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Preface to the Third Edition 

Books are seldom finished. At best, they are abandoned. The second edition 
of "Electronic Properties of Materials" has been in use now for about seven 
years. During this time my publisher gave me ample opportunities to update 
and improve the text whenever the book was reprinted. There were about 
six of these reprinting cycles. Eventually, however, it became clear that 
substantially more new material had to be added to account for the stormy 
developments which occurred in the field of electrical, optical, and magnetic 
materials. In particular, expanded sections on flat-panel displays (liquid 
crystals, electroluminescence devices, field emission displays, and plasma dis­
plays) were added. Further, the recent developments in blue- and green­
emitting LED's and in photonics are included. Magnetic storage devices also 
underwent rapid development. Thus, magneto-optical memories, magneto­
resistance devices, and new magnetic materials needed to be covered. The 
sections on dielectric properties, ferroelectricity, piezoelectricity, electrostric­
tion, and thermoelectric properties have been expanded. Of course, the entire 
text was critically reviewed, updated, and improved. However, the most 
extensive change I undertook was the conversion of all equations to SI­
units throughout. In most of the world and in virtually all of the interna­
tional scientific journals use of this system of units is required. If today's 
students do not learn to utilize it, another generation is "lost" on this matter. 
In other words, it is important that students become comfortable with SI 
units. 

If plagiarism is the highest form of flattery, then I have indeed been flat­
tered. Substantial portions of the first edition have made up verbatim most 
of another text by a professor in Madras without giving credit to where it 
first appeared. In addition, pirated copies of the first and second editions 
have surfaced in Asian countries. Further, a translation into Korean ap-
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peared. Of course, I feel that one should respect the rights of the owner of 
intellectual property. 

I am grateful for the many favorable comments and suggestions promul­
gated by professors and students from the University of Florida and other 
schools who helped to improve the text. Dr. H. Rufer from Wacker Siltronic 
AG has again appraised me of many recent developments in wafer fabrica­
tion. Professor John Reynolds (University of Florida) educated me on the 
current trends in conducting polymers. Drs. Regina and Gerd Muller (Agi­
lent Corporation) enlightened me on recent LED developments. Professor 
Paul Holloway (University of Florida) shared with me some insights in 
phosphors and flat-panel displays. Professor Volkmar Gerold (MPI Stutt­
gart) was always available when help was needed. My thanks go to all of 
them. 

Gainesville, Florida 
October 2000 

Rolf E. Hummel 



Preface to the Second Edition 

It is quite satisfying for an author to learn that his brainchild has been 
favorably accepted by students as well as by professors and thus seems 
to serve some useful purpose. This horizontally integrated text on the elec­
tronic properties of metals, alloys, semiconductors, insulators, ceramics, and 
polymeric materials has been adopted by many universities in the United 
States as well as abroad, probably because of the relative ease with which 
the material can be understood. The book has now gone through several 
reprinting cycles (among them a few pirate prints in Asian countries). I am 
grateful to all readers for their acceptance and for the many encouraging 
comments which have been received. 

I have thought very carefully about possible changes for the second 
edition. There is, of course, always room for improvement. Thus, some 
rewording, deletions, and additions have been made here and there. I with­
stood, however, the temptation to expand considerably the book by adding 
completely new subjects. Nevertheless, a few pages on recent developments 
needed to be inserted. Among them are, naturally, the discussion of ceramic 
(high-temperature) superconductors, and certain elements of the rapidly ex­
panding field of optoelectronics. Further, I felt that the readers might be 
interested in learning some more practical applications which result from the 
physical concepts which have been treated here. Thus, the second edition 
describes common types of field-effect transistors (such as JFET, MOSFET, 
and MESFET), quantum semiconductor devices, electrical memories (such 
as D-RAM, S-RAM, and electrically erasable-programmable read-only 
memories), and logic circuits for computers. The reader will also find an ex­
pansion of the chapter on semiconductor device fabrication. The principal 
mechanisms behind some consumer devices, such as xerography, compact 
disc players, and optical computers, are also discussed. 
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Part III (Magnetic Properties of Materials) has been expanded to include 
more details on magnetic domains, as well as magneto stricti on, amorphous 
ferromagnetics, the newest developments in permanent magnets, new mag­
netic recording materials, and magneto-optical memories. 

Whenever appropriate, some economic facts pertaining to the manufac­
turing processes or sales figures have been given. Responding to occasional 
requests, the solutions for the numerical problems are now contained in the 
Appendix. 

I am grateful for valuable expert advice from a number of colleagues, such 
as Professor Volkmar Gerold, Dr. Dieter Hagmann, Dr. H. RUfer, Mr. David 
Malone, Professor Chris Batich, Professor Rolf Haase, Professor Robert 
Park, Professor Rajiv Singh, and Professor Ken Watson. Mrs. Angelika 
Hagmann and, to a lesser extent, my daughter, Sirka Hummel, have drawn 
the new figures. I thank them for their patience. 

Gainesville, Florida 
1993 

Rolf E. Hummel 



Preface to the First Edition 

Die meisten Grundideen der 
Wissenschaft sind an sich einfach 

und lassen sich in der Regel 
in einer fur jedermann 

verstiindlichen Sprache 
wiedergeben. 

-ALBERT EINSTEIN 

The present book on electrical, optical, magnetic, and thermal properties of 
materials is, in many aspects, different from other introductory texts in solid 
state physics. First of all, this book is written for engineers, particularly 
materials and electrical engineers who want to gain a fundamental under­
standing of semiconductor devices, magnetic materials, lasers, alloys, etc. 
Second, it stresses concepts rather than mathematical formalism, which 
should make the presentation relatively easy to understand. Thus, this book 
provides a thorough preparation for advanced texts, monographs, or speci­
alized journal articles. Third, this book is not an encyclopedia. The selection 
of topics is restricted to material which is considered to be essential and 
which can be covered in a 15-week semester course. For those professors 
who want to teach a two-semester course, supplemental topics can be found 
which deepen the understanding. (These sections are marked by an asterisk 
l*].) Fourth, the present text leaves the teaching of crystallography, X-ray 
diffraction, diffusion, lattice defects, etc., to those courses which specialize in 
these subjects. As a rule, engineering students learn this material at the be­
ginning of their upper division curriculum. The reader is, however, reminded 
of some of these topics whenever the need arises. Fifth, this book is distinctly 
divided into five self-contained parts which may be read independently. All 
are based on the first part, entitled "Fundamentals of Electron Theory," 
because the electron theory of materials is a basic tool with which most ma­
terial properties can be understood. The modem electron theory of solids is 
relatively involved. It is, however, not my intent to train a student to become 
proficient in the entire field of quantum theory. This should be left to more 
specialized texts. Instead, the essential quantum mechanical concepts are 
introduced only to the extent to which they are needed for the understanding 
of materials science. Sixth, plenty of practical applications are presented in 



x Preface to the First Edition 

the text, as well as in the problem sections, so that the students may gain an 
understanding of many devices that are used every day. In other words, I 
tried to bridge the gap between physics and engineering. Finally, I gave the 
treatment of the optical properties of materials about equal coverage to that 
of the electrical properties. This is partly due to my personal inclinations and 
partly because it is felt that a more detailed description of the optical prop­
erties is needed since most other texts on solid state physics devote relatively 
little space to this topic. It should be kept in mind that the optical properties 
have gained an increasing amount of attention in recent years, because of 
their potential application in communication devices as well as their contri­
butions to the understanding of the electronic structure of materials. 

The philosophy and substance of the present text emerged from lecture 
notes which I accumulated during more than twenty years of teaching. A 
preliminary version of Parts I and II appeared several years ago in Journal of 
Educational Modules for Materials Science and Engineering 4, I (1982) and 
4, 781 (1982). 

I sincerely hope that students who read and work with this book will enjoy, 
as much as I, the journey through the fascinating field of the physical prop­
erties of materials. 

Each work benefits greatly from the interaction between author and col­
leagues or students. I am grateful in particular to Professor R.T. DeHoff, 
who read the entire manuscript and who helped with his inquisitive mind to 
clarify many points in the presentation. Professor Ken Watson read the part 
dealing with magnetism and made many helpful suggestions. Other col­
leagues to whom I am indebted are Professor Fred Lindholm, Professor 
Terry Orlando, and Dr. Siegfried Hofmann. My daughter, Sirka Hummel, 
contributed with her skills as an artist. Last, but not least, I am obliged to 
my family, to faculty, and to the chairman of the Department of Materials 
Science and Engineering at the University of Florida for providing the har­
monious atmosphere which is of the utmost necessity for being creative. 

Gainesville, Florida 
1985 

Rolf E. Hummel 
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PART I 

FUNDAMENTALS OF 
ELECTRON THEORY 



CHAPTER 1 

Introduction 

The understanding of the behavior of electrons in solids is one of the keys to 
understanding materials. The electron theory of solids is capable of explain­
ing the optical, magnetic, thermal, as well as the electrical properties of ma­
terials. In other words, the electron theory provides important fundamentals 
for a technology which is often considered to be the basis for modern civili­
zation. A few examples will illustrate this. Magnetic materials are used in 
electric generators, motors, loudspeakers, transformers, tape recorders, and 
tapes. Optical properties of materials are utilized in lasers, optical commu­
nication, windows, lenses, optical coatings, solar collectors, and reflectors. 
Thermal properties playa role in refrigeration and heating devices and in 
heat shields for spacecraft. Some materials are extremely good electrical 
conductors, such as silver and copper; others are good insulators, such as 
porcelain or quartz. Semiconductors are generally poor conductors at room 
temperature. However, if traces of certain elements are added, the electrical 
conductivity increases. 

Since the invention of the transistor in the late 1940s, the electronics in­
dustry has grown to an annual sales level of about five trillion dollars. From 
the very beginning, materials and materials research have been the lifeblood 
of the electronics industry. 

For the understanding of the electronic properties of materials, three 
approaches have been developed during the past hundred years or so which 
differ considerably in their philosophy and their level of sophistication. In 
the last century, a phenomenological description of the experimental obser­
vation was widely used. The laws which were eventually discovered were 
empirically derived. This "continuum theory" considered only macroscopic 
quantities and interrelated experimental data. No assumptions were made 
about the structure of matter when the equations were formulated. The 
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conclusions that can be drawn from the empirical laws still have validity, at 
least as long as no oversimplifications are made during their interpretation. 
Ohm's law, the Maxwell equations, Newton's law, and the Hagen-Rubens 
equation may serve as examples. 

A refinement in understanding the properties of materials was accom­
plished at the turn to the twentieth century by introducing atomistic princi­
ples into the description of matter. The "classical electron theory" postulated 
that free electrons in metals drift as a response to an external force and in­
teract with certain lattice atoms. Paul Drude was the principal proponent of 
this approach. He developed several fundamental equations that are still 
widely utilized today. We will make extensive use of the Drude equations in 
subsequent parts of this book. 

A further refinement was accomplished at the beginning of the twentieth 
century by quantum theory. This approach was able to explain important 
experimental observations which could not be readily interpreted by classical 
means. It was realized that Newtonian mechanics become inaccurate when 
they are applied to systems with atomic dimensions, i.e., when attempts are 
made to explain the interactions of electrons with solids. Quantum theory, 
however, lacks vivid visualization of the phenomena which it describes. 
Thus, a considerable effort needs to be undertaken to comprehend its basic 
concepts; but mastering its principles leads to a much deeper understanding 
of the electronic properties of materials. 

The first part of the present book introduces the reader to the funda­
mentals of quantum theory. Upon completion of this part the reader should 
be comfortable with terms such as Fermi energy, density of states, Fermi 
distribution function, band structure, Brillouin zones, effective mass of elec­
trons, uncertainty principle, and quantization of energy levels. These con­
cepts will be needed in the following parts of the book. 

It is assumed that the reader has taken courses in freshman physics, 
chemistry, and differential equations. From these courses the reader should 
be familiar with the necessary mathematics and relevant equations and defi­
nitions, such as: 

Newton's law: force equals mass times acceleration (F = ma); (Ll) 

Kinetic energy: Ektn = ~mv2 (v is the particle velocity); (1.2) 

Momentum: p = mv; (1.3) 
2 

Combining (1.2) and (1.3) yields Ektn = fm; (104) 

Speed of light: e = VA (v = frequency of the light wave, and 
A its wavelength); (1.5) 

Velocity of a wave: v = VA; (1.6) 

Angular frequency: w = 2nv; (1.7) 

Einstein's mass-energy equivalence: E = me2
. (1.8) 
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It would be further helpful if the reader has taken an introductory course in 
materials science or a course in crystallography in order to be familiar with 
terms such as lattice constant, Miller's indices, X-ray diffraction, Bragg's 
law, etc. Regardless, these concepts are briefly summarized in this text 
whenever they are needed. In order to keep the book as self-contained as 
possible, some fundamentals in mathematics and physics are summarized in 
the Appendices. 



CHAPTER 2 

The Wave-Particle Duality 

This book is mainly concerned with the interactions of electrons with matter. 
Thus, the question "What is an electron?" is quite in order. Now, to our 
knowledge, nobody has so far seen an electron, even by using the most 
sophisticated equipment. We experience merely the actions of electrons, e.g., 
on a television screen or in an electron microscope. In each of these in­
stances, the electrons seem to manifest themselves in quite a different way, 
i.e., in the first case as a particle and in the latter case as an electron wave. 
Accordingly, we shall use, in this book, the terms "wave" and "particle" as 
convenient means to describe the different aspects of the properties of elec­
trons. This "duality" of the manifestations of electrons should not overly 
concern us. The reader has probably been exposed to a similar discussion 
when the properties of light have been introduced. 

We perceive light intuitively as a wave (specifically, an electromagnetic 
wave) which travels in undulations from a given source to a point of ob­
servation. The color of the light is related to its wavelength, A, or to its 
frequency, v, i.e., its number of vibrations per second. Many crucial experi­
ments, such as diffraction, interference, and dispersion clearly confirm the 
wavelike nature of light. Nevertheless, at least since the discovery of the 
photoelectric effect in 1887 by Hertz, and its interpretation in 1905 by Ein­
stein, we do know that light also has a particle nature. (The photoelectric 
effect describes the emission of electrons from a metallic surface that has 
been illuminated by light of appropriately high energy, e.g., by blue light.) 
Interestingly enough, Newton, about 300 years ago, was a strong proponent 
of the particle concept of light. His original ideas, however, were in need of 
some refinement, which was eventually provided in 1901 by quantum theory. 
We know today (based on Planck's famous hypothesis) that a certain mini­
mal energy of light, i.e., at least one light quantum, called a photon, with the 
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energy 

E = vh = wli, (2.1) 

needs to impinge on a metal in order that a negatively charged electron may 
overcome its binding energy to its positively charged nucleus and escape into 
free space. (This is true regardless of the intensity of the light.) In (2.1) h is 
the Planck constant whose numerical value is given in Appendix 4. Fre­
quently, the reduced Planck constant 

Ii=~ 
2n 

(2.2) 

is utilized in conjunction with the angular frequency, w = 2nv (1.7). In short, 
the wave-particle duality of light (or more generally, of electromagnetic radi­
ation) had been firmly established at the beginning of the twentieth century. 

On the other hand, the wave-particle duality of electrons needed more 
time until it was fully recognized. The particle property of electrons, having a 
rest mass mo and charge e, was discovered in 1897 by the British physicist 
J.J. Thomson at the Cavendish Laboratory of Cambridge University in an 
experiment in which he observed the deviation of a cathode ray by electric 
and magnetic fields. These cathode rays were known to consist of an invisi­
ble radiation that emanated from a negative electrode (called a cathode) 
which was sealed through the walls of an evacuated glass tube that also 
contained at the opposite wall a second, positively charged electrode. It was 
likewise known at the end of the nineteenth century that cathode rays travel 
in straight lines and produce a glow when they strike glass or some other 
materials. J.J. Thomson noticed that cathode rays travel slower than light 
and transport negative electricity. In order to settle the lingering question of 
whether cathode rays were "vibrations of the ether" or instead "streams of 
particles," he promulgated a bold hypothesis, suggesting that cathode rays 
were "charged corpuscles which are miniscule constituents of the atom." 
This proposition-that an atom should consist of more than one particle­
was startling for most people at that time. Indeed, atoms were considered 
since antiquity to be indivisible, that is, the most fundamental building 
blocks of matter. 

The charge of these "corpuscles" was found to be the same as that carried 
by hydrogen ions during electrolysis (about 1O-19C). Further, the mass of 
these corpuscles turned out to be 1/2000th the mass of the hydrogen atom. 

A second hypothesis brought forward by J.J. Thomson, suggesting that 
the "corpuscles of cathode rays are the only constituents of atoms," was 
eventually proven to be incorrect. Specifically, E. Rutherford, one of 
Thomson's former students, by using a different kind of particle beam, con­
cluded in 1910 that the atom resembled a tiny solar system in which a few 
electrons orbited around a "massive" positively charged center. Today, one 
knows that the electron is the lightest stable elementary particle of matter 
and that it carries the basic charge of electricity. 
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Eventually, it was also discovered that the electrons in metals can move 
freely under certain circumstances. This critical experiment was performed 
by Tolman who observed inertia effects of the electrons when rotating metals. 

In 1924, de Broglie, who believed in a unified creation of the universe, in­
troduced the idea that electrons should also possess a wave-particle duality. 
In other words, he suggested, based on the hypothesis of a general reciproc­
ity of physical laws, the wave nature of electrons. He connected the wave­
length, A, of an electron wave and the momentum, p, of the particle by the 
relation 

Ap=h. (2.3) 

This equation can be "derived" by combining equivalents to the photonic 
equations E = vh (2.1), E = me2 (1.8), p = me (1.3), and e = AV (1.5). 

In 1926, Schrodinger gave this idea of de Broglie a mathematical form. In 
1927, Davisson and Germer and, independently in 1928, G.P. Thomson (the 
son of 1.1. Thomson; see above) discovered electron diffraction by a crystal, 
which finally proved the wave nature of electrons. 

What is a wave? A wave is a "disturbance" which is periodic in position 
and time. (In contrast to this, a vibration is a disturbance which is only peri­
odic in position or time. 1) Waves are characterized by a velocity, v, a fre­
quency, v, and a wavelength, A, which are interrelated by 

v = VA. (2.4) 

Quite often, however, the wavelength is replaced by its inverse quantity 
(multiplied by 2n), i.e., A is replaced by the wave number 

k _ 2n 
- A . (2.5) 

Concomitantly, the frequency, V, is replaced by the angular frequency 
OJ = 2nv (1. 7). Equation (2.4) then becomes 

OJ 

v=I· (2.6) 

One of the simplest waveforms is mathematically expressed by a sine (or a 
cosine) function. This simple disturbance is called a "harmonic wave." (We 
restrict our discussion below to harmonic waves since a mathematical ma­
nipulation, called a Fourier transformation, can substitute any odd type of 
waveform by a series of harmonic waves, each having a different frequency.) 

The properties of electrons will be described in the following by a har­
monic wave, i.e., by a wave function '¥ (which contains, as outlined above, a 

I A summary of the equations which govern waves and vibrations is given in Appendix 1. 
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time- and a space-dependent component): 

'P = sin(kx - wt). (2.7) 

This wave function does not represent, as far as we know, any physical 
waves or other physical quantities. It should be understood merely as a 
mathematical description of a particle (the electron) which enables us to 
calculate its actual behavior in a convenient way. This thought probably 
sounds unfamiliar to a beginner in quantum physics. However, by repeated 
exposure, one can become accustomed to this kind of thought. 

The wave-particle duality may be better understood by realizing that the 
electron can be represented by a combination of several wave trains having 
slightly different frequencies, for example, wand w + ~w, and different wave 
numbers, k and k + ~k. Let us study this, assuming at first only two waves, 
which will be written as above: 

'PI = sin[kx - wt] (2.7) 

and 

'P2 = sin[(k + ~k)x - (w + ~w)t]. (2.8) 

Superposition of 'PI and 'P2 yields a new wave 'P. With sin il + sinp = 

2 cos! (il - P) . sin! (il + P) we obtain 

'PI +'P2 = 'P = 2 cos( ~2w t- ~2k x) . sin [ (k+ ~2k)x- (w+ ~2w) rJ. (2.9) 
..... ", ..... .J 

V v 

Modulated Sine wave 
amplitude 

Equation (2.9) describes a sine wave (having a frequency intermediate be­
tween wand w + ~w) whose amplitude is slowly modulated by a cosine 
function. (This familiar effect in acoustics can be heard in the form of 
"beats" when two strings of a piano have a slightly different pitch. The beats 
become less rapid the smaller the difference in frequency, ~w, between the 
two strings until they finally cease once both strings have the same pitch, 
(2.9).) Each of the "beats" represents a "wave packet" (Fig. 2.1). The wave 

Modulated Amplitude ("beats") 

I' 
/ 1 

1 
/ 1 

t '- : 
-AX~ 

wove pocket-l 

\ 

wove v 

Figure 2.1. Combination of two waves of slightly different frequencies. ~x is the 
distance over which the particle can be found. 
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x 
6w=O 

Figure 2.2. Monochromatic matter wave (dw and dk = 0). The wave has constant 
amplitude. The matter wave travels with the phase velocity, v. 

packet becomes "longer" the slower the beats, i.e., the smaller I1w. The 
extreme conditions are as follows: 

(a) No variation in wand k (i.e., I1w = 0 and 11k = 0). This yields an "infi­
nitely long" wave packet, i.e., a monochromatic wave, which corresponds 
to the wave picture of an electron (see Fig. 2.2). 

(b) Alternately, I1w and 11k could be assumed to be very large. This yields 
short wave packets. Moreover, if a large number of different waves are 
combined (rather than only two waves 'PI and 'P2), having frequencies 
w + nl1w (where n = 1,2,3,4 ... ), then the string of wave packets shown 
in Fig. 2.1 reduces to one wave packet only. The electron is then repre­
sented as a particle. This is shown in Fig. 2.3, in which a number of 
'P-waves have been superimposed on each other, as just outlined. It is 
evident from Fig. 2.3 that a superposition of, say, 300 'P-waves yields 
essentially one wave packet only. 

Different velocities need to be distinguished: 

(a) The velocity of the matter wave is called the wave velocity or "phase 
velocity," v. As we saw above, the matter wave is a monochromatic wave 
(or a stream of particles of equal velocity whose frequency, w, wave­
length, A., momentum, p, or energy, E, can be exactly determined (Fig. 
2.2)). The location of the particles, however, is undetermined. From the 
second part of (2.9) (marked "sine wave"), we deduce 

x w+l1w/2 w' 
v=t= k+l1k/2 =ki' 

(2.6a) 

which is a restatement of (2.6). We obtain the velocity of a matter wave 
that has a frequency w + I1w/2 and a wave number k + I1k/2. The 
phase velocity varies for different wavelengths (a phenomenon which is 
called "dispersion," and which the reader knows from the rainbow col­
ors that emerge from a prism when white light impinges on it). 

(b) We mentioned above that a particle can be understood to be "composed 
of" a group of waves or a "wave packet." Each individual wave has a 
slightly different frequency. Appropriately, the velocity of a particle is 
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Figure 2.3. Superposition of 'P-waves. The number of 'P-waves is given in the 
graphs. (See also Fig. 2.1 and Problem 2.8.) 

called "group velocity," vg • The "envelope" in Fig. 2.1 propagates with 
the group velocity, vg • From the left part of (2.9) (marked "modulated 
amplitude") we obtain this group velocity 

x Llw dw 
Vg = t = Llk = dk . (2.10) 

Equation (2.10) is the velocity of a "pulse wave," i.e., of a moving particle. 

The location X of a particle is known precisely, whereas the frequency is not. 
This is due to the fact that a wave packet can be thought to "consist" of 
several wave functions 'PI, 'P2, ... ,'Pn , with slightly different frequencies. 
Another way of looking at it is to perform a Fourier analysis of a pulse wave 
(Fig. 2.4) which results in a series of sine and cosine functions (waves) which 
have different wavelengths. The better the location, LlX, of a particle can be 
determined, the wider is the frequency range, Llw, of its waves. This is one 
form of Heisenberg's uncertainty principle, 

!!t.p·!!t.X~h, (2.11 ) 
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f1wlarge 

x 
Figure 2.4. Particle (pulse wave) moving with a group velocity Vg (dw is large). 

stating that the product of the distance over which there is a finite probabil­
ity of finding an electron, dX, and the range of momenta, dp (or wave­
lengths (2.3)), of the electron wave is greater than or equal to a constant. 
This means that both the location and frequency of an electron cannot be 
accurately determined at the same time. 

A word of encouragement should be added at this point for those readers 
who (quite legitimately) might ask the question: What can I do with wave 
functions which supposedly have no equivalent in real life? For the inter­
pretation of the wave functions, we will use in future chapters Born's postu­
late, which states that the square of the wave function (or because 'I' is gen­
erally a complex function, the quantity '1''1'*) is the probability of finding a 
particle at a certain location. ('I' * is the complex conjugate quantity of '1'.) In 
other words, 

'1''1' * dx dy dz = '1''1' * d r (2.12) 

is the probability of finding an electron in the volume element dr. This makes 
it clear that in wave mechanics probability statements are often obtained, 
whereas in classical mechanics the location of a particle can be determined 
exactly. We will see in future chapters, however, that this does not affect the 
usefulness of our results. 

Finally, the reader may ask the question: Is an electron wave the same as 
an electromagnetic wave? Most definitely not! Electromagnetic waves (radio 
waves, infrared radiation (heat), visible light, ultraviolet (UV) light, X-rays, 
or y-rays) propagate by an interaction of electrical and magnetic distur­
bances. Detection devices for electromagnetic waves include the human eye, 
photomultiplier tubes, photographic films, heat-sensitive devices, such as the 
skin, and antennas in conjunction with electrical circuits. For the detection 
of electrons (e.g., in an electron microscope or on a television screen) certain 
chemical compounds called "phosphors" are utilized. Materials which possess 
"phosphorescence" (see Section 13.8) include zinc sulfide, zinc-cadmium 
sulfide, tungstates, molybdates, salts of the rare earths, uranium compounds, 
and organic compounds. They vary in color and strength and in the length in 
time during which visible light is emitted. 

At the end of this chapter, let us revisit the fundamental question that 
stood at the outset of our discussion concerning the wave-particle duality: 
Are particles and waves really two completely unrelated phenomena? Seen 
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conceptually, they probably are. But consider (2.9) and its discussion. Both 
waves and particles are mathematically described essentially by the same 
equation, i.e., the former by setting Aw and Ak = 0 and the latter by making 
Aw and Ak large. Thus, waves and particles appear to be interrelated in a 
certain way. It is left to the reader to contemplate further on this idea. 

Problems 

I. Calculate the wavelength of an electron which has a kinetic energy of 4 e V. 

2. What should be the energy of an electron so that the associated electron waves 
have a wavelength of 600 nm? 

3. Since the visible region spans between approximately 400 nm and 700 nm, why 
can the electron wave mentioned in Problem 2 not be seen by the human eye? 
What kind of device is necessary to detect electron waves? 

4. What is the energy of a light quantum (photon) which has a wavelength of 
600 nm? Compare the energy with the electron wave energy calculated in Prob­
lem 2 and discuss the difference. 

5. A tennis ball, having a mass of 50 g, travels with a velocity of 200 km/h. What is 
the equivalent wavelength of this "particle"? Compare your result with that 
obtained in Problem I above and discuss the difference. 

6. Derive (2.9) by adding (2.7) and (2.8). 

7. "Derive" (2.3) by combining (1.3), (1.5), (1.8), and (2.1). 

*8. Computer problem. 
(a) Insert numerical values of your choice into (2.9) and plot the result. For 

example, set a constant time (e.g. t = 0) and vary Ilk. 
(b) Add more than two equations of the type of (2.7) and (2.8) by using different 

values of Ilw and plot the result. Does this indeed reduce the number of wave 
packets, as stated in the text? Compare to Fig. 2.3. 



CHAPTER 3 

The Schrodinger Equation 

We shall now make use of the conceptual ideas which we introduced in the 
previous chapter, i.e., we shall cast, in mathematical form, the description of 
an electron as a wave, as suggested by Schrodinger in 1926. All "deriva­
tions" of the Schrodinger equation start in one way or another from certain 
assumptions, which cause the uninitiated reader to ask the legitimate ques­
tion, "Why just in this way?" The answer to this question can naturally be 
given, but these explanations are relatively involved. In addition, the "deri­
vations" of the Schrodinger equation do not further our understanding of 
quantum mechanics. It is, therefore, not intended to "derive" here the 
Schrodinger equation. We consider this relation as a fundamental equation 
for the description of wave properties of electrons, just as the Newton equa­
tions describe the matter properties of large particles. 

3.1. The Time-Independent Schrodinger Equation 
The time-independent Schrodinger equation will always be applied when the 
properties of atomic systems have to be calculated in stationary conditions, 
i.e., when the property of the surroundings of the electron does not change 
with time. This is the case for most of the applications which will be dis­
cussed in this text. Thus, we introduce, at first, this simpler form of the 
Schrodinger equation in which the potential energy (or potential barrier), V, 
depends only on the location (and not, in addition, on the time). Therefore, 
the time-independent Schrodinger equation is an equation of a vibration. It 
has the following form: 

(3.1) 
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where 

2 a2tjJ a2tjJ a2tjJ 
V tjJ = ax2 + ay2 + az2 ' (3.2) 

and m is the (rest) mass of the electron,2 and 

E = Ekm + V (3.3) 

is the total energy of the system. E provides values for allowed energies once 
tjJ and V are given, as we shall see later on. 

In (3.1) we wrote for the wave function a lowercase tjJ, which we will use 
from now on when we want to state explicitly that the wave function is only 
space dependent. Thus, we split from 'I' a time-dependent part: 

'I'(x, y, z, t) = tjJ(x, y, z) . eIW!. (3.4) 

*3.2. The Time-Dependent Schrodinger Equation 

The time-dependent Schrodinger equation is a wave equation, because it 
contains derivatives of 'I' with respect to space and time (see below, (3.8)). 
One obtains this equation from (3.1) by eliminating the total energy, 

E = vh = wli, (2.1) 

where w is obtained by differentiating (3.4) with respect to time: 

aa~ = tjJiwe lW! = 'I'iw. 

This yields 

i a'I' 
w=---. 

'I' at 

Combining (2.1) with (3.6) provides 

Iii a'I' 
E=-'I'at· 

Finally, combining (3.1) with (3.7) yields 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

It should be noted here that quantum mechanical equations can be obtained 
from classical equations by applying differential operators to the wave func-

2 In most cases we shall denote the rest mass by m instead of mo. 
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tion'¥ (Hamiltonian operators). They are 

E == -hi :t (3.9) 

and 
p == -hiV. (3.10) 

When these operators are applied to 

(3.11 ) 

we obtain 

-hi a'¥ = h
2
i
2 

V2,¥ + V'¥ 
at 2m ' 

(3.12) 

which yields, after rearranging, the time-dependent Schrodinger equation 
(3.8). 

*3.3. Special Properties of Vibrational Problems 

The solution to an equation for a vibration is determined, except for certain 
constants. These constants are calculated by using boundary or starting 
conditions 

(e.g., IjI=Oatx=O). (3.13) 

As we will see in Section 4.2, only certain vibrational forms are possible 
when boundary conditions are imposed. This is similar to the vibrational 
forms of a vibrating string, where the fixed ends cannot undergo vibrations. 
Vibrational problems that are determined by boundary conditions are called 
boundary or eigenvalue problems. It is a peculiarity of vibrational problems 
with boundary conditions that not all frequency values are possible and, 
therefore, because of 

E= vh, (3.14) 

not all values for the energy are allowed (see next chapter). One calls the 
allowed values eigenvalues. The functions IjI, which belong to the eigen­
values and which are a solution of the vibration equation and, in addition, 
satisfy the boundary conditions, are called eigenfunctions of the differential 
equation. 

In Section 2 we related the product IjIIjI* (which is called the "norm") to 
the probability of finding a particle at a given location. The probability of 
finding a particle somewhere in space is one, or 

JIjIIjI*dr= J,IjI,2 dr =1. (3.15) 

Equation (3.15) is called the normalized eigenfunction. 
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Problems 

1. Write a mathematical expression for a vibration (vibrating string, for example) 
and for a wave. (See Appendix 1.) Familiarize yourself with the way these dif­
ferential equations are solved. What is a "trial solution?" What is a boundary 
condition? 

2. Define the terms "vibration" and "wave." 

3. What is the difference between a damped and an undamped vibration? Write the 
appropriate equations. 

4. What is the complex conjugate function of: 
(a) x = a + hi; and 
(b) ,¥=2AisinIXx. 



CHAPTER 4 

Solution of the Schrodinger Equation 
for Four Specific Problems 

4 .1. Free Electrons 

At first we solve the Schrodinger equation for a simple but, nevertheless, 
very important case. We consider electrons which propagate freely, i.e., in a 
potential-free space in the positive x-direction. In other words, it is assumed 
that no "wall," i.e., no potential barrier (V), restricts the propagation of the 
electron wave. The potential energy V is then zero and the Schrodinger 
equation (3.1) assumes the following form: 

d 2l/1 2m 
-d 2 + -2 El/I = O. x Ii 

( 4.1) 

This is a differential equation for an undamped vibration3 with spatial peri­
odicity whose solution is known to be3 

l/I(x) = Ae"'X, (4.2) 

where 

a= J~~ E. (4.3) 

(For our special case we do not write the second term in (A.5)3, 

u = Ae"lX + Be-l l1.x, (4.4) 

3 See AppendIx 1. 
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E 

Figure 4.1. Energy continuum of a free electron (compare with Fig. 4.3). 

because we stipulated above that the electron wave3 

'P(x) = Ae 'IXX 
• e'(J)/ 
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(4.5) 

propagates only in the positive x-direction and not, in addition, in the nega­
tive x-direction.) 

From (4.3), it follows that 

(4.6) 

Since no boundary condition had to be considered for the calculation of the 
free-flying electron, all values of the energy are "allowed," i.e., one obtains 
an energy continuum (Fig. 4.1). This statement seems to be trivial at this 
point. The difference to the bound electron case will become, however, evi­
dent in the next section. 

Before we move ahead, let us combine equations (4.3), (2.3), and (1.4), i.e., 

ct = J2:2E = t = 2; = k, (4.7) 

which yields 

(4.8) 

The term 2n/..1. was defined in (2.5) to be the wave number, k. Thus, ct is here 
identical with k. We see from (4.7) that the quantity k is proportional to the 
momentump and, because ofp = mv, also proportional to the velocity of the 
electrons. Since both momentum and velocity are vectors, it follows that k is 
a vector, too. Therefore, we actually should write k as a vector which has the 
components kx, ky, and kz: 

Ikl =2;. (4.9) 

Since k is inversely proportional to the wavelength, A, it is also called the 
"wave vector." We shall use the wave vector in the following sections fre-
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quently. The k-vector describes the wave properties of an electron, just as 
one describes in classical mechanics the particle property of an electron with 
the momentum. As mentioned above, k and p are mutually proportional, as 
one can see from (4.7). The proportionality factor is l/h. 

4.2. Electron in a Potential Well (Bound Electron) 

We now consider an electron that is bound to its atomic nucleus. For sim­
plicity, we assume that the electron can move freely between two infinitely 
high potential barriers (Fig. 4.2). The potential barriers do not allow the 
electron to escape from this potential well, which means that tjJ = 0 for x ~ 0 
and x ~ a. We first treat the one-dimensional case just as in Section 4.1, i.e., 
we assume that the electron propagates only along the x-axis. However, be­
cause the electron is reflected on the walls of the well, it can now propagate 
in the positive, as well as in the negative, x-direction. In this respect, the 
present problem is different from the preceding one. The potential energy 
inside the well is zero, as before, so that the Schrodinger equation for an 
electron in this region can be written, as before, 

d2 tjJ 2m 
-d 2 +-2 EtjJ=O. 

x h 
(4.10) 

Because of the two propagation directions of the electron, the solution of 
(4.10) is 

(4.11 ) 

(see Appendix 1), where 

(4.12) 

We now determine the constants A and B by means of boundary con­
ditions. We just mentioned that at x ~ 0 and x ~ a the tjJ function is zero. 

00 

vt I 

00 
I 

o nucleus a x 

Figure 4.2. One-dimensional potential well. The walls consist of infinitely high 
potential barriers. 
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This boundary condition is similar to that known for a vibrating string, 
which does not vibrate at the two points where it is clamped down. (See also 
Fig. 4.4(a).) Thus, for x = 0 we stipulate t/I = O. Then we obtain from (4.11) 

B=-A. ( 4.13) 

Similarly, we stipulate t/I = 0 for x = a. Using this boundary condition and 
(4.13), equation (4.11) becomes 

(4.14) 

With the Euler equation 

1. . 
sinp = 2i (e 'p - e- IP

) ( 4.15) 

(see Appendix 2), we rewrite Equation (4.14) 

A [eilX<l - e-i<XQ] = 2Ai . sin rxa = O. (4.16) 

Equation (4.16) is only valid ifsinrxa = 0, i.e., if 

rxa = nn, n = 0, 1,2,3, .... ( 4.17) 

(because 2, A, and i cannot be zero). 
Substituting the value ofrx from (4.12) into (4.17) provides 

n = 1,2,3, .... ( 4.18) 

(We exclude n = 0, which would yield t/I = 0, that is, no electron wave.) We 
notice immediately a striking difference from the case in Section 4.1. Because 
of the boundary conditions, only certain solutions of the Schrodinger equa­
tion exist, namely those for which n is an integer. In the present case the 
energy assumes only those values which are determined by (4.18). All other 
energies are not allowed. The allowed values are called "energy levels." They 

E 

Es=25C n=5 

E4 =16C n=4 

E3=9C n=3 
E2 =4C n=2 
E1=1C n=1 

Figure 4.3. Allowed energy values of an electron that is bound to its atomic nucleus. 
E is the excitation energy in the present case. C = h2

11:2 /2ma 2 , see (4.18). (E1 is the 
zero-point energy.) 
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are shown in Fig. 4.3 for a one-dimensional case. Because of the fact that an 
electron of an isolated atom can assume only certain energy levels, it follows 
that the energies which are excited or absorbed also possess only discrete 
values. The result is called an "energy quantization." The lowest energy that 
an electron may assume is called the "zero-point energy". It can be calcu­
lated from (4.18) for n = 1. In other words, the lowest energy of the electron 
is not that of the bottom of the potential well, but rather a slightly higher 
value. 

We discuss now the wave function, 1jJ, and the probability 1jJ1jJ* for finding 
an electron within the potential well (see Chapter 2). According to (4.11), 
(4.13), and the Euler equation (4.15), we obtain within the well 

IjJ = 2Ai . sin ax, 

and the complex conjugate of IjJ 

1jJ* = -2Ai sin ax. 

The product 1jJ1jJ* is then 

( 4.19) 

(4.20) 

1jJ1jJ*=4A 2 sin2 ax. (4.21) 

Equations (4.19) and (4.21) are plotted for various n-values in Fig. 4.4. From 
Fig. 4.4(a), we see that standing electron waves are created between the walls 
of the potential well. Note that integer multiples of half a wavelength are 
equal to the length, a, of the potential well. The present case, in its mathe­
matical treatment, as well as in its result, is analogous to that of a vibrating 
string. 

Of special interest is the behavior of the function IjJIjJ *, i.e., the probability 
of finding the electron at a certain place within the well (Fig. 4.4(b)). In the 
classical case the electron would travel back and forth between the walls. Its 
probability function would therefore be equally distributed along the whole 
length of the well. In wave mechanics the deviation from the classical case is 

10-.---o-----i.1 1---" --- a -----'.I 
(a) (b) (c) 

Figure 4.4. (a) I{! function and (b) probability function I{!I{!* for an electron in a 
potential well for different n-values. (c) Allowed electron orbit of an atom. 
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most pronounced for n = 1. In this case, t/lt/I* is largest in the middle of the 
well and vanishes at the boundaries. For n = 2, the probability of finding an 
electron at the center of the well (and at the boundaries) is zero, whereas the 
largest t/lt/I* is found at Ij4a and 3j4a. For successively higher n-values, i.e., 
for higher energies, the wave mechanical values for t/lt/I* are eventually 
approaching the classical value. 

In order to deepen the understanding of the behavior of bound electrons, 
the reader is reminded of the Rutherford model (Chapter 2), in which the 
electrons are described to move in distinct orbits about a positively charged 
nucleus. Similarly, as shown in Fig. 4.4(a), the electron waves associated 
with an orbiting electron have to be standing waves. If this were not the case, 
the wave would be out of phase with itself after one orbit. After a large 
number of orbits, all possible phases would be obtained and the wave would 
be annihilated by destructive interference. This can only be avoided if a 
radius is chosen so that the wave joins on itself (Fig. 4.4(c)). In this case the 
circumference, 271:r, of the orbit is an integer multiple, n, of the wavelength, 
A, or 

271:r = nA, (4.22) 

which yields 

(4.23) 

This means that only certain distinct orbits are allowed, which brings us 
back to the allowed energy levels which we discussed above. Actually, this 
model was proposed in 1913 by Niels Bohr. 

*For the above discussions, we did not need to evaluate the constant 'A'. 
Those readers who are interested in this detail may simply rewrite (4.21) in 
conjunction with (3.15): 

J
a Ja 4A 

2 
[ 1 ax] a 

o t/lt/I* dx = 4A2 0 sin2(ax) dx = --;- -"2 sin axcos ax + 2 0=1. 

(4.24) 

Inserting the boundaries in (4.24) and using (4.17) provides 

A=/f. (4.25) 

*The results that are obtained by considering an electron in a square well 
are similar to the ones which one receives when the wave mechanical prop­
erties of a hydrogen atom are calculated. As above, one considers an electron 
with charge -e to be bound to its nuc4:us. The potential, V, in which the 
electron propagates is taken as the Coufombic potential V = _e2 j ( 471:eor). 
Since V is a function of the radius, r, the Schr6dinger equation is more con­
veniently expressed in polar coordinates. Of main interest are, again, the 
conditions under which solutions to this Schr6dinger equation exist. The 
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------n=3 
------n=2 

-_1_3._6_eV ____ n= 1 
(Ionization energy) 

Figure 4.5. Energy levels of atomic hydrogen. E is the binding energy. 

treatment leads, similarly as above, to discrete energy levels: 

rne4 I I 
E= 22"=-13.6·2"(eV). 

2(4neoh) n n 
(4.18a) 

The main difference compared to the square well model is, however, that the 
energy is now proportional to -1/n2 (and not to n2 as in (4.18)). This results 
in a "crowding" of energy levels at higher energies. The energy at the lowest 
level is called the ionization energy, which has to be supplied to remove an 
electron from its nucleus. Energy diagrams, as in Fig. 4.5, are common in 
spectroscopy. The origin of the energy scale is arbitrarily set at n = 00 and 
the ionization energies are counted negative. Since we are mainly concerned 
with the solid state, the detailed calculation of the hydrogen atom is not 
treated here. 

*So far, we have considered the electron to be confined to a one­
dimensional well. A similar calculation for a three-dimensional potential 
well ("electron in a box") leads to an equation which is analogous to (4.18): 

h2 2 n 2 2 2 
En = -2 2 (nx + ny + nz )· 

rna 
(4.26) 

The smallest allowed energy in a three-dimensional potential well is occu­
pied by an electron if nx = ny = nz = I. For the next higher energy there are 
three different possibilities for combining the n-values; namely, (nx, ny, nz ) = 
(I, 1,2), (1,2, I), or (2, I, I). One calls the states which have the same energy 
but different quantum numbers "degenerate" states. The example just given 
describes a threefold degenerate energy state. 

4.3. Finite Potential Barrier (Tunnel Effect) 

Let us assume that a free electron, propagating in the positive x-direction, 
encounters a potential barrier whose potential energy, Vo, ("height" of the 
barrier) is larger than the total energy, E, of the electron, but is still finite 
(Fig. 4.6). For this case we have to write two Schrodinger equations, which 
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v 

I 

o----------~~- x 
Figure 4.6. Finite potential barrier. 

take into account the two different areas. In region I (x < 0) the electron is 
assumed to be free, and we can write 

(I) 
d 2 t/1 2m 
-d 2 + -2 Et/I = O. 

x h 

Inside the potential barrier (x > 0) the Schrodinger equation reads 

(II) 
d 2t/1 2m 
-d 2 + -2 (E - Vo)t/I = O. 

x h 

The solutions to these equations are as before (see Appendix 1): 

(I) t/lI = Aeic<x + Be-ic<x, 

where 

_j2mE 
IX- 7' 

and 

(II) t/ln = Ce iPx + De-iPx , 

with 

P = j:7 (E - Vo)· 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31 ) 

(4.32) 

A word of caution has to be inserted here. We stipulated above that Vo is 
larger than E. As a consequence of this (E - Vo) is negative and P becomes 
imaginary. To prevent this, we define a new parameter: 

y = ip. (4.33) 

This yields, for (4.32), 

(4.34) 

The parameter y is now prevented under the stated conditions from becom­
ing imaginary. Rearranging (4.33) to obtain 

P=~ 
I 

( 4.35) 
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and inserting (4.35) into (4.31) yields 

"'II = Ce
YX + De-Yx

• (4.36) 

Next, one of the constants C or D needs to be determined by means of a 
boundary condition: 

For x ~ CI) it follows from (4.36) that 

"'II = C· CI) + D . o. (4.37) 

The consequence of (4.37) could be that "'II and therefore "'II"'t, are 
infinity. 

Since the probability"''''' can never be larger than one (certainty), "'II ~ CI) is no solution. To avoid this, C has to go to zero: 

C~o. (4.38) 
Then, (4.36) reduces to 

(4.39) 

which reveals that the ",-function decreases in Region II exponentially, as 
shown in Fig. 4.7 (solid line). The decrease is stronger the larger y is chosen, 
i.e., for a large potential barrier, Vo. 

The electron wave 'P(x, t) is then given, using (A.27) and (4.39), by 

(damped wave) as shown by the dashed curve in Fig. 4.7. In other words, 
(4.39) provides the envelope (or decreasing amplitude) for the electron wave 
that propagates in the finite potential barrier. If the potential barrier is only 
moderately high and relatively narrow, the electron wave may continue on 
the opposite side of the barrier. This behavior is analogous to that for a light 
wave, which likewise penetrates to a certain degree into a material and 
whose amplitude also decreases exponentially, as we shall see in the optics 
part of this book, specifically in Fig. 10.4. The penetration of a potential 
barrier by an electron wave is called "tunneling" and has important appli­
cations in solid state physics (tunnel diode, tunnel electron microscope, 
field ion microscope). Tunneling is a quantum mechanical effect. In classical 

Vo 

x 

Figure 4.7. ",-function (solid line) and electron wave (dashed line) meeting a finite 
potential barrier. 
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physics, the electron (particle) would be described to be entirely reflected 
back from the barrier (at x = 0) if its kinetic energy is smaller than Vo. 

*For the complete solution of the behavior of an electron wave that 
penetrates a finite potential barrier (Fig. 4.6), some additional boundary 
conditions need to be taken into consideration: 

(1) The functions t/lI and t/ln are continuous at x = O. As a consequence, 
t/lI = t/ln at x = O. This yields, with (4.29), (4.36), and (4.38), 

Ae ilXX + Be- ilXX = De-Yx . 

With x = 0, we obtain 

A+B=D. (4.40) 

(2) The slopes of the wave functions in Regions I and II are continuous at 
x = 0, i.e., (dt/lddx) = (dt/ln/dx). This yields 

(4.41 ) 

With x = 0, one obtains 
AilX - BilX = -yD. (4.42) 

Inserting (4.40) into (4.42) yields 

(4.43) 

and 

D ( .Y) B = 2 1 -l~ . (4.43a) 

From this, the t/I-functions can be expressed in terms of a constant D. Figure 
4.8 illustrates the modification of Fig. 4.4(a) when tunneling is taken into 
consideration. A penetration of the t/I-function into the potential barriers is 
depicted. 

~~--------~--------~~n=2 

n=1 
.-------a-------- x 

Figure 4.8. Square well with finite potential barriers. (The zero points on the vertical 
axis have been shifted for clarity.) 



28 I. Fundamentals of Electron Theory 

4.4. Electron in a Periodic Field of a Crystal 
(the Solid State) 

In the preceding sections we became acquainted with some special cases, 
namely, the completely free electron and the electron which is confined to a 
potential well. The goal of this section is to study the behavior of an electron 
in a crystal. We will see eventually that the extreme cases which we treated 
previously can be derived from this general case. 

Our first task is to find a potential distribution that is suitable for a solid. 
From high resolution transmission electron microscopy and from X-ray dif­
fraction investigations, it is known that the atoms in a crystal are arranged 
periodically. Thus, for the treatment of our problem a periodic repetition of 
the potential well of Fig. 4.2, i.e., a periodic arrangement of potential wells 
and potential barriers, is probably close to reality and is also best suited for 
a calculation. Such a periodic potential is shown in Fig. 4.9 for the one­
dimensional case. 4 

The potential distribution shows potential wells of length G, which we call 
Region I. These wells are separated by potential barriers of height Vo and 
width b (Region II), where Vo is assumed to be larger than the energy E of 
the electron. 

This model is certainly a coarse simplification of the actual potential dis­
tribution in a crystal. It does not take into consideration that the inner elec­
trons are more strongly bound to the core, i.e., that the potential function of 
a point charge varies as l/r. It also does not consider that the individual 
potentials from each lattice site overlap. A potential distribution which takes 
these features into consideration is shown in Fig. 4.10. It is immediately evi­
dent, however, that the latter model is less suitable for a simple calculation 
than the one which is shown in Fig. 4.9. Thus, we utilize the model shown in 
Fig. 4.9. 

v 

n I 

-b 0 a x 

Figure 4.9. One-dimensional periodic potential distribution (simplified) (Kronig­
Penney model). 

4R. De. L. Kronig and W.G. Penney, Proc. Roy. Soc. London, 130,499 (1931). 
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v 

Surface potential 

x 

Figure 4.10. One-dimensional periodic potential distribution for a crystal (muffin tin 
potential) . 

We now write the Schrodinger equation for Regions 1 and II: 

(I) 

(II) 

d2tjJ 2m 
-d 2 + -2 EtjJ = 0, 

x h 

d2tjJ 2m 
-d 2 + -2 (E - Vo)tjJ = o. 

x h 

For abbreviation we write, as before, 

2 _ 2mE 
IX - h2 ' 

and 
2 2m 

y = -2 (Vo - E). 
h 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(y2 is chosen in a way to keep it from becoming imaginary, see Section 4.3.) 
Equations (4.44) and (4.45) need to be solved simultaneously, a task which 
can be achieved only with considerable mathematical effort. Bloch5 showed 
that the solution of this type of equation has the following form: 

tjJ(x) = u(x) . eikx (4.48) 

(Bloch function), where u(x) is a periodic function which possesses the peri­
odicity of the lattice in the x-direction. Therefore, u(x) is no longer a con­
stant (amplitude A) as in (4.2), but changes periodically with increasing x 
(modulated amplitude). Of course, u(x) is different for various directions in 
the crystal lattice. 

The reader who is basically interested in the results, and their implications 
for the electronic structure of crystals, may skip the mathematical treatment 
given below and refer directly to (4.67). 

SF. Bloch, Z. Phys. 52, 555 (1928); 59, 208 (1930). 
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Differentiating the Bloch function (4.48) twice with respect to x provides 

d
2

t/1 = (d
2
u du 2·k _ k2 ) ikx 

dx2 dx2 + dx I u e . (4.49) 

We insert (4.49) into (4.44) and (4.45) and take into account the abbrevia­
tions (4.46) and (4.47): 

(I) 
d 2u . du 2 2 - + 21k- - (k - IX )u = 0, 
dx2 dx 

(4.50) 

d 2u . du 2 2 
-+21k-- (k +y )u = o. 
dx2 dx 

(II) (4.51) 

Equations (4.50) and (4.51) have the form of an equation of a damped 
vibration. The solution6 to (4.50) and (4.51) is 

(I) u = e-ikx(AeiU + Be-i~x), 
(II) u = e-ikx ( Ce-Yx + De YX ). 

(4.55) 

(4.56) 

We have four constants A, B, C, and D which we need to dispose of by 
means of four boundary conditions: The functions t/I and dt/l / dx pass over 
continuously from Region 1 into Region II at the point x = o. Equation 1 = 
Equation II for x = 0 yields 

A+B=C+D. 

(du/dx) for 1 = (du/dx) for II at x = 0 provides 

AUIX - ik) + B( -iIX - ik) = C( -y - ik) + D(y - ik). 

(4.57) 

( 4.58) 

Further, t/I, and therefore u, is continuous at the distance (a + b). This 
means that Equation 1 at x = 0 must be equal to Equation II at x = a + b, 
or, more simply, Equation 1 at x = a is equal to Equation II at x = -b (see 
Fig. 4.9). This yields 

(4.59) 

6 Differential equation of a damped vibration for spatial periodicity (see Appendix I) 

d2u du 
dx2 + D dx + Cu = o. (4.52) 

Solution: 

(4.53) 

where 

(4.54) 
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Finally, (dujdx) is periodic in a + b: 

Ai(a - k)eia(rx-k) - Bi(a + k)e-za(rx+k) 

= -C(y + ik)e(ik+Y)b + D(y - ik)e(ik-y)b. (4.60) 

The constants A, B, C, and D can be determined by means of these four 
equations which, when inserted in (4.55) and (4.56), provide values for u. 
This also means that solutions for the function IjJ can be given by using 
(4.48). However, as in the preceding sections, the knowledge of the IjJ func­
tion is not of primary interest. We are searching instead for a condition 
which tells us where solutions to the Schrodinger equations (4.44) and (4.45) 
exist. We recall that these limiting conditions were leading to the energy 
levels in Section 4.2. We proceed here in the same manner. We use the four 
equations (4.57)-(4.60) and eliminate the four constants A-D. (This can be 
done by simple algebraic manipulation or by forming the determinant out of 
the coefficients A-D and equating this determinant to zero). The lengthy 
calculation provides, using some Euler equations, 7 

y2 _ a2 
-2- sinh(yb) . sin(aa) + cosh(yb) cos(aa) = cosk(a + b). 

ay 
(4.61 ) 

For simplification of the discussion of this equation we make the following 
stipulation. The potential barriers in Fig. 4.9 will be of the kind such that b 
is very small and Vo is very large. It is further assumed that the product Vob, 
i.e., the area of this potential barrier, remains finite. In other words, if Vo 
grows, b diminishes accordingly. The product Vob is called the potential 
barrier strength. 

If Vo is very large, then E in (4.47) can be considered to be small com­
pared to Vo and can therefore be neglected so that 

y=~VVo. (4.62) 

Multiplication of (4.62) by b yields 

yb = ~J(Vob)b. (4.63) 

Since Vob has to remain finite (see above) and b ---> 0 it follows that yb be­
comes very small. For a small yb we obtain (see tables of the hyperbolic 
functions) 

cosh(yb) ~ 1 and sinh(yb) ~ yb. (4.64) 

7 See Appendix 2. 
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Finally, one can neglect rx 2 compared to y2 and b compared to a (see 
(4.46), (4.47), and Fig. 4.9) so that (4.61) reads as follows: 

With the abbreviation 

m
2 

Vob sin rxa + cos rxa = cos ka. 
rxh 

we finally get from (4.65) 

sin rxa 
P--+ cosrxa = coska. 

rxa 

(4.65) 

(4.66) 

(4.67) 

This is the desired relation which provides the allowed solutions to the 
Schrodinger equations (4.44) and (4.45). We notice that the boundary con­
ditions lead to an equation with trigonometric function similarly as in Sec­
tion 4.2. Therefore, only certain values of rx are possible. This in turn means, 
because of (4.46), that only certain values for the energy E are defined. One 
can assess the situation best if one plots the function P( sin rxa / rxa) + cos rxa 
versus rxa, which is done in Fig. 4.11 for P = (3/2)n. It is of particular sig­
nificance that the right-hand side of (4.67) allows only certain values of this 
function because coska is only defined between +1 and -1 (except for 
imaginary k-values). This is shown in Fig. 4.11, in which the allowed values 
of the function P(sinrxa/rxa) +cosrxa are marked by heavy lines on the 
rxa-aXlS. 

We arrive herewith at the following very important result: Because rxa is a 
function of the energy, the above-mentioned limitation means that an elec­
tron that moves in a periodically varying potential field can only occupy 

6 

«0 
+----+-7~~--~~-----

Figure 4.11. Function P(sinrt.a/aa) + cosrt.a versus aa. P was arbitrarily set to be 
(3/2)n. 
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Figure 4.12. Function P(sinrxa/rxa) + cosrxa with P = n/lO. 
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certain allowed energy zones. Energies outside of these allowed zones or 
"bands" are prohibited. One sees from Fig. 4.11 that with increasing values 
of rxa (i.e., with increasing energy), the disallowed (or forbidden) bands be­
come narrower. The size of the allowed and forbidden energy bands varies 
with the variation of P. Below, four special cases will be discussed. 

(a) If the "potential barrier strength" Vob (see Fig. 4.9) is large, then, ac­
cording to (4.66), P is also large and the curve in Fig. 4.11 proceeds 
more steeply. The allowed bands are narrow. 

(b) If the potential barrier strength, and therefore P, is small, the allowed 
bands become wider (see Fig. 4.12). 

(c) Ifthe potential barrier strength becomes smaller and smaller and finally 
disappears completely, P goes toward zero, and one obtains from (4.67) 

cos rxa = cos ka 

or rx = k. From this it follows, with (4.46), that 

h2k 2 

E= 2m. 

(4.68) 

This is the well-known equation (4.8) for free electrons which we derived 
in Section 4.1. 

(d) If the potential barrier strength is very large, P approaches infinity. 
However, because the left-hand side of (4.67) has to stay within the lim­
its ± 1, i.e., it has to remain finite, it follows that 

sin rxa --+ 0 
rxa ' 

i.e., sin rxa --+ O. This is only possible if rxa = nn or 

for n = 1,2,3, .... (4.69) 
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E 

(a) (b) (c) 

Figure 4.13. Allowed energy levels for (a) bound electrons, (b) free electrons, and 
(c) electrons III a solid. 

Combining (4.46) with (4.69) yields 

n2Ji2 
E=-2 2· n2 , 

rna 

which is the result of Section 4.2, equation (4.18). 

We summarize (Fig. 4.13): If the electrons are strongly bound, i.e., if the 
potential barrier is very large, one obtains sharp energy levels (electron in the 
potential field of one ion). If the electron is not bound, one obtains a con­
tinuous energy region (free electrons). If the electron moves in a periodic 
potential field, one receives energy bands (solid). 

The widening of the energy levels into energy bands and the transition into 
a quasi-continuous energy region is shown in Fig. 4.14. This widening occurs 
because the atoms increasingly interact as their separation distance de­
creases. The arrows a, b, and c refer to the three sketches of Fig. 4.13. 

FIgure 4.14. Wldenlllg of the sharp energy levels into bands and finally into a quasi­
contilluous energy regIOn WIth decreaslllg interatomic distance, a, for a metal (after 
calculatIOns of Slater). The quantum numbers are explained in Appendix 3. 



4. SolutIOn of the Schr6dmger EquatIOn for Four Specific Problems 

Problems 

1. Describe the energy for: 
(a) a free electron; 
(b) a strongly bound electron; and 
(c) an electron in a periodic potential. 
Why do we get these different band schemes? 
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2. Computer problem. Plot "''''. for an electron in a potential well. Vary n from 1 to 
-100. What conclusions can be drawn from these graphs? (Hint: If for large 
values for n you see strange periodic structures, then you need to choose more 
data points!) 

3. State the two Schrodinger equations for electrons in a periodic potential field 
(Kronig-Penney model). Use for their solutions, instead of the Bloch function, 
the trial solution 

",(x) = Ae'kx. 

Discuss the result. (Hint: For free electrons Vo = 0.) 

*4. When treating the Kronig-Penney model, we arrived at four equations for the 
constants A, B, C, and D. Confirm (4.61). 

5. The differential equation for an undamped vibration is 

d2u 
a dx2 +bu = 0, (1) 

whose solution is 

u = Ae'kx + Be-,kx, (2) 

where 

k = ..[iJJa. (3) 

Prove that (2) is indeed a solution of (1). 

6. Calculate the "ionization energy" for atomic hydrogen. 

7. Derive (4.l8a) in a semiclassical way by assuming that the centripetal force of 
an electron, mv2 /r, is counterbalanced by the Coulombic attraction force, 
-e2/4neor2, between the nucleus and the orbiting electron. Use Bohr's postulate 
which states that the angular momentum L = mvr (v = linear electron velocity 
and r = radius of the orbiting electron) is a multiple integer of Planck's constant 
(i.e., n . h). (Hint: The kinetic energy of the electron is E = !mv2

.) 

8. Computer problem. Plot equation (4.67) and vary values for P. 

9. Computer problem. Plot equation (4.39) for various values for D and y. 

10. The width of the potential well (Fig. 4.2) of an electron can be assumed to be 
about 2 A. Calculate the energy of an electron (in Joules and in eV) from this 
information for various values of n. Give the zero-point energy. 



CHAPTER 5 

Energy Bands in Crystals 

5 .1. One-Dimensional Zone Schemes 

We are now in a position to make additional important statements which 
contribute considerably to the understanding of the properties of crystals. 
For this we plot the energy versus the momentum of the electrons, or, be­
cause of (4.8), versus the wave vector, k. As before, we first discuss the one­
dimensional case. 

The relation between E and kx is particularly simple in the case of free 
electrons, as can be seen from (4.8), 

(5.1 ) 

The plot of E versus kx is a parabola (Fig. 5.1). 
We return now to (4.68), which we obtained from (4.67) for P = ° (free 

electrons). Because the cosine function is periodic in 2n, (4.68) should be 
written in the more general form 

cos aa = coskxa == cos(kxa + n2n), 

where n = 0, ±l, ±2, .... This gives 

aa = kxa + n2n. 

Combining (4.8), 

with (5.3) yields 

k 2n_~mEl/2 x+n - 2 • 
a h 

36 

(5.2) 

(5.3) 

(5.4) 
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[ 

Figure 5.1. Electron energy E versus the wave vector kx for free electrons. 

We see from (5.4) that in the general case the parabola, shown in Fig. 5.1, is 
repeated periodically in intervals of n· 2nja (Fig. 5.2). The energy is thus a 
periodic function of kx with the periodicity 2nja. 

We noted, when discussing Fig. 4.11, that if an electron propagates in a 
periodic potential we always observe discontinuities of the energies when 
cos kxa has a maximum or a minimum, i.e., when cos kxa = ± 1. This is only 
the case when 

or 

kxa = nn, n = ±l, ±2, ±3, ... , 

n 
kx = n .-. 

a 

(5.5) 

(5.6) 

At these singularities a deviation from the parabolic E versus kx curve 

F 

Figure 5.2. Periodic repetition of Fig. 5.1 at the points kx = n· 2n/a. The figure 
depicts a family of free electron parabolas having a periodicity of ±2n/a. 
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Figure 5.3. Periodic zone scheme. 

occurs and the branches of the individual parabolas merge into the neigh­
boring ones. 8 This is shown in Fig. 5.3. 

The aforementioned consideration leads to a very important result. The 
electrons in a crystal behave, for most kx values, like free electrons, except 
when kx approaches the value n· n/a. 

Besides this "periodic zone scheme" (Fig. 5.3), two further zone schemes 
are common. In the future we will use mostly the "reduced zone scheme" 
(Fig. 5.4), which is a section of Fig. 5.3 between the limits ± n/ a. In the 

8 If two energy functions with equal symmetry cross, the quantum mechanical "noncrossing 
rule" reqUires that the eigenfunctions be split, so that they do not cross. 

o 1!. k 
a • 

~-Band 

Figure 5.4. Reduced zone scheme. (This is a section of Fig. 5.3 between -n/a and 
+n/a.) 
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Figure 5.5. Extended zone scheme. The first and second Brillouin zones (BZ) are 
shown, see Section 5.2. 

"extended zone scheme" (Fig. 5.5), the deviations from the free electron 
parabola at the critical points kx = n· rc/a are particularly easy to identify. 

Occasionally, it is useful to plot free electrons in a reduced zone scheme. In 
doing so, one considers the width of the forbidden bands to be reduced until 
the energy gap between the individual branches disappears completely. This 
leads to the "free electron bands" which are shown in Fig. 5.6 for a special 
case. The well-known band character disappears for free electrons, however, 
and one obtains a continuous energy region as explained in Section 4.1. As 
before, the shape of the individual branches in Fig. 5.6 is due to the 2rc/ a 
periodicity, as a comparison with Fig. 5.2 shows. From (5.4), it follows 
that 

n=O,±I,±2, .... (5.7) 

By inserting different n-values in (5.7), one can calculate the shape of the 
branches of the free electron bands. A few examples might illustrate this: 

n = 0 yields E = ;~ k; (parabola with ° as origin); 

n = - 1 yields E = ;~ (kx - 2
a
rc Y (parabola with 2: as Origin) ; 

rc 2h2 

specifically, for kx = ° follows E = 4 2ma2 ; 

rc rc2h2 

and for kx = a follows E = 1 2ma2 . 
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Figure 5.6. "Free electron bands" plotted in the reduced zone scheme (cubic primi­
tive crystal structure). Compare this figure with the central portion of Fig. 5.2, that is, 
with the region from zero to n/a. Note the sameness of the individual bands. 

The calculated data are depicted in Fig. 5.6. (The calculation of the remain­
ing branches (bands) is left to the reader, see Problem 5.) 

One important question has remained essentially unanswered: What do 
these E versus Ikl curves really mean? Simply stated, they relate the energy of 
an electron to its k-vector, i.e., with its momentum. They provide in principle 
quite similar information as, for example, a distance versus time diagram for 
a moving car, or a "stress-strain diagram" in mechanical metallurgy, or a 
"phase diagram" in materials science. All these diagrams relate in graphic 
form one parameter with another variable in order to provide an easier inter­
pretation of data. We shall eventually learn to appreciate complete band 
diagrams in later chapters, from which we will draw important conclusions 
about the electronic properties of materials. 

In Figs. 5.3, 5.4, and 5.5 the individual allowed energy regions and the 
disallowed energy regions, called band gaps, are clearly seen. We call the 
allowed bands, for the time being, the n-band, or the m-band, and so forth. 
In later sections and particularly in semiconductor physics (see Chapter 8) we 
will call one of these bands the valence band (because it contains the valence 
electrons) and the next higher one the conduction band. 

An additional item needs to be mentioned: It is quite common to use the 
word "band" for both the allowed energy regions, such as the n-band or the 
m-band, as well as for the individual branches within a band as seen, for 
example, in Fig. 5.6. As a rule this does not cause any confusion. 

Finally, we need to stress one more point: The wave vector k is inversely 
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proportional to the wavelength of the electrons (see equation (4.9)). Thus, k 
has the unit of a reciprocal length and is therefore defined in "reciprocal 
space." The reader might recall from a course in crystallography that each 
crystal structure has two lattices associated with it, one of them being the 
crystal (or real) lattice and the other the reciprocal lattice. We will show in 
Section 5.5 how these two lattices are related. The following may suffice for 
the moment: each lattice plane in real space can be represented by a vector 
which is normal to this plane and whose length is made proportional to the 
reciprocal of the interplanar distance. The tips of all such vectors from sets 
of parallel lattice planes form the points in a reciprocal lattice. An X-ray 
diffraction pattern is a map of such a reciprocal lattice. 

5.2. One- and Two-Dimensional Brillouin Zones 

Let us again inspect Fig. 5.5. We noticed there that the energy versus kx 
curve, between the boundaries -n/a and +n/a, corresponds to the first 
electron band, which we arbitrarily labeled as n-band. This region in k-space 
between -n/a and +n/a is called the first Brillouin zone (BZ). Accordingly, 
the area between n/a and 2n/a, and also between -n/a and -2n/a, which 
corresponds to the m-band, is called the second Brillouin zone. In other 
words, the lowest band shown in Fig. 5.5 corresponds to the first Brillouin 
zone, the next higher band corresponds to the second Brillouin zone, and so 
on. Now, we learned above that the individual branches in an extended zone 
scheme (Fig. 5.5) are 2n/a periodic, i.e., they can be shifted by 2n/a to the 
left or to the right. We make use of this concept and shift the branch of the 
second Brillouin zone on the positive side of the E - (kx ) diagram in Fig. 5.5 
by 2n/a to the left, and likewise the left band of the second Brillouin zone 
by 2n/a to the right. A reduced zone scheme as shown in Fig. 5.4 is the re­
sult. Actually, we projected the second Brillouin zone into the first Brillouin 
zone. The same can be done with the third Brillouin zone, etc. This has 
very important implications: we do not need to plot E versus k-curves for 
all Brillouin zones; the relevant information is, because of the 2n/a period­
icity, already contained in the first Brillouin zone, i.e., in a reduced zone 
scheme. 

We now consider the behavior of an electron in the potential of a two­
dimensional lattice. The electron movement in two dimensions can be de­
scribed as before by the wave vector k that has the components kx and ky, 
which are parallel to the x- and y-axes in reciprocal space. Points in the 
kx - ky coordinate system form a two-dimensional reciprocal lattice (see Fig. 
5.7). One obtains, in the two-dimensional case, a two-dimensional field of 
allowed energy regions which corresponds to the allowed energy bands, i.e., 
one obtains two-dimensional Brillouin zones. 

We shall illustrate the construction of the Brillouin zones for a two­
dimensional reciprocal lattice (Fig. 5.7). For the first zone one constructs the 
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Figure 5.7. Four shortest lattice vectors in a kx - ky coordinate system and the 
first Brillouin zone in a two-dimensional reciprocal lattice. (Cubic primitive crystal 
structure.) 

perpendicular bisectors on the shortest lattice vectors, G,. The area that is 
enclosed by these four "Bragg planes" is the first Brillouin zone. For the 
following zones the bisectors of the next shortest lattice vectors are con­
structed. It is essential that for the zones of higher order the extended limit­
ing lines of the zones of lower order are used as additional limiting lines. The 
first four Brillouin zones are shown in Fig. 5.8. Note that all the zones have 

Figure 5.8. The first four Brillouin zones of a two-dimensional, cubic primitive 
reciprocaiiattice. 
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the same area. The first four shortest lattice vectors G1 through G4 are drawn 
in Fig. 5.7. 

The significance of the Brillouin zones will become evident in later sec­
tions, when the energy bands of solids are discussed. A few words of expla­
nation will be given here, nevertheless. The Brillouin zones are useful if one 
wants to calculate the behavior of an electron which may travel in a specific 
direction in reciprocal space. For example, if in a two-dimensional lattice an 
electron travels at 45° to the kx-axis, then the boundary of the Brillouin zone 
is reached, according to Fig. 5.8, for 

kent = ~J2. 
a 

This yields with (4.8) a maximal attainable energy of 

h2 n2h2 

Emax = -2 k;nt = -2 - . 
m am 

On the other hand, the boundary of a Brillouin zone is reached at 

n 
kent =­

a 

(5.8) 

(5.8a) 

(5.9) 

when an electron moves parallel to the kx - or ky-axes. The largest energy that 
electrons can assume in this second case is only 

(5.9a) 

Once the maximal energy has been reached, the electron waves form stand­
ing waves (or equivalently, the electrons are reflected back into the Brillouin 
zone). 

The consequence of (5.8) and (5.9) is an overlapping of energy bands 
which can be seen when the bands are drawn in different directions in k­
space (Fig. 5.9). We will learn later that these considerations can be utilized 
to determine the difference between metals, semiconductors, and insulators. 

*The occurrence of critical energies at which a reflection of the electron 
wave takes place can also be illustrated in a completely different way. This 
will be done briefly here because of its immediate intuitive power. We con­
sider an electron wave that propagates in a lattice at an angle () to a set of 
parallel lattice planes (Fig. 5.10). The corresponding rays are diffracted on 
the lattice atoms. At a certain angle of incidence, constructive interference 
between rays I' and 2' occurs. It has been shown by Bragg that each ray 
which is diffracted in this way can be considered as being reflected by a 
mirror parallel to the lattice planes. In other words, at a critical angle the 
"reflected" rays will be enhanced considerably. This is always the case when 
the path difference 2a sin () is an integer multiple of the electron wavelength 
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Figure 5.9. Overlapping of allowed energy bands. 

A, i.e., when 

2a sin 0 = nA, n = 1,2,3, ... 

(Bragg relation). With (4.9) one obtains, from (5.10), 

and therefore 

2 . 0 2n asm =n k 

n 
kent = n -.-0· asm 

(5.10) 

(5.11) 

x 

Figure 5.10. Bragg reflection of an electron wave in a lattice. The angle of incidence 
is o. 
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For perpendicular incidence (8 = 0°) equation (5.11) becomes (5.9). On the 
other hand, if 8 = 45°, one obtains (5.8). 

Equation (5.11) leads to the result that for increasing electron energies a 
critical k-value is finally reached for which "reflection" of the electron wave 
at the lattice planes occurs. At this critical k-value the transmission of an 
electron beam through the lattice is prevented. Then, the incident and the 
Bragg-reflected electron wave form a standing wave. 

*5.3. Three-Dimensional Brillouin Zones 

In the previous section, the physical significance of the Brillouin zones was 
discussed. It was shown that at the boundaries of these zones the electron 
waves are Bragg-reflected by the crystal. The wave vector Ikl = 2n/.A. was 
seen to have the unit of a reciprocal length and is therefore defined in the 
reciprocal lattice. We will now attempt to construct three-dimensional Bril­
louin zones for two important crystal structures, namely, the face-centered 
cubic (fcc) and the body-centered cubic (bcc) crystals. Since the Brillouin 
zones for these structures have some important features in common with the 
so-called Wigner-Seitz cells, it is appropriate to discuss, at first, the Wigner­
Seitz cells and also certain features of the reciprocal lattice before we return 
to the Brillouin zones at the end of Section 5.5. 

*5.4. Wigner-Seitz Cells 

Crystals have symmetrical properties. Therefore, a crystal can be described 
as an accumulation of "unit cells." In general, the smaller such a unit cell, 
i.e., the fewer atoms it contains, the simpler its description. The smallest 
possible cell is called a "primitive unit cell." Frequently, however, a larger, 
nonprimitive unit cell is used, which might have the advantage that the 
symmetry can be better recognized. Body-centered cubic and face-centered 
cubic are characteristic representatives of such "conventional" unit cells. 9 

The Wigner-Seitz cell is a special type of primitive unit cell that shows 
the cubic symmetry of the cubic cells. For its construction, one bisects the 
vectors from a given atom to its nearest neighbors and places a plane per-

9 A lattice is a regular periodic arrangement of points in space; it is, consequently, a mathemati­
cal abstraction. All crystal structures can be traced to one of the 14 types of Bravais lattices (see 
textbooks on crystallography). 
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Figure 5.11. Wigner-Seitz cell for the body-centered cubic (bee) structure. 

pendicular to these vectors at the bisecting points. This is shown in Fig. 5.11 
for the bcc lattice. 

In the fcc lattice, the atoms are arranged on the corners and faces of a 
cube, which is equivalent to the center points of the edges and the center 
of the cell (Fig. 5.12). The Wigner-Seitz cell for this structure is shown in 
Fig. 5.13. 

Figure 5.12. ConventIOnal unit cell of the fee structure. In the cell which is marked 
black, the atoms are situated on the comers and faces of the cubes. In the white cell, 
the atoms are at the centers of the edges and the center of the cell. 
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1 

Figure 5.13. Wigner-Seitz cell for the fcc structure. It is constructed from the white 
cell which is marked in Fig. 5.12. 

*5.5. Translation Vectors and the Reciprocal Lattice 

In Fig. 5.14(a) the fundamental vectors tl, t2, t3 are inserted in a unit cell of a 
cubic primitive lattice. By combination of these "primitive vectors" a trans­
lation vector, 

(5.12) 

can be defined. Using this translation vector it is possible to reach, from a 
given lattice point, any other equivalent lattice point. For this, the factors 
nl, n2, n3 have to be integers. In Fig. 5.14(b) the fundamental vectors tl, t2, t3 
are shown in a conventional unit cell of a bec lattice. 

Similarly, as above, we now introduce for the reciprocal lattice three 
vectors, b l , b2, b3, and a translation vector 

(5.13) 

where hi, h2, and h3 are, again, integers. (The factor 2n is introduced for 
convenience. In X-ray crystallography, this factor is omitted.) 

The real and reciprocal lattices are related by a definition which states that 
the scalar product of the vectors tl and bl should be unity, whereas the scalar 
products of bl and t2 or bl and t3 are zero: 

bl' tl = 1, 

bl . t2 = 0, 

bl . t3 = 0. 

(5.14) 

(5.15) 

(5.16) 
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Figure 5.14. (a) Fundamental lattice vectors t], t2, t3 in a cubic primitive lattice. (b) 
Fundamental lattice vectors in a conventional (white) and primitive, noncubic unit 
cell (black) of a bee lattice. The axes of the primitive (noncubic) unit cell form angles 
of 109° 28'. 

Equivalent equations are defined for b2 and b3. These nine equations can be 
combined by using the Kronecker-Delta symbol, 

(5.17) 

where Jnm = I for n = m and Jnm = 0 for n #- m. Equation (5.17) is from now 
on our definition for the three vectors bn , which are reciprocal to the vectors 
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Figure 5.15. Plane formed by t2 and t3 with perpendicular vector bl. 
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tm . From (5.15) and (5.16) it follows 1 0 that b l is perpendicular to t2 and to t3, 
which means that t2 and t3 form a plane perpendicular to the vector bl (Fig. 
5.15). We therefore write11 

(5.18) 

To evaluate the constant, we form the scalar product of tl and b l (5.18) and 
make use of (5.14): 

This yields 

const. = ---­
tl . t2 X t3 

Combining (5.18) with (5.20) gives 

bl = t2 X t3 
tl . t2 X t3 

Equivalent equations can be obtained for b2 and b3: 

b
2 

= t3 X tl , 
tl . t2 X t3 

b
3 

= tl X t2 
tl . t2 X t3 

(5.19) 

(5.20) 

(5.21 ) 

( 5.22) 

( 5.23) 

Equations (5.21 )-(5.23) are the transformation equations which express 
the fundamental vectors bl, b2, and b3 of the reciprocal lattice in terms of 
real lattice vectors. 

IOThe scalar product of two vectors a and b is a· b = abcos(ab). Ifi, j, and I are mutually per­
pendicular unit vectors, then we can write i . j = j . I = I . i = 0 and i . i = j . j = I . I = 1. 

II The vector product of two vectors a and b is a vector which stands perpendicular to the plane 
formed by a and b. It is i x i = j x j = I x I = 0 and i x j = I and j x i = -I. 
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As an example of how these transformations are performed, we calculate 
now the reciprocal lattice of a bec crystal. The real crystal may have the 
lattice constant "a." We express the lattice vectors tl, t2, t3 in terms of the 
unit vectors, i,j, 1 in the x,y, z coordinate system (see Fig. 5.14(b)): 

(5.24) 

or, abbreviated, 

( 5.25) 

and 

(5.26) 

a -
t3 =2"(111). (5.27) 

To calculate bl, using (5.21), we form at first the vector product12 

1 j 

-1 
2 2 

1 =: (i + j + 1 + 1 - i + j) = : (2j + 21) 

-1 

(5.28) 

and the scalar13 product 

a3 a3 a3 

tl . t2 X t3 = 4 (-i + j + I) . (0 + j + I) = 4 (0 + 1 + 1) = 2· (5.29) 

Combining (5.21) with (5.28) and (5.29) yields 

or 

12 a x b = ax ay az . 

bx by bz 

13 a 0 b = axbx + ayby + azbzo 

a2 

-(j + I) 1 
bl = 2 =-(j+l), (5.30) 

a3 a 
2 

1 
bl =-(011). 

a 
(5.31) 
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Figure 5.16. Lattice vectors in reciprocal space of a bec crystal. The primitive vectors 
in the reciprocal lattice are (because of (5.13)) larger by a factor of 2n. The lattice 
constant of the cube then becomes 2n. 2/a. 

Similar calculations yield 

1 
b2 =-(lOl), 

a 
(5.32) 

1 
b3 = - (110). 

a 
(5.33) 

In Fig. 5.16, the vectors bl , b2 , b3 are inserted into a cube of length 2/a. We 
note immediately an important result. The end points of the reciprocal lattice 
vectors of a bcc crystal are at the center of the edges of a cube. This means 
that points of the reciprocal lattice of the bcc structure are identical to the 
lattice points in a real lattice of the fcc structure, see Fig. 5.12. Conversely, 
the reciprocal lattice points of the fcc structure and the real lattice points of 
the bec structure are identical. 

In Section 5.2, we constructed two-dimensional Brillouin zones by draw­
ing perpendicular bisectors on the shortest lattice vectors. Similarly, a three­
dimensional Brillouin zone can be obtained by bisecting all lattice vectors b 
and placing planes perpendicular on these points. As has been shown in 
Section 5.4, this construction is identical for a Wigner-Seitz cell. A com­
parison of the fundamental lattice vectors band t gives the striking result 
that the Wigner-Seitz cell for an fcc crystal (Fig. 5.13) and the first Brillouin 
zone for a bcc crystal (Fig. 5.17) are identical in shape. The same is true for 
the Wigner-Seitz cell for bee and the first Brillouin zone for fcc. Thus, a 
Brillouin zone can be defined as a Wigner-Seitz cell in the reciprocal lattice. 

