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What is exactly “Safety”? A safety system should be defined as a system that 
will not endanger human life or the environment. A safety-critical system 
requires utmost care in their specification and design in order to avoid 
possible errors in their implementation that should result in unexpected 
system’s behavior during his operating “life”. An inappropriate method 
could lead to loss of life, and will almost certainly result in financial 
penalties in the long run, whether because of loss of business or because the 
imposition of fines. Risks of this kind are usually managed with the methods 
and tools of the “safety engineering”. A life-critical system is designed to 
lose less than one life per billion (109). 

Nowadays, computers are used at least an order of magnitude more  
in safety-critical applications compared to two decades ago. Increasingly 
electronic devices are being used in applications where their correct 
operation is vital to ensure the safety of the human life and the environment. 
These application ranging from the anti-lock braking systems (ABS) in 
automobiles, to the fly-by-wire aircrafts, to biomedical supports to the 
human care. Therefore, it is vital that electronic designers be aware of the 
safety implications of the systems they develop. 

State of the art electronic systems are increasingly adopting program-
mable devices for electronic applications on earthling system. In particular, 
the Field Programmable Gate Array (FPGA) devices are becoming very 
interesting due to their characteristics in terms of performance, dimensions 
and cost. 

FPGAs use a grid of logic gates, based on gate array technology, and the 
programming is done by the customer, not by the manufacturer. The term 
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“field-programmable” may result obscure to somebody, but “field” is just an 
engineering term for the world outside the factory built, where the customers 
live. FPGAs are usually programmed after being soldered. In the most larger 
FPGAs, such as the RAM-based devices, since the configuration is volatile, 
their configuration must be re-loaded into the device whenever power is 
applied or different functionality is required.  

During the last decade, the new manufacturing technologies made 

thanks to their capability of implementing complex circuits with a very short 
development time. However, nowadays SRAM-based FPGAs are really not 
considered enough reliable to be used in safety critical applications such as 
avionic and space ones. The main obstacle to their applications in these 
contexts is represented by the high sensitivity to the radiation effects such as 
Single Event Upsets (SEU): device shrinking coupled with voltage scaling 
and high operating frequencies correspond to significantly reduced noise 
margin, which makes FPGAs more sensitive to radiation effects, as well as 
to other phenomena (such as cross talk or internal noise sources) that provoke 
transient faults. The strong needs to evaluate the possible applications of the 
programmable logic devices in safety critical applications need the usage of 
the new techniques oriented to the evaluation of the reliability of such 
devices and to the development of hardening techniques for enable the usage 
of SRAM-based FPGAs in safety critical fields.  

The main purpose of the present book addresses the development of 
techniques for the evaluation and the hardening of designs on SRAM-based 
FPGAs against the radiation induced effects such as SEUS. The set of 
analysis and design flows proposed in this work are aimed at defining a 
novel and complete design methodology solving the industrial designer’s 
needs for implementing electronic systems in critical environments using 
SRAM-based FPGA devices.  

Regarding the analysis flow, the present book contribution consists in a 
set of algorithms performing the fault injection for the evaluation of the soft-
errors sensitivity of designs implemented on SRAM-based FPGAs. Two 
kind of fault injection environments are provided: 

1. Simulation based: The simulation environment is able to predict the SEU 
effects in circuit mapped on SRAM-based FPGAs combining radiation 
testing data with simulation. The former is used to characterize (in term 
of device sensibility to the radiation particles) the technology on which 
the FPGA device is based, the latter is used to predict the probability for 
a SEU to alter the expect behavior of a given circuit.  

2. Hardware-based: this environment is able to inject SEU directly in the 
configuration memory of SRAM-based FPGA devices. The environment 
is composed of all the module necessary to perform the complete analysis 

feasible the development of SRAM-based FPGAs that became very popular 
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of the circuit. A Fault List Manager generates the list of SEUs to be 
injected within the circuit under analysis; a Fault Injection Manager 
manages the fault injection process, by selecting one fault from the fault 
list, performing its injection in the DUT and the observing and analyzing 
the obtained results to provide the fault-effect classification. 

In order to deploy successfully commercially-off-the-shelf (COTS) 
SRAM-based FPGA devices in safety critical applications, designers need to 
adopt suitable hardening techniques, as well as methods for validating the 
correctness of the obtained as far as the system’s dependability is consi-
dered. An innovative algorithm based on an analytical model of the FPGA 
architecture is able to estimate the effects of SEUs when redundancy-based 
techniques are adopted in order to mask the effects of SEUs in SRAM-based 
FPGAs, has been provided. The main novelty this approach introduces is the 
possibility it offers of analyzing any SEU location within a design and of 
identifying whether the SEU provokes any observable effect to the system’s 
outputs. This approach has been implemented in a tool called STAR (Static 
Analyzer). 

This book presents also a novel contribution in the FPGA design flow. A 
new reliability-oriented place and route algorithm is illustrated in details. By 
coupling its hardening capability with the Triple Modular Redundancy 
(TMR) it is able to effectively mitigate the effects of soft-errors within 
FPGA devices especially based on Static-RAM’s configuration memory. 
The effectiveness of the reliability-oriented place and route algorithm has 
been demonstrated by extensive fault injection experiments showing that the 
capability of tolerating SEU effects in the FPGA’s designs increases up to 85 
times with respect to a standard TMR design technique. The developed 
algorithm has been implemented in a tool called RoRA, (Reliability-Oriented 
Place and Route Algorithm). The available tools STAR and RoRA have 
been included in a new design tool-chain. 

The present book offers a contribute also to the analysis of several appli-
cations field where the usage of reconfigurable logic devices introduces several 
advantages. In particular, two applications are considered: reconfigurable 
computing for multimedia applications and biomedical applications.  

Considering reconfigurable computing, a novel reconfigurable structure 
has been proposed, also called Reconfigurable Mixed Grain, ReCoM. This 
structure is based on the novel Reconfigurable Compute Fabric (RCF) concept, 
it implements a mixed-grain reconfigurable array which combines a RISC 
microprocessor and a reconfigurable hardware for computation-intensive 
applications.  

The feasibility of reconfigurable devices in biomedical applications is 
also investigated in this book showing the drastic advantages both related to 
the computational performance and on the dependability of the process.  
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In this book, the implementation of a new Deoxyribonucleic Acid (DNA) 
microarray analyzer is provided. DNA microarray technologies are an essential 
part of modern biomedical research. The analysis of DNA microarray images 
allows the identification of gene expressions in order to drawn biologically 
meaningful conclusions for applications that ranges from the genetic profiling 
to the diagnosis of oncology disease. This book describes an architecture that 
uses several computational units working in a single instruction-multiple 
data fashion managed by a microprocessor core. An FPGA-based implemen-
tation of the developed architecture has been evaluated using several realistic 
DNA microarray images. A reduction of the computational time of one order 
of magnitude and an increasing of the data quality of the analyzed images 
has been demonstrated.  
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Chapter 1 

AN INTRODUCTION TO FPGA DEVICES IN 
RADIATION ENVIRONMENTS 
From the architecture to the model 

 
 

Electronic devices are sensitive to radiation that may happen both in the space 
environment and at the ground level. Nowadays, the continuous evolution of 
manufacturing technologies makes Integrated Circuits (ICs) even more 
sensitive to radiation effects: Devices shrinking coupled with voltage scaling 
and high operating frequencies correspond to significantly reduced noise 
margins, which make ICs more sensitive to radiation, as well as to other 
phenomena (such as cross-talk or internal noise sources) that provoke transient 
faults. 

In the last decade, the new manufacturing technologies made feasible the 
development of SRAM-based FPGAs that became very popular thanks to 
their capability of implementing complex circuits with a very short develop-
ment time. Today, manufacturers are producing very complex and resourceful 
FPGAs. State-of-the-art SRAM-based FPGAs embed megabits of RAM 
modules and plenty of configurable logic and routing resources, which are 
making feasible the implementation of circuits composed of millions of 
gates. SRAM-based FPGAs are used for different applications, such as 
signal processing, prototyping, and networking, or wherever reconfiguration 
capabilities are important. 

The architecture of SRAM-based FPGAs is composed of a fixed number 
of routing resources (wires and programmable switches), memory modules, 
and logic resources (i.e., lookup tables or LUTs, flip-flops or FFs). All these 
components are programmed by downloading into an on-chip configuration 
memory a proper bitstream, giving the FPGA the capability of implementing 
nearly any kind of digital circuit on the same chip. In SRAM-based FPGA, 
both the combinational and sequential logic are controlled by several 
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customizable SRAM cells that are extremely sensitive to radiation that may 
cause Single Event Upsets [1, 2]. 

If an upset affects the combinational logic in the FPGA, it provokes a bit-
flip in one of the LUTs cells or in the cells that control the routing. This 
upset has a persistent effect that could be propagated in other parts of the 
circuit since the implemented hardware is modified. This upset is correctable 
only at the next load of the configuration bitstream (which is often performed 
in some critical space applications), but the effect may still remain in the 
circuit until the next reset is performed. On the other hand, when an upset 
affects the user sequential logic, it may have a transient effect if the flip-
flops next load corrects it and if the effect is not propagated to other parts of 
the circuit or a persistent effect if the effect is propagated to other parts of 
the circuit. For instance, a counter hat is affected by an SEU cannot return to 
its original counting sequence until it undergoes to a reset. 

In this case, SEU can have more persistent effects in the implemented 
user circuit.   

SEUs may also affect the configuration control logic registers that are 
used during the download of the bitstream within the configuration memory. 
An experimental analysis based on heavy ion beam is described in [3] that 
shows the criticalities of such registers and that demonstrates that they have 
a sensitivity to SEUs several orders of magnitude lower with respect to the 
configuration memory.  

The half-latch structures used to generate constant logic values may be 
also affected by SEUs. This problem has been addressed and fixed according 
to the work presented in [4], in the presented hardening technique the 
reliability-oriented placement algorithm is driven in order to solve this problem 
by means of a technology based placement.  

Researchers both from academia and industry investigated on developing 
solutions able to mitigate the effects of SEUs in the FPGA’s configuration 
memory. These methods could be divided in two main categories: reconfigu-
ration-based and redundancy-based. The formers aim at restoring as soon as 
possible the original values into configuration bits after an SEU happened 
[5], the latters are oriented at masking the propagation of SEUs effects to the 
circuit’s outputs [6–[8]. Fault masking techniques are usually achieved 
through redundancy-based techniques which purpose is to remove all the 
single point of failure a circuit may have. The widely known redundancy-
based technique is the Triple Modular Redundancy (TMR), where three 
identical replicas of the same circuit work in parallel and the outputs they 
produce are compared and voted  through a majority voter. TMR is an 
appealing technique for hardening designs implemented on SRAM-based 
FPGAs. Since all the resources embedded by these devices such as memory 
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elements, routing resources and logic resources are all susceptible to SEUs, 
the redundancy technique must be adopted to all of them. 

The resources that are most likely to be affected by SEUs are those 
controlling the routing, indeed about 90% of the configuration memory bits 
are devoted to storing information about routing resources. Previous works, 
essentially based on a simulation tool, have experimentally tested the TMR’s 
capability of tolerating SEUs [9]. The criticalities induced by SEUs within 
the configuration memory provoke an intrinsic behavior to the circuit imple-
mented by the FPGA device. The configuration memory of such devices 
undergo a detailed analysis of each singular FPGA resource [10, 11] followed 
by injection experiments [12] able to probe the behavior of each resource 
induced by the single bit modification. The results gained from these 
analysis shown that any single modification of a configuration memory cell 
is capable of producing multiple errors when affecting the portion of the 
FPGAs configuration memory that stores some kinds of routing and logic 
resources. Furthermore, the experimental analysis shows that a faulty behavior 
is produced when a SEU hits either a programmed bit or a non programmed 
memory bit that may have side effects on the resources configured by the 
programmed ones. As a result of this effect, the TMR architecture is able to 
only partially mitigate the effects of SEUs in routing resources. This pheno-
menon depends on many factors: the architecture of the adopted FPGA 
family, the organization of the configuration memory, the kind of application 
that is implemented on the FPGA device, and the bit of the configuration 
memory affected by the SEU. Given this scenario, redundancy-based tech-
niques are not sufficient by themselves to ensure complete reliability against 
single-error induced by radiation particles. In order to give a metric to the 
reader, we considered several benchmark circuits designed according to the 
TMR architecture and we observed about the 14% of the configuration 
memory bits upset that affect the portion of the configuration memory 
storing the information about the routing resources produce multiple errors 
that the TMR is not able to mask [11]. In this book is presented an analysis 
of the distribution of SEUs within the FPGA’s configuration memory and 
affecting the TMR behavior. Furthermore, as shown in [13] a clever 
selection of the TMR architecture helps in reducing the number of escaped 
SEUs, but it is unable to reduce them to zero. 

In order to identify the reasons that limit the effectiveness of TMR, the 
resources of the FPGA have been systematically analyzed. The case study 
devices considered by the present research is the Xilinx Virtex family. Inde-
pendently from the circuit mapped on the FPGA architecture, each FPGA’s 
resource has been analyzed identifying all the possible configuration memory 
bits controlling its behavior. For example, for a programmable interconnection 
point, all the possible configuration bits that can be used by the place and 
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route algorithm are used for implementing any given circuit. The study 
presented in this book identifies all the critical situations, where SEU hitting 
the configuration memory may modify the configuration of two or more 
FPGA’s resources. The theoretical explanation and experimental probe of 
the criticalities affecting circuit implemented through the TMR is the results 
of this analysis.  

After presenting an analysis of the SEU’s effects in the FPGA’s confi-
guration memory, this part presents a reliability-oriented place and route 
algorithm, called RoRA, that has been developed for implementing depen-
dable circuits, based on redundancy techniques such as TMR, on SRAM-
based FPGAs. The RoRA algorithm is able to place and route the logic 
functions and the signals of a design in such a way that the number of SEUs 
affecting the configuration memory and possibly causing FPGA wrong 
behavior is drastically reduced with respect of a common redundancy-based 
approach adopting the TMR technique. For the considered benchmark 
circuits, the capability to tolerating SEU effects in the FPGAs configuration 
memory increases up to 85 times with respect to a standard TMR approach. 
In order to achieve an higher level of reliability, the RoRA algorithm intro-
duces penalties both in terms of area overhead and speed of the original 
circuit. Furthermore, the fulfillment of the routing problem needs more 
computational time due to the reliability rules inserted both to the placement 
and routing phases.  

The reduction of the circuit’s running frequency may range from 22% to 
60% of the original (plain) circuit speed, while from the circuit area pers-
pective, RoRA introduces an overhead of the routing resources with respect 
to the TMR standard solution. However, RoRA does not introduces any area 
overhead, with respect to the TMR, when logic resources are considered. 
The RoRA solution is the first place and route algorithm developed that is 
transparent to designers, which can trade off fault tolerance versus area and 
circuit’s frequency overhead.  

1. PREVIOUSLY DEVELOPED HARDENING 
TECHNIQUES 

During the past years, several mitigation techniques have been proposed in 
order to increase the reliability of circuits of avionics and space applications 
and in particular, to remove single point of failure from the designs. When 
SRAM-based FPGA devices are considered, several SEU mitigation techni-
ques have been proposed exclusively for these devices. These techniques can 
be organized into two categories: reconfiguration-based techniques and 
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redundancy-based techniques. The former are used to correct fault effects, 
while the latter are used to mask fault effects.  

1.1 Reconfigurable-based techniques 

The FPGA’s configuration memory, if based on SRAM cells, may accumu-
late soft error or SEU over the usage time in an harsh environment, for this 
reason the configuration memory is periodically rewritten. This approach is 
called Scrubbing and it is the simplest technique that may be used to remove 
SEU effects accumulated within the configuration memory [14]. The 
implementation of a scrubbing system introduces a limited overhead that 
essentially corresponds in the circuit needed to control the bitstream loading 
process, as well as the memory for storing an error-free bitstream. The 
systems also needs a mechanism to control how often the scrubbing must 
take place. The occurrence frequency of the scrubbing operations is normally 
referred to the scrub rate and it is determined on the basis of the expected 
SEU rate, i.e., on the basis of a figure predicting how often an SEU may 
appear in the FPGA configuration memory. 

An improvement of the Scrubbing mechanism consists in applying the 
partial reconfiguration capability of the latest generation of SRAM-based 
FPGAs, which allow reconfiguring only a user-selected portion of the con-
figuration memory (known as frame) while leaving the remaining part of the 
circuit unmodified [5]. This technique uses a readback process to read one 
frame at a time and compares it with the expected one, which is stored in an 
error-free off-chip memory. Another commonly used technique to detect 
errors by means of readback is to use Cyclic Redundancy Check (CRC) on 
each frame storing only the check word rather than the entire frame of the 
configuration data [5].  

When a SEU is detected, only the faulty frame is rewritten. The readback 
is normally transparent to the circuit the FPGA implements, which continues 
to operate normally even while the readback process is running. The presence 
of SEUs is thus checked online and the FPGA is set offline only for the 
amount of time needed for rewriting the faulty configuration memory frame. 
The normal activity of the circuit the FPGA implements is stopped for a 
shorter period of time than in the scrubbing case. The partial configuration 
mechanism is employed in state-of-the-art Xilinx SRAM-based FPGA devices, 
such as the Virtex family, with the further advantage that consists in having 
the possibility to rewrite the configuration data without putting the devices 
offline. This makes possible online and transparent fault correction. If on one 
side, the scrubbing and the partial reconfiguration mechanisms represent a 
simple solution for protecting designs against the effects of SEU, on the 
other side these techniques are mandatory for adopting SRAM-based FPGA 
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in the presence of SEU. In fact, these techniques are the only viable solution 
for removing the accumulation of soft error within the configuration memory, 
thus whatever is the system used in an harsh environment and embedding 
SRAM-based FPGAs, it must adopt reconfigurable or scrubbing mechanism 
in order to avoid the accumulation of SEU within the configuration memory. 

1.2 Redundancy-based techniques 

The redundancy-based techniques presented in this section adopts additional 
hardware components or additional computation time for detecting the presence 
of SEUs modifying the expected circuit operations and/or masking SEUs 
propagation to the circuits outputs. It is worthwhile to underline here that the 
techniques presented in this section are not intended for removing SEUs 
from the configuration memory, but only for mitigating the SEUs effects. 
SEUs may be removed from the configuration memory by resorting to those 
techniques presented in the previous section. 

Fault detection can be achieved by duplicating the circuit the FPGA 
implements. The outputs the two replicas produce are continuously compared 
and an alarm signal is raised as soon as a mismatch is found [14]. This 
solution is fairly simple and cost-effective; however, it is not able to mask 
the SEUs effects.  

When fault masking is mandatory, designer may resort to the Triple 
Modular Redundancy (TMR) approach. The basic concept of the TMR 
architecture is that a circuit can be hardened against SEUs by designing three 
copies of the same circuit and building a majority voter on the outputs of the 
replicated circuits. Implementing TMR to prevent the effects of SEUs in 
technologies such as ASICs is generally applying the protecting capabilities 
only the memory elements since combinational logic and interconnections 
are less sensitive to SEUs. When the configuration memory of FPGAs is 
considered, the TMR implementation should be revisited since a modifica-
tion in the configuration memory may affect every FPGAs resource: routing 
resources implementing interconnections, combinational resources, sequential 
resources, I/O logic. This means that three copies of the whole circuit, 
including I/O logic, have to be implemented to harden it against SEUs [14]. 

The optimal implementation of the TMR circuitry inside SRAM-based 
FPGAs depends on the type of circuit that the FPGA implements. As described 
in [14], the logic may be grouped into four different types of structure: 
throughput logic, state-machine logic, I/O logic, and special features 
(embedded RAM modules, DLLs, etc.). The throughput logic is a logic 
circuit of any size or functionality, synchronous or asynchronous, where the 
entire logic path flows from the inputs to the outputs of the module without 
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ever forming a logic loop. The TMR architecture for a module M is 
implemented as shown in Figure 1.1. 

Three copies of M are connected to a majority voter V, which computes 
the output of throughput logic. In order to prevent common-mode failures, the 
inputs feeding the throughput logic have to be replicated, too. This implies 
that, when M is fed directly from I/O pins, the adoption of TMR must be 
accomplished tripling the circuit I/O pins. 

State-machine logic is, by definition, state dependent. For this reason, it is 
important that the TMR voting is performed internally rather than externally 
to such a module. Thus, applying TMR to a state machine consists of tripling 
all circuits and inserting a majority voter for each of the replicated feedback 
paths. The use of three redundant majority voters eliminates there as single 
points of failure, as shown in Figure 1.2. 

Hardening the I/O logic through TMR causes a severe increase in the 
number of required I/O pins and this method can be used only when there 
are enough I/O resources to achieve tripling of all the inputs and outputs of 
the design. Therefore, as illustrated in Figure 1.3, each redundant module of 
a design that uses FPGAs inputs should have its own set of inputs. Thus, if 
one input is affected by an SEU, it only affects one module of the TMR 
architecture. 

 
 
 
 
 
 
 
 
 
 

Figure 1.1. TMR architecture for throughput logic. 
 

 
 
 
 
 
 
 
 
 

Figure 1.2. TMR scheme for State-machine logic. 
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The majority of any logic design can be realized by using look-up tables 
(LUTs), flip-flops (FFs), and routing resources that can be hardened against 
SEUs in the configuration memory through the previously outlined methods. 
However, there are other special FPGA resources that allow the imple-
mentation of more efficient and performing circuit implementations. These 
include block RAM, LUT RAM, shift-register, and arithmetic cores. For 
each of these features, there are particular recommendations to be followed 
to guarantee an accurate TMR architecture. A detailed presentation of these 
recommendations is out of the scope of this manuscript. Reader interested in 
these subjects may refer to [5, 14]. 

 
 
 

Figure 1.3. TMR scheme for I/O logic. 
 
Other methodologies to implement redundant architectures on SRAM-

based FPGAs are available. One of these techniques is oriented in performing 
all mitigations using the description language to provide a functional TMR 
methodology [8]. According to this methodology, interconnections and 
registers are tripled and internal voters are used before and after each register 
in the design. The advantage of this methodology is that it can be applied in 
any type of FPGAs.  

Another approach is based on the concept that a circuit can be hardened 
against SEUs by applying TMR selectively (STMR) [15]. This approach 
extends the basic TMR technique by identifying SEU-sensitive gates in a 
given circuit and then by introducing TMR selectively on these gates, only. 
Although this approach optimizes TMR by replicating only the most sensitive 
portions of a circuit (thus saving area), it needs a high number of majority 
voter since one voter is needed for each SEU-sensitive circuit portion. 

To reduce both the pin count and the number of voters used to implement 
the TMR approach, Lima at al. proposed a technique based on time and 
hardware redundancy to harden combinational logic [6, 7]. This technique 
combines duplication with comparison (DWC) with a concurrent error 
detection (CED) machine based on time redundancy that works as a self-
checking block. DWC detects faults in the system and CED detects which 
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blocks are fault-free. Although this fault-tolerant technique aims to reduce 
the number of I/O pads and the power dissipation, it is applied on a high-
level description of the circuit, and, thus, if their components are not properly 
placed and routed on the FPGAs, they may suffer the multiple effect induced 
by SEU in the FPGAs configuration memory. In order to address the 
multiple effects induced by SEUs in the FPGAs configuration memory, it is 
mandatory to select a clever placement and routing of the design. To attach 
the problem, we abstracted the physical characteristics of FPGA by using a 
generic FPGA model. 

2. PRELIMINARIES OF SRAM-BASED FPGAS 
ARCHITECTURE 

The basic FPGA architecture consist of a two-dimensional array of logic blocks 
and flip-flops interconnected by a network of interconnections. Families of 
FPGAs differ from each other by the physical means for implementing user 
programmability, interconnection wires and the basic characteristics of  
the logic blocks. In order to describe the general characteristics of modern 
SRAM-based FPGAs, a generic model is introduced. This model permits to 
focus attention on only those components that are affected by the multiple 
faults induced by SEUs. On these components, SEUs induce multiple effects 
that are permanent until the corrupted bitstream is refreshed through the 
download of the new one. Thus, place and route algorithms must be enhanced 
in order to introduce redundancies that are resilient to multiple effects, too. 

2.1 Generic SRAM-based FPGA model 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.4. Generic FPGA architecture model. 
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A Field Programmable Gate Array consists of an array of logic blocks that 
can be interconnected selectively to implement different designs. An FPGA 
logic block is typically capable of implementing many different combina-
tional and sequential logic functions. Today, commercial FPGAs use logic 
blocks that are based on transistor pairs, basic small gates such as two-input 
NANDs or exclusive ORs, multiplexers, look-up tables (LUTs), and wide-fanin 
AND-OR structures. An FPGA routing architecture incorporates wire segments 
of varying length that can be interconnected via electrically programmable 
switches. The distribution of the length of the wire segments directly affects 
the density and performance achieved by an FPGA.  

The SRAM-based FPGA generic model used in this work is shown in 
Figure 1.4. This model is common to the architecture of several families of 
SRAM-based FPGAs [16, 17]. The model consists of three kinds of resources: 
wiring segments, logic blocks, and switch boxes.  

Wiring segments are chunks of wiring devoted to transfer information 
among logic blocks. Wiring segments are organized in the horizontal plane, 
traversing an FPGA from east to west, and the vertical plane, traversing the 
FPGA from north to south. Wiring segments are used in conjunction with 
switch boxes to deliver information between any locations inside FPGAs. 
Logic blocks contain the combinational and sequential logic required to 
implement the user circuit, which is defined by writing proper bit patterns 
inside the FPGAs configuration memory.  

Figure 1.5 shows an example of simple logic block, where we can recognize 
a look-up table (LUT) to implement combinational functions, a flip-flop (FF) 
to implement memory elements, and two multiplexers (MUX) needed for 
implementing different signal forwarding strategies. 

 
 
 
 
 
 
 
 
 

Figure 1.5. Simple FPGA’s logic block. 
 
Each logic block has a number of input and output signals connected to 

adjacent switch boxes and logic block through wiring segments. The SRAM 
programming technology uses static RAM cells to control pass gates or 
multiplexers.  
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The programmable interconnection network consists of wiring segments 
that can be connected or disconnected by several programmable interconnect 
points (PIPs). The PIPs are organized to form switch matrices that are located 
inside switch boxes, which are controlled by the FPGAs configuration memory. 
PIPs (also called routing segments) provide configurable connections between 
pairs of wiring segments. The basic PIP structure consists of a pass transistor 
controlled by a configuration memory bit. There are several types of PIPs: 
cross-point PIPs that connect wire segments located in disjoint planes (one in 
the horizontal plane and one in the vertical plane), break-point PIPs that 
connect wire segments in the same plane, decoded and non-decoded multi-
plexer (MUX) PIPs, and compound PIPs, which consist of a combination of 
n cross-point PIPs and m break-point PIPs, each controlled separately by 
groups of configuration memory bits [18]. Decoded MUX PIPs are groups of 
2k cross-point PIPs sharing common output wire segments controlled by k 
configuration memory bits. Conversely, non-decoded MUX PIPs consist of k 
wire segments controlled by k configuration bits. 

2.2 FPGA routing graph 

A model that abstracts most of the details of SRAM-based FPGAs has been 
developed. It is general enough to describe any FPGA architecture and it 
conveys only the meaningful information for the dependability-oriented 
analysis. Indeed, it is particularly important to capture information about 
which logic blocks are used by a circuit mapped on an FPGA, as well as all 
the information about the interconnections between used logic blocks (i.e., 
how wiring segments and switch matrices are configured for implementing a 
circuit). Conversely, it is not important to know which function (combinational 
or sequential) a logic block implements.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6. FPGA routing graph. 
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The resources in an SRAM-based FPGA that are used to implement a 
circuit can be described by resorting to a routing graph, where the graphs 
vertices model logic blocks and switch boxes while the graphs edges model 
wiring segments. As shown in Figure 1.6, the routing graph has two types of 
vertices: logic vertices that model the FPGAs logic blocks and routing vertices 
that model the input/output ports of each switch box. For each switch box 
having I inputs and O outputs, the routing graph has I + O routing vertices. 
Moreover, the routing graph has two types of edges: routing edges that 
model the FPGAs PIPs as edges between two different routing vertices and 
wiring edges that model the FPGAs wiring segment as edges between logic 
vertices and routing vertices. 

Switch box Switch box

Logic
Block

Logic
Block

Logic
Block

Logic
Block

        

Figure 1.7. Modeling of a FPGA implementing a circuit by means of the routing graph. 
 
An FPGA switch box is described by the graph model in different routing 

edges forming a structure known as a Universal Switch Module (USM) [19]. 
The number of vertices and edges modeling switch boxes and logic blocks 
depends on the selected FPGAs architecture.  

According to our model, a logic signal connecting two logic blocks in the 
circuit the FPGA implements is modeled by the routing graph as a path that 
may span over different wiring edges and routing edges. As illustrated in 
Figure 1.7, edges and vertices are colored to indicate that the corresponding 
FPGAs resource is used to implement a circuit. In case the FPGA imple-
ments different circuits or different replicas of the same circuit, different 
colors are used to mark edges and vertices of each circuit or replica. 

Moreover, a direction is associated to any edge to describe the direction 
of the information flow. The proposed graph model is very flexible and can 
be adopted to describe any type of FPGAs architecture. 
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Chapter 2 

RADIATION EFFECTS ON SRAM-BASED 
FPGAS 
Modeling and simulation of radiations effects 

 
 

The past 30 years have seen the discovery that electronic circuits are sensitive to 
transient effects such as Single Event Upsets (SEUs) provoked by ionizing 
radiation [1]. Since the discovery of SEUs at aircraft altitudes, researchers 
have made significant efforts to monitor the environment. The space and the 
earth environment contain various ionizing radiations, generated by natural 
phenomena such as sun activity and manmade radiation that interacts with 
silicon atoms. If, at ground level, neutrons and alpha particles are the most 
frequent causes of SEUs, in a space environment, they are protons and heavy 
ions. When a particle hits the surface of a silicon area, it loses its energy 
through the production of free electron-hole pairs, resulting in a dense 
ionized track in the struck region [2]. Interestingly, when the struck silicon 
area implements a static memory cell, the transient pulse may induce per-
manent changes: it can indeed activate the inversion of the stored value. In 
SRAM-based FPGAs, transient faults originating in the FPGAs configuration 
memory have dramatic effects since the circuits the FPGAs implement are 
totally controlled by the content of the configuration memory, which is 
composed of static RAM cells [3, 4]. In this chapter, the effects of the SEUs 
within the configuration memory of SRAM-based FPGAs will be accurately 
described, thanks to the graph model presented in the previous chapter, the 
effects of SEUs within the internal FPGA’s resources is modeled and analyzed. 

 

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,  
© Springer Science + Business Media B.V. 2008 
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1. RADIATION EFFECTS 

The radiation effects may be classified in two categories: energetic particles 
(such as electrons, protons, alpha particles), neutrons, heavy ions (that are 
influenced by the electromagnetic field, and electromagnetic radiations such 
as photon, gamma ray, X-ray or ultra-violet. The effects of radiations can be 
distinguished depending on the terrestrial or extra-terrestrial environment.  

On the Earth the principal radioactive sources are represented by the 
radioactive material and by the cosmic ray. The materials used during the 
productive process of integrated circuits, such as the aluminum and gold, can 
contain traces of radioactive material or to be exposed to environmental 
consequences. The cosmic rays are mainly due to the solar wind, that consists 
of the particles flux at low energy and the galactic cosmic rays, composed by 
high energy particles emitted by remote sources in the universe.  

