

Electronics System Design Techniques
for Safety Critical Applications

Lecture Notes in Electrical Engineering

For other titles published in this series, go to
www.springer.com/ 7818

Volume 26

series/

Electronics System Design
Techniques for Safety
Critical Applications

Luca Sterpone

9 8 7 6 5 4 3 2 1

springer.com

© 2008 Springer Science + Business Media B.V.

Printed on acid-free paper.

of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Luca Sterpone
Politecnico di Torino
Corso Duca Degli Abruzzi, 24
10129 Torino
Italy

ISBN: 978-1-4020-8978-7 e-ISBN: 978-1-4020-8979-4

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
p ermission from the Publisher, with the exception of any material supplied specifically for the purpose

Library of Congress Control Number: 2008934322

To my parents Gianfranco and Primarosa

To my wife Silvia

vii

CONTENTS

Contributing Author..xi

Preface ..xiii

Chapter 1: An Introduction to FPGA Devices in Radiation

Environments ... 3
From the architecture to the model

1. Previously Developed Hardening Techniques 6
1.1 Reconfigurable-Based Techniques... 7
1.2 Redundancy-Based Techniques ... 8

Chapter 2: Radiation Effects on SRAM-Based FPGAS 17

Modeling and simulation of radiations effects

1. Radiation Effects .. 18
1.1 Single Event Upset (SEU).. 19
1.2 Single Event Latch-Up (SEL) .. 20

2. SEU Effects on FPGA’s Configuration Memory......................... 21
3. Simulation-Based Analysis of SEUs.. 23

3.1 Simulation Environment .. 23
3.2 Fault Simulation Tool... 26
3.3 Experimental Results.. 28

4. Hardware-Based Analysis of SEUs.. 30
4.1 Details on the Xilinx Triple Modular Redundancy................ 32
4.2 Analysis of TMR Architecture... 32
4.3 Experimental Results.. 35

5. Robustness of the TMR Architecture... 37
5.1 Analysis of the Fault Effects .. 39

6. Constraints for Achieving Fault Tolerance 42

2. Preliminaries of SRAM-Based FPGAS Architecture 11
2.1 Generic SRAM-Based FPGA Model 11
2.2 FPGA Routing Graph... 13

PART I

viii Contents

Chapter 3: Analytical Algorithms for Faulty Effects Analysis 47
Single and multiple upsets errors

1. Overview on Static Analysis Algorithm 49
2. Analytical Dependable Rules ... 51
3. The Star Algorithm for SEU Analysis ... 52

3.1 The Dynamic Evaluation Platform... 54

Dependable design on SRAM-based FPGAs

1. RoRA Placement Algorithm .. 73
2. RoRA Routing Algorithm .. 76
3. Experimental Analysis.. 79

Chapter 5: A Novel Design Flow for Fault Tolerance

SRAM-Based FPGA Systems.. 85
Integrated synthesis design flow and performance optimization

1. The Design Flow .. 87
1.1 STAR Analyzer .. 88
1.2 RoRA Router.. 89

2. Performance Optimization of Fault Tolerant Circuits 89
2.1 The Congestion Graph ... 90
2.2 The Voter Architectures and Arithmetic Modules................. 91
2.3 The V-Place Algorithm .. 92

3. Experimental Results.. 93
3.1 Timing Analysis ... 94
3.2 Evaluating the Proposed Design Flow 96
3.3 Evaluating a Realistic Circuit... 97

Chapter 6: Configuration System Based on Internal FPGA

Decompression... 103
A new configuration architecture

1. Introduction to the Decompression Systems.............................. 103
2. Overview on the Previously Developed

Decompression Systems .. 105
2.1 Generalities of SRAM-Based FPGAs.................................. 107

Chapter 4: Reliability-Oriented Place and Route Algorithm 71

4.2 Experimental Results of MCU Static Analysis...................... 67
4.1 Analysis of Errors Produced by MCUs.................................. 58

4. The Star Algorithm for MCU Analysis.. 56
3.2 Experimental Results of SEU Static Analysis 55

PART II

ixContents

Chapter 7: Reconfigurable Devices for the Analysis of DNA
Microarray.. 117
A complete gene expression profiling platform

1. Introduction to the DNA Microarray ... 117
2. Overview on the Previously Developed

Analysis Techniques .. 119
3. Preliminaries of DNA Microarray Image Analysis 121

3.1 The Edge Detection Algorithm .. 122
4. The Proposed DNA Microarray Analysis Architecture 123

4.1 The Edge Detection Architecture... 125
4.2 The Quality Assessment Core .. 128

5. Experimental Results.. 129

Chapter 8: Reconfigurable Compute Fabric Architectures 133

A new design paradigm

1. Introduction to RCF Devices.. 134
2. The ReCoM Architecture ... 135

3. The Proposed System ... 108
4. Experimental Results.. 111

4.1 Compression System Results ... 112

3. Experimental Results.. 141

Index.. 143

Luca STERPONE, Ph. D. is actually a research assistant in the Department
of Automatic Control and Computer Engineering at Politecnico di Torino
university, Torino, Italy. He has published widely in the area of dependable
systems and fault tolerance techniques and he is involved in research on
dependable designs for aerospace and automotive systems as well as innova-
tive biological research for study the fault tolerance and dependable char-
acteristics of genomic.

He is the winner of the EDAA (European Design Automation Association)
Outstanding Monograph Award in the Reconfigurable Electronics section in
the 2007.

xi

CONTRIBUTING AUTHOR

What is exactly “Safety”? A safety system should be defined as a system that
will not endanger human life or the environment. A safety-critical system
requires utmost care in their specification and design in order to avoid
possible errors in their implementation that should result in unexpected
system’s behavior during his operating “life”. An inappropriate method
could lead to loss of life, and will almost certainly result in financial
penalties in the long run, whether because of loss of business or because the
imposition of fines. Risks of this kind are usually managed with the methods
and tools of the “safety engineering”. A life-critical system is designed to
lose less than one life per billion (109).

Nowadays, computers are used at least an order of magnitude more
in safety-critical applications compared to two decades ago. Increasingly
electronic devices are being used in applications where their correct
operation is vital to ensure the safety of the human life and the environment.
These application ranging from the anti-lock braking systems (ABS) in
automobiles, to the fly-by-wire aircrafts, to biomedical supports to the
human care. Therefore, it is vital that electronic designers be aware of the
safety implications of the systems they develop.

State of the art electronic systems are increasingly adopting program-
mable devices for electronic applications on earthling system. In particular,
the Field Programmable Gate Array (FPGA) devices are becoming very
interesting due to their characteristics in terms of performance, dimensions
and cost.

FPGAs use a grid of logic gates, based on gate array technology, and the
programming is done by the customer, not by the manufacturer. The term

PREFACE

xiii

xiv Preface

“field-programmable” may result obscure to somebody, but “field” is just an
engineering term for the world outside the factory built, where the customers
live. FPGAs are usually programmed after being soldered. In the most larger
FPGAs, such as the RAM-based devices, since the configuration is volatile,
their configuration must be re-loaded into the device whenever power is
applied or different functionality is required.

During the last decade, the new manufacturing technologies made

thanks to their capability of implementing complex circuits with a very short
development time. However, nowadays SRAM-based FPGAs are really not
considered enough reliable to be used in safety critical applications such as
avionic and space ones. The main obstacle to their applications in these
contexts is represented by the high sensitivity to the radiation effects such as
Single Event Upsets (SEU): device shrinking coupled with voltage scaling
and high operating frequencies correspond to significantly reduced noise
margin, which makes FPGAs more sensitive to radiation effects, as well as
to other phenomena (such as cross talk or internal noise sources) that provoke
transient faults. The strong needs to evaluate the possible applications of the
programmable logic devices in safety critical applications need the usage of
the new techniques oriented to the evaluation of the reliability of such
devices and to the development of hardening techniques for enable the usage
of SRAM-based FPGAs in safety critical fields.

The main purpose of the present book addresses the development of
techniques for the evaluation and the hardening of designs on SRAM-based
FPGAs against the radiation induced effects such as SEUS. The set of
analysis and design flows proposed in this work are aimed at defining a
novel and complete design methodology solving the industrial designer’s
needs for implementing electronic systems in critical environments using
SRAM-based FPGA devices.

Regarding the analysis flow, the present book contribution consists in a
set of algorithms performing the fault injection for the evaluation of the soft-
errors sensitivity of designs implemented on SRAM-based FPGAs. Two
kind of fault injection environments are provided:

1. Simulation based: The simulation environment is able to predict the SEU
effects in circuit mapped on SRAM-based FPGAs combining radiation
testing data with simulation. The former is used to characterize (in term
of device sensibility to the radiation particles) the technology on which
the FPGA device is based, the latter is used to predict the probability for
a SEU to alter the expect behavior of a given circuit.

2. Hardware-based: this environment is able to inject SEU directly in the
configuration memory of SRAM-based FPGA devices. The environment
is composed of all the module necessary to perform the complete analysis

feasible the development of SRAM-based FPGAs that became very popular

Preface xv

of the circuit. A Fault List Manager generates the list of SEUs to be
injected within the circuit under analysis; a Fault Injection Manager
manages the fault injection process, by selecting one fault from the fault
list, performing its injection in the DUT and the observing and analyzing
the obtained results to provide the fault-effect classification.

In order to deploy successfully commercially-off-the-shelf (COTS)
SRAM-based FPGA devices in safety critical applications, designers need to
adopt suitable hardening techniques, as well as methods for validating the
correctness of the obtained as far as the system’s dependability is consi-
dered. An innovative algorithm based on an analytical model of the FPGA
architecture is able to estimate the effects of SEUs when redundancy-based
techniques are adopted in order to mask the effects of SEUs in SRAM-based
FPGAs, has been provided. The main novelty this approach introduces is the
possibility it offers of analyzing any SEU location within a design and of
identifying whether the SEU provokes any observable effect to the system’s
outputs. This approach has been implemented in a tool called STAR (Static
Analyzer).

This book presents also a novel contribution in the FPGA design flow. A
new reliability-oriented place and route algorithm is illustrated in details. By
coupling its hardening capability with the Triple Modular Redundancy
(TMR) it is able to effectively mitigate the effects of soft-errors within
FPGA devices especially based on Static-RAM’s configuration memory.
The effectiveness of the reliability-oriented place and route algorithm has
been demonstrated by extensive fault injection experiments showing that the
capability of tolerating SEU effects in the FPGA’s designs increases up to 85
times with respect to a standard TMR design technique. The developed
algorithm has been implemented in a tool called RoRA, (Reliability-Oriented
Place and Route Algorithm). The available tools STAR and RoRA have
been included in a new design tool-chain.

The present book offers a contribute also to the analysis of several appli-
cations field where the usage of reconfigurable logic devices introduces several
advantages. In particular, two applications are considered: reconfigurable
computing for multimedia applications and biomedical applications.

Considering reconfigurable computing, a novel reconfigurable structure
has been proposed, also called Reconfigurable Mixed Grain, ReCoM. This
structure is based on the novel Reconfigurable Compute Fabric (RCF) concept,
it implements a mixed-grain reconfigurable array which combines a RISC
microprocessor and a reconfigurable hardware for computation-intensive
applications.

The feasibility of reconfigurable devices in biomedical applications is
also investigated in this book showing the drastic advantages both related to
the computational performance and on the dependability of the process.

xvi Preface

In this book, the implementation of a new Deoxyribonucleic Acid (DNA)
microarray analyzer is provided. DNA microarray technologies are an essential
part of modern biomedical research. The analysis of DNA microarray images
allows the identification of gene expressions in order to drawn biologically
meaningful conclusions for applications that ranges from the genetic profiling
to the diagnosis of oncology disease. This book describes an architecture that
uses several computational units working in a single instruction-multiple
data fashion managed by a microprocessor core. An FPGA-based implemen-
tation of the developed architecture has been evaluated using several realistic
DNA microarray images. A reduction of the computational time of one order
of magnitude and an increasing of the data quality of the analyzed images
has been demonstrated.

PART I

Chapter 1

AN INTRODUCTION TO FPGA DEVICES IN
RADIATION ENVIRONMENTS
From the architecture to the model

Electronic devices are sensitive to radiation that may happen both in the space
environment and at the ground level. Nowadays, the continuous evolution of
manufacturing technologies makes Integrated Circuits (ICs) even more
sensitive to radiation effects: Devices shrinking coupled with voltage scaling
and high operating frequencies correspond to significantly reduced noise
margins, which make ICs more sensitive to radiation, as well as to other
phenomena (such as cross-talk or internal noise sources) that provoke transient
faults.

In the last decade, the new manufacturing technologies made feasible the
development of SRAM-based FPGAs that became very popular thanks to
their capability of implementing complex circuits with a very short develop-
ment time. Today, manufacturers are producing very complex and resourceful
FPGAs. State-of-the-art SRAM-based FPGAs embed megabits of RAM
modules and plenty of configurable logic and routing resources, which are
making feasible the implementation of circuits composed of millions of
gates. SRAM-based FPGAs are used for different applications, such as
signal processing, prototyping, and networking, or wherever reconfiguration
capabilities are important.

The architecture of SRAM-based FPGAs is composed of a fixed number
of routing resources (wires and programmable switches), memory modules,
and logic resources (i.e., lookup tables or LUTs, flip-flops or FFs). All these
components are programmed by downloading into an on-chip configuration
memory a proper bitstream, giving the FPGA the capability of implementing
nearly any kind of digital circuit on the same chip. In SRAM-based FPGA,
both the combinational and sequential logic are controlled by several

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications, 3
© Springer Science + Business Media B.V. 2008

Chapter 1

customizable SRAM cells that are extremely sensitive to radiation that may
cause Single Event Upsets [1, 2].

If an upset affects the combinational logic in the FPGA, it provokes a bit-
flip in one of the LUTs cells or in the cells that control the routing. This
upset has a persistent effect that could be propagated in other parts of the
circuit since the implemented hardware is modified. This upset is correctable
only at the next load of the configuration bitstream (which is often performed
in some critical space applications), but the effect may still remain in the
circuit until the next reset is performed. On the other hand, when an upset
affects the user sequential logic, it may have a transient effect if the flip-
flops next load corrects it and if the effect is not propagated to other parts of
the circuit or a persistent effect if the effect is propagated to other parts of
the circuit. For instance, a counter hat is affected by an SEU cannot return to
its original counting sequence until it undergoes to a reset.

In this case, SEU can have more persistent effects in the implemented
user circuit.

SEUs may also affect the configuration control logic registers that are
used during the download of the bitstream within the configuration memory.
An experimental analysis based on heavy ion beam is described in [3] that
shows the criticalities of such registers and that demonstrates that they have
a sensitivity to SEUs several orders of magnitude lower with respect to the
configuration memory.

The half-latch structures used to generate constant logic values may be
also affected by SEUs. This problem has been addressed and fixed according
to the work presented in [4], in the presented hardening technique the
reliability-oriented placement algorithm is driven in order to solve this problem
by means of a technology based placement.

Researchers both from academia and industry investigated on developing
solutions able to mitigate the effects of SEUs in the FPGA’s configuration
memory. These methods could be divided in two main categories: reconfigu-
ration-based and redundancy-based. The formers aim at restoring as soon as
possible the original values into configuration bits after an SEU happened
[5], the latters are oriented at masking the propagation of SEUs effects to the
circuit’s outputs [6–[8]. Fault masking techniques are usually achieved
through redundancy-based techniques which purpose is to remove all the
single point of failure a circuit may have. The widely known redundancy-
based technique is the Triple Modular Redundancy (TMR), where three
identical replicas of the same circuit work in parallel and the outputs they
produce are compared and voted through a majority voter. TMR is an
appealing technique for hardening designs implemented on SRAM-based
FPGAs. Since all the resources embedded by these devices such as memory

4

An Introduction to FPGA Devices in Radiation Environments

elements, routing resources and logic resources are all susceptible to SEUs,
the redundancy technique must be adopted to all of them.

The resources that are most likely to be affected by SEUs are those
controlling the routing, indeed about 90% of the configuration memory bits
are devoted to storing information about routing resources. Previous works,
essentially based on a simulation tool, have experimentally tested the TMR’s
capability of tolerating SEUs [9]. The criticalities induced by SEUs within
the configuration memory provoke an intrinsic behavior to the circuit imple-
mented by the FPGA device. The configuration memory of such devices
undergo a detailed analysis of each singular FPGA resource [10, 11] followed
by injection experiments [12] able to probe the behavior of each resource
induced by the single bit modification. The results gained from these
analysis shown that any single modification of a configuration memory cell
is capable of producing multiple errors when affecting the portion of the
FPGAs configuration memory that stores some kinds of routing and logic
resources. Furthermore, the experimental analysis shows that a faulty behavior
is produced when a SEU hits either a programmed bit or a non programmed
memory bit that may have side effects on the resources configured by the
programmed ones. As a result of this effect, the TMR architecture is able to
only partially mitigate the effects of SEUs in routing resources. This pheno-
menon depends on many factors: the architecture of the adopted FPGA
family, the organization of the configuration memory, the kind of application
that is implemented on the FPGA device, and the bit of the configuration
memory affected by the SEU. Given this scenario, redundancy-based tech-
niques are not sufficient by themselves to ensure complete reliability against
single-error induced by radiation particles. In order to give a metric to the
reader, we considered several benchmark circuits designed according to the
TMR architecture and we observed about the 14% of the configuration
memory bits upset that affect the portion of the configuration memory
storing the information about the routing resources produce multiple errors
that the TMR is not able to mask [11]. In this book is presented an analysis
of the distribution of SEUs within the FPGA’s configuration memory and
affecting the TMR behavior. Furthermore, as shown in [13] a clever
selection of the TMR architecture helps in reducing the number of escaped
SEUs, but it is unable to reduce them to zero.

In order to identify the reasons that limit the effectiveness of TMR, the
resources of the FPGA have been systematically analyzed. The case study
devices considered by the present research is the Xilinx Virtex family. Inde-
pendently from the circuit mapped on the FPGA architecture, each FPGA’s
resource has been analyzed identifying all the possible configuration memory
bits controlling its behavior. For example, for a programmable interconnection
point, all the possible configuration bits that can be used by the place and

5

Chapter 1

route algorithm are used for implementing any given circuit. The study
presented in this book identifies all the critical situations, where SEU hitting
the configuration memory may modify the configuration of two or more
FPGA’s resources. The theoretical explanation and experimental probe of
the criticalities affecting circuit implemented through the TMR is the results
of this analysis.

After presenting an analysis of the SEU’s effects in the FPGA’s confi-
guration memory, this part presents a reliability-oriented place and route
algorithm, called RoRA, that has been developed for implementing depen-
dable circuits, based on redundancy techniques such as TMR, on SRAM-
based FPGAs. The RoRA algorithm is able to place and route the logic
functions and the signals of a design in such a way that the number of SEUs
affecting the configuration memory and possibly causing FPGA wrong
behavior is drastically reduced with respect of a common redundancy-based
approach adopting the TMR technique. For the considered benchmark
circuits, the capability to tolerating SEU effects in the FPGAs configuration
memory increases up to 85 times with respect to a standard TMR approach.
In order to achieve an higher level of reliability, the RoRA algorithm intro-
duces penalties both in terms of area overhead and speed of the original
circuit. Furthermore, the fulfillment of the routing problem needs more
computational time due to the reliability rules inserted both to the placement
and routing phases.

The reduction of the circuit’s running frequency may range from 22% to
60% of the original (plain) circuit speed, while from the circuit area pers-
pective, RoRA introduces an overhead of the routing resources with respect
to the TMR standard solution. However, RoRA does not introduces any area
overhead, with respect to the TMR, when logic resources are considered.
The RoRA solution is the first place and route algorithm developed that is
transparent to designers, which can trade off fault tolerance versus area and
circuit’s frequency overhead.

1. PREVIOUSLY DEVELOPED HARDENING
TECHNIQUES

During the past years, several mitigation techniques have been proposed in
order to increase the reliability of circuits of avionics and space applications
and in particular, to remove single point of failure from the designs. When
SRAM-based FPGA devices are considered, several SEU mitigation techni-
ques have been proposed exclusively for these devices. These techniques can
be organized into two categories: reconfiguration-based techniques and

6

An Introduction to FPGA Devices in Radiation Environments

redundancy-based techniques. The former are used to correct fault effects,
while the latter are used to mask fault effects.

1.1 Reconfigurable-based techniques

The FPGA’s configuration memory, if based on SRAM cells, may accumu-
late soft error or SEU over the usage time in an harsh environment, for this
reason the configuration memory is periodically rewritten. This approach is
called Scrubbing and it is the simplest technique that may be used to remove
SEU effects accumulated within the configuration memory [14]. The
implementation of a scrubbing system introduces a limited overhead that
essentially corresponds in the circuit needed to control the bitstream loading
process, as well as the memory for storing an error-free bitstream. The
systems also needs a mechanism to control how often the scrubbing must
take place. The occurrence frequency of the scrubbing operations is normally
referred to the scrub rate and it is determined on the basis of the expected
SEU rate, i.e., on the basis of a figure predicting how often an SEU may
appear in the FPGA configuration memory.

An improvement of the Scrubbing mechanism consists in applying the
partial reconfiguration capability of the latest generation of SRAM-based
FPGAs, which allow reconfiguring only a user-selected portion of the con-
figuration memory (known as frame) while leaving the remaining part of the
circuit unmodified [5]. This technique uses a readback process to read one
frame at a time and compares it with the expected one, which is stored in an
error-free off-chip memory. Another commonly used technique to detect
errors by means of readback is to use Cyclic Redundancy Check (CRC) on
each frame storing only the check word rather than the entire frame of the
configuration data [5].

When a SEU is detected, only the faulty frame is rewritten. The readback
is normally transparent to the circuit the FPGA implements, which continues
to operate normally even while the readback process is running. The presence
of SEUs is thus checked online and the FPGA is set offline only for the
amount of time needed for rewriting the faulty configuration memory frame.
The normal activity of the circuit the FPGA implements is stopped for a
shorter period of time than in the scrubbing case. The partial configuration
mechanism is employed in state-of-the-art Xilinx SRAM-based FPGA devices,
such as the Virtex family, with the further advantage that consists in having
the possibility to rewrite the configuration data without putting the devices
offline. This makes possible online and transparent fault correction. If on one
side, the scrubbing and the partial reconfiguration mechanisms represent a
simple solution for protecting designs against the effects of SEU, on the
other side these techniques are mandatory for adopting SRAM-based FPGA

7

Chapter 1

in the presence of SEU. In fact, these techniques are the only viable solution
for removing the accumulation of soft error within the configuration memory,
thus whatever is the system used in an harsh environment and embedding
SRAM-based FPGAs, it must adopt reconfigurable or scrubbing mechanism
in order to avoid the accumulation of SEU within the configuration memory.

1.2 Redundancy-based techniques

The redundancy-based techniques presented in this section adopts additional
hardware components or additional computation time for detecting the presence
of SEUs modifying the expected circuit operations and/or masking SEUs
propagation to the circuits outputs. It is worthwhile to underline here that the
techniques presented in this section are not intended for removing SEUs
from the configuration memory, but only for mitigating the SEUs effects.
SEUs may be removed from the configuration memory by resorting to those
techniques presented in the previous section.

Fault detection can be achieved by duplicating the circuit the FPGA
implements. The outputs the two replicas produce are continuously compared
and an alarm signal is raised as soon as a mismatch is found [14]. This
solution is fairly simple and cost-effective; however, it is not able to mask
the SEUs effects.

When fault masking is mandatory, designer may resort to the Triple
Modular Redundancy (TMR) approach. The basic concept of the TMR
architecture is that a circuit can be hardened against SEUs by designing three
copies of the same circuit and building a majority voter on the outputs of the
replicated circuits. Implementing TMR to prevent the effects of SEUs in
technologies such as ASICs is generally applying the protecting capabilities
only the memory elements since combinational logic and interconnections
are less sensitive to SEUs. When the configuration memory of FPGAs is
considered, the TMR implementation should be revisited since a modifica-
tion in the configuration memory may affect every FPGAs resource: routing
resources implementing interconnections, combinational resources, sequential
resources, I/O logic. This means that three copies of the whole circuit,
including I/O logic, have to be implemented to harden it against SEUs [14].

The optimal implementation of the TMR circuitry inside SRAM-based
FPGAs depends on the type of circuit that the FPGA implements. As described
in [14], the logic may be grouped into four different types of structure:
throughput logic, state-machine logic, I/O logic, and special features
(embedded RAM modules, DLLs, etc.). The throughput logic is a logic
circuit of any size or functionality, synchronous or asynchronous, where the
entire logic path flows from the inputs to the outputs of the module without

8

An Introduction to FPGA Devices in Radiation Environments

ever forming a logic loop. The TMR architecture for a module M is
implemented as shown in Figure 1.1.

Three copies of M are connected to a majority voter V, which computes
the output of throughput logic. In order to prevent common-mode failures, the
inputs feeding the throughput logic have to be replicated, too. This implies
that, when M is fed directly from I/O pins, the adoption of TMR must be
accomplished tripling the circuit I/O pins.

State-machine logic is, by definition, state dependent. For this reason, it is
important that the TMR voting is performed internally rather than externally
to such a module. Thus, applying TMR to a state machine consists of tripling
all circuits and inserting a majority voter for each of the replicated feedback
paths. The use of three redundant majority voters eliminates there as single
points of failure, as shown in Figure 1.2.

Hardening the I/O logic through TMR causes a severe increase in the
number of required I/O pins and this method can be used only when there
are enough I/O resources to achieve tripling of all the inputs and outputs of
the design. Therefore, as illustrated in Figure 1.3, each redundant module of
a design that uses FPGAs inputs should have its own set of inputs. Thus, if
one input is affected by an SEU, it only affects one module of the TMR
architecture.

Figure 1.1. TMR architecture for throughput logic.

Figure 1.2. TMR scheme for State-machine logic.

9

Through put logic 1

Through put logic 2 Voter

Through put logic 3

CLK0

CLK1

CLK2

State Machine 2

State Machine 1 V

V

VState Machine 3

Chapter 1

The majority of any logic design can be realized by using look-up tables
(LUTs), flip-flops (FFs), and routing resources that can be hardened against
SEUs in the configuration memory through the previously outlined methods.
However, there are other special FPGA resources that allow the imple-
mentation of more efficient and performing circuit implementations. These
include block RAM, LUT RAM, shift-register, and arithmetic cores. For
each of these features, there are particular recommendations to be followed
to guarantee an accurate TMR architecture. A detailed presentation of these
recommendations is out of the scope of this manuscript. Reader interested in
these subjects may refer to [5, 14].

Figure 1.3. TMR scheme for I/O logic.

Other methodologies to implement redundant architectures on SRAM-

based FPGAs are available. One of these techniques is oriented in performing
all mitigations using the description language to provide a functional TMR
methodology [8]. According to this methodology, interconnections and
registers are tripled and internal voters are used before and after each register
in the design. The advantage of this methodology is that it can be applied in
any type of FPGAs.

Another approach is based on the concept that a circuit can be hardened
against SEUs by applying TMR selectively (STMR) [15]. This approach
extends the basic TMR technique by identifying SEU-sensitive gates in a
given circuit and then by introducing TMR selectively on these gates, only.
Although this approach optimizes TMR by replicating only the most sensitive
portions of a circuit (thus saving area), it needs a high number of majority
voter since one voter is needed for each SEU-sensitive circuit portion.

To reduce both the pin count and the number of voters used to implement
the TMR approach, Lima at al. proposed a technique based on time and
hardware redundancy to harden combinational logic [6, 7]. This technique
combines duplication with comparison (DWC) with a concurrent error
detection (CED) machine based on time redundancy that works as a self-
checking block. DWC detects faults in the system and CED detects which

10

Redundant Logic 1

I/OPin

Redundant Logic 2

Redundant Logic 3

V

V

V

An Introduction to FPGA Devices in Radiation Environments

Switch box

Switch box

Switch box

Switch box

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Switch box

Switch box

Switch box

Switch box

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Wiring segments

blocks are fault-free. Although this fault-tolerant technique aims to reduce
the number of I/O pads and the power dissipation, it is applied on a high-
level description of the circuit, and, thus, if their components are not properly
placed and routed on the FPGAs, they may suffer the multiple effect induced
by SEU in the FPGAs configuration memory. In order to address the
multiple effects induced by SEUs in the FPGAs configuration memory, it is
mandatory to select a clever placement and routing of the design. To attach
the problem, we abstracted the physical characteristics of FPGA by using a
generic FPGA model.

2. PRELIMINARIES OF SRAM-BASED FPGAS
ARCHITECTURE

The basic FPGA architecture consist of a two-dimensional array of logic blocks
and flip-flops interconnected by a network of interconnections. Families of
FPGAs differ from each other by the physical means for implementing user
programmability, interconnection wires and the basic characteristics of
the logic blocks. In order to describe the general characteristics of modern
SRAM-based FPGAs, a generic model is introduced. This model permits to
focus attention on only those components that are affected by the multiple
faults induced by SEUs. On these components, SEUs induce multiple effects
that are permanent until the corrupted bitstream is refreshed through the
download of the new one. Thus, place and route algorithms must be enhanced
in order to introduce redundancies that are resilient to multiple effects, too.

2.1 Generic SRAM-based FPGA model

Figure 1.4. Generic FPGA architecture model.

11

Chapter 1

A Field Programmable Gate Array consists of an array of logic blocks that
can be interconnected selectively to implement different designs. An FPGA
logic block is typically capable of implementing many different combina-
tional and sequential logic functions. Today, commercial FPGAs use logic
blocks that are based on transistor pairs, basic small gates such as two-input
NANDs or exclusive ORs, multiplexers, look-up tables (LUTs), and wide-fanin
AND-OR structures. An FPGA routing architecture incorporates wire segments
of varying length that can be interconnected via electrically programmable
switches. The distribution of the length of the wire segments directly affects
the density and performance achieved by an FPGA.

The SRAM-based FPGA generic model used in this work is shown in
Figure 1.4. This model is common to the architecture of several families of
SRAM-based FPGAs [16, 17]. The model consists of three kinds of resources:
wiring segments, logic blocks, and switch boxes.

Wiring segments are chunks of wiring devoted to transfer information
among logic blocks. Wiring segments are organized in the horizontal plane,
traversing an FPGA from east to west, and the vertical plane, traversing the
FPGA from north to south. Wiring segments are used in conjunction with
switch boxes to deliver information between any locations inside FPGAs.
Logic blocks contain the combinational and sequential logic required to
implement the user circuit, which is defined by writing proper bit patterns
inside the FPGAs configuration memory.

Figure 1.5 shows an example of simple logic block, where we can recognize
a look-up table (LUT) to implement combinational functions, a flip-flop (FF)
to implement memory elements, and two multiplexers (MUX) needed for
implementing different signal forwarding strategies.

Figure 1.5. Simple FPGA’s logic block.

Each logic block has a number of input and output signals connected to

adjacent switch boxes and logic block through wiring segments. The SRAM
programming technology uses static RAM cells to control pass gates or
multiplexers.

12

An Introduction to FPGA Devices in Radiation Environments

The programmable interconnection network consists of wiring segments
that can be connected or disconnected by several programmable interconnect
points (PIPs). The PIPs are organized to form switch matrices that are located
inside switch boxes, which are controlled by the FPGAs configuration memory.
PIPs (also called routing segments) provide configurable connections between
pairs of wiring segments. The basic PIP structure consists of a pass transistor
controlled by a configuration memory bit. There are several types of PIPs:
cross-point PIPs that connect wire segments located in disjoint planes (one in
the horizontal plane and one in the vertical plane), break-point PIPs that
connect wire segments in the same plane, decoded and non-decoded multi-
plexer (MUX) PIPs, and compound PIPs, which consist of a combination of
n cross-point PIPs and m break-point PIPs, each controlled separately by
groups of configuration memory bits [18]. Decoded MUX PIPs are groups of
2k cross-point PIPs sharing common output wire segments controlled by k
configuration memory bits. Conversely, non-decoded MUX PIPs consist of k
wire segments controlled by k configuration bits.

2.2 FPGA routing graph

A model that abstracts most of the details of SRAM-based FPGAs has been
developed. It is general enough to describe any FPGA architecture and it
conveys only the meaningful information for the dependability-oriented
analysis. Indeed, it is particularly important to capture information about
which logic blocks are used by a circuit mapped on an FPGA, as well as all
the information about the interconnections between used logic blocks (i.e.,
how wiring segments and switch matrices are configured for implementing a
circuit). Conversely, it is not important to know which function (combinational
or sequential) a logic block implements.

Figure 1.6. FPGA routing graph.

13

Chapter 1

The resources in an SRAM-based FPGA that are used to implement a
circuit can be described by resorting to a routing graph, where the graphs
vertices model logic blocks and switch boxes while the graphs edges model
wiring segments. As shown in Figure 1.6, the routing graph has two types of
vertices: logic vertices that model the FPGAs logic blocks and routing vertices
that model the input/output ports of each switch box. For each switch box
having I inputs and O outputs, the routing graph has I + O routing vertices.
Moreover, the routing graph has two types of edges: routing edges that
model the FPGAs PIPs as edges between two different routing vertices and
wiring edges that model the FPGAs wiring segment as edges between logic
vertices and routing vertices.

Switch box Switch box

Logic
Block

Logic
Block

Logic
Block

Logic
Block

Figure 1.7. Modeling of a FPGA implementing a circuit by means of the routing graph.

An FPGA switch box is described by the graph model in different routing

edges forming a structure known as a Universal Switch Module (USM) [19].
The number of vertices and edges modeling switch boxes and logic blocks
depends on the selected FPGAs architecture.

According to our model, a logic signal connecting two logic blocks in the
circuit the FPGA implements is modeled by the routing graph as a path that
may span over different wiring edges and routing edges. As illustrated in
Figure 1.7, edges and vertices are colored to indicate that the corresponding
FPGAs resource is used to implement a circuit. In case the FPGA imple-
ments different circuits or different replicas of the same circuit, different
colors are used to mark edges and vertices of each circuit or replica.

Moreover, a direction is associated to any edge to describe the direction
of the information flow. The proposed graph model is very flexible and can
be adopted to describe any type of FPGAs architecture.

14

An Introduction to FPGA Devices in Radiation Environments

REFERENCES

[1] M. Nikolaidis, Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer
Technologies, Proceedings IEEE 17th VLSI Test Symposium, Apr. 1999, pp. 86–94.

[2] E. Normand, Single Event Upset at Ground Level, IEEE Transactions on Nuclear Science,
Vol. 43, No. 6, Dec. 1996, pp. 2742–2750.

[3] M. Alderighi, A. Candelori, F. Casini, S. D’Angelo, M. Mancini, A. Paccagnella,
S. Pastore, G. R. Sechi, Heavy Ion Effects on Configuration Logic of Virtex FPGAs,
IEEE 11th On-Line Testing Symposium, 2005, pp. 49–53.

[4] P. Graham, M. Caffrey, D. E. Johnson, N. Rollins, M. Wirthlin, SEU Mitigation for Half-
Latches in Xilinx Virtex FPGAs, IEEE Transactions on Nuclear Science, Vol. 50, No. 6,
Dec. 2003, pp. 2139–2146.

[5] C. Carmichael, M. Caffrey, A. Salazar, Correcting Single Event Upset Through Virtex
Partial Reconfiguration, Xilinx Application Notes, XAPP216, 2000.

[6] F. Lima Kanstensmidt, G. Neuberger, R. Hentschke, L. Carro, R. Reis, Designing Fault-
Tolerant Techniques for SRAM-Based FPGAs, IEEE Design and Test of Computers,
Nov.–Dec. 2004, pp. 552–562.

[7] F. Lima, L. Carro, R. Reis, Designing Fault Tolerant System into SRAM-Based FPGAs,
IEEE/ACM Design Automation Conference, June 2003, pp. 650–655.

[8] S. Habinc Gaisler Research, Functional Triple Modular Redundancy (FTMR) VHDL Design
Methodology for Redundancy in Combinational and Sequential Logic, www.gaisler.com

[9] N. Rollins, M. J. Wirthlin, M. Caffrey, P. Graham, Evaluating TMR Techniques in the
Presence of Single Event Upsets, poster MAPLD 2003.

