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PREFACE

What is exactly “ Safety” ? A safety system should be defined as a system that
will not endanger human life or the environment. A safety-critica system
requires utmost care in their specification and design in order to avoid
possible errors in their implementation that should result in unexpected
system’s behavior during his operating “life”. An inappropriate method
could lead to loss of life, and will amost certainly result in financia
penalties in the long run, whether because of loss of business or because the
imposition of fines. Risks of this kind are usually managed with the methods
and tools of the “safety engineering”. A life-critical system is designed to
lose less than one life per billion (10°).

Nowadays, computers are used at least an order of magnitude more
in safety-critical applications compared to two decades ago. Increasingly
electronic devices are being used in applications where their correct
operation is vital to ensure the safety of the human life and the environment.
These application ranging from the anti-lock braking systems (ABS) in
automobiles, to the fly-by-wire aircrafts, to biomedical supports to the
human care. Therefore, it is vital that electronic designers be aware of the
safety implications of the systems they develop.

State of the art electronic systems are increasingly adopting program-
mable devices for electronic applications on earthling system. In particular,
the Field Programmable Gate Array (FPGA) devices are becoming very
interesting due to their characteristics in terms of performance, dimensions
and cost.

FPGAs use a grid of logic gates, based on gate array technology, and the
programming is done by the customer, not by the manufacturer. The term

Xiii



Xiv Preface

“field-programmable” may result obscure to somebody, but “field” isjust an
engineering term for the world outside the factory built, where the customers
live. FPGAs are usually programmed after being soldered. In the most larger
FPGASs, such as the RAM-based devices, since the configuration is volatile,
their configuration must be re-loaded into the device whenever power is
applied or different functionality is required.

During the last decade, the new manufacturing technologies made
feasible the development of SRAM-based FPGAS that became very popular
thanks to their capability of implementing complex circuits with a very short
development time. However, nowadays SRAM-based FPGAS are really not
considered enough reliable to be used in safety critical applications such as
avionic and space ones. The main obstacle to their applications in these
contexts is represented by the high sensitivity to the radiation effects such as
Single Event Upsets (SEU): device shrinking coupled with voltage scaling
and high operating frequencies correspond to significantly reduced noise
margin, which makes FPGAs more sensitive to radiation effects, as well as
to other phenomena (such as cross talk or interna noise sources) that provoke
transient faults. The strong needs to evaluate the possible applications of the
programmable logic devices in safety critical applications need the usage of
the new techniques oriented to the evaluation of the reliability of such
devices and to the development of hardening techniques for enable the usage
of SRAM-based FPGAsin safety critical fields.

The main purpose of the present book addresses the development of
techniques for the evaluation and the hardening of designs on SRAM-based
FPGAs against the radiation induced effects such as SEUS. The set of
analysis and design flows proposed in this work are aimed at defining a
novel and complete design methodology solving the industrial designer’'s
needs for implementing electronic systems in critical environments using
SRAM-based FPGA devices.

Regarding the analysis flow, the present book contribution consists in a
set of algorithms performing the fault injection for the evaluation of the soft-
errors sensitivity of designs implemented on SRAM-based FPGAs. Two
kind of fault injection environments are provided:

1. Smulation based: The simulation environment is able to predict the SEU
effects in circuit mapped on SRAM-based FPGAs combining radiation
testing data with simulation. The former is used to characterize (in term
of device sensihility to the radiation particles) the technology on which
the FPGA device is based, the latter is used to predict the probability for
a SEU to ater the expect behavior of a given circuit.

2. Hardware-based: this environment is able to inject SEU directly in the
configuration memory of SRAM-based FPGA devices. The environment
is composed of al the module necessary to perform the complete analysis
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of the circuit. A Fault List Manager generates the list of SEUs to be
injected within the circuit under analysis, a Fault Injection Manager
manages the fault injection process, by selecting one fault from the fault
list, performing its injection in the DUT and the observing and analyzing
the obtained results to provide the fault-effect classification.

In order to deploy successfully commercialy-off-the-shelf (COTS)
SRAM-based FPGA devices in safety critical applications, designers need to
adopt suitable hardening techniques, as well as methods for vaidating the
correctness of the obtained as far as the system’s dependability is consi-
dered. An innovative algorithm based on an analytical model of the FPGA
architecture is able to estimate the effects of SEUs when redundancy-based
techniques are adopted in order to mask the effects of SEUsin SRAM-based
FPGASs, has been provided. The main novelty this approach introduces is the
possibility it offers of analyzing any SEU location within a design and of
identifying whether the SEU provokes any observable effect to the system’s
outputs. This approach has been implemented in a tool called STAR (Static
Analyzer).

This book presents also a novel contribution in the FPGA design flow. A
new reliability-oriented place and route algorithm isillustrated in details. By
coupling its hardening capability with the Triple Modular Redundancy
(TMR) it is able to effectively mitigate the effects of soft-errors within
FPGA devices especially based on Static-RAM’s configuration memory.
The effectiveness of the reliability-oriented place and route algorithm has
been demonstrated by extensive fault injection experiments showing that the
capability of tolerating SEU effectsin the FPGA’s designs increases up to 85
times with respect to a standard TMR design technique. The developed
algorithm has been implemented in atool called RoRA, (Reliability-Oriented
Place and Route Algorithm). The available tools STAR and RoRA have
been included in a new design tool-chain.

The present book offers a contribute also to the analysis of severa appli-
cations field where the usage of reconfigurable logic devices introduces several
advantages. In particular, two applications are considered: reconfigurable
computing for multimedia applications and biomedical applications.

Considering reconfigurable computing, a novel reconfigurable structure
has been proposed, also caled Reconfigurable Mixed Grain, ReCoM. This
structure is based on the novel Reconfigurable Compute Fabric (RCF) concept,
it implements a mixed-grain reconfigurable array which combines a RISC
microprocessor and a reconfigurable hardware for computation-intensive
applications.

The feasibility of reconfigurable devices in biomedical applications is
aso investigated in this book showing the drastic advantages both related to
the computational performance and on the dependability of the process.
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In this book, the implementation of a new Deoxyribonucleic Acid (DNA)
microarray analyzer is provided. DNA microarray technologies are an essential
part of modern biomedical research. The analysis of DNA microarray images
alows the identification of gene expressions in order to drawn biologicaly
meaningful conclusions for applications that ranges from the genetic profiling
to the diagnosis of oncology disease. This book describes an architecture that
uses several computational units working in a single instruction-multiple
data fashion managed by a microprocessor core. An FPGA-based implemen-
tation of the developed architecture has been evaluated using several redlistic
DNA microarray images. A reduction of the computational time of one order
of magnitude and an increasing of the data quality of the analyzed images
has been demonstrated.
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Chapter 1

AN INTRODUCTION TO FPGA DEVICESIN

RADIATION ENVIRONMENTS
From the architecture to the model

Electronic devices are sensitive to radiation that may happen both in the space
environment and at the ground level. Nowadays, the continuous evolution of
manufacturing technologies makes Integrated Circuits (ICs) even more
sensitive to radiation effects. Devices shrinking coupled with voltage scaling
and high operating frequencies correspond to significantly reduced noise
margins, which make 1Cs more sensitive to radiation, as well as to other
phenomena (such as cross-talk or internal noise sources) that provoke transient
faults.

In the last decade, the new manufacturing technologies made feasible the
development of SRAM-based FPGAS that became very popular thanks to
their capability of implementing complex circuits with a very short develop-
ment time. Today, manufacturers are producing very complex and resourceful
FPGAs. State-of-the-art SRAM-based FPGAs embed megabits of RAM
modules and plenty of configurable logic and routing resources, which are
making feasible the implementation of circuits composed of millions of
gates. SRAM-based FPGASs are used for different applications, such as
signal processing, prototyping, and networking, or wherever reconfiguration
capabilities are important.

The architecture of SRAM-based FPGASs is composed of a fixed number
of routing resources (wires and programmable switches), memory modules,
and logic resources (i.e., lookup tables or LUTS, flip-flops or FFs). All these
components are programmed by downloading into an on-chip configuration
memory a proper bitstream, giving the FPGA the capability of implementing
nearly any kind of digital circuit on the same chip. In SRAM-based FPGA,
both the combinational and sequential logic are controlled by several

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications, 3
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customizable SRAM cells that are extremely sensitive to radiation that may
cause Single Event Upsets[1, 2].

If an upset affects the combinational logic in the FPGA, it provokes a hit-
flip in one of the LUTSs cells or in the cells that control the routing. This
upset has a persistent effect that could be propagated in other parts of the
circuit since the implemented hardware is modified. This upset is correctable
only at the next load of the configuration bitstream (which is often performed
in some critical space applications), but the effect may still remain in the
circuit until the next reset is performed. On the other hand, when an upset
affects the user sequential logic, it may have a transient effect if the flip-
flops next load corrects it and if the effect is not propagated to other parts of
the circuit or a persistent effect if the effect is propagated to other parts of
the circuit. For instance, a counter hat is affected by an SEU cannot return to
its original counting sequence until it undergoes to a reset.

In this case, SEU can have more persistent effects in the implemented
user circuit.