Radiations coming from the space are influenced by the terrestrial mag-
netic field that decrease their effects. The particles that pass the terrestrial 
magnetic field and hit the atmosphere provoke the production of secondary 
particles that are able to reach the Earth surface. The influences of protons 
and heavy ions at an high altitude is not negligible. The radio between the 
amount of radiations that hit an aircraft at high altitude with respect to the 
amount of radiations at the sea level is 100 times [5]. 

In the space is absent the filter effect provided by the atmosphere, however 
the terrestrial magnetic field influence the radioactive particles hitting the 
space vehicles working in this environment. The source of radiation in the 
earth space are principally due to three factors: the Van Allen belts, solar 
wind and galactic cosmic rays.  

The Van Allen belts are two regions in which the electrically charged 
particles are attracted by the terrestrial magnetic field in a stronger measure. 
Within the Van Allen belts the major causes of electronic circuits malfunc-
tions is composed by high energy protons.  

Vice versa the solar wind is formed by the Coronal Mass Ejection (CME) 
that are able to pass the Sun gravity. The solar wind consists of a long flux of 
particles at high energy that influence the behavior of the Van Allen belt. 
The galactic cosmic rays are composed by heavy ions at high energy with an 
isotropic flux, similar for each directions. They hit the space crafts operating 
outside the influence of the terrestrial magnetosphere. 

The two principal mechanisms through radiations interact with the  
matter are the atomic displacement and the ionization or electronic charge 
displacement. 

The atomic displacement takes place when a particle hits an atom changing 
its original position. If this atom belongs to the crystalline structure, it may 
change the properties of the material. The effects on the semiconductor is 
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similar to the one artificially produced thanks to the ionic implantation 
process executed during the manufacturing of integrated circuit, and thus it 
can provoke the equivalent variation of drug in the semiconductor.  

The ionization causes the move of charge, forming couple of electron-
holes. Within the semiconductor the electric field produced by these particles 
determine the generation of an internal current, that in some cases may 
modify the functionalities of the circuit. These kind of errors are defined as 
soft-error, since they do not damage the electronic circuit, but causes only 
the temporary variation of the functionality. The ionization may be provoked 
also by photons. The energy transmitted to electrons in the valency band 
may move them to the conduction band. This iteration produces hole within 
the small dielectrics, provoking their slow degradation. This is an example of 
permanent error also known as hard error.  

The damage provoked by radiations may be classified in two principal 
categories: 

1. Long terms cumulative degradation: it is divided in Total Ionizing Dose 
(TID) effects, the accumulation of ionizing radiations over the time, that 
provokes degradation within the electrical circuit, and Displacement 
Damage Dose (DDD), the accumulation over the time of the atomics’ 
material movements. 

2. Single Event Effects (SEE): kind of event that happens locally following 
an action of single ionizing particles. These events are classified as SEE 
and in particular as Single Event Upset or Single Event Latchup. 

1.1 Single Event Upset (SEU) 

The Single Event Upset (SEU) is a change of condition or a transition, induced 
by an high charged particle. An SEU consist of the change of the logic state 
or, more in general, in a transitory error and it is classified by the scientific 
literature in the category of soft-error since it can provoke the reset or the 
rewriting of the device normal behavior.  

The Figure 2.1A shows a simple storage cell of a single bit and it illustrates 
the effect of an SEU also known as bit-flip. The circuit in Figure 2.1A is 
designed in order to maintain to stable state: stored ‘0’ and stored ‘1’. In 
each state two transistors are activated and two are put off. A bit-flip 
happens when an high-charged particle provoke the inversion of the circuit 
transistor state. This phenomena happens in all microcircuits, from memory 
chips to microprocessors. The occurrence of a bit-flip can generate a random 
change of the processor state and may provoke the crash of the system. The 
Figure 2.1B illustrates how an high-charged particle may provoke a spurious 
electronic signal. The particle produces a charge along its path in the form of 
electron-hole couple. These are collected within the source and drain 
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generating an effect similar to a current pulse that may be sufficiently wide 
to produce an effect comparable to a normal signal applied to a transistor.  

Figure 2.1. (A) storage cell for a single bit (S-RAM). (B) junction crossed by an high-charged 
particle. 
 

The SEUs are drastically relevant for SRAM-based FPGA since the 
configuration memory is sensible to ionizing radiations. The effects of SEUs 
within SRAM-based FPGA devices depend on the technology and on the 
architectural choice. The malfunction provoked by an SEU is classified as 
Single Event Functional Interrupt (SEFI).  

The SEFI phenomena is used for the first time in the 1996 within the 
Standard EIA/JEDEC2. The SEFI is the first anomaly within integrated circuits 
provoked by a bump of a single ion, similarly to the SEU, that introduces a 
temporary malfunction or interruption of the device standard operations. 
While the SEU is a phenomena that produces a temporary change of the 
device physical conditions, the SEFI is a phenomena that happens in the 
temporary change of the implemented functionality and may remain until  
the power supply is interrupted. The SEFI are observable in several devices, 
however until it is not related to a single cause, this phenomena remains 
hardly definable [6].  

1.2 Single Event Latch-Up (SEL) 

The ionizing radiations may provoke other kinds of effects called Single 
Event Latch-up (SEL), that is produced activating the parasitic transistor 
present between the junctions N-P of the CMOS transistors. The activation 
of such kind of transistor create a low frequency path between the power 
supply (Vcc) and the ground, crossed by an high current. For this reason, the 
SEL effects are potentially destructive for an electronic circuit. In parallel 
with the progressive reduction of the physical dimensions, the supply current 
and the threshold voltages applied to the manufacturing techniques of 
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SRAM-based FPGAs, the malfunctions due to radiations are proportionally 
increased. 

2. SEU EFFECTS ON FPGA’S CONFIGURATION 
MEMORY 

SRAM-based FPGAs suffer from radiation as other semiconductor devices. 
Designer and users have to consider these radiation effects before including 
an SRAM-based FPGA within a space application. SRAM-based FPGAs, as 
other devices, that contain several arrays of memory cells, are extremely 
sensitive to SEUs due to the large amount of memory within a relatively 
small amount of silicon area. 

SRAM-based FPGAs contain a lot of memory cells within a single device, 
implementing the configuration memory, which are sensitive to SEUs. The 
SEU upset rate is related to the kind of radiation environment where the 
device will be used. To mention an estimation, in the Cibolla flight experi-
ment using a SRAM-based FPGA Xilinx Virtex 1000 containing more than 
six million bits, it has been calculated that worst-case SEU upset rate on an 
average orbit ranges from 0.13 SEUs per hour under a quiet sun, up to 4.2 
SEUs per hour under a peak upset rate [7]. The effects induced by SEUs on 
SRAM-based FPGAs have been recently investigated thanks to radiation 
experiments [8–10]. More recently, an analysis that combines the results of 
radiation testing with those obtained while analyzing the meaning of every 
bit in the FPGAs configuration was presented in [11]. 

Although SEUs are transient by nature, when they originate in the confi-
guration memory, their effects are permanent since SEUs remain latched 
until the configuration memory is rewritten with new configuration data. The 
errors produced by SEUs in the FPGAs configuration memory can be classified 
into two different categories: errors that affect logic blocks and errors that 
affect the switch boxes. 

As far as logic-block errors are concerned, several different phenomena 
may be observed, depending on which resource of the logic block is 
modified by the SEU: 

- LUT error. The SEU modified one bit of a LUT, thus changing the 
combinational function it implements. 

- MUX error. The SEU modified the configuration of a MUX in the logic 
block, as a result, signals are not correctly forwarded inside the logic 
block. 

- FF error. The SEU modified the configuration of a FF, for example, 
changing the polarity of the reset line or that of the clock line. 
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In order to model faulty logic blocks in the routing graph previously 
described, we assumed using the black color to mark each vertex correspon-
ding to a faulty logic block.  

As far as switch boxes are concerned, different phenomena are possible. 
Although an SEU affecting a switch box modifies the configuration of one 
PIP, both single and multiple effects can be originated. 

Single effects happen when the modifications induced by the SEU alter 
only the affected PIP. In this case, one situation may happen. The SEU changes 
the configuration of the affected PIP, and the existing connection between 
the two routing segments is opened, provoking an open effects. Considering 
the routing graph, this situation is modeled by deleting the routing edge 
corresponding to the PIP that connects the two routing vertices.  

 
 
 
 
 
 
 
 

 
Figure 2.2. Possible multiple effects induced by one SEU. 

 
In order to describe the multiple effects in terms of modifications to the 

routing graph, let us consider the two routing edges AS /AD and BS /BD con-
necting the routing vertices AS, AD, BS, BD, as shown in Figure 2.2a. 
Considering this routing situation, the following modification could be 
introduced by an SEU: 

1. Short between AS /AD and BS /BD. As shown in Figure 2.2b, a new routing 
edge is added to the graph that connects either one end of A to one end of 
B. This effect can happen if AS /AD and BS /BD belong to the same switch 
box and the SEU enables the non-decoded or decoded PIP that connects 
B with A. 

2. Open correspond to the deletion of both routing edges AS /AD and BS /BD as 
shown in Figure 2.2c. This situation may happen if a decoded PIP 
controls both AS /AD and BS /BD. 

3. Open/Short, which corresponds to the deletion of either the routing edge 
AS /AD or the one BS /BD and to the addition of the routing edge AS /AD or 
BS/BD, as shown in Figure 2.2d. This situation may happen if a decoded 
PIP controls both AS /AD and BS /BD. 
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The short effects, as shown in Figure 2.2b, may happen if two nets are 
routed on the same switch box and a new edge is added between them. This 
kind of faulty effect happens when a cross-point PIP, which is non-buffered 
and has bidirectional capability, links two wire segments located in disjoint 
planes. Conversely, the Open and the Open/Short effects, as shown in Figure 
2.2c, d, may happen if two nets are routed using decoded PIPs. 

3. SIMULATION-BASED ANALYSIS OF SEUs 

Researchers have investigated the use of simulation-based approaches for 
predicting the effects of SEUs. The methods proposed so far [12, 13], 
although effective and accurate, are intended for the analysis of applications 
implemented on ASICs only. Considering the SRAM-based FPGA devices, 
two complementary aspects should be considered: 

1. SEUs may alter the memory elements the design embeds. For example, a 
SEU may alter the content of a register in the data-path, or the content of 
the state register of a control unit. 

2. SEUs may alter the content of the memory storing the devices 
configuration information. For example, a SEU may alter the content of a 
Look-Up Table (LUT) inside a logic resource of the FPGA, or the 
routing signals.  

As far as the former aspect is concerned, the available approaches are 
adequate. Conversely, the latter aspect demands much more complex analysis 
capabilities. The effects of SEUs in the devices configuration memory are 
indeed not limited to modifications in the design memory elements, but may 
produce modifications to the interconnections inside a logic resource and 
among different logic resources. 

A Simulation-based approach to address the aforementioned problem has 
been developed: through suitably defined fault models and an ad-hoc 
developed simulation tool, the procedure is able to predict the effects of 
SEUs in the device configuration memory. The approach provides experi-
mental results that can be compared to the predicted SEU cross-section with 
those obtained from radiation testing. These comparisons show that our 
method is quite accurate and that it can be used to predict the result of 
radiation testing. 

3.1 Simulation environment 

In the developed environment the FPGA-based system is composed of two 
independent layers: the application layer and the physical layer. The 
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application layer corresponds to the digital circuit that implements the 
functionalities the system is intended to carry out. The application layer is a 
VHDL model that codes the netlist implementing the desired circuit. Its 
building blocks are the components available within the adopted FPGA: 
LUTs that store the truth table of the Boolean functions the circuit imple-
ments, routing resources, and memory elements (flip-flop, register, etc.). 
Conversely, the physical layer corresponds to the FPGA device on which the 
circuit is implemented. The two layers are analyzed independently by the 
proposed approach. 

The application layer is analyzed using a simulation-based analysis tool 
which computes the predicted error rate. The figure is the probability that an 
SEU modifies the circuit implemented by the application layer in such a way 
that it produces SEFIs, i.e., erroneous output results. The computation of the 
predicted error rate is performed by resorting to fault-injection experiments, 
which are based on fault models that emulate accurately the effects of SEUs 
in the configuration memory of FPGAs. 

The physical layer is analyzed using the test-bed we introduced in [14]. 
The purpose of this analysis is to characterize the FPGA devices manufac-
turing technology from the point of view of sensitivity to radiation. For this 
purpose, radiation-testing experiments are performed to measure the cross-
section of the adopted FPGA device, which gives the probability for a 
particle to produce an SEU.  

The important aspect of this approach is that the computation of the cross 
section does not depend on the application layer: in fact it may be performed 
by configuring the FPGA device with test circuits that are different from the 
application layer. The cross section obtained by this method is associated 
with the FPGA device and it is independent respect to the application using 
it. The analysis of the physical layer is required each time a new technology 
is exploited: once the FPGA cross-section has been computed, it may be 
exploited for any application using that technology. 

As soon as both analyses are completed, we can compute the predicted 
cross-section of the whole system, as follows: 

 Predicted =  Predicted  FPGA     (2.1) 

This figure gives the sensitivity to radiation of the whole systems. It thus 
combines the effects of SEUs in the application layer. A similar approach 
was proposed in [15] for analyzing processor-based systems.  

The core of the tool is the fault-injection environment outlined in Figure 
2.3. Starting from an initial description of the circuit the system implements, 
we use the tools provided by the FPGA vendor for performing place and 
route operations. This preliminary step is typical of any design flow based on 
FPGA devices, and produces a configuration file where the content of the 
devices configuration memory is stored, i.e., the bitstream. This information 
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defines the application layer. Starting from the information stored in the 
bitstream, two ad-hoc developed tools are used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3. Architecture of the fault-injection approach we developed. It combines both  
ad-hoc developed tools with commercial tools provided by the FPGA vendor for place and 
route operations, and independent suppliers for simulation operations. 

 
The Fault List Generation Tool identifies the FPGAs resources in the 

application layer (for logic implementation, signal routing, etc.) that are used 
and it generates the list of faults (Fault List) to be injected, accordingly to the 
fault models described in the section 2 of the present chapter. Each fault is 
described by the couple (fault injection time, fault location) describing when 
the SEU appears, and which resource it modifies. 

The Fault Simulation Tool simulates serially the faults in the Fault List. 
During simulations the outputs produced by the faulty application layer are 
compared with those of the fault-free one. As soon as a mismatch is found, 
the simulation is stopped and the effect provoked by the injected fault is 
classified as wrong answer. Conversely, in case the simulation of the Input 
Stimuli set concludes, and no mismatch is found, the fault is classified as 
Effectless. 

The tools produce the following figures: 

- Bused. The number of configuration memory bits that needs to be 
programmed on the physical layer to implement the application layer. 

- Btotal. The total number of configuration memory bits for the physical 
layer. It includes the bits that need to be programmed for implementing 
the application layer, as well as those left unprogrammed since the 
resource they control are not used. 
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- N . The percentage of injected faults whose effects are classified as 
Wrong Answers. 

The aforementioned figures are combined by means of (2.2) to estimate 
the predicted circuit error rate: 

 

 
The term N  is the percentage of faults provoking Wrong Answers, while 

the ratio estimates the probability for an SEU to appear in the used portion of 
the physical layer.  

Given an SRAM-based FPGA device, its configuration memory consists 
of two types of bits: some controlling signal-routing resources, and some 
controlling logic resources. Signal-routing resources are all those resources 
concerned with the transmission of information within the physical layer. In 
general these resources include: wire segments, which are wires unbroken by 
programmable switches (each end of a wire segment typically has a switch 
attached), and tracks, which are sequences of one or more wire segments 
[16]. 

Conversely, logic resources are all those resources concerned with the 
implementation of combinational or sequential logic functions. 

By considering the typical architecture of SRAM-based FPGAs, we can 
observe the modifications induced by SEUs to the FPGA resources configu-
ration described in the previous sections.  

The tool we developed for Fault List Generation analyzes the device 
configuration file produced by the place and route tools, and it identifies the 
bits used to route the (Nroute bits), and those controlling the logic resources 
used by the mapped circuit (NCLB bits). It then generates all the possible 
couples (fault-injection time, fault location), where fault-injection time 
ranges from the time of application of the first input stimuli to the last one, 
while fault location corresponds to all the possible SEUs in Nroute + NCLB bits. 
Fault sampling is exploited to reduce the number of faults to be simulated by 
the Fault Simulation tool: if N is the number of simulated faults, then (Nroute 
x N) / (Nroute + NCLB) faults will be injected in the routing resource, while 
(NCLB x N) / (Nroute + NCLB) will be injected in the CLB ones. Similarly, fault-
injection time will be randomly selected between the first and the last input 
stimuli. 

3.2 Fault simulation tool 

In the present section, it is described the fault simulation tool developed 
while addressing Xilinx devices. The tool can be adapted easily to other 
devices from different manufacturers, since it works on commonly used 
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hardware description languages (HDL) model of a circuit mapped on an 
FPGA available (i.e., the application layer). 

In order to help designers to evaluate the correctness of their designs after 
place and route, FPGA vendors usually provide this type of tool. 

 
TABLE 2.1 Summary of the mutations inserted in the VHDL model of the considered circuit 
to mimic the effects of seus in the device configuration memory 

 
Faulty resource Fault effect Corresponding mutation 

 Open Stuck-at-zero or Stuck-at-one, 
depending on the affected resource. 

Routing Bridge The signal source is modified and 
connected to a new source depends 
on the affected resource. 

 Conflict Wired-AND or Wired-OR 
 Combinational defect Bit-flip in a Look-Up Table 

Logic Routing defect The signal source is modified and 
connected to a new source. The 
choice of the new source depends on 
the affected resource. 

 Sequential defect Bit-flip in a flip-flop. 
 
The developed tool exploits the ModelSim VHDL simulator for evaluat-

ing the outputs that the faulty application layer produces. For this purpose, 
the application layer is first obtained by executing the ncd2vhdl tool provided 
by Xilinx. Where NCD stands for Native Circuit Description language, and 
in details, is the file containing all the information of the circuit mapped on 
the FPGA’s physical level. Let’s consider to refer on the fault-free appli-
cation layer as Cgold. Before fault simulation can start, for each fault in the 
Fault Lists a new model, called Cfaulty, is computed as a mutation of Cgold. 
During this process the set of VHDL instructions that model the fault are 
inserted in Cgold. In particular, using the mutations reported in Table 2.1. 

Table 2.1 shows an overview of the test-bed, including its main components. 
A Control Host, located outside the irradiation chamber, is used to monitor 
the experiment execution. It is provided with an IP connection with the set-
up inside the irradiation chamber through which it sends commands and 
receives information about the status of the experiments, as well as data to 
be logged for elaboration purposes. Inside the irradiation chamber, it has 
been located a Test CPU (a Power-PC MPC860) that communicates with the 
Control Host as well as with the device under test. Its purpose is to perform 
the low-level operations needed for running an experiment: programming the 
device under test, applying input stimuli, collecting output responses, and 
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reading back the configuration memory of the device under test. A Control 
Hardware is also used for adapting the Test CPU to the FPGA Under Test. 

 
 
 
 
 
 
 
 
 
 

Figure 2.4. Overview of the test-bed we developed for performing radiation-testing experi-
ments on FPGA devices. 

 
The test-bed, illustrated in Figure 2.4, can be used for two purposes. It 

can be exploited for measuring the cross section of an FPGA-based system, 
obtaining the measured cross section of the whole systems. For this purpose, 
the typical test session consists in configuring the physical layer with the 
application layer, and then in continuously stimulating the FPGA device 
with a given set of input stimuli. The output responses are continuously 
collected and compared with the expected ones. As soon as a mismatch 
between the expected output values and the read ones is observed, i.e., when 
a SEFI is detected, the test is stopped and the configuration of the FPGA 
Under Test is read back and sent to the Control Host for data logging. 
Following this operation, the test is restarted from the beginning. By relating 
the number of observed SEFIs with the estimated number of particles hitting 
the devices surface is then possible to compute the device cross section. 

Similarly, the test-bed can be used to measure the cross section of the 
physical layer. In this case, the FPGA is initially programmed with an empty 
bitstream, and then its configuration memory is periodically read back. By 
comparing the read information with the fault-free bitstream, it is possible to 
measure the number of observed SEUs. As previously done, the device 
cross-section is computed relating this figure with the estimated number of 
particles hitting the device surface. 

3.3 Experimental results 

In order to evaluate the accuracy of the presented approach, several experi-
mental analysis have been executed.  
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The first one, aims at evaluating the accuracy of the simulation-based 
approach while modeling the effects of SEUs in the device configuration 
memory. 

The second one, aims at evaluating the accuracy of estimation of the 
predicted cross section of a circuit mapped on a device with respect to that 
measured by means of radiation testing. 

The Xilinx Virtex XCV300 device has been used as physical layer. The 
device has been exposed to various ion species ranging from 84 MeV 
Carbon to 210 MeV Nickel featuring linear energy transfer (LET) values 
between 1.6 and 30 MeV cm/mg. Radiation testing experiments were carried 
out at the Tandem Van De Graff Accelerator of INFN-LNL, Legnaro (PD), 
Italy. 

The application layer was a circuit composed of four 16 × 16 bit binary 
multipliers. Inputs of the four multipliers were connected in parallel, while 
the outputs were connected to an XOR gate array. The multiplier occupies 
2,524 out of 3,072 slices of the adopted XCV300 device and operates at 10 
Mhz. 

To assess the accuracy of the developed simulation tool, the output 
responses have been compared during the radiation testing with those 
computed by the simulation tool. For each SEFI recorded during radiation 
testing, the SEU causing it has been identified. The SEU is modeled in terms 
of the modification it introduces in the application layer, and finally it has 
been injected in the application layer by means of the developed simulation 
tool. 

For this purpose, an initial set of radiation testing experiments is performed. 
During the radiation experiments the physical layer was configured with the 
application layer, it was continuously stimulated by a given set of input 
stimuli, and the resulting outputs observed. As soon as a mismatch on the 
output values was observed between the expected values and the measured 
ones, the test was stopped, and the content of the physical layer configura-
tion memory was read back. By analyzing the faulty bitstream, the FPGA’s 
resources affected by SEUs have been identified. 

For each SEU observed during radiation testing, which forced the system 
to produce the faulty outputs, it is executed a simulation experiment. The 
SEU observed in the device configuration memory is modeled accordingly 
to the proposed technique by injecting a SEU into the application layer 
through the simulation-based approach described in the previous section. 
Then, the resulting output traces are recorded. Finally, the output observed 
during the radiation experiments have been compared with those obtained by 
simulations: for all the injected faults, the resulting traces predicted and 
always matched the measured ones. 
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The cross section of the FPGA-based system (a multiplier implemented 
on a Xilinx Virtex device) predicted by simulations is compared with that 
measured during radiation testing. 

 
TABLE 2.2 Comparison between the cross section obtained during radiation testing experi-
ments and that obtained by means of simulations 

Ion LET 
[MeV·cm2/mg] 

Measured circuit 
cross section 

[cm2/bit] 

Predicted circuit 
cross section 

[cm2/bit] 
12C 1.6 1.78 10-13 1.08 10-12 
16O 3.0 1.98 10-11 4.44 10-11 
19F 4.1 3.53 10-10 5.28 10-10 
28Si 8.5 1.80 10-9 1.82 10-9 
58Ni 29.0 2.57 10-9 4.45 10-9 

 
In computing the predicted error rate, we injected 10,000 SEUs. For the 

application layer, 9,712 faults have been identified in the routing resources 
and 288 faults into the logic resources using the Fault List Generation Tool. 

By multiplying the predicted circuit error rate by the cross section of the 
physical layer the predicted cross section is obtained. Table 2.2 gives the 
predicted cross section obtained during radiation testing for the specific ions 
used in the experiment. Table 2.2 also gives the measured cross section 
obtained during radiation testing for the specific ions used in the experiment. 

4. HARDWARE-BASED ANALYSIS OF SEUs 

As the reader can observe, predicted values are within a factor of two of the 
measured ones. The effects induced by SEUs on a SRAM-based FPGA have 
been recently investigated through radiation experiments [8–10], where the 
predominant effect that was observed was the Single Event Functional Interrupt 
(SEFI). More recently, an analysis that combines the result of radiation-
testing with those obtained while analyzing the meaning of every bit in the 
FPGAs configuration memory were reported in [11, 14], which identified  
the bits responsible for each SEFI and that classified the observed SEFIs 
according to the affected FPGAs resource.  

As an alternative to radiation testing, several fault injection approaches 
were recently proposed. All these approaches emulate the effects of SEUs in 
the FPGA’s configuration memory as bit-flips in the memory content, i.e., 
the bitstream, downloaded in the FPGA at power up. Some of them exploits 
run-time reconfiguration [17], while others modify the bitstream before 
downloading it in the configuration memory [18] or during download 
operations [19]. 
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Several techniques have been developed in the past years in order to 
avoid the incidence of SEUs on the behavior of the implemented circuits. 

Some of them aim at correcting the effects of SEUs in the device configu-
ration memory. For example the techniques proposed by Xilinx and known 
as Scrubbing consists in periodically reloading the whole content of the 
configuration memory [20]. A more complex system used to correct the 
information in the configuration memory exploits the readback and partial 
configuration process. Through the readback operation, the content of the 
FPGAs configuration memory is read and compared with the expected value, 
which is stored in a dedicated memory located outside the FPGA. As soon as 
a mismatch is found, the correct information is download in the FPGAs 
memory. During the reconfiguration only the faulty portion of the configura-
tion memory is rewritten [20]. 

Alternative techniques were also proposed that do not aim at identifying 
and correcting the modification introduced by SEUs, but just aim at avoiding 
the propagation of SEU effects to the observable outputs, mainly by introducing 
hardware redundancy in the circuit mapped on the FPGAs. Triple Modular 
Redundancy (TMR) is an attractive solution for SRAM-based FPGAs 
because it provides full hardware redundancy of the users combinational and 
sequential logic, the routing, and the I/O pads [8, 21]. 

The basic idea of the TMR scheme is that a circuit can be hardened 
against SEUs by designing three copies of the same circuit and building a 
majority voter on the outputs of the replicated circuits. Implementing triple 
redundant circuits in other technologies, such as ASICs, is generally limited 
to protecting only the memory elements, because combinational logic is 
hard-wired and correspond to non-configurable gates. Conversely, full module 
redundancy is required in FPGAs, because memory elements, interconnec-
tions and combinational gates are all susceptible to SEUs. This means that 
three full copies of the users design have to be implemented to harden the 
circuit against SEUs. In order to prevent fault accumulation, TMR is often 
coupled with techniques like scrubbing or readback and partial reconfigura-
tion to remove SEUs from the FPGAs configuration memory. 

Although effective, the overheads TMR mandates may overcome the 
available resources, e.g., the number of available I/O pads, and thus some 
applications exist where it can hardly be exploited. To solve this problem a 
new method was proposed in [22], aiming at reducing the overhead of a full 
TMR implementation. 

Even if optimized, these kinds of methods come with very high design 
penalties: besides the area overhead due to the TMR design, removing SEUs 
from the configuration memory mandates the adoption of ad-hoc circuit for 
supporting the readback and the partial reconfiguration procedure, and 
additional energy consumption. 
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4.1 Details on the Xilinx Triple Modular Redundancy 

The suggested optimal implementation of the TMR circuitry inside a SRAM-
based FPGA provided by Xilinx depends on the type of the circuit that is 
mapped on the FPGA device. There are three types of structures: combina-
tional logic, state machines or special devices.  

The primary purpose for using the TMR methodology is to remove all 
single points of failure from the design. This starts with the FPGA inputs. If 
the same input is connected to all the three domains of the redundant logic 
within the FPGA, then a failure at the input would propagate through all the 
domains, escaping the TMR protection capability. Therefore, each replica of 
the redundant logic should have its own set of inputs, as illustrated in Figure 
2.5. 

 
 
 
 
 
 
 
 

 
Figure 2.5. Triple Modular Redundancy (TMR) FPGA inputs. 

 
As far as the implementation of the majority voter is concerned, Xilinx 

proposed to build it by using the Output Buffer Three-state cell (OBUFT) 
provided by Xilinx library primitives as shown in Figure 2.6. 

 
 
 
 
 
 
 
 
 

Figure 2.6. Triple Modular Redundancy (TMR) BUFT majority voter outputs. 

4.2 Analysis of TMR architecture 

In order to assess the effects of SEUs in the FPGA configuration memory, a 
fault-injection system is used to inject SEUs internally to the configuration 
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memory and to record the circuit’s output. The fault injection system used is 
composed of the following modules: 

1. Fault List Manager (FLM): it generates the list of faults to be injected 
within the circuit under analysis, i.e., the Device Under Test (DUT). 

2. Fault Injection Manager (FIM): it manages the fault injection process, by 
selecting one fault from the fault list, performing its injection in the DUT 
and then observing and analyzing the obtained results to provide the 
fault-effect classification. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.7. The architecture of the fault-injection system. 
 
The proposed fault injection system consists of an FLM module imple-

mented as a software process running on a host PC, and a FIM, that runs in 
part on an host PC and in part on the same FPGA device where the DUT is 
placed. The two portions of the FIM communicate through a parallel link 
that exploits the Enhanced Parallel Port (EPP) protocol. The scheme of the 
implemented fault injection system is implemented in Figure 2.7. 

In the developed fault injection system the DUT, the EPP Interface and 
the FIM shared the same FPGA device. These modules should be placed on 
the FPGA device in such a way that any fault injected in the DUT does not 
interfere with the FIM and EPP interface. This requirement is complied by 
constraining the place and route algorithms to organize the FPGA-resource 
allocation as described in the Figure 2.8. 

The developed fault injection system exhaustively injects faults in all the 
configuration memory bits, no matter if they are used or not. In order to 
speed-up and make more precise the fault-injection process, the developed 
FIM identifies the configuration memory bits that are actually programmed 
to implement the DUT, and generates faults only for them. Moreover, this 
solution prevents us from erroneously injecting faults in the FPGA resource 
implementing the FIM and the EPP interface.  
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Figure 2.8. The adopted resource allocation of the fault injection system. 
 
To implement such a solution, it is first generated the file storing the 

configuration memory bit for whole design, then, FIM identifies those bits 
related to the DUT. This step is possible thanks to a data-based developed by 
decoding the Xilinx bitstream. Finally, the list of faults for the DUT confi-
guration memory bits is computed and stored. Each element of the fault list 
is a faulty bitstream for the FPGA where one bit at a time is modified to 
emulate the effects of a SEU. 

The architecture of the Fault Injection Manager is the most crucial part in 
the whole fault injection system. It is divided in two parts, a software one 
implemented on a PC (SW-FIM) and an hardware one (HW-FIM) that runs 
on the FPGA.  

The FIM executes the fault injection process in four steps: 

1. The SW-FIM configures the FPGA with a faulty bitstream taken from the 
fault list. 

2. The SW-FIM sends a start command to the HW-FIM placed on the 
FPGA. 

3. The SW-FIM polls the EPP Interface waiting for the result of the 
execution, and then it performs the fault effect classification. 

4. The SW-FIM resets the FPGA board and restarts from step 1. 

The SW-FIM is a supervisor for the HW-FIM, which consist of three 
modules: a control unit, a test-pattern generator and an output analyzer.  