From (5.31) it can again be seen that the reciprocal lattice vector has the 
unit of a reciprocal length. 
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k, 

Figure 5.17. First Brillouin zone of the bec crystal structure. 

*5.6. Free Electron Bands 

We mentioned in Section 5.1 that, because of the E(k) periodicity, all infor­
mation pertaining to the electronic properties of materials is contained in the 
first Brillouin zone. In other words, the energy Ek , for k' outside the first 
zone is identical to the energy Ek within the first zone if a suitable translation 
vector G can be found so that a wave vector k' becomes 

k' =k+G. ( 5.34) 

We have already used this feature in Section 5.1, where we plotted one­
dimensional energy bands in the form ofa reduced zone scheme. We proceed 
now to three-dimensional zone pictures. We might correctly expect that the 
energy bands are not alike in different directions in k-space. This can be 
demonstrated by using the "free electron bands" which we introduced in 
Fig. 5.6. We explain the details using the bcc crystal structure as an example. 

In three dimensions the equation analogous to (5.7) reads 

h2 

Ek' = 2m (k + G)2. ( 5.35) 

In Fig. 5.17 three important directions in k-space are inserted into the first 
Brillouin zone of a bec lattice. They are the [100] direction from the origin 
(r) to point H, the [110] direction from r to N, and the [111] direction from 
r to p.14 These directions are commonly labeled by the symbols A, L, and 
A, respectively. Figure 5.18 depicts the bands, calculated by using (5.35), for 

14 Directions in unit cells are identified by subtracting the coordinates of the tail from the coor­
dinates of the tip of a distance vector. The set of numbers thus gained is inserted into square 
brackets; see textbooks on materials science. 



5. Energy Bands in Crystals 53 

5C...--....... --..... 

4C 

IC 

O~'"--__ ..J 

r L1 H H F PP A rrr NNGH 

Figure 5.18. Energy bands of the free electrons for the bee structure. The numbers 
given on the branches are the respective hI values (see the calculation in the text). 
Compare to Fig. 5.6. C = h22n2/ma2, see (5.38). 

these distinct directions in k-space. The sequence of the individual subgraphs 
is established by convention and can be followed using Fig. 5.17. 

We now show how some of these bands are calculated for a simple case. 
We select the r - H direction as an example. We vary the modulus of the 
vector krH == kx between 0 and 2nja, the latter being the boundary of the 
Brillouin zone (see Fig. 5.16).15 For this direction, (5.35) becomes 

E = ~ (2n xi + G)2, (5.36) 
2m a 

where x may take values between 0 and 1. To start with, let G be O. Then 
(5.36) reads 

(5.37) 

IS The attentive reader may have noticed that the boundary of the first Bnllouin zone In the kx 
direction for the bee lattice is 21l/a, and not ll/a as for the cubic primitive unit cell (Fig. 5.6). 
This can be convincingly seen by comparing Figures 5.13,5.16, and 5.17. 
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(see footnote 10), where 

C = ~ (2n)2 = 2h
2
n

2 
. 

2m a ma2 (5.38) 

This yields the well-known parabolic E(k)-dependence. The curve which 
represents (5.37) is labeled (000) in Fig. 5.18, because hI, h2, and h3 in (5.13) 
are all zero for G = O. 

Now we let hI = 0, h2 = -1, and h3 = O. Then we obtain, by using (5.13) 
and (5.32), 

G = - 2n (i + I). (5.39) 
a 

Combining (5.36) with (5.38) and (5.39) provides 

E = ~ [2nx i _ 2n (i + 1)]2 = C[i(x - 1) -1]2 
2m a a 

= C[(x - 1)2 + 1] = C(x2 - 2x + 2) (5.40) 

(see footnote 10), which yields for 

x=0~E=2C 

and for 
x=l~E=lC. 

We obtain the band labeled (010) in Fig. 5.18. Similarly, all bands in 
Fig. 5.18 can be calculated by variation of the h values and k-directions and 
by using (5.35). 

The free electron bands are very useful for the following reason: by com­
paring them with the band structures of actual materials, an assessment is 
possible if and to what degree the electrons in that material can be consid­
ered to be free. 

In Figs. 5.19 and 5.20 the first Brillouin zone and the free electron bands 
of the fcc structure are shown. 

Figure 5.19. First Brillouin zone of the fcc structure. 
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Figure 5.20. Free electron bands of the fcc structure. The letters on the bottom of 
the graphs correspond to letters in Fig. 5.19 and indicate specific symmetry points in 
k-space. 

5.7. Band Structures for Some Metals and 
Semiconductors 

Those readers who have skipped Sections 5.3 through 5.6 need to familiarize 
themselves with the (three-dimensional) first Brillouin zone for the face cen­
tered cubic (fcc) crystal structure (Fig. 5.19). The [100], the [110], and the 
[111] directions in k-space are indicated by the letters r - X, r - K, and 
r - L, respectively. Other directions in k-space are likewise seen. These 
specific symmetry points and directions are selected by convention from a 
much large number of possible directions. They sufficiently characterize the 
properties of materials as, we will see below. 

We inspect now some calculated energy-band structures. They should 
resemble the one shown in Fig. 5.4. In the present case, however, they are 
depicted for more than one direction in k-space. Additionally, they are dis­
played in the positive k-direction only, similarly as in Figs. 5.6 or 5.20. 

We start with the band diagram for aluminum, Fig. 5.21. We recognize 
immediately the characteristic parabola-shaped bands in the kx(r - X) di­
rection as seen before in Fig. 5.4. Similar parabolic bands can be detected in 
the r - K and the r - L directions. The band diagram for aluminum looks 
quite similar to the free electron bands shown in Fig. 5.20. This suggests that 
the electrons in aluminum behave essentially free-electronlike (which is 
indeed the case). 

We also detect in Fig. 5.21 some band gaps, for example, between the X; 
and X\ symmetry points, or between W3 and Wr Note, however, that the 
individual energy bands overlap in different directions in k-space, so that as 
a whole no band gap exists. (This is in marked difference to the band dia-
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Figure 5.21. Energy bands for aluminum. Adapted from B. Segal, Phys. Rev. 124, 
1797 (1961). (The meaning of the Fermi energy will be explained in Section 6.1.) 

gram of a semiconductor, as we shall see in a moment.) The lower, parabola­
shaped bands are associated with the aluminum 3s electrons (see Appendix 
3). These bands are therefore called "3s bands". The origin of the energy 
scale is positioned for convenience in the lower end of this s-band. 

Next, we discuss the band structure for copper, Fig. 5.22. We notice in the 
lower half of this diagram closely spaced and flat running bands. Calcu­
lations show that these can be attributed to the 3d-bands of copper (see 
Appendix 3). They superimpose the 4s-bands (which are heavily marked in 
Fig. 5.22). The band which starts at r is, at first, s-electronlike, and becomes 
d-electronlike while approaching point X. The first half of this band is 
continued at higher energies. It is likewise heavily marked. It can be seen, 
therefore, that the d-bands overlap the s-bands. Again, as for aluminum, no 
band gap exists if one takes all directions in k-space into consideration. 

As a third example, the band structure of silicon is shown (Fig. 5.23). Of 
particular interest is the area between 0 and approximately I eV in which no 
energy bands are shown. This "energy gap," which is responsible for the 
well-known semiconductor properties, will be the subject of detailed discus­
sion in a later chapter. For semiconductors, the zero point of the energy scale 
is placed at the bottom of this energy gap, even though other conventions are 
possible and in use. 

Finally, the band structure of gallium arsenide is shown in Fig. 5.24. The 
so-called 111-V semiconductor compounds, such as GaAs, are of great 
technical importance for optoelectronic devices, as we will discuss in later 
sections. They have essentially the same crystal structure and the same total 
number of valence electrons as the element silicon. Again, a band gap is 
clearly seen. 
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Figure 5.22. Band structure of copper (fcc). Adapted from B. Segal, Phys. Rev. 125, 
109 (1962). The calculation was made using the I-dependent potential. (For the defi­
nition of the Fermi energy, see Section 6.1.) 
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Figure 5.23. Calculated energy band structure of silicon (diamond-cubic crystal 
structure). Adapted from M.L. Cohen and T.K. Bergstresser, Phys. Rev. 14, 789 
(1966). See also l.R. Chelikowsky and M.L. Cohen, Phys. Rev. 814,556 (1976). 
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Figure 5.24. Calculated energy band structure of GaAs. Adapted from F. Herman 
and W.E. Spicer, Phys. Rev. 174,906 (1968). 

It should be mentioned, in closing, that the band structures of actual solids, 
as shown in Figs. 5.21-5.24, are the result of extensive, computer-aided cal­
culations, and that various investigators using different starting potentials 
arrive at slightly different band structures. Experimental investigations, such 
as measurements of the frequency dependence of the optical properties, can 
help determine which of the various calculated band structures are closest to 
reality. 

5.8. Curves and Planes of Equal Energy 

We conclude this chapter by discussing another interesting aspect of the 
energy versus wave vector relationship. 

In one-dimensional k-"space" there is only one (positive) k-value which is 
connected with a given energy (see Fig. 5.1). In the two-dimensional case, 
i.e., when we plot the electron energy over a kx - ky plane, more than one k­
value can be assigned to a given energy. This leads to curves of equal energy, 
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E 

Figure 5.25. Electron energy E versus wave vector k (two-dimensional). This figure 
demonstrates various curves of equal energy for free electrons. 

as shown in Fig. 5.25. For a two-dimensional square lattice and for small 
electron energies, the curves of equal energy are circles. However, if the 
energy of the electrons is approaching the energy of the boundary of a Bril­
louin zone, then a deviation from the circular form is known to occur. This is 
shown in Fig. 5.26, where curves of equal energy for a two-dimensional 
square lattice are inserted into the first Brillouin zone. It is of particular 
interest that the energy which belongs to point K in Fig. 5.26 is larger than 
the energy which belongs to point X (see (5.8a) and (5.9a)). Consequently, 
the curves of equal energy for the first Brillouin zone may extend into the 
second zone. This leads to an overlapping of energy bands as schematically 

k, 

K 

x 

k. 

Figure 5.26. Curves of equal energy inserted into the first Brillouin zone for a two­
dimensional square lattice. 
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Figure 5.27. A particular surface of equal energy (Fermi surface, see Section 6.1) and 
the first Brillouin zone for copper. Adapted from A.B. Pippard, Phil. Trans. Roy. 
Soc. London, A 250,325 (1957). 

shown in Fig. 5.9, and in the band structures of Figs. 5.21-5.24. For copper 
and aluminum the band overlapping leads to quasi-continuous allowed en­
ergies (in different directions of k-space). For semiconductors the band 
overlapping is not complete, which results in the already-mentioned energy 
gap (Figs. 5.23 and 5.24). 

In three-dimensional k-space one obtains surfaces of equal energy. For the 
free electron case and for a cubic lattice they are spheres. For a nonparabolic 
E-(k) behavior these surfaces become more involved. This is demonstrated in 
Fig. 5.27 for a special case. 

Problems 

1. What is the energy difference between the points L~ and Ll (upper) in the band 
diagram for copper? 

2. How large is the "gap energy" for silicon? (Hint: Consult the band diagram for 
silicon.) 

3. Calculate how much the kinetic energy of a free electron at the comer of the first 
Brillouin zone of a simple cubic lattice (three dimensions!) is larger than that of an 
electron at the midpoint of the face. 

4. Construct the first four Brillouin zones for a simple cubic lattice in two dimensions. 

5. Calculate the shape of the free electron bands for the cubic primitive crystal 
structure for n = I and n = -2 (see Fig. 5.6). 
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6. Calculate the free energy bands for a bcc structure in the kx-direction having the 
following values for hl/hz/h3: (a) 111; (b) 001; and (c) 010. Plot the bands in k­
space. Compare with Fig. 5.18. 

7. Calculate the main lattice vectors in reciprocal space of an fcc crystal. 

8. Calculate the bands for the bec structure in the 110 [r - N) direction for: (a) (000); 
(b) (DID); and (c) (111). 

9. If bl . tl = I is given (see equation (5.14)), does this mean that bl is parallel to tl? 



CHAPTER 6 

Electrons in a Crystal 

In the preceding chapters we considered essentially only one electron, which 
was confined to the field of the atoms of a solid. This electron was in most 
cases an outer, i.e., a valence, electron. However, in a solid of one cubic 
centimeter at least 1022 valence electrons can be found. In this section we 
shall describe how these electrons are distributed among the available energy 
levels. It is impossible to calculate the exact place and the kinetic energy of 
each individual electron. We will see, however, that probability statements 
nevertheless give meaningful results. 

6.1. Fermi Energy and Fermi Surface 

The Fermi energy, EF, is an important part of an electron band diagram. 
Many of the electronic properties of materials, such as optical, electrical, or 
magnetic properties, are related to the location of EF within a band. 

The Fermi energy is often defined as the "highest energy that the electrons 
assume at T = 0 K." This can be compared to a vessel, like a cup, (the 
electron band) into which a certain amount of water (electrons) is poured. 
The top surface of the water contained in this vessel can be compared to the 
Fermi energy. The more electrons are "poured" into the vessel, the higher 
the Fermi energy. The Fermi energies for aluminum and copper are shown 
in Figs. 5.21 and 5.22. Numerical values for the Fermi energies for some 
materials are given in Appendix 4. They range typically from 2 eV to 12 eV. 

The above-stated definition, even though convenient, can occasionally be 
misleading, particularly when dealing with semiconductors. Therefore, a 
more accurate definition of the Fermi energy will be given in Section 6.2. We 
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will see there that at the Fermi energy the Fermi function, F(E), equals!. An 
equation for the Fermi energy is given in (6.11). 

In three-dimensional k-space the one-dimensional Fermi energy is replaced 
by a Fermi surface. The energy surface shown in Fig. 5.27 is the Fermi sur­
face for copper. 

6.2. Fermi Distribution Function 

The distribution of the energies of a large number of particles and its change 
with temperature can be calculated by means of statistical considerations. 
The kinetic energy of an electron gas is governed by Fermi-Dirac statistics, 
which states that the probability that a certain energy level is occupied by 
electrons is given by the Fermi function, F(E), 

F(E) = (E - EF) . 
exp kBT + 1 

(6.1 ) 

If an energy level E is completely occupied by electrons, the Fermi distri­
bution function F(E) equals 1 (certainty); for an empty energy level one 
obtains F(E) = O. EF is the Fermi energy which we introduced in Section 
6.1, kB is the Boltzmann constant, and T is the absolute temperature. In Fig. 
6.1, the Fermi function is plotted versus the energy for T = 0 by using (6.1). 
One sees from this figure that at T = 0 all levels that have an energy smaller 
than EF are completely filled with electrons, whereas higher energy states are 
empty. 

The Fermi distribution function for higher temperatures (T # 0) is shown 
in Fig. 6.2. It is noticed there that F(E) varies around EF in a gradual 
manner and not by a step as for T = O. To characterize this behavior, one 
says that F(E) is "smeared out," i.e., it is extended to an energy interval 

T=O 

o F(E) 

Figure 6.1. Fermi distribution function, F(E), versus energy, E, for T = o. 
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E 

o 112 F(E) 

Figure 6.2. Fermi distribution function for T i= O. 

211E. This decrease in F(E) with increasing energy is heavily exaggerated in 
Fig. 6.2. I1E at room temperature is in reality only about 1% of EF. 

At high energies (E » EF ) the upper end of the Fermi distribution func­
tion can be approximated by the classical (Boltzmann) distribution function. 
This is best seen from (6.1) in which for large energies the exponential factor 
becomes significantly larger than 1. Then, F(E) is approximately 

F(E) ~ exp [- (Ek~:F) l ( 6.1a) 

Equation (6.1a) is known to be the Boltzmann factor, which gives, in classi­
cal thermodynamics, the probability that a given energy state is occupied. 
The F(E) curve for high energies is thus referred to as the "Boltzmann tail" 
of the Fermi distribution function. 

Of particular interest is the value of the Fermi function F(E) at E = EF 
and T #- O. As can be seen from (6.1) and Fig. 6.2, F(E) is in this particular 
case!. This serves as a definition for the Fermi energy, as outlined in Section 
6.1. 

6.3. Density of States 

We are now interested in the question of how energy levels are distributed 
over a band. We restrict our discussion for the moment to the lower part of 
the valence band (the 4s-band in copper, for example) because there the 
electrons can be considered to be essentially free due to their weak binding 
force to the nucleus. We assume that the free electrons (or the "electron 
gas") are confined in a square potential well from which they cannot escape. 
The dimensions of this potential well are thought to be identical to the 
dimensions of the crystal under consideration. Then our problem is similar 
to the case of one electron in a potential well of size a, which we treated in 
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FIgure 6.3. RepresentatIOn of an energy state in quantum number space. 

Section 4.2. By using the appropriate boundary conditions, the solution of 
the Schrodinger equation yields an equation that has the same form as 
(4.26), 

2/i 2 
n 222 

En = -2 2 (nx + ny + nz )' 
rna 

(6.2) 

where nx, ny, and nz are the principal quantum numbers and a is now the 
length, etc., of the crystal. Now we pick an arbitrary set of quantum numbers 
nx, ny, nz• To each such set we can find a specific energy level En, frequently 
called "energy state." An energy state can therefore be represented by a 
point in quantum number space (Fig. 6.3). In this space, n is the radius from 
the origin of the coordinate system to a point (nx, ny, nz ) where 

(6.3) 

Equal values of the energy En lie on the surface of a sphere with radius n. All 
points within the sphere therefore represent quantum states with energies 
smaller than En. The number of quantum states, 11, with an energy equal to 
or smaller than En is proportional to the volume of the sphere. Since the 
quantum numbers are positive integers, the n-values can only be defined in 
the positive octant of the n-space. One-eighth of the volume of the sphere 
with radius n therefore gives the number of energy states, 11, the energy of 
which is equal to or smaller than En. Thus, with (6.2) and (6.3), we obtain 

n = 1 . 1 nn3 = ~ 2rna E3/2 
( 

2)3/2 

.( 8 3 6 n2/i2 . (6.4) 

Differentiation of 1'f with respect to the energy E provides the number of 
energy states per unit energy in the energy interval dE, i.e., the density of the 
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Figure 6.4. Density of states Z(E) within a band. The electrons in this band are 
considered to be free. 

energy states, briefly called density of states, Z(E): 

dyt = Z(E) =:: 2ma EI/2 = ~ 2m EI/2 ( 
2)3/2 ( )3/2 

dE 4 n21i2 4n2 1i2 (6.5) 

(a 3 is the volume, V, that the electrons can occupy). 
The density of states plotted versus the energy gives, according to (6.5), a 

parabola. Figure 6.4 shows that at the lower end of the band considerably 
fewer energy levels (per unit energy) are available than at higher energies. 
One can compare the density of states concept with a high-rise apartment 
building in which the number of apartments per unit height (e.g., 8 feet) is 
counted. To stay within this analogy, only a very few apartments are thought 
to be available on the ground level. However, with increasing height of the 
building, the number of apartments per unit height becomes larger. 

The area within the curve in Fig. 6.4 is, by definition, the number of states 
that have an energy equal to or smaller than En. Therefore, one obtains, for 
an area element dyt, 

dyt = Z(E) . dE, 

as can be seen from (6.5) and Fig. 6.4. 

6.4. Population Density 

(6.6) 

The number of electrons per unit energy, N(E), within an energy interval dE 
can be calculated by multiplying the number of possible energy levels, Z(E), 
by the probability for the occupation of these energy levels. We have to note, 
however, that because of the Pauli principle, each energy state can be occu­
pied by one electron of positive spin and one of negative spin,16 i.e., each 

!6See Appendix 3 
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energy state can be occupied by two electrons. Therefore, 

N(E) = 2 . Z(E) . F(E) (6.7) 

or, with (6.1) and (6.5), 

_ V (2m)3/2 1/2 
N(E) - 2n2 11 E ---(E=-----=E=-'F);-----· (6.8) 

exp kBT + 1 

N(E) is called the (electron) population density. We see immediately that for 
T -> 0 and E < EF, the function N(E) equals 2 . Z(E) because F(E) is unity 
in this case. For T =1= 0 and E ~ EF , the Fermi distribution function (6.1) 
causes a smearing out of N(E) (Fig. 6.5). 

The area within the curve in Fig. 6.5 represents the number of electrons, 
N*, that have an energy equal to or smaller than the energy En. For an energy 
interval between E and E + dE, one obtains 

dN* = N(E) dE. (6.9) 

We are now in a position to calculate the Fermi energy by making use of 
(6.8) and (6.9). We consider the simple case T -> 0 and E < EF, which yields 
F(E) = 1. Integration from the lower end of the band to the Fermi energy, 
EF , provides 

N* = JEF N(E) dE = JEF ~ (2m)3/2 EI/2 dE = ~ (2m)3/2 E3/2. 
o o2n2 fi2 3n2 fi2 F (6.10) 

Rearranging (6.10) yields 

( 

2 N*)2/3 fi2 
EF = 3n - -. 

V 2m 
(6.11 ) 

E 

N(E) 

Figure 6.5. Population density N(E) within a band for free electrons. dN* is the 
number of electrons in the energy interval dE. 
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We define N' = N* / V as the number of electrons per unit volume. Then we 
obtain 

(6.lla) 

It should be noted that N* was calculated for simplicity for T -+ 0 and 
E < EF. This does not limit the applicability of (6.11), however, since the 
number of electrons does not change when the temperature is increased. In 
other words, integrating from zero to infinity and using T # 0 would yield 
essentially the same result as above. 

6.5. Complete Density of States Function Within a 
Band 

We have seen in Section 6.3 that for the free electron case the density of 
states has a parabolic E versus Z(E) relationship. In actual crystals, how­
ever, the density of states is modified by the energy conditions within the 
first Brillouin zone. Let us consider, for example, the curves of equal energy 
depicted in Fig. 5.26. For low energies, the equal energy curves are circles. 
Thus, the electrons behave free-electronlike for these low energies. The den­
sity of states curve is then, as before, a parabola. For larger energies, how­
ever, fewer energy states are available, as is seen in Fig. 5.26. Thus, Z(E) 
decreases with increasing E, until eventually the corners of the Brillouin 
zones are filled. At this point Z(E) has dropped to zero. The largest number 
of energy states is thus found near the center of a band, as shown schemati­
cally in Fig. 6.6. 

E 

o Z(E) 

Figure 6.6. Schematic representation of the complete density of states function 
within a band. 



6. Electrons In a Crystal 69 

6.6. Consequences of the Band Model 

We mentioned in Section 6.4 that, because of the Pauli principle, each s-band 
of a crystal, consisting of N atoms, has space for 2N electrons, i.e., for two 
electrons per atom. If the highest filled s-band of a crystal is occupied by two 
electrons per atom, i.e., if the band is completely filled, we would expect that 
the electrons cannot drift through the crystal when an external electric field is 
applied (as it is similarly impossible to move a car in a completely occupied 
parking lot). An electron has to absorb energy in order to move. Keep in mind 
that for a completely occupied band higher energy states are not allowed. 
(We exclude the possibility of electron jumps into higher bands.) Solids in 
which the highest filled band is completely occupied by electrons are, there­
fore, insulators (Fig. 6.7(a)). 

In solids with one valence electron per atom (e.g., alkali metals) the valence 
band is essentially half-filled. An electron drift upon application of an external 
field is possible; the crystal shows metallic behavior (Fig. 6.7(b)). 

Bivalent metals should be insulators according to this consideration, which 
is not the case. The reason for this lies in the fact that the upper bands par­
tially overlap, which occurs due to the weak binding forces of the valence 
electrons on their atomic nuclei (see Fig. 5.9). If such an overlapping of 
bands occurs, the valence electrons flow in the lower portion of the next 
higher band, because the electrons tend to assume the lowest potential en­
ergy (Fig. 6.7(c)). As a result, bivalent solids may also possess partially filled 
bands. Thus, they are also conductors. 

We shall see in Chapter 8 that the valence as well as the conduction bands 
of semiconductors can accommodate 4N electrons. Because germanium and 
silicon possess four valence electrons, the valence band is completely filled 
with electrons. Intrinsic semiconductors have a relatively narrow forbidden 
energy zone (Fig. 6.7(d)). A sufficiently large energy can, therefore, excite 

5.5eV 

a 
Diamond 

b 
Alkali Metal 

c 
Magnesium 

0.7 eV 

d 

Germanium 

Figure 6.7. Simplified representation for energy bands for (a) insulators, (b) alkali 
metals, (c) bivalent metals, and (d) intrinsic semiconductors. 
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electrons from the completely filled valence band into the empty conduction 
band and thus provide some electron conduction. 

This preliminary and very qualitative discussion on electronic conduction 
will be expanded substantially and the understanding will be deepened in 
Part II of this book. 

6.7. Effective Mass 

We implied in the previous sections that the mass of an electron in a solid is 
the same as the mass of a free electron. Experimentally determined physical 
properties of solids, such as optical, thermal, or electrical properties, indi­
cate, however, that for some solids the mass is larger while for others it is 
slightly smaller than the free electron mass. This experimentally determined 
electron mass is usually called the effective mass, m*. The deviation of m* 
from the free electron mass 17 mo can be easily appreciated by stating the 
ratio m* /mo, which has values slightly above or below 1 (see Appendix 4). 
The cause for the deviation of the effective mass from the free electron mass 
is usually attributed to interactions between the drifting electrons and the 
atoms in a crystal. For example, an electron which is accelerated in an elec­
tric field might be slowed down slightly because of "collisions" with some 
atoms. The ratio m* /mo is then larger than 1. On the other hand, the elec­
tron wave in another crystal might have just the right phase in order that the 
response to an external electric field is enhanced. In this case, m * / mo is 
smaller than 1. 

We shall now attempt to find an expression for the effective mass. For this, 
we shall compare the acceleration of an electron in an electric field calculated 
by classical as well as by quantum mechanical means. At first, we write an 
expression for the velocity of an electron in an energy band. We introduced 
in Chapter 2 the group velocity, i.e., the velocity with which a wave packet 
moves. Let w be the angular frequency and Ikl = 2n/ A. the wave number of 
the electron wave. Then, the group velocity is, according to (2.10), 

dw d(2nv) d(2nE/h) 
vg = dk =~= dk 

From this we calculate the acceleration 

dVg 1 d 2Edk 
a = dt = t, dk 2 dt . 

1 dE 
t, dk· 

(6.12) 

(6.13) 

The relation between the energy E and the wave number Ikl is known from 
the preceding sections. We now want to determine the factor dk/dt. Forming 

17We shall use the symbol rno only when we need to distinguish the free electron (rest) mass 
from the effective mass. 
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the first derivative of (4.7) (p = Ilk) with respect to time yields 

dp = Ildk 
dt dt· 

(6.14) 

Combining (6.14) with (6.13) yields 

a=~ d 2
Edp =~. d 2

E. d(mv) =~ d 2
E F 

11 2 dk2 dt 11 2 dk2 dt 11 2 dk2 ' 
(6.15) 

where F is the force on the electron. The classical acceleration can be calcu­
lated from Newton's law (1.1) 

F 
a=-. 

m 

Comparing (6.15) with (6.16) yields the effective mass 

* = 11 2 (d2 E)-1 
m dk2 

(6.16) 

(6.17) 

We see from (6.17) that the effective mass is inversely proportional to the 
curvature of an electron band. Specifically, if the curvature of E = f(k) at a 
given point in k-space is large, then the effective mass is small (and vice 
versa). When inspecting band structures (Fig. 5.4 or Figs. 5.21-5.24) we 
notice some regions of high curvature. These regions might be found, par­
ticularly, near the center or near the boundary of a Brillouin zone. At these 
places, the effective mass is substantially reduced and may be as low as I % of 
the free electron mass mo. At points in k-space for which more than one 
electron band is found (r-point in Fig. 5.23, for example) more than one 
effective mass needs to be defined. 

We shall demonstrate the k-dependence of the effective mass for a simple 
case and defer discussions about actual cases to Section 8.4. In Fig. 6.8(a) an 
ideal electron band within the first Brillouin zone is depicted. From this 
curve, both the first derivative and the reciprocal function of the second de­
rivative, i.e., m*, have been calculated. These functions are shown in Fig. 
6.8(b) and (c). We notice in Fig. 6.8(c) that the effective mass of the electrons 
is small and positive near the center of the Brillouin zone and eventually in­
creases for larger values of kx . We likewise observe in Fig. 6.8(c) that elec­
trons in the upper part of the given band have a negative effective mass. A 
negative mass means that the "particle" under consideration travels in the 
opposite direction to an applied electric force (and opposite to an electron.) 
An electron with a negative effective mass is called a "defect electron" or 
an "electron hole." (It is, however, common to ascribe to the hole a positive 
effective mass and a positive charge instead of a negative mass and a negative 
charge.) Electron holes play an important role in crystals whose valence 
bands are almost filled, e.g., in semiconductors. Solids which possess differ­
ent properties in various directions (anisotropy) have a different m* in each 
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E 

(a) 

(b) 
--~~--~--~~~--. 

Figure 6.8. (a) Simple band structure, as shown in Fig. 5.4. (b) First derivative and 
(c) inverse function of the second derivative of the curve shown in (a). 

direction. The effective mass is a tensor in this case. An electron/hole pair is 
called an "exciton." 

6.8. Conclusion 

The first part of this book is intended to provide the reader with the neces­
sary tools for a better understanding of the electronic properties of materials. 
We started our discussion by solving the Schrodinger equation for the free 
electron case, the bound electron case, and for electrons in a crystal. We 
learned that the distinct energy levels which are characteristic for isolated 
atoms widen into energy bands when the atoms are moved closer together 
and eventually form a solid. We also learned that the electron bands have 
"fine structure," i.e., they consist of individual "branches" in an energy 
versus momentum (actually k) diagram. We further learned that some of 
these energy bands are filled by electrons, and that the degree of this filling 
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depends upon whether we consider a metal, a semiconductor, or an insula­
tor. Finally, the degree to which electron energy levels are available within a 
band was found to be nonuniform. We discovered that the density of states is 
largest near the center of an electron band. All these relatively unfamiliar 
concepts will become more transparent to the reader when we apply them in 
the chapters to come. 

Problems 

1. What velocity has an electron near the Fenni surface of silver? (EF = 5.5 eV). 

2. Are there more electrons on the bottom or in the middle of the valence band of a 
metal? Explain. 

3. At what temperature can we expect a 10% probability that electrons in silver 
have an energy which is 1% above the Fenni energy? (EF = 5.5 eV). 

4. Calculate the Fenni energy for silver assuming 6.1 x 1022 free electrons per cubic 
centimeter. (Assume the effective mass equals the free electron mass.) 

5. Calculate the density of states of I m3 of copper at the Fenni level 
(m* = mo, EF = 7 eV). Note: Take I eV as energy interval. (Why?) 

6. The density of states at the Fenni level (7 eV) was calculated for 1 cm 3 of a cer­
tain metal to be about 1021 energy states per electron volt. Someone is asked to 
calculate the number of electrons for this metal using the Fenni energy as the 
maximum kinetic energy which the electrons have. He argues that because of the 
Pauli principle, each energy state is occupied by two electrons. Consequently, 
there are 2 x 1021 electrons in that band. 
(a) What is wrong with that argument? 
(b) Why is the answer, after all, not too far from the correct numerical value? 

7. Assuming the electrons to be free, calculate the total number of states below 
E = 5 eV in a volume of 10-5 m3. 

8. (a) Calculate the number of free electrons per cubic centimeter in copper, assum­
ing that the maximum energy of these electrons equals the Fenni energy 
(m* = mol. 

(b) How does this result compare with that detennined directly from the density 
and the atomic mass of copper? Hint: Consider equation (7.5) 

(c) How can we correct for the discrepancy? 
(d) Does using the effective mass decrease the discrepancy? 

9. What fraction of the 3s-electrons of sodium is found within an energy kBT below 
the Fenni level? (Take room temperature, i.e., T = 300 K.) 

10. Calculate the Fenni distribution function for a metal at the Fenni level for 
T#O. 

11. Explain why, in a simple model, a bivalent material could be considered to be an 
insulator. Also explain why this simple argument is not true. 
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12. We stated in the text that the Fenni distribution function can be approximated 
by classical Boltzmann statistics if the exponential factor in the Fenni distribu­
tion function is significantly larger than one. 
(a) Calculate E - EF = nkBT for various values of n and state at which value 

for n, 

exp(Ek~:F) 
can be considered to be "significantly larger" than I (assume T = 300 K). 
(Hint: Calculate the error in F(E) for neglecting "I" in the denominator.) 

(b) For what energy can we use Boltzmann statistics? (Assume EF = 5 eV and 
E - EF = 4kBT.) 
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PART II 

ELECTRICAL PROPER TIES 
OF MATERIALS 



CHAPTER 7 

Electrical Conduction in 
Metals and Alloys 

7.1. Introduction 

The first observations involving electrical phenomena probably began with 
the study of static electricity. Thales of Miletus, a Greek philosopher, dis­
covered around 600 BC that a piece of amber, having been rubbed with a 
piece of cloth, attracted feathers and other light particles. Very appropri­
ately, the word electricity was later coined by incorporating the Greek word 
elektron, which means amber. 

It was apparently not before 2300 years later that man became again in­
terested in electrical phenomena. Stephen Gray found in the early 1700s that 
some substances conduct electricity whereas others do not. In 1733 DuFay 
postulated the existence of two types of electricity, which he termed glass 
electricity and amber electricity dependent on which material was rubbed. 
From then on a constant stream of well-known scientists contributed to our 
knowledge of electrical phenomena. Names such as Coulomb, Galvani, 
Volta, Oersted, Ampere, Ohm, Seebeck, Faraday, Henry, Maxwell, Thom­
son, and others, come to mind. What started 2600 years ago as a mysterious 
effect has been applied quite recently in an impressive technology that cul­
minated in large-scale integration of electronic devices. 

A satisfactory understanding of electrical phenomena on an atomistic basis 
was achieved by Drude at the tum of the twentieth century. A few decades 
later quantum mechanics refined our understanding. Both, the classical as 
welI as the quantum concepts of electrical phenomena wilI be covered in the 
chapters to come. Special emphasis is placed on the description of important 
applications. 
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7.2. Survey 

One of the principal characteristics of materials is their ability (or lack of 
ability) to conduct electrical current. Indeed, materials are classified by this 
property, that is, they are divided into conductors, semiconductors, and 
nonconductors. (The latter are often called insulators or dielectrics.) The 
conductivity, a, of different materials at room temperature spans more than 
25 orders of magnitude, as depicted in Figure 7.1. Moreover, if one takes the 
conductivity of superconductors, measured at low temperatures, into con­
sideration, this span extends to 40 orders of magnitude (using an estimated 
conductivity for superconductors of about 1020 lin cm). This is the largest 
known variation in a physical property and is only comparable to the ratio 
between the diameter of the universe (about 1026 m) and the radius of an 
electron (10- 14 m). 

It is generally accepted that in metals and alloys the electrons, particularly 
the outer or valence electrons, play an important role in electrical conduc­
tion. Therefore, it seems most appropriate to make use of the electron theory 
that has been developed in the foregoing chapters. Before doing so, the 
reader is reminded of some fundamental equations of physics pertaining to 
electrical conduction. These laws have been extracted from experimental 
observations. Ohm's law, 

V=RI, (7.1 ) 

relates the potential difference, V (in volts), with the electrical resistance, R 
(in ohms i.e. n), and the electrical current, I (in amps). Another form of 
Ohm's law, 

links current density, 
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Figure 7.1. Room-temperature conductivity of various materials. (Superconductors, 
having conductivities many orders of magnitude larger than copper, near 0 K, are not 
shown. The conductivity of semiconductors varies substantially with temperature and 
purity.) It is customary in engineering to use the centimeter as unit of length rather 
than the meter. We follow this practice. 
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i.e., the current per unit area (A/cm 2), with conductivity, (j (l/n cm), and 
electric field strength 1 , 

lff = V 
L 

(7.3) 

(V/cm). (In general, lff and) are vectors. For our purpose, however, we need 
only their moduli.) The current density is frequently expressed by 

} = Nve, (7.4) 

where N is the number of electrons (per unit volume), v their velocity, and e 
their charge. The resistance of a conductor can be calculated from its physi­
cal dimensions by 

R=Lp 
A' 

(7.4a) 

where L is the length of the conductor, A is its cross-sectional area, and p is 
the specific resistance, or resistivity (n cm). We define 

1 
p=-. 

(j 
(7.4b) 

The reciprocal of the ohm (n) is defined to be 1 siemens (S); see Appendix 4. 
We discussed in Chapter 2 the existence of two alternatives to describe an 

electron. First, we may consider the electrons to have a particle nature. If 
this model is utilized, one can explain the resistance by means of collisions 
of the drifting electrons with certain lattice atoms. The more collisions are 
encountered, the higher is the resistance. This concept qualitatively describes 
the increase in resistance with an increasing amount of lattice imperfections. 
It also explains the observed increase in resistance with increasing tempera­
ture: the thermal energy causes the lattice atoms to oscillate about their 
equilibrium positions (see Part V), thus increasing the probability for colli­
sions with the drifting electrons. 

Second, one may consider the electrons to have a wave nature. The matter 
waves may be thought to be scattered by lattice atoms. Scattering is the dis­
sipation of radiation on small particles in all directions. The atoms absorb 
the energy of an incoming wave and thus become oscillators. These oscilla­
tors in tum re-emit the energy in the form of spherical waves. If two or more 
atoms are involved, the phase relationship between the individual re-emitted 
waves has to be taken into consideration. A calculation2 shows that for a 
periodic crystal structure the individual waves in the forward direction are in 
phase, and thus interfere constructively. As a result, a wave which prop­
agates through an ideal crystal (having periodically arranged atoms) does 

I We use for the electric field strength a script t! to distinguish it from the energy. 

2L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York (1953). 
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not suffer any change in intensity or direction. In other words, the electron 
wave passes without hindrance through an ideal crystal. (Only its velocity is 
modified.) This mechanism is called coherent scattering. 

If, however, the scattering centers are not periodically arranged (impurity 
atoms, vacancies, grain boundaries, thermal vibration of atoms, etc.) the 
scattered waves have no set phase relationship and the wave is said to be 
incoherently scattered. The energy of incoherently scattered waves is smaller 
in the forward direction, that is, the matter wave loses energy. This energy 
loss qualitatively explains the resistance. The wave picture provides, there­
fore, a deeper understanding of the electrical resistance in metals and alloys. 
In the following two sections we shall calculate the resistance or equiv­
alently, the electrical conduction, using, at first, the particle and then the 
wave concept. 

7.3. Conductivity-Classical Electron Theory 

Our first approach towards an understanding of electrical conduction is to 
postulate, as Drude did, a free "electron gas" or "plasma," consisting of the 
valence electrons of the individual atoms in a crystal. We assume that in a 
monovalent metal, such as sodium, each atom contributes one electron to 
this plasma. The number of atoms, Na, per cubic centimeter (and therefore 
the number of free electrons in a monovalent metal) can be obtained by 
applying 

(7.5) 

where No is the Avogadro constant, J the density, and M the atomic mass of 
the element. One calculates about 1022 to 1023 atoms per cubic centimeter, 
i.e., 1022 to 1023 free electrons per cm3 for a monovalent metal. 

The electrons move randomly (in all possible directions) so that their in­
dividual velocities in the absence of an electric field cancel and no net ve­
locity results. This situation changes when an electric field is applied. The 
electrons are then accelerated with a force elff towards the anode and a net 
drift of the electrons results, which can be expressed by a form of Newton's 
law (F = rna) 

(7.6) 

where e is the charge of the electrons and m is their mass. Equation (7.6) 
implies that as long as an electric field persists, the electrons are constantly 
accelerated. Equation (7.6) also suggests that after the field has been re­
moved, the electrons keep drifting with constant velocity through the crystal. 
This is generally not observed, however, except for some materials at very 
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Figure 7.2. (a) Schematic representation of an electron path through a conductor 
(containing vacancies, impurity atoms, and a grain boundary) under the influence of 
an electric field. This classical model does not completely describe·the resistance in 
materials. (b) Velocity distribution of electrons due to an electrostatic force and a 
counteracting friction force. The electron eventually reaches the final velocity Vf. 

low temperatures (superconductors). The free electron model needs, there­
fore, an adjustment to take into account the electrical resistance. 

An electron, accelerated by an electric field, may be described to increase 
its drift velocity until it encounters a collision. At this time, the electron has 
acquired the drift velocity Vrnax which it may lose, all or in part, at the colli­
sion (Fig. 7.2(a)). Alternatively, and more appropriately, one may describe 
an electron motion to be counteracted by a "friction" force yv which opposes 
the electrostatic force eg. We postulate that the resistance in metals and 
alloys is due to interactions of the drifting electrons with some lattice atoms, 
i.e., essentially with the imperfections in the crystal lattice (such as impurity 
atoms, vacancies, grain boundaries, dislocations, etc.). Thus, (7.6) is modi­
fied as follows: 

(7.7) 

where y is a constant. The second term in (7.7) is a damping orfriction force 
which contains the drift velocity, v, of the electrons. The electrons are 
thought to be accelerated until a final drift velocity Vf is reached (see Fig. 
7.2(b)). At that time the electric field force and the friction force are equal in 
magnitude. In other words, the electrons are thought to move in a "viscous" 
medium. 

For the steady state case (v = vr) we obtain dv/dt = O. Then (7.7) reduces 
to 

(7.8) 

which yields 

(7.9) 
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We insert (7.9) into (7.7) and obtain the complete equation for the drifting 
electrons under the influence of an electric field force and a friction force: 

dv etff 
m- + -v = etff. 

dt Vr 
(7.10) 

The solution to this equation3 is 

(7.11) 

We note that the factor mvr/ etff in (7.11) has the unit of a time. It is cus­
tomary to define this quantity 

mVr 
r=­

etff ' 
(7.12) 

as a relaxation time (which can be interpreted as the average time between 
two consecutive collisions). Rearranging (7.12) yields 

retff 
Vr=-· 

m 
(7.13) 

We make use of (7.4), which states that the current density,j, is proportional 
to the velocity of the drifting electrons and proportional to the number of free 
electrons, Nr (per cm3). This yields, with (7.2), 

j = Nrvre = atff. (7.14) 

Combining (7.13) with (7.14) finally provides the sought-for equation for the 
conductivity, 

(7.15) 

Equation (7.15) teaches us that the conductivity is large for a large number 
of free electrons and for a large relaxation time. The latter is proportional to 
the mean free path between two consecutive collisions. The mean free path is 
defined to be 

1= vr. (7.15a) 

'The reader may convmce hImself of the correctness of this solution by inserting (7.11) and its 
first derivatIve by tIme mto (7.10). Further, mserting t -+ 00 into (7.11) yields correctly v = vr 
(FIg. 7.2(b)). See also Problem 8. 
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7.4. Conductivity-Quantum Mechanical 
Considerations 

83 

It was stated above that the valence electrons perform, when in equilibrium, 
random motions with no preferential velocity in any direction. One can 
visualize this fact conveniently by plotting the velocities of the electrons 
in velocity space (Fig. 7.3(a)). The points inside a sphere (or inside a circle 
when considering two dimensions) correspond to the endpoints of velocity 
vectors. The maximum velocity that the electrons are able to assume is the 
Fermi velocity, VF (i.e., the velocity of the electrons at the Fermi energy). 
The sphere having VF as a radius represents, therefore, the Fermi surface. All 
points inside the Fermi sphere are occupied. As a consequence the velocity 
vectors cancel each other pairwise at equilibrium and no net velocity of the 
electrons results. 

If an electric field is applied, the Fermi sphere is displaced opposite to the 
field direction, i.e., towards the positive end of the electric field, due to the 
net velocity gain of the electrons (Fig. 7.3(b) dashed circle). The great ma­
jority of the electron velocities still cancel each other pairwise (shaded area). 
However, some electrons remain uncompensated; their velocities are shown 
cross hatched in Fig. 7.3(b). These electrons cause the observed current. The 
Drude description of conduction thus needs a modification. In the classical 
picture one would assume that all electrons drift, under the influence of an 
electric field, with a modest velocity. Quantum mechanics, instead, teaches 
us that only specific electrons participate in conduction and that these elec­
trons drift with a high velocity which is approximately the Fermi velocity VF. 

An additional point needs to be discussed and leads to an even deeper 
understanding. The largest energy which the electrons can assume in a metal 
at T = 0 is the Fermi energy EF (Chapter 6). A large number of electrons 
actually possess this very energy since the density of states and thus the 

Figure 7.3. Velocity of electrons in two-dimensional velocity space. (a) Equilibrium 
and (b) when an electric field is applied. The shaded areas to the left and right of the 
v(k)y-axis are of equal size. They cancel each other. The cross-hatched area remains 
uncompensated. 
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population density is highest around EF (Fig. 7.4). Thus, only a little extra· 
energy !!E is needed to raise a substantial number of electrons from the 
Fenni level into slightly higher states. As a consequence, the energy (or the 
velocity) of electrons accelerated by the electric field <ff is only slightly larger 
than the Fenni energy EF (or the Fenni velocity VF) so that for all practical 
purposes the mean velocity can be approximated by the Fenni velocity, VF. 
We implied this fact already in our previous discussions. 

We now calculate the conductivity by quantum mechanical means and 
apply, as before, Ohm's law j = a<ff, (7.2). The current density j is, as stated 
in (7.4), the product of the number of electrons, the electron velocity, and the 
electron charge. In our present case, we know that the velocity of the elec­
trons which are responsible for the electron conduction is essentially the 
Fenni velocity, VF. Further, the number of electrons which need to be con­
sidered here is N', i.e., the number of displaced electrons per unit volume, as 
shown in Fig. 7.4. Thus, (7.4) needs to be modified to read 

j = vFeN'. (7.16) 

The number of electrons displaced by the electric field <ff is 

N' = N(EF )!!E (7.17) 

(see Fig. 7.4), which yields for the current density 

(7.18) 

The factor dE / dk is calculated by using the E versus Ikl relationship known 
for free electrons (4.8), i.e., 

(7.19) 

E , 
,., , 

E ~=:s:!cr:s::~'_AE 
F t 

o 
N(E,) N(E) 

Figure 7.4. Population density N(E) versus energy for free electrons (see Fig. 6.5) 
and displacement dE by an electric field (see Fig. 7.3(b)). N' is the number of dis­
placed electrons per unit volume (see (6. 11 a)) in the energy interval dE. N(E) is 
defined per unit energy and, in the present case, also per unit volume, see (6.8). 
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Taking the first derivative of (7.19) yields, with k = plh (4.7), 

dE = h
2 

k = 1l
2
p = IlmvF = hVF. 

dk m mil m 

Inserting (7.20) into (7.18) yields 

j = v~eN(EF)Mk. 
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(7.20) 

(7.21 ) 

The displacement, Ilk, of the Fermi sphere in k-space under the influence of 
an electric field can be calculated by using (7.6) andp = hk (4.7): 

F = m dv = d(mv) = dp = hdk = eg (7.22) 
dt dt dt dt ' 

which yields 

eg 
dk =T dt, 

or 

(7.23) 

where r is the time interval III between two "collisions" or the relaxation 
time (see Section 7.3). Inserting (7.23) into (7.21) yields 

(7.24) 

One more consideration needs to be made. If the electric field vector points 
in the negative v(k)x direction, then only the components of those velocities 
that are parallel to the positive v(k)x direction contribute to the electric cur­
rent (Fig. 7.5). The v(k)y components cancel each other pairwise. In other 
words, only the projections of the velocities VF on the positive v(k)x-axis 
(VFx = VF cos 0) contribute to the current. Thus, we have to sum up all con­
tributions of the velocities in the first and fourth quadrants in Fig. 7.5, which 

• v(k)y 
I 
I 

-+-v(k)x 

Figure 7.5. Two-dimensional velocity space. 
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yields 

J
+n / 2 dO 

j = e2 N(EF )tffr (UF cos 8)2_ 
-n/2 n 

u
2 J+n

/
2 

=e2N(EF)tffr ....E cos 2 8dO 
n -n/2 

2 [1 OJ +n/2 
= e2 N(EF )tffr uF -4 sin 28 + 2" ' 

n -n/2 

j = !e2N(EF)tffru~. 

A similar calculation for a spherical Fermi surface yields 

j = 1e2N(EF)tffrv~. 

Thus, the conductivity finally becomes, with (J = j / tff (7.2), 

·1 (J = 1e2u~rN(EF)' 1 

(7.25) 

(7.26) 

This quantum mechanical equation reveals that the conductivity depends 
on the Fermi velocity, the relaxation time, and the population density (per 
unit volume). The latter is, as we know, proportional to the density of states. 
Equation (7.26) is more meaningful than the expression derived from the 
classical electron theory (7.15). Specifically, (7.26) contains the information 
that not all free electrons Nr are responsible for conduction, i.e., the con­
ductivity in metals depends to a large extent on the popUlation density of the 
electrons near the Fermi surface. For example, monovalent metals (such as 
copper, silver, or gold) have partially filled valence bands, as shown in Figs. 
5.22 or 6.7. Their electron population densities near their Fermi energy are 
high (Fig. 7.6), which results in a large conductivity according to (7.26). Bi-

---- til 
E - ,,---,,::;::':';': 

B Z(E) 

E-M 

valence 
band 

Figure 7.6. Schematic representation of the density of states (Fig. 6.6) and thus, with 
minor modifications, also the population density (6.7). Examples for highest electron 
energies for a monovalent metal (EM), for a bivalent metal (EB), and for an insulator 
(El) are indicated. 



7. Electrical Conduction in Metals and Alloys 87 

valent metals, on the other hand, are distinguished by an overlapping of the 
upper bands and by a small electron concentration near the bottom of the 
valence band, as shown in Fig. 6.7(c). As a consequence, the electron popu­
lation near the Fermi energy is small (Fig. 7.6), which leads to a compara­
tively low conductivity. Finally, insulators and semiconductors have, under 
certain conditions, completely filled electron bands, which results in a virtu­
ally zero population density near the top of the valence band (Fig. 7.6). 
Thus, the conductivity in these materials is extremely small. 

7.5. Experimental Results and Their Interpretation 

7.5.1. Pure Metals 

The resistivity of a metal, such as copper, decreases linearly with decreasing 
temperature until it reaches a finite value (Fig. 7.7) according to the empiri­
cal equation 

(7.27) 

where rio is the linear temperature coefficient of resistivity. We postulate that 
thermal energy causes lattice atoms to oscillate about their equilibrium 
positions, thus increasing the incoherent scattering of the electron waves (or 
equivalently, increasing the number of electron-atom collisions). The resid­
ual resistivity, Pres> is interpreted to be due to imperfections in the crystal, 
such as impurities, vacancies, grain boundaries, or dislocations. The residual 
resistivity is essentially not temperature-dependent. According to Matthies­
sen's rule the resistivity arises from independent scattering processes which 
are additive, i.e., 

P = Pth + Pimp + Pdef = Pth + Pres· (7.28) 

The thermally induced part of the resistivity, Pth, is called the ideal resistivity, 
whereas the resistivity that has its origin in impurities (Pimp) and defects 
(Pdef) is summed up in the residual resistivity. The number of impurity atoms 
is generally constant in a given metal or alloy. The number of vacancies or 
grain boundaries, however, can be changed by various heat treatments. For 
example, if a metal is annealed at temperatures close to its melting point and 
then rapidly quenched into water at room temperature, its room-temperature 
resistivity increases noticeably due to quenched-in vacancies. Frequently, this 
resistance increase diminishes during room-temperature aging or annealing 
at slightly elevated temperatures due to the annihilation of some vacancies. 
Likewise, recrystallization, grain growth, and many other metallurgical pro­
cesses change the resistivity of metals. As a consequence of this, and due to 
its simple measurement, the resistivity is one of the most widely studied 
properties in materials research. 

It is interesting to compare the thermally induced change in conductivity 
in light of the quantum mechanical and classical models. The number of free 
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Figure 7.7. Schematic representation of the temperature dependence of the resistivity 
of copper and various copper-nickel alloys. Pres is the residual resistivity. 

electrons, Nf, essentially does not change with temperature. Likewise, N(E) 
changes very little with T. However, the mean free path, and thus the relax­
ation time, decreases with increasing temperature (due to a large rate of 
collisions between the drifting electrons and the vibrating lattice atoms). 
This, in tum, decreases (J according to (7.15) and (7.26), in agreement with 
the observations in Fig. 7.7. Thus, both models accurately describe the tem­
perature dependence of the resistivity. 

7.5.2. Alloys 

The resistivity of alloys increases with increasing amount of solute content 
(Fig. 7.7). The slopes of the individual p versus T lines remain, however, 
essentially constant. Small additions of solute cause a linear shift of the p 
versus T curves to higher resistivity values in accordance with Matthiessen's 
rule. This resistivity increase has its origin in several mechanisms. First, 
atoms of different size cause a variation in the lattice parameter and, thus, in 
electron scattering. Second, atoms having different valences introduce a local 
charge difference that also increases the scattering probability. Third, solutes 
which have a different electron concentration compared to the host element 
alter the position of the Fermi energy. This, in tum, changes the population 
density N(E) according to (6.8) and thus the conductivity, see (7.26). 

Various solute elements might alter the resistivity of the host material to 
different degrees. This is demonstrated in Fig. 7.8. Experiments have shown 
that the resistivity of dilute single-phase alloys increases with the square of 
the valence difference between solute and solvent constituents (Linde's rule, 
Fig. 7.8(b)). Thus, the electron concentration of the solute element, i.e., the 
number of additional electrons the solute contributes, clearly plays a vital 
role in the resistance increase, as already mentioned above. 
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Figure 7.8. Resistivity change of various dilute silver alloys (schematic). Solvent and 
solute are all from the fifth period. (a) Resistivity change versus atomic % solute and 
(b) resistivity change due to 1 atomic % of solute. 

The isothermal resistivity of concentrated single-phase alloys often has 
a maximum near 50% solute content, as shown in Fig. 7.9 (solid line). Spe­
cifically, the residual resistivity of these alloys depends, according to 
Nordheim's rule, on the fractional atomic compositions (XA and XB) of the 
constituents 

(7.29) 

where C is a materials constant. Nordheim's rule holds strictly only for a 
few selected binary systems, because it does not take into consideration the 
changes in the density of states with composition. This is particularly true for 
alloys containing a transition metal. 

The resistivity of two-phase alloys is, in many instances, the sum of the 
resistivities of each of the components, taking the volume fractions of each 
phase into consideration. However, additional factors, such as the crystal 
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Figure 7.9. Schematic representation of the resistivity of ordered and disordered 
copper-gold alloys. 
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structure and the kind of distribution of the phases in each other, must also 
be considered. The concentration dependence of the resistivity of two-phase 
alloys does not exhibit a maximum, as in Fig. 7.9, but resembles instead a 
linear interpolation between the resistivities of the individual phases. 

Some alloys (copper with small amounts of iron, for example) show a 
minimum in the resistivity at low temperatures. This anomaly is due to 
additional scattering of electrons by the magnetic moments of the solutes 
and is a deviation from the Matthiessen rule (Kondo effect). 

The property of certain materials to conduct electricity, albeit with some 
resistance, is utilized for resistors in electrical circuits (to limit the current 
flow), or for generating heat (strip heaters, portable radiators, furnaces, etc.). 
The "Joule heating", or power, P, thus produced is proportional to the 
resistance of the wire and the square of the current: 

(7.30) 

One common type of resistor is made from carbon-composites. Others are 
wire-wound, for example, around a ceramic body. They employ alloys of 
high resistivity (about 10-4 Ocm), such as nichrome (nickel-chromium), and 
need to withstand corrosion and be suitable for high temperatures. Other 
resistors may consist of metal films on glass or ceramic substrates. Integrated 
circuits use silicon technology for the same purpose. Resistors having a fixed 
value are color-coded to indicate their nominal resistance, the tolerance of 
this value, and the rated wattage (see table in Appendix 4). Variable resistors, 
having a sliding contact, are either wire-wound or of the carbon-composite 
type. 

7.5.3. Ordering 

Solute atoms are generally randomly distributed in the solvent. Thus, the 
number of centers where incoherent scattering occurs increases proportion­
ally with the number of substitutional atoms. If, however, the solute atoms 
are periodically arranged in the matrix, i.e., if, for example, in a 50/50 alloy 
the A and B atoms alternately occupy successive lattice sites, then the elec­
tron waves are coherently scattered. This causes a decrease in resistivity (and 
an increase in the mean free path) (Fig. 7.9). Only selected alloys, such as 
CU3Au, CuAu, AU3Mn, etc., show a tendency towards long-range ordering. 

The ordered state can be achieved by annealing an alloy of appropriate 
composition slightly below the order-disorder transition temperature (about 
395°C in CU3Au) followed by a moderate cooling rate, or by slowly cooling 
from above the transition temperature. Long-range ordering causes super­
lattice lines in X-ray patterns. 

The disordered state can be obtained at room temperature by quenching 
the alloy rapidly in ice brine from slightly above the transition temperature. 
Annealing above this transition temperature destroys the ordering effect. In 
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some alloys, however, such as in CuAu, the tendency towards ordering is so 
strong that even near the melting point some ordering remains. 

Some alloys, such as a-copper-aluminum, exhibit a much smaller resis­
tance decrease by annealing below a certain ordering temperature. This 
effect IS called short-range ordering and has been found to be due to small 
domains in which the atoms are arranged in an ordered fashion. In the short­
range ordered state the A-B interactions are slightly stronger than the A-A 
or B-B interactions. (Short-range ordering can be identified by using small­
angle X-ray scattering. It causes small and broad intensity increases between 
the regular diffraction lines. 4

) 

7.6. Superconductivity 

Superconductors are materials whose reslstlvltles become immeasurably 
small or actually become zero below a critical temperature, Te. The most 
sensitive measurements have shown that the resistance of these materials in 
the superconducting state is at least 10 16 times smaller than their room tem­
perature values. (See, in this context, Fig. 7.1.) So far, 27 elements, numerous 
alloys, ceramic materials (containing copper oxide), and organic compounds 
(based, e.g., on selenium or sulfur) have been discovered to possess super­
conductivity (see Table 7.1). Their Te values range between 0.01 K and 130 K. 

4H WariImont, ed, Order-Dzsorder TransformatIOns In Alloys, SprInger-Verlag, Berlin (1974) 

Table 7.1. Critical Temperatures of Some Superconducting Materials. 

Matenals 

Tungsten 
Mercury 
Sulfur-based organIC 

superconductor 
Nb3Sn and Nb-Tl 
V3S1 

Nb3Ge 
La-Ba-Cu-O 
YBa2Cu307_x' 
RBa2Cu307_x' 
BI2Sr2Ca2Cu3010+o 
T12CaBa2Cu2010+J 
HgBa2Ca2Cu30s+o 

Te [K] 

0.01 
4.15 
8 

9 
17.1 
23.2 
40 
92 

~92 

113 
125 
134 

Remarks 

H.K. Onnes (1911) 
S.S.P. Parkm et al. (1983) 

Bell Labs (1961), Type II 
J.K. Hulm (1953) 
(1973) 
Bednorz and M tiller (1986) 
Wu, Chu, and others (1987) 
R = Gd, Dy, Ho, Er, Tm, Vb, Lu 
Maeda et al. (1988) 
Hermann et al. (1988) 
R. Ott et al. (1995) 

"The deSignatIOn "1-2-3 compound" refers to the molar rallos of rare earth to alkaline earth to 
copper. (See chemIcal formula) 
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Some metals such as cesium become superconducting only if a large pressure 
is applied to them. The superconducting transition is reversible. The super­
conducting state has to be considered as a separate state, distinct from the 
liquid, solid, or gaseous states. It has a higher degree of order~the entropy 
is zero. 

75 years after the first discovery of superconductivity in mercury (H.K. 
Onnes, Leiden/Holland, 1911) a new class of superconductors was found 
by Bednorz and Muller (Zurich/Switzerland, 1986) which involved copper 
oxide-based ceramics. These materials displayed a transition temperature 
almost twice that of what has been known so far. This observation triggered 
an immense research effort virtually everywhere in the world involving bil­
lions of dollars in research money and thousands of scientists who competed 
for finding the most advantageous superconducting compound. As a result 
of this endeavor, within a few years, new copper oxide-based compounds 
were found that were named 1-2-3 superconductors because of the charac­
teristic molar ratios between rare earth to alkaline earth to copper (see Table 
7.1). Eventually, ceramic materials having critical temperatures above 77 K 
were synthesized, which were euphorically called "high-Tc superconductors." 
Superconductors having a Tc above 77 K (boiling point of liquid nitrogen) 
are technologically interesting because they do not require liquid helium 
(boiling point 4 K) or liquid hydrogen (boiling point 20 K) for cooling. 

A zero resistance combined with high current densities makes super­
conductors useful for strong electromagnets, as needed, e.g., in magnetic 
resonance imaging devices (used in medicine), high-energy particle accel­
erators, or electric power storage devices. (The latter can be appreciated by 
knowing that once an electrical current has been induced in a loop consisting 
of a superconducting wire, it continues to flow without significant decay for 
several weeks.) Further potential applications are lossless power transmis­
sion lines, high-speed levitated trains, more compact and faster computers, 
or switching devices called cryotrons. (The latter device is based on the de­
struction of the superconducting state in a strong magnetic field, see below). 

Despite the above-mentioned discoveries and achievements, supercon­
ducting electromagnets for high magnetic fields are, as of this writing, still 
manufactured from "old-fashioned" Nb-Ti or Nb3Sn alloys (and not from 
ceramic superconductors) for reasons which will be discussed in the next 
section. The wires for the electromagnets are composed of fine filaments of 
a Nb-Ti alloy, each of which is only micrometers in diameter. They are 
imbedded in a matrix of nearly pure copper (for flexibility). We shall cover 
the basic concepts for these applications in the following sections. 

7.6.1. Experimental Results 

When the temperature of a superconducting material is lowered, the transi­
tion into the superconducting state is generally quite sharp for pure and 
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Figure 7.10. Schematic representation of the resistivity of pure and impure super­
conducting elements. Tc is the transition or critical temperature. 

structurally perfect elements (Fig. 7.10). A temperature range of less than 
10-5 K has been observed in pure gallium. In alloys, however, the transition 
may be spread over a range of about 0.1 K. Ceramic superconductors gen­
erally display an even wider spread in transition temperatures. 

The transition temperature, Te, often varies with the atomic mass, rna, 
according to 

rn~ . Te = const., (7.31 ) 

where IX is a materials constant (Isotope effect). As an example, Te for mer­
cury varies from 4.185 K to 4.146 K when rna changes from 199.5 to 203.4 
atomic mass units. 

Elimination of the superconducting state does not only occur by raising 
the temperature, but also by subjecting the material to a strong magnetic 
field. The critical magnetic field strength, He, above which superconductivity 
is destroyed, depends upon the temperature at which the material is held. In 
general, the lower the sample temperature, the higher the critical field He 
(Fig. 7.11(a)). One finds 

He = Ho ( I - ~e~), (7.32) 

where Ho is the critical magnetic field strength at 0 K. Ceramic super­
conductors usually have a smaller He than metallic superconductors, i.e., 
they are more vulnerable to lose superconductivity by a moderate magnetic 
field. 

As already mentioned above, one of the main applications of super­
conductors is in wires for the windings of high-strength electromagnets. We 
will Ie am in Chapter 14 that considerable currents are needed for these large 
field strengths. Now, conventional wires, when passed by large currents, 
generate substantial amounts of resistive heating, see (7.30), which needs to 
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Figure 7.11. (a) Dependence of critical field strength, He, at which superconductivity 
is destroyed, in relation to the temperature of the specimen. (b) The limits of super­
conductivity are defined in a critical T-H-I-diagram. 

be removed somehow, for example, by water cooling. On the other hand, 
superconducting wires that have a zero resistance below Te are free of the 
resistive power loss. In this case, however, a cooling below Te is still needed. 
In practice, it is a weighting between acquisition price and operation cost 
which commands the decision whether a superconducting or a normal elec­
tromagnet is used. 

One limiting factor for ultrahigh field strengths is that the magnetic field 
thus produced can reach He, so that the superconducting state is eventually 
destroyed by its own magnetic field. Moreover, another limiting parameter 
exists, namely, the critical current, Ie, above which superconductivity dis­
appears. All taken, an interrelationship between temperature, current, and 
magnetic field strength is observed: an increase in one of these parameters 
decreases the critical value of the remaining two. In other words, supercon­
ductivity is only present when temperature, magnetic field strength, and 
current remain within a "critical space" in a T-H-I-diagram, as depicted in 
Fig.7.11(b). 

Two classes of superconducting materials are distinguished. In type I 
superconductors the destruction of the superconducting state by a magnetic 
field, i.e., the transition between the superconducting and normal state, 
occurs sharply (Fig. 7.12). The critical field strength He is relatively low. 
Thus, type I superconductors are generally not used for coils for supercon­
ducting magnets. In type II superconductors the elimination of the super­
conducting state by a magnetic field is gradual. The superconducting prop­
erties are extended to a field H e2 , which might be 100 times higher than He! 
(Fig. 7.13(a)). Because of this stronger resistance against the magnetically 
induced destruction of the superconducting state, type II superconductors 
are mainly utilized for superconducting solenoids. Magnetic fields of several 
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Figure 7.12. Schematic representation of the resistivity of a type I (or soft) super­
conductor when a magnetic field of field strength H is applied. These solids behave 
like normal conductors above He. 

tens of tesla (hundreds of kilogauss) have been achieved with these materials. 
Among the type II superconductors are transition metals and alloys consist­
ing of niobium, aluminum, silicon, vanadium, lead, tin, titanium, and, in 
particular, Nb3Sn or Nb-Ti. Ceramic superconductors also belong to this 
group. (The terms "type I or type II superconductors" are often used like­
wise when the abrupt or gradual transition with respect to temperature is 
described, see Fig. 7.10). 

The interval between Hcl and Hc2 represents a state in which super­
conducting and normal conducting areas are mixed in the solid. Specifically, 
one observes small circular regions, called vortices or fluxoids, which are in 
the normal state and which carry the smallest possible unit of a magnetic 
flux, called a flux quantum, 

h 15 2 ifJo = 2e = 2.07 x 10- (T· m ). (7.33) 

The vortices are surrounded by large, superconducting regions. 
The fluxoids are parallel to the magnetic field lines and are regularly 

arranged in space, thus forming essentially a two-dimensional superlattice 
(Fig. 7.13(b)). (The regular arrangement of the fluxoids stems mainly from 
the fact that they repel each other.) One would therefore expect that a 
current which flows perpendicular to these fluxoids (as is the case for elec­
tromagnets) would always find an unobstructed path through the super­
conducting matrix and thus would exhibit unlimited superconductivity. 
However, since the current in an electromagnet flows at a right angle to the 
magnetic field, a so-called Lorentz force is created, which pushes the fluxoids 
perpendicular to the current and the magnetic field directions see Fig. 8.11. 
Thus, the moving fluxoids may become obstacles for the drifting electrons. 
As a result, the current is reduced, or equivalently, the electrical resistance is 
increased. The obstruction does not occur, however, when the fluxoids are 
pinned to their positions, for example, by microstructural inhomogeneities in 
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superconductor. The regIOn between Hel and He2 IS called the vortex state. Above 
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the matrix, such as grain boundaries, dislocations, or fine particles of the 
alloying components. This ftuxoid pinning has been achieved by heat treat­
ment and by plastic deformation, for example, by wire drawing. It is the 
basis for the presently used Nb3 Sn superconducting magnets. 

Fluxoid pinning and resultant large critical currents have not yet been 
achieved in ceramic superconductors. The reason for this lies in the fact that 
thermally induced lattice vibrations make fluxoid pinning at higher temper­
atures (100 K) considerably more difficult than at much lower temperatures. 

It is noted in passing that superconducting materials have exceptional 
magnetic properties. For example, a permanent magnet levitates in mid-air 
above a piece of a superconducting material that is cooled below Te. We 
shall return to the magnetic properties of superconductors in Section 15.1.1. 

Ceramic superconductors seem to be characterized by two-dimensional 
sheets of atoms, a Cu-O nonstoichiometry (i.e., a limited amount of an oxygen 
deficiency, see Fig. 7.14), a reduced lattice parameter between the copper 
atoms, and a tetragonal (high temperature) to orthorhombic (below room 
temperature) transition. Only the orthorhombic modification is supercon­
ducting. Further, ceramic superconductors appear to be antiferromagnetic 
(see Section 15.1.4). Thus, the superconductivity is most likely connected to 
the entire lattice structure. 

Despite their considerably higher transition temperatures, ceramic super­
conductors have not yet revolutionized new technologies, mainly because of 
their inherent brittleness, their incapability of carrying high current densities, 
and their environmental instability. These obstacles may be overcome even­
tually, e.g., by using bismuth-based materials that are capable of carrying 
high currents when cooled to about 20 K or by utilizing composite materials, 
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Figure 7 14 Room-temperature umt cell of YBa2Cu307-x The structure IS an or­
thorhombic layered perovskite (BaTI03) contammg penodlc oxygen vacancies Two 
examples for oxygen vacancies are mdlcated by a "V " Adapted from M Stavola, 
Phys Rev B, 36, 850 (1987) 

i.e" by inserting the ingredient oxide powders into silver tubes and sintering 
them after plastic deformation (e.g., wire pulling). Other techniques employ 
depositions of ceramic superconducting films on ductile substrates. Addi­
tions of silver into some ceramic superconductors improve their environ­
mental stability (by reducing the porosity of the material) without lowering 
Te. In any event, the further development of superconducting materials 
should be followed with great anticipation. 

*7.6.2. Theory 

Attempts to explain superconductivity have been made since its discovery in 
1911. One of these theories makes use of the two-fluid model, which postu­
lates superelectrons that experience no scattering, have zero entropy (perfect 
order), and have long coherence lengths, i.e., an area 1000 nm wide over 
which the superelectrons are spread. The London theory is semiphenome-
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Figure 7. 15. Schema tic of a Cooper pair. 

nological and dwells basically on the electrodynamic properties. The BCS 
theory (which was developed in 1957 by Bardeen, Cooper, and Schrieffer) is 
capable of explaining the properties of conventional superconductors rea­
sonably well. However, it does not seem to satisfactorily interpret high­
temperature (ceramic) superconductors. The BCS theory is quite involved. 
Phenomenological descriptions of the concepts leading to this theory are 
probably simplifications of the actual mechanisms which govern super­
conduction and may thus provide temptations for misleading conclusions. 
(As is so often the case in quantum mechanics, the mathematics is right-it 
is only our lack of imagination that holds us back from correctly interpreting 
the equations.) Nevertheless, a conceptual description of the BCS theory and 
its results is attempted. 

One key to the understanding of the BCS theory is accepting the existence 
of a pair of electrons (Cooper pair) that has a lower energy than two indi­
vidual electrons. Imagine an electron in a metal at T = 0 K (no lattice 
vibrations). This electron perturbs the lattice slightly in its neighborhood. 
When such an electron drifts through a crystal the perturbation is only 
momentary, and, after passing, a displaced ion reverts back into its original 
position. One can consider this ion to be held by springs in its lattice posi­
tion, so that after the electron has passed by, the ion does not simply return 
to its original site, but overshoots and eventually oscillates around its rest 
position. A phonon is created. 5 This phonon in turn interacts quickly with a 
second electron, which takes advantage of the deformation and lowers its 

5 A phonon is a lattice vibration quantum. We will describe the properties of phonons in Chapter 
20. 

kx 

surface 

Figure 7.16. Fermi sphere, Fermi surface, and Cooper pair in a metal. 
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Figure 7.17. Density of states, Z(E), versus electron energy in the superconducting 
state. 

energy. Electron 2 finally emits a phonon by itself, which interacts with the 
first electron and so on. It is this passing back and forth of phonons which 
couples the two electrons together and brings them into a lower energy state 
(Fig. 7.15). One can visualize that all electrons on the Fermi surface having 
opposite momentum and opposite spin (i.e., k land -k 1) form those 
Cooper pairs (Fig. 7.16), so that these electrons form a cloud of Cooper pairs 
which drift cooperatively through the crystal. Thus, the superconducting 
state is an ordered state of the conduction electrons. The scattering on the 
lattice atoms is eliminated, thus causing a zero resistance, as described simi­
larly in Section 7.5.3 where we observed that ordering of the atoms in a 
crystal lattice reduces the resistivity. 

One further aspect has to be considered. We just mentioned that the elec­
trons of a Cooper pair have a lower energy than two unpaired electrons. 
Thus, the Fermi energy in the superconducting state may be considered to be 
lower than that for the nonsuperconducting state. This lower state is sepa­
rated from the normal state by an energy gap, Eg (Fig. 7.17). The energy gap 
stabilizes the Cooper pairs against small changes of net momentum, i.e., 
prevents them from breaking apart. Such an energy gap of about 10-4 eV 
has indeed been observed by impinging IR radiation on a superconductor 
at temperatures below Tc and observing an onset of absorption of the IR 
radiation. 

An alternate method for measuring this gap energy is by utilizing the 
Josephson effect. The experiment involves two pieces of metal, one in the 
superconducting state and the other in the normal state. They are separated 
by a thin insulating film of about 1 nm thickness (Fig. 7.18(a)). A small 
voltage of proper polarity in the millivolt range applied to this device raises 
the energy bands in the superconductor. Increasing this voltage eventually 
leads to a configuration where some filled electron states in the supercon­
ductor are opposite to empty states in the normal conductor (Fig. 7.18(b)). 
Then the Cooper pairs are capable of tunneling across the junction similarly 
as described in Section 4.3. The gap energy is calculated from the threshold 
voltage at which the tunneling current starts to flow. 
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Figure 7.18. Josephson junction (a) in the unbiased state (b) with applied voltage 
across the junction which facilitates tunneling in the indicated direction. 

In closing, we would like to revisit the electron-phonon coupling mecha­
nism, which is believed to be the essential concept for the interpretation of 
superconduction, at least for metals and alloys. It has been explained above 
that in the normal state of conduction (above Tc) strong interactions be­
tween electrons and phonons would lead to collisions (or scattering of the 
electron waves), and thus to electrical resistance, whereas at low tempera­
tures the same interactions would cause Cooper pairs to form and thus 
promote superconduction. This would explain why the noble metals (which 
have small electron-phonon interactions) are not superconducting. In other 
words, poor conductors in the normal state of conduction are potential can­
didates for high-Tc superconductors (and vice versa). Ceramic and organic 
superconductors fit into this scheme. Still, some scientists believe that pho­
nons are involved in the coupling process only at very low temperatures 
(e.g., below 40 K). At somewhat higher temperatures, when phonons cause 
substantial scattering of the electrons, excitons (i.e., electron-hole pairs) may 
link electrons to form Cooper pairs, as suggested by A. Little for organic 
superconductors. Still other scientists propose resonating valence bonds as a 
coupling mechanism for high- Tc superconductors. 

7.7 Thermoelectric Phenomena 

Assume that two different types of materials (e.g., a copper and an iron wire) 
are connected at their ends to form a loop, as shown in Figure 7.19. One of 



7. Electncal ConductIOn III Metals and Alloys 101 

Figure 7.19. Schematic representation of two thermocouples -made of copper and 
iron which are brought in contact with each other (Seebeck effect). 

the junctions is brought to a higher temperature than the other. Then a 
potential difference, d V, between these two thermocouples is observed which 
is essentially proportional to the temperature difference, dT, where 

dV =s 
dT 

(7.34) 

is called the thermoelectric power, or the Seebeck coefficient (after its inven­
tor, T.]. Seebeck, a German physicist who discovered, in 1821, that a ther­
moelectric circuit like the one just described deflected a close-by compass 
needle). A thermoelectric power of several microvolts per degree is commonly 
observed. As an example, the frequently used copper/constantan (Cu-45% 
Ni) combination yields about 43 IN /K. It has a useful range between -180 
and +400°C. For higher temperatures, thermocouples of chrome I (90%Ni-
10%Cr) and alumel (95%Ni-2%Mn-2%AI) or platinum/Pt-13%Rh (up to 
1700°C) are available. Some semiconductors have Seebeck coefficients that 
reach into the millivolt per degree range, that is, they are one or two orders 
of magnitude higher than for metals and alloys. Among them are bismuth 
telluride (Bi2 Te3), lead telluride (PbTe), and silicon-30% germanium alloys. 

Thermocouples made of metal wires are utilized as rigid, inexpensive, and 
fast probes for measuring temperatures even at otherwise not easily accessi­
ble places. Thermoelectric power generators (utilizing the above-mentioned 
semiconductors) are used particularly in remote locations of the earth (Siberia, 
Alaska, etc.). They contain, for example, a ring of thermocouples, arranged 
over the glass chimney of a kerosene lamp which is concomitantly used for 
lighting. The temperature difference of 300°C thus achieved yields electric 
power of a few watts or sometimes more, which can be used for radios or 
communication purposes. Heat produced by the decay of radioisotopes or by 
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Figure 7.20. Thennoelectric refrigeration devices which make use of the Peltier 
effect. (a) Principle arrangement. (b) Efficient device utilizing p- and n-type semi­
conductors (see Section 8.3) in conjunction with metals. 

small nuclear reactors yields thermoelectric power for scientific instruments 
on the moon (e.g., to record moon quakes) and for relaying the information 
back to earth. In solar thermoelectric generators sunlight is concentrated by 
concave mirrors on thermocouples. Most of the above-described devices 
have an efficiency between 5 and 10%. 

A reversion of the Seebeck effect is the Peltier effect: A direct electric 
current that flows through junctions made of different materials causes one 
junction to be cooled and the other to heat up (depending on the direction of 
the current); see Figure 7.20(a). Lead telluride or bismuth telluride in com­
bination with metals are frequently used. One particularly effective device 
for which temperature differences up to 70°C have been achieved is shown in 
Figure 7.20(b). It utilizes n- and p-type semiconductors (see Section 8.3) in 
conjunction with metals. Cooling occurs on those junctions that are con­
nected to the upper metal plate (1 and 2), whereas heat develops on the lower 
junctions 3 and 4. The heat on the lower plate is removed by water or air 
cooling. The above-quoted temperature drop can even be enhanced by cas­
cading several devices, that is, by joining multiple thermoelectric refrigerators 
for which each stage acts as the heat sink for the next. 

The thermoelectric effects can be explained by applying elements of elec­
tron theory as described in the previous sections: When two different types of 
conducting materials are brought into contact, electrons are transferred from 
the material with higher Fermi energy (EF) "down" into the material having a 
lower EF until both Fermi energies are equal. As a consequence, the material 
that had the smaller EF assumes a negative charge with respect to the other. 
This results in the above-mentioned contact potential between the materials. 
The contact potential is temperature-dependent. Specifically, when a mate­
rial is heated, a substantial number of electrons are excited across the Fermi 
energy to higher energy levels. These extra electrons drift to the cold junc­
tion, which becomes negatively charged compared to the hot junction. The 
equivalent is true for the Peltier effect: The electrons having a larger energy 
(that is, those having a higher EF) are caused by the current to transfer their 
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extra energy into the material having a lower EF , which in turn heats up. 
Concomitantly, the material having a higher EF is caused to lose energy and 
thus becomes colder. 

Problems 

1. Calculate the number of free electrons for gold using its density and its atomic 
mass. 

2. Does the conductivity of an alloy change when long-range ordering takes place? 
Explain. 

3. Calculate the time between two collisions and the mean free path for pure copper 
at room temperature. Discuss whether or not this result makes sense. Hint: Take 
the velocity to be the Fermi velocity, VF, which can be calculated from the Fermi 
energy of copper EF = 7 eV. Use otherwise classical considerations. 

4. Electron waves are "coherently scattered" in ideal crystals at T = O. What does 
this mean? Explain why in an ideal crystal at T = 0 the resistivity is small. 

5. Calculate the number of free electrons per cubic centimeter (and per atom) for 
sodium from resistance data (relaxation time 3.1 x 10- 14 s). 

6. Give examples for coherent and incoherent scattering. 

7. When calculating the population density of electrons for a metal by using (7.26), a 
value much larger than immediately expected results. Why does the result, after 
all, make sense? (Take a = 5 x 105 lin cm; VF = 108 cm/s and T = 3 X 10- 14 s.) 

8. Solve the differential equation 

dv etff 
m-+-v=etff 

dt VF 

and compare your result with (7.11). 

(7.10) 

9. Consider the conductivity equation obtained from the classical electron theory. 
According to this equation, a bivalent metal, such as zinc, should have a larger 
conductivity than a monovalent metal, such as copper, because zinc has about 
twice as many free electrons as copper. Resolve this discrepancy by considering 
the quantum mechanical equation for conductivity. 



CHAPTER 8 

Semiconductors 

8.1. Band Structure 

We have seen in Chapter 7 that metals are characterized by partially filled 
valence bands and that the electrons in these bands give rise to electrical 
conduction. On the other hand, the valence bands of insulators are com­
pletely filled with electrons. Semiconductors, finally, represent in some re­
spect a position between metals and insulators. We mentioned in Chapter 6 
that semiconductors have, at low temperatures, a completely filled valence 
band and a narrow gap between this and the next higher, unfilled band. The 
latter one is called the conduction band. We discuss this now in more detail. 