SEUs may aso affect the configuration control logic registers that are
used during the download of the bitstream within the configuration memory.
An experimental analysis based on heavy ion beam is described in [3] that
shows the criticalities of such registers and that demonstrates that they have
a sengitivity to SEUs severa orders of magnitude lower with respect to the
configuration memory.

The half-latch structures used to generate constant logic values may be
aso affected by SEUs. This problem has been addressed and fixed according
to the work presented in [4], in the presented hardening technique the
reliability-oriented placement algorithm is driven in order to solve this problem
by means of atechnology based placement.

Researchers both from academia and industry investigated on developing
solutions able to mitigate the effects of SEUs in the FPGA’s configuration
memory. These methods could be divided in two main categories: reconfigu-
ration-based and redundancy-based. The formers aim at restoring as soon as
possible the original values into configuration bits after an SEU happened
[5], the latters are oriented at masking the propagation of SEUs effects to the
circuit's outputs [6-8]. Fault masking techniques are usually achieved
through redundancy-based techniques which purpose is to remove al the
single point of failure a circuit may have. The widely known redundancy-
based technique is the Triple Modular Redundancy (TMR), where three
identical replicas of the same circuit work in paralel and the outputs they
produce are compared and voted through a mgjority voter. TMR is an
appealing technique for hardening designs implemented on SRAM-based
FPGAs. Since al the resources embedded by these devices such as memory



An Introduction to FPGA Devices in Radiation Environments 5

elements, routing resources and logic resources are all susceptible to SEUS,
the redundancy technique must be adopted to all of them.

The resources that are most likely to be affected by SEUs are those
controlling the routing, indeed about 90% of the configuration memory bits
are devoted to storing information about routing resources. Previous works,
essentially based on a simulation tool, have experimentally tested the TMR’s
capability of tolerating SEUs [9]. The criticalities induced by SEUs within
the configuration memory provoke an intrinsic behavior to the circuit imple-
mented by the FPGA device. The configuration memory of such devices
undergo a detailed analysis of each singular FPGA resource [10, 11] followed
by injection experiments [12] able to probe the behavior of each resource
induced by the single bit modification. The results gained from these
analysis shown that any single modification of a configuration memory cell
is capable of producing multiple errors when affecting the portion of the
FPGAs configuration memory that stores some kinds of routing and logic
resources. Furthermore, the experimental analysis shows that a faulty behavior
is produced when a SEU hits either a programmed bit or a non programmed
memory bit that may have side effects on the resources configured by the
programmed ones. As a result of this effect, the TMR architecture is able to
only partially mitigate the effects of SEUs in routing resources. This pheno-
menon depends on many factors. the architecture of the adopted FPGA
family, the organization of the configuration memory, the kind of application
that is implemented on the FPGA device, and the bit of the configuration
memory affected by the SEU. Given this scenario, redundancy-based tech-
niques are not sufficient by themselves to ensure complete reliability against
single-error induced by radiation particles. In order to give a metric to the
reader, we considered several benchmark circuits designed according to the
TMR architecture and we observed about the 14% of the configuration
memory bits upset that affect the portion of the configuration memory
storing the information about the routing resources produce multiple errors
that the TMR is not able to mask [11]. In this book is presented an analysis
of the distribution of SEUs within the FPGA’s configuration memory and
affecting the TMR behavior. Furthermore, as shown in [13] a clever
selection of the TMR architecture helps in reducing the number of escaped
SEUS, but it is unable to reduce them to zero.

In order to identify the reasons that limit the effectiveness of TMR, the
resources of the FPGA have been systematically analyzed. The case study
devices considered by the present research is the Xilinx Virtex family. Inde-
pendently from the circuit mapped on the FPGA architecture, each FPGA’s
resource has been analyzed identifying al the possible configuration memory
bits controlling its behavior. For example, for a programmable interconnection
point, all the possible configuration bits that can be used by the place and
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route algorithm are used for implementing any given circuit. The study
presented in this book identifies all the critical situations, where SEU hitting
the configuration memory may modify the configuration of two or more
FPGA'’s resources. The theoretical explanation and experimental probe of
the criticalities affecting circuit implemented through the TMR is the results
of thisanalysis.

After presenting an analysis of the SEU’s effects in the FPGA'’s confi-
guration memory, this part presents a reliability-oriented place and route
agorithm, called RoRA, that has been developed for implementing depen-
dable circuits, based on redundancy techniques such as TMR, on SRAM-
based FPGAs. The RoRA algorithm is able to place and route the logic
functions and the signals of a design in such away that the number of SEUs
affecting the configuration memory and possibly causing FPGA wrong
behavior is drastically reduced with respect of a common redundancy-based
approach adopting the TMR technique. For the considered benchmark
circuits, the capability to tolerating SEU effects in the FPGAs configuration
memory increases up to 85 times with respect to a standard TMR approach.
In order to achieve an higher level of reliability, the RoRA algorithm intro-
duces penadlties both in terms of area overhead and speed of the original
circuit. Furthermore, the fulfillment of the routing problem needs more
computational time due to the reliability rules inserted both to the placement
and routing phases.

The reduction of the circuit’s running frequency may range from 22% to
60% of the original (plain) circuit speed, while from the circuit area pers-
pective, RORA introduces an overhead of the routing resources with respect
to the TMR standard solution. However, RoRA does not introduces any area
overhead, with respect to the TMR, when logic resources are considered.
The RoRA solution is the first place and route algorithm developed that is
transparent to designers, which can trade off fault tolerance versus area and
circuit’s frequency overhead.

1. PREVIOUSLY DEVELOPED HARDENING
TECHNIQUES

During the past years, severa mitigation techniques have been proposed in
order to increase the reliability of circuits of avionics and space applications
and in particular, to remove single point of failure from the designs. When
SRAM-based FPGA devices are considered, several SEU mitigation techni-
ques have been proposed exclusively for these devices. These techniques can
be organized into two categories. reconfiguration-based techniques and



An Introduction to FPGA Devices in Radiation Environments 7

redundancy-based techniques. The former are used to correct fault effects,
while the latter are used to mask fault effects.

1.1 Reconfigurable-based techniques

The FPGA'’s configuration memory, if based on SRAM cells, may accumu-
late soft error or SEU over the usage time in an harsh environment, for this
reason the configuration memory is periodically rewritten. This approach is
called Scrubbing and it is the simplest technique that may be used to remove
SEU effects accumulated within the configuration memory [14]. The
implementation of a scrubbing system introduces a limited overhead that
essentially corresponds in the circuit needed to control the bitstream loading
process, as well as the memory for storing an error-free bitstream. The
systems also needs a mechanism to control how often the scrubbing must
take place. The occurrence frequency of the scrubbing operations is normally
referred to the scrub rate and it is determined on the basis of the expected
SEU rate, i.e., on the basis of a figure predicting how often an SEU may
appear in the FPGA configuration memory.

An improvement of the Scrubbing mechanism consists in applying the
partial reconfiguration capability of the latest generation of SRAM-based
FPGASs, which allow reconfiguring only a user-selected portion of the con-
figuration memory (known as frame) while leaving the remaining part of the
circuit unmodified [5]. This technique uses a readback process to read one
frame at atime and compares it with the expected one, which is stored in an
error-free off-chip memory. Another commonly used technique to detect
errors by means of readback is to use Cyclic Redundancy Check (CRC) on
each frame storing only the check word rather than the entire frame of the
configuration data[5].

When a SEU is detected, only the faulty frame is rewritten. The readback
is normally transparent to the circuit the FPGA implements, which continues
to operate normally even while the readback process is running. The presence
of SEUs is thus checked online and the FPGA is set offline only for the
amount of time needed for rewriting the faulty configuration memory frame.
The normal activity of the circuit the FPGA implements is stopped for a
shorter period of time than in the scrubbing case. The partial configuration
mechanism is employed in state-of-the-art Xilinx SRAM-based FPGA devices,
such as the Virtex family, with the further advantage that consists in having
the possibility to rewrite the configuration data without putting the devices
offline. This makes possible online and transparent fault correction. If on one
side, the scrubbing and the partial reconfiguration mechanisms represent a
simple solution for protecting designs against the effects of SEU, on the
other side these techniques are mandatory for adopting SRAM-based FPGA
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in the presence of SEU. In fact, these techniques are the only viable solution
for removing the accumulation of soft error within the configuration memory,
thus whatever is the system used in an harsh environment and embedding
SRAM-based FPGAS, it must adopt reconfigurable or scrubbing mechanism
in order to avoid the accumulation of SEU within the configuration memory.

1.2 Redundancy-based techniques

The redundancy-based techniques presented in this section adopts additional
hardware components or additional computation time for detecting the presence
of SEUs modifying the expected circuit operations and/or masking SEUs
propagation to the circuits outputs. It is worthwhile to underline here that the
techniques presented in this section are not intended for removing SEUs
from the configuration memory, but only for mitigating the SEUs effects.
SEUs may be removed from the configuration memory by resorting to those
techniques presented in the previous section.

Fault detection can be achieved by duplicating the circuit the FPGA
implements. The outputs the two replicas produce are continuously compared
and an aarm signal is raised as soon as a mismatch is found [14]. This
solution is fairly simple and cost-effective; however, it is not able to mask
the SEUSs effects.

