA/cm2, VOC = 0.7–0.86 V, ff = 0.65–0.8,
Is = 1,000 W/cm2 (corresponding to full sunlight) giving ηglobal about 11%,
barely below the 15% efficiency of commercial silicon solar cells. Note that
for these strongly coloured systems, all the incident light is absorbed, and in
addition the quantum yield is very good: each absorbed photon generates about
0.8 electron.

A solid-state version of the dye-sensitized photovoltaic cell—avoiding the
liquid electrolyte—has been built. It uses the same TiO2–ruthenium dye
association, but the electrolyte is replaced by a hole transport material (see
Section 4.3.3). The efficiency is only 3–4% at the moment, but progresses in
this area can be rapid.

Photovoltaic cells based on ruthenium dyes seem to have a bright future.
The main component, TiO2, is cheap and non-toxic (it is the main component
of white paints, and even toothpaste). Ruthenium is, of course, much more
expensive, but the necessary quantity for a device is very limited. Thus it
should be possible to build photovoltaic cells with a very competitive price
compared to silicon cells. Durability tests have shown that the dye can sustain
108 excitation/oxidation/reduction cycles, corresponding to solar years of solar
exposition. The last problems to solve are degradation by heat and ultraviolet
radiation, and the sealing of the liquid electrolyte cell; but prototypes have been
built by Solaronix (Switzerland), Konarka (USA), Aisin Seiki (Japan), and
RWE (Germany) [4.9]. Demonstration materials are commercialized—even
tiles for buildings equipment.

4.3.5 Harnessing photochemical energy: towards water
photolysis

Harnessing chemical energy from photophysics is an extremely appealing
perspective, in the general spirit of mimicking photosynthesis. Among the dif-
ferent chemical transformations that can be envisioned, the photolysis of water
into hydrogen and oxygen is considered as the Holy Grail. The unique advant-
age of hydrogen is, of course, its ability to be burned, either directly or in
a fuel cell, without producing pollutants or greenhouse gases. The hydrogen
produced from sunlight could be used directly as a fuel for transportation pur-
poses, and more generally to feed the ‘hydrogen economy’. It could be used,
for instance, in the catalytic reduction of carbon dioxide to produce fuels such
as methane or methanol.

Photochemical water photolysis, however, represents an extremely difficult
challenge, because it is a multi-electron process, implying no less than four
electrons for one molecule of dioxygen and a large molecular reorganization
from reactants to products, so that no satisfactory solution has been found yet.
As every first-year student knows, the dissociation reaction:

2 H2O → 2 H2 + O2 (4.11)

can be written in solution as the sum of the two formal half-reactions:

4H+ + 4e− � 2 H2 (4.12a)

2 H2O � O2 + 4 H+ + 4 e− (4.12b)
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and thus in principle a photochemical charge-separation process could be con-
venient, electrons feeding reaction (4.12a), and holes reaction (4.12b). The
total free enthalpy necessary to realize the strongly endoergic reaction (4.11)
is computed easily from the standard potential of the O2/H2O system (+1.23 V
with respect to the standard hydrogen electrode):

�G◦ = 4 × 1.23 = 4.92 eV i.e. +474.8 kJ mol−1 (4.13)

This is a quite large value, and efforts have been devoted to the independent
realization of the two half-reactions (4.12a) and (4.12b).

Reaction (4.12a) is the easiest part of the problem (or the least difficult!),
because once electrons are available one is brought back to the problem of cata-
lyzing the electrochemical evolution of dihydrogen, for which macroscopic
solutions exist; for instance, the use of platinum catalysts. But we want to use
an integrated molecular system which would collect photochemical energy and
perform hydrogen evolution.

Noting that the evolution of one molecule of dihydrogen necessitates two
electrons, and taking into account the known ability of precious metals
to catalyse hydrogen evolution, an interesting solution is based on the
use of dinuclear complexes such as Rh2(dfpma)3 [4.10], where dfpma =
bis(difluorophosphino)methylamine, MeN(PF2)2. A photocatalytic cycle has
indeed been described which realizes H2 generation from HX (X = Cl or Br),
according to the overall reaction:

2 HX + 2 trap + 2 hν → H2 + 2 trap-X (4.14)

where ‘trap’ designates a molecule able to trap the halide, for instance
THF, dihydroanthracene, or 2,3-dimethylbutadiene. The catalyst is a dinuclear
Rh(0) complex presenting a metal–metal bond (Fig. 4.17).

In a first step, HX adds to the Rh0–Rh0 core to produce the RhII–RhII

dihydride dihalide, which photoeliminates H2. This gives a reactive inter-
mediate formulated RhI–RhI, which is unstable with respect to internal
disproportionation into Rh0–RhII(X)2. The key point is here the ability of the
halogen to move from one rhodium atom to the other. A new photoexcita-
tion of Rh0–RhII(X)2 leads to halogen elimination (captured by the trap) and
regeneration of the Rh0–Rh0 complex, thus completing the cycle. The overall
efficiency is only 1%. It is limited by the halogen elimination step from the
binuclear core.

The second half-reaction (4.12b) is more difficult to achieve, because it
involves two water molecules and the concerted removal of four electrons and
four protons. Nature solved this problem by using a unique metalloenzyme,
called the photosystem II water-oxidizing complex, which is coupled to the
photosynthetic centre.

At the present time, no unique molecular system performing both reactions
(4.12a) and (4.12b) and their coupling with a photochemical step has been
found. To date, the only practical achievement for artificial photochemical
water photolysis is again a supramolecular system based on a combination
of dye, semiconductor, and electrodes, as with the dye-sensitized solar cell
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described in Section 4.3.4. Actually it even uses two cells connected in
series constituting a tandem system. The use of a macroscopic setup made
of two cells connected by metallic conductors is a method of accumulating
the necessary number of electrons. Note that natural photosynthesis also uses
two photochemical systems mounted in tandem, called photosystem I and
photosystem II [4.11].

The general principle of the artificial tandem cell is presented in Fig. 4.18:
(a) energy scheme. and (b) schematic setup [4.12]. It is as follows. The
two cells are transparent, allowing light to reach the photosensitive lay-
ers, Ru-dye sensitized TiO2 (cell on the right of 4.18b) and WO3 (cell on
the left of (4.18b)). The ruthenium-sensitized cell of the type described in
Section 4.3.4 provides electrons in the conduction band of TiO2. The elec-
trons’ energy is high enough to allow the reduction of protons to H2 (reaction
(4.12a)). But the generated holes do not have enough energy to oxidize water.
In a second cell a thin transparent film of nanocrystalline WO3 (or Fe2O3)
absorbs photons and generates electrons and holes (note that the electrons are
tungsten(V) centres—negative polarons as encountered in Section 3.3.3.2 and
Fig. 3.79). The valence-band holes can oxidize water (reaction (4.12b)), while



348 The excited electron: photophysical properties

Dye  
TiO2

Electrolyte

Conducting 
Glass

Pt 
wire

Gas Outlet

I–

I3–

1/2 H2

1/2 H2O

R
G
B

1/4 O2

Aqueous
Electrolyte

Window  WO3 
Anode

e–

Light

e–

e–

e–

(b)

hν'

hν

–0.5

0.0

+1.0

+0.5

E0/V
–1.0

+1.5

+2.0

+3.0

+2.5

E0 H2O/H2

E0 H2O/O2

2.6eV hν

1.6eV hν'

1/2 H2

1/4 O2

1/2 H2O

WO3 Dye-TiO2

ECB

EVB

1/2 H2O

(a)

h+

h+

EVB

ECB

Fig. 4.18
The tandem cell: (a) Energy levels for the two cells, for the excitation of two electrons by absorption of two photons (hν and hν’). � and e–

indicate electrons, and h+ represents holes. The scale corresponds to standard electrode potentials at pH = 0 (indeed, �Gº = –nFEº), and one-
electron energies for the bands. The valence band is shown with a black rectangle, and its higher energy level is EVB. The conduction band
is shown with an unfilled rectangle, and its lower energy level is ECB. The oblique black arrow shows the macroscopic electronic connection
between the two cells; (b) general setup of the cell; at right, the Ru-sensitized TiO2 cell, already presented; at left, the second cell equipped with
a nanocrystalline photosensitive WO3 thin layer and a platinum wire. The two cells are connected by macroscopic wires, allowing the circulation
of electrons. High-energy light (blue, B) is absorbed by WO3. Other energies, green (G) and red (R), reach the first cell.

the electrons are fed in the first photosystem by the macroscopic connection
(Fig. 4.18). The total balance shows that for the production of one dioxygen
molecule, eight photons are used—four in each cell.

The tandem photolysis cell indeed provides hydrogen and oxygen under vis-
ible light illumination. The conversion efficiency is, however still modest: only
4.5%. Work is in progress to improve the device [4.8a].

4.3.6 Ultrafast electron transfer

Until now, we have used the same theoretical concepts for electron transfer as
in Chapter 3. In particular, the rate of electron transfer can be computed, if
necessary, from the activation barrier, with a pre-exponential term taking into
account non-adiabatic effects. But a specificity of photoinduced electron trans-
fer is to provide access to very reactive species formed immediately after the
photophysical excitation. Such species can undergo ultrafast electron transfer
reactions, which present original characteristics.

The underlying assumption in most expressions for the electron transfer rate
encountered so far is that the excited initial state is at vibrational equilibrium.
This is the basic reason of the single-exponential decay of the initial state,
which is observed in the vast majority of cases, and allows the definition of
a first-order rate constant. But with the very short pulses of some photophys-
ical experiments (a few femtoseconds, for instance), the initial state (which is
actually the first excited state) can be prepared out of vibrational equilibrium.
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At time zero the system is then in a superposition of vibrational states, corres-
ponding to a wave packet which is not a stationary solution of the vibrational
Schrödinger equation. This wave packet has its own dynamics, and moves on
the potential energy surface of the excited state. This motion can lead to a mod-
ulation of the reaction rate, and thus to discrepancies with respect to the usual
one-exponential law of first-order reactions.

One of the systems studied most extensively is TCNE-pyrene [4.13], which
belongs to the category of donor–acceptor (D–A) complexes in solution. The
interaction between the donor and the acceptor is strong enough for the sys-
tem to behave as a unique supramolecule, and thus only first-order kinetic
processes have to be considered. Excitation is performed with a laser pulse
of only 35 fs in a charge transfer band at 810 nm, corresponding to the
excitation:

Pyrene−TCNE → Pyrene+•−TCNE−• (4.15a)

That is:

D−A → D+•−A−• (4.15b)

This charge transfer band is the equivalent of the intervalence transition in
mixed valence systems (see Section 3.2.2.2). After excitation the system is
analysed with a weaker probe beam at the same wavelength, to monitor the
charge recombination bringing back the system to the ground state. As a first
approximation, the D+•–A–• excited state has a lifetime in the ps range (thus
a rate constant for deactivation of the order of 1012 s–1!), but the decay is
more complicated and cannot be described by a single exponential. A detailed
quantitative analysis shows the necessity of using a four-level model, the
ground and the excited state presenting at least two vibrational levels each (see
Fig. 4.19).

The first excited state ES, D+•–A–• or |b>, is obtained through a pump pro-
cess at 810 nm from the vibrational and electronic ground state GS, D–A, or
|a> with a charge transfer (CT). The excited ES relaxes to a (vibrationally)
relaxed excited state, RES, |c>. The back electron transfer (ET) leads to a
(vibrationally) excited (hot) ground state, HGS, |d> that relaxes in turn to the
ground state.
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Fig. 4.19
Pyrene–TCNE complex: (a) structure in
the solid state, pyrene, donor D (grey)
and tetracyanoquinodimethane, acceptor
A (black); (b) four-level model used to
analyse the back electron transfer D+•–
A–•→ D–A. (Adapted from [4.13].)
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When the data are quantitatively analysed with the four-level scheme of
Fig. 4.19, it is found that small oscillations are superimposed on the gen-
eral decay. Their period is about 200 fs, corresponding to a wavenumber of
170 cm–1—a value which has been assigned to a vibrational mode of the
complex.

A simple simulation model reproduces this behaviour. It is based on the
potential energy curves of Fig. 4.20.

It is assumed that at time zero the initial excited position distribution is given
by the bell-shaped curve 2 in Fig. 4.20, arising from the vertical excitation from
the ground state, curve 1, at the origin of the vibrational coordinate. (Note that
curve 2 is not an eigenfunction of the harmonic oscillator!) Then the ‘wave
packet’ oscillates back and forth in the excited state well (D•+–A•–), with a
frequency of the order of the classical frequency of the harmonic oscillator.
At any time, the system has a probability to jump on the D–A energy curve, by
borrowing some energy from other vibrational modes. The jump probability
per unit time is chosen as:

P(�E) = P0 exp (−�E/C) for �E > 0 (4.16a)

P(�E) = 0 for �E < 0 (4.16b)

where �E is the difference EDA – ED+•–A–• and C is a constant. Thus with this
model the back electron transfer can occur only in the left part of the diagram,
when the energy of D–A is above the energy of D+•–A–•—a situation which
is achieved periodically in time. When the D–A energy is below the energy
of D+•–A–• the rate is assumed to be zero, because at this time-scale there is
no simple way to remove the excess energy. This simple model reproduces the
general behaviour; that is, the exponential rise of the D–A population, with
superimposed oscillations. This constitutes a well-characterized example of a
vibrationally coherent electron transfer.

2

DA

1

wave packet
oscillations

E

Vibrational
Coordinate

0

D+.
A–.

Fig. 4.20
Model used in the simulation, with the
motion of the wavepacket on the poten-
tial energy surface of the initial excited
state. 1 designates the vibrational eigen-
function in the ground state, associated to
the potential energy curve of DA; 2 is the
non-stationary wave packet belonging to
the D+•–A–• manifold, created immedi-
ately after excitation. The conversion of
D+•–A–• into D A occurs on the left hand
side of the diagram where the diabatic
potential energy curves cross. (Adapted
from [4.13b].)
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Ultrafast electron transfer has also been studied in mixed valence systems;
for instance, [(NH3)5RuIII–NC–RuII(CN)5]–. This is a cyanide-bridged class II
system, in which the sites are chemically non-equivalent [4.14]. The distribu-
tion of oxidation states is as indicated, because ruthenium(II) is more stabilized
by the strongly acceptor cyanide ligands than by the ammonia ligands, and, of
course, there is a higher energy state which can be populated by excitation on
the intervalence transition:[

(NH3)5 RuIII−NC−RuII(CN)5
]− → [

(NH3)5 RuII−NC−RuIII(CN)5
]−
(4.17)

The excitation can be performed with a 20-fs pulse at 800 nm, and the sub-
sequent behaviour followed with a probe at various wavelengths. The return
to the ground state by back electron transfer occurs according to a complex
kinetic law involving several exponentials, the main one corresponding to a
lifetime of about 85 fs. But as previously, one finds superimposed oscillations
with frequencies corresponding to vibration modes of the molecular system,
these vibrations being observed independently by Raman resonance spectro-
scopy. Even less clearly characterized than in the pyrene–TCNE complex,
vibrationally coherent electron transfer also appears to be present.

4.4 Energy transfer
Here we consider the process of intramolecular energy transfer which occurs
in a bichromophoric molecule, when one of the chromophores (the donor
D) is selectively excited (to D∗) and transfers part of its energy to the other
chromophore (acceptor A).

D−A + selective excitation → D∗−A → D−A∗ (4.18)

Note that such a possibility implies that the chromophores are weakly coupled,
otherwise we would have to consider the energy levels of a single supra-
molecule, and any excitation would necessarily involve the two chromophores.
The energy transfer processes are very important in several scientific domains:
(i) they occur naturally in the photophysical process of photosynthesis; (ii)
energy transfer allows the efficient capture of solar energy, by the so-called
antenna effect, where a large number of chromophores can be excited, and then
transfer their energy to the active site where the true photophysical reaction (a
charge separation) occurs; (iii) energy transfer and the resultant quenching of
the donor’s fluorescence and enhancing of the acceptor’s fluorescence is also
widely used in biology to determine distances between D and A—proteins’
conformation changes.

The exact analysis of the energy transfer is very complex, and more details
can be found in several general references [4.15]. Different mechanisms have
been suggested at different levels of sophistication. We present as simply
as possible two of them (Förster and Dexter) before illustrating them with
examples.
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4.4.1 Theoretical treatment of energy transfer

We define the molecule as made of two parts: an energy donor D and an energy
acceptor A. These denominations correspond to their behaviour with respect
to energy transfer, not (necessarily) to the usual definition of electron donor or
acceptor groups, used previously. In zero-order approximation the initial and
final states in reaction (4.18) can be written as:

|�i> = |�D∗�A> (4.19a)

|�f> = |�D�A∗> (4.19b)

meaning that in the initial state the D site is excited (hence the ∗) and A is
in its ground state, while the reverse is true for the final state. In expressions
(4.19a,b), � i and �f are polyelectronic wavefunctions including the spin func-
tions � and the vibrational functions �v (see the case of electron transfer
reactions, Section 3.2.1.3). Thus we can write:

|�D> = |�el
D�v

Dj�D> (4.20a)

|�D∗> = |�el
D∗�v

D∗j′�D∗> (4.20b)

|�A> = |�el
A�v

Ak�A> (4.20c)

|�A∗> = |�el
A∗�v

A∗k′�A∗> (4.20d)

where each total wavefunction is written as the product of a polyelectronic
wavefunction (�el) by a vibrational function (�v

j ), and a spin function (�).
The vibrational function is characterized by an index j for the donor and k for
the acceptor.

We postulate that there is an interaction between the D and A sites because
they belong to the same molecule, and we can define a coupling operator V. Its
expression is complicated because it contains all terms such as the interaction
of an electron of D with nuclei or other electrons of A, and vice versa, and it
will be detailed later. The transition between |� i> and |�f> is a non-radiative
transition, and can be treated by the same formalism as for electron transfer
(see Section 3.2.1.3); that is, the rate is given by using Fermi’s Golden Rule:

k = 2π

�
V2

EnT ρ (4.21)

where VEnT (EnT for ‘energy transfer’) is the electronic coupling matrix ele-
ment, and ρ the density of states. A very simplified scheme of the energy
transfer and its main photophysical consequences are shown in Fig. 4.21.

The rate is thus proportional to the square of the matrix element:

VEnT =<�i|V|�f > (4.22)

which plays the same key role as Vab in electron transfer theories. However,
for historical reasons the development of the theory of energy transfer reactions
was slightly different.

The first quantitative treatment of energy transfer between two chromo-
phores was performed by Förster in 1948. At that time, the typical system
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Fig. 4.21
(a) Energy transfer scheme: at left, excit-
ation of the donor D (singlet S0D) to
its excited state (singlet S1D) (black
arrow, energy hνD), vibrational relaxa-
tion (grey dashed arrow), fluorescence in
absence of the acceptor A (grey arrow,
energy hν′

D); at right, excitation of the
acceptor A (singlet S0A) to its excited
state (singlet S1A) (black arrow, energy
hνA), vibrational relaxation (grey dashed
arrow), fluorescence in absence of donor
D (grey arrow, energy hν′

A); between,
the energy transfer process (EnT) from
D∗ to A (open arrow and horizontal
black line, emphasizing the coupling)
that quenches the donor fluorescence,
hν′

D, and enhances the acceptor fluor-
escence, hν′

A; (b) spectra: fluorescence
spectrum of the donor in absence of
the acceptor (grey), absorption spectrum
of the acceptor in absence of donor D
(black contour), and changes in their
intensity when energy transfer occurs
(open arrows); for the energy transfer to
occur, the two energies hν′

D and hνA

must fit and present some spectral over-
lap between the two spectra (black sur-
face); (c) another important parameter for
observing energy transfer is the distance
R between donor and acceptor through a
spacer Sp (see text). Here the spacer is a
protein in two different conformations.

being investigated was a solid containing sensitizing centres (energy donors)
and light emitters (energy acceptors), in relation to the growing industry of
fluorescent lighting, where energy transfer allowed the conversion of ultravi-
olet light from the mercury discharge source into visible light. The distance
R between donor and acceptor was large with respect to their own dimen-
sions, and the transitions were generally allowed. These considerations had a
profound influence on the way in which the theory was formulated.

Returning now to eqn. (4.22), after substitution using (4.19a,b) and (4.20a–
d), the matrix element can we written as:

<�el
D∗�v

D∗j′�D∗�el
A�v

Ak�A|V|�el
D�v

Dj�D�el
A∗�v

A∗k′�A∗> (4.23)

The V operator acts only on electronic wave functions. Thus expression (4.23)
can then be written as the product of several integrals:

<�el
D∗�el

A |V|�el
D�el

A∗> × <�v
D∗j′�

v
Ak|�v

Dj�
v
A∗k′> × <�D∗�A|�D�A∗>

(4.24)

The square of this quantity determines the rate of energy transfer from a vibra-
tional state of D∗A characterized by vibrational quantum numbers j′ and k to
a vibrational state of DA∗ characterized by j and k′. Finally, it will be neces-
sary to sum the partial rates to take into account the Boltzmann population of
vibrational levels (see the case of electron transfer treated in Section 3.2.1.3).
To simplify the discussion it is useful to recognize that eqn. (4.24) can be
written as:

(Electronic factor) × (Franck − Condon factor) × (spin factor) (4.25)

thus introducing the necessary conditions for energy transfer to occur.
A first condition bears on the spin state. For a very weak interaction between

D and A, usually corresponding to a large distance, the donor and acceptor
retain much of their individuality, and behave almost independently—in
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particular, for their spin functions. Thus the spin factor in (4.24) can be
rewritten as:

< �D∗ |�D >< �A|�A∗ > (4.26)

This term is non-zero (see eqn. (4.7a,b)) only if:

�D∗ = �D and �A = �A∗ (4.27)

This leads to a selection rule with a simple interpretation: things happen as
if there is a local transition on D, which must be spin-allowed, and simultan-
eously, a spin-allowed transition on A. Since many chromophores have a sing-
let ground state (organic molecules or closed-shell coordination complexes)
(Fig. 4.21a), it means that in this approximation of very weakly interacting
systems, singlet–singlet energy transfer is allowed, while singlet–triplet energy
transfer is forbidden.

The second condition is represented by the electronic factor. The V operator
acts only on electronic wavefunctions and describes the Coulomb interaction
between the initial |�D∗ �A> and the final |�D �A∗> states. It is usually
represented as a Taylor expansion of interactions between electrical multipoles,
plus an exchange term:

V = dipole−dipole term + dipole−quadrupole term + · · · · + exchange term
(4.28)

In the Förster treatment it is assumed that the local transitions on both chromo-
phores are strongly allowed, so that the dipole–dipole interaction dominates the
expansion. Another important approximation is that the donor and acceptor are
widely separated, so that the exchange term, due to electronic repulsion, can be
neglected (see Section 2.6). Looking only at the dipole–dipole term, the oper-
ator Vdd can be written, from the classical expression of the interaction energy
between two dipoles:

Vdd = μD μA − 3
(μD.R) (μA.R)
R3 (4.29)

where μD and μA are vectors corresponding to dipole operators centred on D
and A, and R is the vector associated with the dipole–dipole distance R.

The electronic matrix element is then computed from:

< �el
D∗�el

A |Vdd|�el
D�el

A∗ > (4.30)

Since the operator appears as the product of independent local operators μD

and μA, expansion of eqn. (4.30) yields an expression in which appear the
transition dipole moments:

VEnT =
−→
MD

−→
MA − 3

(−→
M D .R

) (−→
M A .R

)
R3 (4.31)

where
−→
MD and

−→
M A are now the transition moments vectors:

−→
M D =< �el

D | μD|�el
D∗ > (4.32a)

and
−→
M A =< �el

A | μA|�el
A∗ > (4.32b)
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Introducing the angles θT between the transition moment vectors, θD and θA

between the transition moment vectors of D and A and the R vector (Fig. 4.22),
the expression can be rewritten:

VEnT =
∥∥∥−→M D

∥∥∥ ∥∥∥−→MA

∥∥∥ (cos θT − 3 cos θD cos θA)

R3 (4.33)

where
∥∥∥−→M D

∥∥∥ and
∥∥∥−→M A

∥∥∥ are the moduli of the transition moments vectors.

There is thus an orientation factor, which will play an important role in the
rate of reaction, and is discussed later.

MD

MA

R

θA

θD

θT

Fig. 4.22
Definition of the angles describing
the orientation of the transition dipole
moments.

We now consider the Franck–Condon term. Actually, in the final rate expres-
sion it is obtained by the summation of the square of terms like <�v

D∗ j′

�v
Ak|�v

Dj �v
A∗ k′>; that is:∑(

<�v
D∗j′�

v
Ak|�v

Dj�
v
A∗k′>

)2
(4.34)

Since the vibrations on sites D and A are independent, eqn. (4.34) can be
written as: ∑(

<�v
D∗j′ |�v

Dj >< �v
Ak|�v

A∗k′ >
)2

(4.35)

It would be extremely difficult to compute theoretically this factor. The ori-
ginality of the Förster treatment was to approximate it by the spectral overlap
integral between the normalized spectra (in nm) of the donor emission and of
the acceptor absorption:

v̄2∫
v̄1

fD∗ (ν̄)fA(ν̄)dν̄ (4.36)

This is the Förster spectral overlap integral.
It satisfies, incidentally the principle that the energy transfer must occur at

constant energy of the whole D–A system. This condition is justified by the
same arguments as for electron transfer (Section 3.2.1.3); that is, the much
faster rate of electronic motions with respect to nuclear motions.

Finally, keeping only the part of the V term given by eqn. (4.29) and with
all the previous assumptions, the rate of energy transfer is found as [4.15c]:

k = const

⎡⎣
∥∥∥−→MD

∥∥∥ ∥∥∥−→MA

∥∥∥ (cos θT − 3 cos θD cos θA)

R3

⎤⎦2

�D

τD

∞∫
0

fD∗ (ν)fA(ν)dν

(4.37)

where �D is the quantum yield of fluorescence of D∗, and τD its lifetime
in the absence of A. This expression contains the interaction term between
transition dipole moments, multiplied by the Förster spectral overlap integral.
The distance dependence is as R–6, where R is the donor–acceptor distance.
The form of eqn. (4.37) is amenable to a simple interpretation: a virtual
emission–absorption process (Fig. 4.23).

The Förster process (Fig. 4.23b) is qualified as virtual because it should not
be confused with the ‘trivial’ mechanism, consisting of the real emission of a
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Fig. 4.23
The different processes for energy trans-
fer between donor and acceptor chromo-
phores: (a) the ‘trivial process’: emis-
sion, real photon propagation (laws of
optics) and then absorption; (b) the vir-
tual photon emission–absorption process
(Förster); c) the double electron trans-
fer process (Dexter) for a singlet–singlet
transfer. The numbering of electrons
1 and 2 corresponds to eqn. 4.39. (d)
Dexter triplet–triplet transfer.

photon, its propagation, and then its absorption (Fig. 23a). In the trivial mech-
anism the donor and acceptor are far from each other (at a large distance when
compared to the wavelength of the exchanged radiation), and there is a light-
propagation step according to the laws of optics and Maxwell’s propagation
equations. These conditions are not fulfilled here, due to the small distance
between donor and acceptor.

When the local transitions are spin forbidden—for example, in the case of
triplet excited states in organic chemistry—the Förster mechanism is theoretic-
ally impossible. In particular, it is not possible to determine the Förster spectral
overlap integral because of the very weak intensity of the spin-forbidden
absorption band of the acceptor. If at the same time the distance between
chromophores is reduced, one has to take into account the overlap between
electronic wavefunctions of the donor and the acceptor. In other words, the sep-
aration of the molecule as made of a donor and an acceptor becomes less clear,
and the wavefunction of the two parts interact in a quantum-mechanical way.

A more complete treatment of energy transfer was therefore introduced by
Dexter in 1953, and it encompasses the Förster treatment as a special case.
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Under such circumstances, the additional terms in the development of V must
be considered (see eqn. (4.28)). An important consequence results from the
introduction of the exchange term:

<�el
D∗ �el

A

∣∣e2/r12

∣∣�el
A∗ �el

D> (4.38)

Due to this term we are no longer constrained to the rule that the spin state
must remain the same on each sub-unit. Now the spin functions of the two
chromophores can change simultaneously; that is, we can have ηD

∗ = ηA
∗ and

ηA = ηD, allowing in particular transitions which are locally forbidden such as
triplet–triplet energy transfer.

In the Dexter treatment we introduce one-electron wavefunctions such as
the HOMO and LUMO on each chromophore. The electronic matrix element
takes the form:

<ψLUMO
D (1) ψHOMO

A (2) |V| ψLUMO
A (1)ψHOMO

D (2)> (4.39)

Expression (4.39) implies configurations which differ by the transfer of an
electron from the LUMO of the donor to the LUMO of the acceptor, and at
the same time the transfer of an electron in the reverse direction at the level of
the HOMOs (Fig. 4.23c). Thus the Dexter mechanism can be considered as a
double electron transfer.

The rate law is then given by the same formula as in electron transfer theory
(see eqn. (3.37), but with λ and Vab parameters adapted to the present case):

ket = 2V2
ab

h

(
π3

λ RT

)1/2

exp(−�G‡/RT) (4.40)

Thus energy transfer by this mechanism presents some common characterist-
ics with the more usual electron or hole transfer processes. In particular, it is
thermally activated. The variation with the free enthalpy of reaction �G◦ is
similar, with an acceleration for small |�G◦|, followed by a decrease when
entering the ‘inverted region’. It is even possible to show, in an approximate
way, the common roots between electron transfer and Dexter energy transfer.
Eqn. (4.39) is indeed formulated as a resonance integral (see Section 1.3), and
as such it requires that the wavefunctions overlap in space. Assuming that the
V operator does not vary too rapidly with distance, one can write the coupling
matrix element (eqns. (4.21) and (4.22)):

VEnT = const × <ψLUMO
D (1)ψHOMO

A (2)|ψLUMO
A (1)ψHOMO

D (2)> (4.41a)

VEnT = const × <ψLUMO
D (1)|ψLUMO

A (1)><ψHOMO
A (2)|ψHOMO

D (2)> (4.41b)

This introduces overlap integrals corresponding to electron and hole transfer.
With the same argument as previously, these integrals can be considered as
proportional to the corresponding electronic couplings, and thus:

VEnT = const′ × VET. VhT (4.42)

where VET and VhT are the matrix elements corresponding to electron trans-
fer and hole transfer respectively. This expression, although approximate and
formulated with an unknown constant, will be useful when the question of the
decay of the rate constant for energy transfer with distance is raised later.
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To conclude this section let us note that for complex molecules the detailed
structure and role of the bridging unit between chromophores should be expli-
citly taken into account. For electron transfer reactions this was achieved by
introducing the concept of superexchange (see Section 3.2.2.6), in which one
mixes configurations where the bridge is oxidized or reduced. For energy trans-
fer it should be possible, in a similar way, to mix configurations in which the
bridge is excited.

The theory of intramolecular energy transfer does not seem to have been
pushed as far as the theory of electron transfer. But such effects involving
the bridge are likely to exist, and could explain some peculiarities evoked in
Section 4.4.2.

As a final comment on Section 4.4.1, let us note that in the frame of molecu-
lar electronics, energy transfer could be used to realize data treatment at the
molecular scale (see Chapter 5). For such a goal, it would be helpful to
devise a ‘photonic switch’ or an ‘energy switch’ allowing the dynamical con-
trol of energy transfer. While it does not seem easy to achieve switching in
a system where energy transfer occurs by the Förster (dipole–dipole) mech-
anism, it is conceivable with the Dexter mechanism, because of its relation
with electron transfer processes (Chapter 5). In particular, the chemical nature,
degree of conjugation, and so on, of the spacer separating the donor and the
acceptor plays a role. This is why a current challenge is the rational construc-
tion of donor–acceptor systems where energy transfer occurs via the Dexter
mechanism.

4.4.2 Some examples

4.4.2.1 Ru–Os binuclear complexes
Energy transfer has been established in a large variety of bichromophoric
compounds, and we have selected here only a few representative examples,
with a particular focus on long-distance energy transfer and the possibility of
controlling it by the chemical nature of the link between the two chromophores.

In the field of transition-metal binuclear complexes, ruthenium–osmium sys-
tems are particularly interesting [4.16]. Such systems, with the general formula
[(bpy)3M-(ph)n-M′(bpy)3]4+ (M = Ru(II), M′ = Os(II), ph = 1,4-phenylene),
have been described, with values of n = 3, 5, 7 (Fig. 4.24). They constitute
rod-like compounds of nanometric dimensions, since for the longest spacer
the metal–metal distance amounts to 4.2 nm. The photophysical behaviour is
dominated by emission from essentially triplet states from the ruthenium or
osmium units, so the emission process will be qualified as phosphorescence.
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Fig. 4.24
Structure of the ruthenium–osmium
heterodinuclear complexes. The central
phenylene group bears R substituents
for solubility reasons. For m = 1, 2,
and 3, the number of phenylene units
linking the M(bpy)3 moieties is 3, 5, and
7 respectively.
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The occurrence of energy transfer is demonstrated by a comparison with
similar homodinuclear compounds Ru–Ru or Os–Os. Both chromophores
absorb at about the same wavelength near 435 nm, but emission wavelengths
are different, Ru emitting near 620 nm and Os near 740 nm. In the heterodi-
nuclear system, the phosphorescence of the Ru unit is partially quenched, and
there is a corresponding sensitization of the Os unit; that is, its emission intens-
ity at 740 nm is increased. This phenomenon is typical of the occurrence of an
energy transfer in the Ru–Os (D–A) complex between the Ru∗–Os (D∗–A) to
the Ru–Os∗ (D–A∗). The rate constant for energy transfer can be obtained from
a comparison of the phosphorescence lifetimes τ◦ and τ of the ruthenium-based
component in Ru–Ru and Ru–Os respectively, according to:

kEnT = (1/τ ) − (1/τ ◦) (4.43)

This provides values of kEnT for the different complexes, kEnT = 6.7 × 108 s–1

for n = 3, kenT = 1.0 × 107 s–1 for n = 5, and kenT = 1.3 × 106 s–1 for n = 7.
The analysis can now be performed in comparison with Förster and Dexter the-
ories. It is found that the rate constant calculated by Förster theory is 2–3 orders
of magnitude smaller than the observed rate constant, which is not surprising,
as the emission processes are essentially singlet–triplet transitions (phosphor-
escence) and are thus forbidden. Thus energy transfer can safely be attributed
to the Dexter (double electron exchange) mechanism. The rate of decay of
kEnT with distance is 0.32 Å–1. As for electron transfer, it can be related to
the rate of decay of the electronic coupling matrix element (see Chapter 3 and
eqn. (4.42)).

Related systems are known where the terminal units are terpyridine (tpy).
As mentioned previously, their advantage over bpy systems is to present a
more rigid conformation, but the emission lifetimes are shorter, and these sys-
tems must be studied at lower temperatures (150 or 77 K). As for bpy-based
heterodinuclear systems, there is an efficient energy transfer process from the
ruthenium moiety to the osmium moiety. It is interesting to notice that the
insertion of a saturated unit such as bicyclooctane (bco) in the bridging ligand
causes a dramatic reduction in the energy transfer rate (even when the increase
in distance is taken into account), which can be related to the electronically
‘insulating’ character of the bco group, in agreement with the double electron
transfer mechanism.

4.4.2.2 Photonic wires from porphyrins
Energy transfer is also found in organic systems, such as porphyrins [4.17].
The most attractive example is provided by a large molecule in which up to
three Zn-tetraphenylporphyrin moieties are attached by diarylethyne spacers,
with a dipyrromethene dye at one end acting as absorber, and a free base por-
phyrin at the other end acting as emitter (Fig. 4.25). The structure extends over
90 Å, and is soluble.

As previously, the absorption spectrum is essentially the superposition of
the spectra of the component parts. Excitation at 485 nm concerns mainly the
dipyrromethene dye. The emission is dominated by the free base porphyrin at
650 and 720 nm, while dipyrromethene alone would emit at 534 nm. Here the
excited states are singlets and the emission is thus qualified as fluorescence.
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(a) Array of three Zn-
tetraphenylporhyrins bridging a
dipyrromethene dye at one end and a free
base porphyrin at the other; (b) absorp-
tion spectrum of the dipyrromethene
dye (a.u.) (black filled curve); emission
spectra of the dipyrromethene dye (black
line) and of the free porphyrin (filled
grey curve). (Adapted from ref. [4.17].)

Since the transitions are allowed, a first analysis according to Förster the-
ory can be envisioned. However, a direct (through-space) coupling mechanism
between the two remote ends would be predicted at much slower rate than
actually observed. Another possibility is to consider a variant of the Förster
mechanism: a stepwise energy transfer along the array of intermediate Zn-
tetraphenylporphyrins. Even in this case, the observed rate is still much higher
than the one computed from the model. Thus one is left with the general
idea that the coupling is a through-bond mechanism involving the diarylethyne
link, of the Dexter type. Note that this only a part of the answer: the original
Dexter treatment is a two-site treatment and suffers the same drawbacks as
simple treatments of electron transfer neglecting the explicit role of the bridge.
Here also, it would be necessary to go beyond a two-site description and use
concepts similar to superexchange in electron transfer (see Section 3.2.2.6).

4.4.2.3 Relation between triplet transfer and electron and hole
transfer

The last example we present is based on a particularly versatile structure of the
D–Spacer–A (D–Sp–A) type, which allows electron transfer (ET), hole trans-
fer (hT), and triplet transfer (TT) studies in the same series (Fig. 4.26) [4.18].
Here D is the donor group, 4-biphenylyl (Fig. 4.26a) for the electron transfer
and hole transfer studies, and 4-benzophenoyl (Fig. 4.26b) for the triplet trans-
fer studies, the spacers Sp are cyclohexane or trans-decalin (Fig. 4.26c,d), with
different regio- and stereochemical attachments, and A is the 2-naphthyl group,
(Fig. 4.26e).

The different possible processes are thus:

D− − Sp − A → D − Sp − A− (ET) (4.44a)
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Fig. 4.26
D–Sp–A systems for electron, hole, and
triplet transfer studies. (a) 4-biphenyl and
(b) 4-benzoquinone donors; (c) cyclohex-
ane spacer with atoms numbering, axial
a, and equatorial e substitution positions;
(d) trans-decalin spacer with the gen-
eral structure of the system (here is a
2,6ee A–Sp–D); (e) 2-napthyl acceptor;
(f, g, h) schemes of electron transfer (ET,
(f)), hole transfer (hT, (g), two equivalent
representations), and triplet transfer (TT,
(h)).

D+ − Sp − A → D − Sp − A+ (hT) (4.44b)

3D − Sp − A → D − Sp −3 A (TT) (4.44c)

where 3D or 3A designates a donor or acceptor group excited in the triplet
state (Fig. 4.26h). For the ET reactions the negative species are generated by
pulse radiolysis. For the hT, the positive species are also generated by pulse
radiolysis, but in the presence of 1,2-dichloroethane, which produces cation-
radicals. Finally, TT reactions are studied by flash photolysis with transient
absorption measurements, by monitoring the decay of the triplet benzophenone
state and the build-up of the triplet naphthalene state.

Since the rate constants are proportional to the square of coupling elements,
eqn. (4.42) leads to a relation between the rate constants kET, khT, and kTT:

kTT = C × kET × khT (4.45)

where C is an unknown constant. In the present series, a good fit between
observed kTT values and those predicted from eqn. (4.45) is obtained when
taking C = 4.0 × 10–10 s. The fit is valid over five decades. This equation also
predicts that there is a relation between the rates of decay with distance, when
each rate constant is written as (see Section 3.2.2.6):

k = k0 exp (−β R) (4.46)

Thus the β coefficients (not to be confused with resonance integrals!) are
expected to be related by:

βTT = βET + βhT (4.47)
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The reader is invited to go back to the electron transfer mechanisms developed
in Section 3.2.2.6 on mixed valence systems, to better grasp the present
developments.

Remark: A difficulty has been noticed in the literature concerning the use
of eqn. (4.45). kET and kHT refer to electron or hole transfer reactions,
which are thermally activated and thus depend on solvent reorganiz-
ation energies, themselves introducing an extra distance dependence
(Chapter 3, eqns. (3.15)–(3.17)). On the other hand, kTT is found to be
much less solvent-dependent—a fact attributed to the almost non-polar
nature of the excited triplet state.

4.4.2.4 Antenna effect and light harvesting
Light harvesting is a process which occurs in natural photosynthesis. A num-
ber of pigments are located near the reaction centre where the initial charge
separation is performed. The role of these pigments is to collect light and
funnel absorbed energy to the reaction centre. In this way the effective cross-
section for light absorption is greatly enhanced, as each photon passing near
the reaction centre has a greater probability of being captured. This is called
the antenna effect.

The process of light harvesting is based on energy transfer between chromo-
phores. A simple representation is given in Fig. 4.27. It is generally assumed
that energy transfer in antenna systems occurs via the Förster mechanism, and
thus implies singlet excited states.

A major conceptual advance occurred in 1995 with the precise resolution of
the structure of a purple bacteria light-harvesting antenna complex called LH2
[4.20, 4.21]. It is made of two circular arrangements of bacteriochlorophyll

Light

PD A

Energy
Transfer

Electron
Transfer

Electron
Transfer

2H2O

O2 + 4H+

2H+ 

H2

Fig. 4.27
Schematic representation of the antenna
effect. The chromophores must have dif-
ferent energy levels so that a predeter-
mined energy gradient is built into the
system. The energy is finally absorbed
in the reaction centre, where a series of
electron transfers lead to electron–hole
separation and eventually to a chemical
process such as water-splitting. (Adapted
from [4.19].)
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(a)   B850

(b)  B800

Fig. 4.28
The pigments arrangement in the
LH2 antenna complex of purple bacteria,
showing the two rings of bacteriochloro-
phylls: (a) the upper (B850) contains
eighteen pigments, and the lower
(B800) contains nine pigments. (Adapted
from reference [4.21].)

molecules—one ring called B850 (from the wavelength absorption) and the
other B800 (see Fig. 4.28). Extremely fast energy transfer (less than 1 ps) is
observed from B800 to B850. Then energy is transferred to another, larger
antenna complex, called LH1, which also has a ring structure, and finally to the
reaction centre. The circular structure of these units has a distinct advantage:
since energy can migrate from one chlorophyll to the other along the rings, this
ensures that at some time the proper orientation for energy transfer to another
ring or the reaction centre is achieved (see Section 4.4.1 for the geometric
requirements).

Thus natural photosynthesis provides a proof-of-principle of a successful
antenna system, but many other molecular assemblies are conceivable and are
investigated presently. The realization of artificial systems able to achieve the
antenna effect is presently a big challenge. One has to associate a large num-
ber of chromophores, in many cases through self-assembly, and in addition
there must be several types of chromophore with a controlled relative disposi-
tion, so that energy transfer is directional. In the following we give only a few
examples, but extensive reviews are available [4.22].