Because of band overlapping, the valence as well as the conduction bands 
of semiconductors consist of mixed (hybrid) s- and p-states. The eight highest 
s + p states (two s- and six p-states)6 split into two separate (s + p) bands,6 
each of which consists of one s- and three p-states (see Fig. 8.1). The lower 
s-state can accommodate one electron per atom, whereas the three lower 
p-states can accommodate three electrons per atom. The valence band can, 
therefore, accommodate 4Na electrons. (The same is true for the conduction 
band.) Because germanium and silicon possess four valence electrons per 
atom (group IV of the Periodic Table), the valence band is completely filled 
with electrons and the conduction band remains empty. 

A deeper understanding of this can be gained from Fig. 8.2, which depicts 
part of a calculated band structure for silicon. Consider at first that electrons 
are "filled" into these bands like water being poured into a vessel. Then, of 
course, the lowest s-state will be occupied first. Since no energy gap exists 

6 See Appendix 3. 
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Figure 8.1. Sharp energy levels, widening into bands, and band overlapping with 
decreasing atomic distance for covalent elements. (Compare with Fig. 4.14.) 

between the top of the s-state and the next higher p-state, additional elec­
trons will immediately start to occupy the p-states. This process proceeds 
until all three lower p-states are filled. All of the 4Na electrons of the semi­
conductor are accommodated now. Note that no higher energy band touches 
the p-states of the valence band. Thus, an energy gap exists between the filled 
valence and the empty conduction band. (As was shown in Fig. 5.23, the 
bands in different directions in k-space usually have different shapes so 
that a complete assessment can only be made by inspecting the entire band 
structure. ) 

All materials which have bonds characterized by electron sharing (co-
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Figure 8.2. Schematic band structure of silicon in the kx (or X) direction (plotted in 
the reduced zone scheme). The separation of the two highest p-states in the valence 
band is strongly exaggerated. Compare with the complete band structure of Fig. 5.23. 
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Table 8.1. Gap Energies for 
Some Group IV Elements at 
o K (see also Appendix 4). 

Element Eg reV] 

C (diamond) 
Si 
Ge 
Sn (gray) 

5.48 
1.17 
0.74 
0.08 

valent bonds) have in common the above-mentioned hybrid bands (Fig. 8.1). 
An important difference is the magnitude of the gap energy, Eg, between the 
conduction band and the valence band. As can be seen from Table 8.1, the 
gap energies for group IV elements decrease with increasing atomic number. 
Diamond, for example, has a gap energy of 5.48 eV and is, therefore, an in­
sulator (at least at and below room temperature) whereas the Eg for silicon 
and germanium is around I eV. Gray tin, finally, has an energy gap of only 
0.08 eV. (It should be noted in passing that the utilization of diamond as an 
extrinsic semiconductor has been recently contemplated.) 

The gap energy is slightly temperature dependent according to the empir­
ical equation 

(8.1 ) 

where Ego is the band gap energy at T = 0 K, (~5 X 10-4 eV/K, and eD is 
the Debye temperature (see Table 19.2). It is noted that Eg becomes smaller 
with increasing temperature. For example, the temperature dependence of 
Eg for Si is -2.4 x 10-4 eV/K (see Appendix 4). 

8.2. Intrinsic Semiconductors 

Semiconductors become conducting at elevated temperatures. In an intrinsic 
semiconductor, the conduction mechanism is predominated by the properties 
of the pure crystal. In order for a semiconductor to become conducting, 
electrons have to be excited from the valence band into the conduction band 
where they can be accelerated by an external electric field. Likewise, the 
electron holes which are left behind in the valence band contribute to the 
conduction. They migrate in the opposite direction to the electrons. The 
energy for the excitation of the electrons from the valence band into the 
conduction band stems usuaIIy from thermal energy. The electrons are 
transferred from one band into the next by interband transitions. 

We turn now to a discussion of the Fermi energy in semiconductors. We 
learned in Section 6.2 that the Fermi energy is that energy for which the 
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Figure 8.3. Schematic Fermi distribution function and Fermi energy for an intrinsic 
semiconductor for T > 0 K. The "smearing out" of the Fermi distribution function 
at Eo and Ev is exaggerated. For reasons of convenience, the zero point of the energy 
scale is placed at the bottom of the conduction band. 

Fermi distribution function equals !. (It is advisable to keep only this "defi­
nition" of the Fermi energy in mind. Any other definition which might give a 
correct understanding for metals could cause confusion for semiconductors!) 
The probability that any state in the valence band of an intrinsic semicon­
ductor at T = 0 K is occupied by electrons is 100%, i.e., F(E) = I for 
E < Ev (Fig. 8.3). At higher temperatures, however, some of the electrons 
close to the top of the valence band have been excited into the conduction 
band. As a consequence, the probability function F(E) is slightly reduced at 
the top of the valence band for T > 0 K. 

On the other hand, no electrons are found at T = 0 K in the conduction 
band. Thus, the Fermi distribution function for E > Eo must be zero. Again, 
for higher temperatures, a small deviation from F(E) = 0 near the bottom of 
the conduction band is expected (Fig. 8.3). The connection between the two 
branches of the F(E) curve just discussed is marked with a dashed line in 
Fig. 8.3. This connecting line does not imply that electrons can be found in 
the forbidden band since F(E) is merely the probability of occupancy of an 
available energy state. (A detailed calculation provides a slightly modified 
F(E) curve whose vertical branches extend further into the forbidden band.) 

Our discussion leads to the conclusion that the Fermi energy, EF (i.e., that 
energy where F(E) = !), is located in the center of the forbidden band. In 
other words, for intrinsic semiconductors we find EF = - Eg /2 when the zero 
point of the Energy scale is placed at the bottom of the conduction band. 

We may also argue somewhat differently: For T > 0 K the same amount 
of current carriers can be found in the valence as well as in the conduction 
band. Thus, the average Fermi energy has to be halfway between these 
bands. A simple calculation confirms this statement. (Problem 3 in this 
chapter should be worked at this point to deepen the understanding.) We 
implied in our consideration that the effective masses of electrons and holes 
are alike (which is not the case; see Appendix 4). 



108 II. Electrical Properties of Materials 

Of special interest to us is the number of electrons in the conduction band. 
From the discussion carried out above, we immediately suspect that a large 
number of electrons can be found in the conduction band if Eg is small and, 
in addition, if the temperature is high. In other words, we suspect that the 
number of electrons in the conduction band is a function of Eg and T. A 
detailed calculation, which we will carry out now, verifies this suspicion. 

In Section 6.4 we defined N* to be the number of electrons that have an 
energy equal to or smaller than a given energy, En. For an energy interval 
between E and E + dE, we obtained (6.9), 

dN* = N(E) dE, (8.2) 

where 

N(E) = 2 . Z(E) . F(E) (8.3) 

was called the population density (6.7) and 

(8.4) 

is the density of states (6.5). In our particular case, the Fermi distribution 
function, F(E), can be approximated by 

because E - EF is about 0.5 eV and kBT at room temperature is of the order 
of 10-2 eV. Therefore, the exponential factor is large compared to 1 (Boltz­
mann tail). We integrate over all available electrons that have energies larger 
than the energy at the bottom of the conduction band (E = 0), and obtain, 
with (8.2), (8.4), and (8.5),7 

N* = ~. (2m)3/2J
OO 

El/2 . exp [- (E - EF)] dE 
2n2 1'12 0 kBT 

or 

* V (2m)3/2 ( EF ) JOO 1/2 [( E )] N =-. - exp -- E ·exp - -- dE. 
2n2 1'12 kBT 0 kBT 

(8.6) 

7 The integration should actually be done over the states in the conduction band only. However, 
since the probability factor F(E) is rapidly approaching zero for energies E > EF, the substitu­
tion of infinity for the upper limit does not change the result appreciably. This substitution 
brings the integral into a standard form, namely: 
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Integration 7 yields 

N* = ~ (2m)3/2 exp ( EF) kBT (nkBT) 1/2 
2n2 h2 kBT 2 

= ~ C:~~Ty/2 exp(k~~). (8.7) 

Introducing EF = -Eg /2 (see above) and the effective mass ratioS m:/mo we 
then obtain, for the number of conduction-band electrons per unit volume, 
Ne = N*/V, 

Ne = ! (2mkB)3/2 (m:)3/2 T 3/ 2 exp [_ (~)] . (8.8) 
4 nh2 ma 2kBT 

1 (2 k )3/2 
The constant factor 4 :2B has the value 4.84 x 10 15 
Thus, we can write for (8.8) 

Ne = 4.84 X 10 15 (~y/2 T 3
/
2 exp [_ (~) ]. (8.9) 

We see from (8.9) that the number of electrons in the conduction band per cm3 

is a function of the energy gap and the temperature, as expected. We further 
notice that the contribution of a temperature increase to Ne resides mostly in 
the exponential tenn and only to a lesser extent in the term T3/2. A numeri­
cal evaluation of (8.9) tells us that the number of electrons per cubic centi­
meter in silicon at room temperature is about 109 (see Problem 1). In other 
words, at room temperature, only one in every 1013 atoms contributes an 
electron to the conduction. This explains the poor conduction of Si, see Fig. 
7.1. We shall see in the next section that in extrinsic semiconductors many 
more electrons can be found in the conduction band. 

The electron and hole density is shown in Fig. 8.4 for an intrinsic semi­
conductor. The number of electrons is given by the area enclosed by the 
Z(E) curve and F(E) = exp[-(E - EF)/kBTj (8.6). 

As implied before, the number of electrons in the conduction band must 
equal the number of holes in the valence band. This means that an identical 
equation to (8.8) can be written for the holes if we assume m: = mj;, which is 
not strictly true. 9 (An additional tenn, which is usually neglected, modifies 
EF slightly.) 

The conductivity9 of an intrinsic semiconductor is not detennined by 
the number of electrons and holes alone. The mobility9, f.i, of the current 

8 Note that m = mo, see Section 6.7 and Footnote 16 in this section. 

9 For numerical values, see the tables in Appendix 4. 
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Figure 8.4. Density of electrons (Ne ) and holes (Nh) for an intrinsic semiconductor. 

carriers, 

(S.lO) 

i.e., their (drift) velocity per unit electric field, also contributes its share to the 
conductivity, a. An expression for the conductivity is found by combining 
(7.2), 

j = (JIg, 

and (7.4), 

j = Nve, 

with (S.lO), which yields 

v 
a = N tfe = N fJ.e. 

Taking both electrons and holes into consideration we can write 

a = NeefJ.e + NhefJ.h' 

a = 4.S4 x 10
15 (:~y/2 r3

/
2
e(fJ.e + fJ.h) exp [- (2::r)] ' 

(S.lI ) 

(S.l2) 

(S.l3) 

(S.14) 

where the subscripts e and h stand for electrons and holes, respectively. With 
increasing temperatures, the mobility of the current carriers is reduced by 
lattice vibrations (Fig. S.5(a)). On the other hand, around room temperature, 
an increasing number of electrons are excited from the valence band into the 
conduction band, thus strongly increasing the number of current carriers, Ne 
and Nh (Fig. S.5(b)). The conductivity is, according to (S.14), a function of 
these two factors whereby N is dominating (Fig. S.5(c». 

At low temperatures the electrons are incoherently scattered by impurity 
atoms and lattice defects. It is therefore imperative that semiconductor 
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Figure 8.5. Schematic representation of the temperature dependence of (a) electron 
and hole mobilities, (b) number of carriers in an intrinsic semiconductor, and (c) 
conductivity for an intrinsic semiconductor. (T is given in Kelvin.) 

materials are of extreme purity. Methods to achieve this high purity will be 
discussed in Section 8.7.11. 

8.3. Extrinsic Semiconductors 

8.3.1. Donors and Acceptors 

We learned in the previous section that in intrinsic semiconductors only a 
very small number of electrons (about 109 electrons per cubic centimeter) 
contribute to the conduction of the electric current. In most semiconductor 
devices, a considerably higher number of charge carriers are, however, pres­
ent. They are introduced by doping, i.e., by adding small amounts of im­
purities to the semiconductor material. In most cases, elements of group III 
or V of the periodic table are used as dopants. They replace some regular 
lattice atoms in a substitutional manner. Let us start our discussion by con­
sidering the case where a small amount of phosphorus (e.g., 0.0001%) is 
added to silicon. Phosphorus has five valence electrons, i.e., one valence 
electron more than silicon. Four of these valence electrons form regular 
electron-pair bonds with their neighboring silicon atoms (Fig. 8.6). The fifth 
electron, however, is only loosely bound to silicon, i.e., the binding energy is 
about 0.045 eV (see Appendix 4 and Problem 10.) At slightly elevated tem­
peratures this extra electron becomes disassociated from its atom and drifts 
through the crystal as a conduction electron when a voltage is applied to the 
crystal. Extra electrons of this type are called "donor electrons." They pop­
ulate the conduction band of a semiconductor, thus providing a contribution 
to the conduction process. 

It has to be noted that at sufficiently high temperatures, in addition to 
these donor electrons, some electrons from the valence band are also excited 
into the conduction band in an intrinsic manner. The conduction band con­
tains, therefore, electrons from two sources, the amount of which depends on 
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Figure 8.6. Two-dimensional representation of the silicon lattice. An impurity atom 
of group V of the periodic table (P) is shown to replace a silicon atom. The charge 
cloud around the phosphorus atom stems from the extra phosphorus electron. Each 
electron pair between two silicon atoms constitutes a covalent bond (electron shar­
ing). The two electrons of such a pair are indistinguishable, but must have opposite 
spin to satisfy the Pauli principle. 

the device temperature (see Section 8.3.3). Since the conduction mechanism 
in semiconductors with donor impurities (P, As, Sb) is predominated by 
negative charge carriers (electrons) these materials are called n-type semi­
conductors. The electrons are the majority carriers. 

A similar consideration may be done with impurities from the third group 
of the Periodic Chart (B, AI, Ga, In). They possess one electron less than 
silicon and, therefore, introduce a positive charge cloud into the crystal 
around the impurity atom. The conduction mechanism in these semi­
conductors with acceptor impurities is predominated by positive carriers 
(holes) which are introduced into the valence band. They are therefore called 
p-type semiconductors. 

8.3.2. Band Structure 

The band structure of impurity or extrinsic semiconductors is essentially the 
same as for intrinsic semiconductors. It is desirable, however, to represent in 
some way the presence of the impurity atoms by impurity states. It is com­
mon to introduce into the forbidden band so-called donor or acceptor levels 
(Fig. 8.7). The distance between the donor level and the conduction band 
represents the energy that is needed to transfer the extra electrons into the 
conduction band. (The same is true for the acceptor level and valence band.) 
It has to be emphasized, however, that the introduction of these impurity 
levels does not mean that mobile electrons or holes are found in the forbid­
den band of, say, silicon. The impurity states are only used as a convenient 
means to remind the reader of the presence of extra electrons or holes in the 
crystal. 
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(a) (b) 

Figure 8.7. (a) Donor and (b) acceptor levels in extrinsic semiconductors. 

8.3.3. Temperature Dependence of the Number of Carriers 

At 0 K the excess electrons of the donor impurities remain in close proximity 
to the impurity atom and do not contribute to the electric conduction. We 
express this fact by stating that all donor levels are filled. With increasing 
temperature, the donor electrons overcome the small potential barrier (Fig. 
8.7(a)) and are excited into the conduction band. Thus, the donor levels are 
increasingly emptied and the number of negative charge carriers in the con­
duction band increases exponentially, obeying an equation similar to (8.9). 
Once alI electrons have been excited from the donor levels into the conduc­
tion band, any further temperature increase does not create additional elec­
trons and the Ne versus T curve levels off (Fig. 8.8). As mentioned before, at 
still higher temperatures intrinsic effects create additional electrons which, 
depending on the amount of doping, can outnumber the electrons supplied 
by the impurity atoms. 

Similarly, the acceptor levels do not contain any electrons at 0 K. At in-
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Figure 8.8. Schematic representation of the number of electrons per cubic centimeter 
in the conduction band versus temperature for an extrinsic semiconductor with low 
doping. 
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creasing temperatures, electrons are excited from the valence band into the 
acceptor levels, leaving behind positive charge carriers. Once all acceptor 
levels are filled, the number of holes in the valence band is not increased 
further until intrinsic effects set in. 

8.3.4. Conductivity 

The conductivity of extrinsic semiconductors can be calculated, similarly as 
in the previous section (8.13), by multiplying the number of carriers by the 
mobility, /1, and electron charge, e. Around room temperature, however, 
only the majority carriers need to be considered. For electron conduction, 
for example, one obtains 

(8.15) 

where Nde is the number of donor electrons and /1e is the mobility of the 
donor electrons in the conduction band. As mentioned above, it is reason­
able to assume that, at room temperature, essentially all donor electrons 
have been excited from the donor levels into the conduction band (Fig. 8.8). 
Thus, for pure n-type semiconductors, Nde is essentially identical to the 
number of impurities (i.e., donor atoms), Nd. At substantially lower tem­
peratures, i.e., at around 100 K, the number of conduction electrons needs to 
be calculated using an equation similar to (8.8). 

Figure 8.9 shows the temperature dependence of the conductivity. We 
notice that the magnitude of the conductivity, as well as the temperature 
dependence of (J, is different for various doping levels. For low doping rates 
and low temperatures, for example, the conductivity decreases with increas­
ing temperature (Fig. 8. 9(b)). This is similar to the case of metals, where the 
lattice vibrations present an obstacle to the drifting electrons (or, expressed 
differently, where the mobility of the carriers is decreased by incoherent 
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Figure 8.9. Conductivity of two extrinsic semiconductors, (a) high doping and 
(b) low doping. Nd = number of donor atoms per cubic centimeter. 
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scattering of the electrons). However, at room temperature intrinsic effects 
set in, which increase the number of carriers and therefore enhance the con­
ductivity. As a consequence, two competing effects determine the conduc­
tivity above room temperature: an increase of (J due to an increase in the 
number of electrons, and a decrease of (J due to a decrease in mobility. (It 
should be mentioned that the mobility of electrons or holes also decreases 
slightly when impurity atoms are added to a semiconductor.) For high dop­
ing levels, the temperature dependence of (J is less pronounced due to the 
already higher number of carriers (Fig. 8.9(a)). 

8.3.5. Fermi Energy 

In an n-type semiconductor, more electrons can be found in the conduction 
band than holes in the valence band. This is particularly true at low tem­
peratures. The Fermi energy must therefore be between the donor level and 
the conduction band (Fig. 8.10). With increasing temperatures, an extrinsic 
semiconductor becomes progressively intrinsic and the Fermi energy ap­
proaches the value for an intrinsic semiconductor, i.e., -(Eg /2). [Similarly, 
the Fermi energy for a p-type semiconductor rises with increasing tempera­
ture from below the acceptor level to -(Eg/2).] 

Ey~--------------------------

o 200 400 600 T[KJ 

Figure 8.10. Fenni level of an n-type semiconductor as a function of temperature. 
Nd ~ 10 16 (atoms per cubic centimeter). 

*8.4. Effective Mass 

Some semiconductor properties can be better understood and calculated by 
evaluating the effective mass of the charge carriers. We mentioned in Section 
6.7 that m* is inversely proportional to the curvature of an electron band. 
We now make use of this finding. 
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Let us first inspect the upper portion of the valence bands for silicon near 
r (Fig. 8.2). We notice that the curvatures of these bands are convex down­
ward. It is known from Fig. 6.8 that in this case the charge carriers have a 
negative effective mass, i.e., these bands can be considered to be populated 
by electron holes. Further, we observe that the curvatures of the individual 
bands are slightly different. Thus, the effective masses of the holes in these 
bands must likewise be different. One distinguishes appropriately between 
light holes and heavy holes. Since two of the bands, namely, those having the 
smaller curvature, are almost identical, we conclude that two out of the three 
types of holes are heavy holes. 

We tum now to the conduction band of silicon and focus our attention on 
the lowest band (Fig. 8.2). We notice a minimum (or valley) at about 85% 
between the r and X points. Since the curvature at that location is convex 
upward, we expect this band to be populated by electrons. (The energy sur­
face near the minimum is actually a spheroid. This leads to longitudinal and 
transverse masses mi and m;.) Values for the effective masses are given in 
Appendix 4. Occasionally, average effective masses are listed in the literature. 
They may be utilized for estimates. 

8.5. Hall Effect 

The number and type of charge carriers (electrons or holes) that were calcu­
lated in the preceding sections can be elegantly measured by making use of 
the Hall effect. Actually, it is quite possible to measure concentrations of less 
than 10 12 electrons per cubic centimeter in doped silicon, i.e., one can mea­
sure one donor electron (and therefore one donor atom) per 1010 silicon 
atoms. This sensitivity is several orders of magnitude better than in any 
chemical analysis. 

We assume for our discussion an n-type semiconductor in which the con­
duction is predominated by electrons. Suppose an electric current having a 
current density j flows in the positive x-direction and a magnetic field (of 
magnetic induction B) is applied normal to this electric field in the z-direction 
(Fig. 8.11 ). Each electron is then subjected to a force, called the Lorentz force, 
which causes the electron paths to bend, as shown in Fig. 8.11. As a conse­
quence, the electrons accumulate on one side of the slab (in Fig. 8.11 on the 
right side) and are deficient on the other side. Thus, an electric field is created 
in the (negative) y-direction which is called the Hall field. In equilibrium, the 
Hall force 

FH = -e$y 

balances the above-mentioned Lorentz force 

(8.16) 

(8.17) 
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Figure 8.11. Schematic representation of the Hall effect in an n-type semiconductor 
(or a metal in which electrons are the predominant current carriers). 

where Vx is the velocity of the electrons, and e 1S the electron charge. 
FH + h = 0 yields, for the Hall field, 

(8.18) 

Combining (8.18) with (7.4) (and knowing that the current is defined to be 
directed in the opposite direction to the electron flow) 

(8.19) 

yields for the number of conduction electrons (per unit volume) 

N =JxBz. 
etffy 

(8.20) 

The variables on the right side of (8.20) can all be easily measured and the 
number of conduction electrons can then be calculated. Quite often, a Hall 
constant 

1 
RH =-­

Ne 
(8.21 ) 

is defined which is inversely proportional to the density of charge carriers, N. 
The sign of the Hall constant indicates whether electrons or holes predomi­
nate in the conduction process. RH is negative when electrons are the pre­
dominant charge carriers. (The electron holes are deflected in the same di­
rection as the electrons but travel in the opposite direction.) 
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8.6. Compound Semiconductors 

Gallium arsenide (a compound of group III and group V elements of the 
Periodic Table) is of great technical interest, partially because of its large 
band gap,10 which essentially prevents intrinsic contributions in impurity 
semiconductors even at elevated temperatures, partially because of its larger 
electron mobility,1O which aids in high-speed applications, and particularly 
because of its optical properties, which result from the fact that GaAs is a 
"direct-band gap" material (see Chapter 12). The large electron mobility in 
GaAs is caused by a small value for the electron effective mass, which in tum 
results from a comparatively large convex upward curvature of the conduc­
tion electron band near r. (See in this context the band structure of GaAs in 
Fig. 5.24.) The electrons which have been excited into the conduction band 
(mostly from donor levels) most likely populate this high curvature region 
near r. 

The atomic bonding in III-V and II-VI semiconductors resembles that of 
the group IV elements (covalent) with the additional feature that the bond­
ing is partially ionic because of the different valences of the participating ele­
ments. The ionization energies 10 of donor and acceptor impurities in GaAs 
are as a rule one order of magnitude smaller than in germanium or silicon, 
which ensures complete ionization even at relatively low temperatures. The 
crystal structure of GaAs is similar to that of silicon. The gallium atoms 
substitute for the comer and face atoms, whereas arsenic takes the places of 
the four interior sites (zinc-blende structure). 

The high expectations that have been set for GaAs as the semiconductor 
material of the future have not yet materialized to date. It is true that GaAs 
devices are two and a half times faster than silicon-based devices, and that 
the "noise" and the vulnerability to cosmic radiation is considerably reduced 
in GaAs because of its larger band gap. On the other hand, its ten-times 
higher price and its much greater weight (OSI = 2.3 gjcm3 compared to 
OGaAs = 5.3 gjcm3

) are serious obstacles to broad computer-chip usage or for 
solar panels. Thus, GaAs is predominantly utilized for special applications, 
such as high-frequency devices (e.g., 10 GHz), certain military projects, or 
satellite preamplifiers. One of the few places, however, where GaAs seems 
to be, so far, without serious competition is in optoelectronics (though even 
this domain appears to be challenged according to the most recent research 
results). 

We will learn in Part III that only direct band-gap materials such as 
GaAs are useful for lasers and light-emitting diodes (LED). Indirect-band 
gap materials, such as silicon, possess instead the property that part of the 
energy of an excited electron is removed by lattice vibrations (phonons). 
Thus, this energy is not available for light emission. We shall return to GaAs 
devices in Section 8.7.9. 

!OSee the tables III AppendiX 4 
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GaAs is, of course, not the only compound semiconductor material which 
has been heavily researched or is being used. Indeed, most compounds con­
sisting of elements of groups III and V of the periodic table are of some 
interest. Among them are GaP, GaN, InP, InAs, InSb, and AlSb, to mention 
a few. 'o But also, group II-VI compounds, such as ZnO, ZnS, ZnSe, CdS, 
CdTe, or HgS are considered for applications. These compounds have in 
common that the combination of the individual elements possesses an aver­
age of four valence electrons per atom because they are located at equal 
distances from either side of the fourth column. Another class of compound 
semiconductors is the group IV-VI materials,'o which include PbS, PbSe, 
and PbTe. Finally, ternary alloys, such as AlxGal-xAs, or quaternary alloys, 
such as AlxGal_xAsySbl_y, are used. Most of the compounds and alloys 
are utilized in optoelectronic devices, e.g., GaAsl-xPx for LEDs, which 
emit light in the visible spectrum (see Part III). AlxGal_xAs is also used in 
modulation-doped field-effect transistors (MODFET). 

Finally, silicon carbide is the most important representative of the group 
IV-IV compounds. Since its band gap is around 3 eV, IX-SiC can be used for 
very-high-temperature (700°C) device applications and for LEDs that emit 
light in the blue end of the visible spectrum. SiC is, however, expensive and 
cannot yet be manufactured with reproducible properties. 

Doping of GaAs is accomplished, for example, by an excess of Ga atoms 
(p-type) or an excess of As (n-type). Si acts as a donor ifit replaces Ga atoms 
and as an acceptor by substituting for As atoms. The recently refined tech­
nique of molecular beam epitaxy (MBE) allows the production of the 
wanted compounds and dopings. 

8.7. Semiconductor Devices 

8.7.1. Metal-Semiconductor Contacts 

If a semiconductor is coated on one side with a metal, a rectifying contact or 
an ohmic contact is formed, depending on the type of metal used. Both cases 
are equally important. Rectifiers are widely utilized in electronic devices, 
e.g., to convert alternating current into direct current. However, the type 
discussed here has been mostly replaced by p - n rectifiers. On the other 
hand, all semiconductor devices need contacts in which the electrons can 
easily flow in both directions. They are called ohmic contacts because their 
current-voltage characteristic obeys Ohm's law (7.1). 

At the beginning of our discussion let us assume that the surface of an 
n-type semiconductor has somehow been negatively charged. The negative 
charge repels the free electrons that had been near the surface and leaves 
positively charged donor ions behind (e.g., As+). Any electron that drifts 
toward the surface (negative x-direction in Fig. 8.12(a)) "feels" this repelling 
force. As a consequence, the region near the surface has fewer free electrons 
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Figure 8.12. (a) Band diagram for an n-type semiconductor whose surface has been 
negatively charged. (b) Band diagram for a p-type semiconductor, the surface of 
which is positively charged. X is the distance from the surface. 

than the interior of the solid. This region is called the depletion layer (or 
sometimes space-charge region). 

In order to illustrate the repelling force of an external negative charge, it is 
customary to curve the electron bands upward near the surface. The deple­
tion can then be understood by stating that the electrons assume the lowest 
possible energy state (or colloquially expressed: "The electrons like to roll 
downhill"). The depletion layer is a potential barrier for electrons. 

Similarly, if a p-type semiconductor is positively charged at the surface, 
the positive carriers (holes) are repelled toward the inner part of the crystal 
and the band edges are bent downward (Fig. 8.l2(b)). This represents a 
potential barrier for holes (because holes "want to drift upward" like a 
hydrogen-filled balloon). 

8.7.2. Rectifying Contacts (Schottky Barrier Contacts) 

It is essential for further discussion to introduce the work function, rp, which 
is the energy difference between the Fermi energy and the ionization energy. 
In other words, rp is the energy which is necessary to transport an electron 
from EF to infinity. (Values for rp are given in Appendix 4.) 

Let us consider a metal and an n-type semiconductor before they are 
brought into contact. In Fig. 8.l3(a) the Fermi energy of a metal is shown to 
be lower than the Fermi energy of the semiconductor, i.e., rpM > rps. Imme­
diately after the metal and semiconductor have been brought into contact, 
electrons start to flow from the semiconductor "down" into the metal until 
the Fermi energies of both solids are equal (Fig. 8.13(b)). As a consequence, 
the metal will be charged negatively and a potential barrier is formed just as 
shown in Fig. 8.12. This means that the energy bands in the bulk semicon­
ductor are lowered by the amount rpM - rps with respect to a point A. 
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Figure 8.13. Energy bands for a metal and an n-type semiconductor (a) before and 
(b) after contact. tPM > tPs. The potential bamer IS marked with heavy Imes. X IS the 
electron affimty. 

In the equilibrium state, electrons from both sides cross the potential bar­
rier. This electron flow constitutes the so-called diffusion current. The number 
of electrons diffusing in both directions must be identical for the following 
reason: the metal contains more free electrons, but these electrons have to 
climb a higher potential barrier than the electrons in the semiconductor, 
whose conduction band contains fewer free electrons. 

Similarly, if a p-type semiconductor is brought into contact with a metal 
and rPM < rPs, then electrons diffuse from the metal into the semiconductor, 
thus charging the metal and, therefore, the surface of the semiconductor 
positively. Consequently, a "downward" potential barrier (for the holes) is 
formed (Fig. 8.14). 

In addition to the diffusion current just mentioned, a "drift current" needs 
to be taken into consideration. Let us assume that an electron-hole pair was 
thermally created in or near the depletion layer. Then, the thermally created 
electron in the conduction band is immediately swept down the barrier, and 
the hole in the valence band is swept up the barrier. This drift current is 
usually very small (particularly if the band gap is large, such as in GaAs) 
and is relatively insensitive to the height of the potential barrier. The total 
current across a junction is the sum of drift and diffusion components. 

The potential barrier height for an electron diffusing from the semicon­
ductor into the metal is rPM - rPs (see Fig. 8.13(b)). This potential difference 
is called the contact potential. The height of the potential barrier from the 
metal side is rPM - X, where X is the electron affinity, measured from the 
bottom of the conduction band to the ionization energy (vacuum level) (Fig. 
8.13(a)). 

We shall now estimate the net current that flows across the potential 
barrier when a metal and an n-type semiconductor are connected to a d.c. 
source (biasing). At first, the metal is assumed to be connected to the negative 
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Figure 8.14. Energy bands for a metal and a p-type semiconductor (a) before and 
(b) after contact. <PM < <Ps· 

terminal of a battery. As a result, the metal is charged even more negatively 
than without bias. Thus, the electrons in the semiconductor are repelled even 
more, and the potential barrier is increased (Fig. 8.l5(a)). Further, the de­
pletion layer becomes wider. Because both barriers are now relatively high, 
the diffusion currents in both directions are negligible. However, the small 
and essentially voltage-independent drift current still exists, which results in 
a very small and constant net electron current from the metal into the semi­
conductor (reverse bias, Fig. 8.l5(a)). 
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Figure 8.15. Metal-semiconductor contact with two polarities: (a) reverse bias and 
(b) forward bias. The number of electrons that flow in both directions and the net 
current is indicated by the length of the arrows. The potential barriers are marked by 
heavy lines. 
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Figure 8.16. (a) Characteristic of a rectifier. The reverse current is grossly ex­
aggerated! (b) Voltage versus time curves to demonstrate the behavior of an alter­
nating current and a current for which the negative voltage has been eliminated. 

If the polarity of the battery is reversed, the potential barrier in the semi­
conductor is reduced, i.e., the electrons are "driven" across the barrier so 
that a large net current from the semiconductor into the metal results (for­
ward bias). The depletion layer is narrow (Fig. 8.15(b)). The voltage-current 
characteristic of a rectifier is shown in Fig. 8.l6(a). Rectifiers of this type are 
used to convert alternating current into direct current, Fig. 8.16(b). 

The current that flows from the metal into the semiconductor is 

IMS = ACT
2 

exp [- (<P~B~ x) ], (8.22) 

(see Fig. 8.13b) where A is the area of the contact and C is a constant. The 
current flowing from the semiconductor into the metal is 

ISM = ACT2 exp [- (I,6M -k~~- ev)], (8.23) 

where V is the bias voltage (which has the sign of the polarity of the metal) 
and e is the electronic charge. The net current I net = ISM - IMs consists of 
two parts, namely, the saturation current (occasionally called the generation 
current)!! 

Is = ACT2 exp [- (I,6~B-/S) ] (8.24) 

and a voltage-dependent term. The net current is then obtained by combin-

II For low enough temperatures, one can assume ¢s "" x; see Figs. 8.10 and 8.13. 
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Illg (8.23), and (8.24), 

Ine! = Is [exp(::r) - 1]- (8.25) 

We see from (8.25) that for forward bias (positive V) the net current in­
creases exponentially with voltage. Figure 8.16 reflects this behavior. On the 
other hand, for reverse bias (negative V) the current is essentially constant 
and equal to -Is. The saturation current is about three orders of magnitude 
smaller than the forward current. (It is shown exaggerated in Fig. 8.16.) 

We shall learn in Section 8.7.4 that the same rectifying effect as discussed 
above can also be achieved by using a p-n diode. There are, however, a few 
advantages in using the metal/semiconductor rectifier. First, the conduction 
III a metal/semiconductor device involves, naturally, one type of conduction 
carrier (e.g., electrons) only. Thus, no mutual annihilation of electrons and 
holes can occur. As a consequence of this lack of "carrier recombination," 
the device may be switched more quickly from forward to reverse bias and is 
therefore better suited for microwave-frequency detectors. Second, the metal 
base provides better heat removal than a mere semiconductor chip, which is 
helpful in high-power devices. 

8.7.3. Ohmic Contacts (Metallizations) 

In Fig. 8.17(a) and (b), band diagrams are shown for the case where a 
metal is brought into contact with an n-type semiconductor. It is assumed 
that tPM < tPs. Thus, electrons flow from the metal into the semiconduc­
tor, charging the metal positively. The bands of the semiconductor bend 
"downward" and no barrier exists for the flow of electrons in either direc­
tion. In other words, this configuration allows the injection of a current into 
and out of the semiconductor without suffering a sizable power loss. The 

-T----------IOnizatlon energy t-i- t__ E;-~-~------: A ------- E, ----,f--
v 

Metal Metal n- type S C 

n-type SC 

(a) (b) 
(c) 

Figure 8.17. OhmiC contact between metal and n-type semiconductor (ifJM < ifJs). 
(a) Metal and semiconductor are separate. (b) Metal and semiconductor are III con­
tact. (c) Current-voltage charactenstlc. 
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current increases, in essence, linearly with increasing voltage and is sym­
metric about the origin as Ohm's law requires (Fig. 8.17(c)). Accordingly, 
this junction is called an ohmic contact. A similar situation exists for a p-type 
semiconductor and rPM > rPs· 

Aluminum is frequently used for making the contact between a device 
(e.g., the p-region of a rectifier) and the external leads. Aluminum bonds 
readily to Si or Si02 if the device is briefly heated to about 550°C after Al 
deposition. Since aluminum has a larger work function than silicon (see 
Appendix 4) the contact to a p-region is ohmic. Additionally, the diffusion of 
aluminum into silicon yields a shallow and highly conductive p+ -region. 12 

Now, aluminum is likewise used as a contact material for n-type silicon. 
To prevent a rectifying contact in this case, one usually lays down a heavily 
doped and shallow n+ -layer12 on top of the n-region. Since this n+ -layer is 
highly conductive and is made to be very thin, tunneling through the barrier 
accomplishes the unhindered electron flow (see Sections 4.3 and 8.7.8). 

8.7.4. p-n Rectifier (Diode) 

We learned in Section 8.7.2 that when a metal is brought into contact with 
an extrinsic semiconductor, a potential barrier may be formed which gives 
rise to the rectifier action. A similar potential barrier is created when a p-type 
and an n-type semiconductor are joined. 

As before, electrons flow from the higher level (n-type) "down" into the 
p-type semiconductor so that the p-side is negatively charged. This proceeds 
until equilibrium is reached and both Fermi energies are at the same level. 
The resulting band diagram is shown in Fig. 8.18. 

12The superscnpt plus means heaVIly doped regIOn 

donor fevefs----
EF -------+1--·-'1-..... =-_-= =--acCeptor fevels 

...,....... ___ k<1 ... ·.i· •. ............ ~g~gce 

....;.... ......... ~'-'-'f •• }y1 .... . 
i r 

depletion 
layer 

Figure 8.18. Schematic band diagram for a p-n junctIOn (diode) in equilibnum. 
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Consider first the conduction band only. The electrons that want to diffuse 
from the n-region into the p-region encounter a potential barrier near the 
junction. For statistical reasons, only a few of them have enough energy to 
climb the barrier and diffuse into the p-region. The electrons in the p-region, 
on the other hand, can easily diffuse "down" the potential barrier into the n­
region. Note that only a few electrons exist in the conduction band of the p­
region. (They have been thermally excited into this band by intrinsic effects.) 
In the equilibrium state the number of electrons crossing the junction in both 
directions is therefore identical. (The same is true for the holes in the valence 
band.) 

When an external potential is applied to this device, effects similar to the 
ones described in Section 8.7.2 occur: connecting the positive terminal of a 
d.c. source to the n-side withdraws electrons and holes from the depletion 
area which becomes wider and the potential barrier grows higher (Fig. 8.19(a 
and b)). As a consequence, only a small drift current (from intrinsic effects) 
exists (reverse bias). On the other hand, if the n-side is charged negatively, 
the barrier decreases in height and the space charge region narrows. A large 
net electron flow occurs from the n-type region to the p-type region (forward 
bias, Fig. 8.19(c) and (d)). 

In Fig. 8.19(a) and (c) "quasi-Fermi levels" for electrons and holes are 
shown. They are caused by the fact that the electron density varies in the 
junction from the n-side to the p-side by many orders of magnitude, while 
the electron current is almost constant. Consequently, the Fermi level must 
also be almost constant over the depletion layer. 

It has to be emphasized that the current in a p-n rectifier is the sum of 
both electron and hole currents. The net current may be calculated by using 
an equation similar to (8.25) whereby the saturation current, Is, in the pres­
ent case is a function of the equilibrium concentration of the holes in the n­
region (Chn), the concentration of electrons in the p-region (Cep ), and other 
device parameters. The saturation current in the case of reverse bias is given 
by the Shockley equation, which is also called the ideal diode law: 

Is = Ae (CepDep + ChnDhn) , 
Lep Lhn 

(8.26) 

where the D's and L's are diffusion constants and diffusion lengths, respec­
tively (e.g., Dep = diffusion constant for electrons in the p-region, etc.). The 
diffusion constant is connected with the mobility, p, through the Einstein 
relation: 

(8.27) 

(see textbooks on thermodynamics). The minority carrier diffusion length is 
given by a reinterpretation of a well-known equation of thermodynamics, 

(8.28) 
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where rep is the lifetime of the electrons in the p-type region before these 
electrons are annihilated by recombination with holes. In order to keep the 
reverse current small, both Chn and Cep (minority carriers) have to be kept at 
low levels (compared to electrons and holes introduced by doping). This can 
be accomplished by selecting semiconductors having a large energy gap (see 
tables in Appendix 4) and by high doping. 

8.7.5. Zener Diode 

When the reverse voltage of a p-n diode is increased above a critical value, 
the high electric field strength causes some electrons to become accelerated to 
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Figure 8.20. (a) Electron avalanche created at breakdown voltage. (b) Tunneling 
(Zener breakdown). (c) Voltage-current characteristic of a p-n diode exhibiting a 
breakdown voltage at a large reverse voltage. As in Fig. 8.16(a), Is is shown grossly 
exaggerated. (d) Zener dIOde in a circuit for voltage regulation. 

a velocity at which impact ionization occurs [Fig. 8.20(a)J. In other words, 
some electrons are excited by the electric field from the valence band into the 
conduction band, leaving behind an equal number of holes. The free elec­
trons (and holes) thus created are likewise accelerated and create new elec­
tron-hole pairs, etc., until eventually a breakdown occurs, i.e., the reverse 
current increases quite rapidly (Fig. 8.20(c)). The breakdown voltage, which 
is the result of this avalanching process, depends on the degree of doping: the 
higher the doping, the lower the breakdown voltage. Alternatively to this 
avalanche mechanism, a different breakdown process may take place under 
certain conditions. It occurs when the doping is heavy and thus the barrier 
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width becomes very thin (i.e., <10 nm). Applying a high enough reverse 
voltage causes the bands to shift to the degree that some electrons in the 
valence band of the p-side are opposite to empty states in the conduction 
band of the n-material. These electrons can then tunnel through the deple­
tion layer, as described in Sections 4.3 and 8.7.8 and depicted in Fig. 8.20(b). 
Tunneling (or Zener breakdown) takes place usually at low reverse voltages 
(e.g., below about 4 volts for silicon-based diodes), whereas avalanching is 
the mechanism that occurs when the reverse voltage is large. 

The breakdown effect just described is used in a circuit to hold a given 
voltage constant at a desired level (Fig. 8.20(d)). The Zener diode is therefore 
utilized as a circuit protection device. The Zener diode is generally not de­
stroyed by the breakdown, unless excessive heat generation causes it to melt. 

8.7.6. Solar Cell (Photodiode) 

A photodiode consists of a p-n junction (Fig. 8.21). If light of sufficiently 
high energy falls on or near the depleted area, electrons are lifted from the 
valence band into the conduction band, leaving holes in the valence band. 
The electrons in the depleted area immediately "roll down" into the n-region, 
whereas the holes are swept into the p-region. These additional carriers can 
be measured in an external circuit (photographic exposure meter) or used to 
generate electrical energy. In order to increase the effective area of the junc­
tion, the p-type region is made extremely thin (1 ,urn) and light is radiated 
through the p-Iayer (Fig. 8.2l(a)). Since the p-Iayer is thin, the electric energy 
must be collected on the front surface, utilizing narrow metal electrodes (e.g., 
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Figure 8.21. Solar cell; the p-region is only about 1 fJ.m thick. (a) side view; (b) Front 
view. 
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x 

Figure 8.22. Schematic representation of the contribution of electrons and holes to 
the photocurrent (I) with r~spect to the distance x from the p-n junction. 

AI) which are arranged in the form of stripes, see Fig. 8.21 (b). A silicon 
photovoltaic device yields an inherent voltage of 0.6 V. 

The electron-hole pairs that are created some distance away from the 
depleted region are generally not separated by the junction field and even­
tually recombine; they do not contribute to the electric current. However, 
some electrons or holes which are within a diffusion length from the depleted 
region drift into this area and thus contribute to the current. In semi­
conducting materials that contain only a few defects (such as grain bound­
aries, dislocations, and impurities) the electrons or holes may diffuse up to 
200 flm before they get trapped, whereas in semiconducting materials con­
taining a large number of defects the diffusion length decreases to 10 flm. 
The closer a carrier was created to the p-n boundary, the larger is its chance 
of contributing to the current (Fig. 8.22). 

The thin p-type layer introduces an internal resistance to the collection 
current, which reduces the efficiency of the energy conversion. At present, 
the maximal efficiency of a photovoltaic device, made of crystalline silicon 
and involving a three-layer technology (see Part III), is about 20-28%. The 
energy needed to produce such a device (including mounting and installa­
tion) is recovered in about 6 years when the collector is located in North 
Africa or Central America. (Installation in central Europe or the northern 
states of the USA and Canada may double the energy recovery time.) The 
cost of photo voltaic devices (presently $8-$10 per installed watt) can be re­
duced by utilizing polycrystalline, less purified, or amorphous silicon, but at 
the expense of efficiency. As an example, photovoltaics made of commerical, 
hydrogen-doped amorphous silicon (see Section 9.4) have an efficiency of 
only 6-8%, but its invested energy for production and mounting is recovered 
in just 1 year. The efficiency of this device has been enhanced to 12% in 
laboratory experiments. The goal is to produce for terrestrial applications 
inexpensive solar cells having 20% efficiency or better and a lifetime of about 
20 years. The lifetime is reduced when the metal contacts (grids) to the 
semiconductor corrode. Despite the fact that photovoltaics are still relatively 
inefficient, their worldwide sale has grown for the past 10 years by more 



8. SelllIconductors 131 

~~w~av~eg~U~ld~e ____ ~~~~ r. p' 

Depletion layer 

+ 
Figure 8.23. Schematic of a transverse-type photodiode that is connected to a light­
carrying medium such as an optical fiber or a waveguide (L ~ 100 nm). 

than 15% per year and has reached now the $2 billion mark, while the cost 
has steadily decreased. The most recent development employs dye-coated 
titanium dioxide and an electrochemical cell which mimics the role of chlo­
rophyll in photosynthesis. 

The photovoltaic cell depicted in Fig. 8.21 has one inherent disadvantage: 
the impinging light has to travel first through the p-type layer (however thin 
it may be) before it eventually reaches the depleted (active) area. This atten­
uates its intensity to a certain degree. In addition, the incoming light is 
somewhat blocked by the metal electrodes, which cover part of the face of 
the cell. The reSUlting loss in efficiency is a trade-off for a large surface area 
(which is often desirable to increase power). For telecommunication appli­
cations however, for which high efficiency is more important, a rather inge­
nious alternative design can be used. Imagine that the light impinges trans­
versely on (or better, along) the depletion layer. For this the beam is 
channeled-in from the side by a light-conducting device such as an optical 
fiber or a wave guide (Fig. 8.23). In order to increase the effective area, i.e., 
the width, W, of the depletion region, the photodiode is strongly reverse­
biased and the doping of one of the semiconductors is comparatively light. 
(For details refer to Fig. 8.19(a).) The efficiency is further maximized by 
increasing the length of the depletion layer, L. This device yields almost 
100% quantum efficiency. 

The quantum efficiency can be calculated by the equation 

exp(-rxW) 
rJ = 1 - 1 + rxL ) (8.29) 

where rx is a parameter that determines the degree of photon absorption by 
the electrons (rx is defined in (1O.21a)). As an example, for a GaAs photo­
diode the n-region is lightly doped because the electron mobility in GaAs is 
much larger than the hole mobility, see Appendix 4. This shifts the depleted 
region towards the n-side. On the other hand, the p-region is heavily doped 
(and thin) in order to minimize its resistance. 

The incoming light that is modulated by information (such as the spoken 
word in telecommunications) modulates, in turn, the electrical current in the 
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photodiode. This transforms a signal which is transmitted by light into an 
electrical signal. We shall return to this topic and to other optoelectronic 
devices in Part III. 

*8.7.7. Avalanche Photodiode 

This device is a p-n photodiode that is operated in a high reverse bias mode, 
i.e., at near-breakdown voltage. The electrons and holes that were created by 
transitions from the valence band into the conduction band by the incident 
light are accelerated through the depleted area with a high velocity. As a 
consequence, they ionize the lattice atoms and generate secondary hole­
electron pairs, which, in turn, are accelerated, thus generating even more 
hole-electron pairs. The result is a photocurrent gain, which may be between 
10 and 1000. The avalanche photodiode is ideally suited for low-light-level 
applications, because of its high signal-to-noise ratio, and for very high fre­
quencies (GHz). It is particularly used for detectors in long-distance, fiber­
optics telecommunication systems. See in this context Fig. 8.23. 

*8.7.8. Tunnel Diode 

So far, we have restricted our discussion mostly to the case for which the 
electrons drift from the n-type to the p-type semiconductor by way of 
"climbing" a potential barrier. Another electron transfer mechanism is pos­
sible, however. If the depleted area is very narrow (approximately 10 nm) 
and if certain other requirements (see below) are fulfilled, electrons may 
tunnel through the potential barrier. (See in this context Fig. 4.7, Fig. 
8.20(b), and equation (4.39).) Heavy doping (e.g., 1020 impurity atoms per 
cubic centimeter) yields this condition. 

The situation can best be understood by inspecting Fig. 8.24(a), in which a 
schematic band diagram of a tunnel diode is shown. Because of the high 
doping level, the Fermi energy extends into the valence band of the p-type 
semiconductor and into the conduction band of the n-type semiconductor. In 
the equilibrium state, the same amount of electrons is tunneling through the 
potential barrier in both directions, i.e., no net current flows. 

If a small reverse bias is applied to this device (Fig. 8.24(b)), the potential 
barrier is increased as usual and the Fermi energy, along with the top and 
bottom of the bands in the p-area, is raised. This creates empty electron 
states in the conduction band of the n-type semiconductor opposite from 
filled states in the valence band of the p-type semiconductor. As a conse­
quence, some electrons tunnel from the p-type to the n-type semiconductor, 
as indicated by an arrow. An increase in the reverse voltage yields an in­
crease in the electron current through the device (see Fig. 8.24(f)). 

Let us now consider several forward voltages. A small forward bias (Fig. 
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Figure 8.24. (a)-(e) Schematic energy band diagrams for highly doped n- and p-type 
semiconductors (tunnel diode). (a) No bias. (b) Reverse bias. (c) Small forward bias. 
(d) Medium forward bias. (e) "Normal" forward bias. (f) Voltage-current charac­
teristic for a tunnel diode. 

8.24(c)) creates just the opposite of that seen in Fig. 8.24(b). Electrons are 
tunneling through the potential barrier from the conduction band of the n­
type semiconductor into empty states of the valence band of the p-type 
semiconductor. The applied voltage needs to be only several millivolts and it 
produces a forward current of about one milliamp. 

If, however, the voltage is increased to, say, 100 mY, the potential barrier 
might be decreased so much that, opposite to the filled n-conduction states, 
no allowed empty states in the p-area are present [Fig. 8.24(d)]. (The area 
opposite to the filled n-conduction states may be the forbidden band.) In this 
case, no tunneling takes place. As a consequence of this, the current decreases 
with increasing forward voltage, as shown in Fig. 8.24(f). We experience a 
negative current-voltage characteristic. 

Finally, if the forward voltage is increased even more, the electrons in the 
conduction band of the n-type semiconductor obtain enough energy to climb 
the potential barrier to the p-side just as in a regular p-n junction. As a 
consequence, the current increases with voltage, just as in Fig. 8.16(a). 
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Of particular interest is the range in which a negative voltage-current 
characteristic is experienced. One has to bear in mind that all other electrical 
devices have a positive voltage-current characteristic, i.e., they dissipate 
energy. Therefore, if a tunnel diode is connected to properly dimensioned 
resistors and capacitors, a simple oscillator can be built which does not lose 
energy because the net resistance is zero. Those devices can oscillate at fre­
quencies up to lOll cycles per second. 

8.7.9. Transistors 

Bipolar Junction Transistor. An n-p-n transistor may be considered to be 
an n-p diode back-to-back with a p-n diode. A schematic band diagram for 
an unbiased n-p-n transistor is shown in Fig. 8.25. The three connections of 
the transistor are called emitter (E), base (B), and collector (C). 

If the transistor is used for the amplification of a signal, the "diode" con­
sisting of emitter and base is forward biased, whereas the base-collector 
"diode" is strongly reverse biased (Fig. 8.26(a)). The electrons injected into 
the emitter, therefore, need to have enough energy to be able to "climb" the 
potential barrier into the base region. Once there, the electrons diffuse 
through the base area until they have reached the depletion region between 
base and collector. Here, the electrons are accelerated in the strong electric 
field produced by the collector voltage (Fig. 8.26(b)). This acceleration 
causes amplification of the input a.c. signal. 

One may consider this amplification from a more quantitative point of 
view. The forward biased emitter-base diode is made to have a small resis­
tivity (approximately 10-3 Q cm), whereas the reverse biased base-collector 
diode has a much larger resistivity (about 10 Q cm). Since the current flow­
ing through the device is practically identical in both parts, the power 
(P = [2 R) is larger in the collector circuit. This results in a power gain. 
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Figure 8.25. Schematic band diagram of an unbiased n-p-n bipolar junction 
transistor. 
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Figure 8.26. (a) Biasing of an n-p-n bipolar transistor. (b) Schematic band diagram 
(partial) of a biased n-p-n bipolar transistor. (c) Symbol used for a bipolar n-p-n 
transistor. 

The electron flow from emitter to collector can be controlled by the bias 
voltage on the base: a large positive (forward) bias decreases the potential 
barrier and the width of the depleted region between emitter and base (Fig. 
8.19). As a consequence, the electron injection into the p-area is relatively 
high. In contrast, a small, but still positive base voltage results in a compar­
atively larger barrier height and in a wider depletion area, which causes a 
smaller electron injection from the emitter into the base area. In short, the 
voltage applied between emitter and base modulates the transfer of the elec­
trons from the emitter into the base area. As a consequence, the strong col­
lector signal mimics the waveform of the input signal. This feature is utilized 
for the amplification of music or voice, etc. 

In another application, a transistor may be used as an electronic switch. 
The electron flow from emitter to collector can be stopped completely (or 
turned on) by an appropriate base voltage. This virtue is used for logic and 
memory functions in computers (see Section 8.7.12). 

The device shown in Fig. 8.26 is called a "bipolar transistor"; the current 
passes in series through n-type as well as through p-type semiconductor 
materials. 

Some details need to be added about technical features of the bipolar 
transistor. In order to obtain a large electron density in the emitter, this area 
is heavily doped. In the p-doped base area, the drifting electrons are subject 
to possible recombination with holes. Therefore, the number of holes there 
has to be kept to a minimum, which is accomplished by light doping. (Light 
doping also reduces the unwanted injection of hole current into the base.) 
Recombination is further decreased by making the base region extremely 
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Figure 8.27. Schematic collector voltage-current characteristics of a transistor 
for various emitter currents. Ie = collector current, Ie = emitter current, and Ve = 

collector voltage. 

thin, i.e., 10-5_10-7 m. A narrow base region has a beneficial side effect: it 
increases the frequency response. (The reciprocal of the electron transit time 
equals the highest possible frequency at which amplification can be achieved.) 
The doping rate of the collector area is in general not critical. Usually, the 
doping is light for high gain and low capacitance of the device. The voltage­
current characteristics for a transistor are shown in Fig. 8.27. 

In p-n-p transistors, the majority carriers are holes. The function and 
features of a p-n-p transistor are similar to an n-p-n transistor. 

Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). A field­
effect transistor consists of a channel through which the charge carriers (e.g., 
electrons in Fig. 8.28) need to pass on their way from a source (S) to the 
drain (D). The conducting path (source, channel, and drain) is made of the 
same kind of semiconducting material only, e.g., n-type. (This is in contrast 
to the bipolar transistor shown in Fig. 8.26, in which the current passes in 
series through n-type as well as through p-type semiconductor materials.) 
Field-effect transistors are therefore designated as unipolar. The electrons 
that flow from the source to the drain can be controlled by an electric field 
which is established by applying a voltage to the so-called gate (G). 

A periodic variation of the gate voltage varies the source to drain current 
in the same manner (quite similar to the way the electron flow between 
emitter and collector in a bipolar transistor is modulated by the base volt­
age). The gate electrode is electrically insulated from the channel by a thin 
oxide layer which prevents a d.c. current to flow from gate to channel. 

Two types of MOSFETs are common: The depletion-type MOSFET de­
picted in Fig. 8.28(a) consists of high-doped source and drain regions and a 
low-doped channel, all of the same polarity (e.g. n-type). (The high doping 
facilitates low-resistance connections.) The n-channel MOSFET is laid down 
on a p-type substrate called the body. 
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Figure 8.28. (a) Schematic representation of an n-channel depletion- (normally on) 
type MOSFET. The dark areas symbolize the (aluminum) metallizations. The "oxide" 
layer may consist of Si02 , nitrides (SbN4 ), oxinitrides (SbN4-Si02), or multilayers of 
these substances. This layer is about 10 nm thick. The gate voltage is applied between 
terminals G and B. Quite often the Band S terminals are interconnected. (b) Circuit 
symbol for n-channel depletion-type MOSFET. (c) Gate voltage/Drain current 
characteristic ("Transfer" characteristic). For positive gate voltages (dashed portion 
of the curve) the device can operate in the "enhancement mode" (see Fig. 8.29(c)). 

The channel width is controlled by the voltage between gate and body. 
Specifically, a negative charge on the gate drives the channel electrons away 
from the gate and towards the substrate, similarly as is illustrated in Fig. 
8.12. In short, the channel can be made to be partially depleted of electrons, 
i.e., the conductive region of the channel becomes narrowed by a negative 
gate voltage. The more negative the gate voltage (VG), the smaller the cur­
rent through the channel from source to drain until eventually the current is 
pinched off (see Fig. 8.28(c).) For the above reasons, this device is called a 
depletion-type metal-oxide semiconductor field-effect transistor or "normally 
on" MOSFET. 

An alternative to the depletion-type MOSFET that we just discussed is the 
enhancement-type MOSFET. Figure 8.29 shows that this device does not 
possess a built-in channel for electron conduction, i.e., at least as long as no 
gate voltage is applied. In essence, there is no electron flow from source to 
drain for a zero gate voltage. The device is therefore called a "normally-off" 
MOSFET. If, however, a large enough positive voltage is applied to the gate, 
most of the holes immediately below the gate oxide are repelled, i.e., they are 
driven into the substrate, thus removing possible recombination sites. Con­
comitantly, negative charge carriers are attracted into this channel (called 
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Figure 8.29. (a) Enhancement (normally-off)-type n-channel MOSFET. For details, 
see the caption of Fig. 8.28. (b) Circuit symbol. (The broken line indicates that the 
path between Sand D is normally interrupted.) (c) Gate voltage (Va)/drain current 
(Io) characteristic. VT is the threshold gate voltage above which a drain current 
sets in. 

the inversion layer). In short, a path (or a bridge) for the electrons between 
source and drain can be created by a positive gate voltage. The metal-oxide 
semiconductor technology, particularly, the enhancement-type MOSFETs, 
dominate the integrated circuit industry at present. They are utilized in 
memories, microcomputers, logic circuits, amplifiers, analog switches, and 
operational amplifiers. They possess very high input impedances,13 thus 
minimizing Joule heating. 

Depletion-type and enhancement-type MOSFET technologies that utilize 
n-channels (as depicted in Figs. 8.28 and 8.29 are summarized by the name 
"NMOSFET" (in contrast to "PMOSFET", which employs devices with p­
channels). If both an n-channel and a p-channel device are integrated on one 
chip and wired in series, the technology is labeled "CMOSFET" which 
stands for complef!lentary MOSFET. This tandem device has become the 

13The term impedance is used to describe the a.c. resistance, which may consist of ohmic, 
capacitive, and inductive parts. 
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dominant technology for information processing, because of its low operating 
voltage (0.1 V), low power consumption (heat!), and short channel length 
with accompanying high speed. Alternative names for MOSFET are MOST 
(metal-oxide-semiconductor transistor) or MISFET (metal-insulator­
semiconductor field-effect transistor). 

A few words on device geometry, etc., of a MOSFET, as shown in Fig. 
8.28, may be useful. In order to obtain a short switching time and a high­
frequency response, the channel length has to be short. The highest possible 
frequency at which amplification can be achieved equals the inverse of the 
electron source-to-drain transit time. The width of the device has to be kept 
small in order to reduce the cross-sectional area and, thus, the power density. 
(This reduces the heat which needs to be removed.) As an example, the 
channel length may be about 1 fim, the device width may be a few micro­
meters, and the field oxide thickness may be near 0.05 fim. The doping of the 
p-area needs to be small to sustain a high resistance and thus, a high electric 
field (~l 06 V jcm) across the junction without current breakdown. The metal 
layer is generally made of aluminum. Alternate materials are highly doped 
silicon, refractory metals such as tungsten, or silicides of refractory metals 
such as TiSi or MoSi. 

* Junction Field-Effect Transistor (JFET). The JFET consists again of a 
channel through which the carriers (electrons in Fig. 8.30) pass from source 
to drain. This electron flow is controlled by an electric field which is estab­
lished by applying a negative voltage to the p-doped gate, to stay within the 
example of Fig. 8.30. In other words, the p-n gate-to-channel diode is 
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Figure 8.30. (a) Schematic representation of an n-channel junction field-effect tran­
sistor. The dark areas symbolize the metal contacts (e.g., aluminum). (b) Circuit 
symbol for an n-channel JFET. Note: In a p-channel JFET the arrow points away 
from the channel. 
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reverse biased. This reverse biasing increases the width of the depletion layer 
(see Fig. 8.19) thus causing the conducting channel to become narrower. 
(Close to the drain terminal, the p-n junction is more reverse biased which 
results in a wider depletion layer near the drain.) A zero bias voltage on the 
gate results in a maximal source-to-drain current. A reverse voltage on the 
gate depletes the source-to-drain electron flow. A very large reverse current 
eventually pinches the current off. Junction field-effect transistors are there­
fore said to be of the depletion or "normally-on" type. 

Junction field-effect transistors can be used as amplifiers, exploiting the 
effect that a small change in the gate voltage causes a large change in the 
channel current. Since the gate-to-channel p-n junction is reverse biased, 
only a minute current flows in the gate/source circuit (Fig. 8.16). The input 
impedance13 is therefore high (but not as high as in a MOSFET). 

JFETs which use n-type semiconductors for the channel material, as de­
picted in Fig. 8.30, are appropriately called n-channel field-effect transistors. 
The reader may correctly suspect that a p-channel field-effect transistor uses 
holes as charge carriers, n-type semiconductors as gate materials, and a re­
versal of the polarities of all voltages for its operation. The arrow in the cir­
cuit symbol (Fig. 8.30(b)) for p-channel transistors points away from the 
gate. 

Bipolar transistors in combination with JFETs are called "BIFETs." They 
are used in high-performance linear circuits. If a JFET structure employs a 
metal-semiconductor junction, often in combination with n-type GaAs, a 
"MESFET" device is created, which is used for amplifiers and logic circuits 
in the gigahertz range (see next section). 

A MODFET (modulation-doped field-effect transistor) consists of a thin 
layer of aluminum-gallium-arsenide deposited on an undoped GaAs sub­
strate. This device is even faster than a MESFET, because the absence of 
impurity atoms increases the distance that an electron or a hole can travel 
before a collision with a foreign atom occurs. 

*Gallium Arsenide Metal-Semiconductor Field-Effect Transistor (MESFET). 
Users of computers demand still higher switching speeds than the present 
10-9 s cut-off or cut-on times achieved with silicon technology. Gallium ar­
senide, with its almost sixfold larger electron mobility compared to silicon 
(see Appendix 4), seems to be the answer. A quick inspection of the relevant 
band diagrams (Figs. 5.23 and 5.24) indeed confirms that the curvature of 
the conduction band near r is larger for GaAs than the comparable band 
for silicon (close to the X symmetry point) which translates into a smaller 
effective mass and, thus, into the just-mentioned larger electron mobility 
for GaAs. However, the upper valence bands for both materials are almost 
identical and fairly flat. Thus, the effective masses of the holes for GaAs and 
silicon are rather large and their hole mobilities are consequently small (see 
also Appendix 4). A transistor that aims to exploit the higher electron mo­
bility in GaAs should therefore utilize n-type GaAs only. 
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Figure 8.31. Schematic representation of a GaAs MESFET (Metal-semiconductor 
field-effect transistor). Source and drain metallizations (dark areas) are selected to 
form ohmic contacts with the n-doped GaAs. The gate metal forms, with the n-doped 
GaAs, a Schottky-barrier contact. 

Figure 8.31 depicts a metal-semiconductor field-effect transistor (MES­
FET), which consists of an n-doped, thin GaAs active layer situated over a 
semi-insulating (Cr-doped) GaAs slab. Three metal contacts provide the 
source, the gate, and the drain areas. The gate metal forms, together with the 
underlying semiconductor, a Schottky barrier (see Section 8.7.2). If ¢JM is 
larger than ¢Js and the gate metal is negatively charged, a reverse bias results 
(Fig. 8.15( a)). The larger the reverse bias, the wider the depletion region. If 
the depletion region is caused to fill essentially the entire active layer, any 
attempted electron flow from source to drain is stopped (or pinched off). A 
small negative gate voltage (or no gate voltage at all) allows an almost 
unhindered source-to-drain electron flow. The device shown in Fig. 8.31 is 
therefore a depletion- (or normally-on) type FET (see also Fig. 8.28(c)). 

For high-speed, low-power applications, however, the normally-off GaAs 
MESFET is even better suited. For this device, the active layer is made so 
thin that the depletion area between the metal and the GaAs (Fig. 8.15) fills 
the entire active layer. 14 As a consequence, the active layer below the gate 
metal electrode is depleted of electrons without necessitating an applied 
voltage. A positive gate voltage is then required to attract electrons into the 
depletion area, thus making it conductive. Given the above-described GaAs 
device, the speed, i.e., the response time of the source-to-drain current to a 
change in the gate voltage, can be further increased by decreasing the length 
of the gate, which is presently about 1 ,urn. 

Several effects may, however, offset the superior electron mobility in 
GaAs. First, the time required to reach the breakdown voltage under the 
influence of a reverse voltage (see Fig. 8.20(c)) is only two and a half times 
faster than in silicon. As we know from Fig. 8.20(a), this breakdown electric 
field triggers a helpful self-ionizing avalanche that multiplies the number of 

14The depletion layer width in GaAs varies wIth Impunty concentratIOn between 3 11m for 
10 14 cm-3 and 0.05 11m for 10 18 Impurity atoms per CUbIC centImeter. 
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Figure 8.32. Average electron drift velocity as a function of electric field strength for 
GaAs and silicon. 

electrons. Second, a transistor of any type can be made to switch faster by 
applying more power to it. This, in tum, increases the heat which needs to be 
dissipated. Now, silicon has a three-times larger thermal conductivity than 
GaAs (see Appendix 4). Thus, silicon switches can be made much smaller 
than those made of GaAs. Since the speed of a device also depends on the 
length the electrons have to travel, a very small silicon device may well 
switch as fast as a large device made of GaAs. Third, the electron drift 
velocity depends upon the electric field strength. At low field strengths, the 
GaAs drift velocity is indeed substantially larger than for silicon (Fig. 8.32). 
However, as the field strength increases, the drift velocity for silicon and 
GaAs becomes nearly identical. This has its reason in the extra and slightly 
higher energy states that silicon possesses near the X-symmetry point (Fig. 
5.23), in which electrons can be scattered after they have collided with 
structural imperfections of the crystal lattice. 

Knowing the facts presented above, it seems understandable why some 
leading semiconductor manufacturers have left the GaAs field. However, the 
pendulum may soon swing in the other direction, as suggested in the next 
section. 

*8.7.10. Quantum Semiconductor Devices 

It is the ultimate goal of industry to make semiconductor switches for com­
puter applications as small, as fast, as inexpensive, and as efficient as possible. 
Conventional field-effect transistors pose, ultimately, certain limitations to­
wards progressive miniaturization: the smaller they become, the less effective 
they switch, owing to current leakage, and particularly because of impurities 
or lattice defects that scatter the moving electrons in ultrasmall devices to an 
intolerable degree. There are also processing limitations caused by the pres-
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Figure 8.33. (a) Schematic representation of a quantum dot structure. (b) Energy 
levels for GaAs for the quantum dot structure depicted in (a). (Note: The gap energy 
difference between GaAs (Eg = 1.42 eV) and AlGaAs is greatly exaggerated. This 
difference may be as small as 0.2 eV.) (c) Discontinuous density of energy states for a 
quantum dot structure. The dashed parabola indicates the density of states for a bulk 
crystal, as is known from Fig. 6.4. 

ently used photolithography techniques. Quantum structures are said to be 
the devices of the future that may overcome these shortcomings. 

In order to explain the nature of a quantum device, we need first to recall 
that the electron states for bulk crystalline solids consist of continuous energy 
bands, such as the valence band or the conduction band (Fig. 8.2). We also 
recall that the density-of-states curve has a parabolic shape in this case (Fig. 
6.4). If, however, the dimensions of a crystalline solid are reduced to the size 
of the wavelength of electrons (e.g., 20 nm for GaAs), the formerly con­
tinuous energy bands split into discrete energy levels, similarly as is known 
from Section 4.2, where we treated the behavior of one electron in a potential 



144 

E 

E 

Conduction 
band 

n-doped GaAs 
I 

I I 
I AlGoA. I 
I I 

GaAs 

(a) 

(b) 

I I 
I I 
I AlGoA. I 
I I 

II. Electrical Properties of Materials 
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Figure 8.34. Parts of two energy band structures for the quantum device shown in 
Fig. 8.33. For simplicity, only the conduction bands are shown. (a) No applied volt­
age. (b) With applied voltage, which facilitates electron tunneling from the conduc­
tion band of the n-doped GaAs into an empty energy level of the center GaAs region. 

well. In essence, the same type of calculation presented in Section 4.2 is car­
ried out for quantum devices. Thus, results equivalent to (4.18) are obtained. 
Further, when the dimensions are reduced to the degree as outlined above, 
and under certain other conditions (see below), the density of states becomes 
discontinuous, i.e., Z(E) also becomes quantized (see Fig. 8.33(c)). The 
mechanism associated with these effects is, therefore, quite appropriately 
called size quantization. 

Let us demonstrate size quantization for a particular case in which a 
small-band gap material is sandwiched between two layers of a "wide"­
band gap material. Specifically, a cube-shaped piece of GaAs whose lateral 
dimensions are made to be about 20 nm is layered between two similarly 
shaped cubes made of aluminum-gaIIium-arsenide, which in turn are sand­
wiched between two longer slabs consisting of n-doped GaAs (Fig. 8.33(a)). 
This configuration, for which all three dimensions of the center materials 
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have values near the electron wavelength, is called a quantum dot (in contrast 
to a two-dimensional "confinement," which is termed quantum wire, or a 
one-dimensional confinement, named quantum well). 

Figure 8.33(b) depicts simplified electron bands for the quantum dot 
structure shown in Fig. 8.33(a). AlGaAs is a "wide" -band gap material 
whose electron affinity (Fig. 8.13) is smaller than that of GaAs. Thus, its 
conduction band is at a higher energy compared to the conduction band of 
GaAs. This results in a potential barrier between the two GaAs regions. In 
general, an electron in the n-doped GaAs area does not possess enough en­
ergy for climbing this potential barrier or otherwise diffusing into the adja­
cent regions (Fig. 8.34(a)). If, however, a sufficiently large voltage is applied 
to this device, the conduction band of the n-doped GaAs is raised to a level 
at which its conduction electrons are at the same height as an empty energy 
state of the center GaAs region (Fig. 8.34(b)). At this point the electrons are 
capable of tunneling through the potential barrier formed by the AlGaAs 
region and thus reach one of these discrete energy levels. The tunneling is 
quite effective because of the large density of states that is associated with 
these quantum states (Fig. 8.33(c)). 

If a slightly higher (or somewhat smaller) voltage is applied, the electrons 
of the n-doped GaAs are no longer at par with an empty energy level and the 
tunneling comes to a near standstill. This causes a current-voltage charac­
teristic with negative differential resistance, i.e., a region in which the current 
decreases as the applied voltage increases (see Fig. 8.35). 

An interrelated effect to size quantization is resonance, which enhances the 
tunneling current. Once a specific voltage, the resonating voltage, has been 
reached, the electron waves inside the center region are reflected back and 
forth between the walls. In essence, constructive interference occurs between 
the waves traveling in opposite directions. 

A further advancement of the quantum device introduced so far consists 
of an array of a multitude of quantum wells stacked on top of each other. 
This periodic arrangement of wide-band gap and narrow-band gap mate­
rials is called a super/altice. It introduces an artificial periodicity into the 

v 

Figure 8.35. Current-voltage characteristic of a quantum dot device as depicted in 
Figs. 8.33 and 8.34. 



146 II. Electrical PropertIes of Materials 

solid, caused by the multiple atomic layers of one type of material in 
sequence with multiple atomic layers of another type. By this mode of vary­
ing the structural parameters of a solid, new electronic properties can be 
engineered. 

Quantum devices are about one-hundredth of the size of presently known 
FETs. Thus, major problems have still to be overcome concerning inter­
connections, device architecture, and fabrication of three-terminal devices. It 
has been speculated, however, that once these problems have been solved the 
reduction in cost per function might be as large as ten-thou sand-fold. 

8.7.11. Semiconductor Device Fabrication 

The evolution of solid-state microelectronic technology started in 1947 with 
the invention of the germani urn point contact transistor by Bardeen, Brattain, 
and Shockley at Bell Laboratories. Until then, electronic devices used vacuum 
tubes invented in 1906 by Lee deForest, as well as silicon, copper oxide, or 
germanium rectifiers. (The latter was discovered in 1915 by M. Benedicks). 
The development went via the germanium junction transistor (Shockley, 1950), 
the silicon transistor (Shockley, 1954), the first integrated circuit (Kilby, 
Texas Instruments, 1959), the planar transistor (Noyce and Fairchild, 1962), 
and the planar epitaXial transistor (Texas Instruments, 1963) to the ultra­
large-scale integration (ULSI) of today with several millions of transistors on 
one chip. Attempts are now made to reach one billion transistors per chip, 
called gigascale integration (OSI). We have discussed in the previous sections 
some obstacles to this goal, which are imposed to a large degree by the 
"materials barrier." (However, device limits, circuit limits, and system limits 
likewise playa role.) Silicon has been the principal semiconductor material 
used in the past 50 years even though solid-state electronics technology 
actually started with germanium, which could be manufactured in these early 
days in comparatively ultrapure form. No other electronic material has a 
combination of so many favorable properties. Most of all, silicon is abundant; 
28% of the earth's crust consists of silicon in one way or another. (Silicon is 
behind oxygen, the second most abundant chemical element.) The raw ma­
terial (sand, i.e., quartzite) is inexpensive. The native oxide, silicon dioxide 
(SiOz), is an excellent insulator. The band gap is large enough to guarantee 
stable electrical properties at moderate temperatures. The heat conductivity 
is relatively large. Further, silicon forms almost perfect (dislocation-free) 
single crystals. And finally, silicon is nontoxic, i.e., environmentally safe. 
StilI, for special applications and possibly gigascale integration, compound 
semiconductors need to be considered, as discussed in the previous chapters. 

The starting material for silicon wafer fabrication is sand (SiOz), which is 
electromet reduced (in an arc furnace) with coal, etc., to 98% silicon. This 
powdered raw silicon is reacted with hydrogen chloride to form trichloro­
silane gas (Si + 3HCI ---+ SiHC13 + H2), which is fractionally distilled for 
purification and subsequently reduced with hydrogen to polycrystalline silicon 
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Figure 8.36. Techniques for single-crystal growth. (a) Czochralski method. Heating 
is performed by radio frequency coils or (for big crucibles) by resistance heating. 
(b) Float zone method. (c) Bridgman method (demonstrated for GaAs). (d) A 300 
mm (12 inch) silicon single crystal is removed from the crucible. (Courtesy Wacker 
Siltronic AG) 

(SiHCI3 + H2 ---+ Si + 3HCl). From here on, several methods for single 
crystal growth are used. In the predominantly utilized crystal pulling pro­
cess, invented in 1918 by J. Czochralski, the high-purity silicon is melted in a 
fused-silica (Si02) crucible, which is, in tum, supported by a carbon crucible 
(Fig. 8.36(a)). A seed crystal (mainly (100) or (111) orientation), held on a 
rod, initially touches the melt and is then slowly lifted, employing a with-
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(d) 

FIgure 8 36. (Contlllued) 

drawal speed of about 1 mm per minute. Concomitantly, the crucible as well 
as the pullmg rod are rotated m opposIte directions at about 50 revolutions 
per mmute. The entIre system is enclosed in a chamber that is eIther slightly 
evacuated (a few Torrs) or backfilled with argon or helium. The starting 
crystal must initially have a thin neck to produce a dislocation-free crystal 
(invented in 1959 by W. Dash). Proper cooling and pulling speeds allow one 
to control the diameter of the evolving single crystal rod. Specifically, the 
imtial pulling speed needs to be large so that the dislocations are frozen-in 
and thus cannot propagate further into the smgle-crystal rod. 

Since the crucible consists of Si02 and of carbon, some oxygen and carbon 
are introduced into the silicon during melting (about 5 x 10 17 oxygen atoms 
and about 2 x 10 16 carbon atoms per cubIC centimeter). Other foreign ele­
ments of high-punty silicon are generally m the 10 10-10 13 per cubic centi­
meter range. Oxygen and carbon impurities are electrically inactive because 
they form inert compounds with SIlicon (e.g., Si02 or SiC). However, their 
presence in high concentrations leads to the premature breakdown of p-n 
junctions. Harmful impurities and tmy defects can be trapped (gettered) 
either at a speCially prepared back side of the wafer (e.g., by mechanically 
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introduced dislocations) or inside the crystal on very small Si02 precipitates. 
All taken, the surface layer (several ,um thick) on which the transistor is 
manufactured (Fig. 8.29) needs to be free of oxygen atoms, whereas inside 
the wafer a high defect density is beneficial for gettering. This configuration 
is achieved by heating a wafer near 1000°C, which causes the migration of 
the mobile oxygen atoms to the surface where a large number of them are 
removed through evaporation. 

A lower oxygen concentration (10 16 atoms/cm3) can be achieved involving 
the crucibleless float-zone technique (Fig. 8.36(b)). At first, a pure, poly­
crystalline silicon rod is manufactured by resistive-heating a silicon filament 
(8 mm wide, 2 m long) in a trichlorosilane and hydrogen atmosphere. As 
mentioned above, this reduces the SiHCl3 to silicon, which is slowly de­
posited on the 1000°C hot silicon filament. The polysilicon rod thus grown is 
vertically inserted into a vacuum chamber with a single crystalline seed 
crystal at its bottom, and then rotated. An induction-heated ring-shaped 
furnace is slowly moved along the rod, which melts, at first, a part of the 
seed crystal, and then consecutive small zones (a few em long) from the 
bottom up, thus eventually forming a large single crystal as an extension of 
the seed crystal. The float-zone technique is also used for purification pur­
poses (zone refining). Wafers produced by this method are substantially more 
expensive than Czochralski wafers with the added disadvantage that less 
oxygen gettering can take place. However, float-zone single crystals are a 
necessity when the whole wafer thickness is required for the electrical func­
tion of discrete transistors, such as for high-power applications. 

The Bridgman technique is rarely used for silicon production. It is, how­
ever, frequently applied to grow single-crystalline GaAs. The Bridgman 
method involves the melting of polycrystalline material in a long (silicon­
nitride coated) carbon crucible or fused quartz crucible which, in tum, is 
placed into a horizontally arranged, sealed quartz tube. A traveling furnace 
with two different heating zones melts the ingot as well as part of a single­
crystal seed which is placed next to it. In the case of GaAs (Fig. 8.36(c)), 
some extra arsenic, located in the low-temperature (618°C) part of the tube, 
provides an overpressure of arsenic to maintain stoichiometry. Moving the 
hot zone of the furnace slowly away from the melt causes gradual solidifi­
cation and eventually an extension of the single crystal into the entire rod. 

The two-zone furnace is also used to melt separately arsenic and gallium 
in individual boats, which facilitates the synthesis of GaAs over a period of 
many hours. 

Once the rods have been obtained, they are sliced, lapped, etched, and 
polished to obtain the 0.3-0.4 mm thick wafers. At present, up to 200 mm 
(8 in.) diameter silicon wafers are commercially available; the trend goes, 
however, towards the 300 mm (12 in.) disc, see Fig. 8.36(d). 

Next, the devices are fabricated on (or in) these wafers in extremely clean 
rooms, applying surface oxidation, photolithography, etching, and (most of 
all) by introducing various dopants involving successive and often quite 
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Figure 8.37. Photoresist (PR) masking sequence to obtain ap-n-p bipolar transistor. 

elaborate manufacturing steps. The most important of these production 
steps are illustrated in Fig. 8.37 and described in detail below. A simplified 
example of the final product is depicted in Fig. 8.38, which contains some 
basic electronic components on one common substrate. Millions of these 
elements are squeezed on a, say, 6 x 6 mm2 area, and hundreds of these 
complete circuits (properly interconnected) are fabricated together on one 
wafer. After electrical testing, the individual chips are cut apart with a 
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Resistor 

FIgure 8.38. BasIc components of mtegrated circUIts (bIpolar). The dark areas are the 
contact pads. 

diamond-tipped saw. The functional chips are finally packaged in hermeti­
cally sealed containers and sold. 

The individual manufacturing steps shown in Fig. 8.37 are as follows: 

Oxidation. Silicon dioxide forms readily on silicon by placing the wafer into 
a tube furnace, heated between 900° and l200°C, and exposing it to water 
vapor and possibly oxygen. This wet or steam oxidation is much faster than 
dry oxidation for which oxygen without steam is reacted with the silicon 
slice. Occasionally, silicon nitride replaces Si02 . 