[10] M. Bellato, P. Bernardi, D. Bortolato, A. Canderlori, M. Ceschia, A. Paccagnella,
M. Rebaudengo, M. Sonza Reorda, M. Violante, P. Zambolin, Evaluating the Effects of
SEUs Affecting the Configuration Memory of a SRAM-Based FPGA, IEEE Design
Automation and Test in Europe, 2004, pp. 188–193.

[11] M. Ceschia, M. Violante, M. Sonza Reorda, A. Paccagnella, P. Bernardi, M. Rebaudengo,
D. Bortolato, M. Bellato, P. Zambolin, A. Candelori, Identification and Classification of
Single-Event Upsets in the Configuration Memory of SRAM-Based FPGAs, IEEE
Transactions on Nuclear Science, Vol. 50, No. 6, Dec. 2003, pp. 2088–2094.

[12] P. Bernardi, M. Sonza Reorda, L. Sterpone, M. Violante, On the Evaluation of SEUs
Sensitiveness in SRAM-Based FPGAs, IEEE 10th On-Line Testing Symposium, 2004,
pp. 115–120.

[13] F. Lima Kanstensmidt, L. Sterpone, L. Carro, M. Sonza Reorda, On the Optimal Design
of Triple Modular Redundancy Logic for SRAM-Based FPGAs, 2005, pp. 1290–1295.

[14] C. Carmichael, Triple Modular Redundancy Design Techniques for Virtex FPGAs,
Xilinx Application Notes, XAPP197, 2001.

[15] P. K. Samudrala, J. Ramos, S. Katkoori, Selective Triple Modular Redundancy (STMR)
Based Single Event Upset (SEU) Tolerant Synthesis for FPGAs, IEEE Transactions on
Nuclear Science, Vol. 51, No. 5, Oct. 2004.

[16] S. Brown, FPGA Architecture Research: A Survey, IEEE Design and Test of Computers,
Nov–Dec 1996, pp. 9–15.

[17] J. Rose, A. El Gamal, A. Sangiovanni-Vincetelli, Architecture of Field-Programmable
Gate Arrays, IEEE Proceedings, Vol. 81, No. 7, July 1993, pp. 1013–1029.

[18] C. Stroud, J. Nall, M. Lashinsky, M. Abramovici, BIST-Based Diagnosis of FPGA
Interconnect, International Test Conference, 2002, pp. 618–627.

[19] Y. W. Chang, D. F. Wong, C. K. Wong, Universal Switch Modules for FPGA Design,
ACM Transaction on Design Automation of Electronic System, Jan. 1996, pp. 80–101.

15

Chapter 2

RADIATION EFFECTS ON SRAM-BASED
FPGAS
Modeling and simulation of radiations effects

The past 30 years have seen the discovery that electronic circuits are sensitive to
transient effects such as Single Event Upsets (SEUs) provoked by ionizing
radiation [1]. Since the discovery of SEUs at aircraft altitudes, researchers
have made significant efforts to monitor the environment. The space and the
earth environment contain various ionizing radiations, generated by natural
phenomena such as sun activity and manmade radiation that interacts with
silicon atoms. If, at ground level, neutrons and alpha particles are the most
frequent causes of SEUs, in a space environment, they are protons and heavy
ions. When a particle hits the surface of a silicon area, it loses its energy
through the production of free electron-hole pairs, resulting in a dense
ionized track in the struck region [2]. Interestingly, when the struck silicon
area implements a static memory cell, the transient pulse may induce per-
manent changes: it can indeed activate the inversion of the stored value. In
SRAM-based FPGAs, transient faults originating in the FPGAs configuration
memory have dramatic effects since the circuits the FPGAs implement are
totally controlled by the content of the configuration memory, which is
composed of static RAM cells [3, 4]. In this chapter, the effects of the SEUs
within the configuration memory of SRAM-based FPGAs will be accurately
described, thanks to the graph model presented in the previous chapter, the
effects of SEUs within the internal FPGA’s resources is modeled and analyzed.

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,
© Springer Science + Business Media B.V. 2008

17

Chapter 2

1. RADIATION EFFECTS

The radiation effects may be classified in two categories: energetic particles
(such as electrons, protons, alpha particles), neutrons, heavy ions (that are
influenced by the electromagnetic field, and electromagnetic radiations such
as photon, gamma ray, X-ray or ultra-violet. The effects of radiations can be
distinguished depending on the terrestrial or extra-terrestrial environment.

On the Earth the principal radioactive sources are represented by the
radioactive material and by the cosmic ray. The materials used during the
productive process of integrated circuits, such as the aluminum and gold, can
contain traces of radioactive material or to be exposed to environmental
consequences. The cosmic rays are mainly due to the solar wind, that consists
of the particles flux at low energy and the galactic cosmic rays, composed by
high energy particles emitted by remote sources in the universe.

Radiations coming from the space are influenced by the terrestrial mag-
netic field that decrease their effects. The particles that pass the terrestrial
magnetic field and hit the atmosphere provoke the production of secondary
particles that are able to reach the Earth surface. The influences of protons
and heavy ions at an high altitude is not negligible. The radio between the
amount of radiations that hit an aircraft at high altitude with respect to the
amount of radiations at the sea level is 100 times [5].

In the space is absent the filter effect provided by the atmosphere, however
the terrestrial magnetic field influence the radioactive particles hitting the
space vehicles working in this environment. The source of radiation in the
earth space are principally due to three factors: the Van Allen belts, solar
wind and galactic cosmic rays.

The Van Allen belts are two regions in which the electrically charged
particles are attracted by the terrestrial magnetic field in a stronger measure.
Within the Van Allen belts the major causes of electronic circuits malfunc-
tions is composed by high energy protons.

Vice versa the solar wind is formed by the Coronal Mass Ejection (CME)
that are able to pass the Sun gravity. The solar wind consists of a long flux of
particles at high energy that influence the behavior of the Van Allen belt.
The galactic cosmic rays are composed by heavy ions at high energy with an
isotropic flux, similar for each directions. They hit the space crafts operating
outside the influence of the terrestrial magnetosphere.

The two principal mechanisms through radiations interact with the
matter are the atomic displacement and the ionization or electronic charge
displacement.

The atomic displacement takes place when a particle hits an atom changing
its original position. If this atom belongs to the crystalline structure, it may
change the properties of the material. The effects on the semiconductor is

18

Radiation Effects on SRAM-based FPGAs

similar to the one artificially produced thanks to the ionic implantation
process executed during the manufacturing of integrated circuit, and thus it
can provoke the equivalent variation of drug in the semiconductor.

The ionization causes the move of charge, forming couple of electron-
holes. Within the semiconductor the electric field produced by these particles
determine the generation of an internal current, that in some cases may
modify the functionalities of the circuit. These kind of errors are defined as
soft-error, since they do not damage the electronic circuit, but causes only
the temporary variation of the functionality. The ionization may be provoked
also by photons. The energy transmitted to electrons in the valency band
may move them to the conduction band. This iteration produces hole within
the small dielectrics, provoking their slow degradation. This is an example of
permanent error also known as hard error.

The damage provoked by radiations may be classified in two principal
categories:

1. Long terms cumulative degradation: it is divided in Total Ionizing Dose
(TID) effects, the accumulation of ionizing radiations over the time, that
provokes degradation within the electrical circuit, and Displacement
Damage Dose (DDD), the accumulation over the time of the atomics’
material movements.

2. Single Event Effects (SEE): kind of event that happens locally following
an action of single ionizing particles. These events are classified as SEE
and in particular as Single Event Upset or Single Event Latchup.

1.1 Single Event Upset (SEU)

The Single Event Upset (SEU) is a change of condition or a transition, induced
by an high charged particle. An SEU consist of the change of the logic state
or, more in general, in a transitory error and it is classified by the scientific
literature in the category of soft-error since it can provoke the reset or the
rewriting of the device normal behavior.

The Figure 2.1A shows a simple storage cell of a single bit and it illustrates
the effect of an SEU also known as bit-flip. The circuit in Figure 2.1A is
designed in order to maintain to stable state: stored ‘0’ and stored ‘1’. In
each state two transistors are activated and two are put off. A bit-flip
happens when an high-charged particle provoke the inversion of the circuit
transistor state. This phenomena happens in all microcircuits, from memory
chips to microprocessors. The occurrence of a bit-flip can generate a random
change of the processor state and may provoke the crash of the system. The
Figure 2.1B illustrates how an high-charged particle may provoke a spurious
electronic signal. The particle produces a charge along its path in the form of
electron-hole couple. These are collected within the source and drain

19

Chapter 2

generating an effect similar to a current pulse that may be sufficiently wide
to produce an effect comparable to a normal signal applied to a transistor.

Figure 2.1. (A) storage cell for a single bit (S-RAM). (B) junction crossed by an high-charged
particle.

The SEUs are drastically relevant for SRAM-based FPGA since the
configuration memory is sensible to ionizing radiations. The effects of SEUs
within SRAM-based FPGA devices depend on the technology and on the
architectural choice. The malfunction provoked by an SEU is classified as
Single Event Functional Interrupt (SEFI).

The SEFI phenomena is used for the first time in the 1996 within the
Standard EIA/JEDEC2. The SEFI is the first anomaly within integrated circuits
provoked by a bump of a single ion, similarly to the SEU, that introduces a
temporary malfunction or interruption of the device standard operations.
While the SEU is a phenomena that produces a temporary change of the
device physical conditions, the SEFI is a phenomena that happens in the
temporary change of the implemented functionality and may remain until
the power supply is interrupted. The SEFI are observable in several devices,
however until it is not related to a single cause, this phenomena remains
hardly definable [6].

1.2 Single Event Latch-Up (SEL)

The ionizing radiations may provoke other kinds of effects called Single
Event Latch-up (SEL), that is produced activating the parasitic transistor
present between the junctions N-P of the CMOS transistors. The activation
of such kind of transistor create a low frequency path between the power
supply (Vcc) and the ground, crossed by an high current. For this reason, the
SEL effects are potentially destructive for an electronic circuit. In parallel
with the progressive reduction of the physical dimensions, the supply current
and the threshold voltages applied to the manufacturing techniques of

20

Drain Oxide Insulation Gate

(B)

Q4

Q3

Q2

Q1

(A)

Vs Vs

VsVs

Source

N+
+

+
+

+
+

+
+

+
+

+
+

+
+

N+

Radiation Effects on SRAM-based FPGAs

SRAM-based FPGAs, the malfunctions due to radiations are proportionally
increased.

2. SEU EFFECTS ON FPGA’S CONFIGURATION
MEMORY

SRAM-based FPGAs suffer from radiation as other semiconductor devices.
Designer and users have to consider these radiation effects before including
an SRAM-based FPGA within a space application. SRAM-based FPGAs, as
other devices, that contain several arrays of memory cells, are extremely
sensitive to SEUs due to the large amount of memory within a relatively
small amount of silicon area.

SRAM-based FPGAs contain a lot of memory cells within a single device,
implementing the configuration memory, which are sensitive to SEUs. The
SEU upset rate is related to the kind of radiation environment where the
device will be used. To mention an estimation, in the Cibolla flight experi-
ment using a SRAM-based FPGA Xilinx Virtex 1000 containing more than
six million bits, it has been calculated that worst-case SEU upset rate on an
average orbit ranges from 0.13 SEUs per hour under a quiet sun, up to 4.2
SEUs per hour under a peak upset rate [7]. The effects induced by SEUs on
SRAM-based FPGAs have been recently investigated thanks to radiation
experiments [8–10]. More recently, an analysis that combines the results of
radiation testing with those obtained while analyzing the meaning of every
bit in the FPGAs configuration was presented in [11].

Although SEUs are transient by nature, when they originate in the confi-
guration memory, their effects are permanent since SEUs remain latched
until the configuration memory is rewritten with new configuration data. The
errors produced by SEUs in the FPGAs configuration memory can be classified
into two different categories: errors that affect logic blocks and errors that
affect the switch boxes.

As far as logic-block errors are concerned, several different phenomena
may be observed, depending on which resource of the logic block is
modified by the SEU:

- LUT error. The SEU modified one bit of a LUT, thus changing the
combinational function it implements.

- MUX error. The SEU modified the configuration of a MUX in the logic
block, as a result, signals are not correctly forwarded inside the logic
block.

- FF error. The SEU modified the configuration of a FF, for example,
changing the polarity of the reset line or that of the clock line.

21

Chapter 2

In order to model faulty logic blocks in the routing graph previously
described, we assumed using the black color to mark each vertex correspon-
ding to a faulty logic block.

As far as switch boxes are concerned, different phenomena are possible.
Although an SEU affecting a switch box modifies the configuration of one
PIP, both single and multiple effects can be originated.

Single effects happen when the modifications induced by the SEU alter
only the affected PIP. In this case, one situation may happen. The SEU changes
the configuration of the affected PIP, and the existing connection between
the two routing segments is opened, provoking an open effects. Considering
the routing graph, this situation is modeled by deleting the routing edge
corresponding to the PIP that connects the two routing vertices.

Figure 2.2. Possible multiple effects induced by one SEU.

In order to describe the multiple effects in terms of modifications to the

routing graph, let us consider the two routing edges AS /AD and BS /BD con-
necting the routing vertices AS, AD, BS, BD, as shown in Figure 2.2a.
Considering this routing situation, the following modification could be
introduced by an SEU:

1. Short between AS /AD and BS /BD. As shown in Figure 2.2b, a new routing
edge is added to the graph that connects either one end of A to one end of
B. This effect can happen if AS /AD and BS /BD belong to the same switch
box and the SEU enables the non-decoded or decoded PIP that connects
B with A.

2. Open correspond to the deletion of both routing edges AS /AD and BS /BD as
shown in Figure 2.2c. This situation may happen if a decoded PIP
controls both AS /AD and BS /BD.

3. Open/Short, which corresponds to the deletion of either the routing edge
AS /AD or the one BS /BD and to the addition of the routing edge AS /AD or
BS/BD, as shown in Figure 2.2d. This situation may happen if a decoded
PIP controls both AS /AD and BS /BD.

AD

AS

B D

BS

AD

AS

BD

B S

AD

AS

BD

BS

A D

A S

BD

BS

(a) (b) (c) (d)

22

Radiation Effects on SRAM-based FPGAs

The short effects, as shown in Figure 2.2b, may happen if two nets are
routed on the same switch box and a new edge is added between them. This
kind of faulty effect happens when a cross-point PIP, which is non-buffered
and has bidirectional capability, links two wire segments located in disjoint
planes. Conversely, the Open and the Open/Short effects, as shown in Figure
2.2c, d, may happen if two nets are routed using decoded PIPs.

3. SIMULATION-BASED ANALYSIS OF SEUs

Researchers have investigated the use of simulation-based approaches for
predicting the effects of SEUs. The methods proposed so far [12, 13],
although effective and accurate, are intended for the analysis of applications
implemented on ASICs only. Considering the SRAM-based FPGA devices,
two complementary aspects should be considered:

1. SEUs may alter the memory elements the design embeds. For example, a
SEU may alter the content of a register in the data-path, or the content of
the state register of a control unit.

2. SEUs may alter the content of the memory storing the devices
configuration information. For example, a SEU may alter the content of a
Look-Up Table (LUT) inside a logic resource of the FPGA, or the
routing signals.

As far as the former aspect is concerned, the available approaches are
adequate. Conversely, the latter aspect demands much more complex analysis
capabilities. The effects of SEUs in the devices configuration memory are
indeed not limited to modifications in the design memory elements, but may
produce modifications to the interconnections inside a logic resource and
among different logic resources.

A Simulation-based approach to address the aforementioned problem has
been developed: through suitably defined fault models and an ad-hoc
developed simulation tool, the procedure is able to predict the effects of
SEUs in the device configuration memory. The approach provides experi-
mental results that can be compared to the predicted SEU cross-section with
those obtained from radiation testing. These comparisons show that our
method is quite accurate and that it can be used to predict the result of
radiation testing.

3.1 Simulation environment

In the developed environment the FPGA-based system is composed of two
independent layers: the application layer and the physical layer. The

23

Chapter 2

application layer corresponds to the digital circuit that implements the
functionalities the system is intended to carry out. The application layer is a
VHDL model that codes the netlist implementing the desired circuit. Its
building blocks are the components available within the adopted FPGA:
LUTs that store the truth table of the Boolean functions the circuit imple-
ments, routing resources, and memory elements (flip-flop, register, etc.).
Conversely, the physical layer corresponds to the FPGA device on which the
circuit is implemented. The two layers are analyzed independently by the
proposed approach.

The application layer is analyzed using a simulation-based analysis tool
which computes the predicted error rate. The figure is the probability that an
SEU modifies the circuit implemented by the application layer in such a way
that it produces SEFIs, i.e., erroneous output results. The computation of the
predicted error rate is performed by resorting to fault-injection experiments,
which are based on fault models that emulate accurately the effects of SEUs
in the configuration memory of FPGAs.

The physical layer is analyzed using the test-bed we introduced in [14].
The purpose of this analysis is to characterize the FPGA devices manufac-
turing technology from the point of view of sensitivity to radiation. For this
purpose, radiation-testing experiments are performed to measure the cross-
section of the adopted FPGA device, which gives the probability for a
particle to produce an SEU.

The important aspect of this approach is that the computation of the cross
section does not depend on the application layer: in fact it may be performed
by configuring the FPGA device with test circuits that are different from the
application layer. The cross section obtained by this method is associated
with the FPGA device and it is independent respect to the application using
it. The analysis of the physical layer is required each time a new technology
is exploited: once the FPGA cross-section has been computed, it may be
exploited for any application using that technology.

As soon as both analyses are completed, we can compute the predicted
cross-section of the whole system, as follows:

 Predicted = Predicted FPGA (2.1)

This figure gives the sensitivity to radiation of the whole systems. It thus
combines the effects of SEUs in the application layer. A similar approach
was proposed in [15] for analyzing processor-based systems.

The core of the tool is the fault-injection environment outlined in Figure
2.3. Starting from an initial description of the circuit the system implements,
we use the tools provided by the FPGA vendor for performing place and
route operations. This preliminary step is typical of any design flow based on
FPGA devices, and produces a configuration file where the content of the
devices configuration memory is stored, i.e., the bitstream. This information

24

Radiation Effects on SRAM-based FPGAs

defines the application layer. Starting from the information stored in the
bitstream, two ad-hoc developed tools are used.

Figure 2.3. Architecture of the fault-injection approach we developed. It combines both
ad-hoc developed tools with commercial tools provided by the FPGA vendor for place and
route operations, and independent suppliers for simulation operations.

The Fault List Generation Tool identifies the FPGAs resources in the

application layer (for logic implementation, signal routing, etc.) that are used
and it generates the list of faults (Fault List) to be injected, accordingly to the
fault models described in the section 2 of the present chapter. Each fault is
described by the couple (fault injection time, fault location) describing when
the SEU appears, and which resource it modifies.

The Fault Simulation Tool simulates serially the faults in the Fault List.
During simulations the outputs produced by the faulty application layer are
compared with those of the fault-free one. As soon as a mismatch is found,
the simulation is stopped and the effect provoked by the injected fault is
classified as wrong answer. Conversely, in case the simulation of the Input
Stimuli set concludes, and no mismatch is found, the fault is classified as
Effectless.

The tools produce the following figures:

- Bused. The number of configuration memory bits that needs to be
programmed on the physical layer to implement the application layer.

- Btotal. The total number of configuration memory bits for the physical
layer. It includes the bits that need to be programmed for implementing
the application layer, as well as those left unprogrammed since the
resource they control are not used.

Circuit
description

Place & Route
Tool from FPGA

vendor

FPGA
configuration file

Fault List
Generation Tool

Fault Simulation
Tool

Input
Stimuli

Fault List

Fault Effect
Results

25

Chapter 2

- N . The percentage of injected faults whose effects are classified as
Wrong Answers.

The aforementioned figures are combined by means of (2.2) to estimate
the predicted circuit error rate:

The term N is the percentage of faults provoking Wrong Answers, while

the ratio estimates the probability for an SEU to appear in the used portion of
the physical layer.

Given an SRAM-based FPGA device, its configuration memory consists
of two types of bits: some controlling signal-routing resources, and some
controlling logic resources. Signal-routing resources are all those resources
concerned with the transmission of information within the physical layer. In
general these resources include: wire segments, which are wires unbroken by
programmable switches (each end of a wire segment typically has a switch
attached), and tracks, which are sequences of one or more wire segments
[16].

Conversely, logic resources are all those resources concerned with the
implementation of combinational or sequential logic functions.

By considering the typical architecture of SRAM-based FPGAs, we can
observe the modifications induced by SEUs to the FPGA resources configu-
ration described in the previous sections.

The tool we developed for Fault List Generation analyzes the device
configuration file produced by the place and route tools, and it identifies the
bits used to route the (Nroute bits), and those controlling the logic resources
used by the mapped circuit (NCLB bits). It then generates all the possible
couples (fault-injection time, fault location), where fault-injection time
ranges from the time of application of the first input stimuli to the last one,
while fault location corresponds to all the possible SEUs in Nroute + NCLB bits.
Fault sampling is exploited to reduce the number of faults to be simulated by
the Fault Simulation tool: if N is the number of simulated faults, then (Nroute
x N) / (Nroute + NCLB) faults will be injected in the routing resource, while
(NCLB x N) / (Nroute + NCLB) will be injected in the CLB ones. Similarly, fault-
injection time will be randomly selected between the first and the last input
stimuli.

3.2 Fault simulation tool

In the present section, it is described the fault simulation tool developed
while addressing Xilinx devices. The tool can be adapted easily to other
devices from different manufacturers, since it works on commonly used

TOTAL

USED
PREDICTED B

BN (2.2)

26

Radiation Effects on SRAM-based FPGAs

hardware description languages (HDL) model of a circuit mapped on an
FPGA available (i.e., the application layer).

In order to help designers to evaluate the correctness of their designs after
place and route, FPGA vendors usually provide this type of tool.

TABLE 2.1 Summary of the mutations inserted in the VHDL model of the considered circuit
to mimic the effects of seus in the device configuration memory

Faulty resource Fault effect Corresponding mutation

 Open Stuck-at-zero or Stuck-at-one,
depending on the affected resource.

Routing Bridge The signal source is modified and
connected to a new source depends
on the affected resource.

 Conflict Wired-AND or Wired-OR
 Combinational defect Bit-flip in a Look-Up Table

Logic Routing defect The signal source is modified and
connected to a new source. The
choice of the new source depends on
the affected resource.

 Sequential defect Bit-flip in a flip-flop.

The developed tool exploits the ModelSim VHDL simulator for evaluat-

ing the outputs that the faulty application layer produces. For this purpose,
the application layer is first obtained by executing the ncd2vhdl tool provided
by Xilinx. Where NCD stands for Native Circuit Description language, and
in details, is the file containing all the information of the circuit mapped on
the FPGA’s physical level. Let’s consider to refer on the fault-free appli-
cation layer as Cgold. Before fault simulation can start, for each fault in the
Fault Lists a new model, called Cfaulty, is computed as a mutation of Cgold.
During this process the set of VHDL instructions that model the fault are
inserted in Cgold. In particular, using the mutations reported in Table 2.1.

Table 2.1 shows an overview of the test-bed, including its main components.
A Control Host, located outside the irradiation chamber, is used to monitor
the experiment execution. It is provided with an IP connection with the set-
up inside the irradiation chamber through which it sends commands and
receives information about the status of the experiments, as well as data to
be logged for elaboration purposes. Inside the irradiation chamber, it has
been located a Test CPU (a Power-PC MPC860) that communicates with the
Control Host as well as with the device under test. Its purpose is to perform
the low-level operations needed for running an experiment: programming the
device under test, applying input stimuli, collecting output responses, and

27

Chapter 2

reading back the configuration memory of the device under test. A Control
Hardware is also used for adapting the Test CPU to the FPGA Under Test.

Figure 2.4. Overview of the test-bed we developed for performing radiation-testing experi-
ments on FPGA devices.

The test-bed, illustrated in Figure 2.4, can be used for two purposes. It

can be exploited for measuring the cross section of an FPGA-based system,
obtaining the measured cross section of the whole systems. For this purpose,
the typical test session consists in configuring the physical layer with the
application layer, and then in continuously stimulating the FPGA device
with a given set of input stimuli. The output responses are continuously
collected and compared with the expected ones. As soon as a mismatch
between the expected output values and the read ones is observed, i.e., when
a SEFI is detected, the test is stopped and the configuration of the FPGA
Under Test is read back and sent to the Control Host for data logging.
Following this operation, the test is restarted from the beginning. By relating
the number of observed SEFIs with the estimated number of particles hitting
the devices surface is then possible to compute the device cross section.

Similarly, the test-bed can be used to measure the cross section of the
physical layer. In this case, the FPGA is initially programmed with an empty
bitstream, and then its configuration memory is periodically read back. By
comparing the read information with the fault-free bitstream, it is possible to
measure the number of observed SEUs. As previously done, the device
cross-section is computed relating this figure with the estimated number of
particles hitting the device surface.

3.3 Experimental results

In order to evaluate the accuracy of the presented approach, several experi-
mental analysis have been executed.

Control
Host

Test
CPU

Control
Hardware

FPGA
Under
Test

ION BEAM

Irradiation Chamber

28

Radiation Effects on SRAM-based FPGAs

The first one, aims at evaluating the accuracy of the simulation-based
approach while modeling the effects of SEUs in the device configuration
memory.

The second one, aims at evaluating the accuracy of estimation of the
predicted cross section of a circuit mapped on a device with respect to that
measured by means of radiation testing.

The Xilinx Virtex XCV300 device has been used as physical layer. The
device has been exposed to various ion species ranging from 84 MeV
Carbon to 210 MeV Nickel featuring linear energy transfer (LET) values
between 1.6 and 30 MeV cm/mg. Radiation testing experiments were carried
out at the Tandem Van De Graff Accelerator of INFN-LNL, Legnaro (PD),
Italy.

The application layer was a circuit composed of four 16 × 16 bit binary
multipliers. Inputs of the four multipliers were connected in parallel, while
the outputs were connected to an XOR gate array. The multiplier occupies
2,524 out of 3,072 slices of the adopted XCV300 device and operates at 10
Mhz.

To assess the accuracy of the developed simulation tool, the output
responses have been compared during the radiation testing with those
computed by the simulation tool. For each SEFI recorded during radiation
testing, the SEU causing it has been identified. The SEU is modeled in terms
of the modification it introduces in the application layer, and finally it has
been injected in the application layer by means of the developed simulation
tool.

For this purpose, an initial set of radiation testing experiments is performed.
During the radiation experiments the physical layer was configured with the
application layer, it was continuously stimulated by a given set of input
stimuli, and the resulting outputs observed. As soon as a mismatch on the
output values was observed between the expected values and the measured
ones, the test was stopped, and the content of the physical layer configura-
tion memory was read back. By analyzing the faulty bitstream, the FPGA’s
resources affected by SEUs have been identified.

For each SEU observed during radiation testing, which forced the system
to produce the faulty outputs, it is executed a simulation experiment. The
SEU observed in the device configuration memory is modeled accordingly
to the proposed technique by injecting a SEU into the application layer
through the simulation-based approach described in the previous section.
Then, the resulting output traces are recorded. Finally, the output observed
during the radiation experiments have been compared with those obtained by
simulations: for all the injected faults, the resulting traces predicted and
always matched the measured ones.

29

Chapter 2

The cross section of the FPGA-based system (a multiplier implemented
on a Xilinx Virtex device) predicted by simulations is compared with that
measured during radiation testing.

TABLE 2.2 Comparison between the cross section obtained during radiation testing experi-
ments and that obtained by means of simulations

Ion LET
[MeV·cm2/mg]

Measured circuit
cross section

[cm2/bit]

Predicted circuit
cross section

[cm2/bit]
12C 1.6 1.78 10-13 1.08 10-12
16O 3.0 1.98 10-11 4.44 10-11
19F 4.1 3.53 10-10 5.28 10-10
28Si 8.5 1.80 10-9 1.82 10-9
58Ni 29.0 2.57 10-9 4.45 10-9

In computing the predicted error rate, we injected 10,000 SEUs. For the

application layer, 9,712 faults have been identified in the routing resources
and 288 faults into the logic resources using the Fault List Generation Tool.

By multiplying the predicted circuit error rate by the cross section of the
physical layer the predicted cross section is obtained. Table 2.2 gives the
predicted cross section obtained during radiation testing for the specific ions
used in the experiment. Table 2.2 also gives the measured cross section
obtained during radiation testing for the specific ions used in the experiment.

4. HARDWARE-BASED ANALYSIS OF SEUs

As the reader can observe, predicted values are within a factor of two of the
measured ones. The effects induced by SEUs on a SRAM-based FPGA have
been recently investigated through radiation experiments [8–10], where the
predominant effect that was observed was the Single Event Functional Interrupt
(SEFI). More recently, an analysis that combines the result of radiation-
testing with those obtained while analyzing the meaning of every bit in the
FPGAs configuration memory were reported in [11, 14], which identified
the bits responsible for each SEFI and that classified the observed SEFIs
according to the affected FPGAs resource.

As an alternative to radiation testing, several fault injection approaches
were recently proposed. All these approaches emulate the effects of SEUs in
the FPGA’s configuration memory as bit-flips in the memory content, i.e.,
the bitstream, downloaded in the FPGA at power up. Some of them exploits
run-time reconfiguration [17], while others modify the bitstream before
downloading it in the configuration memory [18] or during download
operations [19].

30

Radiation Effects on SRAM-based FPGAs

Several techniques have been developed in the past years in order to
avoid the incidence of SEUs on the behavior of the implemented circuits.

Some of them aim at correcting the effects of SEUs in the device configu-
ration memory. For example the techniques proposed by Xilinx and known
as Scrubbing consists in periodically reloading the whole content of the
configuration memory [20]. A more complex system used to correct the
information in the configuration memory exploits the readback and partial
configuration process. Through the readback operation, the content of the
FPGAs configuration memory is read and compared with the expected value,
which is stored in a dedicated memory located outside the FPGA. As soon as
a mismatch is found, the correct information is download in the FPGAs
memory. During the reconfiguration only the faulty portion of the configura-
tion memory is rewritten [20].

Alternative techniques were also proposed that do not aim at identifying
and correcting the modification introduced by SEUs, but just aim at avoiding
the propagation of SEU effects to the observable outputs, mainly by introducing
hardware redundancy in the circuit mapped on the FPGAs. Triple Modular
Redundancy (TMR) is an attractive solution for SRAM-based FPGAs
because it provides full hardware redundancy of the users combinational and
sequential logic, the routing, and the I/O pads [8, 21].

The basic idea of the TMR scheme is that a circuit can be hardened
against SEUs by designing three copies of the same circuit and building a
majority voter on the outputs of the replicated circuits. Implementing triple
redundant circuits in other technologies, such as ASICs, is generally limited
to protecting only the memory elements, because combinational logic is
hard-wired and correspond to non-configurable gates. Conversely, full module
redundancy is required in FPGAs, because memory elements, interconnec-
tions and combinational gates are all susceptible to SEUs. This means that
three full copies of the users design have to be implemented to harden the
circuit against SEUs. In order to prevent fault accumulation, TMR is often
coupled with techniques like scrubbing or readback and partial reconfigura-
tion to remove SEUs from the FPGAs configuration memory.

Although effective, the overheads TMR mandates may overcome the
available resources, e.g., the number of available I/O pads, and thus some
applications exist where it can hardly be exploited. To solve this problem a
new method was proposed in [22], aiming at reducing the overhead of a full
TMR implementation.

Even if optimized, these kinds of methods come with very high design
penalties: besides the area overhead due to the TMR design, removing SEUs
from the configuration memory mandates the adoption of ad-hoc circuit for
supporting the readback and the partial reconfiguration procedure, and
additional energy consumption.

31

Chapter 2

4.1 Details on the Xilinx Triple Modular Redundancy

The suggested optimal implementation of the TMR circuitry inside a SRAM-
based FPGA provided by Xilinx depends on the type of the circuit that is
mapped on the FPGA device. There are three types of structures: combina-
tional logic, state machines or special devices.

The primary purpose for using the TMR methodology is to remove all
single points of failure from the design. This starts with the FPGA inputs. If
the same input is connected to all the three domains of the redundant logic
within the FPGA, then a failure at the input would propagate through all the
domains, escaping the TMR protection capability. Therefore, each replica of
the redundant logic should have its own set of inputs, as illustrated in Figure
2.5.

Figure 2.5. Triple Modular Redundancy (TMR) FPGA inputs.

As far as the implementation of the majority voter is concerned, Xilinx

proposed to build it by using the Output Buffer Three-state cell (OBUFT)
provided by Xilinx library primitives as shown in Figure 2.6.

Figure 2.6. Triple Modular Redundancy (TMR) BUFT majority voter outputs.

4.2 Analysis of TMR architecture

In order to assess the effects of SEUs in the FPGA configuration memory, a
fault-injection system is used to inject SEUs internally to the configuration

REDUNDANT
L OGIC

REDUNDANT
L OGIC

REDUNDANT
L OGIC

FPGA
R1

R2

R3

IBUF

IBUF

IBUF

P ackag e PIN

Input

FPGA
R1

R2

R3

OBUFT

OBUFT

OBUFT

Package PIN

32

Radiation Effects on SRAM-based FPGAs

memory and to record the circuit’s output. The fault injection system used is
composed of the following modules:

1. Fault List Manager (FLM): it generates the list of faults to be injected
within the circuit under analysis, i.e., the Device Under Test (DUT).

2. Fault Injection Manager (FIM): it manages the fault injection process, by
selecting one fault from the fault list, performing its injection in the DUT
and then observing and analyzing the obtained results to provide the
fault-effect classification.

Figure 2.7. The architecture of the fault-injection system.

The proposed fault injection system consists of an FLM module imple-

mented as a software process running on a host PC, and a FIM, that runs in
part on an host PC and in part on the same FPGA device where the DUT is
placed. The two portions of the FIM communicate through a parallel link
that exploits the Enhanced Parallel Port (EPP) protocol. The scheme of the
implemented fault injection system is implemented in Figure 2.7.

In the developed fault injection system the DUT, the EPP Interface and
the FIM shared the same FPGA device. These modules should be placed on
the FPGA device in such a way that any fault injected in the DUT does not
interfere with the FIM and EPP interface. This requirement is complied by
constraining the place and route algorithms to organize the FPGA-resource
allocation as described in the Figure 2.8.

The developed fault injection system exhaustively injects faults in all the
configuration memory bits, no matter if they are used or not. In order to
speed-up and make more precise the fault-injection process, the developed
FIM identifies the configuration memory bits that are actually programmed
to implement the DUT, and generates faults only for them. Moreover, this
solution prevents us from erroneously injecting faults in the FPGA resource
implementing the FIM and the EPP interface.

Software
Fault Injection

Manager

Fault List
Manager

Fault List

PC

EPP
Interface

Hardware
Fault Injection

Manager

Device Under
Test

Commands
and Data

Commands
and Data

Inputs
and Outputs

EPP
Interface

Parallel
Link

FPGA

33

Chapter 2

Figure 2.8. The adopted resource allocation of the fault injection system.

To implement such a solution, it is first generated the file storing the

configuration memory bit for whole design, then, FIM identifies those bits
related to the DUT. This step is possible thanks to a data-based developed by
decoding the Xilinx bitstream. Finally, the list of faults for the DUT confi-
guration memory bits is computed and stored. Each element of the fault list
is a faulty bitstream for the FPGA where one bit at a time is modified to
emulate the effects of a SEU.

The architecture of the Fault Injection Manager is the most crucial part in
the whole fault injection system. It is divided in two parts, a software one
implemented on a PC (SW-FIM) and an hardware one (HW-FIM) that runs
on the FPGA.

The FIM executes the fault injection process in four steps:

1. The SW-FIM configures the FPGA with a faulty bitstream taken from the
fault list.

2. The SW-FIM sends a start command to the HW-FIM placed on the
FPGA.

3. The SW-FIM polls the EPP Interface waiting for the result of the
execution, and then it performs the fault effect classification.