The control unit inside of the HW-FIM communicates with the SW-FIM 
through the EPP Interface and implements the following steps: 

1. It waits for the start command from the SW-FIM. 
2. It puts EPP Interface on an idle state, and starts the test-pattern generator. 
3. When all the stimuli have been applied, it sends to the SW-FIM the result 

observed by the output analyzer. 
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The test-pattern generator provides the input stimuli to the DUT. The 
output analyzer compares the output response coming from the faulty DUT 
with the expected one, which is computed by a fault-free replica of the 
circuit hardened via TMR. 

4.3 Experimental results 

The fault injection experiments are performed injecting SEUs in the configu-
ration memory of FPGAs while implementing circuits hardened according to 
the Xilinx TMR architecture. The experimental setup presented in the previous 
sections has been used, the accuracy of this setup was confirmed by radiation 
testing experiments reported in [11]. The device used in the experiments is 
the Xilinx Spartan XC2S30-PQ144, whose configuration memory is composed 
of 336,768 bits organized in 1,165 frames of 288 bits each. The configura-
tion memory controls 132 I/O blocks and an array of 12 x 18 slices [23]. 

The performed analysis consisted in study three purely combinational 
circuits: an adder computing the sum of two 8-bit wide operands, an adder 
working on two 16-bit wide operands and a multiplier working on two 8-bit 
wide operands. 

During the experiments, a 16-bit wide up-counter has been used as test-
pattern generator. It allows generating all the possible input combinations for 
both the 8-bit adder and multiplier. The same counter was also used for 
testing the 16-bit wide adder, while the two inputs ports were shortened 
together. 

 
TABLE 2.3 Characteristics of the adopted circuits 

Circ. Slices 
[#] 

Programmed 
bits 
[#] 

CLB 
bits 
[#] 

Routing 
bits 
[#] 

Add8 100 9,785 2,560 7,225 
Add16 103 11,963 2,656 9,307 
Mul8 127 17,448 3,280 14,168 

 
The characteristics of the adopted circuits are reported in Table 2.3, where 

Slice reports the number of FPGA slices that the circuit occupies, Programmed 
bits is the number of configuration memory bits that are actually used by the 
mapped circuit, CLB bits is the number of configuration memory bits used to 
program the configurable logic blocks the circuit exploits, and Routing bits 
is the number of configuration memory bits for signal routing the circuit 
exploits.  

The described set-up was used for running three fault-injection campaigns, 
one for each circuit.  
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The fault-injection process took about 6 s for each fault. Being test-pattern 
generator and the output analyzer place in the same FPGA holding the DUT, 
the time needed for applying input stimuli and classify fault effects was 
negligible (4.5 ms on the average). Most of the time for processing each fault 
was indeed spent to download the faulty bitstream. 

 
TABLE 2.4 Fault-injection results 

Circuit Injected faults 
[#] 

Wrong answer 
[%] 

Add8 9,785 9.01 
Add16 11,963 11.28 
Mul8 17,448 13.18 

 
The results collected during the fault-injection campaigns are reported in 

the Table 2.4, where Injected Faults reports the number of injected SEUs, 
and Wrong Answer reports the percentage of SEUs provoking SEFIs, i.e., the 
obtained output response differs from the expected ones.  

During the experiments, it is injected only one fault for each configura-
tion memory bitstream actually programmed for implementing the mapped 
circuit. The faults were selected in such a way that common-mode faults 
were not possible.  

These results are particularly interesting since they experimentally show 
that the TMR architecture is not able to effectively harden the considered 
circuits against SEUs affecting the configuration memory of SRAM-based 
FPGAs. Moreover, the percentage of Wrong Answers is related to the density 
of programmed bits within the slices used for implementing the TMR 
architecture. 

 
TABLE 2.5 Comparison between programmed and fault bit 

Circ. Programmed-bit density 
[bit/slice] 

Wrong answer 
[%] 

Add8 97.85 9.01 
Add16 116.75 11.28 
Mul8 137.39 13.18 

 
To better outline this effect, in Table 2.5 a comparison between the 

FPGA-resource usage and the percentage of Wrong Answer. 
The column Programmed-bit Density reports the average number of pro-

grammed bits for the FPGAs slices actually used by the DUT. As the reader 
can observe, the percentage of Wrong Answer scales with the Programmed-
bit Density. 
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This result suggested that SEU sensitivity in SRAM-based FPGAs is 
related to the number of used bits in each slice. The lower it is the number of 
used bits in each slice, the lower it is the probability that, when affected by 
SEUs, the bits of a slice provoke a SEFI. 

5. ROBUSTNESS OF THE TMR ARCHITECTURE 

The circuit mapped on a reconfigurable FPGA is totally controlled by the 
configuration memory, which in the case of SRAM-based FPGA, is composed 
of static RAM cells. Interestingly the effects induced by SEU affecting the 
configuration memory are permanent, since the SEU changes the mapped 
circuit until the device is programmed again. The result of a SEU that causes 
the devices to stop operating properly is generally defined as a Single Event 
Functional Interrupt (SEFI). One possible solution to this problem is to use 
radiation-hardened FPGAs, but since these devices are very expensive, alter-
native solutions allowing using non radiation hardened devices are currently 
investigated.  

Triple Module Redundancy is often exploited for hardening digital logic 
against SEUs in safety-critical applications. As an instance, TMR is often 
used to design fault tolerant memory elements to be employed in sequential 
digital logic. Unfortunately, non-radiation-hardened FPGAs present insuffi-
cient protection of memory elements in both the mapped circuit, and the 
configuration memory. As a result, particles hitting the configuration memory 
can change dramatically the logic functionality of the mapped circuit, as well 
as the circuits memory elements. Evaluation techniques must be used to 
evaluate the impact of SEUs affecting FPGAs configuration memory, and to 
avoid undesired changes of the circuit mapped on the FPGA. 

The purpose of this section is to deeply investigate how circuits designed 
according to the Triple Modular Architecture, and mapped on non-radiation-
hardened SRAM-based FPGAs, behave when SEUs are injected in the confi-
guration memory cells controlling the FPGA resources. For this purpose 
fault injection experiments are performed. 

As the results of the experimental SEU’s effects analysis illustrated, it is 
suggested that it is possible to reduce the effects of SEUs within the confi-
guration memory bits of non-radiation-hardened SRAM-based FPGAs by 
placing the TMR circuit on the FPGA floorplan respecting constraints rules 
able to decrease the damaging effect of SEUs. 

The experimental analysis assesses the effects of SEUs in the FPGA 
configuration memory of a real FPGA device, we injected faults in a Xilinx 
Spartan XC2S30PQ144 device, whose configuration memory is composed 
of 336,768 configuration memory bits organized in 1,165 frames of 288 bits 
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each. The configuration memory controls 132 I/O blocks and array of 12 x 
18 slices [23]. 

The experimental analysis considers an extended set of circuits including 
two adders (one working on two 8-bit wide operands and the other on two 
16-bit wide operands) and two multipliers (one working on 4-bit wide 
operands and one on two 8-bit wide operands. Furthermore an analysis on an 
elliptic filter in order to evaluate the sensitiveness to SEUs in a sequential 
circuit. 

The characteristics of the set of circuit used in the experiments are 
reported in Table 2.6, where Slices reports the number of FPGA slices that 
the circuit occupies, Programmed bits the number of configuration memory 
bits actually used by the mapped circuit, CLB bits is the number of 
configuration memory bits used to program the configurable logic blocks of 
the circuit, and finally Routing bits is the number of configuration memory 
bits for signal routing the circuit exploits.  

 
TABLE 2.6 Characteristics of the adopted circuits 

Circuit Slice [#] 
Programmed 

bits [#] 
CLB  

bits [#] 
Routing  
bits [#] 

Add8 100 9.785 2,560 7,225 
Add16 103 11,963 2,656 9,307 

Mul4 (a) 51 5,448 1,306 4,142 
Mul4 (b) 42 5,443 1,107 4,336 
Mul4 (c) 53 7,318 1,329 5,989 

Mul8 127 17,448 3,280 14,168 
Filter 132 20,501 3,401 17,091 

 
We developed three different strategies of placement for the resources 

within the SRAM-based FPGA floorplan before running the fault injection 
campaigns. The strategies are the following: 

1. No constraints: the place and route tool is let free to map the circuit in the 
whole FPGA area. 

2. Minimal Area Constraints: the place and route tool is forced to produce 
the smallest possible design.  

3. Safe Area Constraints: the place and route tool is forced to place each 
module of the TMR in a dedicated partition of the FPGA, so that two 
different module cannot share the same FPGA portion. 

Due to the limited amount of resources of the adopted FPGA device, all 
circuits excepts the multiplier with 4-bit wide operands have been placed 
according to the strategy 1. Seven fault injection experiments are performed 
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using the above-described tool and strategies of placement. The results of the 
fault injection experiments are reported in the Table 2.7, where the Injected 
Faults column reports the number of SEUs we injected, and the Wrong Answer 
one reports the percentage of SEUs provoking SEFIs, i.e., the obtained output 
response differs from the expected ones. During the experiments, only one 
fault for each configuration memory has been injected, assuming that the 
fault injection time is equal to 0, i.e., SEUs affect the device right after it has 
been programmed. In the experiments a workload composed of all the possible 
input configuration was used. These results are particularly interesting since 
they experimentally show that the TMR architecture is not able to effectively 
harden the considered circuits against SEUs affecting the configuration 
memory. Indeed, the percentage of Wrong Answers can reach 13% for the 
largest circuits. 

 
TABLE 2.7 Fault-injection results 

Circuit 
Injected faults  

[#] 
Wrong answer  

[#] 
Adder 8 9,785 982 

Adder 16 11,963 1,349 
Multiplier 8 17,448 2,300 

Filter 20,501 2,708 
Multiplier 4 (a) 5,448 33 
Multiplier 4 (b) 5,443 27 
Multiplier 4 (c) 7,318 17 

 

5.1 Analysis of the fault effects 

To better understand the causes of failure of the TMR architecture, each 
faulty configuration memory is analyzed using the developed classification 
tool [14, 24]. The result of the classification is reported in Table 2.8, where 
are reported the number of effects observed during the fault injection experi-
ments, classified according to the affected resources (logic and routing) and 
to the produced effects (Open, Bridge, etc.). The effects are divided between 
Routing faults, provoked by any SEU that hits the bits controlling the 
programmable switches attached to the wire segments used to connect the 
FPGAs logic resource, and Logic faults, provoked by any SEU that hits the 
bit controlling the logic resources. For each kind of fault we can observe the 
following modifications induced by SEUs to the FPGA resource configura-
tion. The effects classification report the following situation: 
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- Routing: the routing of a logic signal from the resource A to the resource 
B (track A/B) may be affected as follows: 

o Open: the track A/B is broken, and thus resource B is no longer fed 
with the expected logic value coming from resource A, which is 
instead left dangling.  

o Bridge: the track A/B is replaced with a new track C/B, and thus 
resource B is no longer fed with the expected logic value coming 
from resource A. 

o Antenna: a new track A/B is created linking a unused resource that 
could be connected far away in the FPGA routing topology, this may 
influence the behavior of the circuit since the resource associated to 
the output pad are driven to an unknown logic value. 

o Conflict: a new track C/B is created that overlaps with A/B. Resource 
B is driven by an unknown logic value which depends on the values 
coming from resources A and C. 

o Others: a modification of the track cannot be classified in any of the 
above classes. 

 
- Logic: a logic resource may be affected as follows: 

o LUT: a bit controlling the LUT content is modified, this implies a 
modification of the logic function implemented. 

o MUX: a new MUX selection bit causes a new path of the signal. 
o Initialization: an initialization bit is modified provoking a modifica-

tion of the behavior of the internal components of the CLB. 

 

 

  Add8 Add16 Mul8 Mul4 (a) 
Mul4 
(b) 

Mul4 
(c) 

Filter 

  [#] [#] [#] [#] [#] [#] [#] 
 LUT 0 0 0 0 0 0 0 

Logic MUX 206 52 112 2 1 0 293 
 Initialization 50 22 66 1 1 0 331 
 Open 565 701 1,159 18 14 0 1,429 
 Bridge 45 36 133 3 4 7 318 

Routing Antenna 3 10 24 2 3 2 62 

 Conflict 208 254 307 15 14 9 138 
 None 0 0 0 0 0 0 0 
 Others 236 383 501 7 4 4 450 

 Total 1,313 1,458 2,302 48 41 22 3,021 

TABLE 2.8 Classification of the effects induced by SEUs 
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In order to explain the effects we observed when analyzing the routing 
faults let us consider the fault-free configuration shown in Figure 2.9, where 
AI, BI, AJ, BJ, indicate four components, belonging to two different modules I 
and J, where I differs from J, of the TMR. The modifications that could be 
generated due to a SEU in the configuration memory are of two different 
types: 

o Conflict: between track AI / BI and AJ / BJ of the TMR architecture as 
shown in Figure 2.10a. 

o Open and Bridge: between track AI / BI and AJ / BJ of the TMR as shown 
in Figure 2.10b. 

Analyzing the Logic faults, the effects that can provoke errors in the 
TMR architecture are mainly due to MUX shared between two different 
redundant modules I, and J. An error in such MUX may provoke multiple 
errors in both I, and J. 

 
 
 
 
 
 
 
 
 
 

Figure 2.9. Fault-free configuration of two interconnections related to the redundant module  
I and J. 

 
The Table 2.7 shows that the TMR architecture may fail to work properly 

because one SEU often produces one or more effects, at the same time, 
modifying the expected behavior of two or more different replicas of the 
TMR hardened circuit. 

In terms of classification analysis, the main difference between combina-
tional and sequential circuits is the increased number of effects within the 
logic resources, in particular in the MUX and initialization components. 
Moreover, the obtained result shows that most of the faults escaping the 
TMR architecture affect routing resources, and in particular, they are classi-
fied as Open. 

The analysis of the gathered results, obtained from the study on the three 
different versions of the Multiplier, suggests a new approach to reduce the 
effects of multiple errors provoked by a single SEU. The obtained results 
show a progressive reduction of the number of faults: 33 for the experiment 
(a), 27 for (b) and finally 17 for the case (c). These results show a significant 

AI BI

AJ BJ

I

J

41



Chapter 2

reduction in the number of faults in relation to a smaller placing and routing 
that isolate each different module of the TMR architecture. In particular the 
version (c) of the multiplier is not affected by open errors. 

 
 
 
 
 
 
 
 
 

Figure 2.10. (a) Conflict between track AI /BI and AJ /BJ. (b) Open and bridge between track 
AI /BI and AJ /BJ. 

 
These results support the conclusion that the key for a better implementa-

tion of the TMR architecture resides in the clever selection of the placement 
and routing of TMR components. 

6. CONSTRAINTS FOR ACHIEVING FAULT 
TOLERANCE 

Considering the experimental analysis performed and presented in this 
chapter, the main conclusion is that an SEU affecting the FPGA’s configura-
tion memory may provoke multiple errors by changing the configuration of 
routing resources. As a result, hardening techniques developed according to 
the single fault assumption are not adequate to cope with the multiple effects 
of SEUs in the configuration memory controlling routing resources. In the 
considered analysis, many situations exist where one SEU provokes multiple 
errors in such a way that the TMR scheme is no longer able to mask the 
SEUs effects [14]. 

As an example of this situation, referring to the Figure 2.2a, assuming 
that As /AD and Bs/BD are two routing edges belonging to two different 
replicas of the circuit hardened according to TMR. In this case, each SEU 
resulting in the erroneous configurations reported in Figure 2.2b–d violates 
the single-fault assumption. 

This problem is particularly critical since 90% of the bits of FPGAs 
configuration memory are devoted to programming the routing resources. 
While it is possible that one upset may modify more than one routing edges, 
this becomes only when two routing edges from two different TMR replicas 
(i.e., domains) are affected. 

AI BI

AJ BJ

I

J

AI BI

AJ BJ

I

J

(a) (b)
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In order to estimate the magnitude of the problem, it is considered one 
switch box and, for a given pair of routing edges (implemented by two PIPs 
of the same switch box) that belong to two different TMR replicas, then all 
the faulty configuration that are possible for a given routing architecture 
have been identified. In the presented study, the Xilinx Virtex family has 
been considered. For each faulty configuration, the corresponding image of 
the configuration memory has been computed. The faulty bitstream is then 
compared with the reference one and it is observed that they differ by one bit 
only. This means that one SEU may provoke multiple effects.  

The aforementioned procedure has been repeated for all the faulty cases 
(i.e. short, open and open/short) and the computation reports that 72% of all 
the configuration memory bits controlling the considered switch box could 
produce critical situations if used for routing different TMR replicas. All the 
switch boxes with the FPGA are equal and, therefore, the above considera-
tions are general. An example of such a kind of analysis related to the Short 
fault effect is illustrated in Figure 2.10a. 

As a result, unless suitable countermeasures are developed, the TMR 
approach is no longer suitable for achieving fault tolerance. 

Following the analysis performed on FPGAs architecture and on the 
organization of the FPGAs configuration memory, the constraints are used to 
enforce place and route algorithm in order to develop circuit implemented 
with TMR that are resilient to multiple errors: 

1. All the circuit modules and connections must be replicated three times. 
2. The outputs of the three circuit replicas must be voted according to the 

TMR principle. 
3. The elements of the resulting TMR architecture (logic functions and 

connections among them) must be placed and routed in such a way that, 
given the corresponding routing graph, each new edge that is added (or 
deleted) to (from) the graph cannot provoke any fault belonging to the 
following categories: 

(a) Short between different connections belonging to different circuit 
replicas 

(b) Open affecting different connections belonging to different circuit 
replicas 
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Chapter 3 

ANALYTICAL ALGORITHMS FOR FAULTY 
EFFECTS ANALYSIS 
Single and multiple upsets errors 

 

Reconfigurable FPGAs are very appealing as a replacement of ASICs for 
low-volume designs. FPGAs offer performance levels close to that of ASICs, 
plenty of resources to implement even very complex systems, as well as the 
possibility of performing in-the-field-reprogrammability.  

In order to adopt successfully and safety these advantages, developers of 
safety-or mission-critical applications have to guarantee that the obtained 
FPGA-based systems meet the needed dependability levels. As deeply 
described in Chapter 2, SRAM-based FPGAs are particularly sensitive to 
upsets induced by energetic particles [1, 2] and thus they cannot be straight-
forwardly adopted in safety-or mission-critical applications, like space-borne 
ones. 

As far as upsets affecting the memory elements the FPGA-based system 
embeds, two problem must be addressed: the protection of the users memory 
elements and that of the configuration memory. 

Users memory elements (registers, memory arrays, etc.) must be hardened 
against these effect (either single and multiple) that may alter the informa-
tion the system stores thus provoking temporary disruption of the service the 
system delivers. The disruption can be considered temporary since, assuming 
that the users memory is both read and written during systems activity, the 
disruption lasts as soon as a new (correct) value is written in the memory 
element the event affected.  

Similarly, FPGAs configuration memory must be hardened against the 
occurrence of such effects, too. Being composed of SRAM cells, the con-
figuration memory content may be altered by energetic particles hitting the 
FPGA, and therefore the vital information the memory holds, which defines 
which function the FPGA implements, may be altered. By changing the 
implemented function, upsets modifying the FPGAs configuration memory 

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,  
© Springer Science + Business Media B.V. 2008 
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may alter dramatically the service system delivers. This type of disruption 
can be seen as permanent: the configuration memory is normally written 
once, at system power-up, and therefore when altered, the memory content 
cannot be restored until the next power-up (unless hardening strategies are 
used that periodically rewrite the configuration memory). 

As described in the previous chapter, several approaches were proposed 
to cope with the abovementioned issues, making the deployment of SRAM-
based FPGAs in mission or safety-critical applications feasible. However, no 
matter which type of hardening strategy is adopted, the designers have to 
validate the resulting system to prove that the needed dependability level is 
reached. For this purpose different approaches are available. These approaches 
may be grouped in the following categories: 

 Accelerated radiation ground testing, where prototypes of the analyzed 
systems are exposed to suitable radiation beams. 

 Fault injection, where upsets are inoculated either in prototypes or in 
simulation models of the analyzed system. 

 Analytical computation, where models of the analyzed systems are 
studied by resorting to probabilistic techniques. 

In this chapter, a new analytical algorithm is described that provides 
accurate estimation of the effects of Single Event Upsets (SEUs) and 
Multiple Cell Upsets (MCUs) inside FPGA-based designs. The main novelty 
the algorithm introduces is the possibility it offers of analyzing any SEU 
location within a design (by considering both user memory and configura-
tion memory), and of identifying whether the SEU provokes any observable 
effect (i.e., the modifications induced by the SEU propagate from the SEU 
location to the systems outputs). The approach identifies all the memory 
elements (either belonging to the user memory, or to the configuration 
memory) that have to be hardened in order to make a design insensitive to 
SEUs effects. It thus improves the capabilities of already available analytical 
approaches that, to the best of our knowledge, provide only statistical 
estimations (although valuable) of SEUs effects. 

Several approaches are available for analyzing the effects of SEUs in 
FPGA devices.  

Accelerated radiation ground testing is an effective solution for estimating 
the effects on both the memory elements used by the design the FPGA 
implements as well as the FPGAs configuration memory [2, 3]. This kind of 
technique requires a prototype of the system under analysis, which is 
exposed to a flux of radiations, originated either by radioactive sources or by 
particle accelerators, which interacts with both the designs memory elements 
and the configuration memory. Radiation testing strategies aiming at validating 
the robustness of a design (i.e., computing its dynamic cross section) are 
usually based on the continuous monitoring of the outputs of the circuit 
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implemented on the FPGA under test, which is continuously stimulated by a 
given set of input stimuli. As drawbacks, radiations have the capability of 
permanently damaging the device under test and the costs needed by the 
experimental setup and by the beam time are not negligible. 

As an alternative to radiation testing, several fault-injection approaches 
were recently proposed. Fault injection is an attractive technique for the 
evaluation of design characteristics such as reliability, safety and fault 
coverage [4]. The process involves inserting faults into particular targets in a 
system and monitoring the results to observe the produced effects. All these 
approaches emulate the effects of SEUs in the FPGAs memory as bit-flips in 
the bitstream that is downloaded in the FPGA in the programming phase. 
Some of them use run-time reconfiguration [5], while others modify the 
bitstream before downloading it in the device configuration memory or 
during download operations [6, 7]. Although the fault injection approaches 
permit to evaluate the effects of SEUs in all the memory bits, the time 
needed by the fault injection process is still huge, even in the case the 
process is optimized by the use of partial reconfiguration. 

To overcome the time-consuming processes needed by the fault-injection 
approaches and to avoid the high cost of radiation testing, analytical approaches 
based on synthesis tools and software programs, only, are proposed in [8, 9]. 
In [8] a static estimation of the mapped designs susceptibility to SEUs is 
proposed assuming that all the bits of a design are susceptible at all times. 
Differently, in [9] an approach is proposed that identifies the paths sensitive 
to SEUs by calculating the probability error rate of all circuit nodes and by 
combining it with the error propagation probability of each net within the 
design. Then, the obtained information is coupled with the sensitivity of the 
FPGAs configuration memory bits. These approaches are either very pessi-
mistic or able to provide only probabilistic estimations of SEU effects. In  
our approach, we analyze the topology of the design implemented on the 
SRAM-based FPGA and we couple this analysis with a set of reliability 
constraints. Thanks to this approach we are able to achieve the same 
accuracy of more time-consuming approaches like fault injection, while the 
execution time our approach demands is orders of magnitude lower. 

Two different versions have been developed, the first one addressing the 
Single Event Upsets (SEUs) while the second ones addressing the Multiple 
Cell Upsets (MCUs).  

1. OVERVIEW ON STATIC ANALYSIS ALGORITHM 

The main purpose of the proposed algorithm is to analyze the effects of 
upsets in both the user memory elements and the FPGA’s configuration 
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memory early in the design phase, as soon as the placed and routed model of 
the designed circuit is available.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1. The architecture of the proposed approach. The figure reports the Static Analyzer 
and the Dynamic Analyzer tool chain. 

 
When the SEUs are considered, the developed flow is illustrated in 

Figure 3.1, which depicts the Static Analyzer (STAR) algorithm. It is the tool 
that checks whether the placed and routed circuit is sensitive to upsets 
affecting either the memory elements the designers embed in the circuit, as 
well as the configuration memory of the SRAM-based FPGA implementing 
the circuit. It is composed of three modules: 

 Redundancy Cluster-Extractor: it is a module that reads the Native 
Circuit Description and extracts the place and route information related to 
each cell of the FPGA architecture. That information is processed by 
means of a clustering process that groups the data depending on the 
FPGA topology architecture and on the redundancy structure of the 
adopted hardening technique.  

 Dependability-Rules: it is a database of constraints related to the topology 
architecture of the FPGA that must be fulfilled by the placed and routed 
circuit in order to be resilient to the effects provoked by SEUs. 

 Rules-Checker: it is the algorithm that reads each cluster and analyze 
every bit of the user memory and the configuration memory the FPGA 
has. It returns a list of SEUs (Critical SEU Locations) that introduces 
critical modification that may overcome the TMR hardening technique 
adopted.  
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Furthermore the flow is based on two description files: the circuit 
description and the layout description. The circuit description is a file 
containing the structural description of the circuit, which consists of logic 
functions (either combinational or sequential) and connections between 
them. Both the logic functions and the connections between them are 
described in terms of FPGAs resources. The layout description is a file 
containing the description of where each resource in the Circuit Description 
file is placed and routed on the FPGA area. 

The classification is then performed by the Dynamic Evaluator (EVA-
DYN). It is the platform that performs the dynamic evaluation of the SEU 
effects on the analyzed circuit. It is based on the fault injection approach. 
This platform applies the desired input patterns to the circuit description. An 
injector engine is devoted to create a faulty configuration memory bitstream 
according to the SEU location classified by the STAR tool. Finally a report 
of violation is generated that contain a list of all the violations of the 
Dependability Rules that the static analyzer identify. Each entry of the file 
describes the memory element, and the FPGAs resource responsible for the 
violations. 

Given the circuit and layout descriptions, the static analyzer verifies 
whether all the constraints described in the dependability rules are fulfilled. 
In case any violation is found an entry is stored in the report of violations 
file. 

2. ANALYTICAL DEPENDABLE RULES 

The dependability rules, as described in the first chapter, must be enforced 
by a circuit implemented on SRAM-based FPGA in order to be resilient to 
the effects of SEUs. In particular, the rules guarantee that any SEU affecting 
either the memory elements the circuit uses and the FPGAs configuration 
memory is not able to propagate to the circuit’s outputs. The dependability 
rules implemented are the results of an in-depth investigation of the effects 
of upsets in the memory elements of SRAM-based FPGA’s designs. It has 
been observed that one and only one configuration memory bit B modifies 
two or more routing segments provoking multiple effects. A detailed analysis 
of these effects can be found in [10]. However, when TMR hardening 
technique is used, further considerations should be done. A TMR circuit may 
include voter partition logics. A voter partition logic may be defined as  
the logic resources (both sequential and combinational) that is comprises 
between two voter’s structures. Considering the TMR scenario described in 
Figure 3.2, a voter partition logic consists in the logic domain Di with I  (1, 
2, 3) comprises between voter structure Vi and Vi+1. The modification that 
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may be introduced are deeply investigated in [10] and can be grouped in 
three distinct cases: Short, Open and Open/Short. 

 
 
 
 
 
 
 
 
 
 

Figure 3.2. The Triple Modular Redundancy structure voter scenario. 
 
These modifications may introduce critical behavior in the TMR structure 

illustrated in Figure 3.3. For example, considering the TMR scenario shown 
in Figure 3.3, an SEU may induce an open effect on two signals (i.e., the 
output signals of the FFs A1 and A2) provoking the multiple error in all the 
outputs of the TMR structure. 

 
 
 
 
 
 
 
 
 

Figure 3.3. Open effect induced by an SEU example on a TMR scenario. (a) original 
condition, (b) open effect. 

3. THE STAR ALGORITHM FOR SEU ANALYSIS 

The STAR tool for the SEU analysis is based on a clustering algorithm 
which works on the FPGA architectural graph model described in the pre-
vious chapters. The flow of the cluster algorithm implemented is illustrated 
in Figure 3.4. When analyzing a circuit, the STAR algorithm performs three 
distinct phases. 

The first phase reads the native circuit description and creates two sets: 
the first contains the routing resources related to each voter partition logic 
(Pi) while the second stores the logic resources related to each TMR domain 
(Dj).  
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STAR() 
  { 
   /*Reading_native_resources*/ 
   set_voter_partitions (Pi) 
   set_tmr_domains (Dj) 
   /*Redundancy-Clusters*/ 
   create_cluster_sets (CS(x,y), HS(x,y)) 
   for each voter_partition VP  Pi 
     for each tmr domains TD  Dj 
      { 
       CS(x,y) = cluster_databits(VP, TD ) 
                HS(x,y) = cluster_hierarchy_tree(VP, TD)  
               }   
   /*Rules-Checker*/ 
   for each cluster C  CS(x,y) 
     for each bit location B  C 
       { 
        UL = create_upset_list (B, HS(x,y)) 
        Check_dependability (UL, HS(x,y)) 
       }   

Figure 3.4. The flow of the Static Analyzer algorithm (STAR) developed. 
 
The second phase creates two cluster sets that groups information of a 

selected area of the FPGA matrix, where parameters x and y correspond to 
the row and column of the FPGA array: CS(x, y) which contains an array of 
the memory bit related to both the user memory and to the configuration 
memory controlling the logic and the routing resources, and HS(x, y) which 
contains the routing graph correspondent to the selected FPGA location. The 
routing graph contained in each cluster HS(x, y) is colored according to the 
information related to the voter partition logic and to the TMR domain. Two 
kind of marks are used, a first mark is assigned considering that the circuit is 
designed according to the TMR principle, three different colors are used for 
vertices belonging to each TMR domain. The second mark is an index that 
identifies the correspondent voter partition logic. 

The third phase checks the effects that may be generated by SEUs that 
affect the memory bit contained in each cluster CS(x,y). This phase consists 
of the following steps: 

1. A bit within the cluster set CS(x,y) is considered as SEU sensitive. 
2. It is generated a list of SEU inducing modification into the circuit. This 

list includes the logic or routing vertices involved in the modification due 
to the SEU sensitive bit. These vertices are marked as faulty. 

3. The dependability evaluation is performed by the function Check_depen-
dability (). The routing tree contained within the cluster set HS(x,y) is 
updated generating a SEU propagation tree that contains all the paths 
stemming from the vertices marked as faulty, to the first voter’s structure. 
If the leaves of the propagation tree include more than one graph color 
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and only one voter partition logic index, the correspondent bit is added to 
the Critical SEU Locations. Indeed, when this condition is met, the SEU 
effect is propagated to two or more circuit domains within the same voter 
partition logic, and therefore the TMR principle is no longer enforced.  

3.1 The dynamic evaluation platform 

The dynamic evaluation platform consists of a fault-injection environment 
which allows to evaluate the dynamic effects on the circuit under test of the 
critical SEUs reported by the static analyzer tool.  

The fault injection system is composed of the following modules: an host 
computer, an FPGA board equipped with a Xilinx Virtex II-Pro device, and 
a serial communication link supported by a RS-232 cable that connects the 
FPGA board to the host computer. The host computer is preliminary used for 
configuring the Virtex-II Pro device and then for the generation of the input 
patterns. 

The architecture of the proposed fault injection system is completely 
implemented on the FPGA device, which its layout is depicted in Figure 3.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5. Architecture of the fault injection environment. 
 