Photolithography. In order to be able to etch small openings through an 
Si02 layer at a desired place, the silicon dioxide needs first to be coated with 
a protective layer called the photoresist, which, after exposure to UV light 
and subsequent developing, remains on the substrate. Thus, a mask (compa­
rable to a photographic negative) has to be produced that contains a pattern 
of nontransparent areas. The mask/photoresist/wafer sandwich is then ex­
posed to UV light. During the subsequent developing process, the unexposed 
photoresist is dissolved at the places where the Si02 needs to be removed. 
The remaining photoresist protects the Si02 from the etching solution. 

Oxide Etch. Wet chemical removal of the Si02 layer is accomplished by 
applying hydrofluoric acid (HF) at room temperature. The underlying sili­
con is not attacked by this etchant (this would require a HN03/HF solu­
tion). Wet chemical etching poses, however, some problems if submicron 
geometries need to be produced, since the etchant attacks not only vertically 
but also laterally, causing line broadening by undercutting. Thus, dry etching 
techniques, such as ion etching or reactive plasma etching, are increasingly 
utilized. Ion etching involves the removal of the exposed material by bom­
bardment with energetic noble gas ions (such as argon). Since ion etching 
removes Si02 as well as the underlying silicon, the bombarding time has to 
be carefully controlled. Plasma etching, on the other hand, uses a chemical 
reaction that converts the substance to be etched into a volatile compound 
by utilizing a chemically active gas such as halocarbons in a plasma chamber. 
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Photoresist Strip. This process is accomplished by a simple chemical disso­
lution reaction. 

Doping. In the pioneering times of semiconductor fabrication, the infusion 
of donor or acceptor elements into silicon was mainly done out of the gas 
phase with subsequent drive-in diffusion at temperatures near or above 
1000°C. Though this process worked quite well initially, increasing minia­
turization demanded a more precise doping technique. Thus, ion implanta­
tion has mainly been utilized since the early 1970s. This technique involves 
the ionization of the species to be implanted and their subsequent accelera­
tion towards the substrate in an electric field. (The silicon needs to be shielded 
where implantation is unwanted.) The range where the heavy dopants come 
to rest in the silicon substrate obeys a Gaussian distribution. The collision­
induced lattice damage, needs to be removed in a subsequent processing 
step. Annealing between 700° and 1000°C for a short time restores the orig­
inal lattice symmetry and also causes the dopants to become electrically 
active. 

Another method used for special purposes (low-level, extremely homoge­
neous doping) utilizes a neutron-irradiation-induced process that transforms 
Si into P. Specifically, the silicon isotope 30 14Si, which accounts for 3.1 % of 
the atoms in common Si, is bombarded with a neutron, thus forming 3114P, 

which transforms with a half-time of 2.6 hours (under emission of an elec­
tron) into the stable 31 15P. 

Metallization. The internal connections between the individual transistors, 
etc., are accomplished by narrow and thin (about l,um thick) metal films. 
Until recently, these metallizations consisted of aluminum with 2 to 4% Cu 
and possibly 1% Si. Due to the high current densities involved (several 106 

A/cm2
) and the sharp bends of theses strips, some holes and extrusions 

(called hillocks) may be formed after a certain time of operation, causing 
interruption of the current paths and thus failure of the device. This process 
is dubbed electromigration. In essence, a momentum exchange between the 
accelerated electrons and the metal ions pushes some metal ions from the 
negative side to the positive end of the thin film stripe, causing voids to form 
near the cathode. Copper metallizations laid down by electroplating (dama­
scene process) rather than by physical vapor deposition or sputtering provide 
some enhancement of the lifetime and a better conductivity which translates 
into less Joule-heating. However, the copper needs to be prevented from dif­
fusing into the silicon device where it would cause trapping of charge carriers. 
Thus, a barrier layer between Cu and Si consisting of, for example, Ti-N or 
Ta-N or pure Ta needs to be inserted. For high-temperature applications and 
GaAs devices metal silicides are occasionally utilized as connecting stripes. 

Passivation. The last layer on a chip is designed to protect the device from 
the environment and mechanical damage during packaging. Silicon dioxide 
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has been used in the past for this purpose. However, Si02 is extremely brittle 
and cracks readily. Thus, more ductile insulators, such as silicon nitride, 
phosphosilicate glass, or polyimide, are now used. Still, phosphorus from the 
phosphosilicate glass could leach out in time and when combined with re­
sidual absorbed water may form phosphoric acid, which causes corrosion. 
On the other hand, polyimide is somewhat permeable and, thus, may allow 
water penetration. 

Packaging. The individual chips (after having been cut from the wafer using 
a diamond blade saw) are bonded to headers and then sealed. 85% of the 
chips are currently encapsulated in plastics even though this packaging 
technique does not provide a complete hermetic seal from possible hostile 
environments. Ceramic packaging consisting of aluminum nitride, silicon 
carbide, or glass, having an internal cavity for chip mounting, provides a 
better seal, but this is more expensive. For plastic packaging, the chip is 
commonly bonded to a metal frame by a eutectic alloy (low melting point), 
or by polyimide adhesives, or a heat-conducting epoxy. These adhesives 
must provide for adequate removal of the heat that is generated in the chip. 

Next, electrical connections between chip pads and the external leads are 
performed, utilizing extremely thin (30 ,urn) gold wires (thermal-sonic bond­
ing). Subsequently, the device is encapsulated in a dense and rigid plastic, 
using for example a transfer molding process that requires pressure and heat 
(about 175°C). Among other techniques are reaction-injection, or radial 
spread molding. Materials for the envelopes include epoxy, silicone, thermo­
plastics, and certain polymer blends called interpenetrating polymer net­
works. It is of utmost importance that chip and envelope do not possess a 
thermal expansion mismatch in order to prevent stress and cracking of the 
chip. 

Other packaging methods involve hermetically sealed metal cans, all 
ceramics, or the glob top process, in which a drop of epoxy resin is placed 
on top of a chip on a ceramic header which, when cured, forms a shiny black 
hemisphere. 

The pins extruding from the packaged device are either arranged on the 
two opposing long sides, called the dual-in-line package (DIP), or on all four 
sides, dubbed the quad pack. Up to 200 pins per device, having a separation 
distance of only 0.64 mm, are possible when a second row of pins inside the 
outer row is used. The pins are eventually plugged into a socket or soldered 
to copper pads located on the surface of a circuit board (surface mount 
technology). In another design, the pins are inserted through holes on a cir­
cuit board and then connected by soldering. 

The bottleneck for accomplishing ever-increasing speeds in computers is 
the transfer time of the electrons from one chip to the next. Thus, multichip 
modules (MCM), i.e., the mounting of many chips into one package, will be 
increasingly used in the future to eliminate interchip delays. The drawback 
of this technique is that a single defective chip could make all the remaining 
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chips worthless. In addition, it requires intercompany cooperation since one 
manufacturer does not usually produce all types of chips. 

Recent Developments. The trend towards increasing the number of devices 
per chip continues. For example, in 1985 one million storage elements 
(1 Mbit) went into mass production. The 1 Mbit chip eventually was suc­
ceeded by 4, 16, 64, and 256 Mbit devices. The 1 gigabit chip, hosting one 
billion elements, is already on the horizon and is expected to be in produc­
tion by 200l. In general, the number of transistors on a chip doubles every 
12 to 18 months. Each further advancement step, however, creates new 
problems which need to be solved. Specifically, when the number of devices 
per chip is increased, the width of the structures is generally reduced in order 
to keep the total size of the chips at reasonable dimensions. Along with the rise 
III the number of devices per chip, the size of the structures has continuously 
fallen from 2 11m for the 64Kbit chip to 0.25 11m for the 256 Mbit chip. This 
poses increasingly higher demands on the wafer quality. For example, the 
allowable deviation from a completely flat wafer may be only fractions of 
micrometers (e.g., 0.13 11m). An improved flatness is accomplished by double­
sided lapping, grinding, and particularly polishing. An even better surface 
quality can be achieved by epitaxially growing a silicon layer onto a silicon 
wafer. For this, silicon is slowly deposited at high temperatures out of the 
gas phase on a Si wafer at a rate of micrometers per minute so that each 
silicon atom has enough time to find its proper place in the lattice of the 
growing interface. (Pulling a crystal from the crucible at this rate would re­
quire about one year.) An epitaxial Si layer on a Si substrate has an added 
advantage: The low electrical resistance between epi-Iayer and substrate 
prevents a "latchup," that is, a coupling effect between p-n-p and neigh­
boring n-p-n transistors through recombination of the different types of 
charge carriers. 

In order to achieve the just-mentioned ultra-small structures, optical pho­
tolithography will be eventually replaced by electron beam or X-ray lithog­
raphy, which allow a much finer definition of the device features because of 
the smaller wavelengths involved. 

A further increase in the number of elements per chip area is achieved by 
stacking the elements in several levels. This task is certainly not trivial and 
causes in addition heat removal problems. Nevertheless, up to three levels 
have been accomplished so far. 

At the end of this chapter, a few remarks on economics may be of interest. 
The fabrication of solid-state microelectronic devices (chips) was in 1996 an 
$850 billion per year industry (worldwide). It is expected to rise to $l.3 tril­
lion by the year 2000. This figure does not include the factory sales of com­
plete electronic systems in which these chips are incorporated (which is a 
factor of lO higher). The increase in value of the packaged circuit compared 
to the raw material is roughly lO millionfold if the starting material (sand) is 
valued at a transportation cost of 3 cents per kilogram. The raw silicon can 
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be purchased for a few dollars per kg. The 98% pure polysilicon already 
represents a value of $60 per kilogram and the silicon wafer sells for $2,000 
per kilogram (about $100 for an 8 in. wafer or $1,000 per 12 inch wafer). The 
next steps are big jumps: the processed wafer is valued at $25,000 per kilo­
gram, the raw chip costs $110,000, and the packaged chip is finally sold to 
the computer manufacturers for $300,000 per kilogram. 

Let us look at the economic picture from another point of view. As one 
might expect, it takes a substantial amount of energy to produce a wafer. The 
largest part (about 400 kWh/kg) is already consumed to produce the poly­
silicon. Or, put differently: the energy consumption for melting and purifica­
tion alone is 1000 kWh for 1 m2 of wafer surface. Production of single crystals 
by the Czochralski method requires another 150 kWh for 1 m2 of silicon sur­
face. Doping, etc., consumes 25-50 kWh/m2 (depending on the complexity 
of the device). All taken, including packaging, etc., roughly 1400 kWh are 
expended by the time microelectronic devices have been fabricated on a 1 m2 

silicon surface. (See, in this context, also Sections 8.7.6 and 9.4.) 

*8.7.12. Digital Circuits and Memory Devices 

The reader might legitimately wonder at this point how transistors are used 
in computers and similar devices. Even though this topic sidetracks the flow 
of our presentation somewhat, a few introductory remarks on switching 
devices, information processing, and information storage may nevertheless 
be of interest. We need to start with the recognition that electronic data­
processing systems use binary digits, i.e., zeros and ones as carriers for in­
formation. As an example, the numeral sequence "0010" means in the bi­
nary system the decimal number "two," whereas 0101 represents the decimal 
number 5. The first digit at the right of a binary number represents 2°, the 
next digits represent, consecutively, 21,22,23 , etc. A binary digit, or a bit, is 
the smallest possible piece of information. (A group of related bits, e.g., 8 bits 
for word processing, is called a byte.) A "zero" in the present context means 
that the electric current is off, whereas a "one" means that the current is on. 
So much about preliminaries. 

Let us begin with an "AND" device. We inspect the normally-off 
MOSFET in Fig. 8.29 and see that a voltage on the drain terminal is only 
obtained if we apply voltages simultaneously to the source and the gate ter­
minals. In other words, a source voltage and a gate voltage cause a voltage 
on the drain terminal, see Fig. 8.39(a). The circuit resembles a gate in a fence 
and is therefore called on AND gate. The circuit symbol for an AND gate is 
depicted in Fig. 8.39(b). 

Next, we discuss the inverter circuit. It consists of two normally-off MOS 
transistors which are wired in series (Fig. 8.40). The upper or load transistor 
(whose channel is made long and narrow to restrict the current flow) is 
always kept "on" by connecting the driving voltage to its gate. If a high 
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(b) 

(a) 

Figure 8.39. (a) AND gate and (b) circuit symbol for an AND gate. (Compare to 
Fig. 8.29) 

enough voltage is simultaneously applied to the gate of the lower or input 
transistor, then this lower MOSFET likewise becomes conducting and the 
driving voltage drains through both transistors into the ground. As a conse­
quence, the output voltage at terminal Q is nearly zero. Thus, the inverter 
circuit inverts a "one" signal on the input terminal into a "zero" signal on 
the output terminal (and vice versa). The circuit symbol for an inverter (or 
"NOT gate") is shown in Fig. 8.40(b). 

G 

Input voltage 
V, 

(a) 

Drlylng yoHage V DO 

(e.g. +10V) 
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--[)o--
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Figure 8.40. Inverter made of two "normally-off" (n-channel, enhancement-type) 
MOSFETs (NOT gate). (a) circuit; (b) symbol in wiring diagram. (VDD means 
"Drain power supply voltage".) The load transistor may be replaced by a (poly­
silicon) resistor or an enhancement-type p-channel MOSFET. 
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We have just mentioned that the current through the load transistor is 
relatively small due to its special design. Still, an inverter which essentially 
does not consume any power (except during switching) would be even 
more desirable. This is accomplished by CMOS technology, i.e., by using 
an enhancement-type p-channel MOSFET as a load transistor, and an 
enhancement-type n-channel MOSFET as an input transistor. Unless the 
circuit is switching, one MOSFET is always off (not conducting current) 
whereas the other is on. Since the two MOSFETs are connected in series 
similarly as in Fig. 8.40, little power (except due to leakage current) is con­
sumed. It is left to the reader to draw up and discuss the appropriate circuit 
diagram. (See Problem 18.) 

The next logic device that we discuss is a "NAND" circuit. It consists of a 
load MOSFET, wired in series with two (or more) input transistors. All 
MOSFETs shown in Fig. 8.41 are of the "normally-off" type. Assume that 
high enough voltages are applied to the gates of both input transistors to 
make them conducting. Thus, the output terminal Q is connected to ground, 
i.e., the output voltage is almost zero. Since input voltages on the gates of the 
A and the B transistors inverts the input signal from "one" to "zero," we call 
the present logic building block an "AND" gate combined with a "NOT 
circuit" and term the entire digital function "NOT -AND" or a "NAND" 
gate for short. The reader may convince himself that the output is always 
"one" when at least one of the input voltages is "zero." On the other hand, if 
both inputs are "one," the output is "zero." 

Output 

Q 

(b) 

Figure 8.41. (a) NAND gate and (b) circuit symbol for a NAND digital function. 
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Figure 8.42. OR logic circuit with circuit symbol. 

In an "OR" gate (Fig. 8.42) the output voltage Q is "one" when either A 
or B (or both) possess a voltage. Otherwise Q is "zero." 

Finally, in a "NOR" circuit, the input transistors are again wired in par­
allel (Fig. 8.43). Applying high enough gate voltages to one or all of them 
causes the output voltage to be "zero." The circuit is appropriately called 
"NOT-OR" or "NOR." Evidently, the output voltage is only "one" if all 
input voltages are "zero." 

r----..... -----I~-O 0 (Output) 
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B 

A 
==[>0--0 

B 

Figure 8.43. NOR logic circuit with circuit symbol. 
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Figure 8.44. SRAM memory device called R-S flip-flop with latch. (The bar on a 
letter signifies the complement infonnation.) 

In short, the five basic building blocks that are obtained by properly cir­
cuiting one or more transistors are AND, NAND, OR, NOR, and NOT. 
(See also Problem 21.) 

We are ultimately interested in knowing how a memory device works, i.e., 
we are interested in a unit made of transistors which can store information. 
For comparison, a toggle switch that turns a light on or off can be consid­
ered to be a digital information storage device. It can be flipped on and then 
flipped off to change the content of its information. Appropriately, the de­
vice that we are going to discuss is called a flip-flop. Let us assume that a 
flip-flop has a built-in latch to prevent the accidental change of information. 
This is done electronically by combining a NOT gate with two AND gates, 
as shown in the left part of Fig. 8.44. (The output of an AND gate is zero as 
long as one of the inputs is zero!) It is left to the reader to figure out the 
various combinations. As an example, if the gate is unlatched (1) and the 
data input is 1, we obtain "zero" on the R terminal and "one" on the S 
terminal. 

The flip-flop on the right part of Fig. 8.44 consists of two NOR gates 
which are cross-coupled. (Remember that the output of a NOR is always 
zero when at least one input is one, and it is one when both inputs are zero.) 
The above example with R = 0 and S = 1 yields a "one" at the output ter­
minal Q (and a "zero" at the complement output Q), i.e., D and Q are 
identical. The information that is momentarily fed to the D terminal and 
into the system is permanently stored in the flip-flop even when the wires R 
and S are cut off. The cross-coupling keeps the two NOR gates mutually in 
the same state at least as long as a driving voltage remains on the devices. In 
short, one bit of information has been stored. 

Let us now latch the gating network, i.e., let G be "zero." Whatever 
option the data input D will assume in this case, the output Q will always be 
"one," as the reader should verify. In other words, the latching prevents an 
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f 
Figure 8.45. Schematic representation of a two-dimensional memory addressing 
system. By activating the # 2 row wire and the # 3 column wire, the content of the 
cross-hatched memory element (situated at their intersection) can be changed. 

accidental change of the stored information. On the other hand, latching and 
unlatching by itself does not change the information content of the flip-flop 
either! 

The device described above is called a static random-access memory or, in 
short, an "S-RAM", because the information remains permanently in the 
storage unit. The memory cell shown in Fig. 8.44 can evidently store only 
one bit of information. Let us now imagine a two-dimensional array of these 
storage elements, connected in a number of horizontal and vertical lines 
(Fig. 8.45). A designated memory element, being located at the crosspoint of 
a specific row and a specific column wire, can then be exclusively addressed 
by sending an electrical impulse through both wires simultaneously. One of 
these wires operates on the gating input (Fig. 8.44), the other one activates 
the data input. As we have discussed above, only a simultaneous activation 
of both input wires can change the information content of a flip-flop. An 
array of 32 columns and 32 rows of memory elements constitutes 1024 bits 
of information storage, or one kilobit. (Yes, a Kbit is not 1,000 bits.) 

In order to reduce the area on a chip and the power consumption of a 
storage device, a memory cell different from the above-introduced flip-flop is 
frequently used. It is called the one-transistor dynamic random-access memory 
(DRAM, pronounced D-RAM). The information is stored in a capacitor, 
which can be accessed through an enhancement-type transistor (Fig. 8.46). 
Only concomitant voltages on gate and source allow access to the capacitor. 
Since the stored charge in a capacitor leaks out in a few milliseconds, the 
information has to be "refreshed" every 2 milliseconds by means of refresh 
circuits. No voltage on the capacitor is used as a "zero," whereas a certain 
voltage on the capacitor represents the "one" logic. 

The 256 Megabit chip combines a multitude of these or similar building 
blocks through ultra-large-scale integration (ULSI) on one piece of silicon 
the size of a finger nail. 
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Figure 8.46. One-transistor dynamic random-access memory (DRAM). The infor­
mation flows in and out through the column line. 

The memory devices discussed so far are of the "volatile" type, i.e., they 
lose their stored information once the electric power of the computer is 
interrupted. In nonvolatile memories, such as the read-only memory (ROM), 
information is permanently stored in the device. Let us consider, for exam­
ple, the MOSFET depicted in Fig. 8.29(b). Assume that the connection to 
the gate has been permanently interrupted during fabrication. Then the 
transistor will never transmit current from source to drain. Thus, a "zero" is 
permanently stored without the necessity to maintain a driving voltage. If, 
on the other hand, the path to the gate is left intact, the MOSFET can be 
addressed and current between source and drain may flow, which constitutes 
a "one." The stored information can be read, but it cannot be altered. 

In the programmable read-only memory (PROM) the information may be 
written by the user, for example, by blowing selected fuse links to the gate. 
As above, the alteration is permanent and the information can be read only. 

The erasable-programmable read-only memory (EPROM) allows the user 
to program the device as well as erase the stored information. An EPROM 
contains a ''floating gate," i.e., a gate (consisting of heavily doped poly­
silicon) which is completely imbedded in Si02 , see Fig. 8.47. For program­
ming, the drain-substrate junction is strongly reverse biased until avalanche­
breakdown sets in (see Fig. 8.20), and electrons are injected from the drain 
region into the Si02 layer. A large voltage (~25 V) between a second gate, 
the control gate, and the substrate allows some electrons to cross the insula­
tor, thus negatively and permanently charging the floating gate. The oxide 
thickness is on the order of 100 nm, which assures a charge retention time of 
about 100 years. A permanent charge on the floating gate constitutes a "1"; 
no charge represents the zero state. Exposure of the EPROM to ultraviolet 
light or X-rays through a window (not shown in Fig. 8.47) increases the 
conductivity of the insulator and allows the charge to leak out of the floating 
gate, thus erasing any stored information. 

For electrical erasure, a large positive voltage can be applied to the control 
gate which removes the stored charge from the floating gate. This returns the 
"electrically erasable-programmable ROM" (EEPROM) to the zero state. 
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Control gate 

B 

Figure 8.47. Electrically erasable-programmable read-only memory device (EEPR­
OM), also called stacked-gate avalanche-injected MOS (SAMOS), or, with some 
modifications, flash memory device. 

Alternately, electrical erasure can be performed by applying a positive volt­
age to the source, which also pulls charge from the floating gate. The "flash 
memory" device uses this erasure method while employing a thinner (10 nm) 
and higher-quality oxide below the floating gate. This improves efficiency 
and reliability. Flash memory cards, which are the size of a credit card, are 
predicted to cut substantially into the floppy (magnetic) disk and perhaps the 
hard disk memory market because of their small weight, their lower power 
consumption, and their fast access time (twenty times faster than a floppy 
disk). These virtues are important features for laptop computers. Sales for 
2000 are projected to be about $2.5 billion. 

It should be mentioned in closing that magnetic storage devices are dis­
cussed in Section 17.4. Optical storage devices are explained in Section 
13.10. 

Problems 

Intrinsic Semiconductors 

1. Calculate the number of electrons in the conduction band for silicon at T = 300 
K. (Assume m;/mo = 1.) 

2. Would germanium still be a semiconductor if the band gap was 4 eV wide? 
Explain! (Hint: Calculate Ne at various temperatures. Also discuss extrinsic 
effects.) 
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3. Calculate the Fenni energy of an intrinsic semiconductor at T#-O K. (Hint: 
Give a mathematical expression for the fact that the probability of finding an 
electron at the top of the valence band plus the probability of finding an electron 
at the bottom of the conduction band must be \.) Let Ne == Np and m; == mh. 

4. At what (hypothetical) temperature would all 1022 (cm-3) valence electrons be 
excited to the conduction band in a semiconductor with Eg = I eV? Hint: Use a 
programmable calculator. 

5. The outer electron configuration of neutral gennanium in its ground state is 
listed in a textbook as 4 s24p2. Is this infonnation correct? Someone argues 
against this configuration stating that the p-states hold six electrons. Thus, the 
p-states in gennanium and therefore the valence band are only partially filled. 
Who is right? 

6. In the figure below, (j is plotted as a function of the reciprocal temperature for 
an intrinsic semiconductor. Calculate the gap energy. (Hint: Use (8.14) and take 
the In from the resulting equation.) 

Extrinsic Semiconductors 

7. Calculate the Fenni energy and the conductivity at room temperature for ger­
manium containing 5 x 1016 arsenic atoms per cubic centimeter. (Hint: Use the 
mobility of the electrons in the host material.) 

8. Consider a silicon crystal containing 1012 phosphorous atoms per cubic centi­
meter. Is the conductivity increasing or decreasing when the temperature is 
raised from 300° to 350°C? Explain by giving numerical values for the mecha­
nisms involved. 

9. Consider a semiconductor with 1013 donors/cm3 which have a binding energy 
of WmeV. 
(a) What is the concentration of extrinsic conduction electrons at 300 K? 
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(b) Assuming a gap energy of 1 eV (and m' == mol, what is the concentration of 
intrinsic conduction electrons? 

(c) Which contribution is larger? 

10. The binding energy of a donor electron can be calculated by assuming that the 
extra electron moves in a hydrogen-like orbit. Estimate the donor binding energy 
of an n-type impurity in a semiconductor by applying the modified equation 
(4.1Sa) 

where e = 16 is the dielectric constant of the semiconductor. Assume m' = O.S 
mo. Compare your result with experimental values listed in Appendix 4. 

11. What happens when a semiconductor contains both donor and acceptor im­
purities? What happens with the acceptor level in the case of a predominance of 
donor impurities? 

Semiconductor Devices 

12. You are given a p-type doped silicon crystal and are asked to make an ohmic 
contact. What material would you use? 

13. Describe the band diagram and function of a p-n-p transistor. 

14. Can you make a solar cell from metals only? Explain! 

* 15. A cadmium sulfide photodetector is irradiated over a receiving area of 4 x 10-2 

cm2 by light of wavelength 0.4 x 10-6 m and intensity of 20 W m-2 . 

(a) If the energy gap of cadmium sulfide is 2.4 eV, confirm that electron-hole 
pairs will be generated. 

(b) Assuming each quantum generates an electron-hole pair, calculate the 
number of pairs generated per second. 

16. Calculate the room-temperature saturation current and the forward current at 
0.3 V for a silverjn-doped silicon Schottky-type diode. Take for the active area 
10-8 m2 and C = 10 19 Ajm2 K2. 

17. Draw up a circuit diagram and discuss the function of an inverter made with 
CMOS technology. (Hint: An enhancement-type p-n-p MOSFET needs a neg­
ative gate voltage to become conducting; an enhancement-type n-p-n MOSFET 
needs for this a positive gate voltage.) 

IS. Draw up a circuit diagram for an inverter which contains a normally-on and a 
normally-off MOSFET. Discuss its function. 

19. Convince yourself that the unit in (S.26) is indeed the ampere. 

20. Calculate the thermal energy provided to the electrons at room temperature. 
You will find that this energy is much smaller than the band gap of silicon. 
Thus, no intrinsic electrons should be in the conduction band of silicon at room 
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temperature. Still, according to your calculations in Problem 1, there is a sizable 
amount of intrinsic electrons in the conduction band at T = 300 K. Why? 

21. Explain the "OR" logic circuit. 

22. Calculate the lateral dimensions of a quantum well structure made of GaAs. 
(Hint: Keep in mind that the lateral dimension has to equal the wavelength of 
the electrons in this material.) Refer to Section 4.2 and Fig. 4.4(a). Use the data 
contained in the tables of Appendix 4. 

23. Calculate the number of electrons and holes per incident photon, i.e., the 
quantum efficiency, in a transverse photodiode. Take W = 8 pm, L = 8 mm, 
and C( = 40 em-I. 



CHAPTER 9 

Electrical Properties of Polymers, 
Ceramics, Dielectrics, and 
Amorphous Materials 

9.1. Conducting Polymers and Organic Metals 

Materials which are electrical (and thermal) insulators are of great technical 
importance and are, therefore, used in large quantities in the electronics 
industry, e.g., as handles for a variety of tools, as coatings for wires, or as 
casings for electrical equipment. Most polymeric materials have the required 
insulating properties and have been used for decades for this purpose. It 
came, therefore, as a surprise when it was discovered in the late 1970's that 
some polymers and organic substances may have electrical properties which 
resemble those of conventional semiconductors, metals, or even super­
conductors. We shall focus our attention mainly on these materials. This 
does not imply that the predominance of applications of polymers is in the 
conductor field. Quite the contrary is true. Nevertheless, conducting poly­
mers (also called synthetic metals) steadily gain ground compared to in­
sulating polymers. 

Initially, conducting polymers were unstable in air or above room tem­
perature. In addition, some dopants, used to impart a greater conductivity, 
were toxic, and the doping made the material brittle. However, more re­
cently, stable conducting polymers were synthesized which have as an added 
benefit an optical transparency across the entire visible spectrum. Among 
them, poly(3,4-ethylenedioxythiophene) (PEDT) and its derivatives enjoy 
now multi-ton productions, in particular for antistatic layers in photographic 
films. These conducting layers are beneficial for the prevention of friction­
induced static electricity, which causes, on discharge, flashes of light, thus, 
pre-exposing the light-sensitive emulsion. Other uses of PEDT are transpar­
ent electrodes for inorganic electroluminescent devices, anti-static treatments 
of plastics and cathode ray tubes, electrodes for capacitors, sensors, recharge-
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able batteries, photovoltaic devices, and packaging of electronic components. 
PEDT films can be heated in air at 100°C for over 1000 hours with hardly 
any change in conductivity. 

We now attempt to discuss conducting polymers in the light of solid-state 
physics. Conventional solid-state physics deals preferably with the properties 
of well-defined regular arrays of atoms. We have learned in Chapter 7 that a 
periodic array of lattice atoms is imperative for coherent scattering of elec­
tron waves and thus for a high conductivity. Further, the periodic arrange­
ment of atoms in a crystal and the strong interactions between these atoms 
causes, as explained in Section 4.4, a widening of energy levels into energy 
bands. 

We know that highly conducting materials such as metals are charac­
terized by partially filled bands, which allow a free motion of the conduction 
electrons in an electric field. Insulators and semiconductors, on the other 
hand, possess (at least at 0 K) completely filled valence bands and empty 
conduction bands. The difference in band structure between crystalline 
insulators and semiconductors is a matter of degree rather than of kind: 
insulators have wide gaps between valence and conduction bands whereas 
the energy gaps for semiconductors are narrow. Thus, in the case of semi­
conductors, the thermal energy is large enough to excite some electrons 
across the gap into the conduction band. The conductivity in pure semi­
conductors is known to increase (exponentially) with increasing temperature 
and decreasing gap energy (8.14), whereas the conductivity in metals de­
creases with increasing temperature (Fig. 7.7). Interestingly enough, most 
conducting polymers have a temperature dependence of the conductivity 
similar to that of semiconductors. This suggests that certain aspects of 
semiconductor theory may be applied to conducting polymers. The situation 
regarding polymers cannot be described, however, without certain modifi­
cations to the band model brought forward in the previous chapters. This is 
due to the fact that polymeric materials may exist in amorphous as well as in 
crystalline form or, more commonly, as a mixture of both. This needs to be 
discussed in some detail. 

Polymers consist of molecules which are long and chainlike. The atoms 
that partake in such a chain (or macromolecule) are regularly arranged 
along the chain. Several atoms combine and form a specific building block, 
called a monomer, and thousands of monomers combine to a polymer. As 
an example, we depict polyethylene, which consists of repeat units of one 
carbon atom and two hydrogen atoms, Fig. 9.1(a). If one out of four 
hydrogen atoms in polyethylene is replaced by a chlorine atom, polyvinyl­
chloride (PVC) is formed upon polymerization (Fig. 9.1 (b)). In polystyrene, 
one hydrogen atom is replaced by a benzene ring. More complicated macro­
molecules may contain side chains attached to the main link. They are 
appropriately named "branched polymers." Macromolecules whose back­
bones consist largely of carbon atoms, as in Fig. 9.1, are called "organic" 
polymers. 
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Figure 9.1. (a) Polyethylene. (b) Polyvinylchloride. (The dashed enclosures mark the 
repeat unit. Polyethylene is frequently depicted as two CH2 repeat units for historical 
reasons. 

The binding forces that hold the individual atoms in polymers together are 
usually covalent and sometimes ionic in nature. Covalent forces are much 
stronger than the binding forces in metals. They are based on the same 
interactions that are responsible for forming a hydrogen molecule from two 
hydrogen atoms. Quantum mechanics explains covalent bonds by showing 
that a lower energy state is achieved when two equal atomic systems are 
closely coupled and in this way exchange their energy (see Section 16.2). In 
organic polymers each carbon atom is often bound to four atoms (see Fig. 
9.1) because carbon has four valencies. 

In contrast to the strong binding forces between the atoms within a 
polymeric chain, the secondary interactions between the individual macro­
molecules are usually weak. The latter are of the Van der Waals type, i.e., 
they are based on forces which induce dipole moments in the molecules. 
(Similar weak interactions exist for noble gases such as argon, neon, etc.) 

In order to better understand the electronic properties of polymers by 
means of the electron theory and the band structure concept, one needs to 
know the degree of order or the degree of periodicity of the atoms, because 
only ordered and strongly interacting atoms or molecules lead, as we know, 
to distinct and wide electron bands. Now, it has been observed that the 
degree of order in polymers depends on the length of the molecules and on 
the regularity of the molecular structure. Certain heat treatments may influ­
ence some structural parameters. For example, if a simple polymer is slowly 
cooled below its melting point, one might observe that some macromolecules 
align parallel to each other. The individual chains are separated by regions 
of supercooled liquid, i.e., of amorphous material (Fig. 9.2). Actually, slow 
cooling yields, for certain polymers, a highly crystalline structure. 

In other polymers, the cooling procedure might cause the entire material 
to go into a supercooled-liquid state. In this state the molecules can be 
considered to be randomly arranged. After further cooling, below a glass 
transition temperature, the polymer might transform itself into a glassy 
amorphous solid which is strong, brittle, and insulating. However, as stated 
before, we shall concern ourselves mainly with polymers that have a high 
degree of crystallinity. Amorphous materials will be discussed in Section 9.4. 

A high degree of crystallinity and a relatively high conductivity have been 
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Figure 9.2. Simplified representation of a semicrystalline polymer (folded-chain 
model). 

found in polyacetylene, which is the simplest conjugated organic polymer. It 
is considered to be the prototype of a conducting polymer. A conjugated 
polymer has alternating single and double bonds between the carbons (see 
Fig. 9.3, which should be compared to Fig. 9.1(a)). Two principle isomers 
are important: in the trans form, the hydrogen atoms are alternately bound 
to opposite sides of the carbons (Fig. 9.3(b)), whereas in the cis form the 
hydrogen atoms are situated on the same side of the double-bond carbons 
(Fig. 9.3(a)). Trans-polyacetylene is obtained as a silvery, flexible film that 
has a conductivity comparable to that of silicon (Fig. 9.4). 

Figure 9.5 shows three band structures for trans-(CH)x assuming different 
distances between the carbon atoms. In Fig. 9.5(a) all carbon bond lengths 
are taken to be equal. The resulting band structure is found to be character­
istic for a metal, i.e., one obtains distinct bands, the highest of which is par­
tially filled by electrons. Where are the free electrons in the conduction band 
coming from? We realize that the electrons in the double bond of a con­
jugated polymer (called the n-electrons) can be considered to be only loosely 
bound to the neighboring carbon atoms. Thus, one of these electrons is 
easily disassociated from its carbon atom by a relatively small energy, which 
may be provided by thermal energy. The delocalized electrons may be ac­
celerated as usual in an electric field. 
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Figure 9.3. Theoretical isomers of polyacetylene (a) cis-transoidal isomer, (b) trans­
transoidal isomer. Polyacetylene is synthesized as cis-(CHh and is then isomerized 
into the trans-configuration by heating it at 150°C for a few minutes. 
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Figure 9.4. Conductivities of polymers in 0- 1 em-I. (Compare with Fig. 7.1.) 

In reality, however, a uniform bond length between the carbon atoms does 
not exist in polyacetylene. Instead, the distances between the carbon atoms 
alternate because of the alternating single and double bonds. Band structure 
calculations for this case show, interestingly enough, some gaps between the 
individual energy bands. The resulting band structure is typical for a semi­
conductor (or an insulator)! The width of the band gap near the Fermi level 
depends mainly on the extent of alternating bond lengths (Fig. 9.5(b) and 
(c)). 

It has been shown that the band structure in Fig. 9.5(b) best represents the 
experimental observations. Specifically, one finds a band gap of about 1.5 eV 
and a total width of the conduction band of 10-14 eV. The effective mass m' 
is 0.6mo at k = 0 and O.lmo at k = nja. Assuming r -> 10- 14 s, the free 
carrier mobility, /1, along a chain is calculated to be about 200 cm2 jV s. The 
latter quantity is, however, hard to measure since the actual drift mobility in 
the entire solid is reduced by the trapping of the carriers which occurs during 
the "hopping" of the electrons between the individual macromolecules. In 
order to improve the conductivity of (CHlx one would attempt to decrease 
the disparity in the carbon-carbon bond lengths, thus eventually approach­
ing the uniform bond length as shown in Fig. 9.5(a). 
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(a) (b) (c) 

Figure 9.5. Calculated band structure of trans-(CH)x for different carbon-carbon 
bond lengths: (a) unifonn (1.39 A); (b) weakly alternating (C=C, 1.36 A; C~C, 
1.43 A); and (c) strongly alternating (C=C, 1.34 A; C~C, 1.54A). Note the band 
gaps at Y as bond alternation occurs. Reprinted with pennission from P.M. Grant 
and LP. Batra, Solid State Comm. 29,225 (1979). 

Polyacetylene, as discussed so far, should be compared to conventional 
intrinsic semiconductors. Now, we know from Section 8.3 that the conduc­
tivity of semiconductors can be substantially increased by doping. The same 
is true for polymer-based semiconductors. Indeed, arsenic-pentafluoride­
doped trans-polyacetylene has a conductivity which is about seven orders of 
magnitude larger than undoped trans-(CH)x. Thus, (J approaches the con­
ductivity of metals, as can be seen in Figs. 9.4 and 9.6. Many oxidants cause 
p-type semiconductors, whereas alkali metals are n-type dopants. The doping 
is achieved through the vapor phase or by electrochemical methods. The 
dopant molecules diffuse between the (CH)x chains and provide a charge 
transfer between the polymer and the dopant. The additional element ends 
up as an anion when it is an acceptor and as a cation when it is a donor. 
Among other (albeit nontoxic) dopants is n-dodecyl sulfonate (soap). A 
word of caution, when using the word "doping", should be added at this 
point. In semiconductor physics, doping means extremely small additions of 
impurity elements. In polymers, much larger quantities of additional sub­
stances are used, ranging from one tenth of a percent up to 20-40%. 

A refinement in the description of the conduction mechanism in poly­
acetylene can be provided by introducing the concept of solitons. A soliton is 
a structural distortion in a conjugated polymer and is generated when a single 
bond meets another single bond, as shown in Fig. 9.7. At the distortion point 
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Figure 9.6. Conductivity change of polyacetylene as a result of doping. 

a localized non bonding electron state is generated, similar to an n-type impu­
rity state in a silicon semiconductor. The result is a localized level in the center 
of the forbidden band. It is believed that when an electron is excited from the 
valence band into the conduction band (leaving a hole in the valence band) 
this electron-hole pair decays in about 10- 12 s into a more stable soliton­
anti soliton pair. 

Near the center of a soliton, the bond lengths are equal. We recall that 
uniform bond lengths constitute a metal. Thus, when many solitons have 
been formed and their spheres of influence overlap, a metal-like conductor 
would result. 

It is also conceivable that one of the double bonds next to a soliton switches 

H H H H H H H 

/~~/~'-c)'C/~C~~C;~~~ 
I I I I I I 
H H H H H H 

Figure 9.7. A broken symmetry in polyacetylene creates a soliton. (An antisoliton is 
the mirror image of a soliton.) 
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over to a single bond. If this switching occurs consecutively in one direction, 
a soliton wave results. This can be compared to a moving electron. 

Up to now, we discussed mainly the properties of polyacetylene. Over the 
last 20 years additional conductive polymers have been discovered. They 
include polyanilines, polypyrroles, polythiophenes, polyphenylenes, poly(p­
phenylene vinylene) and their derivatives. Of these, the polyaniline family 
can be easily processed at low cost but might yield toxic (carcinogenic) 
products upon degradation. Others are more "environmentally friendly" 
but are insoluble. On the other hand, the above-mentioned PEDT (devel­
oped by Bayer AG in Germany) can be made water-soluble by utilizing 
poly(styrenesulfonate) (PSS) as a dopant during polymerization. Its anti­
static and other properties have been mentioned already above. The chains 
in inorganic poly(sulfur nitride) consist of alternating sulfur and nitrogen 
atoms. Because of the different valencies of the S2- and N 3- ions, (SN)x is 
an electron-deficient material with an alternating bond structure. The bond 
length alternation is not severe, so that (SN)x has a room-temperature con­
ductivity of about 103 ohm- l cm- l along the chain direction. The conduc­
tivity increases with a reduction in temperature. At temperatures close to 
o K, poly(sulfur nitride) becomes superconducting. In brominated (SN)x 
the Br3 and Brz ions are aligned along the chain axis, giving rise to a 
one-dimensional superlattice. 

In graphite, an individual "molecule" consists of a "sheet" of carbon 
atoms. The conductivity is found to be nearly metallic, at least parallel to the 
layers (Fig. 9.4). AsFs-doped graphite has an even higher conductivity. The 
conduction is increased by producing a mixture of easily ionized electron 
donors and electron acceptors. The charge is then shared between the donors 
and acceptors. These materials are called charge-transfer complexes. 

Another class of organic conductors is the charge-transfer salts, in which a 
donor molecule, such as tetrathiafulvalene (TTF), transfers electrons to an 
acceptor molecule, such as tetracyanoquinodimethane (TCNQ). The planar 
molecules stack on top of each other in sheets, thus allowing an overlap 
of wave functions and a formation of conduction bands that are partially 
filled with electrons due to the charge transfer. It is assumed that, because 
of the sheetlike structure, the charge-transfer compounds are quasi-one­
dimensional. Along the stacks, conductivities as high as 2 x 10 3 n- l cm- l 

have been observed at room temperature. Below room temperature, the 
metallic conductors often transform into semiconductors or insulators. Even 
superconduction has been observed at very low temperatures (about 13 K). 
In the presence of a magnetic field and at low temperatures, these materials 
undergo, occasionally, a transition from a metallic, nonmagnetic state into a 
semimetallic, magnetic state. Organic metals are generally prepared by elec­
trochemical growth in a solution. They are, as a rule, quite brittle, single 
crystalline, and relatively small. Other materials of this type include doped 
complexes of C60 (so-called Buckyballs) which exhibit superconductivity at 
low temperatures. 
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Replacing metals with lightweight conducting polymers (for wires) seems 
to be, in the present state of the art, nearly impossible, mainly because of 
their poor stability. However, this very drawback (i.e., the high reactivity of 
some conducting polymers) concomitant with a change in conductivity can 
be profitably utilized in devices such as remote gas sensors, biosensors, or 
other remotely readable indicators that detect changes in humidity, radiation 
dosage, mechanical abuse, or chemical release. As an example, polypyrrole 
noticeably changes its conductivity when exposed to only 0.1% NH3, N02, 

or H2S. Further, experiments have been undertaken to utilize (CH)x for 
measuring the concentration of glucose in solutions. 

9.2. Ionic Conduction 

In ionic crystals (such as the alkali halides), the individual lattice atoms 
transfer electrons between each other to form positively charged cations and 
negatively charged anions. The binding forces between the ions are electro­
static in nature and are thus very strong. The room-temperature conductivity 
of ionic crystals is about twenty-two orders of magnitude smaller than the 
conductivity of typical metallic conductors (Fig. 7.1). This large difference in 
(J can be understood by realizing that the wide band gap in insulators allows 
only extremely few electrons to become excited from the valence band into 
the conduction band. 

The main contribution to the electrical conduction in ionic crystals (as 
little as it may be) is, however, due to a mechanism that we have not yet 
discussed, namely, ionic conduction. Ionic conduction is caused by the 
movement of some negatively (or positively) charged ions which hop from 
lattice site to lattice site under the influence of an electric field. (This type of 
conduction is similar to that which is known to occur in aqueous electro­
lytes.) This ionic conductivity 

(9.1 ) 

is, as outlined before (8.13), the product of three quantities. In the present 
case, Nion is the number of ions per unit volume that can change their posi­
tion under the influence of an electric field and !lion is the mobility of these 
ions. 

In order for ions to move through a crystalline solid, they must have suf­
ficient energy to pass over an energy barrier (Fig. 9.8). Further, an equivalent 
lattice site next to a given ion must be empty in order for an ion to be able to 
change its position. Thus, Nion in (9.1) depends on the vacancy concentration 
in the crystal (i.e., on the number of Schottky defects). In short, the theory of 
ionic conduction contains essential elements of diffusion theory, with which 
the reader might be familiar. 
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Figure 9.8. Schematic representation of a potential barrier, which an ion (.) has to 
overcome to exchange its site with a vacancy (0). (a) Without an external electric 
field; (b) with an external electric field. d = distance between two adjacent, equivalent 
lattice sites; Q = activation energy. 

Diffusion theory links the mobility of the ions, which is contained in (9.1), 
with the diffusion coefficient, D, through the Einstein relation, 

De 
Ilion = kBT· 

(Note that (9.2) implies that one charge unit per atom is transported.) 

(9.2) 

The diffusion coefficient varies with temperature; this dependence is com­
monly expressed by an Arrhenius equation, 

(9.3) 

where Q is the activation energy for the process under consideration (Fig. 
9.8), and Do is a pre-exponential factor that depends on the vibrational fre­
quency of the atoms and some structural parameters. Combining (9.1) 
through (9.3) yields 

Nion
e2D

O [( Q )] O"ion = kBT exp - kBT . (9.4) 

Equation (9.4) is shortened by combining the pre-exponential constants into 
0"0: 

(9.5) 

Taking the natural logarithm yields 

InO"ion = In 0"0 - (~)~. (9.6) 



176 II. Electrical Properties of Materials 

1n 0 

lIT 

Figure 9.9. Schematic representation of Ina versus liT for Na+ ions in sodium 
chloride. (Arrhenius plot.) 

Equation (9.6) suggests that iflnalOn is plotted verus liT, a straight line with 
a negative slope would result. Figure 9.9 depicts schematically a plot of In a 
versus I I T as experimentally found for alkali halides. The linear In a versus 
liT relationship indicates that Fig. 9.9 is an actual representation of (9.6). 
The slopes of the straight lines in Arrhenius plots are utilized to calculate the 
activation energy of the processes under consideration. We notice in Fig. 9.9 
two temperature regions representing two different activation energies: at 
low temperatures, the activation energy is small, the thermal energy is just 
sufficient to allow the hopping of ions into already existing vacancy sites. 
This temperature range is commonly called the extrinsic region. On the other 
hand, at high temperatures, the thermal energy is large enough to create 
additional vacancies. The related activation energy is thus the sum of the 
activation energies for vacancy creation and ion movement. This tempera­
ture range is called the intrinsic region. 

So far, we have not been very specific in describing the circumstances of 
vacancy formation in an ionic crystal. Now, we have to realize that when­
ever vacant lattice sites are created, an overall charge neutrality needs to be 
maintained. The latter is the case when both a cation and an anion are re­
moved from a lattice. Another permissible mechanism is the formation of a 
vacancy-interstitial pair (Frenkel defect). More often, however, vacancies are 
created as a consequence of introducing differently charged impurity atoms 
into an ionic lattice, i.e., by replacing, say, a monovalent metal atom with a 
divalent atom. In order to maintain charge neutrality in this case, a posi­
tively charged vacancy needs to be introduced. For example, if a divalent 
Mg2+ ion substitutes for a monovalent Na+ ion, one extra Na+ ion has to 
be removed to restore charge neutrality, see Fig. 9.10. Or, if zirconia (Zr02) 
is treated with CaO (to produce the technically important calcia-stabilized 
zirconia), the Ca2+ ions substitute for Zr4+ ions and an anion vacancy needs 
to be created to maintain charge neutrality. Nonstoichiometric compounds 
contain a high amount of vacancies even at relatively low temperatures, 
whereas in stoichiometric compounds vacancies need to be formed by ele­
vating the temperature. 
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Figure 9.10. Schematic representation ofa {100} plane of an ionic crystal having the 
NaCI structure. The diffusion of a cation into a cation vacancy is shown. Also de­
picted is the creation of a cation vacancy when replacing a Na+ ion with a Mg2+ ion. 

In principle, both cations and anions are capable of moving simulta­
neously under the influence of an electric field. It turns out, however, that in 
most alkali halides the majority carriers are provided by the (smaller) metal 
ions, whereas in other materials, such as the lead halides, the conduction is 
predominantly performed by the halide ions. 

So far, it was implied that the materials under consideration are single 
crystals. For polycrystalline materials, however, it appears reasonable to 
assume that the vacant lattice sites provided by the grain boundaries would 
be utilized by the ions as preferred paths for migration, thus enhancing the 
conductivity. This has indeed been experimentally observed for alkali ions. 

One piercing question remains to be answered: If ionic conduction entails 
the transport of ions, i.e., of matter from one electrode to the other, would 
this not imply some segregation of the constituents? Indeed, a pile-up of 
mobile ions at the electrodes has been observed for long-lasting experiments 
with a concomitant induced electric field in the opposite direction to the ex­
ternally applied field. As a consequence the conductivity decreases gradually 
over time. Of course, this does not happen when nonblocking electrodes are 
utilized which provide a source and a sink for the mobile species. 

9.3. Conduction in Metal Oxides 

Metal oxides do not actually represent a separate class of conducting mate­
rials on their own. Indeed, they can be insulating, such as Ti02, have metallic 
conduction properties, such as TiO, or be semiconducting. For understanding 
the mechanisms involved in metal oxides, e.g., in the aforementioned titanium 
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oxides, it is helpful to inspect the table in Appendix 3. Oxygen is seen there to 
have four 2p-electrons in its outermost shell. Two more electrons will bring 
0 2- into the closed-shell configuration and four electrons are obviously 
needed to accomplish the same for two oxygen ions, such as in Ti02. These 
four electrons are provided by the titanium from its 3d- and 4s-shells. Thus, 
in the case of Ti02 , all involved elements are in the noble gas configuration. 
Since ionic bonds are involved, any attempted removal of electrons would 
require a considerable amount of thermal energy. Ti02 is, consequently, an 
insulator having a wide band gap. Not so for TiO. Since only two titanium 
valence electrons are needed to fill the 2p-shell of one oxygen ion, two more 
titanium electrons are free to serve as conduction electrons. Thus, TiO has 
metallic properties with a (J in the 103 0- 1 cm- I range. 

A refinement of our understanding is obtained by considering the perti­
nent electron bands. TiO has, according to the aforementioned explana­
tions, a filled oxygen 2p-valence band and an essentially empty titanium 
4s-conduction band. Also involved is a narrow titanium 3d-band which is 
partially filled by the above-mentioned two electrons. The conduction in TiO 
takes place, therefore, in the titanium 3d-band, which can host, as we know, 
a total of 10 electrons. 

We discuss zinc oxide as a next example. ZnO has two valence 4s-electrons 
which transfer to the oxygen 2p-band. ZnO, if strictly stoichiometric, has, 
thus, a filled valence 2p-band and an empty zinc 4s-band employing a gap 
energy of 3.3 eV. Stoichiometric ZnO is therefore an insulator or a wide­
band-gap semiconductor. Now, if interstitial zinc atoms (or oxygen vacan­
cies) are introduced into the lattice (by heating ZnO in a reducing atmo­
sphere, which causes neutral oxygen to leave the crystal) then the valence 
electrons of these zinc interstitials are only loosely bound to their nuclei. One 
of these two electrons can easily be ionized (0.05 eV) and acts therefore as a 
donor. Nonstoichiometric ZnO is, consequently, an n-type semiconductor. 
The same is incidentally true for nonstoichiometric CU20 (see Appendix 3), 
an established semiconducting material from which CU/CU20 Schottky-type 
rectifiers were manufactured long before silicon technology was invented. 

Another interesting metal oxide is Sn02 (sometimes doped with In203), 
which is transparent in the visible region and which is a reasonable conduc­
tor in the 1 0- 1 cm- I range. It is used in optoelectronics to provide electrical 
contacts without blocking the light from reaching a device. It is known as 
indium-tin-oxide or ITO. 

Finally, we discuss NiO. Again, a filled oxygen 2p-band and an empty 
nickel 4s-band are involved. In order to form the nickel 3d-bands required 
for conduction, a substantial overlap of the 3d-wave functions would be re­
quired by quantum mechanics. Band structure calculations show, however, 
that these interactions do not take place. Instead, deep-lying localized elec­
tron states in the forbidden band close to the upper edge of the valence band 
are observed. Thus, no 3d-band conduction can take place, which results in 
stoichiometric NiO being an insulator. Nonstoichiometry (obtained by re-
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moving some nickel atoms, thus creating cation vacancies) causes NiO to 
become a p-type semiconductor. 

9.4. Amorphous Materials (Metallic Glasses) 

Before we discuss electrical conduction in amorphous materials, we need to 
clarify what the term amorphous means in the present context. Strictly 
speaking, amorphous implies the random arrangement of atoms, the absence 
of any periodic symmetry, or the absence of any crystalline structure. One 
could compare the random distribution of atoms with the situation in a 
gas, as seen in an instantaneous picture. Now, such a completely random 
arrangement of atoms is seldom found even in liquids, much less in solids. In 
actuality, the relative positions of nearest neighbors surrounding a given 
atom in an amorphous solid are almost identical to the positions in crystal­
line solids because of the ever-present binding forces between the atoms. In 
short, the atomic order in amorphous materials is restricted to the nearest 
neighbors. Amorphous materials exhibit, therefore, only short-range order. 
In contrast to this, the exact positions of the atoms that are farther apart 
from a given central atom cannot be predicted. This is particularly the case 
when various kinds of stacking orders, i.e., if polymorphic modifications, are 
possible. As a consequence one observes atomic disorder at long range. The 
term amorphous solid should therefore be used cum grano salis. We empiri­
cally define materials to be amorphous when their diffraction patterns con­
sist of diffuse rings, rather than sharply defined Bragg rings, as are charac­
teristic for polycrystalline solids. 

So far we have discussed positional disorder only as it might be found 
in pure materials. If more than one component is present in a material, a 
second type of disorder is possible: The individual species might be randomly 
distributed over the lattice sites; i.e., the species may not be alternately 
positioned as is the case for, say, sodium and chlorine atoms in NaCI. This 
random distribution of species is called compositional disorder. 

The best-known representative of an amorphous solid is window glass, 
whose major components are silicon and oxygen. Glass is usually described 
as a supercooled liquid. 

Interestingly enough, many elements and compounds that are generally 
known to be crystalline under equilibrium conditions can also be obtained 
in the nonequilibrium amorphous state by applying rapid solidification 
techniques, i.e., by utilizing cooling rates of about 105 K/s. These cooling 
rates can be achieved by fast quenching, melt spinning, vapor deposition, 
sputtering, radiation damage, filamentary casting in continuous operation, 
spark-processing, etc. The degree of amorphousness (or, the degree of short 
range order) may be varied by the severity of the quench. The resulting 
metallic glasses, or glassy metals, have unusual electrical, mechanical, opti-
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Figure 9.11. Two-dimensional schematic representation of a dense random packing 
of hard spheres (Bernal model). 

cal, magnetic, and corrosion properties and are therefore of considerable 
interest. Amorphous semiconductors (consisting, e.g., of Ge, Si, GeTe, etc.) 
have also received substantial attention because they are relatively inexpen­
sive to manufacture, have unusual switching properties, and have found ap­
plications in inexpensive photo voltaic cells. 

We now turn to the atomic structure of amorphous metals and alloys. 
They have essentially nondirectional bonds. Thus, the short-range order does 
not extend beyond the nearest neighbors. The atoms must be packed together 
tightly, however, in order to achieve the observed density. There are only a 
limited number of ways of close packing. One way of arranging the atoms in 
amorphous metals is depicted by the dense random packing of hard spheres 
model (Fig. 9.11). This Bernal model is considered as the ideal amorphous 
state. No significant regions of crystalline order are present. In transition 
metal-metalloid compounds (such as Ni-P) it is thought that the small 
metalloid atoms occupy the holes which occur as a consequence of this 
packing (Bernal-Polk model). 

The atoms in amorphous semiconductors, on the other hand, do not 
arrange themselves in a close-packed manner. Atoms of group IV elements 
are, as we know, covalently bound. They are often arranged in a continuous 
random network with correlations in ordering up to the third or fourth 
nearest neighbors (Fig. 9.12(b) and (c)). Amorphous pure silicon contains 
numerous dangling bonds similar to those found in crystalline silicon in the 
presence of vacancies (Fig. 9.l2(a)). 

Since amorphous solids have no long-range crystal symmetry, we can no 
longer apply the Bloch theorem, which led us in Section 4.4 from the distinct 
energy levels for isolated atoms to the broad quasi-continuous bands for 
crystalline solids. Thus, the calculation of electronic structures for amor­
phous metals and alloys has to use alternate techniques, e.g., the cluster 
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(a) (b) (e) 

Figure 9.12. Defects in crystalline and amorphous silicon. (a) Monovacancy in a 
crystalline semiconductor; (b) one and (c) two dangling bonds in a continuous random 
network of an amorphous semiconductor. (Note the deviations in the interatomic 
distances and bond angles.) 

model approach. This method has been utilized to calculate the electronic 
structure of amorphous Zr~Cu (which is a representative of a noble metal~ 
transition metal metallic glass). A series of clusters were assumed which 
exhibit the symmetry of the close-packed lattices fcc (as for Cu) and hCp15 
(as for Zr). The energy level diagram depicted in Fig. 9.13 shows two distinct 
"bands" of levels. The lower band consists primarily of copper d-levels, while 
the upper band consists mainly of zirconium d-levels. A sort of gap separates 
the two bands of levels. Even though the concept of quasi-continuous energy 
bands is no longer meaningful for amorphous solids, the density of states 
concept still is, as can be seen in Fig. 9.13. We notice that the Fermi energy 

15 Hexagonal close-packed. 
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Figure 9.13. Schematic representation of the molecular orbital energy level diagram 
and the density of states curves for Zr-Cu clusters. The calculated density of states 
curves agree reasonably well with photoemission experiments. 
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Figure 9.14. Localized and delocalized states and density of states Z(E) for amor­
phous semiconductors. Note the band tails, which are caused by the localized states. 

is located in the upper part of the zirconium levels. Further, we observe 
partially filled electron states. This has two interesting consequences. First, 
we expect metal-like conduction. Second, Z(E) near EF is small, which sug­
gests relatively small values for the conductivity (see (7.26)). Indeed, (J for 
Cu-Zr is comparable to that of poor metallic conductors (i.e., approxi­
mately 5 x 103 l/Q cm). 

The electrical resistivity of many metallic glasses (such as PdsoSizo or 
Fe32Ni36CrI4P12B616) stays constant over a fairly wide temperature range, 
up to the temperature which marks the irreversible transition from the 
amorphous into the crystalline state. This makes these alloys attractive as 
resistance standards. The mean free path for electrons in metallic glasses is 
estimated to be about 1 nm. 

The energy level diagrams and the density of states curves for amorphous 
semiconductors are somewhat different from those for amorphous metals. 
Because of the stronger binding forces which exist between the atoms in co­
valently bound materials, the valence electrons are tightly bound, or localized. 
As a consequence, the density of states for the localized states extends into 
the "band gap" (Fig. 9.14). This may be compared to the localized impurity 
states in doped crystalline semiconductors, which are also located in the 
band gap. Thus, we observe density of states tails. These tails may extend, 
for some materials, so far into the gap that they partially overlap. In general, 
however, the density of electron and hole states for the localized levels is very 
small. 

The electrical conductivity for amorphous semiconductors, (J A, depends, 

16 METGLAS 2826A, trademark of Allied Chemical. 
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as usual (8.13), on the density of carriers, N A, and the mobility of these car­
riers, flA: 

(9.7) 

The density of carriers in amorphous semiconductors is extremely small, 
because all electrons are, as said before, strongly bound (localized) to their 
respective nuclei. Likewise, the mobility of the carriers is small because the 
absence of a periodic lattice causes substantial incoherent scattering. As a 
consequence, the room-temperature conductivity in amorphous semicon­
ductors is generally very low (about 10-7 I/O cm). 

Some of the localized electrons might occasionally acquire sufficient ther­
mal energy to overcome barriers which are caused by potential wells of 
variable depth and hop to a neighboring site. Thus, the conduction process 
in amorphous semiconductors involves a (temperature-dependent) activation 
energy, QA, which leads to an equation similar to (9.5), describing a so-called 
variable-range hopping 

(9.8) 

Equation (9.8) states that the conductivity in amorphous semiconductors 
increases exponentially with increasing temperature, because any increase in 
thermal energy provides additional free carriers. 

The application of amorphous silicon for photovoltaic devices (see Section 
8.7.6) will be discussed briefly in closing because of its commercial, as well as 
scientific, significance. If silicon is deposited out of the gas phase on rela­
tively cold «500°C) substrates (utilizing silane or sputtering), a structure as 
shown in Fig. 9 .12 (b) and (c) results. Doping is virtually not possible in this 
condition since any free charge carriers recombine immediately with the 
dangling bonds. However, hydrogen, if added during deposition and incor­
porated into the solid, neutralizes the unsaturated valencies (and reduces in­
ternal strain in the lattice network). The results in hydrogenated amorphous 
silicon, which is, in its properties, quite comparable to crystalline silicon. 
Doping can be accomplished during deposition. This way, semiconducting 
materials can be produced which vary in their conductivity between 10-11 

and 10-2 0-1 cm- I depending on doping (see Fig. 7.1). Commercial flat­
plate solar cells of this type have an efficiency of about 8% compared to 14% 
efficiency for commercial single-crystal silicon technology. The price (and the 
consumption of power during manufacturing) is, however, only one-half of 
that for crystalline silicon, mainly because of the simpler way of deposition 
(see Section 8.7.6). 

The understanding of amorphous metals, alloys, and semiconductors is 
still in its infancy. Future developments in this field should be followed with 
a great deal of anticipation because of the potentially significant applications 
which might arise in the years to come. 
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9.4.1. Xerography 

Xerography (from the Greek "dry writing") or electrophotography is an 
important application of amorphous semiconductors such as amorphous 
selenium or amorphous silicon, etc. Such a material, when deposited on a 
cylindrically shaped metallic substrate, constitutes the photoreceptor drum, 
as shown in Fig. 9.15. 

Before copying, the photoreceptor is electrostatically charged by means of 
a corona wire to which a high voltage is applied (Step 1). Amorphous semi­
conductors are essentially insulators (see above) which hold this electric 
charge reasonably well, as long as they are kept in the dark. If, however, 
light which has been reflected from the document to be copied falls on the 
photoreceptor, electron-hole pairs are formed, causing the photoreceptor to 
become conducting. This process discharges the affected parts on the drum, 
creating a latent image on the photoreceptor, i.e., a pattern consisting of 
charged and neutral areas. At the next step, electrostatically charged and 
pigmented polymer particles (called toner) are brought into contact with the 
drum. The toner clings to the charged areas only. Commonly, a two-com­
ponent toner is utilized; one part consists of magnetically soft particles. They 
form brush-type chains under the influence of a magnetic field which is 
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Figure 9.15. Schematic representation of the electrophotography process. The indi­
vidual steps are explained in the text. 
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caused by permanent magnets that are rotated inside a cylinder (see Fig. 
9.15, Step 3). Eventually, the toner on the photoreceptor is electrostatically 
transferred to a piece of paper by properly corona-charging the back of the 
paper. Finally, the toner is fused to the paper by heat. A cleaning and pho­
todischarging process prepares the photoreceptor drum for the next cycle. 

Laser printers use the same principle. To create the latent image, the 
laser light is periodically scanned across the rotating photoreceptive drum 
by means of a rotating multi surface mirror. The spectral sensitivity of the 
amorphous semiconductor has to be matched to the wavelength of the laser 
light. Amorphous silicon (maximal photosensitivity near 700 nm) in con­
junction with a helium-neon laser (see Table 13.1) is a usable combination. 

9.5. Dielectric Properties 

Insulators (also often called dielectric materials) possess a number of addi­
tional important electrical properties that make them useful in the electronics 
industry. They will be explained in this section. 

When a voltage is momentarily applied to two parallel metal plates which 
are separated by a distance, L, as shown in Figure 9.16, then the resulting 
electric charge essentially remains on these plates even after the voltage has 
been removed (at least as long as the air is dry). This ability to store an 
electric charge is called capacitance, C, which is defined to be the charge, q, 
per unit applied voltage, V, that is: 

(9.9) 

where C is given in coulombs per volt, or farad (see Appendix 4). Under­
standably, the capacitance is higher the larger the area, A, of the plates and 

v 

Figure 9.16. Two metal plates, separated by a distance, L, can store electric energy 
after having been charged momentarily by a battery. 
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Table 9.1. DC dielectric constants of some materials 

Potassium tantalate niobate 
Barium titanate (BaTi03) 

Potassium Niobate (KNb03) 

Rochelle salt (NaKC4Ht06 .4H20) 

Water 
Acetone 
Silicon 
GaAs 
Marble 
Soda-lime-glass 
Porcelain 
Epoxy 
Fused silica 
Nylon 6,6 
PVC 
Ice 
Amber 
Polyethylene 
Paraffin 
Air 

6000 
4000 

700 
170 

SI.I 
20 
II.S 
10.9 
S.5 
6.9 
6.0 
4.0 
4.0 
4.0 
3.5 
3.0 
2.S 
2.3 
2.0 
1.000576 

Ferroelectric 

Dielectric 

the smaller the distance, L, between them. Further, the capacitance depends 
on the material that may have been inserted between the plates. The experi­
mental observations lead to 

where 

A 
C = eeoy.' 

C 
e=-­

Cvac 

(9.10) 

(9.11 ) 

determines the magnitude of the added storage capability. It is called the 
(unitless) dielectric constant (or occasionally the relative permittivity, e,). eo is 
a universal constant having the value of8.85 x 10-12 farad per meter (Fjm), 
or AsjVm, and is known by the name permittivity of empty space (or of 
vacuum). Some values for the dielectric constant are given in Table 9.1. The 
dielectric constant of empty space is set to be 1, whereas e of air and many 
other gases is nearly 1. The dielectric constant is frequency dependent. 

We now need to explain why the capacitance increases when a piece of a 
dielectric material is inserted between two conductors [see Eq. (9.10)]. For 
this, one has to realize that, under the influence of an external electric field, 
the negatively charged electron cloud of an atom becomes displaced with 
respect to its positively charged core; compare Figure 9.17(a) with 9.17(b). 
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Figure 9.17. An atom is represented by a positively charged core and a surrounding, 
negatively charged, electron cloud (a) in equilibrium and (b) in an external electric 
field. (c) Schematic representation of an electric dipole as, for example, created by 
separation of the negative and positive charges by an electric field, as seen in (b). 

As a result, a dipole is created, which has an electric dipole moment 

p=q'X, (9.12) 

where x is the separation between the positive and the negative charge as 
depicted in Figure 9.17(c). (The dipole moment is generally a vector pointing 
from the negative to the positive charge.) The process of dipole fonnation 
(or alignment of already existing dipoles) under the influence of an external 
electric field that has an electric field strength, C, is called polarization. 
Dipole fonnation of all involved atoms within a dielectric material causes a 
charge redistribution so that the surface nearest to the positive capacitor 
plate is negatively charged (and vice versa), see Figure 9.18(a). As a conse­
quence, electric field lines within a dielectric are created which are opposite 
in direction to the external field lines. Effectively, the electric field lines 
within a dielectric material are weakened due to polarization, as depicted in 
Figure 9.18(b). In other words, the electric field strength in a material, 

C - Cvac 

- e ' 

is reduced by inserting a dielectric between two capacitor plates. 

(9.13) 

Within a dielectric material the electric field strength, C, is replaced by the 
dielectric displacement, D (also called the surface charge density), that is, 

(9.14 ) 

The dielectric displacement is the superposition of two tenns: 

D=eoC+P, (9.15) 

where P is called the dielectriepolarization, that is, the induced electric 
dipole moment per unit volume [Figures 9.18 (c and d)]. The units for D and 
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Figure 9.18. Schematic representation of two capacitor plates between which a 
dielectric material is inserted. (a) Induction of electric dipoles of opposite charge. 
(b) Weakening of the electric field within the dielectric material [Eq. (9.13)]. (c) The 
direction of the polarization vector is from the negative induced charge to the positive 
induced charge see Fig. 9.17(b). (d) The dielectric displacement, D, within the di­
electric material is the sum of Gog and P [Eq. (9.15)]. 

Pare C m-2; see Eq. (9.14). (D, Iff, and P are generally vectors.) In summary, 
the polarization is responsible for the increase in charge density (qj A) above 
that for vacuum. 

The mechanism just described is known by the name electronic polariza­
tion. It occurs in all dielectric materials that are subjected to an electric field. 
In ionic materials, such as the alkali halides, an additional process may occur, 
which is called ionic polarization. In short, cations and anions are somewhat 
displaced from their equilibrium positions under the influence of an external 
field and thus give rise to a net dipole moment. Finally, many materials 
already possess permanent dipoles that can be aligned in an external electric 
field. Among them are water, oils, organic liquids, waxes, amorphous poly­
mers, polyvinylchloride, and certain ceramics, such as barium titanate 
(BaTi03). This mechanism is termed orientation polarization, or molecular 
polarization. All three polarization processes are additive if applicable; see 
Figure 9.19. 

Most capacitors are used in alternating electric circuits. This requires the 
dipoles to reorient quickly under a rapidly changing electric field. Not all 
polarization mechanisms respond equally quick to an alternating electric 
field. For example, many molecules are relatively sluggish in reorientation. 
Thus, molecular polarization breaks down already at relatively low fre­
quencies; see Figure 9.19. In contrast, electronic polarization responds quite 
rapidly to an alternating electric field even at frequencies up to 10 16 Hz. 

At certain frequencies a substantial amount of the excitation energy is 
absorbed and transferred into heat. This process is called dielectric loss. It is 
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Figure 9.19. Schematic representation of the polarization as a function of excitation 
frequency for different polarization mechanisms. 

imperative to know the frequency for dielectric losses for a given material so 
that the respective device is not operated in this range. 

9.6. F erroelectricity, Piezoelectricity, and 
Electrostriction 

Ferroelectric materials, such as barium titanate, exhibit spontaneous polar­
ization without the presence of an external electric field_ Their dielectric 
constants may be orders of magnitude larger than those of dielectrics (see 
Table 9.1). Thus, they are quite suitable for the manufacturing of small­
sized, highly efficient capacitors. Most of all, however, ferroelectric materials 
retain their polarization even after an external electric field has been re­
moved. Specifically, if a ferroelectric is exposed to a strong electric field, iff, its 
permanent dipoles become increasingly aligned with the external field 
direction until eventually all dipoles are parallel to iff and saturation of 
the polarization, Ps, has been achieved, as depicted in Figure 9.20. Once 
the external field has been withdrawn, a remanent polarization, P" remains 
which can only be removed by inverting the electric field until a coercive 
field, iffc , is reached (Figure 9.20). By further increasing the reverse electric 
field, parallel orientation of the dipoles in the opposite direction is achieved. 
Finally, when reversing the field once more, a complete hysteresis loop is 
obtained, as depicted in Figure 9.20. Therefore, ferroelectrics can be utilized 
for memory devices in computers, etc. The area within a hysteresis loop is 
proportional to the energy per unit volume that is dissipated once a full field 
cycle has been completed. 



190 II. Electrical Properties of Materials 

p 

Figure 9.20. Schematic representation of a hysteresis loop for a ferroelectric material 
in an electric field. Compare to Figure 15.6. 

It should be emphasized at this point that ferroelectrics do not contain 
iron, as the name might suggest. Instead, the name is derived from the simi­
larity of some properties of ferroelectric substances to those of ferromagnetic 
materials such as iron. In other words, ferroelectricity is the electric analogue 
to ferromagnetism, which will be discussed in Section 15.1.3. 

A critical temperature, called the Curie temperature, exists, above which 
the ferroelectric effects are destroyed and the material becomes dielectric. 
Typical Curie temperatures range from -200°C for strontium titanate to at 
least 640°C for NaNb03. 

The question remains to be answered, why do certain materials such as 
BaTi03 possess spontaneous polarization? This can be explained by know­
ing that in the tetragonal crystal structure of BaTi03, the negatively charged 
oxygen ions and the positively charged Ti4+ ion are slightly displaced from 
their symmetrical positions, as depicted in Figure 9.21. This results in a per­
manent ionic dipole moment along the c-axis within the unit cell. A large 
number of such dipoles line up in clusters (also called domains); see Figure 
9.22. In the virgin state, the polarization directions of the individual domains 
are, however, randomly oriented, so that the material has no net polariza­
tion. An external field eventually orients the dipoles of the favorably ori­
ented domains parallel to Iff. Specifically, those domains in which the dipoles 
are already nearly parallel to Iff grow at the expense of unfavorably oriented 
domains. 

By heating BaTi03 above its Curie temperature (120°C), the tetragonal 
unit cell transforms into a cubic cell whereby the ions now assume symmetric 
positions. Thus, no spontaneous alignment of dipoles remains, and BaTi03 

becomes dielectric. 
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Figure 9.21. Tetragonal crystal structure of barium titanate at room temperature. 
Note the upward displacement of the Ti4+ ion in the center compared to the down­
ward displacement of all surrounding 0 2- ions. a = 0.398 nm; c = 0.403 nm. 

If pressure is applied to a ferroelectric material, such as BaTi03, a change 
in the just-mentioned polarization may occur, which results in a small volt­
age across the sample. Specifically, the slight change in dimensions causes a 
variation in bond lengths between cations and anions. This effect is called 
piezoelectricity. 17 It is found in a number of materials, such as quartz (how­
ever, much weaker than in BaTi03), ZnO, and complicated ceramic com­
pounds such as PbZrTi06 . Piezoelectricity is utilized in devices that are de­
signed to convert mechanical strain into electricity. Those devices are called 
transducers. Applications include strain gages, microphones, sonar detectors, 
and phonograph pickups, to mention a few. 

The inverse mechanism, in which an electric field produces a change in 
dimensions in a ferroelectric material, is called electrostriction. An earphone 

17 Piezo (latin) = pressure. 

Figure 9.22. Schematic representation of spontaneous alignments of electric dipoles 
within a domain and random alignment of the dipole moments of several domains in 
a ferroelectric material such as BaTi03. Compare to Figure 15.9. 
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utilizes such a device. Probably the most important application, however, is 
the quartz crystal resonator, which is used in electronic devices as a fre­
quency selective element. Specifically, a periodic strain is applied to a quartz 
crystal by an alternating electric field, which excites this crystal to vibrations. 
These vibrations are monitored, in turn, by piezoelectricity. If the applied 
frequency coincides with the natural resonance frequency of the molecules, 
then amplification occurs. In this way, very distinct frequencies are pro­
duced, which are utilized for clocks or radio frequency signals. 

Problems 

1. Calculate the mobility of the oxygen ions in UOz at 700 K. The diffusion coeffi­
cient of Oz- at this temperature is 10-13 cm zls. Compare this mobility with elec­
tron or hole mobilities in semiconductors (see Appendix 4). Discuss the difference! 
(Hint: Oz- has two charges!) 

2. Calculate the number of vacancy sites in an ionic conductor in which the metal 
ions are the predominant charge carriers. Assume a room-temperature ionic con­
ductivity of 10-17 l/Q cm and an ionic mobility of 10-17 mZ/V s. Does the calcu­
lated result make sense? Discuss how the vacancies might have been introduced 
into the crystal. 

3. Calculate the activation energy for ionic conduction for a metal ion in an ionic 
crystal at 300 K. Take Do = 10-3 mZjs and D = 10-17 mZjs. 

4. Calculate the ionic conductivity at 300 K for an ionic crystal. Assume 6 x lOzo 

Schottky defects per cubic meter, an activation energy of 0.8 eV and Do = 

10-3 m2/s. 

5. Show that rff = rffvacje [Eq. (9.13)] by combining Eqs. (7.3), (9.9), and (9.11) and 
their equivalents for vacuum. 

6. Show that the dielectric polarization is P = (e - l)eorff. What values do P and D 
have for vacuum? 

7. Show that eeorff = qj A [Eq. (9.14)] by combining some pertinent equations. 
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PART III 

OPTICAL PROPER TIES 
OF MATERIALS 



CHAPTER 10 

The Optical Constants 

10.1. Introduction 

The most apparent properties of metals, their luster and their color, have 
been known to mankind since metals were known. Because of these proper­
ties, metals were already used in ancient times for mirrors and jewelry. The 
color was utilized 4000 years ago by the ancient Chinese as a guide to de­
termine the composition of the melt of copper alloys: the hue of a prelimi­
nary cast indicated whether the melt, from which bells or mirrors were to be 
made, already had the right tin content. 

The German poet Goethe was probably the first one who explicitly spelled 
out 200 years ago in his Treatise on Color that color is not an absolute 
property of matter (such as the resistivity), but requires a living being for its 
perception and description. Applying Goethe's findings, it was possible to 
explain qualitatively the color of, say, gold in simple terms. Goethe wrote: 
"If the color blue is removed from the spectrum, then blue, violet, and green 
are missing and red and yellow remain." Thin gold films are bluish-green 
when viewed in transmission. These colors are missing in reflection. Conse­
quently, gold appears reddish-yellow. 

This chapter treats the optical properties from a completely different point 
of view. Measurable quantities such as the index of refraction or the re­
flectivity and their spectral variations are used to characterize materials. In 
doing so, the term "color" will almost completely disappear from our vo­
cabulary. Instead, it will be postulated that the interactions of light with the 
valence electrons of a material are responsible for the optical properties. As 
in previous chapters, where an understanding of the electrical properties was 
attempted, an atomistic model and later a quantum mechanical treatment 
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will be employed. Thus, the electron theory of metals, as introduced in the 
first six chapters, will serve as a foundation. 

Light comprises only an extremely small segment of the entire electro­
magnetic spectrum, which ranges from radio waves, via microwaves, infra­
red, visible, ultraviolet, and X-rays, to y rays, as depicted in Figure 10.1. 
Many of the considerations that will be advanced in this chapter are 
therefore also valid for other wavelength ranges, e.g., for radio waves or X­
rays. 

At the beginning of this century the study of the interactions of light with 
matter (black body radiation, etc.) laid the foundations for quantum theory. 
Today, optical methods are among the most important tools for elucidating 
the electron structure of matter. Most recently, a number of optical devices, 
such as lasers, photodetectors, waveguides, light-emitting diodes, flat-panel 
displays, etc., have gained considerable technological importance. They are 
used in communication, fiber optics, medical diagnostics, night viewing, 
solar applications, optical computing, or for other optoelectronic pur­
poses. Traditional utilizations of optical materials for windows, antireflec­
tion coatings, lenses, mirrors, etc., should be likewise mentioned. All taken, 
it is well justified to spend a major part of this book on the optical properties 
of materials. 

Before we start our discourse, we need to define the optical constants. We 
make use of some elements of physics. 

Wavelength Energy Frequency 
(m) (eV) (Hz) 

, --T-- 10-14 
108 

10 22 , , 
400nm 

, , ---f-- '"i-Rays 10-12 
106 

1020 

VIOlet " 

tblue 
, , X-Rays--J--- 10-10 
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10 '8 , ,, ___ t __ ------ nm 

SOOnm 
!green ',>_=__=__=_~~t-=-- 10-8 
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10-6 !Lm 100 
10 14 yellow / 
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Figure 10.1. The spectrum of electromagnetic radiation. Note the small segment of 
this spectrum that is visible to human eyes. 
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10.2. Index of Refraction, n 

When light passes from an optically "thin" into an optically dense medium, 
one observes that in the dense medium, the angle of refraction, fJ, (i.e., the 
angle between the refracted light beam and a line perpendicular to the sur­
face) is smaller than the angle of incidence, IX see Fig. 10.2. This well-known 
phenomenon is used for the definition of the refractive power of a material 
and is called Snell's law, 

sin IX nmed 
--=--=n 
sinfJ nvac . 

(10.1 ) 

Commonly, the index of refraction for vacuum, n vac , is arbitrarily set to be 
unity. The refraction is caused by the different velocities, c, of the light in the 
two media, 

sin IX Cvac 

sinfJ Cmed 
( 10.2) 

Thus, if light passes from vacuum into a medium, we find 

Cvac C 
n=--=-. 

Cmed V 
(10.3) 

The magnitude of the refractive index depends on the wavelength of the in­
cident light. This property is called dispersion. In metals, the index of re­
fraction varies, in addition, with the angle of incidence. This is particularly 
true when n is small. 

In summary, when light passes from vacuum into a medium, its velocity as 
well as its wavelength, A, decrease in order to keep the frequency, and thus, 
the energy, constant. 

Figure 10.2. Refraction of a light beam when traversing the boundary from an opti­
cally thin medIUm into an optically denser medium. 
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10.3. Damping Constant, k 

Metals damp the intensity of light in a relatively short distance. Thus, to 
characterize the optical properties of metals, an additional materials con­
stant is needed. 

We make use of the electromagnetic wave equation, which mathematically 
describes the propagation of light in a medium. The derivation of this wave 
equation from the well-known Maxwell equations does not further our 
understanding of the optical properties. (The interested reader can find the 
derivation in specialized texts. 1) 

For simplification, we consider a plane-polarized wave that propagates 
along the positive z-axis and which vibrates in the x-direction (Fig. 10.3). We 
neglect possible magnetic effects. For this special case, the electromagnetic 
wave equation reads2 

(10.4 ) 

where Iff x is the x-component of the electric field strength,3 e is the dielectric 
constant,4 (J is the (a.c.) conductivity and eo is a constant, called the permit­
tivity of empty space (see Appendix 4). The solution to (10.4) is commonly 

1 For example, R.E. Hummel, Optische Eigenschaften von Metal/en und Legierungen, Springer­
Verlag, Berlin (1971). 

2 See also Appendix 1. 

3We use for the electnc field strength the symbol Iff to distinguish it from the energy. 