A large number of cyclic porphyrin arrays constituting macrocycles have
been prepared, by inspiration, from the natural arrays [4.22b] discussed pre-
viously. As usual for macrocyclic compounds, the synthetic problem is to
favour intramolecular cyclization with respect to polymerization. While the
larger arrays are obtained by elegant template synthesis, the smaller ones can
be obtained by direct synthesis under high-dilution conditions. This is the case
for the cyclic tetramer depicted in Fig. 4.29.
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Fig. 4.29
Cyclic porphyrin array in which ultra-
fast energy transfer has been observed.
(Adapted from reference [4.22b].)
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Energy transfer has been observed in this system by either transient absorp-
tion spectroscopy or transient absorption anisotropy measurements (the last
method relies on the depolarization of the emission signal when energy hops
from a site to another one with a different orientation). Energy transfer (Förster
mechanism) is extremely rapid, with a rate constant around (340 fs)–1, which
rivals the one observed between B800 and B850 in the natural cyclic antenna
system. In the present case, however, there is no preferential direction for
energy transfer.

Another approach is based on metal–organic dendrimers. Returning to the
chemistry of ruthenium and osmium, one can prepare dendrimers in which
each metal is coordinated to 2,2′bipyridine, playing the role of a terminal
capping ligand, or 2,3-bis(2′-pyridyl) pyrazine, playing the role of a bridging
ligand (see Fig. 4.30) [4.19]. Dendrimer chemistry presents distinct advantages
over conventional multistep synthesis, because it is based on simple repetitive
reactions, allowing precise control of the size and the composition. A simple
dendrimer made of three ruthenium polypyridyl units around a central osmium
moiety is depicted in Fig. 4.30.

N N

N

N

N N

Os

Ru

Ru

Ru

=

=

ΔE ΔE

Ru Ru

(a)

(b)

(c)

Os

Fig. 4.30
Scheme of an OsRu3 polynuclear com-
plex, precursor of a larger family of
dendrimers. (a) The upper part shows
energy levels and the process of energy
transfer from Ru to Os site; (b) OsRu3

structure; (c) terminal capping ligands are
2,2′-bipyridine (black bars), and bridging
ligands are 2,3-bis(2′-pyridyl) pyrazine
(wavy lines). (Adapted from [4.19].)

In this tetranuclear species, energy transfer occurs from the ruthenium to the
osmium site in less than 200 fs, and again the leading mechanism seems to be
singlet–singlet energy transfer by the Förster mechanism.

Finally, we present a beautiful example obtained by conventional multistep
synthesis [4.23]. The molecule, represented in Fig. 4.31, is built around a
central benzene ring from which six arms expand. Two arms bear anthra-
cene units (A1, Fig. 4.31b), two other boron dipyrromethene units (A2, Fig.
4.31c), and the last two zinc tetraarylporphyrins (A3, Fig. 4.31a). The rationale
is that the absorptions of the three chromophores cover a large part of the
ultraviolet–visible spectrum, and furthermore that energy transfer can occur
from anthracene, A1 to dipyrromethene and from dipyrromethene, A2 to Zinc
tetraarylporphyrin, A3.

The energy is transferred to a C60 unit coupled to the previous structure
by means of two pyridyl groups which can coordinate with the zinc atoms.
Transient studies of the complete assembly have shown that energy transfer
indeed occurs in the predicted way and generates a singlet excited porphyrin.
Electron transfer then occurs, yielding the charge-separated state Zn–TPP+•
C60

–• with a quantum yield of unity. The lifetime of the charge-separated state
is 230 ps.

4.5 Photomagnetism
4.5.1 Introduction

In this chapter’s introduction we emphasized that a photoexcitation occurs
always at constant spin, and that the spin change can follow subsequently due
to a forbidden slow intersystem crossing. In this section we focus on some
examples related to magnetic molecular materials, where the photoexcitation
is followed by a durable change in the magnetic properties of the system.
This change of magnetic properties through light absorption is known as
photomagnetism, which recently has seen a spectacular revival involving
everyday applications.
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(a) The hexad antenna coupled to a
charge-separation unit. On the six arms
starting from the central benzene ring are
two substituted anthracene units (A1) (b),
two boron dipyrromethene units (A2) (c),
and two zinc tetraarylporphyrins (A3).
A C60 derivative is linked by two pyridyl
groups to the zinc porphyrins. (Adapted
from [4.23].)

Photomagnetism can be defined as a process that changes the magnetism
of a system after absorption of photons. The system can consist of molecules,
more or less in interaction, in solid state or in solution. If R (reactant) is the
initial molecule and P the final one (product), molecular photomagnetism can
be schematized as:

R (MR) + Photon (hν) → P (MP) (4.48)

where MR and MP are the (different) magnetizations of the reactant (R) and
of the product (P) respectively. Photomagnetism is thus the transformation
of matter by light and should be distinguished from magneto-optics, which
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is the reverse process—the transformation of light by matter (change in light
polarization—Faraday and Kerr effects—and so on).

Here we apply the knowledge and the rules introduced in Section 4.2: (i) as
a first approximation, there is no direct spin–photon interaction; (ii) the pho-
toexcitation is mainly an interaction between the electric field of the incoming
radiation and the electrons in the occupied orbitals of the molecules; (iii) the
first reached excited state has the same spin as the ground state; (iv) a change
of spin may occur later after vibrational relaxation and through forbidden
intersystem crossings (Figures 4.1 and 4.2).

We apply these observations to two classes of compound: (i) the spin cross-
over systems introduced in Section 2.4.3, and (ii) polymetallic systems (either
molecular or 3D inorganic solid-state structures) in which the basic excitation
is followed by a metal–metal charge transfer.

In both cases, magnetic properties are modified. This area of photo-
switchable materials is giving rise to many exciting scientific and possibly
technological developments. Indeed, the molecular switch is one of the func-
tions that the chemist must master in molecular electronics (see Chapter 5).
We therefore provide the reader with very recent results.

4.5.2 Photomagnetism in spin cross-over systems

We recall here the definition of Section 2.4.3: a spin cross-over is the spin
change of a transition metal complex (from high spin (HS) to low spin (LS) or
the contrary). It can occur under the influence of temperature, pressure, light,
or magnetic field.

The first observation of a photomagnetic process in a molecular spin
cross-over system was made in solution by McGarvey et al. as a transient state.
Then Decurtins, Gütlich, and Hauser, studying the electronic spectroscopy of
the spin cross-over system [FeII(ptz)6](BF4)2 (ptz = 1-propyl-tetrazole) dis-
covered serendipitously the effect as a metastable state at low temperature
(1984) (Figs. 4.32 and 4.33). They termed it ‘light-induced excited spin state
trapping’ (LIESST), as it corresponds to the trapping of an excited high-spin
state by an activation energy barrier between the excited state and the ground
state, impeding the system to revert to the ground state [2.28–2.29] [4.24a].

4.5.2.1 Light-induced excited spin-state trapping (LIESST) effect
The [FeII(ptz)6]2+ complex is a d6 iron(II) octahedral complex, as already
introduced in Section 2.4.3. The complex presents an abrupt spin cross-over
transition at T1/2 = 135 K marked by a deep change in colour—practically col-
ourless in the HS state and bordeaux red in the LS state. Figure 4.32a displays
the magnetic properties as the χMT product versus temperature. When exciting
at low enough temperature (20 K) colourless hexagonal plates of the com-
pound, 1 mm thick, in the singlet–singlet absorption band using a 450W Xenon
lamp (green light) the excited state is created. After 1 hour the conversion is
complete and the new state remains ‘trapped’ for weeks. When heated, the
excited state relaxes to the low spin state and the susceptibility curve merges
with the initial curve. The temperature at which half of the high-spin excited
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Fig. 4.32
Mechanism of the LIESST and reverse-
LIESST effects in the [FeII(ptz)6](BF4)2

complex, d6. (a) High spin (HS) fraction
as a function of temperature. Black curve,
usual spin cross-over to low-spin (LS).
In grey, excited state after irradiation
(ES). Spheres represent schematically the
electronic structure and the volume of the
species (HS, LS, ES). Small arrows indic-
ates the direction of temperature changes.
(b) Energy levels and potential energy
curves for the 1A1 (S = 0) (t2g)6 and
5T2 (S = 2) (t2g)4(eg

∗)2 states versus
the metal–ligand distance rML. A triplet
intermediate spin state 3T1 (S = 1)
(t2g)5(eg

∗)1, is also shown (see text). The
dashed arrow corresponds to vibrational
de-excitation, and wavy arrows to forbid-
den intersystem crossings. (Adapted from
[2.29].)

state has relaxed to low spin is known as TLIESST. The phenomenon has been
investigated thoroughly and the mechanism deserves some comments.

We recall the spin states in Fig. 4.32b. We emphasize the photoexcit-
ation from ground state singlet S0 (1A1) to excited singlet S1 (1T1) and
the subsequent steps up to the trapped quintet 5T2. The low spin state S0

(t2g)6 has a lower enthalpy HºLS than that of the quintet (S=2) (t2g)4(eg
∗)2,

�HºHL (= HºHS – HºLS > 0, ≈ 450 cm–1). The metal-to-ligand distance in
the quintet state is larger than that in the singlet (with an average mean change
in iron(II) complexes �rHL = rHS – rLS ≈ 0.2 Å). We have already seen in
Section 2.4.3 that these two important energetic and structural features are
related directly to the population of the eg

∗ antibonding orbitals: when depopu-
lating the eg

∗ orbitals, the bond order increases and so does the bonding energy,
whereas the bonding order increases and the metal–ligand distance decreases.
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Fig. 4.33
Single crystal electronic spectra of
[FeII(ptz)6](BF4)2, at the origin of the
discovery of LIESST effect: (a) normal
spectrum of the LS complex at 20K;
(b) from (a), after irradiation into the
spin-allowed 1A1 → 1T1 transition,
at 514.5 nm: spectrum of the HS
species—LIESST HS state; (c) after
subsequent irradiation from (b), into the
spin-allowed 5T2 → 5E transition, at
820 nm: spectrum of the LS species—
reverse-LIESST LS state; (d) starting
again from (a), with an irradiation at
980.0 nm, into the spin-forbidden 1A1→
3T1 transition: spectrum of the HS
species. (Adapted from [2.29].)

These combined features (change in energy, important change in geometry–
metal–ligand distances) build up an energy barrier �Ha between the potential
wells of the excited quintet 5T2 and of the ground singlet, 1A1, able to trap the
quintet as a metastable state.

Thus the LIESST effect begins with the allowed transition (black arrow
on the left, λ = 514.5 nm) from the low-spin (t2g)6 S0 singlet, 1A1, to the
excited S1 singlet (t2g)5(eg

∗)1, 1T1, then to the intermediate triplet 3T1 (S = 1)
(t2g)5(eg

∗)1, and then to the quintet 5T2 (S = 2). When the system is in the triplet
state 3T1, it can revert to the initial singlet 1A1 (and the photon is lost) or move
to the quintet 5T2. The metastable quintet 5T2 (S = 2) (t2g)4(eg

∗)2 is ‘trapped’ by
the activation energy barrier �Ha, hence achieving the LIESST. The reverse-
LIESST effect has been observed: it starts with photoexcitation (black arrow
on the right, λ = 820 nm) from the trapped 5T2 quintet to the excited 5E which
can evolve to the triplet 3T1, and then to the initial singlet 1A1 with the same
bifurcation problem (if the system is going back to the quintet, the photon is
lost). The different spectroscopic terms have been identified by their energy
(or the wavelength of photoexcitation as shown later). The observed electronic
spectra are shown in Fig. 4.33.
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Single-crystal Mössbauer spectra of
[FeII(ptz)6](BF4)2: (a) HS spectrum; (b)
LS spectrum. In a LIESST and reverse-
LIESST experiment, HS spectrum (a) is
observed in situations (b) and (d) of Fig.
4.33, and LS spectrum (b) in situations
(a) and (c) of Fig. 4.33 (Adapted from
[2.29].)

The same demonstration can be made using the Mössbauer spectra of LS
and HS species and their appearances and disappearances with irradiation at
different energies. They are very distinct, as shown in Fig. 4.34.

Understanding the relaxation of the HS state to the LS state is important
both for fundamental reasons and possible applications [2.28].

In solution, with pulse laser excitation, it is possible to measure the
rate constant kHL of the HS→LS relaxation. Activated Arrhenius behaviour,
kHL(T) = A exp(–Ea/kT), is observed. For iron(II) complexes, activation
energy barriers Ea are in the range 1,000–1,500 cm–1 and the pre-exponential
factors A of 107–109 s–1. In the solid, also in iron(II) complexes, the Ea val-
ues are 2,500–3,000 cm–1 for small values of the zero-point energy difference
�E0

HL. The lifetimes τ vary considerably with the systems, and furthermore,
at very low temperatures the relaxation process is no longer thermally activ-
ated but becomes temperature-independent, revealing a tunnelling mechanism.
In such cases, the relaxation is not a classical adiabatic one (at vibrational equi-
librium and passing over the barrier). Instead, the relaxation proceeds through
the nuclear tunnelling effect from the metastable high-spin state to the suitable
vibrational levels of the singlet state: (i) at low temperatures it goes exclusively
through the lowest vibrational state of the quintet, and (ii) at higher temperature
through different thermally populated vibrational levels, as shown in Fig. 4.35.
This is why it is termed a non-adiabatic multi-phonon process.

4.5.2.2 Photo-induced phase transitions (PIPT)
These considerations apply at low temperature, when the thermal quantum kT
is much lower than the vibrational quantum. At high temperature the LIESST
effect is no longer operative. Nevertheless, different systems presenting spin
cross-over temperatures and wide hysteresis around ambient reveal another
important phenomenon related to a photo-induced phase transition (PIPT).
It is observed when the intensity of the irradiation light overcomes a given
threshold, Pthreshold.
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Fig. 4.35
Low-temperature HS→LS relaxation
through tunnelling processes, implying
different vibrational levels of the HS state
(m) and of the LS state (m′) (Cf. Fig.
3.18). The potential energy curves of the
high-spin and low-spin states are given
versus a reaction coordinate chosen as
the metal–ligand distance (in the frame
of the single configurational coordinate
model). Curly arrows show the way that
the HS metastable state arises from the
MLCT excited state.

It is peculiarly spectacular on single crystals of FeII(pyrazine)[PtII(CN)4]
(see Section 2.4.3.4. Figure 2.29) [4.25]. The compound crystallizes in the
space group P/mmm at high and low temperature with a contraction of the cell
parameters at low temperature. Figure 4.36a displays the hysteresis loop, the
Raman spectra, and the free-energy scheme at points A (LS) and B (HS). The
χMT values in the hysteresis loop vary from 3.81 cm3 K mol–1 at 340 K (cor-
responding to S = 2) to 0.16 at 270 K (a virtually complete transformation
to S = 0). The hysteresis width is 24 K. The Raman spectra (signal versus
wavenumber ν in the 650–700 cm–1 range) displays a ‘marker’ band character-
istic of the LS state at 682 cm–1 (point A, left) and of the HS state at 650 cm–1

(point B, right). We know from Section 2.4.3 that within the hysteresis loop the
system can exist in a stable state and a metastable state. This is shown schem-
atically in Fig. 4.36c,d (see also Fig. 2.24) by the two shallow minima in the
free-energy scheme separated by a maximum located at xmax (xmax≈ 0.47 at
300 K and ≈ 0.65 at 295 K).

Departing from A (LS) and increasing the temperature, one reaches point
C (�, mainly trapped in LS state as shown in Fig. 4.36b,c). At the oppos-
ite, departing from B (HS) and decreasing the temperature, one reaches point
D (©, trapped in HS state as shown in Fig. 4.36 b,d). The irradiation by a
Nd:YAG laser (one pulse of 4 ns, λ = 532 cm–1, pulse energies 1mJ for a
spot size of 0.4 mm2) transforms the system to HS state in C and to LS in
D. In this case the applied irradiation power is above the threshold power,
P> > Pthreshold (curved black arrows in Fig. 4.36c,d). Instead, when the irradi-
ation power is below the threshold, P< < Pthreshold, the system relaxes rapidly
to the initial state (short curved grey arrows in Fig. 4.36c,d). The threshold
power Pthreshold is needed to transform, at the microscopic level in the solid,
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Fig. 4.36
(a) Hysteresis loop for the spin cross-over
in the FeII(pyrazine)[PtII(CN)4] com-
pound as x, the fraction of the high-
spin HS species versus temperature.
At left, schematic Raman spectrum (sig-
nal versus wavenumber μ̃ in the 650–
700 cm–1 range) and the free enthalpy
scheme at point A (low spin ground
state), where the black dot localizes the
ground state of the system. At right, the
same data at point B (high-spin ground
state. (b) Transitions induced by one
laser pulse at points D and C (meta-
stable states) with the related Raman
spectra and free enthalpy scheme before
and after the pulse: C, ascending tem-
perature, the system is trapped in the
low-spin state, and changes to high spin
by a single laser pulse; D, descending
temperature, the system is now trapped
in the high-spin state, and a single laser
pulse is enough to change it to low spin.
(c) Free enthalpy versus HS fraction x
in the ascending branch of the hyster-
esis loop (point C): after excitation by
light, the system reverts to the LS state
(grey arrows) if the power threshold is
not reached (P<), or goes to the HS
state when the power threshold is over-
come (P>) (black arrows); black sphere,
thermal population; white sphere, popu-
lation after one laser shot; (d) analogous
phenomenon in the descending branch
(point D).

enough molecules from the metastable to the ground state, and hence to build
a large enough nucleus of the new phase, stabilized by the lattice distortions
accompanying the change in spin state and to allow the macroscopic change to
occur. A simple way of describing the process is to tell that at point C the HS
fraction must become higher than xmax for the system to cross the free-energy
maximum and turn HS; and at point D the LS fraction must become higher
than (1–xmax) for the system to cross the free-energy maximum and turn LS.

A complete analysis should take into account the possibility of demixion;
that is, the formation of two phases. In such a case the dot representing the
system energy can lie below the maximum in the G = f(x) curve.

An amazing point is that it is possible to induce at will LS→HS or HS→LS
bidirectional transitions with the same light (wavelength λ = 532 cm–1). This
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is simply due to the fact that even if the colours of the two phases are different
they both absorb at this wavelength.

To conclude, one can stress that such cooperative photo-induced phase trans-
itions are highly non-linear, with a threshold effect on the light intensity. In the
example studied the bidirectional transitions occur around room temperature
over a substantial range of bistability with magnetization and colour changes.
This presents interesting prospects for applications in memory devices and/or
optical switches.

4.5.2.3 Ligand-driven light-induced spin cross-over (LD-LISC effect)
A variant of spin cross-over consists in provoking the spin change by an
electronic excitation on a photoisomerizable ligand. For example, a cis-trans
double bond photoisomerization can vary the ligand field around the metal
ion sufficiently to achieve the spin cross-over. This is termed the ligand-driven
light-induced spin cross-over (LD-LISC) after Zarembowitch [4.24b].

Figure 4.37 illustrates the phenomenon, which occurs in the temperature
range where the two isomers of the complex have different spin states (here
for T < T1/2).
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Fig. 4.37
Ligand-driven light-induced spin cross-
over: (a) Ltrans and (b) Lcis isomers
of the styrylpyridyl ligand L; they can
bind to FeII through the pyridyl nitro-
gen; (c) a trans-FeII(NCS)2(L)4 complex;
the complex can be synthesized either
from the Lcis or Ltrans ligand isomers; it
presents the LD-LISC effect; (d) trans-cis
photoisomerization of the styrylpyridyl;
(e) schematic magnetic susceptibility of
trans-FeII(NCS)2(Lcis)4 (no spin cross-
over) and trans-FeII(NCS)2(Ltrans)4 (with
a spin cross-over at T1/2) and LD-LISC
effect below T1/2.
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4.5.3 Photomagnetism originating from metal–metal charge
transfer

In polymetallic AB complexes the change in the magnetization of matter upon
irradiation can occur also when excitation is followed by an electron transfer
from one metallic centre A to the other, B. The initial compound (reactant R)
is a bimetallic system (An–L–Bm, L being a bridging ligand, An+ and Bm+ two
different transition metal ions in n and m oxidation states, or AnBm). The irra-
diation forms an excited state [AnBm]∗ with spin conservation, which relaxes
down to a metastable state (An+1Bm–1) in a series of steps including electron
transfer, and subsequent spin changes such as [An+1Bm–1]∗ (see Fig. 4.38). For
example:

R
(
An − L − Bm) (MR) + Photon (hν) → P

(
An+1 − L − Bm−1) (MP)

(4.49)
The electron transfer and spin change are generally accompanied by important
geometrical changes around the transition metals: going to low spin and/or
higher oxidation decreases the metal–ligand distance. Thus it is possible to
describe the process by using an energy diagram with one of the metal–ligand
distances (M–L) as reaction coordinate (Fig. 4.38).

The reader should realize that this process needs not only the presence of the
bimetallic AB pair but also a solid to trap the metastable stable due to inter-
molecular and/or three-dimensional interactions. Furthermore, in many cases
the intensity of the irradiation must overcome a threshold value to achieve
the transformation. Most of the examples of photomagnetism with electron
transfer imply cyanide as a bridging ligand.

4.5.3.1 Photomagnetism in molecular polynuclear complexes
We start with the a priori most simple, zero-dimensional (0D) molecular solids
where the intermolecular cooperative magnetic effects are not essential for
determining the photomagnetic properties [4.26–4.28]. The spin scheme of a
general photo-induced electron transfer AmBn to Am+1Bn–1 is shown in Fig.
4.39a,b. It is important to realize that it modifies the oxidation states and the
spins of the individual metallic ions A and B but not necessarily the total spin

Reaction coordinate

rG rm

hνAnBm

An+1Bm–1

[AnBm]*

[An+1Bm–1]*

Enthalpy  H

rML

ΔH0
HL

Fig. 4.38
Simplified four-state potential-energy
diagram for a metal–metal charge
transfer from the ground state AnBm

to the metastable An+1Bm–1. The wavy
arrows represent forbidden intersystem
crossings. The reaction coordinate is the
metal-to-ligand distance rML (rG in the
ground state and rm in the metastable
state).
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Fig. 4.39
Photo-induced electron transfer from a
bimetallic pair MoIVCuII (a) to MoVCuI

(b); (c) crystallographic structure of the
molecular cation {MoCu6}8+; (d) mag-
netic properties of {MoCu6} before irra-
diation at 5 K (black lower curve);
after irradiation at 406 nm (dashed
upper curve) when increasing temper-
ature; after annealing at room temper-
ature (grey lower curve); spin struc-
ture of {MoCu6}: (e) before irradiation,
uncoupled CuII ions in [MoIV(CuIItren)6]
and (f) after irradiation, ferromagnetic-
ally coupled MoV and CuII ions in the
mixed valency S = 3 [MoV(CuItren)
(CuIItren)5] (f).

of the system. To change the total spin, a peculiar spin topology is required
where many unpaired electrons are coupled by exchange interactions.

We focus on two recent textbook examples: the heptanuclear [MoIV(CN)2

(CN–CuII–L)6]8+ (L = tren) complex (noted [Mo(Cutren)6]8+ and abbre-
viated as {MoCu6}) (Fig. 4.39), and the octanuclear [(pzTp)FeIII(CN)3]4

[CoII(pz)3CCH2OH]4 cubic complex (pzTp = tetrapyrazolylborate = L,
(pz)3CCH2OH = 2,2,2-tris(pyrazolyl)ethanol) = L′, abbreviated as
{(FeL)4(CoL′)4} or {Fe4Co4} (presented in Fig. 4.42).

The first one is obtained when octacyanidomolybdate(IV), [MoIV(CN)8)]4–

is reacted with CuII–L (L = tris(2-aminoethyl)amine or tren) complex in a
suitable stoichiometry. An heptanuclear complex arises, the structure of which
is shown in Fig. 4.39c. It bears eight positive charges. The MoIV ion sits at
the centre of the complex, surrounded by six CuII–L groups, N-coordinated
to cyanido ligands and by two cyanides. Eight anions (in this case perchlor-
ates) ensure the electroneutrality of the solid. Solutions of the compound
present optical absorptions in the visible–ultraviolet range corresponding to
the ligand-field bands of [Mo(CN)8]4–, to the d–d transition of the Cu(II) ions,
and also a band around 500 nm identified as an intervalence metal-to-metal
charge transfer (MMCT) corresponding to a MoIV–CuII → MoV–CuI trans-
ition. The central MoIV ion in the [Mo(CN)8]4– complex is diamagnetic, d2,
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(SMo = 0). The six Cu(II) ions are paramagnetic (SCu = 1/2). The magnetic
properties of [Mo(Cutren)6] in the solid, before irradiation, are those of six
quasi-non-interacting paramagnetic CuII ions: a Curie law in the whole range
of temperature and a decrease of the χMT product at very low temperat-
ure, due to weak CuII–CuII exchange interactions through the NC–MoIV–CN
bridge.

Then, at 5 K the solid is irradiated in the region of the MMCT band
(λ = 406 nm), and its magnetization increases steadily up to saturation.
After a few hours the irradiation is stopped and the magnetic properties are
measured in the dark, with increasing temperature. The χMT product exper-
iences a drastic change, a much higher value, and then a slow decrease with
increasing temperature up to ambient (Fig. 4.39d). This behaviour reveals a
strong ferromagnetic interaction between the spin carriers, and the forma-
tion of a spin ground state S = 3 molecule. After a few hours of annealing
at 300 K, the compound recovers its initial properties. The photomagnetic
process is reversible (grey curve in Fig. 4.39d, superimposable to the initial
Curie law).

The effect is explained simply by (i) a photo-induced electron transfer from
MoIV (d2, S = 0) to CuII (d9, S = 1/2) leading to MoV (d1, S = 1/2) and
CuI (d10, S = 0); (ii) the presence of a central paramagnetic MoV ion able to
switch ON the exchange interactions between the central MoV and the peri-
pheral CuII not implied in the electron transfer and (iii) the formation of a
metastable species [MoV(CuItren)(CuIItren)5]8+ with S = 3 (Fig. 4.39).

Orthogonality of the magnetic orbitals of MoV and CuII ions explains the
short-range MoV–CuII ferromagnetic coupling (Section 2.6.1). The coupling
constant JMoCu is quite high, around +100 cm–1. The photo-induced metastable
state has a remarkably long lifetime (days at low temperature, T < 10 K).
It relaxes thermally to the ground state only at room temperature, indicating
the presence of a very high activation energy barrier Eth. The process can
be repeated many times without apparent fatigue. Even if the exact nature of
the long-lived metastable state is not fully known yet, its existence and high
stability can be understood from (i) the structural reorganization around the
photo-induced CuI; (ii) the intermediate geometry of the molybdenum coordin-
ation sphere, between square antiprism and dodecahedron where dz2 and
dx2–y2 orbitals are close in energy; and (iii) the schematic potential diagram
of a class II mixed valency compound (Fig. 4.40).

The overall explanation given previously, evidently oversimplified, was nev-
ertheless confirmed by different experimental techniques (X-ray absorption
spectroscopy—near edge structures, XANES, and extended fine structures,
EXAFS—probing the oxidation states and the hole created on photo-produced
Mo(V), X-ray magnetic circular dichroism at the molybdenum L2,3 edges—
probing the spin on Mo(V), solid-state EPR and DFT theoretical calcu-
lations). Under X-ray irradiation, a MoIV triplet (d2, S = 1) has been
evidenced.

[MoIV(CuIItren)6], the first photomagnetic ‘high-spin’ molecule, can be
considered as the prototype of an OFF/ON photoswitch embedded in photo-
magnetic supramolecular assemblies (Fig. 4.41). Other MoCu complexes have
since been developed.
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Fig. 4.40
Schematic potential-energy diagram in
the solid state for [MoIV(CuIItren)6]
and [MoV(CuItren)(CuIItren)5]: (a) ini-
tial state; (b) irradiation with blue
light (hν1) produces an excited charge-
transfer state; (c) the metastable complex
[MoV(CuItren)(CuIItren)5] is trapped at
low temperature. The activation energy
barrier (Ea) can be overcome either
thermally or optically (light hν2). In the
spin structures, only the copper centre
concerned with the electron transfer is
represented.
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Fig. 4.41
A molecular photo-switch between two
magnetic components: (a) OFF position,
isolated spins S1 and S2. (b) The photo-
induced electron transfer from MoIV to
CuII creates a spin s on Mo and switches
ON the exchange interaction. (c) ON posi-
tion, the magnetic fragments are coupled
(here ferromagnetically, ST = S1 +
s + S2).

Our second example of a photomagnetic molecular complex is
the octanuclear [(pzTp)FeIII(CN)3]4 [CoII(pz)3CCH2OH]4, abbreviated as
{(FeL)4(CoL′)4} or {Fe4Co4}. It is an amazing and beautiful molecular cube
{Fe4Co4}, with alternation of Co and Fe at each corner and cyanide con-
nectors on each edge. Iron and cobalt ions are in octahedral surroundings,
Fe(CN)3(N–L1)3 and Co(N–L2)6. The cubes are well isolated by anions,
ensuring the electroneutrality, and by bulky ligands around the metallic
centres: the tetrapyrazolylborate (pzTp) for the Fe corners, and the 2,2,2-
tris(pyrazolyl)ethanol for the Co corners (Fig. 4.42c). The space group is
P21/c. The mean FeIII–C distances are around 1.92 Å, and the mean HS CoII–
N are 2.06 Å. The C–Fe–C and N–Co–N angles are close to 90º (88º and 92º).
The Fe–Co distances are 5.11 Å (edge) and 8.89Å (cube diagonal), and the
Fe–Fe are 7.46Å (face diagonal).

The χMT value, 12.7 cm3K mol–1, corresponds to four quasi-isolated low-
spin, LS Fe(III), and four high-spin, HS CoII. The FeIII are low-spin (S = 1/2)
due to the strong octahedral ligand field of C-bonded cyanides, whereas the
CoII are high-spin, HS (S = 3/2), due to the weak ligand field allowed by the
N-bonded cyanides. At room temperature the complex is then {[LS FeIII]4[HS
CoII]4}. The spin structure of a FeIII–CoII pair is shown in Fig. 4.42b. When
the crystals are cooled slowly, several spectacular changes occur between
265 and 255 K: the colour is modified, from red to green; the χMT value
almost vanishes (approaching 0.57 cm3 K mol–1 at 200 K); at 90 K the
mean Fe–C distances are around 1.90(± 0.02) Å, and the mean HS Co–N
are 1.90(±0.01) Å—a shrinking of 0.16 Å compared to room temperature!
The Fe–Co distances are 4.96 Å (edge) and 8.54 Å (cube diagonal), and
the Fe–Fe are 7.02 Å (face diagonal).The space group remains P21/c. The
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Fig. 4.42
Electron transfer in the molecular cube
{Fe4Co4}: (a) low-temperature ground
state; (b) high-temperature or photo-
induced metastable state; (c) molecu-
lar skeleton of the {Fe4Co4} box (the
external ligands are omitted for clarity);
(d) thermal variation of the magnetic sus-
ceptibility as χMT = f(T) in the dark
state (plain curve) when T decreases, and
in the light-induced state (dashed line)
when T increases; (e) scheme of elec-
tron transfer upon irradiation in the low-
temperature ground-spin state (S = 0); (f)
proposed spin structure in the metastable
state (S = 4, with an antiferromagnetic
FeIII–CoII interaction).

phenomenon is perfectly reproducible when cycling in temperature without
detectable thermal hysteresis. These changes are consistent with the formation
of a diamagnetic {[LSFeII]4[LSCoIII]4} cluster and an intramolecular electron
transfer from each FeIII to one CoII neighbour. The diamagnetic spin structure
is shown in Fig. 4.42a. Infrared and electronic spectroscopies confirm these
interpretations.

When the crystals are irradiated by an halogen white light at 30 K and
575 mW cm–2 for 20 h, another spectacular change occurs: the χMT increases
to a value > 10 cm3 K mol–1 between 30 and 180 K, close to that expec-
ted for a metastable {[LSFeIII]4[HS CoII]4}. Above 180 K the χMT value
decreases down to that of the low-spin {[LSFeII]4[LSCoIII]4} cluster. Above
200 K the magnetic properties merge with those obtained when slowly decreas-
ing the temperature. A remarkable feature is that the relaxation of metastable
state to the low-spin state is thermally activated with a characteristic relaxa-
tion time τ = τ0 exp –(Ea/kT) (τ0 = 2.6 10–8 s and an energy barrier Ea/k
= 4455 K). In other words, the lifetime of the metastable state at 180 K is
roughly ten years. This remarkable high lifetime demonstrates the possible
interest of purely molecular compounds for photomagnetic information stor-
age. The intriguing properties exhibited by the compound when it is rapidly
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cooled from ambient to 5K are not concerned with photons, and we do not
deal with them here.

4.5.3.2 Photomagnetism in three-dimensional frameworks
The two preceding examples, dealing with molecular solids, allowed us to
understand how an electron can be transferred from one site to another
by a photon within a molecule, and the magnetic consequences. In both
cases the link between the two spin bearers A and B was a cyanide ligand:
An–NC–Bm. What happens when the same pairs of metallic ions are embed-
ded in a solid (–An–NC–Bm–CN–)∞? One can expect, as we have seen in
Section 2.7.3, long-range cooperative phenomena and spectacular changes in
the long-range magnetic order (enhancement of magnetization in the mag-
netically ordered phase and of the Curie temperature). This is also an active
branch of research. Different three-dimensional MoIV–CuII photomagnetic
compounds have been characterized, but we present only examples deal-
ing with the Fe–Co pair in some Prussian blue analogues—the structural
framework of which is familiar (Section 2.7.3).

The first photomagnetic effect with electron transfer was reported by
Hashimoto and coworkers in 1996 in Prussian blue analogues, far before the
molecular cases of Section 4.5.3.1. [4.29]. The compound was formulated
K0.4Co1.3[Fe(CN)6]1•5H2O, which becomes K1.2Co4[Fe(CN)6]3.1•15.4H2O in
a formulation related to the face-centred cubic conventional cell, close to
{C1Co4Fe3�1} in an abridged way. The Japanese team showed that the
magnetization and the magnetic ordering temperature TC of this compound
increased under irradiation by visible light at low temperature (Fig. 4.43). The
metastable state can relax either optically (not shown) or thermally at high
relaxation temperature, Trelax (Fig. 4.43c). This discovery opened a new field
of investigation. ‘Molecular electronics emerges in molecular magnetism’ was
a comment [4.30].
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Fig. 4.43
(a) Photomagnetic effect in a CoFe Prussian blue analogue (•, before irradiation; ◦, after irradiation). Note the remarkable enhancement of
the magnetization and of the Curie temperature TC after irradiation. (adapted from [4.29]). (b) Schematic conventional cell representation
of the compound {C1Co4[Fe3�1]}; Fe ions are at the centre of light grey octahedra, cobalt ions are large dark grey spheres; carbon, small
black spheres; nitrogen and hydrogen, small grey spheres; oxygen, medium grey spheres; alkali cation (cæsium), large black spheres. (c) Field
cooled magnetization (•, before irradiation); magnetization of the metastable state when increasing temperature, showing the relaxation at
Trelax ≈ 110K (◦).
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The simple argument proposed by Hashimoto to explain the photomag-
netism of their compound was that for some reason a few CoIII–NC–FeII

diamagnetic pairs should exist in the compound among the CoII–NC–FeIII

ones, so that photons can provoke an electron transfer:

LS CoIII− NC−LS FeII hν−→ HS CoII−NC−LS FeIII (4.50)

The number of magnetic centres in the sample is therefore enhanced upon
irradiation, leading to the observed increase of the magnetization. The same
argument was used with success twelve years later for the {Co4Fe4} molecu-
lar cube. Furthermore, the increase of the Curie temperature TC is understood
following the same argument, as we have seen in Section 2.7.3 that after Néel
TC ∝ z |J|, (where z is the number of magnetic neighbours and J the coupling
constant between neighbours). The increase in z increases TC.

After this first finding, many studies were undertaken to answer sev-
eral questions. Are there really LS CoIII–FeII diamagnetic pairs? What is
their origin? How can they be created? How can the photomagnetic prop-
erties be improved? To make a long story short [4.31–4.33], we need to
return to the chemistry and structure of Prussian blue analogues. We have
already written that charges are very important in inorganic synthesis, and
there is probably no better example to illustrate this point than photo-
magnetic Prussian blue analogues. When one mixes aqueous solutions of
K3[FeIII(CN)6] and CoIICl2. 6H2O, a pale brown neutral compound precip-
itates {CoII

3[FeIII(CN)6]2• nH2O}0 or {CoII
4[FeIII(CN)6]8/3�4/3• 4n/3 H2O}0

when reported to the conventional cell, abbreviated as {CoII
4FeIII

8/3�4/3},
where � denotes a [FeIIICN)6] vacancy (see Section 2.7.3). An even shorter
abbreviation is {Co4Fe8/3}. The Co:Fe 3:2 stoichiometry is simply determ-
ined by the charges of the precursors. In the vacant [FeIIICN)6] sites, water
molecules replace –NC ligands in the coordination sphere of cobalt. Other
water molecules, termed zeolithic, fill the vacancy loosely bound by hydrogen
bonds. The reader can check from the structure that the octahedral surround-
ing of Fe(III) is always Fe(CN–Co)6 (six magnetic neighbours for iron), and
the mean coordination of octahedral CoII is CoII(NC)4(H2O)2 (four magnetic
neighbours for Co).

The [FeIIICN)6] vacancies can be ordered or random, so that
CoII(NC)4(H2O)2 is a mean formula (the cobalt surrounding can be also
CoII(NC)5(H2O)1 or CoII(NC)3(H2O)3). When the synthesis is achieved by
mixing the precursors C3[FeIII(CN)6] and CoIICl2. 6H2O, in the presence of
a controlled excess of C+ cation, alkali cations are inserted into the structure.
They sit on the tetrahedral positions 8g. For x C+ cations entering, x/3
[FeIII(CN)6]3– should leave to ensure electroneutrality of the solid (in an ideal
scheme where no other ions are implied in the synthesis). The stoichiometry
and the number of vacancies vary (ideally) with the fraction x of inserted
cations: {CxCoII

4[FeIII(CN)6](8+x)/3�(4–x)/3• n′H2O}0. A brief calculation leads
to a mean cobalt(II) coordination sphere CoII(NC)(4+x/2)(H2O)(2–x/2). The
number of inserted cations can vary from 1 to 4, depending on the synthesis
conditions (the larger x, the larger must be the excess of cation in the synthetic
pot). When x reaches 4 we obtain {C4Co4Fe3�0}; that is, no more vacancies,
a Co(NC–Fe)6 surrounding, and no more coordinated water.
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Fig. 4.44
Schematic structure (upper, same symbols as in Fig. 4.43) and (photo)magnetic properties (lower) of Co–Fe Prussian blue analogues with inserted
cæsium cations. (a) in {Co4Fe8/3�4/3}; (b) in {Cs2Co4Fe10/3�2/3}; (c) in {Cs4Co4Fe4�0} (Cs in 8g sites). Note the changing scales on the
magnetization axis. (Adapted from [4.31].)

Accordingly, a series of compounds has been prepared by varying the num-
ber of inserted cations (and vacancies) and the nature of the cations. Their
photomagnetism was experimentally characterized. On one side of the series,
with no cation, the compound {Co4Fe8/3�4/3} is a paramagnet down to a Curie
temperature of 15–16 K, below which it orders as a ferrimagnet (Fig. 4.44a).
Long-range ferrimagnetic order originates from antiferromagnetic interaction
through the cyanide between the high-spin CoII S = 3/2 and the low-spin FeIII

S = 1/2 due to the overlap of t2g orbitals of cobalt and iron (see Section 2.7.3).
The compound presents no CoIII–NC–FeII diamagnetic pairs and no pho-
tomagnetic effect. On the other side, with a very high cation content the
compound {Cs3.9Co4Fe11/3�1/3}0 has been prepared: (i) it is practically dia-
magnetic (indeed, very weakly paramagnetic); (ii) its exact composition is
{Cs3.9CoII

0.4CoIII
3.6[FeII

0.9FeIII
0.1(CN)6]11/3�1/3}0, which means that 90% of

the initial CoII/FeIII centres have been transformed in CoIII/FeII by electron
transfer; and (iii) it is not photomagnetic (Fig. 4.44c).

This finding is not so surprising: it means that the presence of diamagnetic
pairs is a necessary but not a sufficient condition to give rise to photomagnet-
ism. We are faced with the interesting but intriguing situation of a family of
compounds {CxCo4[Fe(CN)6](8+x)/3�(4–x)/3•n′H2O}0, where the two extremes
of the series, {C0Co4[Fe8/3�4/3} and {C4Co4[Fe4�0} are non-photomagnetic,
whereas the intermediate {C1Co4[Fe3�1} (with one inserted alkali cation and
one vacancy, or two as in Fig. 4.43b) is said to contain photo-active CoIIIFeII

pairs.



Photomagnetism 381

Many studies were therefore realized to characterize the photomagnet-
ism of cobalt–iron Prussian blue analogues with intermediate cation content
{CxCo4[Fe(CN)6](8+x)/3�(4–x)/3•n′H2O}0: the crystal structure (long-range by
X-ray diffraction, short-range by X-ray absorption), the electronic structure—
oxidation and spin state—(near-edge X-ray absorption), the magnetic proper-
ties (macroscopic with SQUID measurements, and local with X-ray magnetic
circular dichroïsm at the cobalt, iron, and caesium edges). The emerging gen-
eral conclusion is very similar to that of the molecular Co4Fe4 cube. There
is i) the formation of diamagnetic CoIII–FeII pairs in the ground state when
decreasing the temperature, (ii) phototransformation at low temperature of the
diamagnetic CoIII–FeII pairs to metastable CoII–FeIII paramagnetic ones, and
(iii) relaxation of the CoII–FeIII metastable state to the ground state CoIII–FeII

when increasing again the temperature.
First, let us look at the formation of the photomagnetic pairs CoIII–FeII in the

ground state. The creation of photomagnetic pairs CoIII–FeII depends on (i) the
inserted cation fraction x for a given cation, as shown for cæsium in Fig. 4.45a.
When x increases, the faster the χMT product decreases with temperature, the
larger the electron transfer and the more diamagnetic pairs are present; (ii)
on the nature of the cation for a given x (Fig. 4.45b, with x = 1.8). Cæsium
and rubidium are fitting better in the octants (sites 8g), and are more efficient
in favouring electron transfer than the loosely bound sodium. Potassium (not
shown) is intermediate.
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Fig. 4.45
Thermal variation of the molar sus-
ceptibility of cobalt–iron Prussian blue
analogues CxCo4Fe(8/3+x/3)�4/3–x/3} as a
function of the inserted cation C+: (a)
same cæsium cation, C+ = Cs+, at differ-
ent x fractions; (b) same fraction, x = 1.8,
and different cations C+: Na+, Rb+, Cs+.