When fault masking is mandatory, designer may resort to the Triple
Modular Redundancy (TMR) approach. The basic concept of the TMR
architectureisthat acircuit can be hardened against SEUs by designing three
copies of the same circuit and building a majority voter on the outputs of the
replicated circuits. Implementing TMR to prevent the effects of SEUSs in
technologies such as ASICs is generally applying the protecting capabilities
only the memory elements since combinational logic and interconnections
are less sensitive to SEUs. When the configuration memory of FPGAS is
considered, the TMR implementation should be revisited since a modifica-
tion in the configuration memory may affect every FPGAS resource: routing
resources implementing interconnections, combinational resources, sequential
resources, /O logic. This means that three copies of the whole circuit,
including 1/0 logic, have to be implemented to harden it against SEUs [14].

The optimal implementation of the TMR circuitry inside SRAM-based
FPGAs depends on the type of circuit that the FPGA implements. As described
in [14], the logic may be grouped into four different types of structure:
throughput logic, state-machine logic, 1/O logic, and special features
(embedded RAM modules, DLLs, etc.). The throughput logic is a logic
circuit of any size or functionality, synchronous or asynchronous, where the
entire logic path flows from the inputs to the outputs of the module without
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ever forming a logic loop. The TMR architecture for a module M is
implemented as shown in Figure 1.1.

Three copies of M are connected to a majority voter V, which computes
the output of throughput logic. In order to prevent common-mode failures, the
inputs feeding the throughput logic have to be replicated, too. This implies
that, when M is fed directly from I/O pins, the adoption of TMR must be
accomplished tripling the circuit 1/0 pins.

State-machine logic is, by definition, state dependent. For this reason, it is
important that the TMR voting is performed internally rather than externally
to such amodule. Thus, applying TMR to a state machine consists of tripling
al circuits and inserting a majority voter for each of the replicated feedback
paths. The use of three redundant majority voters eliminates there as single
points of failure, as shown in Figure 1.2.

Hardening the 1/0O logic through TMR causes a severe increase in the
number of required I/O pins and this method can be used only when there
are enough 1/O resources to achieve tripling of al the inputs and outputs of
the design. Therefore, as illustrated in Figure 1.3, each redundant module of
a design that uses FPGASs inputs should have its own set of inputs. Thus, if
one input is affected by an SEU, it only affects one module of the TMR

architecture.
— | Through put logic 1
— | Through put logic 2 ?—
Through put logic 3

——

Figure 1.1. TMR architecture for throughput logic.
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Figure 1.2. TMR scheme for State-machine logic.
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The majority of any logic design can be realized by using look-up tables
(LUTs), flip-flops (FFs), and routing resources that can be hardened against
SEUs in the configuration memory through the previously outlined methods.
However, there are other special FPGA resources that allow the imple-
mentation of more efficient and performing circuit implementations. These
include block RAM, LUT RAM, shift-register, and arithmetic cores. For
each of these features, there are particular recommendations to be followed
to guarantee an accurate TMR architecture. A detailed presentation of these
recommendations is out of the scope of this manuscript. Reader interested in
these subjects may refer to [5, 14].

[} Redundant Logic 1 (v ]

1/OPin
\Di Redundant Logic 2 /1 /V\/ ]
[F——— Redundant Logic 3 {:\D ]

Figure 1.3. TMR schemefor /O logic.

Other methodologies to implement redundant architectures on SRAM-
based FPGASs are available. One of these techniques is oriented in performing
al mitigations using the description language to provide a functional TMR
methodology [8]. According to this methodology, interconnections and
registers are tripled and internal voters are used before and after each register
in the design. The advantage of this methodology is that it can be applied in
any type of FPGAs.

Another approach is based on the concept that a circuit can be hardened
against SEUs by applying TMR selectively (STMR) [15]. This approach
extends the basic TMR technique by identifying SEU-sensitive gates in a
given circuit and then by introducing TMR selectively on these gates, only.
Although this gpproach optimizes TMR by replicating only the most sensitive
portions of a circuit (thus saving area), it needs a high number of majority
voter since one voter is needed for each SEU-sensitive circuit portion.

To reduce both the pin count and the number of voters used to implement
the TMR approach, Lima at al. proposed a technique based on time and
hardware redundancy to harden combinational logic [6, 7]. This technique
combines duplication with comparison (DWC) with a concurrent error
detection (CED) machine based on time redundancy that works as a self-
checking block. DWC detects faults in the system and CED detects which
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blocks are fault-free. Although this fault-tolerant technique aims to reduce
the number of 1/0 pads and the power dissipation, it is applied on a high-
level description of the circuit, and, thus, if their components are not properly
placed and routed on the FPGAS, they may suffer the multiple effect induced
by SEU in the FPGAs configuration memory. In order to address the
multiple effects induced by SEUs in the FPGASs configuration memory, it is
mandatory to select a clever placement and routing of the design. To attach
the problem, we abstracted the physical characteristics of FPGA by using a
generic FPGA model.

2. PRELIMINARIES OF SRAM-BASED FPGAS
ARCHITECTURE

The basic FPGA architecture consist of atwo-dimensiona array of logic blocks
and flip-flops interconnected by a network of interconnections. Families of
FPGAs differ from each other by the physical means for implementing user
programmeability, interconnection wires and the basic characteristics of
the logic blocks. In order to describe the general characteristics of modern
SRAM-based FPGAS, a generic modd is introduced. This model permits to
focus attention on only those components that are affected by the multiple
faults induced by SEUs. On these components, SEUs induce multiple effects
that are permanent until the corrupted bitstream is refreshed through the
download of the new one. Thus, place and route algorithms must be enhanced
in order to introduce redundancies that are resilient to multiple effects, too.

2.1 Generic SRAM-based FPGA model

Wiring segments

Logic Logic \ ILogic

Block Block] IBIock

Switch box Switch box

—

Logic Logic ILogic

Block Block] IBIock
—

| ! ] |
]Switch box f Switch box |

Figure 1.4. Generic FPGA architecture model.
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A Field Programmable Gate Array consists of an array of logic blocks that
can be interconnected selectively to implement different designs. An FPGA
logic block is typically capable of implementing many different combina-
tional and sequential logic functions. Today, commercial FPGAS use logic
blocks that are based on transistor pairs, basic small gates such as two-input
NANDs or exclusive ORs, multiplexers, look-up tables (LUTSs), and wide-fanin
AND-OR structures. An FPGA routing architecture incorporates wire segments
of varying length that can be interconnected via electrically programmable
switches. The distribution of the length of the wire segments directly affects
the density and performance achieved by an FPGA.

The SRAM-based FPGA generic model used in this work is shown in
Figure 1.4. This model is common to the architecture of severa families of
SRAM-based FPGAs[16, 17]. The model consists of three kinds of resources:
wiring segments, logic blocks, and switch boxes.

Wiring segments are chunks of wiring devoted to transfer information
among logic blocks. Wiring segments are organized in the horizonta plane,
traversing an FPGA from east to west, and the vertical plane, traversing the
FPGA from north to south. Wiring segments are used in conjunction with
switch boxes to deliver information between any locations inside FPGAS.
Logic blocks contain the combinational and sequential logic required to
implement the user circuit, which is defined by writing proper bit patterns
inside the FPGAs configuration memory.

Figure 1.5 shows an example of simple logic block, where we can recognize
alook-up table (LUT) to implement combinational functions, aflip-flop (FF)
to implement memory elements, and two multiplexers (MUX) needed for
implementing different signal forwarding strategies.

Hob
\maz/s

=

FF

S xaz

Figure 1.5. Simple FPGA'’s logic block.

Each logic block has a number of input and output signals connected to
adjacent switch boxes and logic block through wiring segments. The SRAM
programming technology uses static RAM cells to control pass gates or
multiplexers.
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The programmable interconnection network consists of wiring segments
that can be connected or disconnected by several programmable interconnect
points (PIPs). The PIPs are organized to form switch matrices that are located
inside switch boxes, which are controlled by the FPGAs configuration memory.
PIPs (also called routing segments) provide configurable connections between
pairs of wiring segments. The basic PIP structure consists of a pass transistor
controlled by a configuration memory bit. There are several types of PIPs:
cross-point PIPs that connect wire segments located in digjoint planes (onein
the horizontal plane and one in the vertical plane), break-point PIPs that
connect wire segments in the same plane, decoded and non-decoded muilti-
plexer (MUX) PIPs, and compound PIPs, which consist of a combination of
n cross-point PIPs and m break-point PIPs, each controlled separately by
groups of configuration memory bits[18]. Decoded MUX PIPs are groups of
2% cross-point PIPs sharing common output wire segments controlled by k
configuration memory bits. Conversely, non-decoded MUX PIPs consist of k
wire segments controlled by k configuration bits.

2.2 FPGA routing graph

A model that abstracts most of the details of SRAM-based FPGAS has been
developed. It is genera enough to describe any FPGA architecture and it
conveys only the meaningful information for the dependability-oriented
anaysis. Indeed, it is particularly important to capture information about
which logic blocks are used by a circuit mapped on an FPGA, as well as al
the information about the interconnections between used logic blocks (i.e.,
how wiring segments and switch matrices are configured for implementing a
circuit). Conversdly, it is not important to know which function (combinational
or sequential) alogic block implements.