4See SectIOn 9.5. 

y 

Figure 10.3. Plane-polarized wave which propagates in the positive z-direction and 
vibrates in the x-direction. 
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achieved by using the following trial solution: 

(10.5) 

where 0'0 is the maximal value of the electric field strength and w = 2nv is 
the angular frequency. Differentiating (10.5) once with respect to time, and 
twice with respect to time and z, and inserting these values into (10.4) yields 

,2 (J • (J. 
n =e--l=e---l. 

eoW 2neOv 
(10.6) 

Equation (10.6) leads to an important result: The index of refraction is gen­
erally a complex number, as inspection of the right-hand side of (10.6) in­
dicates. We denote for clarity the complex index of refraction by h. As is true 
for all complex quantities, the complex index of refraction consists of a real 
and an imaginary part, 

(10.7) 

In the literature, the imaginary part of the index of refraction, n2, is often 
denoted by "k" and (10.7) is then written as 

h = n - ik. (10.8) 

We will call n2 or k the damping constant. (In some books n2 or k is named 
the absorption constant. We will not follow this practice because the latter 
term is extremely misleading. Other authors call k the attenuation index or 
the extinction coefficient, which we will not use either in this context.) 

Squaring (10.8) yields, together with (10.6), 

,2 2 k 2 2 k· (J. n =n - - n l=e---l. 
2neov 

( 10.9) 

Equating individually the real and imaginary parts of (10.9) yields two im­
portant relations between electrical and optical constants, 

e = n2 
- k 2

, 

(J = 4neonkv. 

(10.10) 

(10.11) 

Let us return to (10.9). The right-hand side is the difference between two di­
electric constants (a real one and an imaginary one). Thus, the left side must 
be a dielectric constant too, and (10.9) may be rewritten as 

Equating individually the real and imaginary parts in (10.12) yields 

el = n2 
- k 2 

(10.12) 

(10.13) 
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Table 10.1. Characteristic Penetration Depth, W, and Damping Constant, 
k, for Some Materials (A = 589.3 nm). 

Material 

W{cm) 
k 

Water 

32 
1.4 x 10-7 

and (with (10.11}) 

Flint glass 

29 
1.5 x 10-7 

(J 
132 = 2nk=--. 

2neov 

Graphite 

6 X 10-6 

0.8 

Gold 

1.5 X 10-6 

3.2 

(10.14) 

Similarly as above, 13, and 132 are called the real and the imaginary parts of 
the complex dielectric constant, e, respectively. (13, in (1O.13) is identical to 13 

in (10.10}.) 132 is often called the absorption product or, briefly, the absorption. 
We consider a special case: For insulators ((J~O) it follows from (1O.11) 

that k~O (see also Table 1O.1). Then (10.10) reduces to e=n2 (Maxwell 
relation). 

From (1O.10), (1O.11), (10.13), and (1O.14) one obtains 

(1O.15) 

(10.16) 

It should be emphasized that (10.10}-(1O.16) are only valid if 13, (J, n, and k 
are measured at the same wavelength, because these "constants" are wave­
length dependent. For small frequencies, however, the d.c. values for 13 and (J 
can be used with good approximation, as will be shown later. Finally, it 
should be noted that the above equations are only valid for optically iso­
tropic media; otherwise 13 becomes a tensor. 

We return now to (1O.5) in which we replace the index of refraction by the 
complex index of refraction (10.8). This yields 

rff x = rffo exp [iW(t _ z(n ~ ik}) ], (1O.17) 

which may be rewritten to read 

rffx = rffoexp [ - ~k z] . ~XP[iW(t - ~)l. (10.18) 
, V J V' 

Damped amplitude Undamped wave 
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- Vacuum ..... ~--- Metal ----

exp [ _(W:Z)] 

z 

/ 

Figure lOA. Modulated light wave. The amplitude decreases exponentially in an 
optically dense material. The decrease is particularly strong in metals, but less intense 
in dielectric materials, such as glass. 

Equation (1O.18) is now the complete solution of the wave equation (1O.4). It 
represents a damped wave and expresses that in matter the amplitude 
decreases exponentially with increasing z (Fig. 10.4). The constant k de­
termines how much the amplitude decreases, i.e., k expresses the degree of 
damping of the light wave. We understand now why k is termed the damping 
constant. 

The result which we just obtained is well known to electrical engineers. 
They observe that at high frequencies the electromagnetic waves are con­
ducted only on the outer surface of a wire. They call this phenomenon the 
(normal) skin effect. 

10.4. Characteristic Penetration Depth, W, and 
Absorbance, a 

The field strength, C, is hard to measure. Thus, the intensity, I, which can be 
measured effortlessly with light sensitive devices (such as a photodetector, 
see Section 8.7.6) is commonly used. The intensity equals the square of the 
field strength. Thus, the damping term in (10.18) may be written as 

1= C2 = Ioexp (- 2:k z). (1O.19) 

We define a characteristic penetration depth, W, as that distance at which the 
intensity of the light wave, which travels through a material, has decreased 
to 1/ e or 37% of its original value, i.e., when 

1 I -1 -=-=e . 
10 e 

(10.20) 
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This definition yields, in conjunction with (10.19), 

C C A 
Z= W=--=--=-. 

2wk 4nvk 4nk 
(10.21) 

Table 10.1 presents values for k and W for some materials obtained by using 
sodium vapor light (A = 589.3 nm). 

The inverse of W is sometimes called the (exponential) attenuation or the 
absorbance, which is, by making use of (10.21), (10.14), and (10.11), 

4nk 2ne2 (J 2wk 
rt.=-=-=-=-. (I0.2la) 

A An nceo c 

It is measured in cm- I , or, when multiplied by 4.3, in decibels (dB) per cen­
timeter (I dB = 10 log 1/10)' 

10.5. Reflectivity, R, and Transmittance, T 

Metals are characterized by a large reflectivity. This stems from the fact that 
light penetrates a metal only a short distance, as shown in Fig. 10.4 and 
Table 10.1. Thus, only a small part of the impinging energy is converted into 
heat. The major part of the energy is reflected (in some cases close to 99%, 
see Table 10.2). In contrast to this, visible light penetrates into glass much 

Table 10.2. Optical constants for some materials (A = 600 nm) 

n k R%b 

Metals 
Copper 0.14 3.35 95.6 
Silver 0.05 4.09 98.9 
Gold 0.21 3.24 92.9 
Aluminum 0.97 6.0 90.3 
Ceramics 
Silica glass (Vycor) 1.46 3.50 
Soda-lime glass 1.51 4.13 
Dense flint glass 1.75 7.44 
Quartz 1.55 4.65 
Ah0 3 1.76 7.58 
Polymers 
Polyethylene 1.51 a 4.13 
Polystyrene 1.60 5.32 
Polytetrafluoroethylene 1.35 2.22 
Semiconductors 
Silicon 3.94 0.025 35.42 
GaAs 3.91 0.228 35.26 

aThe damping constant for dielectrics is about 10-7; see Table 10.1. 
bThe reflection is considered to have occurred on one reflecting surface only. 
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farther than into metals, i.e., approximately seven orders of magnitude more, 
see Table 10.1. As a consequence, very little light is reflected by glass. Never­
theless, a piece of glass about one or two meters thick eventually dissipates a 
substantial part of the impinging light into heat. (In practical applications, 
one does not observe this large reduction in light intensity because win­
dows are as a rule only a few millimeters thick.) It should be noted that 
typical window panes reflect the light on the front as well as on the back 
surface. 

The ratio between the reflected intensity, fR, and the incoming intensity, 
fo, of the light serves as a definition for the reflectivity: 

R = fR. 
fo 

(10.22) 

Quite similarly, one defines the ratio between the transmitted intensity, h, 
and the impinging light intensity as the transmissivity, or transmittance: 

(1O.22a) 

Experiments have shown that for insulators, R depends solely on the index 
of refraction. For perpendicular incidence one finds 

R=(n-l)2 
(n+l)2· 

This equation can also be derived from the Maxwell equations. 

(10.23) 

We know already that n is generally a complex quantity. By definition, 
however, R has to remain real. Thus, the modulus of R becomes 

1 
A 112 

R=~~l ' (10.24) 

which yields 

(10.25) 

(Beer equation). The reflectivity is a unitless materials constant and is often 
given in percent of the incoming light (see Table 10.2). R is, like the index of 
refraction, a function of the wavelength of the light. 

The reflectivity is also a function of e1 and e2. We shall derive this relation­
ship by performing a few transformations. Equation (10.25) is rewritten as 

(10.26) 
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(1) n2 + k 2 = V(n 2 + k 2)2 = Vn4 + 2n2k 2 + k4 

= vn4 - 2n2k 2 + k4 + 4n2k 2 = V(n2 - p)2 + 4n2k2 

= ve? +e~, (10.27) 

(2) 2n = ~ = V2(n 2 + k 2 + n2 - k 2) = 2( ve? + e~ + eI). (10.28) 

Inserting (10.27) and (10.28) into (10.26) provides 

ve? +e~ + 1 - 2(ve? +e~ +el) 
R = ----;=-==---"--;=.===== 

ve 2

1 + e2
2 + 1 + ~ 2( V e? + e~ + eI) 

(10.29) 

10.6. Hagen-Rubens Relation 

Our next task is to find a relationship between reflectivity and conductivity. 
For small frequencies (i.e., v < 1013 S-I) the ratio (Jj2neov for metals is very 
large, that is, (Jj2neo ~ 1017 S-I. With e ~ 10 we obtain 

(J 10 17 

--~-- »e. 
2neov 10 13 

( 10.30) 

Then (10.15) and (10.16) reduce to 

(10.31) 

The reflectivity may now be rewritten by combining the slightly modified 
equation (10.26) with (10.31) to read 

R = n2 + 2n + 1 + k 2 
- 4n = 1 _ 4n 

n2 + 2n + 1 + k 2 2n2 + 2n + 1 . 
(10.32) 

If 2n + 1 is neglected as small compared to 2n2 (which can be done only for 
small frequencies for which n is much larger than 1), then (10.32) reduces by 
using (10.31) to 

2r;::o R = 1 - - = 1 - 4 -neo. n (J 
(10.33) 

Finally, we set (J = (Jo (d.c. conductivity) which is again only pennissible for 
small frequencies, i.e., in the infrared region of the spectrum. This yields the 
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Hagen-Rubens equation, 

R~I-4~' I (10.34) 

which states that in the infrared (IR) region metals with large electrical con­
ductivity are good reflectors. This equation was found empirically by Hagen 
and Rubens from reflectivity measurements in the IR and was derived 
theoretically by Drude. As stated above, the Hagen-Rubens relation is only 
valid at frequencies below 1013 s-I or, equivalently, at wavelengths larger 
than about 30 f1.m. 

Problems 

1. Complete the intennediate steps between (10.5) and (10.6). 

2. Calculate the conductivity from the index of refraction and the damping constant 
for copper (0.14 and 3.35, respectively; measurement at room temperature and 
A = 0.6 Jim). Compare your result with the conductivity of copper (see Appendix 
4). You will notice a difference between these conductivities by several orders of 
magnitude. Why? (Compare only the same units!) 

3. Express nand k in tenns of e and a (or e[ and e2) by using e = n2 - k 2 and 
a = 4neonkv. (Compare with (10.15) and (10.16).) 

4. The intensity of Na light passing through a gold film was measured to be about 
15% of the incoming light. What is the thickness of the gold film? (A = 589 nm; 
k = 3.2. Note: I = C2

.) 

5. Calculate the reflectivity of silver and compare it with the reflectivity of flint glass 
(n = 1.59). Use A = 0.6 Jlffi. 

6. Calculate the characteristic penetration depth in aluminum for Na light (A = 589 
nm; k = 6). 

7. Derive the Hagen-Rubens relation from (10.29). (Hint: In the IR region ei »e? 
can be used. Justify this approximation.) 

8. The transmissivity of a piece of glass of thickness d = 1 cm was measured at 
A = 589 nm to be 89%. What would the transmissivity of this glass be if the 
thickness were reduced to 0.5 cm? 



CHAPTER 11 

Atomistic Theory of the 
Optical Properties 

11.1. Survey 

In the preceding chapter, the optical constants and their relationship to 
electrical constants were introduced by employing the "continuum theory." 
The continuum theory considers only macroscopic quantities and interrelates 
experimental data. No assumptions are made about the structure of matter 
when formulating equations. Thus, the conclusions which have been drawn 
from the empirical laws in Chapter 10 should have general validity as long as 
nothing is neglected in a given calculation. The derivation of the Hagen­
Rubens equation has served as an illustrative example for this. 

The validity of equations derived from the continuum theory is, however, 
often limited to frequencies for which the atomistic structure of solids does 
not play a major role. Experience shows that the atomistic structure does 
not need to be considered in the far infrared (IR) region. Thus, the Hagen­
Rubens equation reproduces the experimental results of metals in the far IR 
quite well. It has been found, however, that proceeding to higher frequencies 
(i.e., in the near IR and visible spectrum), the experimentally observed re­
flectivity of metals decreases faster than predicted by the Hagen-Rubens 
equation (Fig. 1 1.1 (a)). For the visible and near IR region an atomistic 
model needs to be considered to explain the optical behavior of metals. 
Drude did this important step at the tum of the 20th century. He postulated 
that some electrons in a metal can be considered to be free, i.e., they can be 
separated from their respective nuclei. He further assumed that the free 
electrons can be accelerated by an external electric field. This preliminary 
Drude model was refined by considering that the moving electrons collide 
with certain metal atoms in a nonideal lattice. 

The free electrons are thought to perform periodic motions in the alter-



II AtomIstIc Theory of the OptIcal PropertIes 

a: 

f 
'ill 
a: 

II: 

=-.. 
'; 
;: 
II 
e 
;: 
e 
II: 

.. •••• :t~ HAGEN and RUBENS 

<. 

·.-.:-LORENTZ 
O~--------,-~--------~------~----~-

, • (a.c-'1) 
claaaical .i abaorptlon ~pllon band 

r.d vlol.t ---

IR 

vlalbl. apectrum 

(a) 

experimental 

visible spectrum 

(b) 

vor E 

uv -vorE 

209 

Figure 11.1. Schematic frequency dependence of the reflectivity of (a) metals, 
(b) dielectrics, experimentally (solid line) and according to three models. 

nating electric field of the light. These vibrations are restrained by the above­
mentioned interactions of the electrons with the atoms of a nonideal lattice. 
Thus, a friction force is introduced, which takes this interaction into consid­
eration. The calculation of the frequency dependence of the optical constants 
is accomplished by using the well-known equations for vibrations, whereby 
the interactions of electrons with atoms are taken into account by a damping 
tenn which is assumed to be proportional to the velocity of the electrons. 
The free electron theory describes, to a certain degree, the dispersion of the 
optical constants of metals quite well. This is schematically shown in Fig. 
11.I(a), in which the spectral dependence of the reflectivity is plotted for a 
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specific case. The Hagen-Rubens relation reproduces the experimental find­
ings only up to 10\3 S-I. In contrast to this, the Drude theory correctly re­
produces the spectral dependence of R even in the visible spectrum. Proceed­
ing to yet higher frequencies, however, the experimentally found reflectivity 
eventually rises and then decreases again. Such an absorption band cannot be 
explained by the Drude theory. For its interpretation, a new concept needs 
to be applied. 

Lorentz postulated that the electrons should be considered to be bound to 
their nuclei and that an external electric field displaces the positive charge of 
an atomic nucleus against the negative charge of its electron cloud. In other 
words, he represented each atom as an electric dipole. Retracting forces were 
thought to occur which try to eliminate the displacement of charges. Lorentz 
postulated further that the centers of gravity of the electric charges are 
identical ifno external forces are present. However, if one shines light onto a 
solid, i.e., if one applies an alternating electric field to the atoms, then the 
dipoles are thought to perform forced vibrations. Thus, a dipole is consid­
ered to behave similarly as a mass which is suspended on a spring, i.e., the 
equations for a harmonic oscillator may be applied. An oscillator is known 
to absorb a maximal amount of energy when excited near its resonance fre­
quency (Fig. 11.2). The absorbed energy is thought to be dissipated mainly 
by diffuse radiation. Figure 11.2 resembles an absorption band as shown in 
Fig. 11.1. 

Forty or fifty years ago, many scientists considered the electrons in metals 
to behave at low frequencies as if they were free and at higher frequencies as 
if they were bound. In other words, electrons in a metal under the influence 
of light were described to behave as a series of classical free electrons and a 
series of classical harmonic oscillators. Insulators and semiconductors, on 
the other hand, were described by harmonic oscillators only, see Fig. 1 1.1 (b). 

We shall now treat the optical constants of materials by applying the 
above-mentioned theories . 

• " ::t 
~ 
Go 
E 
c~ ____ ~ ______ ~==~ 

v 

Figure 11.2. Frequency dependence of the amplitude of a hannonic oscillator that is 
excited to perfonn forced vibrations, assuming weak damping. Vo is the resonance 
frequency. 
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11.2. Free Electrons Without Damping 

We consider the simplest case at first and assume that the free electrons are 
excited to perform forced but undamped vibrations under the influence of an 
external alternating field, i.e., under the influence of light. As explained in 
Section 11.1, the damping of the electrons is thought to be caused by colli­
sions between electrons and atoms of a nonideal lattice. Thus, we neglect in 
this section the influence of lattice defects. For simplicity, we treat the one­
dimensional case because the result obtained this way does not differ from 
the general case. Thus, we consider the interaction of plane-polarized light 
with the electrons. The momentary value of the field strength of a plane­
polarized light wave is given by 

g = go exp(iwt) , (ILl) 

where OJ = 2nv is the angular frequency, t is the time, and go is the maximal 
value of the field strength. The equation describing the motion of an electron 
that is excited to perform forced, harmonic vibrations under the influence of 
light is (see Appendix 1 and (7.6)) 

d2x 
m dt2 = eg = ego exp(iOJt) , ( 11.2) 

where e is the electron charge, m is the electron mass, and e . g is the mod­
ulus of the excitation force. The stationary solution of this vibrational 
equation is obtained by forming the second derivative of the trial solution 
x = Xo exp(iOJt) and inserting it into (11.2). This yields 

(11.3) 

The vibrating electrons carry an electric dipole moment, which is the 
product of the electron charge, e, and displacement, x, see (9.12). The polar­
ization, P, is defined to be the sum of the dipole moments of all Nr free 
electrons per cubic centimeter: 

P= exNr. (11.4 ) 

The dielectric constant can be calculated from polarization and electric field 
strength by combining (9.14) and (9.15): 

P 
e= 1 +~. 

e00 

Inserting (11.3) and (11.4) into (11.5) yields 

e = 1 _ e
2
Nr 

4n2eomv2· 

(11.5) 

( 11.6) 

(It is appropriate to use in the present case the complex dielectric constant, 
see below.) The dielectric constant equals the square of the index of refrac-
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tion, n, (see (10.12)). Equation (11.6) thus becomes 

,,2 = 1 _ e
2
Nf 

4n2eomv2· 

We consider two special cases: 

(11. 7) 

(a) For small frequencies, the term e2 Nr/4n2eomv2 is larger than one. Then 
,,2 is negative and" imaginary. An imaginary" means that the real part 
of" disappears. Equation (10.25) becomes, for n = 0, 

R = (n - 1)2 + k 2 = 1 + k 2 = 1 
(n+l)2+k2 l+k2 ' 

i.e., the reflectivity is 100% (see Fig. 11.3). 
(b) For large frequencies (UV light), the term e2 Nr/4n2eomv2 becomes 

smaller than one. Thus, ,,2 is positive and" == n real (but smaller than 
one). The reflectivity for real values of", i.e., for k = 0, becomes 

R=(n-l)2 

(n+l)2' 

i.e., the material is essentially transparent for these wavelengths (and 
perpendicular incidence) and therefore behaves optically like an insula­
tor, see Fig. 11.3. 

We define a characteristic frequency, VI, often called the plasma frequency, 
which separates the reflective region from the transparent region (Fig. 11.3). 
The plasma frequency can also be deduced from (11.6) or (11.7). We observe 
in these equations that e2Nr/4n2eom must have the unit of the square of a 
frequency, which we define to be VI. This yields 

( 11.8) 

Because of (11.8) we conclude from (11.6) that the dielectric constant 
becomes zero at the plasma frequency. e = ° is the condition for a plasma 

a: 100 t-"Reflective-.Transparent+ 

~ (ex.) 
~ 50 
GI -GI 
a: 0 

visible v1 v 
region 

Figure 11.3. Schematic frequency dependence of an alkali metal according to the free 
electron theory without damping. VI is the plasma frequency. 
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Table 11.1. Plasma Frequencies and Effective Numbers of Free Electrons 
for Some Alkali Metals. 

Metal Li Na K Rb CS 

VI (10 14 s-I), observed 14.6 14.3 9.52 8.33 6.81 
VI (10 14 S-I), calculated 19.4 14.3 10.34 9.37 8.33 
Al nm (= e/vI), observed 150 210 290 320 360 
NefT[free electrons/atom] 0.57 1.0 0.8 0.79 0.67 

oscillation, i.e., a fluidlike oscillation of the entire electron gas. We will dis­
cuss this phenomenon in detail in Section 13.2.2. 

The alkali metals behave essentially as shown in Fig. 11.3. They are 
transparent in the near UV and reflect the light in the visible region. This 
result indicates that the s-electrons5 of the outer shell of the alkali metals can 
be considered to be free. 

Table 11.1 contains some measured, as well as some calculated, plasma 
frequencies. For the calculations, applying (11.8), one free electron per atom 
was assumed. This means that Nf was set equal to the number of atoms per 
volume, Na . (The latter quantity is obtained by using 

No .<5 
Na=~, ( 11.9) 

where No is the Avogadro constant, <5 = density, and M = atomic mass.) 
We note in Table 11.1 that the calculated and the observed values for VI 

are only identical for sodium. This may be interpreted to mean that only in 
sodium does exactly one free electron per atom contribute to the electron 
gas. For other metals an "effective number of free electrons" is commonly 
introduced, which is defined to be the ratio between the observed and cal­
culated v? values: 

V? (observed) N. 
v? (calculated) = eff· 

(11.10) 

The effective number of free electrons is a parameter of great interest, be­
cause it is contained in a number of non optical equations (such as the Hall 
constant, electromigration, superconductivity, etc.). Since for most metals the 
plasma frequency, VI, cannot be measured as readily as for the alkalis, an­
other avenue for determining Neff has to be found. For reasons which will 
become clear later, Neff can be obtained by measuring nand k in the red or 
IR spectrum (i.e., in a frequency range without absorption bands, Fig. 11.1) 
and by applying 

(11.1 Oa) 

5 See AppendIX 3. 
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Equation (1 LlOa) follows by combining (11.6) with (10.10) and replacing Nf 
by Neff. 

11.3. Free Electrons With Damping (Classical Free 
Electron Theory of Metals) 

The simple reflectivity spectrum as depicted in Fig. I 1.3 is seldom found for 
metals. We need to refine our model. We postulate that the motion of elec­
trons in metals is damped. More specifically, we postulate that the velocity is 
reduced by collisions of the electrons with atoms of a nonideal lattice. Lat­
tice defects may be introduced into a solid by interstitial atoms, vacancies, 
impurity atoms, dislocations, grain boundaries, or thermal motion of the 
atoms. 

To take account of the damping, we add to the vibration equation (11.2) a 
damping term, y(dx/dt), which is proportional to the velocity (See Appendix 
1 and (7.7)): 

(ILll) 

We determine first the damping factor, y. For this we write a particular so­
lution of (11.11) which is obtained by assuming that the electrons drift under 
the influence of a steady or slowly varying electric field (see Section 7.3) with 
a velocity Vi = const. through the crystal. (The drift velocity of the electrons, 
which is caused by an external field, is superimposed on the random motion 
of the electrons.) The damping is depicted to be a friction force which 
counteracts the electron motion. Vi = const. yields 

d 2x 
dt2 = O. 

By using (ILl2), Equation (11.11) becomes 

etff dx I 
-=-=V 

The drift velocity is 

Y dt . 

v'=L 
eNf 

( lLl2) 

(ILl3) 

(ILl4) 

(see (7.4)), where j is the current density (i.e., that current which passes 
through an area of one square centimeter). Nf is the number of free electrons 
per cubic centimeter. The current density is connected with the d.c. conduc­
tivity, 0'0, and the field strength, tff, by Ohm's law (7.2), 

j = aotff. (11.15) 
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Inserting (11.14) and (11.15) into (11.13) yields 

(11.16) 

Thus, (11.11) becomes 

d 2x Nfe2 dx . 
m d 2 + -- -d = elff = elffO exp(lwt). 

t 0'0 t 
( 11.17) 

We note that the damping term in (11.17) is inversely proportional to the 
conductivity, i.e., proportional to the resistivity. This result makes sense. 

The stationary solution of (11.17) is obtained, similarly as in Section 11.2, 
by differentiating the trial solution x = xo exp(iwt) by the time, and inserting 
first and second derivatives into (11.17), which yields 

2 Nfe2 
-mw x + --xwi = lffe. 

0'0 

Rearranging (11.18) provides 

x =--------;0-
NfeW. mw2 ' 
--1---

0'0 e 

Inserting (11.19) into (11.4) yields the polarization, 

eNflff 
P = -----"------;0-

Nfew . mw2 ' 
--1---

0'0 e 

With (11.20) and (11.5) the complex dielectric constant becomes 

(11.18) 

(11.19) 

( 11.20) 

A P 
8 = 1 + - = 1 + 2' (11.21) 

80lff 2n80 v. m4n 80 2 
--l----V 

0'0 Nfe2 

The term Nfe2 jm4n280 is set, as in (11.8), equal to v?, which reduces (11.21) 
to 

1 V
2 

All 1 
8= + 2 = + 2 

2n80V. v . 2n80V1 2 
--1-- lV---V 

0'0 v? 0'0 

(11.22) 

The term 2n80vUO'o in (11.22) has the unit of a frequency. Thus, for abbre­
viation, we define a damping frequency 

(11.23) 
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Table 11.2. Resistivities and Damping Frequencies for Some Metals. 

Metal Li Na K Rb Cs Cu Ag Au 

Po (;in em)" 8.55 4.2 6.15 12.5 20 1.67 1.59 2.35 
v2 (10 12 s-I) 10.1 4.8 3.1 4.82 5.15 4.7 4.35 5.9 

a Handbook of Chemistry and Physics, 1977; room-temperature values. 

(Table 11.2 lists values for V2 which were calculated using experimental Po 
and VI values.) Now (11.22) becomes 

2 
A I VI e = + ---'---::-

iVV2 - v2' 

where 8 is, as usual, identical to n2, 

2 
(n)2 = n2 _ 2nki _ k 2 = I _ ....."..._V.!....I --, 

v2 - VV2 i ' 

(11.24) 

( 11.25) 

Multiplying the numerator and denominator of the fraction in (11.25) by the 
complex conjugate of the denominator (v2 + VV2i) allows us to equate indi­
vidually real and imaginary parts. This provides the Drude equations for the 
optical constants, 

and 

2 
2 2 VI n - k = el = I - ---v2 + vi 

2 V2 VI 
2nk = e2 = - -2--2 ' 

V V + V2 

with the characteristic frequencies 

and 

VI = 

2neovf 
V2=--' 

0"0 

(11.26) 

(11.27) 

(11.8) 

(11.23) 

The absorption, e2, and the polarization, el, are plotted in Figs. 11.4 and 
11.5 as a function of frequency, making use of (11.27) and (11.26). 
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o visible vI v 

Figure 11.4. The absorption, e2 = 2nk, versus frequency, v, according to the free 
electron theory (schematic). 

Or---~~------------

" 

Figure 11.5. The polarization, el = n2 - k 2 , as a function of frequency according to 
the Drude theory (schematic). 

11.4. Special Cases 

For the UV, visible, and near IR regions, the frequency varies between 1014 

and 1015 S-I. The average damping frequency, V2, is 5 X 10 12 S-I (Table 
11.2). Thus, v2 » v~. Equation (11.27) then reduces to 

( 11.28) 

With v ~ VI (Table 11.1) we obtain 

( 11.29) 

Equation (11.29) confirms that e2 plotted versus the frequency yields a 
hyperbola with V2 as parameter (Fig. 11.4). For very small frequencies 
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(v2 «vD, we may neglect v2 in the denominator of (11.27). This yields, with 
(11.23), 

nkv=~=~v? =~. 
41teo 2 V2 41teo 

(11.30) 

Thus, in the far IR the a.c. conductivity, (7, and the d.c. conductivity, (70, 

may be considered to be identical. We have already made use of this condi­
tion in Section 10.6. In general, however, (7 is not identical to the d.c. con­
ductivity, (70. (The same is true for the dielectric constant, e.) 

11.5. Reflectivity 

The reflectivity of metals is calculated using (10.29) in conjunction with 
(11.26) and (11.27), see Fig. 11.6. We notice that the experimental be­
havior for not-too-high frequencies (Fig. 11.1) is essentially reproduced. See 
also in this context the experimentally obtained reflectivities in Figs. 13.7, 
13.10, and 13.12. For higher frequencies, however, we need to resort to a 
model different from the one discussed so far. This will be done in the next 
chapter. 
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Figure 11.6. Calculated spectral reflectivity for a metal using the exact Drude equa­
tion (solid line), and the Hagen-Rubens equation (10.34) using VI = 2 X 10 15 S-I and 
V2 = 3.5 X 1012 S-I. 
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+ 
(a) (b) 

Figure 11.7. An atom is represented as a positively charged core and a surrounding, 
negatively charged electron cloud (a) in equilibrium and (b) in an external electric 
field. 

11.6. Bound Electrons (Classical Electron Theory of 
Dielectric Materials) 

The preceding sections have shown that the optical properties of metals can 
be described and calculated quite well in the low-frequency range by apply­
ing the free electron theory. We mentioned already that this theory has its 
limits at higher frequencies, at which we observe that light is absorbed and 
reflected by metals as well as by nonmetals in a narrow frequency band. To 
interpret these absorption bands, Lorentz postulated that the electrons are 
bound to their respective nuclei. He assumed that under the influence of an 
external electric field, the positively charged nucleus and the negatively 
charged electron cloud are displaced with respect to each other (Fig. 11.7). 
An electrostatic force tries to counteract this displacement. For simplicity, 
we describe the negative charge of the electrons to be united in one point. 
Thus, we describe the atom in an electric field as consisting of a positively 
charged core which is bound quasielastically to one electron (electric dipole, 
Fig. 11.8). A bound electron, thus, may be compared to a mass which is 

+ 

Figure 11.8. Quasi-elastic bound electron in an external electric field (harmonic 
oscillator). 
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suspended from a spring. Under the influence of an alternating electric field 
(i.e., by light), the electron is thought to perform forced vibrations. For 
the description of these vibrations, the well-known equations of mechanics 
dealing with a harmonic oscillator may be applied. This will be done now. 

We first consider an isolated atom, i.e., we neglect the influence of the 
surrounding atoms upon the electron. An external electric field with force 

etff = etffo exp(iwt) (11.31) 

periodically displaces an electron from its rest position by a distance x. This 
displacement is counteracted by a restoring force, K . x, which is proportional 
to the displacement, x. Then, the vibration equation becomes (see Appendix 
1) 

d 2x ,dx 
m dt2 + y dt + KX = etffo exp(iwt). (11.32) 

The factor K is the spring constant, which determines the binding strength 
between the atom and electron. Each vibrating dipole (e.g., an antenna) loses 
energy by radiation. Thus, y'(dx/dt) represents the damping of the oscillator 
by radiation (y' = damping parameter). The stationary solution of (11.32) 
for weak damping is (see Appendix 1) 

(11.33) 

where 

Wo = 2nvo = I!ft (11.34) 

is called the resonance frequency of the oscillator, i.e., that frequency at 
which the electron vibrates freely without an external force. <f is the phase 
difference between forced vibration and the excitation force of the light 
wave. It is defined to be (see Appendix 1) 

y'w 
tan<f= (2 2) m wo-W 

y'v 
( 11.35) 

2nm(vJ - v2)' 

As in the previous sections, we calculate the optical constants starting with 
the polarization, P, which is the product of the dipole moment, e . x, of one 
dipole times the number of all dipoles (oscillators), Na . As before, we assumed 
one oscillator per atom. Thus, Na is identical to the number of atoms per 
unit volume. We obtain 

P = exNa. 

Inserting (11.33) yields 

p= e2N atffoexp[i(wt-<f)] 

vm2(w5 - w2)2 + y/2w2 

( 11.36) 

(11.37) 
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With 

exp[i(wt - tP)] = exp(iwt) . exp( -itP) ( 11.38) 

we obtain 

p = e
2 
Na

tff 
exp( -itP) , 

Jm2(w~ - ( 2)2 + yl2w2 
(11.39) 

which yields with (11.5) and (10.12) 

A 2 k 2 k e
2 
Na ( "') e = n - - 2n i = 1 + exp -i,/, . 

eoJ m2(w~ - ( 2)2 + yl2w2 
(11.40) 

Equation (11.40) becomes with6 

exp( -itP) = cos tP - i sin tP, (11.41) 

e2N 
n2 - k 2 - 2nki = I + a cos tP 

eoJ m2(w~ - ( 2)2 + yl2w2 

e
2
Na . '" - i SIll,/" 

eoJm2(w~ - ( 2)2 + yl2w2 
(11.42) 

The trigonometric terms in (11.42) are replaced, using (11.35), as follows: 

. tP tan tP 
SIll = -y'---;I=+:::::=:::ta=n:;;::2 tP=-

Jm2(w~ _(2)2 +y12w2 ' 

y'w 

( 11.43) 

(11.44) 

Separating the real and imaginary parts in (11.42) finally provides the optical 
constants 

that is, 

( 11.45) 

6 See Appendix 2. 
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Figures 11.9 and I I.IO. Frequency dependence of polarization, 1::1 = n2 - k 2 , and 
absorption, 1::2 = 2nk, as calculated with (I1.45) and (11.46), respectively, using 
characteristic values for Na and y'. 

and 

or 

( 11.46) 

The frequency dependencies of el and e2 are plotted in Figs. 11.9 and 11.10. 
Figure 11.9 resembles the dispersion curve for the index of refraction as it is 
experimentally obtained for dielectrics. Figure 11.10 depicts the absorption 
product, e2, in the vicinity of the resonance frequency, vo, (absorption band) 
as experimentally observed for dielectrics. Equations (1l.45) and (11.46) re­
duce to the Drude equations for Vo -t 0 (no oscillators). 

* 11.7. Discussion of the Lorentz Equations for 
Special Cases 

11.7.1. High Frequencies 

We observe in Fig. 11.10 that e2 approaches zero at high frequencies and far 
away from any resonances (absorption bands). In the same frequency region, 
el = n2 - k 2 and, thus, essentially n, assumes the constant value 1 (Fig. 11.9). 
This is consistent with experimental observations that X-rays are not re-
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fracted and are not absorbed by many materials. (Note, however, that highly 
energetic X-rays interact with the inner electrons, i.e., they may be absorbed 
by the K, L, ... , etc. electrons. Metals are, therefore, opaque for high­
energetic X-rays). 

11.7.2. Small Damping 

We consider the case for which the radiation-induced energy loss of the 
oscillator is very small. Then, y' is small. With y'2v2 «4n2m 2 (v& - v2)2 
(which is only valid for v =F Yo), equation (11.45) reduces to 

2 2 e2Na 
el = n - k = 1 + 2 (2 2) . 4n eom Vo - v 

(11.47) 

Figure 11.11 depicts a sketch of (11.47). We observe that for small damping, 
el (and thus essentially n2) approaches infinity near the resonance frequency. 
A dispersion curve such as Fig. 11.11 is indeed observed for many dielectrics 
(glass, etc.). 
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Figures ll.I 1 and ll.I2. The functions e1 (n2) and e2, respectively, versus frequency 
according to the bound electron theory for the special case of small damping. 

11.7.3. Absorption Near Vo 

Electrons absorb most energy from light at the resonance frequency, i.e., e2 

has a maximum near Yo. For small damping, the absorption band becomes 
an absorption line (see Fig. 11.12). Inserting v = Vo into (11.46) yields 

( 11.48) 

which shows that the absorption becomes large for small damping (y'). 
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11.7.4. More Than One Oscillator 

At the beginning of Section 11.6 we assumed that one electron is quasielas­
tically bound to a given nucleus; in other words, we assumed one oscillator 
per atom. This assumption is certainly a gross simplification, as one can de­
duce from the occurrence of multiple absorption bands in experimental op­
tical spectra. Thus, each atom has to be associated with a number of i oscil­
lators, each having an oscillator strength, /;. The ith oscillator vibrates with 
its resonance frequency, VOi. The related damping constant is rI. (This de­
scription has its equivalent in the mechanics of a system of mass points 
having one basic frequency and higher harmonics.) If all oscillators are taken 
into account, (11.45) and (11.46) become 

(11.49) 

(11.50) 

Equations (11.49) and (11.50) reduce for weak damping (see above) to 

2 2 2 e2N a ~ /; 
e1 = n - k ::::0 n = 1 + ~ L 2 2 ' 

n eom i vOi - V 
(11.51) 

( 11.52) 

11.8. Contributions of Free Electrons and Harmonic 
Oscillators to the Optical Constants 

In the previous section, we ascribed two different properties to the electrons 
of a solid. In Section 11.4 we postulated that Nf electrons move freely in 
metals under the influence of an electric field and that this motion is damped 
by collisions of the electrons with vibrating lattice atoms and lattice defects. 
In Section 11.6 we postulated that a certain number of electrons are quasi­
elastically bound to Na atoms which are excited by light to perform forced 
vibrations. The energy loss was thought to be by radiation. 

The optical properties of metals may be described by postulating a certain 
number of free electrons and a certain number of harmonic oscillators. Both 
the free electrons and the oscillators contribute to the polarization. Thus, the 
equations for the optical constants may be rewritten, by combining (11.26), 
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Figures 11.13 and 11.14. Frequency dependence of 81 and 82 according to (11.53) and 
(11.54). (i = 1). f = free electron theory; b = bound electron theory; S = summary 
curve (schematic). 

(11.27), (11.49), and (11.50), 

(11.53) 

(11.54) 

Figures 11.13 and 11.14 depict schematically the frequency dependence of 
81 and 82 as obtained by using (11.53) and (11.54). These figures also show 
the contributions of free and bound electrons on the optical constants. The 
experimentally found frequency dependence of 81 and 82 resembles these 
calculated spectra quite well. We will elaborate on this in Chapter 13, in 
which experimental results are presented. 

Problems 

1. Calculate the reflectivity of sodium in the frequency ranges v > VI and V < VI 

using the theory for free electrons without damping. Sketch R versus frequency. 

2. The plasma frequency, v), can be calculated for the alkali metals by assuming one 
free electron per atom, i.e., by substituting for Nr the number of atoms per unit 
volume (atomic density, Na). Calculate VI for potassium and lithium. 
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3. Calculate Neff for sodium and potassium. For which of these two metals is the 
assumption of one free electron per atom justified? 

4. What is the meaning of the frequencies VI and V2? In which frequency ranges are 
they situated compared to visible light? 

5. Calculate the reflectivity of gold at V = 9 X 1012 s-I from its conductivity. Is the 
reflectivity increasing or decreasing at this frequency when the temperature is 
increased? Explain. 

6. Calculate VI and V2 for silver (0.5 x 1023 free electrons per cubic centimeter). 

7. The experimentally found dispersion of NaCI is as follows: 

A [,urn] 0.3 0.4 0.5 0.7 2 5 

n 1.607 1.568 1.552 1.539 1.532 1.527 1.519 

Plot these results along with calculated values obtained by using the equations of 
the "bound electron theory" assuming small damping. Let 

e
2

Na = 1.81 x 1030 s-2 and Vo = 1.47 X 10 15 S-I. 
4n2eom 

8. The optical properties of an absorbing medium can be characterized by various 
sets of parameters. One such set is the index of refraction and the damping con­
stant. Explain the physical significance of those parameters, and indicate how 
they are related to the complex dielectric constant of the medium. What other 
sets of parameters are commonly used to characterize the optical properties? 
Why are there always "sets" of parameters? 

9. Describe the damping mechanisms for free electrons and bound electrons. 

10. Why does it make sense that we assume one free electron per atom for the alkali 
metals? 

11. Derive the Drude equations from (I 1.45) and (11.46) by setting Vo ~ O. 

12. Calculate the effective number of free electrons per cubic centimeter and per 
atom for silver from its optical constants (n = 0.05 and k = 4.09 at 600 nm). 
(Hint: Use the free electron mass.) How many free electrons per atom would you 
expect? Does the result make sense? Why may we use the free electron theory for 
this wavelength? 

13. Computer problem. Plot (11.26), (11.27), and (10.29) for various values of VI and 
V2. Start with VI = 2 X 10 15 S-I and V2 = 3.5 X 10 12 S-I. 

14. Computer problem. Plot (11.45), (11.46), and (10.29) for various values of Na, y', 
and Yo. Start with Vo = 1.5 X 1015 S-I and Na = 2.2 X 1022 cm-3 and vary y' 
between 100 and 0.1. 

15. Computer problem. Plot (11.51), (11.52), and (10.29) by varying the parameters 
as in the previous problems. Use one, two or three oscillators. Try to "fit" an 
experimental curve such as the ones in Figs. 13.10 or 13.11. 



CHAPTER 12 

Quantum Mechanical Treatment 
of the Optical Properties 

12.1. Introduction 

We assumed in the preceding chapter that the electrons behave like particles. 
This working hypothesis provided us (at least for small frequencies) with 
equations which reproduce the optical spectra of solids reasonably well. 
Unfortunately, the treatment had one flaw: For calculation and interpreta­
tion of the infrared (IR) absorption we used the concept that electrons in 
metals are free; whereas the absorption bands in the visible and ultraviolet 
(UV) spectrum could only be explained by postulating harmonic oscillators. 
From the classical point of view, however, it is not immediately evident why 
the electrons should behave freely at low frequencies and respond as if they 
would be bound at higher frequencies. An unconstrained interpretation for 
this is only possible by applying wave mechanics. This will be done in the 
present chapter. We make use of the material presented in Chapters 5 and 6. 

12.2. Absorption of Light by Interband and 
Intraband Transitions 

When light (photons) having sufficiently large energy impinges on a solid, 
the electrons in this crystal are thought to be excited into a higher energy 
level, provided that unoccupied higher energy levels are available. For these 
transitions the total momentum of electrons and photons must remain con­
stant (conservation of momentum). For optical frequencies, the momentum 
of a photon, and thus its wave vector kphot = p/h (see (4.7)), is much smaller 
than that of an electron. Thus, kphot is much smaller than the diameter of the 
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Figure 12. I. Electron bands and direct interband transitions in a reduced zone. 
(Compare with Fig. 5.4.) 

Brillouin zone (Fig. 12.1). Electron transitions at which k remains constant 
(vertical transitions) are called "direct interband transitions." Optical spectra 
for metals are dominated by direct interband transitions. 

Another type of interband transition is possible however. It involves the 
absorption of a light quantum under participation of a phonon (lattice vi­
bration quantum, see Chapter 20). To better understand these "indirect 
interband transitions" (Fig. 12.2) we have to know that a phonon can only 
absorb very small energies, but is able to absorb a large momentum compa­
rable to that of an electron. During an indirect inter band transition, the ex­
cess momentum (i.e., the wave number vector) is transferred to the lattice (or 

E 

Figure 12.2. Indirect interband transition. (The properties of phonons are explained 
in Chapter 20.) 
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is absorbed from the lattice). In other words, a phonon is exchanged with the 
solid. Indirect interband transitions may be disregarded for the interpreta­
tion of metal spectra, because they are generally weaker than direct tran­
sitions by two or three orders of magnitude. They are only observed in the 
absence of direct transitions. In the case of semiconductors, however, and for 
the interpretation of photoemission, indirect interband transitions play an 
important role. 

We now make use of the simplified model depicted in Fig. 12.1 and con­
sider direct interband transitions from the n to the m band. The smallest 
photon energy in this model is absorbed by those electrons whose energy 
equals the Fermi energy, EF, i.e., by electrons which already possess the 
highest possible energy at T = 0 K. This energy is marked in Fig. 12.1 by 
hva. Similarly, hVb is the largest energy, which leads to an interband transi­
tion from the n to the m band. In the present case, a variety of inter band 
transitions may take place between the energy interval hVa and hVb. 

Interband transitions are also possible by skipping one or more bands, 
which occur by involving photons with even larger energies. Thus, a multi­
tude of absorption bands are possible. These bands may partially overlap. 

As an example for interband transitions in an actual case, we consider the 
band diagram for copper. In Fig. 12.3, a portion of Fig. 5.22 is shown, i.e., 
the pertinent bands around the L-symmetry point are depicted. The inter­
band transition having the smallest possible energy difference is shown to 
occur between the upper d-band and the Fermi energy. This smallest energy 
is called the "threshold energy for interband transitions" (or the "fundamental 
edge") and is marked in Fig. 12.3 by a solid arrow. We mention in passing 
that this transition, which can be stimulated by a photon energy of 2.2 eV, is 

E 

EF ----·---

w L 

P 

d 

r 

Figure 12.3. Section of the band diagram for copper (schematic). Two pertinent in­
terband transitions are shown with arrows. The smallest possible interband transition 
occurs from a filled d-state to an unfilled state just above the Fermi energy. 
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responsible for the red color of copper. At slightly higher photon energies, a 
second transition takes place, which originates from the Fermi energy. It is 
marked in Fig. 12.3 by a dashed arrow. Needless to say, many more tran­
sitions are possible. They can take place over a wide range in the Brillouin 
zone. This will become clearer in Chapter 13 when we return to the optical 
spectra of materials and their interpretation. 

We now turn to another photon-induced absorption mechanism. Under 
certain conditions photons may excite electrons into a higher energy level 
within the same band. This occurs with participation of a phonon, i.e., a lat­
tice vibration quantum. We call such a transition, appropriately, an intra­
band transition (Fig. 12.4). It should be kept in mind, however, that because 
of the Pauli principle, electrons can only be excited into empty states. Thus, 
intraband transitions are mainly observed in metals because metals have 
unfilled electron bands. We recognize, however, that semiconductors with 
high doping levels or which are kept at high temperatures may likewise have 
partially filled conduction bands. 

Intraband transitions are equivalent to the behavior of free electrons in 
classical physics, i.e., to the "classical infrared absorption." Insulators and 
semiconductors have no classical infrared absorption because their bands are 
either completely filled or completely empty (except at high temperatures 
and due to doping). This explains why some insulators (such as glass) are 
transparent in the visible spectrum. The largest photon energy, Emax , that 
can be absorbed by means of an intraband transition corresponds to an ex­
citation from the lower to the upper band edge, see Fig. 12.4. All energies 
smaller than Emax are absorbed continuously. 

E 

k, 

Figure 12.4. Intraband transitions. The largest energy that can be absorbed by intra­
band transitions is obtained by projecting the arrow marked "Emax" onto the energy 
aXIs. 



12. Quantum Mechanical Treatment of the Optical Properties 231 

In summary, at low photon energies, intraband transitions (if possible) are 
the prevailing absorption mechanism. Intraband transitions are not quan­
tized and occur essentially in metals only. Above a critical light energy inter­
band transitions set in. Only certain energies or energy intervals are absorbed 
in this case. The onset of this absorption mechanism depends on the energy 
difference between the bands in question. Interband transitions occur in metals 
as well as in insulators or semiconductors. They are analogous to optical 
excitations in solids with bound electrons. In an intermediate frequency 
range, interband as well as intraband transitions may take place. 

12.3. Optical Spectra of Materials 

Optical spectra are the principal means to obtain experimentally the band 
gaps and energies for interband transitions. For isolated atoms and ions, the 
absorption and emission spectra are known to be extremely sharp. Thus, 
absorption and emission energies for atoms can be determined with great 
accuracy. The same is basically true for molecular spectra. In contrast to 
this, the optical spectra of solids are rather broad. This stems from the high 
particle density in solids and from the interatomic interactions, which split 
the atomic levels into quasi-continuous bands. The latter extend through the 
three-dimensional momentum space of a Brillouin zone. 

A further factor has to be considered, too. Plain reflection spectra of solids 
are, in general, not too useful for the deduction of transition energies, mainly 
because R is a rather involved function of eI and e2 (see (10.29)). Thus, e2 
(i.e., absorption) spectra are often utilized instead. The characteristic fea­
tures in the ez-spectra of solids stem from discontinuities in the energy profile 
of the density of states. However, relatively sharp features in e2-spectra are 
superimposed on noncharacteristic transitions from other parts of the Bril­
louin zone. In other words, the ez-spectra derive their shape from a summa­
tion over extended, rather than localized, regions in the Brillouin zone. 
Modulated optical spectra (see Section 13.1.3) separate the small con­
tributions stemming from points of high symmetry (such as the centers and 
edges of a Brillouin zone) from the general, much larger background. This 
will become clearer in the next chapter. 

* 12.4. Dispersion 

To calculate the behavior of electrons in a periodic lattice we used, in Section 
4.4, the periodic potential shown in Fig. 4.9. We implied at that time that the 
potential does not vary with time. This proposition needs to be dropped 
when the interaction of light with a solid is considered. The alternating 
electric field of the light which impinges on the solid perturbs the potential 
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field of the lattice periodically. Thus, we need to add to the potential energy 
a correction term, the so-called perturbation potential, V', 

V= Vo+ Vi (12.1 ) 

(Vo = unperturbed potential energy). It goes without saying that this per­
turbational potential oscillates with the frequency, v, of the light. 

We consider, as always, plane-polarized light. The momentary value of 
the field strength, Iff, is 

Iff = A cos wt, ( 12.2) 

where A is the maximal value of the field strength. Then, the perturbation 
potential (potential energy of the perturbation, or force times displacement 
x) is 

Vi = elffx = eA cos(wt) . x. (12.3) 

Since the potential now varies with time, we need to make use of the time­
dependent Schrodinger equation (3.8), 

V2qt _ 2m V'¥ _ 2im aqt = 0 
/1 2 /1 at ' 

(12.4 ) 

which reads, with (12.l) and (12.3), 

2 2m 2im aqt 
V qt -f1(Vo +eAxcoswt)qt - T at = o. (12.5) 

Our goal is to calculate the optical constants from the polarization, in a 
similar way as it was done in Sections 11.2, 11.3, and 11.6. We have to note, 
however, the following: In wave mechanics, the electron is not considered to 
be a point, but instead is thought to be "smeared" about the space dr. The 
locus of the electron in classical mechanics is thus replaced by the probability, 
qtqt*, of finding an electron in space (see (2.12)). The classical polarization 

P=Nex 

(1l.4) is replaced in wave mechanics by 

P = Ne J xqtqt* dr. (12.6) 

We seek to find a solution qt of the perturbed Schrodinger equation (12.5) and 
calculate from that the norm qtqt*; then, by using (12.6) we can calculate the 
polarization P. The equation for the optical constants thus obtained is given 
in (12.31). 

The detailed calculation of this approach will be given below. The first 
step is to transform the space- and time-dependent Schr6dinger equation 
into a Schr6dinger equation that is only space-dependent. The perturbed 
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Schrodinger equation (12.5) is rewritten, using the Euler equation7 cosp = 
! (e ip + e- ip

), as 

t72m 2m T? \TJ 2im a'P _ 2m 1 [iwi -iWlj\T1 
v T --YOT -----eAx- e +e T. 

h2 h at h2 2 
(12.7) 

Now, the left side of (12.7) has the form of the unperturbed Schrodinger 
equation (12.4). We assume that the perturbation is very small. Then, we can 
insert in the perturbation term (right side of (12.7)) the expression (3.4), and 
get 

\T/O( ) _ ."O( ) iw,1 Ti x,Y,z,t - 'l'i X,y,Z e 

for the unperturbed ith eigenfunction. This yields 

t72m 2m T? \TI 2im a'P _ m A ."O[ i(w,+w)1 i(w,-W)IJ 
v T - - yo T - -- - - e x'I" e + e . 

h2 h at h2 1 

The right-hand side will be contracted to simplify the calculation: 

V2'P _ 2m Vo'P _ 2ima'P = m eAxI/IOei(w,±w)l. 
h2 h at h2 

1 

(12.8) 

( 12.9) 

(12.10) 

To solve (12.10), we seek a trial solution which consists of an unperturbed 
solution and two terms with the angular frequencies (OJi + OJ) and (OJi - OJ): 

'P = 'P? + l/I+ei(w,+w)1 + l/I_ei(w,-w)l. (12.11) 

This trial solution is condensed as before 

(12.12) 

Equation (12.12) is differentiated twice with respect to space and once with 
respect to time, and the results are inserted into (12.10). This yields 

V 2'P0 + V2.1, ei(w, ±W)I _ 2m V; 'Po _ 2m V; .1, ei(w, ±W)I 
__ I 'I' ± h2 0 1 h2 0'1' ± 

2im a'P° 2m .( +) m 0 .( + ) 
__ __ I + -(OJ, + OJ).I, el W,_W 1 = -eAx.I,. el W,_W I. (12.13) 

h at h 1 - 'I' ± h2 '1'1 

The underlined terms in (12.13) vanish according to (12.4) if 'P? is the solu­
tion to the unperturbed Schrodinger equation. In the remaining terms, the 
exponential factors can be cancelled, which yields, with hOJ = hv = E, 

2 2m m 0 
V 1/1+ +-21/1+(Ei ±hv- Vo) =-2eAxl/li' 

- h - h 
(12.14) 

In writing (12.14) we have reached our first goal, i.e., to obtain a time­
independent, perturbed Schrodinger equation. We solve this equation with a 

7 See Appendix 2. 
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procedure that is common in perturbation theory. We develop the function 
xl/l? (the right side of(12.14)) in a series of eigenfunctions 

(12.15) 

multiply (12.15) by I/I~*, and integrate over the entire space dr. Then, due to 
J 1/11/1* dr = 1 (3.15) and J I/Iml/l: dr = 0 (for m # n), we obtain 

J xl/l?I/I~* dr = ali J I/Irl/l~* dr + ... + ani J I/I~I/I~* dr + ... = ani· (12.16) 
~ ~ 
001 

Similarly, we develop the function 1/1 ± in a series of eigenfunctions 

I/I± = Lb±nl/l~. (12.17) 

Inserting (12.15) and (12.17) into (12.14) yields 

L (
20 2m 0 2m 0 2m 0) m L 0 b+ n V I/In + -2 Eil/ln + -2 hVl/ln - -2 Vol/ln = 2: eA anil/ln· - -- h - h h h 

(12.18) 

Rewriting the unperturbed time-independent Schrodinger equation (3.1) 
yields 

20 2m 0 2m 0 
V I/In - f1 Vol/ln = -f1 Enl/ln· (12.19) 

Equation (12.19) shows that the underlined terms in (12.18) may be equated 
to the right side of (12.19). Thus, (12.18) may be rewritten as 

2m", 0 2meA", 0 f1 ~ I/Inb±n(Ei - En ± hv) = f1T ~ I/In ani . ( 12.20) 

Comparing the coefficients in (12.20) yields, with 

(12.21) 

the following expression: 

b 
_ eAani 

+n -- 2(Ei - En ± hv) 2h(vni ± v) . 
(12.22) 

Now we are able to determine the functions 1/1 + and 1/1- by using (12.22) and 
(12.17). We insert these functions together with (3.4) into the trial solution 
(12.11) and obtain a solution for the time-dependent, perturbed Schrodinger 
equation (12.5) 

\TI _ .{,o iw,t + 1 '"' A .{,o [ei(W'+W)t ei(W'-W)t] 
T - 'l'i e 2h~e ani'l'n ---+ , Vni + V Vni - V 

(12.23) 
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and thus 

'P* = 1/10* e-1W,1 + - '"' eAa*.I/IO* + . 
. 1 [e-i(W,+W)1 e-i(W,-W)I] 

I 2h ~ m n Vni + V Vni - V 
(12.24) 

In order to write the polarization (12.6) we have to form the product 
'P'P*. As can be seen from (12.23) and (12.24), this calculation yields time­
dependent as well as time-independent terms. The latter ones need not be 
considered here, since they provided only an additive constant to the polar­
ization (light scattering). The time-dependent part of the norm 'P'P* is 

( 12.25) 

To simplify, we abbreviate the terms in parentheses by Q and R, respectively. 
The polarization (12.6) is then 

p ~ N~ A r L a;,Q J x~:~"7 d~ + L a",R J X~:~?' d: 1 ' ( 12.26) 

which reduces, with (12.16), 

and 

* 1 12 - 2 ani' ani = ani = ani (12.27) 

to 

(12.28) 

A numerical calculation applying the above-quoted Euler equation yields 

(12.29) 

which gives, with (12.2), 

(12.30) 
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Finally, we make use of (10.13) and (11.5) and obtain with, (12.30), 

2 2 N e
2 

""""' 2 Vni 
B1 = n - k = 1 + --1:. ~ ani 2 _ 2' 

BOn" Vni V 
(12.31) 

Equation (12.31) is the sought-after relation for the optical properties of 
solids, obtained by wave mechanics. It is similar in form to the classical dis­
persion equation (11.51). A comparison of classical and quantum mechani­
cal results might be helpful to better understand the meaning of the empiri­
cally introduced oscillator strength, 1;. We obtain 

(12.32) 

We know that hVni is that energy which an electron absorbs when it is excited 
from the n-band into the i-band (e.g., the m-band). Thus, the resonance fre­
quency, Voi, of the ith oscillator introduced in Section 11.7.4 is replaced in 
wave mechanics by a frequency, Vni, that corresponds to an allowed electron 
transition from the nth into the ith band. Furthermore, we see from (12.16) 
that ani is proportional to the probability of an electron transition from the 
nth into the ith band. The oscillator strength, 1;, is, therefore, essentially the 
probability for a certain interband transition. 

Problems 

I. What infonnation can be gained from the quantum mechanical treatment of the 
optical properties of metals which cannot be obtained by the classical treatment? 

2. What can we conclude from the fact that the spectral reflectivity of a metal (e.g., 
copper) has "structure"? 

3. Below the reflection spectra for two materials A and B are given. 
(a) What type of material belongs to reflection spectrum A, what type to B? 

(Justify). Note the scale difference! 
(b) For which colors are these (bulk) materials transparent? 
(c) What is the approximate threshold energy for interband transitions for these 

materials? 
(d) For which of the materials would you expect intraband transitions in the 

infrared region? (Justify.) 
(e) Why do these intraband transitions occur in this region? 
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4. What is the smallest possible energy for interband transitions for aluminum? 
(Hint: Consult the band diagram in Fig. 5.21.) 

5. Are intraband transitions possible in semiconductors at high temperatures? 



CHAPTER 13 

Applications 

13.1. Measurement of the Optical Properties 

The measurement of the optical properties of solids is simple in principle, but 
can be involved in practice. This is so because many bulk solids (particularly 
metals) are opaque, so that the measurements have to be taken in reflection. 
Light penetrates about 10 nm into a metal (see Table 10.1). As a conse­
quence, the optical properties are basically measured near the surface, which 
is susceptible to oxidation, deformation (polishing), or contamination by 
adsorbed layers. One tries to alleviate the associated problems by utilizing 
ultrahigh vacuum, vapor deposition, sputtering, etc. Needless to say, the 
method by which a given sample was prepared may have an effect on the 
numerical value of its optical properties. 

Let us assume that the surface problems have been resolved. Then, still 
another problem remains. The most relevant optical properties, namely, n, k, 
"'1, "'2, and the energies for interband transitions cannot be easily deduced by 
simply measuring the reflectivity, i.e., the ratio between reflected and inci­
dent intensity. Thus, a wide range of techniques have been developed in the 
past century to obtain the above-mentioned parameters. Only three methods 
will be briefly discussed here. It should be mentioned, however, that thirty or 
forty other techniques could be easily presented. They all have certain ad­
vantages for some specific applications and disadvantages for others. The 
reader who is not interested in the measurement of optical properties may 
skip the next three sections for the time being and return to them at a later 
time. 
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* 13.1.1. Kramers-Kronig Analysis (Dispersion Relations) 

This method was very popular in the 1960s and involves the measurement of 
the reflectivity over a wide spectral range. A relationship exists between real 
and imaginary terms of any complex function, which enables one to calcu­
late one component of a complex quantity if the other one is known. In the 
present case, one calculates the phase jump, J', (between the reflected and 
incident ray) from the reflectivity, R, which was measured at a given fre­
quency, v. This is accomplished by the Kramers-Kronig relation, 

J'(vx ) = ~Joo dlnPlni v + Vx i dv, 
n 0 dv v - Vx 

(13.1 ) 

where 

(13.2) 

is obtained from the reflected intensity, IR, and the incident intensity, 10, of 
the light. The optical constants are calculated by applying 

1 _ p2 
n = --,.---'-----, 

1 + p2 + 2pcosJ' 
(13.3) 

and 

k = 2psinJ' 
1 + p2 + 2pcosJ" 

(13.4 ) 

Equation (13.1) shows that the reflectivity should be known in the entire 
frequency range (i.e., between v = 0 and v = (0). Since measured values can 
hardly be obtained for such a large frequency range, one usually extrapolates 
the reflectivity beyond the experimental region using theoretical or phenom­
enological considerations. Such an extrapolation would not cause a sub­
stantial error if one could assume that no interband transitions exist beyond 
the measured spectral range. This assumption is probably valid only on rare 
occasions. (For details, see specialized books listed at the end of Part III.) 

* 13.1.2. Spectroscopic Ellipsometry 

This technique was developed in its original form at the turn of the 20th 

century. The underlying idea is as follows: If plane-polarized light impinges 
under an angle IX on a metal, the reflected light is generally elliptically po­
larized. The analysis of this elliptically polarized light yields two parameters, 
the azimuth and the phase difference, from which the optical properties are 
calculated. 

We consider plane-polarized light whose vibrational plane is inclined by 
45° towards the plane of incidence (Fig. 13.1). This angle is called azimuth, 
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FIgure 13.1. Reflection of plane-polarized light on a metal surface. (Note: In the 
figure ,ffRp == Rp and ,ffRs == Rs.) 

t/Je' III contrast to the azimuth of the reflected light, t/Jp which is defined as 

CRp 
tan t/J r = C

Rs 
(13.5) 

(see Fig. 13.1), where CRp and CRs are parallel and perpendicular components 
of the reflected electric field strength ICI, i.e., the amplitudes of the reflected 
light wave. 

In elliptically polarized light, the length and direction of the light vector is 
altered periodically. The tip of the light vector moves along a continuous 
screw, having the direction of propagation as an axis (Fig. 13.2(a)). The 
projection of this screw onto the x - y plane is an ellipse (Fig. 13.1). Ellipti­
cally polarized light can be thought of as composed of two mutually per­
pendicular, plane-polarized waves, having a phase difference 15 between them 
(expressed in fractions of 2n) (see Fig. 13.2(b)). 

For the actual measurement of t/Jr and 15, one needs two polarizers (con­
sisting of a birefringent material, which allows only plane-polarized light to 
pass), and a compensator (also consisting of birefringent material, which al­
lows one to measure the phase difference 15; see Fig. 13.3). In Fig 13.4, the 
light reflected from a metal is represented by two light vectors pointing in the 
x- and y-directions, respectively. They have a phase difference 15 between 
them. By varying the thickness of the birefringent materials in the compen­
sator, one eventually accomplishes that the light which leaves the compen­
sator is plane-polarized (i.e., 15 = 0°). The resultant vector, Rres , is then tilted 
by an angle, t/J p against the normal to the plane of incidence. One determines 
t/Jr by turning the analyzer to a position at which its axis is perpendicular to 
Rres • In short, f5 and t/Jr are measured by simultaneously altering the thickness 
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(a) (b) 

Figure 13.2. (a) Elliptically polarized light and (b) decomposition of elliptically 
polarized light into two mutually perpendicular plane-polarized waves with phase 
difference b. Adapted from R.W. Pohl, Optik und Atomphysik. Springer-Verlag, 
Berlin (1958). 

of the compensator and turning the analyzer until no light leaves the ana­
lyzer. It is evident that this method is cumbersome and time-consuming, 
particularly in cases in which an entire spectrum needs to be measured point 
by point. Thus, in recent years automated and computerized ellipsometers 
have been developed. 

The optical constants are calculated using 

n2 = 4 [V(a2 - b2 + sin2 
a)2 + 4a2b2 + a2 - b2 + sin2 

a], 

Light 
source 

(13.6) 

(13.7) 

Figure 13.3. Schematic of an ellipsometer (polarizer and analyzer are identical 
devices). 



242 III. Optical Properties of Materials 

Compen.ator 

from metal 

Figure 13.4. Vector diagram of light reflected from a metal surface. The vectors 
having solid arrowheads give the vibrational direction and magnitude of the light. 

with 
sin rx tan rx cos 2t/1r 

a = -:------=--:---::-7---'-
1 - cost> sin 2t/1r 

( 13.8) 

and 
b = -a sint>tan2t/1r' (13.9) 

Alternatively, one obtains, for the polarization 81 and absorption 82, 

2 k 2 • 2 [1 tan2 rx( cos2 2t/1r - sin
2 

2t/1r sin
2 t»] 

8 1 = n - = sm rx + 2' 
(1 - sin 2t/1r cost» 

(13.10) 

8
2 = 2nk = _ sin4t/1r sint> tan2 rx sin

2 
rx 

(1 - sin 2t/1r COSt»2 
(13.11) 

* 13.1.3. Differential Reflectometry 

The information gained by differential reflectometry is somewhat different 
from that obtained by the aforementioned techniques. A "differential re­
flectogram" allows the direct measurement of the energies that electrons 
absorb from photons as they are raised into higher allowed energy states. 
The differential refiectometer measures the normalized difference between 
the reflectivities of two similar specimens which are mounted side by side 
(Fig. 13.5). For example, one specimen might be pure copper and the other 
copper with, say, 1% zinc. Unpolarized light coming from a monochromator 
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Figure 13.5. Schematic diagram of the differential refiectometer. (For clarity, the 
angle of incidence of the light beam impinging on the samples is drawn larger than it 
is in reality.) From R.E. Hummel, Phys. Stat. Sol. (a) 76, II (1983). 

is alternately deflected under near-normal incidence to one or the other 
sample by means of a vibrating mirror. The reflected light is electronically 
processed to yield /-:;.R/ R = 2(Rr - R2)/(Rr + R2)' A complete differential 
reflectogram, i.e., a scan from the near IR through the visible into the near 
UV, is generated automatically and takes about two minutes. The main ad­
vantage of differential reflectometry over conventional optical techniques lies 
in its ability to eliminate any undesirable influences of oxides, deformations, 
windows, electrolytes (for corrosion studies), or instrumental parameters 
upon a differential reflectogram, owing to the differential nature of the tech­
nique. No vacuum is needed. Thus, the formation of a surface layer due to 
environmental interactions can be studied in situ. Finally, the data can be 
taken under near-normal incidence. 

Differential reflectometry belongs to a family of techniques, called modu­
lation spectroscopy, in which the derivative of the unperturbed reflectivity 
(or e2) with respect to an external parameter is measured. Modulation tech­
niques restrict the action to so-called critical points in the band structure, 
i.e., they emphasize special electron transitions from an essentially feature­
less background. This background is caused by the allowed transitions at 
practically all points in the Brillouin zone. Most modulation techniques, 
such as differential reflectometry, wavelength modulation, thermoreflectance, 
or piezoreflectance, are first-derivative techniques (Fig. 13.6(a)). In semicon­
ductor research (Section 13.6) another modulation technique, called electro­
reflectance, is often used, which provides the third derivative of R or e2. (It 
utilizes an alternating electric field which is applied to the semiconducting 
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Figure 13.6. Schematic representation of (a) the first derivative and (b) the third 
derivative of an ez-spectrum. The equivalent interband transitions at a so-called Mo 
symmetry point are shown in the inserts. Adapted from D.E. Aspnes, Surface Science 
37,418 (1973). 

material during the reflection measurement.) The third derivative provides 
sharper and more richly structured spectra than the first-derivative tech­
niques (Fig. 13.6(b)). In a first-derivative modulation spectrum, the lattice 
periodicity is retained, the optical transitions remain vertical and the inter­
band transition energy changes with the perturbation (see insert of Fig. 
13.6(a)). In electromodulation, the formerly sharp vertical transitions are 
spread over a finite range of initial and final momenta (see insert of Fig. 
13.6(b)). A relatively involved line-shape analysis of electroreflectance spec­
tra eventually yields the interband transition energies. 

We shall make use of reflection, absorption, and first-derivative spectra in 
the sections to come. 

13.2. Optical Spectra of Pure Metals 

13.2.1. Reflection Spectra 

The spectral dependence of the optical properties of metals was described 
and calculated in Chapter 11 by postulating that light interacts with a certain 
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Figure 13.7. Reflectivity spectrum for silver. Adapted from H. Ehrenreich et al., 
IEEE Spectrum 2, 162 (1965). © 1965 IEEE. 

number of free electrons and a certain number of classical harmonic oscilla­
tors, or equivalently, by intraband and interband transitions. In the present 
section we shall inspect experimental reflection data and see what conclusions 
can be drawn from these results with respect to the electron band structure. 

Figure 13.7 depicts the spectral reflectivity for silver. From this diagram, 
the optical constants (i.e., the real and imaginary parts of the complex di­
electric constant, el = n2 - k 2 and e2 = 2nk) have been calculated by means 
of a Kramers-Kronig analysis (Section 13.1.1). Comparing Fig. 13.8 with 
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Figure 13.8, Spectral dependence of 1:1 and 1:2 for silver. e1 and 1:2 were obtained from 
Fig. 13.7 by a Kramers-Kronig analysis. Adapted from H. Ehrenreich et al., IEEE 
Spectrum 2, 162 (1965). © 1965 IEEE. 
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Fig. 11.5 shows that for small photon energies, i.e., for E < 3.8 eV, the 
spectral dependences of el and e2 have the characteristic curve shapes for free 
electrons. In other words, the optical properties of silver can be described in 
this region by the concept of free electrons. Beyond 3.8 eV, however, the 
spectral dependences of el and e2 deviates considerably from the free electron 
behavior. In this range, classical oscillators, or equivalently, interband tran­
sitions, need to be considered. 

Now it is possible to separate the contributions of free and bound elec­
trons in el- and e2-spectra. For this, one fits the theoretical e2 to the experi­
mental e2 curves in the low-energy region. The theoretical spectral depen­
dence of e2 is obtained by the Drude equation (11.27). An "effective mass" 
and the damping frequency, V2, are used as adjustable parameters. With 
these parameters, the free electron part of el (denoted by ef) is calculated in 
the entire spectral range by using (11.26). Next, ef is subtracted from the 
experimental el, which yields the bound electron contribution, ef. Figure 
13.9 depicts an absorption band thus obtained, which resembles a calculated 
absorption band quite well (Fig. 11.9). 

We now tum to the optical spectra for copper (Figs. 13.10 and 13.11). We 
notice immediately one important feature: Copper possesses an absorption 
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Figure 13.9. Separation of e1 for silver into ef (free electrons) and ef (bound electrons). 
Adapted from H. Ehrenreich et aL, IEEE Spectrum 2, 162 (1965). © 1965 IEEE. 
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Figure 13.10. Reflectivity spectrum for copper. Adapted from H. Ehrenreich et aI., 
IEEE Spectrum 2, 162 (1965). © 1965 IEEE. 

band in the visible spectrum, which is, as already mentioned, responsible for 
the characteristic color of copper. We defined above a threshold energy at 
which interband transitions set in. In copper, the threshold energy is about 
2.2 eV (Fig. 13.11), which is assigned to the d-band ....... EF transition near the 
L-symmetry point. (This is marked by an arrow in Fig. 5.22.) Another peak 
is observed at slightly above 4 eV, which is ascribed to interband transitions 
from the Fermi energy near the L-symmetry point, as depicted in Figs. 12.3 
and 5.22. 
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Figure 13.11. Spectral dependence of e1 and e2 for copper. e1 and e2 were obtained 
from Fig. 13.10 by a Kramers-Kronig analysis. Adapted from H. Ehrenreich et aI., 
IEEE Spectrum 2, 162 (1965). © 1965 IEEE. 
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Figure 13.12. Reflection spectrum for alummum. Adapted from H. Ehrenreich et aI., 
IEEE Spectrum 2, 162 (1965). © 1965 IEEE. 

As a final example, we inspect the reflection spectrum of aluminum. Fig­
ures 13.12 and 13.13 show that the spectral dependences of el and e2 resem­
ble those shown in Fig. 11.5, except in the small energy region around 1.5 
eV. Thus, the behavior of aluminum may be described essentially by the free 
electron theory. This free electron-like behavior of aluminum can also be de­
duced from its band structure (Fig. 5.21), which has essential characteristics 
of free electron bands for fcc metals (Fig. 5.20). Interband transitions which 
contribute to the e2-peak near 1.5 eV occur between the W{ and WI sym­
metry points and the closely spaced and almost parallel L3 and LI bands. A 
small contribution stems from the W3 ---+ WI transition near 2 eV. 
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Figure 13.13. Spectral dependence of el and e2 for aluminum. Adapted from H. 
Ehrenreich et aI., IEEE Spectrum 2, 162 (1965). © 1965 IEEE. 
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*13.2.2. Plasma Oscillations 

We postulate now that the free electrons of a metal interact electrostatically, 
thus forming an electron "plasma" that can be excited by light of proper 
photon energy to collectively perform fluidlike oscillations. This plasma 
possesses, just as an oscillator, a resonance frequency, often called the 
plasma frequency. We already introduced in Section 11.2 the plasma fre­
quency, VI, and noted that the dielectric constant, e, becomes zero at VI. 

Thus, (10.12) reduces to 

(13.12) 

from which we conclude that at the plasma frequency el as well as e2 must be 
zero. Experience shows that oscillations of the electron plasma already occur 
when el and e2 are close to zero. 

The frequency dependence of the imaginary part of the reciprocal dielec-
tric constant peaks at the plasma frequency, as we will see shortly. We write 

1 1 el + ie2 el . e2 
-=---=---=--+1---e el - ie2 e2 + e2 e2 + e2 e2 + e2 . I 2 I 2 I 2 

(13.13) 

The imaginary part of the reciprocal dielectric constant, i.e., 

1 e2 
Im-;::=-2--2' 

e el + e2 
(13.14) 

is called the "energy loss function" which is large for el ---+ 0 and e2 < 1, i.e., 
at the plasma frequency. We will now inspect the energy loss functions for 
some metals. We begin with aluminum because its behavior may well be in­
terpreted by the free electron theory. We observe in Fig. 13.14 a pronounced 
maximum of Im(1/e) near 15.2 eV. The real part of the dielectric constant 
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Figure 13.14. Energy loss function for aluminum. Adapted from H. Ehrenreich et 
al., IEEE Spectrum 2, 162 (1965). © 1965 IEEE. 
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Figure 13.15. Energy loss function for silver. Adapted from H. Ehrenreich et aI., 
IEEE Spectrum 2, 162 (1965). © 1965 IEEE. 

(cd is zero at this frequency and C2 is small (see Fig. 13.13). Thus, we con­
clude that aluminum has a plasma resonance at 15.2 eV. 

Things are slightly more complicated for silver. Here, the energy loss 
function has a steep maximum near 4 eV (Fig. 13.15), which cannot be solely 
attributed to free electrons, since cf is only zero at 9.2 eV (see Fig. 13.9). The 
plasma resonance near 4 eV originates by cooperation of the d- as well as the 
conduction electrons. The loss function for silver has another, but much 
weaker, resonance near 7.5 eV. This maximum is essentially caused by the 
conduction electrons, but is perturbed by interband transitions which occur 
at higher energies. 

The reflection spectrum for silver (Fig. 13.7) can now be completely in­
terpreted. The sharp decrease in R near 4 e V by almost 99% within a fraction 
of an electron volt is caused by a weakly damped plasma resonance. The 
sudden increase, only 0.1 eV above the plasma resonance, takes place be­
cause of interband transitions that commence at this energy. Such a dramatic 
change in optical constants is unparalleled. 

13.3. Optical Spectra of Alloys 

It was demonstrated in the previous sections that knowledge of the spectral 
dependence of the optical properties contributes to the understanding of the 
electronic structure of metals. We will now extend our discussion to alloys. 
Several decades ago, N.F. Mott suggested that when a small amount of 
metal A is added to a metal B, the Fermi energy would simply assume an 
average value, while leaving the electron bands of the solvent intact. It was 
eventually recognized, however, that this "rigid-band model" needed some 
modification and that the electron bands are somewhat changed for an alloy. 
We use copper-zinc as an example. Figure 13.16 shows a series of differen-
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Figure 13.16. Experimental differential reflectograms for various copper-zinc alloys. 
The parameter on the curves is the average zinc concentration of the two alloys in 
at.%. The curve marked 0.5%, e.g., resulted by scanning the light beam between pure 
copper and a Cu-I% Zn alloy. Peaks A and D are designated as e2-type structures 
(Fig. 11.10) whereas features Band C belong to an el-type structure (Fig. 11.9). From 
RJ. Nastasi-Andrews and R.E. Hummel, Phys. Rev. B 16, 4314 (1977). 

tial reflectograms (see Section 13.1.3) from which the energies for interband 
transitions, ET, can be taken. Peak A represents the threshold energy for in­
terband transitions, which can be seen to shift to higher energies with in­
creasing zinc content. ET is plotted in Fig. 13.17 as a function of solute (X). 
Essentially, a linear increase in ET with increasing X is observed. The 
threshold energy for copper has been identified in Section 12.2 to be asso­
ciated with electron transitions from the upper d-band to the conduction 
band, just above the Fermi surface (see Fig. 12.3). The rise in energy differ­
ence between the upper d-band and Fermi level, caused by solute additions, 
can be explained in a first approximation by suggesting a rise in the Fermi 
energy which results when extra electrons are introduced into the copper 
matrix from the higher-valent solute. Gallium, which has three valence elec­
trons, would thus raise the Fermi energy more than zinc, which is indeed 
observed in Fig. 13.17. The slope of the ET =f(X) curve in Fig. 13.17 for 
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Figure 13.17. Threshold energies, ET, for interband transitions for various copper­
based alloys as a function of solute content. The ET values are taken from differential 
reflectograms similar to those shown in Fig. 13.16. The rigid band line (R.B.) for 
Cu-Zn is added for comparison. From RJ. Nastasi-Andrews and R.E. Hummel, 
Phys. Rev. B 16, 4314 (1977). 

zinc (as well as for other solutes) is considerably smaller than that predicted 
by the rigid band model. This suggests that the d-bands are likewise raised 
with increasing solute content and/or that the Fermi level is shifted up much 
less than anticipated. Band calculations substantiate this suggestion. They 
reveal that upon solute additions to copper, the d-bands become narrower 
(which results from a reduction in Cu-Cu interactions) and that the d-bands 
are lifted up as a whole. Furthermore, the calculations show that solute 
additions to copper cause a rise in EF and a downward shift of the bottom of 
the s-band. Figure 13.18 reflects these results. Because of the lowering of the 
bottom of the s-band (rl in Fig. 5.22), the Fermi energy rises much less than 
predicted had En remained constant. 

An unexpected characteristic of all ET = f(X) curves is that the threshold 
energy for interband transitions, ET , does not vary appreciably for solute 
concentrations up to slightly above 1 at. % (Fig. 13.17). Friedel predicted just 
this type of behavior and related it to "screening" effects. He argued that for 
the first few atomic percent solute additions to copper, the additional charge 
from the higher-valent solute is effectively screened and the copper matrix 
behaves as if the impurities were not present. The matrix remains essentially 
unperturbed as long as the impurities do not mutually interact. 

The differential reflectograms shown in Fig. 13.16 suggest two additional 
pieces of structure, one of which corresponds to feature 'D' near 5 eV and is 
assigned to electron transitions from the lower d-bands to the Fermi surface. 
This interband transition is not shown in Fig. 13.18 because of its large en­
ergy, which is beyond the scale of this figure. An ET versus X plot for peak 
'D' resembles Fig. 13.17. 
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Figure 13.18. Schematic band structure near L for copper (solid lines) and an as­
sumed dilute copper-based alloy (dashed lines). Compare with Figs. 12.3 and 5.22. 

The third transition in the chosen energy region occurs at about 4 eV and 
involves the structural features 'B' and 'C'. The associated transition energy 
is seen to decrease with increasing solute content (Fig. 13.19). Features 'B' 
and 'C' are ascribed to transitions near the L-syrnmetry point, originating 
near the Fermi energy and terminating at the conduction band. It can be 
seen in Fig. 13.18 that the transition energy just mentioned is smaller for 
copper-based alloys than for pure copper, quite in agreement with the ex-
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Figure 13.19. Energy of peak B for various dilute copper-based alloys. From R.J. 
Nastasi-Andrews, and R.E. Hummel, Phys. Rev. B 16, 4314 (1977). 
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perimental findings. The reader is asked at this point to compare Figs. 13.10 
and 13.11 with Fig. 13.16 and see how different optical techniques comple­
ment each other in revealing the electronic structure of solids. 