Four components are mapped on the Virtex-II Pro FPGA, all of them are 
interconnected by an On-chip Peripheral Bus (OPB): 

 Timing Unit: it drives the UUT clock and reset. 
 Unit Under Test (UUT): it is the circuit under test and it may consist of 

an IP core and an own memory. 
 ICAP: it is the Internal Configuration Access Port provided by last 

generations of Xilinx FPGAs. It allows to access to the FPGA 
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configuration memory through an internal port in order to perform partial 
reconfiguration without the support of an external hardware. 

 PowerPC microprocessor: it is hardwired in the FPGA device and it 
controls the fault-injection process. 

The fault injection process consists of several steps. At first some 
preliminary operations are executed: 

1. The input patterns and the Critical SEU locations are load within the 
internal memory connected through the PLB bus to the PowerPC. 

2.  The PowerPC starts the execution of the UUT applying the input patterns. 
The obtained outputs are stored within the Expected output memory. 

Once the preliminary operations are completed, the PowerPC selects the 
configuration memory bit from the Critical SEU locations and through the 
ICAP port performs partial reconfiguration of the frame where the SEU has 
to be injected. It starts the execution of the UUT application. During the 
execution, it stores within the faulty output the data generated by the UUT. 
Finally, at the end of the execution, the FPGA control board compares the 
expected and the faulty memories in order to identify if a mismatch is found. 
Once a mismatch is identified the bit-flip information are transferred to the 
SEU violations file. This process is repeated for all the Critical SEUs 
identified by the STAR algorithm. 

3.2 Experimental results of SEU static analysis 

In this section we describe the experiments has been performed to evaluate 
the efficiency of the proposed SEU estimation methodology. 

A prototype of the STAR algorithm has been developed, that accounts for 
64K lines of ANSI C code and of the dynamic evaluation platform using a 
Xilinx Virtex-II Pro XC2VP30 as FPGA under test. The developed experi-
ments aim at analyzing the capability of the proposed methodology of 
detecting SEUs in the FPGA logic and routing structures in the configuration 
memory of FPGAs that implement circuits hardened according to the TMR 
approach. Three different circuits hardened through Xilinx TMR (X-TMR) 
approach [11] have been developed: a FIR filter, a microprocessor core 
implementing the Intel 8051, and the PicoBlaze microcontroller. During our 
experiment the FPGA has been configured at the working frequency of 100 
MHz. Furthermore the internal ROM of the 8051 and PicoBlaze has been 
initialized with an Elliptic filter program working on 64 samples. 

The results achieved are illustrate in Table 3.1 where are reported the 
number of SEUs identified as critical for the exhaustive fault injection 
analysis performed injecting in all the possible memory locations related to 
the circuit under test.  
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TABLE 3.1 Experimental results reporting the computational time needed and the critical 
SEUs identified 

Circuit Exhaustive fault injection 
 Time [min] Critical SEUs [#] 
FIR X-TMR 30.4 82 
8051 X-TMR 180.2 103 
Pico X-TMR 91.2 95 

Circuit STAR-LX 
 Time [min]  SEUs [#] 
FIR X-TMR 5.1 105 
8051 X-TMR 7.5 120 
Pico X-TMR 5.2 115 

Circuit EVA-DYN 
 Time [min] SEUs [#] 
FIR X-TMR 9.2 82 
8051 X-TMR 10 103 
Pico X-TMR 9.3 95 

 
It is reported also the list of SEUs generated by the STAR algorithm that 

may modify the system ( ) and the critical SEUs finally identified by the 
dynamic evaluation platform ( ). 

The number of critical SEUs detected by the proposed algorithm is 
exactly that obtained by extensive fault injection. Besides, the proposed 
methodology is one order of magnitude faster on the average than exhaustive 
fault injection approach. Furthermore, the computational time is not pro-
portional with the circuit complexity. The results have been validated 
comparing the location of critical SEUs obtained from the STAR algorithm 
and the others coming from fault injection experiments. 

4. THE STAR ALGORITHM FOR MCU ANALYSIS 

One critical issue to enable using not rad-hard SRAM-based FPGAs in the 
space environment is the capability of mitigating the effects induced by 
upsets within the device’s configuration memory. In addition to Single Event 
Upsets (SEUs), Multiple Cell Upsets (MCUs) provoked by ionizing radiations 
have been observed in SRAM-based memory devices [12, 13]. MCUs within 
not rad-hard SRAM-based FPGAs have been observed during radiation 
experiments with proton and heavy ions [14]. In particular, a study that 
quantifies the occurrence of protons- and heavy-ions effects on four different 
Xilinx FPGA’s families indicates that the newer families (such as Virtex-II 
and Virtex-IV) are increasingly sensitive to MCUs. As a result, the MCU 
cross-sections of the newer Xilinx Virtex-II increase by two orders of 
magnitude if compared with the previously manufactured family Xilinx 
Virtex-I.  
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Few data are recently observed on the effectiveness of TMR hardening 
technique when coping with MCUs. The research expects that as MCUs 
produce multiple upsets in the configuration memory, they are more likely 
than SCUs to induce domain-crossing events that may affect two or more 
TMR modules, thus limiting the effectiveness of TMR [15]. 

In this chapter is presented a new analytical-oriented methodology for the 
estimation of MCU-induced effects inside the FPGA’s configuration 
memory while TMR design techniques are adopted. The developed 
analytical method allows to analyze 2-bits MCUs sensitiveness of TMR 
circuits implemented on SRAM-based FPGAs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6. The flow of the STAR algorithm for the analysis of MCUs. 
 
The flow of the proposed methodology is depicted in Figure 3.6. The 

STAR algorithm for the analysis of MCU is composed of the following 
elements:  

 Native Circuit Description: It is a file containing the structural and layout 
descriptions of the circuit, which consists of logic functions (either 
combinational or sequential) and connections between them. Both the 
logic functions and the connections between them are described in terms 
of resources placed and routed on the FPGA.  

 Static Analyzer MCU: It is the tool that checks the placed and routed 
circuit analyzing the sensitive MCU locations affecting the memory 
elements the design embeds and the configuration memory. It is 
composed by five modules: the Redundancy Cluster-Extractor, the 
Configuration memory rules, the Routing and logic topology, the Depen-
dability Rules and the Rules Checker. 

The Redundancy Cluster-Extractor is a module that reads the Native 
Circuit Description and extracts the place and route information related to 
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each cell of the FPGA architecture. This information are processed by a 
clustering algorithm that groups the data depending on the FPGA topology 
architecture and on the redundancy structure of the adopted hardening 
technique. The configuration memory rules is a data-base related on the 
physical layout of the FPGA’s configuration memory cells.  It contains the 
configuration memory coding of all the resources of a CLB, while the 
functionality of the CLB’s logic and the interconnections architecture effec-
tively programmed are identified by the configuration memory rules. The 
information about the routing and the logic internal structure of the SRAM-
based FPGA device are stored within the Routing and Logic topology. 

The Dependability-Rules is a data-base of constraints related to the 
topology architecture of the not rad-hard FPGA that must be fulfilled by the 
placed and routed circuit in order to be resilient to the effects provoked by 
MCUs. The Dependability-Rules are used by the Rules-Checker algorithm 
that reads each cluster and analyze all the bits of the FPGA’s configuration 
memory. It returns a list of MCUs (MCU Violations) that provoke critical 
modifications that may overcome the adopted hardening technique. 

4.1 Analysis of errors produced by MCUs 

As discussed in the Chapter 2, the dependability rules must be adopted by 
circuits implemented on not rad-hard SRAM-based FPGA in order to be 
resilient to the effects of SCUs. In particular, the rules guarantee that any 
SCU affecting either the memory elements the circuit uses or the FPGAs 
configuration memory is not able to propagate to the circuit’s outputs. When 
considering MCUs induced by a single particle affecting two cells of the 
FPGA’s configuration memory further considerations are needed, which 
include how the redundancy structure is laid out on the FPGA. 

The MCU’s effects have been analyzed considering clusters of adjacent 
configuration memory bits as illustrated in Figure 3.7a. In Figure 3.7b, is 
illustrated the resources possibly affected by MCUs. They belong to the 
following sets: CLBs, Block RAMs (BRAMs), BRAMs interconnects, and 
IOBs. Each resource’s set is controlled by a defined number of configuration 
memory frames where each frame corresponds to an FPGA’s configuration 
column of SRAM cells [16]. Depending on the orientation of the MCU 
events (single column, row or diagonal adjacent cells), the provoked effects 
may simultaneously corrupt resources of a single set or two sets whose 
configuration’s memory bits are adjacent.  

Considering the TMR architecture represented in Figure 3.2, the modifi-
cations of SCUs can be grouped in two distinct cases: Short and Open. These 
modifications may introduce critical behavior in the TMR structure as 
described in the previous sections. The effects of MCUs can be modeled as 

58



 Analytical Algorithms for Faulty Effects Analysis 
 
multiple SCUs that happen simultaneously. As an example considering the 
TMR scenario represented in Figure 3.2, an MCU may induce an open and 
short effects (i.e. the output signal of the FFA1 is opened, while the output 
signals of the FFA2 and FFA3 are shorted together) provoking multiple errors 
in all the outputs of the TMR structure. This effects is represented in Figure 
3.8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7. (a) Multiple Cell Upsets adjacent cells. (b) Configuration memory layout general 
organization of Virtex-II. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.8. The TMR Voter Partition scenario. An example of MCUs effects (open/short). 

The effects of MCUs can be defined considering the following para-
meters: 

 Orientation: it defines the position of the MCU within the FPGA’s 
configuration memory, as single column, diagonal or single row. 

 Case: it defines the transitions induced by the MCU within the FPGA’s 
configuration memory cells as 00 11, 01 10 / 10 01 or 11 00. 

 Effects: it defines the effects induced by the MCU as Short, Open, 
Short/Open, Logic and Logic-Routing [17].  
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 The classification of the effects can be further refined by considering the 
number of bits and the occurrence of the effects.  

Considering a couple of vertices AS/AD and BS/BD linked by two distinct 
interconnection segments and controlled by two configuration memory bits 

interconnection resources is represented: 

(a) Open or Short 1-bit: only one bit of the two cells affected by the MCU 
provokes a failure effect.  

(b) Double Open or Short: both the bits of the two cells affected by the MCU 
provokes failure effects. In particular, each bit affects a distinct 
interconnection of the TMR structure. For example, it is reported in 

orientation affect two separate interconnections.  
(c) Open or Short 2-bit: both the bits of the two cells affected by the MCU 

provoke failure effects. In this case, both the bits are related to a single 
interconnection, and thus it does not corrupt the TMR structure. In the 

(d) Open-Short: both the bits of the two cells affected by the MCU provoke 
failure effects. In particular, one bit induces an Open effect and the other 
one a Short effect between distinct interconnections, as illustrated in 

 
 
 
 
 
  
 
 
 
 
 
 
 

AS/AD and BS/BD is defined by the configuration memory bits reported in (a). In (b) is 
illustrated a double open effects when two different bits in a vertical orientation affect two 
separate interconnections. In (c) is reported an open 2-bit; in this case both the involved bits 
are related to a single interconnection, while in (d) is reported an Open/Short effect. 

When logic resources are considered, the following cases appear: 

(a) Logic Failure: both the bits of the two cells affected by the MCU 
provoke a failure in a single logic block of the FPGA.  
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each, as illustrated in Figure 3.9a. The following scenarios related to the 

Figure 3.9b the double open effects when two different bits in a vertical 

Figure 3.9c is described an example of an open 2-bit. 

Figure 3.9d. 

Figure 3.9. MCU fault effects scenario. The original configuration topology of the vertices 
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(b) Logic-Routing Failure: both the bits of the two cells affected by the 

MCU provoke failure effects. In particular, one cell controls logic resources 
and the other one control interconnections resources. 

The STAR-MCU algorithm performs three distinct phases as illustrated 

The reading native resources phase reads the native circuit description 
and creates two sets: one containing the routing resources related to each 
voter partition (Pi), and one containing the logic resources related to each 
TMR domain (Dj). In details, each i voter partition Pi contains the program-
mable interconnections, while each j TMR domain Dj contains all the logic 
resources such as LUTs, FFs or Multiplexers. 

The redundancy cluster phase creates two clusters that store information 
about the configuration memory layout regarding any area (x, y) of the 
FPGA matrix, where x and y identify a row and a column of the FPGA 
array. In details a single Configuration Frame Rules CFR(x,y) cluster contains 
a matrix of bit related to both the user memory and the configuration 
memory controlling the logic and routing resources in the FPGA array (x,y). 
The bits are programmed reflecting the effective usage of that resources in  

 
STAR_MCU() 
  { 
   /*Reading_native_resources*/ 
   set_voter_partitions (Pi) 
   set_tmr_domains (Dj) 
   /*Redundancy-Clusters*/ 
   create_cluster_sets (CFR(x,y), HS(x,y)) 
   for each voter_partition VP  Pi 
     for each tmr domains TD  Dj 
      { 
       HS(x,y) = cluster_hierarchy_tree(VP, TD)   
       CFR(x,y) = cluster_configuration_memory_rules(VP, TD ) 
               }   
   /*Rules-Checker*/ 
   for each cluster C  CFR(x,y) 
     for each point location P   C 
       { 
    /*MCU-engine*/ 
    for each orientation O 
         { 
            MCU_UL = create_MCU_upset_list (P, HS(x,y),O) 
            RL_set = read_topology_rules(MCU_UL, C ) 
          for each partition I  RL_set 
                Check_dependability (RL_set, C, I ) 
            }   
        }   
    } 
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in Figure 3.10: reading native resources, redundancy clusters and rules checker. 

Figure 3.10. The flow of the STAR algorithm for the MCUs analysis. 
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the FPGA’s CLB array at the coordinates (x,y). Each CFR cluster contains a 
bit matrix related to all the CLBs located at the coordinates (x,y) within the 
FPGA CLB array, and each matrix of bit contains the used bit marked 
accordingly with the correspondent routing signal or logic element. Vice 
versa, the cluster set Hierarchy Tree HS(x,y) contains the routing graph 
correspondent to the selected (x,y) FPGA location. The routing graph con-
tained in each cluster HS(x,y) is colored according to the information related 
to the voter partition logic and to the TMR domain, where two nomencla-
tures are used. The first is a mark that is assigned considering that the circuit 
is designed according to the TMR principle, three different colors are used 
for all the vertices belonging to each TMR domain. The second, is an index 
that identifies the correspondent voter partition logic. 

The rules-checker phase analyzes the effects that may be induced by 
MCUs affecting the user or the configuration memory cells. The core of this 
phase is characterized by the MCU-engine. It performs the analysis of all the 
MBU orientation reading the routing or logic topology from the topology 
data-base. This analysis is performed verifying if the dependability rules are 
satisfied for all the possible modifications of the routing graph description 
contained in the clusters HS(x,y) due to the MCU’s induced modification. 

The configuration memory rules contain all the configuration memory 
coding related to the FPGA’s logic components and the routing topology  
of the implemented circuit. It is generated by the function cluster_ 
configuration_memory_rules that reads the resources description 
belonging to a voter partition VP of a given logic domain TD for each 
location of the FPGA matrix architecture, it generates a cluster of bits CFR. 
Each cluster consists of a bit matrix where all the bits are organized reflec-
ting the SRAM-based FPGA configuration and user memory architecture. 
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Figure 3.11. An example of generation of the cluster sets HS and CFR. 
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to the circuit model for each coordinates (i, j) describes a portion of the 
whole routing graph of the FPGA architecture considered. Vice versa, in 

cluster CFR(i,j) defines a bit matrix where each bit is marked as used (i.e. 
grey color) if the correspondent routing edge or logic vertex is used by the 

CFR containing more than a logic components or routing signal is parti-
tioned considering the FPGA topology architecture. 

The segmentation of the CFR cluster data matrix allows to increase the 
speed of the analysis since it enables a rapid identification of the set of 
possible modifications affecting two or more routing signal. The reader 
should note that considering that the analysis will be focused on MCU, 
several bit-flip combinations need to be generated. The segmentation of the 
cluster CFR data matrix is aiming at reducing the computational time of the 
several MCU combination.  

At the end of the execution of the redundancy cluster extractor phase, the 
clusters CFR and HS define an accurate model of the circuit that is mapped on 
the SRAM-based FPGA that consider both the user and configuration 
memory characteristics as well as the routing and logic organization of the 
FPGA adopted. 

according to the routing and logic topology of the circuit mapped on the 

which consists of a routing path between two logic vertices, the circuit 
description is read and stored within two clusters at the position i, j and i + 

cluster i, j which contains more than one logic component or routing signal. 
Please note that the segmented matrices have different dimensions depend-
ing on the configuration memory bit organization that belong to any different 
FPGA’s family. In details, each segmented matrix contains the configuration 
memory bits programming PIP or logic element with shared resources. 

The rules-checker is the most crucial part of the developed Static 
Analyzer tool. It is the third phase of the STAR-MCU algorithm and it 
analyzes if the dependability rules are satisfied for all the possible MCUs 
affecting the user and the configuration memory bits. 

This analysis is performed by three functions: create_MCU_upset_ 
list, read_topology_rules and Check_dependability, that 
are executed for all the bits contained within the cluster set CFR.  
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In Figure 3.11a is illustrated a model of an interconnection path between 
two logic vertices, while in Figure 3.11b the cluster HS generated according 

Figure 3.11c the cluster CFR generated according to the circuit model, each 

routing graph model of the implemented circuit. In Figure 3.11d each cluster 

As illustrated in Figure 3.11, the clusters HS and CFR are generated 

and c respectively. In Figure 3.11d is reported the segmentation of the CFR 

FPGA architecture. Considering the circuit model illustrated in Figure 3.11a, 

1,j. An example of the cluster generation is illustrated in the Figures 3.11b 
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In details the function create_MCU_upset_list() performs the 
following three steps: 

1. It select a bit (P) in the position l, m within the bit-matrix of the cluster 

CFR(x,y)l,m with l = f and m = 3. 
2. It marks the selected bit i, m as SEU sensitive.  
3. It generates a Multiple Cell Upset list (MCU_UL) that consists of the 

modifications introduced within the routing graph architecture. These 
modifications depend on the kind of resource interested: 

(a) Routing: the upset list is updated with the routing edge/edges that 
is/are added or deleted from the circuit routing graph model due to the 
modification induced by the bit-flip. 

(b) Logic: the upset list is updated with the kind of logic components 
interested. In that case, the modifications include: Look-Up Tables 
(LUTs), Multiplexers (MUXs) or Logic Configurations (CFGs). 

As soon as the upset list MCU_UL is generated, the function read_ 
topology_rules divides the considered set CFR(x,y) in several partition 
containing all the configuration memory bits that are controlling a given 
routing architecture or logic component within a CLB. Each bit is therefore 
associated to a proper segmented area of the CFR cluster. The segmentation 
is performed according to the technological characteristic of the analyzed 
FPGA device. These characteristics are related to the interconnection archi-
tecture (routing segments topology) and the CLB granularity (i.e. number of 
FFs embedded in each logic element or LUT’s dimensions). Please consider 
that in the case the segmentation is performed on the configuration memory 
boundaries, the segmented areas are overlapped, including the bit locations 
that are located in the physically adjacent places. 

 
 
 
 

   
 
 
 
 

 
An example of the generation of those partitions is illustrated in Figure 
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3.13. Given a set of routing interconnections, represented by the routing 

Figure 3.12. An example of generation of the partition set RL_set. 

CFR(x,y). As an example, in Figure 3.12 is illustrated the cluster 
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segments S1, S2 and S3. The CFR cluster is generated by the function 
cluster_configuration_memory_rules as described in the 
previous section, according to the configuration memory bits that enable the 

partitioned according to the FPGA’s configuration memory technological 
characteristics. In details, these characteristics are related to the routing 
granularity, since the dimension of each partition is defined considering the 
number of routing segments that may span from each programmable point. 

configuration memory area is segmented in four parts. 
Finally, this function generates the RL_set  for the considered MCU 

orientation. Each set consists in one or more partitions of the cluster CFR 
that includes the configuration memory cells affected by the MCU. From the 
data contained within the set, the function Check_dependability 
performs the analysis of the MCU induced effects on the circuit. 

The dependability rules are checked by the function Check_ 
dependability(). This function executes the following steps: 

1. It updates the cluster HS(x,y) introducing the modification included in the 
upset list RL_set.  

2. The vertices of the clusters HS(x,y) involved in the modification are 
marked as faulty. 

The routing tree contained within the cluster set HS(x,y) is updated 
generating a MCU propagation tree that contains all the paths stemming 
from the vertices marked as faulty, to the first voter’s structure. If the leaves 
of the propagation three include more than one graph coloring and only one 
voter partition logic index, the correspondent bit is added to the Critical 
MCU Locations. Indeed, when this condition is met we have that the MCU 
effects propagated to two or more circuit domains within the same voter 
partition logic, and therefore the TMR principle is no longer enforced. The 
critical MCU locations contain for each MCU considered as critical, the 
position within the user or configuration memory of the SRAM-based FPGA 
used, as well as the indication of the kind of resources (logic or routing) and 
the name of the circuit component or net involved. 

data matrix correspondent to the generated cluster CFR(i, j). Considering all 
the possible orientation of a 2-cells MCU starting from the position (3, f) 
two partitions (i.e., the partition 1 and the 2) have been included in the 
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three routing segments, as illustrated in the Figure 3.13a. The cluster is then 

In the example illustrated in Figure 3.13b, it is assumed that the 

In order to give an example of this procedure, in Figure 3.12 we reported a 

RL_set, these partitions  are illustrated in Figure 3.12b.  
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read_topology_rules. Given a set of routing interconnection, the CFR cluster is 
generated (a). The cluster is then partitioned according to the FPGA configuration memory 
characteristics (b). As an example in the figure, the cluster is divided into four partitions. 

 
On the basis of these two partitions the function Check_ 

dependability() perform the analysis of each MCU effect. The several 
combination generated are depicted in the five cases Mi, as illustrated in 
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Figure 3.13. An example of the generation of the partition generated by the function 

Figure 3.14. 

Figure 3.14. A list of modification generated according to the set RL_set related to the 
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4.2 Experimental results of MCU static analysis 

In this section we describe the analytical analysis we performed to evaluate 
the MCUs sensitiveness of circuits implemented on not rad-hard SAM-based 
FPGAs when the TMR hardening technique is used. We implemented a 
prototype of the STAR-MCU tool that accounts for about 12K lines of ANSI 
C code. 

We selected as case study two different circuits hardened according to 
the Xilinx TMR (X-TMR) approach [18] and implemented on a Xilinx 
Virtex-II XC2V1000 FPGA: a FIR Filter with 64-stages and a Cordic core 
DSP.  

The characteristics of the considered benchmark applications are reported 
in the Table 3.2, where for each circuit we reported the number of Flip-Flops 
(FFs), 4-input Look-Up Tables (LUTs) and I/O Pins. 

 
TABLE 3.2 Characteristics of the benchmark circuits 

Resources 
Cordic core 
processor 

FIR 
filter 

FFs [#] 3,315 1,588 
4-input LUTs [#] 3,246 170 
I/O pins [#] 225 19 

 
The results we gathered are shown in Table 3.3, where we reported the 

number of SCUs identified as critical using the STAR approach presented in 
[17], and in Tables 3.4, 3.5 and 3.6, are reported the number of MCUs that 
overcome the X-TMR protection capabilities. The results show that the 
number of MCUs corrupting the TMR is 2.6 order of magnitude higher than 
the SCUs one. In details, we can observe that the majority of the critical 
MCUs are provoked in diagonal orientation, while the most relevant effects 
is the double short provoked by the transition 00 11. We omitted the 
classification of Logic failures, Short 2-bit, Open 1-bit and Open 2-bit since 
no effects have been observed for these cases. 

Furthermore we recorded the computational time needed by STAR-MCU 
to evaluate the considered circuits. In both cases STAR-MCU takes about 
940 s to perform a complete analysis. 

 
TABLE 3.3 Critical SCUs identified 

Critical SCUs [#] 
Circuits 

Multiple open Short 
FIR Filter 0 8 
Cordic Core 0 3 
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Circuits Critical MCUs [#] 
FIR filter Orientation Total Single column 

  3,650 853 
 Effects  Case 00 11 
  Double short 2,116 
  Short 1-bit 8 
  Open-short 0 
  Double open 0 

Cordic core Orientation Total Single column 
  2,454 574 
 Effects  Case 00 11 
  Double short 1,385 
  Short 1-bit 3 
  Open-short 0 
  Double open 0 

 
 

Circuits Critical MCUs [#] 
FIR Filter Orientation Total Diagonal 
   1,911 
 Effects  Case 01 10/10 01 
  Double short 0 
  Short 1-bit 0 
  Open-short 4 
  Double open 1,350 
Cordic Core Orientation Total Diagonal 
   1,263 
 Effects  Case 01 10/10 01 
  Double short 0 
  Short 1-bit 0 
  Open-short 1 
  Double open 894 
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TABLE 3.4 Critical MCUs identified by the proposed approach (I) 

TABLE 3.5 Critical MCUs identified by the proposed approach (II) 
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Circuits Critical MCUs [#] 
FIR filter Orientation Total Single row 
   886 
 Effects  Case 11 00 
  Double short 0 
  Short 1-bit 0 
  Open-short 0 
  Double open 172 
Cordic core Orientation Total Single row 
   617 
 Effects  Case 11 00 
  Double short 0 
  Short 1-bit 0 
  Open-short 0 
  Double open 171 
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Chapter 4 

RELIABILITY-ORIENTED PLACE AND 
ROUTE ALGORITHM  
Dependable design on SRAM-based FPGAs 

 
 

In general, the commonly used design-flow to map designs onto a SRAM-
based FPGA consist of three phases. In the first phase, a synthesizer is used 
to transform a circuit model coded in a hardware description language into 
an RTL design. In the second phase a technology mapper transforms the 
RTL design into a gate-level model composed of look-up tables (LUTs) and 
flip flops (FFs) and it binds them to the FPGA’s resources (producing the 
technology-mapped design). In the third phase, the technology mapped 
design is physically implemented on the FPGA by the place and route 
algorithm. 

The problem of how to physically implement a circuit on a FPGA device 
is divided into two sub problems: placement and routing. The main reason 
behind such decomposition is to reduce the problem complexity. Our 
proposed reliability-oriented place and route algorithm, called RoRA, firstly 
reads a technology mapped design. Then, it performs a reliability-oriented 
placement of each logic functions, and finally it routes the signals between 
functions in such a way that multiple errors affecting two different 
connections are not possible. 

The algorithm we developed is described in Figure 4.1, where the 
placement and routing steps are shown in a C-like pseudo-code. Our 
proposed RoRA Placement algorithm performs a robust placement, which 
implements the TMR principle, executing four distinct functions: 

1. The generate_functions_replicas() firstly reads the design 
description produced after the technology mapping and identifies the 
logic functions in the design. Secondly, it generates three replicas of  
the logic functions belonging to the original design. Let F be the set of 

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,  
© Springer Science + Business Media B.V. 2008 
 

71  



Chapter 4

the original design’s logic functions: at the end of this step the three sets 
F1, F2 and F3 are produced. 

2. The generate_majority_voter() analyzes the three logic function 
sets F1, F2 and F3, and generates a logic functions set F4 that performs the 
majority voting between them. 

3. The generate_partitions() partitions the routing graph’s vertices 
in four non-overlapping sets, where each set Si (i = 1, 2, 3, 4) has enough 
logic vertices to contain the logic functions of each set Fi (i=1, 2, 3, 4). 

4. Every logic function in set Fi is placed heuristically to the logic vertices 
in set Si, where i = 1, 2, 3, 4. This phase takes care of marking the graph, 
by assigning each logic function to exactly one logic vertex in our routing 
graph. 

The RoRA placement algorithm places each logic functions in Fi to the 
graph vertices belonging to Si, as well as the majority voter on S4. After the 
placement process, each set Si contains exclusively the function of set Fi. 
This solution allows us to guarantee that single or multiple effects within one 
set Si only do not provoke any misbehavior of the circuit. Indeed, accordingly 
to our placement, only multiple effects on the boundary of two different sets 
Si  Sj may generate multiple errors that affect two different replicas. 

When all the logic functions are placed to the correspondent set of logic 
vertex, RoRA performs the routing of the interconnections between the logic 
vertices. Basically, the RoRA Routing algorithm works on the routing graph 
we developed, and it routes each connection between two logic vertices 
through the shortest path it can find. During path selection, the RoRA 
Routing algorithm labels dynamically the graph’s routing vertices, in such a 
way that it avoids the instantiation of two connections that may be subject to 
Short effects. Each graph routing vertex (RV) are labeled as free, used or 
forbidden, with the following meanings: 

1. Free: the routing vertex is not used by any connection. 
2. Used: the routing vertex is already used by a connection. 
3. Forbidden: a routing vertex RV is forbidden if and only if: 

(a) It belongs to set Si (RV Si). 
(b) At least one routing edge, or one wiring edge exists between RV and 

another vertex RV’ belonging to Sj (RV’  Sj), where i  j. 

If RV is added to the circuit and a SEU affects the routing resources in 
such a way that both RV and RV’ are affected, the TMR does no longer 
work as expected. The Forbidden Vertices Sets (FVSs), which are empty at 
the beginning of the RoRA routing, contain the vertices marked as forbidden 
and belonging to the correspondent graph routing vertices set Si. 
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RoRA performs the routing of each net by taking into consideration all 
the graph’s vertices labeled as free, and it updates progressively the FVSs 
adding the vertices marked as forbidden. 

As soon as the net is routed, and the marking of the graph has been 
updated (i.e., the vertices in the routing graph, and the associated edges, have 
been marked as used by the circuit implementation), the update() 
function is used to modify the set i of forbidden vertices (FVSi), which is 
empty at the beginning of RoRA routing. 

 
/*Placement*/ 
generate_functions_replicas (F1, F2, F3) 
generate_majority_voter (F4) 
generate_partitions (S1, S2, S3, S4) 
for each logic function LF  Fi 
 place LF on  Si  where i = {1, 2, 3, 4} 
 
/*Routing*/ 
FVSi = ø where i = {1, 2, 3} 
for each source vertex SV  Fi 
{ 
   for each destination vertex DV of SV  
     RT = route (SV, DV) 
   update (FVSi,RT) 
} 

Figure 4.1. The flow of the proposed Reliability-Oriented Place and Route Algorithm RoRA. 

1. RoRA PLACEMENT ALGORITHM 

The developed algorithm starts by reading a description of the circuit which 
consists of unplaced logic blocks and a set of nets. While standard placement 
techniques are sufficient if the application mapped on the FPGA does not 
require any particular reliability constraints, special attention must be taken 
in FPGA placement algorithm for safety critical application where high 
reliability is a mandatory requirement.  

The RoRA Placement algorithm, which is described in Figure 4.2 as C-
like pseudo code, performs the placement of a logic function by using the 
concept of window. A window is defined as a rectangular portion of the logic 
vertices belonging to the routing graph space. More in details, the RoRA 
Placement algorithm uses two types of windows: the place window PW and 
the nearby window W. The place window PW defines a rectangular space 
containing the logic vertices already connected to the logic vertex being 
placed, while the nearby window W defines the space containing a whole of 
logic vertices labeled as free and candidate for the placement. 
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/*Placement*/ 
 
place LF on Si  
  { 
   for each logic vertex DLV  Si and connected to LF  
     generate place_window PW  
   if PW has at least one free logic vertex 
     nearby_window W = PW 
   else 
     update nearby_window W 
   do until LF is placed  
     { 
      do until cost (local_density (W), global_constraints 
(W)) < LIMIT_D_G 
        update nearby_window W 
      for each free logic vertex V  Si in W 
        for each logic vertex DLV  Si and connected to LF 
        MDLV = computing Manhattan distance (V, DLV) 
        C = Manhattan_cost (MDLV)  
        if C < MAX_DISTANCE 
          place LF on logic vertex V  
          label logic vertex V as used 
      } 
   } 

Figure 4.2. The flow of the RoRA Placement algorithm. 
 