4. The SW-FIM resets the FPGA board and restarts from step 1.

The SW-FIM is a supervisor for the HW-FIM, which consist of three
modules: a control unit, a test-pattern generator and an output analyzer.

The control unit inside of the HW-FIM communicates with the SW-FIM
through the EPP Interface and implements the following steps:

1. It waits for the start command from the SW-FIM.
2. It puts EPP Interface on an idle state, and starts the test-pattern generator.
3. When all the stimuli have been applied, it sends to the SW-FIM the result

observed by the output analyzer.

Replica 1

Replica 2

Replica 3

Hardware
Fault Injection

Manager
EP
P
In
te
rf
ac
e

Input
stimuli

Output
response

DUT

34

Radiation Effects on SRAM-based FPGAs

The test-pattern generator provides the input stimuli to the DUT. The
output analyzer compares the output response coming from the faulty DUT
with the expected one, which is computed by a fault-free replica of the
circuit hardened via TMR.

4.3 Experimental results

The fault injection experiments are performed injecting SEUs in the configu-
ration memory of FPGAs while implementing circuits hardened according to
the Xilinx TMR architecture. The experimental setup presented in the previous
sections has been used, the accuracy of this setup was confirmed by radiation
testing experiments reported in [11]. The device used in the experiments is
the Xilinx Spartan XC2S30-PQ144, whose configuration memory is composed
of 336,768 bits organized in 1,165 frames of 288 bits each. The configura-
tion memory controls 132 I/O blocks and an array of 12 x 18 slices [23].

The performed analysis consisted in study three purely combinational
circuits: an adder computing the sum of two 8-bit wide operands, an adder
working on two 16-bit wide operands and a multiplier working on two 8-bit
wide operands.

During the experiments, a 16-bit wide up-counter has been used as test-
pattern generator. It allows generating all the possible input combinations for
both the 8-bit adder and multiplier. The same counter was also used for
testing the 16-bit wide adder, while the two inputs ports were shortened
together.

TABLE 2.3 Characteristics of the adopted circuits

Circ. Slices
[#]

Programmed
bits
[#]

CLB
bits
[#]

Routing
bits
[#]

Add8 100 9,785 2,560 7,225
Add16 103 11,963 2,656 9,307
Mul8 127 17,448 3,280 14,168

The characteristics of the adopted circuits are reported in Table 2.3, where

Slice reports the number of FPGA slices that the circuit occupies, Programmed
bits is the number of configuration memory bits that are actually used by the
mapped circuit, CLB bits is the number of configuration memory bits used to
program the configurable logic blocks the circuit exploits, and Routing bits
is the number of configuration memory bits for signal routing the circuit
exploits.

The described set-up was used for running three fault-injection campaigns,
one for each circuit.

35

Chapter 2

The fault-injection process took about 6 s for each fault. Being test-pattern
generator and the output analyzer place in the same FPGA holding the DUT,
the time needed for applying input stimuli and classify fault effects was
negligible (4.5 ms on the average). Most of the time for processing each fault
was indeed spent to download the faulty bitstream.

TABLE 2.4 Fault-injection results

Circuit Injected faults
[#]

Wrong answer
[%]

Add8 9,785 9.01
Add16 11,963 11.28
Mul8 17,448 13.18

The results collected during the fault-injection campaigns are reported in

the Table 2.4, where Injected Faults reports the number of injected SEUs,
and Wrong Answer reports the percentage of SEUs provoking SEFIs, i.e., the
obtained output response differs from the expected ones.

During the experiments, it is injected only one fault for each configura-
tion memory bitstream actually programmed for implementing the mapped
circuit. The faults were selected in such a way that common-mode faults
were not possible.

These results are particularly interesting since they experimentally show
that the TMR architecture is not able to effectively harden the considered
circuits against SEUs affecting the configuration memory of SRAM-based
FPGAs. Moreover, the percentage of Wrong Answers is related to the density
of programmed bits within the slices used for implementing the TMR
architecture.

TABLE 2.5 Comparison between programmed and fault bit

Circ. Programmed-bit density
[bit/slice]

Wrong answer
[%]

Add8 97.85 9.01
Add16 116.75 11.28
Mul8 137.39 13.18

To better outline this effect, in Table 2.5 a comparison between the

FPGA-resource usage and the percentage of Wrong Answer.
The column Programmed-bit Density reports the average number of pro-

grammed bits for the FPGAs slices actually used by the DUT. As the reader
can observe, the percentage of Wrong Answer scales with the Programmed-
bit Density.

36

Radiation Effects on SRAM-based FPGAs

This result suggested that SEU sensitivity in SRAM-based FPGAs is
related to the number of used bits in each slice. The lower it is the number of
used bits in each slice, the lower it is the probability that, when affected by
SEUs, the bits of a slice provoke a SEFI.

5. ROBUSTNESS OF THE TMR ARCHITECTURE

The circuit mapped on a reconfigurable FPGA is totally controlled by the
configuration memory, which in the case of SRAM-based FPGA, is composed
of static RAM cells. Interestingly the effects induced by SEU affecting the
configuration memory are permanent, since the SEU changes the mapped
circuit until the device is programmed again. The result of a SEU that causes
the devices to stop operating properly is generally defined as a Single Event
Functional Interrupt (SEFI). One possible solution to this problem is to use
radiation-hardened FPGAs, but since these devices are very expensive, alter-
native solutions allowing using non radiation hardened devices are currently
investigated.

Triple Module Redundancy is often exploited for hardening digital logic
against SEUs in safety-critical applications. As an instance, TMR is often
used to design fault tolerant memory elements to be employed in sequential
digital logic. Unfortunately, non-radiation-hardened FPGAs present insuffi-
cient protection of memory elements in both the mapped circuit, and the
configuration memory. As a result, particles hitting the configuration memory
can change dramatically the logic functionality of the mapped circuit, as well
as the circuits memory elements. Evaluation techniques must be used to
evaluate the impact of SEUs affecting FPGAs configuration memory, and to
avoid undesired changes of the circuit mapped on the FPGA.

The purpose of this section is to deeply investigate how circuits designed
according to the Triple Modular Architecture, and mapped on non-radiation-
hardened SRAM-based FPGAs, behave when SEUs are injected in the confi-
guration memory cells controlling the FPGA resources. For this purpose
fault injection experiments are performed.

As the results of the experimental SEU’s effects analysis illustrated, it is
suggested that it is possible to reduce the effects of SEUs within the confi-
guration memory bits of non-radiation-hardened SRAM-based FPGAs by
placing the TMR circuit on the FPGA floorplan respecting constraints rules
able to decrease the damaging effect of SEUs.

The experimental analysis assesses the effects of SEUs in the FPGA
configuration memory of a real FPGA device, we injected faults in a Xilinx
Spartan XC2S30PQ144 device, whose configuration memory is composed
of 336,768 configuration memory bits organized in 1,165 frames of 288 bits

37

Chapter 2

each. The configuration memory controls 132 I/O blocks and array of 12 x
18 slices [23].

The experimental analysis considers an extended set of circuits including
two adders (one working on two 8-bit wide operands and the other on two
16-bit wide operands) and two multipliers (one working on 4-bit wide
operands and one on two 8-bit wide operands. Furthermore an analysis on an
elliptic filter in order to evaluate the sensitiveness to SEUs in a sequential
circuit.

The characteristics of the set of circuit used in the experiments are
reported in Table 2.6, where Slices reports the number of FPGA slices that
the circuit occupies, Programmed bits the number of configuration memory
bits actually used by the mapped circuit, CLB bits is the number of
configuration memory bits used to program the configurable logic blocks of
the circuit, and finally Routing bits is the number of configuration memory
bits for signal routing the circuit exploits.

TABLE 2.6 Characteristics of the adopted circuits

Circuit Slice [#]
Programmed

bits [#]
CLB

bits [#]
Routing
bits [#]

Add8 100 9.785 2,560 7,225
Add16 103 11,963 2,656 9,307

Mul4 (a) 51 5,448 1,306 4,142
Mul4 (b) 42 5,443 1,107 4,336
Mul4 (c) 53 7,318 1,329 5,989

Mul8 127 17,448 3,280 14,168
Filter 132 20,501 3,401 17,091

We developed three different strategies of placement for the resources

within the SRAM-based FPGA floorplan before running the fault injection
campaigns. The strategies are the following:

1. No constraints: the place and route tool is let free to map the circuit in the
whole FPGA area.

2. Minimal Area Constraints: the place and route tool is forced to produce
the smallest possible design.

3. Safe Area Constraints: the place and route tool is forced to place each
module of the TMR in a dedicated partition of the FPGA, so that two
different module cannot share the same FPGA portion.

Due to the limited amount of resources of the adopted FPGA device, all
circuits excepts the multiplier with 4-bit wide operands have been placed
according to the strategy 1. Seven fault injection experiments are performed

38

Radiation Effects on SRAM-based FPGAs

using the above-described tool and strategies of placement. The results of the
fault injection experiments are reported in the Table 2.7, where the Injected
Faults column reports the number of SEUs we injected, and the Wrong Answer
one reports the percentage of SEUs provoking SEFIs, i.e., the obtained output
response differs from the expected ones. During the experiments, only one
fault for each configuration memory has been injected, assuming that the
fault injection time is equal to 0, i.e., SEUs affect the device right after it has
been programmed. In the experiments a workload composed of all the possible
input configuration was used. These results are particularly interesting since
they experimentally show that the TMR architecture is not able to effectively
harden the considered circuits against SEUs affecting the configuration
memory. Indeed, the percentage of Wrong Answers can reach 13% for the
largest circuits.

TABLE 2.7 Fault-injection results

Circuit
Injected faults

[#]
Wrong answer

[#]
Adder 8 9,785 982

Adder 16 11,963 1,349
Multiplier 8 17,448 2,300

Filter 20,501 2,708
Multiplier 4 (a) 5,448 33
Multiplier 4 (b) 5,443 27
Multiplier 4 (c) 7,318 17

5.1 Analysis of the fault effects

To better understand the causes of failure of the TMR architecture, each
faulty configuration memory is analyzed using the developed classification
tool [14, 24]. The result of the classification is reported in Table 2.8, where
are reported the number of effects observed during the fault injection experi-
ments, classified according to the affected resources (logic and routing) and
to the produced effects (Open, Bridge, etc.). The effects are divided between
Routing faults, provoked by any SEU that hits the bits controlling the
programmable switches attached to the wire segments used to connect the
FPGAs logic resource, and Logic faults, provoked by any SEU that hits the
bit controlling the logic resources. For each kind of fault we can observe the
following modifications induced by SEUs to the FPGA resource configura-
tion. The effects classification report the following situation:

39

Chapter 2

- Routing: the routing of a logic signal from the resource A to the resource
B (track A/B) may be affected as follows:

o Open: the track A/B is broken, and thus resource B is no longer fed
with the expected logic value coming from resource A, which is
instead left dangling.

o Bridge: the track A/B is replaced with a new track C/B, and thus
resource B is no longer fed with the expected logic value coming
from resource A.

o Antenna: a new track A/B is created linking a unused resource that
could be connected far away in the FPGA routing topology, this may
influence the behavior of the circuit since the resource associated to
the output pad are driven to an unknown logic value.

o Conflict: a new track C/B is created that overlaps with A/B. Resource
B is driven by an unknown logic value which depends on the values
coming from resources A and C.

o Others: a modification of the track cannot be classified in any of the
above classes.

- Logic: a logic resource may be affected as follows:

o LUT: a bit controlling the LUT content is modified, this implies a
modification of the logic function implemented.

o MUX: a new MUX selection bit causes a new path of the signal.
o Initialization: an initialization bit is modified provoking a modifica-

tion of the behavior of the internal components of the CLB.

 Add8 Add16 Mul8 Mul4 (a)
Mul4
(b)

Mul4
(c)

Filter

 [#] [#] [#] [#] [#] [#] [#]
 LUT 0 0 0 0 0 0 0

Logic MUX 206 52 112 2 1 0 293
 Initialization 50 22 66 1 1 0 331
 Open 565 701 1,159 18 14 0 1,429
 Bridge 45 36 133 3 4 7 318

Routing Antenna 3 10 24 2 3 2 62

 Conflict 208 254 307 15 14 9 138
 None 0 0 0 0 0 0 0
 Others 236 383 501 7 4 4 450

 Total 1,313 1,458 2,302 48 41 22 3,021

TABLE 2.8 Classification of the effects induced by SEUs

40

Radiation Effects on SRAM-based FPGAs

In order to explain the effects we observed when analyzing the routing
faults let us consider the fault-free configuration shown in Figure 2.9, where
AI, BI, AJ, BJ, indicate four components, belonging to two different modules I
and J, where I differs from J, of the TMR. The modifications that could be
generated due to a SEU in the configuration memory are of two different
types:

o Conflict: between track AI / BI and AJ / BJ of the TMR architecture as
shown in Figure 2.10a.

o Open and Bridge: between track AI / BI and AJ / BJ of the TMR as shown
in Figure 2.10b.

Analyzing the Logic faults, the effects that can provoke errors in the
TMR architecture are mainly due to MUX shared between two different
redundant modules I, and J. An error in such MUX may provoke multiple
errors in both I, and J.

Figure 2.9. Fault-free configuration of two interconnections related to the redundant module
I and J.

The Table 2.7 shows that the TMR architecture may fail to work properly

because one SEU often produces one or more effects, at the same time,
modifying the expected behavior of two or more different replicas of the
TMR hardened circuit.

In terms of classification analysis, the main difference between combina-
tional and sequential circuits is the increased number of effects within the
logic resources, in particular in the MUX and initialization components.
Moreover, the obtained result shows that most of the faults escaping the
TMR architecture affect routing resources, and in particular, they are classi-
fied as Open.

The analysis of the gathered results, obtained from the study on the three
different versions of the Multiplier, suggests a new approach to reduce the
effects of multiple errors provoked by a single SEU. The obtained results
show a progressive reduction of the number of faults: 33 for the experiment
(a), 27 for (b) and finally 17 for the case (c). These results show a significant

AI BI

AJ BJ

I

J

41

Chapter 2

reduction in the number of faults in relation to a smaller placing and routing
that isolate each different module of the TMR architecture. In particular the
version (c) of the multiplier is not affected by open errors.

Figure 2.10. (a) Conflict between track AI /BI and AJ /BJ. (b) Open and bridge between track
AI /BI and AJ /BJ.

These results support the conclusion that the key for a better implementa-

tion of the TMR architecture resides in the clever selection of the placement
and routing of TMR components.

6. CONSTRAINTS FOR ACHIEVING FAULT
TOLERANCE

Considering the experimental analysis performed and presented in this
chapter, the main conclusion is that an SEU affecting the FPGA’s configura-
tion memory may provoke multiple errors by changing the configuration of
routing resources. As a result, hardening techniques developed according to
the single fault assumption are not adequate to cope with the multiple effects
of SEUs in the configuration memory controlling routing resources. In the
considered analysis, many situations exist where one SEU provokes multiple
errors in such a way that the TMR scheme is no longer able to mask the
SEUs effects [14].

As an example of this situation, referring to the Figure 2.2a, assuming
that As /AD and Bs/BD are two routing edges belonging to two different
replicas of the circuit hardened according to TMR. In this case, each SEU
resulting in the erroneous configurations reported in Figure 2.2b–d violates
the single-fault assumption.

This problem is particularly critical since 90% of the bits of FPGAs
configuration memory are devoted to programming the routing resources.
While it is possible that one upset may modify more than one routing edges,
this becomes only when two routing edges from two different TMR replicas
(i.e., domains) are affected.

AI BI

AJ BJ

I

J

AI BI

AJ BJ

I

J

(a) (b)

42

Radiation Effects on SRAM-based FPGAs

In order to estimate the magnitude of the problem, it is considered one
switch box and, for a given pair of routing edges (implemented by two PIPs
of the same switch box) that belong to two different TMR replicas, then all
the faulty configuration that are possible for a given routing architecture
have been identified. In the presented study, the Xilinx Virtex family has
been considered. For each faulty configuration, the corresponding image of
the configuration memory has been computed. The faulty bitstream is then
compared with the reference one and it is observed that they differ by one bit
only. This means that one SEU may provoke multiple effects.

The aforementioned procedure has been repeated for all the faulty cases
(i.e. short, open and open/short) and the computation reports that 72% of all
the configuration memory bits controlling the considered switch box could
produce critical situations if used for routing different TMR replicas. All the
switch boxes with the FPGA are equal and, therefore, the above considera-
tions are general. An example of such a kind of analysis related to the Short
fault effect is illustrated in Figure 2.10a.

As a result, unless suitable countermeasures are developed, the TMR
approach is no longer suitable for achieving fault tolerance.

Following the analysis performed on FPGAs architecture and on the
organization of the FPGAs configuration memory, the constraints are used to
enforce place and route algorithm in order to develop circuit implemented
with TMR that are resilient to multiple errors:

1. All the circuit modules and connections must be replicated three times.
2. The outputs of the three circuit replicas must be voted according to the

TMR principle.
3. The elements of the resulting TMR architecture (logic functions and

connections among them) must be placed and routed in such a way that,
given the corresponding routing graph, each new edge that is added (or
deleted) to (from) the graph cannot provoke any fault belonging to the
following categories:

(a) Short between different connections belonging to different circuit
replicas

(b) Open affecting different connections belonging to different circuit
replicas

REFERENCES

[1] T. P. Ma, P. V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits,
Wiley, New York, 1989, ISBN: 0-471-84893-X.

[2] J. L. Barth, C. S. Dyer, E. G. Stassinopoulos, Space, Atmospheric, and Terrestrial
Radiation Environments, IEEE Transaction on Nuclear Science, Vol. 50, No. 3, June
2003, pp. 466–482.

43

Chapter 2

[3] M. Ceschia, A. Paccagnella, S. -C. Lee, C. Wan, M. Bellato, M. Menichelli, A. Papi, A.
Kaminski, J. Wyss, Ion Beam Testing of ALTERA APEX FPGAs, NSREC 2002 Radiation
Effects Data Workshop Record, Phoenix, AZ, July 2002.

[4] R. Katz, K. LaBel, J. J. Wang, B. Cronquist, R. Koga, S. Penzin, G. Swift, Radiation
Effects on Current Field Programmable Technologies, IEEE Transaction on Nuclear
Science, Vol. 44, No. 6, Dec. 1997, pp. 1945–1956.

[5] Jih-Jong Wang, Brian E. Cronquist, Benny Sin, Jennifer J. Moriarta, Richard B. Katz,
Antifuse FPGA for space applications, RADECS 1997.

[6] R. Koga, S. Penzin, K. Crawford, W. Crain, Single Event Functional Interrupt (SEFI)
Sensitivity in Microcircuits, the Aerospace Corporation, 1998.

[7] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, P. Graham, The Reliability of FPGA
Circuit Designs in the Presence of Radiation Induced Configuration Upsets, 11th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, 2003, pp. 133–
142.

[8] E. Fuller, M. Caffrey, A. Salazar, C. Carmichael, J. Fabula, Radiation Testing Update,
SEU Mitigation and Availability Analysis of the Virtex FPGA for Space Re-configurable
Computing, presented at the IEEE Nuclear and Space Radiation Effects Conference, July
2000.

[9] M. Bellato, M. Ceschia, M. Menichelli, A. Papi, J. Wyss, A. Paccagnella, Ion Beam
Testing of SRAM-Based FPGA’s, IEEE Radiation Effects Data Workshop, July 2002.

[10] M. Alderighi, F. Casini, S. D’Angelo, F. Faure, M. Mancini, S. Pastore, G. R. Sechi,
R. Velazco, Radiation Test Methodology of SRAM-Based FPGAs by Using THESIC+,
IEEE 9th On-Line Testing Symposium, 2003, pp. 162.

[11] M. Bellato, P. Bernardi, D. Bortolato, A. Candelori, M. Cerchia, A. Paccagnella,
M. Rebaudengo, M. Sonza Reorda, M. Violante, P. Zambolin, Evaluating the Effects of
SEUs Affecting the Configuration Memory of an SRAM-Based FPGA, IEEE Design
Automation and Test in Europe, 2004, pp. 188–193.

[12] B. L. Bhuva, J. J. Paulos, R. S. Gyurcsik, S. E. Kerns, Switch-Level Simulation of Total
Dose Effects on CMOS VLSI Circuits, IEEE Transaction on Computer-Aided Design,

[13] M. P. Baze, S. Buchner, W. G. Bartholet, T. A. Dao, An SEU Analysis Approach for
Error Propagation in Digital VLSI CMOS ASICs, IEEE Transaction Nuclear Science,

[14] M. Ceschia, M. Violante, M. Sonza Reorda, A. Paccagnella, P. Bernardi, M.
Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, A. Candelori, Identification and
Classification of Single-Event Upsets in the Configuration Memory of SRAM-Based
FPGAs, IEEE Transaction on Nuclear Science, Vol. 50, No. 6, Dec. 2003, pp. 2088–
2094.

[15] R. Velazco, S. Rezgui, R. Ecoffet, Predicting Error Rate for Microprocessor-Based
Digital Architectures Through C.E.U. (Code Emulating Upsets) Injection, IEEE
Transaction Nuclear Science, Vol. 47, Dec. 2000, pp. 2405–2411.

[16] J. Rose, A. El Gamal, A. Sangiovanni-Vincetelli, Architecture of Field-Programmable
Gate Arrays, IEEE Proceedings, Vol. 81, No. 7, July 1993, pp. 1013–1029.

[17] F. Lima, C. Carmichael, J. Fabula, R. Padovani, R. Reis, A Fault Injection Analysis of
Virtex FPGA TMR Design Methodology, IEEE European Conference on Radiation and
Its Effect on Component and Systems, 2001, pp. 275–282.

[18] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, A. Marmo, S. Pastore, G. R. Sechi, A
Tool for Injecting SEU-Like Faults into the Configuration Control Mechanism of Xilinx
Virtex FPGAs, 18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems,
2003, pp. 71–78.

44

Vol. 42, No. 6, Dec. 1995, pp. 1863–1869.

Vol. 8, No. 9, Sept. 1989, pp. 933–938.

Radiation Effects on SRAM-based FPGAs

[19] M. Alderighi, S. D’Angelo, M. Mancini, G. R. Sechi, A Fault Injecting Tool for SRAM-

Based FPGA, 9th IEEE On-Line Testing Symposium, 2003, pp. 129–133.
[20] C. Carmichael, M. Caffrey, A. Salazar, Correcting Single-Event Upset Through Virtex

Partial Reconfiguration, Xilinx Application Notes, XAPP216, 2000.
[21] C. Carmichael, Triple Module Redundancy Design Techniques for Virtex FPGAs, Xilinx

Application Notes, XAPP197, 2001.
[22] F. Lima, L. Carro, R. Reis, Designing Fault Tolerant System into SRAM-Based FPGAs,

IEEE/ACM Design Automation Conference, June 2003, pp. 650–655.
[23] Xilinx Inc., Spartan-II 2.5 V FPGA Family: Introduction and Ordering Information,

Xilinx Product Specification Datasheets, 2003.
[24] M. Violante, L. Sterpone, M. Ceschia, D. Bortolato, P. Bernardi, M. S. Reorda, A.

Paccagnella, Simulation-Based Analysis of SEU Effects in SRAM-Based FPGAs, IEEE
Transactions on Nuclear Science, Vol. 51, No. 6, Dec. 2004, pp. 3354–3359.

45

Chapter 3

ANALYTICAL ALGORITHMS FOR FAULTY
EFFECTS ANALYSIS
Single and multiple upsets errors

Reconfigurable FPGAs are very appealing as a replacement of ASICs for
low-volume designs. FPGAs offer performance levels close to that of ASICs,
plenty of resources to implement even very complex systems, as well as the
possibility of performing in-the-field-reprogrammability.

In order to adopt successfully and safety these advantages, developers of
safety-or mission-critical applications have to guarantee that the obtained
FPGA-based systems meet the needed dependability levels. As deeply
described in Chapter 2, SRAM-based FPGAs are particularly sensitive to
upsets induced by energetic particles [1, 2] and thus they cannot be straight-
forwardly adopted in safety-or mission-critical applications, like space-borne
ones.

As far as upsets affecting the memory elements the FPGA-based system
embeds, two problem must be addressed: the protection of the users memory
elements and that of the configuration memory.

Users memory elements (registers, memory arrays, etc.) must be hardened
against these effect (either single and multiple) that may alter the informa-
tion the system stores thus provoking temporary disruption of the service the
system delivers. The disruption can be considered temporary since, assuming
that the users memory is both read and written during systems activity, the
disruption lasts as soon as a new (correct) value is written in the memory
element the event affected.

Similarly, FPGAs configuration memory must be hardened against the
occurrence of such effects, too. Being composed of SRAM cells, the con-
figuration memory content may be altered by energetic particles hitting the
FPGA, and therefore the vital information the memory holds, which defines
which function the FPGA implements, may be altered. By changing the
implemented function, upsets modifying the FPGAs configuration memory

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,
© Springer Science + Business Media B.V. 2008

47

Chapter 3

may alter dramatically the service system delivers. This type of disruption
can be seen as permanent: the configuration memory is normally written
once, at system power-up, and therefore when altered, the memory content
cannot be restored until the next power-up (unless hardening strategies are
used that periodically rewrite the configuration memory).

As described in the previous chapter, several approaches were proposed
to cope with the abovementioned issues, making the deployment of SRAM-
based FPGAs in mission or safety-critical applications feasible. However, no
matter which type of hardening strategy is adopted, the designers have to
validate the resulting system to prove that the needed dependability level is
reached. For this purpose different approaches are available. These approaches
may be grouped in the following categories:

 Accelerated radiation ground testing, where prototypes of the analyzed
systems are exposed to suitable radiation beams.

 Fault injection, where upsets are inoculated either in prototypes or in
simulation models of the analyzed system.

 Analytical computation, where models of the analyzed systems are
studied by resorting to probabilistic techniques.

In this chapter, a new analytical algorithm is described that provides
accurate estimation of the effects of Single Event Upsets (SEUs) and
Multiple Cell Upsets (MCUs) inside FPGA-based designs. The main novelty
the algorithm introduces is the possibility it offers of analyzing any SEU
location within a design (by considering both user memory and configura-
tion memory), and of identifying whether the SEU provokes any observable
effect (i.e., the modifications induced by the SEU propagate from the SEU
location to the systems outputs). The approach identifies all the memory
elements (either belonging to the user memory, or to the configuration
memory) that have to be hardened in order to make a design insensitive to
SEUs effects. It thus improves the capabilities of already available analytical
approaches that, to the best of our knowledge, provide only statistical
estimations (although valuable) of SEUs effects.

Several approaches are available for analyzing the effects of SEUs in
FPGA devices.

Accelerated radiation ground testing is an effective solution for estimating
the effects on both the memory elements used by the design the FPGA
implements as well as the FPGAs configuration memory [2, 3]. This kind of
technique requires a prototype of the system under analysis, which is
exposed to a flux of radiations, originated either by radioactive sources or by
particle accelerators, which interacts with both the designs memory elements
and the configuration memory. Radiation testing strategies aiming at validating
the robustness of a design (i.e., computing its dynamic cross section) are
usually based on the continuous monitoring of the outputs of the circuit

48

 Analytical Algorithms for Faulty Effects Analysis

implemented on the FPGA under test, which is continuously stimulated by a
given set of input stimuli. As drawbacks, radiations have the capability of
permanently damaging the device under test and the costs needed by the
experimental setup and by the beam time are not negligible.

As an alternative to radiation testing, several fault-injection approaches
were recently proposed. Fault injection is an attractive technique for the
evaluation of design characteristics such as reliability, safety and fault
coverage [4]. The process involves inserting faults into particular targets in a
system and monitoring the results to observe the produced effects. All these
approaches emulate the effects of SEUs in the FPGAs memory as bit-flips in
the bitstream that is downloaded in the FPGA in the programming phase.
Some of them use run-time reconfiguration [5], while others modify the
bitstream before downloading it in the device configuration memory or
during download operations [6, 7]. Although the fault injection approaches
permit to evaluate the effects of SEUs in all the memory bits, the time
needed by the fault injection process is still huge, even in the case the
process is optimized by the use of partial reconfiguration.

To overcome the time-consuming processes needed by the fault-injection
approaches and to avoid the high cost of radiation testing, analytical approaches
based on synthesis tools and software programs, only, are proposed in [8, 9].
In [8] a static estimation of the mapped designs susceptibility to SEUs is
proposed assuming that all the bits of a design are susceptible at all times.
Differently, in [9] an approach is proposed that identifies the paths sensitive
to SEUs by calculating the probability error rate of all circuit nodes and by
combining it with the error propagation probability of each net within the
design. Then, the obtained information is coupled with the sensitivity of the
FPGAs configuration memory bits. These approaches are either very pessi-
mistic or able to provide only probabilistic estimations of SEU effects. In
our approach, we analyze the topology of the design implemented on the
SRAM-based FPGA and we couple this analysis with a set of reliability
constraints. Thanks to this approach we are able to achieve the same
accuracy of more time-consuming approaches like fault injection, while the
execution time our approach demands is orders of magnitude lower.

Two different versions have been developed, the first one addressing the
Single Event Upsets (SEUs) while the second ones addressing the Multiple
Cell Upsets (MCUs).

1. OVERVIEW ON STATIC ANALYSIS ALGORITHM

The main purpose of the proposed algorithm is to analyze the effects of
upsets in both the user memory elements and the FPGA’s configuration

49

Chapter 3

memory early in the design phase, as soon as the placed and routed model of
the designed circuit is available.

Figure 3.1. The architecture of the proposed approach. The figure reports the Static Analyzer
and the Dynamic Analyzer tool chain.

When the SEUs are considered, the developed flow is illustrated in

Figure 3.1, which depicts the Static Analyzer (STAR) algorithm. It is the tool
that checks whether the placed and routed circuit is sensitive to upsets
affecting either the memory elements the designers embed in the circuit, as
well as the configuration memory of the SRAM-based FPGA implementing
the circuit. It is composed of three modules:

 Redundancy Cluster-Extractor: it is a module that reads the Native
Circuit Description and extracts the place and route information related to
each cell of the FPGA architecture. That information is processed by
means of a clustering process that groups the data depending on the
FPGA topology architecture and on the redundancy structure of the
adopted hardening technique.

 Dependability-Rules: it is a database of constraints related to the topology
architecture of the FPGA that must be fulfilled by the placed and routed
circuit in order to be resilient to the effects provoked by SEUs.

 Rules-Checker: it is the algorithm that reads each cluster and analyze
every bit of the user memory and the configuration memory the FPGA
has. It returns a list of SEUs (Critical SEU Locations) that introduces
critical modification that may overcome the TMR hardening technique
adopted.

Static Analyzer (STAR-LX)

Dynamic Evaluator (EVA-DYN)

Dependability-Rules

Redundancy
Cluster-Extractor

Rules Checker Critical SEU
Locations

Native Circuit
Description

Create FPGA
Configuration bitstream Bitstream

Input Patterns Loader

Injector Engine

Expected
Outputs

Faulty
Outputs

Classificator
SEU Violations

Static Analyzer (STAR-LX)

Dynamic Evaluator (EVA-DYN)

Dependability-Rules

Redundancy
Cluster-Extractor

Rules Checker Critical SEU
Locations

Native Circuit
Description

Create FPGA
Configuration bitstream Bitstream

Input Patterns Loader

Injector Engine

Expected
Outputs

Faulty
Outputs

Classificator
SEU Violations

50

 Analytical Algorithms for Faulty Effects Analysis

Furthermore the flow is based on two description files: the circuit
description and the layout description. The circuit description is a file
containing the structural description of the circuit, which consists of logic
functions (either combinational or sequential) and connections between
them. Both the logic functions and the connections between them are
described in terms of FPGAs resources. The layout description is a file
containing the description of where each resource in the Circuit Description
file is placed and routed on the FPGA area.

The classification is then performed by the Dynamic Evaluator (EVA-
DYN). It is the platform that performs the dynamic evaluation of the SEU
effects on the analyzed circuit. It is based on the fault injection approach.
This platform applies the desired input patterns to the circuit description. An
injector engine is devoted to create a faulty configuration memory bitstream
according to the SEU location classified by the STAR tool. Finally a report
of violation is generated that contain a list of all the violations of the
Dependability Rules that the static analyzer identify. Each entry of the file
describes the memory element, and the FPGAs resource responsible for the
violations.

Given the circuit and layout descriptions, the static analyzer verifies
whether all the constraints described in the dependability rules are fulfilled.
In case any violation is found an entry is stored in the report of violations
file.

2. ANALYTICAL DEPENDABLE RULES

The dependability rules, as described in the first chapter, must be enforced
by a circuit implemented on SRAM-based FPGA in order to be resilient to
the effects of SEUs. In particular, the rules guarantee that any SEU affecting
either the memory elements the circuit uses and the FPGAs configuration
memory is not able to propagate to the circuit’s outputs. The dependability
rules implemented are the results of an in-depth investigation of the effects
of upsets in the memory elements of SRAM-based FPGA’s designs. It has
been observed that one and only one configuration memory bit B modifies
two or more routing segments provoking multiple effects. A detailed analysis
of these effects can be found in [10]. However, when TMR hardening
technique is used, further considerations should be done. A TMR circuit may
include voter partition logics. A voter partition logic may be defined as
the logic resources (both sequential and combinational) that is comprises
between two voter’s structures. Considering the TMR scenario described in
Figure 3.2, a voter partition logic consists in the logic domain Di with I (1,
2, 3) comprises between voter structure Vi and Vi+1. The modification that

51

Chapter 3

may be introduced are deeply investigated in [10] and can be grouped in
three distinct cases: Short, Open and Open/Short.

Figure 3.2. The Triple Modular Redundancy structure voter scenario.

These modifications may introduce critical behavior in the TMR structure

illustrated in Figure 3.3. For example, considering the TMR scenario shown
in Figure 3.3, an SEU may induce an open effect on two signals (i.e., the
output signals of the FFs A1 and A2) provoking the multiple error in all the
outputs of the TMR structure.

Figure 3.3. Open effect induced by an SEU example on a TMR scenario. (a) original
condition, (b) open effect.

3. THE STAR ALGORITHM FOR SEU ANALYSIS

The STAR tool for the SEU analysis is based on a clustering algorithm
which works on the FPGA architectural graph model described in the pre-
vious chapters. The flow of the cluster algorithm implemented is illustrated
in Figure 3.4. When analyzing a circuit, the STAR algorithm performs three
distinct phases.

The first phase reads the native circuit description and creates two sets:
the first contains the routing resources related to each voter partition logic
(Pi) while the second stores the logic resources related to each TMR domain
(Dj).

D1 V3

V3

V3

V2

V2

V2

D1V1

V1

V1

Voter Partition 1 Voter Partition 2

D2 D2

D3 D3

D1 V3

V3

V3

V2

V2

V2

D1V1

V1

V1

Voter Partition 1 Voter Partition 2

D2 D2

D3 D3

(a) (b)

V2

V2

V2

FFA1V1

V1

V1

FFA2

FFA3

V2

V2

V2

FFA1V1

V1

V1

FFA2

FFA3

(a) (b)

V2

V2

V2

FFA1V1

V1

V1

FFA2

FFA3

V2

V2

V2

FFA1V1

V1

V1

FFA2

FFA3

52

 Analytical Algorithms for Faulty Effects Analysis

STAR()
 {
 /*Reading_native_resources*/
 set_voter_partitions (Pi)
 set_tmr_domains (Dj)
 /*Redundancy-Clusters*/
 create_cluster_sets (CS(x,y), HS(x,y))
 for each voter_partition VP Pi
 for each tmr domains TD Dj
 {
 CS(x,y) = cluster_databits(VP, TD)
 HS(x,y) = cluster_hierarchy_tree(VP, TD)
 }
 /*Rules-Checker*/
 for each cluster C CS(x,y)
 for each bit location B C
 {
 UL = create_upset_list (B, HS(x,y))
 Check_dependability (UL, HS(x,y))
 }

Figure 3.4. The flow of the Static Analyzer algorithm (STAR) developed.