Routing vertes
OO\OO Q00

Liglc veriex
Figure 1.6. FPGA routing graph.
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The resources in an SRAM-based FPGA that are used to implement a
circuit can be described by resorting to a routing graph, where the graphs
vertices model logic blocks and switch boxes while the graphs edges model
wiring segments. As shown in Figure 1.6, the routing graph has two types of
vertices: logic vertices that model the FPGAs logic blocks and routing vertices
that model the input/output ports of each switch box. For each switch box
having | inputs and O outputs, the routing graph has | + O routing vertices.
Moreover, the routing graph has two types of edges. routing edges that
model the FPGAs PIPs as edges between two different routing vertices and
wiring edges that model the FPGASs wiring segment as edges between logic
vertices and routing vertices.

Logi Logi
BlocH BlocH

! o——oO0 o—

[ f ! o——O o—

B\/itch box iSWitch bovE ) O O o——o
T | )—( ) ( )_

Logid Logid
BlocH BlocH

Figure 1.7. Modeling of a FPGA implementing acircuit by means of the routing graph.

An FPGA switch box is described by the graph model in different routing
edges forming a structure known as a Universal Switch Module (USM) [19].
The number of vertices and edges modeling switch boxes and logic blocks
depends on the selected FPGAS architecture.

According to our model, alogic signal connecting two logic blocksin the
circuit the FPGA implements is modeled by the routing graph as a path that
may span over different wiring edges and routing edges. As illustrated in
Figure 1.7, edges and vertices are colored to indicate that the corresponding
FPGAs resource is used to implement a circuit. In case the FPGA imple-
ments different circuits or different replicas of the same circuit, different
colors are used to mark edges and vertices of each circuit or replica.

Moreover, a direction is associated to any edge to describe the direction
of the information flow. The proposed graph model is very flexible and can
be adopted to describe any type of FPGASs architecture.
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Chapter 2

RADIATION EFFECTS ON SRAM-BASED

FPGAS
Modeling and simulation of radiations effects

The past 30 years have seen the discovery that electronic circuits are sensitive to
transient effects such as Single Event Upsets (SEUs) provoked by ionizing
radiation [1]. Since the discovery of SEUs at aircraft atitudes, researchers
have made significant efforts to monitor the environment. The space and the
earth environment contain various ionizing radiations, generated by natural
phenomena such as sun activity and manmade radiation that interacts with
silicon atoms. If, at ground level, neutrons and alpha particles are the most
frequent causes of SEUS, in a space environment, they are protons and heavy
ions. When a particle hits the surface of a silicon area, it loses its energy
through the production of free electron-hole pairs, resulting in a dense
ionized track in the struck region [2]. Interestingly, when the struck silicon
area implements a static memory cell, the transient pulse may induce per-
manent changes: it can indeed activate the inversion of the stored value. In
SRAM-based FPGAS, transient faults originating in the FPGAs configuration
memory have dramatic effects since the circuits the FPGAs implement are
totally controlled by the content of the configuration memory, which is
composed of static RAM cells[3, 4]. In this chapter, the effects of the SEUs
within the configuration memory of SRAM-based FPGAs will be accurately
described, thanks to the graph model presented in the previous chapter, the
effects of SEUswithin theinternal FPGA'’s resources is modeled and analyzed.

L. Sterpone, Electronics System Design Techniques for Safety Critical Applications, 17
© Springer Science + Business MediaB.V. 2008
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1. RADIATION EFFECTS

The radiation effects may be classified in two categories: energetic particles
(such as electrons, protons, alpha particles), neutrons, heavy ions (that are
influenced by the electromagnetic field, and electromagnetic radiations such
as photon, gamma ray, X-ray or ultra-violet. The effects of radiations can be
distinguished depending on the terrestrial or extra-terrestrial environment.

On the Earth the principal radioactive sources are represented by the
radioactive material and by the cosmic ray. The materials used during the
productive process of integrated circuits, such as the aluminum and gold, can
contain traces of radioactive material or to be exposed to environmental
consequences. The cosmic rays are mainly due to the solar wind, that consists
of the particles flux at low energy and the galactic cosmic rays, composed by
high energy particles emitted by remote sourcesin the universe.

Radiations coming from the space are influenced by the terrestrial mag-
netic field that decrease their effects. The particles that pass the terrestrial
magnetic field and hit the atmosphere provoke the production of secondary
particles that are able to reach the Earth surface. The influences of protons
and heavy ions at an high atitude is not negligible. The radio between the
amount of radiations that hit an aircraft at high atitude with respect to the
amount of radiations at the sealevel is 100 times[5].

In the space is absent the filter effect provided by the atmosphere, however
the terrestrial magnetic field influence the radioactive particles hitting the
space vehicles working in this environment. The source of radiation in the
earth space are principally due to three factors: the Van Allen belts, solar
wind and galactic cosmic rays.

The Van Allen belts are two regions in which the electricaly charged
particles are attracted by the terrestrial magnetic field in a stronger measure.
Within the Van Allen belts the major causes of electronic circuits malfunc-
tionsis composed by high energy protons.

Vice versathe solar wind is formed by the Coronal Mass Ejection (CME)
that are able to pass the Sun gravity. The solar wind consists of along flux of
particles at high energy that influence the behavior of the Van Allen belt.
The galactic cosmic rays are composed by heavy ions at high energy with an
isotropic flux, similar for each directions. They hit the space crafts operating
outside the influence of the terrestrial magnetosphere.

The two principa mechanisms through radiations interact with the
matter are the atomic displacement and the ionization or electronic charge
displacement.

The atomic displacement takes place when a particle hits an atom changing
its original position. If this atom belongs to the crystalline structure, it may
change the properties of the material. The effects on the semiconductor is
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similar to the one artificially produced thanks to the ionic implantation
process executed during the manufacturing of integrated circuit, and thus it
can provoke the equivalent variation of drug in the semiconductor.

The ionization causes the move of charge, forming couple of electron-
holes. Within the semiconductor the electric field produced by these particles
determine the generation of an internal current, that in some cases may
modify the functionalities of the circuit. These kind of errors are defined as
soft-error, since they do not damage the electronic circuit, but causes only
the temporary variation of the functionality. The ionization may be provoked
aso by photons. The energy transmitted to electrons in the valency band
may move them to the conduction band. This iteration produces hole within
the small dielectrics, provoking their slow degradation. Thisis an example of
permanent error also known as hard error.

The damage provoked by radiations may be classified in two principal
categories:

1. Long terms cumulative degradation: it is divided in Total lonizing Dose
(TID) effects, the accumulation of ionizing radiations over the time, that
provokes degradation within the electrical circuit, and Displacement
Damage Dose (DDD), the accumulation over the time of the atomics
material movements.

2. Single Event Effects (SEE): kind of event that happens locally following
an action of single ionizing particles. These events are classified as SEE
and in particular as Sngle Event Upset or Sngle Event Latchup.

1.1 Single Event Upset (SEU)

The Single Event Upset (SEU) is a change of condition or atransition, induced
by an high charged particle. An SEU consist of the change of the logic state
or, more in genera, in atransitory error and it is classified by the scientific
literature in the category of soft-error since it can provoke the reset or the
rewriting of the device normal behavior.

The Figure 2.1A shows a simple storage cell of asingle bit and it illustrates
the effect of an SEU aso known as hit-flip. The circuit in Figure 2.1A is
designed in order to maintain to stable state: stored ‘0O’ and stored ‘1. In
each state two transistors are activated and two are put off. A bit-flip
happens when an high-charged particle provoke the inversion of the circuit
transistor state. This phenomena happens in all microcircuits, from memory
chips to microprocessors. The occurrence of a bit-flip can generate a random
change of the processor state and may provoke the crash of the system. The
Figure 2.1B illustrates how an high-charged particle may provoke a spurious
electronic signal. The particle produces a charge along its path in the form of
electron-hole couple. These are collected within the source and drain
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generating an effect similar to a current pulse that may be sufficiently wide
to produce an effect comparable to a normal signal applied to atransistor.
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Figure 2.1. (A) storage cell for asingle bit (SSRAM). (B) junction crossed by an high-charged
particle.

The SEUs are drastically relevant for SRAM-based FPGA since the
configuration memory is sensible to ionizing radiations. The effects of SEUs
within SRAM-based FPGA devices depend on the technology and on the
architectural choice. The malfunction provoked by an SEU is classified as
Single Event Functional Interrupt (SEFI).

The SEFI phenomena is used for the first time in the 1996 within the
Standard EIA/JEDEC?. The SEFI isthe first anomaly within integrated circuits
provoked by a bump of a single ion, similarly to the SEU, that introduces a
temporary malfunction or interruption of the device standard operations.
While the SEU is a phenomena that produces a temporary change of the
device physical conditions, the SEFI is a phenomena that happens in the
temporary change of the implemented functionality and may remain until
the power supply is interrupted. The SEFI are observable in several devices,
however until it is not related to a single cause, this phenomena remains
hardly definable [6].