The RoRA Placement algorithm implements different heuristic cost 

functions that measure the wirelength as well as the routability of the 
placement. The wirelength is based on the Manhattan distance that defines 
the distance between two points measured along axes at right angles that 
include horizontal and vertical components. Minimizing the wirelength 
minimizes the number of routing resources required, and thus reduces the 
existence of SEU sensitive routing resources; thus, the Manhattan distance is 
minimized. However, the minimization of the Manhattan distance does not 
guarantee that a signal can be routed successfully, since not all the available 
routing resources can indeed be used, since some of them must be avoided 
for satisfying to reliability constraints. To address this problem we added 
two metric functions: “local density” and “global constraints”, that are 
defined as follow: 

1. The local_density (W) computes the number of routing resources 
available in the nearby window W. It returns the number of available 
edges that link two routing vertices labeled as free. 

2. The global_constraints (W) computes the routing reliability 
constraints in the nearby window W. It returns the number of routing 
reliability constraints that may be generated between the routing vertices 
labeled as free and comprised in the nearby window W. 
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The local density addresses the degree of routability of the placement. It 
attaches a cost to the placement considering the capability of routing 
resources. Thus, it aims at avoiding any competition among signals for insuf-
ficient routing resources. The global constraints address the inadequacies of 
the routability computing the congestion provoked by the routing reliability 
constraints. These metrics consist of looking at the region contained in the 
nearby window W and to compute a cost calculating the number of net and 
routing reliability constraints that may exist in this region. 

For a given placement phase the generated nearby window W in the 
routing graph is examined. This phase allows the RoRA routing algorithm to 
find easily a route for every signal, since the routing capability of the 
considered nearby window W where the signals have to be routed is 
computed during the placement phase. 

The RoRA placement of a logic function LF on a partition set Si is 
divided in two phases: pre-placement and placement. 

During the pre-placement, the window PW is generated considering the 
logic functions connected to LF that have already been placed on the logic 
vertices DLVs. 

 

Figure 4.3. Example of Place Window. 
 
In Figure 4.3 it is described an example of the PW generation. Supposing 

that a logic function LFA is connected to the logic functions LFB, LFC and 
LFD, as shown in Figure 4.3a. It is supposed that only LFB and LFD have 
already been placed on the logic vertices DLVB  and DLVD; during the 
placement of the logic function LFA, the place window PW will be generated 
as described in Figure 4.3b, it selects an area where a logic vertex could be 
used for the placement of the logic function LFA. Moreover, W is initialized 
as equal as PW only if PW contains at least one logic vertex. Otherwise, W 
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is generated by adding from the same dimension of PW one row or column 
that contains at least one free logic vertex. 

During the placing phase, the RoRA Placement algorithm executes three 
different steps until the logic function LF is placed on a logic vertex V. 
Firstly, the RoRA Placement algorithm computes the heuristic cost functions 
local density and global constraints on the nearby window W, and compares 
the respective values with their limits. The limits depend on the cardinality 
of the adopted routing graph, and thus on the kind of the used FPGA 
architecture. If the limits are not respected, the nearby window W is updated 
until the cost function is satisfied. 

Secondly, a logic vertex labeled as free is selected from the nearby 
window W belonging to the partition set Si. A cost MDLV is associated with 
every logic vertex DLV that is already placed on the partition Si and that is 
connected to the logic function LF. Each cost MDLV  is defined calculating 
the Manhattan distance between each DLV and the logic vertex V candidate 
for the placement of the logic function LF. Finally, the RoRA Placement 
algorithm calculates a Manhattan Cost C for the whole DLVs and if C 
satisfies the max length distance the logic function LF is placed on the 
candidate logic vertex V. 

2. RoRA ROUTING ALGORITHM 

The FPGA routing is a complex combinatorial problem. Basically, the 
RoRA router algorithm works on the routing graph, and routes each 
connection between two logic vertices through the shortest path it can find. 
During path selection, RoRA labels dynamically the graph’s routing vertices, 
in such a way that it avoids the instantiation of two connections belonging to 
two different sets S that may be subject to multiple effects. 

The general approach implemented in the RoRA router is a two-phase 
method composed of a global routing followed by a detailed routing. As 
shown in Figure 4.4, given a source vertex SV belonging to a logic function 
Fi, a connection between SV and all its destination vertices DVs is computed 
executing the global routing followed by the detailed routing. The global 
routing balances the density of all the routing structures in relation with the 
reliability constraints, while the detailed routing assigns to the paths specific 
wiring edges, routing edges and routing vertices. 

The global routing is based on a Super-Routing graph architecture which 
is composed of logic vertices and super routing vertices (SRV) that are 
linked by a super edge (SE) as shown in Figure 4.5, where a super routing 
vertex models the whole of routing vertices of the FPGA routing graph, 
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while a super edge models the whole of routing edges between routing 
vertices or between a routing and a logic vertex. 

 
Route (SV, DV) 
  { 
   /*Global_routing*/ 
   do until (SV, DV) is routed 
      P = find global_route SV to DV 
      L = computing length on route P 
      F = computing forbidden node on route P 
      if L,F are verified 
        /*Detailed_routing*/ 
        RT = create_routing_tree (SV, DV)  
          if (SV, DV) is routed 
            return RT 
  } 

Figure 4.4. The flow of the RoRA global and detailed router algorithm. 
 
The Super-Routing graph is used to execute the global routing. The 

global routing on the Super-Routing graph architecture is performed by the 
function find global_route SV to DV. This function generates a 
global route P that consists of a sequence of super edges and super routing 
vertices that link the source logic vertex SV to the destination logic vertex 
DV. Associating the Super-Routing graph architecture with the FPGA 
routing graph, a global route P is decomposed to a sequence of routing 
vertices, wiring and routing edges that connect SV to DV. Thus, the RoRA 
Global Routing generates a set of candidate paths that could be chosen by 
the RoRA Detailed Routing to connect SV to DV. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.5. The super-routing graph architecture. 
 
To determine whether a global route P is optimal, the RoRA Global 

Routing selects the super edges and the super routing vertices optimizing an 
heuristic cost function that consists of two components: the first component 

logic vertex

super edge

super routing vertex
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aims at minimizing the length of the global route by selecting the shortest 
way to connect the source to the sink, while the second component computes 
the availability of the global route calculating the number of vertices labeled 
as forbidden out of the number of vertices labeled as free, existing in it. The 
availability Af of a global route P composed of i super routing vertices SRV 
is defined as: 

 
 
 
 
where avoid (SRVi) is the number of routing vertices labeled as forbidden 

belonging to the Super Routing vertex SRVi and free(SRVi) is the number of 
routing vertices labeled as free. The global router makes the routing problem 
easier, since it can estimate the routing congestion due to the routed 
interconnection and the forbidden vertices. When a global route P is 
selected, the RoRA Routing algorithm executes the detailed routing. 

The RoRA detailed routing algorithm is split in two phases. In the first 
phase it expands each routing tree, where the root is associated to the logic 
vertex correspondent to the source of the connection, while the leaves are 
associated to the logic vertices correspondent to the destinations of the 
connection. The routing tree expansion is made by choosing wiring and 
routing edges linked by routing vertices labeled as free in our routing graph 
and belonging to the Global route selected by the RoRA Global routing. The 
RoRA detailed routing is based on the approach developed for the Pathfinder 
negotiated congestion algorithm [1, 2]. It is based on the construction of a 
routing tree. The maze routing, described in [3], is usually used for this 
purpose. The RoRA detailed router expands the routing tree progressively to 
the leaves and preserving the routing channel by the global routing: starting 
from a tree composed of the source vertex, only, new vertices are added, 
until all the destinations of the connection have been added to the tree. The 
previously executed global routing allows preserving memory and running 
time for the routing tree expansion, since the detailed router may choose the 
net paths on a limited space of solutions. The RoRA detailed router uses the 
routing tree construction developed for the maze routing approach with a 
fundamental difference in the creation of each routing tree: the key step of 
the RoRA detailed router is performed during the routing tree expansion, 
where those vertices that are labeled as forbidden are not used. Moreover, 
the set of forbidden vertices is updated in the second phase of the RoRA 
detailed router after the creation of the routing tree. 

The detailed routing generates the routing tree computing the function 
create_routing_tree(). This function performs the computation of 
the routing tree by taking into consideration all the graph’s vertices not 
labeled as forbidden and belonging to the global route P selected. After the 
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expansion each routing tree (SV, DVs) may contain a number of routing 
vertices that could have a routing edge that links them to other routing 
vertices in the routing graph model by the modification of a single 
configuration memory bit. The update function of the RoRA algorithm 
selects these routing vertices belonging to the set Si, and checks if each of 
them could be linked, by changing a single configuration memory bit, to the 
routing tree routed on the routing graph belonging to the set Sj, where i  j. If 
this happens, the update function labels it as forbidden. By this way, no 
routing edge could link routing vertices belonging to a different set S, and 
thus no SEU affecting the configuration memory of the SRAM-based FPGA 
could affect more than one replica of the implemented TMR architecture. 

3. EXPERIMENTAL ANALYSIS 

In this section a series of experiments are performed to evaluate the 
effectiveness of the RoRA algorithm. For this purpose, a prototype of the 
RoRA algorithm is developed, which accounts to about 8K lines of ANSI C 
code. The developed RoRA prototype has been used for hardening four 
circuits mapped on a Xilinx Spartan II device. 

To evaluate the robustness of the circuits obtained through RoRA against 
transient faults affecting the FPGA’s configuration memory, and in parti-
cular against faults affecting the routing resource, the fault injection environ-
ment presented in [4] has been used. 

The device used in the experiments is a Xilinx Spartan® XC2S30PQ144, 
whose configuration memory is composed of 336,768 bits organized in 
1,165 frames of 288 bits each. The configuration memory controls 132 I/O 
blocks and an array of 12 x 18 slices [5]. 

Three purely combinational case studies have been considered: an adder 
with two 8-bit wide operands, an adder working on two 16-bit wide 
operands, and a multiplier with two 8-bit wide operands. An elliptic filter 
has been also considered in order to evaluate the sensitiveness to SEUs in the 
configuration memory of SRAM-based FPGAs implementing a sequential 
circuit. Besides, in order to evaluate the capability of RoRA on a real design 
we mapped an IP-core that implement the Control Area Network (CAN) that 
uses about 98% resources of a Spartan II XC2S200 [5].  

In order to evaluate the effectiveness of the developed algorithm, the five 
circuits have been mapped using RoRA, as well as the TMR approach (i.e., 
each circuit is implemented by using three identical modules performing the 
same task and a majority voter). In the latter case, TMR circuits are placed 
and routed by standard tools, which do not pose any emphasis in enforcing 
dependability-oriented place and route rules. 
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The characteristics of the adopted circuits are reported in Table 4.1, 
where we report the number of FPGA slices that the circuits occupy (column 
Area), as well as their maximum working frequencies (column Speed), for 
the plain, the TMR, and the RoRA versions. It is interesting to observe that, 
for the considered benchmarks, RoRA does not introduce any area overhead 
with respect to the traditional TMR solution (which is about three times 
larger than the plain circuit), and in some cases it is even less resource 
demanding. Conversely, when placed and routed through RoRA, the circuits 
become 22% slower on the average than their TMR versions. This effect is 
the result of the dependability-oriented routing algorithm that RoRA 
implements: the shortest path is not always selected as the best solution, 
since it may not be acceptable from the dependability point of view. 

 
TABLE 4.1 Characteristics of the adopted circuits 

Plain version TMR version RoRA version Circuit 
Speed 
[Mhz] 

Area  
[# slices] 

Speed 
[Mhz] 

Area 
[# slices] 

Speed 
[Mhz] 

Area 
[# slices] 

Add8 105 26 86 100 64 96 
Add16 105 28 85 103 62 105 
Mul8 105 41 64 127 54 125 
Filter 104 46 65 132 58 138 
CAN 225 384 189 1,152 142 1,152 
 
In order to measure the hardness of the obtained circuits, 15,000 

randomly selected SEUs have been injected in the FPGA’s configuration 
memory bits. These bits are selected among those configuration memory bits 
that define the designs we implemented. 

Please note that they may be both programmed or not since both of them 
may be critical for the mapped design. The number of injected faults was 
selected to guarantee that the gathered results are statistically meaningful. 
For these purpose, the experiments have been repeated with 150,000 
randomly selected SEUs. Negligible modifications have been observed with 
respect to the results already gathered with 15,000 faults. Considering that 
the used voters are not fault tolerant, no faults have been injected in the 
portion of the configuration memory that implements it. The results obtained 
are reported in Table 4.2, where Injected Faults is the number of injected 
SEUs, as well as Wrong Answer is the number of SEUs for which the faulty 
circuit produces outputs that differ from the fault-free one. In order to show 
the contribution of the different FPGA’s resources, it has been reported the 
number of injected faults, and the observed wrong answers, for the FPGA’s 
CLBs and Routing resources. During the experiments a workload of 100,000 
randomly generated input stimuli has been applied. 
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TABLE 4.2 Fault injection results concerning 

Wrong answer [#] Circuit Injected faults [#] Plain TMR RoRA 
 CLB Routing CLB Routing CLB Routing CLB Routing 

Add8 2,558 12,442 2,550 12,037 97 1,255 29 1 
Add16 2,410 12,590 2,408 12,190 83 1,609 37 4 
Mul8 2,440 12,560 2,390 12,213 91 1,886 20 3 
Filter 2,427 12,573 2,398 12,244 86 1,895 39 5 
CAN 2,550 12,450 2,545 12,404 71 2,005 38 8 

 
From the gathered results, it is possible observe that most of the injected 

faults provoke erroneous behaviors in the plain, un-hardened circuits. 
Moreover, even when the TMR architecture is adopted, a significant 
percentage of the injected faults still produce a wrong answer. The faults 
escaping the TMR have been analyzed carefully, and the results is that most 
of them correspond to multiple errors crossing the TMR domains. In 
particular the majority of faults escaping TMR are due to SEUs in the 
routing resources.  A very limited number of faults escaping TMR do not fall 
in the scenario outlined by the dependable rules:  these are faults that affect 
FPGA’s resources that do not depend on the implemented circuit, and whose 
usage is independent from the place and route algorithm. For this very 
specific device-dependent type of faults different hardening strategies must 
be envisioned, possibly coming from the FPGA vendor. 

From the results achieved it is possible to observe that RoRA drastically 
reduces the number of SEUs producing a Wrong Answer. In particular, as 
far as routing resources are concerned, RoRA is able to reduce the number of 
faults producing wrong answer by 3 orders of magnitude, while reductions 
by a factor of 2 were observed for fault affecting CLBs. The number of 
routing faults is reduced effectively thanks to the ability of RoRA of gene-
rate a reliability-aware routing topology able to avoid the propagation of 
multiple errors through the different circuit domains output. Although very 
effective, RoRA still produces circuits where few SEUs escape and provoke 
circuits misbehaviors. As the reader can notice, the numbers of faults within 
the CLBs are not widely reduced as the routing ones. This is due to critical 
faults that cannot be masked only through the usage of a reliability-oriented 
place and route algorithm, since they produce errors that exclusively 
influence those FPGA parts (such as the delivery of power or reset signals to 
CLB or routing resources) that can be hardened only by the usage of infor-
mation provided by the vendor. 

In the executed experiments, the performance of RoRA in terms of 
required FPGA routing resources have been  measured. The results in Table 
4.3, where PIPs TMR and PIPs RoRA report the number of PIPs in the 
circuits obtained by the TMR approach and those obtained by RoRA. Please 
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note that RoRA uses a higher number of PIPs for each circuit: the existence 
of forbidden graph’s routing vertices (i.e., PIPs) forces RoRA to produce 
connections that are longer than those obtained in the TMR circuits, where 
all the PIPs are available to the router tool. However, the overhead in terms 
of PIPs is rewarded by a much higher degree of fault tolerance. The 
computation times needed by RoRA to perform the place and route process 
are reported in Table 4.4. The machine used for running RoRA was a 
SunUltra 250 equipped with 2 Gbytes of RAM, and running at 400 MHz. As 
a reference. In the Table 4.4 has been also reported the time needed by a 
commercial tool (Xilinx PAR) for placing and routing the considered 
circuits. As the reader can observe, the time needed by RoRA is higher than 
that of the commercial tool; however, the increased time for running the 
place and route process is rewarded by a much higher fault-tolerance 
capability. 

 
TABLE 4.3 Summary of routing resources needed by TMR and RoRA circuits’ 
implementations 

Circuit PIPs TMR [#] PIPs RoRA [#] 
Add8 3,864 4,194 

Add16 4,874 5,390 
Mul8 7,175 9,919 
Filter 7,293 9,941 
CAN 11,451 14,304 

 
TABLE 4.4 CPU time needed by RoRA and Xilinx PAR 

CPU Time [min] Circuit RoRA Xilinx PAR 
Add8 1.75 0.21 

Add16 9.27 0.25 
Mul8 21.87 0.34 
Filter 25.22 0.40 
CAN 83.01 2.86 
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Chapter 5 

A NOVEL DESIGN FLOW FOR FAULT 
TOLERANCE SRAM-BASED FPGA SYSTEMS 
Integrated synthesis design flow and performance 
otpimization 

 
 

SRAM-based Field Programmable Gate Arrays (FPGAs) are programmable 
devices used for different applications, such as signal processing, proto-
typing and networking. They have fixed number of wires, switches and look-
up tables (LUTs): all these components can be programmed by downloading 
a configuration memory with a proper bitstream, giving an FPGA the 
capability to implement nearly any kind of digital circuit on the same chip. 

As widely illustrated in the previous chapters, the content of the confi-
guration memory is vital for the correct operations of the circuit the FPGA 
implements. The circuit is indeed totally controlled by the FPGA’s confi-
guration memory, which is composed of static RAM cells. When energetic 
particles hit the surface of the SRAM-based FPGA, they can alter the bits 
composing the configuration memory, and therefore the circuit the FPGA 
implements may change its original behavior. 

The problem of making SRAM-based FPGAs resilient to SEUs has been 
attacked in two ways. An earlier solution consisted in developing radiation-
hardened FPGAs by resorting to special manufacturing technologies, as well 
as suitable SEU-immune architectures. Although effective, this solution is 
very expensive and therefore it can be exploited only in those applications 
where cost is not a primary concern (e.g., military applications). The solution 
that is currently under investigation by many researchers consists in adopting 
fault-tolerant architectures to implement hardened circuits while using 
commercial-off-the-shelf FPGA devices. This solution is very attractive 
since it is potentially able to combine the needed dependability level, offered 
by fault-tolerant architectures, with the low cost of commodity devices. 

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,  
© Springer Science + Business Media B.V. 2008 
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As far as fault-removal techniques are considered, several solutions have 
been investigated in the past years. The one known as Scrubbing consists in 
periodically reloading the content of the whole configuration memory [1] 
with the correct bitstream. To minimize the number of needed reconfigu-
rations, which limit the FPGA’s availability, a more complex solution uses 
the Readback and the Partial Reconfiguration processes. Through the 
Readback, the content of the FPGA’s configuration memory is read and 
compared with the expected one, which is stored in a dedicated memory 
located outside the FPGA. If a mismatch is found, the correct bitstream is 
downloaded in the FPGA’s configuration memory. During re-configuration, 
only the faulty portion of the configuration memory is rewritten [1], thus 
reducing the re-configuration time. 

Several architectures were also proposed, which are all based on intro-
ducing hardware redundancy in the circuit the FPGA implements. Among 
the available architectures, Triple Module Redundancy (TMR) is that attracted 
most of the attention of researchers. TMR can be implemented easily by 
using three identical logic blocks performing the same task while a majority 
voter compares their outputs and decides the correct one. 

Although TMR is effective in protecting against SEUs the information 
the circuits elaborate, it showed some pitfalls when the effects of SEUs in 
the FPGA’s configuration memory are considered. Through detailed analyses 
of FPGA resources [1], and extensive fault-injection experiments [2], it has 
been observed that one SEU affecting the FPGA’s configuration memory, 
and in particular those portion of the configuration memory controlling 
routing resources, may originate multiple errors. This phenomenon depends 
on many factors: the architecture of the adopted FPGA family, the organi-
zation of configuration memory bit, the application that is mapped on the 
FPGA device, and the memory bit affected by the SEU. In our investigations 
we considered several test circuits designed according to the TMR architec-
ture, and we observed that about 10% of the faults that may affect the confi-
guration memory produce multiple errors that the TMR is not able to mask 
[2]. As shown in [3], a clever selection of the TMR architecture helps in 
reducing the number of escaped faults, but it is still unable to reduce them to 
zero [4]. To cope effectively with SEUs in the FPGA configuration memory, we 
presented in [5] an approach that makes use of TMR and of a dependability-
oriented place and route algorithm, RoRA, to implement cleverly a circuit on 
SRAM-based FPGAs in such a way that the effects of SEUs are minimized. 
The approach is very effective in hardening FPGA-based circuits, but it may 
require high computational times, due to the complexity of executing the 
dependability-oriented place and route operations for the whole circuit. 
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In this section is presented a new flow that makes use of the results 
achieved in [5] to design complex circuits that are insensitive to SEU and 
that has optimized characteristics in terms of running frequency.  

The design flow is based on standard tools for design entry, synthesis and 
design implementation.  

1. THE DESIGN FLOW 

The developed design flow adopts standard tools provided by FPGA or EDA 
vendors for performing the typical tasks needed for transforming a specifi-
cation coded in HDL, or provided through schematic entry, into a bitstream 
suitable for being downloaded into the FPGA’s configuration memory.  
Ad-hoc developed tools are used in combination to standard tools for 
guaranteeing that the obtained bitstream is resilient to SEUs: they are used to 
rework only those portions of the circuit that are particularly sensitive to 
SEUs, i.e., that modify the circuit behavior when affected by SEUs. The 
rationale behind this approach is that standard tools are very effective in per-
forming synthesis, placement and routing, and produce high quality designs 
(in terms of clock frequency, area occupation, or power consumption). It is 
therefore worthwhile to use them to carry out most of the tasks involved in 
the design process. Moreover, only a limited subset of the whole circuit has 
to be addressed to cope with SEU-induced problems. For this limited subset 
it is worthwhile resorting to ad-hoc developed tools that provide robust 
circuits, although their computational cost is usually higher than that of 
standard tool. By exploiting standard tools for carrying out most of the 
design task, while resorting to computational-expensive ad-hoc tools only 
for a limited subset of the whole circuit, it is possible to minimize the design 
time, reduce the performance penalty overhead, while meeting high 
dependability levels. 

The developed design flow is illustrated in Figure 5.1, and it is composed 
of three main modules: 

1. Xilinx ISE is the collection of Xilinx’s design tools that is normally used 
by designers for obtaining a circuit implemented by any Xilinx FPGA. 
The collection comprises tools for design entry, synthesis, and place and 
route. Please note that, although Xilinx’s synthesis tool is used, other 
solutions can be adopted for this purpose (like for example Simplicity’s 
Symplify, or Synopsys’s FPGA compiler). 

2. STAR tools is a collection of tools developed for analyzing the placed and 
routed circuit, to check whether critical area exist that may corrupt the 
correct operations of the TMR architecture when affected by SEUs. 
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3. V-Place and RoRA router: It performs the implementation phase of a 
design. The design flow is divided, as it refers to the standard FPGA 
implementation flow, in two sub-problems: the placement and the routing. 
The Placement algorithm (V-Place) is able to map fault tolerant circuits 
according to the TMR design techniques on SRAM-based FPGAs while 
optimizing the circuit’s frequency. The routing algorithm (RoRA) is a 
reliability-oriented tool that modifies the critical circuit areas identified 
by the STAR tool, and that produces a new version of the circuit where 
all the criticalities have been resolved.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1. The proposed integrated design flow. 

1.1 STAR analyzer 

The main purpose of the STAR tool, as described in the Chapter 3, which is 
to analyze the SEU effects in SRAM-based FPGAs early in the design phase, 
in particular, as soon as the placed and routed model of the designed circuit 
is available.  

The tool is based on the description of the circuit and on a data base 
coding the rules.  

The circuit description is divided in two files: 

1. Circuit DB. It contains the structural description of the circuit, which 
consists of logic functions (either combinational or sequential) and con-
nections between them implemented through FPGA’s resources. 
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2. Floorplan DB. It contains the description of where each circuit’s 

resource is placed on the FPGA. The FPGA’s floorplan is divided in four 
sets S1, S2, S3, and S4, and each circuit’s resource is placed into one and 
only one of these sets. 

The Analyzer checks if each resource complies with the data base of rules 
and, if a violation is found, it produces a report that shows the resources and 
the configuration memory bits that violated the rules when affected by 
SEUs. The produced report serves as input to the RoRA router that produces 
an equivalent circuit where all the violations are resolved. 

1.2.  RoRA router 

The RoRA router, which was introduced in [5] to solve the problem of the 
Short effect, is based on the approach developed for the Pathfinder 
negotiated congestion algorithm [6, 7]. Basically, the RoRA router works on 
the graph model we developed, and it routes each connection between two 
logic vertices through the shortest path it can find. The path is composed of 
routing vertices, routing-to-routing edges, and logic-to-routing edges. During 
path selection, RoRA labels dynamically the graph’s routing vertices, in 
such a way that it avoids the instantiation of two connections that may be 
subject to Short effects.  

2.  PERFORMANCE OPTIMIZATION OF FAULT 
TOLERANT CIRCUITS 

In the past years, several fault tolerance methods have been proposed in 
order to mitigate the effects of SEs in the configuration memory of SRAM-
based FPGAs. On one side a possible solution to this problem is to use 
radiation-hardened FPGAs, however these devices are much more expensive 
than Commercial-Off-The-Shelf (COTS) FPGAs. Vice versa, the viable 
solutions are represented by two methodologies: the reconfiguration-based 
techniques and the redundancy-based approaches.  

The reconfiguration-based methods, aiming at restoring as soon as 
possible the proper values into the configuration bits after an SE happened 
[1], are a viable solution to detect and remove the upset within the configu-
ration memory. However, this approach does not offer a complete immunity 
to the SE’s effects, thus masking techniques are needed, such as redundancy-
based ones that avoid the SE’s effects propagation to the circuit’s outputs 
[8–10]. These techniques are deployed through Triple Modular Redundancy 
(TMR), where three identical replicas of the same circuit work in parallel 
while the outputs are produced by comparing and majority voting their 
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signals. TMR is a mandatory hardening technique for SRAM-based FPGAs 
since memory elements, routing resources and logic resources are all sen-
sitive to SEs and thus redundancy must be adopted for all of them. Although 
TMR techniques are drastically reducing the effects of SEs within the 
configuration memory of SRAM-based FPGAs, recent works demonstrated 
that some criticalities are still not protected from these techniques [11] and 
reliability-oriented place and route algorithms (RoRA) are needed to 
physically map the circuit on the FPGA’s resources in order to guarantee 
complete robustness against the SE’s effects within the FPGA’s configura-
tion memory [12]. Although effective, this technique introduces high 
degradation in terms of operational frequency to the implemented circuits, 
since they become 40–50% slower, on the average, with respect to their 
original versions [12]. The operational frequency reduction nullify the high 
performance offered by these devices, it is therefore necessary the develop-
ment of techniques able to guarantee the circuit’s fault tolerance without 
reducing its speed.  

The proposed V-Place algorithm is based on a model-based topology 
heuristic that address the arithmetic modules implemented on the FPGA.  
The delay of the interconnection between these resources is reduced thus 
minimizing the critical paths of the circuit physically mapped on the FPGA 
architecture. The main novelty of the proposed algorithm lies in the 
technique used to address the physical placement of the resources that, 
differently from other investigated approaches, does not rely only on the 
netlist model of the implemented circuit but directly on the topology 
organization of the circuit elements physically interconnected on the SRAM-
based FPGA device. 

The congestion graph 

The design complexity leads to an increasing routing congestion of a design 
implemented on SRAM-based FPGAs. The routing congestion may provoke 
several problems: it may degrade the performance of the design or it may 
add more uncertainty on the design closure process. The global increase of 
the delay is generally related to the unexpected increase of the delay of a 
single net due to routing congestion. In particular, congestion can affect 
design performance in two circumstances: 

 A path may be detoured due to the presence of congested regions. 
 A path may include several numbers of vias (interconnection points) if 

the router finds the shortest path through a congested region. 

The resulting increase in the delays of the critical nets can cause timing 
violations on the paths through those nets. The routing algorithms generally 

2.1 
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detour that nets increasing their delay. Furthermore, when reliability-oriented 
rules are considered [12] the routing-congestion dramatically increases due 
to the constraints inserted by the reliability rules that force the routing into 
specific path in order to prevent multiple errors in the implemented circuit. 
In order to take care of the congestion during the placement step, a conges-
tion graph is introduced.  

The congestion graph used is illustrated in Figure 5.2. The array area of 
the FPGA is modeled as a matrix of bin-squares where each one models the 
resources of an FPGA Configurable Logic Block (CLB). Every bin-square is 
characterized by a weight and a set of arcs. The weight P indicates the 
number of logic elements placed in the considered CLB. The arcs model the 
number of nets between two logic elements. Each arc coefficient is the ratio 
between the number of used routing resources and the number of available 
nets on horizontal plan (HL and HR), diagonal plans (DLT, DLB and DRT, 
DRB) and vertical plan (VT and VB).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2. The congestion-graph and the vertex definition. 

The voter architectures and arithmetic modules 

TMR hardening techniques involve the usage of voting architectures. Two 
voting structures define a voter partition logic, the set of interconnection and 
logic resources (both combinational and sequential) located between them. 
Considering the TMR scenario described in Figure 3.2, a voter partition 
logic consists in the logic domains Dj with j  {1,2,3} comprises between 
voter structures Vi and Vi+1.  
 

2.2 
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If on one side, the TMR voter partition structure increases the fault 
tolerance capability of a TMR architecture since introduces voter barriers, on 
the other side it is particularly critical for the placement task, since each 
voter partition introduces congestion on the routing interconnections. The 
developed algorithm treats the voter architecture as macros in order to 
prevent routing congestion.  

Modern SRAM-based FPGA devices support the design of embedded 
arithmetic cores for general purpose operations such as high parallelism 
multiplications or floating-point units. These units are synthesized accurately 
in order to optimize their operational speed and computational precision. 
Unfortunately, when these units are placed and routed on the FPGA physical 
layout, they may lost their optimized characteristics due to the logic and 
routing congestion. In particular, when TMR hardening techniques are 
adopted, the topological characteristics of the programmable interconnec-
tions may drastically degrade the delay of each single routing path thus 
decreasing its computational speed.  

The developed placement algorithm is able to address the routing and 
logic delay of the arithmetic units following a set of arithmetic rules and by 
modifying their placement positions within the FPGA’s logic programmable 
array.   

The arithmetic rules consist of a set of physical macros that are implemented 
by the placement algorithm with respect to the circuit’s functionalities. 