The second phase creates two cluster sets that groups information of a

selected area of the FPGA matrix, where parameters x and y correspond to
the row and column of the FPGA array: CS(x, y) which contains an array of
the memory bit related to both the user memory and to the configuration
memory controlling the logic and the routing resources, and HS(x, y) which
contains the routing graph correspondent to the selected FPGA location. The
routing graph contained in each cluster HS(x, y) is colored according to the
information related to the voter partition logic and to the TMR domain. Two
kind of marks are used, a first mark is assigned considering that the circuit is
designed according to the TMR principle, three different colors are used for
vertices belonging to each TMR domain. The second mark is an index that
identifies the correspondent voter partition logic.

The third phase checks the effects that may be generated by SEUs that
affect the memory bit contained in each cluster CS(x,y). This phase consists
of the following steps:

1. A bit within the cluster set CS(x,y) is considered as SEU sensitive.
2. It is generated a list of SEU inducing modification into the circuit. This

list includes the logic or routing vertices involved in the modification due
to the SEU sensitive bit. These vertices are marked as faulty.

3. The dependability evaluation is performed by the function Check_depen-
dability (). The routing tree contained within the cluster set HS(x,y) is
updated generating a SEU propagation tree that contains all the paths
stemming from the vertices marked as faulty, to the first voter’s structure.
If the leaves of the propagation tree include more than one graph color

53

Chapter 3

and only one voter partition logic index, the correspondent bit is added to
the Critical SEU Locations. Indeed, when this condition is met, the SEU
effect is propagated to two or more circuit domains within the same voter
partition logic, and therefore the TMR principle is no longer enforced.

3.1 The dynamic evaluation platform

The dynamic evaluation platform consists of a fault-injection environment
which allows to evaluate the dynamic effects on the circuit under test of the
critical SEUs reported by the static analyzer tool.

The fault injection system is composed of the following modules: an host
computer, an FPGA board equipped with a Xilinx Virtex II-Pro device, and
a serial communication link supported by a RS-232 cable that connects the
FPGA board to the host computer. The host computer is preliminary used for
configuring the Virtex-II Pro device and then for the generation of the input
patterns.

The architecture of the proposed fault injection system is completely
implemented on the FPGA device, which its layout is depicted in Figure 3.5.

Figure 3.5. Architecture of the fault injection environment.

Four components are mapped on the Virtex-II Pro FPGA, all of them are
interconnected by an On-chip Peripheral Bus (OPB):

 Timing Unit: it drives the UUT clock and reset.
 Unit Under Test (UUT): it is the circuit under test and it may consist of

an IP core and an own memory.
 ICAP: it is the Internal Configuration Access Port provided by last

generations of Xilinx FPGAs. It allows to access to the FPGA

Power PC

OPB Bus

Memory

ICAP
UUT

Timing
Unit

Clk

IP Memory

IP Core

PLB Bus

Rst

54

 Analytical Algorithms for Faulty Effects Analysis

configuration memory through an internal port in order to perform partial
reconfiguration without the support of an external hardware.

 PowerPC microprocessor: it is hardwired in the FPGA device and it
controls the fault-injection process.

The fault injection process consists of several steps. At first some
preliminary operations are executed:

1. The input patterns and the Critical SEU locations are load within the
internal memory connected through the PLB bus to the PowerPC.

2. The PowerPC starts the execution of the UUT applying the input patterns.
The obtained outputs are stored within the Expected output memory.

Once the preliminary operations are completed, the PowerPC selects the
configuration memory bit from the Critical SEU locations and through the
ICAP port performs partial reconfiguration of the frame where the SEU has
to be injected. It starts the execution of the UUT application. During the
execution, it stores within the faulty output the data generated by the UUT.
Finally, at the end of the execution, the FPGA control board compares the
expected and the faulty memories in order to identify if a mismatch is found.
Once a mismatch is identified the bit-flip information are transferred to the
SEU violations file. This process is repeated for all the Critical SEUs
identified by the STAR algorithm.

3.2 Experimental results of SEU static analysis

In this section we describe the experiments has been performed to evaluate
the efficiency of the proposed SEU estimation methodology.

A prototype of the STAR algorithm has been developed, that accounts for
64K lines of ANSI C code and of the dynamic evaluation platform using a
Xilinx Virtex-II Pro XC2VP30 as FPGA under test. The developed experi-
ments aim at analyzing the capability of the proposed methodology of
detecting SEUs in the FPGA logic and routing structures in the configuration
memory of FPGAs that implement circuits hardened according to the TMR
approach. Three different circuits hardened through Xilinx TMR (X-TMR)
approach [11] have been developed: a FIR filter, a microprocessor core
implementing the Intel 8051, and the PicoBlaze microcontroller. During our
experiment the FPGA has been configured at the working frequency of 100
MHz. Furthermore the internal ROM of the 8051 and PicoBlaze has been
initialized with an Elliptic filter program working on 64 samples.

The results achieved are illustrate in Table 3.1 where are reported the
number of SEUs identified as critical for the exhaustive fault injection
analysis performed injecting in all the possible memory locations related to
the circuit under test.

55

Chapter 3

TABLE 3.1 Experimental results reporting the computational time needed and the critical
SEUs identified

Circuit Exhaustive fault injection
 Time [min] Critical SEUs [#]
FIR X-TMR 30.4 82
8051 X-TMR 180.2 103
Pico X-TMR 91.2 95

Circuit STAR-LX
 Time [min] SEUs [#]
FIR X-TMR 5.1 105
8051 X-TMR 7.5 120
Pico X-TMR 5.2 115

Circuit EVA-DYN
 Time [min] SEUs [#]
FIR X-TMR 9.2 82
8051 X-TMR 10 103
Pico X-TMR 9.3 95

It is reported also the list of SEUs generated by the STAR algorithm that

may modify the system () and the critical SEUs finally identified by the
dynamic evaluation platform ().

The number of critical SEUs detected by the proposed algorithm is
exactly that obtained by extensive fault injection. Besides, the proposed
methodology is one order of magnitude faster on the average than exhaustive
fault injection approach. Furthermore, the computational time is not pro-
portional with the circuit complexity. The results have been validated
comparing the location of critical SEUs obtained from the STAR algorithm
and the others coming from fault injection experiments.

4. THE STAR ALGORITHM FOR MCU ANALYSIS

One critical issue to enable using not rad-hard SRAM-based FPGAs in the
space environment is the capability of mitigating the effects induced by
upsets within the device’s configuration memory. In addition to Single Event
Upsets (SEUs), Multiple Cell Upsets (MCUs) provoked by ionizing radiations
have been observed in SRAM-based memory devices [12, 13]. MCUs within
not rad-hard SRAM-based FPGAs have been observed during radiation
experiments with proton and heavy ions [14]. In particular, a study that
quantifies the occurrence of protons- and heavy-ions effects on four different
Xilinx FPGA’s families indicates that the newer families (such as Virtex-II
and Virtex-IV) are increasingly sensitive to MCUs. As a result, the MCU
cross-sections of the newer Xilinx Virtex-II increase by two orders of
magnitude if compared with the previously manufactured family Xilinx
Virtex-I.

56

 Analytical Algorithms for Faulty Effects Analysis

Few data are recently observed on the effectiveness of TMR hardening
technique when coping with MCUs. The research expects that as MCUs
produce multiple upsets in the configuration memory, they are more likely
than SCUs to induce domain-crossing events that may affect two or more
TMR modules, thus limiting the effectiveness of TMR [15].

In this chapter is presented a new analytical-oriented methodology for the
estimation of MCU-induced effects inside the FPGA’s configuration
memory while TMR design techniques are adopted. The developed
analytical method allows to analyze 2-bits MCUs sensitiveness of TMR
circuits implemented on SRAM-based FPGAs.

Figure 3.6. The flow of the STAR algorithm for the analysis of MCUs.

The flow of the proposed methodology is depicted in Figure 3.6. The

STAR algorithm for the analysis of MCU is composed of the following
elements:

 Native Circuit Description: It is a file containing the structural and layout
descriptions of the circuit, which consists of logic functions (either
combinational or sequential) and connections between them. Both the
logic functions and the connections between them are described in terms
of resources placed and routed on the FPGA.

 Static Analyzer MCU: It is the tool that checks the placed and routed
circuit analyzing the sensitive MCU locations affecting the memory
elements the design embeds and the configuration memory. It is
composed by five modules: the Redundancy Cluster-Extractor, the
Configuration memory rules, the Routing and logic topology, the Depen-
dability Rules and the Rules Checker.

The Redundancy Cluster-Extractor is a module that reads the Native
Circuit Description and extracts the place and route information related to

Static Analyzer (STAR-MCU)

Dependability-Rules

Redundancy
Cluster-Extractor

Rules Checker

Native Circuit
Description

MCU Violations

Routing and Logic
topology

Configuration memory
rules

57

Chapter 3

each cell of the FPGA architecture. This information are processed by a
clustering algorithm that groups the data depending on the FPGA topology
architecture and on the redundancy structure of the adopted hardening
technique. The configuration memory rules is a data-base related on the
physical layout of the FPGA’s configuration memory cells. It contains the
configuration memory coding of all the resources of a CLB, while the
functionality of the CLB’s logic and the interconnections architecture effec-
tively programmed are identified by the configuration memory rules. The
information about the routing and the logic internal structure of the SRAM-
based FPGA device are stored within the Routing and Logic topology.

The Dependability-Rules is a data-base of constraints related to the
topology architecture of the not rad-hard FPGA that must be fulfilled by the
placed and routed circuit in order to be resilient to the effects provoked by
MCUs. The Dependability-Rules are used by the Rules-Checker algorithm
that reads each cluster and analyze all the bits of the FPGA’s configuration
memory. It returns a list of MCUs (MCU Violations) that provoke critical
modifications that may overcome the adopted hardening technique.

4.1 Analysis of errors produced by MCUs

As discussed in the Chapter 2, the dependability rules must be adopted by
circuits implemented on not rad-hard SRAM-based FPGA in order to be
resilient to the effects of SCUs. In particular, the rules guarantee that any
SCU affecting either the memory elements the circuit uses or the FPGAs
configuration memory is not able to propagate to the circuit’s outputs. When
considering MCUs induced by a single particle affecting two cells of the
FPGA’s configuration memory further considerations are needed, which
include how the redundancy structure is laid out on the FPGA.

The MCU’s effects have been analyzed considering clusters of adjacent
configuration memory bits as illustrated in Figure 3.7a. In Figure 3.7b, is
illustrated the resources possibly affected by MCUs. They belong to the
following sets: CLBs, Block RAMs (BRAMs), BRAMs interconnects, and
IOBs. Each resource’s set is controlled by a defined number of configuration
memory frames where each frame corresponds to an FPGA’s configuration
column of SRAM cells [16]. Depending on the orientation of the MCU
events (single column, row or diagonal adjacent cells), the provoked effects
may simultaneously corrupt resources of a single set or two sets whose
configuration’s memory bits are adjacent.

Considering the TMR architecture represented in Figure 3.2, the modifi-
cations of SCUs can be grouped in two distinct cases: Short and Open. These
modifications may introduce critical behavior in the TMR structure as
described in the previous sections. The effects of MCUs can be modeled as

58

 Analytical Algorithms for Faulty Effects Analysis

multiple SCUs that happen simultaneously. As an example considering the
TMR scenario represented in Figure 3.2, an MCU may induce an open and
short effects (i.e. the output signal of the FFA1 is opened, while the output
signals of the FFA2 and FFA3 are shorted together) provoking multiple errors
in all the outputs of the TMR structure. This effects is represented in Figure
3.8.

Figure 3.7. (a) Multiple Cell Upsets adjacent cells. (b) Configuration memory layout general
organization of Virtex-II.

Figure 3.8. The TMR Voter Partition scenario. An example of MCUs effects (open/short).

The effects of MCUs can be defined considering the following para-
meters:

 Orientation: it defines the position of the MCU within the FPGA’s
configuration memory, as single column, diagonal or single row.

 Case: it defines the transitions induced by the MCU within the FPGA’s
configuration memory cells as 00 11, 01 10 / 10 01 or 11 00.

 Effects: it defines the effects induced by the MCU as Short, Open,
Short/Open, Logic and Logic-Routing [17].

(a)

IO Block

CLB BRAM interconnect
BRAM

(b)(a)

IO Block

CLB BRAM interconnect
BRAM

(b)

(a) (b)

V2

V2

V2

FFA1V1

V1

V1

FFA2

FFA3

V2

V2

V2

FFA1V1

V1

V1

FFA2

FFA3

(a) (b)

V2

V2

V2

FFA1V1

V1

V1

FFA2

FFA3

V2

V2

V2

FFA1V1

V1

V1

FFA2

FFA3

59

Chapter 3

 The classification of the effects can be further refined by considering the
number of bits and the occurrence of the effects.

Considering a couple of vertices AS/AD and BS/BD linked by two distinct
interconnection segments and controlled by two configuration memory bits

interconnection resources is represented:

(a) Open or Short 1-bit: only one bit of the two cells affected by the MCU
provokes a failure effect.

(b) Double Open or Short: both the bits of the two cells affected by the MCU
provokes failure effects. In particular, each bit affects a distinct
interconnection of the TMR structure. For example, it is reported in

orientation affect two separate interconnections.
(c) Open or Short 2-bit: both the bits of the two cells affected by the MCU

provoke failure effects. In this case, both the bits are related to a single
interconnection, and thus it does not corrupt the TMR structure. In the

(d) Open-Short: both the bits of the two cells affected by the MCU provoke
failure effects. In particular, one bit induces an Open effect and the other
one a Short effect between distinct interconnections, as illustrated in

AS/AD and BS/BD is defined by the configuration memory bits reported in (a). In (b) is
illustrated a double open effects when two different bits in a vertical orientation affect two
separate interconnections. In (c) is reported an open 2-bit; in this case both the involved bits
are related to a single interconnection, while in (d) is reported an Open/Short effect.

When logic resources are considered, the following cases appear:

(a) Logic Failure: both the bits of the two cells affected by the MCU
provoke a failure in a single logic block of the FPGA.

AD

AS

BD

BS

AD

AS

BD

BS

AD

AS

BD

BS

(a)

(b)

1
1
11

0
0

0
0
0

1
0
01

0
0

0
0
0

AD

AS

BD

BS

(c)

1
1
00

0
0

0
0
0

A

B

(d)

1
0
11

0
1

0
0
0

60

each, as illustrated in Figure 3.9a. The following scenarios related to the

Figure 3.9b the double open effects when two different bits in a vertical

Figure 3.9c is described an example of an open 2-bit.

Figure 3.9d.

Figure 3.9. MCU fault effects scenario. The original configuration topology of the vertices

 Analytical Algorithms for Faulty Effects Analysis

(b) Logic-Routing Failure: both the bits of the two cells affected by the

MCU provoke failure effects. In particular, one cell controls logic resources
and the other one control interconnections resources.

The STAR-MCU algorithm performs three distinct phases as illustrated

The reading native resources phase reads the native circuit description
and creates two sets: one containing the routing resources related to each
voter partition (Pi), and one containing the logic resources related to each
TMR domain (Dj). In details, each i voter partition Pi contains the program-
mable interconnections, while each j TMR domain Dj contains all the logic
resources such as LUTs, FFs or Multiplexers.

The redundancy cluster phase creates two clusters that store information
about the configuration memory layout regarding any area (x, y) of the
FPGA matrix, where x and y identify a row and a column of the FPGA
array. In details a single Configuration Frame Rules CFR(x,y) cluster contains
a matrix of bit related to both the user memory and the configuration
memory controlling the logic and routing resources in the FPGA array (x,y).
The bits are programmed reflecting the effective usage of that resources in

STAR_MCU()
 {
 /*Reading_native_resources*/
 set_voter_partitions (Pi)
 set_tmr_domains (Dj)
 /*Redundancy-Clusters*/
 create_cluster_sets (CFR(x,y), HS(x,y))
 for each voter_partition VP Pi
 for each tmr domains TD Dj
 {
 HS(x,y) = cluster_hierarchy_tree(VP, TD)
 CFR(x,y) = cluster_configuration_memory_rules(VP, TD)
 }
 /*Rules-Checker*/
 for each cluster C CFR(x,y)
 for each point location P C
 {
 /*MCU-engine*/
 for each orientation O
 {
 MCU_UL = create_MCU_upset_list (P, HS(x,y),O)
 RL_set = read_topology_rules(MCU_UL, C)
 for each partition I RL_set
 Check_dependability (RL_set, C, I)
 }
 }
 }

61

in Figure 3.10: reading native resources, redundancy clusters and rules checker.

Figure 3.10. The flow of the STAR algorithm for the MCUs analysis.

Chapter 3

the FPGA’s CLB array at the coordinates (x,y). Each CFR cluster contains a
bit matrix related to all the CLBs located at the coordinates (x,y) within the
FPGA CLB array, and each matrix of bit contains the used bit marked
accordingly with the correspondent routing signal or logic element. Vice
versa, the cluster set Hierarchy Tree HS(x,y) contains the routing graph
correspondent to the selected (x,y) FPGA location. The routing graph con-
tained in each cluster HS(x,y) is colored according to the information related
to the voter partition logic and to the TMR domain, where two nomencla-
tures are used. The first is a mark that is assigned considering that the circuit
is designed according to the TMR principle, three different colors are used
for all the vertices belonging to each TMR domain. The second, is an index
that identifies the correspondent voter partition logic.

The rules-checker phase analyzes the effects that may be induced by
MCUs affecting the user or the configuration memory cells. The core of this
phase is characterized by the MCU-engine. It performs the analysis of all the
MBU orientation reading the routing or logic topology from the topology
data-base. This analysis is performed verifying if the dependability rules are
satisfied for all the possible modifications of the routing graph description
contained in the clusters HS(x,y) due to the MCU’s induced modification.

The configuration memory rules contain all the configuration memory
coding related to the FPGA’s logic components and the routing topology
of the implemented circuit. It is generated by the function cluster_
configuration_memory_rules that reads the resources description
belonging to a voter partition VP of a given logic domain TD for each
location of the FPGA matrix architecture, it generates a cluster of bits CFR.
Each cluster consists of a bit matrix where all the bits are organized reflec-
ting the SRAM-based FPGA configuration and user memory architecture.

HS(i,j) HS(i+1,j)

HS(i,j) HS(i+1,j)

(a)

(b)

(c)

CFR(i,j) CFR(i+1,j)

HS(i,j) HS(i+1,j)

HS(i,j) HS(i+1,j)

CFR(i,j) CFR(i+1,j)

HS(i,j) HS(i+1,j)

HS(i,j) HS(i+1,j)

(a)

(b)

(c)

CFR(i,j) CFR(i+1,j)

HS(i,j) HS(i+1,j)

HS(i,j) HS(i+1,j)

CFR(i,j) CFR(i+1,j)

HS(i,j) HS(i+1,j)

HS(i,j) HS(i+1,j)

(a)

(b)

(c)

CFR(i,j) CFR(i+1,j)

HS(i,j) HS(i+1,j)

HS(i,j) HS(i+1,j)

CFR(i,j) CFR(i+1,j)

(d)

1 2 3

4

6

5

7

1 2 3

4

6

5

7

(d)

1 2 3

4

6

5

7

1 2 3

4

6

5

7

partitioned CFR

62

Figure 3.11. An example of generation of the cluster sets HS and CFR.

 Analytical Algorithms for Faulty Effects Analysis

to the circuit model for each coordinates (i, j) describes a portion of the
whole routing graph of the FPGA architecture considered. Vice versa, in

cluster CFR(i,j) defines a bit matrix where each bit is marked as used (i.e.
grey color) if the correspondent routing edge or logic vertex is used by the

CFR containing more than a logic components or routing signal is parti-
tioned considering the FPGA topology architecture.

The segmentation of the CFR cluster data matrix allows to increase the
speed of the analysis since it enables a rapid identification of the set of
possible modifications affecting two or more routing signal. The reader
should note that considering that the analysis will be focused on MCU,
several bit-flip combinations need to be generated. The segmentation of the
cluster CFR data matrix is aiming at reducing the computational time of the
several MCU combination.

At the end of the execution of the redundancy cluster extractor phase, the
clusters CFR and HS define an accurate model of the circuit that is mapped on
the SRAM-based FPGA that consider both the user and configuration
memory characteristics as well as the routing and logic organization of the
FPGA adopted.

according to the routing and logic topology of the circuit mapped on the

which consists of a routing path between two logic vertices, the circuit
description is read and stored within two clusters at the position i, j and i +

cluster i, j which contains more than one logic component or routing signal.
Please note that the segmented matrices have different dimensions depend-
ing on the configuration memory bit organization that belong to any different
FPGA’s family. In details, each segmented matrix contains the configuration
memory bits programming PIP or logic element with shared resources.

The rules-checker is the most crucial part of the developed Static
Analyzer tool. It is the third phase of the STAR-MCU algorithm and it
analyzes if the dependability rules are satisfied for all the possible MCUs
affecting the user and the configuration memory bits.

This analysis is performed by three functions: create_MCU_upset_
list, read_topology_rules and Check_dependability, that
are executed for all the bits contained within the cluster set CFR.

63

In Figure 3.11a is illustrated a model of an interconnection path between
two logic vertices, while in Figure 3.11b the cluster HS generated according

Figure 3.11c the cluster CFR generated according to the circuit model, each

routing graph model of the implemented circuit. In Figure 3.11d each cluster

As illustrated in Figure 3.11, the clusters HS and CFR are generated

and c respectively. In Figure 3.11d is reported the segmentation of the CFR

FPGA architecture. Considering the circuit model illustrated in Figure 3.11a,

1,j. An example of the cluster generation is illustrated in the Figures 3.11b

Chapter 3

In details the function create_MCU_upset_list() performs the
following three steps:

1. It select a bit (P) in the position l, m within the bit-matrix of the cluster

CFR(x,y)l,m with l = f and m = 3.
2. It marks the selected bit i, m as SEU sensitive.
3. It generates a Multiple Cell Upset list (MCU_UL) that consists of the

modifications introduced within the routing graph architecture. These
modifications depend on the kind of resource interested:

(a) Routing: the upset list is updated with the routing edge/edges that
is/are added or deleted from the circuit routing graph model due to the
modification induced by the bit-flip.

(b) Logic: the upset list is updated with the kind of logic components
interested. In that case, the modifications include: Look-Up Tables
(LUTs), Multiplexers (MUXs) or Logic Configurations (CFGs).

As soon as the upset list MCU_UL is generated, the function read_
topology_rules divides the considered set CFR(x,y) in several partition
containing all the configuration memory bits that are controlling a given
routing architecture or logic component within a CLB. Each bit is therefore
associated to a proper segmented area of the CFR cluster. The segmentation
is performed according to the technological characteristic of the analyzed
FPGA device. These characteristics are related to the interconnection archi-
tecture (routing segments topology) and the CLB granularity (i.e. number of
FFs embedded in each logic element or LUT’s dimensions). Please consider
that in the case the segmentation is performed on the configuration memory
boundaries, the segmented areas are overlapped, including the bit locations
that are located in the physically adjacent places.

An example of the generation of those partitions is illustrated in Figure

64

3.13. Given a set of routing interconnections, represented by the routing

Figure 3.12. An example of generation of the partition set RL_set.

CFR(x,y). As an example, in Figure 3.12 is illustrated the cluster

 Analytical Algorithms for Faulty Effects Analysis

segments S1, S2 and S3. The CFR cluster is generated by the function
cluster_configuration_memory_rules as described in the
previous section, according to the configuration memory bits that enable the

partitioned according to the FPGA’s configuration memory technological
characteristics. In details, these characteristics are related to the routing
granularity, since the dimension of each partition is defined considering the
number of routing segments that may span from each programmable point.

configuration memory area is segmented in four parts.
Finally, this function generates the RL_set for the considered MCU

orientation. Each set consists in one or more partitions of the cluster CFR
that includes the configuration memory cells affected by the MCU. From the
data contained within the set, the function Check_dependability
performs the analysis of the MCU induced effects on the circuit.

The dependability rules are checked by the function Check_
dependability(). This function executes the following steps:

1. It updates the cluster HS(x,y) introducing the modification included in the
upset list RL_set.

2. The vertices of the clusters HS(x,y) involved in the modification are
marked as faulty.

The routing tree contained within the cluster set HS(x,y) is updated
generating a MCU propagation tree that contains all the paths stemming
from the vertices marked as faulty, to the first voter’s structure. If the leaves
of the propagation three include more than one graph coloring and only one
voter partition logic index, the correspondent bit is added to the Critical
MCU Locations. Indeed, when this condition is met we have that the MCU
effects propagated to two or more circuit domains within the same voter
partition logic, and therefore the TMR principle is no longer enforced. The
critical MCU locations contain for each MCU considered as critical, the
position within the user or configuration memory of the SRAM-based FPGA
used, as well as the indication of the kind of resources (logic or routing) and
the name of the circuit component or net involved.

data matrix correspondent to the generated cluster CFR(i, j). Considering all
the possible orientation of a 2-cells MCU starting from the position (3, f)
two partitions (i.e., the partition 1 and the 2) have been included in the

65

three routing segments, as illustrated in the Figure 3.13a. The cluster is then

In the example illustrated in Figure 3.13b, it is assumed that the

In order to give an example of this procedure, in Figure 3.12 we reported a

RL_set, these partitions are illustrated in Figure 3.12b.

Chapter 3

read_topology_rules. Given a set of routing interconnection, the CFR cluster is
generated (a). The cluster is then partitioned according to the FPGA configuration memory
characteristics (b). As an example in the figure, the cluster is divided into four partitions.

On the basis of these two partitions the function Check_

dependability() perform the analysis of each MCU effect. The several
combination generated are depicted in the five cases Mi, as illustrated in

considered example.

S1

S2

S3

S1

S2

S3

Partition 1

0

1

1

0

0

0

0

0

0

0

0

0 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

00

(b) 1

3

4 5

6

a

b

c

d

e

f f

e

d

a

b

c

1

62

2

3

4 5

Partition 2

Partition 3 Partition 4

CFR(i,j)

0

1

1

0

0

0

0

0

0

0

0

0 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

00

CFR(i,j)

0

1

1

0

0

0

0

0

0

0

0

0 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

00

(a)

1 2 3 4 5 6

a

b

c

d

e

f

S1

S2

S3

S1

S2

S3

Partition 1

0

1

1

0

0

0

0

0

0

0

0

0 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

00

(b) 1

3

4 5

6

a

b

c

d

e

f f

e

d

a

b

c

1

62

2

3

4 5

Partition 2

Partition 3 Partition 4

Partition 1

0

1

1

0

0

0

0

0

0

0

0

0 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

00

(b) 1

3

4 5

6

a

b

c

d

e

f f

e

d

a

b

c

1

62

2

3

4 5

Partition 2

Partition 3 Partition 4

CFR(i,j)

0

1

1

0

0

0

0

0

0

0

0

0 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

00

CFR(i,j)

0

1

1

0

0

0

0

0

0

0

0

0 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

00

(a)

1 2 3 4 5 6

a

b

c

d

e

f

CFR(i,j)

0

1

1

0

0

0

0

0

0

0

0

0 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

00

CFR(i,j)

0

1

1

0

0

0

0

0

0

0

0

0 1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

00

(a)

1 2 3 4 5 6

a

b

c

d

e

f

S1

S2

S3

(M1)

S1

S2

S3

(M2)

S1

S2

S3

(M5)

S1

S2

S3

(M3)

S1

S2

S3

(M4)

66

Figure 3.13. An example of the generation of the partition generated by the function

Figure 3.14.

Figure 3.14. A list of modification generated according to the set RL_set related to the

 Analytical Algorithms for Faulty Effects Analysis

4.2 Experimental results of MCU static analysis

In this section we describe the analytical analysis we performed to evaluate
the MCUs sensitiveness of circuits implemented on not rad-hard SAM-based
FPGAs when the TMR hardening technique is used. We implemented a
prototype of the STAR-MCU tool that accounts for about 12K lines of ANSI
C code.

We selected as case study two different circuits hardened according to
the Xilinx TMR (X-TMR) approach [18] and implemented on a Xilinx
Virtex-II XC2V1000 FPGA: a FIR Filter with 64-stages and a Cordic core
DSP.

The characteristics of the considered benchmark applications are reported
in the Table 3.2, where for each circuit we reported the number of Flip-Flops
(FFs), 4-input Look-Up Tables (LUTs) and I/O Pins.

TABLE 3.2 Characteristics of the benchmark circuits

Resources
Cordic core
processor

FIR
filter

FFs [#] 3,315 1,588
4-input LUTs [#] 3,246 170
I/O pins [#] 225 19

The results we gathered are shown in Table 3.3, where we reported the

number of SCUs identified as critical using the STAR approach presented in
[17], and in Tables 3.4, 3.5 and 3.6, are reported the number of MCUs that
overcome the X-TMR protection capabilities. The results show that the
number of MCUs corrupting the TMR is 2.6 order of magnitude higher than
the SCUs one. In details, we can observe that the majority of the critical
MCUs are provoked in diagonal orientation, while the most relevant effects
is the double short provoked by the transition 00 11. We omitted the
classification of Logic failures, Short 2-bit, Open 1-bit and Open 2-bit since
no effects have been observed for these cases.

Furthermore we recorded the computational time needed by STAR-MCU
to evaluate the considered circuits. In both cases STAR-MCU takes about
940 s to perform a complete analysis.

TABLE 3.3 Critical SCUs identified

Critical SCUs [#]
Circuits

Multiple open Short
FIR Filter 0 8
Cordic Core 0 3

67

Chapter 3

Circuits Critical MCUs [#]
FIR filter Orientation Total Single column

 3,650 853
 Effects Case 00 11
 Double short 2,116
 Short 1-bit 8
 Open-short 0
 Double open 0

Cordic core Orientation Total Single column
 2,454 574
 Effects Case 00 11
 Double short 1,385
 Short 1-bit 3
 Open-short 0
 Double open 0

Circuits Critical MCUs [#]
FIR Filter Orientation Total Diagonal
 1,911
 Effects Case 01 10/10 01
 Double short 0
 Short 1-bit 0
 Open-short 4
 Double open 1,350
Cordic Core Orientation Total Diagonal
 1,263
 Effects Case 01 10/10 01
 Double short 0
 Short 1-bit 0
 Open-short 1
 Double open 894

68

TABLE 3.4 Critical MCUs identified by the proposed approach (I)

TABLE 3.5 Critical MCUs identified by the proposed approach (II)

 Analytical Algorithms for Faulty Effects Analysis

Circuits Critical MCUs [#]
FIR filter Orientation Total Single row
 886
 Effects Case 11 00
 Double short 0
 Short 1-bit 0
 Open-short 0
 Double open 172
Cordic core Orientation Total Single row
 617
 Effects Case 11 00
 Double short 0
 Short 1-bit 0
 Open-short 0
 Double open 171

REFERENCES

[1] E. Fuller, M. Caffrey, P. Blain, C. Carmichael, N. Khalsa, A. Salazar, Radiation Test
Results of the Virtex FPGA and ZBT SRAM for Space Based Reconfigurable Computing,
presented at the MAPLD Conference, Sept. 1999.

[2] M. Ceschia, A. Paccagnella, S. -C. Lee, C. Wan, M. Bellato, M. Menichelli, A. Papi,
A. Kaminski, J. Wyss, Ion Beam Testing of ALTEERA APEX FPGAs, NSREC 2002
Radiation Effects Data Workshop Record, Phoenix, AZ, July 2002.

[3] R. Katz, K. LaBel, J. J. Wang, B. Cronquist, R. Koga, S. Penzin, G. Swift, Radiation
Effects on Current Field Programmable Technologies, IEEE Transaction on Nuclear
Science, Vol. 44, No. 6, Dec. 1997, pp. 1945–1956.

[4] D. K. Pradhan, Fault-Tolerant Computer System Design, Upper Saddle River, NJ,
Prentice-Hall, 1996.

[5] F. Lima, C. Carmichael, J. Fabula, R. Padovani, R. Reis, A Fault Injection Analysis of
Virtex FPGA TMR Design Methodology, in Proceedings IEEE European Conference on
Radiation and Its Effect on Component and System, 2001, pp. 275–282.

[6] P. Bernardi, M. Sonza Reorda, L. Sterpone, M. Violante, On the Evaluation of SEUs
Sensitiveness in SRAM-Based FPGAs, IEEE 10th On-Line Testing Symposium, 2004,
pp. 115–120.

[7] M. Alderighi, S. D’Angelo, M. Mancini, G. R. Sechi, A Fault Injection Tool for SRAM-
Based FPGA, 9th IEEE On-Line Testing Symposium, 2003, pp. 129–133.

[8] P. Sundararajan, B. Blodget, Estimation of Mean Time Between Failure Caused by Single
Event Upset, Xilinx Application notes, XAPP559, Jan. 2005.

[9] G. Asadi, M. B. Tahoori, An Analytical Approach for Soft Error Rate Estimation of
SRAM-Based FPGAs, presented at the MAPLD Conference, 2004.

69

TABLE 3.6 Critical MCUs identified by the proposed approach (III)

Chapter 3

[10] M. Ceschia, M. Violante, M. Sonza Reorda, A. Paccagnella, P. Bernardi, M. Rebaudengo,
D. Bortolato, M. Bellato, P. Zambolin, A. Candelori, Identification and Classification of
Single-Event Upsets in the Configuration Memory of SRAM-Based FPGAs, IEEE
Transaction on Nuclear Science, Vol. 50, No. 6, Dec. 2003, pp. 2088–2094.

[11] C. Y. Lee, An Algorithm for Path Connections and Its Application, IRE Transaction on
Electronic Computers, Vol. 10, No. 3, Sept. 1961, pp. 346–365.

[12] A. G. M. Swift, S. M. Guertin, In-Flight Observations of Multiple-Bit Upset in DRAMs,
IEEE Transactions on Nuclear Science, Vol. 47, No. 6, Dec. 2000, pp. 2386–2391.

[13] B. R. Koga, K. B. Crawford, P. B. Grant, W. A. Kolasinski, D. L. Leung, T. J. Lie, D. C.
Mayer, S. D. Pinkerton, T. K. Tsubota, Single Ion Induced Multiple-Bit Upset in IDT
256K SRAMs, in Proceedings 2nd Euro Conference on Radiation and Its Effects on
Components and Systems, St. Malo, France, Sept. 1993, pp. 485–489.

[14] C. R. Koga, J. George, G. Swift, C. Yui, L. Edmonds, C. Carmichael, T. Langley, P.
Murray, K. Lanes, M. Napier, Comparison of Xilinx Virtex-II FPGA SEE Sensitiveness to
Protons and Heavy Ions, IEEE Transactions on Nuclear Science, Vol. 51, No. 5, Oct.
2004, pp. 2825–2833.

[15] D. H. Quinn, P. Graham, J. Krone, M. Caffrey, S. Rezgui, Radiation-Induced Multi-Bit
Upsets in SRAM-Based FPGAs, IEEE Transactions on Nuclear Science, Vol. 52, No. 6,
Dec. 2005, pp. 2455–2461.

[16] B. Bridgford, C. Carmichael, C. W. Tseng, Correcting Single-Event Upsets in Virtex-II
Platform FPGA Configuration Memory, Xilinx Application Notes, XAPP779, Feb. 19,
2007.

[17] L. Sterpone, M. Violante, A New Analytical Approach to Estimate the Effects of SEUs in
TMR Architecture Implemented Through SRAM-Based FPGAs, IEEE Transactions on
Nuclear Science, Vol. 52, No. 6, Part 1, Dec. 2005, pp. 2217–2223.

[18] “TMRTool User Guide”, Xilinx User Guide UG156, 2004.

70

Chapter 4

RELIABILITY-ORIENTED PLACE AND
ROUTE ALGORITHM
Dependable design on SRAM-based FPGAs

In general, the commonly used design-flow to map designs onto a SRAM-
based FPGA consist of three phases. In the first phase, a synthesizer is used
to transform a circuit model coded in a hardware description language into
an RTL design. In the second phase a technology mapper transforms the
RTL design into a gate-level model composed of look-up tables (LUTs) and
flip flops (FFs) and it binds them to the FPGA’s resources (producing the
technology-mapped design). In the third phase, the technology mapped
design is physically implemented on the FPGA by the place and route
algorithm.