1.2 SingleEvent Latch-Up (SEL)

The ionizing radiations may provoke other kinds of effects called Sngle
Event Latch-up (SEL), that is produced activating the parasitic transistor
present between the junctions N-P of the CMOS transistors. The activation
of such kind of transistor create a low frequency path between the power
supply (Vcc) and the ground, crossed by an high current. For this reason, the
SEL effects are potentially destructive for an electronic circuit. In parallel
with the progressive reduction of the physical dimensions, the supply current
and the threshold voltages applied to the manufacturing techniques of
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SRAM-based FPGAS, the malfunctions due to radiations are proportionally
increased.

2. SEUEFFECTSON FPGA'S CONFIGURATION
MEMORY

SRAM-based FPGAs suffer from radiation as other semiconductor devices.
Designer and users have to consider these radiation effects before including
an SRAM-based FPGA within a space application. SRAM-based FPGAS, as
other devices, that contain several arrays of memory cells, are extremely
sensitive to SEUs due to the large amount of memory within a relatively
small amount of silicon area.

SRAM-based FPGAs contain alot of memory cells within a single device,
implementing the configuration memory, which are sensitive to SEUs. The
SEU upset rate is related to the kind of radiation environment where the
device will be used. To mention an estimation, in the Cibolla flight experi-
ment using a SRAM-based FPGA Xilinx Virtex 1000 containing more than
six million hits, it has been calculated that worst-case SEU upset rate on an
average orhit ranges from 0.13 SEUs per hour under a quiet sun, up to 4.2
SEUs per hour under a peak upset rate [7]. The effects induced by SEUs on
SRAM-based FPGASs have been recently investigated thanks to radiation
experiments [8-10]. More recently, an analysis that combines the results of
radiation testing with those obtained while analyzing the meaning of every
bit in the FPGAs configuration was presented in [11].

Although SEUs are transient by nature, when they originate in the confi-
guration memory, their effects are permanent since SEUs remain latched
until the configuration memory is rewritten with new configuration data. The
errors produced by SEUs in the FPGASs configuration memory can be classified
into two different categories. errors that affect logic blocks and errors that
affect the switch boxes.

As far as logic-block errors are concerned, several different phenomena
may be observed, depending on which resource of the logic block is
modified by the SEU:

- LUT error. The SEU modified one bit of a LUT, thus changing the
combinational function it implements.

- MUX error. The SEU modified the configuration of a MUX in the logic
block, as a result, signals are not correctly forwarded inside the logic
block.

- FF error. The SEU modified the configuration of a FF, for example,
changing the polarity of the reset line or that of the clock line.
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In order to model faulty logic blocks in the routing graph previously
described, we assumed using the black color to mark each vertex correspon-
ding to afaulty logic block.

As far as switch boxes are concerned, different phenomena are possible.
Although an SEU affecting a switch box modifies the configuration of one
PIP, both single and multiple effects can be originated.

Single effects happen when the modifications induced by the SEU alter
only the affected PIP. In this case, one situation may happen. The SEU changes
the configuration of the affected PIP, and the existing connection between
the two routing segments is opened, provoking an open effects. Considering
the routing graph, this situation is modeled by deleting the routing edge
corresponding to the PIP that connects the two routing vertices.

Il
ofoNcioRoyolaya

Figure 2.2. Possible multiple effects induced by one SEU.

In order to describe the multiple effects in terms of modifications to the
routing graph, let us consider the two routing edges As/Ap and Bs/Bp con-
necting the routing vertices As, Ap, Bs, Bp, a shown in Figure 2.2a
Considering this routing situation, the following modification could be
introduced by an SEU:

1. Short between As/Ap and Bs/Bp. As shown in Figure 2.2b, a new routing
edge is added to the graph that connects either one end of A to one end of
B. This effect can happen if As/Ap and Bs/Bp belong to the same switch
box and the SEU enables the non-decoded or decoded PIP that connects
B with A.

2. Open correspond to the deletion of both routing edges As/Ap and Bs/Bp as
shown in Figure 2.2c. This situation may happen if a decoded PIP
controls both As/Ap and Bs/Bp.

3. Open/Short, which corresponds to the deletion of either the routing edge
As/Ap or the one Bs/Bp and to the addition of the routing edge As/Ap or
B4Bp, as shown in Figure 2.2d. This situation may happen if a decoded
PIP controls both As/Ap and Bs/Bp.



Radiation Effects on SRAM-based FPGAs 23

The short effects, as shown in Figure 2.2b, may happen if two nets are
routed on the same switch box and a new edge is added between them. This
kind of faulty effect happens when a cross-point PIP, which is non-buffered
and has bidirectional capability, links two wire segments located in digoint
planes. Conversely, the Open and the Open/Short effects, as shown in Figure
2.2¢, d, may happen if two nets are routed using decoded PIPs.

3. SIMULATION-BASED ANALY SIS OF SEUs

Researchers have investigated the use of simulation-based approaches for
predicting the effects of SEUs. The methods proposed so far [12, 13],
athough effective and accurate, are intended for the analysis of applications
implemented on ASICs only. Considering the SRAM-based FPGA devices,
two complementary aspects should be considered:

1. SEUs may alter the memory elements the design embeds. For example, a
SEU may dlter the content of aregister in the data-path, or the content of
the state register of a control unit.

2. SEUs may adlter the content of the memory storing the devices
configuration information. For example, a SEU may alter the content of a
Look-Up Table (LUT) inside a logic resource of the FPGA, or the
routing signals.

As far as the former aspect is concerned, the available approaches are
adequate. Conversdly, the latter aspect demands much more complex analysis
capabilities. The effects of SEUs in the devices configuration memory are
indeed not limited to modifications in the design memory elements, but may
produce modifications to the interconnections inside a logic resource and
among different logic resources.

A Simulation-based approach to address the aforementioned problem has
been developed: through suitably defined fault models and an ad-hoc
developed simulation tool, the procedure is able to predict the effects of
SEUs in the device configuration memory. The approach provides experi-
mental results that can be compared to the predicted SEU cross-section with
those obtained from radiation testing. These comparisons show that our
method is quite accurate and that it can be used to predict the result of
radiation testing.

3.1 Simulation environment

In the developed environment the FPGA-based system is composed of two
independent layers: the application layer and the physical layer. The
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application layer corresponds to the digital circuit that implements the
functionalities the system is intended to carry out. The application layer is a
VHDL model that codes the netlist implementing the desired circuit. Its
building blocks are the components available within the adopted FPGA:
LUTSs that store the truth table of the Boolean functions the circuit imple-
ments, routing resources, and memory elements (flip-flop, register, etc.).
Conversely, the physical layer corresponds to the FPGA device on which the
circuit is implemented. The two layers are anayzed independently by the
proposed approach.

The application layer is analyzed using a simulation-based analysis tool
which computes the predicted error rate. The figure is the probability that an
SEU modifies the circuit implemented by the application layer in such away
that it produces SEFIs, i.e., erroneous output results. The computation of the
predicted error rate is performed by resorting to fault-injection experiments,
which are based on fault models that emulate accurately the effects of SEUs
in the configuration memory of FPGAs.

The physical layer is analyzed using the test-bed we introduced in [14].
The purpose of this analysis is to characterize the FPGA devices manufac-
turing technology from the point of view of sensitivity to radiation. For this
purpose, radiation-testing experiments are performed to measure the cross-
section of the adopted FPGA device, which gives the probability for a
particle to produce an SEU.

The important aspect of this approach is that the computation of the cross
section does not depend on the application layer: in fact it may be performed
by configuring the FPGA device with test circuits that are different from the
application layer. The cross section obtained by this method is associated
with the FPGA device and it is independent respect to the application using
it. The analysis of the physical layer is required each time a new technology
is exploited: once the FPGA cross-section has been computed, it may be
exploited for any application using that technology.

As soon as both analyses are completed, we can compute the predicted
cross-section of the whole system, as follows:

G predicted = € Predicted O FPGA (2.1

This figure gives the sensitivity to radiation of the whole systems. It thus
combines the effects of SEUs in the application layer. A similar approach
was proposed in [15] for analyzing processor-based systems.

The core of the tool is the fault-injection environment outlined in Figure
2.3. Starting from an initial description of the circuit the system implements,
we use the tools provided by the FPGA vendor for performing place and
route operations. This preliminary step is typical of any design flow based on
FPGA devices, and produces a configuration file where the content of the
devices configuration memory is stored, i.e., the bitstream. This information
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defines the application layer. Starting from the information stored in the
bitstream, two ad-hoc devel oped tools are used.

Circuit
description

Fault List
Generation Tool

Place & Route
Tool from FPGA
vendor

y

Fault List
Fault Simulation Fault Effect
Tool Results
Input
Stimuli

Figure 2.3. Architecture of the fault-injection approach we developed. It combines both
ad-hoc developed tools with commercial tools provided by the FPGA vendor for place and
route operations, and independent suppliers for simulation operations.

FPGA
configuration file
L @ 7

The Fault List Generation Tool identifies the FPGAS resources in the
application layer (for logic implementation, signal routing, etc.) that are used
and it generates the list of faults (Fault List) to be injected, accordingly to the
fault models described in the section 2 of the present chapter. Each fault is
described by the couple (fault injection time, fault location) describing when
the SEU appears, and which resource it modifies.