It has been demonstrated in the very active photomagnetic
{Cs0.7Co4Fe2.9�1.1} cæsium derivative that the formation of the CoIII–FeII

pairs is accompanied by a displacement of the cation from a position near
the vacancy to the centre of the octant (Fig. 4.46a–b). The electron transfer
is partial and affects the cobalt and iron ions surrounding cæsium. The
whole Co–Fe network is associated cooperatively with the transfer: at room
temperature (Fig. 4.46b) the structure is flexible and distorted, the rigid
[Fe(CN6)] blocks are tilted, and the CoII–NC–FeIII units are bent (the Co–N–C
angle is around 167◦; Fig. 4.46d). At low temperature the rigid [Fe(CN6)]
blocks rotate, the network becomes compact and more rigid (Fig. 4.46a),
and the CoIII–NC–FeII units become linear (Fig. 4.46c). The local contrac-
tion of the cobalt–neighbours distances (�d ≈ 0.18 Å) is followed by the
consequent shrinking of the cubic cell parameter (�a ≈ 0.35 Å). On the
other hand, precise spectroscopic measurements demonstrate that the ligand
field around the cobalt, taking 1 for {CoII(H2O)6} as reference, is 0.55 for
CoII(NC–Fe)4(H2O)2, in {C0Co4[Fe8/3�4/3}, 0.7 for CoII(NC–Fe)5(H2O)1 and
2.4 for CoIII(NC–Fe)5(H2O)1 in {Rb1.8Co4Fe3.3�0.7}. This confirms that the
N-bonded cyanide is a weak field ligand in the spectrochemical series

(F− . . . < NC− < H2O < H2O . . . << CN−).
Thus we can write the following chemical equilibrium:

Rigid network {Cs1Co4Fe3�1} � distorted network
{
Cs1CoII

4FeIII
3�1

}
�S◦>>0

(4.51)

where in {Cs1Co4Fe3�1}, both the cobalt and the iron are in two oxidation
states. The creation of diamagnetic pairs is therefore entropy-driven, strongly
related to the molecular vibrations and networks phonons.
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(a)

(c)

(b)

Fig. 4.46
Structural aspects of the creation of
diamagnetic CoIII–FeII pairs in the
{Cs1Co4Fe3�1} Prussian blue ana-
logue. Octant’s schematic structure:
(a) low-temperature rigid CoIII–FeII

phase, and (b) high-temperature distorted
CoII–FeIII phase; Co–NC–Fe units;
(c) linear CoIII–NC–FeII, and (d) bent
CoII–NC–FeIII.

Let us now consider the photomagnetic transformations. They rely also on
the previous structural and electronic analysis. The wavelength of excitation
is not crucial, since the absorption spectrum of CoFe Prussian blue ana-
logues is very broad (a lamp with λ = 750 nm ≈ 1.5eV is used most often).
In experiments utilizing synchrotron radiation over a range of energy much
higher—several thousand eV—the excitation is also obtained. The quantum
yield is difficult to measure, and is not known up to now. The diamagnetic
pairs {CoIIIFeII} are excited to {CoIIIFeII}∗, and the electron transfer occurs
to the {CoIIFeIII}∗ excited state, which then relaxes to the metastable state
{CoIIFeIII} (Fig. 4.43c).{

CoIIIFeII
} hν−→ {

CoIIIFeII
}∗ → {

CoIIFeIII
}∗ → {

CoIIFeIII
}

(4.52)

The process is accompanied by an important structural reorganization, with
increase of the cobalt–ligand distances and of the unit cell parameter. A large
energy is needed for such a solid’s expansion. It explains why, when most of
the cobalt–iron CoIII–FeII pairs are tightly bound in a compact crystal such as
{Cs3.9Co4Fe4�0.1} with practically no available vacancies, the photomagnetic
process does not occur (Fig. 4.44c): the unit cell is too stiff, and the expansion
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of cobalt coordination sphere is too costly in energy. Instead, the presence
of enough vacancies allows smooth expansion of the coordination sphere of
cobalt, and permits the system to reach the metastable state after the electron
transfer (Fig. 4.44b).

The photomagnetic response depends strongly (i) on the fraction of a given
inserted cation; (ii) on the nature of the cation, for a given stoichiometry, in
a way close to the thermal electron transfer (Fig. 4.46). The most efficient
photomagnetic CoFe solid is close to{Cs1Co4Fe4�1}; that is, one cation and
one vacancy per conventional cell (Fig. 4.46a.b). When the thermally driven
electron transfer occurs with an hysteresis loop (Fig. 4.45b), it is possible to
trigger the system within the hysteresis loop with a laser from low-spin to high-
spin. The transition can be one-phase or two-phase, depending on the cation
content, as revealed by powder synchrotron X-ray diffraction. In one-phase
transitions (in {Cs0.7Co4Fe2.9�1.1} for example), the network changes its cell
parameter continuously during the photo-induced electron transfer within the
same crystallographic phase. In two-phase transitions (in {Rb1.8Co4Fe3.3�0.7}
for example), the initial {CoIIIFeII} phase with a small cell parameter dis-
appears progressively during excitation at low temperature to give a new
{CoIIFeIII} phase, with a longer cell parameter. During the photoexcitation the
system is biphasic. When the temperature is increased in absence of irradiation,
the metastable phase {CoIIFeIII} feeds the ground state {CoIIIFeII} phase,
which remains the only one at the relaxation temperature Trelax. The magnetic
consequences of the thermal relaxation of the metastable state {CoIIFeIII}∗ also
merit interest. They are summarized as follows:

metastable
{
CoIIFeIII

}∗ Tc⇔ metastable
{
CoIIFeIII

}∗ Trelax−→ {
CoIIIFeII

}
(4.53)

3D ferrimagnet paramagnetic diamagnetic

The increase of temperature after obtaining the metastable {CoIIFeIII}∗ fer-
rimagnet phase at low temperature provokes two distinct events: (a) above
the Curie temperature TC, the appearance of a metastable paramagnetic phase
(Fig. 4.43a); this step is reversible if the sample is not heated above the
relaxation temperature Trelax; (b) at Trelax, the relaxation to the diamagnetic
phase {CoIIIFeII}(Fig. 4.43c); this step is irreversible. No quantitative data
concerning the dynamics of the phenomenon is available.

The interest of such systems is obvious for photomagnetic information
storage. Figure 4.47 reports the results of two unpublished experiments.
Figure 4.47a shows a Kerr effect experiment. The Kerr effect is the rota-
tion of linearly polarized light when reflected by a magnetized substance.
The θ rotation angle is proportional to the magnetization. The experiment
was realized by Ferré et al. (Paris-Sud University) on a powdered sample
of diamagnetic{Rb1.8Co4Fe3.3�0.7}. The spot of the irradiation laser is used
either to read only (low power, 0.7 mW mm–2) or to read and write the inform-
ation (high power, 70 mW mm–2). The curves shown are the sum of signal
recorded during two hours at a temperature of 2 K. Before irradiation, curve
1 is flat (plain line, read only at low power); the sample is not magnetized.
Curve 2 (plain black line, read and write process, high power) displays a hys-
teresis curve typical of a soft magnet. Curve 3 (plain grey line, read only, low
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Fig. 4.47
(a) Kerr measurements demonstrating
a rewritable photomagnetic memory in
microcrystalline CoFe Prussian blue
analogue {Rb1.8Co4Fe3.3�0.7} (adapted
from Ferré, Orsay, see text for nature
of curves 1–4); (b) scanning electron
microscope image of nanoparticles of
{Rb1.8Co4Fe3.3�0.7} on a microSQUID;
the size of the white cubic particle
near the two Josephson junctions is
≈ 100 nm; (c) hysteresis curves recorded
after different irradiation times: 1
(dashed) before irradiation; 2 (light grey)
after 30 min irradiation; 3 (dark grey),
after 100 min; 4 (black) saturation after
twelve hours. (b and c from Wernsdorfer,
Grenoble; personal communication.
Courtesy of J. Ferré, Orsay).

power) demonstrates that the magnetic information was stored and can be read
(memory effect). Finally, curve 4 (dashed line, partly hidden by curve 1, read
only), recorded above Trelax shows that the photomagnetic information has
been erased thermally. This is a first example of a rewritable photomagnetic
memory. Nevertheless, before it can be used as a useful device a solution to
the crucial problem of low critical temperature must be found.

On the other hand, efforts have been developed to obtain such photomag-
netic systems at the nanoscale and check their photomagnetic properties.
We select only one spectacular result. Figure 4.47b shows a scanning elec-
tron microscope image of cubic nanoparticles of CoFe Prussian blue analogues
(≈ 100 nanometers), prepared by controlled crystal growth and lying on a
microSQUID. Figure 4.47c displays the signal of this unique microSQUID,
and demonstrates that photomagnetism can be induced on nanoparticles of
such size. From curve 1 before irradiation (very weakly paramagnetic) to
curve 4 (after twelve hours) a transition to a three-dimensional ordered magnet
is observed. There is still a long way to go to produce a photomagnetic device
allowing the storage of bits of information at the submicronic scale at room
temperature, but demonstrative experiments now exist at low temperature.

We have now reached the end of this chapter. The reader can realize that the
domain of non-linear optics is missing. In this area, the response of the system
is no longer linear with the applied electromagnetic field beyond a given beam
power. With cleverly designed polar and polarizable molecules, the absorption
of a photon is followed by the emission of light with double or triple frequency
(second or triple harmonic generation), among other aspects. But this is not the
place to develop this point, which can be found elsewhere [4.34].

Instead, we have described and tried to explain the basic principles of pho-
tophysics controlling the excitation of electrons in molecules. We illustrated
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them through a few selected phenomena: electron–hole separation, electron
and energy transfer, and photomagnetism, which are crucial for basic know-
ledge and applications (light-emitting diodes, photovoltaic devices, harness-
ing photochemical energy, harvesting light energy, displays or/and magnetic
recording). All these areas are developing very rapidly. We shall use this know-
ledge in the next chapter, which is devoted to molecular electronics, or the
mastered electron.
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The mastered electron:
molecular electronics 5
5.1 Introduction and historical account
As we have seen in previous chapters, there are many ways to control the
behaviour of electrons in molecules, by playing with magnetic effects, elec-
trical fields, or excitations with photons. Mastering electron behaviour in
molecules can become a reality leading to an ambitious goal: molecular elec-
tronics. Molecular electronics unifies the richness of molecular chemistry and
electronics.

In a broad sense, the topic can be defined as the manipulation of electrical,
optical, or magnetic signals in devices made from molecules. The concept
appeared in the 1980s, boosted by the continuous miniaturization of electronic
circuits (see Box ‘Moore’s law’). This led to the idea that instead of going
down, ‘top down’ (shrinking more and more electronic circuits by the progress
of lithography), it was time to start from the bottom, ‘bottom up’, by build-
ing perfectly controlled atomic assemblies—molecules—and then associating
them to realize circuits. But an even more important motivation came from
the extreme richness of molecular chemistry, compared to the apparent sim-
plicity of conventional inorganic materials used in microelectronics, such as
silicon, germanium, III–V semiconductors, and so on. This richness suggests
many possibilities of reaching qualitatively new functions by associating sev-
eral properties [5.1, 5.2, 5.3]. We describe in this chapter the endeavours to
master electrons, extending to the tiny and to the complex.

Moore’s law

At the dawn of electronics, transistors and other components were fabricated and
assembled one by one. Then came the era of integration—the realization of many
transistors in parallel by a planar process on a silicon chip. After only a few years of
this new mode of fabrication, in 1965 Gordon Moore (who later was to be one of the
founders of Intel) formulated his famous ‘law’: ‘The number of transistors integrated
on a chip doubles every two years’. The extraordinary aspect of this prediction is that
it was formulated only three years after the beginning of integration, but remained
valid for more than forty years.



388 The mastered electron: molecular electronics

1970 1980 1990 2000 2010

10 000

100 000

1 000 000 1 M 

10 M 

100 M 

1000 M 

4004

8080

8086

386

486

Pentium

Pentium 4 

Itanium (Tukwila)

Years

N
um

be
r 

of
 tr

an
si

st
or

s

Pentium II

Itanium 2 

Fig. 1
Increase over the years in the num-
ber of transistors integrated on a chip
(log scale), with the name of popular
processors.

The increase in the number of transistors integrated on a chip was essentially
due to the decrease in size of each component (the size of the silicon wafer
on which circuits are realized did not increase very much). Thus an alternat-
ive formulation of Moore’s law could be: ‘The minimum feature size one can
realize on a silicon chip (and thus the size of a typical transistor) decreases by
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a factor of two every four years’. From the beginning of the integration era to now,
the minimum feature size has decreased from several tens of microns to 65 nm
for present processes. This continuous decrease has been the result of a series
of technological improvements rather than the result of a unique scientific break-
through. At the same time as dimensions decreased, the energy consumption per
logic operation also decreased, as well as the cost per transistor.

Of course, there must be some physical limits to the continuous reduction in
size, and no exponential law can last forever. After several decades of apparent
insouciance, the semiconductor industry is increasingly concerned by the approach
of physical limits. Thus it is recognized that problems such as crosstalk (defect
of insulation of the devices), interconnections, energy dissipation, and quality of
the materials are more and more difficult and costly to solve. The opinion of
experts is expressed periodically in the International Technology Roadmap for
Semiconductors (ITRS). Presently, in addition to new progress in scaling—‘more
Moore’ (a 22-nm size is now realized)—the roadmap opens the way to a new step—
‘more than Moore’—with functional diversification based on the improvement of
integration (with ‘system on chip’ (SoC) combined with ‘system in package’ (SiP)).
Another related aspect of the evolution of the semiconductor industry concerns cost
and investments for new factories. Processes are more and more demanding in terms
of complexity and accuracy. It is admitted now that the cost of a new factory doubles
at each generation of processes—over a period of three years—and could become
prohibitive. In 2010 it reached around $5 billion—a figure greater than the Gross
National Product of many countries.

Thus, for both fundamental and financial reasons, no exponential can go on for
ever.

Over the last ten years the interest in molecular electronics has also been boos-
ted by the general motivation about nanosciences and nanotechnologies. These
topics share with molecular electronics the same motivation for size reduction,
for the most precise control of the objects to be built (ideally at the atomic
scale), and the pervasive occurrence of quantum effects. Molecular electronics
can now be considered as a branch of nanosciences, and takes full advantage
of the existence of nanotechnologies.

Meanwhile, molecular electronics is dealing with more and more complex
systems, programming either several functions in the same molecule (molecu-
lar chemistry) or self-assembling building blocks with the desired functions
(supramolecular chemistry).

The definition of molecular electronics presented here encompasses two
limiting cases, which have been frequently amalgamated in the past: (i)
the achievement of electronic functions using molecular materials—a large
number of molecules, the behaviour of any practical device being largely
determined by cooperative effects—and (ii) the achievement of functions
based on single molecules. There is an intermediate case (iii) in which one uses
an ensemble of molecules, but without interaction between themselves. In this
last case, a large number of molecules is necessary to obtain sufficient sig-
nal, as the system is usually probed by some kind of spectroscopic technique,
giving rise to an average response.

In this chapter we privilege the second approach, which constitutes the heart
of molecular electronics. Implementing an electronic function at the scale of
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a unique molecule is an important and exciting scientific challenge. It neces-
sitates the maximum control of the molecule’s behaviour, of its interaction
with the macroscopic world, and a full understanding of the quantum nature
of its response. The third approach will also be considered, as it allows link-
ing in a precise way the properties of the molecule to the desired function,
and frequently constitutes an intermediate step between the elaboration of
new molecules and their use in single molecule experiments. Such molecular
systems gathering several functions are of peculiar interest.

From an historical point of view, mastering the behaviour of electrons is
an intrinsic goal of chemistry, from its very beginning. Thus electronic effects
(breaking and building bonds, concept of donor or acceptor groups, polariza-
tion, conjugation) have been in the background of chemists’ knowledge for a
very long time. But the objective has long been to control reactivity. The advent
of conducting polymers in the 1960s showed that organic macromolecules—
considered at that time as insulating—could contain mobile electrons, and that
metallic conductivity was not restricted to metals. This is well explained by the
band model (see Sections 1.4 and 3.3), and seems trivial more than forty later,
but at that early time it was a conceptual revolution.

As far as molecular materials are concerned (approach (i)), the subject is
indeed extremely wide, and could justify a whole textbook. Let us mention
that molecules, as molecular assemblies, are already and increasingly used in
electronics, under different forms: liquid crystals for displays, polymers for
lithographic photoresists, organics for light-emitting diodes (Section 4.3.3),
and so on. A new scientific area is developing under the name of ‘organic
electronics’. We invite the reader to consult more detailed and extensive refer-
ences on these subjects [5.4]. Regarding electric properties of molecular and
macromolecular materials, after several decades of research, the field has now
reached maturity. Thus molecular semiconductors are a reality and can be used
in diverse applications such as thin-film transistors, solar cells (Section 4.3.4),
gas sensors, and so on [5.5]. A particularly important application is in light-
emitting diodes based on conjugated polymers. The effect was discovered
inadvertently in 1989, and has since been subject to tremendous development
[5.6]. It was presented in Section 4.3.3. The great interest of these materials
resides in their ease of processing by methods adapted to the deposition on a
flexible substrate, such as painting or spin-coating (that is, applied on a fast-
rotating substrate to spread a thin layer of the liquid by centrifugal effect). It is
probable that they will find increasing applications in many common objects
such as cell phone displays, or even large panels for traffic signals.

However, using an organic conductor or semiconductor instead of silicon for
its bulk properties does not change radically the concepts of electronics. A big
leap was achieved in 1974, when Aviram (from IBM, Yorktown Heights) and
Ratner (then at the University of New York) proposed the idea of a molecular
rectifier, constituted by a single molecule connected to two ultra-thin metallic
electrodes [5.7].

Although it was not noticed immediately, it proved to be a really revolu-
tionary idea, because it was the first detailed application of the concepts
of electronics to a single molecule—an object which cannot be character-
ized by bulk properties such as resistance, relying on statistical physics. The
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generalization of this approach occurred a few years after, in particular under
the impulsion of Carter [5.8], who made a plethora of propositions for ‘molecu-
lar electronic devices’ performing the basic functions of electronics, such as
transmission, rectification, switching, amplification, and information storage.
During the larger part of the 1980s, however, it was impossible to test the
individual properties of molecules, so that most of the propositions remained
‘thinking experiments’ (‘gedanken experiments, expériences de pensée’).

In 1981 the appearance of the scanning tunnelling microscope (STM),
invented by Binnig and Rohrer (recipients of the Nobel Prize in Physics in
1986 [5.9], together with Ruska, the inventor of the more conventional electron
microscope), was another breakthrough. The STM is based on the tunnel cur-
rent arising between a metallic surface and the apex of a metallic tip brought
in close proximity to it. Two important consequences result from this setup:
(i) the system fully uses the quantum nature of electrons, which can cross
the void between the metallic conductors, though they do not have enough
energy in the classical model, and (ii) the size of the active part of the device
is extremely small, of molecular dimensions. These characteristics were soon
recognized as the first practical opportunity to study electron transport through
unique molecules, by allowing the realization of metal/molecule/metal junc-
tions of controlled dimensions. But in addition, it turned out that the STM tip
is not only an observation tool but also a fabrication tool (Fig. 5.1). Thus,
in 1991 Eigler started a pioneer work by imaging and manipulating a single
xenon atom [5.10]. The extension to molecules appeared soon afterwards, with
the STM study of the current through a C60 molecule [5.11a]. Now, twenty
years after these breakthroughs, a huge number of molecules have been stud-
ied under the tip of an STM, the most precise results being obtained under
ultra-high vacuum (UHV) at low temperatures. Molecules have been specially
elaborated to present specific functions and behave as mechanical or electronic
elements, or even to permit selective bond formation by local activation of a
specific group [5.11b]. A special effort is devoted to switches [5.11c]. It is
also possible, by using a magnetic tip, to perform the spin-mapping of atomic
or molecular deposits [5.11d]. These realizations pave the way for molecular
nanotechnology, including chemistry at the nanoscale.

It is important to stress at this point that a molecule is a quantum object and
that any kind of macroscopic tool to observe it will have direct consequences
on the properties of the molecule and will, more or less, modify them. The
reader will realize soon that in many cases what is observed is not the prop-
erty of the initial molecular system itself but the property of the system in
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(a) (b) (c) Fig. 5.1
Schematic drawing of an STM tip: (a) the
tip acts as an observation tool measur-
ing a tunnelling current i in site A, giving
information on the tip-to-object distance,
h; (b) the tip acts as a manipulating tool,
displacing an atomic or molecular object
from site A to site B on the surface; (c) the
tip is ready to measure at site B.
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interaction with the measuring tool. This intrinsic drawback was predicted a
long time ago by pioneers in quantum mechanics, and is now experienced daily
by the scientists working in this field.

Returning to the metal/molecule/metal junctions, their realization with a
STM is, of course, a laboratory demonstrator for fundamental studies. Their
practical mass fabrication requires a planar process. Several methods based on
microelectronics processes have been proposed [5.12, 5.13], and are described
in Section 5.2.1.

We begin this chapter with the concept of ‘hybrid molecular electronics’, in
which molecules are connected through metallic conductors. As we shall see,
in the last ten years the basic functions of electronic devices (namely transmis-
sion, rectification, switching) have been really achieved with a device made of
just one molecule. Then we shall expand the discussion to assemblies of active,
‘smart’ molecules, either in solution or in the solid state. Finally, in the con-
clusion, we shall discuss the possible evolution of the subject, and the trends
that can be forecast already.

5.2 Hybrid molecular electronics
We call hybrid molecular electronics [5.14] a situation in which molecular
components made of single molecules are used to process signals, but they are
still connected to metallic conductors of very small dimensions (nanometer-
sized or below). The metallic pads ensure the connection between the different
molecular elements. In this situation, electrons cross the molecular system but
usually do not reside in it: they jump from one metallic conductor to the other,
where they are thermalized. The process is a variant of the electronic tunnelling
effect, because the energy levels of the molecular system are usually too high,
when compared to the Fermi levels of the two metallic connections. But, as in
the electron transfer process (Section 3.2), the chemical nature of the molecule
plays a role to facilitate electron transport.

5.2.1 Realization of metal–molecule–metal connections

Realizing a metal–molecule–metal unit in a controlled way, to address ideally
a single molecule, is a great challenge. On the one hand, molecules are very
small objects, with sizes of typically a few nanometers. On the other hand,
until a recent date, most artificial structures that could be elaborated, using,
for instance, microlithography, were far larger—typically several hundreds of
nanometers. The situation has changed in the last fifteen years, and there are
now several available techniques for realizing metal–molecule–metal connec-
tions. They are illustrated in Fig. 5.2 and are discussed briefly next. Since the
useful parts of the electrodes which interact with the molecule are necessarily
of nanometric dimensions, the metal–molecule–metal system is called, in the
following, a nanojunction.

Broadly speaking, the connection methods can be divided into two groups:
‘vertical configuration’ and ‘horizontal configuration’ methods—‘vertical’ and
‘horizontal’ referring to the orientation of the current flow with respect to
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(See text.)
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the substrate surface. Another important classification distinguishes methods
involving a statistical ensemble of many molecules addressed in parallel, and
methods allowing measurements on a single molecule.

We begin with ‘vertical’ methods. The first attempts were based on
Langmuir–Blodgett (LB) films, using amphiphilic molecules, usually made of
a polar (hydrosoluble) head and a long aliphatic tail. The molecules orient
in a parallel way at a water–air interface, and are then deposited on a con-
ducting substrate. Depositing a conducting pad on the top of the film allows
the electrical connection (Fig. 5.2a). However, even when reducing the lateral
dimensions of the pad, the measurement bears on a large number of molecules.
The method is thus sensitive to defects of the LB layers—in particular, those
acting as short-circuits.

A related method relies on the preparation of a nanopore (30–50 nm in
diameter) in a thin layer of an insulating substance deposited on a metal elec-
trode. Molecules are then deposited and spontaneously fill the nanopore in an
organized way, with in principle few or no defects. Then an upper electrode
is evaporated on the top of the structure (Fig. 5.2b). The number of addressed
molecules is typically a few thousand [5.15].

The use of the scanning tunnelling microscope (STM) is the main basis of
methods allowing single molecule measurements. Since the tip can be posi-
tioned with an extreme accuracy (less than 0.1 nm), it can be positioned
just above the desired molecule, itself lying on the conducting substrate. The
advantage is that the geometry of the system can be known precisely, and
in some respect can be modified, for instance, by varying the tip–substrate
distance h (Fig. 5.1a and 5.2c). A drawback is that most molecules slip on sur-
faces. In addition, it is difficult to stabilize accurately the tip position, except
at very low temperatures. Finally, the junction is asymmetric, since the contact
of the molecule is tighter with the substrate than with the STM tip, and this can
have deep consequences for the behaviour of the junction.

Due to the mobility of molecules, the ‘direct’ STM method (Fig. 5.2c) is
rarely used, and several variants or refinements have been described. Thus one
can design molecules which can spontaneously adsorb on atomic steps, and
thus stay still there. Atomic steps exist on most crystalline surfaces, giving
rise to terraces. Their occurrence and properties are well known, so it is pos-
sible to adapt the shape of the molecules to the step geometry (Fig. 5.2d). The
molecules are usually built from a planar ‘conducting’ board equipped with
‘insulating’ and bulky ‘legs’ [5.16]. The advantage of this method is that the
metal–molecule connection is perfectly defined, even at the atomic scale. The
quality of the contact (in other words, the nature of the interaction between the
tool and the object) is indeed a key point in many studies.

Another way to immobilize molecules is to embed them in a self-assembled
monolayer (SAM). Usually the SAM is made of alkanethiols deposited on
gold. The thiol function makes an extremely strong covalent bond with the gold
atoms of the surface, and the alkyl chains pack together in a compact way (Fig.
5.2e). The alkyl chain being saturated does not contribute appreciably to elec-
tron transport. Thus, if an active molecule, equipped with a thiol function, is
introduced during the SAM formation, it is enclosed in the SAM in a ‘vertical’
position. The other molecular end can then be approached by the STM tip.



Hybrid molecular electronics 395

A variant of the SAM method makes use of nanoparticles. Molecules bear-
ing two thiol functions, one at each end, are dispersed in a SAM of alkanethiol.
A solution containing gold nanoparticles is then deposited, which leads to the
attachment of a nanoparticle on the outer thiol function. Finally, the nano-
particles are individually contacted by a gold-coated tip of an atomic force
microscope (Fig. 5.2f). The great advantage of this method is to yield highly
reproducible contacts [5.17].

Vertical methods based on the STM are, of course, extremely efficient for
demonstration purposes, but they rely on a complex system unsuitable to mass
fabrication and studies. Several other methods have been proposed, taking
advantage of the progress in micro- and even nano-fabrication. They can be
qualified as ‘horizontal’ or ‘planar’ because the two electrodes are in the plane
of the substrate.

The most direct method can be called ‘planar’ in the spirit of the planar
realization of most electronic devices. The molecule is deposited on an insulat-
ing substrate (usually SiO2) on which two small metallic electrodes have been
prepared by electron-beam (e-beam) lithography (Fig. 5.2g). The challenge
is, of course, to put the molecule in the right place, with the right orienta-
tion. Regarding electrodes, they must be extremely small. But the resolution of
electron-beam lithography is hampered by many factors: the size of the elec-
tron beam, the effect of secondary electrons in the e-beam writing process,
the imperfections of the resist, and the grain structure of the deposited metal.
Pushing the method to its extreme limits has allowed the realization of junc-
tions in the 5 nm size range [5.18]. The method is convenient only for very
long molecules—in particular, carbon nanotubes—because the exact distance
between electrodes cannot be accurately fixed. Note that the electrodes must
be buried in the insulating substrate, otherwise the molecule fixation, and its
detection, for instance, by STM, are always problematic.

In the break junction method (Fig. 5.2h) one starts from an ultra-small metal
wire at the surface of an insulating substrate. The sample is then progressively
curved by the progressive action of a piezoelectric actuator (grey cones in Fig.
5.2h). The small wire (light grey) breaks eventually, and the size of the gap can
be controlled in an extremely accurate way by the flexion [5.19]. Molecules
are then deposited by wetting the junction with a solution. Frequently, one
uses elongated molecules bearing thiol functions at each of their ends, so that
they attach to gold electrodes. The length of the molecules (determined by
the chemical synthesis) must, of course, match the length of the gap, which
can be tuned by the operator. Adjusting the experimental parameters while
monitoring the electrical response of the system can lead to conditions where
just one molecule (shown by bold S in Fig. 5.2h) is connected between the two
electrodes.

Electromigration is a related technique in which a gold nanowire (prepared
by e-beam lithography) is covered with molecules of interest. Then the wire is
broken by electromigration (that is, by application of a ‘large’ current, like for a
fuse) [5.20]. The experiment is performed in parallel on many junctions, so that
some interelectrode gaps are bridged by a single molecule. The measurements
are then made only on these bridged junctions (which are identified by their
special electrical response), and the others are discarded.
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5.2.2 Principles of electrical conduction in nanosystems

5.2.2.1 Parameters defining the problem
The molecule lies between two metal electrodes and is assumed to be in inter-
action with the two. The interaction will be generally considered as weak, so
that it is still possible to recognize the properties of the molecule. One can
apply a potential difference V between the two electrodes (V = E>0 – E<0 >

0), which is called the bias voltage. The junction is then said to be polarized.
A general description of the system is based on the scheme shown in Fig. 5.3.

The Fermi energies EF1 and EF2 are also called electrochemical potentials
μ1 and μ2. The difference between these energy levels is related simply to the
electrical potential difference by:

(EF1 − EF2) = (μ1 − μ2) = eV (5.1)

From now on, the symbol e designates the absolute value of the elementary
charge: 1.6 10–19 C. The molecule is characterized by a series of electronic
levels (orbitals), with energies denoted εi, some of the orbitals being occu-
pied and others not. To simplify in a first step, we consider only the case of
a closed-shell molecule. The usual convention for one-electron energies is to
refer them to the level of an electron in vacuum, away from the molecule and
with zero kinetic energy. Thus the energies of occupied molecular orbitals are
necessarily negative (the molecule is stable). They can be determined by pho-
toelectron spectroscopy. The energy of the highest occupied molecular orbital
(HOMO) corresponds, after a change in sign, to the first ionization potential
of the molecule. Typical values for HOMO energies of stable molecules are in
the range –8 to –12 eV.

In the same way, the vacant levels can be probed by electron attachment
experiments. The energy of the lowest unoccupied molecular orbital (LUMO)
is related to the electron affinity of the molecule. Typical values of LUMO
energies are in the range –2 to 0 eV. Positive values are due to interelec-
tronic repulsion U. Above zero energy the anion radical formed by electron
attachment is not stable.

Regarding electrodes, they are described by the band model (see
Sections 1.4 and 3.3). The important parameter is the Fermi energy EF. The
Fermi energies of two electrodes made of the same metal are equal when the
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Fig. 5.3
Energy levels of the electrodes (Fermi
levels EF) and of the HOMO and LUMO
frontier molecular orbitals. Typical dis-
position for a small bias voltage with
the right electrode as positive terminal.
Increasing the voltage moves downwards
the levels of the right electrode with
respect to the left one, due to the elec-
tron’s negative charge.
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junction is not polarized. Using the same convention as for molecular levels,
the Fermi energy is negative. It corresponds, after a change in sign, to the
energy necessary to extract an electron and send it to infinity with a zero kin-
etic energy (often called the work function of the metal, as in Section 4.3.3).
In the case of gold, a frequently used metal, EF = –5.3 eV.

Thus a very frequent energy situation is the one depicted in Fig. 5.3, where
the Fermi levels of the electrodes fall in the gap between the HOMO and
LUMO of the molecule.

Figure 5.3 is obviously an oversimplified scheme, because actually the
molecular levels are modified by their interaction with the electrodes. This
effect corresponds to the chemisorption phenomenon. Each molecular level
(orbital) interacts with many levels of the electrodes. The result is a series of
orbitals which can be analysed, as usual, for solid-state structures, from the
density-of-states diagram, by performing a decomposition of the total density
of states into contributions of fragments [5.21]. The result is termed the ‘local
density of states’ (LDOS). It is the density of states weighted by the frac-
tion of its squared wavefunction that resides on a given fragment. A common
practice is to plot the LDOS in abscissa and the energy in ordinate (Fig. 5.4).
Looking at the contribution coming from the molecule, two effects arise from
chemisorption: a shift and a broadening.

There is an energy shift because of the orbital interaction of the molecule
with the surface (bonding and antibonding—only the bonding domain is shown
here), and in addition a small transfer of charge generally occurs, which
modifies the levels by electrostatic effect.

The broadening is due to the large number of metallic levels corresponding
to a given molecular level, distributed around an average value. In this process
the symmetry of the metal–molecule contact obviously plays an important role.

The broadening is defined by its width at half-height �, as shown in Fig.
5.4 [5.22]. The larger the interaction, the larger the broadening (this is remin-
iscent of the general trend when atomic orbitals combine to give molecular
orbitals; see Chapter 1). Thus �, which has the dimensions of an energy,
is a measure of the coupling strength of a given molecular level with the
electrode.
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Fig. 5.4
Energy level shift and broadening �

of a molecular level (orbital) due to
chemisorption.
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Molecular levels can be shifted as the result of charging effects. We have
seen in Section 1.5.1.1 that one-electron energies are dependent on interelec-
tronic repulsion energies of the form:

U = <ψ(1) ψ(2)
∣∣e2/r12

∣∣ψ (1) ψ (2)> (5.2)

if the two electrons 1 and 2 reside in the same molecular orbital ψ. This integral
was written in a slightly different form in eqn. (1.58c) for atomic orbitals and
denoted as j0 = U.

When the molecule is in equilibrium with a metal surface we are faced with
a new problem, since the population of an orbital varies with the molecule–
surface interaction and with the bias voltage. A given level with energy εi0 can
be occupied by a fractional number of electrons 2 f0, where f0 is the Fermi
function (the factor 2 coming from the spin α or β). The concept of fractional
occupation is at first sight surprising, but recall that the molecular and electrode
levels are mixed, so that the Fermi statistics applies indirectly to the molecular
levels.

If the number of electrons is changed to a non-equilibrium value N, we need
to evaluate the new repulsion energy term. As an approximation we can con-
sider that it appears as a repulsion energy of the form U (N – 2 f0), where U
is now a combination of terms as in eqn. (5.2), as many electrons and average
effects are involved. This energy destabilizes the system if N > 2 f0 and makes
the addition of other electrons more difficult. It is thus equivalent to consider
that the level floats up or down, according to [5.22]:

εi = εi0 + U (N − 2f0) (5.3)

Eqn. (5.3) is in fact a ‘trick’, used for lack of something better. We should
remember that in a complex system where electron–electron repulsion is
present, the total energy is not the sum of one-electron energies (see
Section 1.5), and thus the most stable state does not necessarily correspond
to the situation where the lowest-energy orbitals are occupied. By introducing
an electronic repulsion term in the energy level, as in eqn. (5.3), we restore sig-
nificance to the simple reasoning based on electron occupation of the lowest
levels. This convention will be used in the following, and U will play a role
when successive additions (or removal) of electrons are considered.

Regarding � (Fig. 5.4), another physical meaning can be given. � (the dis-
persion on the energy level) can be related to τ, the lifetime of the state in the
junction (the time it takes for an electron placed in this level to escape into the
metal) according to:

� = h̄
/
τ (5.4)

In the following we call εi the centre of the distribution of the molecular energy
levels, after their interaction with the electrodes (see Fig. 5.4). Note that if
the interaction is too great it will be difficult or even impossible to define εi.
Generally, one of the εi values is close to EF, and the corresponding level will
play an important role in the transport.

Another parameter necessary for a correct description of the metal–
molecule–metal interaction is the electrostatic potential across the junction.
It is necessary, because the potential defines the state of polarization of the
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molecule under the influence of the strong electric field E existing in the nan-
ojunction. In a simple planar model, this electric field scales as V/�, where
� is the distance between the electrodes, in the range of nanometers (hence
very small). Thus E can be very large, and this has an effect on the electrical
response.

If there is nothing in the gap between the electrodes, the potential is a simple
linear ramp between the potentials V1 and V2 of the two electrodes, themselves
related to the Fermi levels EF1 and EF2 (Fig. 5.5a). When a molecule is intro-
duced somewhere between the two electrodes (Fig. 5.5b), the problem is more
complex. A crude approach is to consider the molecule as a point-like object
which does not modify the potentials in the junction, and to apply the classical
rules of electrostatics. Calling �1 and �2 the distances between the molecule
and the electrodes 1 and 2, the voltage drop divides into two parts �V1 and
�V2, with �V1 + �V2 = V, where V is the bias voltage (Fig. 5.5b).

The two voltage drops, �V1 and �V2, between each electrode and the
molecule are given, in absolute values, by:

�V1 =
(

�1

�1 + �2

)
V = η V (5.5)
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�V2 =
(

�2

�1 + �2

)
V = (1 − η) V (5.6)

which defines the voltage division factor η —a dimensionless quantity, the
value of which is between 0 and 1. The η factor tells us to which actual
potential the molecule is submitted.

Another frequent situation is the following (Fig. 5.5c, left): the molecule is
deposited on a thin layer of an insulating substance (NaCl, Al2O3) covering
a conducting substrate, and is approached by the tip of an STM (Fig. 5.5c,
right). The curvature of the tip can generally be neglected, so that the situation
is the same as with planar electrodes. Again we use a macroscopic treatment,
now with the intervention of the relative dielectric constant of the insulator εr

[5.23]. Calling �ins the thickness of the insulator and �gap the distance between
the insulator and the STM tip, simple electrostatics shows that the total voltage
drop V now divides into:

�Vins =
(

�ins

�ins + εr �gap

)
V (5.7)

�Vgap =
(

εr�gap

�ins + εr �gap

)
V (5.8)

Of course, if εr = 1 one recovers the case of the linear ramp. Note that the
electric field is much lower by a factor εr across the insulator than across a
vacuum. To provide some orders of magnitude, εr = 8 for bulk alumina and
εr = 5.5 for bulk sodium chloride.

Eqns. (5.5)–(5.8) and Fig. 5.5 are acceptable approximations for molecules
lying ‘flat’ in the junction or on a substrate, so that most parts of the molecule
are at the same electrostatic potential. This condition is achieved for many
planar molecules deposited either on a metal or on an insulating substrate.

The situation is quite different in the case of a long molecule chemically
connected by one end to electrodes. In this case the long axis is generally per-
pendicular to the surface, so that the molecule experiences fully the voltage
drop, and polarization effects become important (Fig. 5.6). The simple notion
of voltage division factor is no longer valid. Since most used molecules are
conjugated—that is, they contain delocalized electrons—we can assume that
they are easily polarized. Thus, according to the classical laws of electrostat-
ics, most of the voltage drop should occur at the interfaces and only a small
fraction along the molecule [5.24]. But this is a very crude approach. A more
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Electrostatic potential across the junction
for a long molecule chemically connected
roughly perpendicular to electrodes.
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rigorous treatment is necessary by solving the Schrödinger and Poisson equa-
tions for the complete system (electrodes bearing their charge, and molecule)
by a self-consistent procedure, because, as seen in Section 1.5, the electrons
in the molecule are subject to the field and electrostatic repulsions of all other
electrons. The result gives the wavefunctions, the electronic density, and the
electrostatic potential at each point of the junction.

5.2.2.2 The different mechanisms
We now have all the necessary ingredients for an overview of the dif-
ferent mechanisms by which a current can be transported through the
metal–molecule–metal junction. We have defined four pertinent paramet-
ers describing the metal–molecule–metal junction, the Fermi energy EF, the
molecule–electrode interaction �, the orbital energy, εi and the interelectronic
repulsion energy U, assuming, however, that the coupling with electrodes is
small enough, so that the molecule retains its individuality. The different
mechanisms possible appear in Fig. 5.7.
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Γ EF
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1-step
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(c)
0±1

Fig. 5.7
(a) The four important parameters defin-
ing the transport regime, EF, �, εi, U. The
two classes of transport: (b) 1-step; (c)
2-step.

A first important classification of the transport regimes is to distinguish
between 1-step and 2-step processes.*

*Many authors use the expression ‘coher-
ent’ and ‘incoherent’ for 1-step and 2-
step respectively. ‘Coherent’ then means
that the wavefunction associated with the
travelling electron keeps its phase for
the whole process, which is the case in
the 1-step mechanism but not for 2-step.
However there could be confusion with
the notion of coherence between different
electrons. Due to this possible misun-
derstanding, we avoid here this nomen-
clature.

On the one hand, in 1-step transport (Fig. 5.7b), for each electronic event, an
electron crosses the junction directly from one electrode to the other. It never
localizes on the molecule, though, as will be seen, the molecular levels play a
role by increasing the efficiency of the process. The process is elastic; that
is, without energy exchange inside the junction. This results in a particu-
lar structure in the current noise—the random variation in the current for a
fixed voltage. In the present case the frequency analysis reveals a ‘shot noise’
structure. This is typical of a system in which the current is transported by ele-
mentary charges (electrons) arriving in a random way, with a fixed probability
per unit time and independence between successive events.

On the other hand, 2-step transport (Fig. 5.7c) corresponds to two independ-
ent and successive electronic events; for instance, an electron transfer from
electrode 1 to the molecule (which is temporarily reduced), and then an elec-
tron transfer from the molecule to electrode 2. During the interval between
these events, the molecule temporarily bears a negative charge. (Alternatively,
one can have first the right-side electron transfer, then the left-side electron
transfer, and in such a case a positive charge appears temporarily on the
molecule). The interval between the two transfers is randomly distributed in
time. Incoherent transport is qualified as inelastic, because when a charge loc-
alizes on the molecule there is a relaxation of the molecular geometry. Thus
some energy is dissipated inside the junction and the electron loses its phase.
The structure of the noise is different.

Looking in more detail, one can identify four different regimes according
to the values of � (the coupling) and EG, the energy difference between the
Fermi energy and the closest frontier orbital. EG varies at the opposite of the
thermodynamic tendency of the molecule to undergo a true loss or gain of
electron (oxidation or reduction) at the contact of the electrode.

The four regimes [5.25] are displayed in Fig. 5.8, showing also the occur-
rence of 1-step and 2-step transports.
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Fig. 5.8
The different transport regimes according to EG and � values. (a) Low EG and �: Coulomb staircase; after a first electron exchange to or from
the molecule, the transport is temporarily blocked by intervention of the U parameter; (b) low EG and high �: polaronic (vibronic) regime; after
electron exchange, the molecule relaxes to adapt its geometry to its new redox state; (c) High EG and low �: tunnelling regime with little or no
intervention of the molecular levels; (d) high EG and �: molecule-dependent tunnelling. With respect to the previous case, the molecule plays a
greater role by partial mixing of its levels with the electrode ones (see superexchange in Sections 2.6.2.2 and 3.2.2.6). The dotted line represents
the current in the absence of molecule. (Adapted from [5.25].)