The V-Place algorithm 

The developed placement algorithm (V-Place) is based on the implemen-
tation of a graph embedding a metric that contains information about the 
FPGA’s regular physical architecture. The proposed algorithm directly 
considers the routing delays on the basis of a Manhattan distance heuristic. 
The algorithm is based on the routing graph presented in the previous 
section. The routing graph embeds interconnection’s delay measured in 
terms of number of traversed routing switches. The flow of the proposed 
algorithm is divided in three phases. In the first phase V-Place computes an 
analytical distance metric of the total interconnection length for each input 
and output signals of a given logic resource. Secondly it constructs a metric 
space for computing the FPGA performances. The third phase consists in the 
optimization of the location of each logic resource. The optimization is 
performed taking care of three different placement organizations: voting 
structures, arithmetic cores and general purpose logic. The flow of the 
proposed algorithm is illustrated in Figure 5.3.  

 
 

2.3 
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/*Phase 1*/ 
read_native_circuit_description() 
generate_routing_graph() 
L = reading_logic_vertex() 
V = reading_logic_voter() 
D = reading_TMR_domains() 
for each logic vertex i  L 
  MDi = create_manhattan_distance (i) 
/*Phase 2*/ 
M_space = create_performance_metric (MD) 
A_macrosj = read_arithmetic_rules (L) 
Macro_SETj = ø 
/*Phase 3*/ 
do until E(M_space) < min_delay 
{   
   v_place_optimizer (M_space ,D, MDi, L, V, A_macrosj) 
   { 
   /*Place Macros*/ 
   mark_estimated_voter_space(V) 
   if Macro_SETj = ø 
     do until E(M_space) < min_delay 
       for each L  A_macrosj with max(MDi) 
        RR = available_reliability_rules(D) 
          FP = find_free_location() 
    place(L,FP) 
          update(MDi) 
          update(Macro_SETj) 
   else 
 move_macro (Macro_SETj) 
   /*Place Logic*/ 
   for each L not included in A_macrosj 
      RR = available_reliability_rules(D) 
         FP = find_free_location() 
  place(L,FP) 
     update(MDi) 
   } 
} 

3.  EXPERIMENTAL RESULTS 

The purpose of this section is to evaluate the effectiveness of the proposed 
design flow in designing circuits that are hardened against SEU effects and 
to estimate the performance costs. In particular, we focused on the effects of 
SEUs in the FPGA’s configuration memory since it is the most critical 
aspect. The number of bit devoted to the configuration memory is indeed 
much higher than that devoted to the user memory (for implementing 
registers, or memory blocks). As a result, an SEU is more likely to happen 
within the configuration memory than in the user memory. 

93

Figure 5.3. The flow of the new V-Place algorithm.



Chapter 5

Three experiments were performed. The first one aimed at estimating the 
performance in terms of timing analysis of the placement algorithm. The 
second one consisted in designing three simple circuits according to the 
approach presented in [5], and according to the design flow presented in this 
paper. By comparing the attained results we can quantify the improvements 
that our new design flow allows with respect to the original solution we 
presented in [5]. The second experiment consisted in designing a realistic 
circuit with the intent of analyzing the viability of our design flow in 
attacking the design of a hardened real-life design. 

3.1  Timing analysis 

In order to estimate the improvements and the effectiveness of the proposed 
algorithm, two parameters of the circuit placed with the V-place algorithm 
have been evaluated: the SEs sensitivity and the speed. The improvements of 
the latter are shown by timing analysis reports while static analysis, by 
means of the approach developed in [13], proofs that the proposed algorithm 
does not affect the fault tolerance of the circuit itself. 

Three real-case designs have been used to perform the experiments: a 
CORDIC processor core, usually exploited for real-time calculations of 
trigonometric functions and vector magnitude, a 24 × 24 parallel multiplier, 
and an 8051 Intel microcontroller core. The circuits have been hardened 
using the Xilinx XTMR tool [14] to provide a full tolerance against single 
SEs. The static analysis experiments have been run on a Xilinx Virtex-II 
XC2V1000-FG456 device which is characterized by 10,240 available Look-
Up Tables (LUTs), 10,240 Flip-Flops (FFs) and 324 Input-Output Blocks 
(IOB) and whose configuration memory is composed of 4,082,592 bits. 
Table 5.1 summarizes the circuits’ characteristics for this specific device, in 
terms of occupied LUTs, FFs and IOBs. 

 
TABLE 5.1 Characteristics of the adopted circuits 

Circuit LUTs [#] (%) FFs [#] (%) IOBs [#] (%) 
CORDIC core 6,258 (61) 2,478 (24) 303 (93) 

Parallel Multiplier 3,597 (35) 0 (0) 288 (88) 
8051 7,210 (70) 3,672 (35) 108 (33) 

 
The performance of the placed circuits are evaluated using vendor’s tool 

in order to estimate the delay of the critical paths within the circuit. The 
results we obtained are reported in Table 5.2 where we show the delay of the 
critical path of each hardened circuit (TMR and Proposed Flow) with respect 
to the unhardened version (Plain). The developed design flow is able to 
optimize the delay of the maximum critical path up to the 44% with respect 
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to the TMR version, thus increasing the operational frequency of the 
implemented circuit. As the reader can notice, the delay introduced by the 
developed flow with respect to the plain circuits is less than the 4% in the 
worst case. 

 
Table 5.2 Timing analysis comparison 

Circuit Plain [ns] TMR [ns] Proposed flow [ns] 
CORDIC core 5.230 9.702 5.404 

Parallel multiplier 6.993 7.599 7.245 
8051 5.840 8.932 6.020 

 
Furthermore, two kinds of static analysis are executed in order to evaluate 

the effects both of the single upsets and the SEs accumulation.  
A first experiment has been performed using the Xilinx ISE-generated 

version of the three circuits. We analyzed them with the Static analyzer.  The 
results show that the X-TMR tool successfully hardened the circuits against 
single SEs; indeed no failures have been detected. Then we performed the 
same experiment on the circuits replaced with the proposed approach and the 
static analyzer shows that no failures have been produced. We can thus 
conclude that the proposed algorithm does not threaten the circuit’s fault 
tolerance. 

A second analysis has been performed in order to evaluate the SEs accu-
mulation effects. This analysis consisted in estimating the average number of 
accumulated SEs, called Nestimated, within the configuration memory by 
running several analysis with the Static Analyzer considering the accumu-
lation of SEs. Nestimated is updated at the end of each generated distribution. 
The execution of the analysis is terminated once Nestimated meets an estimation 
error  for a number of distribution  defined by the user before the analysis. 
We evaluated the mean number of accumulated SEs by means of the static 
analysis algorithm fixing a tolerated precision error  = 1% for the number 
of iterations  = 100. 

 Table 5.3 summarizes the results of this second analysis, in terms of 
mean number of accumulated SEs before a criticality is reported by the 
Static Analyzer. 

The results show that different placement can modify the mean number 
of SEs need to produce a failure on the circuit’s outputs; in particular for the 
adopted congestion-oriented placement we observed a reduction of the 
accumulated SEs. This means that it is possible to improve the fault 
tolerance of a circuit simply modifying its placement. 
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TABLE 5.3 Static analysis results for SEs accumulation 

Mean number of accumulated SEs 
before failure 

Circuit 
ISE-generated 

version 
Proposed flow 

CORDIC core 16 12 
Parallel multiplier 31 23 

8051 28 13 
 

3.2  Evaluating the proposed design flow 

To evaluate the capability of the proposed design flow three purely combina-
tional case studies have been considered: an adder with two 8-bit wide 
operands, an adder working on two 16-bit wide operands, and a multiplier 
with two 8-bit wide operands. We designed it according to two approaches: 
the one presented in this paper, and that presented in [5]. 

 
TABLE 5.4 Comparing execution times 

Circuit RoRA [s] Proposed approach [s] 
Add8 105.0 56.6 

Add16 556.2 101.0 
Mul8 1,312.2 265.4 

 
The device used in the evaluation experiments is a Xilinx Spartan® 

XC2S30PQ144, whose configuration memory is composed of 336,768 bits 
organized in 1,165 frames of 288 bits each. The configuration memory 
controls 132 I/O blocks and an array of 12 × 18 slices. 

Fault injection experiments [3] showed that in both cases we obtained 
hardened circuits with respect to SEUs affecting the configuration memory 
of the adopted FPGA. Conversely, as results reported in Table 5.4 shows, 
significant differences in execution times were observed. These results show 
that demanding the synthesis, and place and route operations, of most of  
the circuit to standard tools, while relying to reliability-oriented tools for 
addressing critical areas only, is far more efficient than routing the whole 
circuit with the approach presented in [5]: the execution times are indeed 
reduced by a factor ranging from about 2 to a factor of about 6. 
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3.3  Evaluating a realistic circuit 

The realistic circuit that has been taken in consideration is the IP-core 
implementing the Control Area Network protocol. This IP-core has been 
developed and validated in [15] and it is compliant with the CAN protocol 
specifications. 

As a first step of this experiment, it is designed the hardened version of 
the adopted IP-core according to the design flow proposed in this paper. To 
show the versatility of our approach, we considered several different FPGA 
families all coming from Xilinx: the Spartan II, the Virtex I, the Spartan 3, 
and the Virtex II. Similarly to what is normally done during the development 
of a realistic design, it is selected the smallest device able to hold the design. 

Table 5.5 reports the selected FPGAs, the percentage of FPGA’s resources 
that are used by the TMR-version of the CAN controller, as well as the 
circuit’s maximum frequency. Please note that for all the devices  considered, 
the IP-core uses at least the 98% of the total available resources. Although 
the selected FPGAs are almost full, RoRA was still able to find a different 
routing for the critical signals. Moreover, we analyzed the circuit’s frequency 
(by exploiting the Xilinx’s timing analyzer tool) before and after the execu-
tion of RoRA, which reworked the optimal circuit implemented produced by 
Xilinx’s ISE to make it robust against SEUs. For all the considered archi-
tectures, we always observed negligible reduction (less than 1%) of the 
maximum frequency. These results suggest that the proposed design flow 
can be used effectively to attack the design of realistic circuits, even in those 
case were few resources are available for reworking the circuit produced by 
the standard design tools. 

 
TABLE 5.5 Characteristics of the FPGA devices used 

FPGA device Resource occupation [%] Frequency [MHz] 
Spartan II XC2S200 98 225 

Virtex I XCV200 98 174 
Spartan 3 XC3S200 99 230 
Virtex 2 XC2V250 100 180 

 
TABLE 5.6 Comparing the execution time 

Number of escaped faults 
FPGA device Proposed approach  TMR 

approach 

CPU time 
[min] 

Spartan II XC2S200 0 263 83 
Virtex I XCV200 0 265 86 
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In order to quantify the effectiveness of the proposed design flow in 
protecting FPGA-based systems over a simpler approach where only the 
TMR architecture is adopted, we designed the selected IP-core according to 
the TMR, only. In this case, only the standard Xilinx ISE tools are used in 
combination with the TMR tool we developed, while the other components 
of the SEU-kit are not exploited (i.e., floorplan constraints, Analyzer and 
RoRA are not used). This scenario depicts the case of designers willing to 
adopt the TMR architecture and resorting only to standard tools for circuit 
design, plus ad-hoc tool for replicating the circuit and adder the needed 
majority voter.  

Table 5.6 reports the number of faults that escape the TMR architecture 
obtained by using standard tools only, in comparison with the figures 
attained for the IP-core designed according to the approach presented in this 
paper (for simplicity, only the figures concerning the Spartan II and Virtex I 
architectures are reported. Similar figures were observed for the other 
architectures). As the reader can observe, the approach presented in this 
paper produced fault- tolerant circuits, while the TMR alone was not able to 
achieve this goal. Table 5.6 also reports the CPU time for completing the 
design of the circuit according the approach presented in this paper. This 
figures indicate that a designer can obtain a validated and hardened design in 
less than 1 h and a half. 
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PART II



 

Chapter 6 

CONFIGURATION SYSTEM BASED ON 
INTERNAL FPGA DECOMPRESSION 
A new configuration architecture 

 
 

Nowadays Field Programmable Gate Arrays (FPGAs) are an improved 
technology for developing high-performance embedded systems. SRAM-
based FPGAs offers the possibility of in-the-field reconfiguration that results 
in the ability to adapt the product to modified user's requirements, to enrich 
the product's features, or simply to correct bugs. With the advent of multi-
million gate FPGAs, the size of the configuration information that defines 
what circuit the FPGA implements has increased drastically, and thus the 
amount of external memory needed to keep the configuration data is increas-
ing dramatically. The work presented in this chapter describe a novel confi-
guration compression system that exploits internal configuration mechanism 
of modern SRAM-based FPGAs and results in high compression efficiency. 
The proposed system is applicable to any modern SRAM-based FPGA 
devices having an embedded microprocessor core since the configuration 
data are processed as raw data. Moreover, the proposed approach does not 
require any external hardware support and allows high speed dynamic recon-
figuration. Experimental results on Xilinx SRAM-based FPGAs platform 
implementing several real-world circuits demonstrated 82% savings in 
memory on the average.  

1. INTRODUCTION TO THE DECOMPRESSION 
SYSTEMS 

Field Programmable Gate Arrays (FPGAs) are reconfigurable platforms that 
can implement embedded systems with high processing rates while providing a 
high degree of flexibility required in dynamically changing environments. 

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,  
© Springer Science + Business Media B.V. 2008 
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Today’s FPGAs are suited for accelerating computing-intensive algorithms 
that can take advantage of massive hardware parallelism [1]. Moreover,  
SRAM-based FPGA devices offer the possibility of run-time reconfiguration. 
Finally, modern SRAM-based FPGA devices embed hardwired microprocessor 
cores that have drastically increased the computational capability of these 
devices. 

In SRAM-based FPGAs, the content of the configuration memory is 
reloaded after power-up, therefore it does not store permanent data. As a 
result, SRAM-based FPGAs require external devices to initialize the 
configuration memory. A typical SRAM FPGA-based systems includes 
indeed a non-volatile memory for storing configuration data and the FPGA 
device itself. Each time the system is powered-up, the configuration data are 
loaded into the FPGA. 

As the number of configurable blocks and the complexity of the routing 
resources increase, the amount of configuration memory needed to store the 
configuration data grows accordingly. It is worth noticing that the configura-
tion data of the Xilinx Virtex-II FPGAs ranges from 0.4 Mbits to 43 Mbits 
[2]. Therefore, storing the configuration data in a FPGA-based system is a 
critical issue since it needs memory modules that could increase the overall 
system cost. The size of the configuration memory has a negative impact 
also on the configuration time, and it can limit the applicability of partial/ 
total dynamic configuration in time-critical applications. 

The memory size for storing configuration data may be reduced by 
exploiting suitable compression algorithms. As will be summarized in the 
following section, several works proposed techniques which exploit the 
peculiarity of the considered FPGA family [3–6], and therefore they are of 
limited applicability. Vice versa, a technique applicable to any SRAM-based 
FPGA device is presented in [7]. No matter which approaches are considered, 
all of them require an additional hardware component to be placed between 
the memory storing the configuration data and the FPGA, which decompresses 
the compressed configuration data and control the configuration operations. 
The additional hardware component represents an overhead for the system 
and it may introduce a not negligible design’s cost. In fact, developers must 
modify their original designs in order to implement these techniques. 

Other researchers investigated the implementation of on-chip FPGA 
decompressor. In [8] a specific decompressor hardware module is implemented 
using the internal configurable logic available within the FPGA device. 
Besides, in [9] is presented an approach able to support flexible FPGA-based 
run-time partial reconfiguration using a microprocessor mapped on the 
available resources of the FPGA device. Nevertheless these techniques 
present the advantage of fast run-time reconfiguration for small applications, 
these solutions present two major drawbacks. The first is that they are 
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specifically designed for Xilinx’s FPGA devices, the second is that they 
present a low compression ratio for those applications use a large percentage 
of the FPGA available resources. 

A novel configuration compression system is proposed and it is able to 
reduce the memory requirements for storing configuration data within a 
FPGA-based embedded system without introducing expensive overhead due 
to the implementation of the decompression module internally or externally 
the FPGA device. 

Being based on the internal resources that most recent SRAM-based 
FPGAs offer, the approach does not require any external hardware, since all 
the operations needed to decompress and configure the FPGA are performed 
by an on-chip CPU and by an internal configuration mechanism. This does 
not add any cost to the configuration state-machine, since the configuration 
operations are performed by the internal configuration mechanism available 
on FPGA devices. The on-chip CPU is dedicated to run the decompression 
algorithm only during the configuration process, after that it is available to 
run the user applications. Thus, the effective area cost that has to be paid is 
minimal and it does not depend on the dimension of the FPGA device 
adopted. Moreover, the proposed approach uses a compression algorithm 
implementing an adaptive binary arithmetic coder working on raw data; 
therefore, since it is not based on specific configuration data organization, it 
is applicable to any kind of modern FPGA devices. 

The capability of the approach implemented as a case study on the Xilinx 
Virtex II Pro device is evaluated considering several configuration data for 
the FPGA corresponding to real-world circuits. From our experiments we 
observed compaction ratio of 5.5 times on the average. Moreover, we 
recorded an average time of 0.6 ms for configuring the device, which makes 
possible the implementation of very efficient dynamically configurable 
systems. 

2. OVERVIEW ON THE PREVIOUSLY DEVELOPED 
DECOMPRESSION SYSTEMS 

Several compression techniques have been proposed for FPGA architectures. 
In order to reduce the memory requirements of their FPGA configuration 
data, Xilinx developed a compression algorithm based on a LZ77 scheme 
[3]. LZ77 is a dictionary-based text compression scheme that works by 
defining a fixed-size dictionary to hold bytes from an input source. As the 
compression progresses, the dictionary is updated by loading more bytes 
from the input source, thus forcing earlier entries out. Although this technique 
does not introduce any time overhead on the configuration process, it is 
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applicable only on Xilinx FPGAs and the compression ratios are extremely 
low. 

In [5] dictionary-based techniques were adopted to reduce the time 
required to transfer configuration data to Xilinx Virtex series FPGAs. A 
compressed version of the configuration data is fed to the configuration 
circuitry of the FPGA and the decompression takes place inside the FPGA. 
Although this techniques reported high compression ratios, the decompression 
process of the configuration data is very time consuming. Besides, this tech-
niques need the modification of the configuration mechanisms in order to 
support decompression. 

An FPGA configuration data compression approach that take advantages 
of the characteristics of the configuration mechanism of an FPGA Xilinx 
XC6200 is presented in [5]. In [6], run-length compression techniques for 
FPGA configuration data have been presented. The addresses were compressed 
using run length encoding while data was compressed using LZ compression. 
However, this approach take advantages of the specific characteristics of the 
adopted FPGA. A dedicated hardware is required for both the previously 
referred methods. 

A compression technique based on processing of raw configuration data 
is presented in [7]. This technique is applicable to any SRAM-based FPGAs, 
the compression algorithm is based on the principles of dictionary-based 
compression, and it does not depend on specific features of the configuration 
mechanisms. However, this approach requires an external hardware that exe-
cutes the decompression process and controls the configuration operations of 
the SRAM-based FPGAs. 

Vendors provide decompression solutions specifically oriented to their 
FPGA devices. However, these solutions can be grouped on two kinds of 
alternative configuration: active and passive, where the configuration is 
performed externally or internally the FPGA respectively. An approach 
based on active configuration that uses a PROM built-in decompression 
algorithm is described in [10], this solution can achieve a compression ratio 
of two times the original configuration data length. Vice versa, a technique 
based on passive configuration is presented in [11] where decompression is 
done by the FPGA itself, this solution achieves up 1.9 times the original 
configuration data length. 

A solution based on a specific decompression module implemented on 
the FPGA chip using the available resources is presented in [8]. This module 
is inserted a part of the run-time system which controls the decompression 
and receives data only for performing partial dynamic reconfiguration. This 
approach is not completely implemented on the FPGA, since the system 
needs external chip interconnections that link the output pins of the 
decompression module to the pins of the external FPGA configuration port. 
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A solution that exploits internal configuration port that modern FPGAs offer 
is presented in [9]. This solution implements on the FPGA chip resources, 
both the decompression module and the configuration controller supporting 
flexible run-time partial reconfiguration. In order to execute the decompres-
sion both the approaches exploit the LZ77 algorithm. Nevertheless, the advan-
tages concerning the fast run-time partial reconfiguration these solutions are 
specifically designed for Xilinx’s FPGA devices, furthermore they present a 
low compression ratio for applications using a large percentage of the FPGA 
available resources, this is meanly due to the LZ77 compression algorithm 
the has a low compression ratio for complex configuration data. 

In the approach presented, no external hardware is needed in order to 
perform the decompression and FPGA configuration, since all the operations 
are performed exploiting the FPGA’s internal resources. Moreover, no 
interconnections are needed outside of the FPGA in order to perform the 
configuration, since these operations are performed through the internal 
configuration port the most recent FPGAs embed. From the computational 
compression algorithm point of view, our approach achieve high compres-
sion ratio thanks to an adaptive binary arithmetic coder that works on raw 
data without considering individual semantics of specific FPGA configuration 
data organizations. Thanks to this compression algorithm is achieved a 
savings in memory of 82% on the average for various circuit’s configuration 
data. Moreover, the proposed compression system is applicable to any 
SRAM-based FPGA and do not require any modification of the external 
hardware in order to be adopted.  

2.1 Generalities of SRAM-based FPGAs 

Generally, FPGAs are characterized by an array of configurable logic blocks 
(CLBs) surrounded by input-output blocks (IOBs). Nowadays, state-of-the-
art SRAM-based FPGA devices provide further resources that are scattered 
among the logic array. These resources comprise block RAM memories 
(BRAMs), multiple clock resources and hardwired modules. The hardwired 
modules consist of various kind of DSPs and microprocessor solutions 
depending on the manufacturer. 

All the resources embedded within a SRAM-based FPGA are controlled 
by an internal configuration memory. The configuration time depends on the 
size of the configuration data and on its format. Moreover, the clock rate and 
the operation mode of the configuration mechanism may have an important 
role for the configuration speed-up, since they determine the rate at which 
the configuration data are delivered to the FPGA device. The semantic of the 
configuration data strictly depends on the characteristics of the configuration 
mechanisms as well as the characteristics of the FPGA architecture. Thus the 
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configuration data format varies among different vendors. In order to provide  
a compression system applicable to any FPGA, it is therefore needed an 
algorithm that does not take in consideration any peculiarity of the 
configuration data related to the FPGA architecture. 

The configuration data is loaded within the FPGA configuration memory 
through external or internal configuration mechanisms. The external mechanism 
is based on parallel transfer of 8-bit configuration data words that results in 
faster configuration time. The configuration data is transferred to the internal 
configuration memory through an external configuration access port with the 
support of a specific external circuitry working at higher data rates. Typical 
transfer frequency can be as high as 60 Mhz [12, 13]. Vice versa, the internal 
configuration mechanism is based on an internal configuration port that 
allow FPGA’s own logic resources to access the configuration data in such a 
way that the FPGA can dynamically reconfigure itself without demanding 
this process to an external hardware. 

The internal configuration port is available in may recent devices from 
several FPGA vendors. For example, Atmel’s SRAM-based FPGAs embed 
an Advanced Virtual RISC (AVR) microcontroller that can write configura-
tion data to the FPGA configuration memory through the internal configuration 
port. Similarly, the most recent Xilinx FPGAs embed an Internal Confi-
guration Access Port (ICAP) controller able to read and write the content of 
the configuration memory [14]. 

3. THE PROPOSED SYSTEM 

A typical architecture of an FPGA-based embedded system consists of an 
FPGA device, support memories to store the data and the FPGA configuration 
data, and control modules aimed to supervise the configuration process and 
to manage the I/O interface to send and receive the data to and from the 
FPGA device. The proposed compression system does not require any 
external hardware for implementing the decompression process, since this 
task is entirely mapped on the SRAM-based FPGA resources and exploits 
the internal configuration port. The following subsection illustrates the 
detailed system architecture implementing the decompression algorithm, the 
compression algorithm adopted and the overview on the configuration 
process. 

The architecture of the proposed decompression system is implemented 
using the configurable resources available on the modern SRAM-based 
FPGAs. The scheme of the proposed compression system is illustrated in 
Figure 6.1. 
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Figure 6.1. Architecture of the decompression system. 
 
The proposed system is based on the assumption that the compressed 

configuration data are generated using a software compressor running on a 
PC, and then they are stored within the external memory belonging to the 
FPGA-based embedded system. The system implemented on the SRAM-
based FPGA consists of three modules. 
The system mapped on the SRAM-based FPGA consists of three modules: 

 Hardwired μP: It is a hardwired microprocessor embedded within the 
SRAM-based FPGA architecture. It executes the decompression algorithm 
reading the compressed configuration data from the external memory and 
sending the decompressed data to the configuration IP. 

 Configuration IP: It is a logic core implemented on the available logic 
resources provided by the SRAM-based FPGA device. It receives the 
decompressed data from the Hardwired μP and performs the configura-
tion flow using the internal configuration mechanism. 

 Internal Configuration Mechanism: It is an hardwired mechanisms that 
allow to access to the FPGA configuration memory reading or writing the 
configuration data. The configuration IP manages the operations of the 
Internal Configuration Mechanisms writing the decompressed configuration 
data into the FPGA configuration memory. 

The proposed compression system is loaded on the FPGA during the 
bootstrap of the embedded system. Though partial configuration, we load the 
Configuration IP into the FPGA taking the uncompressed configuration data 
from the External Memory, and the compression algorithm within the 
hardwired μPas well. Then, the system is activated, and the processor starts 
executing the configuration of the rest of the FPGA by loading and 
decompressing the configuration data from the External Memory. 
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The  compression algorithm we developed is based on a binary arithmetic 
encoder integrating an adaptive model that does not use a discrete number of 
bits for each symbol and may reach high compression ratio [15]. The main 
idea behind arithmetic coding with an adaptive model is to assign to each 
symbol an interval. The encoding task is then performed on a recursive 
probability interval partition that is progressively adapted to the changes of 
the symbol probabilities during the compression process. 

 
/*Initialization*/ 
Set_Interval_Range (I) 
Initialize_Adaptive_Model_Margin (I, Mi) 
for each symbol SYM  CONFIGURATION_DATA 
  /*Arithmetic Coding*/ 
  Update_Interval(I) 
  Coding(I) 
  /*Data Out and Adaptive Scaling*/ 
  until Is_Scaling(I, Mi) 
     Update_Interval(I) 
     Scale_Data_Out(I) 
Closing()      

 
Figure 6.2. The flow of the proposed configuration data compression algorithm. 

 
The flow of the proposed configuration data compression algorithm is 

described in Figure 6.2. The algorithm consists of two phases: the initializa-
tion and the arithmetic coding. During the initialization phase, the adaptive 
model interval is set with the interval value of [0,1[ considering 256 symbols 
of 8 bit. The arithmetic coding phase elaborate each symbol belonging to the 
configuration data. 

The encoding is performed on recursive probability interval partitions. 
The function Update_interval () at each iteration splits into two sub-
intervals the original adaptive model interval in such a way that the function 
Coding()adjusts the coded symbol, pointing to the base of the sub-interval 
that corresponds to the input symbol. At each iteration, an adaptive scaling is 
executed. This phase changes the symbol probabilities during the compression 
process in order to adapt to the changing contexts. Initially, the compression 
process starts with a basic model that does not produce any configuration 
data out. During the process, the function Scaling_Data_Out() adapts 
the interval model to the input symbols, and generates the correspondent 
compressed data out. Finally, the coding is ending by the function 
Closing(). 

As far as the decoder side is concerned, the decompression flow is dual 
with respect of the encoder. The decoder performs the scaling and the 
arithmetic encoding achieving the original configuration data. The decoder 
algorithm is executed by the FPGA hardwired microprocessor that reads the 
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compressed configuration data from the external memory, and send to the 
configuration IP the original configuration data. 

The configuration IP is a dedicated hardware that is mapped on the 
available logic resources provided by the SRAM-based FPGA device. The 
configuration IP is responsible for controlling the communication of the 
decompressed data to the FPGA configuration memory resorting to the 
internal configuration mechanism. 

The architecture of the configuration IP consists of a data buffer that 
stores the decompressed configuration data received from the hardwired 
microprocessor. The data buffer has the dimension equal to the maximum 
configuration data that can be simultaneously written to the configuration 
memory. When the data buffer is full, the configuration IP enable the internal 
configuration mechanism and performs the writing of the decompressed 
configuration data into the selected frame of the FPGA configuration memory. 
The selection of the configuration memory frame is managed by the Confi-
guration IP on the basis of the configuration architecture. 

The execution flow of the proposed system can be summarized as follow. 
At the power-up of the system, the FPGA device is partially configured 
loading the configuration data that implement the Configuration IP. Once the 
FPGA is configured with the layout depicted in Figure 6.1, the code related 
to the configuration data decoder is loaded within the internal memory of the 
hardwired μP. After this operation the system is able to read the compressed 
configuration data from the external memory and to decompress it within the 
configuration memory of the FPGA. The logic resources related to the 
Configuration IP form a special boot-area that should not be over written by 
the decompressed configuration data. Since the architecture of the Confi-
guration IP is extremely simple, it takes only a limited area of the device. 
The user-applications should be designed avoiding the using of the consi-
dered boot-area. This operation is very simple, and it can be performed 
automatically by the FPGA vendor floorplanning tools. By this way, the 
decompressed configuration data are written exclusively on the available 
FPGA resources without compromising the functionalities of the decom-
pression system. 

4. EXPERIMENTAL RESULTS 

In order to show the feasibility and the characteristics of the proposed 
compression system, the performances are evaluated on a representative case 
study. At first the prototypal implementation of the developed decompres-
sion system is analyzed, and the performances in terms of area occupation 
and configuration time are analyzed. Secondly, the capabilities of the 
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compression algorithm on several real-world benchmark circuits are evaluated 
and compared versus the results coming from standard compression algorithms.  

The cases study adopted are based on a prototype board consisting of a 
Xilinx Virtex-II Pro Platform [16]. In particular the system is mapped on a 
Xilinx SRAM-based FPGA XC2VP30 embedding two PowerPC micro-
processor cores [17]. This device is characterized by a configuration memory 
of 11,589,920 bits that controls an array of 13,696 CLBs resources organized 
as a matrix array with 80 rows and 46 columns. This device has an internal 
configuration mechanism based on an Internal Configuration Access Port 
(ICAP). The ICAP module allows the internal FPGA logic resources to 
access to the configuration data reading or writing a specific configuration 
data. 

The system is designed on the lower right side of the FPGA matrix array. 
In particular the configuration IP has been placed near the ICAP port that is 
located in the lower corner of the FPGA. The compression algorithm source 
code requires 8 KB of available memory within the hardwired μP, while the 
compression system mapped on the FPGA logic resources use 14 CLBs. 
During the execution the decompression algorithm uses only up to 12 KB of 
memory. The area overhead introduced by the proposed system is therefore 
of only 0.1%. In terms of external memory, 120 KB are required to store the 
bootstrap configuration data for the initialization of the decompression 
system. 

4.1 Compression system results 

The proposed configuration data compression system has been tested on  
the configuration data of several real-world circuits implemented on the 
XC2VP30 Xilinx SRAM-based FPGA. For this device we generated six 
configuration data for six different designs. We evaluated two computing 
cores consisting of a FIR filter and a Cordic Core, two controllers of CAN 
and USB interface, and two microprocessors, the Intel 8051 microcontroller 
and the Leon microprocessor. In particular, in order to estimate the compres-
sion ratio for applications that use high percentage of FPGA resources, we 
implemented two version of the microprocessors: plain and Triple Modular 
Redundancy (TMR). Furthermore, we initialized the BRAMs modules with 
random values in order to make difficult the work of the compression 
algorithm. 