The Fault Smulation Tool simulates serially the faults in the Fault List.
During simulations the outputs produced by the faulty application layer are
compared with those of the fault-free one. As soon as a mismatch is found,
the simulation is stopped and the effect provoked by the injected fault is
classified as wrong answer. Conversealy, in case the simulation of the Input
Stimuli set concludes, and no mismatch is found, the fault is classified as
Effectless.

The tools produce the following figures:

- Buxd- The number of configuration memory bits that needs to be
programmed on the physical layer to implement the application layer.

- Bia- The total number of configuration memory bits for the physical
layer. It includes the bits that need to be programmed for implementing
the application layer, as well as those left unprogrammed since the
resource they control are not used.
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- N.. The percentage of injected faults whose effects are classified as
Wrong Answers.

The aforementioned figures are combined by means of (2.2) to estimate
the predicted circuit error rate:

Eprepicten = N, 'h (22
BTOTAL

The term N, is the percentage of faults provoking Wrong Answers, while
the ratio estimates the probability for an SEU to appear in the used portion of
the physical layer.

Given an SRAM-hased FPGA device, its configuration memory consists
of two types of bits. some controlling signal-routing resources, and some
controlling logic resources. Signal-routing resources are all those resources
concerned with the transmission of information within the physical layer. In
general these resources include: wire segments, which are wires unbroken by
programmable switches (each end of a wire segment typically has a switch
attached), and tracks, which are sequences of one or more wire segments
[16].

Conversely, logic resources are al those resources concerned with the
implementation of combinational or sequential logic functions.

By considering the typical architecture of SRAM-based FPGASs, we can
observe the modifications induced by SEUs to the FPGA resources configu-
ration described in the previous sections.

The tool we developed for Fault List Generation analyzes the device
configuration file produced by the place and route tools, and it identifies the
bits used to route the (Nyoue bits), and those controlling the logic resources
used by the mapped circuit (N g bits). It then generates all the possible
couples (fault-injection time, fault location), where fault-injection time
ranges from the time of application of the first input stimuli to the last one,
while fault location corresponds to all the possible SEUs in Nioue + Neyg bits.
Fault sampling is exploited to reduce the number of faults to be simulated by
the Fault Simulation tool: if N is the number of simulated faults, then (Noute
X N) / (Nrowe + Neig) faults will be injected in the routing resource, while
(NcLe X N) / (Nroute + Nevg) Will be injected in the CLB ones. Similarly, fault-
injection time will be randomly selected between the first and the last input
stimuli.

3.2 Fault ssimulation tool
In the present section, it is described the fault simulation tool developed

while addressing Xilinx devices. The tool can be adapted easily to other
devices from different manufacturers, since it works on commonly used
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hardware description languages (HDL) model of a circuit mapped on an
FPGA available (i.e., the application layer).

In order to help designers to evaluate the correctness of their designs after
place and route, FPGA vendors usually provide this type of tool.

TABLE 2.1 Summary of the mutations inserted in the VHDL model of the considered circuit
to mimic the effects of seusin the device configuration memory

Faulty resource Fault effect Corresponding mutation
Open Stuck-at-zero or Stuck-at-one,
depending on the affected resource.
Routing Bridge The signal source is modified and

connected to a new source depends
on the affected resource.

Conflict Wired-AND or Wired-OR
Combinational defect Bit-flip in aLook-Up Table
Logic Routing defect The signal source is modified and

connected to a new source. The
choice of the new source depends on
the affected resource.

Sequential defect Bit-flip in aflip-flop.

The developed tool exploits the ModelSim VHDL simulator for evaluat-
ing the outputs that the faulty application layer produces. For this purpose,
the application layer is first obtained by executing the ncd2vhdl tool provided
by Xilinx. Where NCD stands for Native Circuit Description language, and
in details, is the file containing al the information of the circuit mapped on
the FPGA'’s physical level. Let's consider to refer on the fault-free appli-
cation layer as Cyyq. Before fault simulation can start, for each fault in the
Fault Lists a new model, called Ciary, is computed as a mutation of Cyyg.
During this process the set of VHDL instructions that model the fault are
inserted in Cyqg. I particular, using the mutations reported in Table 2.1.

Table 2.1 shows an overview of the test-bed, including its main components.
A Control Host, located outside the irradiation chamber, is used to monitor
the experiment execution. It is provided with an IP connection with the set-
up inside the irradiation chamber through which it sends commands and
receives information about the status of the experiments, as well as data to
be logged for elaboration purposes. Inside the irradiation chamber, it has
been located a Test CPU (a Power-PC MPC860) that communicates with the
Control Host as well as with the device under test. Its purpose is to perform
the low-level operations needed for running an experiment: programming the
device under test, applying input stimuli, collecting output responses, and
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reading back the configuration memory of the device under test. A Control
Hardwareis also used for adapting the Test CPU to the FPGA Under Test.

Control
Host

4
v FPGA ION BEAM
Test Control |, Under
cPu | T|Hardware| «
Test
Irradiation Chamber

Figure 2.4. Overview of the test-bed we developed for performing radiation-testing experi-
ments on FPGA devices.

The test-bed, illustrated in Figure 2.4, can be used for two purposes. It
can be exploited for measuring the cross section of an FPGA-based system,
obtaining the measured cross section of the whole systems. For this purpose,
the typical test session consists in configuring the physical layer with the
application layer, and then in continuously stimulating the FPGA device
with a given set of input stimuli. The output responses are continuously
collected and compared with the expected ones. As soon as a mismatch
between the expected output values and the read ones is observed, i.e., when
a SEFI is detected, the test is stopped and the configuration of the FPGA
Under Test is read back and sent to the Control Host for data logging.
Following this operation, the test is restarted from the beginning. By relating
the number of observed SEFIs with the estimated number of particles hitting
the devices surface is then possible to compute the device cross section.

Similarly, the test-bed can be used to measure the cross section of the
physical layer. In this case, the FPGA isinitialy programmed with an empty
bitstream, and then its configuration memory is periodically read back. By
comparing the read information with the fault-free bitstream, it is possible to
measure the number of observed SEUs. As previously done, the device
cross-section is computed relating this figure with the estimated number of
particles hitting the device surface.

3.3 Experimental results

In order to evaluate the accuracy of the presented approach, several experi-
mental analysis have been executed.
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The first one, aims at evaluating the accuracy of the simulation-based
approach while modeling the effects of SEUs in the device configuration
memory.

The second one, aims at evaluating the accuracy of estimation of the
predicted cross section of a circuit mapped on a device with respect to that
measured by means of radiation testing.

The Xilinx Virtex XCV 300 device has been used as physical layer. The
device has been exposed to various ion species ranging from 84 MeV
Carbon to 210 MeV Nickel featuring linear energy transfer (LET) values
between 1.6 and 30 MeV cm/mg. Radiation testing experiments were carried
out at the Tandem Van De Graff Accelerator of INFN-LNL, Legnaro (PD),
Italy.

The application layer was a circuit composed of four 16 x 16 bit binary
multipliers. Inputs of the four multipliers were connected in parallel, while
the outputs were connected to an XOR gate array. The multiplier occupies
2,524 out of 3,072 dlices of the adopted XCV 300 device and operates at 10
Mhz.

To assess the accuracy of the developed simulation tool, the output
responses have been compared during the radiation testing with those
computed by the simulation tool. For each SEFI recorded during radiation
testing, the SEU causing it has been identified. The SEU is modeled in terms
of the modification it introduces in the application layer, and finally it has
been injected in the application layer by means of the developed simulation
tool.

For this purpose, an initial set of radiation testing experiments is performed.
During the radiation experiments the physical layer was configured with the
application layer, it was continuously stimulated by a given set of input
stimuli, and the resulting outputs observed. As soon as a mismatch on the
output values was observed between the expected values and the measured
ones, the test was stopped, and the content of the physical layer configura-
tion memory was read back. By analyzing the faulty bitstream, the FPGA’s
resources affected by SEUs have been identified.

For each SEU observed during radiation testing, which forced the system
to produce the faulty outputs, it is executed a simulation experiment. The
SEU observed in the device configuration memory is modeled accordingly
to the proposed technique by injecting a SEU into the application layer
through the simulation-based approach described in the previous section.
Then, the resulting output traces are recorded. Finally, the output observed
during the radiation experiments have been compared with those obtained by
simulations. for al the injected faults, the resulting traces predicted and
aways matched the measured ones.
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The cross section of the FPGA-based system (a multiplier implemented
on a Xilinx Virtex device) predicted by simulations is compared with that
measured during radiation testing.

TABLE 2.2 Comparison between the cross section obtained during radiation testing experi-
ments and that obtained by means of simulations

lon LET Measured circuit Predicted circuit
[MeV-cm?/mg] Cross section Cross section
[cm?/hit] [cm?/bit]
2c 1.6 1.78.10% 1.08:10"2
180 3.0 1.9810™1 44410
o 4.1 35310 5.28.10°%
Bgj 85 1.80-10° 1.82:10°
SN 29.0 257.10° 4.45.10°

In computing the predicted error rate, we injected 10,000 SEUs. For the
application layer, 9,712 faults have been identified in the routing resources
and 288 faults into the logic resources using the Fault List Generation Tool.