(a) Low EG and low �, Coulomb staircase. The molecule keeps its individu-
ality and electrons move one by one. Since EG is small, a finite voltage
difference can bring molecular and electrode levels in coincidence, and
true oxidation or reduction can take place. But since � and EG are both
weak, the behaviour can be dominated by an additional parameter, which
is U. Once the molecule has been oxidized (respectively reduced) it is
impossible to remove (respectively add) another electron, unless the bias
voltage is increased and imposes it again. This gives a succession of steps
in the current, corresponding to a so-called Coulomb staircase. Actually,
the Coulomb staircase behaviour was discovered and conceptualized for
metallic nano-islands embedded inside a junction. The phenomenon is
frequently called ‘Coulomb blockade’, but we use here the denomina-
tion Coulomb staircase, more related to the experimental manifestation.
In the present case we are concerned with molecules which exhibit dif-
ferent electronic structures, since they are not metallic. But as molecules
are much smaller than these metallic nanoparticles, the two-electron repul-
sion is stronger and the concept of Coulomb staircase can be extended to
molecules.
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(b) Low EG and high �, polaronic regime. This case is the closest to a con-
ventional chemical reaction. Electron addition or removal is easy, and the
resulting charged species stabilizes itself by vibrational relaxation of the
geometry. There is thus a genuine oxidation or reduction generating a
product at thermodynamic equilibrium. The process is thus related to the
Marcus–Hush theory of electron transfer in solution, and also to the mech-
anism of charge transport in mixed valence solids (see Section 3.3.4.2).
Alternative designations are hopping-type mechanism or sequential tun-
nelling. In the polaronic regime there is an activation energy, because of
the nuclear motion in the vibrational relaxation process. When working at
low temperature on a single molecule this can lead to an hysteresis in the
current–voltage curve as shown on the figure.

(c) High EG and low �, tunnelling regime. The molecule keeps its individu-
ality. Since EG is large, the bias voltage necessary to perform electron
injection or removal becomes prohibitive. In the accessible voltage range
one observes generally only a small tunnel current. This is the tunnelling
regime. This transport regime was first formalized by Landauer in 1957
([5.26], and subsequently discussed here), but at this time the junction
was considered as just an energy barrier, without explicit introduction of a
molecule.

(d) High EG and high �, molecule-dependent tunnelling. Since EG is large
we are in a tunnel regime, but amplified by the strong molecule–electrode
interaction �. It is qualified as molecule-dependent tunnelling. Note that
in this regime the strong � makes the separation of the system in two sub-
systems (the molecule and the electrodes) increasingly difficult. Thus the
theoretical description, which is a modification of the original Landauer
treatment, must consider the metal–molecule–metal nanojunction as a
whole.

In the molecule-dependent tunnelling regime one can further distinguish
two modes of transport according to the magnitude of the voltage bias. When
the bias voltage is sufficiently large there is coincidence between at least one
molecular level and one Fermi energy, giving rise to a large increase in current.
This is called resonant tunnelling. For low bias voltage the molecular levels
and Fermi energy level are not in coincidence, but a weak quantum mech-
anical mixture of levels is still possible. Such electronic interaction between
two entities mediated by one molecule has been termed superexchange (in
Section 2.6.2.2 and Section 3.2.2.6). The electron transport is qualified as
virtual-resonant tunnelling.

With respect to the basic distinction, tunnelling and molecule-dependent
tunnelling regimes are 1-step processes, while the Coulomb staircase and
polaronic regimes are 2-step. 1-step tunnelling occurs for small molecules,
because the tunnel effect is direct and there are few energy levels and degrees
of freedom available on the molecule. Conversely, for larger and more com-
plex molecules the system will more easily find a relaxation pathway which
localizes the electron. For the same reason the temperature favours the 2-step
mechanism, because thermal energy is available for a geometrical distortion
(Section 3.1.2). Regarding bias voltage, at low bias 1-step tunnelling is the only



404 The mastered electron: molecular electronics

Table 5.1 The main classes of process for electron transport through a nanojunction.

1-step 2-step

Energy exchange in the junction? No (Elastic) Yes (inelastic)

Other names Direct tunnelling (coherent) Hopping-type, sequential tunnelling, chemical
mechanism (incoherent)

Conditions of occurrence Small molecules, low temperature
Preferably low bias voltage

Large molecules or nanoparticles, high temperature,
frequently high bias voltage

Theoretical description Scattering theory [5.26] or non-equilibrium
Green function [5.27]

Rate equations

Sub-categories —Tunnelling regime
—Molecule-dependent tunnelling, with:

—Non-resonant tunnelling (small bias)
—Resonant tunnelling (large bias)

—Hopping, Coulomb staircase (for molecules)
—Coulomb Blockade (for nanoparticles, carbon

nanotubes)

possibility, because the molecular energy level does not line up with the Fermi
levels of the electrodes (see Fig. 5.3). For high bias voltages, both processes,
1-step and 2-step, are theoretically possible.

Finally, one can remark that Coulomb staircase and Tunnelling are regimes
in which the role of the electronic structure of the molecule is minored, and the
treatment uses essentially physical concepts. By contrast, the polaronic regime
is based on the chemical concepts of oxido-reduction and molecular vibration.
Finally, the molecule-dependent tunnelling regime mixes concepts from phys-
ics (the tunnel effect) and chemistry (electronic structure of the molecule). The
main characteristics of the 1-step and 2-step cases are summarized in Table 5.1.

We now examine the theoretical treatments in more details. 1-step tunnelling
is generally treated by a formalism initiated by Landauer [5.26], linking clas-
sical and quantum aspects through the definition of a transmission coefficient.
On the other hand, 2-step tunnelling, being a sequential process, is usually
treated by rate equations for the two-electron transfers. These rate equations
are then combined using a stationary state principle, in analogy to the case of
two consecutive chemical reactions.

5.2.2.3 1-step transport
In 1-step transport the tunnel effect involves the total system constituted by
the electrodes and the molecule. Since it is a quantum process the size and
geometry of the elements, including the symmetry of their contacts, play an
important role and must be defined carefully.

We consider the basic architecture: the nanojunction. Let us start from a
small continuous metallic wire of nanometric dimensions, connected to two
metallic macroscopic pads (Fig. 5.9a). At the pad-to-nanowire connection
there is a constriction, which will play a crucial role later. Then the inner
wire is cut to leave a gap, which defines the nanojunction, the two ends being
separated by empty space (Fig. 5.9b). Finally, the gap is bridged by a single
molecule (Fig. 5.9c). In some cases this corresponds to the actual geometry of
the system—for instance, in the planar junction method evoked previously in
section 5.2.1. In other cases (methods based on the STM) it is not obvious to



Hybrid molecular electronics 405

Molecule

(a)

(b)

(c)

Gap (vacuum)

Metal
Pad Pad

Pad

Pad

Pad

Pad

Fig. 5.9
The basic architecture of a nanojunc-
tion, showing conceptual steps. The outer
metallic wires (pads) are of macro-
scopic dimensions. The inner wires are
nanometer-sized: (a) no gap; that is, a
continuous nanowire connecting the two
pads; (b) existence of a vacuum gap; (c)
gap bridged by a molecule.

identify the metallic pads and the nanowires. But there is nevertheless a con-
striction somewhere between the macro- and nanometric conductors, and we
admit that the same general theory is valid.

With normal macroscopic metallic wires, Ohm’s law V = R I is valid
(eqn. (3.101)), and the conductance G of a sample (Section 3.3.1) is given by:

G = R−1 = s

ρl
(5.9)

where s and l are respectively the section and the length of the sample, and
ρ its resistivity. The resistivity is a bulk property, independent of the geomet-
rical dimensions of the sample. Actually this behaviour comes from statistical
arguments: in the solid, electrons are permanently scattered by the surrounding
defects and impurities which are assumed to be distributed in a random way.
This is an inelastic process, for which energy is dissipated as heat, and this is
the reason for the existence of a resistance to the electron flow.

At very small scales, however, matters become more subtle, because the
inelastic processes do not occur homogeneously in space. Thus, in the case of
Fig. 5.9, in the inner metallic nanowires (constriction), the classical treatment
is no longer valid, because of the intervention of the wavelength associated
with the electron. We have thus to define the critical dimension below which
new phenomena occur. Actually, there are three dimensions to consider: the
Fermi wavelength λF associated with conduction electrons, the mean free path
λm, and the coherence length λφ ([5.14, 5.28]; and see Box ‘Characteristic
lengths’).

In this section we consider the case where the sample dimensions are of the
same magnitude as λF but much smaller than λm and λφ. Under these condi-
tions the quantum effects due to the constriction are present, but the electron
can propagate through the sample without experiencing scattering that could
change its momentum or its phase. This is the situation of ballistic transport.
It occurs in mesoscopic systems with micrometric dimensions, which were
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Fig. 5.10
Model of a nanojunction (including the
nanometric wires). (a) Scheme; (b) math-
ematical model: the nanojunction is con-
sidered as a defect for the propagation
of electronic plane waves arriving from
or to the large metallic pads. The incom-
ing amplitudes are denoted A+

L and A-
R,

while the outgoing ones are denoted A+
R

and A-
L. (see text)

intensively studied in the 1980s. The leading contribution was initiated by
Landauer from 1957 [5.26], and was later refined with Büttiker [5.29].

The Landauer treatment considered the nanojunction as a defect for the
propagation of electrons arriving from the macroscopic conductor to the
sample. In the following it is, however, better to use the plane waves asso-
ciated with the moving electrons. They can be either transmitted or reflected
(Fig. 5.10). In the most general case we can have incoming waves arriving
from opposite directions, as well as outgoing waves leaving the sample. The
amplitudes are denoted, for instance, A+

L for an incoming wave arriving from
the left and propagating in the positive direction, A−

R for a wave arriving from
the right in the negative direction, and so on. The incoming wave from the left
(A+

L) is partially transmitted with an amplitude (tLA+
L), whereas the wave enter-

ing from the right (A−
R ) is partially reflected with an amplitude (rR A−

R ). The
transmission coefficient tL and the reflection one rR take values between 0 and
1. In these conditions, an outgoing wave—for example, the one with amplitude
A+

R—is the sum of two contributions: the partial transmission of wave A+
L and

the partial reflection of wave A−
R :

A +
R = tLA +

L + rRA−
R (5.10)

This is written more compactly by using a scattering matrix which relates the
outgoing waves to the incoming waves:[

A +
R

A−
L

]
=
[

tL rR

rL tR

] [
A +

L

A−
R

]
(5.11)

Nanojunction with a continuous nanowire
Let us consider first the case of a continuous nanowire as represented in Fig.
5.9a. In the external metallic pads one can define two electrochemical poten-
tials for the electrons μ1 (= EF1, the Fermi energy) and μ2 (= EF2). The
application of a bias potential V makes the electrochemical potentials different,
and an electron flow results.

To simplify the discussion we choose the temperature at 0 K, so that the
Fermi functions on each electrode are perfect staircases with values f = 1
below EF and f = 0 above (Fig. 5.11). As for electron transfer (Chapter 3),
electron tunnelling occurs between two levels only when the energy of the
filled level is the same as the energy of the vacant one. Thus it is easy to see
that electron tunnelling occurs only in the narrow energy window of width
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Fig. 5.11
Energy levels for a junction with a con-
tinuous nanometric wire, submitted to a
bias potential V. The Fermi functions f of
the metals (grey curves) are represented
as perfect staircases, which is valid only
for T = 0 K.

�E = eV for which the levels are filled on one side and vacant on the other
side. Since the nanowire is continuous, we assume that there is a perfect trans-
mission (tL = 1 for a wave arriving from the left), and so all levels in the energy
window contribute to electron transport.

A current is a charge transported per unit time. Thus, in a simple model
[5.30] the current flowing through the nanowire can be written as:

I = 2e (vF/L) (μ1 − μ2)(∂n/∂E) (5.12)

where vF is the velocity of electrons at the Fermi level (see Box ‘Characteristic
lengths’), L is the nanowire length, and (∂n/∂E) is the density of states (num-
ber of levels at energy E within a ∂E gap). (vF/L) represents the inverse of the
transit time of an electron in the nanowire, μ1 and μ2 are the electrochem-
ical potentials in electrodes 1 and 2, and (μ1 – μ2) (∂n/∂E) represent the total
number of levels (orbitals) involved in the energy window. The factor 2 is intro-
duced because two electrons with opposite spins can be associated with each
orbital.
We expand ∂n/∂E as:

(∂n/∂E) = (∂n/∂k)(∂k/∂E) (5.13)

In the frame of the free-electron model in one dimension, (∂n/∂k) is evaluated
easily, since for a row of N sites there are N equally spaced levels between
k = – π/a and + π /a, and thus

(∂n/∂k) = Na/2π = L/2π (5.14)

The factor (∂k/∂E) can be related to the Fermi velocity vF as shown in the Box
‘Characteristic lengths’, and one obtains:

(∂k/∂E)F = 1/h̄vF (5.15)

The difference in electrochemical potentials of electrons is proportional to the
bias voltage, according to eqn. (5.1).
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Characteristic lengths and useful relations in the free electron model

Three characteristic lengths play a role in the nanojunction problem: λF, λm and λφ.
The first one, λF, the Fermi wavelength, is given by:

λF = h√
2 m Ekin,F

where Ekin,F is the kinetic energy of electrons at the Fermi level, in the frame of
the free electron model [1.9, 5.28]. This equation is found easily from the energy
E expressed as a function of the momentum p = mv (E = p2/2m) and from the de
Broglie expression of the wavelength λ associated with a particle with momentum
p (λ = h/p). Note that Ekin,F is positive, while the total (kinetic + potential) energy at
the Fermi level EF (defined in Section 1.4.2) is negative.

The mean free path λm is the average distance an electron can travel between two
collisions with impurities or defects which change its momentum. It is, of course,
determined by the purity and perfection of the sample. Finally, the third character-
istic length is the coherence length λφ, corresponding to the length over which the
associated wave of the electron retains its phase. The Fermi wavelength λF has val-
ues of the order of 0.1 nm in metals (as the interatomic distances), while λm and λφ

are much larger (102 nm) [5.14, 5.28].
The kinetic energy E(k) and the momentum p of the electrons are quantified, and

vary as shown in eqns. (a)–(d).

E(k) = h̄2k2/2m (a)

p = mvF = h̄k (b)

∂E
/
∂k = h̄2|k|/m = h̄vF (c)

∂k/∂E = 1/h̄vF (d)

This last equation is crucial for the estimation of the current through the
nanojunction.

Substituting eqns. (5.13)–(5.15) in eqn. (5.12), we finally obtain:

I = 2 e
(vF

L

)
e V

(
L

2 π

) (
2 π

h vF

)
= 2 e2

h
V (5.16)

and for the conductance:

G = I

V
= 2 e2

h
(5.17)

Thus, although there is no apparent obstacle to electron propagation, the
conductance is not infinite, but equals (2e2/h); that is, 77.4 10–6 �–1, the con-
ductance quantum. The inverse, 12.9 k�, represents the resistance quantum.

This surprising result arises from the fact that the junction is so small
that there is no inelastic scattering event inside it. Electrons cross the junc-
tion in the so-called ballistic regime without losing energy. Energy losses by
collisions occur only in the macroscopic leads. Thus, the incompressible resist-
ance quantum is some kind of contact resistance occurring at the constriction,
which is impossible to avoid because we measure V, the voltage difference
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between the two macroscopic conductors. If we could measure V directly on
the small inner wires—with the 4-probe method, commonly used for measur-
ing single crystals conductivities—we would obtain an infinite conductance (a
zero resistance).

The quantization with the numerical value close to 13 k� has indeed been
observed for a structure made of a chain of a few gold atoms suspended
between electrodes [5.31].

Eqn. (5.17) is valid for a one-dimensional wire sample in which only one
transversal quantum mode exists. One has indeed to take into account the
lateral confinement of the electron wave. As usual in quantum physics, it
gives rise to several standing modes with different energies (analogous to
the well-known quantum problem of the particle-in-a-box [1.4]. These modes
are called channels, and they contribute to the overall electron transport in
a parallel way. When the lateral dimension of the wire is of the order λF,
there is usually one channel available. For a three-dimensional (macroscopic)
wire the detailed analysis of the problem shows that the number Nch of pos-
sible channels increases with the wire section s (Nch ∝ s). There is thus a
gradual transition towards the macroscopic situation in which the conductance
is proportional to the section s of the conductor (eqn. (5.9)).

Nanojunction with a vacuum gap
Now let us assume that the nanowire is broken by a vacuum gap (Fig. 5.9b).
Then the passage of an electron from the left-hand part to the right-hand part
of the system is governed by a transmission coefficient T(E), itself given by the
square of the relevant scattering matrix element. Thus for a propagation from
the left to the right:

T(E) = |tL|2 (5.18)

Since the process occurs with electrons at energies close to the Fermi energy
EF, the transmission coefficient is generally denoted T(EF). Taking into
account the existence of several channels and the influence of the T(E) factors,
we finally reach Landauer’s equation:

G = 2 e2

h

Nright∑
i=1

Nleft∑
j=1

Ti,j(EF) (5.19)

where Tij, function of EF, is the transmission coefficient from the left channel
i to the right channel j, and the summation operates on all couples of channels.
The Ti,j coefficients are obtained from the squared scattering matrix elements
of eqn. (5.11). If there is no gap in the nanowire, then all Ti,i = 1 while cross
terms are zero and the conductance is proportional to the number of channels.

The Landauer equation is the cornerstone of the treatment of 1-step trans-
port. It will be used most frequently in a simplified form corresponding to the
case where there is just one channel to consider; that is, without the summation
over the i and j indices.

Nanojunction with a molecule in the gap
By this stage we have simply taken into account the tunnel effect which
occurs through the empty space across the gap and determines the T(E) value
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(T(E) < 1). When a molecule bridges the gap between the two nanoelectrodes
(Fig. 5.9c) the T(E) factor is determined by the complete system ‘molecule +
nanowires’. The theory must take into account explicitly the structure of the
molecule, as well as the details of the connections to the nanowires. This was
the subject of intensive research throughout 1988–2000, but only a simplified
account is presented here.

The general procedure is to compute the scattering matrix elements by
a quantum-mechanical method, taking into account explicitly the detailed
structure of the metal–molecule–metal nanojunction. A particularly efficient
method—elastic scattering quantum chemistry (ESQC)—has been described
by Joachim and Sautet [5.32]. In its original form it is based on an extended
Hückel description of the system; that is, without taking into account explicitly
the interelectronic repulsion. However, as for the case of electron transfer pro-
cesses (see the evaluation of the Vab couplings in Section 3.2.2.6), the method
has proved very efficient in reproducing the experimental results available.

During the same period another type of method was also developed: the
‘non-equilibrium Green function’ (NEGF) [5.27]. It is, however, less intuit-
ive than the scattering method, and will not be presented here. The interested
reader can consult [5.33] for a recent implementation combining the NEGF
method with a DFT description of the system.

For a molecule bridging the gap, the T(E) factor is usually computed as a
function of the energy E of incoming electrons (corresponding to the Fermi
level EF of the electrode from which the electron is issued), leading to the
diagram in Fig. 5.12.

In the figure, T(E) (displayed horizontally) has been calculated for a large
range of E values, assuming that the position of E with respect to the molecular
energy levels can be tuned by a proper choice of the metallic electrodes, or by
modifying the molecule. But for a particular situation, there is of course only
one E value to consider (= EF), which is represented by the dotted horizontal
line in Fig. 5.12.

Incoming Electron Energy / eV
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Fig. 5.12
Computed probability of the transmission
of the electrons T(E) as a function of
the energy E of incoming electrons. The
T(E) factor is extremely small when the
Fermi energy is away from the values
of molecular energy levels. It approaches
1 when EF matches a molecular orbital
value (HOMO or LUMO), giving rise
to resonance. Note that the calculation
is performed for the complete system,
including the electrodes.
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Figure 5.12 introduces an important distinction into the general frame of
1-step transport when it implies a molecule: we can have resonant tunnel-
ling or non-resonant tunnelling. Resonant tunnelling corresponds to the case
where the Fermi level of at least one electrode matches one of the molecu-
lar εi levels. The corresponding T(EF) is large. Conversely, for non-resonant
tunnelling the Fermi level does not match molecular levels, and the corres-
ponding T(EF) is small, which corresponds to the case displayed in Fig. 5.12.
The reason for these different behaviours is the same as in Section 3.2.2.6 for
the metal–metal coupling mediated by a bridging ligand: a weak or zero energy
difference between partners (either metal and ligand in Section 3.2.2.6, or bulk
metal and molecule here) considerably increases the mixing of orbitals, and
thus increases the interaction. In Fig. 5.12 the peaks in T(E) correspond to the
intervention of either the HOMO or the LUMO in the tunnelling.

From an experimental point of view, the type of tunnelling depends essen-
tially on the applied bias voltage. As already pointed out, most systems
correspond to the case of Fig. 5.3; that is, their Fermi levels fall in the HOMO-
LUMO gap of the molecule. Thus, for a small bias voltage T(EF) is small
(no resonance) and practically constant in the energy window, and from eqn.
(5.19) the conductance G is constant. This gives rise to a linear current–voltage
curve. The first well-characterized example of this behaviour was observed for
a single C60 molecule adsorbed on gold and contacted by the tip of a STM
[5.11a]. The junction resistance was found as 54.8 M�, corresponding to a
T(EF) factor of 2.3 10–4.

For high bias voltages the situation is more complicated than that depicted
by Fig. 5.3, because the two electrodes are at markedly different potentials, so
that, from Fig. 5.12, T(E) cannot be considered as constant. Thus one has to
integrate contributions to electron transport over a range of energy levels for
the whole system. In addition, the description of the molecule must encompass
the effect of the strong electrical field between electrodes. Thus T depends now
on two parameters—the electron’s energy E and also the bias voltage V—and
will be denoted T(E,V), which means that the curve in Fig. 5.12 deforms as a
function of V.

The equation for the current is then [5.34]:

I(V) = 2 e

h

+∞∫
−∞

T(E, V) [f(E − EF1)− f(E − EF2)]dE (5.20)

where f is the Fermi function for each electrode. The integration is performed
in principle for the whole range of one-electron energies (–∞ to +∞). For a
high bias voltage there is a chance that one of the Fermi levels will line up with
a molecular level, giving rise to resonance.

Assuming that T(E,V) is known, eqn. (5.20) gives the current. Note that
the integration is effective only in an ‘energy window’, as in Fig. 5.11. The
present situation is depicted in Fig. 5.13, and differs from the simplified case
of Fig. 5.11 in two ways: (i) the energy window is much wider, and (ii) we con-
sider a non-zero temperature; that is, the Fermi functions are S-shaped instead
of perfect staircases. Thus the factor [f(E–EF1) – f(E–EF2)] entering into eqn.
(5.20) varies smoothly. The contribution to the overall current is represented
schematically in Fig. 5.13 by thick, plain, or dotted arrows.
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Fig. 5.13
Energy levels in the high bias voltage
regime, with the Fermi functions f of
the two electrodes (grey curves). The
horizontal arrows schematize the elec-
tron motions contributing to the current
in eqn. (5.20), and the ‘energy win-
dow’ where electron tunnelling occurs.
The contributions are qualitatively ranked
in the following way: thick white
arrow (strong contribution), plain arrows
(medium), dashed arrows (weak).

Imaging molecular orbitals

A spectacular and unexpected repercussion of STM studies on molecules is the ima-
ging of molecular orbitals. Let us recall that molecular orbitals were introduced by
Mulliken in 1932 (see Sections 1.3 and 1.5.2). Although they are extremely useful
for the prediction of reactivity, for a long time they have been considered by theor-
eticians merely as intermediates in the construction of the total wavefunction. It is
even claimed frequently that they have no physical existence, the only rigorously
accessible quantities being the total electronic energy and density.

Of course, the energies of the molecular orbitals are (approximately) observ-
able due to Koopman’s theorem (see Chapter 1), but until recently their shape and
symmetry has escaped direct determination.

In 2005, molecular orbitals were observed by STM for planar molecules deposited
on a metal substrate, Cu(111), itself covered by an ultrathin (two atoms thick) layer
of NaCl [1]. The role of NaCl is to decouple partially the molecule from the metal
substrate levels, so that the electronic levels of the molecule keep their individual-
ity; that is, the shift and broadening appearing in Fig. 5.4 are then minimal. When
polarizing the junction, as shown in Fig. 5.5c, the energy levels of the molecule
follow the levels of the metal substrate. Thus the first coincidence occurs with the
Fermi energy of the tip. Once the coincidence is achieved or nearly achieved, effi-
cient electron transport occurs, essentially by molecule-dependent tunnelling (with
possibly some contribution by the polaronic mechanism).

This provides a simple rule: with a positive tip there is a mixing of the tip orbitals
at the Fermi level with the HOMO, and with a negative tip the mixing occurs with the
LUMO. Hence the process is sensitive to the position of the tip with respect to the
lobes and nodes of the orbital. Consequently, the tip ‘images’ the relevant molecular
orbital. As a first approximation, one sees the square of the wavefunction ψ2.
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Evolution of the energy levels upon application of an increasing voltage bias Va (= 0) (a) < Vb

(b) < Vc (c) with the tip positive. Due to the NaCl layer the molecular levels remain close to the
substrate level (Fig. 5.5c). They go down much less (short thick arrows) than the Fermi energy
of the tip EF2 (long thick arrow). Therefore, the first coincidence occurs between the HOMO
and the Fermi level of the tip, giving rise to a strong increase in current.
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Fig. 2
(a) Position of the tip in front of
a planar molecule deposited on a
NaCl/Cu(111) substrate. (b) Molecular
skeleton of the studied molecule,
decastarphene, showing its three-fold
symmetry. (c) and (d) STM images for
different bias voltages corresponding
to the HOMO and LUMO; e) and f)
comparison with computed orbitals.
Adapted from [2].

Later experiments have shown that in some cases it is possible to get rid of the
NaCl layer [3]. Thus, depositing pentacene molecules directly on Au(111) yields
images not only of the HOMO, but also, for higher voltages, of the lower-energy
occupied orbitals HOMO-1 and HOMO-2.

A completely different method for imaging molecular orbitals was described in
2004. It is based on a tomographic reconstruction using femtosecond laser pulses
[4, 5].

E

position

hν

1

2
3

Fig. 3
Ionization and recombination process.
1: tunnel ionization; 2: electron return-
ing under the influence of the intense
laser field; 3: recombination with
photon emission in the soft X-ray range.

The principle is based on the highly non-linear behaviour of a molecule subject to
excitation by an intense (1016 W/cm2) and ultrashort (30 femtosecond) laser pulse.
The very high electrical field exceeds the field that binds electrons to the molecule,
and a special kind of ionization—tunnel ionization—occurs, though the laser fre-
quency is in the infrared range. The oscillating laser field returns the electron to
the molecule, and recombination occurs with emission of a photon in the soft-X-ray
range. During the recombination step, interference occurs between the wavefunction
of the returning electron and the one of bound states, providing information on the
orbital shape.

Practically, the molecule (in the gas phase) is first oriented by a previous laser
pulse (a common and well-mastered technique), and the experiment is thus per-
formed for a definite orientation. Associating several such experiments for different
orientations allows 3D reconstruction of the molecular orbital. Basically, the method
concerns the HOMO, but remarkably, since it is based on an interference process,
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it produces the complete wavefunction, including its phase. In addition, recent
experiments [5] also provide access to the HOMO-1.
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5.2.2.4 Transport through the 2-step process
In the two-step process a charge appears temporarily on the molecule. It is
facilitated by two factors which have been neglected so far in the Landauer
or more generally in scattering treatments: electron–phonon coupling (the
fact that a charge can modify its environment and thus can self-trap), and
electrostatic repulsion effects. These effects manifest themselves for large
and/or complex molecules or entities (metallic nanoparticles, carbon nan-
otubes). When the leading effect is electron–phonon coupling the hopping-type
transport operates; when the leading effect is electrostatic repulsions the
Coulomb staircase regime applies. These two situations will now be detailed
successively.

2-step process, hopping type (Fig. 5.8b)
A simple argument for the occurrence of the hopping-type mechanism is based
on time-scale considerations [5.35]: when the molecule is long enough, the
tunnelling time becomes large and can be of the order of vibration periods,
allowing the molecular structure to react by vibronic coupling. This is the same
problem as in the case of intramolecular electron transfer, with the opposition
between superexchange and stepwise electron transfer (see Section 3.2.2.6).

Thus, instead of ‘flying’ as a phantom from one electrode to the other, the
electron can ‘materialize’ on the molecular site, which distorts to accommod-
ate the charge. The hopping-type mechanism is analogous to the formation of a
small polaron in the case of an ionic solid (see Section 3.1.2), and corresponds
to the so-called ‘chemical mechanism’ encountered also in Section 3.2.2.6.

The experimental signature for the hopping-type mechanism is a marked
temperature dependence of the current, because there is an activation energy
to overcome. As in Section 3.1.2 the activation process concerns not only the
molecule itself but also its environment if there is a polarizable medium in the
vicinity.

From a theoretical point of view, the hopping-type mechanism is amen-
able to a treatment using rate constants. In the following, adapting [5.12] and
[5.22], we consider a simple case where the molecule is involved by just one
vacant level (the LUMO). The couplings with electrodes 1 and 2 generate
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Fig. 5.14
Electron currents I, associated with the
hopping-type mechanism: simple model
implying two electrodes and only one
vacant level (LUMO) on the molecule.

four possible electron transfers: from electrode 1 to the molecule (generating
M–) (process 1), from the charged molecule to 2 (process 2), and the reverse
processes (see Fig. 5.14).

Using eqn. (5.4) and simple probability considerations, we can write the
electron current associated with process 1 (transfer of an electron from
electrode 1 to the molecule):

I1 = e(�1/h̄)f1PM (5.21a)

where �1 is the coupling with the electrode 1 (electron donor), and f1 = f1(E)
is the Fermi function of the same electrode, for the energy E of the molecular
orbital. PM is the probability for the molecule to exist in the neutral state (that
is, its original state before receiving an electron, which is also its final state
after releasing an electron).

Equation (5.21a) translates the fact that the transfer needs an occupied state
on the electrode and a vacant state on the molecule. In the same way as the
processes denoted I2, I–1, and I–2 in Fig. 5.14, one can associate partial currents
given by:

I2 = e(�2/h̄) (1 − f2) (1 − PM) (5.21b)

I−1 = e(�1/h̄) (1 − f1) (1 − PM) (5.21c)

I−2 = e(�2/h̄)f2PM (5.21d)

After some time, a stationary state is established, for which:

I1 + I−2 = I−1 + I2 (5.22)

From eqn. (5.22) and the definitions of the partial currents, one easily obtain
the PM probability:

PM = �1(1 − f1) + �2(1 − f2)

�1 + �2
(5.23)

The overall current is given by:

I = 2(I1 − I−1) = 2(I2 − I−2) (5.24)

where the factor 2 takes into account the spin degeneracy.
Substituting PM in expressions of I1 and I–1 in the first part of eqn. (5.24),

and using eqn. (5.21) and equivalent forms, gives, after some rearrangements:
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I = 2
e

�

�1�2

�1 + �2
(f1 − f2) (5.25)

Note that this derivation is the exact analogue of the treatment of two consec-
utive chemical reactions in homogeneous phase under the assumption of the
stationary state, except that the probability PM (for the molecule to be neut-
ral) enters into the equations instead of the concentration of an intermediate
species, because we are working on a single molecule.

Eqn. (5.25) shows that the current is extremely small when the molecu-
lar level lies outside the energy window defined by the Fermi levels of the
two electrodes. For sufficient bias voltage the current increases when the
coincidence of levels begins, and then saturates to the value:

Imax = 2
e

�

�1�2

�1 + �2
(5.26)

The resulting I–V curve can be computed from eqn. (5.25) and from assump-
tions regarding the relative positions of the Fermi level of the electrodes and
the molecular level. This necessitates knowledge of the voltage division factor
(when the concept is applicable). A typical curve is depicted in Fig. 5.15.

If the voltage becomes sufficiently high, a second level can enter the
window, and a second step occurs. The previous model is a simplified
one, but reproduces most of the physical behaviour for 2-step hopping-type
transfer. However, the temperature dependence is not correctly reproduced.
Temperature enters into eqn. (5.25) via the Fermi functions, but this is not
enough. The role of vibrations is lacking. It can be introduced by consider-
ing that just before the onset of a current rise the molecular level is near to
coincidence with a Fermi level. Then, any thermally induced fluctuation could
bring the molecular level into the energy window, and thus strongly increase
the current (Fig. 5.16).

For long molecules consisting of several repeat units which can stabilize
either an electron or a positive charge, the site-to-site hopping process can
become the leading process when compared to direct inter-electrode tunnelling
(the 1-step process). Theoretical calculations show that the rate of decay of the
current with distance r is slow, and should be described by a polynomial law
as 1/(A + B r) [5.35, 5.36]. By contrast, the 1-step tunnelling implies a decay
with distance according to an exponential law (see Section 5.2.3). Thus, for
long distances only the hopping mechanism survives.

0 1 2

Imax

Bias Voltage V / V

Current I / nA

0.8

0.4

0.0

Fig. 5.15
Current (nA) versus bias voltage (V) for
typical values of the parameters: �1 =
�2 = 3.3 10–6 eV, symmetrical voltage
division factor (0.5), EG = 0.5 eV, kBT =
0.025 eV. (Adapted from Bourgoin et al,
[5.12].)
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Fig. 5.16
Thermally activated process described by
a fluctuation of the molecular energy
level (vibrations, and so on).

Transport through 2-step process: the Coulomb staircase (Fig. 5.8a)
We now turn to the other sub-category of the 2-step process. In the Coulomb
staircase regime, the leading effect is electrostatic. Actually, these effects were
first described for structures larger than molecular nanojunctions, typically for
metallic nanoparticles (1–10 nm) embedded in an insulator, or for carbon nan-
otubes (length about 100 nm) coupled to electrodes. In the following, we call
them ‘islands’ rather than ‘molecules’. Due to the size of these systems the
behaviour is intermediate between nanosized systems and mesoscopic ones.

The conditions for observing a typical Coulomb staircase are:

• A metallic structure for the island between the electrodes. Thus, contrary to
the case of molecules, there is no quantification of the energy levels.

• An extremely weak coupling (�) of the island with the electrodes. The
charge of the island cannot vary smoothly, but must take an integer value.

The fundamental qualitative explanation of a Coulomb staircase is as follows:
the coupling being very small and the system of large dimensions, no direct
(1-step) tunnelling is possible, and we can have only sequential tunnelling.
The island being large, it can present several discrete charge states (0, ± 1,
± 2, . . .). Each of these charge states appear successively at a given threshold
voltage, for which the current increases. Before the first threshold the current
is zero. The corresponding I–V curve thus exhibits, under certain conditions,
the characteristic Coulomb staircase shape (Fig. 5.8a) [5.37].

The basic quantitative interpretation is due to Likharev, and is referred as
the orthodox theory [5.38]. It is a mixture of quantum and classical treatments,
as it relies on the macroscopic concept of capacitance, though it is applied to a
system of mesoscopic dimensions (typically 100 nm). When one electron only
has been added (or removed), there is a charging energy Ec:

Ec = e2/2C (5.27)

where C is the capacitance of the capacitor made by one of the electrodes and
the island. For very small structures, Ec can be important and much greater
than kT. Charging the island necessitates providing at least this energy, which
is supplied by the bias voltage V. Thus there is a threshold voltage Vt, given by:

Vt = Ec/e = e/2C (5.28)
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Fig. 5.17
The Coulomb staircase. Plain curve:
Current-potential curve at low temperat-
ure showing well-defined steps. Dashed
curve: smoothed steps observed at higher
temperature.

Generalizing the argument to multiple charging explains the step-like pattern
of the I–V curve (Fig. 5.17).

The detailed theory, however, requires the junction to be strongly asymmet-
ric for observation of the characteristic Coulomb staircase shape (Fig. 5.17).
The potential difference between two steps (abscissa) is e/C. In addition, this
theoretical shape is obtained only at low temperature. At high temperature
the thermal energy overcomes the charging energy. Then the steps disappear
progressively and are replaced by a smoother curve (Fig. 5.17).

An interesting consequence of Coulomb blockade that can be used to
identify the phenomenon is the reduction in shot noise. In normal shot noise the
time interval between the successive passages of one electron is distributed at
random, but in the situation of Coulomb staircase, on a current step (Fig. 5.17),
when an electron has been added to the particle by tunnelling from electrode
1, the junction is blocked for a given time until the electron is removed by tun-
nelling to electrode 2. There is thus a silent period after a pulse, and the noise
is reduced with respect to the uncorrelated situation [5.37].

The Coulomb blockade effect has aroused great interest in relation to the
possibility of building one-electron devices such as transistors, switches, and
so on. Since the system is of larger dimensions than usual nanojunctions, it is
generally possible to introduce a third electrode in the vicinity of the central
island. By playing with the potential of this third electrode one can tune the
charge state of the island by capacitive influence and bring the system from a
state of Coulomb blockade (no current) to a state where a current can flow. This
is basically a one-electron transistor. Other devices include single-electron
traps, turnstiles, pumps, and oscillators, with applications in supersensitive
electrometry, DC current standards, temperature standards, and detection of
infrared radiation, and in a prospective way, digital logic gates [5.38].

The main difficulty is, however, the necessity to work at very low temper-
ature to ensure the condition kT < e2/C. With the normal systems used in
Coulomb blockade experiments (size ≈ 100 nm) the capacitance C has val-
ues of the order of 10–16 F, leading to operating temperatures below 10 K.
Decreasing the dimensions to about 1 nm reduces the capacitance, and has
raised the possible temperature to room temperature [5.37].

The concept of a Coulomb blockade has been expanded to the case where a
molecule, rather than a metallic ‘island’, is present in the nanojunction [5.39].
However, several important differences must be taken into account when trans-
ferring the Coulomb blockade reasoning to molecules. (i) Electrostatic effects
are much larger in molecules than in ‘islands’ (though the precise comparison
is difficult because the notion of capacitance has no unique-molecule counter-
part). Thus, for molecules, the successive charging states (0, ± 1, ± 2, . . .) are
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generally not observed, because they would occur for unrealistic bias voltage
values. (ii) In molecules, the energy levels (molecular orbitals) are discrete and
separated by relatively large energies. (iii) Finally, molecules being much smal-
ler than ‘islands’, the 1-step Landauer-type process is possible and frequently
overcomes the blockade’s process.

Thus, the explanation of Coulomb blockade for molecules relies on the
use of energy levels (orbitals) rather than capacitance, with proper modific-
ation of the simple model to introduce charging (electrostatic) effects. Broadly
speaking, the energy interval between steps (Eadd) is:

Eadd = Ec + �E (5.29)

where Ec is the charging energy defined previously, and �E is the separation
between molecular levels.

A typical situation is represented in Fig. 5.18. We assume that a single vacant
level is located near the Fermi levels of the electrodes. This vacant level is
theoretically able to accommodate two electrons. Upon application of a mod-
erate bias, coincidence will occur with the transfer of one electron from the
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Fig. 5.18
Energy levels for a Coulomb blockade
situation with a molecule in the nano-
junction. (a) Initial situation at zero bias,
with a molecular vacant level close to the
Fermi levels of electrodes; (b) applica-
tion of a moderate bias, leading to level
coincidence, and electron transfer from
one electrode to the vacant level; (c) after
electron transfer (reduction to the anion-
radical state), the level floats up, due
to the electron repulsion U, preventing
further electron addition.



420 The mastered electron: molecular electronics

negative electrode to the molecule, which is thus reduced to an anion-radical.
However, as soon as this event has happened the molecule is more difficult to
reduce, due to the intervention of the electronic repulsion term (which we still
call U, as in eqn. (5.2), but which is actually a sum of bielectronic integrals,
because there are many electrons). As explained previously, we can consider
that the molecular level floats up and exits from the energy window between
EF1 and EF2, precluding the further charging of the molecule to the dianion
state. In other words, all occurs as if the molecular level could accommodate
only one electron.

5.2.2.5 A special case of 1-step process: the Kondo resonance effect
When the molecular level is initially occupied by one electron, and thus
bears a spin magnetic moment, a special effect, Kondo resonance, can occur.
The effect is reminiscent of the Kondo effect observed in metals containing
magnetic impurities (Mn2+ in a copper or gold wire, for example). The phe-
nomenon was observed by de Haas in 1934 [5.40a] as a minimum in the
thermal variation of the resistance (the resistance increases at low temperat-
ure), together with a decrease of the magnetic susceptibility of the impurity
(Fig. 5.19a). The effect was first interpreted in 1964 by Kondo [5.40b] as a
scattering of the conduction electron by the impurity with an antiferromag-
netic interaction between the isolated impurity and the conduction electron.
The Kondo Hamiltonian is written H = –J Simpurity.Sconduction, where J is the
coupling constant, Simpurity is the spin of the impurity, and Sconduction is the spin
of the conducting electron. The interaction between the two electrons allows
explanation of the minimum. The temperature of the minimum is often called
the Kondo temperature, TK.
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Fig. 5.19
Low-temperature many-body effects on
metals and quantum dots with opposite
Kondo effect consequences. (a) resist-
ance in a macroscopic metal: plain curve,
metal with magnetic impurities, Kondo
effect increases the resistance at low
T; dashed curve, pure metal behaviour,
resistance saturates to a constant value
depending on defects amount; grey curve,
superconductor, resistance tends to zero;
(b) conductance in a nanojunction with a
molecule or a quantum dot as ‘impurity’
in the gap: plain curve, magnetic impur-
ity in the gap, Kondo resonance increases
the conductance up to the quantum con-
ductance limit 2e2/h; dashed line, non-
magnetic impurity, the conductance tends
to zero.

The model was further refined by Friedel and also by Anderson using a
magnetic impurity model and the ‘simple’ Hamiltonian [5.41]:

H = Himpurity(U) + Hconduction(k) + Hinteraction(V) (5.30)

where Hinteraction(V) is the Kondo Hamiltonian evoked previously. V is the
interaction between the localized impurity and the conducting electron. Over
the past twenty years the Kondo effect has undergone a revival, because
quantum dots and magnetic molecules can be described in this frame as mag-
netic impurities. Surprisingly, while in bulk metal the Kondo effect decreases
the conductivity, in the case of a nanojunction it increases the conductance at
low temperature by suppressing the Coulomb blockade (Fig. 5.19). We give
hereunder a very simplified image of a phenomenon which would be too long
to explain in detail.

We now reduce the problem to two electrons, one of which is localized
on the molecule’s SOMO ψmol (magnetic impurity or scattering impurity),
and the other is the conducting electron within the electrode (or tunnelling
between the left and right electrodes), described by a Bloch function �cond(k)
(Sections 1.4 and 3.3.2). The situation is shown in Fig. 5.20, reminiscent of the
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Fig. 5.20
The Kondo resonance effect in a nano-
junction. Energy levels scheme. (a) Initial
state, |↑,↓>, showing the singly occu-
pied molecular level which is not in res-
onance with the Fermi levels; (b) one
of the virtual states of higher energy,
|0,↑↓>; (c) final state after tunnelling,
|↓,↑>; (d) local (projected) density of
state on the molecule. The Kondo reson-
ance effect is responsible of the appear-
ance of a sharp extra peak at the Fermi
energy, and thus the current can flow
for zero bias voltage. (Adapted from
L. Kouwenhoven, L. Glazman, Physics
World, January 2001, p. 33.)

magnetic impurity model of Anderson. We have already encountered the two-
electrons-two-orbitals problem in Section 1.5.3, and we know that four states
can arise: one S = 1 triplet and three S = 0 singlet states. In the following we
use the Dirac notation |ψmol, �cond(k)> using the corresponding spins. (The
left position in the ket corresponds to the electron in the molecule, the second
to the electron in the electrodes). The triplet has the following basis set: |↑, ↑>,
|↓, ↓>, |↑, ↓> + |↓,↑> (Section 1.5.3). It plays no part in the tunnelling pro-
cess, because two like spins cannot be together on one centre, due to the Pauli
exclusion principle (or Fermi hole: an electron creates around it a hole where
the presence of a like spin is strictly forbidden). So we are dealing only with
the singlet states, based on an antiferromagnetic interaction as in the Kondo
effect in metals, which necessitates a good wavefunction overlap between the
wavefunctions of the molecule and of the conductors.