*13.4. Ordering 

It was shown in Section 7.5.3 that the resistivity decreases when solute atoms 
of an alloy are periodically arranged on the regular lattice sites. Thus, we 
conclude that ordering has an effect on the electronic structure and hence on 
the optical properties of alloys. The best way to study ordering is to compare 
two specimens of the same alloy when one of them is ordered and the other 
is in the disordered state. This way, peaks occur in a differential optical 
spectrum whenever the ordered state causes extra interband transitions 
comparable to superlattice lines in X-ray spectroscopy. As an example, 
Fig. 13.20 depicts an optical spectrum for the intermetallic phase CU3Au. We 
note several transitions, among them an e2-type structure with a peak energy 
at 2.17 e V and an el-type structure with a transition energy around 3.6 e V 
(median between 3.29 eV and 3.85 eV, see Fig. 11.9). We shall explain them 
by referring to Fig. 13.21, which depicts the first Brillouin zone of the dis­
ordered fcc lattice in which a simple cubic Brillouin zone, representing the 
superlattice, is inscribed. The r - X direction of the fcc Brillouin zone is 
bisected by the face of the cubic Brillouin zone at the point X. The point X is 
then thought to be folded back to the point r. A new transition from the 
d-bands (e.g., at r 12) to the point XJ (unfolded) can now take place (see 
Fig. 5.22). Folding along r - M - K, and possibly along other directions, 
explains the other transitions. 
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Figure 13.20. Differential reflectogram of (long-range) ordered versus disordered 
CU3Au. From R.E. Hummel, Phys. Stat. Sol. (a) 76, II (1983). 
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Figure 13.21. First Brillouin zone of an fcc lattice with inscribed Brillouin zone rep­
resenting a cubic primitive superlattice. 

Short-range ordering shows comparatively smaller effects than long-range 
ordering (Fig. 13.22). The reflectivity difference between ordered and dis­
ordered alloys is about 3% for long-range ordering compared to 0.5% in the 
case of short-range ordering. Still, even in the latter case, a superlattice 
transition is observed, which is attributed to the periodic arrangement of 
solute atoms in small domains (about 1-2 nm in diameter). 
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Figure 13.22. Differential reflectogram of (short-range) ordered versus disordered 
Cu-17 at.% AI. From J.B. Andrews, R.J. Andrews, and R.E. Hummel, Phys. Rev. B 
22, 1837 (1980). 
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Interestingly enough, optical investigations provide a further piece of in­
formation, which enables us to look upon the short-range ordered state from 
a different perspective. It has been observed that certain peaks in a differen­
tial refiectogram shift due to ordering, exactly as they would do when a sol­
ute is added to a solvent (see Section 13.3). From this we conclude that in the 
short-range ordered state, the interaction between dissimilar atoms is slightly 
larger than that for similar atoms. 

*13.5. Corrosion 

Studies of the optical properties have been used for many decades for the 
investigation of environmentally induced changes of surfaces. Optical studies 
are nondestructive, simple, and allow the investigation of oxides during their 
formation. No vacuum is required, in contrast to many other surface tech­
niques. We use as an example the electrochemical corrosion of copper in an 
aqueous solution. A copper disc is divided into two parts that are electrically 
insulated from each other by a thin polymer film. One half is held electrically 
at the protective potential (as reference) and the other at the corrosion po­
tential. No artifacts from the electrolyte, the corrosion cell window, or the 
metal substrate are experienced since the only difference in the light path of a 
differential refiectometer is the corrosion film itself. Figure 13.23 depicts a 
series of differential refiectograms demonstrating the evolution of CU20 on a 
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Figure 13.23. Differential reflectograms depicting the in situ evolution of CU20 on 
a copper substrate in a buffered electrolyte of pH 9. One sample half was held 
potentiostatically at -200 mV (SCE) for various times, the other at the protective 
potential (-500 mV (SCE)). From R.E. Hummel, Phys. Stat. Sol. (a) 76,11 (1983). 



13. Applications 257 

copper substrate. We observe that the peak height near 3.25 eV, and thus the 
corrosion film thickness, initially grows rapidly. The growth rate slows down 
as the film becomes thicker. The growth kinetics has been observed to obey a 
logarithmic relationship. 

13.6. Semiconductors 

Intrinsic semiconductors have, at low temperatures, a completely filled 
valence band and an empty conduction band (see Chapter 8). Consequently, 
no intraband transition, or classical infrared (IR) absorption, is possible at 
low temperatures. Thus, the optical behavior of an intrinsic semiconductor is 
similar to that of an insulator, i.e., it is transparent in the low energy (far IR) 
region. Once the energy of the photons is increased and eventually reaches 
the gap energy, then the electrons are excited from the top of the valence 
band to the bottom of the conduction band. The semiconductor becomes 
opaque like a metal (see Fig. 13.24). The onset for interband transitions is 
thus determined by the gap energy, which characteristically has values be­
tween 0.2 eV and 3.5 eV (see Table 8.1 and Appendix 4). The corresponding 
wavelength lies in the near IR or visible region. 

The reader certainly knows from Chapter 8 that silicon is the most im­
portant semiconductor material. It is therefore quite appropriate at this 
point to look at the absorption spectrum of Si, Fig 13.25. The situation is, 
however, not as simple as just explained, because Si is a so-called "indirect­
band gap material". By inspecting its band diagram (see Fig. 5.23 or Fig. 
13.26) we notice that the maximum of the valence band and the minimum of 
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Figure 13.24. Schematic representation of the absorption spectrum of an intrinsic, 
direct-band gap semiconductor. The material is transparent below the gap energy 
and opaque above Eg • 
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Figure 13.25. Differential reflectogram of silicon (after R.E. Hummel and W. Xi). 
llR/ R is essentially the absorption, 82, as explained in Section 13. 1.3 

the conduction band are not at the same point in B-space. Vertical transitions 
are thus not pennissible (or have only a very small probability) at energies 
below about 3.4 eV. Accordingly, we observe in the optical spectrum de­
picted in Fig 13.25 three distinct absorption peaks, which are known by the 
designations L~ - L\ (3.4 eV), L (4.2 eV), and L3 - L3 (5.6 eV) (see Fig. 
5.23). These peaks are all caused by direct interband transitions in specific 
areas of k-space. 

Nevertheless, indirect transitions between the top of the valence band and 
the bottom of the conduction band may be possible to a limited degree pro­
vided the necessary momentum (wave vector k) is furnished by a phonon 
(see Fig. 13.26). We have already discussed phonon-assisted transitions in 
Section 12.2 and explained there that indirect interband transitions are par­
ticularly observed in the absence of direct transitions. Indirect interband 
transitions are generally quite weak. 

Our discussion of the optical spectra of semiconductors is not complete by 
considering only direct or indirect interband transitions. Several other ab­
sorption mechanisms may occur. It has been observed, for example, that the 
absorption spectra for semiconductors show a structure for photon energies 
slightly below the gap energy (Fig. 13.27(a)). Frenkel explained this be­
havior by postulating that a photon may excite an electron so that it remains 
in the vicinity of its nucleus, thus forming an electron-hole pair, called an 
exciton. Electrons and holes are thought to be bound together by electro­
static forces and revolve around their mutual center of mass. The elec­
trons may hop through the crystal and change their respective partners. This 
motion can also be described as an exciton wave. One depicts the exci­
tons by introducing "exciton levels" into the forbidden band (Fig. 13.27(b)). 
They are separated from the conduction band by the "binding energy", Ex, 
whose position can be calculated by an equation similar to (4.18a) (see also 
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Figure 13.26. Schematic representation of direct versus indirect interband absorp­
tions in Si. In the case of an indirect transition, a phonon needs to be additionally 
absorbed. Compare to Fig. 5.23 and 12.2. 

Problem 8/10): 

Ex = - (4neo) 22n 2/z 2e2 ' 
(13.15) 

where n is an integer, m* is the effective mass of the exciton (which is the 
average of me and mh), and e is the a.c. dielectric constant. Ex is character-
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Figure 13.27. (a) Spectral dependence of the absorbance, IX, (1O.21a) for gallium ar­
senide at 21 K. Adapted from M.D. Sturge, Phys. Rev. 127,768 (1962). (b) Schematic 
representation of exciton energy levels and an exciton in a semiconductor (or insula­
tor). 
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istically about 0.01 eV. The exciton levels are broadened by interactions with 
impurities or phonons. 

Finally, extrinsic semiconductors have, as we know, donor or acceptor 
states near the conduction or the valence band, respectively (Section 8.3). 
At sufficiently high temperatures, optical transitions from and to these 
states can take place, which also cause weak absorption peaks below the gap 
energy. 

It should be noted that the temperature slightly influences the absorption 
characteristics of a semiconductor. The change in gap energy is about 
-2 x 10-4 eVjK (see Appendix, and Equation (8.1)), which stems from an 
apparent broadening of valence and conduction levels with increasing tem­
perature due to transitions with simultaneous emission and absorption of 
photons. Another temperature-enhanced effect should be considered, too. 
Once electrons have been excited from the valence into the conduction band 
(either by photons or thermal excitation), holes are present in the upper part 
of the valence bands. Then, photons having energies well below Eg can be 
absorbed by intraband transitions. These transitions are, however, relatively 
weak. 

Optical absorption measurements are widely used in semiconductor re­
search since they provide the most accurate way to determine the gap en­
ergies and the energies of the localized states. Measurements are normally 
performed at low temperatures so that the thermal excitations of the elec­
trons do not mask the transitions to be studied. Optical measurements are 
capable of discriminating between direct and indirect transitions, based on 
the magnitude of the absorption peaks. 

13.7. Insulators (Dielectric Materials and 
Glass Fibers) 

As we know, insulators are characterized by completely filled valence bands 
and empty "conduction" bands. Thus, no intraband transitions, i.e., no clas­
sical IR absorption, takes place. Furthermore, the gap energy for insulators 
is fairly large (typically 5 eV or larger) so that interband transitions do not 
occur in the IR and visible spectrum either. They take place, however, in the 
ultraviolet (UV) region. Third, excitons may be created, which cause ab­
sorption peaks somewhat below the gap energy. For example, the lowest 
energy for an exciton level (and thus for the first exciton absorption peak) for 
NaCI has been found to be at about 7 eV, i.e., in the vacuum UV region. 
(Other alkali halides have very similar exciton energies.) We suspect, there­
fore, that insulators are transparent from the far IR throughout the visible 
up to the UV region. This is indeed essentially observed. However, in the IR 
region a new absorption mechanism may take place which we have not yet 
discussed. It is caused by the light-induced vibrations of the lattice atoms, 
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Figure 13.28. One-dimensional representations of possible vibration modes of atoms 
that have been excited by IR electromagnetic radiation (heat). 

i.e., by the excitation of phonons by photons. We need to explain this in some 
more detail. 

Let us first consider a monatomic crystal (one kind of atom). The indiviq­
ual atoms are thought to be excited by light of appropriate frequency to 
perform oscillations about their points of rest. Now, the individual atoms are 
surely not vibrating independently. They interact with their neighbors, which 
causes them to move simultaneously. For simplicity, we model the atoms to 
be interconnected by elastic springs, see Fig. 13.28. Thus, the interaction of 
light with the lattice can be mathematically represented in quite a similar 
manner to the one used when we discussed and calculated the classical elec­
tron theory of dielectric materials. (In Section 11.6 we represented one atom 
in an electric field as consisting of a positively charged core which is bound 
quasi-elastically to an electron.) A differential equation similar to (11.32) 
may be written for the present case as 

d2x ,dx (. ) 
m dt2 + y dt + KX = ego exp lwt , (13.16) 

which represents the oscillations of atoms under the influence of light whose 
excitation force is ego exp(iwt). As before, the factor K· x is the restoring 
force that contains the displacement x and an interatomic force constant K 

(i.e., a "spring constant," or a "binding strength" between the atoms). The 
damping of the oscillations is represented by the second term in (13.16). 
Damping is thought to be caused by interactions of the phonons with lattice 
imperfections, or with external surfaces of the crystal, or with other pho­
nons. The oscillators possess one or several resonance frequencies wo, which 
depend on the mass of the atoms on the vibrational modes (see Fig. 13.28), 
and on the restoring force (see (11.34)). The solution of the differential 
equation (13.16) yields a spectral dependence of e1 and e2 that is very similar 
to that shown in Figs. 11.9-11.12. 

The situation becomes slightly more complicated when diatomic solids, 
such as ionic crystals, are considered. In this case, two differential equations 
of the type of (13.16) need to be written. They have to be solved simulta­
neously. Actually, one needs to solve 2N coupled differential equations, 
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Figure 13.29. Spectral reflectivity of NaCl at room temperature in the far IR region. 

where N is the number of unit cells in the lattice. The result is, however, 
qualitatively still the same. The resonance frequency for diatomic crystals is 

Olo = 2K(_1 +_1), 
ml m2 

(13.17) 

where ml and m2 are the masses of the two ion species. Figure 13.29 depicts 
the spectral reflectivity of NaCl in the IR. Sodium chloride is transmissive 
between 0.04 eV and 7 eV. At the upper boundary energy, exciton absorp­
tion sets in. 

Fused quartz (depending on the method of manufacturing) is essentially 
transparent between 0.29 eV and 6.9 eV (4.28 pm and 0.18 pm), having, 
however, two pronounced absorption peaks near 1.38 pm and 2.8 pm. 
Window glass has a similar transmission spectrum as fused quartz, with the 
exception that its UV cut-off wavelength is already near 0.38 pm (3.3 eV). In 
recently developed sol-gel silica "glasses" the absorption peaks near 1.38 pm 
and 2.8 pm are virtually suppressed, which causes this material to be trans­
parent from 0.16 pm to 4 pm. The absorption spectrum for the commercially 
important borosilicate/phosphosilicate glass, used for optical fibers, is shown 
in Fig. 13.30. We notice the aforementioned peak near 1.38 pm, which is 
caused by oscillations of OH- ions. We shall refer to this spectrum in a later 
section. 

A word should be added about the opacity of some dielectric materials, 
such as enamels, opal glasses, glazes, or porcelains, which should be trans­
parent in the visible region according to our discussion above. This opacity is 
caused by the scattering of light on small particles which are contained in the 
matrix. Part of the light is diffusely transmitted and part of it is diffusely re­
flected. The larger the specular part of the reflected light, the higher the gloss. 
Very often, opacifiers are purposely added to a dielectric material to cause 
wanted effects. The particle size should be nearly the same as the wavelength 
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Figure 13.30. Absorption spectrum of highly purified glass for fiber-optic applica­
tions which features a phospho silicate core surrounded by a borosilicate cladding. 

of the light, and the index of refraction should be largely different from that 
of the material, to obtain maximal scattering. 

13.8. Emission of Light 

13.8.1. Spontaneous Emission 

So far we have discussed only the absorption of light by matter. We learned 
that due to the interaction of photons with electrons, the electrons are ex­
cited into higher energy states. The present section deals with the emission of 
photons. 

An electron, once excited, must eventually revert back into a lower, empty 
energy state. This occurs, as a rule, spontaneously within a fraction of a 
second and is accompanied by the emission of a photon and/or the dissipa­
tion of heat, that is, phonons. The emission of light due to reversion of elec­
trons from a higher energy state is called luminescence. If the electron tran­
sition occurs within nanoseconds or faster, the process is called fluorescence. 
In some materials, the emission takes place after microseconds or milli­
seconds. This slower process is referred to as phosphorescence. A third pro­
cess, called afterglow, which is even slower (seconds), occurs when excited 
electrons have been temporarily trapped, for example, in impurity states 
from which they eventually return after some time into the valence band. 
Commercially used phosphorescing materials consist, for example, of metal 
sulfides (such as ZnS), tungstates, oxides (such as ZnO having a surplus of 
Zn), and many organic substances. More expensive phosphors are rare earth 
elements, such as Eu3+ (red), Eu2+ (blue), or Tb. 
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Photoluminescence is observed when photons impinge on a material which 
in turn re-emits light of a lower energy. Electroluminescing materials emit 
light as a consequence of an applied voltage or electric field. Cathodo­
luminescence, finally, is the term which is used to describe light emission 
from a substance that has been showered by electrons of higher energy. All 
of these effects have commercial applications. For example, the inside walls 
of picture tubes of television sets are coated with a cathodoluminescing 
material, basically ZnS, which emits light when hit by electrons generated by 
a hot filament (cathode ray). Silver-doped ZnS yields blue, and Cu-doping 
yields green colors. In fluorescent lamps, the inside of a glass tube is covered 
with tungstates, silicates, rare earth elements, or halophosphates, which emit 
light as a consequence of bombardment with ultraviolet light that has been 
generated by a mercury glow discharge. The image generated in electron 
microscopes is made visible by a screen that consists of a phosphor such as 
ZnS. The same is true when X-rays or y-rays need to be made visible. 

Spontaneous light emission occurs also in common devices such as candles 
or incandescent light bulbs. In both of these cases, the electrons have been 
excited into higher energy states by heat energy (thermoluminescence). The 
larger the temperature, the higher the energy of the photons and the shorter 
their wavelength. For example, heating to about 700°C yields a dark red 
color whereas heating near 1600°C results in orange hues. At still higher 
temperatures, the emitted light appears to be white, since large portions of 
the visible spectrum are emitted. Spontaneous emission possesses none of the 
characteristic properties of laser light: the radiation is emitted through a 
wide-angle region in space, the light is phase incoherent (see below) and is 
often polychromatic (more than one waVelength). 

Light-emitting diodes (LED's) have recently gained substantial impor­
tance as electro luminescing devices whose efficiencies have surpassed those 
of incandescent lamps. They can be manufactured to emit light throughout 
the entire visible spectrum. They are rugged, small and relatively inexpen­
sive, and will probably dominate the lighting market soon. We shall devote 
Section 13.8.13 to this topic. Light-emitting devices for display purposes will 
be discussed in subsequent sections. 

13.8.2. Stimulated Emission (Lasers) 

A quite different type of light source is the laser, which is, among others, 
used for telecommunications (optical fiber networks), data storage (compact 
discs), laser printers, and grocery scanners. This section will explain how 
lasers work. 

Let us consider two energy levels, El and E2 , and let us assume for a mo­
ment that the higher energy level, E2, contains more electrons than the lower 
level, E 1, i.e., let us assume a population inversion of electrons (Fig. 13.31(a)). 
We further assume that by some means (which we shall discuss in a moment) 
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Figure 13.31. SchematIc representation of stimulated emission between two energy 
levels, E2 and El. The dots symbolize electrons. 

the electrons in E2 are made to stay there for an appreciable amount of time. 
Nevertheless, one electron will eventually revert to the lower state. As a 
consequence, a photon with energy E21 = hV21 is emitted (Fig. l3.31(b)). 
This photon might stimulate a second electron to descend in step to EI, thus 
causing the emission of another photon which vibrates in phase with the first 
one. The two photons are consequently phase coherent (Fig. 13.31(c)). They 
might stimulate two more electrons to descend in step (Fig. 13.31(d)) and so 
on until an avalanche of photons is created. In short, stimulated emission of 
light occurs when electrons are forced by incident radiation to add more 
photons to an incident beam. The acronym LASER can now be understood; 
it stands for light amplification by stimulated emission of radiation. 

Laser light is highly monochromatic because it is generated by electron 
transitions between two narrow energy levels. (As a consequence, laser light 
can be focused to a spot less than 1 .urn in diameter.) Another outstanding 
feature of laser light is its strong collimation, i.e., the parallel emergence of 
light from a laser window. (The cross-section of a laser beam transmitted to 
the moon is only 3 km in diameter!) We understand the reason for the colli­
mation best by knowing the physical setup of a laser. 

The lasing material is embodied in a long narrow container called the 
cavity; the two faces at opposite ends of this cavity must be absolutely par­
allel to each other. One of the faces is silvered and acts as a perfect mirror, 
whereas the other face is partially silvered and thus transmits some of the 
light (Fig. 13.32). The laser light is reflected back and forth by these mirrors, 
thus increasing the number of photons during each pass. After the laser has 

- , --
--== ----.. .. . .. . ,. 

Semi-reflecting Mirror 
mirror 

(window) 

Figure 13.32. Schematic representation of a laser cavity and the buildup of laser 
oscillations. The stimulated emission eventually dominates over the spontaneous 
emission. The light leaves the cavity at the left side. 
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been started, the light is initially emitted in all possible directions (left part of 
Fig. 13.32). However, only photons that travel strictly parallel to the cavity 
axis will remain in action, whereas the photons traveling at an angle will 
eventually be absorbed by the cavity walls (center part in Fig. 13.32). A 
fraction of the photons escape through the partially transparent mirror. 
They constitute the emitted beam. 

We now need to explain how the electrons arrive at the higher energy 
level, i.e., we need to discuss how they are pumped from E1 into E2• One of 
the methods is, of course, optical pumping, i.e., the absorption of light stem­
ming from a polychromatic light source. (Xenon flashlamps for pulsed 
lasers, or tungsten-iodine lamps for continuously operating lasers, are often 
used for pumping. The lamp is either wrapped in helical form around the 
cavity, or the lamp is placed in one of the focal axes of a specularly reflecting 
elliptical cylinder, whereas the laser rod is placed along the second focal 
axis.) Other pumping methods involve collisions in an electric discharge, 
chemical reactions, nuclear reactions, or external electron beam injection. 

The pumping efficiency is large if the bandwidth, JE, of the upper (and the 
lower) electron state is broad. This way, an entire frequency range (rather 
than a single wavelength) leads to excited electrons (Fig. 13.33(a)). 

Next, we discuss how population inversion can be achieved. For this we 
need to quote Heisenberg's uncertainty principle, 

JE ·Jt ex h, (13.18) 

which states that the time span, Jt, for which an electron remains at the 
higher energy level, E2, is large when the bandwidth, JE, of E2 is narrow. In 
other words, a sharp energy level (JE small, Jt large) supports the population 
inversion, Fig. 13.33(b)). On the other hand, a large pumping efficiency re­
quires a large JE (Fig. 13.33(a)), which results in a small Jt and a small 
population inversion. Thus, high pumping efficiency and large population 
inversion mutually exclude each other in a two-level configuration. In es-

bt large 
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Figure 13.33. Examples of possible energy states in a two-level configuration. (a) bE 
large, i.e., large pumping efficiency but little or no population inversion. (b) Poten­
tially large population inversion (01 large) but small pumping efficiency. (Note: Two­
level lasers do not produce a population inversion, because absorption and emission 
compensate each other.) 
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Figure 13.34. Three-level laser. The nonradiative, phonon-assisted decay is marked 
by a dashed line. Lasing occurs between levels E2 and E\. High pumping efficiency to 
E3. High population inversion at E2. 

sence, a two-level configuration as depicted in Fig. 13.33 does not yield laser 
action. 

The three-level laser (Fig. 13.34) provides improvement. There, the "pump 
band", E3, is broad, which enables a good pumping efficiency. The electrons 
revert after about 10- 14 s into an intermediate level, E2, via a nonradiative, 
phonon-assisted process. Since E2 is sharp and not strongly coupled to the 
ground state, the electrons remain much longer, i.e., for some microseconds 
or even milliseconds on this level. This provides the required population 
InVerSIOn. 

An even larger population inversion is obtained using a four-level laser. In 
this configuration the energy level E2 is emptied rapidly by electron tran­
sitions into a lower level, E1 (Fig. 13.35). It should be added that some three­
and four-level lasers have several closely spaced pumping bands, which, of 
course, increases the pumping efficiency. 

The highest population inversion is achieved by adding Q-switching. For 
this method, the mirror in Fig. 13.32 is turned sideways during pumping to 
reduce stimulated emission, i.e., to build up a substantial population inver­
sion. After some time, the mirror is turned back into its original vertical 
position, which results in a burst of light lasting 10-20 ns. 

" " 

/ 
/ 

Figure 13.35. Four-level laser. 



268 III. OptIcal PropertIes of Matenals 

Laser materials cannot be created at will in, say, three- or four-level con­
figurations. They can, however, be selected from hundreds of substances to 
suit a specific purpose. Laser materials include crystals (such as ruby), glasses 
(such as neodymium-doped glass), gases (such as helium, argon, xenon), 
metal vapors (such as cadmium, zinc, or mercury), molecules (such as carbon 
dioxide), or liquids (solvents which contain organic dye molecules). Table 
13.1 lists the properties of some widely used lasers. We observe that many 
lasers emit their light in the red or IR spectrum. Exceptions are the He-Cd 
laser (A. = 325 nm), the argon laser (A. = 520 nm), the tunable dye lasers, and 
certain semiconductor lasers. Lasers can be operated in a continuous mode 
(CW), or, with a higher power output, in the pulsed mode. The power out­
put varies over many orders of magnitude and it can even be increased if 
Q-switching is applied (specifically, from 10-9 to 1020 Watt). A few impor­
tant laser types need special mention. 

13.8.3. Helium-Neon Laser 

A cavity about 2 mm in diameter is filled with 0.1 Torr Ne and 1 Torr He 
(Fig. 13.36(a)). A current that passes through the gas produces free electrons 
(and ions). The electrons are accelerated by the electric field and excite the 
helium gas by electron-atom collisions. Some of the helium levels are reso-

3390nm 
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Figure 13.36. Helium-neon laser. (a) Schematic diagram of the laser cavity with 
Littrow prism to obtain preferred oscillation at one wavelength. (The end windows 
are inclined at the Brewster angle for which plane-polarized light suffers no reflection 
losses.) (b) Energy level diagram for helium and neon. The decay time for the p-states 
is ~10 ns; that of the s-states 100 ns. The letters on the energy levels represent the 
angular momentum quantum number; the number in front of the letters gives the 
value for the principal quantum number; and the superscripts represent the multi­
plicity (singlet, doublet, etc.), see Appendix 3. 
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Table 13.1. Properties of Some Common Laser Materials. 

Beam 
Wave- diver-
length(s) gence Peak power 

Type of laser (nm) (mrad) output (W) Comments 

Ruby 694.3 10 cw:a ~5 Optically pumped 
(Cr3+ -doped 5 pulsed (1-3 ms): three-level laser. 
Ah0 3) 0.5 106-108 Lasing occurs 

Q-switched (10 ns): between Cr3+ levels. 
109 Low efficiency 

(0.1 %). Historic 
device (1960). 

Neodymium 1,064 3-8 CW: 103 pulsed Optically pumped four-
(N d 3+ -doped (0.1-1 J1,s): ~104 level laser. High 
glass or efficiency 2%. 
YAGb

) 

HeNe 632.8 10-3_10-2 See Fig. 13.36 and text. 
(1150; 3390) Most widely used. 

HeCd 441.6 150mWCW Similarly pumped as 
(gas/metal 325 100mW HeNe laser. Used 
vapor) 353.6 20mW for high-speed laser 

printers, and writing 
data on photoresists 
for CD-ROMs. 
Efficiency: up to 
0.02%. 

Argon ion 488 ~25CW 0.1 % Efficiency 
CO2 10,600; 2 CW: 10-1.5 x 104 High efficiency (20%). 

9,600 pulsed (102-103 ns): Lasing occurs 
105 between vibrational 

levels (Fig. 13.37). 
Semiconductor Homojunction, pulsed: Small size, direct 
GaAs ~870 250 (102 ns) 10-30 conversion of 

Heterojunction, CW: electrical energy into 
GaAIAsc ~850 500 1-4 x 10-1 optical energy. 10-

55% efficiency. See 
Figs. 13.38 and 
13.43. 

Dye 350-1000 3 CW: ~1O-1 Lasing occurs between 
(organic dyes 10 pulsed (6 ns) ~105 vibrational sublevels 
in solvents) of molecules. 

Tunable by Littrow 
prism (Fig. 13.36(a)). 

'CW: Continuous wave. 
bYttrium aluminum garnet (Y3AhOlS). 
<See Fig. 13.40. 
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Figure 13.37. C02 laser. (a) Fundamental modes of vibration for a C02 molecule; 
VI: symmetric stretching mode; V2: bending mode; V3: asymmetric stretching mode. 
(b) Energy level diagram for various vibrational modes. 

nant with neon levels so that the neon gas also becomes excited by resonant 
energy transfer (Fig. 13.36(b)). This constitutes a very efficient pumping into 
the neon 2s- and 3s-levels. (Direct electron-neon collisions also contribute to 
the pumping). Lasing occurs between the neon s- and p-levels and produces 
three characteristic wavelengths. Suppression of two of the wavelengths is 
accomplished by multilayer dielectric mirrors, which provide a maximum 
reflectivity at the desired wavelength, or by a Littrow prism, as shown in Fig. 
13.36(a). 

13.8.4. Carbon Dioxide Laser 

The CO2 molecule possesses three fundamental modes of vibration, as 
shown in Fig. 13.37(a). The lasing occurs between these levels as shown 
in Fig. l3.37(b). Pumping is accomplished by electron-atom collisions (see 
above) and by a resonant energy transfer from N2 molecules which are 
added to the CO2. Nitrogen (and helium) greatly improves the pumping 
efficiency of the CO2 laser, which is one of the most efficient and powerful 
lasers. 

13.8.5. Semiconductor Laser 

The "cavity" for this laser consists of heavily doped (10 18 cm-3) n- and p­
type semiconductor materials such as GaAs. The energy band diagram for 
ap-njunction has been shown in Fig. 8.19 and is redrawn in Fig. 13.38(a) 
for the case of forward bias. We notice a population inversion of electrons in 
the depletion layer. Two opposite end faces of this p-n junction are made 
parallel and are polished or cleaved along crystal planes. The other faces are 
left untreated to suppress lasing in unwanted directions (Fig. 13.38(b)). A 
reflective coating of the window is usually not necessary since the reflectivity 
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of the semiconductor is already 35%. The pumping occurs by direct injection 
of electrons and holes into the depletion region. Semiconductor lasers are 
small and can be quite efficient. 

13.8.6. Direct-Versus Indirect-Band Gap Semiconductor 
Lasers 

We need to discuss now whether or not all semiconducting materials are 
equally well suited for a laser. Indeed, they are not. Direct-band gap mate­
rials, such as GaAs, have a much higher quantum efficiency for the emission 
of light than indirect-band gap materials, such as silicon. This needs some 
explanation. Let us assume that an electron at the top of the valence band in 
silicon has absorbed energy, and has thus been excited (pumped) by means 
of a direct interband transition into the conduction band, as shown in Fig. 
13.39. This "hot" electron quickly thermalizes, i.e., it reverts down within 
10- 14 s to the bottom of the conduction band in a nonradiative process, 
involving a phonon (to conserve momentum, see Section 12.2). In order to 
recombine finally with the left-behind hole in the valence band (by means of 
an indirect transition) a second phonon-assisted process has to take place. 
This requirement substantially reduces the probability for emission. The time 
interval which elapses before such a recombination takes place may be as 
much as 0.25 s, which is substantially longer than it would take for a direct 
recombination in a pumped semiconductor. Before this quarter of a second 
has passed, the electron and also the hole have already recombined through 
some other nonradiative means involving impurity states, lattice defects, etc. 
Thus, the electron in question is lost before a radiative emission occurs. This 
does not mean that indirect emissive transitions would never take place. In 
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Figure 13.38. (a) Energy band diagram of a heavily doped, forward-biased semi­
conductor. (b) Schematic setup of a semiconductor laser. 



272 III. Optical Properties of Materials 

E 

L 

Figure 13.39. Direct interband transition pumping (Ep) and phonon-involved rever­
sion of a hot electron by indirect transitions for an indirect-band gap semiconductor 
such as silicon. (Compare with Figs. 5.23 and 12.2.) 

fact, they do occur occasionally and have been observed, for example, in 
GaP, but with a very small quantum efficiency. Indirect-band gap semi­
conductors therefore seem to be not suited for lasers. It should be added, 
however, that silicon, when made porous by anodically HF etching, has been 
observed to emit visible light. It is speculated that the etching creates an ar­
ray of columns which act as fine quantum lines, and thus alter the electronic 
band structure of silicon to render it direct. Moreover, spark-processed Si 
emits quite efficiently in the blue and green spectral range and is extremely 
stable against high temperatures, laser light, and HF etchings. However, 
none of these Si-based materials have yielded a laser so far. 

13.8.7. Wavelength of Emitted Light 

The wavelength of a binary GaAs laser is about 0.87 11m. This is, however, 
not the most advantageous wavelength for telecommunication purposes be­
cause glass attenuates light of this wavelength appreciably. By inspecting 
Fig. 13.30 we note that the optical absorption in glass is quite wavelength 
dependent, having minima in absorption at 1.3 11m and 1.55 11m. For­
tunately, the band gap energy, i.e., the wavelength at which a laser emits 
light, can be adjusteq to a certain degree by utilizing ternary or quaternary 
compound semiconductors (Fig. 13.40). Among them, Inl_xGaxAsyPI_y 
plays a considerable role for telecommunication purposes, because the useful 
emission wavelengths of these compounds can be varied between 0.886 11m 
and 1.55 11m (which corresponds to gap energies from 1.4 eV to 0.8 eV). In 
other words, the above-mentioned desirable wavelengths of 1.3 11m and 1.55 
11m can be conveniently obtained by utilizing a properly designed indium­
gallium-arsenide-phosphide laser. 

Red lasers are quite common. They are widely used, for example in laser 
printers, grocery scanners, and compact disc players. On the other hand, 
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Figure 13.40. Lattice constants, energy gaps, and emission wavelengths of some ter­
nary and quaternary compound semiconductors at 300 K. The lines between the 
binary compounds denote ternaries. The cross-hatched lines indicate indirect inter­
band transitions. Pure silicon is also added for comparison. 

blue semiconductor lasers have been more of a problem to fabricate. This 
hurdle seems to have been partially overcome now by an InGaN laser that 
emits at 399 nm. It involves a two-dimensional matrix of surface-emitting 
lasers that are optically pumped at 367 nm by a nitrogen laser-pumped dye 
laser. In other words, this laser does not yet emit blue light by merely ap­
plying a voltage, as in the case of the red lasers. 

A note on compound semiconductor fabrication needs to be inserted at 
this point. Semiconductor compounds are usually deposited out of the gas­
eous or liquid phase onto an existing semiconductor substrate, whereby a 
relatively close match of the lattice structure of substrate and layer has to be 
maintained. This process, in which the lattice structure of the substrate is 
continued into the deposited layer, is called "epitaxial growth." The impor­
tant point is that, in order to obtain a strain-free epitaxial layer, the lattice 
constants of the involved components have to be nearly identical. Figure 
13.40 shows, for example, that this condition is fulfilled for GaAs and AlAs. 
These compounds have virtually identical lattice constants. A near-perfect 
lattice match can also be obtained for ternary Ino.53Gao.47As on an InP sub­
strate, see Fig. 13.40. In short, the critical parameters for designing lasers 
from compound semiconductors include the band gap energy, the similarities 
of the lattice constants of the substrate and active layer, the fact whether or 
not a direct-band gap material is involved, and the refractive indices of the 
core and cladding materials (see Section 13.8.9). 

Finally, the emission wavelength depends on the temperature of opera­
tion, because the band gap decreases with increasing temperature (see 
Equation (8.1) and Appendix 4) according to the empirical equation 

l;T2 
EgT = EgO - T + ()D' (13.19) 
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Figure 13.41. Schematic representation of the power output of a diode laser versus 
the pump current density. The threshold current density for a homojunction GaAs 
laser is on the order of 104 A/cm2• 

where Ego is the band gap energy at T = 0 K, (~5 X 10-4 eVjK, and eD is 
the Debye temperature (see Table 19.2 and Section 19.4), which is 204 K for 
GaAs. 

13.8.8. Threshold Current Density 

A few more peculiarities of semiconductor lasers will be added to deepen our 
understanding. Each diode laser has a certain power output characteristic 
which depends on the input current density, as depicted in Fig. 13.41. Ap­
plying low pumping currents results in predominantly spontaneous emission 
of light. The light is in this case incoherent and is not strongly monochro­
matic, i.e., the spectral line width is spread over several hundred Angstroms. 
However, when the current density increases above a certain threshold, 
population inversion eventually occurs. At this point, the stimulated emis­
sion (lasing) dominates over spontaneous emission and the laser emits a 
single wavelength having a line width of about I A. Above the threshold 
the laser operates about one hundred times more efficiently than below the 
threshold. The electric vector vibrates perpendicular to the length axis of the 
cavity, i.e., the emitted light is plane-polarized. Additionally, standing waves 
are formed within the laser, which avoids destructive interference of the 
radiation. The distance between the two cavity faces must therefore be an 
integer multiple of half a wavelength. 

13.8.9. Homojunction Versus Heterojunction Lasers 

Lasers for which the p-type and n-type base materials are alike (e.g., GaAs) 
are called homo junction lasers. In these devices the photon distribution ex-
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Figure 13.42. Schematic representation of the photon distribution in the vicinity of 
the depletion layer of a homo junction diode laser. 

tends considerably beyond the electrically active region (in which the lasing 
occurs) into the adjacent inactive regions, as shown in Fig. l3.42. The total 
light-emitting layer, D, for GaAs is about 10 f-lm wide, whereas the depletion 
layer, d, i.e., the active region, might be as narrow as 1 J-lffi. The photons that 
penetrate into the nonactive region do not stimulate further emission and 
thus reduce the quantum efficiency (which in the present case is about 10%). 
In essence, some of these photons are eventually absorbed and thus increase 
the temperature of the laser. The homojunction laser has therefore to be 
cooled or operated in a pulsed mode employing bursts of 100 ns duration, 
allowing for intermittent cooling times as long as 10-2 s. This yields peak 
powers of about 10-30 W. 

Cooling or pulsing is not necessary for heterojunction lasers in which, for 
example, two junctions are utilized as depicted in Fig. 13.43. If the refractive 
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Figure 13.43. Schematic representation of a double heterojunction laser in which the 
active region consists of an n-doped GaAs layer. 
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index of the active region is larger than that of the neighboring areas, an 
"optical waveguide structure" is effectively achieved which confines the pho­
ton within the GaAs layer (total reflection!). This way, virtually no energy is 
absorbed in the nonactive regions. The threshold current density can be re­
duced to 400 A/cm2 • The quantum efficiency can reach 55% and the output 
power in continuous mode may be as high as 390 mW. The disadvantage of 
a double heterojunction laser is, however, its larger angular divergence of the 
emerging beam, which is between 20° and 40°. 

13.8.10. Laser Modulation 

For telecommunication purposes it is necessary to impress an a.c. signal on 
the output of a laser, i.e., to modulate directly the emerging light by, say, the 
speech. This can be accomplished, for example, by amplitude modulation, 
i.e., by biasing the laser initially above the threshold and then superimposing 
on this d.c. voltage an a.c. signal (Fig. 13.44). The amplitude of the emerging 
laser light depends on the slope of the power-current characteristic. Another 
possibility is pulse modulation, i.e., the generation of subnanosecond pulses 
having nanosecond spacings between them. (For digitalization, see Section 
13.10.) This high-speed pulsing is possible because of the inherently short 
turn-on and turn-off times (10- 10 s) of semiconductor lasers when initially 
biased just below the threshold current density. Finally, frequency modula­
tion can be achieved by applying, perpendicularly to the diode junction, a 
periodic varying mechanical pressure (by means of a transducer), thus peri­
odically altering the dielectric constant of the cavity. This way, modulation 
rates of several hundred megahertz have been achieved. 

13.8.11. Laser Amplifier 

The laser can also function as an optical amplifier, which is again used for 
telecommunication purposes. A weak optical signal enters a laser through 
one of its windows and there stimulates the emission of photons. The ampli­
fied signal leaves the other window after having passed the cavity only once. 
This traveling-wave laser is biased slightly below the threshold current in order 
to exclude spurious lasing not triggered by an incoming signal. Nevertheless, 
some photons are always spontaneously generated, which causes some 
background noise. 

A new development is the erbium-doped fiber amplifier, which works quite 
similar to the above-mentioned traveling-wave laser. Erbium atoms, con­
tained in lengths of a coiled glass fiber, are pumped to higher energies by an 
indium-gallium-arsenide-phosphide laser at a wavelength of 0.98 lim or 
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Figure 13.44. Amplitude modulation of a semiconductor laser: (a) input current­
output power characteristic; (b) circuit diagram. (The d.c. power supply has to be 
electrically insulated from the a.c. source.) 

1.48 f.lm. When a weakened signal enters one end of this erbium-doped fiber, 
the erbium atoms gradually transfer their energy to the incoming signal by 
stimulated emission, thus causing amplification. A mere 10 mW of laser 
power can thus achieve a gain of 30-40 dB. Networks which include fiber 
amplifiers, linked at certain distance intervals to cladded optical glass fibers 
(Fig. 13.30), have the potential of transmitting data at very high rates, e.g., 
2.5 gigabits of information per second over more than 20,000 km. This is 
possible because fibers are able to support a large (but finite) number of 
channels. The advantage of erbium-doped optical fibers is that they do not 
interrupt the path of a light signal as conventional "repeaters" do (which 
convert light into an electric current, amplify the current, and then transform 
the electrical signal back into light). 
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13.8.12. Quantum Well Lasers 

Quantum well lasers are the ultimate in miniaturization, as already discussed 
in Section 8.7.10. We have explained there that some unique properties are 
observed when device dimensions become comparable to the wavelength 
of electrons. In essence, when a thin (20 nm wide) layer of a small-band 
gap material (such as GaAs) is sandwiched between two large-band gap 
materials (such as AIGaAs), a similar energy configuration is encountered as 
known for an electron in a box (Fig. 8.33). Specifically, the carriers are con­
fined in this case to a potential well having "infinitely" high walls. Then, as 
we know from Section 4.2, the formerly continuous conduction or valence 
bands reduce to discrete energy levels, see Fig. 13.45. 

The light emission in a quantum well laser occurs as a result of electron 
transitions from these conduction band levels into valence levels. It goes 
almost without saying that the line width of the emitted light is small in this 
case, because the transitions occur between narrow energy levels. Further, 
the threshold current density for lasing (Fig. 13.41) is reduced by one order 
of magnitude, and the number of carriers needed for population inversion is 
likewise smaller. 

If a series of large-and small-band gap materials are joined, thus forming 
a multiple quantum well laser, the gain is even further increased and the sta-
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Figure 13.45. Band structure of a single quantum dot structure. See in this context 
Section 8.7.10 and Fig. 8.33(b). 
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bility of the threshold current toward temperature fluctuations is improved. 
The GaAs/GaAIAs combination yields an emission wavelength somewhat 
below 0.87 11m, whereas InGaAsP quantum well lasers emit light near 1.3 11m 
or 1.5 11m (depending on their composition). It appears to be challenging to 
eventually fabricate quantum wire or quantum dot lasers (see Section 8.7.10) 
which are predicted to have even lower threshold current densities and 
higher modulation speeds. 

13.8.13. Light-Emitting Diodes (LED) 

Light-emitting diodes are of great technical importance as inexpensive, rug­
ged, small, and efficient light sources. The LED consists, like the semicon­
ductor laser, of a forward biased p - n junction. The above mentioned special 
facing procedures are, however, omitted during the manufacturing process. 
Thus, the LED does not operate in the lasing mode. The emitted light is 
therefore neither phase coherent nor collimated. It is, of course, desirable 
that the light emission occurs in the visible spectrum. Certain 111-V com­
pound semiconductors, such as GaxAsl-xP, GaP, GaxAll_xAs (for red 
and yellow-green) and the newly discovered nitride-based compound semi­
conductors (for green and blue colors) fulfill this requirement. Their emission 
efficiencies (measured in lumens per watt) are at par or even better than 
those of unfiltered incandescent light bulbs and are almost one order of 
magnitude larger than certain color-filtered tungsten-filament lamps. All 
three basic colors necessary for covering the visible spectrum and also the 
infrared (450-1,500 nm) are now available with adequate intensities. Be­
cause of these properties, the lighting industry is currently undergoing a 
revolution that will lead to LED-based large flat-panel color displays, bright 
outdoor color signs, better projection television, full-color photographic 
printers, more efficient and particularly durable traffic lights, and even 
changes in home and office illumination. 

In order to vividly demonstrate the spectral emission properties of LEDs a 
chromaticity diagram as shown in Fig. 13.46 is helpful. It is based on the 
peculiarities of the three types of cones in the human eye, which are sensitive 
for either blue, green, or red radiation. (The corresponding wavelengths 
mark the corners of the chromaticity diagram). A given "color" is repre­
sented by two parameters or percentages (x and y) in this graph, while the 
percentage of the third color is the difference between x + y and 100%. 
Monochromatic light (such as from a laser) is depicted by a specific point on 
the perimeter of the graph. Any other hue is created by mixing the basic 
colors. When the spectral width of the light increases and the emission is 
therefore less pure, the color coordinates move towards the center. As an 
example, "white light", that is, the broad emission spectrum of a black-body 
radiator heated to very high temperatures (e.g., the sun), is described by a 
point in this diagram at which x as well as yare about 33%. 
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Figure 13.46. Chromaticity diagram in which the positions of some commercially 
available LEDs are shown. 

Fig. 13.46 displays the color coordinates of some of the presently available 
electroluminescing compound semiconductors. Ga-N containing about 8% 
In is depicted to provide blue (470 nm) light. This color changes into green 
(520 nm) by adding successively larger amounts of indium to GaN. AI-Ga­
As yields red hues (700 nm) and yellow-green light is emitted by AI-In-Ga­
p (590 nm). Moreover, green- or blue-emitting LEDs, when covered by one 
or more appropriate phosphors, (see Section 13.8.1) can be made to vary 
their color according to the spectral emission of the phosphor. White­
radiating LEDs are obtained by exciting suitable phosphors by the ultra­
violet radiation from GaN. Alternatively, white-emitting LEDs are obtained 
by adding blue and yellow LED light. 

A few technical details on nitride-based semiconductors shall be added. As 
mentioned above, LEDs require n-and p-type components to manufacture a 
diode. Si in the fonn of silane (SiH4) is used for n-doping. On the other hand, 
incorporating Mg, followed by low-energy electron radiation, or thennal 
annealing (to activate the Mg-doped GaN) leads to p-type segments. 

As already mentioned in Section 13.8.9 (Fig. 13.43), double hetero­
structures increase the output power of LEDs. Specifically, incorporating Zn 
and Si dopants into an In-Ga-N active layer that is surrounded by AI-Ga-
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N layers leads to output powers near 3 mW when the chip size is 3 x 3 mm2 • 

Further, a peak wavelength of 450 nm, and an external quantum efficiency 
of 5.4% (that is, the ratio of the number of photons produced to the number 
of injected electrons) are obtained. Forward currents of typically 20 mA are 
generally applied. 

The devices consisting of indium-gallium nitrides are commonly deposited 
on sapphire (a-AI20 3) or silicon carbide (6H-SiC) substrates. Metal-organic 
chemical vapor deposition at 700 to 1,1 OO°C, involving trimethyl gallium 
(Ga(CH3h) and ammonia (NH3) as gas sources, is generally used for grow­
ing epitaxial GaN films. InGaN is laid down by additions of trimethyl in­
dium. The devices are contacted and eventually encapsulated in epoxy resins. 
The radiation leaves the device through a semitransparent metal contact on 
the top or through a transparent n-GaN contact on the substrate. In the case 
of GaAs, the light may leave the device through a window which has been 
etched through the metallic contact (surface emitter). 

The "lifetimes" of LEDs are in excess of 50,000 hours, or more precisely, 
the time after which the light intensity has decreased to 50% of its original 
value is approximately 30,000 hours. (This compares to an average lifetime 
of 1,000 to 2,000 hours for a typical incandescent light bulb.) The failures are 
generally caused by a break-down of the contacts or the encapsulate, rather 
than of the semiconductor itself. The cost at present is about one US dollar 
for a blue- or green-emitting diode and less than 10 cents for red and orange 
LEDs. 

A short note on other recently developed LED materials shall be added. 
Blue-emitting SiC has been investigated for some time, but its efficiency is 
orders of magnitude smaller than the above-described nitrides. This is mainly 
due to its indirect-band gap characteristics. ZnSe (a II-VI compound) has 
also blue and green emissions, but its lifetime is substantially reduced by the 
formation of structural defects. LEDs based on polymers with ionic materi­
als as electron-injecting and hole-blocking layers have been demonstrated. 
Finally, as a matter of curiosity, a "light-emitting vegetable diode", utilizing 
a pickle, has been reported in the literature to emit yellow light (and an un­
pleasant smell). 

13.8.14. Liquid Crystal Displays (LCDs) 

Many consumer products need to communicate the processed information to 
their owners, such as in wrist watches, calculator read-outs, video cameras, 
video recorders (VCRs), automobile dashboards, etc. The display market is 
currently still dominated (70%) by traditional cathode ray tubes as known 
for TVs and many computer monitors. However, fiat-panel displays are 
rapidly gaining ground. Among them, the liquid crystal display dominates 
with 85% of this market, having annual sales near 10 billion dollars world-
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Figure 13.47. Schematic representation of a liquid crystal display unit (a) in the light­
transmitting mode, (b) in the non-light-transmitting mode, caused by a potential that 
is applied to the end faces of the (twisted nematic) liquid crystal. Polanzer and ana­
lyzer are identical devices that allow the light (i.e., the electric field vector) to oscillate 
in only one direction as indicated by arrows (see also Section 13.1.2). The end faces of 
the liquid crystal-containing glass vessel are coated by transparent electrodes such as 
indium-tin-oxide (ITO), see Section 9.3. 

wide. LCDs are "non-emissive devices", that is, they do not emit light by 
themselves, but rather depend on external illumination, as we will see 
momentarily. 

LCDs contain peculiar viscous liquids whose rod-shaped molecules are 
arranged in a specifically ordered pattern. Each of these rod-shaped mole­
cules has a strong electric dipole moment and can thus be oriented in an 
electric field, see Section 9.5. The viscous liquid is encapsulated in a glass 
container and is initially treated so that the molecules on one end are aligned 
at right angles to the ones on the other end, see Fig. 13.47(a). Moreover, the 
orientations of the molecules vary gradually from, say, a vertical to a hori­
zontal array, as also depicted in Fig. 13.47(a). It is therefore called a "twisted 
nematic" type LCD. 

If light which is polarized parallel to the aligned molecules of one end 
impinges on such a crystal, its electric vector will follow the twist of the 
molecules through the liquid crystal to the other end and emerges there-
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fore on the opposite side with its polarization direction perpendicular to its 
original orientation. Since the analyzer that is placed behind the liquid crys­
tal is oriented perpendicular to the polarizer, the emerging light beam is 
transmitted. 

On the other hand, if a small voltage (about 1 volt) is applied to the con­
ducting end faces of the liquid crystal, the molecules (dipoles) align parallel 
to the field direction and the light is therefore not caused to change its po­
larization direction, see Fig 13.47(b). Thus, since polarizer and analyzer are 
mutually perpendicular to each other, the light is blocked from transmission. 

In practice, a mirror is placed behind the liquid crystal arrangement which 
reflects the ambient light back to the viewer if the LCD is in the transmission 
mode. Alternatively, the display can be illuminated from the back to allow 
dark readability. 

The advantage of an LCD is that it is inexpensive and that it consumes 
very little energy (at least as long as no back-lighting is utilized). On the 
negative side, an LCD cannot be read in the dark or in dim light without 
back-lighting. Furthermore, it has a limited usable temperature range (20°C 
to 47°q, slow time response, and most of all, it has a very narrow viewing 
angle. LCDs are matrix addressed by applying voltages to rows and columns, 
similarly as depicted in Fig. 8.43. 

13.8.15. Emissive Flat-Panel Displays 

Electroluminescent devices utilize a thin phosphor film, such as manganese­
doped zinc sulfide (ZnS: Mn), which is sandwiched between two insulating 
films, e.g., Al20 3 or Al-Ti-O (A TO). These films are surrounded by two 
conducting films (one of them being transparent indium-tin-oxide (ITO) on 
glass and the other a good reflector), see Fig. 13.48. The light emission is 
generally induced by an alternating (pulsed) electrical potential (about 120-
200 V) applied between the two conducting electrodes. This generates an 
electric field amounting to about 106 Vjcm across the phosphor layer, which 
causes an injection of electrons into the phosphor. Once the threshold volt­
age has been exceeded, the electrons become ballistic and excite the electrons 
of the activator atom in the phosphor (e.g., Mn) into a higher energy state. 
Upon reverting back into the ground state, photons of the respective wave­
length are generated. As an example, a broad orange-yellow spectrum is 
emitted from the above-mentioned ZnS: Mn. Green color is observed for 
ZnS:Tb or SrS:Ce, blue light is seen when utilizing (Sr04SCaOSS)I-x 
Ga2S4 : Cex or SrS: Cu, Ag, and red light is emitted from ZnS: Sm, Cl, or 
CaS: Eu. To produce white light, a combination of ZnS: Mn and SrS: Ce has 
been used as phosphors. Green and red can also be obtained by filtering light 
from ZnS: Mn. 

The cost of electroluminescing devices is higher than for LCDs, but the 
viewing angle is wider and the usable temperature range is larger. They are 
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Figure l3.48. Schematic diagram of an electroluminescence device operate<1 by al­
ternating current pulses of about 200 V. The thin-film layers are about 300 nm thick 
except in the case of the phosphor, whose thickness is between 600 and 1,000 nm. The 
phosphor consists of the host matrix, such as a wide-band gap metal sulfide (ZnS, 
CuS, SrS), and an "activator", also called "luminescence center", such as Mn, Tb, 
Eu, Ce, Sm, Cu, Ag, etc. 

rugged and have long lifetimes. Even though the luminescence efficiency is 
relatively good, readability in sunlight is still a problem. The response time 
is fast enough for video displays, but the power requirements (about 120-
200 V) are unacceptable for small portable device applications. Electro­
luminescence devices comprise at present about 8% of the flat-panel market. 
They find applications in medical instruments, transportation, defense, and 
industrial equipment. 

Plasma display devices operate quite similar to fluorescence light bulbs. A 
relatively high AC voltage (100 V) is applied across a discharge gas (such as 
a helium/neon mixture) to create a plasma. Recombination of electron-ion 
pairs in the plasma causes photons of high energy (e.g., in the UV range). 
They are absorbed by the phosphors which in turn emit visible light. Indi­
vidually addressable compartments, which may contain different phosphors, 
yield the pixels needed for the three fundamental colors. 

Flat-panel displays of this type are rugged, the viewing angles are wide, 
and the lifetimes are adequate. However, the pixel sizes are too large for 
small displays, and the colors tend to "wash out" in strong ambient lighting. 
Plasma displays currently share 7% of the flat-panel display market. 

Field-emission displays are still in the experimental stage. They have much 
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in common with cathode ray tubes, that is, with the bulky displays used for 
TVs and desk computers. The aim is to build them flat (about 10 mm thick), 
with wide viewing angles and fast response times. They consist of a large 
number of tip-shaped field-emitters (made of Mo, Si, Pt, etc.) that can be 
matrix-addressed and which emit, when hermetically encapsulated into a 
vacuum, substantial amounts of electrons under the influence of high electric 
fields. These electrons impinge on phosphors of various kinds to cause cath­
odoluminescence in different colors. 

13.9. Integrated Optoelectronics 

Integrated optoelectronics deals with a family of optical components, such as 
lasers, photodiodes, optical waveguides, optical modulators, optical storage 
devices, etc., which are integrated on a common substrate (if feasible) with 
the aim of fulfilling similar functions as electrical integrated circuits do. The 
main difference to electrical devices is that in optical integrated circuits 
(OICs) the signal is transmitted by light. Still, they need in most cases elec­
trical energy to become functional, which explains the name optoelectronic. 
Among the advantages of optical devices are reduced weight, the capability 
of light of different wavelengths to travel independently and simultaneously 
in the same waveguide (multiplexing), the immunity against receiving extra­
neous signals from surrounding devices by stray electromagnetic coupling 
(crosstalk), the difficulty in performing wire taps (because of the lack of 
electromagnetic fields, which would extend beyond the optical fiber), high 
reliability, speeds greater than electrons in a metallic wire, larger bandwidth 
(10 12 Hz compared to 105 Hz for telephones) and notably, the low-loss 
transmission «2 dB/km) of signals in optical fibers. Most of all, however, 
telecomunication utilizing laser optics allows the simultaneous transmission 
of billions of telephone calls in one glass fiber, that is, as many simultaneous 
telephone calls as there are humans on earth! We have discussed in previous 
chapters two major optoelectronic components, the laser (Section 13.8) and 
the photodetector (Sections 8.7.6 and 8.7.7). A few more building block;; 
need to be added to complete the picture. This will be done now. 

13.9.1. Passive Waveguides 

The interconnecting medium between various optical devices is called a 
waveguide. It generally consists of a thin, transparent layer whose index of 
refraction, n2, is larger than the refractive indices of the two surrounding 
media, nl and n3. If this condition is fulfilled and if the light impinges on the 
boundary between n2 and nl (or n3) at an angle which is larger than the angle 
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Figure 13.49. Electric field strength distribution (modes) in a waveguide assuming 
nl = n3 (symmetric behavior). The zeroth order and higher-order modes are shown. 
(Compare with Fig. 4.8.) 

of total reflection,8 then the optical beam travels in zigzag paths between the 
internal boundaries of Region 2. In other words, by undergoing total reflec­
tion, the light wave is considered to remain in the center region. This state­
ment needs, however, some refinement. As a rule, the light which travels in 
the center medium extends, to a certain degree, into the neighboring media. 
The spatial distribution of the optical energy within all three media is called 
a mode. This spatial distribution can be calculated by solving the wave 
equation (10.4) while taking the appropriate boundary conditions into con­
sideration. We have done this twice in earlier parts of this book (Section 10.3 
and Section 4.3). We learned there that the electric field strength or, equiv­
alently, the intensity of a wave, decreases in the adjacent medium obeying an 
exponential function. If two boundaries need to be considered, as in the 
present case, and if the thickness, t, of the center region is comparable to the 
wavelength of light, then the solution of the wave equation yields an electric 
field strength distribution (as depicted in Fig. 13.49, lower curve). Now, we 
know from previous calculations (Section 4) that under certain conditions 
additional solutions, i.e., distribution functions, do exist (similarly, as a vi­
brating string can oscillate at higher harmonics). In the present case they are 
called first-order, second-order, etc., modes. They are likewise depicted in 
Fig. 13.49. The reader probably recognizes that this "optical tunnel effect" is 
equivalent to the quantum mechanical tunnel effect shown in Fig. 4.8. 

We now consider the most common case, in which n1 is considerably 

Blflight passes from an optically dense material (e.g., glass with nj ~ 1.5) into air (n2 ~ I), then 
the angle of the refracted beam, p, is larger than the angle of incidence, <x. At a critical angle, 
<XT,P becomes 90° (grazing exit). Total reflection occurs when sin<XT > n2/nj; see also Section 
10.2. 
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smaller than n3, e.g., n, = 1 for air and n3 = 3.6 for GaAs (whereas n2 is still 
made larger than n3!). For this asymmetric case the condition for containing 
the light in the waveguide is 

(2K + 1)2 A~ 
n2 - n3 ~ 32n2t2 ' ( 13.20) 

where ,1,0 is the wavelength of the light in vacuum, K = 0, 1,2 ... is the mode 
number, and t is the thickness of the center layer. A calculation (see Problem 
1) shows that the difference between n2 and n3 needs to be only about 1% in 
order to contain the light in the center medium. 

13.9.2. Electro-Optical Waveguides (EOW) 

So far we tacitly implied that the various layers of a waveguide structure 
have been permanently manufactured by some type of deposition process 
out of the gaseous or liquid phase on a semiconducting substrate. This is 
indeed quite often done by employing, for example, molecular beam epitaxy 
or liquid phase epitaxy processes. However, a rather ingenious alternative 
method can be utilized instead. This technique involves a Schottky-barrier 
contact which, when reverse biased, forms (as we know from Section 8.7.2) a 
wide depletion layer (Fig. 13.50). We shall show in a short calculation that a 
depletion of charge carriers increases the index of refraction of a solid. 

Recall that n2 > n3 (and nl) is the prerequisite for a waveguide structure. 
We derived in Chapter 11 a relationship between the free carrier density (Nf) 
and the index of refraction, 

(11. 7) 

where m* is the effective mass of the electrons in the medium, v is the fre­
quency of light, e is the charge of the electrons, and fz = n - ik is the complex 

Metal (,,> 

Depletion layer (~) 

n-t yp e .e m Ie ondu e t or 
Substrata (nJ 

Figure 13.50. Electro-optical waveguide making use of a reverse-biased Schottky­
barrier contact. (See also Fig. 8.15.) The light travels in Medium 2 (the depletion 
layer) when a high-enough voltage is applied to the device. 
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index of refraction. We rewrite (11.7) twice for the substrate (Medium 3) and 
for the depletion layer from which some free carriers have been removed by 
the applied electric field (Medium 2), 

fj2 _ 1 _ e
2
Nf2 

2 - 4n2eom*v2 ' 
(13.21) 

fj2 _ 1 _ e2NO 
3 - 4n2eom*v2 . 

(13.22) 

The difference in the indices of refraction is then 

(13.23) 

which reduces with9 

and c = V· A to 

(13.24) 

In the present case (transparent media) we can assume that the damping 
constant, k, in fj = n - ik is negligibly small, so that fj in (13.24) becomes a 
real quantity: 

( 13.25) 

Equation (13.25) demonstrates, as suggested above, that a reduction in the 
number of free carriers from No to Nf2 causes an increase in the index of 
refraction in Medium 2. Then, the device becomes an optical waveguide. For 
this to happen, the doping of the substrate needs to be reasonably high in 
order that an appreciable change in the index of refraction is achieved (see 
Problem 4). 

13.9.3. Optical Modulators and Switches 

When discussing electronic devices in Section 8.7.12, we encountered a digi­
tal switch that is capable of turning the electric current on or offby applying 
a voltage to the gate of a MOSFET. An equivalent optical device is obtained 
by making use of the electro-optical waveguide (Fig. 13.50). In the present 
case, this device is biased initially just below the threshold, i.e., at a voltage 
which barely prevents the lowest-mode optical wave from passing. Then, by 

9n2 can be assumed to be approxImately equal to n3 (see above and Problem I) which yields 
n2 + n3 ~ 2n3· 
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Figure 13.51. Schematic representation of the Franz-Keldysh effect. 

289 

an additional voltage between metal and substrate, the EOW becomes 
transparent. In analogy to its electrical equivalent (Fig. 8.30), this device 
may be called an enhancement-type or normally-off electro-optical wave­
guide. By varying the bias voltage periodically above the threshold, the 
EOW can serve as an effective modulator of light. 

A depletion-type or normally-on EOW can also be built. This device ex­
ploits the Franz-Keldysh effect, i.e., the shift of the absorption edge to lower 
energies when an electric field is applied to a semiconductor (Fig. 13.51). The 
photon energy of the light is chosen to be slightly smaller than the band gap 
energy (dotted line in Fig. 13.51). Thus, the semiconductor is normally in the 
transparent mode. If, however, a large electric field (on the order of 105 VI 
cm) is applied to the device, then the band gap shifts to lower energies 
and the absorbance at that particular wavelength (photon energy) becomes 
several orders of magnitude larger, thus essentially blocking the light. (The 
Franz-Keldysh shift can be understood when inspecting Fig. 8.15, which 
shows a lowering of the conduction band and thus a reduction in the band 
gap energy when a reverse bias is applied to a semiconductor.) 

Finally, if a piezoelectric transducer imparts some pressure on a wave­
guide, the index of refraction changes. This photoelastic effect can also be 
utilized for modulation and switching. 

Electro-optical modulators can be switched rapidly. The range of fre­
quencies over which the devices can operate is quite wide. 

13.9.4. Coupling and Device Integration 

We now need to discuss some procedures for transferring optical waves 
(i.e., information) from one optical (or optoelectronic) device to the next. Of 
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E 

Figure 13.52. Schematic representation of energy transfer between two waveguides 
(or a waveguide and an optical fiber) by optical tunneling. Compare with Fig. 13.49. 
(n2 > nj,n3') 

course, butting, i.e., the end-on attachment of two devices, is always an 
option, particularly if their cross-sectional areas are comparable in size. This 
technique is indeed frequently utilized for connecting optical fibers (used in 
long-distance transmission) to other components. A special fluid or layer 
which matches the indices of refraction is inserted between the two faces in 
order to reduce reflection losses. Optical alignment and permanent mechan­
ical attachment are nontrivial tasks. They can be mastered, however. In 
those cases where no end faces are exposed for butting, a prism coupler may 
be used. This device transfers the light through a longitudinal surface. In 
order to achieve low-loss coupling, the index of refraction of the prism must 
be larger than that of the underlying materials. This is quite possible for glass 
fibers (n ~ 1.5) in conjunction with prisms made out of strontium titanate 
(n = 2.3) or rutile (n = 2.5), but is difficult for semiconductors (n ~ 3.6). 

Phase coherent energy transfer between two parallel waveguides (or an 
optical fiber and a waveguide) can be achieved by optical tunneling (Fig. 
13.52). For this to occur, the indices of refraction of the two waveguides 
must be larger than those of the adjacent substrates. Further, the width of 
the layer between the two waveguides must be small enough to allow the 
tails of the energy profiles to overlap. 

The most elegant solution for efficient energy transfer is the monolithic 
integration of optical components on one chip. For example, a laser and a 
waveguide may be arranged in one building block, as schematically depicted 
in Fig. 13.53. Several points need to be observed however. First, the wave­
length of the light emitted by the laser needs to be matched to a wavelength 
at which the absorption in the waveguide is minimal. Second, the end faces 
of the laser need to be properly coated (e.g., with Si02) to provide adequate 
feedback for stimulated emission. 

Another useful integrated structure involves a transverse photodiode that 
is coupled to a waveguide, see Fig. 13.54. As explained in Section 8.7.6, this 
photodiode is reverse biased. The electron-hole pairs are created in or near a 
long and wide depletion layer by photon absorption. The losses are mini­
mized owing to the fact that the light does not have to penetrate the (inac-
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Figure 13.53. Schematic representation of a monolithic laser/waveguide structure. 
Compare with Fig. 13.43. 

tive) p-region as in flat-plate photovoltaics. The quantum efficiency of the 
transverse photodiode can be considerably enhanced by increasing the length 
of the depletion layer. 

All taken, the apparently difficult task of connecting optical fibers, wave­
guides, lasers, or photodetectors and their integration on one chip have 
progressed considerably in the last decade and have found wide application 
in a multitude of commercial devices. 

13.9.5. Energy Losses 

Optical devices lose energy through absorption, radiation, or light scattering, 
similarly as the electrical resistance causes energy losses in wires, etc. The 
optical loss is expressed by the attenuation (or absorbance), (x, which was 

DepletIon layer 

Substrate (n) 

+ 
Figure 13.54. Schematic representation of a monolithic transverse photodiode/ 
waveguide structure. A wide depletion layer (active region) is formed in the n-region 
by the reverse bias. For details, see Section 8.7.6. 
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defined in Section 10.4. It is measured in cm- i or, when multiplied by 4.3, in 
decibels per centimeter. 

Scattering losses take place when the direction of the light is changed by 
multiple reflections on the "rough" surfaces in waveguides or glass fibers, or 
to a lesser extent by impurity elements and lattice defects. 

Absorption losses occur when photons excite electrons from the valence 
band into the conduction band (interband transitions), as discussed in 
Chapter 12. They can be avoided by using light whose photon energy is 
smaller than the band gap energy. Free carrier absorption losses take place 
when electrons in the conduction band (or in shallow donor states) are raised 
to higher energies by intra band transitions. These losses are therefore re­
stricted to semiconductor waveguides, etc., and essentially do not occur in 
dielectric materials. We know from (1O.2Ia) that the absorbance, IX, is related 
to the imaginary part of the dielectric constant, e2, through 

2n 
IX = An e2· ( 13.26) 

On the other hand, the free electron theory provides us with an expression 
for e2 (11.27), which is, for v2 » vi, 

where 

(see (11.8)) and 

(see (11.23)) and 

2neov? 
V2=--

0"0 

0"0 = Nfe/1 

(see (8.13)). Combining equations (13.26) through (13.30) yields 

e3NfA2 
IX = 2. 

4n2eon(m*) C3/1 

( 13.27) 

(13.28) 

(13.29) 

(13.30) 

(13.31) 

We note in (13.31) that the free carrier absorbance is a linear function of Nf 

and is inversely proportional to the mobility of the carriers. The absorbance 
is also a function of the square of the wavelength. 

Radiation losses are, in essence, only significant for curved-channel wave­
guides, in which case photons are emitted into the surrounding media. A 
detailed calculation reveals that the radiation loss depends exponentially on 
the radius of the curvature. The minimal tolerable radius differs considerably 
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in different materials and ranges between a few micrometers to a few centi­
meters. The energy loss is particularly large when the difference in the indices 
of refraction between the waveguide and the surrounding medium is small. 

13.9.6. Photonics 

A short note on the recently coined term "photonics" shall be added. Elec­
tronics deals with electrons and materials in which electrons propagate. 
Similarly photonics relates to photons and their interaction with photonic 
crystals. These crystals are materials that possess a periodicity of the dielec­
tric constant so that they can affect the properties of photons in much the 
same way as electrons are affected by periodically arranged atoms, that is, by 
the lattice structure. However, photonic crystals need to be created artifi­
cially. The "lattice constant" of photonic crystals must be comparable to 
the wavelength of light, that is, the periodicity needs to be on the order of 
500 nm. This requires high-resolution microlithography techniques, as known 
from semiconductor processing, involving X-rays or electron beams. 

The solution of the Maxwell equations for this particular case (rather than 
the Schr6dinger equation) leads to photonic band structures, Brillouin zones, 
and occasionally to band gaps quite similarly as known from electronics. 
Rather than displaying s- or p-bands, photonic band structures contain 
transverse magnetic (TM) or transverse electric (TE) modes. Doping can be 
accomplished by introducing point defects that affect the periodicity of the 
photonic crystal. This leads to localized photonic states within the gap simi­
lar to donor or acceptor states. Furthermore, a line defect acts like a wave­
guide and a planar defect behaves like a mirror. Photonic band structures are 
quite similar to phononic band structures (see Chapter 20.2) and, naturally, 
to electronic bands. 

The research results of this field should be followed with considerable 
anticipation. 

13.10. Optical Storage Devices 

Optical techniques have been used for thousands of years to retrieve stored 
information. Examples are ancient papyrus scrolls or stone carvings. The 
book you are presently reading likewise belongs in this category. It is of the 
random-access type, because a particular page can be viewed immediately 
without first exposing all previous pages. Other examples of optical storage 
devices are the conventional photographic movie film (with or without opti­
cal sound track) or the microfilm used in libraries. The latter are sequential 
storage media because all previous material has to be scanned before the 
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Figure 13.55. Schematic of a compact disk optical storage device. Readout mode. 
(Not drawn to scale.) The reflected beams in Fig. 13.55(b) are drawn under an angle 
for clarity. The land and bump areas covered by the probing light have to be of equal 
size in order that destructive interference can occur (see the hatched areas covered by 
the incident beam in Fig. 13.55(b)). 

information of interest can be accessed. They are also called read-only 
memories (ROM) because the information content cannot be changed by the 
user. All examples given so far are analog storage devices. 

Another form of storage utilizes the optical disk, which has recently 
gained wide-spread popularity. Here, the information is generally stored in 
digital form. The most common application, the compact disk (CD), is a 
random-access, read-only memory device. However, "write-once, read-many" 
(WORM) and erasable magneto-optical disks (Section 17.5) are also avail­
able for special applications. The main advantage of optical techniques is 
that the readout involves a noncontact process (in contrast to magnetic tape 
or mechanical systems). Thus, no wear is encountered. 

Let us now discuss the optical compact disk. Here, the information is 
stored below a transparent, polymeric medium in the form of bumps, as 
shown in Fig. 13.55. The height of these bumps is one-quarter of a wave­
length (2/4) of the probing light. Thus, the light which is reflected from the 
base of these bumps (called the "land") travels half a wavelength farther 
than the light reflected from the bumps. If a bump is encountered, the com­
bined light reflected from bump and land is extinguished by destructive in­
terference. No light may be interpreted as a zero in binary code, whereas full 
intensity of the reflected beam would then constitute a one. 14 ones and zeros 
represent one byte of data. For audio purposes, the initial analog signal is 
sampled at a frequency of 44.1 kHz (about twice the audible frequency) to 
digitize the information into a series of ones and zeros (similarly as known 
for computers, Section 8.7.12). Quantization of the signal into 16-digit bi­
nary numbers gives a scale of 216 or 65,536 different values. This information 
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is transferred to a disk (see below) in the form of bumps and absences of 
bumps. For readout from the disk, the probing light is pulsed with the same 
frequency so that it is synchronized with the digitized storage content. 

The spiral path on the useful area of a 120 mm diameter CD is 5.7 km 
long and contains 22,188 tracks spaced 1.6 pm apart. (As a comparison, 30 
tracks can be accommodated on a human hair.) The spot diameter of the 
readout beam near the bumps is about 1.2 .urn. The information density on a 
CD is 800 kbits/mm2, i.e., a standard CD can hold about 7 x 109 bits. This 
number will increase by a factor of four when blue lasers (A = 450 nm) are 
used! The current playback time is about one hour. A disk of the same diam­
eter can also be digitally encoded with 600 megabyte of computer data, which 
is equivalent to three times the text of a standard 24-volume encyclopedia. 

The manufacturing process of CDs requires an optically flat glass plate 
which has been covered with a light-sensitive layer (photoresist) about ,1/4 in 
thickness. Then, a helium-neon laser whose intensity is modulated (pulsed) 
by the digitized information is directed onto this surface while the disk is 
rotated. Developing of the photoresist causes a hardening of the unexposed 
areas. Subsequent etching removes the exposed areas and thus creates pits in 
the photoresist. The pitted surface is then coated with silver (to facilitate 
electrical conduction) and then electroplated with nickel. The nickel mold 
thus created (or a copy of it) is used to transfer the pit structure to a trans­
parent polymeric material by injection molding. The disk is then coated with 
a reflective aluminum film and finally covered by a protective lacquer and a 
label. 

The CD is read from the back side, i.e., the information is now contained 
in the form of bumps (see Fig. 13.55). In order to facilitate focusing onto a 
narrow spot, monochromatic light, as provided by a laser, is essential. At 
present, a GaAlAs heterojunction laser having a wavelength in air of 780 nm 
is utilized. This will change as soon as blue semiconductors, such as InGaN 
lasers (A = 450 nm), are commercially available. The beam size at the surface 
of the disk is relatively large (0.7 mm in diameter) to minimize possible light 
obstruction by small dust particles. However, the beam converges as it tra­
verses through the polymer disk to reach the reflecting surface that contains 
the information. Small scratches on the polymer surface are also tolerated 
quite well. The aligning of the laser beam on the extremely narrow tracks is a 
nontrivial task, but it can be managed. It involves, actually, three light 
beams, obtained by dividing into three parts the impinging laser beam shown 
in Fig. 13.55(b) utilizing a grating or a holographic element. One of these 
parts (the center one) is the above-described read beam. The other two are 
tracking beams which strike the inner and outer edges of the groove. The 
reflected signals from the tracking beams are subtracted from each other. A 
null signal indicates correct tracking while positive or negative signals cause 
the servo to move the read head to one or the other side. The tracking is 
accurate to about 0.1 pm. 

An alternative to the above-described CD-ROM is the magneto-optical 
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device, which employs a laser to read the data on the disk while the infor­
mation is written by simultaneously exposing a small area on the disk to a 
strong laser pulse in addition to a magnetic field. This device will be further 
described in Section 17.5. As of this writing, 4.6 GB can be stored on a 5* 
inch (130 mm) magneto-optical disk (compared to 0.62 GB on a CD-ROM). 
The data can be erased and rewritten many times. 

13.11. The Optical Computer 

We have learned in Section 8.7 that transistors are used as switching devices. 
We know that a small voltage applied to the base terminal of a transistor 
triggers a large electron flow from emitter to collector. The question arises 
whether or not a purely optical switching device can be built for which a 
light beam, having a small intensity, is capable of triggering the emission of a 
light beam that has a large intensity. Such an optical transistor (called 
transphasor) has indeed been constructed which may switch as much as 1000 
times faster (picoseconds) than an electronic switch (based on a transistor). 

The main element of a transphasor is a small (a few millimeters long) piece 
of nonlinear optical material (see below) which has, similar to a laser (or a 
Fabry-Perot interferometer), two exactly parallel surfaces at its longitudinal 
ends. These surfaces are coated with a suitable thin film in order to render 
them semitransparent. Once monochromatic light, stemming from a laser, 
has entered this "cavity" through one of its semitransparent windows, some 
of the light is reflected back and forth between the interior windows, whereas 
another part of the light eventually escapes through the windows (Fig. 
13.56). If the length between the two windows just happens to be an integer 
mUltiple of half a wavelength of the light, then constructive interference oc­
curs and the amplitude (or the intensity) of the light in the "cavity" increases 
rapidly (Fig. 13. 56(a)). As a consequence, the intensity of the transmitted 
light is also strong. In contrast to this, if the distance between the two win­
dows is not an integer multiple of half a wavelength of the light, the many 
forward and reflected beams in the "cavity" weaken each other mutually, 
with the result that the intensity of the transmitted light is rather small (Fig. 
13.56(b)). In other words, all conditions which do not lead to constructive 
(or near constructive) interference produce rather small transmitted intensi­
ties (particularly if the reflectivity of the windows is made large). 

The key ingredient of a transphasor is a specific substance, namely, the 
above-mentioned nonlinear optical material which changes its index of re­
fraction as a function of the intensity oflight. As we know from Section 10.2 
the index of refraction is 

cvac ilvac 
nmed = -- = --. 

Cmed ilmed 
(13.32) 
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FIgure 13.56. Schematic representation of some light waves in a transphasor. The 
reflectivity of the windows is about 90%. (a) Constructive interference. The length of 
the "cavity" equals an integer multiple of }../2. (b) Condition (a) above is not fulfilled. 
The sum of many forward and reflected beams decreases the total intensity of the 
light. (Note: No phase shift occurs on the boundaries inside the "cavity", because 
ncavtty > naIr.) 

Thus, we have at our disposal a material which, as a result of high light in­
tensity, changes its index of refraction, which, in tum, changes Arned until an 
integer multiple of Arned/2 equals the cavity length and constructive interfer­
ence may take place. Moreover, just shortly before this condition has been 
reached, a positive feedback mechanism mutually reinforces the parameters 
involved and brings the beams rapidly closer to the constructive interference 
state. 
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Figure 13.57. Schematic representation of an optical AND gate as obtained from an 
optical transistor (transphasor) constructed from a material with nonlinear refractive 
index. The low transmission state may represent a "zero" in binary logic, whereas the 
high transmission of light may stand for a "one." 

An optical switch involves a "constant laser beam" whose intensity is not 
yet strong enough to trigger constructive interference (Fig. 13.56(a)). This 
light intensity is supplemented by a second laser beam, the "probe beam," 
which is directed onto the same spot of the window of the transphasor and 
which provides the extra light energy to trigger a large change in n and thus 
constructive interference (Fig. 13.57). All taken, a small intensity change 
caused by the probe beam invokes a large intensity of the transmitted beam. 
This combination of two signals that interact with a switching device can be 
utilized as an "AND" logic circuit, as described in Section 8.7.12. Likewise, 
"OR" gates (either of the two beams is already strong enough to trigger 
critically a change in n) or "NOT" gates (which involve the reflected light) 
can be constructed. 

One important question still remains to be answered. It pertains to the 
mechanisms involved in a nonlinear optical material. Such a material con­
sists, for example, of indium antimonide, a narrow-band gap semiconductor 
having a gap energy of only 0.2 eV. (It therefore needs to be cooled to 77 K 
in order to suppress thermally-induced conduction band electrons.) Now, we 
know from Chapter 12 that when photons of sufficiently high energy interact 
with the valence electrons of semiconductors, some of these electrons are 
excited across the gap into the conduction band. The number of excited 
electrons is, of course, larger the smaller the gap energy (see Chapter 12) and 
the larger the number of impinging photons. On the other hand, the index of 
refraction, n, depends on the number of free electrons, Nr (in the conduction 
band, for example), as we know from (11.7), 

il2 _ 1 _ e
2
Nr 

- 4n2eomv2· ( 13.33) 

Thus, a high light intensity substantially changes Nr and therefore n as stated 
above. 
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A crude photonic computer was introduced in 1990 by Bell Laboratories. 
However, new nonlinear materials need to be found before optical com­
puters become competitive with their electronic counterparts. 