By multiplying the predicted circuit error rate by the cross section of the
physical layer the predicted cross section is obtained. Table 2.2 gives the
predicted cross section obtained during radiation testing for the specific ions
used in the experiment. Table 2.2 also gives the measured cross section
obtained during radiation testing for the specific ions used in the experiment.

4. HARDWARE-BASED ANALY SIS OF SEUs

As the reader can observe, predicted values are within a factor of two of the
measured ones. The effects induced by SEUs on a SRAM-based FPGA have
been recently investigated through radiation experiments [8-10], where the
predominant effect that was observed was the Single Event Functional Interrupt
(SEFI). More recently, an analysis that combines the result of radiation-
testing with those obtained while analyzing the meaning of every bit in the
FPGAs configuration memory were reported in [11, 14], which identified
the bits responsible for each SEFI and that classified the observed SEFIs
according to the affected FPGA s resource.

As an alternative to radiation testing, severa fault injection approaches
were recently proposed. All these approaches emulate the effects of SEUsin
the FPGA's configuration memory as bit-flips in the memory content, i.e.,
the bitstream, downloaded in the FPGA at power up. Some of them exploits
run-time reconfiguration [17], while others modify the bitstream before
downloading it in the configuration memory [18] or during download
operations[19].
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Severa techniques have been developed in the past years in order to
avoid the incidence of SEUs on the behavior of the implemented circuits.

Some of them aim at correcting the effects of SEUs in the device configu-
ration memory. For example the techniques proposed by Xilinx and known
as Scrubbing consists in periodically reloading the whole content of the
configuration memory [20]. A more complex system used to correct the
information in the configuration memory exploits the readback and partial
configuration process. Through the readback operation, the content of the
FPGAs configuration memory is read and compared with the expected value,
which is stored in a dedicated memory located outside the FPGA. As soon as
a mismatch is found, the correct information is download in the FPGASs
memory. During the reconfiguration only the faulty portion of the configura-
tion memory is rewritten [20].

Alternative techniques were also proposed that do not aim at identifying
and correcting the modification introduced by SEUS, but just aim at avoiding
the propagation of SEU effects to the observable outputs, mainly by introducing
hardware redundancy in the circuit mapped on the FPGAs. Triple Modular
Redundancy (TMR) is an attractive solution for SRAM-based FPGAs
because it provides full hardware redundancy of the users combinational and
sequential logic, the routing, and the 1/0O pads [8, 21].

The basic idea of the TMR scheme is that a circuit can be hardened
against SEUs by designing three copies of the same circuit and building a
majority voter on the outputs of the replicated circuits. Implementing triple
redundant circuits in other technologies, such as ASICs, is generally limited
to protecting only the memory elements, because combinational logic is
hard-wired and correspond to non-configurable gates. Conversely, full module
redundancy is required in FPGAs, because memory elements, interconnec-
tions and combinational gates are al susceptible to SEUs. This means that
three full copies of the users design have to be implemented to harden the
circuit against SEUs. In order to prevent fault accumulation, TMR is often
coupled with techniques like scrubbing or readback and partial reconfigura
tion to remove SEUs from the FPGA s configuration memory.

Although effective, the overheads TMR mandates may overcome the
available resources, e.g., the number of available I/O pads, and thus some
applications exist where it can hardly be exploited. To solve this problem a
new method was proposed in [22], aiming at reducing the overhead of afull
TMR implementation.

Even if optimized, these kinds of methods come with very high design
penalties: besides the area overhead due to the TMR design, removing SEUs
from the configuration memory mandates the adoption of ad-hoc circuit for
supporting the readback and the partial reconfiguration procedure, and
additional energy consumption.
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4.1 Detailson the Xilinx Triple Modular Redundancy

The suggested optimal implementation of the TMR circuitry inside a SRAM-
based FPGA provided by Xilinx depends on the type of the circuit that is
mapped on the FPGA device. There are three types of structures. combina-
tional logic, state machines or special devices.

The primary purpose for using the TMR methodology is to remove all
single points of failure from the design. This starts with the FPGA inputs. If
the same input is connected to al the three domains of the redundant logic
within the FPGA, then a failure at the input would propagate through all the
domains, escaping the TMR protection capability. Therefore, each replica of
the redundant logic should have its own set of inputs, asillustrated in Figure
2.5.

FPGA

— R1

REDUNDANT

Input LOGIC

REDUNDANT

Locic | "R2

REDUNDANT |
LOGIC R3

~
PackagePIN

Figure 2.5. Triple Modular Redundancy (TMR) FPGA inputs.

As far as the implementation of the majority voter is concerned, Xilinx
proposed to build it by using the Output Buffer Three-state cell (OBUFT)
provided by Xilinx library primitives as shown in Figure 2.6.

FPGA
R1

Package PIN
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Figure 2.6. Triple Modular Redundancy (TMR) BUFT magjority voter outputs.

4.2 Analysisof TMR architecture

In order to assess the effects of SEUs in the FPGA configuration memory, a
fault-injection system is used to inject SEUs internally to the configuration
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memory and to record the circuit’s output. The fault injection system used is
composed of the following modules:

1. Fault List Manager (FLM): it generates the list of faults to be injected
within the circuit under analysis, i.e., the Device Under Test (DUT).

2. Fault Injection Manager (FIM): it manages the fault injection process, by
selecting one fault from the fault list, performing itsinjection in the DUT
and then observing and analyzing the obtained results to provide the
fault-effect classification.

PC FPGA
Device Under
Fault List Test
Manager
l/—'au/[ List I Tnputs
and Outputs
Software Hardware
Fault Injection Fault Injection
Manager Manager
Commands 1 Commands
and Data Paralle! and Data
EPP Link EPP
Interface Interface

Figure 2.7. The architecture of the fault-injection system.

The proposed fault injection system consists of an FLM module imple-
mented as a software process running on a host PC, and a FIM, that runs in
part on an host PC and in part on the same FPGA device where the DUT is
placed. The two portions of the FIM communicate through a parallel link
that exploits the Enhanced Parallel Port (EPP) protocol. The scheme of the
implemented fault injection system isimplemented in Figure 2.7.

In the developed fault injection system the DUT, the EPP Interface and
the FIM shared the same FPGA device. These modules should be placed on
the FPGA device in such a way that any fault injected in the DUT does not
interfere with the FIM and EPP interface. This requirement is complied by
constraining the place and route algorithms to organize the FPGA-resource
alocation as described in the Figure 2.8.

The developed fault injection system exhaustively injects faultsin al the
configuration memory bits, no matter if they are used or not. In order to
speed-up and make more precise the fault-injection process, the developed
FIM identifies the configuration memory hits that are actually programmed
to implement the DUT, and generates faults only for them. Moreover, this
solution prevents us from erroneously injecting faults in the FPGA resource
implementing the FIM and the EPP interface.
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Figure 2.8. The adopted resource allocation of the fault injection system.

To implement such a solution, it is first generated the file storing the
configuration memory bit for whole design, then, FIM identifies those bits
related to the DUT. This step is possible thanks to a data-based devel oped by
decoding the Xilinx bitstream. Finally, the list of faults for the DUT confi-
guration memory bits is computed and stored. Each element of the fault list
is a faulty hitstream for the FPGA where one hit at a time is modified to
emulate the effects of a SEU.

The architecture of the Fault Injection Manager is the most crucial part in
the whole fault injection system. It is divided in two parts, a software one
implemented on a PC (SW-FIM) and an hardware one (HW-FIM) that runs
on the FPGA.

The FIM executes the fault injection process in four steps.

1. The SW-FIM configures the FPGA with afaulty bitstream taken from the
fault list.

2. The SW-FIM sends a start command to the HW-FIM placed on the
FPGA.

3. The SW-FIM polls the EPP Interface waiting for the result of the
execution, and then it performs the fault effect classification.

4. The SW-FIM resets the FPGA board and restarts from step 1.

The SW-FIM is a supervisor for the HW-FIM, which consist of three
modules: a control unit, atest-pattern generator and an output analyzer.

The control unit inside of the HW-FIM communicates with the SW-FIM
through the EPP Interface and implements the following steps:

1. It waitsfor the start command from the SW-FIM.

2. It puts EPP Interface on an idle state, and starts the test-pattern generator.

3. When all the stimuli have been applied, it sends to the SW-FIM the result
observed by the output analyzer.
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The test-pattern generator provides the input stimuli to the DUT. The
output analyzer compares the output response coming from the faulty DUT
with the expected one, which is computed by a fault-free replica of the
circuit hardened viaTMR.

4.3 Experimental results

The fault injection experiments are performed injecting SEUs in the configu-
ration memory of FPGAs while implementing circuits hardened according to
the Xilinx TMR architecture. The experimental setup presented in the previous
sections has been used, the accuracy of this setup was confirmed by radiation
testing experiments reported in [11]. The device used in the experiments is
the Xilinx Spartan X C2S30-PQ144, whose configuration memory is composed
of 336,768 bits organized in 1,165 frames of 288 hits each. The configura-
tion memory controls 132 1/0 blocks and an array of 12 x 18 slices [23].