The singlet basis set is |↑,↓> - |↓,↑>, |↑↓, 0>, |0, ↑↓>. The situation depic-
ted in Fig. 5.20 corresponds to this singlet situation with a zero applied bias.
The singly occupied molecular level is located below the Fermi level of the
electrodes at energy ε0 (Fig. 5.20a, with a spin ↑, for example). At the Fermi
level of the electrode, the electron spin is opposite ↓. There is no possible
electron transfer from the electrodes to the molecular level, because of the
repulsion term U (dashed arrow in Fig. 5.20a). The energy of the doubly occu-
pied molecular level would be 2ε0 + U. Thus the current should be theoretically
blocked. But a special interaction can take place. We know that to determ-
ine the exact ground state of the system, configuration interaction is needed
between the original and excited states of proper symmetry. In the present case
the interaction between the molecule (ψmol) and the electrodes (�cond(k)) is
denoted V. The η = V/U ratio is assumed to be << 1 (weak interaction). The
calculation leads to the ground-state wavefunction �0:

�0 = (1/2)−1/2 [(1 − η2)−1/2(|↑, ↓> − |↓, ↑>) + η(|↑↓, 0> + |0, ↑↓>)
(5.31)

The presence in �0 of the excited (virtual) states |↑↓,0> and |0,↑↓> allows
stabilization of the ground state. The other crucial consequence for tunnelling
is the appearance of the so-called Kondo resonance at the Fermi level.
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The Kondo resonance is a many-body interaction which couples the initial
and final states ((a) and (c) in Fig. 5.20). The coupling occurs through higher-
energy excited (virtual) states such as that shown in Fig. 5.20b, described by
|0,↑↓>. The levels available for tunnelling are then described by a Bloch
orbital, depending on k, where a density of states (DOS) can be defined. (In
fact, many of them, since there are many Bloch orbitals concerned on the elec-
trodes.) Particularly interesting is the local density of states (LDOS) of the
molecule (the participation of the molecule to the DOS), which exhibits not
only the broadened peak around energy ε0, as seen before, but also an addi-
tional narrow peak, precisely at the Fermi energy (Fig. 5.20d). This feature,
known as the Kondo resonance, is important, because the electron tunnelling
is determined by the density of states at the Fermi level. All happens as if
(part of) the molecular level had moved upwards and put in resonance with the
electrode Fermi levels. The experimental consequence is an increase in con-
ductance for zero bias. Of course, this mechanism would be impossible if the
molecular level were occupied by two electrons with opposite spins, which is
why Kondo resonance requires a molecule with an odd number of electrons.
As we shall see in Section 5.2.9.1, molecules present, in addition, advantages
over quantum dots for the observation of the Kondo resonance: (i) the phe-
nomenon is now well established in molecules (present in open-shell radicals
and not in the corresponding closed-shell species); (ii) the Kondo resonance
temperature TK is much higher for molecules.

In the next section we consider examples of molecules and the correspond-
ing functions which have been realized in the hybrid architecture. We start
with very simple components of the two-terminal type, and then try to expand
to three-terminal devices, which are, of course, much more promising for data
treatment because they can mimic switches and transistors.

5.2.3 Molecular wires

The molecular wire is conceptually the simplest system: the molecule must
play the rôle of an electron pipe; that is, it must facilitate as much as possible
the electron transfer from one metallic pad to another (Fig. 5.21). Usually,
molecular wires work in the 1-step regime.

From the beginning, researchers have explored the possibilities of
π-conjugated oligomers, using the large body of studies on conducting poly-
mers as guidelines. One should note, however, several important differences in
the case of such polymers: (i) in the present case the molecular wire must be
of defined length; (ii) there is no ‘doping’; (iii) the desired properties must be
really intramolecular, and should not depend on collective or intermolecular
effects (compare with doped polyacetylene; Section 3.3.2.2).

Experimental studies frequently use long molecules functionalized by thiol
groups, to ensure a strong covalent fixation on gold electrodes, and the con-
nection is performed by the breakjunction technique (Fig. 5.2h) or a variant
([5.12, 5.17, 5.42]). The transport usually occurs in the molecule-dependent
tunnelling regime, with non-linear I–V curves for high bias voltages, due to
resonance effects.
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(a) A molecular wire between two elec-
trodes. The wire is made of several repeat
units, here thiophene moieties; (b) the
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a typical current-voltage curve for a
gold-T3-gold junction, showing the lin-
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The case of bis-thiol-terthiophene (T3, Fig. 5.21b) constitutes a typical
example. The molecule has been connected to two gold electrodes using the
break junction technique, and after a number of control experiments neces-
sary for showing that the electrodes were linked by just one molecule, the
current voltage curve shown in Fig. 5.21 is obtained [5.42]. It is symmetrical,
and presents step-like features. The interpretation is different according to the
imposed bias voltage.

At low bias (< 0.1 V), the I–V curve is linear, with a very weak (but non-
zero) slope. The slope is the junction conductance, and the most typical value
obtained for several samples is 80 nS (one nano-Siemens, nS = 10–9 �–1).
We are here in the molecule-dependent tunnelling regime with virtual reson-
ance (Fig. 5.8d); that is, the tunnelling is increased by partial mixing of the
electrode levels with one molecular level—here the HOMO. This can be repro-
duced by calculation, using the Landauer formula (eqn. (5.19) with just one
channel), with a value of the transmission coefficient T(E) computed by the
ESQC technique. T(E) depends on the incident electron energy, as in generic
Fig. 5.12. The quantitative simulation requires two pieces of information: (i)
the exact geometry, including the contact’s geometry, because it determines
the overall T(E) curve, and (ii) the EF value.

Regarding the geometry, the critical parameter is the Au–S bond length,
which has been taken as 1.9 Å (190 pm) according to structural studies, but
could actually be larger [5.42]. The EF energy is close to the HOMO energy,
and the difference EF – EHOMO is estimated to be in the 0.0–0.7 eV range. With
EF – EHOMO = 0.6 eV, a nanojunction conductance of 87 nS is obtained, as
observed experimentally [5.42].

For large bias voltage (> 0.1 V) the I–V curve is no longer linear, and steps
appear. They are not placed regularly, contrary to the case of the Coulomb
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blockade/Coulomb staircase regime (Fig. 5.8a), and so the possible interpreta-
tions are either the molecule-dependent tunnelling regime with resonance (Fig.
5.8d) or the polaronic model (Fig. 5.8b) [5.42]. In the first case, the current can
be computed from eqn. (5.20) and again the T(E) curve. In the second case,
the current is calculated by sequential tunnelling formalism of the type given
by eqn. (5.25), but with additional parameters describing the contact barriers at
both ends of the molecule. The best agreement is obtained with the polaronic
model (sequential tunnelling; Fig. 5.8b).

This example, however, shows the difficulty of reaching firm conclusions
regarding the exact transport mechanism, because several adjustable paramet-
ers have to be used. In addition, it is possible to evolve smoothly between the
two invoked mechanisms, which are only limiting cases. Both are based on the
oxidizable character of the T3 molecule, with relatively high-energy HOMO.
The question is thus to know whether a true redox reaction occurs, generating
transiently the T3+• cation radical, or if its lifetime is so short that only level
mixing can be invoked. Reality could be intermediate between these possibil-
ities. Finally, as a sufficiently advanced theoretical description (self-consistent
quantum calculations), the exact energy of a molecular level depends on the
charge state, and this introduces an argument similar to the Coulomb blockade
mechanism.

For molecular wires an important question concerns the decay of the effi-
ciency of the electron transport with length. This is best studied by using
weak bias voltage—that is, in the non-resonant tunnelling regime—because the
efficiency is characterized by a single number, either T(EF) or the junction con-
ductance. Under these conditions the conductance of the metal/molecule/metal
nanojunction varies generally with the length L of the molecule according to a
decreasing exponential law [5.43]:

G = G0 exp(−γ′L) (5.32)

The exponential coefficient γ′ is a parameter, expressed in Å–1 (1 Å–1 =
10 nm–1), which characterizes the G decay provoked by the increase of the
length of the molecule. One wishes, of course, to have γ′ as small as possible.

This problem was first tackled by theory, which can probe a large number of
different chemical structures—in particular, oligomeric structures consisting
of the repetition of a given moiety [5.44]. Thus systematic calculations by the
ESQC method show that the γ′ factor is in the 0.2–0.6 Å–1 range for conjug-
ated systems, versus 0.6–1.0 Å–1 for aliphatic chains, and about 2.3 Å–1 for a
tunnelling through empty space (thus confirming that tunnelling is much more
efficient through the molecule than through vacuum); see Fig. 5.22. The G0

conductance is determined by the degree of coupling of the molecule with the
electrodes.

The variation in conductance can be extremely large for apparently similar
conjugated structures. Theory can thus help to identify the best chemical struc-
tures; that is, those presenting a high conductance for a given length and/or a
weak γ′ factor [5.44].

From the experimental point of view, carotenoid polyenes with five to eleven
conjugated double bonds have been connected to electrodes and show a γ′
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Theoretical calculation of the T(E)
transmission coefficient as a function of
distance, for different chemical struc-
tures. Log T(E) is plotted as a function
of the inter-electrode distance for several
representative chemical structures made
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butadiyne); 4: Oligo (benzoanthracene);
5 (dashed): transmission through
vacuum. (Adapted from [5.44].)

parameter of 0.22 Å–1, and this can be reproduced by electronic structure cal-
culations [5.45]. But a more systematic characterization is possible by using
a polymer chain deposited on a substrate, and for which one extremity can be
grasped and lifted progressively by the tip of an STM [5.46]. It is then pos-
sible to study the conductance of a single chain as a continuous function of the
effective length (Fig. 5.23). The result shows a general exponential decay of the
conductance with a γ′ factor of 0.38 Å–1—a value consistent with theoretical
calculations.

Finally, it is interesting to draw a parallel with electron transfer studies
in mixed valence compounds—in particular, those containing long conjug-
ated bridges, since the motivation is also to select systems with the smallest
attenuation with distance (see Section 3.2.2.6) [5.47]. Actually, a relation-
ship between intramolecular electron transfer in solution in a donor–bridge–
acceptor system (DA) and molecular conduction in a nanojunction containing
the same molecule can been established theoretically [5.48].

G = 8 e2

π2�L
D �R

A F
ket (5.33a)

where G is the conductance of the nanojunction, ket is the intramolecular elec-
tron transfer rate constant, �L

D and �R
A are couplings of the donor part with

the left electrode and the acceptor part with the right electrode, and F is the
thermally averaged Franck–Condon-weighted density of nuclear states (see
Section 3.2.1.3). Using typical values of the couplings �L

D and �R
A ≈ 0.5 eV and

F ≈ 0.02 (eV)–1 yields an approximate numerical relation between G and ket:

G ≈ 10−17ket (5.33b)

where the conductance G is in �–1 and the rate constant ket is in s–1.
This relation shows the interest of studying mixed valence binuclear systems
(Section 3.2.2), as a way to prepare studies on molecule bridged nanojunc-
tions. In the case of mixed valence compounds, however, the results are usually
expressed in terms of decay rate γ of the Vab factor with length. Since a rate is
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Fig. 5.23
Determination of the conductance of a
polymer chain as a continuous function
of its effective length. Up: disposition
with the STM tip grasping one end of the
chain; down: conductance (in log scale)
as a function of distance. The oscillations
on the decay are due to the successive
detachment of monomer units (at a
distance Z0) from the surface. (From L.
Lafferentz, F. Ample, H. Yu, S. Hecht,
C. Joachim, L. Grill, Science 323 (2009),
1193.) <http://www.sciencemag.org/
content/323/5918/1193.full> (Reprinted
with permission from AAAS.)

proportional to V2
ab (Section 3.2.1.2), and taking into account eqn. (5.32), the

γ′ factor of nanojunctions should be compared with 2 γ.
Experimentally, we can compare, for a polyene chain, the γ′ = 0.22 Å–1

value quoted previously with the corresponding 2 γ = 0.14 Å–1 value of the
corresponding mixed valence system (from γ = 0.07 Å–1; Section 3.2.2.6).
Although the numerical agreement is not very good in this case, the general
tendency of a weak decay is observed.

As for mixed valence systems, geometrical isomerism plays a role here.
Thus, in a break junction where the active molecule is connected to the elec-
trodes by thiophenyl groups, the conductance is sensitive to the position of
the thiol group, with a much higher value for the para isomer with respect to
the meta [5.49]. In a parallel way, a para connection gives a much higher Vab

coupling than a meta [5.50].

5.2.4 Molecular diode (rectifier)

In the same spirit as silicon electronics began with the p-n junction, molecu-
lar electronics’ original goal was the search for molecular rectification [5.7].
The diode (rectifier) is indeed a simple device which can be associated with
resistors to realize logic circuits.
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The story of the molecular rectifier, from its conception to its realization
after many attempts, is emblematic and highly instructive, as it illustrates
the scientific way of coping with difficulties, and reorienting the subject
when necessary. The original proposition by Aviram and Ratner (1974) was a
‘gedanken experiment’ involving an hypothetical molecule of the type donor-
σ-acceptor, where the donor was of the tetra-thiafulvalene type, the acceptor
was a tetracyanoquinodimethane moiety, and σ was a rigid saturated spacer
[5.7]. The molecule was assumed to be contacted by two metallic wires, and
simple reasoning suggested that the response would be different according
to the polarity (Fig. 5.24). Thus the donor was modelled by a site with an
occupied level just below the Fermi level of the electrodes (TTF-type), and the
acceptor by a site with a vacant level just above (TCNQ-type) (see Fig. 5.24b).
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Fig. 5.24
Aviram and Ratner’s molecular recti-
fier: concept and principle. (a) The pro-
totype molecule; (b) representation as
one-electron energy levels at zero bias;
(c) behaviour on a given polarization;
(d) behaviour on reverse polarization.
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The effect of polarization was predicted by assuming that a shift of a
Fermi level induces a smaller shift of the nearby molecular level, and that the
threshold voltage is determined by the first coincidence between molecular
and/or Fermi levels.

Thus upon the polarization depicted in Fig. 5.24(c)—that is [electrode
(anode) (+) – D – A – (cathode) electrode (–)]—the first coincidence occurs
between the Fermi level of the negative electrode and the LUMO of A, and
also between the HOMO of D and the Fermi level of the left electrode (pro-
cesses 1′ and 1 in Fig. 5.24(c)). This generates the A– – D+ configuration,
which is clearly unstable with respect to the A – D configuration, and inelastic
intramolecular tunnelling (process 2) can occur, thus achieving the transfer.
With the reverse polarization (d)—that is, [electrode (cathode) (–) – D – A –
(anode) electrode (+)]—the transfers on both ends are blocked until the voltage
is such that an intramolecular electron transfer occurs, producing the A– – D+

configuration (process 1 in Fig. 5.24(d)). After that, electron transfers 2 and
2′ at both electrodes complete the process. In their original paper, Aviram
and Ratner predicted that the easier polarization, corresponding to the lower
threshold, would be depicted by (c); that is, with an electron flow in the A–D
direction.

The realization of Aviram and Ratner’s proposition proved extraordinar-
ily difficult, and it took several decades before convincing results could be
reported. Note, incidentally, that the molecule represented in Fig. 5.24(a)
was never synthesized. The first results were obtained on Langmuir–Blodgett
monomolecular films. In this technique it is necessary to prepare amphiphilic
molecules; that is, molecules with a polar head (hydrophilic, with affin-
ity for a polar solvent like water), and a long saturated hydrocarbon chain
(hydrophobic, with affinity for non-polar media). These molecules can ori-
ent at an air–water interface, and can be transferred on a conducting substrate
(Fig. 5.2a). After that, it is necessary to deposit by evaporation a top electrode,
without disrupting the film nor creating a short circuit. Although the electrical
measurements involve more than one molecule, it is admitted that the results
are representative, because the molecules work in parallel.

A typical and much studied molecule is C16H33-Q-3CNQ (Tail-D-A) [5.51],
consisting of a donor (the quinolinium Q) and an acceptor (the tricyan-
oquinodimethane 3CNQ) group (Fig. 5.25a). Due to the requirements of the
Langmuir–Blodgett technique, one end of the molecule (here the quinolinium)
is functionalized by a long aliphatic chain (the tail), which at first sight should
not play a role in the electronic behaviour. But matters are not so simple, as will
be discussed later. In the ground state the molecule exists in the zwitterionic
state [Tail–D+•-A-•], because the intramolecular electron transfer has already
occurred. Thus the true donor is D–, and the true acceptor is D+, but this should
not change the general principle of functioning.

The best experimental evidence for rectification with this molecule was
obtained by depositing a Langmuir–Blodgett film on an aluminum Al substrate
(the surface of which, being, of course, coated with a thin layer of alumina,
Al2O3, formed spontaneously). A top Al electrode is evaporated on it, and con-
tacts are realized with a drop of gallium/indium Ga/In eutectic. The I–V curve
is clearly asymmetric, demonstrating the rectifying character of the junction
(Fig. 5.25) [5.52].
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Molecular diode. (a) The C16H33-Q-
3CNQ molecule; (b) molecular model;
(c) Langmuir–Blodgett film disposed
between two aluminium electrodes; (d)
current–voltage curve showing rectifica-
tion. The voltage V refers to the polarity
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ing the tail side of the molecule. In (c) is
shown the privileged direction for the cur-
rent and the electron flux. (Adapted from
Metzger [5.52].)

One has to note, however, that the direction of electron flow for the favour-
able polarization is from A– to D+, this notation taking into account the
zwitterionic nature of the molecule in the ground state. But A– is, strictly
speaking, the true donor, and D+ the true acceptor, so that the system actu-
ally works as in Fig. 5.24d; that is, in the reverse way with respect to the
Aviram–Ratner prediction. This seems to be a general result, according to stud-
ies on several kinds of molecules [5.39, p 338]. In fact, there is no simple way
of predicting which polarization will produce the lowest threshold, because
this depends in a complex and subtle way on the positions of the HOMO
and LUMO with respect to the Fermi levels, and also on the repartition of
the electrical potential inside the junction.

But is this rectification really due to the cleverly designed electronic struc-
ture of the molecule? This has been questioned for several reasons. First, the
bridge linking the donor and the acceptor groups is a conjugated one, instead
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of a saturated one in the original suggestion of Aviram and Ratner. An import-
ant consequence is that it is difficult or even impossible to identify a donor
and an acceptor. The HOMO and LUMO are strongly delocalized on the two
sites, so that the molecule behaves as a single entity. A second problem is due
to the (apparently anodyne) presence of the long aliphatic chain. It decouples
the active part of the molecule (the D–A moiety) from one of the electrodes,
and, moreover, it influences the voltage division factor, so that the D–A moi-
ety stays at a potential close to the one of the other electrode. The situation is
actually similar to that of Fig. 5.5c. Under such circumstances, the behaviour
is determined by the coincidence of either the HOMO or the LUMO with the
Fermi level of the strongly coupled electrode. In other words, the rectification
effect does not seem to arise from the donor–acceptor structure of the molecule
(a simpler molecule would work as well). It could derive from the asymmetry
of the interactions of the molecule with the electrodes.

In recent times, molecular rectification has been observed, at last, on
single-molecule nanojunctions. The molecules were made of two conjug-
ated π-systems linked by a C–C single bond (Fig. 5.26). The two π-systems
were made different by proper substitutions—one containing an unsubstituted
phenyl group, and the other a fluorine substituted phenyl group (hence more
acceptor). The molecule was equipped with thiol functions at each end, for
connection to gold electrodes in the break junction disposition (Fig. 5.2h)
[5.53]. Importantly, the central part of the molecule consists in a 2,2′-dimethyl-
biphenyl unit, for which the presence of the methyl groups induces a large
torsion angle between benzene rings (75◦), thus minimizing the electronic
coupling between the donor and acceptor parts.

Experiments have shown a rectification when imposing ±1.5 V bias voltage,
with a rectification ratio (ratio of the currents for opposite polarities) of 4.5.
No rectification is observed in control experiments with analogous symmetrical
molecules [5.53].

This last result is probably the most convincing evidence of a rectification
effect, at the molecular level, because the connections with the electrodes and
the general architecture are symmetrical. With respect to Aviram and Ratner’s
original concept, there are, however, subtle differences: the two parts of the
molecule are chemically similar, and operate probably through their LUMO;
that is, their more or less pronounced acceptor character. Theoretical calcu-
lations suggest that rather than being constituted of a donor and an acceptor
group, the system can in some respects be considered as made of two weakly
coupled quantum boxes (or dots) that have different polarizabilities [5.53]. But
a simple model based on two acceptor levels (LUMO) of different energies can
explain qualitatively the rectifying effect, as shown in Fig. 5.27.

For one of the polarizations, level coincidences may occur and allow an
electron transfer via the LUMOs, while for the opposite bias this is more
difficult.

S S

FF

FF

Au Au

Fig. 5.26
A single-molecule rectifier made of two
different conjugated π systems, in a break
junction.
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To conclude this molecular rectifier saga, it can be remarked that after thirty
years of research the original concept has been modified substantially. The
general topology is still a two-site molecule, and the rectification effect has
indeed been obtained with a unimolecular device including the electrodes. But
the detailed interpretation is now different, and more in agreement with recent
progresses in concepts and theory.

5.2.5 Memory effect and negative differential resistance
in two-terminal devices

In molecular electronics, another important property and function to achieve is
the storage of a bit of information on a molecule.

Some two-terminal devices exhibit interesting effects such as hysteresis
(memory) or negative differential resistance (NDR). Hysteresis means that
the current–voltage curve is different according to the direction of the voltage
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scan—the system’s behaviour depends on its past history. Negative differen-
tial resistance means that the current–voltage curve exhibits parts where the
slope dI/dV is negative. In both cases the spectacular changes in electronic
properties are qualified as ‘switching effects’. Note that these behaviours have
been known since the beginning of the electronics era on solid devices. Thus
NDR has been used in a variety of devices such as memory cells, oscillators,
microwave components, and even logic circuits.

In the case of molecular nanojunctions these effects are generally assigned
to an important structural change in the bridging molecule itself; for instance,
a mechanism of the polaron type or a change in the molecule–metal geometry.

As a first example we consider experiments performed with a STM micro-
scope and molecules, or even atoms, deposited on an insulating substrate.
Under such conditions the coupling of the molecule with both electrodes is
weak (see Fig. 5.7c), so that it retains its electronic identity. In addition, a
given charge state can be generated by a voltage pulse and retained for some
time, even after the end of a perturbation (memory effect).

Thus gold atoms can be adsorbed on a sodium chloride film (two atomic
layers in thickness) deposited on a metal substrate (Fig. 5.28). The individual
gold atoms can be seen in STM as protrusions. Applying a negative voltage
pulse to the tip, when it is just above a gold atom, causes the transformation of
this atom into the anion Au–, which appears upon subsequent imaging also as a
protrusion like neutral Au, but with a smaller contrast. Most importantly, both
states are stable, after the end of the pulse, in the time-scale of the experiments
[5.54].

The interpretation is straightforward in the frame of the hopping-type mech-
anism, taking into account the voltage division factor of Fig. 5.5c and eqns.
(5.7) and (5.8) (see also the Box on ‘Imaging molecular orbitals’). First, let us
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Fig. 5.28
The mechanism of ‘trapping’ of the
reduced state Au– by lattice distortion.
A gold atom is deposited on an ultrathin
NaCl substrate (two atomic layers only),
itself lying on Cu(111), not shown. (a)
Initial state: cross-section of the NaCl
layers with one neutral Au0 atom. Right
part: projected (local) density of states
LDOS of the 6s orbital of Au, showing
its proximity with the copper Fermi level,
in agreement with the 6s1 configuration.
(b) After ionization to Au– state. Note the
motion of Na+ and Cl– ions (plain arrows,
polaron formation). Right part: resulting
stabilization of the gold 6s level, allow-
ing the existence of the 6s2 configuration.
(c) 3D picture from the STM experiment
of Au0 and Au–. Note the apparent lar-
ger size of neutral Au (see text). ((a) and
(b) adapted from [5.54]; (c): courtesy of
J. Repp and G. Meyer.
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note that gold has a relatively low-lying vacant state (a 6s orbital), and thus
an intrinsic facility to produce Au– (this is also shown by its special chemistry
[5.55]). When a bias voltage is applied, the effective electrostatic potential
experienced by the gold atom stays close to the Fermi level of the substrate.
Thus the level coincidence arises on the vacuum side of the junction, and if the
tip is negative one obtains a gold atom reduction. Once the gold atom has been
charged to an Au– anion, a relaxation of the surroundings (the NaCl layer)
occurs. The atomic motions are the same as in small polaron formation in
ionic crystals (Section 3.1.2); that is, positive charges are displaced towards the
newly created Au–, and negative charges are repelled. This relaxation strongly
stabilizes the 6s atomic orbital of gold, so that the Au– state is trapped. The cal-
culation shows in particular that the 6s level has been so lowered (about 1eV)
that it is now out of resonance with the Fermi levels of the electrodes [5.54].
The current through the junction is thus decreased, and in subsequent imaging
the Au– ion appears different from Au◦, because in the imaging process the
tip is moved so as to recover a determined current. Note that due to this com-
pensating motion of the tip, the apparent size of Au– decreases (Fig. 5.28c),
contrary to the prediction based on chemical knowledge.

To return to the neutral state, an activation energy must be overcome, as in
the case of electron transfer in ionic solids or in solution. In the present case
this activation energy is so large that no back-conversion of Au– into Au was
observed in the time-scale of the experiment (several hours).

An analogous experiment has been described in the case of a molecule, bis-
dibenzoylmethanato-copper [5.56]. As previously, it is deposited on a NaCl
bilayer grown on Cu(111). The molecule is initially neutral with copper in the
Cu(II) state (d9), and can be driven by a proper voltage pulse into the negatively
charged state corresponding to Cu(I), d10. But here the main source of stabil-
ization after the charge transfer is intramolecular: the initial Cu(II) complex is
square planar, while the Cu(I) complex is tetrahedral. Charge and geometrical
changes of the complex on the surface have been established by a combination
of scanning tunnelling imaging before and after the pulse, and dynamic force
microscopy, which is sensitive to the charge of the molecule (Fig. 5.29).

Fig. 5.29
Switching of a copper complex by
reduction. Upper: models of the two
forms, square planar (SP) Cu(II) and
tetrahedral (Td) Cu(I). Lower: (a) STM
pictures of three molecules; (b) STM
picture when one of the molecules has
been switched by a –2 V voltage pulse
applied to the STM tip. (Reprinted with
permission from T. Leoni, O. Guillermet,
H. Walch, V. Langlais, A. Scheuermann,
J. Bonvoisin, S. Gauthier, Phys. Rev. Lett.
106 (2011), 216103. <http://prl.aps.org/
abstract/PRL/v106/i21/e216103>.
(Copyright 2011 by the American
Physical Society.)

Another and quite different type of two-terminal system with memory effect
is based on molecular motions rather than electron motions. This occurs with
special molecules called rotaxanes. A rotaxane is a molecule with both char-
acteristics of a wheel (rota in Latin) and an axle. In a normal rotaxane the axle
is threaded across the wheel, and they cannot dissociate without breaking a
covalent bond (Fig. 5.30), because there are stoppers at the ends of the axle.
A related but simpler system is called ‘pseudo-rotaxane’: in this case, there is
no stopper, so the two parts can disassemble. For a review about rotaxanes and
the beautiful chemistry of their preparation, the refer is referred to [5.57].

In the rotaxane, when the axle is long enough, the wheel can behave as a
shuttle. The shuttle is usually in close interaction (usually by donor–acceptor
interaction) with a part of the axle, called a recognition site, or more simply
a station. An interesting extension of the concept gives rise to [2] rotaxanes
with two stations (Fig. 5.30). They constitute, therefore, a two-state system,
in principle adapted to a binary coding of information. The interest of such
systems is that the interaction between the two parts is a chemical process, but
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(a) A rotaxane and (b) a pseudo-rotaxane,
both bearing two stations, 1 and 2; (c)
chemical definitions of the schematized
components. The wheel is generally a
strongly acceptor cyclic system (here
with four pyridinium sites), while the sta-
tions are donors. In the example shown,
station 2 has a fixed donor power, while
station 1 (a TTF moiety) can lose its
donor character by oxidation.

since they cannot fully separate, the motion of the shuttle from one station to
the other is actually a monomolecular reaction analogous to an isomerization.
Such molecules have been studied first in solution, where the acceptor/donor
character of a moiety can be reversed by electrochemistry, and have then been
transferred and used in solid-state devices.

Rotaxane molecules have been deposited as Langmuir–Blodgett (LB)
monolayers on a polycrystalline silicon substrate, and covered by a Ti/Al
top electrode, thus giving a two-terminal device of monomolecular thick-
ness (Fig. 5.31). Electrical characterization shows a switching effect under
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Fig. 5.31
A molecular shuttle with two stations
linked to a substrate. The motion is con-
trolled by the electrochemical oxidation
of the TTF unit (station A). See text.
(Adapted from [5.58].)

the form of an hysteresis curve, associated with the existence of two pos-
sible conformations with different electron transport properties [5.58]. Note
that the perturbation is here an oxidation/reduction of a moiety, transforming,
for instance, a donor station (TTF) into an acceptor (TTF+). This is basically
an electrochemical process, requiring in solution the intervention of a counter
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Negative differential resistance (NDR)
effect observed with phenylene-
ethynylene molecules bearing amino and
nitro groups and deposited between two
gold contacts in a nanopore. (Adapted
from [5.59].)

ion. It is not clear how such a process occurs in the solid-state device based on
a monolayer.

Although several control experiments show that a two-station structure is
necessary to obtain a switching effect, the exact interpretation remains obscure,
because the molecules contain several other flexible parts, and their exact ori-
entation in the LB layer, as well as the geometry of the contacts with the
interfaces, are not readily accessible to experiment.

Another interesting (and intriguing) case is provided by molecules of the
phenylene ethynylene type used in a nanopore cell (see Fig. 5.2b), where they
form a self-assembled monolayer (SAM) with close packing in the same ori-
entation. It is then possible to contact the ensemble of molecules (around
1,000) between the bottom metallic substrate and an evaporated upper elec-
trode. Due to the small size of the pore (30–50 nm), a defect-free ensemble
can be expected. The current–voltage curve exhibits the NDR effect, with an
abrupt fall of the current from about 1 nA to 1 pA in a very narrow potential
range (Fig. 5.32) [5.59].

The interpretation of this effect is not totally established. It has been sug-
gested that it is due to a conformational change, phenylene groups adopting
for a given voltage a perpendicular conformation with almost total decoupling
between the phenylene units. Another possibility, supported by theoretical cal-
culations, is that a charge injection occurs, followed by molecular relaxation
(the hopping mechanism; see Section 5.2.2.2). After relaxation the molecular
level (for instance, the LUMO) is no longer in the ‘energy window’ between
EF1 and EF2, so the current decreases abruptly [5.36, 5.60].

5.2.6 Two-terminal devices under constraint (pressure, light)

The next step in complexity is to achieve the control of the current by real-
izing a three-terminal device. This task is by no way trivial, and we begin
with examples in which this control is not performed by a third electrode but
indirectly by an effect other than electrical.
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5.2.6.1 C60 molecule: a molecular transistor under pressure
A C60 molecule adsorbed on a metallic surface can be addressed by the tip
of a STM. Under these conditions and for small bias voltages, a weak cur-
rent flows through the junction by the tunnelling effect. The T(EF) factor
(Section 5.2.2.3 and Fig. 5.12) is very small—around 2.3 10–4—but if the STM
tip-to-C60 distance is varied, the T(EF) changes drastically. Thus an increase of
three orders of magnitude is observed when going from a situation where the
C60 molecule is weakly perturbed by the tip, with a relaxed geometry, to a
situation where C60 is constrained, and thus deformed [5.61]. This peculiar-
ity can give rise to an amplifier effect when the complete experimental setup
is considered. The STM tip position is indeed controlled by a piezoelectric
actuator. (Piezoelectricity is the property of some substances to create charges
under application of a mechanical stress or, at the opposite, to deform under the
application of an electrical field. This can be used to generate displacements of
extreme precision.) By modulating the command voltage of the piezoelectric
actuator (input), a change occurs in the tip position, and thus in the current.
This last change can be easily converted in a voltage change by means of a
resistor, thus providing the output (Fig. 5.33; see also the Box ‘Field-effect
transistor’ p 442 for electrical definitions). It is found that the device exhibits
gain; that is, a small change in the input (20 mV, for example) leads to a larger
change in the output (100 mV) [5.61]. Actually, this is one of the two examples
of molecule-based devices exhibiting gain, the other being the carbon nanotube
device described in Section 5.2.8.

A deeper study shows that this amplifying effect is due to unique properties
of the C60 system with degenerate manifolds of frontier orbitals (hu HOMO and
t1u LUMO). A simple four-orbital model can be built with two orbitals from
each set presenting opposite symmetries with respect to the electrodes. They
contribute to the tunnel effect, but for symmetry reasons their contributions
cancel in an almost perfect way in the normal (relaxed) C60. Compressing C60

lifts the degeneracy, and thus suppresses the cancellation. This explains the
great sensitivity of the C60 system towards a change in geometry, and thus the
amplifying effect [5.61].

Of course, this result constitutes only a proof of principle. It shows that
it is possible to reach gain with a single-molecule device, but the total setup
including the STM apparatus is of huge dimensions! An integrated system in
which a C60 molecule would be located between two planar electrodes and
compressed by a microcantilever has been proposed [5.62].

5.2.6.2 Photochromic molecules: switching under irradiation
Another method of controlling a current is to use photons in order to perform a
photoisomerization, as it occurs in photochromic molecules. These molecules
have been widely studied and used as components for molecular materials, but
they will be used here at the single molecule scale. Among the extreme variety
of photochromic systems, the family of dithienylcyclopentenes has been par-
ticularly studied because they present distinct advantages (see Box ‘Switching
and memory’) [5.63]. They will also be encountered in Section 5.3.1.
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Fig. 5.33
The C60 amplifier. (a) Complete cir-
cuitry. PZT: piezoelectric actuator feeded
by Vin(t) voltage; RP: polarization res-
istance; RL: load resistance; Vout(t) is
read at the terminals of the load resist-
ance. (b) Expanded view of the C60 sur-
rounding. (c) Plots of Vin(t) and Vout(t)
upon application of the Vin(t) sinusoidal
voltage showing a gain of 5. (Adapted
from [5.61b].)

To study single-molecule switching, a dithienylcyclopentene derivative has
been equipped with thiols functions to allow fixation on gold electrodes. The
connection to electrodes was realized by a variant of the breakjunction tech-
nique, in which a gold surface is covered by the dithiolated molecules, and
a STM gold probe tip is repeatedly approached and retracted (Fig. 5.34).
Analysis of the current allows identification of the precise moment when the
gap is bridged by just one molecule. This method allows the precise elec-
trical characterization of the photochromic molecule in the two isomeric states
[5.65]. The nanojunction resistance is 526 M� for the open form (OFF) versus
4 M� for the closed one (ON), starting from isomers prepared previously.
The in situ conversion, using the appropriate radiation, was observed in both
directions.
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Switching and memory using photochromism: the example of
dithienylcyclopentenes

Switching and memory are frequently related, as one wishes that a given bit of
information is retained after the application of a perturbation. Photochromism—the
process by which a given substance changes its colour upon irradiation—is widely
used for this purpose, because at the molecular level it is frequently the result of pho-
toisomerization. Thus it implies that a molecule can exist under two states, with the
appealing possibility of coding binary information (0 for one isomer and 1 for the
other). Bistability results if the two isomers are stable under the same conditions and
do not interconvert spontaneously once formed. An additional constraint for poten-
tial applications is that the number of possible cycles between the two states before
degradation or side reactions occur must be as high as possible.

Here we consider the example of diarylethenes—in particular, dithienylcyc-
lopentenes, which can undergo photocyclization/ring reopening processes under
irradiation.

SS H3C

CH3

SS H3C

CH3

UV Visible

Fig. 1
Switching between the two isomers of
the diarylethene moiety, in this case
dithienylcyclopentene.

Basically, they are made of two thiophene units linked to a double bond, itself
embedded in a cyclopentene ring to block the cis configuration [5.63]. Their pho-
tochemical characteristics are particularly well adapted to switching and memory
at the molecular scale. First, the two isomers—‘open’ and ‘closed’—are inert (kin-
etically stable), though one of them—generally the ‘open’—is thermodynamically
more stable. Thus the state of the molecule can be considered as representing a
bit of information. Second, the photochemical transformation is reversible and can
be achieved in both directions, cyclization being triggered by ultraviolet light and
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reopening by illumination in the visible, with high quantum yields in both cases.
Thus the two states can be kept almost indefinitely and converted one into the other
at will under the influence of light. The difference in absorption spectra arises from
their different electronic properties: one isomer can be considered as consisting of
two weakly coupled thiophene units, the other as a conjugated octatetraene. This is a
third and precious feature, which can be used to control an electron transfer or trans-
port across the molecule—the ‘open’ isomer being ‘insulating’ while the ‘closed’
isomer is ‘conducting’.

Dithienylcyclopentenes have been proposed as molecular optical memories. Note,
however, that if the nature of the memory effect is indeed monomolecular, it is not
in general possible to store one bit of information on a unique molecule, because the
smallest dimensions of a light-beam are far larger than the size of the molecule. Thus
most applications involve a macroscopic ensemble. In addition, to produce a prac-
tical optical memory system one should have a non-destructive readout capability.
This means that reading the state should not alter the message, which is impossible
in practice because the usual way of reading is by using optical absorption. To cir-
cumvent this difficulty, ingenious systems have been devised in which a combination
of effects is needed for writing, while a simple irradiation is sufficient for reading
[5.63]. (See also Section 4.5.3.2 and Fig. 4.47a.)

Of course, an electrical conversion of the molecules would be more practical and
more in the spirit of electronics. The ultimate limit of addressing a single molecule is
easier to reach using electrons rather than photons. It is interesting in this context to
note that some diarylethene compounds can also be interconverted by an oxidation–
reduction sequence [5.64].
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Fig. 5.34
The dithienylcyclopentene switch
connected to two electrodes. (a) The
molecule is functionalized with thiol
groups for fixation on gold; (b) the
measurement is performed with a STM
version of the break junction allowing a
precise manipulation of the interelectrode
distance (double arrow close to the tip).
(Adapted from [5.65].)
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Thus the photochemically induced switching of a single molecule in a nan-
ojunction has been demonstrated, despite the fact that the presence of metallic
conductors can quench the excited states (see Section 4.3.4) and thus perturb
the isomerization process. In some cases, using a slightly different molecule,
switching can occur in only one direction [5.66].

5.2.7 Three-terminal devices: field-effect transistor (FET)

True three-terminal devices present the topology of a transistor, with a gate
electrode controlling the electron transport between the source and the drain
by applying a potential difference (see Box ‘Field-effect transistor’).

Realizing a field-effect transistor with a molecule as the active unit is
extremely difficult, because the three electrodes and the molecule must be in
close proximity and accurately positioned with respect to each other. Some
examples are now available where the source and drain electrodes are depos-
ited on an insulating SiO2 layer surmounting the third electrode, the gate
[5.67]. The gap between source and drain is created and adjusted by elec-
tromigration, and a molecule able to undergo a redox process (for instance,
a C60 or a cobalt complex) is deposited in the junction (Fig. 5.35). Such
devices can been termed single-molecule transistors, though the question of
the electrical gain (which should be > 1) is not always addressed.

The general principle is based on the energy levels’ disposition, such as in
Fig. 5.35a,b. Manipulating VSD shifts one of the electrode levels with respect
to the other, with an intermediate variation for the molecular levels (as in Fig.
5.24, for instance), while manipulating VG shifts the molecular energy levels as
a whole with respect to both electrodes. Thus level coincidence giving rise to a
current can be achieved either by a VSD or by a VG variation. The final result is
presented in Fig. 5.35c, showing in the VSD, VG plane, the zones where current
flow occurs. If the molecule is large enough, several characteristic diamond-
shaped patterns are observed, corresponding to successive charge states of the
molecule. Note that the diamonds are of different sizes because the levels are
generally not equidistant. Inside these patterns, frequently called ‘Coulomb
diamonds’, the current is blocked. (Actually, this terminology, stressing the
role of electrostatic repulsion, arises from the quantum dot literature and is
not strictly valid here. In the present case involving molecules, the spacing of
molecular levels depends, in addition, on the electronic structure.)

At the boundary of a diamond the current starts to flow, and this is com-
monly detected by a peak in differential conductance dI/dV (where V = VSD).
Outside the diamond the current is almost constant as a function of VSD (see,
for instance, Fig. 5.17). Note, finally, that in Fig. 5.35c the slopes of the ascend-
ing and descending boundaries are not the same. This asymmetry derives from
the asymmetry in the electronic circuit, because VG (strictly speaking VGD) is
defined with respect to one particular electrode.

New effects occur when the junction contains a magnetic molecule, and are
presented in Section 5.2.9.
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Field-effect transistor

The field-effect transistor (FET) is the workhorse of modern digital electronics. The
principle and topology are very simple. The main current crosses the device, made
of semiconducting material, between two electrodes, called ‘source’ and ‘drain’
respectively. A third electrode, called ‘gate’, controls the source-drain current by an
electrical field effect. The voltages VSD and VGD (denoted VG) are shown in Fig. 1.
The source-drain current ISD can be converted to an output voltage Vout by inserting
a load resistance in the circuit (not shown here, but in Fig. 5.33). The important elec-
trical characteristics are (i) the transconductance dISD/dVG, and (ii) the gain, defined
as Vout/VG. One wishes to have the gain >1, and this achieved in the C60 example in
Section 5.2.6.1.

VSD

source drain
gate

semiconductor

source drain

gate

molecule

VGD

oxide

oxide

(a)

(b)

Fig. 1
(a) Scheme of a conventional field-
effect transistor; (b) transistor with a
single molecule as active part. The latter
device, which is much smaller, is built
so that a gate electrode (silicon) is capa-
citively coupled to the molecule through
an insulating oxide layer (silica, SiO2).
The source-drain electrode gap can be
adjusted by electromigration. Note that
the gate voltage (VGD) is defined with
respect to one electrode, the drain, but
is frequently denoted VG for short.

The picture shows the usual silicon/silicon oxide realization, and the slightly
different disposition when the active part is a molecule.