The characteristics of these designs are shown in Table 6.1, where we 
reported the differences between the designs in terms of used CLBs, BRAMs 
modules and percentage of used CLB resources with respected of the 
adopted FPGA device. Please note that the percentage of used resources 
considering the selected device, range from 2.3% to 92.3% 
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TABLE 6.1 Characteristics of the benchmark circuits 
 

Circuit CLBs [#] BRAMs [KB] Used CLBs [%] 
FIR filter 321 0 2.3 

Cordic 605 0 4.4 
CAN Controller 1,611 4 11,8 
USB Controller 1,920 6 14 

8051 2,446 24 17.9 
Leon 4,213 64 30.8 

TMR 8051 7,338 72 53.6 
TMR Leon 12,639 192 92.3 

 
The results of the configuration data memory required from the developed 

system are illustrated in Table 6.3. We compared the original configuration 
data, the configuration data required by our system and those comings from 
the Xilinx system [3] and the data coming from the LZW compression 
system used in [7]. Please note, that the data reported for the proposed 
system includes also the amount of memory dedicated to the bootstrap 
configuration data. As it can be observed, the proposed compression algorithm 
shows an average memory reduction of about 5.5 times, compared to the 1.5 
times of the Xilinx System. Besides, our approach achieves 82% savings in 
memory on the average, versus 41% obtained by the compression approach 
illustrated in [7] that needs an external hardware that performs the decom-
pression. Besides, the bootstrap amount of memory is only needed one time 
for the first configuration, thus it is not a drawback when several applica-
tions configuration data are used. 

In order to evaluate the performance characteristics in terms of configu-
ration speed, the PowerPC has been configured at the running frequency of 
300 MHz and the compressed data has been stored within the memory 
modules of the Xilinx Virtex-II Pro platform.  

The configuration time needed by the developed system has been 
estimated in relation to decompress the configuration data and to configure 
the entire FPGA configuration memory. The obtained results are illustrated 
in Table 6.2, where are compared the time needed by the proposed confi-
guration system versus the time needed by the Xilinx System configuration. 
With respect to the time, the overhead introduced by the developed system is 
proportional with the complexity of the circuits due to the arithmetic coding 
computation. For the considered benchmark circuits, the time overhead versus 
the Xilinx System ranges from 1.04 to 4.2 times. This limited drawback is 
overcome by the benefit of the compression ratio that can provide savings in 
memory ranging from 64% to 88%. However, considering small applications, 
those generally used in partial reconfiguration-based system, our system 
introduces a speed overhead of only 4%. 
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TABLE 6.2 Configuration time needed by our approach starting from compressed 
configuration data 

 
 
 
 
 
 
 
 
 
 
 

 
 
TABLE 6.3 Comparison of configuration data memory required by the analyzed compression 
systems 

Circuit 
Uncompressed 

[byte] 

Proposed 
system 
[byte] 

Xilinx 
system  
[byte] 

LZW [byte] 

FIR filter 1,448,812 167,812 998,320 854,742 
Cordic 1,448,812 219,201 1,010,442 891,798 

CAN controller 1,448,812 244,352 1,087,655 899,432 
USB controller 1,448,812 276,910 1,122,990 912,560 

8051 1,448,812 306,178 1,332,782 945,866 
Leon 1,448,812 363,966 1,398,632 947,372 

TMR 8051 1,448,812 399,453 1,420,844 998,560 
TMR Leon 1,448,812 481,562 1,442,520 1,004,220 
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Chapter 7 

RECONFIGURABLE DEVICES FOR THE 
ANALYSIS OF DNA MICROARRAY 
A complete gene expression profiling platform 

 
 

A Deoxyribonucleic Acid (DNA) microarray is a collection of microscopic 
DNA spots attached to a solid surface, such as glass, plastic or silicon chip 
forming an array. DNA microarray technologies are an essential part of 
modern biomedical research. DNA microarray allows to compress in a little 
microscope glass, hundreds of thousands of different DNA nucleotide 
sequences, and permits to have all this information on a single image. The 
analysis of DNA microarray images allows the identification of gene expres-
sions in order to drawn biological conclusions for applications that ranges 
from the genetic profiling to the diagnosis of cancer disease. Unfortunately, 
DNA microarray technology has a high variation of data quality. Therefore, 
in order to obtain reliable results, complex and extensive image analysis 
algorithms should be applied before actual DNA microarray information can 
be used for biomedical purpose. In this paper, we present a novel hardware 
architecture specifically designed to analyze DNA microarray images. The 
architecture is based on a dual core system implementing several units 
working in a single instruction-multiple data fashion. An FPGA-based 
prototypal implementation of the proposed architecture is presented in this 
chapter showing how reconfigurable devices can be used to increase the 
computation performances in biomedical applications.  

1. INTRODUCTION TO THE DNA MICROARRAY 

The Deoxyribonucleic Acid (DNA) microarray is a solid surface, such as 
glass, plastic or silicon chip studded with a large number of DNA fragments, 
each containing a nucleotide sequence that serves as probe of a specific 

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,  
© Springer Science + Business Media B.V. 2008 
 

117  



Chapter 7

gene. The purpose of DNA microarray is examining the expression of 
several thousands of genes simultaneously [1]. DNA microarray allows to 
identify and study the gene expression patterns that underlie cellular 
physiology, in particular in order to obtain the genetic profiling and identi-
fying the differently expressed genes in cancer disease. DNA microarray 
images are generated by an automated scanning-laser microscope that scans 
a microarray slide with several blocks of two dimensional (2-D) arrays 
where the DNA fragments are localized. The purpose of DNA microarray 
data analysis is to draw biologically meaningful conclusions. In particular, 
the goal of the microarray image analysis is to extract absolute or relative 
intensity values from each DNA fragment (spot) that represents the gene 
expression level. 

The results of a microarray experiment is presented in the form of an 
image, where the most expressed genes are indicated by high intensity spots 
with different channels ranging from the cyanine dyes, Cy3, that is the green, 
and the Cy5, that is the red. Several, microarray analysis steps need to be 
done before a conclusions is made. 

The first stage of the analysis is called gridding, that is the process of 
assigning coordinates to the spot locations. The gridding (also known as 
addressing or grid alignment [2]) is a processing phase that aims to localize 
the positions of the spots that should be analyzed. This phase is fundamental 
since the localization off the exact spots positions allow to extract the correct 
information from the correspondent DNA fragment. Basically, the gridding 
process generate a grid where a set of spaces, parallel and perpendicular 
lines with the image content representing the 2-D array of the spots are 
registered. Thus, several squares of different dimensions are identified on the 
grid. Each square should be correctly placed on the correspondent spot. In 
order to find the spot on the 2-D array image, the gridding process is based 
on image processing algorithms which may identify objects into constituent 
regions. The edge detection algorithm is the most suitable solution in order 
to measure and recognize the spots positions [3]. This algorithm works on 
the microarray images placing the edges in the image with strong intensity 
contrast, considering that they occur at image locations representing spot 
boundaries. 

The data is then segmented in order to separate the foreground pixels 
from the background.  Once the spots are identified, this stage allow to select 
which pixels belong to the spot and which needs to be considered image 
noise. The third step is the quality assurance that corresponds in identify and 
avoid the analysis of low dependable spots. This step measures the quality  
of the previous steps by fixing some features to check, for example spot 
morphology, size, intensity, and homogeneity. Finally, comes the intensity 
extraction that corresponds to reading the intensity of expression of each 
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DNA fragments and classifying properly the DNA microarray information 
extracted. 

The execution of a complete analysis flow of a DNA microarray image is 
a time consuming task. Previously developed approaches are mainly based 
on completely software-based solutions where the edge detection algorithm 
is executed by standard CPUs performing software routines on the whole 
pixels of the DNA microarray image [4–6]. In order to reduce the compu-
tational time some approaches try to down sample the microarray image, 
unfortunately this approaches have an high lost of accuracy that results  
in missing information about each DNA microarray spot [7]. All these 
solutions are extremely time expensive due to the complex and repeated 
CPU operations executed. Furthermore they have a computational speed that 
is inversely proportional to the image resolution, principally because edge 
detection algorithm is executed by software routines that elaborate groups of 
pixels, thus the elaboration time increases with the number of pixels of the 
processed microarray image. Previous works, essentially limited on the gridding 
process, have experimentally demonstrated the capability of parallel and 
multitasking architecture to drastically reduce the computational time [4]. 

A dual core architecture is presented in this chapter. It is able to perform 
a complete image analysis flow of a DNA microarray image. The aim of this 
work, is to support a full-automatic execution of the gridding and spot segmen-
tation processes as well as the quality assurance and intensity extraction of 
ever DNA microarray image. The proposed approach is able to elaborate 
DNA microarray images in a fraction of time previously developed software-
based approaches need. Furthermore, the proposed system is drastically 
increasing the capability of detecting spots in DNA microarray images since 
it does not loss any accuracy of the microarray image. In order to evaluate 
the effectiveness of the proposed architecture we use original DNA microarray 
images available from the Stanford University Microarray Database [8]. The 
experimental evaluation presents a maximum computational speed of one 
order of magnitude better than previously developed software-based appro-
aches. Besides, detailed quality assessment analysis, demonstrated that the 
capability of detecting DNA spots, increases of more than 30% with respect 
to previously developed software-based approaches. 

2. OVERVIEW ON THE PREVIOUSLY DEVELOPED 
ANALYSIS TECHNIQUES 

Nevertheless the DNA fragment spots position should be prior known, since 
the DNA microarray devices are manufactured with regular structure, several 
issues during the biological process may influence the regularity of its 
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structure inserting noise and distortion of the scanned DNA microarray 
image. The major challenges result from the irregularity of the grid and the 
appearance of significant illumination noise that corrupt the expected 
illumination of the genetic markers where the DNA fragment probes are 
placed. The DNA microarray analysis requires finding the location of the 
microarray probes and the spots resulting from the biochemical reaction  
of the analyzed tissue. Once the locations have been determinate, various 
measurements technique can be performed in order to determine their 
discriminatory power and robustness [9].  

The DNA microarray analysis has been addressed in two ways. First, the 
problem was attached by using a very accurate technology, for example, in 
the case of Affymetrix chips [10]. However, this technology is much more 
expensive than the commercial on-the-shelf (COTS) ones, and thus the need 
for solving the image analysis has remained. Second, the microarray analysis 
was addressed with template-based and data-driven approaches based on 
software routines. The template-based approach is the most relevant in the 
literature and it is based on complete software packages [12]. Vice versa, the 
data-driven approach has been based on statistical analysis of 1D image 
projections and by analysis using image segmentation algorithm [13, 14]. 
Several currently available software packages enable manual template 
matching by correcting the spot size, spot spacing and grid location [15]. 
However, the irregular grids morphology cannot be computed with template-
based approaches unless a manual adjusted is defined. On the other sides the 
data-driven approaches are capable of finding irregular grids but provide low 
quality grids due to spurious or missing spots. 

The purpose of the developed DNA microarray analysis system is to 
execute the image processes in a fully automated way, in order to reduce the 
human-operations and thus minimizing the measurement error introduced. 

The contribute of this system consists of two major advantages. First, it  
is implemented only on a hardware platform and takes advantages of the 
parallel execution of the edge-detection algorithm during the several proces-
sing phases. Second, in comparison with other data-driven methods that 
work on all the image pixel reducing the computational time and the data 
accuracy, the analysis algorithm is based on a recursive spot segmentation 
algorithm that works on different DNA microarray image sub-regions thus 
avoiding the typical limits of the data-driven algorithms. 
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3. PRELIMINARIES OF DNA MICROARRAY IMAGE 

ANALYSIS 

A DNA microarray image, as that depicted in Figure 7.1, is characterized by 
three main objects: the Spots, the Sub-grids and the Background. Theoretically, 
a DNA microarray image is characterized by deterministic grid geometry, 
known background intensity with zero uncertainty, pre-defined spot shape, 
and constant spot intensity that has to be different from the background. 
Finding such an ideal DNA microarray is almost impossible. 

 
 
 
 
 
 
 
 
 

Figure 7.1. A slice of DNA microarray image. 
 
A realistic DNA microarray image, due to the complex process which 

involves electrical, optical and chemical issues, is characterized by several 
differences with respect of an ideal image. These differences are mainly due 
to the variation of four parameters: 

1. Image Channels: this is caused principally by the digital storage file 
formats. The digital image has to accommodate an analog signal, intro-
ducing sampling and quantization issues. The usage of lossy data 
compression techniques increases the variations of the original analog 
image. In our approach we do not use any data compression technique, 
therefore the proposed architecture does not increase the original image 
channel variation. 

2. Grid Geometry: the irregularity of the DNA microarray sub-grid is often 
caused by the biological microarray preparation. This irregularity usually 
results in rotational offset. Our approach generates an edge output image 
which allows correcting the possible irregular spaced or rotated sub-
grids. 

3. Background: the presence of dust or dirty tissue during the acquisition 
procedure causes often a non linearity of the background intensity level. 
Thanks to a morphologic analysis of the sub-grids, our approach provides 
an Intensity Background Ratio that allows executing the appropriate 
noise-reduction filter to the whole image before its computation. 

Spot
Sub-grid

Background

Spot
Sub-grid

Background
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4. Spot Morphology: A large number of shape deviations exits, equals to the 
total number of spot cell within a sub-grid. Our approach identifies 
squares containing the spot morphology, whatever is the spot shape. The 
proposed approach is flexible and may be used also on not common DNA 
microarray technologies that adopt rectangular or triangular spots. 

3.1 The edge detection algorithm 

Edge detection is one of the key algorithms used in object recognition in 
images [16]. It consists in a 2-D first derivate operator applied to the grey-
scale image to highlight regions of the image with high first spatial derivates. 
The edges are translated into ridges in the gradient magnitude of the image. 
The algorithm tracks along the top of these ridges and sets to zero all pixels 
that are not actually on the ridge top and give a thin line in the output. The 
edge detection of an image is the convolution products of the image pixels 
with different masks which result in the calculation of the horizontal and the 
vertical gradient. The two gradients are calculated using differences between 
adjacent pixels. 

One way to find edges is to use the Prewitt kernels. The Prewitt kernels 
are based on the idea of the central difference, and are expressed by the 
following first order spatial derivates: 

 
 

 
 
 
 
 
The two derivates correspond to a convolution kernel consisting in the 

horizontal convolution expressed by {-1,0,+1} and the vertical convolution 
expressed by {-1,0,1}. These convolutions are applied to the grey-scale 
image to get the horizontal and the vertical gradients. 

 
 
                    (a)                                   (b)     
 
 
In order to perform the convolution on the entire image, the idea consists 

in building a n × n (typically 3 × 3) matrix of numbers called kernel mask, 
and in multiplying it with a portion of the image of the same dimension. 
Then, all the products are summed in order to determine the central pixel 
value. The kernel mask using Prewitt coefficients will be the matrix reported 
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in (a) for the vertical edge detection and the one reported in (b) for the 
horizontal edge detection. The results of the convolution will stay in the 
range defined by the pixel resolution in number of bit, thus if the pixel 
resolution is 8 bits, the range of the results will be [0:255]. If a resulting 
pixel exceeds the range, it has to be normalized. 

4. THE PROPOSED DNA MICROARRAY ANALYSIS 
ARCHITECTURE 

The main purpose of the proposed approach is to provide a faster and high-
precise analysis of DNA microarray images in order to extract biologically 
valid information. As illustrated in Figure 7.2, the proposed methodology 
consist of two cores: the DNA-EDC (DNA-Edge Detection Core) and the 
DNA-QAC (DNA-Quality Assessment Core). The proposed system, on the 
basis of the DNA microarray image and of several data rules generates an 
image data gridding containing the information about the generated grid and 
segmentation of the considered DNA microarray image and the expression 
levels of the identified DNA fragments (spots). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2. An overview of the proposed methodology. 
 
The DNA Microarray Data Rules include the number of spots for each 

sub-grid in terms of rows and columns and the number of sub-grids within 
the DNA microarray image analyzed. Please note that all these information 
are provided by the manufacturer of the DNA microarray used. 
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The DNA-EDC flow consists of three phases: 

1. Memory Storage Partition: this phase consists in dividing the original 
DNA microarray image in several frames. Each frame will be transferred 
in a single memory block within the DNA-Edge Detection Core. 

2. Edge Detection: this phase performs the execution of the edge detection 
algorithm of the DNA microarray image. Each frame contained within 
the memory block is computed in parallel and the result of the 
computation is transferred to the output Edge image. 

3. Gridding Elaboration: this phase generates the gridding matrix related to 
the analyzed image.  

The result of the DNA-EDC flow is the Image Data Gridding that 
includes the following information: 

(a) Intensity Background Ratio: it is the ratio between the image intensity of 
the background area and the image intensity of the several sub-grids area. 
This parameter is particularly important to estimate the quality of the 
image, and if needed to apply a post-processing noise reduction filter 
choosing the order on the bases of the Intensity Background Ratio. 

(b) Grid Matrix: is a data matrix containing the coordinates of the lines that 
form the grid of the DNA microarray image. It consists of couples of data 
related to the horizontal and vertical positions. 

(c) Edge Image: it is the output image after the computation of the edge 
detection phase. This image allows identifying the shape and the size of 
each spot. 

The result of the DNA-QAC flow is the DNA fragments expression level 
of the identified spots. The expression level is reported as an index of the 
fluorescence for each individuated spot and can be used to extract biological 
information from the analyzed tissue. Considering the grid G(x,y) and {x1,.., 
xn},{y1,.., yn}  the grid coordinates generated by the DNA-EDC module for 
all the spot locations, the DNA-QAC flow analyze each G(xi, yi ) and in case 
of the spot shape is not correctly identified, it re-computes the coordinate 
according to a Detailed Segmentation Spot algorithm (DeSSa). 

The DNA-QAC consists of four phases: 

(a) Static Sub-Grid Evaluator: this phase consists in estimate the spots 
position obtained after the gridding process performed by the DNA-EDC 
module. 

(b) Spot-Addressing: this phase elaborates the spots that are not correctly 
identified. It modifies the spot coordinates in such a way that the spot i is 
correctly contained within the grid square  G(xi , yi ). 

(c) Spot-Autocorrelation: this phase consists in applying the correction of the 
grid square alignment performed in the previous phase, for all the spot 
coordinates corrected. It returns to the DNA-EDC gridding elaboration 
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phase the spot coordinates that have been fixed, and thus does not need to 
be re-computed by the DNA-EDC gridding elaboration phase.  

(d) Read Expression: this is the last phase performed by the EDC-QAC flow. 
It is performed when all the spots are aligned in the best possible 
solution. It reports the final number of correctly identified spots, and for 
each spot i it returns the correspondent fluorescence value V. 

The system operation may handle DNA microarray image of different 
dimension and with different spot shapes. In details, the system is based on 
two microprocessor core running in conjunction. The first processor, 
manages and synchronizes the task sequence of the DNA-EDC core. The 
second processor belongs to the DNA-QAC core and it is completely 
dedicated to run the DeSSa algorithm. 

4.1 The edge detection architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.3. The architecture layout of the development DNA-Edge Detection Core (DNA-
EDC). 

 
The scheme of the developed architecture DNA-Edge Detection Core 

DNA-EDC is depicted in Figure 7.3. The DNA-EDC architecture consists of 
the following components: 

1. Master Microprocessor: The Master Microprocessor manages the 
execution flow of the entire DNA-EDC architecture. It principally reads 
the image data from the input memory and controls the transfer and the 
computation operations. 

2. Input Memory: The input memory stores the original DNA microarray 
image. It is organized in 32-bit data words, where each data word stores 4 
data pixels. Considering that the original DNA microarray image consists 
of several pixels each one having an intensity value that ranges from the 
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level 0 to the level 255 (the color ranges from the black to the white 
considering the grey-scale), each pixel has been coded on 8 bits and the 
image is progressively stored in a raster way starting from the top-left to 
the bottom-right.  

3. Output Memory: the output memory stores the image resulting from the 
edge detection process on the original DNA microarray image.  

4. Horizontal and Vertical Mask: the horizontal and the vertical masks are 
two 3 × 3 matrices containing the coefficients that will be used for the 
computation of the edge detection process. Each matrix’s cell is 
implemented by a 8-bit register. 

5. Input Memory Block: the input memory block consists of 64 frames. Each 
frame is characterized by 16 buffer registers of 32 bits. The input data 
pixels are transferred from the input memory to each frame through the 
control of the Master Microprocessor.  

6. Data DMA: the Data DMA unit is devoted to transfers the image data 
stream from the input memory to the Input memory block frames. This 
module is essential in order to guarantee faster data-transfer. 

7. Computational Matrix: the computational matrix is the more complex 
part of the developed system. It consists of 64 convolver units. Where 
each convolver unit is able to compute the edge detection process on 9 
pixels at every clock cycle. The inputs of each convolver unit are 
connected to the outputs of the corresponding frames within the input 
memory block and to the vertical or horizontal masks. Vice versa, the 
outputs from each convolver unit are connected to the correspondent 
frames within the output memory block. 

8. Output Memory Block: the output memory block is formed by 64 frames 
of 16 32-bit buffer registers. Each frame is connected to the output 
signals coming from the correspondent convolver unit within the compu-
tational matrix. Vice versa, the output of each frame is connected to the 
Vertical and Horizontal Score unit. 

9. Score Unit: the score unit computes the vertical and the horizontal profile 
of the edge detected data contained within each frame of the output 
memory block. The horizontal and the vertical profiles are the sum of 
each pixel intensity value on all the pixel columns and rows respectively. 

The unit that executes the computation on the image and produces the 
correspondent edge detected image is the computational matrix. The compu-
tational matrix consists of 64 convolver units performing the computation of 
the convolution multiplication in parallel. The architecture of a convolver 
unit is illustrated in Figure 7.4.  

It consists of an arithmetic architecture that executes the convolution 
operation between two 3 × 3 matrices of data pixels. 
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Figure 7.4. The architecture of the developed convolver unit. 
 
The architecture is composed by two matrices: the Kernel Mask and the 

Data Mask. The Master Microprocessor transfers into the Kernel Mask the 
Horizontal or the Vertical Mask depending if the edge detection is computed 
on the horizontal or vertical direction. The convolution operations are 
executed by nine multipliers and one adder, where each multiplier perform 
the multiplication between the matrix cells Kij and Dij, and the adder perform 
the additions between the nine multiplier outputs. The adder output ed_pixel 
is linked with the correspondent frame within the output memory block. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.5. The architecture of the developed score unit. 
 
The Score unit generates horizontal and vertical histogram projections 

that sum the values of the edge pixels in both the directions. These values are 
used by the Master Microprocessor in order to create the data matrix 
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containing the coordinates of the lines that form the gridding of the DNA 
microarray image. The architecture of the Score unit, which is depicted in 
Figure 7.5, consists of a multiplexer controlled by the Master microprocessor, 
a couple of 64 parallel registers of 32 bits and 64 adders. 

The lines of the Output memory block frames are directed into the 
correspondent score unit input register Pi. The content of each register Pi is 
added to the Score Frame i at every computation. At the end of the elabora-
tion of each pixel row, the Score Frame i contains the histogram projection 
of the correspondent pixel i. The Master Microprocessor transfers the 
content of the 64 Score Frame registers and computes the horizontal/vertical 
grid lines on the basis of the minimum score parameter and the number of 
searched lines. At the end of the computation the content of the Score Frame 
registers is reset. 

4.2 The quality assessment core 

The DNA-Quality Assessment Core (DNA-QAC) has been developed in 
order to extract the expression level of each identified DNA spot. It is based 
on a Detailed Spot Segmentation Algorithm (DeSSa) executed on a micro-
processor core working in conjunction with the DNA-EDC core. The flow of 
the proposed DeSSa algorithm is reported in Figure 7.6. The algorithm 
consists of four steps, as introduced in the previous section: static sub-grid 
evaluator, spot addressing, spot auto-correlation and read-expression.  

The static sub-grid evaluator consists in analyzing all the spot area (SP) 
identified by the coordinates G(x,y). The function analyze_spot_shape() 
compares the pixels intensity contained in every grid square identified by the 
coordinates G(x,y) with a defined spot shape. The defined spot shape is set 
by the user, considering the manufacturing characteristics of the DNA 
microarray device used. In the case, the spot shape is not correctly fitted, the 
spot square coordinates are added to a Not-Defined-Spot (NDS) list. 

The spot addressing phase modifies the spot square coordinates of the 
NDS list. This phase search the possible grid square position that allows to 
contain a single spot. The process is divided in two functions:  

1. extend_spot_area(): this function progressively enlarges the 
grid’s square dimension on all the four directions in order to fit the spot 
area completely.   

2. min_neighborhood(): this function computes the intensity ratio 
(threshold) of the signal in the neighborhood area of the considered 
grid square. If the signal intensity ratio is lower than the minimum spot 
shape parameter set according to the DNA microarray manufacturing 
characteristics, the grid’s square dimension is considered as fixed. 
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Once the spot addressing is finished, the grid’s square positions need to be 
correlated with the other grids previously computed. This process is perfor-
med by the DNA-EDC core that starts the gridding elaboration phase. This 
phase is executed only for the grid area not belonging to the NDS list. The 
three algorithm steps are repeated until the update process is completely for 
all the grid squares.  

Finally, the last step of the DeSSa algorithm consists in computing the 
expression level of all the detected spot area. The expression level is provided 
as an average intensity value computed for all the pixels belonging to spot 
area defined by the grid G. 

 
DeSSa() 
  {    
   do  
    { 
    /*Static Sub-Grid Evaluator*/ 
    for each spot area SP  G(x,y) 
     { 
      NDS(i) = analyze_spot_shape(SP, G(x,y)) 
            }   
    /*Spot Addressing*/ 
     for each not-defined-spot i  NDS 
      { 
       min=false 
       while(!min) 
        { 
         extend_spot_area (i,G(x,y)) 
         threshold = min_neighborhood (i, G(x,y)) 
  if (threshold < min_spot_shape(i)) 
  min=true 
                } 
      } 
    /*Spot Auto-Correlation*/ 
    update_NG_list(NDS,G(x,y))  
    } while (update_NG_list(NDS) ==  not_completed) 
    /*Read Expression*/ 
        for each spot area SP  G(x,y) 
             compute expression_level (SP) 
  }   

Figure 7.6. The flow of the developed Detailed Spot Segmentation Algorithm (DeSSA). 

5. EXPERIMENTAL RESULTS 

A prototype of the system architecture has been developed on a Xilinx 
Virtex-II Pro Development System board embedding a XC2CP30 SRAM-
based FPGA device and using an external memory of 256 Mb [17]. This 
FPGA device embeds two hardwired microprocessors PowerPC 405 which 
consists of a 32-bit hardware architecture [18] and it consist of  136 memory 
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block of 18 Kb each one, 27,392 Flip-Flops (FFs) and 27,392 Look-Up 
Tables (LUTs) organized in a matrix of 13,696 logic cells. We implemented 
the architecture layout depicted in the section IV using the two PowerPC 405 
as the controller for the DNA-EDC core and for the DNA-QAC core. We 
divides the external memory in two banks in order to implement the input 
and output memories. We set the clock frequency of the entire system at 200 
MHz. The used resources of the implemented system are shown in Table 7.1, 
where we reported the number of used FFs, LUTs and BRAMs (divided in 
number of block and total K-Byte used) for each module of the developed 
system. In order to guarantee fast data computation, we mapped the internal 
registers of the input and output memory blocks exploiting the dual port 
Block-RAM resources of the Xilinx FPGA. In particular, we mapped two 
frame registers for each Block RAM. 

 
TABLE 7.1 Prototypal characteristics of the developed system 

BRAMs 
Module FFs [#] LUTs [#] 

[#] KB 
Data DMA 155 1,684 0 0 

Input memory block 1,400 860 32 4 

Computational matrix 25 12,032 0 0 
Output memory block 1,408 894 32 4 

Score unit 15 6,804 32 0.5 
DNA-QAC 568 360 12 4 

 
The performance capabilities of the developed system have been evaluated 

on original case study DNA microarray images available from the Stanford 
Microarray Database [11] and containing images of several kind of DNA 
microarray devices and image quality. On the considered images we configured 
the system in order to compute the edge detection algorithm using the 
Prewitt masks [5]. The characteristics of the analyzed images are illustrated 
in Table 7.2 while the results obtained are shown in Table 7.3. Where it is 
reported as DNA microarray ID, the reference identification number of the 
considered image form the Stanford University Database Category, the kind 
of DNA microarray image analyzed; Dimension, the image dimension in 
term of number of pixels for rows and columns; the Computational time, the 
computational time for the proposed system and for the pure software 
approach presented in [7] executed on a Pentium-II processor equipped with 
1 Gbyte of RAM, and running at 1,6 GHz, and finally the performance 
quality of the obtained gridding considering the percentage of correctly 
individuated spot over the total number of spot belonging to the considered 
DNA microarray devices. 
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TABLE 7.2 DNA microarray images characteristics 

 
 

TABLE 7.3 Experimental results of the proposed dual core system for the analysis of DNA 
microarray images 

DNA microarray 
ID [#] Performance [s] 

Spot coverage 
[ # identified spots / #  

existing spots] 

 Proposed 
approach 

Software 
approach 

Proposed 
approach 

Software 
approach 

10,029 10.9 194.3 0.97 0.61 
3,657 4.9 73.8 1 0.87 

12,507 15.4 138.5 1 0.3 
16,940 16.3 136.4 1 0.64 
12,485 16.5 171.8 0.98 0.68 
12,395 10.4 104.2 0.99 0.58 
40,600 22.7 166.1 0.98 0.64 
34,905 15.2 182.4 0.97 0.78 
67,549 16.2 145.7 1 0.82 

 
On the considered case study, it has been recorded an average percentage 

of individuated spots of 98% versus the 66% obtained with the approach 
proposed in [7]. These results demonstrated that the proposed system is able 
to analyze DNA microarray images introducing only a minimal error in  
the obtained DNA microarray spots expression level. Besides, it is clearly 
illustrated a reduction of the computational time of more than one order of 
magnitude with respect to a pure software solution. This result demonstrates 
that the usage of hardware-accelerated architectures could drastically 
improve the analysis of DNA microarray images. 

 
 
 

DNA microarray 
ID [#] Category Dimension 

10,029 Adenoma – liver 1,900 × 3,640 
3,657 Brest – tumor tissue 1,992 × 1,870 

12,507 Lymphoma – normal tissue 1,940 × 5,496 
16,940 Lymphoma – follicular 1,940 × 5,548 
12,485 Solid tumor – primary 1,920 × 5476 
12,395 Metastatic tumor – liver 2,016 × 3,744 
40,600 Neurobiology – amplification 2,048 × 5,680 
34,905 Stress – drug treatment 1,888 × 5,500 
67,549 Normal tissue – whole blood 1,894 × 5,512 
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Chapter 8 

RECONFIGURABLE COMPUTE FABRIC 
ARCHITECTURES 
A new design paradigm 

 
 

Re-Configurable Mixed grain (ReCoM) is a novel Reconfigurable Compute 
Fabric (RCF) architecture based on a mixed-grain reconfigurable array 
which combines a RISC microprocessor and a reconfigurable hardware for 
computation-intensive applications. ReCoM comprises a modified RISC 
microprocessor, a dynamically reconfigurable processing array including 
reconfigurable cells formed by a 64-bits ALU, Look Up Tables (LUTs), 
word-level arithmetic units, and an efficient configuration and data memory 
architecture.  