The performed analysis consisted in study three purely combinational
circuits. an adder computing the sum of two 8-bit wide operands, an adder
working on two 16-bit wide operands and a multiplier working on two 8-bit
wide operands.

During the experiments, a 16-bit wide up-counter has been used as test-
pattern generator. It allows generating all the possible input combinations for
both the 8-bit adder and multiplier. The same counter was also used for
testing the 16-hit wide adder, while the two inputs ports were shortened
together.

TABLE 2.3 Characteristics of the adopted circuits

Circ. Slices Programmed CLB Routing
[# bits bits bits
[# [# [#
Adds 100 9,785 2,560 7,225
Add16 103 11,963 2,656 9,307
Mul8 127 17,448 3,280 14,168

The characterigtics of the adopted circuits are reported in Table 2.3, where
Slice reports the number of FPGA dlices that the circuit occupies, Programmed
bits is the number of configuration memory bits that are actually used by the
mapped circuit, CLB bitsis the number of configuration memory bits used to
program the configurable logic blocks the circuit exploits, and Routing bits
is the number of configuration memory bits for signa routing the circuit
exploits.

The described set-up was used for running three fault-injection campaigns,
one for each circuit.
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The fault-injection process took about 6 s for each fault. Being test-pattern
generator and the output analyzer place in the same FPGA holding the DUT,
the time needed for applying input stimuli and classify fault effects was
negligible (4.5 ms on the average). Most of the time for processing each fault
was indeed spent to download the faulty bitstream.

TABLE 2.4 Fault-injection results

Circuit Injected faults Wrong answer
[# [%]
Add8 9,785 9.01
Add16 11,963 11.28
Mul8 17,448 13.18

The results collected during the fault-injection campaigns are reported in
the Table 2.4, where Injected Faults reports the number of injected SEUSs,
and Wrong Answer reports the percentage of SEUs provoking SEFIs, i.e., the
obtained output response differs from the expected ones.

During the experiments, it is injected only one fault for each configura-
tion memory bitstream actually programmed for implementing the mapped
circuit. The faults were selected in such a way that common-mode faults
were not possible.

These results are particularly interesting since they experimentally show
that the TMR architecture is not able to effectively harden the considered
circuits against SEUs affecting the configuration memory of SRAM-based
FPGAs. Moreover, the percentage of Wrong Answersis related to the density
of programmed bits within the dlices used for implementing the TMR
architecture.

TABLE 2.5 Comparison between programmed and fault bit

Circ. Programmed-bit density Wrong answer
[bit/slice] 4]
Adds 97.85 9.01
Add16 116.75 11.28
Mul8 137.39 13.18

To better outline this effect, in Table 2.5 a comparison between the
FPGA -resource usage and the percentage of WWrong Answer.

The column Programmed-bit Density reports the average number of pro-
grammed bits for the FPGAs dlices actually used by the DUT. As the reader
can observe, the percentage of Wrong Answer scales with the Programmed-
bit Density.
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This result suggested that SEU sensitivity in SRAM-based FPGAS is
related to the number of used bitsin each slice. The lower it is the number of
used hits in each dice, the lower it is the probability that, when affected by
SEUs, the bits of a dlice provoke a SEFI.

5. ROBUSTNESSOFTHE TMRARCHITECTURE

The circuit mapped on a reconfigurable FPGA is totally controlled by the
configuration memory, which in the case of SRAM-based FPGA, is composed
of static RAM cells. Interestingly the effects induced by SEU affecting the
configuration memory are permanent, since the SEU changes the mapped
circuit until the device is programmed again. The result of a SEU that causes
the devices to stop operating properly is generaly defined as a Single Event
Functional Interrupt (SEFI). One possible solution to this problem is to use
radiation-hardened FPGAS, but since these devices are very expensive, alter-
native solutions allowing using non radiation hardened devices are currently
investigated.

Triple Module Redundancy is often exploited for hardening digital logic
against SEUs in safety-critical applications. As an instance, TMR is often
used to design fault tolerant memory elements to be employed in sequential
digital logic. Unfortunately, non-radiation-hardened FPGASs present insuffi-
cient protection of memory elements in both the mapped circuit, and the
configuration memory. As a result, particles hitting the configuration memory
can change dramatically the logic functionality of the mapped circuit, as well
as the circuits memory elements. Evaluation techniques must be used to
evaluate the impact of SEUs affecting FPGAs configuration memory, and to
avoid undesired changes of the circuit mapped on the FPGA.

The purpose of this section is to deeply investigate how circuits designed
according to the Triple Modular Architecture, and mapped on non-radiation-
hardened SRAM-based FPGAs, behave when SEUs are injected in the confi-
guration memory cells controlling the FPGA resources. For this purpose
fault injection experiments are performed.

As the results of the experimental SEU’ s effects analysis illustrated, it is
suggested that it is possible to reduce the effects of SEUs within the confi-
guration memory bits of non-radiation-hardened SRAM-based FPGAS by
placing the TMR circuit on the FPGA floorplan respecting constraints rules
able to decrease the damaging effect of SEUs.

The experimental analysis assesses the effects of SEUs in the FPGA
configuration memory of areal FPGA device, we injected faults in a Xilinx
Spartan XC2S30PQ144 device, whose configuration memory is composed
of 336,768 configuration memory bits organized in 1,165 frames of 288 hits
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each. The configuration memory controls 132 1/O blocks and array of 12 x
18 dlices[23].

The experimental analysis considers an extended set of circuits including
two adders (one working on two 8-bit wide operands and the other on two
16-bit wide operands) and two multipliers (one working on 4-bit wide
operands and one on two 8-bit wide operands. Furthermore an analysis on an
eliptic filter in order to evaluate the sensitiveness to SEUs in a sequential
circuit.

The characteristics of the set of circuit used in the experiments are
reported in Table 2.6, where Slices reports the number of FPGA dlices that
the circuit occupies, Programmed bits the number of configuration memory
bits actually used by the mapped circuit, CLB bits is the number of
configuration memory hits used to program the configurable logic blocks of
the circuit, and finally Routing bits is the number of configuration memory
bits for signal routing the circuit exploits.

TABLE 2.6 Characteristics of the adopted circuits

Circuit Slice [#] Programmed .CL B R9Uti ng
bits [#] bits [#] bits [#]
Add8 100 9.785 2,560 7,225
Add16 103 11,963 2,656 9,307
Mul4 (a) 51 5,448 1,306 4,142
Mul4 (b) 42 5,443 1,107 4,336
Mul4 (c) 53 7,318 1,329 5,989
Mul8 127 17,448 3,280 14,168
Filter 132 20,501 3,401 17,091

We developed three different strategies of placement for the resources
within the SRAM-based FPGA floorplan before running the fault injection
campaigns. The strategies are the following:

1. No constraints: the place and route tool islet free to map the circuit in the
whole FPGA area

2. Minimal Area Constraints. the place and route tool is forced to produce
the smallest possible design.

3. Safe Area Constraints: the place and route tool is forced to place each
module of the TMR in a dedicated partition of the FPGA, so that two
different module cannot share the same FPGA portion.

Due to the limited amount of resources of the adopted FPGA device, all
circuits excepts the multiplier with 4-bit wide operands have been placed
according to the strategy 1. Seven fault injection experiments are performed
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using the above-described tool and strategies of placement. The results of the
fault injection experiments are reported in the Table 2.7, where the Injected
Faults column reports the number of SEUs we injected, and the Wrong Answer
one reports the percentage of SEUs provoking SEFIS, i.e., the obtained output
response differs from the expected ones. During the experiments, only one
fault for each configuration memory has been injected, assuming that the
fault injection time isequal to O, i.e., SEUs affect the deviceright after it has
been programmed. In the experiments a workload composed of al the possible
input configuration was used. These results are particularly interesting since
they experimentally show that the TMR architecture is not able to effectively
harden the considered circuits against SEUs affecting the configuration
memory. Indeed, the percentage of Wrong Answers can reach 13% for the
largest circuits.

TABLE 2.7 Fault-injection results

N Injected faults Wrong answer
Circuit
[# [#
Adder 8 9,785 982
Adder 16 11,963 1,349
Multiplier 8 17,448 2,300
Filter 20,501 2,708
Multiplier 4 (a) 5,448 33
Multiplier 4 (b) 5,443 27
Multiplier 4 (c) 7,318 17

5.1 Analysisof thefault effects

To better understand the causes of failure of the TMR architecture, each
faulty configuration memory is analyzed using the developed classification
tool [14, 24]. The result of the classification is reported in Table 2.8, where
are reported the number of effects observed during the fault injection experi-
ments, classified according to the affected resources (logic and routing) and
to the produced effects (Open, Bridge, etc.). The effects are divided between
Routing faults, provoked by any SEU that hits the bits controlling the
programmable switches attached to the wire segments used to connect the
FPGAs logic resource, and Logic faults, provoked by any SEU that hits the
bit controlling the logic resources. For each kind of fault we can observe the
following modifications induced by SEUs to the FPGA reso