In both cases the gate electrode is electrically insulated from the others, and thus
is crossed by a negligible current. The two basic parameters are thus the source-
drain voltage, VSD, and the gate voltage, usually measured with respect to the drain
electrode, VGD, which determines the electrical field in the device. This way of func-
tioning is different from conventional transistors, where the third electrode acts by
introduction of charge carriers.

Conventional FET are based on silicon semiconductors with a layer of SiO2

performing the necessary insulation of the gate, hence the denomination metal-
oxide–semiconductor field-effect transistor (MOSFET). Under normal conditions
the electrons or holes cross the device from source to drain in a limited region of the
semiconductor, called the channel. Applying a suitable voltage to the gate pinches
the channel and thus modulates the current, as the action of a gardener crushing a
garden-hose. As will be seen subsequently, the functioning of the single molecule
transistor is markedly different due to the much smaller size and the quantization of
charge states of the molecule.
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Principle of the single-molecule tran-
sistor. (a) Effect of an increase in
bias voltage VSD: the electron ener-
gies decrease strongly for the right elec-
trode (drain, positive electrode) while the
molecular levels exhibit an intermediate
variation (long and short thick arrows
respectively. (b) Effect of a variation
in gate voltage VG: only the molecular
levels are affected. (c) Representation of
the current in the VSD, VG plane. No cur-
rent occurs inside the diamond-shaped
regions corresponding to successive char-
ging states of the molecule. Changing
VSD or VG (moves along a or b) can trig-
ger the current. Outside the diamonds, the
current is constant as a function of VSD.
The boundary lines thus correspond to a
strong peak in dI/dV.

5.2.8 Nanotubes, graphene, and devices

Carbon nanotubes constitute an important class of nanometer-sized objects
which deserves a specific treatment. They were discovered as early as 1952
[5.68a], forgotten, and born again in 1991 with Iijima [5.68b]. They were soon
the object of intense research, due to their unique mechanical and electrical
properties combined with their good chemical stability. In recent years, sev-
eral devices based on these objects have been realized because their length
can reach hundreds of microns, so that it is relatively easy to connect them
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to microelectrodes—typically 100 nm wide and 15 nm thick. But at the same
time, carbon nanotubes can be considered as a special class of large molecules
and can be studied with the tools of molecular chemistry.

The structure of carbon nanotubes is apparently extremely simple [5.69]. Let
us assume that we take a graphene sheet (graphene is a single layer of graphite)
and roll it into a cylinder with a typical diameter of about 1.4 nm. This produces
a nanotube. Carbon nanotubes can exist as single-walled nanotubes (SWNT)
made of one cylinder, or multi-walled nanotubes (MWNT) made of concentric
cylinders. In the following we shall consider only the case of SWNT, because
their behaviour can be more precisely related to their structure.

Actually, there are several ways to roll the graphene sheet, depending on the
orientation of the cylinder axis (or its circumference) with respect to the lattice
parameters. The orientation is defined by the unit vectors −→a1 and −→a2 , and a set

of two numbers (m, n) which define a lattice vector
−→
Ch(n, m) (see Fig. 5.36a).

In the nanotube (Fig. 5.36a) the lattice vector is folded along the circum-
ference. The origin and the end of the lattice vector are joined together. When

zigzag
(n,0)
(9,0)

armchair
(n,n)
(6,6)

Ch = na1+ ma2

a1

a2

T

(a)

(b) (c)

Ch

θ

(d)

chiral (6,2)

zigzag (9,0) armchair (6,6) chiral (6,2)

Fig. 5.36
(a) Flat graphene sheet with the indica-
tions of the unit vectors, −→a1 and −→a2 and
lattice vectors. The lattice vector

−→
Ch(n, m)

defines the circumference once folded,
and the cylinder axis is perpendicular.
Different ways of rolling a graphene sheet
to make a carbon nanotube are shown:
zigzag nanotube with the zigzag axis−→
Ch(9, 0) (horizontal dashed arrow), arm-
chair nanotube with the armchair axis−→
Ch(6, 6) (tilted dashed arrow), a chiral
nanotube

−→
Ch(6, 2) (bold plain arrow and

grey surface; the grey plain arrows show
the construction of the 6, 2 vector).
The bold arrow T defines the longit-
udinal axis of the (6, 2) chiral nan-
otube. The chiral angle θ is defined with
respect to the zigzag axis. At bottom,
the corresponding schematic drawings
of (b) the zigzag (9, 0) tube (semicon-
ducting), (c) the armchair (6, 6) tube
(conducting), and (d) the chiral (6, 2)
tube. (Drawings made with the applet
www.nanotube.msu.edu/tubeASP/)
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the two numbers are equal—that is, or a (m,m) nanotube—one has the so-
called ‘armchair’ structure, because the atoms around the circumference draw
an armchair pattern. For (m,0) nanotubes the structure is called ‘zigzag’, with
reference to the pattern of atoms around the circumference. Finally, one has
also ‘chiral’ nanotubes, in which the rows of hexagons spiral along the nan-
otube axis. The nanotubes presenting the same m/n ratio are of the same type,
and differ only in their diameter.

The electronic structure of carbon nanotubes is extremely peculiar.
Armchair tubes are expected to be metallic, whereas most zigzag and chiral
nanotubes are semiconducting. The precursor graphene sheet also has very
exciting properties which, in some way, allow us to understand the relation-
ship between structure and properties in nanotubes. A rigorous treatment of
the band structure of graphene can be found in [1.9b], chapter 9. Here we
present only a brief account of the salient points.

Using the tools introduced in Sections 1.4.2 and 3.3.2, we start from the

hexagonal lattice in real space, with repeat vectors −→a and
−→
b (Fig. 5.37a;

note that they are different from −→a1 and −→a2 in Fig. 5.36), and we build the

related reciprocal lattice of the graphene layer with repeat vectors
−→
a∗ and

−→
b∗

(Fig. 5.37b) and the energy dispersion curve (Fig. 5.37c). For most values of k
there is a gap, but the conduction and valence bands touch each other at point
K (ka = kb = 1/2 in adimensional coordinates) (Fig. 5.37b, c). As we have
seen in Section 3.3.2, when the filled valence band and the empty conduction
band are touching, the energy gap is zero and the system should be metallic.
As this occurs here in a very limited portion of the band diagram, the com-
pound is called a semi-metal—a category intermediate between a true metal
and a semiconductor.

In the contact region the shape of the dispersion curve with a conical
intersection (Fig. 5.37d) confers a very high mobility on the charge carriers
(electrons and holes). This can be grasped from the quasi-free electron model
[1.9, 5.28], in which one can define an effective mass of the carriers given by
m∗ = �

2/(∂2E/∂k2). Thus at the conical intersection shown in Fig. 5.37d, the
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K
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E(k)

Fig. 5.37
Hexagonal graphene layer. (a) Real-space
fragment of the layer with the repeat

vectors −→a and
−→
b (a = b, with an

angle 120◦) defining the repeat unit with
two carbon atoms (filled spheres). (b)
Reciprocal lattice of the layer with repeat

vectors
−→
a∗ and

−→
b∗ (a* = b*, making

an angle of 60◦), the first Brillouin zone
(grey lines) and the �, M, and K points of
the Brillouin zone (�(0,0), M(1/2,0), and
K(1/2,1/2)). (c) Energy dispersion curve
(π-type) of graphene. (d) Enlargement
of the contact region (grey ellipse) near
point K, showing the conical intersection.
(Adapted from [1.9b], chap. 9.)
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curvature being infinite, the effective mass tends towards zero. For undoped
graphene, the Fermi level corresponds precisely to this intersection.

When the graphene sheet is rolled to produce a nanotube, the detailed way
of connecting the sheet can tilt the balance towards either a metallic (no energy
gap in K) or a semiconducting state (gap). Generally speaking there is extreme
sensitivity of the nanotube electronic structure to the geometrical nature and
even diameter of the nanotube. A simple rule is that (m,n) nanotubes with
m – n = 3 p (where p is an integer, including zero) are metallic (the bands
‘touch’), the others are semiconducting (there is a gap between the valence
occupied and the conduction vacant bands). Thus all armchair tubes (m, m)
are metallic, while for zigzag and chiral nanotubes, the properties depend on
the exact values of n and m. Statistically, in a random sample, after purification,
1/3 of nanotubes are found to be metallic and 2/3 semiconducting.

Carbon nanotubes can be obtained by a variety of methods, which will not
be detailed here. One can quote arc discharge between carbon electrodes, laser
ablation, chemical vapour deposition from hydrocarbon gases with catalytic
growth, and so on. Extensive details can be found in [5.69].

Many devices using carbon nanotubes have been realized by connecting
them to electrodes. The simplest technique is to deposit, in a random way,
the nanotubes (as a suspension in a solvent) on an array of metallic electrodes,
and then choose the best samples. In some cases their position can even be
adjusted using the tip of an AFM. Of course, this can be convenient for demon-
stration purposes, but not for mass production requiring a controlled mode of
deposition. Intense research is thus devoted to the processes, allowing system-
atic building of circuits made of nanotubes. Such processes use methods or a
combination of methods such as self-assembly, the local functionalization of a
substrate to use the selective affinity of nanotubes for certain zones, ‘combing’
methods to align nanotubes, and so on. The reader can consult texts such as
[5.70] for recent advances in this rapidly evolving field.

Several words of caution are, however, necessary: besides their intrinsic
drawback—that is, the great heterogeneity of crude samples—carbon nan-
otubes frequently contain impurities, the most problematic for magnetic
measurements being ferromagnetic impurities introduced by the usual cata-
lysts. Purification is thus a fundamental necessity. Regarding the devices made
of nanotubes, they suffer from the impossibility of predicting the nature (metal-
lic or semiconducting) of a given nanotube, and the difficulty to master the
contact resistance with the electrodes. We now present some examples of
devices.

Field-effect transistor (FET)
This device was realized in 1998, using a SWNT [5.71] (Fig. 5.38) with
the same topology as for single molecule transistors (see Box ‘Field-effect
transistor’ and Fig. 5.35), though the principle of operation is different.

The SWNT transistor necessitates a semi-conducting nanotube. At the
present time there is no way of knowing in advance whether a given nanotube
will be metallic or semiconducting, and thus one has to fabricate a large num-
ber of devices and then identify which ones are functional. When the nanotube
is metallic, the current voltage curves I – Vbias are linear and do not depend on
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Pt PtC Nanotube
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Fig. 5.38
A field-effect transistor made of a single
semi-conducting carbon nanotube. The
nanotube lies above the Pt source and
drain (in grey) and the Si/SiO2 gate.
(Adapted from [5.71].)
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Fig. 5.39
Current–voltage curves I = f(Vbias) for
a device of the type shown in Fig. 5.38,
recorded at room temperature at differ-
ent applied gate voltages. (Adapted from
[5.71].)

the gate voltage. When the nanotube is semi-conducting, the I – Vbias curve is
strongly non-linear and depends very much on the gate voltage, as shown in
Fig. 5.39. Such systems could exhibit a gain >1 [5.71].

The interpretation is based on the analogy with conventional semiconductor
devices. Since the contact resistance between the nanotube and the metal is
expected to be large, the device is described as two Schottky diodes connected
back to back (Fig. 5.40) [5.71]. (A Schottky diode is a metal–semiconductor
junction. It is used for its rectification properties with a very fast response.)
Then classical theory explains the transistor effect by the influence of the gate
potential on the central part of the nanotube (away from the contacts), giving
rise to either accumulation or depletion of holes. Accumulating holes, for neg-
ative gate voltage, increases the conductance [5.71]. Note that due to the large
size of the device and length of the nanotube (300 nm), the terminology has
shifted towards concepts of conventional, or at least mesoscopic, electronics.
The only difference with the usual metal-oxide–semiconductor (MOS) devices
is that the nanotube is not intentionally doped.

Single-electron transistors (SET)
Carbon nanotubes can also be used to make single-electron transistors (SET),
using the Coulomb blockade effect (Section 5.2.2.4 and Fig. 5.17). In this case
one needs a nanotube presenting metallic conductivity, which is deposited on
two electrodes (source and drain), thus defining the useful length, which can
be more than 100 nm [5.72]. A third electrode (the gate) is present below the
nanotube. Since the nanotube is metallic and the contacts with the electrodes
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Fig. 5.40
Analogy between the semi-conducting
nanotube connected to two electrodes and
two Schottky diodes connected back to
back. (a) Schottky diodes. (b–c) Carbon
nanotube device, (b) top view, (c) side
view.

are highly resistive, we are in the situation of Coulomb blockade, the nan-
otube playing the role of the ‘small’ metallic island. The I–V curve shows
distinct steps, the position of which is sensitive to the potential of the third elec-
trode. The general behaviour is explained by the orthodox theory of Coulomb
blockade, which implies that the conductance is sensitive to the presence or
absence of only one additional electron on the nanotube, hence the expression
‘single-electron transistor’.

The first realized device worked at an extremely low temperature (5 mK)
[5.72]. We recall that low temperatures are frequently necessary in Coulomb
blockade experiments, in order to have kT << e2/2C (see Section 5.2.2.4),
and more generally in experiments involving very small energies (see also
Section 2.8).

In this first experiment the capacitance was relatively large, since it used a
3-μm long nanotube contacted on a large fraction of its length on the metallic
wires. In a later experiment a contacted nanotube was deformed in two places
using the tip of an AFM, thus generating extra tunnel barriers. This defined a
20-nm effective length for the metallic island, and extremely small area con-
tacts and thus capacitances. The operating temperature has then been raised to
room temperature [5.73].

Graphene devices
Graphene itself could be considered as a promising material to generate
devices. As stated previously, it exhibits a peculiar band structure with an
extremely high mobility for electrons and holes. The interest for this mater-
ial rose abruptly as soon as simple methods were devised to generate single
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monolayers, the simplest being peeling off a graphite sample with the aid of
adhesive tape. Of course, more sophisticated and controllable methods exist,
such as the use of a silicon wafer as substrate or epitaxial growing by thermal
decomposition of silicon carbide [5.74]. Let us recall that in 2010 the Nobel
Prize in Physics was awarded to A. K. Geim and K. S. Novoselov for their
contribution to the study of this unique, truly 2D, material.

In principle, it should be possible to carve a circuit in a graphene sheet by
using nanometer-size ‘burners’ such as the FIB (focused ion beam). The main
advantage of this material is that it is theoretically possible to use it for both
the nanometer-size active part, playing, for instance, the role of a field-effect
transistor, and the macroscopic contacts. This would avoid the creation of an
interface between different materials, in contrast to the other kinds of connec-
tion. However, at the present time the realization of a circuit like that depicted
in Fig. 5.41 is still speculative.

S D

G

Fig. 5.41
Speculative concept of a circuit with
source (S), drain (D), and gate (G) elec-
trodes which could be cut out from a
graphene sheet. (Adapted from [5.74a].)

5.2.9 Molecular spintronics

5.2.9.1 Spintronics: a recent discovery
Until now in this chapter we have considered the properties of the electron
focusing on its charge, and the current that it creates through a nanojunction.
Indeed, the electronic charge has been for a long time the unique property
exploited by mainstream electronics. Most electronic devices are based on
electrical current detection. Affairs began to move twenty years ago when sci-
entists considered the electron not only as a charged particle but also as a spin
bearer.

This was following an earlier idea by Mott (Nobel Prize recipient in 1977),
suggesting that the electron flow in a magnetic metal consists of two fluids
whose electronic spins have opposite directions. Let us say, to simplify, that
the conduction is ensured by two channels, one with spins up (↑, α), the other
with spins down (↓, β). Fig. 5.42 illustrates the basic ideas.

In a metal (Fig. 5.42, part a1), a conducting electron is moving from one
scattering centre to another with a mean free path λ and a relaxation time
τ (a1). This gives rise to the resistance R(b1). Looking at the spin, most of
the scattering events (•) occur without spin flip up to the point where the spin
flips (*). The spin mean free path λsf (relaxation time τsf) is the sum of all the

distances covered between two spin-flip events λsf =
τsf∑
0

λ. This allows us to
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β
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Fig. 5.42
Two-channels model and spin polariza-
tion. (a) Mean free paths λ for up (↑,
α) and down (↓, β) spins in metals,
non-magnetic (1, 2), or magnetic (3, 4).
In (1) the (↑, α) electron is moving
between scattering centres, without spin
flip (•) or with spin flip (*). The scatter-
ing for equivalent (↓, β) electron is not
shown, for clarity. In (3, 4) the white open
arrows indicate the direction of the major-
ity spins in the material. (b) Equivalent
electrical circuit: resistor R for electrons
(1), for up (↑, α) and down (↓, β) spins
in a non-magnetic medium (2) and in
magnets (3, 4). The surface of the grey
boxes is proportional to the resistance.
The size of black arrows schematizes the
magnitude of the spin-polarized currents.
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define the spin diffusion length lsd ∝ √
λλsf, which is smaller than λsf because

the trajectory can be folded (a1). This length is an important quantity if one
wants to retain unchanged the spin polarization through a layer of width e (lsd

must be >> e).
In a non-magnetic metal the spin mean free path λsf is the same for α and

β spins, λ1,α = λ1,β, and therefore R1,α = R1,β (Fig. 5.42, parts 2,a,b), and so
behaves the conductance G. No polarization. In a magnetic metal (parts 3,4),
most of the spins are aligned parallel, as they are coupled by exchange. A direct
consequence is that the spin mean free path of the majority spins becomes
larger than that of the minority opposite spins, and the resistance becomes
weaker (parts 3,4a, b). A current flowing through the metal is spin-polarized,
and its polarization changes with the magnetization (from (3) to (4)).

Such a phenomenon was first observed in magnetic multilayers, in which
conducting ferromagnetic layers are separated by a thin conducting non-
magnetic layer. The current through the device is strongly reduced when the
configuration of the magnetizations of the conducting layers changes from par-
allel to antiparallel. The effect was named giant magnetoresistance (GMR),
and one of the resulting devices a spin valve. GMR is due to the polarization
of the spin current by the magnetic layers. A very simplified image is shown
in Fig. 5.43, using the example of a spin valve.

In (1,ab), the mobile (α,↑) spins parallel to the majority spins present a
large λ↑,α in both layers 1 and 3, a weak R ↑,α, and a large conductance (1b).
The (α,↑) current is large (open horizontal arrow). The conducting (β,↓) spins
encounter the opposite situation (large resistance in both layers 1 and 3), and
the corresponding (β,↓) current is very weak (grey dashed horizontal arrow).
The overall resistance Rp (p for parallel configuration), is weak and the con-
ductance Gp is large. In (2,ab) the magnetization is flipped in layer 1. Therefore
α spins meet a small resistance in layer 1 but a large one in layer 3 (2b). The
overall situation is analogous for β spins (2b). Then, both α and β currents
are weak (dashed black horizontal arrows, 2a), as is their sum. The overall
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Fig. 5.43
Principle of GMR and of a spin valve
device. Two magnetic conducting layers
1 and 3 (dark grey) are separated by a thin
non-magnetic metallic spacer [(2), light
grey]. (a) Three states of the device with
different configurations of the majority
spins in the magnetic layers (white ver-
tical arrows), parallel (up, up) in (1), anti-
parallel in (2), and once again parallel in
(3) (down, down). The horizontal arrows
schematize the magnitude of the polar-
ized current (α,↑ or β,↓ spins) (open
white > black dashed > grey dashed).
(b) Equivalent electrical circuit. (c) Usual
‘butterfly’ shape of the intensity I as a
function of the applied magnetic field, H,
in a spin valve. The black plain curve cor-
responds to an increasing magnetic field,
the grey dotted line to a decreasing field.
H1 and H3 are the coercive field of the
magnetic layers 1 and 3 (see text).
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resistance Rap (ap for antiparallel configuration) is large, and the conductance
Gap is weak. In (3ab), both layers have flipped their magnetization. The situ-
ation is symmetrical to (1), and the same reasoning shows that Rp is weak and
Gp large.

In Fig. 5.43 part (c) it is possible to follow the overall current through the
device in the three configurations (1), (2), (3) when the applied magnetic field
varies: at large negative field and parallel configuration (1), the intensity is
large (Imax); when the field becomes positive and reaches the coercive field
H1 of layer 1 (supposed to be less than the one of layer 3, H1 < H3), the
magnetization in layer 1 flips and creates an antiparallel configuration, and
the current decreases strongly to Imin (2). A new increase of the field allows
reaching coercive field H3, and it is the turn of magnetization of layer 3 to flip.
The new parallel configuration (3) is accompanied by an intensity jump to Imax.
The performance of such devices can be measured by the magnetoconductance
ratio, defined as:

R = (
Gp − Gap

)
/Gap (5.34)

Initially less than 20%, the ratio jumped to 80% in tunnel junctions (when
the metallic spacer is replaced by semiconducting ones) with record values of
500%. We do not discuss the various aspects of the performances. We simply
note that the discovery of GMR boosted quasi-immediate technological applic-
ations in magnetic devices and computing hardware (magnetic random access
memories (MRAM), magnetic heads, and hard disks, for instance) and the aca-
demic recognition of the discoverers, with the Nobel Prize awarded to Fert and
Grünberg in 2007 [5.75a]. The field developed rapidly, and today covers many
phenomena under the name ‘spintronics’ [5.75].

Spintronics can be defined as the science of injecting, manipulating, and
detecting electronic spins and its applications—a spin-based electronics. One
important aspect of spintronics consists in the use of the quantum property of
the electron spin to store and treat information.

5.2.9.2 Molecular spintronics: a new research domain
If the ideas and the advantages of molecular electronics (this chapter) and
spintronics are merged, we can envision what can become molecular spin-
tronics—the manipulation of spin and charges in electronic devices containing
one or more molecules; that is, molecule-based spintronics.

Introducing molecules in the spintronics game introduces new degrees of
freedom and considerably enlarges the range of possibilities: (i) magnetic
electrodes with different kinds of magnetization sandwiching molecules or
molecular layers, conducting, semiconducting, or insulating; (ii) non-magnetic
electrodes with the infinite variety of magnetic molecules or molecular sheets.
We shall not treat systems involving conventional ferromagnetic materials as
electrodes, but this is an area rich in development. Let us quote only the
example of apparently trivial molecules such as benzene, cyclopentadiene,
or cyclooctatetraene, free or metallated phthalocyanines lying on a magnetic
surface below a magnetic tip producing a spin-polarized tunnel current. The
molecules appear able to tune the spin polarization and even to reverse it,
depending on which part of the molecule is addressed by the current. Such
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a property—evidenced by combined spin-polarized STM (SP-STM) experi-
ments and DFT studies—is due to a unique property of the hybrid states created
by the molecule–substrate interaction [5.76].

Next we concentrate on systems with non-magnetic electrodes, but using
magnetic molecules. The most interesting are those for which the mag-
netic state of the molecule can be translated into an electrical effect [5.77].
We have already introduced the mechanism of the Kondo resonance effect
(Section 5.2.2.5), when a spin, and not only a charge, is present on the
molecule inside a junction made from non-magnetic electrodes. We present
a few examples.

Cobalt(II/III) complex
Let us consider a cobalt complex, able to evolve between two oxidation states:
low-spin Co(II) (d7, S = 1/2) and low-spin Co(III) (d6, S = 0), inserted as
a unique molecule between two electrodes [5.78a,b]. When the results are
presented as a map of the differential conductance (dI/dV) versus the source-
drain bias voltage VSD and the gate voltage VG, a special behaviour appears
when compared with a closed-shell molecule. For positive values of VG there
is a zone of high differential conductance centred on VSD = 0. (A similar case
on a more complex system is shown in Fig. 5.44.)

This arises from a combination of Coulomb blockade and Kondo reson-
ance effects [5.78a]. Negative values of VG favour the Co(III) state of the
complex, while positive values favour the Co(II) state. On the Co(III) side,
normal behaviour (diamonds) is observed, but for VG positive enough, Co(II)
being paramagnetic (S = 1/2), gives rise to the Kondo resonance effect (see
Fig. 5.20); that is, a large differential conductance at zero bias.

A signature of the Kondo resonance effect is provided by the magnetic field
dependence of the resonance peak dI/dV = f(V). This has been observed with
a cobalt complex of the previous type: while at zero magnetic field, the reson-
ance Kondo peak is centred on VSD = 0, applying a magnetic field up to 10 T
shows a peak splitting (Zeeman splitting) varying linearly with B [5.78b].
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Fig. 5.44
Map obtained from the differential con-
ductance dI/dV = f(VSD, VG) for a
device containing a single C60 molecule,
with the ‘diamonds’ corresponding to
C60

–• and C60
2–. The diamond corres-

ponding to C60
2– is split in two by

a vertical line separating the existence
domains of the singlet and triplet states.
The dark grey zones are the domains
of the Kondo resonance effect, manifes-
ted as a high conductance at zero bias.
It occurs in the C60

–• diamond (at left),
and also at the limit of the C60

2– triplet
domain (extreme right). (Adapted from
[5.79].)
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C60 molecule in a nanojunction
The Kondo resonance effect is not limited to S = 1/2 system, and can occur for
larger spin systems, with the same ingredients at work: the many-body inter-
action between delocalized conduction electrons and the magnetic moment of
the object in the nanojunction. Thus C60, when introduced in a nanojunction,
can exist as C60, C60

–•, or even C60
2-, according to the gate voltage [5.79] (Fig.

5.44). When C60 is present as C60
–•, the simple Kondo resonance is observed.

But for C60
2–, the situation is more complex, because singlet and triplet states

may occur (note that the LUMO of C60 is degenerate with t1u symmetry, so
that the triplet state is normally the more stable). Curiously, the singlet–triplet
gap is sensitive to the electric field, so that the relative stabilities of both states
can be manipulated by the gate voltage (Fig. 5.44). Again a Kondo resonance
is observed—this time at the limit of the triplet domain.

Spintronic devices using single-molecule magnets
We conclude this section with a description of a very peculiar molecular spin
valve built from a nanotube decorated by single-ion magnets. Such experi-
mental study necessitates new experimental setups adapted to the detection of
individual magnetic moments. We begin with a description of the setup.

The NanoSQUID device
The extremely small diameter of carbon nanotubes can be exploited for an
original application: the ‘nanoSQUID’. Let us recall that a SQUID circuit
(superconducting quantum interference device) is made from a loop of super-
conducting wire with two tunnel junctions called Josephson junctions [5.80]
(Fig. 5.45a,b) (See Section 2.3.3 and Fig. 2.6). The SQUID circuit can be used
as an extremely sensitive magnetometer.

A SQUID circuit has been realized by bridging aluminum wires (super-
conducting below 1.2 K) with a single carbon nanotube realizing both tunnel
junctions (Fig. 5.45b) [5.81]. The great advantage of this ‘nanoSQUID’ resides
in the extremely small diameter of the nanotube (typically 1 nm), with the pos-
sibility of depositing a magnetic particle directly onto it. Since the dimensions
of the nanotube are comparable to those of the magnetic object, the field lines
of the latter can penetrate the loop more deeply, thus increasing considerably
the sensitivity (Fig. 5.45c, d). It is predicted that the device would have enough
sensitivity to detect the magnetization reversal associated with a spin 10 (a
single Mn12 molecule, for example).

Molecular spin valve with two single-ion magnets
In Section 2.8.3 we introduced the properties of [Tb(III)Pc2]–/0 as a single-ion
magnet (SIM). Recall that the anionic form contains closed-shell Pc2– phthalo-
cyanine ligands, while in the neutral form one of the Pc rings has lost one
electron, hence creating a spin 1/2 delocalized in the π system. In the pres-
ence of a magnetic field the highly anisotropic J = 6 spin system can be ‘up’
or ‘down’, corresponding to Jz = +6 or –6 for the Tb(III), the z axis being
defined by the easy magnetization axis of the molecule. This property can
be used to control a current by grafting several such units on a carbon nan-
otube. For this purpose, one of the phthalocyanine rings has been substituted
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Fig. 5.45
MicroSQUID and NanoSQUID. (a) MicroSQUID circuit (see also Fig. 4.47b). (b) NanoSQUID circuit. The junctions are made of a carbon
nanotube on which electrodes have been deposited. They define two Josephson junctions. (c) MicroSQUID, lateral view: interaction of the
magnetic flux (dashed) lines of a magnetic particle and the microjunction. (d) NanoSQUID, lateral view: interaction between the magnetic flux
(dashed) lines of a high-spin molecule and the nanotube junction, showing more penetration inside the junction. Note the differences in sizes.
(Adapted from [5.81].)

with six hexyl and one pyrene group to ensure anchoring on the carbon nan-
otube by strong Van der Waals forces. These molecules are then deposited on
a SWNT in a FET arrangement [5.82] (Fig. 5.46a). There is an average of four
molecules on a SWNT segment of 300 nm. The most interesting behaviour
is obtained when there are two such molecules bound to the nanotube. When
the magnetic field is swept, beginning with negative values, the J = 6 spin of
the molecules can adopt three configurations: parallel either (↑up,↑up) (Fig.
5.46b) or (↓down,↓down) (not shown), and between, antiparallel (↑up,↓down)
(Fig. 5.46c) or (↓down,↑up) if they do not switch from ‘up’ to ‘down’ (reverse
their magnetization) for the same magnetic field.

Therefore, there is a range of magnetic fields for which the J = 6 spins are
antiparallel. The situation is fully comparable to that of a conventional spin
valve (Fig. 5.43). Each of the molecules induces localized states in the SWNT
nanotube through exchange interactions, resulting in a splitting of these levels
according to the orientation of the J = 6 spin of the nearby molecule. There
is a stabilization of either the α channel (molecules A and B in Fig. 46b, and
molecule A in Fig. 5.46c) or the β channel (molecule B in Fig. 5.46c). The
level splitting is estimated to be around 4 cm–1 (corresponding to 6 K). Note
that since neutral forms of the complex are used, the interaction between the
Tb(III) J = 6 spin and the nanotube electrons is relayed by the S = 1/2 radical
present on the phthalocyanine rings.
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Molecular spin valve. Compare with Fig.
5.43. (a) Scheme of the device realized
with a SWNT carbon nanotube inside a
FET structure, with two grafted TbPc2

units. The substituted groups are not
shown, for clarity. (b) Energy levels of
the local states on the nanotube when the
two TbPc2 units have parallel J = 6 spins
(white arrows), showing the possibility
of electron transport for an ‘up’ (α,↑)
spin (small grey arrow) (configuration
(1)). The broadening � of the molecu-
lar levels is represented by the grey area.
(c) Case of antiparallel J = 6 spins
on TbPc2 showing the energy mismatch
(configuration (2)). No electron trans-
port is possible, regardless of the electron
spin. (d) Conductances during a mag-
netic field excursion, showing the hys-
teresis and the large magnetoconductance
ratio. Black curve and arrows: increas-
ing field; grey dashed curve and arrows:
decreasing field. G0 is the quantum con-
ductance unit. (e) Scheme of the Landau–
Zener tunnelling processes. (Adapted
from [5.82].)

If an electron with a spin ‘up, α’, for instance, tries to cross the junction
when the J = 6 spin on TbPc2 are parallel and up (Fig. 5.46b), configuration
(1), it will then encounter two α levels at the same energy, thus allowing its
migration to the other electrode with the help of the broadening � due to the
interaction of the nanotube and the electrode (estimated at 1.6 cm–1 or 2.3 K).
But when the J = 6 spins are antiparallel on the two TbPc2, there is an energy
mismatch between the levels in the nanojunction configuration (2) (Fig. 5.46c),
and the current is blocked. This conclusion is fully valid for an electron with a
spin ‘down, β’, starting from the appropriate configuration (3) (down, down)
of the J = 6 spins on TbPc2.

The conductance values when sweeping the magnetic field are shown in
Fig. 5.46d. The fact that during a magnetic field excursion the spin flips do
not occur at the same place results from (i) slight differences in molecule pos-
ition and/or orientation on the nanotube, and (ii) the possibility of two kinds
of process, either adiabatic or non-adiabatic, as shown in Fig. 5.46e. As seen
in Sections 2.8.1.3 and 3.2.1.1, in the adiabatic process the system stays on the
lowest energy curve, with a probability P, while in the non-adiabatic process,
of probability (1-P), it stays on the initial curve. But in this second case it can
jump down later to the lowest curve by exchanging energy with the environ-
ment by phonon emission. This introduces a lag in the spin flip, which can
be different from one molecule to the other. The tunnel probability P is given
by the Landau–Zener formula (eqn. (2.149)). As a result of (i) and (ii), the
electrical response presents an hysteresis.

To summarize: the system operates as a molecular spin valve, where the two
SIM molecules play the role of the ferromagnetic electrodes. The conductances
are very weak (see Fig. 5.46d), but the magnetoconductance ratio, defined by
eqn. (5.34), amounts to 300%—an important value. The result is promising,
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but is obtained at the very low temperature of 40 mK. It vanishes rapidly when
T increases (600 mK for the presented example).

5.3 Behaviour of ensemble of molecules
In this paragraph we concentrate on the properties of macroscopic sets of
molecules, without reference to the problem of connecting them to electrodes.
The goal is to identify a number of interesting behaviours that can be prom-
ising for molecular electronics. There are three reasons for this: first, such
molecules can be considered as a reserve bank for future one-molecule stud-
ies; second, studying an ensemble rather than a single molecule provides an
easier characterization, because the experimental signal (spectroscopic, elec-
trochemical, magnetic, and so on) is larger; third, in some cases the behaviour
is cooperative—it relies on the existence of interactions between molecules.

5.3.1 Systems studied in solution

Molecular wire
The molecular wire function can be tested in solution using mixed valence
complexes with long conjugated spacers, as seen in Section 3.2.2. From a
topological point of view, a molecular mixed valence compound resembles a
nanojunction in which the metal electrodes are reduced to one metal atom only.
We recall the basic conclusion of Section 3.2.2.6, eqn. (3.98): the electronic
coupling between metal sites (which determines the rate of intramolecular
electron transfer) decreases with distance according to an exponential law, with
a γ coefficient in the 0.07–0.10 Å–1 range for diverse conjugated structures.

Molecular wires are also encountered in Section 4.4.2.

Memory element
This corresponds to the large class of photochromic compounds which can
indeed be used for erasable optical memory. (The subject has been dis-
cussed in Box ‘Switching and memory’, in Section 5.2.6, for the case of
dithienylcyclopentenes.)

Molecular switch
There are many definitions of molecular switches. Here we shall use a simple
one, borrowed from the electrotechnical domain: a switch is an ensemble of
pieces whose function is to stop and/or establish the electrical current in a cir-
cuit. At the molecular scale and in solution (where no stricto sensu circuit is
possible), a molecular switch can be built by associating a mixed valence struc-
ture and a memory element. This produces a bistable system which remains in
the same state in the absence of perturbation.

The insertion of a photochromic diarylethene moiety in the structure of a
molecular mixed valence compound has been realized in 2000 [5.83a]. The
diarylethene links two cyclometallated ruthenium complexes (Fig. 5.47).

The starting form (‘open’) is prepared in the RuII–RuII homovalent state.
Upon partial oxidation the RuII–RuIII mixed valence form is generated, for
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A molecular switch made of a dithi-
enylethene moiety inserted in a binuc-
lear structure. (a) The photoisomerization
process, performed in the homovalent
RuII–RuII state; (b) the sequence of oper-
ations, showing switching. The Vab coup-
ling between ruthenium sites is measured
in the mixed valence RuII–RuIII state.

which the effective coupling between ruthenium sites (Vab) can be determined
from the parameters of the intervalence band (see Section 3.2.2.5). It does
not exhibit a detectable Vab coupling, as a consequence of its non-conjugated
structure. The photochemical conversion of the open form into the closed one
is possible in the RuII–RuII homovalent state, and after partial oxidation to
the RuII–RuIII mixed valence form an appreciable Vab coupling (0.025 eV) is
then observed, in agreement with the conjugated character of this isomer. The
system has thus been driven from an ‘insulating’ (OFF) to a ‘conductive’ (ON)
state, by analogy with a conventional electrical switch.

Many other ways of controlling, or at least modulating, an intramolecular
electron transfer have been described in the literature [5.83b].
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Logic gates
The complexity of some molecules provides access to a richness of beha-
viours mimicking logic functions. For this purpose, molecules must have been
designed in a very precise way, so that in some respect they are ‘programmed’
to realize a specific and complex operation. Here we do not limit discussion
to electronic properties, as other types of excitations or responses (chemical,
photophysical) are possible.

Some molecules can achieve logic functions of the type AND, OR, XOR,
and so on [5.84]. In these gates the system responds to two independent binary
inputs, with an output given by a rule called the ‘truth table’, as shown here.

IN1 IN2 OUT

AND OR XOR

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The AND function requires the 2 input to equal 1 for returning 1 on the output,
while the OR function requires that 1 or the other input equals 1. For XOR
(exclusive OR), only one of the input, but not both, must equal 1.

A more complex gate, called INHIBIT, presents three inputs. It returns 1 on
the output only if the first two inputs equal 1 (as in the AND function), but also
if the third input equals 0.

IN1 IN2 IN3 OUT INHIBIT

0 0 0 0
0 1 0 0
1 0 0 0
1 1 0 1
0 0 1 0
0 1 1 0
1 0 1 0
1 1 1 0

The AND gate can be realized from a fluorophore such as anthracene, onto
which two chemically sensitive groups have been grafted. These groups have
the potential to quench the fluorescence of the chromophore by photoinduced
electron transfer (PET) (Fig. 5.48).

The systems works as follows. Under normal conditions (no reagent added),
once the system is excited there are two possible PET, and each one alone
can quench the fluorescence. Thus no fluorescence (output) is observed. To
produce fluorescence one has to block the two PET by complexation with Na+
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Fig. 5.48
An AND gate built from a disubstituted
anthracene moiety, with Na+ and H+ as
inputs. Fluorescence of the anthracene
moiety occurs only if both Na+ and H+

are present, because they block the two
possible intramolecular electron transfers
(dashed arrows), which would quench the
excited state. (Adapted from [5.84].)

(on the crown ether site) AND H+ (on the amine site), these reagents being
considered as INPUT1 and INPUT2.

The OR gate is relatively easy to implement. For instance, one can use again
a fluorescent molecule, with a non-selective complexation site able to fix, for
instance, Ca2+ OR Mg2+. Luminescence occurs only when the coordination
site is occupied, whatever the nature of the cation, hence the OR function.

The XOR logic function is more difficult to achieve: the system must
respond when one OR the other input is activated, but not both. The proposed
solution is to use a pseudorotaxane (see the definition of a pseudo-rotaxane
in Fig. 5.30), made of a diazapyrenium thread and a crown ether macrocycle
(Fig. 5.49) [5.84]. The basic property of the pseudorotaxane, compared to the
rotaxane, is that it can disassemble. The OUTPUT is provided by the state
of the system (threaded = 0, unthreaded = 1). The INPUTs are provided by
reactants which have affinity for the diazapyrenium or the crown ether.

Thus one OR the other reactant leads to disassembling. But when both are
present they simply react on each other in solution, and their effects cancel!

Finally, let us consider the complex function INHIBIT. The related molecule
is made of a phosphorescent bromonaphthalene unit linked to a polyaminoacid
receptor (Fig. 5.50) [5.84]. This receptor is able to quench the phosphorescence
of bromonaphthalene unless the linked receptor is occupied by a cation like
Ca2+. But in addition, phosphorescence requires that the bromonaphthalene is
shielded from the outside medium by complexation with a cyclodextrin, and

Fig. 5.49
An XOR gate based on the thread-
ing/rethreading of a pseudorotaxane. The
inputs are an acid (CF3SO3H) and a
base (n-Bu3N). (Reproduced from [5.85],
vol. 3, p. 528, Fig. 24.)
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Fig. 5.50
An INHIBIT gate made of a phosphor-
escent bromonaphthalene unit linked to
a polyaminoacid receptor. The inputs
are Ca2+ (INPUT 1), a cyclodextrine
(CD) (INPUT 2), and O2 (INPUT 3).
Phosphorescence is observed only if Ca2+

and CD are present, but O2 is absent.
(Adapted from [5.84] vol. 5, p 167.)

it also needs the absence of molecular oxygen which is a powerful quencher
(Fig. 5.50). To summarize, phosphorescence (OUTPUT = 1) is observed only
if Ca2+ and cyclodextrin are present (INPUT1 = INPUT2 = 1) and if O2 is
absent (INPUT3 = 0).

Of course, many more systems can appear as a result of chemists’ imagina-
tion to answer such kinds of problems. But the real challenge is in using these
systems in a practical way. The demonstrations are made on large ensembles of
molecules in solution, while it would be necessary to realize the function at the
single molecular scale. Furthermore, it is extremely difficult in the present state
of the art to discern how the inputs and outputs, which consist in the presence
or absence of a reactant, could be transferred from one gate to the other.

5.3.2 Systems studied in the solid state

Devices based on spin cross-over
Spin cross-over systems can be used to store information. In Section 2.4.3 we
presented the basic features of the spin cross-over phenomena and the condi-
tions to produce bistable systems, and in Section 4.5.2 how the spin transition
can be triggered by photons (LIESST and LD-LISC effects). Note, however,
that the appearance of hysteresis in the spin cross-over process requires cooper-
ativity, and thus cannot be scaled down to the level of a unique molecule.
For the moment, the possible practical uses are more oriented towards display
devices rather than information storage. We address here one such example.

The property which is exploited is bistability; that is, the ability of the given
system to exist in two stable states under identical external conditions (T, P,
and so on), as shown in Fig. 5.51.

Figure 5.51a shows a general scheme of the bistability phenomenon: starting
from low values of the applied constraint C and increasing C, the system is in



Behaviour of ensemble of molecules 461

(a)

Constraint (C)

State (X)

X2

X1

C1 C2

Bistability
Domain

2

1

Tc

(b)

T/K

White

Red

χMT / cm3 mol–1

250 350300

Tc• •

Cobservation

C2C1

High Spin (S = 2)

Low Spin (S = 0)

3

0

Bistability
Domain

Fig. 5.51
Bistable systems. (a) General case: between C1↓ and C2↑, the system presents two stable states, X1 and X2, defining a bistability domain; (b)
thermal variation of the molar susceptibility of a spin cross-over Fe(II) system presenting a wide hysteresis around room temperature. (Adapted
from Kahn et al [5.86].)

state X1 and remains as such up to the value C2↑ of the constraint. For C >

C2↑ it changes to state X2. Then, decreasing C, the system remains in state X2

down to the constraint value C1↓ when it changes to state X1. We recognize
an hysteresis, and between C1↓ and C2↑ the state of the system depends on
its past history: we have a bistability with a memory effect. It is convenient to
define special values of the constraint C, C2↑(up) (same amount of states X1

and X2 when increasing C), and C1↓ (down) (same amount of states X1 and
X2 when decreasing C).