13.12. X-Ray Emission 

Electromagnetic radiation of energy higher than that characteristic for UV 
light is called X-rays. (Still higher-energy radiation are y-rays). X-rays were 
discovered in 1895 by Wilhelm Conrad Rontgen, a German scientist. In 
1901, he received the first Nobel Prize in physics for this discovery. The 
wavelength of X-rays is in the order of 10-10 m (1 A); see Figure 10.1. For its 
production, a beam of electrons emitted from a hot filament is accelerated in 
a high electric field towards a metallic (or other) electrode. On impact, the 
energy of the electrons is lost either by white X-radiation, that is, in the form 
of a continuous spectrum (within limits), or by essentially monochromatic 
X-rays (called characteristic X-rays) that are specific for the target material. 
The white X-rays are emitted as a consequence of the deceleration of the 
electrons in the electric field of a series of atoms, where each interaction with 
an atom may lead to photons of different energies. The maximal energy that 
can be emitted this way (assuming only one interaction with an atom) is 
proportional to the acceleration voltage, V, and the charge of the electron, e, 
that is 

he 
Emax = e V = hv = T (13.34) 

[see Eqs. (2.1) and (1.5)]. From this equation the minimum wavelength, A (in 
A), can be calculated using the values of the constants as listed in Appendix 
4 and inserting V in kilovolts, that is 

1 = 12.4 
1\ V. ( 13.35) 

Figure 13.58 depicts the voltage dependence of several white X-ray spectra. 
The cutoff wavelengths, as calculated by Eq. (13.35), are clearly detected. 
White X-radiation is mostly used for medical and industrial applications 
such as dentistry, bone fracture detection, chest X-rays, and so on. Different 
densities of the materials under investigation yield variations in the black­
ening of the exposed photographic film which has been placed behind the 
specimen. 

The wavelength of characteristic X-rays depends on the material on which 
the accelerated electrons impinge. Let us assume that the impinging electrons 
possess a high enough energy to excite inner electrons, for example, electrons 
from the K-shell, to leave the atom. As a consequence, an L electron may 
immediately revert into the thus created vacancy while emitting a photon 
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Figure 13.58. Schematic representation of the wavelength dependence of the intensity 
of white X-ray emission for selected acceleration voltages. 

having a narrow and characteristic wavelength. This mechanism is said 
to produce K~ X-rays; see Figure 13.59. Alternately and/or simultaneously, 
an electron from the M shell may revert to the K shell. This is termed 
Kp-radiation. 

For the case of copper, the respective wavelengths are 1.542 A and 1.392 
A. (As a second example, aluminum yields Ka and Kp radiations having 
characteristic wavelengths of 8.337 A and 7.981 A.) Characteristic (mono-
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M 
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hv 

Figure 13.59. Schematic representation of the emission of characteristic X-radiation 
by exciting a K-electron and refilling the vacancy thus created with an L-electron. 



13. Applications 301 

chromatic) X-radiation is frequently used in materials science, for example, 
for investigating the crystal structure of materials. For this, only one of the 
possible wavelengths is used by eliminating the others utilizing appropriate 
filters, made, for example, of nickel foils, which strongly absorb the Kp­
radiation of copper while the stronger K,,-radiation is only weakly absorbed. 
The characteristic X-radiation is superimposed on the often weaker, white 
X-ray spectrum. 

Problems 

1. Calculate the difference in the refractive indices which is necessary in order that an 
asymmetric waveguide operates in the zeroth mode. Take AO = 840 nm, t = 800 
nm, and n2 = 3.61. 

2. How thick is the depletion layer for an electro-optical waveguide when the index 
of refraction (n3 = 3.6) increases in Medium 2 by O.l%? Take nl = I, AO = 1.3 jJ-m, 
and zeroth-order mode. 

3. Calculate the angle of total reflection in (a) a GaAs waveguide (n = 3.6), and (b) a 
glass waveguide (n = 1.5) against air. 

4. Of which order of magnitude does the doping of an electro-optical waveguide need 
to be in order that the index of refraction changes by one-tenth of one percent? 
Take n3 = 3.6, m* = 0.067 mo, and A = 1.3 jJ-m. 

5. Calculate the free carrier absorption loss in a semiconductor assuming n = 3.4, 
m* = 0.08 mo, A = l.l5 jJ-m, Nr = 10 18 cm-3, and jJ- = 2 X 103 cm2jVs. 

6. Show that the energy loss in an optical device, expressed in decibels per centime­
ter, indeed equals 4.3cx. 

7. Calculate the necessary step height of a "bump" on a compact disk in order that 
destructive interference can occur. (Laser wavelength in air, 780 nm; index of re­
fraction of transparent polymeric materials, 1.55.) 

8. Calculate the gap energy and the emitting wavelength of a GaAs laser that is 
operated at 100°C. Take the necessary data from the tables in Appendix 4 and 
Section 19.2. 
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PART IV 

MAGNETIC PROPERTIES 
OF MATERIALS 



CHAPTER 14 

Foundations of Magnetism 

14.1. Introduction 

The phenomenon of magnetism, i.e., the mutual attraction of two pieces of 
iron or iron ore, was surely known to the antique world. The ancient Greeks 
have been reported to experiment with this "mysterious" force. The desig­
nation magnetism is said to be derived from a region in Turkey which was 
known by the name of Magnesia and which had plenty of iron ore. 

Interestingly enough, a piece of magnetic material such as iron ore does 
not immediately attract other pieces of the same material. For this, at least 
one of the pieces has to be magnetized. Simply said, its internal "elementary 
magnets" need alignment in order for it to become a permanent magnet. 
Magnetizing causes no problem in modern days. One merely places iron into 
an electric coil through which a direct current passes for a short time. (This 
was discovered by Oersted at the beginning of the 19th century.) But how did 
the ancients do it? There may have been at least three possibilities. First, a 
bolt of lightning could have caused a magnetic field large enough to mag­
netize a piece of iron ore. Once one permanent magnet had been produced 
and identified, more magnets could have been obtained by rubbing virgin 
pieces of iron ore with the first magnet. There is another possibility. It is 
known that if a piece of iron is repeatedly hit very hard, the "elementary 
magnets" will be "shaken loose" and align in the direction of the earth's 
magnetic field. An iron hammer, for example, is north-magnetic on its face of 
impact in the northern hemisphere. Could it have been that a piece of iron 
ore was used as a hammer and thus it became a permanent magnet? A third 
possibility is that iron or nickel-containing meteorites responded with an 
alignment of their "elementary magnets" in an electromagnetic field during 
their immersion into the earth's atmosphere. 
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Magnetic materials made an important contribution to the development 
of the consciousness of mankind, because they paved the way to discoveries 
of new continents once the compass had been invented. (A compass needle is 
a pivoted bar magnet which positions itself approximately in the north­
south direction. We call the tip that points to geographic north, the north­
seeking pole, or simply the north pole, and the opposite end the south pole.) 
Around 1500, the British coined the word lodestone for the iron ore Fe304, 
which is derived from the old English word lode and which means to lead or 
to guide. Our modern technology would be unthinkable without magnetic 
materials and magnetic properties. Magnetic tapes or disks (computers), 
television, motors, generators, telephones, and transformers are only a few 
examples of their applications. 

Thus far, we have used the word magnetism very loosely when implying 
the mutual magnetic attraction of pieces of iron. There are, however, several 
classes of magnetic materials that differ in kind and degree in their mutual 
interaction. We shall distinguish in the following between ferromagnetism 
(which term we restrict to the classical magnetism in iron and a few other 
metals and alloys) and para-, dia-, antiferro-, and ferrimagnetism. The oldest 
known magnetic ore, the magnetite, or lodestone, Fe304, is actually a ferri­
magnet (FeO) . Fe203 called iron ferrite. 

In the sections to come, we will first define the magnetic constants and 
then remind the reader of some fundamental equations in magnetism before 
discussing magnetism by classical and quantum theory. Practical applica­
tions of magnetic materials are presented in the final chapter. 

14.2. Basic Concepts in Magnetism 

The goal of this chapter is to characterize the magnetic properties of mate­
rials. At least five different types of magnetic materials exist, as mentioned in 
the Introduction. A qualitative, as well as a quantitative, distinction between 
these different types can be achieved in a relatively simple way by utilizing a 
method proposed by Faraday. The magnetic material to be investigated is 
suspended from one of the arms of a sensitive balance and is allowed to 
reach into an inhomogeneous magnetic field (Fig. 14.1). Diamagnetic mate­
rials are expelled from this field, whereas para-, ferro-, antiferro-, and ferri­
magnetic materials are attracted in different degrees. It has been found em­
pirically that the apparent loss or gain in mass, i.e., the force, F, on the 
sample exerted by the magnetic field, H, is 

(14.1 ) 

where V is the volume of the sample, flo is a universal constant called the 
permeability of free space (1.257 x 10-6 Him or Vs/Am), and X is the sus-
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Figure 14.1. Measurement of the magnetic susceptibility in an inhomogeneous mag­
netic field. The electromagnet is dnven by an electric current, which flows through the 
hehcal wmdings of a long insulated wire called a solenoid. The magnetic flux hnes 
(dashed) follow the iron core. 

ceptibility, which expresses how responsive a material is to an applied mag­
netic field. Characteristic values for X are given in Table 14.1. The term 
dH I dx in Eq. (14.1) is the change of tte magnetic field strength, H, in the x­
direction. The field strength, H, of an electromagnet (consisting of helical 
windings of a long, insulated wire as seen in the lower portion of Figure 
14.1) is proportional to the current, I, which flows through this coil, and on 
the number, n, of the windings (called turns) that have been used to make the 
coil. Further, the magnetic field strength is inversely proportional to the 
length, L, of the solenoid. Thus, the magnetic field strength is expressed by 

H =In. 
L 

(14.2) 

The field strength is measured (in SI units) in "Amp-turns per meter", or 
shortly, in Aim. 

The magnetic field can be enhanced by inserting, say, iron, into a solenoid, 
as shown in Figure 14.1. The parameter that expresses the amount of en­
hancement of the magnetic field is called the permeability, fl. The magnetic 
field strength within a material is known by the names magnetic induction 1 

1 CallIng B "magnetic mductlon" IS common practice but should be discouraged because It may 
be confused with electromagnetic mductlOn. Thus, some authors call B "magnetic field" and H 
"applIed field". 
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Table 14.1. Magnetic constants of some materials at room temperature 

Type of 
Material X (SI) unitless X (cgs) unitless f1 unitless magnetism 

Bi -165 x 10-6 -13.13 X 10-6 0.99983 
Be -23.2 x 10-6 -1.85 X 10-6 0.99998 
Ag -23.8 x 10-6 -1.90 X 10-6 0.99997 
Au -34.4 x 10-6 -2.74 X 10-6 0.99996 Diamagnetic 
Ge -71.1 x 10-6 -5.66 X 10-6 0.99999 
eu -9.7 x 10-6 -0.77 X 10-6 0.99999 
Si -4.1 x 10-6 -0.32 X 10-6 0.99999 
Water -9.14 x 10-6 -0.73 X 10-6 0.99999 
Superconductors· -1.0 --8 x 10-2 0 

p-Sn +2.4 x 10-6 +0.19 X 10-6 1 
W +77.7 X 10-6 +6.18 X 10-6 1.00008 
Al +20.7 x 10-6 +1.65 X 10-6 1.00002 Paramagnetic 
Pt +264.4 x 10-6 +21.04 x 10-6 1.00026 

Low carbon steel ~5 x 103 3.98 X 102 5 X 103 

Fe-3%Si (grain-oriented) 4 x 104 3.18 X 103 4 X 104 Ferromagnetic 
Ni-Fe-Mo (supermalloy) 106 7.96 x 104 106 

"See Section 7.6. 
Note: The table lists the unitless susceptibility, X, in SI and cgs units. (The difference is a factor of 4n, see 
Appendix 4.) Other sources may provide mass, atomic, molar, volume, or gram equivalent susceptibilities 
in cgs or SI units. f.l has the same value in both unit systems, see Section 14.3. 
Source: Landolt-Bomstein, Zahlenwerte der Physik, Vol. 11/9, 6th Edition, Springer-Verlag, Berlin (1962). 

(or magnetic flux density) and is denoted by B. Magnetic field strength and 
magnetic induction are related by the equation 

( 14.3) 

The SI unit for B is the tesla (T); see Appendix 4. The permeability (some­
times called relative permeability, f.1r) in Eq. (14.3) is unitless and is listed in 
Table 14.1 for some materials. The relationship between the susceptibility 
and the permeability is 

f.1= 1 +X· (14.4 ) 

For empty space and, for all practical purposes, also for air, one defines 
X = 0 and thus f.1 = 1 [See Eq. (14.4)]. The susceptibility is small and negative 
for diamagnetic materials. As a consequence, f.1 is slightly less than 1 (see 
Table 14.1). For para- and antiferromagnetic materials, X is again small, but 
positive. Thus, f.1 is slightly larger than I. Finally, X and f.1 are large and 
positive for ferro- and ferrimagnetic materials. 

The magnetic constants are temperature-dependent, except for diamag­
netic materials, as we will see later. Further, the susceptibility for ferro­
magnetic materials depends on the field strength, H. 
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Figure 14.2. Schematic representation of magnetic field lines in and around different 
types of materials. (a) Para- or ferromagnetics. The magnetic induction (B) inside the 
material consists of the free-space component (JloH) plus a contribution by the ma­
terial (floM); see Eq. (14.5). (b) The magnetic field lines outside a material point from 
the north to the south poles, whereas inside of para- or ferromagnetics, Band JloM 
point from south to north in order to maintain continuity. (c) In diamagnetics, the 
response of the material counteracts (weakens) the external magnetic field. (d) In a 
thin surface layer of a superconductor, a supercurrent is created (below its transition 
temperature) which causes a magnetic field that opposes the external field. As a con­
sequence, the magnetic flux lines are expelled from the interior of the material. 
Compare to Figure 9.18. 

The magnetic field parameters at a given point in space are, as explained 
above, the magnetic field strength, H, and the magnetic induction, B. In free 
(empty) space, Band J.1.oH are identical, as seen in Eq. (14.3). Inside a mag­
netic material the induction, B, consists of the free-space component (J.1.oH) 
plus a contribution to the magnetic field (J.1.oM) which is due to the presence 
of matter [Figure 14.2(a)J, that is, 

B=J.1.oH+J.1.oM, (14.5) 

where M is called the magnetization of the material. Combining Eqs. (14.3) 
through (14.5) yields 

M=XH . (14.6) 

H, B, and M are actually vectors. Specifically, outside a material, H (and B) 
point from the north to the south pole. Inside of a ferro- or paramagnetic 
material, Band M point from the south to the north; see Figures 14.2(a) and 
(b). However, we will mostly utilize their moduli in the following sections 
and thus use lightface italic letters. 

B was said above to be the magnetic flux density in a material, that is, the 
magnetic flux per unit area. The magnetic flux, t/J, is then defined as the 
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product of B and area, A, that is, by 

if; = BA. (14.7) 

In free space, for which M = 0, we obtain instead, by using (14.5), 

if; = f.1oHA . (14.7a) 

Finally, we need to define the magnetic moment, f.1m' (also a vector) 
through the following equation: 

(14.8) 

which means that the magnetization is the magnetic moment per unit 
volume. 

*14.3. Units 

It needs to be noted that in magnetic theory several unit systems are com­
monly in use. The scientific and technical literature on magnetism, particu­
larly in the USA, is still widely written in electromagnetic cgs (emu) units. In 
some European countries, and in many international scientific journals, the 
SI units are mandatory. Conversion factors from emu into SI units are given 
in Appendix 4. The magnetic field strength in cgs units is measured in 
oersted and the magnetic induction in gauss. In SI units H is measured in 
A/m and B is given in tesla (T). Equation (14.5) reads in cgs units 

B = H +4nM. 

Writing (14.3) in cgs (emu) units yields 

B=f.1H , 

The permeability in cgs units is 

f.1 = 1 +4nx· 

(14.9) 

(14.10) 

(14.11) 

Comparison of (14.4) with (14.11) indicates a difference by a factor 4n be­
tween the susceptibilities in the two unit systems. As a result, f.1 has the same 
value in both unit systems, see Appendix 4 and Table 14.1. It needs to be 
further stressed that the electric charge (e.g., of an electron) in electromag­
netic cgs units is written in "abcoulombs" or (gl/2 cm 1/2), see Appendix 4. 

Problems 

1. Show that the unit for 1 Oe is equivalent to [gl/2jcm l/2 . sJ by making use of 
(14.1). 
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2. An electromagnet is a helical winding of wire through which an electric current 
flows. Such a "solenoid" of 1000 turns is 10 cm long and is passed through by a 
current of 2A. What is the field strength in Oe and A/m? 

3. Familiarize yourself with the units of H, B, and M in the different unit systems. 
Convert (14.9) into (14.5) by making use of the conversion table in Appendix 4. 

4. Calculate the (relative) permeability of Bi and Al from their susceptibilities 
(XSI = -165 X 10-6 and XAI = 20.7 x 10-6) and compare your values with those 
in Table 14.1. Perform the same calculation for Ni-Fe-Mo (X = 106). What do 
you observe? 



CHAPTER 15 

Magnetic Phenomena and Their 
Interpretation-Classical Approach 

15.1. Overview 

We stated in the last chapter that different types of magnetism exist, and that 
they are characterized by the magnitude and the sign of the susceptibility 
(see Table 14.1). 

Since various materials respond so differently in a magnetic field, we sus­
pect that several fundamentally different mechanisms must be responsible for 
the magnetic properties. In the first part of this chapter we shall attempt to 
unfold the multiplicity of the magnetic behavior of materials by describing 
some pertinent experimental findings and giving some brief interpretations. 
In the sections to follow, we shall treat the atomistic theory of magnetism in 
more detail. 

15.1.1. Diamagnetism 

Ampere postulated more than one hundred years ago that molecular currents 
are responsible for the magnetism in a solid. He compared the molecular 
currents to an electric current in a loop-shaped piece of wire, which is known 
to cause a magnetic moment. Today, we replace Ampere's molecular cur­
rents by orbiting valence electrons. 

For the understanding of diamagnetism, a second aspect needs to be con­
sidered. It was found by Lenz that a current is induced in a wire loop 
whenever a bar magnet is moved toward (or from) this loop. The current 
thus induced causes, in tum, a magnetic moment which is opposite to the 
one of the bar magnet (Fig. 15.1(a)). (This has to be so in order for me­
chanical work to be expended in producing the current; otherwise, a perpet-
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Figure 15.1. Explanation of diamagnetism. (a) Induction of a current in a loop­
shaped piece of wire by moving a bar magnet toward the wire loop. The current in 
the loop causes a magnetic field that is directed opposite' to the magnetic field of the 
bar magnet (Lenz's law). (b) Precession of an orbiting electron in an external mag­
netic field. Precession is the motion which arises as a result of external torque acting 
on a spinning body (such as a spinning top) or, as here, on an orbiting electron. 

ual motion would be created!) Diamagnetism may then be explained by 
postulating that the external magnetic field induces a change in the magni­
tude of inner-atomic currents, i.e., the external field accelerates or decelerates 
the orbiting electrons, in order that their magnetic moment is in the opposite 
direction from the external magnetic field. In other words, the responses of 
the orbiting electrons counteract the external field (Fig. 14.2(c)) whereas the 
outermost electrons provide the largest contribution. A more accurate and 
quantitative explanation of diamagnetism replaces the induced currents by 
precessions of the electron orbits about the magnetic field direction (Larmor 
precession, see Fig. 15.1(b)). 

So far, we implicitly considered only electrons that are bound to their re-
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spective nuclei. Now, metals are known also to have free electrons. They are 
forced to move in a magnetic field in a circular path. This leads to a second 
contribution to the diamagnetic moment; specifically, the circulating free 
electrons cause a magnetic moment, similarly as described above. 

It has been observed that superconductiog materials (Section 7.6) expel the 
magnetic flux lines when in the superconducting state (Meissner effect). In 
other words, a superconductor behaves in an external magnetic field as if B is 
zero inside the superconductor (Fig. 14.2(d)). Thus, with (14.5), we obtain 

H=-M, 

which means that the magnetization is equal and opposite to the external 
magnetic field strength. The result is a perfect diamagnet. The susceptibility 
(14.6) 

M 
x=-H 

in superconductors is -1 compared to -10-6 in the normal state (see Table 
14.1). This strong diamagnetism can be used for frictionless bearings, i.e., for 
support of loads by a repelling magnetic field. The levitation effect in which a 
magnet hovers above a superconducting material, and the suspension effect 
where a chip of superconducting material hangs beneath a magnet can be 
explained with the strong diamagnetic properties of superconductors. (See 
also Problem 12.) 

15.1.2. Paramagnetism 

Paramagnetism in solids is attributed, to a large extent, to a magnetic mo­
ment that results from electrons which spin around their own axes, Fig. 

f.Lm 

f.Lm 

(a) (b) 

Figure 15.2. (a) Schematic representation of electrons which spin around their own 
axes. A (para)magnetJc moment Pm results; its direction depends on the mode of 
rotation. Only two spin directions are shown (called "spin up" and "spin down"). 
(b) An orbiting electron is the source of electron-orbit paramagnetism. 
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l5.2(a). We have already introduced the electron spin in Section 6.4 and 
mentioned there that, because of the Pauli principle, no two electrons having 
the same energy can have the same value and sign for the spin moment. In 
other words, each electron state can be occupied by two electrons only; one 
with positive spin and one with negative spin, or, as is often said, one with 
spin up and one with spin down. An external magnetic field tries to tum the 
unfavorably oriented spin moments in the direction of the external field. We 
will talk about the quantum mechanical aspect of spin paramagnetism in 
more detail in Chapter 16. Spin paramagnetism is slightly temperature­
dependent. It is in general very weak and is observed in some metals and in 
salts of the transition elements. 

Free atoms (dilute gases) as well as rare earth elements and their salts and 
oxides possess an additional source of paramagnetism. It stems from the 
magnetic moment of the orbiting electrons Fig. l5.2(b). Without an external 
magnetic field, these magnetic moments are randomly oriented and thus they 
mutually cancel one another. As a result, the net magnetization is zero. 
However, when an external field is applied, the individual magnetic vectors 
tend to tum into the field direction. Thermal agitation counteracts the 
alignment. Thus, electron-orbit paramagnetism is temperature-dependent. 

The temperature dependence of many paramagnetic materials is governed 
by the experimentally found Curie law, which states that the susceptibility, X, 
is inversely proportional to the absolute temperature T, 

(15.1 ) 

where C is called the Curie constant. For many other substances, a more 
general relationship is observed, which is known as the Curie-Weiss law, 

(15.2) 

where () is another constant that has the same unit as the temperature and 
may have positive as well as negative values (see Fig. 15.3). We will explain 
the meaning of the constants C and () in Section 15.3. 

Metals, with a few exceptions, do not obey the Curie-Weiss law, as we 
shall see in Chapter 16. However, Ni (above the Curie temperature, see 
Section 15.1.3) and, in a limited temperature interval, also Fe and p-Co, the 
rare earth elements, and salts of the transition elements (e.g., the carbonates, 
chlorides, and sulfates of Fe, Co, Cr, Mn) obey the Curie-Weiss law quite 
well. 

We have just mentioned that in most solids only spin paramagnetism is 
observed. This is believed to be due to the fact that in crystals the electron 
orbits are essentially coupled to the lattice, which prevents the orbital mag­
netic moments from turning into the field direction. One says in this case that 
the orbital moments are "quenched." Exceptions are the rare earth elements 
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Figure 15.3. Schematic representation of (a) the Curie law and (b) and (c) the Curie­
Weiss law. (d) The diamagnetic behavior is also shown for comparison. 

and their derivatives, which have "deep-lying" 4(-electrons. 2 The latter ones 
are shielded by the outer electrons from the crystalline field of the neighbor­
ing ions. Thus, the orbital magnetic moments of the f-electrons may turn 
into the external field direction and contribute to electron-orbit paramag­
netism. The fraction of the total magnetic moment contributed by orbital 
motion versus by spin is defined as the "g-factor." 

It is now possible to make some general statements about whether para- or 
diamagnetism might be expected in certain materials. For paramagnetic 
materials, the magnetic moment of the electrons is thought to point in the 
direction of the external field, i.e., the magnetic moment enhances the exter­
nal field. Diamagnetism counteracts an external field, as we have seen in 
Section 15.1.1. Thus, para- and diamagnetism oppose each other. Solids that 
have both orbital as well as spin paramagnetism are clearly paramagnetic 
since the sum of both paramagnetic components is commonly larger than 
the diamagnetism. Rare earth metals with unfilled 4f-electron bands are an 
example of this. In most other solids, however, the orbital paramagnetism is 
"quenched," as we said above. Yet, they still might have spin paramagne­
tism. The possible presence of a net spin-paramagnetic moment depends 
upon whether or not the magnetic moments of the individual spins cancel 
each other. More specifically, if a solid has completely filled electron bands, 
we anticipate (because of the Pauli principle) the same number of electrons 
with spins up as well as with spins down. For example, a completely filled d­
band contains 5N electrons with spins up and 5N electrons with spins down. 
This results in a cancellation of the spin moments and no net spin para­
magnetism is expected. These materials are thus diamagnetic (no orbital and 
no spin paramagnetic moment). We mention as examples for filled bands 

2 See Appendix 3. 
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1+ + 1+ + I + ... I tit I 
Figure 15.4. Schematic representation of the spin alignment in a d-band which is 
partially filled with eight electrons (Hund's rule). 

intrinsic semiconductors, insulators, and ionic crystals such as NaCI. (In the 
latter case, an electron transfer occurs between cations and anions, which 
causes closed electron shells, i.e., filled bands.) 

In materials with partially filled bands, the electron spins are arranged, 
according to "HUDd's rule," in such a manner that the total spin moment 
is maximized. This condition is energetically more favorable, as quantum 
mechanics shows. For example, in an atom with eight valence d-electrons, 
five of the spins align, say, up, and three spins point down, which results in a 
net total of two spins up (Fig. 15.4). The atom is then expected to have two 
units of (para-)magnetism. 

The smallest unit (or quantum) of the magnetic moment is called one Bohr 
magneton 

fiB = 4:: = 9.274 x 10-24 (~) == (A· m 2
) (15.3) 

(The symbols have the usual meaning.) We shall derive equation (15.3) in 
Chapter 16. In the above example, the metal is said to have two Bohr mag­
netons per atom. 

One word of caution should be added about applying the above general 
principles too rigidly. Some important exceptions do exist. They must be 
explained by considering additional information (see Chapter 16). For ex­
ample, copper, which has one s-electron in its valence band, should be par­
amagnetic according to our considerations brought forward so far. In real­
ity, copper is diamagnetic. Other examples are superconductors, which are 
perfect diamagnetics below a transition temperature; they repel the magnetic 
flux lines from their interior, as we explained in Section 15.1.1. 

15.1.3 . Ferromagnetism 

We turn now to ferromagnetics and commence with the experimentally 
found magnetization curve for these materials. A newly cast piece of iron 
(often called virgin iron) is inserted into a ring-shaped solenoid (Fig. 15.5). 
(The ring shape is used to contain the magnetic field within the coil.) If the 
external field strength is increased (by increasing the current in the primary 
winding), then the magnetization (measured in a secondary winding with a 
flux meter) rises at first slowly and then more rapidly (Fig. 15.6). Finally, M 
levels off and reaches a constant value, called the saturation magnetization, 
Ms. When H is reduced to zero, the magnetization retains a positive value, 
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power supply 
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Flux meter 

Figure 15.5. A ring-shaped solenoid with primary and secondary windings. The 
magnetic flux lines are indicated by a dashed circle. Note, that a current can flow in 
the secondary circuit only if the current (and therefore the magnetic flux) in the pri­
mary winding changes with time. An on-off switch in the primary circuit may serve 
for this purpose. 

called the remanent magnetization, or remanence, Mr. It is this retained 
magnetization that is utilized in permanent magnets. The remanent magne­
tization can be removed by reversing the magnetic field strength to a value 
He, called the coercive field. Solids having a large combination of Mr and He 
are called hard magnetic materials (in contrast to soft magnetic materials for 
which the area inside the loop of Fig. 15.6 is very small and the slope 
dM / dH about the origin is quite steep). A complete cycle through positive 
and negative H-values, as shown in Fig. 15.6, is called a hysteresis loop. It 
should be noted that a second type of hysteresis curve is often used, in which 
B (instead of M) is plotted versus H. No saturation value for B is observed. 
(The residual induction Br at H = 0 is called the retentivity. Removal of Br 
requires a field which is called coercivity. However, remanence and retentivity, 
as well as coercive field, coercive force, and coercivity are often used inter­
changeably. ) 
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M 

Figure 15.6. Schematic representation of a hysteresis loop of a ferromagnetic mate­
rial. The dashed curve is for virgin material. 

o 
ferromagnetic 
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Figure 15.7. (a) Temperature dependence of the saturation magnetization of ferro­
magnetic materials. (b) Enlarged area near the Curie temperature showing the para­
magnetic Curie point 8 (see Fig. 15.3) and the ferromagnetic Curie temperature Te. 
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Table 15.1. Saturation Magnetization at 0 K and Curie Temperature 
(Tc) for Some Ferromagnetic Materials. 

Mso 

Metal (A/m) (Maxwells/cm2 ) Tc (K) 

Fe 1.75 x 106 2.20 X 104 1043 
Co 1.45 x 106 1.82 X 104 1404 
Ni 0.51 x 106 0.64 X 104 631 
Gd 5.66 x 106 7.11 X 104 289 

The saturation magnetization is temperature-dependent (Fig. 15.7(a)). 
Above the Curie temperature, Tc, ferromagnetics become paramagnetic. 
Table 15.1 lists saturation magnetizations and Curie temperatures of some 
elements. For ferromagnetics the Curie temperature, Tc , and the constant e 
in the Curie-Weiss law are nearly identical. A small difference exists, how­
ever, because the transition from ferromagnetism to paramagnetism is grad­
ual, as can be seen in Fig. 15.7(b). 

Piezomagnetism. The magnetization of ferromagnetics is also stress­
dependent (Fig. 15.8). As an example, a compressive stress increases the 
magnetization for nickel, while a tensile stress reduces M and therefore fl. 
This effect is just the opposite in certain nickel-iron alloys (permalloy, see 
Table 17.1) where a tensile stress increases M or fl. In polycrystalline iron the 
situation is more complex. At low fields, iron behaves like permalloy, whereas 
at high fields it behaves similar to nickel. 

The inverse of piezomagnetism is called magnetostriction, an effect which 
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Figure 15.8. Schematic representation of the effect of tensile and compressive stresses 
on the magnetization behavior of (a) nickel and (b) iron. (Piezomagnetism.) 
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describes a change in dimensions when a ferromagnetic substance is exposed 
to a magnetic field. (Incidentally, the periodic dimensional change caused by 
an alternating magnetic field produces the humming noise in transformers 
and "ballasts" for fluorescence lights; see Section 17.2.) Magnetostriction is 
also observed in ferrimagnetic and antiferromagnetic materials. Moreover, 
terbium-disprosium-iron displays magnetostriction which is about 3 orders 
of magnitude larger than in iron and iron-nickel alloys. 

A few preliminary words should be said to explain the above-mentioned 
observations. In ferromagnetic materials, the spins of unfilled d-bands spon­
taneously align parallel to each other below Tc, i.e., they align within small 
domains without the presence of an external magnetic field (Fig. 15.9). The 
individual domains are magnetized to saturation. The spin direction in each 
domain is, however, different, so that the individual magnetic moments for 
the material as a whole cancel each other and the net magnetization is zero. 
An external magnetic field causes those domains whose spins are parallel or 
nearly parallel to the external field to grow at the expense of the unfavorably 
aligned domains. (See the transition from Fig. 15.9(c) to Fig. 15.9(d).) When 
the entire crystal finally contains one single domain, having all spins aligned 
parallel to the external field direction, the material is said to have reached 
technical saturation magnetization, Ms. Nevertheless, if the external magnetic 
field is further increased a small, additional rise in M is observed. This is 
caused by the forced alignment of those spins which precess about the field 
direction due to thermal activation. The largest magnetization (Mso) is ob­
tained at 0 K. An increase in temperature progressively destroys the spon­
taneous alignment. The gradual transition from ferromagnetism to para­
magnetism (Fig. 15.7(b)) is believed to be due to the fact that, slightly above 
Tc, small clusters of spins are still aligned parallel to each other, a phenom­
enon which is called magnetic short-range order. 

There are a number of fundamental questions which come immediately to 
mind; e.g., in the virgin state, why is the spontaneous division into many 
individual domains apparently preferred to one single domain? To answer 
this, let us assume for a moment that all electron spins in a crystal are indeed 
aligned in parallel, Fig. 15.9(a). As a consequence, north and south poles 
would be created on opposite ends of the solid. This would be energetically 
unfavorable because it would be the source of a large external magnetic field. 
The magnetostatic energy of this field can be approximately halved if the 
crystal contains two domains that are magnetized in opposite directions. This 
way, north and south poles are closer together and the external magnetic 
field is confined to a smaller area (Fig. 15.9(b)). Further divisions into still 
smaller and smaller domains with concomitant reductions in magneto static 
energies lead, however, eventually to an optimal domain size. Apparently, 
an opposing mechanism must be active. The energy involved for the latter 
has been found to be the quantum mechanical exchange energy. As we will 
learn in Section 16.2, this exchange energy causes adjacent spins to align 
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Figure 15.9. (a) Spontaneous alignment of all spins in a single direction. (b) Division 
into two magnetic domains having opposite spin directions. (c) Closure domains in a 
cubic crystal. (d) Growth of a domain whose spins are parallel to an external mag­
netic field. (The domain walls are not identical with the grain boundaries.) 

parallel to each other. It is this interplay between exchange energy, which 
demands parallel spin alignment, and magnetostatic energy, which supports 
antiparallel spins, that leads eventually to an energetically most favorable 
domain size (which is about 1-100 ,urn). 

A further reduction in magneto static energy can be obtained if the mag­
netic flux follows a completely closed path within a crystal so that no exte­
rior poles are formed. Indeed, "closure" domain structures, as shown in Fig. 
15.9(c), are observed in cubic crystals. 

Another question which needs to be answered pertains to whether the flip 
from one spin direction into the other occurs in one step, i.e., between two 
adjacent atoms, or instead over an extended range of atoms. Again, the 
above-mentioned exchange energy, which supports a parallel spin alignment, 
hinders a spontaneous flip-over. Instead, a gradual rotation over several 
hundred atomic distances is energetically more favorable. The region be­
tween individual domains in which the spins rotate from one direction into 
the next is called a domain wall or a Bloch wall. 

Finally, we may ask the question whether and how those domain walls 
can be made visible. The most common method, devised by Bitter in 1931, 
utilizes an aqueous suspension of very finely dispersed Fe304 particles which 
is applied to the polished surface of a test material. These particles are at­
tracted to the domain wall endings and can then be observed as fine lines 
under an optical microscope. Another method exploits the rotation of the 
plane of polarization of reflected light from differently magnetized areas 
(Kerr effect). 

We mentioned above that an external magnetic field causes a movement 
of the domain walls. The movement is, as a rule, not continuous, but occurs 
most of the time in distinct jumps. This is known as the Barkhausen effect, 
which utilizes an induction coil wound around a ferromagnetic rod. The 
former is connected to an amplifier and a loudspeaker. Audible clicks are 
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heard when a pennanent magnet approaches the iron rod. The wall motions 
may be impeded by imperfections in the crystal, such as by particles of a 
second phase, oxides, holes, or cracks. A second type of impediment to free 
domain wall motion stems from dislocations, i.e., from residual stresses in 
the crystal caused by grinding, polishing, or plastic defonnation. 

Cold work enlarges the coercivity and the area within the hysteresis loop. 
Further, cold work decreases the penneability and causes a clockwise rota­
tion of the hysteresis curve. In short, mechanical hardness and magnetic 
hardness parallel each other in many cases. (There exist exceptions, however, 
such as in the case of silicon additions to iron, which makes the material 
magnetically softer and mechanically harder, see Section 17.2.3.) Recrystal­
lization and grain growth by annealing at suitable temperatures relieve the 
stresses and restore the soft-magnetic properties. 

We shall return to ferromagnetism in Section 15.4 and Chapter 16. 

15.1.4. Antiferromagnetism 

Antiferromagnetic materials exhibit, just as ferromagnetics, a spontaneous 
alignment of moments below a critical temperature. However, the responsi­
ble neighboring atoms in antiferromagnetics are aligned in an anti parallel 
fashion (Fig. 15.10). Actually, one may consider an anti ferromagnetic crystal 
to be divided into two interpenetrating sublattices, A and B, each of which 
has a spontaneous parallel alignment of spins. Figure 15.10 depicts the spin 
alignments for two manganese compounds. (Only the spins of the manga­
nese ions contribute to the anti ferromagnetic behavior.) Figure 15.l0(a) im-

.'0"'0'. 0 ~ O.otO,o 

.o.o~o' 
O'O'O~o ."0-·,·0 • 0 ~ 0.0,040 
~o'o~o. 

(a) (b) 

Figure 15.10. Schematic representation of spin alignments for antiferromagnetics at 
OK. (a) Display of a (100) plane of MnO. The gray (spin down) and black (spin up) 
circles represent the Mn ions. The oxygen ions (open circles) do not contribute to the 
antiferromagnetic behavior. MnO has a NaCl structure. (b) Three-dimensional rep­
resentation of the spin alignment of manganese ions in MnF2. (The fluorine ions are 
not shown.) This figure demonstrates the interpenetration of two manganese sub­
lattices, A and B, having antiparallel aligned moments. 
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Figure 15.11. Schematic representation of the temperature dependence of a poly­
crystalline antiferromagnetic (a.f.) material. 

plies that the ions in a given {II O} plane possess parallel spin alignment, 
whereas ions in the adjacent plane have antiparallel spins with respect to the 
first plane. Thus, the magnetic moments of the solid cancel each other and 
the material as a whole has no net magnetic moment. 

Antiferromagnetic materials are paramagnetic above the Nee) temperature 
TN, i.e., they obey there a linear T = f(1lx) law (see Fig. 15.11). Below TN, 
however, the inverse susceptibility may rise with decreasing temperature. 
The extrapolation of the paramagnetic line to 1 Ix = 0 yields a negative e. 
Thus, the Curie-Weiss law (15.2) needs to be modified for anti­
ferromagnetics to read 

c c x- ---
- T - (-(}) - T + e' (15.4) 

The Neel temperature is often below room temperature (Table 15.2). Most 
antiferromagnetics are found among ionic compounds. They are insulators 
or semiconductors. Essentially no practical application for antiferromag­
netism is known at this time. (See, however, the use of "canted" anti­
ferromagnetics, described in Section 17.5, which are materials in which the 
magnetic moments of the two sublattices are not completely antiparallel. 
This results in a small net magnetization.) 

Table 15.2. Characteristic Data for Some 
Antiferromagnetic Materials. 

Substance TN (K) -0 (K) 

MnO 116 610 
MnF2 67 82 
IX-Mn 100 ? 
FeO 198 570 
NiO 523 ~2000 

CoO 293 330 
Cr 310 ? 
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15.1.5. F errimagnetism 

Ferrimagnetic materials are of great technical importance. They exhibit a 
spontaneous magnetic moment (Fig. 15.9) and hysteresis (Fig. 15.6) below a 
Curie temperature, just as iron, cobalt, or nickel. In other words, ferri­
magnetic materials possess, similarly as ferromagnetics, small domains in 
which the electron spins are spontaneously aligned in parallel. The main 
difference from ferromagnetics is, however, that ferrimagnetics are ceramic 
materials (oxides) and that they are poor electrical conductors. A large re­
sistivity is often desired for high-frequency applications (e.g., to prevent eddy 
currents in cores of coils, see Chapter 17). 

To explain the spontaneous magnetization in ferrimagnetics, Neel pro­
posed that two sublattices should exist in these materials (just as in anti­
ferromagnetics) each of which contains ions whose spins are aligned parallel 
to each other. The crucial point is that each of the sublattices contain differ­
ent numbers of magnetic ions. This causes some of the magnetic moments to 
remain uncancelled. As a consequence, a net magnetic moment results. Fer­
rimagnetic materials can thus be described as imperfect antiferromagnetics. 
The crystallography of ferrites is rather complex. We defer its discussion 
until later. For the time being, it suffices to know that there are two types of 
lattice sites which are available to be occupied by the metal ions. They are 
called A sites and B sites. (As before, oxygen ions do not contribute to the 
magnetic moments). 

We will now discuss as an example nickel ferrite, NiO· Fe203. The Fe3+ 
ions are equally distributed between A and B sites (Fig. 15.12), and since 
ions on A and B sites exhibit spontaneous magnetization in opposite direc­
tions, we expect overall cancellation of spins for these ions. Specifically, 
atomic iron possesses six 3d-electrons and two 4s-e1ectrons (3d64s2, see 
Appendix 3). The Fe3+ ions are deprived of three electrons, so that five d­
electrons, or five spin moments per atom, remain in its outermost shell. This 
is indicated in Fig. 15.12. 

A sites B sites 

8 Fe 3 + 

ttttt 

Figure 15.12. Distribution of spins upon A and B sites for the inverse spinel 
NiO· Fe203. The spins within one site are arranged considering Hund's rule (Fig. 
15.4). The iron ions are equally distributed among the A and B sites. The nickel ions 
are only situated on B sites. The relevance of the number of ions per unit cell is ex­
plained later on in the text. 
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Table IS.3. Calculated and Measured Number of Bohr Magnetons for 
Some Ferrites. 

Ferrite Mn Fe Co Ni Cu 

Calculated fJB 5 4 3 2 I 
Measured fJB 4.6 4.1 3.7 2.3 1.3 

The electron configuration of nickel in its atomic state is 3d84s2• Two 
electrons are stripped in the NiH ion so that eight d-electrons per atom 
remain. They are arranged, according to Hund's rule (Fig. IS.4), to yield two 
net magnetic moments (Fig. IS.12). All nickel ions are accommodated on the 
B sites. Nickel ferrite is thus expected to have two uncancelled spins, i.e., two 
Bohr magnetons (per formula unit), which is essentially observed (see Table 
IS.3). 

The small discrepancy between experiment and calculation is believed to 
be caused by some contributions of orbital effects to the overall magnetic 
moment, and by a slight deviation of the distribution of metal ions on the A 
and B sites from that shown in Fig. IS.l2. 

The unit cell of cubic ferrites contains a total of S6 ions. Some of the metal 
ions are situated inside a tetrahedron formed by the oxygen ions. These are 
the above-mentioned A sites (Fig. IS.13(a)). Other metal ions are arranged 
in the center of an octahedron and are said to be on the B sites (Fig. 
IS.13(b)). The A and B sites are nestled inside a unit cell (Fig. IS.13(c)). 

(a) (b) (c) 

Figure 15.l3. Crystal structure of cubic ferrites. The small filled circles represent 
metal ions, the large open or shaded circles represent oxygen ions: (a) tetrahedral or 
A sites; (b) octahedral or B sites; and (c) one-fourth of the unit cell of a cubic ferrite. 
A tetrahedron and an octahedron are marked. Adapted from J. Smit, and H.P.J. 
Wijn, Ferrites, Wiley, New York (1959). 
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ferrimagnetlc T c T-

Figure 15.14. Schematic representation of the temperature dependence of the satu­
ration magnetization, M s, and the reciprocal susceptibility for ferrites. 

Now, only 8 tetrahedral sites and 16 octahedral sites are occupied by metal 
ions. In NiO . Fe203 twice as many iron ions as nickel ions are present. Eight 
of the Fe3+ ions per unit cell occupy the A sites, eight of them occupy some 
of the B sites and the eight NiH ions fill the remaining B sites (Fig. 15.12). 
This distribution is called an inverse spinel structure (in contrast to a normal 
spinel, such as for ZnO . Fe203, in which all Fe3+ ions occupy the B sites). 

The temperature dependence of most ferrimagnetics is very similar to fer­
romagnetics (Fig. 15.14): The saturation magnetization decreases with in­
creasing temperature until it vanishes at a Curie temperature, Te. Above Te, 
ferrimagnetics behave paramagnetically, having a nonlinear l/x versus T 
relationship. 

In conclusion, this section described, in a mostly qualitative way, the dif­
ference between dia-, para-, ferro-, antiferro-, and ferrimagnetism. In the 
sections to come, we shall again pick up the different forms of magnetism 
and deepen our understanding of these phenomena by following essentially 
the train of thought brought forward by Langevin, Weiss, and Nee!. 

15.2. Langevin Theory of Diamagnetism 

We shall now develop the classical theory of diamagnetism in a quantitative 
way as put forward by Langevin at the turn of the 20th century. 

We stated before that the orbital motion of an electron about its nucleus 
induces a magnetic moment, f.1m. We compared the latter with a magnetic 
moment which is created by a current passing through a loop-shaped wire. 
This magnetic moment is, naturally, larger, the larger the current, I, and the 
larger the area, A, of the orbit or loop: 

2 
f.1m = I . A = ~ A = ~ A = evnr = evr 

t slv 2nr 2 
(15.5) 

(e is the electron charge, r is the radius of the orbit, s = 2nr = length of the 
orbit, v = velocity of the orbiting electrons, and t = orbiting time). 
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We know that an external magnetic field accelerates (or decelerates) the 
orbiting electrons, which results in a change in magnetic moment. We shall 
now calculate this change in f.1m. 

The external magnetic field induces an electric field (Section 15.1.1), 
which, in tum, exerts an electrostatic force IFI on the orbiting electron, which 
is 

F=ma= ge, (15.6) 

where Igl is the electric field strength and m is the mass of the electron. From 
this equation we obtain the acceleration of the electron, 

dv ge 
a=-=-. 

dt m 
(15.7) 

To calculate the acceleration we need to know the electric field strength, g. It 
is defined as the ratio of the induced voltage (or emf), Ve, per orbit length, L, 
(see Section 7.1), i.e., 

( 15.8) 

As we said earlier, a change in an external magnetic flux, rjJ, induces in a 
loop-shaped wire an emf which opposes, according to Lenz's law, the change 
in flux: 

v; __ drjJ __ d(JioHA) 
e - dt - dt (15.9) 

(see (14.7a)). Thus, the acceleration of the electron becomes, by combining 
(15.7)-(15.9), 

dv ge Vee eAf..lo dH 
-----

dt m Lm Lm dt 
enr2JiodH 

----
2nrm dt 

erf..lo dH 
- 2m dr· (15.10) 

A change in the magnetic field strength from 0 to H yields a change in the 
velocity of the electrons: 

or 

f
V

2 erJio fH 
dv=-- dH 

VI 2m 0 

Liv = _ erf..loH . 
2m 

(15.11) 

(15.12) 

This change in electron velocity yields in tum a change in magnetic moment, 
as we see by combining (15.5) with (15.12): 

Li _ eLivr __ e2r2f..loH 
f.1m - 2 - 4m (15.13) 

So far we tacitly assumed that the magnetic field is perpendicular to the 
plane of the orbiting electron. In reality, however, the orbit plane varies 



15. Magnetic Phenomena and Their Interpretation-Classical Approach 329 

constantly in direction with respect to the external field. Thus, we have 
to find an average value for AJim which we expect to be slightly smaller 
than that given in (15.13) since tlflm approaches zero when the field direction 
and the orbit plane become parallel. A simple calculation (see Problem 2) 
yields 

(15.14) 

One further consideration needs to be mad~: Up to now, we treated only one 
electron. If we take all Z electrons into acc~unt (Z = atomic number), then 
the average change in magnetic moment per atom is 

- e2Zr2/loH 
tlflm=- 6m ' (15.15) 

where r is the average radius of all electronic orbits (r ~ 1 A). The magneti­
zation caused by this change of magnetic moment is, according to (14.8), 

M = Jim == e2Zr2/loH 
V 6mV 

(15.16) 

This finally yields, together with (14.6), the diamagnetic susceptibility, 

(15.17) 

where NoJ / W is the number of atoms per unit volume (with No = Avogadro 
constant, J = density, and W = atomic mass. Inserting specific numbers into 
(15.17) yields susceptibilities between -10-5 and -10-7, quite in agreement 
with the experimental values listed in Table 14.1 (see Problem 1). 

The quantities in (15.17) are essentially temperature-independent, which is 
in agreement with the experimental observation that X does not vary much 
with temperature for diamagnetic materials. 

*15.3. Langevin Theory of (Electron Orbit) 
Paramagnetism 

We turn now to the atomistic theory of paramagnetism as brought forward 
by Langevin. This theory should explain the observations made by Curie 
and Weiss, i.e., it should explain the temperature dependence of the suscep­
tibility, as shown in Fig. 15.3. The Langevin theory does not treat spin par­
amagnetism, which is, as we said before, responsible for the paramagnetic 
behavior of many metals and which is only slightly temperature-dependent. 

Langevin postulated that the magnetic moments of the orbiting electrons 
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Figure 15.15. Schematic representation of the magnetic moment of an electron that 
has been partially aligned by an external magnetic field. 

are responsible for paramagnetism. The magnetic moments of these elec­
trons are thought to point in random directions. An external magnetic field 
tries to align the individual magnetic moments, JIm, parallel to the field 
direction. Once aligned, the magnetic moments have a potential energy, Ep , 

that is naturally greater the larger the field strength, H, and the larger JIm. As 
a matter of fact, the maximum potential energy is reached when the mag­
netic moments are completely aligned, i.e., when JIm is parallel to H. In 
general, the potential energy is 

(15.18) 

where IX is the angle between field direction and JIm (see Fig. 15.15). The sign 
in (15.18) defines the direction in which JIm points with respect to H. 

As we explained earlier, thermal agitation tends to counteract the align­
ment caused by the external magnetic field. The randomizing effect obeys, as 
usual, the laws of Boltzmann statistics. The probability of an electron to 
have the energy Ep is thus proportional to exp( -Ep/kBT), where kB is the 
Boltzmann constant and T is the absolute temperature. 

Let us assume the electrons to be situated at the center of a sphere. The 
vectors, representing their magnetic moments, may point in all possible di­
rections. Let us consider at present a small number, dn, of these vectors per 
unit volume only. They are thought to point in the direction interval dlX and 
thus penetrate an area, dA, situated at the surface of the unit sphere; see Fig. 
15.16. This infinitesimal number dn of magnetic moments per unit volume 
which have the energy Ep is 

dn = const. dA exp( -Ep/kBT). (15.19) 

We relate the area dA to the angle interval dlX, which yields, because of 
trigonometric considerations (see Problem 2), 

(15.20) 
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Figure 15.16. Schematic representation of a unit sphere in whose center the electrons 
are thought to be located. 

where R = 1 is the radius of the unit sphere. Combining (15.18)-(15.20) 
gives 

dn = const. 211: sin IX dlX exp (~:~H cos IX) . (15.21) 

We use for abbreviation 

(15.22) 

Integrating (15.21) provides 

n = 211: const. 1: sin IX exp( ¢ cos IX) dlX, (15.23) 

which yields 

n 
(15.24) const. = J" . 

211: 0 sinlXexp(¢coslX)dlX 

Now, the magnetization M is, according to (14.8), the magnetic moment J.lm. 
per unit volume. In our case, the total magnetization must be the sum of all 
individual magnetic moments. And, if we consider the magnetic moments in 
the field direction, then the magnetization is 

M = [J.i-mCOSlXdn, (15.25) 
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which yields, with (15.21), 

M = const. 2nflm J: cos IX sin IX exp( ~ cos IX) d IX, 

and, with (15.24), 

nflm In coslXsinlXexp(~coslX) dlX 
M- 0 

- J: sinlXexp(~coslX) dlX 

(15.26) 

(15.27) 

This function can be brought into a standard form by setting x = cos IX and 
dx = -sin IX dlX (see Problem 5), which yields 

(15.28) 

where the expression in parenthesis is called the Langevin function L((). The 
term (= flmfloHjkBT is usually much smaller than one (Problem 6), so that 
(15.28) reduces to 

( nfl~J1oH 
M = nflm"3 = 3kB T ' (15.29) 

which yields, for the susceptibility (14.6) at not-too-high field strengths, 

orbIt = M = nfl~flo ..!.. = c . ..!.. 
Xpara H 3k

B 
T - T· (15.30) 

This is Curie's law (15.1), which expresses that the susceptibility is inversely 
proportional to the temperature. The Curie constant is thus 

2 
C = nflmflo. 

3kB 
(15.31) 

Let us now discuss the results of the Langevin theory for electron-orbit 
paramagnetism. If we insert actual values in (15.30), we obtain susceptibil­
ities that are small and positive, which is quite in agreement with experi­
mental findings (see Table 14.1 and Problem 7). 

The Langevin theory for paramagnetism yields that for a given tempera­
ture and for small values of the field strength the magnetization is a linear 
function of H (Fig. 15.17 and Equation (15.29)). For large field strengths the 
magnetization eventually reaches a saturation value, Ms. (This behavior is 
quite similar to the one observed for virgin iron or other ferromagnetics.) It 
indicates that eventually a limit is reached at which all magnetic moments 
are aligned to their maximum value. The Langevin model yields a tempera­
ture dependence of the susceptibility as found experimentally by Curie for 
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Figure 15.17. Schematic representation of the Langevin function L(O = 

coth, - II', where'; = JlmJloHlkBT. 

many substances. The l/x dependence of T is characteristic for electron­
orbital paramagnetism. 

One can refine the Langevin result by applying quantum theory. This was 
done by Brillouin, who took into account that not all values for the magnetic 
moment (or the angular moment) are allowed, i.e., that the angular moments 
are quantized in an external magnetic field (Appendix 3). This restriction is 
termed space quantization. The calculation leads to the Brillouin function, 
which improves the quantitative agreement between theory and experiment. 

Finally, we know from Section 15.1.2 that the temperature dependence of 
the susceptibility for many solids does not always obey the Curie (or the 
Curie-Weiss) law. Actually, the susceptibility for most metals and alloys 
varies only very little with temperature. We have learned that in these solids 
the spin paramagnetism is predominant, which is not considered in the 
atomistic Langevin model. Quantum theory can explain the relative tem­
perature insensitivity of spin paramagnetism, as we shall see in Section 16.1. 

* 15.4. Molecular Field Theory 

So far, we implied that the magnetic field, which tries to align the magnetic 
moments, stems from an external source only. This assumption seems to be 
not always correct. Weiss observed that some materials obey a somewhat 
modified Curie law, as shown in Fig. 15.3(b) and (c). He postulated, therefore, 
that the magnetic moments of the individual electrons (or atoms) interact 
with each other. In this case, the total magnetic field, Ht, acting on a mag­
netic moment, is thought to be composed of two parts, namely, the external 
field, He, and the molecular field, Hm, 

( 15.32) 



334 IV. Magnetic Properties of Matenals 

where 

Hm=yM (15.33) 

contains the molecular field constant, y. The susceptibility is calculated by 
using (15.30), (15.32), and (15.33) 

M M C 
X=-= =-. 

Ht He+yM T 
(15.34) 

Solving (15.34) for Myields 

M= He C . 
T-yC 

(15.35) 

Finally, we obtain 

M C C 
X=-= =--

He T-yC T- e' 
(15.36) 

which is the experimentally observed Curie-Weiss law (15.2). If e is found to 
be positive, then the interactions of the individual magnetic moments rein­
force each other, i.e., the magnetic moments align parallel. In this case the 
susceptibility becomes larger, as can be deduced from (15.36). 

We now attempt to interpret ferromagnetism by making use of the molec­
ular field theory. We already know from Section 15.1.3 that, in ferro­
magnetic materials, the neighboring magnetic moments interact with each 
other, which leads to a spontaneous magnetization in small domains below 
Te. Weiss postulated that the above-introduced internal or molecular field 
is responsible for this parallel alignment of spins, and considered ferro­
magnetics to be essentially paramagnetics having a very large molecular 
field. In essence, he applied the Langevin theory to ferromagnetics. In the 
light of quantum theory, the molecular field is essentially the exchange jorce, 
as we shall see in Section 16.2. 

We follow the train of thought put forward by Weiss. Let us consider the 
case for no external magnetic field. Then the spins are only subjected to the 
molecular field Hm. This yields for the Langevin variable ((see (15.22)), with 
(15.33), 

(= f.1mf.1o Hm = f.1mf.1oyM 
kBT kBT' 

( 15.37) 

and provides for the magnetization by rearranging (15.37): 

M= kBT (. 
f.1mf.1oY 

(15.38) 

We note from (15.38) that for the present case the magnetization is a linear 
function of ( with the temperature as a proportionality factor (see Fig. 
15.18). The intersection I of a given temperature line with the Langevin 
function L(t;) represents the finite spontaneous magnetization, MJ, at this 
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Figure 15.18. Langevin function L(O, i.e., (15.28) and plot of (15.38) for three tem­
peratures. 

temperature. 3 With increasing temperature, the straight lines in Fig. 15.18 
increase in slope, thus decreasing the point of intercept, I, and therefore the 
value for the spontaneous magnetization. Finally, at the Curie temperature, 
Te, no intercept, i.e., no spontaneous magnetization, is present anymore. 
The slope kBT I J1mf.-loY in (15.38) is then identical to the slope of the Langevin 
function near the origin, which is nllm/3 = M 13 according to (15.29) and 
(14.8). This yields, for Te, 

kBTe M 

Ilmf.-loY 3 
(15.39) 

A value for the molecular field constant, Y, can then be calculated by mea­
suring the Curie temperature and inserting Te into the rearranged equation 
(15.39): 

3kB Te 
Y= . 

Ilmf.-loM 
(15.40) 

This yields, for the molecular magnetic field strength (15.33), 

H - M _ 3kB Te 
m-Y - . 

Ilmf.-lo 
(15.41) 

Numerical values for the molecular field are around 109 Aim (107 Oe) (see 

3 The intersection at the origin is an unstable state, as can easily be seen: If the ferromagnetic 
material is exposed to, say, the magnetic field of the earth, its magnetization will be, say, MI. 
This causes a molecular field of the same value (M{) which in tum magnetizes the material to 
the value M2, and so on until the point I is reached. 
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Problem 10). This hypothetical field is several orders of magnitude larger 
than any steady magnetic field that can be produced in a laboratory. We 
should note that even though the molecular field theory gives some expla­
nation of ferromagnetism, it cannot predict which solids are ferromagnetic. 
Quantum theory extends considerably our understanding of this matter. 

We mention in closing that the molecular field theory can also be applied 
to antiferromagnetics and to ferrimagnetic materials. As we know from 
Section 15.1.4, we need to consider in this case two interpenetrating sub­
lattices, A and B, each having mutually anti parallel aligned spins. This 
means that we now have to consider a molecular field, HmA, acting on the A 
ions which stems from the magnetization, MB, of the B ions. Since the 
magnetization of A and B ions point in opposite directions, the molecular 
field from an adjacent ion is now negative. The calculations, which follow 
similar lines as shown above, yield equation (15.4), i.e., the Curie-Weiss law 
for antiferromagnetics. 

Problems 

1. Calculate the diamagnetic susceptibility of germanium. Take r = 0.92 A. (Note: 
Check your units! Does X come out unitless? Compare your result with that listed 
in Table 14.1.) 

2. In the text, we introduced an average value for the magnetic moment, which we 
said is somewhat smaller than the maximal value for JlmIIH. Calculate this 11/lm. 
(Hint: Consider all orbits projected on a plane perpendicular to the field direction 
and calculate thus an average value for the square of the orbit radius. Refer to 
the figure below. Show at first that dA = 2nR2 sin ada.) 
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3. Convince yourself that the units in (15.15), (15.16), (15.17), and (15.5) are con­
sistent with the SI system. 

4. Confirm the numerical value of the Bohr magneton listed in (15.3) and confirm 
the unit given there. 

5. Evaluate the function 

J: cos 0( sin 0( exp(¢ cos O() dO( 

J: sin 0( exp(¢ cos O() dO( 

by substituting x = cosO( and dx = -sinO(dO(. Compare your result with (15.28). 

6. Calculate a value for ¢ in the Langevin function assuming f.lm = 3JiB' 
H = 8 X 105 Aim, and room temperature. 

7. Calculate the susceptibility for a paramagnetic substance at room temperature, 
assuming Jim = JIB and 1023 magnetic moments per cubic centimeter. Compare 
your result with Table 14.1. What is the implication of n = 1023 magnetic 
moments per cubic centimeter? 

8. Estimate the number of Bohr magnetons for iron and cobalt ferrite from their 
electron configuration, as done in the text. Compare your results with those listed 
in Table 15.3. Explain the discrepancy between experiment and calculation. Give 
the chemical formula for these ferrites. 

9. Explain the term 'mixed ferrites." Explain also why the lodestone, Fe304, is a 
ferrimagnetic material. Give its chemical formula. 

10. Calculate the molecular field for iron (Jim = 2.22 JIB' Tc = 1043 K). 

II. You are given two identical rectangular iron rods. One of the rods is a permanent 
magnet, the other is a plain piece of iron. The rods are now placed on a wooden 
table. Using only the two rods and nothing else, you are asked to determine 
which is which. Can this be done? 

12. Explain the "suspension effect" of superconductors mentioned in Section I5.!.!. 
(Hint: Refer to Fig. 15.1 and keep in mind that if the bar magnet is moved in the 
opposite direction from that shown, the current direction in the loop is reversed.) 

13. Computer problem. Plot the Langevin function using various parameters. For 
which values of H does one obtain saturation magnetization? 



CHAPTER 16 

Quantum Mechanical Considerations 

We have seen in the previous chapter that the classical electromagnetic 
theory is quite capable of explaining the essentials of the magnetic properties 
of materials. Some discrepancies between theory and experiment have come 
to light, however, which need to be explained. Therefore, we now refine and 
deepen our understanding by considering the contributions which quantum 
mechanics provides to magnetism. We will see in the following that quantum 
mechanics yields answers to some basic questions. We will discuss why cer­
tain metals that we expect to be paramagnetic are in reality diamagnetic; 
why the paramagnetic susceptibility is relatively small for most metals; and 
why most metals do not obey the Curie-Weiss law. We will also see that 
ferromagnetism can be better understood by applying elements of quantum 
mechanics. 

16.1. Paramagnetism and Diamagnetism 

We mentioned at the beginning of the previous chapter that, for most solids, 
the dominant contribution to paramagnetism stems from the magnetic mo­
ment of the spinning electrons. We recall from Chapter 6 that each electron 
state may be occupied by a maximum of two electrons, one having positive 
spin and the other having negative spin (called spin up and spin down). To 
visualize the distribution of spins, we consider an electron band to be divided 
into two halves, each of which is thought to be occupied under normal con­
ditions by an identical amount of electrons of opposite spin, as shown in Fig. 
16.1(a). Now, if we apply an external magnetic field to a free electron solid, 
some of the electrons having unfavorably oriented spins tend to change their 
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(a) (b) (c) 

Figure 16.1. Schematic representation of the effect of an external magnetic field on 
the electron distribution in a partially filled electron band, (a) without magnetic field, 
(b) and (c) with magnetic field. 

field direction. This can only be achieved, however, when the affected elec­
trons assume an energy which is higher than the Fermi energy, EF, since all 
lower electron states of opposite spin direction are already occupied (Fig. 
16.1 (b)). Thus, theoretically, the transfer of electrons from one half-band 
into the other would cause two individual Fermi energies (E~ and E;) to 
occur. Of course, this is not possible. In reality the two band halves shift 
relative to each other until equilibrium, i.e., a common Fermi energy, is 
reached (Fig. 16.1(c)). 

Now, we recall from Chapter 6 that the electron distribution within a 
band is not uniform. We rather observe a parabolic distribution of energy 
states, as shown in Fig. 6.4. Thus, we refine our treatment by replacing Fig. 
16.1(c) with Fig. 16.2, which depicts the density of states of the two half­
bands. We observe a relatively large Z(E) near EF. Thus, a small change in 
energy (provided by the external magnetic field) may cause a large number 
of electrons to switch to the opposite spin direction. 

We calculate now the susceptibility from this change in energy, !'lE. It is 
evident that !'lE is larger, the larger the external magnetic field strength IHI, 

E 

4N 

Figure 16.2. Schematic representation of the density of states Z(E) in two half­
bands. The shift of the two half-bands occurs as a result of an external magnetic field. 
Free electron case. (See also Fig. 16.1(c).) The area!J.N equals!J.E· Z(E). 
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and the larger the magnetic moment of the spinning electrons IPmsl, i.e., 

(16.1 ) 

As mentioned already, the number of electrons, I1N, transferred from the 
spin down into the spin up direction depends on the density of states at the 
Fermi energy, Z(EF), and the energy difference, I1E (Fig. 16.2), i.e., 

(16.2) 

The magnetization IMI of a solid, caused by an external magnetic field is, 
according to (14.8), 

(16.3) 

The magnetization is, of course, larger, the more electrons are transferred 
from spin down into spin up states. We thus obtain, for the present case, 

M = f1ms I1N = ~sf.1oHZ(EF) 
V V' 

( 16.4) 

which yields for the susceptibility 

_ M _ f.1.~sf.1.0Z(EF) 
X- H - V . (16.5) 

The spin magnetic moment of one electron equals one Bohr magneton, f.1.B 
(see below). Thus, (16.5) finally becomes 

(16.6) 

The susceptibilities for paramagnetic metals calculated with this equation 
agree fairly well with those listed in Table 14.1 (see Problem I). Thus, (16.6) 
substantiates, in essence, that only the electrons close to the Fermi energy are 
capable of realigning in the magnetic field direction. If we postulate instead 
that all valence electrons contribute to Xpara we would wrongfully calculate a 
susceptibility which is two or even three orders of magnitude larger than that 
obtained by (16.6). 

It is important to realize that the ever-present diamagnetism makes a siz­
able contribution to the overall susceptibility, so that X for metals might be 
positive or negative depending on which of the two components predom­
inates. This will be elucidated now in a few examples. 

To begin with, we discuss beryllium, which is a bivalent metal having a 
filled 2s-shell in its atomic state (see Appendix 3). However, in the crystalline 
state, we observe band overlapping (see Chapter 6), which causes some of 
the 2s-electrons to spill over into the 2p-band. They populate the very bottom 
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Figure 16.3. Overlapping of 2s- and 2p-bands in Be and the density of states curve 
for the 2p-band. 

of this band (see Fig. 16.3). Thus, the density of states at the Fermi level, and 
consequently, Xpara, is very small. In effect, the diamagnetic susceptibility 
predominates, which makes Be diamagnetic. 

In order to understand why copper is diamagnetic, we need to remember 
that for this metal the Fermi energy is close to the band edge (Fig. 5.22). 
Thus, the density of states near EF and the paramagnetic susceptibility (16.6) 
are relatively small. Furthermore, we have to recall that the diamagnetic 
susceptibility (15.17), 

e2Zr2pO 
Xdia = - 6mV ) ( 16.7) 

is proportional to the square of an electron orbit radius, r, and proportional 
to the total number of electrons, Z, in that orbit. Copper has about ten 3d­
electrons, which makes Z ~ 10. Further, the radius of d-shells is fairly large. 
Thus, for copper, Xdia is large because of two contributions. The diamagnetic 
contribution predominates over the paramagnetic one. As a result, copper is 
diamagnetic. The same is true for silver and gold and the elements which 
follow copper in the Periodic Table, such as zinc and gallium. 

Intrinsic semiconductors, which have filled valence bands and whose den­
sity of states at the top of the valence band is zero (Fig. 6.6) have, according 
to (16.6), no paramagnetic susceptibility and are therefore diamagnetic. 
However, a small paramagnetic contribution might be expected for highly 
doped extrinsic semiconductors, which have, at high enough temperatures, a 
considerable number of electrons in the conduction band (see Chapter 8). 

We turn now to the temperature dependence of the susceptibility of met­
als. The relevant terms in both (16.6) as well as (16.7) do not vary much with 
temperature. Thus, it is conceivable that the susceptibility of diamagnetic 
metals is not temperature-dependent, and that the susceptibility of para­
magnetic metals often does not obey the Curie-Weiss law. In fact, the tem­
perature dependence of the susceptibility for different paramagnetic metals 
has been observed to decrease, to increase, or to remain essentially constant 



342 

x 

IV. Magnetic Properties of Matenals 
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Figure 16.4 Temperature dependence of the paramagnetic susceptibility for vana­
dium, chromium, and aluminum in arbitrary units. From Landolt-Bornstein, 
Zahlenwerte der Physik, 6th ed., Vol. II/9, Springer-Verlag, Berlin (1962). 

(Fig. 16.4). However, nickel (above Tc) and rare earth metals obey the 
Curie-Weiss law reasonably well. 

At the end of this section we remind the reader that in dilute gases (and 
also in rare earth metals and their salts) a second component contributes to 
paramagnetism. It stems from a magnetic moment which is caused by the 
angular momentum of the orbiting electrons (Section 15.3). We mentioned 
already in Section 15.1 that this contribution is said to be "quenched" 
(nonexistent) in most solids. 

Finally, we want to find a numerical value for the magnetic moment of an 
orbiting electron from a quantum-mechanical point of view. We recall from 
( 15.5): 

(16.8) 

Now, quantum theory postulates that the angular momentum, mvr, of an 
electron is not continuously variable but that it rather changes in discrete 
amounts of integer multiples of h only, i.e., 

nh 
mvr = nh = 2n . 

If one combines (16.8) with (16.9) one obtains 

enh 
f.1m = 4nm' 

(16.9) 

(16.10) 

Using n = 1 for the first electron orbit (ground state) yields, for the magnetic 
moment of an orbiting electron, 

eh 
f.1m = 4nm' (16.11) 

It was found experimentally and theoretically that the magnetic moment 
of an electron due to orbital motion as well as the magnetic moment of the 
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spinning electron are identical. This smaIlest unit of the magnetic moment is 
given by (16.11) and is caIled the Bohr magneton, 

flB = ~ = 9.274 X 10-24 (:1.-), (16.12) 
4nm T 

which we already introduced without further explanation in (15.3). 

16.2. Ferromagnetism and Antiferromagnetism 

The ferromagnetic metals iron, cobalt, and nickel are characterized by un­
fiIled d-bands (see Appendix 3). These d-bands overlap the next higher s­
band in a similar manner as shown in the band structure of Fig. 5.22. The 
density of states for a d-band is relatively large because of its potential to 
accommodate up to ten electrons. This is schematicaIly shown in Fig. 16.5, 
along with the Fermi energies for iron, cobalt, nickel, and copper. Since the 
density of states for, say, nickel is comparatively large at the Fermi energy, 
one needs only a relatively smaIl amount of energy to transfer a considerable 
number of electrons from spin down into spin up configurations, i.e., from 
one half-band into the other. We have already discussed in the previous 
section this transfer of electrons under the influence of an external magnetic 
field (Fig. 16.1). Now, there is an important difference between para­
magnetics and ferromagnetics. In the former case, an external energy (i.e., 
the magnetic field) is needed to accomplish the flip in spin alignment, 
whereas for ferromagnetic materials the paraIlel alignment of spins occurs 
spontaneously in small domains of about 1-100 flm diameter. Any theory of 

48-
band 

Figure 16.5. Schematic representation of the density of states for 4s- and 3d-bands 
and the Fermi energies for iron, cobalt, nickel, and copper. The population of the 
bands by the ten nickel (3d + 4s)-electrons is indicated by the shaded area. 
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Figure 16.6. Amplitude modulation resulting from the coupling of two pendula. The 
vibrational pattern shows beats, similarly as known for two oscillators that have 
almost identical pitch. Compare with Fig. 2.1. 

ferromagnetism must be capable of satisfactorily explaining the origin of this 
energy which transfers electrons into a higher energy state. 

The energy in question was found to be the exchange energy. It is "set 
free" when equal atomic systems are closely coupled, and in this way ex­
change their energy. This needs some further explanation. 

We digress for a moment and compare two ferromagnetic atoms with two 
identical pendula that are interconnected by a spring. (The spring repre­
sents the interactions of the electrical and magnetic fields.) If one of the 
pendula is deflected, its amplitude slowly decreases until all energy has been 
transferred to the second pendulum, which then in tum transfers its energy 
back to the first one and so on. Thus, the amplitudes decrease and increase 
periodically with time, as shown in Fig. 16.6. The resulting vibrational pat­
tern is similar to that of two violin strings tuned at almost equal pitch. A 
mathematical expression for this pattern is obtained by adding the equations 
for two oscillators having similar frequencies, WI and W2, 

which yields 

XI = bsinwlt, 

X2 = bsinw2t, 

WI -W2 . WI +W2 
Xl + X2 = X = 2b cos 2 t· sm 2 t. 

(16.13) 

(16.14) 

(16.15) 

Equation (16.15) provides two frequencies, (WI - (2)/2 and (WI + (2)/2, 
which can be identified in Fig. 16.6. The difference between the resulting 
frequencies is larger, the stronger the coupling. If the two pendula vibrate in 
a parallel fashion, the "pull" on the spring, i.e., the restoring force, KX, is 
small. As a consequence, the frequency 

vo=~ E 
2n V;' (16.16) 

(see Appendix 1) is likewise small and is smaller than for independent vi­
brations. (On the other hand, anti symmetric vibrations cause large values of 
K and vo.) This classical example demonstrates that two coupled and sym­
metrically vibrating systems may have a lower energy than two individually 
vibrating systems would have. 
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antiferromagnetics 

Figure 16.7. Exchange integral, lex, versus the ratio of interatomic distance, rab, and 
the radius of an unfilled d-shell. The position of the rare earth elements (which have 
unfilled f-shells) are also shown for completeness. 

Quantum mechanics treats ferromagnetism in a similar way. The exact 
calculation involving many atoms is, however, not a trivial task. Thus, one 
simplifies the problem by solving the appropriate SchrOdinger equation for 
two atoms only. The potential energy in the Schrodinger equation then 
contains the exchange forces between the nuclei a and b, the forces between 
two electrons I and 2, and the interactions between the nuclei and their 
neighboring electrons. This simplification seems to be justified, because the 
exchange forces decrease rapidly with distance. 

The calculation, first performed by Slater and Bethe, leads to an exchange 

integral, 

(16.17) 

A positive value for lex means that parallel spins are energetically more fa­
vorable than anti parallel spins (and vice versa). We see immediately from 
(16.17) that lex becomes positive for a small distance rl2 between the elec­
trons, i.e., a small radius of the d-orbit, rd. Similarly, lex becomes positive for 
a large distance between the nuclei and neighboring electrons ra2 and rbl. 

lex is plotted in Fig. 16.7 versus the ratio rab/rd. The curve correctly sepa­
rates the ferromagnetics from manganese, which is not ferromagnetic. Figure 
16.7 suggests that if the interatomic distance rab in manganese is increased 
(e.g., by inserting nitrogen atoms into the manganese lattice), the crystal thus 
obtained should become ferromagnetic. This is indeed observed. The ferro­
magnetic alloys named after Heusler, such as CU2MnAI or CU2MnSn, are 
particularly interesting in this context because they contain constituents 
which are not ferromagnetic, but all contain manganese. 

The Bethe-Slater curve (Fig. 16.7) suggests that cobalt should have the 
highest, and nickel (and the rare earth elements) the lowest, Curie tempera­
ture among the ferromagnetics because of the magnitude of their lex values. 
This is indeed observed (Table 15.1). Overall, quantum theory is capable of 
explaining some ferromagnetic properties that cannot be understood with 
classical electromagnetic theory. 
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Table 16.1. Magnetic 
Moment, flm' at 0 K for 
Ferromagnetic Metals. 

Metal Jim 

Fe 2.22 JiB 
Co 1. 72 JiB 
Ni 0.60 JiB 
Gd 7.12 JiB 

We tum now to a discussion on the number of Bohr magnetons in ferro­
magnetic metals as listed in Table 16.1. Let us consider nickel as an example 
and reinspect, in this context, Fig. 16.5. We notice that because of band 
overlapping the combined ten (3d + 4s)-electrons occupy the lower s-band 
and fill, almost completely, the 3d-band. It thus comes as no surprise that 
nickel behaves experimentally as if the 3d-band is filled by 9.4 electrons. To 
estimate flB we need to apply Hund's rule (Fig. 15.4), which states that the 
electrons in a solid occupy the available electron states in a manner which 
maximizes the imbalance of spin moments. For the present case, this rule 
would suggest five electrons with, say, spin up, and an average of 4.4 elec­
trons with spin down, i.e., we obtain a spin imbalance of 0.6 spin moments 
or 0.6 Bohr magnetons per atom (see Table 16.1). The average number of 
Bohr magnetons may also be calculated from experimental values of the 
saturation magnetization, Mso (see Table 15.1). Similar considerations can 
be made for the remaining ferromagnetics as listed in Table 16.1. 

We now proceed one step further and discuss the magnetic behavior of 
certain nickel-based alloys. We use nickel-copper alloys as an example. 
Copper has one valence electron more than nickel. If copper is alloyed to 
nickel, the extra copper electrons progressively fill the d-band and therefore 
compensate some of the unsaturated spins of nickel. Thus, the magnetic 
moment per atom of this alloy (and also its Curie temperature) is reduced. 
Nickel lacks about 0.6 electrons per atom for complete spin saturation, be­
cause the 3d-band of nickel is filled by only 9.4 electrons (see above). Thus, 
about 60% copper atoms are needed until the magnetic moment (and flB) of 
nickel has reached a zero value (Fig. 16.8). Nickel-copper alloys, having a 
copper concentration of more than about 60% are consequently no longer 
ferromagnetic; one would expect them to be diamagnetic. (In reality, how­
ever, they are strongly paramagnetic, probably owing to small traces of un­
dissolved nickel.) 

Zinc contributes about two extra valence electrons to the electron gas 
when alloyed to nickel. Thus, we expect a zero magnetic moment at about 30 
at.% Zn, etc. Palladium, on the other hand, has the same number of valence 
electrons as nickel and thus does not change the magnetic moment of the 
nickel atoms when alloyed to nickel. The total magnetization (14.8) of the 
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Figure 16.8. Magnetic moment per nickel atom as a function of solute concentration. 

alloy is, of course, diluted by the nonferromagnetic palladium. The same is 
also true for the other alloys. 

We conclude our discussion by adding a few interesting details. The rare 
earth elements are weakly ferromagnetic. They are characterized by unfilled 
f-shells. Thus, their electronic structure and their density of states have sev­
eral features in common with iron, cobalt, and nickel. They have a positive 
lex (see Fig. 16.7). 

Copper has one more valence electron than nickel, which locates its Fermi 
energy slightly above the d-band (Fig. 16.5). Thus, the condition for ferro­
magnetism, i.e., an unfilled d- or f-band is not fulfilled for copper. The same 
is true for the following elements such as zinc or gallium. 

We noted already that manganese is characterized by a negative value of 
the exchange integral. The distance between the manganese atoms is so small 
that their electron spins assume an anti parallel alignment. Thus, manganese 
and many manganese compounds are antiferromagnetic (see Fig. 15.10). 
Chromium has also a negative lex and thus is likewise antiferromagnetic (see 
Table 15.2). 

Problems 

1. The density of states near the Fermi surface of 1 cm 3 of a paramagnetic metal at 
T = 0 K is approximately 5 x 1041 energy states per Joule. Calculate the volume 
susceptibility. Compare your value with those of Table 14.1. What metal could 
this value represent? Explain possible discrepancies between experiment and 
calculation. 

2. Derive (16.15) by adding (16.13) and (16.14). 
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3. Compare the experimental saturation magnetization, Mso (Table 15.1 third col­
umn), with the magnetic moment, 11m, at 0 K for ferromagnetic metals (Table 
16.1). What do you notice? Estimate the degree of d-band filling for iron and 
cobalt. 

4. From the results obtained in Problem 3 above, calculate the number of Bohr 
magnetons for crystalline (solid) iron and cobalt and compare your results with 
those listed in Table 16.1. What is the number of Bohr magnetons for an iron atom 
and a cobalt atom? What is the number of Bohr magnetons for iron and cobalt 
ferrite? 

5. Refer to Figure 16.1(b). Why are two different Fermi energies not possible within 
the same metal? 



CHAPTER 17 

Applications 

17.1. Introduction 

The production of ferro- and ferrimagnetic materials is a large-scale opera­
tion, measured in quantity as well as in currency. (This is in contrast to the 
products of the computer industry, where the price of the material that goes 
into a chip is a minute fraction of the device fabrication cost.) As an exam­
ple, the annual sales of so-called electrical steel, used for electro motors and 
similar devices, reach the millions of tons and their market values are in the 
hundreds of millions of dollars. Other large-scale production items are per­
manent magnets for loudspeakers, etc., and magnetic recording materials. 
The following sections will give some impression about the technology (i.e., 
mostly materials science) which has been developed to improve the proper­
ties of magnetic materials. 

17.2. Electrical Steels (Soft Magnetic Materials) 

Electrical steel is used to multiply the magnetic flux in the cores of electro­
magnetic coils. These materials are therefore widely incorporated in many 
electrical machines in daily use. Among their applications are cores of 
transformers, electromotors, generators, or electromagnets. 

In order to make these devices most energy efficient and economical, one 
needs to find magnetic materials which have the highest possible permeabil­
ity (at the lowest possible price). Furthermore, magnetic core materials 
should be capable of being easily magnetized or demagnetized. In other 
words, the area within the hysteresis loop (or the coercive force, He) should 
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be as small as possible (Fig. 15.6). We remember that materials whose hys­
teresis loops are narrow are called soft magnetic materials. 

Electrical steels are classified by some of their properties, for example, by 
the amount of their core losses, by their composition, by their permeability, 
and whether or not they are grain-oriented. We shall discuss these different 
properties in detail. 

The energy losses which are encountered in electromotors (efficiency be­
tween 50% and 90%) or transformers (efficiency 95-99.5%) are estimated to 
be, in the United States, as high as 3 x 1010 kWh per year, which is equiva­
lent to the energy consumption by about 3 million households, and which 
wastes about $2 x 109 per year. If by means of improved design of the 
magnetic cores, the energy losses would be reduced by only 5%, one could 
save about $108 per year and several electric power stations. Thus, there is a 
clear incentive for improving the properties of magnetic materials. 