High-performance execution of complex algorithms involves massive 
computations. In the past, custom application-specific architectures have 
been used to satisfy these demands. This implementation approach, while 
effective, is expensive and poorly flexible since hardwired application-
specific architectures are extremely expensive to evolve and maintain. As a 
matter of that, a fixed, application specific architecture will require significant 
redesign in order to assimilate new algorithms and new hardware components. 
A flexible system must function in rapidly changing environments, resulting 
in multiple modes of operation. On the other side, efficient hardware archi-
tectures must match algorithms to maximize performance and minimize 
resources. Reconfigurable devices, such as Reconfigurable Compute Fabrics 
(RCFs) allow the implementation of architectures that change in response to 
the changing environment. In general, RCFs have wider applicability than 
Application Specific Integrated Circuits (ASICs) or general-purpose proces-
sors alone. 

A novel model for RCFs targeted at computation-intensive applications, 
called ReCoM, is introduced in this chapter. The ReCoM architecture consists 
of a Tiny RISC microprocessor core [1], a dynamically reconfigurable array, 

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications,  
© Springer Science + Business Media B.V. 2008 
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a reconfigurable management unit and a memory interface. The main 
characteristic of ReCoM is given by the reconfigurable array based on a 
mixed-grain reconfigurable cell architecture including a 64-bits ALU, Look 
Up Tables (LUTs) and word-level arithmetic units, that may target both 
word-level and bit-level granularity applications. 

The capabilities of the proposed reconfigurable system have been validated 
on a representative case study implementing a FIR filter. Furthermore, the 
performance obtained by ReCoM have been compared with those coming 
from  a DSP and a previous developed reconfigurable system, showing an 
improvement of at least three times in term of computational speed. 

1. INTRODUCTION TO RCF DEVICES 

The range of existing reconfigurable architectures is divided in two main 
categories: fine and coarse grained approaches. Fine grained devices are 
optimized to implement glue logic or irregular structures like finite state 
machines. Conversely, coarse grained devices are optimized to implement 
word level computational intensive applications. 

Fine grain prototypes are generally built on a computational model based 
on a unique processor. They include prototypes such as DPGA [2] or Garp 
[3] especially oriented to application domains such as bit-level computation 
or image processing and cryptography. On the other side, coarse grained 
prototypes are based on an array of processing units organized in a Multiple-
Instruction Multiple-Data (MIMD) or in a Single-Instruction Multiple-Data 
(SIMD). 

MIMD architectures may be used in a wide range of application areas, 
such as computer-aided design/manufacturing, simulation, modeling and 
communication switches. Examples of MIMD-based reconfiguration systems 
are MATRIX [4] or RAW [5].  

The recent years have seen the introduction of many computation-
intensive tasks as mainstream applications that manipulate large arrays and 
matrices in minimal time. These tasks are performed efficiently on SIMD 
architectures. Reconfigurable systems based on SIMD array are REMARC 
[6], MorphoSys [7] or DReAM [8]. REMARC is a reconfigurable coproces-
sor that is tightly coupled to a main RISC processor and consists of a global 
control unit and 64 programmable logic blocks called nano processors. 
Similarly, the MorphoSys architecture comprises five components: a core 
processor, a reconfigurable array, a context memory, a frame buffer and a 
DMA controller. A three layer interconnection network gives to the reconfi-
gurable array high connectivity. Another coarse grained reconfigurable 
device is the Dynamically Reconfigurable Architecture for Mobile System 
(DReAM). It consists of an array architecture of reconfigurable processing 
units (RPUs) optimized for the requirements of mobile communication 
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system. Each RPU consists of two dynamically reconfigurable 8-bit data 
paths and two 16 by 8-bit dual port RAMs. The dual port RAMs are used as 
LUTs when performing multiplication operations.  

A medium-grain reconfigurable cell array prototype has been previously 
developed in [9]. This prototype is based on a matrix of programmable 4-bit 
cells where each cell performs a small portion of the overall algorithm. 

ReCoM has several enhancements if compared with previous SIMD-
based or medium-grain reconfigurable systems. It has a configuration and 
data transfer architecture that could be controlled independently by the 
reconfigurable array and a multi domains dynamically reconfiguration unit 
that permits configuration swap oriented to multi tasking applications. 
Finally, the ReCoM’s reconfigurable array incorporates mixed grained-based 
cells that could be used in order to implement word-level or bit-level 
granularity applications. 

2. THE ReCoM ARCHITECTURE 

The architecture of the proposed reconfigurable compute fabric ReCoM is 
illustrated in Figure 8.1. The ReCoM’s main components include a Reconfi-
gurable Unit, a RISC processor (Tiny RISC), two DMA controllers (one 
related to the configuration, and one to data stream) managed by the RISC 
processor and a data DMA controller managed by the reconfigurable unit. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1.The architecture of the reconfigurable compute fabric system ReCoM. 

The reconfigurable unit is composed of several sub-components: a 
Reconfigurable Logic Array (RLA), a context memory, a Data Buffer, a Self  
Context and a Self DMA units. 

The reconfigurable logic array is configured by the RLA context 
memory, while the Tiny RISC is the main processor that manages the DMAs 
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dedicated to the data/configuration flow towards the reconfigurable logic 
array and that drives the RLA context memory. Vice versa, the Self Context 
unit allows the reconfigurable logic array to partially or totally reconfigures 
itself independently from the control of the main processor. Furthermore, the 
Self DMA unit can manage a dedicated DMA (Logic Array Data DMA) in 
order to transfer data to/from the external memory without the participation 
of the main processor. This is extremely useful in order to exploit the 
parallelism available in an application’s algorithm. 

The main processor of ReCoM is a 32-bit processor, called TinyRISC 
[1]. Tiny RISC is a 4-stages pipelined processor with four registers in 
addition to the register file and the special register file. One is the program 
counter register, which contains the address of the program execution point. 
The other three are the pipeline registers, which provide the latched interface 
between each pipeline stage. For ReCoM, the Tiny RISC pipeline structure 
has been modified according to the scheme illustrated in Figure 8.2. Further-
more, several instructions are added to the original Tiny RISC ISA in order 
to manage the configuration/data DMA, the RLA context memory and the 
data buffer behavior. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.2. Tiny RISC pipeline stages modified with the ReCoM executing unit. 
 
A ReCoM unit is included, that executes the instructions added to the 

original Tiny RISC ISA. These instructions and their correspondent operations 
are reported in Table 8.1. There are three different categories of these instruc-
tions: instructions related to the execution of the program by the reconfigur-
able array, instructions related on the behavior of the reconfigurable array 
and configuration/data DMA. 
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TABLE 8.1 Instruction set added to the ISA of ReCoM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Where the reconfigurable array instructions control the execution of the 

RLA by specifying the memory context that will be executed, the address 
location within the RLA, the data address of the data buffer and the 
functionalities of the Self Context unit. Otherwise, the instructions related on 
the behavior of the reconfigurable unit define the functions of the LUTs 
embedded in each reconfigurable cell. Finally, the configuration/data DMAs 
initiate configuration and data transfer between the main memory and the 
data buffer. 

The reconfigurable unit is the main component of the ReCoM system. It 

cells placed in an interconnection net, an RLA context memory, a Data 
Buffer and two Self components dedicated to the context and to the data 
DMA. 

The basic component of the RLA matrix is the reconfigurable cell. As is 
illustrated in Figure 8.3, the reconfigurable cell is composed by an ALU (64-
bits fixed-point operations) working on two 32-bits wide operands, two 
LUTs of 8-bits wide input and 16-bits wide output, two 32-bits registers, a 
register file composed of 15 registers (where R13 is connected to Self-DMA 
unit and R14 is connected to the Self Context unit), and several multiplexers 
that controls the data path. Besides, a 32-bits context word register configures 
all the components excepting the two LUTs that are configured by the main 
processor through memory mapping. 

Instruction Description of operation 

LOADCM 
Load from the external memory to the RLA 
context memory the program to be executed by 
the reconfigurable unit 

REXEC 
Configure the reconfigurable unit cells 
transferring a configuration set from the RLA 
context memory to the context word registers 

LOADB/SAVEB 
Transfer the data from/to the external memory 
to/from the data buffer within the reconfigurable 
unit using the data DMA 

LOADEX/SAVEEX 

Configure the reconfigurable cells loading a 
context from the context memory and 
concurrently store/save the data from the data 
buffer to the reconfigurable cells considering the 
specified configuration table 

LOADCT/SAVECT 

Configure a reconfigurable cell in such a way to 
manage transfer data from/to the data buffer 
within the reconfigurable unit to/from the 
external memory using the Self-DMA unit 

LUTC Configure the content of a LUT’s word within 
the RLA matrix 

consists of a Reconfigurable Logic Array (RLA) of 8 × 8 reconfigurable 
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Figure 8.3. Reconfigurable cell architecture. 
 
The ALU arithmetic unit implements three kinds of standard logic and 

arithmetic functions: 
1. Logic operations: AND, OR, XOR and NOT 
2. Arithmetic operations: ADD, SUB and MUL 
3. Other operations: BYP (bypass operand to register file), RST (clear 

register file) and KEEP (no ALU operations)  
The operation that will be executed by the ALU is specified through two 

fields: opcode (2 bits) and sub-opcode (4 bits). While the destination register 
file is specified by the field ResultReg (4 bits). 

The inputs of a reconfigurable cell are selected by the multiplexers (Data 
A and Data B) that can be linked to two kinds of resources: 
1. The data buffer or the register file, using the reconfigurable cell internal 

interconnection  
2. The register file of another reconfigurable cell placed in the same 

row/column (H/V) or within the neighborhood (N) 
Furthermore, the reconfigurable cell architecture includes two 4Kbits 

LUTs that are based on 8-bits wide inputs that select one of the 256 16-bits 
wide output words. The configuration words of the LUTs are memory 
mapped. Thus, the content of each LUT’s word is load by the main processor 
defining one of the 215 possible addresses.  

Considering the configuration memory, ReCoM is based on the RLA 
context memory. It is organized in four blocks where each block contains 
eight sets. Each set can store eight context words. There are two possible 
ways to transfer the data into the context word registers: context broadcast 
and selective context enabling.  
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The context broadcast mode consists in transferring a single set in row-
wise or column-wise operations to all the context words of the RLA matrix. 
Where in the case of row-wise operations all the reconfigurable cells of a 
row are configured with the same context word. Vice versa, in the case of 
column-wise operations, all the reconfigurable cells of a column are 
configured with the same context word.  

The selective context enabling consists in transferring a single set to only 
one row or column of the RLA matrix. In this case each reconfigurable cell 
of the selected row/column may be configured in a various way.  

The two different modes of transferring the configuration contexts permit 
to manage rapidly the context words reconfiguration in order to guarantee 
the effectiveness of the architecture’s parallelism. The RLA context memory 
can be uploaded concurrently during the execution of the reconfigurable 
cells, since both the configuration modes may be executed in one clock 
cycle. Thus, the reconfiguration time is reduced to zero allowing the 
dynamic reconfiguration of the RLA matrix cells. 

The ReCoM network is a hierarchical multi domains collection of 32-bit 
busses. The interconnect distribution is similar to traditional FPGA intercon-
nections architecture. Differently from traditional FPGA, ReCoM has the 
possibility to dynamically switch the interconnection network between the 
reconfigurable cells. 

The ReCoM’s interconnection network includes two interconnection 
levels, as shown in Figure 8.4. The first interconnection level (Level 1) has a 
direct interconnection between the reconfigurable cells on the same row and 
column (H/V). The second interconnection level (Level 2) includes direct 
network interconnection provided between the reconfigurable cells within 
three Manhattan grid squares (N). The results are transmitted over local 
multiplexers and they are available in the destination reconfigurable cells in 
one clock cycle. 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 8.4. Interconnection network levels. 
 
The Data Buffer is the component devoted to the transfer of the data 

to/from the external memory from/to the reconfigurable cells within the 
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RLA matrix. It consists of three parts, as is represented in Figure 8.5: a Data 
Memory, a Configuration Table and a Selection Logic. 

The Data Memory is organized in 256 banks composed by 64 sets of 32-
bits data words. Each set consists 2,048 bits. The division in sets supports 
the concurrent execution of the data transfers and computation operations: if 
one set provides a data stream of 2,048 bits for the RLA matrix computa-
tions and stores data results from the RLA matrix; another set stores data 
into the main memory through the control of one DMA controller and 
reloads data for the next computation. The configuration table is organized 
in 16 words of 384 bits. Each word is used to control a Selection Logic that 
determines the order in which the data are transferred to/from each 
reconfigurable cell within the RLA matrix. 

 
 

 
 
 
 
 
 

Figure 8.5. Data-buffer architecture. 
 
The Self-Context and Self-DMA units allow the reconfigurable unit to 

reconfigure itself and to transfer data to the external memory independently 
from the Tiny RISC execution. 

The Self-Context unit is controlled by an internal 32-bits register that can 
be addressed by each reconfigurable cell through the register file R14. The 
Self-Context unit generates the signals towards the RLA context memory in 
such a way to control the dynamic partial and total reconfiguration capability 
of the RLA matrix.  

On the other side, the Self-DMA unit is controlled by an internal 32-bits 
register addressable by each reconfigurable cell through the register file R13. 
This unit controls a specific DMA (Logic Array Data DMA) in order to 
manage the data transfer from/to the reconfigurable array to/from the 
external memory, independently of the main processor functionality. These 
two units may be used effectively to increment the performance capability of 
the reconfigurable system, since the main processor can be discharged of the 
data transfers and configuration management. 

The ReCoM system operation may handle application tasks of different 
nature. In details, the Tiny RISC processor manages the sequential tasks and 
controls the reconfigurable system, while the reconfigurable unit is used to 
support tasks with high data-parallel operations. The execution of such tasks 
is denoted by several steps. An overview on these steps is described as 
follow: 
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1. The context is loaded from the external memory and transferred into the 

RLA context memory through the execution of the function LOADCM. 
2. The context related to the operations executable independently from the 

main processor is loaded by the function AUTOCTX. Otherwise, selective 
operations may be programmed by the functions LOADCT and SAVECT, 
while the LUTs are programmed by the function LUTAC. 

3. The operation of the RLA matrix may be executed concurrently with the 
data transfer with the functions LOADEX, SAVEEX. Besides, the LUTs 
may be programmed with the function LUTA. Otherwise the parallel 
execution may be performed also using the functions REXEC, LOADB 
and SAVEB if the computation or the data transfer tasks have an 
independent length.  

3. EXPERIMENTAL RESULTS 

The functionality of ReCoM system has been specified in a prototypal 
behavioral VHDL. The entire system has been modeled along with external 
memory. The VHDL model of ReCoM has been used to simulate a simple 
benchmark application consisting in a FIR Filter. We selected two kinds of 
FIR Filters: one with 4 taps and another with 8 taps and we assume to work 
on 16-bit fixed-point data.  

The methodology we adopted to map the FIR filters may be used for 
every N taps FIR Filter with N  64.  

The performance characteristics of the mapped FIR Filter implemented 
within ReCoM are shown in Table 8.2 assuming to have preload within the 

input necessary for each computation (NvalIN), the number of instruction 
executed for the data computation (NInstr) and the number of computational 
phase needed to generate all the output results (Nelab). 

 
Table 8.2 Characteristics of the mapped FIR filters 

 

 

 

 
The performances of ReCoM are analyzed and compared versus a 

previous developed reconfigurable system called Morphosys [10] and versus 
the fixed-point DSP TM320C55X manufactured by Texas Instruments [11]. 
In order to make the comparison feasible we compute the Million Samples 
per Second (MSPS) considering a running frequency of 100 Mhz.  

 
 
 

# taps NvalIN Nelab NInstr 
4 19 16 6 
8 15 32 6 
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Table 8.3 Performances comparison of different system 
 
 

 
 
 
 
The comparison results are illustrated in Table 8.3. From these results it 

possible to observe that ReCoM is about ten times faster versus the DSP 
TM320C55X that does not implements any reconfigurable computing 
features. Furthermore, ReCoM is three times faster with respect of the 
dynamically-reconfigurable system Morphosys. 

REFERENCES 

[1] A. Abnous, C. Christensen, J. Gray, J. Lenell, A. Naylor, N. Bagherzadeh, VLSI Design 
of the Tiny RISC Microprocessor, Custom Integrated Circuits Conference, May 1992, pp. 
30.4.1–30.4.5. 

[2] E. Tau, D. Chen, I. Eslick, J. Brown, A. DeHon, A First Generation DPGA Implemen-
tation, FPD’95, Canadian Workshop of Field-Programmable Devices, May 1995. 

[3] J. R. Hauser, J. Wawrzynek, Garp: A MIPS Processor with a Reconfigurable Co-
Processor, Proceedings of the IEEE Symposium on FPGAs for Custom Computing 
Machines, Apr. 1997. 

[4] E. Mirsky, A. DeHon, MATRIX: A Reconfigurable Computing Architecture with 
Configurable Instruction Distribution and Deployable Resources, Proceedings of IEEE 
Symposium on FPGAs for Custom Computing Machines, Apr. 1996, pp. 157–166. 

[5] M. Taylor, The RAW Prototype Design Document, Spread Sheet Documents, Massachusetts 
Institute of Technology, Sept. 6, 2004. 

[6] T. Miyamori, K. Olukotun, A Quantitative Analysis of Reconfigurable Coprocessors for 
Multimedia Applications, Proceedings of IEEE Symposium on Field-Programmable 
Custom Computing Machines, Apr. 1998. 

[7] H. Singh, M -H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, E. Chaves Filho, 
MorphoSys: An Integrated Reconfigurable System for Data-Parallel and Computation-
Intensive Applications, IEEE Transactions on Computers, Vol. 49, No. 5, May 2000. 

[8] A. Alsolaim, J. Starzyk, J. Becker, M. Glesner, Architecture and Application of a 
Dynamically Reconfigurable Hardware Array for Future Mobile Communication Systems, 
IEEE Symposium on Field-Programmable Custom Computing Machines, 2000, pp. 205. 

[9] J. G. Delgado-Frias, M. J. Myjak, F. L. Anderson, D. R. Blum, A Medium-Grain 
Reconfigurable Cell Array for DSP, Proceedings of Circuits, Signals and Systems, 2003, 
p. 391. 

[10] H. Diab, E. Abdennour, F. Kurdahi, FIR Filter Mapping and Performance Analysis on 
Morphosys, 7th IEEE International Conference Electronic, Circuits and Systems, Vol. 1, 

[11] Texas Instruments, DSP TMS320C55X fixed-point digital signal processing data sheet, 
Feb. 1999. 

 
 
 

 MSPS 
# taps ReCoM DSP TM [11] MorphoSyS 

4 267 25 89 
8 133 17 80 

142

No. 1, 2000, pp. 99–102. 



Index 

 
A 
Accelerated radiation ground testing, 48 
Advanced Virtual RISC (AVR) 

microcontroller, 108 
Affymetrix chips, 120 
Application Specific Integrated Circuits 

(ASICs), 133 
Atomic displacement, 18 
Automated scanning-laser microscope, 118 
 
B 
Benchmark circuits, characteristics of, 113 
Block RAM memories (BRAMs), 58, 107 
Boolean functions, 24 
BRAMs modules, 112 
 
C 
CAN. See Control Area Network 
Commercial-off-the-shelf (COTS), 89 
Commercial-on-the-shelf (COTS), 120 
Compression algorithm, 110 
Compression ratios, 106 
Compression system results, 112–114 

benchmark circuits, characteristics of, 
113 

configuration data memory, comparison 
of, 114 

configuration time needed for, 114 
Configurable logic blocks (CLBs), 107 
Configuration Frame Rules (CFR), 61 
Control Area Network, 79 
Cordic Core, 112 

Coronal Mass Ejection (CME), 18 
Cosmic rays, 18 
Cyanine dyes, 118 
 
D 
Decoder algorithm, 110 
Decompression systems, 103–105 

architecture, 109 
Decompressor hardware module, 104 
Deoxyribonucleic acid (DNA) microarray, 

117–118 
Dependability, 13, 47, 48, 50, 51, 53, 57, 

58, 62, 63, 65, 66, 79, 80, 85–87 
Design flow, 87 

main modules, 87 
STAR tools, 87 
V-Place and RoRA router, 88 
Xilinx ISE, 87 

Dictionary-based techniques, 106 
Dictionary-based text compression, 105 
Displacement Damage Dose (DDD), 19 
DNA fragment spots position, 119 
DNA microarray, 117–125, 128, 130, 131 

Affymetrix chips and, 120 
architecture, 123–128 

data rules, 123 
DNA-EDC flow, phases and image 

data gridding, 124 
DNA-QAC, phases of, 124–125 
DNA-quality assessment core 

(DNA-QAC), 128–129 
edge detection architecture, 125–128 

143



144

 image analysis, preliminaries of 
edge detection algorithm, 122–123 
image channels, grid geometry and 

background, 121 
images characteristics, 131 
major advantages, 120 
proposed dual core system, 

experimental results, 131 
prototypal characteristics, 130 
steps, 118 

data, segmented in order and quality 
assurance, 118 

gridding, 118 
intensity extraction, 118–119 
missing information and low 

accuracy, 119 
template-based approach, 120 

DNA-Quality Assessment Core  
(DNA-QAC), 128 

Dynamically Reconfigurable Architecture 
for Mobile System (DReAM), 134 

 
E 
Electronic charge displacement, 18 
Elliptic filter program, 55 
Enhanced Parallel Port (EPP) protocol, 33 
External memory, 109 
 

F 
Fault detection, 8 
Fault effects, analysis of, 39–42 
Fault injection, 49 

results, 81 
system, 54 

Fault injection manager (FIM), 33 
Fault list generation tool, 25, 30 
Fault list manager (FLM), 33 
Fault masking, 8 

techniques, 4 
Fault simulation tool, 25–28 
Fault tolerance, 6, 42, 43, 82, 89, 90, 94, 95 

constraints for achieving, 42–43 
Fault tolerant circuits, performance 

optimization of, 89 
congestion graph, 90–91 
voter architectures and arithmetic 

modules, 91–92 
V-place algorithm, 92–93 

Field programmable gate arrays (FPGAs), 
12, 85, 103 

configuration memory, 108 
SEU mitigation techniques in, 4–5 

logic blocks, 12 
placement algorithm, 73 
vendor floorplanning tools, 111 
Xilinx XC6200, 106 

FIR filter, 55, 67, 112 
Flip-flops (FFs), 67, 71 
Forbidden vertices sets (FVSs), 72 
FPGA-based circuits, 86 
FPGA-based embedded system, 109 
FPGA-based run-time partial 

reconfiguration, 104 
FPGA devices 

characteristics of, 97 
configuration memory, 47 
design flow based on, 24 
placement and routing 

C-like pseudo-code, 71 
Function scaling data out, 110 
Function update interval, 110 
 
H 
Hardening techniques, 6–11, 42, 91, 92 
Hard error, 19 
Hardware description languages (HDL) 

model, 27 
Heavy ions, 18 
High-charged particle, 19 

 
I 
Input-output blocks (IOBs), 107 
Integrated circuits (ICs), sensitivity to 

radiation, 3 
Internal Configuration Access Port (ICAP), 

54, 108 
Internal memory, 111 

 
L 
Linear energy transfer (LET), 29 
Logic-block errors, 21 
Logic configurations, 64 
Look-up tables (LUTs), 23, 64, 67, 71, 85, 

134 
LZ77 

compression algorithm, 107 
scheme, 105 

LZW compression system, 113 
 
M 
Manhattan distance, measurement of, 74 
Mapped FIR filters, characteristics of, 141 
Metric functions, 74 

Index



145Index
 
Microprocessors, version of, 112 
ModelSim VHDL simulator, 27 
MorphoSys architecture, 134 
Multiple Cell Upsets (MCUs), 48 

analysis of errors produced by, 58–66 
experimental results of, 67–69 
modules for, 57 
STAR algorithm for, 56–58 
violations, 58 

Multiple event upsets, 57 
Multiple-Instruction Multiple-Data 

(MIMD), 134 
Multiplexers (MUXs), 64 
 
N 
Native Circuit Description language, 27 
 
O 
On-chip FPGA decompressors, 104 
On-chip peripheral bus (OPB), 54 
Output buffer three-state cell (OBUFT), 32 
 
P 
Parallel algorithms, 104, 120 
Placement algorithm, 4, 71–74, 76, 88, 92, 

94 
Place Window, 75 
PowerPC, 113 

microprocessor, 55 
Processor-based systems, 24 
Programmable interconnect points (PIPs) 

cross-point, 23 
types of, 13 

PROM built-in decompression algorithm, 
106 

Proposed design flow, evaluation of, 96 
PW generation 

logic function (LF), 75 
 

R 
Radiation effects 

categories of, 18 
classification of, 18 
damage caused by, 19 

RCF devices, 134–135 
Realistic circuit, evaluation of, 97–98 

characteristics of, FPGA devices used, 97 
designing, selected IP-core, 98 
execution time, comparison, 97 

ReCoM architecture, 135–141 
data-buffer architecture, 140 
instruction set, added to ISA of ReCoM, 

137 

interconnection network levels, 139 
reconfigurable cell architecture, 138 
tiny RISC pipeline stages modified, 136 

Reconfigurable architectures, 134 
Reconfigurable Compute Fabric (RCF) 

architecture, 133 
Reconfigurable processing units (RPUs), 

134 
Redundancy cluster-extractor, 50 
Reliability-oriented place and route 

algorithms (RoRA), 6, 90 
adopted circuits, characteristics of, 80 
circuits’ implementations 

routing resources, 82 
flow of, 73 
robustness of circuits, 79 
router, 89 
routing algorithm, 72, 75, 78 

flow of, 77 
FPGA routing, 76 

update function of, 79 
Xilinx PAR, CPU time, 82 

RoRA placement algorithm 
flow of, 74 
heuristic cost functions, 74 
logic blocks, 73 
TMR principle, functions of, 71–72 

Routing algorithm, 72, 75, 76, 78, 80, 88, 
90 

Routing segments. See Programmable 
interconnect points (PIPs) 

Routing segments topology, 64 
Routing vertex (RV) 

SEU affects, 71–72 
Rules-Checker algorithm, 58 
Run-length compression techniques, 106 
 
S 
Scrubbing mechanism, 7 
Serial communication link, 54 
Simulation-based analysis tool, 24 
Single Event Effects (SEE), 19 
Single Event Functional Interrupt (SEFI), 

20, 30, 37 
Single Event Latch-Up (SEL), 20–21 
Single Event Upsets (SEUs), 4, 17, 19–20, 

48, 49, 56 
dynamic evaluation of, 51 
effect in FPGA’s configuration memory 

routing problem, 5 
TMR and, 4–5 

estimation of effects of, 48 
experimental results of, 55–56 



146

hardware-based analysis of, 30–31 
mitigation techniques, 6 

reconfigurable-based techniques,  
7–8 

redundancy-based techniques, 8–11 
simulation-based analysis of, 23 
STAR algorithm for, 52–54 

Soft error, 7, 8, 19 
Solar wind, 18 
SRAM-based Field Programmable Gate 

Arrays (FPGAs), 85, 86 
architecture of, 3 
combinational and sequential logic, 3–4 

generic model of, 11–12 
routing graph, 13–14 

SRAM-based memory devices, 56 
SRAM-memories, 7, 26, 79 
SRV. See Super routing vertices 
STAR analyzer, 88–89 

Circuit DB, 88 
Floorplan DB, 89 

STAR-MCU algorithm, 61, 63 
State-machine logic, 9 
Static analysis 

algorithm, 49–51 
results for SEs accumulation, 96 

Static analyzer algorithm, 50 
Storage cell for a single bit (S-RAM), 20 
Super-routing graph architecture, 77 
Super routing vertices, 78 
System mapped on SRAM-based FPGA 

flow of configuration data compression 
algorithm, 110 

types of modules, 109 
 

T 
Timing analysis, 94–96 

adopted circuits, characteristics of, 94 
comparison, 95 

static analysis results, for SEs 
accumulation, 96 

Tiny RISC, 140 
Total Ionizing Dose (TID), 19 
Triple Modular Redundancy (TMR), 4, 31, 

86, 89, 112 
analysis of, 32–35 
capability of tolerating SEUs, 5 
circuits, 79 
circuits’ implementations 

routing resources, 82 
effectiveness of, 57 
fault masking, 8 
for I/O logic, 9, 10 
robustness of, 37–39 
for throughput logic and state-machine 

logic, 9 
Two-dimensional (2-D) arrays, 118 
 
U 
Unit under test (UUT), 54 
User memory architecture, 62 
 
V 
Van Allen belts, 18 
Voter partition logics, 51 
V-Place algorithm, 90, 92–93 
 
W 
Wiring segments, 12 
 
X 
XC2VP30 Xilinx SRAM-based FPGA, 112 
Xilinx SRAM-based FPGA XC2VP30,  

112 
Xilinx TMR (X-TMR), 55, 67 
Xilinx triple modular redundancy, 32 
Xilinx Virtex-II FPGAs, 104 
Xilinx Virtex II Pro device, 105 
Xilinx Virtex-II Pro Platform, 112 
XOR gate array, 29 

 

Index

for, 6 
dependable circuit implementation


	1402089783
	CONTENTS
	Contributing Author
	Preface
	PART I
	Chapter 1: An Introduction to FPGA Devices in Radiation Environments: From the architecture to the model
	1. Previously Developed Hardening Techniques
	2. Preliminaries of SRAM-Based FPGAS Architecture

	Chapter 2: Radiation Effects on SRAM-Based FPGAS: Modeling and simulation of radiations effects
	1. Radiation Effects
	2. SEU Effects on FPGA's Configuration Memory
	3. Simulation-Based Analysis of SEUs
	4. Hardware-Based Analysis of SEUs
	5. Robustness of the TMR Architecture
	6. Constraints for Achieving Fault Tolerance

	Chapter 3: Analytical Algorithms for Faulty Effects Analysis: Single and multiple upsets errors
	1. Overview on Static Analysis Algorithm
	2. Analytical Dependable Rules
	3. The Star Algorithm for SEU Analysis
	4. The Star Algorithm for MCU Analysis

	Chapter 4: Reliability-Oriented Place and Route Algorithm: Dependable design on SRAM-based FPGAs
	1. RoRA Placement Algorithm
	2. RoRA Routing Algorithm
	3. Experimental Analysis

	Chapter 5: A Novel Design Flow for Fault Tolerance SRAM-Based FPGA Systems: Integrated synthesis design flow and performance optimization
	1. The Design Flow
	2. Performance Optimization of Fault Tolerant Circuits
	3. Experimental Results


	PART II
	Chapter 6: Configuration System Based on Internal FPGA Decompression: A new configuration architecture
	1. Introduction to the Decompression Systems
	2. Overview on the Previously Developed Decompression Systems
	3. The Proposed System
	4. Experimental Results

	Chapter 7: Reconfigurable Devices for the Analysis of DNA Microarray: A complete gene expression profiling platform
	1. Introduction to the DNA Microarray
	2. Overview on the Previously Developed Analysis Techniques
	3. Preliminaries of DNA Microarray Image Analysis
	4. The Proposed DNA Microarray Analysis Architecture
	5. Experimental Results

	Chapter 8: Reconfigurable Compute Fabric Architectures: A new design paradigm
	1. Introduction to RCF Devices
	2. The ReCoM Architecture
	3. Experimental Results


	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X