The problem of how to physically implement a circuit on a FPGA device
is divided into two sub problems: placement and routing. The main reason
behind such decomposition is to reduce the problem complexity. Our
proposed reliability-oriented place and route algorithm, called RoRA, firstly
reads a technology mapped design. Then, it performs a reliability-oriented
placement of each logic functions, and finally it routes the signals between
functions in such a way that multiple errors affecting two different
connections are not possible.

The algorithm we developed is described in Figure 4.1, where the
placement and routing steps are shown in a C-like pseudo-code. Our
proposed RoRA Placement algorithm performs a robust placement, which
implements the TMR principle, executing four distinct functions:

1. The generate_functions_replicas() firstly reads the design
description produced after the technology mapping and identifies the
logic functions in the design. Secondly, it generates three replicas of
the logic functions belonging to the original design. Let F be the set of

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,
© Springer Science + Business Media B.V. 2008

71

Chapter 4

the original design’s logic functions: at the end of this step the three sets
F1, F2 and F3 are produced.

2. The generate_majority_voter() analyzes the three logic function
sets F1, F2 and F3, and generates a logic functions set F4 that performs the
majority voting between them.

3. The generate_partitions() partitions the routing graph’s vertices
in four non-overlapping sets, where each set Si (i = 1, 2, 3, 4) has enough
logic vertices to contain the logic functions of each set Fi (i=1, 2, 3, 4).

4. Every logic function in set Fi is placed heuristically to the logic vertices
in set Si, where i = 1, 2, 3, 4. This phase takes care of marking the graph,
by assigning each logic function to exactly one logic vertex in our routing
graph.

The RoRA placement algorithm places each logic functions in Fi to the
graph vertices belonging to Si, as well as the majority voter on S4. After the
placement process, each set Si contains exclusively the function of set Fi.
This solution allows us to guarantee that single or multiple effects within one
set Si only do not provoke any misbehavior of the circuit. Indeed, accordingly
to our placement, only multiple effects on the boundary of two different sets
Si Sj may generate multiple errors that affect two different replicas.

When all the logic functions are placed to the correspondent set of logic
vertex, RoRA performs the routing of the interconnections between the logic
vertices. Basically, the RoRA Routing algorithm works on the routing graph
we developed, and it routes each connection between two logic vertices
through the shortest path it can find. During path selection, the RoRA
Routing algorithm labels dynamically the graph’s routing vertices, in such a
way that it avoids the instantiation of two connections that may be subject to
Short effects. Each graph routing vertex (RV) are labeled as free, used or
forbidden, with the following meanings:

1. Free: the routing vertex is not used by any connection.
2. Used: the routing vertex is already used by a connection.
3. Forbidden: a routing vertex RV is forbidden if and only if:

(a) It belongs to set Si (RV Si).
(b) At least one routing edge, or one wiring edge exists between RV and

another vertex RV’ belonging to Sj (RV’ Sj), where i j.

If RV is added to the circuit and a SEU affects the routing resources in
such a way that both RV and RV’ are affected, the TMR does no longer
work as expected. The Forbidden Vertices Sets (FVSs), which are empty at
the beginning of the RoRA routing, contain the vertices marked as forbidden
and belonging to the correspondent graph routing vertices set Si.

72

Reliability-oriented Place and Route Algorithm

RoRA performs the routing of each net by taking into consideration all
the graph’s vertices labeled as free, and it updates progressively the FVSs
adding the vertices marked as forbidden.

As soon as the net is routed, and the marking of the graph has been
updated (i.e., the vertices in the routing graph, and the associated edges, have
been marked as used by the circuit implementation), the update()
function is used to modify the set i of forbidden vertices (FVSi), which is
empty at the beginning of RoRA routing.

/*Placement*/
generate_functions_replicas (F1, F2, F3)
generate_majority_voter (F4)
generate_partitions (S1, S2, S3, S4)
for each logic function LF Fi
 place LF on Si where i = {1, 2, 3, 4}

/*Routing*/
FVSi = ø where i = {1, 2, 3}
for each source vertex SV Fi
{
 for each destination vertex DV of SV
 RT = route (SV, DV)
 update (FVSi,RT)
}

Figure 4.1. The flow of the proposed Reliability-Oriented Place and Route Algorithm RoRA.

1. RoRA PLACEMENT ALGORITHM

The developed algorithm starts by reading a description of the circuit which
consists of unplaced logic blocks and a set of nets. While standard placement
techniques are sufficient if the application mapped on the FPGA does not
require any particular reliability constraints, special attention must be taken
in FPGA placement algorithm for safety critical application where high
reliability is a mandatory requirement.

The RoRA Placement algorithm, which is described in Figure 4.2 as C-
like pseudo code, performs the placement of a logic function by using the
concept of window. A window is defined as a rectangular portion of the logic
vertices belonging to the routing graph space. More in details, the RoRA
Placement algorithm uses two types of windows: the place window PW and
the nearby window W. The place window PW defines a rectangular space
containing the logic vertices already connected to the logic vertex being
placed, while the nearby window W defines the space containing a whole of
logic vertices labeled as free and candidate for the placement.

73

Chapter 4

/*Placement*/

place LF on Si
 {
 for each logic vertex DLV Si and connected to LF
 generate place_window PW
 if PW has at least one free logic vertex
 nearby_window W = PW
 else
 update nearby_window W
 do until LF is placed
 {
 do until cost (local_density (W), global_constraints
(W)) < LIMIT_D_G
 update nearby_window W
 for each free logic vertex V Si in W
 for each logic vertex DLV Si and connected to LF
 MDLV = computing Manhattan distance (V, DLV)
 C = Manhattan_cost (MDLV)
 if C < MAX_DISTANCE
 place LF on logic vertex V
 label logic vertex V as used
 }
 }

Figure 4.2. The flow of the RoRA Placement algorithm.

The RoRA Placement algorithm implements different heuristic cost

functions that measure the wirelength as well as the routability of the
placement. The wirelength is based on the Manhattan distance that defines
the distance between two points measured along axes at right angles that
include horizontal and vertical components. Minimizing the wirelength
minimizes the number of routing resources required, and thus reduces the
existence of SEU sensitive routing resources; thus, the Manhattan distance is
minimized. However, the minimization of the Manhattan distance does not
guarantee that a signal can be routed successfully, since not all the available
routing resources can indeed be used, since some of them must be avoided
for satisfying to reliability constraints. To address this problem we added
two metric functions: “local density” and “global constraints”, that are
defined as follow:

1. The local_density (W) computes the number of routing resources
available in the nearby window W. It returns the number of available
edges that link two routing vertices labeled as free.

2. The global_constraints (W) computes the routing reliability
constraints in the nearby window W. It returns the number of routing
reliability constraints that may be generated between the routing vertices
labeled as free and comprised in the nearby window W.

74

Reliability-oriented Place and Route Algorithm

The local density addresses the degree of routability of the placement. It
attaches a cost to the placement considering the capability of routing
resources. Thus, it aims at avoiding any competition among signals for insuf-
ficient routing resources. The global constraints address the inadequacies of
the routability computing the congestion provoked by the routing reliability
constraints. These metrics consist of looking at the region contained in the
nearby window W and to compute a cost calculating the number of net and
routing reliability constraints that may exist in this region.

For a given placement phase the generated nearby window W in the
routing graph is examined. This phase allows the RoRA routing algorithm to
find easily a route for every signal, since the routing capability of the
considered nearby window W where the signals have to be routed is
computed during the placement phase.

The RoRA placement of a logic function LF on a partition set Si is
divided in two phases: pre-placement and placement.

During the pre-placement, the window PW is generated considering the
logic functions connected to LF that have already been placed on the logic
vertices DLVs.

Figure 4.3. Example of Place Window.

In Figure 4.3 it is described an example of the PW generation. Supposing

that a logic function LFA is connected to the logic functions LFB, LFC and
LFD, as shown in Figure 4.3a. It is supposed that only LFB and LFD have
already been placed on the logic vertices DLVB and DLVD; during the
placement of the logic function LFA, the place window PW will be generated
as described in Figure 4.3b, it selects an area where a logic vertex could be
used for the placement of the logic function LFA. Moreover, W is initialized
as equal as PW only if PW contains at least one logic vertex. Otherwise, W

75

Chapter 4

is generated by adding from the same dimension of PW one row or column
that contains at least one free logic vertex.

During the placing phase, the RoRA Placement algorithm executes three
different steps until the logic function LF is placed on a logic vertex V.
Firstly, the RoRA Placement algorithm computes the heuristic cost functions
local density and global constraints on the nearby window W, and compares
the respective values with their limits. The limits depend on the cardinality
of the adopted routing graph, and thus on the kind of the used FPGA
architecture. If the limits are not respected, the nearby window W is updated
until the cost function is satisfied.

Secondly, a logic vertex labeled as free is selected from the nearby
window W belonging to the partition set Si. A cost MDLV is associated with
every logic vertex DLV that is already placed on the partition Si and that is
connected to the logic function LF. Each cost MDLV is defined calculating
the Manhattan distance between each DLV and the logic vertex V candidate
for the placement of the logic function LF. Finally, the RoRA Placement
algorithm calculates a Manhattan Cost C for the whole DLVs and if C
satisfies the max length distance the logic function LF is placed on the
candidate logic vertex V.

2. RoRA ROUTING ALGORITHM

The FPGA routing is a complex combinatorial problem. Basically, the
RoRA router algorithm works on the routing graph, and routes each
connection between two logic vertices through the shortest path it can find.
During path selection, RoRA labels dynamically the graph’s routing vertices,
in such a way that it avoids the instantiation of two connections belonging to
two different sets S that may be subject to multiple effects.

The general approach implemented in the RoRA router is a two-phase
method composed of a global routing followed by a detailed routing. As
shown in Figure 4.4, given a source vertex SV belonging to a logic function
Fi, a connection between SV and all its destination vertices DVs is computed
executing the global routing followed by the detailed routing. The global
routing balances the density of all the routing structures in relation with the
reliability constraints, while the detailed routing assigns to the paths specific
wiring edges, routing edges and routing vertices.

The global routing is based on a Super-Routing graph architecture which
is composed of logic vertices and super routing vertices (SRV) that are
linked by a super edge (SE) as shown in Figure 4.5, where a super routing
vertex models the whole of routing vertices of the FPGA routing graph,

76

Reliability-oriented Place and Route Algorithm

while a super edge models the whole of routing edges between routing
vertices or between a routing and a logic vertex.

Route (SV, DV)
 {
 /*Global_routing*/
 do until (SV, DV) is routed
 P = find global_route SV to DV
 L = computing length on route P
 F = computing forbidden node on route P
 if L,F are verified
 /*Detailed_routing*/
 RT = create_routing_tree (SV, DV)
 if (SV, DV) is routed
 return RT
 }

Figure 4.4. The flow of the RoRA global and detailed router algorithm.

The Super-Routing graph is used to execute the global routing. The

global routing on the Super-Routing graph architecture is performed by the
function find global_route SV to DV. This function generates a
global route P that consists of a sequence of super edges and super routing
vertices that link the source logic vertex SV to the destination logic vertex
DV. Associating the Super-Routing graph architecture with the FPGA
routing graph, a global route P is decomposed to a sequence of routing
vertices, wiring and routing edges that connect SV to DV. Thus, the RoRA
Global Routing generates a set of candidate paths that could be chosen by
the RoRA Detailed Routing to connect SV to DV.

Figure 4.5. The super-routing graph architecture.

To determine whether a global route P is optimal, the RoRA Global

Routing selects the super edges and the super routing vertices optimizing an
heuristic cost function that consists of two components: the first component

logic vertex

super edge

super routing vertex

77

Chapter 4

aims at minimizing the length of the global route by selecting the shortest
way to connect the source to the sink, while the second component computes
the availability of the global route calculating the number of vertices labeled
as forbidden out of the number of vertices labeled as free, existing in it. The
availability Af of a global route P composed of i super routing vertices SRV
is defined as:

where avoid (SRVi) is the number of routing vertices labeled as forbidden

belonging to the Super Routing vertex SRVi and free(SRVi) is the number of
routing vertices labeled as free. The global router makes the routing problem
easier, since it can estimate the routing congestion due to the routed
interconnection and the forbidden vertices. When a global route P is
selected, the RoRA Routing algorithm executes the detailed routing.

The RoRA detailed routing algorithm is split in two phases. In the first
phase it expands each routing tree, where the root is associated to the logic
vertex correspondent to the source of the connection, while the leaves are
associated to the logic vertices correspondent to the destinations of the
connection. The routing tree expansion is made by choosing wiring and
routing edges linked by routing vertices labeled as free in our routing graph
and belonging to the Global route selected by the RoRA Global routing. The
RoRA detailed routing is based on the approach developed for the Pathfinder
negotiated congestion algorithm [1, 2]. It is based on the construction of a
routing tree. The maze routing, described in [3], is usually used for this
purpose. The RoRA detailed router expands the routing tree progressively to
the leaves and preserving the routing channel by the global routing: starting
from a tree composed of the source vertex, only, new vertices are added,
until all the destinations of the connection have been added to the tree. The
previously executed global routing allows preserving memory and running
time for the routing tree expansion, since the detailed router may choose the
net paths on a limited space of solutions. The RoRA detailed router uses the
routing tree construction developed for the maze routing approach with a
fundamental difference in the creation of each routing tree: the key step of
the RoRA detailed router is performed during the routing tree expansion,
where those vertices that are labeled as forbidden are not used. Moreover,
the set of forbidden vertices is updated in the second phase of the RoRA
detailed router after the creation of the routing tree.

The detailed routing generates the routing tree computing the function
create_routing_tree(). This function performs the computation of
the routing tree by taking into consideration all the graph’s vertices not
labeled as forbidden and belonging to the global route P selected. After the

i i

i
f SRVavoid

SRVfreePA
)(

)()(

78

Reliability-oriented Place and Route Algorithm

expansion each routing tree (SV, DVs) may contain a number of routing
vertices that could have a routing edge that links them to other routing
vertices in the routing graph model by the modification of a single
configuration memory bit. The update function of the RoRA algorithm
selects these routing vertices belonging to the set Si, and checks if each of
them could be linked, by changing a single configuration memory bit, to the
routing tree routed on the routing graph belonging to the set Sj, where i j. If
this happens, the update function labels it as forbidden. By this way, no
routing edge could link routing vertices belonging to a different set S, and
thus no SEU affecting the configuration memory of the SRAM-based FPGA
could affect more than one replica of the implemented TMR architecture.

3. EXPERIMENTAL ANALYSIS

In this section a series of experiments are performed to evaluate the
effectiveness of the RoRA algorithm. For this purpose, a prototype of the
RoRA algorithm is developed, which accounts to about 8K lines of ANSI C
code. The developed RoRA prototype has been used for hardening four
circuits mapped on a Xilinx Spartan II device.

To evaluate the robustness of the circuits obtained through RoRA against
transient faults affecting the FPGA’s configuration memory, and in parti-
cular against faults affecting the routing resource, the fault injection environ-
ment presented in [4] has been used.

The device used in the experiments is a Xilinx Spartan® XC2S30PQ144,
whose configuration memory is composed of 336,768 bits organized in
1,165 frames of 288 bits each. The configuration memory controls 132 I/O
blocks and an array of 12 x 18 slices [5].

Three purely combinational case studies have been considered: an adder
with two 8-bit wide operands, an adder working on two 16-bit wide
operands, and a multiplier with two 8-bit wide operands. An elliptic filter
has been also considered in order to evaluate the sensitiveness to SEUs in the
configuration memory of SRAM-based FPGAs implementing a sequential
circuit. Besides, in order to evaluate the capability of RoRA on a real design
we mapped an IP-core that implement the Control Area Network (CAN) that
uses about 98% resources of a Spartan II XC2S200 [5].

In order to evaluate the effectiveness of the developed algorithm, the five
circuits have been mapped using RoRA, as well as the TMR approach (i.e.,
each circuit is implemented by using three identical modules performing the
same task and a majority voter). In the latter case, TMR circuits are placed
and routed by standard tools, which do not pose any emphasis in enforcing
dependability-oriented place and route rules.

79

Chapter 4

The characteristics of the adopted circuits are reported in Table 4.1,
where we report the number of FPGA slices that the circuits occupy (column
Area), as well as their maximum working frequencies (column Speed), for
the plain, the TMR, and the RoRA versions. It is interesting to observe that,
for the considered benchmarks, RoRA does not introduce any area overhead
with respect to the traditional TMR solution (which is about three times
larger than the plain circuit), and in some cases it is even less resource
demanding. Conversely, when placed and routed through RoRA, the circuits
become 22% slower on the average than their TMR versions. This effect is
the result of the dependability-oriented routing algorithm that RoRA
implements: the shortest path is not always selected as the best solution,
since it may not be acceptable from the dependability point of view.

TABLE 4.1 Characteristics of the adopted circuits

Plain version TMR version RoRA version Circuit
Speed
[Mhz]

Area
[# slices]

Speed
[Mhz]

Area
[# slices]

Speed
[Mhz]

Area
[# slices]

Add8 105 26 86 100 64 96
Add16 105 28 85 103 62 105
Mul8 105 41 64 127 54 125
Filter 104 46 65 132 58 138
CAN 225 384 189 1,152 142 1,152

In order to measure the hardness of the obtained circuits, 15,000

randomly selected SEUs have been injected in the FPGA’s configuration
memory bits. These bits are selected among those configuration memory bits
that define the designs we implemented.

Please note that they may be both programmed or not since both of them
may be critical for the mapped design. The number of injected faults was
selected to guarantee that the gathered results are statistically meaningful.
For these purpose, the experiments have been repeated with 150,000
randomly selected SEUs. Negligible modifications have been observed with
respect to the results already gathered with 15,000 faults. Considering that
the used voters are not fault tolerant, no faults have been injected in the
portion of the configuration memory that implements it. The results obtained
are reported in Table 4.2, where Injected Faults is the number of injected
SEUs, as well as Wrong Answer is the number of SEUs for which the faulty
circuit produces outputs that differ from the fault-free one. In order to show
the contribution of the different FPGA’s resources, it has been reported the
number of injected faults, and the observed wrong answers, for the FPGA’s
CLBs and Routing resources. During the experiments a workload of 100,000
randomly generated input stimuli has been applied.

80

Reliability-oriented Place and Route Algorithm

TABLE 4.2 Fault injection results concerning

Wrong answer [#] Circuit Injected faults [#] Plain TMR RoRA
 CLB Routing CLB Routing CLB Routing CLB Routing

Add8 2,558 12,442 2,550 12,037 97 1,255 29 1
Add16 2,410 12,590 2,408 12,190 83 1,609 37 4
Mul8 2,440 12,560 2,390 12,213 91 1,886 20 3
Filter 2,427 12,573 2,398 12,244 86 1,895 39 5
CAN 2,550 12,450 2,545 12,404 71 2,005 38 8

From the gathered results, it is possible observe that most of the injected

faults provoke erroneous behaviors in the plain, un-hardened circuits.
Moreover, even when the TMR architecture is adopted, a significant
percentage of the injected faults still produce a wrong answer. The faults
escaping the TMR have been analyzed carefully, and the results is that most
of them correspond to multiple errors crossing the TMR domains. In
particular the majority of faults escaping TMR are due to SEUs in the
routing resources. A very limited number of faults escaping TMR do not fall
in the scenario outlined by the dependable rules: these are faults that affect
FPGA’s resources that do not depend on the implemented circuit, and whose
usage is independent from the place and route algorithm. For this very
specific device-dependent type of faults different hardening strategies must
be envisioned, possibly coming from the FPGA vendor.

From the results achieved it is possible to observe that RoRA drastically
reduces the number of SEUs producing a Wrong Answer. In particular, as
far as routing resources are concerned, RoRA is able to reduce the number of
faults producing wrong answer by 3 orders of magnitude, while reductions
by a factor of 2 were observed for fault affecting CLBs. The number of
routing faults is reduced effectively thanks to the ability of RoRA of gene-
rate a reliability-aware routing topology able to avoid the propagation of
multiple errors through the different circuit domains output. Although very
effective, RoRA still produces circuits where few SEUs escape and provoke
circuits misbehaviors. As the reader can notice, the numbers of faults within
the CLBs are not widely reduced as the routing ones. This is due to critical
faults that cannot be masked only through the usage of a reliability-oriented
place and route algorithm, since they produce errors that exclusively
influence those FPGA parts (such as the delivery of power or reset signals to
CLB or routing resources) that can be hardened only by the usage of infor-
mation provided by the vendor.

In the executed experiments, the performance of RoRA in terms of
required FPGA routing resources have been measured. The results in Table
4.3, where PIPs TMR and PIPs RoRA report the number of PIPs in the
circuits obtained by the TMR approach and those obtained by RoRA. Please

81

Chapter 4

note that RoRA uses a higher number of PIPs for each circuit: the existence
of forbidden graph’s routing vertices (i.e., PIPs) forces RoRA to produce
connections that are longer than those obtained in the TMR circuits, where
all the PIPs are available to the router tool. However, the overhead in terms
of PIPs is rewarded by a much higher degree of fault tolerance. The
computation times needed by RoRA to perform the place and route process
are reported in Table 4.4. The machine used for running RoRA was a
SunUltra 250 equipped with 2 Gbytes of RAM, and running at 400 MHz. As
a reference. In the Table 4.4 has been also reported the time needed by a
commercial tool (Xilinx PAR) for placing and routing the considered
circuits. As the reader can observe, the time needed by RoRA is higher than
that of the commercial tool; however, the increased time for running the
place and route process is rewarded by a much higher fault-tolerance
capability.

TABLE 4.3 Summary of routing resources needed by TMR and RoRA circuits’
implementations

Circuit PIPs TMR [#] PIPs RoRA [#]
Add8 3,864 4,194

Add16 4,874 5,390
Mul8 7,175 9,919
Filter 7,293 9,941
CAN 11,451 14,304

TABLE 4.4 CPU time needed by RoRA and Xilinx PAR

CPU Time [min] Circuit RoRA Xilinx PAR
Add8 1.75 0.21

Add16 9.27 0.25
Mul8 21.87 0.34
Filter 25.22 0.40
CAN 83.01 2.86

REFERENCES

[1] V. Betz, J. Rose, Directional Bias and Non-Uniformity in FPGA Global Routing
Architectures, ICCAD, 1996, pp. 652–659.

[2] C. Ebeling, L. McMurchie, S. A. Hauck, S. Burns, Placement and Routing Tools
for the Triptych FPGA, IEEE Transaction on VLSI, Dec. 1995, pp. 473–482.

[3] C. Y. Lee, An Algorithm for Path Connections and Its Application, IRE

82

Transaction on Electronic Computers, Vol. 10, No. 3, Sept. 1961, pp. 346–365.

Reliability-oriented Place and Route Algorithm

[4] M. Ceschia, M. Violante, M. Sonza Reorda, A. Paccagnella, P. Bernardi, M.

Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, A. Candelori, Identification
and Classification of Single-Event Upsets in the Configuration Memory of
SRAM-Based FPGAs, IEEE Transaction on Nuclear Science, Dec. 2003, Vol.
50, No. 6, pp. 2088–2094.

[5] Spartan-II 2.5 V FPGA Family: Introduction and Ordering Information, Xilinx
Product Specification Datasheets, 2003.

83

Chapter 5

A NOVEL DESIGN FLOW FOR FAULT
TOLERANCE SRAM-BASED FPGA SYSTEMS
Integrated synthesis design flow and performance
otpimization

SRAM-based Field Programmable Gate Arrays (FPGAs) are programmable
devices used for different applications, such as signal processing, proto-
typing and networking. They have fixed number of wires, switches and look-
up tables (LUTs): all these components can be programmed by downloading
a configuration memory with a proper bitstream, giving an FPGA the
capability to implement nearly any kind of digital circuit on the same chip.

As widely illustrated in the previous chapters, the content of the confi-
guration memory is vital for the correct operations of the circuit the FPGA
implements. The circuit is indeed totally controlled by the FPGA’s confi-
guration memory, which is composed of static RAM cells. When energetic
particles hit the surface of the SRAM-based FPGA, they can alter the bits
composing the configuration memory, and therefore the circuit the FPGA
implements may change its original behavior.

The problem of making SRAM-based FPGAs resilient to SEUs has been
attacked in two ways. An earlier solution consisted in developing radiation-
hardened FPGAs by resorting to special manufacturing technologies, as well
as suitable SEU-immune architectures. Although effective, this solution is
very expensive and therefore it can be exploited only in those applications
where cost is not a primary concern (e.g., military applications). The solution
that is currently under investigation by many researchers consists in adopting
fault-tolerant architectures to implement hardened circuits while using
commercial-off-the-shelf FPGA devices. This solution is very attractive
since it is potentially able to combine the needed dependability level, offered
by fault-tolerant architectures, with the low cost of commodity devices.

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,
© Springer Science + Business Media B.V. 2008

85

Chapter 5

As far as fault-removal techniques are considered, several solutions have
been investigated in the past years. The one known as Scrubbing consists in
periodically reloading the content of the whole configuration memory [1]
with the correct bitstream. To minimize the number of needed reconfigu-
rations, which limit the FPGA’s availability, a more complex solution uses
the Readback and the Partial Reconfiguration processes. Through the
Readback, the content of the FPGA’s configuration memory is read and
compared with the expected one, which is stored in a dedicated memory
located outside the FPGA. If a mismatch is found, the correct bitstream is
downloaded in the FPGA’s configuration memory. During re-configuration,
only the faulty portion of the configuration memory is rewritten [1], thus
reducing the re-configuration time.

Several architectures were also proposed, which are all based on intro-
ducing hardware redundancy in the circuit the FPGA implements. Among
the available architectures, Triple Module Redundancy (TMR) is that attracted
most of the attention of researchers. TMR can be implemented easily by
using three identical logic blocks performing the same task while a majority
voter compares their outputs and decides the correct one.

Although TMR is effective in protecting against SEUs the information
the circuits elaborate, it showed some pitfalls when the effects of SEUs in
the FPGA’s configuration memory are considered. Through detailed analyses
of FPGA resources [1], and extensive fault-injection experiments [2], it has
been observed that one SEU affecting the FPGA’s configuration memory,
and in particular those portion of the configuration memory controlling
routing resources, may originate multiple errors. This phenomenon depends
on many factors: the architecture of the adopted FPGA family, the organi-
zation of configuration memory bit, the application that is mapped on the
FPGA device, and the memory bit affected by the SEU. In our investigations
we considered several test circuits designed according to the TMR architec-
ture, and we observed that about 10% of the faults that may affect the confi-
guration memory produce multiple errors that the TMR is not able to mask
[2]. As shown in [3], a clever selection of the TMR architecture helps in
reducing the number of escaped faults, but it is still unable to reduce them to
zero [4]. To cope effectively with SEUs in the FPGA configuration memory, we
presented in [5] an approach that makes use of TMR and of a dependability-
oriented place and route algorithm, RoRA, to implement cleverly a circuit on
SRAM-based FPGAs in such a way that the effects of SEUs are minimized.
The approach is very effective in hardening FPGA-based circuits, but it may
require high computational times, due to the complexity of executing the
dependability-oriented place and route operations for the whole circuit.

86

A Novel Design Flow for Fault Tolerance SRAM-based FPGA Systems

In this section is presented a new flow that makes use of the results
achieved in [5] to design complex circuits that are insensitive to SEU and
that has optimized characteristics in terms of running frequency.

The design flow is based on standard tools for design entry, synthesis and
design implementation.

1. THE DESIGN FLOW

The developed design flow adopts standard tools provided by FPGA or EDA
vendors for performing the typical tasks needed for transforming a specifi-
cation coded in HDL, or provided through schematic entry, into a bitstream
suitable for being downloaded into the FPGA’s configuration memory.
Ad-hoc developed tools are used in combination to standard tools for
guaranteeing that the obtained bitstream is resilient to SEUs: they are used to
rework only those portions of the circuit that are particularly sensitive to
SEUs, i.e., that modify the circuit behavior when affected by SEUs. The
rationale behind this approach is that standard tools are very effective in per-
forming synthesis, placement and routing, and produce high quality designs
(in terms of clock frequency, area occupation, or power consumption). It is
therefore worthwhile to use them to carry out most of the tasks involved in
the design process. Moreover, only a limited subset of the whole circuit has
to be addressed to cope with SEU-induced problems. For this limited subset
it is worthwhile resorting to ad-hoc developed tools that provide robust
circuits, although their computational cost is usually higher than that of
standard tool. By exploiting standard tools for carrying out most of the
design task, while resorting to computational-expensive ad-hoc tools only
for a limited subset of the whole circuit, it is possible to minimize the design
time, reduce the performance penalty overhead, while meeting high
dependability levels.

The developed design flow is illustrated in Figure 5.1, and it is composed
of three main modules:

1. Xilinx ISE is the collection of Xilinx’s design tools that is normally used
by designers for obtaining a circuit implemented by any Xilinx FPGA.
The collection comprises tools for design entry, synthesis, and place and
route. Please note that, although Xilinx’s synthesis tool is used, other
solutions can be adopted for this purpose (like for example Simplicity’s
Symplify, or Synopsys’s FPGA compiler).

2. STAR tools is a collection of tools developed for analyzing the placed and
routed circuit, to check whether critical area exist that may corrupt the
correct operations of the TMR architecture when affected by SEUs.

87

Chapter 5

3. V-Place and RoRA router: It performs the implementation phase of a
design. The design flow is divided, as it refers to the standard FPGA
implementation flow, in two sub-problems: the placement and the routing.
The Placement algorithm (V-Place) is able to map fault tolerant circuits
according to the TMR design techniques on SRAM-based FPGAs while
optimizing the circuit’s frequency. The routing algorithm (RoRA) is a
reliability-oriented tool that modifies the critical circuit areas identified
by the STAR tool, and that produces a new version of the circuit where
all the criticalities have been resolved.

Figure 5.1. The proposed integrated design flow.

1.1 STAR analyzer

The main purpose of the STAR tool, as described in the Chapter 3, which is
to analyze the SEU effects in SRAM-based FPGAs early in the design phase,
in particular, as soon as the placed and routed model of the designed circuit
is available.

The tool is based on the description of the circuit and on a data base
coding the rules.

The circuit description is divided in two files:

1. Circuit DB. It contains the structural description of the circuit, which
consists of logic functions (either combinational or sequential) and con-
nections between them implemented through FPGA’s resources.

88

A Novel Design Flow for Fault Tolerance SRAM-based FPGA Systems

2. Floorplan DB. It contains the description of where each circuit’s

resource is placed on the FPGA. The FPGA’s floorplan is divided in four
sets S1, S2, S3, and S4, and each circuit’s resource is placed into one and
only one of these sets.

The Analyzer checks if each resource complies with the data base of rules
and, if a violation is found, it produces a report that shows the resources and
the configuration memory bits that violated the rules when affected by
SEUs. The produced report serves as input to the RoRA router that produces
an equivalent circuit where all the violations are resolved.

1.2. RoRA router

The RoRA router, which was introduced in [5] to solve the problem of the
Short effect, is based on the approach developed for the Pathfinder
negotiated congestion algorithm [6, 7]. Basically, the RoRA router works on
the graph model we developed, and it routes each connection between two
logic vertices through the shortest path it can find. The path is composed of
routing vertices, routing-to-routing edges, and logic-to-routing edges. During
path selection, RoRA labels dynamically the graph’s routing vertices, in
such a way that it avoids the instantiation of two connections that may be
subject to Short effects.

2. PERFORMANCE OPTIMIZATION OF FAULT
TOLERANT CIRCUITS

In the past years, several fault tolerance methods have been proposed in
order to mitigate the effects of SEs in the configuration memory of SRAM-
based FPGAs. On one side a possible solution to this problem is to use
radiation-hardened FPGAs, however these devices are much more expensive
than Commercial-Off-The-Shelf (COTS) FPGAs. Vice versa, the viable
solutions are represented by two methodologies: the reconfiguration-based
techniques and the redundancy-based approaches.

The reconfiguration-based methods, aiming at restoring as soon as
possible the proper values into the configuration bits after an SE happened
[1], are a viable solution to detect and remove the upset within the configu-
ration memory. However, this approach does not offer a complete immunity
to the SE’s effects, thus masking techniques are needed, such as redundancy-
based ones that avoid the SE’s effects propagation to the circuit’s outputs
[8–10]. These techniques are deployed through Triple Modular Redundancy
(TMR), where three identical replicas of the same circuit work in parallel
while the outputs are produced by comparing and majority voting their

89

Chapter 5

signals. TMR is a mandatory hardening technique for SRAM-based FPGAs
since memory elements, routing resources and logic resources are all sen-
sitive to SEs and thus redundancy must be adopted for all of them. Although
TMR techniques are drastically reducing the effects of SEs within the
configuration memory of SRAM-based FPGAs, recent works demonstrated
that some criticalities are still not protected from these techniques [11] and
reliability-oriented place and route algorithms (RoRA) are needed to
physically map the circuit on the FPGA’s resources in order to guarantee
complete robustness against the SE’s effects within the FPGA’s configura-
tion memory [12]. Although effective, this technique introduces high
degradation in terms of operational frequency to the implemented circuits,
since they become 40–50% slower, on the average, with respect to their
original versions [12]. The operational frequency reduction nullify the high
performance offered by these devices, it is therefore necessary the develop-
ment of techniques able to guarantee the circuit’s fault tolerance without
reducing its speed.

The proposed V-Place algorithm is based on a model-based topology
heuristic that address the arithmetic modules implemented on the FPGA.
The delay of the interconnection between these resources is reduced thus
minimizing the critical paths of the circuit physically mapped on the FPGA
architecture. The main novelty of the proposed algorithm lies in the
technique used to address the physical placement of the resources that,
differently from other investigated approaches, does not rely only on the
netlist model of the implemented circuit but directly on the topology
organization of the circuit elements physically interconnected on the SRAM-
based FPGA device.

The congestion graph

The design complexity leads to an increasing routing congestion of a design
implemented on SRAM-based FPGAs. The routing congestion may provoke
several problems: it may degrade the performance of the design or it may
add more uncertainty on the design closure process. The global increase of
the delay is generally related to the unexpected increase of the delay of a
single net due to routing congestion. In particular, congestion can affect
design performance in two circumstances:

 A path may be detoured due to the presence of congested regions.
 A path may include several numbers of vias (interconnection points) if

the router finds the shortest path through a congested region.

The resulting increase in the delays of the critical nets can cause timing
violations on the paths through those nets. The routing algorithms generally

2.1

90

A Novel Design Flow for Fault Tolerance SRAM-based FPGA Systems

detour that nets increasing their delay. Furthermore, when reliability-oriented
rules are considered [12] the routing-congestion dramatically increases due
to the constraints inserted by the reliability rules that force the routing into
specific path in order to prevent multiple errors in the implemented circuit.
In order to take care of the congestion during the placement step, a conges-
tion graph is introduced.

The congestion graph used is illustrated in Figure 5.2. The array area of
the FPGA is modeled as a matrix of bin-squares where each one models the
resources of an FPGA Configurable Logic Block (CLB). Every bin-square is
characterized by a weight and a set of arcs. The weight P indicates the
number of logic elements placed in the considered CLB. The arcs model the
number of nets between two logic elements. Each arc coefficient is the ratio
between the number of used routing resources and the number of available
nets on horizontal plan (HL and HR), diagonal plans (DLT, DLB and DRT,
DRB) and vertical plan (VT and VB).

Figure 5.2. The congestion-graph and the vertex definition.

The voter architectures and arithmetic modules

TMR hardening techniques involve the usage of voting architectures. Two
voting structures define a voter partition logic, the set of interconnection and
logic resources (both combinational and sequential) located between them.
Considering the TMR scenario described in Figure 3.2, a voter partition
logic consists in the logic domains Dj with j {1,2,3} comprises between
voter structures Vi and Vi+1.

2.2

91

DRT

HR

DRB

DLT

DLB

HL

VT

VB

P

Bin-boundary

Chapter 5

If on one side, the TMR voter partition structure increases the fault
tolerance capability of a TMR architecture since introduces voter barriers, on
the other side it is particularly critical for the placement task, since each
voter partition introduces congestion on the routing interconnections. The
developed algorithm treats the voter architecture as macros in order to
prevent routing congestion.