Figure 5.51b is an experimental illustration of the general scheme applied
to the magnetic susceptibility of the Fe(II) spin cross-over system schematized
in Fig. 5.52. The external constraint is the temperature T. The property used to
describe the system is the spin state: high spin, spin S = 2 at high temperat-
ure, low spin, S = 0 at low temperature. The ordinate is the χM T product of
the molar susceptibility χM multiplied by the temperature T. The high and low
spin values of χM T are easy to find from the Curie law (χM T = n(n + 2)/8,
n number of unpaired electrons; see Section 2.3.4 and eqn. (2.47)). The bista-
bility domain is centred on room temperature (300 K), with a wide hysteresis
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Fig. 5.52
Schematic structure of a spin cross-over
system built from a cationic chain of
tris-μ-(R-triazole)iron(II) and insulating
anions [5.86].
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(≈ 50 K). The hysteresis loop is smoother than the theoretical one, for the reas-
ons given in Section 2.4.3. The important point for practical application is that
around room temperature the system presents a wide bistability domain, with
either a white colour (when deriving from high temperature) or Bordeaux red
(when deriving from low temperature). All the conditions are fulfilled to use
this molecule-based system, at room temperature, in a display device.

Fig. 5.52 shows the chemical structure: a chain of iron(II) cations, bridged
by three neutral triazole ligands, with an aliphatic chain R as a substituent
[5.86]. The repeating unit along the chain is made of two Fe(II) ions and six
triazole ligands. The chain is therefore cationic, and negative counter ions
ensure the electroneutrality of the system and isolate the chains from each
other. Iron(II) was chosen since it presents frequently high-spin and low-spin
states, especially with triazole ligands, which provide an intermediate ligand
field propitious to the appearance of spin cross-over at relatively high trans-
ition temperature. In addition, the triazole bridges neighbouring iron atoms,
conferring a polymeric structure to the system.

Note that the behaviour requires intermolecular interactions of the proper
sign (Section 2.4.3). In the present case it is likely that the polymeric nature
of the system plays a role by introducing some elastic interaction between
neighbouring metallic ions. Organic substituents R and anions are two further
parameters introducing additional flexibility into the chemistry of the whole
system. Other devices exploit the room-temperature bistability of the systems
presented in Section 2.4.3.4 and Fig. 2.29.

5.4 Towards quantum computing
Quantum computation is the subject of intense research activity. It is based on
the intrinsic quantum behaviour of small objects, including molecules. Note
that conventional electronics uses, of course, the quantum properties of matter,
but the data are treated under the form of macroscopic variables such as cur-
rents and voltages. In a quantum calculation the data are treated under the form
of quantum states, which can combine in a complex and subtle way. At the
heart of the processing is the time evolution of a state under the influence of
the evolution operator e− iHt

� . Mathematically, this translates as:

|�(t) > = e− iHt
� |�(0) > (5.35)

where �(0) > is the state at time zero and �(t) > the state at time t, while H is
the system’s Hamiltonian. As the subject of quantum computation is extremely
wide and is evolving rapidly, the reader is advised to consult basic introductory
texts such as [5.87]. Here we simply present an overview, and mention some
fundamental features of the process.

5.4.1 Standard quantum computing

The most frequent implementation of quantum computing is based on the pre-
paration of the system in a given non-stationary quantum state �(0) >, then
its free evolution as a function of time, and finally the ‘reading’ of the result at
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a given precise time. This standard approach relies on the concept of the qubit
(quantum bit). At variance with classical bits, which can take only the binary
values of 0 or 1, qubits can exist in a superposition of states such as α |0> +
β |1>, where α and β are coefficients that can take any values, subject to the
normalization condition α2 + β2 = 1.

A second important difference is that two or more qubits can be put in
entangled states by a proper mastery of state superpositions [5.87]. In the
entangled state, two qubits cannot be separated and thus cannot be described
independently. An example is provided by the two s1 = 1/2 and s2 = 1/2 spins
of a singlet state described by |�> = (|↑↓ > – |↓↑ >)/21/2. Only the total
quantum state can be specified completely, but not the one of the components.
Entanglement is crucial, because it allows the system to explore several possib-
ilities at the same time. The detailed theory shows indeed that after its evolution
the system has performed the equivalent of a large number of classical cal-
culations occurring in parallel. In practice, to generate entangled states, it is
necessary to play with couplings between the subsystems in order to entangle
or disentangle at will.

Qubits can be implemented with different physical systems: quantum dots,
ion traps, single-photon devices and cavities, superconducting devices, and a
few chemical systems. The most popular among chemists are ensembles of
nuclear spins, addressed by NMR. Pulsed NMR techniques allow prepara-
tion of nuclear spins in superposition of states, with a specific addressing of
different nuclei, and the dynamic evolution of nuclear spins is well isolated
from their environment. To date, the best achievement relies on a molecule
presenting seven qubits, under the form of seven 13C or 19F nuclei in different
magnetic environments, and with proper couplings. Once properly manipu-
lated, this system is able to factorize the number 15 as 5 × 3 by using the
so-called Shor algorithm [5.89]. These experiments are possible only on a
macroscopic ensemble of identical molecules present in a standard NMR tube.

However, to facilitate the interface with the outside world it is more appeal-
ing to rely on molecular electronic properties. Since electronic spins are then
concerned, the general experimental setup would be based on pulsed ESR
techniques.

Paramagnetic molecules with spins 1/2 could constitute a first class of sys-
tems relatively easy to understand because of the conceptual proximity with
NMR experiments familiar to chemists. In a magnetic field, the states ↑ and
↓ can code 0 and 1, and the system can be prepared in a non-stationary state
by a suitable pulse of microwave or radio-frequency radiations. In this spirit,
some clusters, such as Cr7Ni, have been proposed [5.88]. Cr7Ni is a ring with
antiferromagnetically coupled metal centres: 7 Cr(III) (S=1/2) and 1 Ni(II)
(S=1). The resulting spin is 1/2 (it is an example of molecular ferrimagnetism;
see Section 2.6.5.2). It is possible to prepare a dimer of such units, and spin
entanglement between the 1/2 spins of the rings has been demonstrated through
magnetic susceptibility at 50 mK.

Another class is provided by high-spin molecules which present a number
of advantages. As seen in Section 2.8, some of them present the behaviour of
single-molecule magnets, they exhibit coherence times up to hundreds of ns,
and, their energy spectrum being richer, the selective generation of arbitrary
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Energy levels of an Mn12 single-molecule
magnet in the presence of a small mag-
netic field dHz, so that the MS and
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arrows). Representation as in Fig. 2.81.
(Adapted from [5.90].)

superpositions of spin eigenstates is theoretically possible. As a conceptual
example we can consider the case of an Mn12 single-molecule magnet (see
Section 2.8.1 and Fig. 2.81) placed in a weak magnetic field (Fig. 5.53).
We consider only levels of the left-hand part of the diagram, which are
(slightly) stabilized by the magnetic field with respect to the levels of the right
(Zeeman effect).

At very low temperatures (around 1 K), the system is present in the MS = –S
state (for Mn12, S = 10) and transitions are possible towards states MS =
–S + 1, –S + 2, –S + 3, and so on. An important point is that the levels
are not equidistant (at variance with the case of the harmonic oscillator;
see Section 2.5.1.2 and Fig. 2.35). Thus selective population of the different
excited states is possible by using different frequencies. But quantum calcu-
lations requires more than that: actually, by using a complex pulse of several
frequencies, it is possible to place the system in a superposition of states. After
that, theory shows the possibility of starting the calculation by a universal
single pulse, and then read the result by stimulated emission or absorption,
which would produce information on the nature of the populated levels [5.90].
This system is theoretically capable of implementing the Grover algorithm
[5.91]—a quantum procedure allowing the efficient search of an item in an
unsorted database.

However, quantum computing is plagued by the fundamental problem of
decoherence. Since quantum computation is based on fragile interference
effects, it is of paramount importance that the spontaneous evolution occurs in
a way retaining the coherence of the state superpositions. But this coherence
is easily lost by the interaction with environment (atomic motions, interaction
with nuclear spins, and so on). Some systems nevertheless present promising
behaviour; for instance, the V15 cluster, with two very close ground states
S = 1/2 and with an excited state 3/2 just above. But this cluster must be
‘wrapped’ by interaction with a cationic surfactant to separate the magnetic
units from each other and avoid the decoherence by magnetic dipolar effects.
Upon spin-echo experiments [5.92], Rabi oscillations between sublevels (see
the two-state system behaviour in 1.6) have been observed for durations of a
few hundreds of ns at 4K.
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Research is very active in this field, but at the present time the effects her-
alding quantum computing are obtained only with complex equipment and
procedures necessary to prepare the initial state. In addition, there is no real-
istic solution to ‘cascade’ the qubits components; that is, to use the output of
one to be the input of another. We now present a recently proposed alternative
approach.

5.4.2 Quantum Hamiltonian computing

A different way of performing quantum computation with a single molecule
has been proposed under the name of ‘quantum Hamiltonian computing’
(QHC) [5.93]. Here the molecule is not divided into qubits. Moreover, the
input information is not introduced as an electronic property (for instance, an
electron spin state), but in the Hamiltonian driving the intramolecular quantum
evolution, by way of control of the geometry. Finally, the result is read at spe-
cific places of the molecule under the form of an electron flux. The difference
between normal quantum computing and quantum Hamiltonian computing is
made apparent in Fig. 5.54.

An advantage of quantum Hamiltonian computing is that it is well adapted
to the treatment of data through electrical currents. The input and output could
consist in a flux of electrons, thus ensuring the averaging of individual quantum
events as well as quantum-to-classical conversion [5.93].

The following example of dinitro[1,3]anthracene (Fig. 5.55 ) shows how it
could function as a half-adder—an elaborate logic gate with two inputs and two
outputs, able to process two binary numbers. One of the outputs constitutes the
sum modulo 2 of the input bits (corresponding to the function XOR), while the
other is the carry, and thus takes the value 1 only if both inputs have the value
1 (corresponding to the function AND). The truth table is therefore as follows:

Input Bit 1 Input Bit 2 Output XOR Output AND

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

In this molecule the (classical) input would be introduced as values of the θ1

and θ2 angles between the respective planes of NO2 groups and the anthracene
plane. (It is assumed that these angles can be controlled experimentally; for

lΨ(0)> lΨ(t)>H(θ1,θ2)
output

input
(normal QC) input

(QHC)

Fig. 5.54
Two kinds of quantum computing. In nor-
mal quantum computing (QC) the input
is introduced in the form of an ini-
tial state |�(0) >, which evolves in
time under the influence of the system’s
Hamiltonian (fixed) according to eqn.
(5.35). The output is provided by the
state |�(t) >, measured at some later
time t. In quantum Hamiltonian comput-
ing (QHC) the Hamiltonian depends on
structural parameters such as bond angles
(θ1 and θ2). The input consists in modi-
fying these parameters while |�(0) > is
fixed.
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Fig. 5.55
The quantum Hamiltonian half-adder
gate. In this theoretical work, a dinitro[1,
3]anthracene molecule is studied from
the point of view of its dynamical
response to an electron uptake according
to the position of the NO2 groups. The
NO2 dihedral angles are assumed to be
externally fixed at either 0 or 90◦, cod-
ing binary inputs 0 and 1 respectively.
After an electron introduction in location
IN, the time evolution can be read by
the appearance of the electron at loca-
tions AND and XOR, corresponding to
the half-adder operation. (adapted from
[5.93])

instance, using the tip of an STM). The code is that θ = 0 corresponds to 0 and
θ = 90◦ corresponds to 1. Then the system is prepared in a non-stationary state
by injecting, for instance, an electron in a particular location, noted |φin>. The
quantum evolution is then computed as a function of time, and the electron
moves along the system of π orbitals in an almost periodic way, with from time
to time localization in a given location such as |φAND> and |φXOR> (Fig. 5.55).
The result of calculation can be read in these particular locations, for instance,
if θ1 = 0◦ and θ2 = 90◦ (code 0 1), the electron has a high probability of
appearing in the output |φXOR>, and never appears in the location denoted
|φAND> [5.93].

The main advantage of QHC is the possibility of implementing it in an
extremely small volume, and thus take full advantage of the monomolecular
nature of the device, with the possibility of addressing the system by an elec-
tron flux and thus to partially restore a classical behaviour. Nevertheless, this
approach relies on the connection of a molecule to several electrodes at the
atomic scale—another future challenge.

5.5 Conclusion and perspectives
Molecular electronics is a topic which is constantly evolving. (Its spin vari-
ant, molecular spintronics, is in its infancy). Since the first prospective ideas
in the 1970s, many achievements have been realized. The more concrete ones
belong to hybrid molecular electronics, which has developed in a way paral-
lel to silicon electronics. This has been the opportunity to set up cutting-edge
experiments at the frontier of technical possibilities—in particular, the meas-
urements involving single molecules, but the results are there: we can now test
real devices and investigate their usefulness in realizing larger circuits.

There are, however, considerable difficulties ahead. The reliability of each
molecular device cannot be guaranteed. To give an example, the authors of the
beautiful result on the molecular spin valve (Section 5.2.9) [5.82] reveal that
among the 130 investigated devices, twenty-five showed a magnetic molecu-
lar signal, and seven could be studied in detail. Associating a large number
of devices necessitates extreme control of their disposition and interaction.
At present there is no process adapted to mass fabrication and precise intercon-
nection, which would be (at a lower scale) the equivalent of microelectronic
processes. But is it really useful and necessary to mimic the architecture of
conventional silicon-based circuits? If we return to the original motivation, the
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size reduction, we have to consider the considerable improvements achieved by
the conventional technology in the past decades. And if we take into account
the total size of a hybrid device, including the necessary connection wires
(electron reservoirs), the gain with respect to silicon devices is not so great.
The International Roadmap for Semiconductors predicts (in 2012) transistor
dimensions of 14 nm in the near future, with the conventional technology.
Of course, most proposed molecules are much smaller, with a typical size of
2–3 nm, but the connection wires are usually several times larger than these
values.

Incidentally, conventional silicon electronics is also facing problems, show-
ing that the absolute limit in miniaturization will soon knock on physical
limits. Besides, it is agreed now that size reduction (‘more Moore’; see Box
‘Moore’s law’ p 397) cannot be the sole motivation for molecular electronics.
Since 2005 the International Roadmap for Semiconductors has recognized the
interest in introducing more complex and integrated functions (the ‘More than
Moore’ approach). In this respect, molecules are the candidates of choice for
fulfilling these requirements.

Molecular electronics could present an advantage over silicon electronics
in terms of cost of manufacturing. The semiconductor industry is confronted
with a huge increase in costs for each new generation of processes. In this
respect, molecular electronics relies on molecular chemistry, which utilizes
much cheaper methods of deposition. The selective affinity of molecules for
certain substrates gives rise to self-assembling processes, and any chemical
transformation is a highly parallel process, since it involves a large number of
molecules. These advantages are quoted frequently in the literature, but it is
fair to say that at the present time these ideas are mostly speculative.

But we have to consider also the possibility of novel types of architectures.
Since the advent of molecular electronics this has also been the subject of
much speculation and debate. The concept of an integrated architecture has
emerged initially from the work of Forrest Carter [5.8]. The principle is to
connect directly the components, without the intermediate metallic wires; but
in this situation the fundamental principle of conventional electronics disap-
pears: the components are no longer independent, and we cannot decompose a
large circuit into elements. More annoyingly, there is nothing like an intrinsic
characteristic of a part of a circuit, such as a current–voltage curve, nor even a
physical variable, such as a voltage, which can be transferred from one com-
ponent to another. Instead, the circuit is embedded in a large single molecule,
and the total system must be devised from the beginning, and then studied and
modelled. This possibility could be called monomolecular electronics [5.14].

The evolution towards monomolecular electronics can be seen as parallel
to the evolution which occurred in the 1950s, when electronics moved from
discrete components to integrated circuits. In principle, it should be possible
to conceive such molecular integrated circuits. Several logic and computing
functions would be integrated in a large and extremely complex molecule, and
only the final result would be accessible from the outside world. This huge
challenge is the subject of current research. It will certainly change drastically
our way of thinking. To quote just one example, it can be shown that the usual
rules of association of circuits are no longer valid: thus the conductances of



468 The mastered electron: molecular electronics

two elements mounted in parallel are not additive [5.14]. Tackling this type of
problem will require considerable effort, but it begins to be affordable, given
the considerable progress of numerical calculations.

Quantum computing is also a possible avenue for molecular electronics, but
is still very speculative. (Note that the vast majority of experimental studies in
quantum computing make use of physical devices, not molecules). As for the
rest of the molecular electronics domain, the problem of selective and precise
addressing of molecules, and moreover, in this case, molecular quantum states,
represents a formidable challenge.

As a conclusion, it is interesting and instructive to remark that the pro-
gress of science is composed of many discontinuous advances, impediments,
and temporary blockades in the domains of theory, experiment, and concepts.
When new results are obtained, ideas evolve, new concepts emerge, and new
experiments are planned and realized. In the case of molecular electronics,
although we do not have in hand yet a truly molecular computer, the sub-
ject has triggered considerable progresses in the techniques and understanding
of processes at the nanometric scale. The large body of accumulated data is
also indicative of the huge potential of molecular chemistry and its ability
to provide really new structures. The most important of these is the con-
stant appearance of new and eventually unplanned results, increasing common
knowledge, refining the presently accepted models or imposing the adoption
of new ones, and leading to endlessly new avenues of discovery.
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2D, two-dimension, 49, 123, 172–175,
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321, 449

3D, three-dimension, 48, 123, 172–183,
185, 287, 291, 295, 309, 311, 316, 321,
366, 383
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AB unsymmetrical molecules, 16–17, 60, 150,

152
Abragam A., 127, 203
absorbance, 330, 353
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general process, 90, 92, 464
in EPR, 92
electronic (UV-vis-near IR), 125, 237, 239,

255, 259, 298–299, 312, 439–440
in photophysics, 227, 326–331, 333, 344,

348, 353, 355–356, 359–366, 374, 382
γ rays (Mossbauer), 238
in NMR, 250
X-ray, 93, 113, 375, 381
molar absorption (extinction) coefficient,

255–256, 330–332
activation energy

high-spin low-spin, 125, 366, 368
in electron transfer, 211, 213–214, 216,

218–220, 222–223, 226, 228, 230, 236,
243, 248, 258

in Glauber mechanism, 200
in nanojunctions, 403, 414, 433
in photo-induced electron transfer,

375–377
of conductivity, 271, 298, 310

AC susceptibility, 90, 193
adiabatic, 198, 219–225, 257, 265, 455
AFM, see Atomic Force Microscope
allyl radical, 24, 70
AND gate, 458, 465
Anderson, P.W., 143, 154, 203, 245, 324, 420,

469–470

angular momentum operators, 50, 81–86,
99–104

orbital (l, L), 50, 81–83, 99, 108, 129, 201
spin (s, S), 50, 83–86, 97, 100
total (j, J), 86, 101, 103, 201
see also operator, sub-entry spin angular

momentum
anisotropy, 132, 191

and crystal field, 132
and exchange, 131–135, 137, 174, 185
and long-range order, 185
and magnetization dynamics, 191–195
and zero-field splitting, 131
easy axis, 131, 135, 181, 194
easy plane, 131, 135
in chains, 174, 199
in clusters, 137
in conductivity, 271, 275, 281, 303
in lanthanides, 201
in single chain magnets, 199
in single ion magnets, 201
in single molecule magnets, 191–199
Ising, see Ising anisotropy
D parameter, tensor, 128–132, 134,

137–138, 199
g parameter, tensor, 129
single-ion, 128–132
two-centre, 134
structural,, 174sq, 191sq, 199sq, 201sq,

272sq, 276sq, 278sq
uniaxial, 131, 135, 193
XY, 135, 185

anisotropy barrier, 131, 193sq, 199–202
antenna effect, 351, 362–363, 365

see also light harvesting
antiaromatic, 27, 39
antibonding (orbitals)

definition, 12
in Bloch or crystal orbitals, 24, 41–45, 48
in complexes, 29–32, 121, 209, 223, 272,

334
in exchange interaction, 142, 145, 148–150,

161–162
in Jahn-Teller or Peierls distortion, 39, 46,

249
in KCP, 273–275, 292
in polyacetylene, 277
in spin cross-over complexes, 121, 367
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antibonding (orbitals) (cont.)
in TTF-TCNQ, 284
see also bonding

antiferromagnetic
coupling, interaction, 133, 140–152,

153–156, 157–172, 173–183, 188–192,
244–247, 311–316, 377, 380.

in a chain, 173, 176, 179
in Kondo effect, 420
Mott insulator, 249, 318
order, 178–180, 183–185

antiferromagnetism, 8, 94, 145, 148, 161–164,
169, 321

antisymmetric
exchange, 135, 173, 175
Hamiltonian, 132, 135
orbitals, 23–25, 45, 160
wavefunction, 9, 51, 68

antisymmetry, 52, 67
approximation

Born–Oppenheimer, 11, 50
Hartree–Fock, 52–63
Hückel, E., 12, 26
Koopman, 58
LDA, LSDA (DFT), 74
mean-field, 54, 313
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Mulliken, R., 142
one-electron, 4, 8, 23, 39, 52, 74
tight-binding, 24, 62, 319
Van Vleck, J.H., 96, 98
see also semi-empirical methods

approximate, approximated
density of states, 44
Franck–Condon factor (Förster theory),

355
probability for electron transfer, 222
radial functions, 5
relation between G and ket, 425
resonance integral, 17, 24
time scales, 252

aromatic, 26, 35, 122, 282, 341
Arrhenius law, 194, 198, 230, 369
atomic force microscope (AFM), 395, 446,

448
atomic number (Z), 4, 8, 50, 94, 104, 189
atomic orbital (AO)

definition, 5, 9
symmetry, 6, 21
linear combination, 11, 24, 29, 40, 62, 164,

207, 260
Au, see gold
Aufbau principle, 9, 20, 34, 44, 65, 107, 326,

328
Austin Model (AM1), 63
Aviram, A., 390, 427–430, 468

Avogadro constant (NA), 3, 95, 116, 255
avoided crossing, 37, 75, 198, 219–224, 237,

240–242, 248, 264, 332

B
bacteriochlorophyll, 362
ballistic transport, 405, 408
band

model, 39–45, 268–275, 304, 306, 308, 312,
396

narrow, 269, 278, 304–308, 316
splitting by Peierls distortion, 45–46,

286–304
width, W, 43–44, 278, 284–286, 292, 319
see also conduction band, intervalence

transition, valence band
Bardeen Cooper Schrieffer (BCS) model, 316
Becke, 3-parameter Lee Yang Parr (B3LYP)

functional 74
Becquerel, H., 3
Bednorz, 317
benzene, 25, 62, 70, 364, 430, 451
Bethe, H., 105
bias

current, 90–91
voltage, 396–399, 402–408, 411–413,

416–424, 427, 430–433, 437, 443, 446,
452

bi-dihydrothiazine (btz), 122
binuclear, see dinuclear
bistability, 121, 124, 372, 439, 460–462
Bleaney–Bowers, 127, 133, 139
Bloch, F., 40
Bloch Orbital (BO), 40–49, 154, 272–277,

283–286, 289–292
Bohr, N., 3, 101
Bohr magneton (μB), 2, 85, 89, 91, 128, 170
Boltzmann constant (kB), 3, 95, 194, 309,
bond

alternation, 299, 302
chemical, 11, 67–77, 138, 203, 206
covalent, 11–23, 205, 394, 433
delocalized, conjugated, 285, 296, 424, 430
dissociation, 64, 69–72
length (electron transfer), 209–216, 261,

311
length (Peierls distortion), 286, 296,

301–302
length (spin cross-over), 114
localized, 10, 69, 72
see also bonding, Valence Bond, MO theory

bond order or index, 13, 20, 367
bonding, 12

and exchange interaction, 138–147,
149–155

and spin polarization, 60
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in coordination complexes, 29–34, 272–275,
367

in H2 molecule, 11–15, 63–65, 71, 297, 306
in Jahn-Teller or Peierls distortion, 35–39,

45
in Molecular Orbital theory, 54–67
in polyacetylene, 275–278
in TTF-TCNQ bands, 283–285
in Valence Bond theory, 67–72
in water molecule, 22
pair, 10, 23
π bonding, 17, 32, 48, 276
see also antibonding, Bloch orbital, Crystal

orbital
Born, M., 42, 213
Born–Karman condition, 42
Born–Oppenheimer approximation, 11, 50
boron atom, 9
boron dipyrromethene, 364
bra-ket (or Dirac) notation, 11, 84
break junction, 393, 395, 423, 426, 430, 438,

440
bridge(d)

carboxylate, 140, 160, 192
conjugated, 233, 260, 262, 425
cyanide, 169, 187, 351
hydroxo, 158
molecular, 149–151, 161, 395, 405, 410,

425, 438
monoatomic, 145, 147–148, 207, 312
oxalate, 150, 156, 159, 162–164
oxide, oxo, 145, 152, 191, 207

bridging angle, 157–158
bridging ligand, 79, 140, 146–148, 159, 174,

176, 206, 232, 242, 254, 259, 262, 311,
359, 364, 373, 411

Brillouin
function, 98
zone, 43–44, 49, 274, 283–291, 445
first Brillouin zone, 43–44, 286–288, 445

Brillouin, L., 43
Broken Symmetry (BS), 156–157, see also

DFT, unrestricted Hartee–Fock

C
C60, 322, 364–365, 391, 411

C60 amplifier, 437–438, 441
C60 Kondo effect, 452–453

carotene, 337, 424
carbon

atom, 20, 23, 46, 180, 299, 445
graphite, 444, 449
see also C60, graphene

carbon monoxide ligand, 17, 32–35, 254
carbon nanotube, see nanotube
Carter, F., 391, 467
cgs-emu units, 85, 86–89

chain
alternating, 174
anisotropic, 174, 199
antiferromagnetic, 173, 176
bimetallic, 174, 176, 180
classical, 173
ferromagnetic, 173, 176, 180
ferrimagnetic, 173, 176–183
finite, 173
homometallic or homospin, 173, 176
infinite, 173, 176, 178–180, 314
magnetic, 44, 172–183
quantum, 173
uniform, 173–180, 294
see also 1D

channel
in FET, 442
in nanojunctions, 409, 423
in spintronics (α, β), 449, 454

character, 15, 40, 105, 108
see also group theory

character table, 15, 21, 25, 29, 39, 105
characteristic time, 195, 250–254

see also time scale
charge (q, Q), see electron

recombination, 333, 349
separation, 326, 333–338, 342, 346, 351,

362, 365
charge density, 54, 58, 61, 72, 284, 290–295,

301, 307, 312
wave (CDW), 286, 290–292, 294–297, 300,

312–315, 320–322
charge transfer (CT)

configuration, 13, 68, 140–143, 154–156,
insulator, 312
transition, 243, 255–257, 259, 349
salt, 278–285, 293, 304–308
see also ligand-to-metal, metal-to-ligand,

metal-to-metal charge transfer
charge order(ed), 307, 318
chemical mechanism (electron transport or

transfer), 262, 404, 414
chemical reaction, 125, 224, 236, 262, 329,

340, 403, 416
chemiluminescence, 338–340
chromium, see Cr
chromophore, 122, 259, 326, 336, 351,

354–359, 362–364, 458
class (mixed valence), 240–243

class I, 240, 311
class II, 240–243, 248–257, 269, 294, 308,

312, 351, 375
class III, 240–243, 250–257, 312

closed-shell, 59–65, 74, 107, 278, 293, 327,
337, 354, 396, 422, 452–453

CO, see carbon monoxide, charge order,
crystal orbital



476 Index

Co (Cobalt), 27
cobalt(II), Co(II), CoII, 110, 164, 190, 379,

452
Kondo effect in cobalt complex, 452

cobalt(III), Co(III), CoIII, 169, 188, 452
Co(sq)(cat)(phen) complex, 127
cobalt, see Co
coercive field, 193, 195, 450
coherence, 401, 463
coherence length, 405, 408
commutation, 82, 86
commuting operators, 82, 105, 128
complete active space self consistent field

(CASSCF), 156
complete neglect of differential overlap

(CNDO), 63
complex as ligand, as metal, 166, 177

see also coordination complex
complex wavefunction, 5, 26, 40–43, 47, 76,

221, 290, 462
comproportionation, 232–233, 236
conductance, 267, 405, 408–411, 420–426,

447–451, 455, 467
transconductance, 442
differential, 441, 452
quantum, 408, 420, 455

conduction, 266–270, 284, 298, 309–311, 396,
420, 425, 449

band, 294, 298–302, 343, 347–348,
445–446

electron, 405, 420, 453
metallic, 268, 275, 304
spin-polarized, 449–452

conductivity, 44, 217, 249, 266–315, 420
metallic, 217, 282, 299, 302, 308, 390,

447
see also superconductivity

conductor, 28, 217, 268, 276–279, 306,
316–319, 390–392, 405, 409

metallic, 217, 269, 271, 277, 283, 297, 392
one-dimensional (1D), 44, 270, 275, 296,

303, 321
see also semiconductor, superconductor

configuration interaction (CI), 4, 63–67, 72,
141–143, 154–156, 248, 421

cooperativity, 111, 115, 122, 460
coordination complex, 27–35, 99, 109, 166,

329–330
coordination sphere, 187, 210, 375, 379, 383

external, 211
internal, 211, 213, 215, 224, 241

Cooper pair, 316, 322,
copper, see Cu
correlated electrons, 49, 52
correlated spins, 179, 199
correlation

between ligand field approaches, 107
between charge density waves, 295

electron, 53, 63, 71, 73–74, 217, 266, 291
energy, 53, 155
length, 184, 295
magneto-structural, 157, 202

Coulomb
blockade or staircase, 402–404, 414,

417–420, 424, 447, 452
diamonds, 441–443, 452
energy (α), 12, 23, 39
hole, 49
one-electron integral, 12
repulsion, see electron repulsion

covalent bond, 16, 205, 394, 433
covalent term, wavefunction, 64–72
Cr (chromium), 27
Cr(II), CrII, chromium(II) acetate, 140
Cr(III), CrIII, chromium(III), 160, 163, 165,

168, 188–190, 329, 463
[Cr(III)(CN)6]3-, 166, 169, 188–190
Cr(III)-Cu(II) complex, 161–165
Cr(III)-Mn(II) complex, 163
[Cr(III)(ox)3]3-, 166
CrCu6, CrMn6, CrNi6 complexes, 169

critical temperature (Tc), 92
in magnetic ordering, 179, 183–185, 189,

383
in Peierls distortion, 294
in superconductivity, 268, 316

Creutz-Taube complex, 231
crystal field, 28–31, 104, 132
crystal orbital (CO), 4, 46–49, 277, 296
Cu (copper), 27
Cu(II), CuII, copper(II), 36, 130, 136, 145,

163, 173, 374
acetate, 133, 139, 156
bis-μ-hydroxo complex, 157–159
Cu(II)-Cr(III) complex, 161–165
[Cu(II)(dto)2]2- complex, 177, see also

MnCudto chain
Cu(II)-Fe(III) complex, 165
Cu(II)-Mn(II) complexes, 166–168
[Cu(II)pba]2-, 166–168, see also MnCupba

chain
[Cu(II)pbaOH]2-, 180–183, see also

MnCupbaOH chain
Cu(II)-V(IV)O complex, 160
dibenzoylmethanato complex, 433
μ-oxalate complex, 79, 149–151, 159–164,

173
μ-oxamide, dithiooxamide,

tetrathiooxamide complex, 162
in Prussian blue analogues, 189

Curie law, 95–98, 139, 184, 193, 375, 461
Curie temperature (TC), 94, 181–183,

188–190, 378–380, 383
Curie, M., 3
Curie, P., 3, 94, 183
Curie–Weiss law, 184,
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cyanide bridge, ligand, 123, 166–170, 187,
238, 287, 272–275, 351, 373–381

see also hexacyanidochromate, hexacyanido-
metalates, octacyanido complex, Prussian
blue

D
D parameter, 130–132, 140, 174, 193, 194,

199, 201
D tensor, 128–129, 132, 137, 199

see also anisotropy
�, �oct, see ligand field parameter or splitting
Day P., 231, 239, 312, 323, 325
De Broglie L., 3, 408
decastarphene, 413
decay

of conductance, 416, 424–426
of electronic interaction, 262–265, 359, 425
of excited state (photochemistry), 329,

348–350, 361
of rate constant, 262, 264, 357–359, 361

decoherence, 464, see also coherence
degeneracy, 28, 31, 36, 45, 97, 100–102, 108,

114, 131–136, 197, 201, 249, 277, 296,
326, 415, 437

electronic degeneracy, 36, 45
energy level degeneracy, 136
orbital degeneracy, 45, 100, 135, 249, 296,

326
spin degeneracy, 101, 133, 415

degenerate
atomic orbitals, 13, 19, 109, 201
Bloch orbitals, 43, 45, 289
electronic state, term or configuration, 36,

38, 108, 134, 220, 244, 246, 299
irreducible representations, 15, 25
magnetic sublevels, 196–197,
molecular orbitals, 20, 25, 36, 39, 159, 328,

437, 453
delocalized electrons, 278, 400, 453
demixion, demixing, 117–121, 126, 371
density functional theory (DFT), 73, 77,

155–157, 171, 191, 266, 298, 375, 410,
452

electron density in DFT, 73
see also broken symmetry, functional, Kohn

Sham orbital
density matrix, 58
density of states (DOS), 43–46, 229, 291

at the Fermi level, 291, 422
in KCP, 274–275
in nanojunctions, 407, 422
in polyacetylene, 298–299
local (LDOS), 352, 397, 432

deoxyribonucleic acid (DNA), 263–264
Dexter model, 351, 356–359, 385
diamagnetic, 9, 140, 188

atom, 9
[Fe4Co4] cluster, 377
iron(II) complex, 187
ligand, 145–147, 154
[M(CN)4]2- complex, 123
[Mo(CN)8]4- complex, 374
pair in Co-Fe system, 379–383

diamagnetism, 9, 94
diamond-shaped, 441–443, 452
diarylethene, 439, 456–457
difference dedicated configuration interaction

(DDCI), 156
dimer splitting, 207, 265–266
dimerization, 45, 294, 307, 319–321

see also Peierls transition
dinuclear, binuclear complexes, 152, 157,

163–166
Cu(II)-Cu(II), 79–80, 136–137, 140,

149–151, 157–163
homodinuclear, 163
heterodinuclear, 160–169
mixed valence Rh-Rh, 346–347
mixed valence Ru-Os, 259, 358–359
mixed valence Ru-Ru, 231–233, 456–457
μ-oxalato complexes, 149–151, 163
see also chromium, cobalt, copper, iron,

manganese, mixed valence, nickel
dipyridophenazine (dpp) dipyrido, [3,

2-a:2’3’-c] phenazine 122
Dirac notation, 421
Dirac, P.A.M., 1, 3, 11, 84–86, 109, 132, 202
direct exchange, see exchange
dispersion, see energy dispersion
disproportionation, 217, 232, 335, 346
dithienylcyclopentene, 437–440, 456
dithiooxalate (dto), 162, 176
dithiooxamide, 162
domain

magnetic domain, 195–196, 200
model, 121
walls (in ferromagnetism), 195, 200

doping (n, p), 297–303, 308–314, 422
double exchange, see exchange
double-well, 75, 194–197

see also mixed valence, single molecule
magnet, spin cross-over

Dq parameter, 29, 106, 110–113, see also
ligand field

drain (electrode), 441–443, 447, 449, 452, 455
Drickamer, H., 117, 122
Dzyaloshinskii, 135

E
E parameter, 130–132, 199

see also zero-field splitting, anisotropy
easy axis, 131, 135, 181, 194, 453

see also Ising, anisotropy
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easy plane, 131, 135
effective

atomic number (Zeff), 8
coupling, 208, 457, see also electronic

interaction
Hamiltonian (Heff), 8, 11, 62, 208, 246
magnetic moment, (μeff), 95, 98
mass (electron), 445
quantity, 8, 129, 147, 207
resonance integral (βeff), 79, 146, 150, 207

see also Vab parameter
eg orbitals, 25, 28–34, 36, 38, 110, 154, 169,

188, 190, 209, 223, 308, 329, 367
Eg character, state or term, 30, 106, 129
eigen

state, 464
value, 1, 4, 55–58, 81–85, 97, 100–103,

109, 129–136, 241, 246, 257
vector, 58, 129
wavefunction, 1, 3–6, 51–56, 68, 75, 81–84,

105, 128, 157, 289, 350
Einstein, A., 3, 309
elastic model, 121, 410
elastic process, 74, 401, 404, 410, 462
elastic scattering quantum chemistry (ESQC),

410, 423–424
electrochemiluminescence, 338–340
electrochromic, 239
electromagnetic radiation, 3, 92, 126, 205,

252, 330
electromigration, 395, 441
electron

charge, 2–4
discovery, 2sq
in atoms, 4sq
in discrete molecular systems, 218sq
in molecular solids, 39sq, 266sq
in small molecules, 10sq
mass, 4, 255
spin, 2–4, 63, 92, 421, 451, 455, 465

electron correlation, 53, 63, 71,73, 155, 217,
266, 291

electron density, 11, 14, 16, 54, 61, 73, 289,
401

see also charge density, spin density
electron-electron repulsion, see electron

repulsion
electron exchange, 10, 50, 56, 134, 223, 249,

359, 402
electron-hole formalism, 107
electron-hole pair

recombination, 340
separation, 336, 338, 362, 385

electron paramagnetic resonance (EPR), 63,
89, 92, 127, 129, 139, 203, 218, 250, 252,
257, 309, 375

electron-phonon coupling, interaction, 46, 216,
249, 286, 304–307, 311, 316, 414

electron repulsion, 9, 24, 49sq, 53–57, 63, 78,
104, 144, 155, 244–246, 270, 304, 309,
316, 398, 402, 419, see also two-electron
repulsion

electron transfer
in discrete molecular systems, 218sq
in the excited state, 333sq
optical vs thermal, 236sq
partial electron transfer in organic metals,

278sq
electron transport, 340–342, 391–394,

401–414, 417, 422–424, 435,
441, 455

electronegative, electronegativity, 16, 32,
145–148, 162, 207, 313

electronic configuration, 4, 326–328
in atoms, 7–10
in bonding theory, 50–51, 56–58, 63–68,

71–72
in complexes, 29–37, 79, 101, 107,

110, 145, 169–170, 189–190, 244,
313–315

in electron transfer, 212–215, 221,
228, 241

in exchange theory, 138–141
in excited states, 332–335
in polyenes, 26, 38
in small molecules, 14–23,

electronic interaction, 62, 111, 147, 205–207,
220, 240–248, 259–266, 311, 403

electronics, 3, 387, 390, 432, 440, 447, 449,
462, 468

see also microelectronics, molecular
electronics, organic electronics, silicon
electronics

energy barrier, 74–76, 111, 131, 137, 193–195,
198–201, 223–230, 236, 240, 243, 258,
294, 341, 366–369, 375–377, 403

energy (E, W)
charging energy, 417–419
energy gap, 150, 162–163, 246, 274, 294,

297, 300, 313, 445
energy transfer, 351–364
solar energy, 343–346, 351, 385, 390
total electronic energy vs orbital energy, 9,

24, 56–57, 73, 101
transition energy, 237, 257, 301, 326
see also activation energy, band, Fermi

energy, kinetic energy, Madelung energy,
potential energy, potential energy
surfaces, repulsion energy

energy dispersion curve, 43–46, 48, 274, 277,
285–288, 290–292, 296–298, 318–321,
445
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enthalpy (H), 92, 111–118, 176, 270, 367, 373
see also free enthalpy

entropy (S), 92, 111, 114–119, 121, 125, 176,
219, 381

ethene (ethylene), 24, 276
exchange

anisotropic, 132–135, 173–175
antisymmetric, 132, 135
direct, 145, 147, 154
double, 161, 187, 245–249
isotropic, 132–135, 173–175
interaction, 60, 81, 138, 143, 145, 147, 154,

157–159, 173, 182, 187–192, 199, 207,
244, 374–376, 454

kinetic, 154, 156
potential, 154, 156
see also superexchange

exchange-double exchange operator, 246
exchange operator, 55
exchange pathway, 152, 163–170, 190
exchange reaction, 218, 222–225
excited electron, 326sq
excited state, 326sq, 333sq

electron transfer, 236sq, 333sq
in configuration interaction, 64sq, 71–73,

141sq, 155sq
in Jahn-Teller effect, 35sq, 108
in photomagnetism, 373sq
in [Ru(bipy)3]2+, 333–340
in tunnelling effect, see tunnelling effect
see also ground state

exclusion principle, 9, 51, 53, 421
see also Pauli

extended Hückel method, 24, 62,145
extended X-ray absorption fine structures

(EXAFS), 93, 375

F
Faraday, M., 3

balance, 89–91
effect, 93, 366

Fe (iron), 27
Fe(II), FeII, iron(II), 34, 35, 110–111, 163,

169, 187, 190, 210, 212, 237, 244–248,
372, 377, 379–382, 461

[Fe(phen)3]2+, 35, 114
Fe(phen)2(NCS)2, 114, 125
[Fe(ptz)6]2+, 110, 366–369
Fe(py)2M(CN)4, 123
Fe(py)2(phen)(NCS)2, 115
Fe(py)4(NCS)2, 115
Fe(pz)2M(CN)4, 123–124
mixed valence II/III in Prussian Blues,

185–188, 237–238
[tris-μ(triazole)Fe]2+ chain, 461–462

Fe(III), FeIII, iron(III), 110, 160, 165, 169,
189, 210, 215, 237, 244–248, 322, 374,
376–383

dinuclear iron(III) complex, 163
Fe8 complex, 199
heterodinuclear copper(II)-iron(III)

complex, 165
Fermi, E., 44
Fermi

energy, level, 43–46, 49, 284–292, 294, 299,
303, 316, 320–322, 392, 396, 399, 401,
403, 406–407, 409–412, 416, 419, 421,
427–430, 432, 446

function, 398, 406, 411, 415
hole, 53, 421
nested surface, 289, 291, 320
surface, 49, 286–293, 316–321
wavelength, 405, 407

Fermi–Dirac distribution (or Fermi function),
293, 411

Fermi Golden Rule, 229, 352
ferrimagnet, 181, 188, 380, 383
ferrimagnetic, 97, 165, 168–171, 173–184,

188–190, 192, 199, 380
ferrimagnetic chain, 173–183

ferrimagnetism, 94, 161–191, 463
molecular, 163, 164sq, 463
signature of, 167, 179, 193

ferromagnetism, 94, 142, 145, 160
ferromagnetic, 28, 90, 94, 154, 167, 172, 183,

187–190, 247, 306, 446, 455
chain, 173, 176–180
coupling, interaction, 10, 81, 133, 137, 143,

148–150, 157–161, 164, 169, 179, 187,
199, 244, 375

exchange pathways, 164, 169
materials, 90, 184, 188, 249, 450, 455
order, 160, 178, 180, 184, 187–191
state, 154, 170
term, 156

Feynman, R., 67, 85
field-effect transistor (FET), 442, 446–449,

454
fluorescence, 259, 327–329, 331–334, 340,

342, 351–353, 355, 359, 458–459
flux quantum, 90
Fock operator, 55

see also Hartree–Fock
Förster mechanism, 351–364, 385
Franck–Condon

factor, 229, 353, 355, 425
principle, 210, 236, 332

free enthalpy (G), 87, 114, 117, 125, 176, 183,
218, 224–226, 343, 346, 357, 371

frontier orbitals, 45, 79, 156, 261, 285, 334,
437
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Frost circle, 26
functional, 73, 157, see also DFT, LYP, Becke