Modern SRAM-based FPGA devices support the design of embedded
arithmetic cores for general purpose operations such as high parallelism
multiplications or floating-point units. These units are synthesized accurately
in order to optimize their operational speed and computational precision.
Unfortunately, when these units are placed and routed on the FPGA physical
layout, they may lost their optimized characteristics due to the logic and
routing congestion. In particular, when TMR hardening techniques are
adopted, the topological characteristics of the programmable interconnec-
tions may drastically degrade the delay of each single routing path thus
decreasing its computational speed.

The developed placement algorithm is able to address the routing and
logic delay of the arithmetic units following a set of arithmetic rules and by
modifying their placement positions within the FPGA’s logic programmable
array.

The arithmetic rules consist of a set of physical macros that are implemented
by the placement algorithm with respect to the circuit’s functionalities.

The V-Place algorithm

The developed placement algorithm (V-Place) is based on the implemen-
tation of a graph embedding a metric that contains information about the
FPGA’s regular physical architecture. The proposed algorithm directly
considers the routing delays on the basis of a Manhattan distance heuristic.
The algorithm is based on the routing graph presented in the previous
section. The routing graph embeds interconnection’s delay measured in
terms of number of traversed routing switches. The flow of the proposed
algorithm is divided in three phases. In the first phase V-Place computes an
analytical distance metric of the total interconnection length for each input
and output signals of a given logic resource. Secondly it constructs a metric
space for computing the FPGA performances. The third phase consists in the
optimization of the location of each logic resource. The optimization is
performed taking care of three different placement organizations: voting
structures, arithmetic cores and general purpose logic. The flow of the
proposed algorithm is illustrated in Figure 5.3.

2.3

92

A Novel Design Flow for Fault Tolerance SRAM-based FPGA Systems

/*Phase 1*/
read_native_circuit_description()
generate_routing_graph()
L = reading_logic_vertex()
V = reading_logic_voter()
D = reading_TMR_domains()
for each logic vertex i L
 MDi = create_manhattan_distance (i)
/*Phase 2*/
M_space = create_performance_metric (MD)
A_macrosj = read_arithmetic_rules (L)
Macro_SETj = ø
/*Phase 3*/
do until E(M_space) < min_delay
{
 v_place_optimizer (M_space ,D, MDi, L, V, A_macrosj)
 {
 /*Place Macros*/
 mark_estimated_voter_space(V)
 if Macro_SETj = ø
 do until E(M_space) < min_delay
 for each L A_macrosj with max(MDi)
 RR = available_reliability_rules(D)
 FP = find_free_location()
 place(L,FP)
 update(MDi)
 update(Macro_SETj)
 else
 move_macro (Macro_SETj)
 /*Place Logic*/
 for each L not included in A_macrosj
 RR = available_reliability_rules(D)
 FP = find_free_location()
 place(L,FP)
 update(MDi)
 }
}

3. EXPERIMENTAL RESULTS

The purpose of this section is to evaluate the effectiveness of the proposed
design flow in designing circuits that are hardened against SEU effects and
to estimate the performance costs. In particular, we focused on the effects of
SEUs in the FPGA’s configuration memory since it is the most critical
aspect. The number of bit devoted to the configuration memory is indeed
much higher than that devoted to the user memory (for implementing
registers, or memory blocks). As a result, an SEU is more likely to happen
within the configuration memory than in the user memory.

93

Figure 5.3. The flow of the new V-Place algorithm.

Chapter 5

Three experiments were performed. The first one aimed at estimating the
performance in terms of timing analysis of the placement algorithm. The
second one consisted in designing three simple circuits according to the
approach presented in [5], and according to the design flow presented in this
paper. By comparing the attained results we can quantify the improvements
that our new design flow allows with respect to the original solution we
presented in [5]. The second experiment consisted in designing a realistic
circuit with the intent of analyzing the viability of our design flow in
attacking the design of a hardened real-life design.

3.1 Timing analysis

In order to estimate the improvements and the effectiveness of the proposed
algorithm, two parameters of the circuit placed with the V-place algorithm
have been evaluated: the SEs sensitivity and the speed. The improvements of
the latter are shown by timing analysis reports while static analysis, by
means of the approach developed in [13], proofs that the proposed algorithm
does not affect the fault tolerance of the circuit itself.

Three real-case designs have been used to perform the experiments: a
CORDIC processor core, usually exploited for real-time calculations of
trigonometric functions and vector magnitude, a 24 × 24 parallel multiplier,
and an 8051 Intel microcontroller core. The circuits have been hardened
using the Xilinx XTMR tool [14] to provide a full tolerance against single
SEs. The static analysis experiments have been run on a Xilinx Virtex-II
XC2V1000-FG456 device which is characterized by 10,240 available Look-
Up Tables (LUTs), 10,240 Flip-Flops (FFs) and 324 Input-Output Blocks
(IOB) and whose configuration memory is composed of 4,082,592 bits.
Table 5.1 summarizes the circuits’ characteristics for this specific device, in
terms of occupied LUTs, FFs and IOBs.

TABLE 5.1 Characteristics of the adopted circuits

Circuit LUTs [#] (%) FFs [#] (%) IOBs [#] (%)
CORDIC core 6,258 (61) 2,478 (24) 303 (93)

Parallel Multiplier 3,597 (35) 0 (0) 288 (88)
8051 7,210 (70) 3,672 (35) 108 (33)

The performance of the placed circuits are evaluated using vendor’s tool

in order to estimate the delay of the critical paths within the circuit. The
results we obtained are reported in Table 5.2 where we show the delay of the
critical path of each hardened circuit (TMR and Proposed Flow) with respect
to the unhardened version (Plain). The developed design flow is able to
optimize the delay of the maximum critical path up to the 44% with respect

94

A Novel Design Flow for Fault Tolerance SRAM-based FPGA Systems

to the TMR version, thus increasing the operational frequency of the
implemented circuit. As the reader can notice, the delay introduced by the
developed flow with respect to the plain circuits is less than the 4% in the
worst case.

Table 5.2 Timing analysis comparison

Circuit Plain [ns] TMR [ns] Proposed flow [ns]
CORDIC core 5.230 9.702 5.404

Parallel multiplier 6.993 7.599 7.245
8051 5.840 8.932 6.020

Furthermore, two kinds of static analysis are executed in order to evaluate

the effects both of the single upsets and the SEs accumulation.
A first experiment has been performed using the Xilinx ISE-generated

version of the three circuits. We analyzed them with the Static analyzer. The
results show that the X-TMR tool successfully hardened the circuits against
single SEs; indeed no failures have been detected. Then we performed the
same experiment on the circuits replaced with the proposed approach and the
static analyzer shows that no failures have been produced. We can thus
conclude that the proposed algorithm does not threaten the circuit’s fault
tolerance.

A second analysis has been performed in order to evaluate the SEs accu-
mulation effects. This analysis consisted in estimating the average number of
accumulated SEs, called Nestimated, within the configuration memory by
running several analysis with the Static Analyzer considering the accumu-
lation of SEs. Nestimated is updated at the end of each generated distribution.
The execution of the analysis is terminated once Nestimated meets an estimation
error for a number of distribution defined by the user before the analysis.
We evaluated the mean number of accumulated SEs by means of the static
analysis algorithm fixing a tolerated precision error = 1% for the number
of iterations = 100.

 Table 5.3 summarizes the results of this second analysis, in terms of
mean number of accumulated SEs before a criticality is reported by the
Static Analyzer.

The results show that different placement can modify the mean number
of SEs need to produce a failure on the circuit’s outputs; in particular for the
adopted congestion-oriented placement we observed a reduction of the
accumulated SEs. This means that it is possible to improve the fault
tolerance of a circuit simply modifying its placement.

95

Chapter 5

TABLE 5.3 Static analysis results for SEs accumulation

Mean number of accumulated SEs
before failure

Circuit
ISE-generated

version
Proposed flow

CORDIC core 16 12
Parallel multiplier 31 23

8051 28 13

3.2 Evaluating the proposed design flow

To evaluate the capability of the proposed design flow three purely combina-
tional case studies have been considered: an adder with two 8-bit wide
operands, an adder working on two 16-bit wide operands, and a multiplier
with two 8-bit wide operands. We designed it according to two approaches:
the one presented in this paper, and that presented in [5].

TABLE 5.4 Comparing execution times

Circuit RoRA [s] Proposed approach [s]
Add8 105.0 56.6

Add16 556.2 101.0
Mul8 1,312.2 265.4

The device used in the evaluation experiments is a Xilinx Spartan®

XC2S30PQ144, whose configuration memory is composed of 336,768 bits
organized in 1,165 frames of 288 bits each. The configuration memory
controls 132 I/O blocks and an array of 12 × 18 slices.

Fault injection experiments [3] showed that in both cases we obtained
hardened circuits with respect to SEUs affecting the configuration memory
of the adopted FPGA. Conversely, as results reported in Table 5.4 shows,
significant differences in execution times were observed. These results show
that demanding the synthesis, and place and route operations, of most of
the circuit to standard tools, while relying to reliability-oriented tools for
addressing critical areas only, is far more efficient than routing the whole
circuit with the approach presented in [5]: the execution times are indeed
reduced by a factor ranging from about 2 to a factor of about 6.

96

A Novel Design Flow for Fault Tolerance SRAM-based FPGA Systems

3.3 Evaluating a realistic circuit

The realistic circuit that has been taken in consideration is the IP-core
implementing the Control Area Network protocol. This IP-core has been
developed and validated in [15] and it is compliant with the CAN protocol
specifications.

As a first step of this experiment, it is designed the hardened version of
the adopted IP-core according to the design flow proposed in this paper. To
show the versatility of our approach, we considered several different FPGA
families all coming from Xilinx: the Spartan II, the Virtex I, the Spartan 3,
and the Virtex II. Similarly to what is normally done during the development
of a realistic design, it is selected the smallest device able to hold the design.

Table 5.5 reports the selected FPGAs, the percentage of FPGA’s resources
that are used by the TMR-version of the CAN controller, as well as the
circuit’s maximum frequency. Please note that for all the devices considered,
the IP-core uses at least the 98% of the total available resources. Although
the selected FPGAs are almost full, RoRA was still able to find a different
routing for the critical signals. Moreover, we analyzed the circuit’s frequency
(by exploiting the Xilinx’s timing analyzer tool) before and after the execu-
tion of RoRA, which reworked the optimal circuit implemented produced by
Xilinx’s ISE to make it robust against SEUs. For all the considered archi-
tectures, we always observed negligible reduction (less than 1%) of the
maximum frequency. These results suggest that the proposed design flow
can be used effectively to attack the design of realistic circuits, even in those
case were few resources are available for reworking the circuit produced by
the standard design tools.

TABLE 5.5 Characteristics of the FPGA devices used

FPGA device Resource occupation [%] Frequency [MHz]
Spartan II XC2S200 98 225

Virtex I XCV200 98 174
Spartan 3 XC3S200 99 230
Virtex 2 XC2V250 100 180

TABLE 5.6 Comparing the execution time

Number of escaped faults
FPGA device Proposed approach TMR

approach

CPU time
[min]

Spartan II XC2S200 0 263 83
Virtex I XCV200 0 265 86

97

Chapter 5

In order to quantify the effectiveness of the proposed design flow in
protecting FPGA-based systems over a simpler approach where only the
TMR architecture is adopted, we designed the selected IP-core according to
the TMR, only. In this case, only the standard Xilinx ISE tools are used in
combination with the TMR tool we developed, while the other components
of the SEU-kit are not exploited (i.e., floorplan constraints, Analyzer and
RoRA are not used). This scenario depicts the case of designers willing to
adopt the TMR architecture and resorting only to standard tools for circuit
design, plus ad-hoc tool for replicating the circuit and adder the needed
majority voter.

Table 5.6 reports the number of faults that escape the TMR architecture
obtained by using standard tools only, in comparison with the figures
attained for the IP-core designed according to the approach presented in this
paper (for simplicity, only the figures concerning the Spartan II and Virtex I
architectures are reported. Similar figures were observed for the other
architectures). As the reader can observe, the approach presented in this
paper produced fault- tolerant circuits, while the TMR alone was not able to
achieve this goal. Table 5.6 also reports the CPU time for completing the
design of the circuit according the approach presented in this paper. This
figures indicate that a designer can obtain a validated and hardened design in
less than 1 h and a half.

REFERENCES

[1] Xilinx Application Notes XAPP216, Correcting Single-Event Upset Through Virtex
Partial Reconfiguration, 2000.

[2] M. Bellato, P. Bernardi, D. Bortolato, A. Candelori, M. Cerchia, A. Paccagnella, M.
Rebaudengo, M. Sonza Reorda, M. Violante, P. Zambolin, Evaluating the Effects of
SEUs Affecting the Configuration Memory of an SRAM-Based FPGA, IEEE Design
Automation and Test in Europe, 2004, pp. 188–193.

[3] P. Bernardi, M. Sonza Reorda, L. Sterpone, M. Violante, On the Evaluation of SEUs
Sensitiveness in SRAM-Based FPGAs, IEEE International On-line Testing Symposium,
2004, pp.115–120.

[4] F. Lima Kastensmidt, L. Sterpone, L. Carro, M. Sonza Reorda, On the Optimal Design of
Triple Modular Redundancy Logic for SRAM-Based FPGAs, IEEE DATE, 2005, pp.
1290–1295.

[5] M. Sonza Reorda, L. Sterpone, M. Violante, Multiple Errors Produced by Single Upsets
in FPGA Configuration Memory: A Possible Solution, IEEE European Test Symposium,
2005, pp. 136–141.

[6] V. Betz, J. Rose, Directional Bias and Non-Uniformity in FPGA Global Routing
Architectures, ICCAD, 1996, pp. 652–659.

[7] C. Ebeling, L. McMurchie, S. A. Hauck, S. Burns, Placement and Routing Tools for the
Triptych FPGA, IEEE Transactions on VLSI, Dec. 1995, pp. 473–482.

98

A Novel Design Flow for Fault Tolerance SRAM-based FPGA Systems

[8] S. Habinc Gaisler Research, Functional Triple Modular Redundancy (FTMR) VHDL

Design Methodology for Redundancy in Combinational and Sequential Logic,
www.gaisler.com.

[9] P. K. Samudrala, J. Ramos, S. Katkoori, Selective Triple Modular Redundancy (STMR)
Based Single-Event Upset (SEU) Tolerant Synthesis for FPGAs, IEEE Transactions on
Nuclear Science, Vol. 51, No. 5, Oct. 2004.

[10] C. Carmichael, Triple Modular Redundancy Design Techniques for Virtex FPGAs,
Xilinx Application Notes XAPP197, 2001.

[11] L. Sterpone, M. Violante, S. Rezgui, An Analysis Based on Fault Injection of Hardening
Techniques for SRAM-Based FPGAs, IEEE Transactions on Nuclear Science, Vol. 53,
No. 4, Part 1, Aug. 2006, pp. 2054–2059.

[12] L. Sterpone, M. Violante, A New Reliability-Oriented Place and Route Algorithm for
SRAM-Based FPGAs, IEEE Transactions on Computers, Vol. 55, No. 6, June 2006, pp.
732–744.

[13] L. Sterpone, M. Violante, A New Analytical Approach to Estimate the Effects of SEUs in
TMR Architectures Implemented Through SRAM-Based FPGAs, IEEE Transactions on
Nuclear Science, Vol. 52, No. 6, Part 1, Dec. 2005, pp. 2217–2223.

[14] TMRTool User Guide, in Xilinx User Guide UG156, 2004.
[15] J. Perez, M. Sonza Reorda, M. Violante, Accurate Dependability Analysis of CAN-Based

Networked Systems, 16th IEEE Symposium on Integrated Circuits and Systems Design,
2003, pp. 337–342.

99

PART II

Chapter 6

CONFIGURATION SYSTEM BASED ON
INTERNAL FPGA DECOMPRESSION
A new configuration architecture

Nowadays Field Programmable Gate Arrays (FPGAs) are an improved
technology for developing high-performance embedded systems. SRAM-
based FPGAs offers the possibility of in-the-field reconfiguration that results
in the ability to adapt the product to modified user's requirements, to enrich
the product's features, or simply to correct bugs. With the advent of multi-
million gate FPGAs, the size of the configuration information that defines
what circuit the FPGA implements has increased drastically, and thus the
amount of external memory needed to keep the configuration data is increas-
ing dramatically. The work presented in this chapter describe a novel confi-
guration compression system that exploits internal configuration mechanism
of modern SRAM-based FPGAs and results in high compression efficiency.
The proposed system is applicable to any modern SRAM-based FPGA
devices having an embedded microprocessor core since the configuration
data are processed as raw data. Moreover, the proposed approach does not
require any external hardware support and allows high speed dynamic recon-
figuration. Experimental results on Xilinx SRAM-based FPGAs platform
implementing several real-world circuits demonstrated 82% savings in
memory on the average.

1. INTRODUCTION TO THE DECOMPRESSION
SYSTEMS

Field Programmable Gate Arrays (FPGAs) are reconfigurable platforms that
can implement embedded systems with high processing rates while providing a
high degree of flexibility required in dynamically changing environments.

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,
© Springer Science + Business Media B.V. 2008

103

Chapter 6

Today’s FPGAs are suited for accelerating computing-intensive algorithms
that can take advantage of massive hardware parallelism [1]. Moreover,
SRAM-based FPGA devices offer the possibility of run-time reconfiguration.
Finally, modern SRAM-based FPGA devices embed hardwired microprocessor
cores that have drastically increased the computational capability of these
devices.

In SRAM-based FPGAs, the content of the configuration memory is
reloaded after power-up, therefore it does not store permanent data. As a
result, SRAM-based FPGAs require external devices to initialize the
configuration memory. A typical SRAM FPGA-based systems includes
indeed a non-volatile memory for storing configuration data and the FPGA
device itself. Each time the system is powered-up, the configuration data are
loaded into the FPGA.

As the number of configurable blocks and the complexity of the routing
resources increase, the amount of configuration memory needed to store the
configuration data grows accordingly. It is worth noticing that the configura-
tion data of the Xilinx Virtex-II FPGAs ranges from 0.4 Mbits to 43 Mbits
[2]. Therefore, storing the configuration data in a FPGA-based system is a
critical issue since it needs memory modules that could increase the overall
system cost. The size of the configuration memory has a negative impact
also on the configuration time, and it can limit the applicability of partial/
total dynamic configuration in time-critical applications.

The memory size for storing configuration data may be reduced by
exploiting suitable compression algorithms. As will be summarized in the
following section, several works proposed techniques which exploit the
peculiarity of the considered FPGA family [3–6], and therefore they are of
limited applicability. Vice versa, a technique applicable to any SRAM-based
FPGA device is presented in [7]. No matter which approaches are considered,
all of them require an additional hardware component to be placed between
the memory storing the configuration data and the FPGA, which decompresses
the compressed configuration data and control the configuration operations.
The additional hardware component represents an overhead for the system
and it may introduce a not negligible design’s cost. In fact, developers must
modify their original designs in order to implement these techniques.

Other researchers investigated the implementation of on-chip FPGA
decompressor. In [8] a specific decompressor hardware module is implemented
using the internal configurable logic available within the FPGA device.
Besides, in [9] is presented an approach able to support flexible FPGA-based
run-time partial reconfiguration using a microprocessor mapped on the
available resources of the FPGA device. Nevertheless these techniques
present the advantage of fast run-time reconfiguration for small applications,
these solutions present two major drawbacks. The first is that they are

104

Configuration System based on Internal FPGA Decompression

specifically designed for Xilinx’s FPGA devices, the second is that they
present a low compression ratio for those applications use a large percentage
of the FPGA available resources.

A novel configuration compression system is proposed and it is able to
reduce the memory requirements for storing configuration data within a
FPGA-based embedded system without introducing expensive overhead due
to the implementation of the decompression module internally or externally
the FPGA device.

Being based on the internal resources that most recent SRAM-based
FPGAs offer, the approach does not require any external hardware, since all
the operations needed to decompress and configure the FPGA are performed
by an on-chip CPU and by an internal configuration mechanism. This does
not add any cost to the configuration state-machine, since the configuration
operations are performed by the internal configuration mechanism available
on FPGA devices. The on-chip CPU is dedicated to run the decompression
algorithm only during the configuration process, after that it is available to
run the user applications. Thus, the effective area cost that has to be paid is
minimal and it does not depend on the dimension of the FPGA device
adopted. Moreover, the proposed approach uses a compression algorithm
implementing an adaptive binary arithmetic coder working on raw data;
therefore, since it is not based on specific configuration data organization, it
is applicable to any kind of modern FPGA devices.

The capability of the approach implemented as a case study on the Xilinx
Virtex II Pro device is evaluated considering several configuration data for
the FPGA corresponding to real-world circuits. From our experiments we
observed compaction ratio of 5.5 times on the average. Moreover, we
recorded an average time of 0.6 ms for configuring the device, which makes
possible the implementation of very efficient dynamically configurable
systems.

2. OVERVIEW ON THE PREVIOUSLY DEVELOPED
DECOMPRESSION SYSTEMS

Several compression techniques have been proposed for FPGA architectures.
In order to reduce the memory requirements of their FPGA configuration
data, Xilinx developed a compression algorithm based on a LZ77 scheme
[3]. LZ77 is a dictionary-based text compression scheme that works by
defining a fixed-size dictionary to hold bytes from an input source. As the
compression progresses, the dictionary is updated by loading more bytes
from the input source, thus forcing earlier entries out. Although this technique
does not introduce any time overhead on the configuration process, it is

105

Chapter 6

applicable only on Xilinx FPGAs and the compression ratios are extremely
low.

In [5] dictionary-based techniques were adopted to reduce the time
required to transfer configuration data to Xilinx Virtex series FPGAs. A
compressed version of the configuration data is fed to the configuration
circuitry of the FPGA and the decompression takes place inside the FPGA.
Although this techniques reported high compression ratios, the decompression
process of the configuration data is very time consuming. Besides, this tech-
niques need the modification of the configuration mechanisms in order to
support decompression.

An FPGA configuration data compression approach that take advantages
of the characteristics of the configuration mechanism of an FPGA Xilinx
XC6200 is presented in [5]. In [6], run-length compression techniques for
FPGA configuration data have been presented. The addresses were compressed
using run length encoding while data was compressed using LZ compression.
However, this approach take advantages of the specific characteristics of the
adopted FPGA. A dedicated hardware is required for both the previously
referred methods.

A compression technique based on processing of raw configuration data
is presented in [7]. This technique is applicable to any SRAM-based FPGAs,
the compression algorithm is based on the principles of dictionary-based
compression, and it does not depend on specific features of the configuration
mechanisms. However, this approach requires an external hardware that exe-
cutes the decompression process and controls the configuration operations of
the SRAM-based FPGAs.

Vendors provide decompression solutions specifically oriented to their
FPGA devices. However, these solutions can be grouped on two kinds of
alternative configuration: active and passive, where the configuration is
performed externally or internally the FPGA respectively. An approach
based on active configuration that uses a PROM built-in decompression
algorithm is described in [10], this solution can achieve a compression ratio
of two times the original configuration data length. Vice versa, a technique
based on passive configuration is presented in [11] where decompression is
done by the FPGA itself, this solution achieves up 1.9 times the original
configuration data length.

A solution based on a specific decompression module implemented on
the FPGA chip using the available resources is presented in [8]. This module
is inserted a part of the run-time system which controls the decompression
and receives data only for performing partial dynamic reconfiguration. This
approach is not completely implemented on the FPGA, since the system
needs external chip interconnections that link the output pins of the
decompression module to the pins of the external FPGA configuration port.

106

Configuration System based on Internal FPGA Decompression

A solution that exploits internal configuration port that modern FPGAs offer
is presented in [9]. This solution implements on the FPGA chip resources,
both the decompression module and the configuration controller supporting
flexible run-time partial reconfiguration. In order to execute the decompres-
sion both the approaches exploit the LZ77 algorithm. Nevertheless, the advan-
tages concerning the fast run-time partial reconfiguration these solutions are
specifically designed for Xilinx’s FPGA devices, furthermore they present a
low compression ratio for applications using a large percentage of the FPGA
available resources, this is meanly due to the LZ77 compression algorithm
the has a low compression ratio for complex configuration data.

In the approach presented, no external hardware is needed in order to
perform the decompression and FPGA configuration, since all the operations
are performed exploiting the FPGA’s internal resources. Moreover, no
interconnections are needed outside of the FPGA in order to perform the
configuration, since these operations are performed through the internal
configuration port the most recent FPGAs embed. From the computational
compression algorithm point of view, our approach achieve high compres-
sion ratio thanks to an adaptive binary arithmetic coder that works on raw
data without considering individual semantics of specific FPGA configuration
data organizations. Thanks to this compression algorithm is achieved a
savings in memory of 82% on the average for various circuit’s configuration
data. Moreover, the proposed compression system is applicable to any
SRAM-based FPGA and do not require any modification of the external
hardware in order to be adopted.

2.1 Generalities of SRAM-based FPGAs

Generally, FPGAs are characterized by an array of configurable logic blocks
(CLBs) surrounded by input-output blocks (IOBs). Nowadays, state-of-the-
art SRAM-based FPGA devices provide further resources that are scattered
among the logic array. These resources comprise block RAM memories
(BRAMs), multiple clock resources and hardwired modules. The hardwired
modules consist of various kind of DSPs and microprocessor solutions
depending on the manufacturer.

All the resources embedded within a SRAM-based FPGA are controlled
by an internal configuration memory. The configuration time depends on the
size of the configuration data and on its format. Moreover, the clock rate and
the operation mode of the configuration mechanism may have an important
role for the configuration speed-up, since they determine the rate at which
the configuration data are delivered to the FPGA device. The semantic of the
configuration data strictly depends on the characteristics of the configuration
mechanisms as well as the characteristics of the FPGA architecture. Thus the

107

Chapter 6

configuration data format varies among different vendors. In order to provide
a compression system applicable to any FPGA, it is therefore needed an
algorithm that does not take in consideration any peculiarity of the
configuration data related to the FPGA architecture.

The configuration data is loaded within the FPGA configuration memory
through external or internal configuration mechanisms. The external mechanism
is based on parallel transfer of 8-bit configuration data words that results in
faster configuration time. The configuration data is transferred to the internal
configuration memory through an external configuration access port with the
support of a specific external circuitry working at higher data rates. Typical
transfer frequency can be as high as 60 Mhz [12, 13]. Vice versa, the internal
configuration mechanism is based on an internal configuration port that
allow FPGA’s own logic resources to access the configuration data in such a
way that the FPGA can dynamically reconfigure itself without demanding
this process to an external hardware.

The internal configuration port is available in may recent devices from
several FPGA vendors. For example, Atmel’s SRAM-based FPGAs embed
an Advanced Virtual RISC (AVR) microcontroller that can write configura-
tion data to the FPGA configuration memory through the internal configuration
port. Similarly, the most recent Xilinx FPGAs embed an Internal Confi-
guration Access Port (ICAP) controller able to read and write the content of
the configuration memory [14].

3. THE PROPOSED SYSTEM

A typical architecture of an FPGA-based embedded system consists of an
FPGA device, support memories to store the data and the FPGA configuration
data, and control modules aimed to supervise the configuration process and
to manage the I/O interface to send and receive the data to and from the
FPGA device. The proposed compression system does not require any
external hardware for implementing the decompression process, since this
task is entirely mapped on the SRAM-based FPGA resources and exploits
the internal configuration port. The following subsection illustrates the
detailed system architecture implementing the decompression algorithm, the
compression algorithm adopted and the overview on the configuration
process.

The architecture of the proposed decompression system is implemented
using the configurable resources available on the modern SRAM-based
FPGAs. The scheme of the proposed compression system is illustrated in
Figure 6.1.

108

Configuration System based on Internal FPGA Decompression

Figure 6.1. Architecture of the decompression system.

The proposed system is based on the assumption that the compressed

configuration data are generated using a software compressor running on a
PC, and then they are stored within the external memory belonging to the
FPGA-based embedded system. The system implemented on the SRAM-
based FPGA consists of three modules.
The system mapped on the SRAM-based FPGA consists of three modules:

 Hardwired μP: It is a hardwired microprocessor embedded within the
SRAM-based FPGA architecture. It executes the decompression algorithm
reading the compressed configuration data from the external memory and
sending the decompressed data to the configuration IP.

 Configuration IP: It is a logic core implemented on the available logic
resources provided by the SRAM-based FPGA device. It receives the
decompressed data from the Hardwired μP and performs the configura-
tion flow using the internal configuration mechanism.

 Internal Configuration Mechanism: It is an hardwired mechanisms that
allow to access to the FPGA configuration memory reading or writing the
configuration data. The configuration IP manages the operations of the
Internal Configuration Mechanisms writing the decompressed configuration
data into the FPGA configuration memory.

The proposed compression system is loaded on the FPGA during the
bootstrap of the embedded system. Though partial configuration, we load the
Configuration IP into the FPGA taking the uncompressed configuration data
from the External Memory, and the compression algorithm within the
hardwired μPas well. Then, the system is activated, and the processor starts
executing the configuration of the rest of the FPGA by loading and
decompressing the configuration data from the External Memory.

In
te

rn
al

 C
on

fig
ur

at
io

n
M

ec
ha

ni
sm

Hardwired

μP

C
on

fig
ur

at
io

n

IP

FPGA

External
Memory

In
te

rn
al

 C
on

fig
ur

at
io

n
M

ec
ha

ni
sm

Hardwired

μP

C
on

fig
ur

at
io

n

IP

FPGA

External
Memory

109

Chapter 6

The compression algorithm we developed is based on a binary arithmetic
encoder integrating an adaptive model that does not use a discrete number of
bits for each symbol and may reach high compression ratio [15]. The main
idea behind arithmetic coding with an adaptive model is to assign to each
symbol an interval. The encoding task is then performed on a recursive
probability interval partition that is progressively adapted to the changes of
the symbol probabilities during the compression process.

/*Initialization*/
Set_Interval_Range (I)
Initialize_Adaptive_Model_Margin (I, Mi)
for each symbol SYM CONFIGURATION_DATA
 /*Arithmetic Coding*/
 Update_Interval(I)
 Coding(I)
 /*Data Out and Adaptive Scaling*/
 until Is_Scaling(I, Mi)
 Update_Interval(I)
 Scale_Data_Out(I)
Closing()

Figure 6.2. The flow of the proposed configuration data compression algorithm.

The flow of the proposed configuration data compression algorithm is

described in Figure 6.2. The algorithm consists of two phases: the initializa-
tion and the arithmetic coding. During the initialization phase, the adaptive
model interval is set with the interval value of [0,1[considering 256 symbols
of 8 bit. The arithmetic coding phase elaborate each symbol belonging to the
configuration data.

The encoding is performed on recursive probability interval partitions.
The function Update_interval () at each iteration splits into two sub-
intervals the original adaptive model interval in such a way that the function
Coding()adjusts the coded symbol, pointing to the base of the sub-interval
that corresponds to the input symbol. At each iteration, an adaptive scaling is
executed. This phase changes the symbol probabilities during the compression
process in order to adapt to the changing contexts. Initially, the compression
process starts with a basic model that does not produce any configuration
data out. During the process, the function Scaling_Data_Out() adapts
the interval model to the input symbols, and generates the correspondent
compressed data out. Finally, the coding is ending by the function
Closing().

As far as the decoder side is concerned, the decompression flow is dual
with respect of the encoder. The decoder performs the scaling and the
arithmetic encoding achieving the original configuration data. The decoder
algorithm is executed by the FPGA hardwired microprocessor that reads the

110

Configuration System based on Internal FPGA Decompression

compressed configuration data from the external memory, and send to the
configuration IP the original configuration data.

The configuration IP is a dedicated hardware that is mapped on the
available logic resources provided by the SRAM-based FPGA device. The
configuration IP is responsible for controlling the communication of the
decompressed data to the FPGA configuration memory resorting to the
internal configuration mechanism.

The architecture of the configuration IP consists of a data buffer that
stores the decompressed configuration data received from the hardwired
microprocessor. The data buffer has the dimension equal to the maximum
configuration data that can be simultaneously written to the configuration
memory. When the data buffer is full, the configuration IP enable the internal
configuration mechanism and performs the writing of the decompressed
configuration data into the selected frame of the FPGA configuration memory.
The selection of the configuration memory frame is managed by the Confi-
guration IP on the basis of the configuration architecture.

The execution flow of the proposed system can be summarized as follow.
At the power-up of the system, the FPGA device is partially configured
loading the configuration data that implement the Configuration IP. Once the
FPGA is configured with the layout depicted in Figure 6.1, the code related
to the configuration data decoder is loaded within the internal memory of the
hardwired μP. After this operation the system is able to read the compressed
configuration data from the external memory and to decompress it within the
configuration memory of the FPGA. The logic resources related to the
Configuration IP form a special boot-area that should not be over written by
the decompressed configuration data. Since the architecture of the Confi-
guration IP is extremely simple, it takes only a limited area of the device.
The user-applications should be designed avoiding the using of the consi-
dered boot-area. This operation is very simple, and it can be performed
automatically by the FPGA vendor floorplanning tools. By this way, the
decompressed configuration data are written exclusively on the available
FPGA resources without compromising the functionalities of the decom-
pression system.

4. EXPERIMENTAL RESULTS

In order to show the feasibility and the characteristics of the proposed
compression system, the performances are evaluated on a representative case
study. At first the prototypal implementation of the developed decompres-
sion system is analyzed, and the performances in terms of area occupation
and configuration time are analyzed. Secondly, the capabilities of the

111

Chapter 6

compression algorithm on several real-world benchmark circuits are evaluated
and compared versus the results coming from standard compression algorithms.

The cases study adopted are based on a prototype board consisting of a
Xilinx Virtex-II Pro Platform [16]. In particular the system is mapped on a
Xilinx SRAM-based FPGA XC2VP30 embedding two PowerPC micro-
processor cores [17]. This device is characterized by a configuration memory
of 11,589,920 bits that controls an array of 13,696 CLBs resources organized
as a matrix array with 80 rows and 46 columns. This device has an internal
configuration mechanism based on an Internal Configuration Access Port
(ICAP). The ICAP module allows the internal FPGA logic resources to
access to the configuration data reading or writing a specific configuration
data.

The system is designed on the lower right side of the FPGA matrix array.
In particular the configuration IP has been placed near the ICAP port that is
located in the lower corner of the FPGA. The compression algorithm source
code requires 8 KB of available memory within the hardwired μP, while the
compression system mapped on the FPGA logic resources use 14 CLBs.
During the execution the decompression algorithm uses only up to 12 KB of
memory. The area overhead introduced by the proposed system is therefore
of only 0.1%. In terms of external memory, 120 KB are required to store the
bootstrap configuration data for the initialization of the decompression
system.

4.1 Compression system results

The proposed configuration data compression system has been tested on
the configuration data of several real-world circuits implemented on the
XC2VP30 Xilinx SRAM-based FPGA. For this device we generated six
configuration data for six different designs. We evaluated two computing
cores consisting of a FIR filter and a Cordic Core, two controllers of CAN
and USB interface, and two microprocessors, the Intel 8051 microcontroller
and the Leon microprocessor. In particular, in order to estimate the compres-
sion ratio for applications that use high percentage of FPGA resources, we
implemented two version of the microprocessors: plain and Triple Modular
Redundancy (TMR). Furthermore, we initialized the BRAMs modules with
random values in order to make difficult the work of the compression
algorithm.

The characteristics of these designs are shown in Table 6.1, where we
reported the differences between the designs in terms of used CLBs, BRAMs
modules and percentage of used CLB resources with respected of the
adopted FPGA device. Please note that the percentage of used resources
considering the selected device, range from 2.3% to 92.3%

112

Configuration System based on Internal FPGA Decompression

TABLE 6.1 Characteristics of the benchmark circuits

Circuit CLBs [#] BRAMs [KB] Used CLBs [%]
FIR filter 321 0 2.3

Cordic 605 0 4.4
CAN Controller 1,611 4 11,8
USB Controller 1,920 6 14

8051 2,446 24 17.9
Leon 4,213 64 30.8

TMR 8051 7,338 72 53.6
TMR Leon 12,639 192 92.3

The results of the configuration data memory required from the developed

system are illustrated in Table 6.3. We compared the original configuration
data, the configuration data required by our system and those comings from
the Xilinx system [3] and the data coming from the LZW compression
system used in [7]. Please note, that the data reported for the proposed
system includes also the amount of memory dedicated to the bootstrap
configuration data. As it can be observed, the proposed compression algorithm
shows an average memory reduction of about 5.5 times, compared to the 1.5
times of the Xilinx System. Besides, our approach achieves 82% savings in
memory on the average, versus 41% obtained by the compression approach
illustrated in [7] that needs an external hardware that performs the decom-
pression. Besides, the bootstrap amount of memory is only needed one time
for the first configuration, thus it is not a drawback when several applica-
tions configuration data are used.

In order to evaluate the performance characteristics in terms of configu-
ration speed, the PowerPC has been configured at the running frequency of
300 MHz and the compressed data has been stored within the memory
modules of the Xilinx Virtex-II Pro platform.

The configuration time needed by the developed system has been
estimated in relation to decompress the configuration data and to configure
the entire FPGA configuration memory. The obtained results are illustrated
in Table 6.2, where are compared the time needed by the proposed confi-
guration system versus the time needed by the Xilinx System configuration.
With respect to the time, the overhead introduced by the developed system is
proportional with the complexity of the circuits due to the arithmetic coding
computation. For the considered benchmark circuits, the time overhead versus
the Xilinx System ranges from 1.04 to 4.2 times. This limited drawback is
overcome by the benefit of the compression ratio that can provide savings in
memory ranging from 64% to 88%. However, considering small applications,
those generally used in partial reconfiguration-based system, our system
introduces a speed overhead of only 4%.

113

Chapter 6

TABLE 6.2 Configuration time needed by our approach starting from compressed
configuration data

TABLE 6.3 Comparison of configuration data memory required by the analyzed compression
systems

Circuit
Uncompressed

[byte]

Proposed
system
[byte]

Xilinx
system
[byte]

LZW [byte]

FIR filter 1,448,812 167,812 998,320 854,742
Cordic 1,448,812 219,201 1,010,442 891,798

CAN controller 1,448,812 244,352 1,087,655 899,432
USB controller 1,448,812 276,910 1,122,990 912,560

8051 1,448,812 306,178 1,332,782 945,866
Leon 1,448,812 363,966 1,398,632 947,372

TMR 8051 1,448,812 399,453 1,420,844 998,560
TMR Leon 1,448,812 481,562 1,442,520 1,004,220

REFERENCES

[1] K. Compton, S. Hauck, Reconfigurable Computing: A Survey of Systems and Software,
ACM Computing Surveys, Vol. 34, No. 2, June 2002, pp. 171–210.

[2] Xilinx Product Specification, Virtex-II Platform FPGAs: Complete Data Sheet, DS031
(v3.4) March 1, 2005.

[3] A. Khu, Xilinx FPGA Configuration Data Compression and Decompression, Xilinx –
WP152, September 2001.

[4] Z. Li, S. Hauck, Configuration Compression for Virtex FPGAs, IEEE Symposium on
Field-Programmable Custom Computing Machines, 2001, pp. 111–119.

[5] S. Hauck, Z. Li, E. J. Schwabe, Configuration Compression for the Xilinx XC6200
FPGA, IEEE Transactions on Computer Aided Design Integrated Circuits Systems, Vol.
18, No. 8, Aug. 1999, pp. 1107–1113.

Circuit
Proposed system

configuration
time [ms]

Xilinx system
configuration

time [ms]
FIR filter 125 120

Cordic 197 126
CAN controller 364 142
USB controller 388 144

8051 485 198
Leon 849 248

TMR 8051 895 310
TMR Leon 905 340

114

Configuration System based on Internal FPGA Decompression

[6] J. Pan, T. Mitra, W. Wong, Configuration Bitstream Compression for Dynamically

Reconfigurable FPGAs, IEEE/ACM International Conference on Computer Aided
Design, Nov. 2004, pp. 766–773.

[7] A. Dandalis, V. K. Prasanna, Configuration Compression for FPGA-Based Embedded
Systems, IEEE Transactions on VLSI systems, Vol. 13, No. 12, Dec. 2005.

[8] M. Hübner, M. Ullmann, F. Weissel, J. Becker, Real-Time Configuration Code Decom-
pression for Dynamic FPGA Self-Reconfiguration, 18th IEEE International Parallel and
Distributed Processing Symposium, Apr. 2004, pp. 138.

[9] M. Ullmann, M. Hübner, B. Grimm, J. Becker, An FPGA Run-Time System for Dynamical
On-Demand Reconfiguration, 18th IEEE International Parallel and Distributed Processing
Symposium, Apr. 2004, pp. 135.

[10] A. Le, Simplifying the FPGA Configuration Design Process, Xilinx White Paper:
Platform Flash PROMs, WP253, v1.0.1, Aug. 2006.

[11] Altera sheets, Using Altera Enhanced Configuration Devices, Chapter 14, Apr. 2003.
[12] Atmel FPGA, www.atmel.com
[13] Xilinx FPGA, www.xilinx.com
[14] V. Eck, P. Kalra, R. LeBlanc, J. McManus, In-Circuit Partial Reconfiguration of Rocket-

IO Attributes, Xilinx Application Notes, XAPP662, May 26, 2004.
[15] A. Moffat, R. M. Neal, I. H. Witten, Arithmetic Coding Revisited, ACM Transactions on

Information Systems, Vol. 16, No. 3, July 1998, 256–294.
[16] Xilinx Product Specification, Virtex-II Pro and Virtex-II Pro X Platform FPGAs:

Complete Data Sheet, DS083 v4.5, Oct. 10, 2005.
[17] Xilinx Reference Guide, PowerPC Processor, EDK 6.1, Sept. 2, 2003.

115

Chapter 7

RECONFIGURABLE DEVICES FOR THE
ANALYSIS OF DNA MICROARRAY
A complete gene expression profiling platform

A Deoxyribonucleic Acid (DNA) microarray is a collection of microscopic
DNA spots attached to a solid surface, such as glass, plastic or silicon chip
forming an array. DNA microarray technologies are an essential part of
modern biomedical research. DNA microarray allows to compress in a little
microscope glass, hundreds of thousands of different DNA nucleotide
sequences, and permits to have all this information on a single image. The
analysis of DNA microarray images allows the identification of gene expres-
sions in order to drawn biological conclusions for applications that ranges
from the genetic profiling to the diagnosis of cancer disease. Unfortunately,
DNA microarray technology has a high variation of data quality. Therefore,
in order to obtain reliable results, complex and extensive image analysis
algorithms should be applied before actual DNA microarray information can
be used for biomedical purpose. In this paper, we present a novel hardware
architecture specifically designed to analyze DNA microarray images. The
architecture is based on a dual core system implementing several units
working in a single instruction-multiple data fashion. An FPGA-based
prototypal implementation of the proposed architecture is presented in this
chapter showing how reconfigurable devices can be used to increase the
computation performances in biomedical applications.

1. INTRODUCTION TO THE DNA MICROARRAY

The Deoxyribonucleic Acid (DNA) microarray is a solid surface, such as
glass, plastic or silicon chip studded with a large number of DNA fragments,
each containing a nucleotide sequence that serves as probe of a specific

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,
© Springer Science + Business Media B.V. 2008

117

Chapter 7

gene. The purpose of DNA microarray is examining the expression of
several thousands of genes simultaneously [1]. DNA microarray allows to
identify and study the gene expression patterns that underlie cellular
physiology, in particular in order to obtain the genetic profiling and identi-
fying the differently expressed genes in cancer disease. DNA microarray
images are generated by an automated scanning-laser microscope that scans
a microarray slide with several blocks of two dimensional (2-D) arrays
where the DNA fragments are localized. The purpose of DNA microarray
data analysis is to draw biologically meaningful conclusions. In particular,
the goal of the microarray image analysis is to extract absolute or relative
intensity values from each DNA fragment (spot) that represents the gene
expression level.

The results of a microarray experiment is presented in the form of an
image, where the most expressed genes are indicated by high intensity spots
with different channels ranging from the cyanine dyes, Cy3, that is the green,
and the Cy5, that is the red. Several, microarray analysis steps need to be
done before a conclusions is made.

The first stage of the analysis is called gridding, that is the process of
assigning coordinates to the spot locations. The gridding (also known as
addressing or grid alignment [2]) is a processing phase that aims to localize
the positions of the spots that should be analyzed. This phase is fundamental
since the localization off the exact spots positions allow to extract the correct
information from the correspondent DNA fragment. Basically, the gridding
process generate a grid where a set of spaces, parallel and perpendicular
lines with the image content representing the 2-D array of the spots are
registered. Thus, several squares of different dimensions are identified on the
grid. Each square should be correctly placed on the correspondent spot. In
order to find the spot on the 2-D array image, the gridding process is based
on image processing algorithms which may identify objects into constituent
regions. The edge detection algorithm is the most suitable solution in order
to measure and recognize the spots positions [3]. This algorithm works on
the microarray images placing the edges in the image with strong intensity
contrast, considering that they occur at image locations representing spot
boundaries.

The data is then segmented in order to separate the foreground pixels
from the background. Once the spots are identified, this stage allow to select
which pixels belong to the spot and which needs to be considered image
noise. The third step is the quality assurance that corresponds in identify and
avoid the analysis of low dependable spots. This step measures the quality
of the previous steps by fixing some features to check, for example spot
morphology, size, intensity, and homogeneity. Finally, comes the intensity
extraction that corresponds to reading the intensity of expression of each

118

Reconfigurable Devices for the Analysis of DNA Microarray

DNA fragments and classifying properly the DNA microarray information
extracted.

The execution of a complete analysis flow of a DNA microarray image is
a time consuming task. Previously developed approaches are mainly based
on completely software-based solutions where the edge detection algorithm
is executed by standard CPUs performing software routines on the whole
pixels of the DNA microarray image [4–6]. In order to reduce the compu-
tational time some approaches try to down sample the microarray image,
unfortunately this approaches have an high lost of accuracy that results
in missing information about each DNA microarray spot [7]. All these
solutions are extremely time expensive due to the complex and repeated
CPU operations executed. Furthermore they have a computational speed that
is inversely proportional to the image resolution, principally because edge
detection algorithm is executed by software routines that elaborate groups of
pixels, thus the elaboration time increases with the number of pixels of the
processed microarray image. Previous works, essentially limited on the gridding
process, have experimentally demonstrated the capability of parallel and
multitasking architecture to drastically reduce the computational time [4].

A dual core architecture is presented in this chapter. It is able to perform
a complete image analysis flow of a DNA microarray image. The aim of this
work, is to support a full-automatic execution of the gridding and spot segmen-
tation processes as well as the quality assurance and intensity extraction of
ever DNA microarray image. The proposed approach is able to elaborate
DNA microarray images in a fraction of time previously developed software-
based approaches need. Furthermore, the proposed system is drastically
increasing the capability of detecting spots in DNA microarray images since
it does not loss any accuracy of the microarray image. In order to evaluate
the effectiveness of the proposed architecture we use original DNA microarray
images available from the Stanford University Microarray Database [8]. The
experimental evaluation presents a maximum computational speed of one
order of magnitude better than previously developed software-based appro-
aches. Besides, detailed quality assessment analysis, demonstrated that the
capability of detecting DNA spots, increases of more than 30% with respect
to previously developed software-based approaches.

2. OVERVIEW ON THE PREVIOUSLY DEVELOPED
ANALYSIS TECHNIQUES

Nevertheless the DNA fragment spots position should be prior known, since
the DNA microarray devices are manufactured with regular structure, several
issues during the biological process may influence the regularity of its

119

Chapter 7

structure inserting noise and distortion of the scanned DNA microarray
image. The major challenges result from the irregularity of the grid and the
appearance of significant illumination noise that corrupt the expected
illumination of the genetic markers where the DNA fragment probes are
placed. The DNA microarray analysis requires finding the location of the
microarray probes and the spots resulting from the biochemical reaction
of the analyzed tissue. Once the locations have been determinate, various
measurements technique can be performed in order to determine their
discriminatory power and robustness [9].

The DNA microarray analysis has been addressed in two ways. First, the
problem was attached by using a very accurate technology, for example, in
the case of Affymetrix chips [10]. However, this technology is much more
expensive than the commercial on-the-shelf (COTS) ones, and thus the need
for solving the image analysis has remained. Second, the microarray analysis
was addressed with template-based and data-driven approaches based on
software routines. The template-based approach is the most relevant in the
literature and it is based on complete software packages [12]. Vice versa, the
data-driven approach has been based on statistical analysis of 1D image
projections and by analysis using image segmentation algorithm [13, 14].
Several currently available software packages enable manual template
matching by correcting the spot size, spot spacing and grid location [15].
However, the irregular grids morphology cannot be computed with template-
based approaches unless a manual adjusted is defined. On the other sides the
data-driven approaches are capable of finding irregular grids but provide low
quality grids due to spurious or missing spots.

The purpose of the developed DNA microarray analysis system is to
execute the image processes in a fully automated way, in order to reduce the
human-operations and thus minimizing the measurement error introduced.

The contribute of this system consists of two major advantages. First, it
is implemented only on a hardware platform and takes advantages of the
parallel execution of the edge-detection algorithm during the several proces-
sing phases. Second, in comparison with other data-driven methods that
work on all the image pixel reducing the computational time and the data
accuracy, the analysis algorithm is based on a recursive spot segmentation
algorithm that works on different DNA microarray image sub-regions thus
avoiding the typical limits of the data-driven algorithms.

120

Reconfigurable Devices for the Analysis of DNA Microarray

3. PRELIMINARIES OF DNA MICROARRAY IMAGE

ANALYSIS

A DNA microarray image, as that depicted in Figure 7.1, is characterized by
three main objects: the Spots, the Sub-grids and the Background. Theoretically,
a DNA microarray image is characterized by deterministic grid geometry,
known background intensity with zero uncertainty, pre-defined spot shape,
and constant spot intensity that has to be different from the background.
Finding such an ideal DNA microarray is almost impossible.

Figure 7.1. A slice of DNA microarray image.

A realistic DNA microarray image, due to the complex process which

involves electrical, optical and chemical issues, is characterized by several
differences with respect of an ideal image. These differences are mainly due
to the variation of four parameters:

1. Image Channels: this is caused principally by the digital storage file
formats. The digital image has to accommodate an analog signal, intro-
ducing sampling and quantization issues. The usage of lossy data
compression techniques increases the variations of the original analog
image. In our approach we do not use any data compression technique,
therefore the proposed architecture does not increase the original image
channel variation.

2. Grid Geometry: the irregularity of the DNA microarray sub-grid is often
caused by the biological microarray preparation. This irregularity usually
results in rotational offset. Our approach generates an edge output image
which allows correcting the possible irregular spaced or rotated sub-
grids.

3. Background: the presence of dust or dirty tissue during the acquisition
procedure causes often a non linearity of the background intensity level.
Thanks to a morphologic analysis of the sub-grids, our approach provides
an Intensity Background Ratio that allows executing the appropriate
noise-reduction filter to the whole image before its computation.

Spot
Sub-grid

Background

Spot
Sub-grid

Background

121

Chapter 7

4. Spot Morphology: A large number of shape deviations exits, equals to the
total number of spot cell within a sub-grid. Our approach identifies
squares containing the spot morphology, whatever is the spot shape. The
proposed approach is flexible and may be used also on not common DNA
microarray technologies that adopt rectangular or triangular spots.

3.1 The edge detection algorithm

Edge detection is one of the key algorithms used in object recognition in
images [16]. It consists in a 2-D first derivate operator applied to the grey-
scale image to highlight regions of the image with high first spatial derivates.
The edges are translated into ridges in the gradient magnitude of the image.
The algorithm tracks along the top of these ridges and sets to zero all pixels
that are not actually on the ridge top and give a thin line in the output. The
edge detection of an image is the convolution products of the image pixels
with different masks which result in the calculation of the horizontal and the
vertical gradient. The two gradients are calculated using differences between
adjacent pixels.

One way to find edges is to use the Prewitt kernels. The Prewitt kernels
are based on the idea of the central difference, and are expressed by the
following first order spatial derivates:

The two derivates correspond to a convolution kernel consisting in the

horizontal convolution expressed by {-1,0,+1} and the vertical convolution
expressed by {-1,0,1}. These convolutions are applied to the grey-scale
image to get the horizontal and the vertical gradients.

 (a) (b)

In order to perform the convolution on the entire image, the idea consists

in building a n × n (typically 3 × 3) matrix of numbers called kernel mask,
and in multiplying it with a portion of the image of the same dimension.
Then, all the products are summed in order to determine the central pixel
value. The kernel mask using Prewitt coefficients will be the matrix reported

2
),1(),1(yxIyxI

x
I

2
)1,()1,(yxIyxI

y
I

101
101
101

111
000
111

122

Reconfigurable Devices for the Analysis of DNA Microarray

in (a) for the vertical edge detection and the one reported in (b) for the
horizontal edge detection. The results of the convolution will stay in the
range defined by the pixel resolution in number of bit, thus if the pixel
resolution is 8 bits, the range of the results will be [0:255]. If a resulting
pixel exceeds the range, it has to be normalized.

4. THE PROPOSED DNA MICROARRAY ANALYSIS
ARCHITECTURE

The main purpose of the proposed approach is to provide a faster and high-
precise analysis of DNA microarray images in order to extract biologically
valid information. As illustrated in Figure 7.2, the proposed methodology
consist of two cores: the DNA-EDC (DNA-Edge Detection Core) and the
DNA-QAC (DNA-Quality Assessment Core). The proposed system, on the
basis of the DNA microarray image and of several data rules generates an
image data gridding containing the information about the generated grid and
segmentation of the considered DNA microarray image and the expression
levels of the identified DNA fragments (spots).

Figure 7.2. An overview of the proposed methodology.

The DNA Microarray Data Rules include the number of spots for each

sub-grid in terms of rows and columns and the number of sub-grids within
the DNA microarray image analyzed. Please note that all these information
are provided by the manufacturer of the DNA microarray used.

DNA microarray
image Memory Storage

Partition

Edge Detection

Gridding
Elaboration

Edge
image

DNA Microarray
Data Rules

Image Data
Gridding

DNA-EDC flow DNA-QAC flow

Static sub-grid
evaluator

Spot-Addressing

Spot
Auto-correlation

Read
Expression

DNA fragments
Expression levels

DNA microarray
image Memory Storage

Partition

Edge Detection

Gridding
Elaboration

Edge
image

DNA Microarray
Data Rules

Image Data
Gridding

DNA-EDC flow DNA-QAC flow

Static sub-grid
evaluator

Spot-Addressing

Spot
Auto-correlation

Read
Expression

DNA fragments
Expression levels

123

Chapter 7

The DNA-EDC flow consists of three phases:

1. Memory Storage Partition: this phase consists in dividing the original
DNA microarray image in several frames. Each frame will be transferred
in a single memory block within the DNA-Edge Detection Core.

2. Edge Detection: this phase performs the execution of the edge detection
algorithm of the DNA microarray image. Each frame contained within
the memory block is computed in parallel and the result of the
computation is transferred to the output Edge image.

3. Gridding Elaboration: this phase generates the gridding matrix related to
the analyzed image.

The result of the DNA-EDC flow is the Image Data Gridding that
includes the following information:

(a) Intensity Background Ratio: it is the ratio between the image intensity of
the background area and the image intensity of the several sub-grids area.
This parameter is particularly important to estimate the quality of the
image, and if needed to apply a post-processing noise reduction filter
choosing the order on the bases of the Intensity Background Ratio.

(b) Grid Matrix: is a data matrix containing the coordinates of the lines that
form the grid of the DNA microarray image. It consists of couples of data
related to the horizontal and vertical positions.

(c) Edge Image: it is the output image after the computation of the edge
detection phase. This image allows identifying the shape and the size of
each spot.

The result of the DNA-QAC flow is the DNA fragments expression level
of the identified spots. The expression level is reported as an index of the
fluorescence for each individuated spot and can be used to extract biological
information from the analyzed tissue. Considering the grid G(x,y) and {x1,..,
xn},{y1,.., yn} the grid coordinates generated by the DNA-EDC module for
all the spot locations, the DNA-QAC flow analyze each G(xi, yi) and in case
of the spot shape is not correctly identified, it re-computes the coordinate
according to a Detailed Segmentation Spot algorithm (DeSSa).

The DNA-QAC consists of four phases:

(a) Static Sub-Grid Evaluator: this phase consists in estimate the spots
position obtained after the gridding process performed by the DNA-EDC
module.

(b) Spot-Addressing: this phase elaborates the spots that are not correctly
identified. It modifies the spot coordinates in such a way that the spot i is
correctly contained within the grid square G(xi , yi).

(c) Spot-Autocorrelation: this phase consists in applying the correction of the
grid square alignment performed in the previous phase, for all the spot
coordinates corrected. It returns to the DNA-EDC gridding elaboration

124

Reconfigurable Devices for the Analysis of DNA Microarray

phase the spot coordinates that have been fixed, and thus does not need to
be re-computed by the DNA-EDC gridding elaboration phase.

(d) Read Expression: this is the last phase performed by the EDC-QAC flow.
It is performed when all the spots are aligned in the best possible
solution. It reports the final number of correctly identified spots, and for
each spot i it returns the correspondent fluorescence value V.

The system operation may handle DNA microarray image of different
dimension and with different spot shapes. In details, the system is based on
two microprocessor core running in conjunction. The first processor,
manages and synchronizes the task sequence of the DNA-EDC core. The
second processor belongs to the DNA-QAC core and it is completely
dedicated to run the DeSSa algorithm.

4.1 The edge detection architecture

Figure 7.3. The architecture layout of the development DNA-Edge Detection Core (DNA-
EDC).

The scheme of the developed architecture DNA-Edge Detection Core

DNA-EDC is depicted in Figure 7.3. The DNA-EDC architecture consists of
the following components:

1. Master Microprocessor: The Master Microprocessor manages the
execution flow of the entire DNA-EDC architecture. It principally reads
the image data from the input memory and controls the transfer and the
computation operations.

2. Input Memory: The input memory stores the original DNA microarray
image. It is organized in 32-bit data words, where each data word stores 4
data pixels. Considering that the original DNA microarray image consists
of several pixels each one having an intensity value that ranges from the

Microprocessor
Controller

Input Memory
BlockInput

Memory

Convolver
Units

Score
Unit

Vertical and Horizontal
Masks

Frame 1
Frame 2
Frame 3

Frame 64

Computational
MatrixOutput

memory

Output
Memory Block

Frame 1
Frame 2
Frame 3

Frame 64

Data
DMA

Microprocessor
Controller

Input Memory
BlockInput

Memory

Convolver
Units

Score
Unit

Vertical and Horizontal
Masks

Frame 1
Frame 2
Frame 3

Frame 64

Computational
MatrixOutput

memory

Output
Memory Block

Frame 1
Frame 2
Frame 3

Frame 64

Data
DMA

125

Chapter 7

level 0 to the level 255 (the color ranges from the black to the white
considering the grey-scale), each pixel has been coded on 8 bits and the
image is progressively stored in a raster way starting from the top-left to
the bottom-right.

3. Output Memory: the output memory stores the image resulting from the
edge detection process on the original DNA microarray image.

4. Horizontal and Vertical Mask: the horizontal and the vertical masks are
two 3 × 3 matrices containing the coefficients that will be used for the
computation of the edge detection process. Each matrix’s cell is
implemented by a 8-bit register.

5. Input Memory Block: the input memory block consists of 64 frames. Each
frame is characterized by 16 buffer registers of 32 bits. The input data
pixels are transferred from the input memory to each frame through the
control of the Master Microprocessor.

6. Data DMA: the Data DMA unit is devoted to transfers the image data
stream from the input memory to the Input memory block frames. This
module is essential in order to guarantee faster data-transfer.

7. Computational Matrix: the computational matrix is the more complex
part of the developed system. It consists of 64 convolver units. Where
each convolver unit is able to compute the edge detection process on 9
pixels at every clock cycle. The inputs of each convolver unit are
connected to the outputs of the corresponding frames within the input
memory block and to the vertical or horizontal masks. Vice versa, the
outputs from each convolver unit are connected to the correspondent
frames within the output memory block.

8. Output Memory Block: the output memory block is formed by 64 frames
of 16 32-bit buffer registers. Each frame is connected to the output
signals coming from the correspondent convolver unit within the compu-
tational matrix. Vice versa, the output of each frame is connected to the
Vertical and Horizontal Score unit.

9. Score Unit: the score unit computes the vertical and the horizontal profile
of the edge detected data contained within each frame of the output
memory block. The horizontal and the vertical profiles are the sum of
each pixel intensity value on all the pixel columns and rows respectively.

The unit that executes the computation on the image and produces the
correspondent edge detected image is the computational matrix. The compu-
tational matrix consists of 64 convolver units performing the computation of
the convolution multiplication in parallel. The architecture of a convolver
unit is illustrated in Figure 7.4.

It consists of an arithmetic architecture that executes the convolution
operation between two 3 × 3 matrices of data pixels.

126

Reconfigurable Devices for the Analysis of DNA Microarray

Figure 7.4. The architecture of the developed convolver unit.

The architecture is composed by two matrices: the Kernel Mask and the

Data Mask. The Master Microprocessor transfers into the Kernel Mask the
Horizontal or the Vertical Mask depending if the edge detection is computed
on the horizontal or vertical direction. The convolution operations are
executed by nine multipliers and one adder, where each multiplier perform
the multiplication between the matrix cells Kij and Dij, and the adder perform
the additions between the nine multiplier outputs. The adder output ed_pixel
is linked with the correspondent frame within the output memory block.

Figure 7.5. The architecture of the developed score unit.

The Score unit generates horizontal and vertical histogram projections

that sum the values of the edge pixels in both the directions. These values are
used by the Master Microprocessor in order to create the data matrix

X

X

X

X

+

Kernel Mask

Data Mask

rowi

rowi+1

rowi+2

Load
kernel

3

ed_pixel

K11 K12 K13

K21 K22 K23

K31 K32 K33

D11 D12 D13

D21 D22 D23

D31 D32 D33

X

X

X

X

+

Kernel Mask

Data Mask

rowi

rowi+1

rowi+2

Load
kernel

3

ed_pixel

X

X

X

X

+

Kernel Mask

Data Mask

rowi

rowi+1

rowi+2

Load
kernel

3

XX

XX

XX

XX

+

Kernel Mask

Data Mask

rowi

rowi+1

rowi+2

Load
kernel

3

ed_pixel

K11 K12 K13

K21 K22 K23

K31 K32 K33

D11 D12 D13

D21 D22 D23

D31 D32 D33

Frame 1

Frame 2

Frame 3

Frame 4

Frame 64

Score
Frame 1+

Score
Frame 2+

Score
Frame 3+

Score
Frame 4+

Score
Frame 64+

MUX

Score Frame Selection

Output Score

p1

p2

p3

p4

p64

Frame 1

Frame 2

Frame 3

Frame 4

Frame 64

Score
Frame 1+

Score
Frame 2+

Score
Frame 3+

Score
Frame 4+

Score
Frame 64+

MUX

Score Frame Selection

Output Score

p1

p2

p3

p4

p64

127

Chapter 7

containing the coordinates of the lines that form the gridding of the DNA
microarray image. The architecture of the Score unit, which is depicted in
Figure 7.5, consists of a multiplexer controlled by the Master microprocessor,
a couple of 64 parallel registers of 32 bits and 64 adders.

The lines of the Output memory block frames are directed into the
correspondent score unit input register Pi. The content of each register Pi is
added to the Score Frame i at every computation. At the end of the elabora-
tion of each pixel row, the Score Frame i contains the histogram projection
of the correspondent pixel i. The Master Microprocessor transfers the
content of the 64 Score Frame registers and computes the horizontal/vertical
grid lines on the basis of the minimum score parameter and the number of
searched lines. At the end of the computation the content of the Score Frame
registers is reset.

4.2 The quality assessment core

The DNA-Quality Assessment Core (DNA-QAC) has been developed in
order to extract the expression level of each identified DNA spot. It is based
on a Detailed Spot Segmentation Algorithm (DeSSa) executed on a micro-
processor core working in conjunction with the DNA-EDC core. The flow of
the proposed DeSSa algorithm is reported in Figure 7.6. The algorithm
consists of four steps, as introduced in the previous section: static sub-grid
evaluator, spot addressing, spot auto-correlation and read-expression.

The static sub-grid evaluator consists in analyzing all the spot area (SP)
identified by the coordinates G(x,y). The function analyze_spot_shape()
compares the pixels intensity contained in every grid square identified by the
coordinates G(x,y) with a defined spot shape. The defined spot shape is set
by the user, considering the manufacturing characteristics of the DNA
microarray device used. In the case, the spot shape is not correctly fitted, the
spot square coordinates are added to a Not-Defined-Spot (NDS) list.

The spot addressing phase modifies the spot square coordinates of the
NDS list. This phase search the possible grid square position that allows to
contain a single spot. The process is divided in two functions:

1. extend_spot_area(): this function progressively enlarges the
grid’s square dimension on all the four directions in order to fit the spot
area completely.

2. min_neighborhood(): this function computes the intensity ratio
(threshold) of the signal in the neighborhood area of the considered
grid square. If the signal intensity ratio is lower than the minimum spot
shape parameter set according to the DNA microarray manufacturing
characteristics, the grid’s square dimension is considered as fixed.

128

Reconfigurable Devices for the Analysis of DNA Microarray

Once the spot addressing is finished, the grid’s square positions need to be
correlated with the other grids previously computed. This process is perfor-
med by the DNA-EDC core that starts the gridding elaboration phase. This
phase is executed only for the grid area not belonging to the NDS list. The
three algorithm steps are repeated until the update process is completely for
all the grid squares.

Finally, the last step of the DeSSa algorithm consists in computing the
expression level of all the detected spot area. The expression level is provided
as an average intensity value computed for all the pixels belonging to spot
area defined by the grid G.

DeSSa()
 {
 do
 {
 /*Static Sub-Grid Evaluator*/
 for each spot area SP G(x,y)
 {
 NDS(i) = analyze_spot_shape(SP, G(x,y))
 }
 /*Spot Addressing*/
 for each not-defined-spot i NDS
 {
 min=false
 while(!min)
 {
 extend_spot_area (i,G(x,y))
 threshold = min_neighborhood (i, G(x,y))
 if (threshold < min_spot_shape(i))
 min=true
 }
 }
 /*Spot Auto-Correlation*/
 update_NG_list(NDS,G(x,y))
 } while (update_NG_list(NDS) == not_completed)
 /*Read Expression*/
 for each spot area SP G(x,y)
 compute expression_level (SP)
 }

Figure 7.6. The flow of the developed Detailed Spot Segmentation Algorithm (DeSSA).

5. EXPERIMENTAL RESULTS

A prototype of the system architecture has been developed on a Xilinx
Virtex-II Pro Development System board embedding a XC2CP30 SRAM-
based FPGA device and using an external memory of 256 Mb [17]. This
FPGA device embeds two hardwired microprocessors PowerPC 405 which
consists of a 32-bit hardware architecture [18] and it consist of 136 memory

129

Chapter 7

block of 18 Kb each one, 27,392 Flip-Flops (FFs) and 27,392 Look-Up
Tables (LUTs) organized in a matrix of 13,696 logic cells. We implemented
the architecture layout depicted in the section IV using the two PowerPC 405
as the controller for the DNA-EDC core and for the DNA-QAC core. We
divides the external memory in two banks in order to implement the input
and output memories. We set the clock frequency of the entire system at 200
MHz. The used resources of the implemented system are shown in Table 7.1,
where we reported the number of used FFs, LUTs and BRAMs (divided in
number of block and total K-Byte used) for each module of the developed
system. In order to guarantee fast data computation, we mapped the internal
registers of the input and output memory blocks exploiting the dual port
Block-RAM resources of the Xilinx FPGA. In particular, we mapped two
frame registers for each Block RAM.

TABLE 7.1 Prototypal characteristics of the developed system

BRAMs
Module FFs [#] LUTs [#]

[#] KB
Data DMA 155 1,684 0 0

Input memory block 1,400 860 32 4

Computational matrix 25 12,032 0 0
Output memory block 1,408 894 32 4

Score unit 15 6,804 32 0.5
DNA-QAC 568 360 12 4

The performance capabilities of the developed system have been evaluated

on original case study DNA microarray images available from the Stanford
Microarray Database [11] and containing images of several kind of DNA
microarray devices and image quality. On the considered images we configured
the system in order to compute the edge detection algorithm using the
Prewitt masks [5]. The characteristics of the analyzed images are illustrated
in Table 7.2 while the results obtained are shown in Table 7.3. Where it is
reported as DNA microarray ID, the reference identification number of the
considered image form the Stanford University Database Category, the kind
of DNA microarray image analyzed; Dimension, the image dimension in
term of number of pixels for rows and columns; the Computational time, the
computational time for the proposed system and for the pure software
approach presented in [7] executed on a Pentium-II processor equipped with
1 Gbyte of RAM, and running at 1,6 GHz, and finally the performance
quality of the obtained gridding considering the percentage of correctly
individuated spot over the total number of spot belonging to the considered
DNA microarray devices.

130

Reconfigurable Devices for the Analysis of DNA Microarray

TABLE 7.2 DNA microarray images characteristics

TABLE 7.3 Experimental results of the proposed dual core system for the analysis of DNA
microarray images

DNA microarray
ID [#] Performance [s]

Spot coverage
[# identified spots / #

existing spots]

 Proposed
approach

Software
approach

Proposed
approach

Software
approach

10,029 10.9 194.3 0.97 0.61
3,657 4.9 73.8 1 0.87

12,507 15.4 138.5 1 0.3
16,940 16.3 136.4 1 0.64
12,485 16.5 171.8 0.98 0.68
12,395 10.4 104.2 0.99 0.58
40,600 22.7 166.1 0.98 0.64
34,905 15.2 182.4 0.97 0.78
67,549 16.2 145.7 1 0.82

On the considered case study, it has been recorded an average percentage

of individuated spots of 98% versus the 66% obtained with the approach
proposed in [7]. These results demonstrated that the proposed system is able
to analyze DNA microarray images introducing only a minimal error in
the obtained DNA microarray spots expression level. Besides, it is clearly
illustrated a reduction of the computational time of more than one order of
magnitude with respect to a pure software solution. This result demonstrates
that the usage of hardware-accelerated architectures could drastically
improve the analysis of DNA microarray images.

DNA microarray
ID [#] Category Dimension

10,029 Adenoma – liver 1,900 × 3,640
3,657 Brest – tumor tissue 1,992 × 1,870

12,507 Lymphoma – normal tissue 1,940 × 5,496
16,940 Lymphoma – follicular 1,940 × 5,548
12,485 Solid tumor – primary 1,920 × 5476
12,395 Metastatic tumor – liver 2,016 × 3,744
40,600 Neurobiology – amplification 2,048 × 5,680
34,905 Stress – drug treatment 1,888 × 5,500
67,549 Normal tissue – whole blood 1,894 × 5,512

131

Chapter 7

REFERENCES

[1] Amos Mosseri, Eitan Hirsh, Analysis of Gene Expression Data, Lecture 3, Tel Aviv
University, 2005.

[2] Y. H. Yang, M. J. Buckley, S. Dudoit, T. P. Speed, Comparison of Methods for Image
Analysis on cDNA Microarray Data, Dept. Statistic., University of California at
Berkeley, Tech. Rep. 584, Nov. 2000.

[3] B. Fisher, S. Perkins, A. Walker, E. Wolfart, Hypermedia Image Processing Reference,
Department of Artificial Intelligence, University of Edinburg, Available: http://www.
cee.hw.ac.uk/hipr/html/index.html

[4] L. Sterpone, M. Violante, A New FPGA-Based Edge Detection System for the Gridding
of DNA Microarray Images, IEEE Instrumentation and Measurement Technology
Conference, 2007, pp. 1–6.