3-parameter Lee Yang Parr

G
g-factor, 2, 8, 85, 103, 128, 179, 252

nuclear, 128
gadolinium, see Gd
gain (electronic device), 437, 441, 447
gate (electrode), 441–443, 447, 449, 452–455
Gd (gadolinium), 27
Gd(III), GdIII, gadolinium(III), 27, 167, 170,

173
generalized Mulliken Hush (GMH) model,

256
generalized valence bond (GVB), 70
gerade, 6, 18, 28, 106, 207, 331
Gillespie, R., 10
Glauber, J., 200

model, 204
gold

atoms, 336, 394, 409, 432
electrodes, 395, 422, 430, 436, 440
nanoparticles, 393, 395
surface, 394, 397, 440, 411, 413
work function, 397

Goodenough, J., 138, 154, 155, 203, 325
Goodenough–Kanamori rules, 152–154
Goudsmit, S., 3, 84
Gouy balance, 90–91
graphene, 443–446, 448–449
Griffith, J. S., 127, 203
ground state (GS)

and Hund’s rules, 10
and perturbation technique, 65
definition, 7, 9, see also Aufbau principle
determinant, 59, 64, 69
in DFT, 73–74
in electron transfer theory, 242–248, 255,

257, 260–262
in exchange interaction, 133–135, 137,

141–143, 146, 155
in ferromagnetic molecules, 164
in Hartree–Fock SCF method, 54, 58–60
in high-spin molecules, 167–172
in Jahn–Teller effect, 35, 38
in Kondo resonance, 421
in magnetic chains and rings, 174, 176, 178
in Peierls distortion, 294
in photophysics, 326–329, 332, 335–336,

349–352, 354, 366, 371, 373, 375, 377,
381, 383

in post-Hartree–Fock, 64, 65
in single chain magnets, 199
in single ion magnets, 201
in single molecule magnets, 192, 196, 199
in spin cross-over, 110–112
in Tanabe–Sugano diagrams (term), 106

in Valence Bond model, 69, 72
in Zeeman effect, 129
of 1D MX systems, 314
of Co(II) and Co(III) complexes, 223
of dinuclear Cu(II) complexes, 79
of H2, 13
of molecular diodes, 428
of Mott insulators, 305, 307
of O2, 20
of organic superconductors, 319
of polyacetylene, 299
see also excited state

group theory, 6, 14, 35, 40, 77, 105–108, 203,
331

H
H2 dihydrogen molecule, 10–15, 24, 44,

57–59, 64, 67–72, 293, 297, 306,
345–348, 362

H4(fsa)en, 160, 165
H2O

coordinated, 32, 34, 140, 150, 159, 181,
186, 191, 237, 379

hydrogen bonds, 181
molecule, 21–23
photolysis, splitting, 345–347, 362
solvent, 214, 428

Haldane, F. D. M., 174
Hamiltonian, 4, 8, 35, 49, 81, 83, 105, 127

effective, 8, 11, 41, 208
exact, 74
exchange–double exchange, 246
Heisenberg (HDVV), 132, 135, 185, 244,

247
Hubbard–Anderson, 245
Hubbard, Mott–Hubbard, Peierls–Hubbard,

305
Hückel and extended Hückel, 62
model, 245–248
one-electron, 8, 41, 68,
see also effective Hamiltonian, spin

Hamiltonian
harmonic oscillator, 111, 210, 228, 258, 350,

464
Hartree product, 52, 71
Hartree–Fock method, 54–61, 71

post-Hartree–Fock, 53, 63–67, 72, 155–157
Hay–Thibeault–Hoffmann model, 143–144,

155–158
heat capacity, 89, 92, 113
Heeger, A. J., 268, 270, 277, 282, 325
Heisenberg, W., 3, 132, 135, 143
Heisenberg Dirac Van Vleck Hamiltonian

(HDVV), 132, 135, 244, 247, 305
Heisenberg model, 175, 185
Heitler, W., 10
Heitler-London (HL) model, 64, 67, 71, 133,

138, 140–142, 146, 154
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helium atom, 7–9, 59
Helmholtz, L., 62
heterodinuclear, see dinuclear
heterometallic

dinuclear, 160, 163–165
chain, 176–183
see also chain, dinuclear

hexaaqua iron(II), (III), 209–211, 213, 218,
219, 223, 226, 230

hexacyanidochromate(III), 166, 168
hexacyanidometalates, 185
high field (ligand), 32–35, 110
high field (magnetic), 93, 125, 170
high spin (HS)

molecule, 165–172, 185, 375, 454, 463
state, 34, 110–114, 366, 369, 371, 461
see also low spin

high Tc superconductor, 317
high TC Prussian blue analogue, 189
highest occupied molecular orbital

(HOMO), 78
in molecular devices, 396, 410–413, 423,

427–430
HOMO-LUMO gap, 65, 260, 285, 298, 397,

411
TTF HOMO, 283–285

Hildebrand, J. S., 116
Hoffmann, R., 46, 62, 77, 143, 154–158, 203,

269, 271, 275, 469
Hohenberg–Kohn theorem, 73
homodinuclear, see dinuclear
homometallic

dinuclear, 157, 164
chain, 173–177
see also chain, dinuclear

hopping mechanism, 216, 262, 309–311, 403,
414–416, 432, 436

Hubbard, J., 245, 304, 314, 319, 325
Hückel method, 12, 23, 26, 40, 41, 62

4n + 2 rule, 26
see also extended Hückel

Hund–Mulliken (HM) model, 11, 64, 138,
143–146, 148, 150, 154, 412

Hund’s rules, 10, 20, 38, 101, 152
Hush, N. S., 214, 220, 223, 231, 255–258, 262,

323
Hush–Marcus model, 214, 220, 223, 247,

403
hydrogen atom, 4–7, 85
hydrogen chain, 297, 306
hydrogen bond, 180–182, 186, 379

see also H2O
hydrogenoid ion, 7, 109
hydroxo bridge, 157–160
hyperfine coupling, 93, 128, 199, 250, 252,

258

hysteresis
in memory devices, 402, 431, 435, 455
in molecular magnets, 193, 195–196, 198
in Prussian blue analogues, 383
in spin cross-over, 113–115, 120–127,

369–371, 460–462

I
imaginary susceptibility (χ”), 90, 193
indistinguishable (electrons), 8, 51
inelastic neutron scattering (INS), 89, 93, 140
inelastic transport, process, 401, 404, 408, 428
infrared (IR), 3, 113, 140, 237, 252, 254, 298,

377, 413, 418
INHIBIT gate, 458–460
INPUT (in logic gates), 459
insulating layer (NaCl in STM studies), 399,

412, 432
intermediate neglect of differential overlap

(INDO) method, 63
international technology roadmap for

semiconductors (ITRS), 389
intersystem crossing, 327–330, 364, 366, 373
intervalence transition, 236–242, 252,

254–259, 262, 310, 351, 374, 457
inversion centre, 6, 14, 17, 106, 145, 151, 162,

331
ionic

bonding, 16, 278
compounds (in organic metals), 278–281,

305, 307
terms, states or configurations, 13, 64,

68–72
ionization potential, 7, 62, 306, 396
ionocovalent bonding, 16
iron compounds, see Fe
irreducible representation (IR), 6, 15, 18, 22,

25, 29, 40, 71, 105, 331
see also character tables

Ising anisotropy, 135, 175, 185, 199
isotropic exchange, see exchange

J
j, J angular momentum operator (total), 86,

101, 103
j, J quantum number, 86, 101, 103, 201
Jablonski, 326–329
Jahn–Teller effect, 35–39, 46, 77, 296

1st order, 36, 130, 191, 249
2nd order (pseudo Jahn-Teller), 37

j-j coupling, 103–104
Jordan, E., 3
Josephson junctions, 90–91, 384, 453–454
junction, 75, 91, 394–396, 398–404, 407, 411,

418, 423, 428, 433, 437, 441, 447, 451,
454

break, 393, 395, 423, 426, 430, 438, 440
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junction (cont.)
metal-molecule-metal, 391–394, 397, 401,

403, 410
p-n, 303, 336, 426
see also Josephson junction, nanojunction

K
Kahn, O., 77, 150, 160, 165, 180, 202–204,

245, 324, 461, 471
Kahn–Briat model, 134, 140–143,

149–157
Kambe method, 135–137, 167, 203
kinetic energy, 2, 4, 8, 35, 55, 73, 154, 245,

305, 396, 407
kinetic exchange, see exchange
Kohn anomaly, 295
Kohn–Sham orbital, 73
Kondo effect, 420–421
Kondo resonance, 420–422, 452
Koopman’s theorem, 58, 412
Kramers, H. A., 154

Kramers theorem, 108

L
l, L angular momentum (orbital), 81–86,

99–101, 103, 129, 201
λ parameter, 209–217, 219, 236, 241, 255,

257, 311, 313
see also electron-phonon coupling, polaron

energy
λ mean free path, see mean free path
l, L quantum number (orbital), 4, 6, 50, 100,

105
λ wavelength

CDW, 291
electromagnetic (UV-vis), 328, 330, 336,

340, 342, 349, 351, 353, 355, 359, 363,
368, 371, 382

electron (de Broglie), 2, 405
Fermi, 405, 408
neutron, 94
X-ray, 93

Laguerre polynomial, 5
Landau–Zener–Stückelberg model, 198, 204,

221–222, 323, 455
Landauer, R., 403–409, 414, 419, 423, 469
Landé, A., 3

(g)-factor, 2, 85, 92, 103
interval rule, 102

Langevin, P., 94
Langmuir–Blodgett (LB), 393, 428, 434
lanthanide, 27, 199, 201, 249, 317

see also gadolinium, terbium
Laporte rule, 331
Lewis acid-base interaction, 166,

177, 185
Lewis model, 10, 20, 23, 67

lifetime of
a state in a junction, 398
excited state (photophysics), 328, 331,

334–337, 349, 351, 364
muon, 93
nuclear excited state, 251–253
the electron, 2
see also excited state, metastable state

ligand driven-light induced spin cross-over
(LD-LISC), 372

ligand-to-metal charge transfer (LMCT), 155,
256, 259, 330, 332–334

ligand field, 31–34, 105–108, 109–115, 130,
153, 163, 201, 337, 372, 374, 376, 381

ligand field splitting (�), 32–35, 106–108,
109–115, 130

light emitting diode (LED, OLED), 338–342
light harvesting, 327, 362

see also antenna effect
light induced excited spin state trapping

(LIESST), 366–369, 460
linear combination of atomic orbitals (LCAO),

11, 20, 23–34, 42, 62
lithium atom, 9, 60
{LnPc 2}- 202, see also TbPc2

Local Density Approximation (LDA), 74
Local Spin Density Approximation (LSDA),

74
localized electrons, 78sq, 80, 245, 326
logic gates, 418, 458–460, 465

see also AND, INHIBIT, INPUT, OR,
OUTPUT, XOR

London, F., 10
see also Heitler–London model

Lorentz–Thomson model, 3
low field (ligand), 32, 34, 111
low spin (LS)

molecule, 34–35, 107, 110–114, 123, 187,
237, 333, 366–369, 376, 380, 452, 461

state, 34, 109–114, 115–125, 366–369,
370–372, 377–383

see also high spin
lowest unoccupied molecular orbital (LUMO),

78, 79
in molecular devices, 396, 410–415, 419,

427–431, 436, 453
HOMO-LUMO gap, 65, 260, 285, 298, 397,

411
TCNQ LUMO, 283–285

LS coupling, see Russell Saunders
luminescence, 260, 327–329, 334–335, 340,

459
see also chemiluminescence, electro-

chemiluminescence, fluorescence,
phosphorescence

LYP functional, 74
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M
MacDiarmid, A. G., 268, 270, 277, 325
Madelung energy, 122, 279, 281
magnet, 87, 90, 143, 175, 182, 191, 193, 195,

322, 384
molecule-based, 172, 176sq, 182, 185–191
single molecule, 191–199, 204, 463
single ion, 201, 453
single chain, 199
soft, 383

magnetic anisotropy, see anisotropy
magnetic circular dichroism (MCD), 93

X-Ray magnetic circular dichroism
(XMCD), 61, 89, 93, 375, 381

magnetic domain, see domain
magnetic energy, 87
magnetic exchange, see exchange interaction
magnetic field, 85–89

and Zeeman effect, 108sq, 128–131, 173,
194, 198, 464

dipolar effect, 174, 182
in molecular spintronics, 449–455
in quantum computing, 463
influence on spin cross-over, 125–127
see also coercive field, Zeeman effect

magnetic flux density, 88
magnetic induction, 88, 129, 131, 181
magnetic interaction, 92, 152, 154

dipolar, 174, 182
exchange, see exchange interaction

magnetic moment, 84–86, 85–90, 92–98, 103,
109, 128, 183, 420, 453

effective, 95, 98
electron, 2, 93

magnetic orbital, 80, 146–150, 153–165, 169,
177, 181, 188, 192, 208, 319, 375

magnetic susceptibility, 87–90
and magnetic order, 184
definition, units, 87–89
in Fe4Co4 systems, 377
in Kondo effect, 420
in LD-LISC effect, 372
in LIESST effect, 366
in Kambe treatment, 135
measurement, 90, 94
of (CuMn)n ring,
of copper acetate, 139
of polynuclear systems,
of ferrimagnetic CuMn systems, 167,

178–182
of paramagnetic systems (Van Vleck),

94–98
of Prussian Blue analogues, 381
of single molecule magnets, 193
of spin cross-over systems, 113, 123, 366,

372, 461
magnetization

and spin cross-over, 125–127
anisotropy, 134, 181–184, 199–201
at saturation, 98, 193, 170
definition, 87–91, 93–97
dynamics, 193, 198, 200
in photomagnetic systems, 365, 372–375,

378–383
in Prussian blue analogues, 190
in spin valve, 449–453
local vs macroscopic, 93
permanent, 96
plateaux, 193
remnant, 94, 193–195
reversal, 91, 183, 194, 198, 200, 453
see also Brillouin function, hysteresis,

spin-polarized, tunnelling, Van Vleck
equation

magnetochemistry, 80
magnetoresistance: colossal, 249, giant 450
magneto-structural correlation, 157, 202
manganese, see Mn
many-body perturbation theory (MBPT), 67,

72
Marcus, R. A.,

cross-relation, 224–226
inverted region, 226, 331, 336, 339, 357
see also Hush-Marcus model

mean free path (λ), 405, 408, 449
Mendeleev, D., 3
metal-molecule-metal, 392–393, 398, 401,

403, 410
metal-to-ligand charge transfer (MLCT), 259,

330, 333, 337, 370
metal-to-metal charge transfer (MMCT), 155,

330, 374
metastable state

in LIESST, 368–372
in photomagnetism, 327, 366, 373–378,

381–383
in spin cross-over, 120, 124–126

methylviologen, 335
microelectronics, 387, 392
Millikan, R., 3
mixed valence, 231, 325

classes, 239–240
definition, 231
electronic interaction in, 260
experimental study, 250–260
in dinuclear Rh-Rh, 346–347, Ru-Os,

259–260, Ru-Ru, 231–233, 351, 456–457
in K3[MnO4]2, 311
in M(AA)2X chains, 312
in Mn12, 191
in MoCu6, 374
in non-stoichiometric oxides, 311
in organic compounds, 239
in Prussian Blue analogues, 187
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mixed valence (cont.)
in Ru-CN-Ru, 351
in TTF or TCNQ stacks, 279, 281, 285
intervalence transitions in, 255–257
isomer, 259
magnetic, 244–249
molecular orbitals, 207, 261
molecular switch, 456
molecular wire, 456
Ru-Os, 259
semi-conducting, 308–309
stability (comproportionation), 232–236
thermal and optical transfer, 237

mixed valency, see mixed valence
ML6 complex, 29–34
Mn (manganese), 27
Mn(II), MnII, manganese(II), 110, 163–168,

181–183
Mn(II)Cr(III) complex, 163
MnCudto chain, 176–180
MnCupba and MnCupbaOH chain, 180–183
MnCupbaMn trinuclear complex, 166,

178–180
Mn6Mo9 complex, 170–172
mixed valence II/III complexes Mn25, Mn19,

172
μ-oxalato complex, 163
in Prussian blue analogues, 188–190

Mn(III), MnIII, manganese(III), 110, 169
in [Mn(CN)6]3-, 110, 172
mixed valence III/IV complex, see Mn12

Mn12 complex, 91, 191–198, 202, 453, 464
Mo (molybdenum), 27
Mo(IV), MoIV, molybdenum(IV), 378

[MoIV(CN)8(CuIItren)6]8+, 374–376
Mo(V), MoV, molybdenum(V), 378

[MoV(CN)8(CuICuII
5tren)6]8+, 374–376

Mo6Mn9 complex, 170–172
modified intermediate neglect of differential

overlap (MINDO), 63
modified neglect of diatomic overlap

(MNDO), 63
molecular

diode (rectifier), 390, 426–431
electronic devices, 391, 468
shuttle, 433–435
switch, 366, 456, 471
transistor (amplifier), 437
wire, 422–424, 456, 469
see also single molecule

molecular electronics, 358, 366, 378, 387–468
and spintronics, 451–455
hybrid molecular electronics, 392–456
in solution, 456–470
perspectives, 466–468
solid state devices, 460–462

molecular ferrimagnetism, 163–172, 176–183,
463

molecular magnetism, 80, 86, 88, 93, 97, 132,
139, 149, 202, 324, 378

molecular orbital (MO)
basic theory (H2 and AB), 11–17
building MO of simple molecules and

coordination complexes,, 17–35
comparison with VB method, 71–73
imaging MO, 412–413
quantitative MO method, 54–67
weakness of simple MO theory, 64, 304–308
see also Bloch Orbitals, Crystal Orbitals,

Highest Occupied, Lowest Unoccupied,
Singly Occupied Molecular Orbital

molecular solid, 1, 39–49, 266–322, 373
molecular spintronics, 81, 449–455, 466
molecule i-vi, 10–39

see also AB, H2, H2O, O2, organic
molecules, coordination complexes

molecule-dependent tunnelling, 402–404, 412,
422–424

Møller–Plesset method, 67, 156
molybdenum, see Mo
monomolecular electronics, 467
Moore’s law, 387–389, 467
Moriya, 135
Mössbauer spectroscopy, 113, 128, 187, 238,

250–253, 369
Mott, N. F., 449
Mott–Hubbard Hamiltonian, 304–305
Mott insulator, 217, 281, 304–309, 311–314,

318
Müller, K. A., 317
Mulliken, R., 11, 14, 142, 412

β – � approximation, 142
see also Hund–Mulliken model

multiwall nanotube (MWNT), 444
muon spin relaxation, 89, 93

N
N2 molecule, 10
nanocrystalline, 343, 347
nanojunction

general formalism, 392–395, 399, 403–412,
417–422

in spintronics, 449–451, 455
Kondo effect, 420–422
with C60, 453
with molecular diode, 429–431
with molecular switch, 438, 440
with molecular wire, 423–426

nanometer size, 75, 123, 358, 384, 392, 399,
404–407, 443, 449, 468

nanoparticles, 384, 393, 395, 402, 404, 414,
417

nanopore, 393, 436
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nanoscale, 89, 384, 391
nanoscience, 468–471
nanotechnology, 391, 471
nanotube, 395, 404, 414, 417, 443–449

electronic structure, 445
in SQUIDs, 91, 453
multi-walled (MWNT), 444
properties (metallic, semi-metallic,

semi-conducting), 446
single-walled (SWNT), 444, 446, 454
structure (armchair, chiral, zigzag), 444–446
use in devices, 446–448, 453–455

nanowire, 395, 404–410
narrow band, 278, 289, 304–308
Nasu K., 313, 325
natural magnetic orbital (NMO), 149
near-infrared, 237, 254
Néel, L., 143, 165, 204, 379

temperature (TN), 183
negative differential resistance (NDR), 431,

436
nesting, 286–293, see also Fermi surface
neutron diffraction, 61, 89, 94, 113, 171
neutron scattering, see inelastic neutron

scattering
Ni (nickel), 27
Ni(II), NiII, nickel(II), 108, 123, 170, 188,

190, 279, 285, 463
in μ-oxalato complex, 163
in Prussian blue analogues, 188–191

Ni(III), NiIII, nickel(III), 312
nickel, see Ni
nitronylnitroxide, 79
nodal surface, 6, 28, 31, 149
node in wave function, 24, 41, 43, 45, 261,

273, 412
non-adiabatic, 198, 222, 262, 348, 369, 455
non-bonding orbitals, 22–31, 48, 71, 149,

272–274
non-commuting operator, 82
non-orthogonalized (orbitals), 141, 146, 161
non-orthogonal orbitals, 71, 140–146, 149,

151, 161
non-radiative, 259, 327–329, 352
normalization constant, 18, 40, 52, 67, 70
nuclear

g-factor, 128
magnetic moment, 128
magneton, 128
spin operator, 128

nuclear magnetic resonance (NMR), 61, 94,
128, 187, 250–252, 463

O
O2 molecule, 10, 17–20, 335, 345, 348
octet rule, 10
octacyanido complex, 170, 374

octahedral, 28–35, 110–113, 129–130, 153,
163, 166, 186, 191, 249, 308, 311, 313,
329, 366, 376, 379

Oh (symmetry), 29–36, 105–109, 130, 331,
333

one-dimensional, 172, 275, 282, 283, 286,
304, 309, 409

see also 1D
one-electron

energy, 209, 343, 396, 398, 411, 427
integral, 245
model, approximation, 8, 11, 23, 39, 48–50,

52, 260, 304
transistor, 418
wavefunction, 55, 105, 266, 357
see also Hamiltonian

open-shell, 59–61, 74, 78, 278, 293, 329, 422
operator, 1, 7

dipolar electric (or dipole moment), 255,
331

evolution, 462
exchange, 55
kinetic energy, 35
magnetic moment, 84–86, 103
nuclear magnetic moment, 128
occupation, 246
one-electron, 55
orbital angular momentum (l, l2, L, L2),

81–85, 99–102, 105, 129, 201
perturbation, 65–67
projection, 208, 209
spin angular momentum (s, s2, S, S2), 83,

84, 100–102, 128–132, 135–137, 150,
167

spin Hamiltonian, 127sq
total angular momentum (j, J, J2), 101–103
two-electron, 50
V coupling (Förster theory), 352–354
vector, 132, 173
see also Fock operator

optical density, see absorbance
optical electron transfer, 236–239
OR gate, 458–459
Orbach process, 194
orbital

atomic, 5, 6, 83
complex orbital, 5, 40–42, 47, 76, 221, 290,

462
exponent, 5, 62
magnetic, see magnetic orbital
molecular, see molecular orbital (highest

occupied, lowest unoccupied, singly
occupied)

see also Bloch Orbital, Crystal Orbital
orbital angular momentum, see angular

momentum
organic electronics, 390, 468
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organic light-emitting diode (OLED), 340–342
organic metal, 278sq, 282sq, 305, 318–321
organic molecules, 23–24, 327, 340–342

see also polyenes
orthogonal orbitals, 10, 20, 43, 52, 70, 138,

142, 144, 146, 150, 158–161, 169, 208,
244

orthogonality, 57, 72, 142, 145, 148, 150, 154,
160–161, 187, 192, 375

orthogonalized orbitals, 19, 63, 138, 141–146,
151, 154, 156, 161

ortho-phenanthroline, see 1,10-phenanthroline
oscillator strength, 255, 330
OUTPUT (in logic gates), 459
overlap, 11–13, 18–20, 67, 70, 238, 421

and band-width, 43–48
and conductivity, 273, 283–286, 319–322
and energy transfer (spectral overlap),

355–356
and magnetism, 138, 140–145, 152–161,

164–172, 176–192, 319, 380
and mixed valence, 238, 312
density, 51, 161
differential overlap (neglected), 63
Franck–Condon factor, 230
integral, 11–13, 18, 23, 67, 133, 138–142,

145, 150, 160, 357
population, 14
treatment in semi-empirical methods, 62
see also spectral overlap integral

oxalate, oxalato ligand, 35, 79, 149–151, 156,
159–166, 173, 176, 322

oxamide ligand, 162
oxo ligand and bridge, 152, 191

polyoxometallate, 239, 324

P
π-acceptor, 33–35, 115, 333
pairing energy, 110, 112
paramagnetic, 7, 9, 10, 20, 78, 108, 139, 147,

154, 375, 452, 463
in photomagnetic systems, 373sq, 380–381,

383–384
limit, 167, 178–179
paramagnetic-ferromagnetic transition, 94,

183–184, 187, see also Curie
susceptibility (Van Vleck), 94–98,
see also electron paramagnetic resonance,

exchange, Kondo effect, open-shell,
Zeeman effect

paramagnetism, 20, 94, 139
Pariser–Parr–Pople (PPP) method, 63
partition function, Z, 95–98
Pauli principle, 9, 51–54, 67, 84, 128, 244, 421
Pauli, W., 3, 84
Pauling, L., 10, 67, 69, 72, 77
π-donor, 33, 115

Peierls transition (distortion), 45, 278, 286,
290–296, 303–305, 319–322

see also spin-Peierls transition
Pekar factor, 214, 216, 224
periodic table, 3, 7, 9, 27, 167
permeability (magnetic), 88, 89
Perrin, J., 3
perturbation (method), 65–67, 72, 97,

105–107, 129, 156, 246–249, 289
1, 10-phenanthroline (phen), 35, 114, 122,

126, 226
phenothiazine (PTZ), 336
phosphorescence, 327–329, 331, 334, 340,

342, 358, 459
photocatalytic, 346
photochemical, 227, 230, 326, 330, 345–347,

439, 457
photochemistry, 329, 332, 345, 385
photodiodes, 335–338
photo-induced phase transition (PIPT), 369,

372
photolysis, 228, 345–348, 361
photomagnetic, 366, 373, 375–384
photomagnetism, 364–369, 373, 378–385
photonic switch, 358
photonic wire, 359
photophysical, 263, 326–386, 327, 329,

332–333, 348, 351, 358
photophysics, 236, 326–332, 384–385
photosynthesis, 227, 327, 337, 345, 347, 351,

362, 385
photosynthetic reaction center, 227, 346
photovoltaic, 342–345, 385, 468

efficiency, 343, 345–346, 348
photochromic, 437, 438, 456
photochromism, 439
Planck constant, 1, 4
Planck, M., 3
point group, 14, see also character table
polaron (small polaron), 216, 263, 300–302,

308–314, 347, 414, 432–433
bipolaron, 300
energy, 216, 308, 310
negative, 300–302, 347
polaronic regime, 402–404, 412, 424
positive, 263, 300–302

polyacetylene, 275sq
alternant polyacetylene, 296–303
doped and regular polyacetylene, 275–278

polyelectronic wave function, 9, 37, 49, 51,
53, 65, 71–73, 266, 352

polyenes
carotenoid, 424
cyclic, 25, 53, 39–43
linear, 23, 40, 53, 425

population analysis (Mulliken), 14
porphyrin, 310, 336–338, 359, 363–365
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positron, 2, 84, 93
potassium tetracyanoplatinate (KCP),

269–271, 275–276, 292, 303
potential energy (U), 4, 8, 55, 63, 74, 75, 111,

206, 210, 214, 221, 304–305, 408
potential energy curves, surfaces, 63, 71, 206,

332
in electron transfer, 210, 215, 219, 224, 236,

349
in magnetic mixed valence systems,

248–250
in mixed valence systems, 240–243, 250,

258, 261, 313–315
in photomagnetic systems, 373, 376
in single molecule magnet, 193–197
in spin crossover, 111, 126, 367, 370–372

potential exchange, 154, 156
precession, 82
principal quantum number (n), 4
probability density, 2, 11
propyltetrazole (ptz), 110–112, 366–369
Prussian blue (PB), 231, 237–238

analogue (PBA), 185–191, 378–384
cobalt-iron, 378–384

pyrazine ligand (pz), 123, 231, 254, 310, 370
pyridine ligand (py), 115, 123

Q
quantum computing, 462–466
quantum model, 3

of electron transfer, 228–230
quantum number, 3–9, 28, 50, 82, 84–86,

98–106, 109, 223, 353
effective, 8
magnetic quantum number (ml, ML), 4–6,

9, 81–85, 100, 109, 201
orbital, secondary, 4, 6, 50, 82, 99, 109
principal, 4
spin, 7, 9, 84, 98, 100, 223
total quantum number (mj, MJ), 101, 109

quantum oscillation, 197–198, 221
quantum tunnelling, 74–76, 93, 195–197,

199–200
quantum yield, 329, 337, 345, 355, 364, 382
qubit, 463, 465
quenching

of luminescence or excited state, 335, 343,
351

of orbital momentum, 109
quinone, 337, 361

R
Rabi formula, 76
Rabi oscillation, 76, 464

see also quantum oscillation
Racah parameter, 101, 106, 110, 112
radial function, 4–6

see also orbital exponent, Slater orbital
rate constant

electron transfer, 218–222, 225, 227, 230,
250, 254, 258, 262, 263, 309, 425

energy transfer, 357–359, 361, 364
excited state electron transfer, 348
high spin-low spin relaxation, 369

rationalized units, 88
reaction

chemical, 63, 125, 224, 236, 262, 340, 403,
416

coordinate, 214, 224, 236, 370, 373, 376
real wavefunction, 5, 6, 45, 109
reciprocal space or lattice, 42, 49, 288, 445
reflection plane, 14, 45
regular solution model, 117–122
remnant magnetization, 193–195
repulsion

energy (U, V), 8, 56, 217, 218, 246, 286,
398, 401

integrals, 50, 61, 63, 78, 144, 246, 268–270,
304, 307, 313

see also electron repulsion, two-electron
repulsion

resonance integral (β), 8, 12, 17, 39, 44, 78,
134, 206, 268, 284, 286, 297, 304–306,
311, 318, 321, 357

see also Vab, transfer integral
restricted determinant, 60
restricted Hartree-Fock (RHF), 60
Robin-Day classification, 231, 239, 312
rotation axis, 14, 39
rotation operation, 39–41, 105, 108
rotaxane, 433, 459
Ru (ruthenium), 27
Ru(II), RuII, ruthenium(II)

mixed valence II/III complexes, 231–233,
241, 254, 259–261, 265, 351, 456

PTZ-Ru-MV2+ triad, 336
[Ru(bpy)2(NCS)2], 343–344
[Ru(bpy)3]2+, 223, 237, 333–340
[Ru(tpy)2]2+, 336–337

Ru(III), RuIII, ruthenium(III)
[Ru(bpy)3]3+, 223, 333–339
see also Creutz-Taube complex

Russel–Saunders coupling, 99, 101, 104
ruthenium, see Ru
Rutherford, E., 3

S
S2 spin operator, 84, 100, 102, 128, 132, 135
saturation (magnetism), 97–99, 170, 193–194,

375, 384
scanning tunnelling microscope (STM),

391–395, 399, 404, 411–413, 425–426,
432, 437–440, 452, 466
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scattering, 296, 420, 449
neutron scattering, 89, 93, 140
of electrons in nanojunctions, 404–406,

408–410, 414, 420
X-ray scattering, 94

Schottky diode, 447
Schrödinger, E., 3

equation, 1–8, 47, 49, 65, 84, 109,
349, 401

screening constant, 8
second order transition, 183
secondary (orbital) quantum number, 4, 6
secular determinant, equations, 11, 16, 62
selection rules, 330–332, 354
self-assembled monolayer (SAM), 393–395,

436
self-consistent field (SCF), 54–56, 59, 61–64,

72–74, 143, 154, 156, 265
self-repulsion integral, 50
semi-empirical methods, 53, 61–63
semiconductor, 217, 267–269, 271, 278, 283,

297, 299, 303, 336, 343, 346, 387, 389,
442, 445, 447, 467

sequential mechanism, 262, 403, 417, 424
shell

closed, 59, 60, 64, 74, 107, 278, 293, 337,
354, 396, 422, 452

half-filled, 168
open, 59, 60, 63, 74, 78, 278, 293, 329, 422
sub-, 27, 102
valence, 10, 105

Shirakawa, H., 268, 270, 277, 325
shot noise, 401, 418
shuttle, see molecular shuttle
silicon electronics, 345, 387–390, 426, 442,

466
single chain magnet (SCM), 191, 199–201
single electron transistor, 418, 447
single ion magnet (SIM), 191, 201, 453
single molecule in molecular electronics, 389,

392, 394, 403, 416, 430, 437, 438–443,
446, 465, 467

single molecule magnet (SMM), 90, 93, 131,
191–200, 453, 464

singlet, 9, 49, 64, 111, 133, 136, 146, 155–157,
174, 307, 359, 362, 452–453

singlet-singlet absorption, emission,
transfer, 327–329, 331, 340, 353–355,
364, 380

state, 24, 38, 59, 68, 101, 139, 141–143,
300–302, 326–328, 333, 366–369, 421,
463

singlet-triplet
crossing, 327–329, 342
gap, splitting, 69, 138, 140, 143, 150, 156,

453
transfer, 354

transition, 140, 331, 359
singly occupied molecular orbital (SOMO),

61, 78–80, 129, 145, 149, 158, 162, 339,
421

Slater
determinant, 51, 54, 60, 64
orbital, 5, 62
rules, 8

Slichter, C., 117, 122
solid solution, 118, 121
soliton, 298–302
Sorai and Seki model, 92, 121
source (electrode), 441–443, 447, 449
space function, 67
space group, 14
spacer, 227, 239, 259, 265, 353, 358–361, 427,

456
spectral overlap integral, 353, 355
spectrochemical series, 32, 381
spectroscopy, see infra-red, UV, visible
spectroscopic term, 100–102, 105–107,

110–11, 329
spherical

coordinates, 5, 83
harmonics, 4, 28, 83
symmetry, 6, 28, 88, 184

spin angular momentum (s, s2, S, S2), see
operator

spin contamination, 61, 157
spin conservation rule, 332
spin cross-over, 34sq, 109–127, 203, 366–372,

460–462
spin density, 61, 74, 79, 150, 161, 171, 291,

312–314, 321
spin density wave (SDW), 286sq, 291,

320–322
spin diffusion length, 450
spin flip, 200, 244
spin function, 51, 57, 67, 331, 352, 354,

357
spin Hamiltonian (SH), 127–138, 150, 167,

173, 246
spin mean free path, 449
spin multiplicity, 7, 10, 38, 107, 246
spin-orbit, 7, 50–52, 108,

constant, 50, 102, 129
coupling, 51, 86, 92, 97–109, 128, 191, 201,

329, 333, 342
Hamiltonian, 50, 102
splitting, 102–104

spin-orbital, 7, 52–61, 71, 86, 246,
spin-Peierls transition, 174, see also Peierls
spin-polarized

current, 449–452
muons, 93
neutron diffraction, see neutron diffraction
STM (SP-STM), 452
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spin polarization
mechanism, 58–61
of current, 449–452
of neutrons, 94

spin quantum number, see quantum number
spin transition, see spin cross-over
spintronics, 449–451

see also molecular spintronics
spin valve, 450, 453–456, 466
Stark effect, 257
state, see excited state, ground state,

spectroscopic term
Stern–Gerlach experiment, 83
Stevens, 127
Stoney, G., 3
strong field, 34, 107
superconducting quantum interference device

(SQUID, micro- and nano-), 75, 89–92,
113, 381, 384, 453

superconductivity, 91, 174, 316–319, 321
superconductor

definition and properties, 267–269, 317
in SQUID devices, 90
organic, 317–322

superexchange
in electron transfer, 260–263, 358, 360, 402
in magnetic exchange interaction, 147, 154

susceptibility, see magnetic susceptibility
symmetry

element, 14–15, 160
operation, 14–15, 39
see also character table, group theory, point

group
symmetry-adapted linear combination

(SALC), 207, 260, see also symmetry
orbital

symmetry orbital (SO), 21, 29–32, 40, 49, 145,
162, 272, see also Bloch orbitals

synchrotron radiation, 3, 93, 203, 382
Système International (SI), units, 85–89, 97

T
t, t2g orbital, 28, 31–34, 36, 107, 109–111,

140, 154, 168–170, 188–190, 209, 223,
238, 308, 311, 329–330, 333, 367, 380

T2g character, state or term, 30, 106, 130
Tanabe–Sugano, 106, 110, 112
tandem cell, 347
Tb (terbium), 27
Tb(III), TbIII, terbium(III), [Tb(III)Pc2]-/0,

201, 453
Td symmetry, 107, 433
Teller, see Jahn–Teller
term, see spectroscopic term
terminal ligand, 79, 150, 158, 163, 166, 168,

180, 359, 364
terthiophene, 423

tetracyanoethylene (TCNE), 182, 349
tetracyanoethylenide, 92
tetracyanoquinodimethane (TCNQ), 278–286,

303, 305–307, 427
tetrathiafulvalene (TTF) and variants,

278–286, 303–304, 317–321, 427, 434
tetrathiooxalate, 162
thermal electron transfer (Eth), 236, 240, 242,

257, 375, 383
thiol, 394, 422, 426, 430, 438, 440
Thomson J. J., see Lorentz–Thomson
three-dimensional, 49, 165, 185, 322, 378, 384

see also 3D
tight-binding model, 24, 62, 319, see also

Hückel method
time-dependent DFT (TD-DFT), 74
time-domain reflectometry, 252
time scale, 195, 197, 250, 252, 258, 328, 350,

414, 432
see also characteristic time

TiO2 nanoparticles, 343–345, 347
TMMC (tetramethylammonium-manganese

chloride or catena-tris-μ-manganate(II)
chloride), 174

T operator, 246
total angular momentum, see angular

momentum
transfer integral, 134, 268, 304

see also resonance integral, Vab parameter
transistor

single molecule transistor (amplifier), 437,
441, 443

see also field effect transistor (FET), one-
electron or single electron transistor

transition (dipole) moment, 255, 257, 330, 355
vector, 355

transmission coefficient
in electron transfer, 220
in nanojunction theory, 404, 406, 409, 425

triad, 336–338
triplet, 10, 24, 49, 59, 111, 146, 150, 155–157,

174, 331, 337, 340, 342, 375, 421
ground state, 20, 59, 73
state, 20, 38, 68, 71–73, 101, 133, 136–144,

159, 244, 326–329, 333, 354–362, 367,
452

triplet-singlet emission, see
phosphorescence

triplet-triplet transfer, 356–357
see also singlet, singlet-triplet

tungsten, see W (tungsten)
tunnel(ling)

current or regime, 391, 402–404, 420–422,
451

effect, process, 74–76, 90, 121, 126, 406,
409, 412, 418, 420–422, 424, 428, 437,
455
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tunnel(ling) (cont.)
electronic, 206, 221, 230, 268, 392, 406,

412
junction (or barrier), 448, 451, 453, see also

nanojunction
magnetic quantum, 93, 193, 195–201
molecule-dependent, 402–404, 412,

422–424
non-resonant, 404, 411, 424
nuclear, 221, 228–230, 258, 369
resonant, 402–404, 411
sequential, 403–404, 414, 417, 424
1-step, 404, 416
see also scanning tunnelling microscope

(STM)
two-dimensional, 49, 322

see also 2D
two-electron repulsion integrals, 50, 78,

304–307, 311–316,
exchange (k), 10, 20, 50, 57, 61, 134, 143,

164, 244
one-centre repulsion (U, j0), 50, 78–80,

217, 244–246, 268–270, 304–316,
419–421

two-centre repulsion (V, j), 50, 78, 218, 270,
304–316

U
U parameter, see two-electron repulsion
Uhlenbeck, G., 3, 84
ultrafast electron transfer, 348–351
ultrafast energy transfer, 363
ultra-high vacuum (UHV), 391
uncorrelated electrons, 53
ungerade, 6, 207
unit cell, 39, 284
units

cgs-emu, 85–89
in magnetism, 86–89
Système International(SI), 85–89, 97
unrationalized units, 88–89

unrestricted
determinant, 60
Hartree–Fock, 58, 60, 73, 157

U operator, 208
UV ultraviolet, 252, 254, 259, 345, 353, 364,

374, 439, 457
UV-visible-near IR, 254

V
V (vanadium), 27
Vanadium (II), V(II), VII, 189–191
Vanadium (IV), V(IV), VIV, 207, 308, 311
V coupling operator, 352–358
V parameter, see two-electron repulsion
Vab parameter (integral), 80, 206–209,

217–223, 230, 236, 240, 242, 246,
255–258, 260, 262, 265, 304, 425, 457

see also effective resonance integral
valence band, 294, 298–299, 301, 347
Valence Bond

generalized (GVB), 70
model, theory, 67–73

valence shell electronic pair repulsion
(VSEPR) model, 10

Van Vleck, J. H., 132, 135, 203, 305
equation, 95–99, 136, 140, 168

vanadyle, see Vanadium (IV)
variational method, 12, 53, 59, 64, 72, 241
vertical transition, 257, 333
vibrating sample magnetometer (VSM), 89–91
vibrational function, 228, 352
vibronic functions, 228
visible, 126, 237, 333, 348, 353, 378

visible-near IR, 254, 298
visible-UV, 252, 259, 364, 374, 440

voltage division factor, 400, 416, 430, 432
V(TCNE)x, 182

W
W (tungsten), 27

Tungsten(V), W(V), WV W6Mn9, 170
Tungsten(VI), W(VI), WVI WO3, 239, 347

Wannier orbitals, 154
water, see H2O
wavefunction, 1–4, 6, 51, 68, 75, 81–84, 105,

128, 157, 289, 350
in atoms, 4sq, 5, 7sq, 109
in coordination complexes, 28sq
in molecular solids, 39sq
in organic chemistry, 23sq
in small molecules, 10sq, 17sq
see also atomic, Bloch, Crystal, Molecular

Orbital, one-electron
wavevector, 42, 49, 284–286, 288, 295, 316
weak field, 34, 107, 170, 381
Wolfsberg, M., 62
work function, 340, 397

X
x2-y2 orbital, 5, 28–30, 34, 36, 79, 109, 130,

140, 145, 148, 153, 159, 169, 172, 244,
273–275, 375

x2-z2, 160–165
XOR gate, 458, 465
X-ray absorption (EXAFS, XANES), 93, 375
X-ray diffraction, 94, 186, 292–295, 303, 381,

383
X-ray magnetic circular dichroism (XMCD),

61, 93–94
XY anisotropy, 135, 185
xy, xz orbital, 5, 15, 21, 28–36, 109, 129, 145,

148, 153, 163–165, 169, 239, 272–275
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Y
y2 orbital, 21, 163–165
yz orbital, 5, 15, 21, 28–36, 47, 129, 145, 153,

163–165, 169, 272–275

Z
Zeeman, P., 3

coefficients, 96, 109

effect, 92, 97, 108, 128–131, 139, 173, 194,
452, 464

Hamiltonian, 105, 128, 173, 199
Zero field splitting (ZFS), 128–132, 140, 193
Zerner’s Intermediate Neglect of Differential

Overlap (ZINDO) method, 63
z2 orbital, 5, 28–36, 130, 153, 169,

273–275
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