[5] P. Bajcsy, An Overview of DNA Microarray Image Requirements for Automated
Processing, IEEE Conference on Computer Vision and Patter Recognition, Vol. 3, No. 1,

[6] Yuan-Kai Wang, Cheng-Wei Huang, DAN Microarray Image Analysis Using Active
Contor Model, IEEE Computational Systems Bioinformatics Conference, 2005, pp. 12–13.

[7] P. Bajcsy, Gridline: Automatic Grid Alignment DNA Microarray Scans, IEEE Transactions
on Image Processing, Vol. 13, No. 1, Jan. 2004, pp. 15–25.

[8] X. H. Wang, Robert S. H. Istepanian, Yong Hua Song, Microarray Image Enhancement
by Denoising Using Stationary Wavelet Transform, IEEE Transactions on Nanobioscience,
Vol. 2, No. 4, Dec. 2003, pp. 184–190.

[9] X. Wang, S. Ghosh, S. W. Guo, Quantitative Quality Control in Microarray Image
Processing and Data Acquisition, Journal on Nucleic Acids Research, Vol. 29, No. 15,
2001.

[10] Affymetrix Inc., Gene Chip Arrays, Product Description at http://www.affymetrix.com/
[11] Stanford University, Stanford Microarray Database at http://smd.stanford.edu/
[12] Axon Instrument Inc., GenePix Pro, Product Description at http://www.axon.com/
[13] M. Steinfath, W. Wruck, H. Seidel, H. Lehrach, U. Radelof, J. O’Brien, Automated Image

Analysis for Array Hybridization Experiments, Bioinformatics, 2001, pp. 634–641.
[14] A. N. Jain, T. A. Tokuyasu, A. M. Snijders, R. Segraves, D. G. Albertson, D. Pinkel,

Fully Automated Quantification of Microarray Image Data, Genome Research, Vol. 12,
No. 2, Feb. 2002, pp. 325–332.

[15] J. Buhler, T. Ideker, D. Haynor, Dapple: Improved Technique for Finding Spots on DNA
Microarrays, UV CSE Technical Report UWRT 2000-08-05.

[16] J. F. Canny, A computational approach to edge detection, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 8, No. 6, Nov. 1986, pp. 769–798.

[17] Xilinx Product Specification, Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheets, DS084 v4.5, Oct. 10, 2005.

[18] Xilinx Reference Guide, PowerPC Processor, EDK 6.1, Sept. 2, 2003.

132

2005, pag. 147.

Chapter 8

RECONFIGURABLE COMPUTE FABRIC
ARCHITECTURES
A new design paradigm

Re-Configurable Mixed grain (ReCoM) is a novel Reconfigurable Compute
Fabric (RCF) architecture based on a mixed-grain reconfigurable array
which combines a RISC microprocessor and a reconfigurable hardware for
computation-intensive applications. ReCoM comprises a modified RISC
microprocessor, a dynamically reconfigurable processing array including
reconfigurable cells formed by a 64-bits ALU, Look Up Tables (LUTs),
word-level arithmetic units, and an efficient configuration and data memory
architecture.

High-performance execution of complex algorithms involves massive
computations. In the past, custom application-specific architectures have
been used to satisfy these demands. This implementation approach, while
effective, is expensive and poorly flexible since hardwired application-
specific architectures are extremely expensive to evolve and maintain. As a
matter of that, a fixed, application specific architecture will require significant
redesign in order to assimilate new algorithms and new hardware components.
A flexible system must function in rapidly changing environments, resulting
in multiple modes of operation. On the other side, efficient hardware archi-
tectures must match algorithms to maximize performance and minimize
resources. Reconfigurable devices, such as Reconfigurable Compute Fabrics
(RCFs) allow the implementation of architectures that change in response to
the changing environment. In general, RCFs have wider applicability than
Application Specific Integrated Circuits (ASICs) or general-purpose proces-
sors alone.

A novel model for RCFs targeted at computation-intensive applications,
called ReCoM, is introduced in this chapter. The ReCoM architecture consists
of a Tiny RISC microprocessor core [1], a dynamically reconfigurable array,

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,
© Springer Science + Business Media B.V. 2008

133

Chapter 8

a reconfigurable management unit and a memory interface. The main
characteristic of ReCoM is given by the reconfigurable array based on a
mixed-grain reconfigurable cell architecture including a 64-bits ALU, Look
Up Tables (LUTs) and word-level arithmetic units, that may target both
word-level and bit-level granularity applications.

The capabilities of the proposed reconfigurable system have been validated
on a representative case study implementing a FIR filter. Furthermore, the
performance obtained by ReCoM have been compared with those coming
from a DSP and a previous developed reconfigurable system, showing an
improvement of at least three times in term of computational speed.

1. INTRODUCTION TO RCF DEVICES

The range of existing reconfigurable architectures is divided in two main
categories: fine and coarse grained approaches. Fine grained devices are
optimized to implement glue logic or irregular structures like finite state
machines. Conversely, coarse grained devices are optimized to implement
word level computational intensive applications.

Fine grain prototypes are generally built on a computational model based
on a unique processor. They include prototypes such as DPGA [2] or Garp
[3] especially oriented to application domains such as bit-level computation
or image processing and cryptography. On the other side, coarse grained
prototypes are based on an array of processing units organized in a Multiple-
Instruction Multiple-Data (MIMD) or in a Single-Instruction Multiple-Data
(SIMD).

MIMD architectures may be used in a wide range of application areas,
such as computer-aided design/manufacturing, simulation, modeling and
communication switches. Examples of MIMD-based reconfiguration systems
are MATRIX [4] or RAW [5].

The recent years have seen the introduction of many computation-
intensive tasks as mainstream applications that manipulate large arrays and
matrices in minimal time. These tasks are performed efficiently on SIMD
architectures. Reconfigurable systems based on SIMD array are REMARC
[6], MorphoSys [7] or DReAM [8]. REMARC is a reconfigurable coproces-
sor that is tightly coupled to a main RISC processor and consists of a global
control unit and 64 programmable logic blocks called nano processors.
Similarly, the MorphoSys architecture comprises five components: a core
processor, a reconfigurable array, a context memory, a frame buffer and a
DMA controller. A three layer interconnection network gives to the reconfi-
gurable array high connectivity. Another coarse grained reconfigurable
device is the Dynamically Reconfigurable Architecture for Mobile System
(DReAM). It consists of an array architecture of reconfigurable processing
units (RPUs) optimized for the requirements of mobile communication

134

Reconfigurable Compute Fabric Architectures

system. Each RPU consists of two dynamically reconfigurable 8-bit data
paths and two 16 by 8-bit dual port RAMs. The dual port RAMs are used as
LUTs when performing multiplication operations.

A medium-grain reconfigurable cell array prototype has been previously
developed in [9]. This prototype is based on a matrix of programmable 4-bit
cells where each cell performs a small portion of the overall algorithm.

ReCoM has several enhancements if compared with previous SIMD-
based or medium-grain reconfigurable systems. It has a configuration and
data transfer architecture that could be controlled independently by the
reconfigurable array and a multi domains dynamically reconfiguration unit
that permits configuration swap oriented to multi tasking applications.
Finally, the ReCoM’s reconfigurable array incorporates mixed grained-based
cells that could be used in order to implement word-level or bit-level
granularity applications.

2. THE ReCoM ARCHITECTURE

The architecture of the proposed reconfigurable compute fabric ReCoM is
illustrated in Figure 8.1. The ReCoM’s main components include a Reconfi-
gurable Unit, a RISC processor (Tiny RISC), two DMA controllers (one
related to the configuration, and one to data stream) managed by the RISC
processor and a data DMA controller managed by the reconfigurable unit.

Figure 8.1.The architecture of the reconfigurable compute fabric system ReCoM.

The reconfigurable unit is composed of several sub-components: a
Reconfigurable Logic Array (RLA), a context memory, a Data Buffer, a Self
Context and a Self DMA units.

The reconfigurable logic array is configured by the RLA context
memory, while the Tiny RISC is the main processor that manages the DMAs

Tiny RISC

Reconfigurable
Logic ArrayData DMA

Configuration DMA

Reconfigurable Unit

RLA context memory

Data
Buffer

ReCoM

Logic Array Data DMA

Self
Context

External M
em

ory

Self
DMA

135

Chapter 8

dedicated to the data/configuration flow towards the reconfigurable logic
array and that drives the RLA context memory. Vice versa, the Self Context
unit allows the reconfigurable logic array to partially or totally reconfigures
itself independently from the control of the main processor. Furthermore, the
Self DMA unit can manage a dedicated DMA (Logic Array Data DMA) in
order to transfer data to/from the external memory without the participation
of the main processor. This is extremely useful in order to exploit the
parallelism available in an application’s algorithm.

The main processor of ReCoM is a 32-bit processor, called TinyRISC
[1]. Tiny RISC is a 4-stages pipelined processor with four registers in
addition to the register file and the special register file. One is the program
counter register, which contains the address of the program execution point.
The other three are the pipeline registers, which provide the latched interface
between each pipeline stage. For ReCoM, the Tiny RISC pipeline structure
has been modified according to the scheme illustrated in Figure 8.2. Further-
more, several instructions are added to the original Tiny RISC ISA in order
to manage the configuration/data DMA, the RLA context memory and the
data buffer behavior.

Figure 8.2. Tiny RISC pipeline stages modified with the ReCoM executing unit.

A ReCoM unit is included, that executes the instructions added to the

original Tiny RISC ISA. These instructions and their correspondent operations
are reported in Table 8.1. There are three different categories of these instruc-
tions: instructions related to the execution of the program by the reconfigur-
able array, instructions related on the behavior of the reconfigurable array
and configuration/data DMA.

P
ipeline R

egiste 1

Pipeline R
egiste 2

Pipeline R
egiste 3

Register
File

Special
Register

Forw
arding unit 1

FETCH
STAGE

DECODE
STAGE

Forw
arding unit 2

Arithmetic
Logic
Unit

Memory
Interface

ALU/MEM
STAGE

WRITEBACK
STAGE

Branch
Unit

Program
Counter

NEXT PC

ReCoM
Unit

CONF. DMA DATA DMA

RLA CONTEXT MEMORY

DATA BUFFER

P
ipeline R

egiste 1

Pipeline R
egiste 2

Pipeline R
egiste 3

Register
File

Special
Register

Forw
arding unit 1

FETCH
STAGE

DECODE
STAGE

Forw
arding unit 2

Arithmetic
Logic
Unit

Memory
Interface

ALU/MEM
STAGE

WRITEBACK
STAGE

Branch
Unit

Program
Counter

NEXT PC

ReCoM
Unit

CONF. DMA DATA DMA

RLA CONTEXT MEMORY

DATA BUFFER

136

Reconfigurable Compute Fabric Architectures

TABLE 8.1 Instruction set added to the ISA of ReCoM

Where the reconfigurable array instructions control the execution of the

RLA by specifying the memory context that will be executed, the address
location within the RLA, the data address of the data buffer and the
functionalities of the Self Context unit. Otherwise, the instructions related on
the behavior of the reconfigurable unit define the functions of the LUTs
embedded in each reconfigurable cell. Finally, the configuration/data DMAs
initiate configuration and data transfer between the main memory and the
data buffer.

The reconfigurable unit is the main component of the ReCoM system. It

cells placed in an interconnection net, an RLA context memory, a Data
Buffer and two Self components dedicated to the context and to the data
DMA.

The basic component of the RLA matrix is the reconfigurable cell. As is
illustrated in Figure 8.3, the reconfigurable cell is composed by an ALU (64-
bits fixed-point operations) working on two 32-bits wide operands, two
LUTs of 8-bits wide input and 16-bits wide output, two 32-bits registers, a
register file composed of 15 registers (where R13 is connected to Self-DMA
unit and R14 is connected to the Self Context unit), and several multiplexers
that controls the data path. Besides, a 32-bits context word register configures
all the components excepting the two LUTs that are configured by the main
processor through memory mapping.

Instruction Description of operation

LOADCM
Load from the external memory to the RLA
context memory the program to be executed by
the reconfigurable unit

REXEC
Configure the reconfigurable unit cells
transferring a configuration set from the RLA
context memory to the context word registers

LOADB/SAVEB
Transfer the data from/to the external memory
to/from the data buffer within the reconfigurable
unit using the data DMA

LOADEX/SAVEEX

Configure the reconfigurable cells loading a
context from the context memory and
concurrently store/save the data from the data
buffer to the reconfigurable cells considering the
specified configuration table

LOADCT/SAVECT

Configure a reconfigurable cell in such a way to
manage transfer data from/to the data buffer
within the reconfigurable unit to/from the
external memory using the Self-DMA unit

LUTC Configure the content of a LUT’s word within
the RLA matrix

consists of a Reconfigurable Logic Array (RLA) of 8 × 8 reconfigurable

137

Chapter 8

Figure 8.3. Reconfigurable cell architecture.

The ALU arithmetic unit implements three kinds of standard logic and

arithmetic functions:
1. Logic operations: AND, OR, XOR and NOT
2. Arithmetic operations: ADD, SUB and MUL
3. Other operations: BYP (bypass operand to register file), RST (clear

register file) and KEEP (no ALU operations)
The operation that will be executed by the ALU is specified through two

fields: opcode (2 bits) and sub-opcode (4 bits). While the destination register
file is specified by the field ResultReg (4 bits).

The inputs of a reconfigurable cell are selected by the multiplexers (Data
A and Data B) that can be linked to two kinds of resources:
1. The data buffer or the register file, using the reconfigurable cell internal

interconnection
2. The register file of another reconfigurable cell placed in the same

row/column (H/V) or within the neighborhood (N)
Furthermore, the reconfigurable cell architecture includes two 4Kbits

LUTs that are based on 8-bits wide inputs that select one of the 256 16-bits
wide output words. The configuration words of the LUTs are memory
mapped. Thus, the content of each LUT’s word is load by the main processor
defining one of the 215 possible addresses.

Considering the configuration memory, ReCoM is based on the RLA
context memory. It is organized in four blocks where each block contains
eight sets. Each set can store eight context words. There are two possible
ways to transfer the data into the context word registers: context broadcast
and selective context enabling.

C
O

N
TE

XT
 W

O
R

D

ALU

Control Logic

Register File (R0 – R14)

Mux Data BMux Data A

LUT A LUT B

REG A REG B

R0 R1 R14

Data Out

8 8

32

32

32

16

32

32 32

16

H0 – H7V0 – V7
R0 – R14

DATA_B

32

H0 – H7V0 – V7 DATA_B
R0 – R14

32 32

DIRECT

N0 – N23 N0 – N23

R14 connected to the self
context unit
R13 direct mapped to the
self DMA unit

C
O

N
TE

XT
 W

O
R

D

ALU

Control Logic

Register File (R0 – R14)

Mux Data BMux Data A

LUT A LUT B

REG A REG B

R0 R1 R14

Data Out

8 8

32

32

32

16

32

32 32

16

H0 – H7V0 – V7
R0 – R14

DATA_B

32

H0 – H7V0 – V7 DATA_B
R0 – R14

32 32

DIRECT

N0 – N23 N0 – N23

R14 connected to the self
context unit
R13 direct mapped to the
self DMA unit

138

Reconfigurable Compute Fabric Architectures

The context broadcast mode consists in transferring a single set in row-
wise or column-wise operations to all the context words of the RLA matrix.
Where in the case of row-wise operations all the reconfigurable cells of a
row are configured with the same context word. Vice versa, in the case of
column-wise operations, all the reconfigurable cells of a column are
configured with the same context word.

The selective context enabling consists in transferring a single set to only
one row or column of the RLA matrix. In this case each reconfigurable cell
of the selected row/column may be configured in a various way.

The two different modes of transferring the configuration contexts permit
to manage rapidly the context words reconfiguration in order to guarantee
the effectiveness of the architecture’s parallelism. The RLA context memory
can be uploaded concurrently during the execution of the reconfigurable
cells, since both the configuration modes may be executed in one clock
cycle. Thus, the reconfiguration time is reduced to zero allowing the
dynamic reconfiguration of the RLA matrix cells.

The ReCoM network is a hierarchical multi domains collection of 32-bit
busses. The interconnect distribution is similar to traditional FPGA intercon-
nections architecture. Differently from traditional FPGA, ReCoM has the
possibility to dynamically switch the interconnection network between the
reconfigurable cells.

The ReCoM’s interconnection network includes two interconnection
levels, as shown in Figure 8.4. The first interconnection level (Level 1) has a
direct interconnection between the reconfigurable cells on the same row and
column (H/V). The second interconnection level (Level 2) includes direct
network interconnection provided between the reconfigurable cells within
three Manhattan grid squares (N). The results are transmitted over local
multiplexers and they are available in the destination reconfigurable cells in
one clock cycle.

Figure 8.4. Interconnection network levels.

The Data Buffer is the component devoted to the transfer of the data

to/from the external memory from/to the reconfigurable cells within the

RLA matrix

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(0,6)

(0,7)

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(2,0)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

(3,7)

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(4,7)

(5,0)

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

(5,6)

(5,7)

(6,0)

(6,1)

(6,2)

(6,3)

(6,4)

(6,5)

(6,6)

(6,7)

(7,0)

(7,1)

(7,2)

(7,3)

(7,4)

(7,5)

(7,6)

(7,7)

Level 1 Level 2

RLA matrix

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(0,6)

(0,7)

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(2,0)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

(3,7)

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(4,7)

(5,0)

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

(5,6)

(5,7)

(6,0)

(6,1)

(6,2)

(6,3)

(6,4)

(6,5)

(6,6)

(6,7)

(7,0)

(7,1)

(7,2)

(7,3)

(7,4)

(7,5)

(7,6)

(7,7)

Level 1 Level 2

139

Chapter 8

RLA matrix. It consists of three parts, as is represented in Figure 8.5: a Data
Memory, a Configuration Table and a Selection Logic.

The Data Memory is organized in 256 banks composed by 64 sets of 32-
bits data words. Each set consists 2,048 bits. The division in sets supports
the concurrent execution of the data transfers and computation operations: if
one set provides a data stream of 2,048 bits for the RLA matrix computa-
tions and stores data results from the RLA matrix; another set stores data
into the main memory through the control of one DMA controller and
reloads data for the next computation. The configuration table is organized
in 16 words of 384 bits. Each word is used to control a Selection Logic that
determines the order in which the data are transferred to/from each
reconfigurable cell within the RLA matrix.

Figure 8.5. Data-buffer architecture.

The Self-Context and Self-DMA units allow the reconfigurable unit to

reconfigure itself and to transfer data to the external memory independently
from the Tiny RISC execution.

The Self-Context unit is controlled by an internal 32-bits register that can
be addressed by each reconfigurable cell through the register file R14. The
Self-Context unit generates the signals towards the RLA context memory in
such a way to control the dynamic partial and total reconfiguration capability
of the RLA matrix.

On the other side, the Self-DMA unit is controlled by an internal 32-bits
register addressable by each reconfigurable cell through the register file R13.
This unit controls a specific DMA (Logic Array Data DMA) in order to
manage the data transfer from/to the reconfigurable array to/from the
external memory, independently of the main processor functionality. These
two units may be used effectively to increment the performance capability of
the reconfigurable system, since the main processor can be discharged of the
data transfers and configuration management.

The ReCoM system operation may handle application tasks of different
nature. In details, the Tiny RISC processor manages the sequential tasks and
controls the reconfigurable system, while the reconfigurable unit is used to
support tasks with high data-parallel operations. The execution of such tasks
is denoted by several steps. An overview on these steps is described as
follow:

Se
le

ct
io

n
Lo

gi
cConfiguration Table

16 X 384

Data Memory
32 x 64 x 256

Main Processor
Control

Data from DMAs Data from DMAs

2048

2048

384

Data Buffer

Se
le

ct
io

n
Lo

gi
cConfiguration Table

16 X 384

Data Memory
32 x 64 x 256

Main Processor
Control

Data from DMAs Data from DMAs

2048

2048

384

Data Buffer

140

Reconfigurable Compute Fabric Architectures

1. The context is loaded from the external memory and transferred into the

RLA context memory through the execution of the function LOADCM.
2. The context related to the operations executable independently from the

main processor is loaded by the function AUTOCTX. Otherwise, selective
operations may be programmed by the functions LOADCT and SAVECT,
while the LUTs are programmed by the function LUTAC.

3. The operation of the RLA matrix may be executed concurrently with the
data transfer with the functions LOADEX, SAVEEX. Besides, the LUTs
may be programmed with the function LUTA. Otherwise the parallel
execution may be performed also using the functions REXEC, LOADB
and SAVEB if the computation or the data transfer tasks have an
independent length.

3. EXPERIMENTAL RESULTS

The functionality of ReCoM system has been specified in a prototypal
behavioral VHDL. The entire system has been modeled along with external
memory. The VHDL model of ReCoM has been used to simulate a simple
benchmark application consisting in a FIR Filter. We selected two kinds of
FIR Filters: one with 4 taps and another with 8 taps and we assume to work
on 16-bit fixed-point data.

The methodology we adopted to map the FIR filters may be used for
every N taps FIR Filter with N 64.

The performance characteristics of the mapped FIR Filter implemented
within ReCoM are shown in Table 8.2 assuming to have preload within the

input necessary for each computation (NvalIN), the number of instruction
executed for the data computation (NInstr) and the number of computational
phase needed to generate all the output results (Nelab).

Table 8.2 Characteristics of the mapped FIR filters

The performances of ReCoM are analyzed and compared versus a

previous developed reconfigurable system called Morphosys [10] and versus
the fixed-point DSP TM320C55X manufactured by Texas Instruments [11].
In order to make the comparison feasible we compute the Million Samples
per Second (MSPS) considering a running frequency of 100 Mhz.

taps NvalIN Nelab NInstr
4 19 16 6
8 15 32 6

141

external memory 256 samples. In table 8.2, we reported the number of data

Chapter 8

Table 8.3 Performances comparison of different system

The comparison results are illustrated in Table 8.3. From these results it

possible to observe that ReCoM is about ten times faster versus the DSP
TM320C55X that does not implements any reconfigurable computing
features. Furthermore, ReCoM is three times faster with respect of the
dynamically-reconfigurable system Morphosys.

REFERENCES

[1] A. Abnous, C. Christensen, J. Gray, J. Lenell, A. Naylor, N. Bagherzadeh, VLSI Design
of the Tiny RISC Microprocessor, Custom Integrated Circuits Conference, May 1992, pp.
30.4.1–30.4.5.

[2] E. Tau, D. Chen, I. Eslick, J. Brown, A. DeHon, A First Generation DPGA Implemen-
tation, FPD’95, Canadian Workshop of Field-Programmable Devices, May 1995.

[3] J. R. Hauser, J. Wawrzynek, Garp: A MIPS Processor with a Reconfigurable Co-
Processor, Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, Apr. 1997.

[4] E. Mirsky, A. DeHon, MATRIX: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resources, Proceedings of IEEE
Symposium on FPGAs for Custom Computing Machines, Apr. 1996, pp. 157–166.

[5] M. Taylor, The RAW Prototype Design Document, Spread Sheet Documents, Massachusetts
Institute of Technology, Sept. 6, 2004.

[6] T. Miyamori, K. Olukotun, A Quantitative Analysis of Reconfigurable Coprocessors for
Multimedia Applications, Proceedings of IEEE Symposium on Field-Programmable
Custom Computing Machines, Apr. 1998.

[7] H. Singh, M -H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, E. Chaves Filho,
MorphoSys: An Integrated Reconfigurable System for Data-Parallel and Computation-
Intensive Applications, IEEE Transactions on Computers, Vol. 49, No. 5, May 2000.

[8] A. Alsolaim, J. Starzyk, J. Becker, M. Glesner, Architecture and Application of a
Dynamically Reconfigurable Hardware Array for Future Mobile Communication Systems,
IEEE Symposium on Field-Programmable Custom Computing Machines, 2000, pp. 205.

[9] J. G. Delgado-Frias, M. J. Myjak, F. L. Anderson, D. R. Blum, A Medium-Grain
Reconfigurable Cell Array for DSP, Proceedings of Circuits, Signals and Systems, 2003,
p. 391.

[10] H. Diab, E. Abdennour, F. Kurdahi, FIR Filter Mapping and Performance Analysis on
Morphosys, 7th IEEE International Conference Electronic, Circuits and Systems, Vol. 1,

[11] Texas Instruments, DSP TMS320C55X fixed-point digital signal processing data sheet,
Feb. 1999.

 MSPS
taps ReCoM DSP TM [11] MorphoSyS

4 267 25 89
8 133 17 80

142

No. 1, 2000, pp. 99–102.

Index

A
Accelerated radiation ground testing, 48
Advanced Virtual RISC (AVR)

microcontroller, 108
Affymetrix chips, 120
Application Specific Integrated Circuits

(ASICs), 133
Atomic displacement, 18
Automated scanning-laser microscope, 118

B
Benchmark circuits, characteristics of, 113
Block RAM memories (BRAMs), 58, 107
Boolean functions, 24
BRAMs modules, 112

C
CAN. See Control Area Network
Commercial-off-the-shelf (COTS), 89
Commercial-on-the-shelf (COTS), 120
Compression algorithm, 110
Compression ratios, 106
Compression system results, 112–114

benchmark circuits, characteristics of,
113

configuration data memory, comparison
of, 114

configuration time needed for, 114
Configurable logic blocks (CLBs), 107
Configuration Frame Rules (CFR), 61
Control Area Network, 79
Cordic Core, 112

Coronal Mass Ejection (CME), 18
Cosmic rays, 18
Cyanine dyes, 118

D
Decoder algorithm, 110
Decompression systems, 103–105

architecture, 109
Decompressor hardware module, 104
Deoxyribonucleic acid (DNA) microarray,

117–118
Dependability, 13, 47, 48, 50, 51, 53, 57,

58, 62, 63, 65, 66, 79, 80, 85–87
Design flow, 87

main modules, 87
STAR tools, 87
V-Place and RoRA router, 88
Xilinx ISE, 87

Dictionary-based techniques, 106
Dictionary-based text compression, 105
Displacement Damage Dose (DDD), 19
DNA fragment spots position, 119
DNA microarray, 117–125, 128, 130, 131

Affymetrix chips and, 120
architecture, 123–128

data rules, 123
DNA-EDC flow, phases and image

data gridding, 124
DNA-QAC, phases of, 124–125
DNA-quality assessment core

(DNA-QAC), 128–129
edge detection architecture, 125–128

143

144

 image analysis, preliminaries of
edge detection algorithm, 122–123
image channels, grid geometry and

background, 121
images characteristics, 131
major advantages, 120
proposed dual core system,

experimental results, 131
prototypal characteristics, 130
steps, 118

data, segmented in order and quality
assurance, 118

gridding, 118
intensity extraction, 118–119
missing information and low

accuracy, 119
template-based approach, 120

DNA-Quality Assessment Core
(DNA-QAC), 128

Dynamically Reconfigurable Architecture
for Mobile System (DReAM), 134

E
Electronic charge displacement, 18
Elliptic filter program, 55
Enhanced Parallel Port (EPP) protocol, 33
External memory, 109

F
Fault detection, 8
Fault effects, analysis of, 39–42
Fault injection, 49

results, 81
system, 54

Fault injection manager (FIM), 33
Fault list generation tool, 25, 30
Fault list manager (FLM), 33
Fault masking, 8

techniques, 4
Fault simulation tool, 25–28
Fault tolerance, 6, 42, 43, 82, 89, 90, 94, 95

constraints for achieving, 42–43
Fault tolerant circuits, performance

optimization of, 89
congestion graph, 90–91
voter architectures and arithmetic

modules, 91–92
V-place algorithm, 92–93

Field programmable gate arrays (FPGAs),
12, 85, 103

configuration memory, 108
SEU mitigation techniques in, 4–5

logic blocks, 12
placement algorithm, 73
vendor floorplanning tools, 111
Xilinx XC6200, 106

FIR filter, 55, 67, 112
Flip-flops (FFs), 67, 71
Forbidden vertices sets (FVSs), 72
FPGA-based circuits, 86
FPGA-based embedded system, 109
FPGA-based run-time partial

reconfiguration, 104
FPGA devices

characteristics of, 97
configuration memory, 47
design flow based on, 24
placement and routing

C-like pseudo-code, 71
Function scaling data out, 110
Function update interval, 110

H
Hardening techniques, 6–11, 42, 91, 92
Hard error, 19
Hardware description languages (HDL)

model, 27
Heavy ions, 18
High-charged particle, 19

I
Input-output blocks (IOBs), 107
Integrated circuits (ICs), sensitivity to

radiation, 3
Internal Configuration Access Port (ICAP),

54, 108
Internal memory, 111

L
Linear energy transfer (LET), 29
Logic-block errors, 21
Logic configurations, 64
Look-up tables (LUTs), 23, 64, 67, 71, 85,

134
LZ77

compression algorithm, 107
scheme, 105

LZW compression system, 113

M
Manhattan distance, measurement of, 74
Mapped FIR filters, characteristics of, 141
Metric functions, 74

Index

145Index

Microprocessors, version of, 112
ModelSim VHDL simulator, 27
MorphoSys architecture, 134
Multiple Cell Upsets (MCUs), 48

analysis of errors produced by, 58–66
experimental results of, 67–69
modules for, 57
STAR algorithm for, 56–58
violations, 58

Multiple event upsets, 57
Multiple-Instruction Multiple-Data

(MIMD), 134
Multiplexers (MUXs), 64

N
Native Circuit Description language, 27

O
On-chip FPGA decompressors, 104
On-chip peripheral bus (OPB), 54
Output buffer three-state cell (OBUFT), 32

P
Parallel algorithms, 104, 120
Placement algorithm, 4, 71–74, 76, 88, 92,

94
Place Window, 75
PowerPC, 113

microprocessor, 55
Processor-based systems, 24
Programmable interconnect points (PIPs)

cross-point, 23
types of, 13

PROM built-in decompression algorithm,
106

Proposed design flow, evaluation of, 96
PW generation

logic function (LF), 75

R
Radiation effects

categories of, 18
classification of, 18
damage caused by, 19

RCF devices, 134–135
Realistic circuit, evaluation of, 97–98

characteristics of, FPGA devices used, 97
designing, selected IP-core, 98
execution time, comparison, 97

ReCoM architecture, 135–141
data-buffer architecture, 140
instruction set, added to ISA of ReCoM,

137

interconnection network levels, 139
reconfigurable cell architecture, 138
tiny RISC pipeline stages modified, 136

Reconfigurable architectures, 134
Reconfigurable Compute Fabric (RCF)

architecture, 133
Reconfigurable processing units (RPUs),

134
Redundancy cluster-extractor, 50
Reliability-oriented place and route

algorithms (RoRA), 6, 90
adopted circuits, characteristics of, 80
circuits’ implementations

routing resources, 82
flow of, 73
robustness of circuits, 79
router, 89
routing algorithm, 72, 75, 78

flow of, 77
FPGA routing, 76

update function of, 79
Xilinx PAR, CPU time, 82

RoRA placement algorithm
flow of, 74
heuristic cost functions, 74
logic blocks, 73
TMR principle, functions of, 71–72

Routing algorithm, 72, 75, 76, 78, 80, 88,
90

Routing segments. See Programmable
interconnect points (PIPs)

Routing segments topology, 64
Routing vertex (RV)

SEU affects, 71–72
Rules-Checker algorithm, 58
Run-length compression techniques, 106

S
Scrubbing mechanism, 7
Serial communication link, 54
Simulation-based analysis tool, 24
Single Event Effects (SEE), 19
Single Event Functional Interrupt (SEFI),

20, 30, 37
Single Event Latch-Up (SEL), 20–21
Single Event Upsets (SEUs), 4, 17, 19–20,

48, 49, 56
dynamic evaluation of, 51
effect in FPGA’s configuration memory

routing problem, 5
TMR and, 4–5

estimation of effects of, 48
experimental results of, 55–56

146

hardware-based analysis of, 30–31
mitigation techniques, 6

reconfigurable-based techniques,
7–8

redundancy-based techniques, 8–11
simulation-based analysis of, 23
STAR algorithm for, 52–54

Soft error, 7, 8, 19
Solar wind, 18
SRAM-based Field Programmable Gate

Arrays (FPGAs), 85, 86
architecture of, 3
combinational and sequential logic, 3–4

generic model of, 11–12
routing graph, 13–14

SRAM-based memory devices, 56
SRAM-memories, 7, 26, 79
SRV. See Super routing vertices
STAR analyzer, 88–89

Circuit DB, 88
Floorplan DB, 89

STAR-MCU algorithm, 61, 63
State-machine logic, 9
Static analysis

algorithm, 49–51
results for SEs accumulation, 96

Static analyzer algorithm, 50
Storage cell for a single bit (S-RAM), 20
Super-routing graph architecture, 77
Super routing vertices, 78
System mapped on SRAM-based FPGA

flow of configuration data compression
algorithm, 110

types of modules, 109

T
Timing analysis, 94–96

adopted circuits, characteristics of, 94
comparison, 95

static analysis results, for SEs
accumulation, 96

Tiny RISC, 140
Total Ionizing Dose (TID), 19
Triple Modular Redundancy (TMR), 4, 31,

86, 89, 112
analysis of, 32–35
capability of tolerating SEUs, 5
circuits, 79
circuits’ implementations

routing resources, 82
effectiveness of, 57
fault masking, 8
for I/O logic, 9, 10
robustness of, 37–39
for throughput logic and state-machine

logic, 9
Two-dimensional (2-D) arrays, 118

U
Unit under test (UUT), 54
User memory architecture, 62

V
Van Allen belts, 18
Voter partition logics, 51
V-Place algorithm, 90, 92–93

W
Wiring segments, 12

X
XC2VP30 Xilinx SRAM-based FPGA, 112
Xilinx SRAM-based FPGA XC2VP30,

112
Xilinx TMR (X-TMR), 55, 67
Xilinx triple modular redundancy, 32
Xilinx Virtex-II FPGAs, 104
Xilinx Virtex II Pro device, 105
Xilinx Virtex-II Pro Platform, 112
XOR gate array, 29

Index

for, 6
dependable circuit implementation

	1402089783
	CONTENTS
	Contributing Author
	Preface
	PART I
	Chapter 1: An Introduction to FPGA Devices in Radiation Environments: From the architecture to the model
	1. Previously Developed Hardening Techniques
	2. Preliminaries of SRAM-Based FPGAS Architecture

	Chapter 2: Radiation Effects on SRAM-Based FPGAS: Modeling and simulation of radiations effects
	1. Radiation Effects
	2. SEU Effects on FPGA's Configuration Memory
	3. Simulation-Based Analysis of SEUs
	4. Hardware-Based Analysis of SEUs
	5. Robustness of the TMR Architecture
	6. Constraints for Achieving Fault Tolerance

	Chapter 3: Analytical Algorithms for Faulty Effects Analysis: Single and multiple upsets errors
	1. Overview on Static Analysis Algorithm
	2. Analytical Dependable Rules
	3. The Star Algorithm for SEU Analysis
	4. The Star Algorithm for MCU Analysis

	Chapter 4: Reliability-Oriented Place and Route Algorithm: Dependable design on SRAM-based FPGAs
	1. RoRA Placement Algorithm
	2. RoRA Routing Algorithm
	3. Experimental Analysis

	Chapter 5: A Novel Design Flow for Fault Tolerance SRAM-Based FPGA Systems: Integrated synthesis design flow and performance optimization
	1. The Design Flow
	2. Performance Optimization of Fault Tolerant Circuits
	3. Experimental Results

	PART II
	Chapter 6: Configuration System Based on Internal FPGA Decompression: A new configuration architecture
	1. Introduction to the Decompression Systems
	2. Overview on the Previously Developed Decompression Systems
	3. The Proposed System
	4. Experimental Results

	Chapter 7: Reconfigurable Devices for the Analysis of DNA Microarray: A complete gene expression profiling platform
	1. Introduction to the DNA Microarray
	2. Overview on the Previously Developed Analysis Techniques
	3. Preliminaries of DNA Microarray Image Analysis
	4. The Proposed DNA Microarray Analysis Architecture
	5. Experimental Results

	Chapter 8: Reconfigurable Compute Fabric Architectures: A new design paradigm
	1. Introduction to RCF Devices
	2. The ReCoM Architecture
	3. Experimental Results

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