17.2.1. Core Losses 

The core loss is the energy that is dissipated in the form of heat within the 
core of electromagnetic devices when the core is subjected to an alternating 
magnetic field. Several types of losses are known, among which the eddy 
current loss and the hysteresis loss contribute the most. Typical core losses 
are between 0.3 and 3 watts per kilogram of core material (Table 17.1). 

Let us first discuss the eddy current. Consider a transformer whose pri­
mary and secondary coils are wound around the legs of a rectangular iron 
yoke (Fig. 17.l(a)). An alternating electric current in the primary coil causes 
an alternating magnetic flux in the core, which, in turn, induces in the sec­
ondary coil an alternating electromotive force, Ve , proportional to drjJ/ dt, see 
(14.7) and (15.9), 

drjJ dB v: oc --= -A-. 
e dt dt 

(17.1) 

Concurrently, an alternating emf is induced within the core itself, as shown 
in Fig. 17.1(a). This emf gives rise to the eddy current, Ie. The eddy current is 
larger, the larger the permeability, P (because B = PoP' H), the larger the 
conductivity, (J, of the core material, the higher the applied frequency, and 
the larger the cross-sectional area, A, of the core. (A is perpendicular to the 
magnetic flux, rjJ, see Fig. 17.1(a).) We note in passing that, particularly at 
high frequencies, the eddy current shields the interior of the core from the 
magnetic field, so that only a thin exterior layer of the core contributes to the 
flux multiplication (skin effect). 

In order to decrease the eddy current, several remedies are possible. First, 
the core can be made of an insulator in order to decrease (J. Ferrites are thus 
effective but also expensive materials to build magnetic cores (see Section 
15.1.5). They are indeed used for high-frequency applications. Second, the 



Table 17.1. Properties of Some Soft Magnetic Materials. 

Coercivity, He 

Permeability, 
Name Composition (mass %) Pmax (unitless) (Oe) (A/m) 

Low carbon steel Fe-0.05% C 5 x 103 1.0 80 
Nonoriented silicon Fe-3% Si, 0.005% C, 7 x 103 0.5 40 

iron 0.15% Mn 
Grain-oriented Fe-3% Si, 0.003% C, 4 x 104 0.1 8 

silicon iron 0.07% Mn 
78 Permalloy Ni-22% Fe 105 0.05 4 
Mumeta1 77% Ni; 16% Fe, 5% Cu, 105 0.05 4 

2%Cr 
Supermalloy 79% Ni; 16% Fe, 5% Mo 106 0.002 0.1 
Supermendur 49% Fe, 49% Co, 2% V 6 x 104 0.2 16 
Metglas # 2605 FesoB2o 3 x 105 0.04 3.2 

annealed 

'Above Bs the magnetization is constant and dBjd(/loH) is unity. 

Saturation 
induction', 

Bs 

(kG) (T) 

21.5 2.1 
19.7 2 

20 2 

10.8 1.1 
6.5 0.6 

7.9 0.8 
24 2.4 
15 1.5 

Resistivity, 
p(f.1JJ.. cm) 

10 
60 

47 

16 
62 

60 
27 
~200 

Core loss at 
1.5 T and 60 
Hz (W/kg) 

2.8 
0.9 

0.3 

~2 

0.3 

-;--l 
i 
~~ 
o = '" 

w 
Vl 
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(a) (b) 

Figure 17.1. (a) Solid transfonner core with eddy current, Ie, in a cross-sectional area 
A. Note the magnetic flux lines ¢>. (b) Cross section of a laminated transfonner core. 
The area A' is smaller than area A in (a). 

core can be manufactured from pressed iron powder whereby each particle 
(which is about 50-100 Jim in diameter) is covered by an insulating coating. 
However, the decrease in (1, in this case, is at the expense of a large decrease 
in Ji. Third, the most widely applied method to reduce eddy currents is the 
utilization of cores made out of thin sheets which are electrically insulated 
from each other (Fig. 17.1(b)). This way, the cross-sectional area, A, is re­
duced, which in tum decreases Ve (17.1), and additionally reduces losses due 
to the skin effect. Despite the lamination, a residual eddy current loss still 
exists, which is caused by current losses within the individual laminations 
and interIaminar losses that may arise if laminations are not sufficiently in­
sulated from each other. These losses are, however, less than 1 % of the total 
energy transferred. 

Hysteresis losses are encountered when the magnetic core is subjected to a 
complete hysteresis cycle (Fig. 15.6). The work thus dissipated into heat is 
proportional to the area enclosed by a B/H loop. Proper materials selection 
and rolling of the materials with subsequent heat treatment greatly reduces 
the area of a hysteresis loop (see below). 

17.2.2. Grain Orientation 

The permeability of electrical steel can be substantially increased and the 
hysteresis losses can be decreased by making use of favorable grain ori­
entations in the material. This needs some explanation. The magnetic prop­
erties of crystalline ferromagnetic materials depend on the crystallographic 
direction in which an external field is applied, an effect which is called mag­
netic anisotropy. Let us use iron as an example. Figure 17 .2( a) shows mag­
netization curves of single crystals for three crystallographic directions. We 
observe that if the external field is applied in the (100) direction, saturation 
is achieved with the smallest possible field strength. The (100) direction is 
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<100> 

H 

(a) (b) 

Figure 17.2. (a) Schematic magnetization curves for rod-shaped iron single crystals 
having different orientations (virgin curves). The magnetic field was applied in three 
different crystallographic directions. (Compare with Fig. 15.6, which refers to poly­
crystalline material). (b) Reminder of the indices which identify directions in space. 
(See also Footnote 14 in Section 5.6). 

thus called the "easy direction." (In nickel, on the other hand, the <Ill) di­
rection is the easy direction and < 1 00) is the hard direction.) 

This experimental finding gives us, incidentally, some clues about the 
spontaneous orientation of the spin magnetic moments in the demagnetized 
state. They are aligned in the easy direction. As an example, in virgin iron 
the spins are aligned along the (l00) directions. Now, suppose that an ex­
ternal field is applied parallel to an easy direction. Then, the domains al­
ready having favorable alignment grow without effort at the expense of other 
domains until eventually the crystal contains one single domain (Fig. 15.9). 
The energy consumed during this process (which is proportional to the area 
between the magnetization curve and the horizontal line through Ms) is used 
to move the domain walls through the crystal. 

A second piece of information needs to be considered, too. Metal sheets, 
which have been manufactured by rolling and heating, often possess a "tex­
ture," i.e., they have a preferred orientation of the grains. It just happens 
that in oc-iron and oc-iron alloys the < 100> direction is parallel to the rolling 
direction. This property is exploited when utilizing electrical steel. 

Grain-oriented electrical steel is produced by initially hot-rolling the alloy 
followed by two stages of cold reduction with intervening anneals. During 
the rolling, the grains are elongated and their orientation is altered. Finally, 
the sheets are recrystallized, whereby some crystals grow in size at the expense 
of others (occupying the entire sheet thickness). 

In summary, the magnetic properties of grain-oriented steels are best in 
the direction parallel to the direction of rolling. Electrical machines having 
core material of grain-oriented steel need less iron and are therefore smaller; 
the price increase due to the more elaborate fabrication procedure is often 
compensated by the savings in material. For details, see Table 17.1. 
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17.2.3. Composition of Core Materials 

The least expensive core material is commercial low carbon steel (0.05% C). 
It possesses a relatively small permeability and has about ten times higher 
core losses than grain-oriented silicon iron (Table 17.1). Low carbon steel is 
used where low cost is more important than the efficient operation of a de­
vice. Purification of iron increases the permeability but also increases con­
ductivity (eddy current!) and price. 

Iron-silicon alloys containing between 1.4 and 3.5% Si and very little 
carbon have a higher permeability and a lower conductivity than low carbon 
steel (see Table 17.1). Furthermore, because of special features in the phase 
diagram ("y-Ioop"), heat treatments of these alloys can be performed at 
much higher temperatures without interference from phase changes during 
cooling. The core losses decrease with increasing silicon content. However, 
for silicon concentrations above 4 or 5 weight %, the material becomes too 
brittle to allow rolling. Grain orientation in iron-silicon alloys (see above) 
further increases the permeability and decreases the hysteresis losses. Other 
constituents in iron-silicon alloys are aluminum and manganese in amounts 
less than I %. They are added mainly for metallurgical reasons, because of 
their favorable influence on the grain structure and their tendency to reduce 
hysteresis losses. Grain-oriented silicon "steel" is the favored commercial 
product for highly efficient-high flux multiplying core applications. 

The highest permeability is achieved for certain multicomponent nickel­
based alloys such as Permalloy, Supermalloy, or Mumetal (Table 17.1). The 
latter can be rolled into thin sheets and is used to shield electronic equipment 
from stray magnetic fields. 

17.2.4. Amorphous Ferromagnets 

The electrical properties of amorphous metals (metallic glasses) and their 
methods of production have already been discussed in Section 9.4. In the 
present context, we are interested only in their magnetic properties, in par­
ticular, as flux multipliers in transformers, motors, etc. Some amorphous 
metals (consisting of iron, nickel, or cobalt with boron, silicon, or phospho­
rus) have, when properly annealed below the crystallization temperature (for 
strain relaxation), a considerably higher permeability and a lower coercivity 
than the commonly used grain-oriented silicon-iron, see Table 17.1. Fur­
ther, the electrical resistivity of amorphous alloys is generally larger than 
their crystalline counterparts, which results in smaller eddy current losses. 
However, amorphous ferromagnets possess a somewhat lower saturation 
induction (Table 17.1 ) (which sharply decreases even further at elevated 
temperatures) and their core losses increase rapidly at higher flux densities 
(e.g., above 1.4 T). Thus, the application of metallic glasses for flux multi­
plication purposes is, at the present, limited to devices with small flux den-



Table 17.1. Properties of Some Soft Magnetic Materials. 

Coercivity, He 

Permeability, 
Name Composition (mass %) Pmax (unitless) (Oe) (A/m) 

Low carbon steel Fe-0.05% C 5 x 103 1.0 80 
Nonoriented silicon Fe-3% Si, 0.005% C, 7 x 103 0.5 40 

iron 0.15% Mn 
Grain-oriented Fe-3% Si, 0.003% C, 4 x 104 0.1 8 

silicon iron 0.07% Mn 
78 Permalloy Ni-22% Fe 105 0.05 4 
Mumetal 77% Ni; 16% Fe, 5% Cu, 105 0.05 4 

2%Cr 
Supennalloy 79% Ni; 16% Fe, 5% Mo 106 0.002 0.1 
Supennendur 49% Fe, 49% Co, 2% V 6 x 104 0.2 16 
Metglas # 2605 FesoB2o 3 x 105 0.04 3.2 

annealed 

'Above Bs the magnetization is constant and dBjd(/loH) is unity. 

Saturation 
induction', 

Bs 

(kG) (T) 

21.5 2.1 
19.7 2 

20 2 

10.8 1.1 
6.5 0.6 

7.9 0.8 
24 2.4 
15 1.5 
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Table 17.2. Properties of Materials Used for Permanent Magnets. 

Remanence Br 

Material Composition (mass %) (kG) (T) 

Steel Fe-l% C 9 0.9 
36 Co steel 36 Co, 3.75 W, 5.75 9.6 0.96 

Cr, 0.8 C 
Alnico 2 12 AI, 26 Ni, 3 Cu, 7 0.7 

63 Fe 
Alnico 5 8 AI, 15 Ni, 24 Co, 12 1.2 

3 Cu, 50 Fe 
Alnico 5 DG same as above 13.1 1.3 
Ba-ferrite (Ceramic 5) BaO·6 Fe203 3.95 0.4 
PtCo 77 Pt, 24 Co 6.45 0.6 
Remalloy 12 Co, 17 Mo, 71 Fe 10 1 
Vicalloy 2 13 V, 52 Co, 35 Fe 10 1 
Cobalt-Samarium CosSm 9 0.9 
Iron-Neodymium-Boron Fe14Nd2Bl 13 1.3 

Coercivity He 

(Oe) (Aim) 

51 4 x 103 

228 1.8 x 104 

650 5.2 x 104 

720 5.7 x 104 

700 5.6 X 104 

2,400 1.9 x 105 

4,300 3.4 x 105 

230 1.8 x 104 

450 3.6 x 104 

8,700 6.9 x lOs 
14,000 1.1 x 106 

Maximum energy 
product (BH)max per 
Volume 

(MGOe) (kJ/m 3
) 

0.2 1.6 
0.93 7.4 

1.7 13 

5.0 40 

6.5 52 
3.5 28 
9.5 76 
1.1 8.7 
3.0 24 

20 159 
40 318 
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Figure 17.4. Fringing and leakage of a pennanent magnet. 

duction, tenned Bd, is obtained as shown in Fig. 17.3. Another effect which 
reduces the useful magnetic field is fringing near the air gap and leakage 
from the sides of a magnet (Fig. 17.4). 

We now tum to the properties of some common hard magnetic materials. 
Today, many pennanent magnets are made of Alnico alloys, which contain 
various amounts of aluminum, nickel, cobalt, and iron, along with some 
minor constituents such as copper and titanium (Table 17.2). Their prop­
erties are improved by heat treatments (homogenization at 1250°C, fast 
cooling, and tempering at 600°C, Alnico 2). Further improvement is accom­
plished by cooling the alloys in a magnetic field (Alnico 5). The best proper­
ties are achieved when the grains are made to have a preferred orientation. 
This is obtained by cooling the bottom of the crucible after melting, thus 
fonning long columnar grains with a preferred (100) axis in the direction of 
heat flow. A magnetic field parallel to the (100) axis yields Alnico 5-DG 
(directional grain). 

The superior properties of heat-treated Alnico stem from the fact that 
during cooling and tempering of these alloys, rod-shaped iron and cobalt­
rich a-precipitates are fonned which are parallel to the (100) directions 
(shape anisotropy). These strongly magnetic precipitates are single-domain 
particles and are imbedded in a weakly magnetic nickel and aluminum ma­
trix (a). Alnico alloys possess, just as iron, a (100) easy direction (see Fig. 
17.2) and have also a cubic crystal structure. Alnico alloys are mechanically 
hard and brittle and can, therefore, only be shaped by casting or by pressing 
and sintering of metal powders. 

The newest hard magnetic materials are made of neodymium-boron­
iron, see Table 17.2. They possess a superior coercivity and thus a larger 
(BH)ma:x. The disadvantage is a relatively low Curie temperature of about 
300°C. 
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Ceramic ferrite magnets, such as barium or strontium ferrite (BaO ·6Fe203 
or SrO 6Fe203), are brittle and relatively inexpensive. They crystallize in 
the form of plates with the hexagonal c-axis (which is the easy axis) perpen­
dicular to the plates. Some preferred orientation is observed, because the flat 
plates arrange parallel to each other during pressing and sintering. Ferrite 
powder is often imbedded in plastic materials, which yields flexible magnets. 
They are used, for example, in the gaskets of refrigerator doors. 

High carbon steel magnets with or without cobalt, tungsten, or chromium 
are only of historic interest. Their properties are inferior to other magnets. It 
is believed that the permanent magnetization of quenched steel stems from 
the martensite-induced internal stress, which impedes the domain walls from 
moving through the crystal. 

Research on permanent magnetic materials still proceeds with unbroken 
intensity. The goal is to improve corrosion resistance, price, remanence, co­
ercivity, magnetic ordering temperature, and processing procedures. A few 
examples are given here. Carbon and nitrogen are increasingly used as the 
metalloid in iron/rare earth magnets such as in Fe-Nd-C or in Fe17Sm2Nx. 
Nitrogen treatment of sintered FeI4Nd2B raises the Curie temperature by 
more than 100 K. Nitriding of F 17Sm2 (at 400° to 500°C) yields a room 
temperature coercivity as high as 2.4 x 106 A/m (30 kOe), a remanence of 
1.5 T (15.4 kG) and a Te of 470°C. Corrosion of the Fe-Nd-B sintered 
magnets is a serious problem. The principal corrosion product is Nd(OHh. 
The corrosion resistance can be improved by utilizing intermetallic com­
pounds such as Fe-Nd-AI or Fe-Nd-Ga, or by applying a moisture­
impervious coating. Other approaches are the rare-earth-free Co-Zr-B al­
loys (with or without silicon) which have a Curie temperature around 500°C 
and a coercivity of 5.3 x 105 A/m (6.7 kOe). 

17.4. Magnetic Recording and Magnetic Memories 

Magnetic recording tapes, disks, drums, or magnetic strips on credit cards 
consist of small, needlelike oxide particles about 0.1 x 0.5 f.1m in size which 
are imbedded in a nonmagnetic binder. The particles are too small to sustain 
a domain wall. They consist therefore of a single magnetic domain which is 
magnetized to saturation along the major axis (shape anisotropy). The 
elongated particles are aligned by a field during manufacturing so that their 
long axes are parallel with the length of the tape or the track. The most 
popular magnetic material has been ferrimagnetic y-Fe203. Its coercivity is 
20-28 kA/m (250-350 Oe). More recently, ferromagnetic chromium dioxide 
has been used having a coercivity between 40-80 kA/m (500 and 10000e) 
and a particle size of 0.05 f.1m by 0.4 f.1ID. High coercivity and high re­
manence prevent self-demagnetization and accidental erasure, they provide 
strong signals, and permit thinner coatings. A high He also allows tape du-
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Figure 17.5. Schematic arrangement of a recordmg (playback) head and a magnetic 
tape. (Recordmg mode.) The gap Width IS exaggerated. The plastic substrate is about 
25 11m thick. 

plication by "contact printing." However, Cr02 has a relatively low Curie 
temperature (128°C compared to 600°C for y-Fe203). Thus, chromium di­
oxide tapes which are exposed to excessive heat (glove compartment!) may 
lose their stored information. Lately, most video tapes use cobalt-doped 
y-Fe203, which has a somewhat higher Curie temperature than chromium 
dioxide and a coercivity of 48 kA/m (600 Oe). Most recently, iron particles 
have been utilized (He = 120 kA/m, i.e., 1500 Oe). This technology requires, 
however, a surface coating of tin to prevent coalescence of the individual 
particles and corrosion. 

The recording head of a tape machine consists of a laminated electromag­
net made of permalloy or soft ferrite (Table 17.1) which has an air gap about 
0.3 Jim wide (Fig. 17.5). The tape is passed along this electromagnet, whose 
fringing field redirects the spin moments of the particles in a certain pattern 
proportional to the current which is applied to the recording head. This 
leaves a permanent record of the signal. In the playback mode, the moving 
tape induces an alternating emf in the coil of the same head. The emf is 
amplified, filtered, and fed to a loudspeaker. 

Some modern recording heads utilize conventional ferrites whose gap 
surfaces are coated with a micrometer-thick metal layer composed of alu­
minum, iron, and silicon (Sendust). This metal-in-gap (M-I-G) technology 
combines the superior high-frequency behavior and good wear properties 
of ferrites with the higher coercivity of ferromagnetic metals. Thus, fields 
two or three times as intense as for pure ferrites can be supported. Such 
high fields are necessary to record efficiently on high density (i.e., on high 
coercivity) media, in which tiny regions of alternating magnetization are 
closely spaced and should not mutually demagnetize each other. 

For ultrahigh recording densities (extremely small bit sizes) the signal 
strength produced in the reading heads diminishes considerably. Thus, the 
latest head technology utilizes a thin magnetoresistive element, made out of 
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pennalloy, which senses the slight variation in resistance (about 2%) that 
occurs as the angle of magnetization is changed when the magnetized data 
bits pass beneath the head (see below). 1.8 Mbits/mm2 have been achieved in 
this way. In contrast to an inductive head (see above), whose output voltage 
is directly proportional to the tape speed, magnetoresistivity is governed by 
the flux density. This is an advantage for low-speed applications (credit cards). 

A note of explanation about magnetoresistance should be added: If a 
conductor is exposed to a magnetic field that is perpendicular to an electric 
field, the Lorentz force causes the paths of the drifting electrons to bend in 
near circular fonn, as explained in Section 8.5 (Hall effect). This bending 
leads to a decrease of the electron mobility, fle. Thus, because of (8.13), 

I 
0'0 = Ne . fle . e = - , 

Po 
(17.2) 

the conductivity, 0'0, decreases and the resistivity, Po, increases. (Ne is the free 
electron concentration and e is the charge of an electron). The relative 
change in resistivity, 

!lp 2 - = (fle!lB) , 
Po 

(17.3) 

is proportional to the square of the variation in magnetic field strength, !lB. 
The magnetoresistive head senses this change in magnetic field strength and, 
thus, yields a resistance change. 

The materials for magnetoresistive read-heads have undergone a stonny 
development. First, "giant magnetoresistive materials" (MnFe, MnNi, NiO) 
having a resistance response of about 20% were discovered. Later, "colossal 
magnetoresistive materials" (lanthanum manganate, etc.) showed 50% resis­
tance changes, allowing a further increase in areal densities. 

Historically, ferrite-core memories used to be the dominant devices for 
random-access storage in computers. The principle is simple: a donut-shaped 
piece of ferrimagnetic material, having a nearly square-shaped hysteresis 
loop and a low coercivity, is threaded with a wire (Fig. 17.6(a)). If a suffi­
ciently high current pulse is sent through this wire, then the core becomes 
magnetically saturated. Now, suppose the flux lines point clockwise. An 
opposite-directed current pulse of sufficient strength magnetizes the ferrite 
core counterclockwise. These two magnetization directions constitute the 
two possible values (0 and I) in a binary system (see Section 8.7.12). A 
toroid-shaped memory core is used because a close-flux structure reacts effi­
ciently to currents from a center wire but is not disturbed by external stray 
fields. 

The actual configuration of a complete memory system consists of a stack 
of identical memory planes, each of which contains a set of wires in the x- as 
well as in the y-directions. The toroids are placed at the intersections (Fig. 
17.6(c». In order to switch the, say, X3/ Y2 core from zero to one, a current 
proportional to halfthe saturation field (Hs/2) is sent through each of the X3 
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Figure 17.6. (a) Single ferrite core which is magnetized by a current-induced mag­
netic field; (b) square-shaped hysteresis loop of a soft ferrite memory core; and (c) one 
plane of a "coincident-current core memory device." 

and the Y2 wires (Fig. 17.6(b)). This provides only the X3/ Y2 core with the 
necessary field for switching-the other cores stay at their present state. The 
information thus permanently stored can be read by again sending a current 
pulse proportional to Hs/2 through the X 3/ Y2 wires. A third wire, the sens­
ing wire, which passes through all the cores of a given plane, senses whether 
or not the core was switched during the reading process. Since the reading 
process destroys the stored information, a special circuit is needed to rewrite 
the information back into the core. Ferrite-core memories (like other mag­
netic storage devices) do not need an electrical current to maintain their 
stored information. The weight/bit ratio for ferrite-core memories is, how­
ever, considerably larger than for electrical or optical storage devices. Thus, 
their usage is now limited to a few specialized applications. 

Another magnetic storage device that has been heavily researched in the 
past, but is presently not much in use, is the bubble domain memory. Here, 
tiny cylindrical regions (as small as I JIm in diameter), having a reversed 
magnetization compared to the matrix, are formed in thin crystals of 
"canted" anti-ferromagnetic oxides4 (BaFe12019, YFe03), or in amorphous 
alloyed films (Gd-Co, Gd-Fe), or in ferrimagnetic materials such as 
yttrium-iron-garnet (Y 3FeS0I2). These bubbles, whose easy axis is per­
pendicular to the plane of the film, can be generated, moved, replicated, or 
erased by electric currents. The crystals are transparent to red light. Thus, 
the domains can be visibly observed and optically read by the way in which 

4See SectIOn 15.1.4. 
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they rotate the plane of polarization of polarized light (Faraday effect in 
transmission, or Kerr effect in reflection). Each such domain constitutes one 
bit of stored information. 

Thin magnetic films consisting of Co-Ni-Pt or Co-Cr-Ta or C075-
Crl3-Pt12 are frequently used in hard-disk devices. They are laid down on 
an aluminum substrate and are covered by a 40 run thick carbon layer for 
lubrication and corrosion resistance. The coercivities range between 60-120 
kA/m (750 and 1500 Oe). Thin-film magnetic memories can be easily fab­
ricated (vapor deposition, sputtering, or electroplating), they can be switched 
rapidly, and they have a small unit size. Thin-film recording media are not 
used for tapes, however, because of their rapid wear. They have a density of 
1.8 Mbits/mm2 with a track separation of 3 p.m and a bit length of 150 run. 

Magneto-optical memories possess the advantage of having no mechanical 
contact between medium and beam. Thus, no wear is encountered. A poly­
carbonate disk is covered by a certain magnetic material, such as MnBi, 
EuO, amorphous Gd-Co, or GdFe-garnet, that can sustain small (1 p.m 
wide) magnetic domains which are stable against stray fields. Their spins are 
initially vertically aligned, see Fig 17.7(a). A strong focused laser beam heats 
a given domain for about a microsecond above the Curie temperature (typi­
cally 150°C to 200°C). Once the heat is turned off, the domain is made to 
cool in a magnetic field that is created by an electromagnet placed on the 
opposite side of the laser and which delivers the information to be stored. 
This causes the spins in the magnetic domain to re-orient according to the 
strength and direction of the magnetic field. For read-out, the probing laser 
beam, which is plane polarized, (Section 13.1.2) senses that the plane of po­
larization of the newly oriented magnetic domain has been rotated (Kerr 
effect). The degree of rotation is converted into an intensity change of the 
light by passing the reflected beam through a second polarizer (called an 
analyzer), which is rotated 90° with respect to the first polarizer, Fig. 17.7(b). 
In other words, the content of the stored magnetic data is equivalent to a 
change in the polarization direction of the reflected light and thus equivalent 
to a change in light intensity. Each magnetic domain represents one bit of 
information, for example, spin up is a "one" and spin down is a "zero". 
(See, in this context, Section 13.10.) Magneto-optical disks have a one 
thousand times larger storage density than common floppy disks and a ten 
times faster access time. 

Despite this relatively large number of possible magnetic storage devices, 
semiconductor technology (Section 8.7.12) is presently preferred for short­
term information storage, mainly because of price, easy handling capability, 
fast access time, and size. On the other hand, magnetic disks (for random 
access) or tapes (mainly for music recordings, etc.) are the choices for long­
term, large-scale information storage, particularly since no electric energy is 
needed to retain the information. It should be noted in closing that tapes and 
floppy disks make direct contact with the recording (and playback) head, 
and are therefore subject to wear, whereas hard drive systems utilize a "flying 
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Figure 17.7. (a) Schematic representation of a magneto-optical disk in the writing 
mode (simplified). (b) Read-out mode of a magneto-optical device. (Polarizer and 
analyzer are identical devices.) 
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head" that hovers a few micrometers or less above the recording medium on 
an air cushion, caused by the high speed of the disk. On the other hand, the 
signal to noise ratio for contact recording is 90 dB, whereas for noncontact 
devices the signal to noise ratio is only 40 dB or lower. Magnetic recording is 
a $140 billion annual business worldwide with a 12-14% growth rate and is 
said to be the biggest consumer of high-purity materials. 

Problems 

1. Calculate the energy expended during one full hysteresis cycle of a magnetic ma­
terial having a rectangular hysteresis loop. Assume He = 500 A/m, Bs = 2 T and 
V = 0.25 cm3• What units can be used? 

2. Which core material should be utilized to supply a large-scale and constant mag­
netic field in a synchrotron? Justify your choice. 

3. Pick an actual motor of your choice and find out (by analysis, by means of a data 
sheet, or by writing to the manufacturer) which type of electrical steel was used as 
the core material. Also, find out the core loss (often given in watts/I b). 

4. Find from a manufacturer's data sheet the price of several qualities of electrical 
steel. 

5. Inspect the magnets contained in a gasket of a modem refrigerator. How does the 
magnet work? Where are the south and north poles? 

6. It was said in the text that transformers suffer eddy current as well as hysteresis 
losses. What other types of losses can be expected in a transformer? How can those 
losses be reduced? 
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CHAPTER 18 

Introduction 

Heat was considered to be an invisible fluid, called caloric, until late into 
the eighteenth century. It was believed that a hot piece of material contained 
more caloric than a cold one and that an object would become warmer by 
transferring caloric into it. In the mid-1800s, Mayer, Helmholtz, and louIe 
discovered independently that heat is simply a form of energy. They realized 
that when two bodies have different temperatures, thermal energy is trans­
ferred from the hotter to the colder one when brought into contact. Count 
Rumford discovered, by observing the boring of cannons, that mechanical 
work expended in the boring process was responsible for the increase in 
temperature. He concluded that mechanical energy could be transformed 
into thermal energy. This observation lead eventually to the concept of a 
mechanical heat equivalent. Today, these results are treated in a different, 
more rigorous, scientific language (see next chapter). 

The thermal properties of materials are important whenever heating and 
cooling devices are designed. Thermally induced expansion of materials has 
to be taken into account in the construction industry as well as in the design 
of precision instruments. Heat conduction plays a large role in thermal 
insulation, e.g., in homes, industry, and spacecraft. Some materials such as 
copper or silver conduct heat very well; other materials, like wood or rubber, 
are poor heat conductors. Good electrical conductors are generally also good 
heat conductors. This was discovered in 1853 by Wiedemann and Franz, 
who found that the ratio between heat conductivity and electrical conduc­
tivity (divided by the temperature) is essentially constant for all metals. 

The thermal conductivity of materials only varies within four orders of 
magnitude (Fig. 18.1). This is in sharp contrast to the variation in electrical 
conductivity, which spans about twenty-five orders of magnitude (Fig. 7.1). 
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Figure 18.1. Room-temperature thermal conductivities for some matenals. 

The thermal conductivity of metals and alloys can be readily interpreted by 
making use of the electron theory that was developed in Part I of this book. 
The electron theory postulates that free electrons in the hot part of a metal 
bar pick up energy by interactions with the vibrating lattice atoms. This 
thermal energy is eventually transmitted to the cold end of the bar by a 
mechanism which we will treat in Chapter 21. 

In electrical insulators, in which no free electrons exist, the conduction of 
thermal energy must occur by a different mechanism. This new mechanism 
was found by Einstein at the beginning of the century. He postulated the 
existence of phonons, or lattice vibration quanta, which are thought to be 
created in large numbers in the hot part of a solid and partially eliminated in 
the cold part. Transferral of heat in dielectric solids is thus linked to a flow of 
phonons from hot to cold. 

Figure IS.1 indicates that in a transition region both electrons as well as 
phonons may contribute to thermal conduction. Actually, phonon-induced 
thermal conduction occurs even in metals, but its contribution is negligible 
to that of the electrons. 

Another thermal property that will receive considerable attention in the 
following chapters is the specific heat capacity, as well as a related property, 
the molar heat capacity. Their importance can best be appreciated by the 
following experimental observations: Two substances with the same mass 
but different values for the specific heat capacity require different amounts of 
thermal energy to reach the same temperature. Water, for example, which 
has a relatively high specific heat capacity, needs more thermal energy to 
reach a given temperature than, say, copper or lead of the same mass. 

The molar heat capacity is the product of the specific heat capacity and the 
molar mass. Its experimentally observed temperature dependence, as shown 
in Fig. IS.2, has stimulated various theories, among them the phonon model. 
Figure IS.2 shows schematically how the various theories for the interpreta­
tion of the heat capacity compare with the experimental findings. We will 
discuss these models in the chapters to come. 
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o 300K T 

Figure 18.2. Schematic representation of the temperature dependence of the molar 
heat capacity-experimental, and according to four models. 



CHAPTER 19 

Fundamentals of Thermal Properties 

Before we discuss the atomistic and quantum mechanical theories of the 
thermal properties of materials, we need to remind the reader on some rele­
vant fundamental concepts and definitions which you might have been ex­
posed to before in courses of physics and thermodynamics. 

19.1. Heat, Work, and Energy 

When two bodies of different temperatures are brought in contact with each 
other, heat, Q, flows from the hotter to the colder substance. Actually, an 
increase in temperature can be achieved in a number of ways, such as by 
mechanical work (friction), electrical work (resistive heating), radiation, or by 
the just-mentioned direct contact with a hotter medium. The change in en­
ergy, AE, of a "system" can be expressed by the first law of thermodynamics, 

AE= W+Q, (19.1) 

where W is the work done on the system and Q is the heat received by the 
system from the environment. The focus of this and subsequent chapters is 
on the thermal properties of materials. Thus, we limit our considerations to 
processes for which W can be considered to be zero, so that 

AE=Q. (19.1a) 

Energy, work, and heat have the same unit. The SI unit is the joule (J), 
which is related to the now obsolete thermomechanica1 calorie (cal) by 

1 cal = 4.184 J, ( 19.2) 
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i.e., 

1 J = 0.239 cal. (19.2a) 

A technique which links thermal energy and mechanical energy was pro­
posed by Joule in 1850. The experiment involves rotating paddles which 
raise the temperature of a given amount of water by means of friction. The 
paddles are driven by the mechanical work provided by descending weights. 

19.2. Heat Capacity, C' 

Different substances need different amounts of heat to raise their temper­
atures by a given temperature interval. For example, it takes 4.18 J to raise 
1 g of water by 1 K. But the same heat raises the temperature of 1 g of copper 
by about 11 K. In other words, water has a large heat capacity compared to 
copper. (The large heat capacity of water is, incidentally, the reason for the 
balanced climate in coastal regions and the heating of north European 
countries by the Gulf Stream.) 

The heat capacity, e', is the amount of heat, dQ, which needs to be 
transferred to a substance in order to raise its temperature by a certain tem­
perature interval. Units for the heat capacity are J/K. 

The heat capacity is not defined uniquely, i.e., one needs to specify the 
conditions under which the heat is added to the system. Even though several 
choices for the heat capacities are possible, one is generally interested in only 
two: the heat capacity at constant volume, e~, and the heat capacity at con­
stant pressure, e;. The former is the most useful quantity, because e~ is 
obtained immediately from the energy of the system. The heat capacity at 
constant volume is defined as 

I (OE) ey = oT y' 
(19.3) 

On the other hand, it is much easier to measure the heat capacity of a solid 
at constant pressure than at constant volume. Fortunately, the difference 
between e; and e~ for solids vanishes at low temperatures and is only about 
5% at room temperature. e~ can be calculated from e; 1 if the volume ex­
pansion coefficient, (x, and the compressibility, K, of a material are known, by 
applying 

c l = C l _ (X2TV 
y P K' 

(19.4 ) 

'The heat capacity at constant pressure is defined as C; = (oHjoT)p' where H = U + p. V is 
the enthalpy, and U is the internal energy. 
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where V is the volume of the solid. Equation (19.4) is derived in textbooks on 
thermodynamics. 

19.3. Specific Heat Capacity, c 

The specific heat capacity is the heat capacity per unit mass 

C' 
C=-. 

m 
(19.5) 

It is a materials constant and it is temperature-dependent. Characteristic 
values for the specific heat capacity (cy and cp) are given in Table 19.1. The 
unit of the specific heat capacity is Jig· K. We note from Table 19.1 that 
values for the specific heat capacities of solids are considerably smaller than 
the specific heat capacity of water. 

Combining (19.la), (19.3), and (19.5) yields 

(19.6) 

which expresses that the thermal energy (or heat) which is transferred to a 
system equals the product of mass, increase in temperature, and specific heat 
capacity. 

19.4. Molar Heat Capacity, Cv 

A further useful materials constant is the heat capacity per mole (i.e., per 
amount of substance of a phase, n). It compares materials that contain the 

Table 19.1. Experimental Thermal Parameters of Various Substances at 
Room Temperature and Ambient Pressure. 

Specific heat Molar Molar heat Molar heat 
capacity (cp ) (atomic) mass capacity (Cp ) capacity (Cv) 

Substance C~K) (:OJ (ma:. K) J 
--mal·K 

AI 0.897 27.0 24.25 23.01 
Fe 0.449 55.8 25.15 24.68 
Ni 0.456 58.7 26.8 24.68 
Cu 0.385 63.5 24.48 23.43 
Pb 0.129 207.2 26.85 24.68 
Ag 0.235 107.9 25.36 24.27 

C (graphite) 0.904 12.0 10.9 9.20 
Water 4.184 18.0 75.3 
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same number of molecules or atoms. The molar heat capacity is obtained by 
multiplying the specific heat capacity, Cy (or cp ), by the molar mass, M (see 
Table 19.1): 

c' 
Cy =~= Cy ·M. 

n 

The units are J/mol . K. The amount of substance (in mol) is 

n = NINo) 

(19.7) 

(19.7a) 

where N is the number of particles (atoms, molecules, etc.), and No is the 
Avogadro constant (No = 6.022 x 1023 mol-I). 

We see from Table 19.1 that the room-temperature molar heat capacity 
at constant volume is approximately 25 J/mol . K (6 cal/mol· K) for most 
solids. This was experimentally discovered in 1819 by Dulong and Petit. We 
shall attempt to interpret this interesting result in a later section. 

The experimental molar heat capacities for some materials are depicted in 
Fig. 19.1 as a function of temperature. We notice that some materials, such 
as carbon, reach the Dulong-Petit value of 25 J/mol· K only at high tem­
peratures. Some other materials, such as lead, reach 25 J/mol· K at rela­
tively low temperatures. 

All heat capacities are zero at T = 0 K. The Cy values near T = 0 K climb 
in proportion to T3 and reach 96% of their final value at a temperature (}D, 

which is defined to be the Debye temperature. We shall see later that (}D is an 
approximate dividing point between a high-temperature region, where clas-

~:5 -------------------------------------------------

100 200 300 400 :500 
T [K] 

Figure 19.1. Temperature dependence of the molar heat capacity, Cv , for some 
materials. 
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Table 19.2. Debye 
Temperatures of Some 
Materials. 

Substance 80 (K) 

Pb 95 
Au 170 
Ag 230 
W 270 
Cu 340 
Fe 360 
AI 375 
Si 650 
C 1850 

GaAs 204 
InP 162 

sical models can be used for the interpretation of Cv , and a low-temperature 
region, where quantum theory needs to be applied. Selected Debye temper­
atures are listed in Table 19.2. 

19.5. Thermal Conductivity, K 

Heat conduction (or thermal conduction) is the transfer of thermal energy 
from a hot body to a cold body when both bodies are brought into contact. 
For best visualization we consider a bar of a material of length x whose ends 
are held at different temperatures. The heat that flows through a cross sec­
tion of the bar divided by time and area, (i.e., the heat flux, JQ ) is propor­
tional to the temperature gradient, dT jdx. The proportionality constant is 
called the thermal conductivity, K (or .Ie). We thus write 

(19.8) 

The negative sign indicates that the heat flows from the hot to the cold 
end (Fourier Law, 1822). Units for the heat conductivity are (ljm· s· K) or 
(Wjm· K). The heat flux, JQ, is measured in (ljm2 • s). Table 19.3 gives some 
characteristic values for K. The thermal conductivity decreases slightly with 
increasing temperature. For example, K for copper decreases by 20% within 
a temperature span of 1000°C. In the same temperature region, K for iron 
decreases by 10%. 
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Table 19.3. Thermal Conductivities at 
Room Temperature.a 

Substance 

Diamond, type IIa 
SiC 
Silver 
Copper 
Aluminum 
Silicon 
Brass (leaded) 
Iron 
GaAs 
Ni-SrIverb 

Ab03 (sintered) 
Si02 (fused silica) 
Concrete 
Soda-lime glass 
Water 
Polyethylene 
Teflon 
Snow (O°C) 
Wood (oak) 
Sulfur 
Cork 
Glass wool 

Air 

K--=--( W) ( J ) 
m·K - s·m·K 

2.3 X 103 

4.9 X 102 

4.29 X 102 

4.01 X 102 

2.37 X 102 

1048 X 102 

1.2 X 102 

8.02 X 101 

5 X 101 

2.3 X 101 

3.5 X 10 1 

104 
9.3 x 10-1 

9.5 X 10-1 

6.3 X 10-1 

3.8 X 10-1 

2.25 X 10-1 

1.6 X 10-1 

1.6 X 10-1 

2.0 X 10-2 

3 X 10-2 

5 X 10-3 

2.3 X 10-4 

a See also FIgure 18.1. Source: Handbook of ChemIs­
try and PhYSICS, CRC Press. Boca Raton, FL (1994) 
b62% Cu, 15% NI, 22% Zn 

19.6. The Ideal Gas Equation 

375 

Free electrons in metals and alloys can often be considered to behave like an 
ideal gas. An ideal gas is an abstraction which is frequently used in thermo­
dynamics. It is usually defined to be a gas whose density is low enough in 
order for it to obey the equation 

PV= nRT, (19.9) 

where P is the pressure of the gas, V is its volume, n is the amount of sub­
stance, Tis the thermodynamic (absolute) temperature, R is the universal gas 
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constant, and kB is the Boltzmann constant. The gas constant is 

R = kBNO = 8.314 (J/mol· K) 

= 1.986 (cal/mol· K). (19.10) 

Equation (19.9) is a combination of two experimentally obtained thenno­
dynamic laws: One, discovered by Boyle and Mariotte (PV = const. at con­
stant T), and the other, discovered by Gay-Lussac (V ~ T, at constant P). 
The reader who has taken classes in physics or thennodynamics is un­
doubtedly familiar with these equations. 

19.7. Kinetic Energy of Gases 

In the chapters to come, we need to know the kinetic energy of atoms, mol­
ecules, or electrons at a given temperature from a classical point of view. The 
calculation that is summarized below is usually contained in textbooks on 
thennodynamics. 

We commence by quoting the number of molecules in a gas that interact 
in the unit time, t, with the end face of unit area of a bar which has the 
length dx. We assume that, because of thennal agitation, one-third of the 
particles move in the x-directions, i.e., one-sixth in the positive x-direction. 
The volume element, shown in Fig. 19.2, is 

dV = Adx = Avdt, (19.11) 

where A is the unit area and v is the velocity of the particles that fly in the 
x-direction. The number of particles reaching the end face is naturally pro­
portional to the number of particles, ny, in the given volume, i.e., 

z' = !nv' dV = !nvAvdt. 

Figure 19.2. Diagram for the derivation of the kinetic energy of gases. 
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The number of particles per unit time and unit area that hit the end face is, 
consequently, 

(19.12) 

where 

N 
nv = V (19.13) 

is the number of particles per unit volume. Each particle transfers the 
momentum 2mv during its collision with the wall and subsequent reflection. 
The momentum per unit time and unit area is then 

* liN 2 
P = z2mv = (;nvv2mv ="3 Vmv . 

This yields, for the pressure, 

P = ~ = ma = d(mv)/dt = dp/dt = p* =! N mv2. 
A A A A 3V 

With 

PV = nRT = nkBNoT = NkBT 

(see (19.9), (19.7a), and (19.10)), we obtain from (19.15) 

PV = iNmv2 = kBNT. 

Inserting 

into (19.17) yields 

kBNT = iN2~mv2 = ~NEkin' 

which finally yields the kinetic energy of a particle, 

(19.14) 

(19.15) 

(19.16) 

(19.17) 

(19.18) 

(19.19) 

Ekin = ~kBT. (19.20) 

A more precise calculation, which considers the mutual collisions of the 
particles, and thus a velocity distribution, replaces the kinetic energy in 
(19.20) with an average kinetic energy. 

Problems 

Note: The problems in this chapter contain engineering applications in order to make 
the student aware of the importance of thermal properties in daily life. 

I. Calculate the number of gas molecules that are left in an ultrahigh vacuum of 
10-9 Pa (~7.5 x 10-12 Torr) at room temperature. 
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2. Calculate the rate of heat loss per unit area in a S mm thick window glass when the 
exterior temperature is O°C and the room temperature is 20°C. Compare your 
result with the heat loss in an aluminum and a wood frame of 10 mm thickness. 
How can you decrease the heat loss through the window? 

3. A block of copper, whose mass is 100 g, is quenched directly from an annealing 
furnace into a 200 g glass container that holds SOO g of water. What is the tem­
perature of the furnace when the water temperature rises from 0° to ISOC? 
(Cglass = O.S Jig· K.) 

4. Explain in simple terms why wood has a smaller heat conductivity than copper. 

S. What are the implications for the semiconductor industry that silicon has a rela­
tively good heat conductivity? 

6. Why is the fiberglass insulation used for buildings, etc., loose rather than compact? 
(Hint: Compare K for glass and air. Discuss also heat convection.) 

7. Find in a handbook the relationship between J and BTU. 



CHAPTER 20 

Heat Capacity 

20.1. Classical (Atomistic) Theory of Heat Capacity 

This section attempts to interpret the thermal properties of materials using 
atomistic concepts. In particular, an interpretation of the experimentally 
observed molar heat capacity at high temperatures, Cv = 25 (J / mol· K) that 
is, 6 (cal/mol· K), is of interest. 

We postulate that each atom in a crystal is bound to its site by a harmonic 
force. A given atom is thought to be capable of absorbing thermal energy, 
and in doing so it starts to vibrate about its point of rest. The amplitude of 
the oscillation is restricted by electrostatic repUlsion forces of the nearest 
neighbors. The extent of this thermal vibration is therefore not more than 5 
or 10% of the interatomic spacing, depending on the temperature. In short, 
we compare an atom with a sphere which is held at its site by two springs 
(Fig. 20.I(a)). The thermal energy that a harmonic oscillator of this kind can 
absorb is proportional to the absolute temperature of the environment. The 
proportionality factor has been found to be the Boltzmann constant, kB (see 
below). The average energy of the oscillator is then 

E = kBT. (20.1 ) 

Now, solids are three-dimensional. Thus, a given atom in a cubic crystal 
also responds to the harmonic forces of lattice atoms in the other two direc­
tions. In other words, it is postulated that each atom in a cubic crystal rep­
resents three oscillators (Fig. 20.1 (b)), each of which absorbs the thermal 
energy kBT. Therefore, the average energy per atom is 

E = 3kBT. (20.2) 
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z 
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Figure 20.1. (a) A one-dimensional harmonic oscillator and (b) a three-dimensional 
harmonic oscillator. 

We note in passing that the same result is obtained by using the kinetic 
theory of gases. It was shown in (19.20) that the average kinetic energy of a 
particle (or in the present case, an atom) is 

(20.3) 

Now, each elastic vibration in a solid involves not only kinetic energy but 
also potential energy, which has the same average magnitude as the kinetic 
energy. The total energy of a vibrating lattice atom is thus 

(20.4 ) 

which is the result of (20.2). 
We consider now all No atoms per mole. Then, the total internal energy 

per mole is 

(20.5) 

Finally, the molar heat capacity is given by combining (19.3), (19.7), and 
(20.5), which yields 

Inserting the numerical values for No and kB into (20.6) yields 

Cv = 25 J /mol . K or 5.98 cal/mol· K, 

(20.6) 

quite in agreement with the experimental findings at high temperatures (Figs. 
18.2 and 19.1). 

y 



20. Heat Capacity 381 

It is satisfying to see that a simple model involving three harmonic oscil­
lators per atom can readily explain the experimentally observed heat capac­
ity. However, one shortcoming is immediately evident: the calculated molar 
heat capacity turned out to be temperature-independent, according to (20.6), 
and also independent of the material. This discrepancy with the observed 
behavior (see Fig. 18.2) was puzzling to scientists in the 19th century and had 
to await quantum theory to be properly explained. 

20.2. Quantum Mechanical Considerations­
the Phonon 

20.2.1. Einstein Model 

Einstein postulated, in 1907, that the energies of the above-mentioned clas­
sical oscillators should be quantized, i.e., he postulated that only certain vi­
brational modes should be allowed, quite in analogy to the allowed energy 
states of electrons. These lattice vibration quanta were called phonons. 

The term phonon stresses an analogy with electrons or photons. As we 
know from Chapter 2, photons are quanta of electromagnetic radiation, 
i.e., photons describe (in the appropriate frequency range) classical light. 
Phonons, on the other hand, are quanta of the ionic displacement field, 
which (in the appropriate frequency range) describe classical sound. 

The phonon describes the particle nature of an oscillator. A phonon has, 
in analogy to the de Broglie relation (2.3), the momentum p = hi A. 

Furthermore, Einstein postulated a particle-wave duality. This suggests 
phonon waves which propagate through the crystal with the speed of sound. 
Phonon waves are not electromagnetic waves: they are elastic waves, vibrat­
ing in a longitudinal and/or in a transversal mode. 

In analogy to the electron case shown in Part I of this book, one can de­
scribe the properties of phonons in terms of band diagrams, Brillouin zones, 
or density of states curves. Small differences exist, however. For example, the 
energy in the band diagram of an electron is replaced in a phonon band di­
agram by the vibrational frequency, w, of the phonon. The branches in the 
phonon band diagram are sinusoidal in nature (compared to parabolic in the 
free electron case). The individual phonon bands are no longer called valence 
or conduction bands, but more appropriately acoustic bands and optical 
bands, mainly because the frequencies in which the branches are situated are 
in the acoustical and optical ranges, respectively. The density of states or, 
better, the density of vibrational modes, D( w), for the phonon case is defined 
so that D( w) . dw is the number of modes whose frequencies lie in the inter­
val wand w + dw. For a continuous medium the density of modes is 

3Vw2 

D(w) = -2 2-3 ' 
1C Vs 

(20.7) 
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Figure 20.2. Allowed energy levels of a phonon: (a) average thermal energy at low 
temperatures and (b) average thermal energy at high temperatures. 

where Vs is the sound velocity. This equation can be derived quite similarly as 
demonstrated in Section 6.3. 

The allowed energies of a single oscillator are 

En = nhw, (20.8) 

similarly as in Section 4.2, where n is an integer. 2 A schematic energy level 
diagram for the allowed phonon energies is shown in Fig. 20.2. 

One important difference between phonons and electrons needs to be em­
phasized. Phonons are created by raising the temperature, and eliminated by 
lowering it, i.e., the number of phonons is not conserved, as we shall show 
momentarily. (In contrast to this, the number of electrons is constant.) Ein­
stein postulated that with increasing temperature more and more phonons 
are created, each of which has the same energy, hw, or the same frequency of 
vibration, w. The average number of phonons, ill ph, at a given temperature 
was found by Bose and Einstein to obey a special type of statistics: 

N ph = exp ( hw ) _ I . 
kBT 

(20.10) 

This equation is similar in form to the Fermi distribution function (6.1). 
We note in passing that for high phonon energies, hw, the exponential 

term in (20.10) becomes large when compared to unity so that the number of 
phonons can be approximated by Boltzmann statistics, i.e., by the laws of 
classical thermodynamics, 

N- ~ e-hw/kBT ph ~ . (20.11) 

2 Since the ground state (n = 0) still has a zero-pomt energy of! hw, we should, more appropri­
ately, write 

En = nhw + !hw = (n + !)hw. (20.9) 

The zero-point energy is, however, of no importance for the present considerations. 
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We already made a similar statement in Section 6.2. We also see from 
(20.10) that the number of phonons decreases rapidly when the temperature 
approaches 0 K. 

The average energy of an isolated oscillator is then the average number of 
phonons times the energy of a phonon: 

Eosc = hwN ph = ( hw ) . 
exp -- - 1 

kBT 

hw 
(20.12) 

The thermal energy of a solid can now be calculated by taking into account 
(as in Section 20.1) that a mole of a substance contains 3No oscillators. This 
yields for the thermal energy per mole 

E= 3No (hW) . 
exp - -1 

kBT 

hw 

The molar heat capacity is, finally, 

(20.13) 

(20.14) 

We discuss Cy for two special temperature regions. For large temperatures 
the approximation eX ~ 1 + x can be applied, which yields Cy ~ 3NokB (see 
Problem 5) in agreement with (20.6), i.e., we obtain the classical Dulong­
Petit value. For T ---> 0, Cy approaches zero, again in agreement with ex­
perimental observations. Thus, the temperature dependence of Cy is now in 
qualitative accord with the experimental findings. One minor discrepancy 
has to be noted however: At very small temperatures the experimental Cy 

decreases by T 3 , as stated in Section 19.4. The Einstein theory predicts, in­
stead, an exponential reduction. The Debye theory, which we shall discuss 
below, alleviates this discrepancy by postulating that the individual oscil­
lators interact with each other. 

By inspecting (20.14), we observe that this relation contains only one ad­
justable parameter, namely, the angular frequency, which we shall redesig­
nate for this particular case by WE. By fitting (20.14) to experimental curves, 
the frequency of the phonon waves can be obtained. For copper, the angu­
lar frequency WE has been found in this way to be 2.5 X 1013 S-I, which yields 
VE = 4 X 1012 S-I. It is customary to call frequencies up to 105 s-I sound 
waves, frequencies between 105 and 109 S-I ultrasonics, and frequencies 
above 109 S-I thermal waves. The Einstein frequency is thus situated very 
appropriately in the thermal wave region. 



384 v. Thermal Properties of Matenals 

Occasionally, the Einstein temperature, BE, is quoted, which is defined by 
equating the phonon energy 

which yields 

B 
_ hWE 

E - kB . 

(20.15) 

(20.16) 

Characteristic values for BE are between 200 K and 300 K. From the above­
quoted WE value for copper, B~u can be calculated to be 240 K. 

20.2.2. Debye Model 

We now refine the Einstein model by taking into account that the atoms in a 
crystal interact with each other. Consequently, the oscillators are thought to 
vibrate interdependently. We recall that the Einstein model considered only 
one frequency of vibration, WE. When interactions between the atoms occur, 
many more frequencies are thought to exist, which range from about the 
Einstein frequency down to frequencies of the acoustical modes of oscilla­
tion. We postulate that these vibrational modes are quantized (Fig. 20.2). 
The total displacement of a given atom in a crystal during the oscillation is 
found by summing up all vibrational modes. This has been done by Debye, 
who modified the Einstein equation (20.13) by replacing the 3No oscillators 
of a single frequency with the number of modes in a frequency interval, dw, 
and by summing up over all allowed frequencies. The total energy of vibra­
tion for the solid is then 

E = J EoscD(w) dw, (20.17) 

where Eosc is the energy of one oscillator given in (20.12), and D(w) is the 
density of modes given in (20.7). Inserting (20.7) and (20.12) into (20.17) 
yields 

3V JWD hw3 

E = 2n2vl 0 ( hw ) 1 dw. 
exp -- -

kBT 

(20.18) 

The integration is performed between w = 0 and a cutoff frequency, called 
the Debye frequency, WD, (Section 19.4) which is determined by postulating 
that the total number of modes must be equal to the number of degrees of 
freedom. 

The molar heat capacity, Cy , is obtained, as usual, by performing the de­
rivative of (20.18) with respect to temperature. This yields 

4 (hW) 
3 Vh2 fWD w exp kBT 

C - dw 
y - 2n2vlkBT2 0 ( (hW) )2 exp -- - 1 

kBT 

(20.19) 
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or 

where 

hw 
X= kBT 

varies with the angular frequency, w, and 

eo = hwo 
kB 

385 

(20.20) 

(20.21) 

(20.22) 

is called the Debye temperature. Values for eo can be obtained again by 
curve-fitting, particularly at low temperatures. They have been listed in 
Table 19.2. For low temperatures, i.e., for T« eo, the upper limit of the 
integral in (20.20) can be approximated by infinity. Then (20.20) can be 
evaluated and it becomes 

12n
4 (T)3 

Cy = -5- NokB eo . (20.23) 

From both equations, (20.20) as well as (20.23), it can be seen that Cy de­
creases proportionally to T3 at low temperatures, which is quite in agree­
ment with the experimental observations. 

In summary, the main difference between the two theories is that the 
Debye model takes the low frequency modes into account, whereas the Ein­
stein model does not. We have to realize, however, that the excitation of 
oscillators at low temperatures occurs only with a small probability, because 
at low temperatures only a few oscillators can be raised to the next higher 
level. This is a consequence of the fact that the energy difference between 
levels is comparatively large for the available small thermal energies, as 
schematically illustrated in Fig. 20.2. 

It should be noted that even (20.20) is only an approximation, because the 
underlying model does not take into consideration the periodicity of the 
atoms in a crystal lattice. Thus, a refinement of the Debye model needs to 
utilize the actual density of modes function D( w) for a given material. This 
has been done by scientists with good success. Equation (20.20) is, however, 
a fairly good approximation (see Fig. 18.2). 

20.3. Electronic Contribution to the Heat Capacity 

In the previous sections we have digressed considerably from the principal 
theme of this book, namely, the description of the electronic properties of 
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Figure 20.3. Population density as a function of energy for a metal. The electrons 
within the shaded area below EF can be excited by a thermal energy kBT. 

materials. We now return to our main topic by discussing the contributions 
that the electrons provide to the specific heat. We will quickly see that this 
contribution is relatively small compared to that of the phonons. 

First, we need to remember that only the kinetic energy of the free elec­
trons can be raised with increasing temperature. Consequently, our present 
discussion is restricted to metals and alloys which have, as we know, par­
tially filled bands and thus free electrons. Second, we need to remember that 
only those electrons which lie within an energy interval kB T of the Fermi 
energy can be excited in sufficient numbers into higher states, because only 
these electrons find empty energy states after their excitation. We know that 
the number, dN, of these excitable electrons depends on the population 
density of the metal under consideration (Section 6.4). In other words, dN is 
the product of the population density at the Fermi level, N(EF ), and the 
energy interval kB T, as indicated by the shaded area in Fig. 20.3. 

We postulate that the electrons which are excited by thermal energy be­
have like a monatomic gas. We have already shown in (19.20) that the mean 
kinetic energy of gas molecules, or in the present case, the mean kinetic 
energy of the electrons above the Fermi energy is ~ kB T. Thus, the thermal 
energy at a given temperature is 

Ekm = ~kBT dN = ~kBTN(EF)kBT. (20.24) 

The heat capacity of the electrons is then, as usual, 

eel = (8E) = 3k2 TN(E ) 
v 8T B F . 

v 

(20.25) 

We need now an expression for N(EF). We obtain this by combining (6.8) 
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and (6.11) for E < EF (see Fig. 20.3 and Problem 9), which yields 

N(EF) = ~~: (elec~ons), (20.26) 

where N* is the number of electrons which have an energy equal to or 
smaller than EF (Section 6.4). Inserting (20.26) into (20.25) yields 

cel = ~ N*k~T (~) 
v 2 EF K' 

(20.27) 

So far, we assumed that the thermally excited electrons behave like a classi­
cal gas. In reality, the excited electrons must obey the Pauli principle. If this 
is taken into consideration properly, (20.27) changes slightly and reads 

(20.28) 

Let us assume now a monovalent metal in which we can reasonably as­
sume one free electron per atom (see Part I). Then, N* can be equated to the 
number of atoms per mole, No, and (20.28) becomes the heat capacity per 
mole 

(20.29) 

We see from (20.29) that C~l is a linear function of the temperature and is 
zero at T = 0 K, quite in agreement with the experimental observations, see 
Fig. 18.2. The room-temperature contribution of the electronic specific heat 
to the total specific heat is less than 1% (see Problem 3). There are, however, 
two temperature regions where the electronic specific heat plays an appre­
ciable role. This is at very low temperatures, i.e., at T < 5 K (see Fig. 18.2). 
Second, we have learned in the previous sections that the lattice heat capac­
ity levels off above the Debye temperature. Thus, the electron heat capacity 
can give at high temperatures a small contribution to the Dulong-Petit value. 

An interesting aspect is added: Equation (20.25) may be rewritten in the 
following form: 

cel = yT v , 

where 

y = 3k~N(EF)' 

Furthermore, (20.20) can be rewritten as 

Cfh = pi3. 

(20.30) 

(20.31 ) 

(20.32) 
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Figure 2004. Schematic representation of an experimental plot of Cv/T versus T2. 

Below the Debye temperature, the heat capacity of metals is the sum of 
electron and phonon contributions, i.e., 

c~ot = C:' + C~h = yT + PT 3
, (20.33) 

which yields 
ctot 
_v __ y+PT2 T - . (20.34) 

A plot of experimental values for C~ot/T versus T2 provides the materials 
constants y (intercept) and P (slope), see Fig. 20.4. Heat capacity measure­
ments thus serve as a means to obtain the electron population density at the 
Fermi surface by using (20.31). 

Some calculated and observed values for yare given in Table 20.1. From 
the slight discrepancy between observed and free-electron y-values, a thermal 
effective mass can be calculated, which is defined as 

m;h y(obs.) 
mo y( calc.) . 

(20.35) 

Table 20.1. Calculated and Observed Values for the Constant y, see 
(20.31 ). 

y, observed y, calculated 

(mo/ K2) (mo/ K2) 
mih 

Substance mo 

Ag 0.646 x 10-3 0.645 X 10-3 1.0 
Al 1.35 x 10-3 0.912 X 10-3 1048 
Au 0.729 x 10-3 0.642 X 10-3 1.14 
Na 1.3 x 10-3 0.992 X 10-3 1.31 
Fe 4.98 x 10-3 

Ni 7.02 x 10-3 
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The deviation between the two y-values is interpreted to stem from neglect­
ing electron-phonon and electron-electron interactions. 

Problems 

1. How many electrons (in percent of the total number of electrons per mole) he 
kBT (eV) below the Fermi energy? Take EF = 5 eV and T = 300 K. 

2. Calculate Cy at high temperatures (500 K) by using the quantum mechanical 
equation derived by Einstein. Assume an Einstein temperature of 250 K, and 
convince yourself that Cy approaches the classical value at high temperatures. 

3. Calculate the electronic specific heat for EF = 5 eV and T = 300 K. How does 
your result compare with the experimental value of 25 (llmol K)? 

4. Calculate the population density at the Fermi level for a metal whose electronic 
specific heat at 4 K was measured to be 8.37 x 10-3 (J/mol K). 

5. Confirm that (20.14) reduces for large temperatures to the Dulong-Petit value. 

6. At what temperature would the electronic contribution to Cy of silver eventually 
become identical to the Dulong-Petit value? (Hint: Use proper units for the heat 
capacity! Take EF = 5 eV, Nr = 1028 eIjm 3

.) 

7. Discuss thermal expansion in materials from an atomistic point of view. 

8. Show that for small temperatures (20.20) reduces to (20.23) and that for large 
temperatures (20.20) reduces to the Dulong-Petit value. 

9. Derive (20.26) for E < EF as shown in Fig. 20.3 by combining (6.8) and (6.11) 
and eliminating the Planck constant. 

10. Computer problem. Plot the Einstein equation (20.14) and the Debye equation 
(20.20) as a function of temperature by utilizing different values for WE, WD, and 
BD . Why can (20.23) not be used in the entire temperature range? 



CHAPTER 21 

Thermal Conduction 

We stated in Chapter 19 that heat conduction can be described as the trans­
fer of thermal energy from the hot to the cold part of a piece of material. We 
shall discuss now the mechanisms which are involved in this transfer of 
thermal energy. 

We postulate that the heat transfer in solids may be provided by free elec­
trons as well as by phonons. We understand immediately that in insulators, 
which do not contain any free electrons, the heat must be conducted exclu­
sively by phonons. In metals and alloys, on the other hand, the heat conduc­
tion is dominated by electrons because of the large number of free electrons 
in metals. Thus, the phonon contribution is usually neglected in this case. 

One particular point should be clarified right at the beginning. Electrons in 
metals travel in equal numbers from hot to cold and from cold to hot in order 
that the charge neutrality be maintained. Now, the electrons in the hot part of 
a metal possess and transfer a high energy. In contrast to this, the electrons in 
the cold end possess and transfer a lower energy. The heat transferred from hot 
to cold is thus proportional to the difference in the energies of the electrons. 

The situation is quite different in phonon conductors. We know from 
Section 20.2.1 that the number of phonons is larger at the hot end than at the 
cold end. Thermal equilibrium thus involves in this case a net transfer of 
phonons from the hot into the cold part of a material. 

21.1. Thermal Conduction in Metals and Alloys-
Classical Approach 

We now attempt to calculate the heat conductivity K (see (19.8)). The train 
of thOUght is borrowed from the kinetic theory of gases, because the same 
arguments hold true for electrons as for gas molecules. 
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Figure 21.1. For the derivation of the heat conductivity in metals. Note that (dT / dx) 
is negative for the case shown in the graph. 

Consider a bar of metal whose left side is hot and whose right side is cold 
(Fig. 21.1). Thus, a temperature gradient, dT / dx, exists in the x-direction of 
the bar. Consider also a volume at the center of the bar whose faces have the 
size of a unit area and whose length is 2/, where 1 is the mean free path be­
tween two consecutive collisions between an electron and lattice atoms. We 
assume that at the distance 1 from the center, Xo, the average electron has 
had its last collision and has picked up the energy of this place. We calculate 
first the energy, El, per unit time and unit area, of the electrons that drift 
from the left into the above-mentioned sample volume. This energy El 
equals the number of electrons, Z, times the energy of one of the electrons. 
The latter is, according to (19.20), ~kBTl' where Tl can be taken from Fig. 
21.1, and Z is given in (19.12) 

EJ = Z • - kB To + 1 - - = - - kB To - 1- . 3 ( (dT)) nyv 3 ( dT) 
2 dx 62 dx 

(21.1 ) 

The same number of electrons drift from right to left through the volume 
under consideration. These electrons, however, carry a lower energy, E2, be­
cause of the lower temperature of the particles at the site of interaction. Thus, 

(21.2) 

The excess thermal energy transferred per unit time through a unit area into 
the unit volume is therefore the heat flux 

nyv 3 (dT) nyv dT 
JQ = EJ - E2 = - 6 2kB 21 dx = -TkBI dx· (21.3) 
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We compare (21.3) with (19.8): 

dT 
JQ = -K dx' (21.4) 

Then, we obtain for the heat conductivity of the electrons 

I K~~. (21.5) 

The heat conductivity is thus larger the more electrons, ny, are involved, the 
larger their velocity, v, and the larger the mean free path between two con­
secutive electron-atom collisions, I. This result intuitively makes sense. 

We now seek a connection between the heat conductivity and C;l. We 
know from (19.20) the kinetic energy of all nv electrons per unit volume: 

E = nv~kBT. (21.6) 

From this we obtain the heat capacity per volume, 

el (dE) 3 
Cv = dT v = nV "2 kB ' (21.7) 

Combining (21.5) with (21.7) yields 

K = ~ C;lvl. (21.8) 

All three variables contained in (21.8) are temperature-dependent, but 
while C;l increases with temperature, I and, to a small degree, also v, are 
decreasing. Thus, K should change very little with temperature, which is 
indeed experimentally observed. As mentioned in Section 19.5, the thermal 
conductivity decreases about 10-5 W 1m . K per degree. K also changes at the 
melting point and when a change in atomic packing occurs. 

21.2. Thermal Conduction in Metals and Alloys­
Quantum Mechanical Considerations 

The question arises as to what velocity the electrons (that participate in the 
heat conduction process) have. Further, do all the electrons participate in the 
heat conduction? We have raised a similar question in Section 20.3, see Fig. 
20.3. We know from there that only those electrons which have an energy 
close to the Fermi energy, EF, are able to participate in the conduction pro­
cess. Thus, the velocity in (21.5) and (21.8) is essentially the Fermi velocity, 
VF, which can be calculated with 

EF = !mv~ 

if the Fermi energy is known (see Appendix). 

(21.9) 
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Second, the number of participating electrons contained in (21.5) is pro­
portional to the population density at the Fermi energy, N(EF), i.e., in first 
approximation, by the number of free electrons, Nf, per unit volume. In­
serting the quantum mechanical expression for e~l (20.28), 

eel = n2 Nfk~ T (_J_) 
v 2 EF K· m 3 ' 

(21.10) 

into (21.8) yields 

K = n2 Nfk~ TVFIF 
6EF ' 

(21.11) 

which reduces with (21.9) and IF = rVF (7.15a) (r = relaxation time) to 

(21.12) 

This is the result we were seeking. Again, the heat conductivity is larger the 
more free electrons are involved and the smaller the (effective) mass of the 
electrons. 

Next, we return to a statement which we made in Chapter 18. We pointed 
out there that Wiedemann and Franz observed that good electrical conduc­
tors are also good thermal conductors. We are now in a position to compare 
the thermal conductivity (21.12) with the electrical conductivity (7.15), 

Nfe2r 
a=--. 

m* 
(21.13) 

The ratio of K and a (divided by T) is proportional to a constant called the 
Lorentz number, L, which is a function of two universal constants, kB and e, 

K n2k 2 

- = L = _B (21.14) 
aT 3e2 . 

The Lorentz number is calculated to be 2.443 x 10-8 (J. QjK 2 . s) (see 
Problem 2). Experiments for most metals confirm this number quite well. 

21.3. Thermal Conduction in Dielectric Materials 

Heat conduction in dielectric materials occurs by a flow of phonons. The hot 
end possesses more phonons than the cold end, causing a drift of phonons 
down a concentration gradient. 

The thermal conductivity can be calculated similarly as in the previous 
section, which leads to the same equation as (21.8), 

(21.15) 
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Figure 21.2. Schematic representation of the thermal conductivity in dielectric 
materials as a function of temperature. 

In the present case, q,h is the (lattice) heat capacity per unit volume of the . 
phonons, v is the phonon velocity, and I is the phonon mean free path. A 
typical value for v is about 5 x 105 cm/s (sound velocity) with v being rela­
tively temperature-independent. In contrast, the mean free path varies over 
several orders of magnitude, i.e., from about 10 nm at room temperature to 
104 nm near 20 K. The drifting phonons interact on their path with lattice 
imperfections, external boundaries, and with other phonons. These inter­
actions constitute a thermal resistivity, which is quite analogous to the elec­
trical resistivity. Thus, we may treat the thermal resistance just as we did 
in Part II; i.e., in terms of interactions between particles (here phonons) and 
matter, or in terms of the scattering of phonon waves on lattice imperfections. 

At low temperatures, where only a few phonons exist, the thermal con­
ductivity depends mainly on the heat capacity, q,h, which increases with the 
third power of increasing temperature according to (20.20) (see Fig. 21.2). At 
low temperatures, the phonons possess small energies, i.e., long wavelengths 
which are too long to be scattered by lattice imperfections. The mean free 
path, I, becomes thus a constant and is virtually identical to the dimensions 
of the material. 

More effective are the phonon-phonon interactions, which are dominant 
at higher temperatures since, as we know, the phonon density increases with 
increasing T. Thus, the mean free path and, consequently, the thermal con­
ductivity, decreases for temperatures above about 20 K (Fig. 21.2). 

Another mechanism which impedes the flow of phonons at higher tem­
peratures has been discovered. We explain this mechanism in quantum 
mechanical terms. When two phonons collide, a third phonon results in a 
proper manner to conserve momentum. Now, phonons (just like electrons) 
can be represented to travel in k-space. The same arguments, as discussed in 
Chapter 5, may then apply here. We need to consider Brillouin zones that 
represent the areas in which the phonon interactions occur. In the example 
of Fig. 21.3, the resultant vector al + a2 = a3 is shown to be outside the first 
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Figure 21.3. First Brillouin zone in a reciprocal square lattice. Two phonons al and 
a2 are shown to interact. In the example, the resultant vector a3 lies outside the first 
Brillouin zone. 

Brillouin ZOne. We project this vector back to a corresponding place inside 
the first Brillouin ZOne by applying a similar vector relationship as in (5.34), 

(21.16) 

where G is again a translational vector, which has in the present case the 
modulus -2n/a (see Fig. 21.3). As a consequence, the resultant phonon of 
vector a4 proceeds after the collision in a direction that is almost opposite to 
a2, which constitutes, of course, a resistance against the flow of phonons. 
This mechanism is called umklapp process (German for "flipping over" 
process). 

Phonon collisions in which al and a2 are small, so that the resultant vector 
a3 stays inside the first Brillouin ZOne (i.e., G = 0), are called normal pro­
cesses. A normal process has nO effect on the thermal resistance, since the 
resultant phonon proceeds essentially in the same direction. 

Problems 

1. Calculate the thermal conductivity for a metal, assuming r = 3 x 10-14 S, T = 300 
K, and Nr = 2.5 x 1022 el/cm3. 

2. Calculate the Lorentz number from values of e and kB . Show how you arrived at 
the correct units! 

3. Calculate the mean free path of electrons in a metal, such as silver, at room tem­
perature form heat capacity and heat conduction measurements. Take EF = 5 eV, 
K = 4.29 X 102 J/s· m· K, and C~1 = 1% of the lattice heat capacity. (Hint: Re­
member that the heat capacity in (21.8) is given per unit volume!) 
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4. Why is the thermal conduction in dielectric materials two or three orders of mag­
nitude smaller than in metals? 

5. Why does the thermal conductivity span only 4 orders of magnitude, whereas the 
electrical conductivity spans nearly 25 orders of magnitude? 

6. Is there a theoretical possibility of a thermal superconductor? 

7. Discuss why the thermal conductivity of alloys is lower than that of the pure 
constituents. 



CHAPTER 22 

Thermal Expansion 

The length, L, of a rod increases with increasing temperature. Experiments 
have shown that in a relatively wide temperature range the linear expansion, 
I1L, is proportional to the increase in temperature, I1T. The proportionality 
constant is called the coefficient of linear expansion, !"I.£. The observations can 
be summarized in 

(22.l ) 

Experimentally observed values for if.L are given in Table 22.1. 
The expansion coefficient has been found to be proportional to the molar 

heat capacity, Cy , i.e., the temperature dependence of if.L is similar to the 
temperature dependence of Cy • As a consequence, the temperature depen­
dence of if.L for dielectric materials follows closely the Cy = J(T) relation­
ship predicted by Debye and shown in Fig. 18.2. Specifically, if.L approaches 
a constant value for T > eD and vanishes as T3 for T -t O. The thermal 
expansion coefficient for metals, on the other hand, decreases at very small 
temperatures in proportion to T, and depends on the sum of the heat ca­
pacities of phonons and electrons in other temperature regions. 

We turn now to a discussion of possible mechanisms that may explain 
thermal expansion from an atomistic point of view. We postulate, as in the 
previous chapters, that the lattice atoms absorb thermal energy by vibrating 
about their equilibrium position. In doing so, a given atom responds with 
increasing temperature and vibrational amplitude to the repulsive forces of 
the neighboring atoms. Let us consider for a moment two adjacent atoms 
only, and let us inspect their potential energy as a function of internuclear 
separation (Fig. 22.1). We understand that as two atoms move closer to each 
other, strong repulsive forces are experienced between them. As a conse-
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Table 22.1. Linear Expansion Coefficients, 
Cl.L, for Some Solids Measured at Room 
Temperature. 

Substance 

Hard rubber 
Lead 
Aluminum 
Brass 
Copper 
Iron 
Glass (ordinary) 
Glass (pyrex) 
NaCl 
Invar (Fe-36% Ni) 
Quartz 

8.00 
2.73 
2.39 
1.80 
1.67 
1.23 
0.90 
0.32 
0.16 
0.07 
0.05 

quence, the potential energy curve rises steeply with decreasing r. On the 
other hand, we know that two atoms also attract each other somewhat. This 
results in a slight decrease in U(r) with decreasing r. 

Now, for small temperatures, a given atom may rest in its equilibrium 
position, ro, i.e., at the minimum of potential energy. If, however, the tem­
perature is raised, the amplitude of the vibrating atom increases, too. Since 
the amplitudes of the vibrating atom are symmetric about a median position 
and since the potential curve is not symmetric, a given atom moves farther 
apart from its neighbor, i.e., the average position of an atom moves to a 
larger r, say, rT, as shown in Fig. 22.1. In other words, the thermal expan-

U(r) 

+ 

o 

I 
I 

repulsion lr 0 attraction 

r 

Figure 22.1. Schematic representation of the potential energy, U(r), for two adjacent 
atoms as a function of internuclear separation, r. 
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sion is a direct consequence of the asymmetry of the potential energy curve. 
The same arguments hold true if all atoms in a solid are considered. 

A few substances are known to behave differently from that described 
above. They contract during a temperature increase. This happens, however, 
only within a narrow temperature region. For its explanation, we need to re­
alize that longitudinal as well as transverse vibrational modes may be excited 
by thermal energy (see Section 20.2). The lattice is expected to contract if 
transverse modes predominate. Interestingly enough, only one known liquid 
substance, namely, water, behaves in a limited temperature range in this 
manner. Specifically, water has its largest density at 4°C. (Furthermore, the 
density of ice is smaller than the density of water at the freezing point.) As a 
consequence, water of 4°C sinks to the bottom of a lake during winter, while 
ice stays on top. This prevents the freezing of a lake at the bottom and thus 
enables aquatic life to survive during the winter. This exceptional behavior 
of water suggests that the laws of physics do not just "happen," but rather 
they were created by a superior being. I want to conclude my book with this 
thought. 

Problems 

I. Estimate the force that is exerted by the end of a I m long iron rod of 1 cm2 cross 
section which is heated to 100°C. 

2. Calculate the gap which has to be left between two 10 m long railroad tracks when 
they are installed at O°C and if no compression is allowed at 40°C. 

3. Explain some engineering applications of thermal expansion, such as the bimetal 
thermal switch, metal thermometer, etc. 

4. What happens if a red-hot piece of glass is immersed in cold water? What happens 
if the same experiment is done with quartz? 

Suggestions for Further Reading (Part V) 

A.J. Dekker, Solid State Physics, Prentice-Hall, Englewood Cliffs, NJ (1957). 
C. Kittel and H. Kroemer, Thermal Physics, 2nd ed., W.H. Freeman, San Francisco, 

CA (1980). 
F.G. Klemens and T.K. Chu, eds., Thermal Conductivity, Vols. 1-17, Plenum Press, 

New York. 
T.F. Lee, F.W. Sears, and D.L. Turcotte, Statistzcal Thermodynamics, Addison­

Wesley, Reading, MA (1963). 
J.M. Ziman, Electrons and Phonons, Oxford University Press, Oxford (1960). 
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APPENDIX 1 

Periodic Disturbances 

A vibration is a time-dependent or space-dependent periodic disturbance. 
We restrict our discussion to harmonic vibrations. In this case, the space­
dependence of time is represented by a simple sine or cosine function or, 
equivalently, because of the Euler equations (see Appendix 2), by an expo­
nential function. The use of exponential functions provides often a simpler 
mathematical treatment than using trigonometric functions. For this reason, 
exponential functions are usually preferred. We follow this practice. 

A.I.I. Undamped Vibration 

(a) Differential equation for time-dependent periodicity: 

d 2u 
m dt 2 +KU = 0 

(m = mass, K = retracting force parameter). A solution is 

U = Ae'W1
, 

where 

W = j!!; = 2nv 

(A.I) 

(A.2) 

(A.3) 

is the angular frequency and A is a constant called maximum amplitude. 
(b) Differential equation for space-dependent periodicity (in one dimension): 

d2u 
a dx2 + bu = O. (A.4) 
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Solution: 

(A5) 

where A and B are constants, and 

(A6) 

A.I.2. Damped Vibration 

(a) Differential equation for time-dependent periodicity: 

d2u du 
m dt2 + y dt + KU = 0 (A7) 

(y is the damping constant). The solution is 

U = Ae-j3t . e'(wot-tfi) , (A8) 
where 

(A9) 

is the resonance frequency, 

p=..L 
2m 

(A.lO) 

is the damping factor, and <P is the phase (angle) difference. In a damped 
vibration, the amplitude Ae-j3t decreases exponentially. 

(b) Differential equation for space-dependent periodicity: 

d 2u du 
dx2 + D dx + Cu = O. (All) 

Solution: 

(A.l2) 

where 

p=JC-~2 (Al3) 

and A, B, C, and D are constants. 

A.I.3. Forced Vibration (Damped) 

Differential equation for time-dependent periodicity: 

d 2u du ,wt 
m dt2 + y dt + KU = Koe . (A.l4) 
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The right-hand side is the time-periodic excitation force. The solution consists 
of the start-up vibration and a steady-state part. The steady-state solution is 

u = Ko e1(wt-?) 

vm2(w& - w2)2 + y2w2 ' 
(A.15) 

where 

wo=~ (A.l6) 

is the resonance frequency of the undamped, free oscillation. 
The tangent of the phase difference, </1, between the excitation force and 

the forced vibration is 

yw 
tan</1= (2 2)· m wO-w 

(A.l7) 

A.1.4. Wave 

A wave is a space- and time-dependent periodic disturbance. One distin­
guishes between traveling waves, which occur when the wave is not confined 
by boundary conditions, and standing waves, which are observed when a 
wave is reflected at a boundary and thus interacts with the oncoming wave. 
The wave motion in a vibrating string may serve as an example for the latter 
case. The simplest form of a traveling wave is a harmonic wave, which is 
expressed by a sine or cosine function, such as 

u(t,x) = A sin(kx - wt) (A.18) 

(when the wave is propagating in the positive x-direction), where 

Ikl = 2n 
A. 

(A.l9) 

is called the wave number vector. It has the unit of a reciprocal length. For 
convenience and because of the Euler equations (Appendix 2) one frequently 
uses instead 

u(t, x) = A exp(i(kx - wt». (A.20) 

(a) The differential equation for the undamped wave is 

2 2 02u 
V V U = ot2 ' (A.21) 

where 

(A.22) 
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The differentml equation for a plane wave is 

2 a2u a2u 
v ax2 7iif' 

whose solution IS 

or 

u( t, x) = Ae'(Wt+~X) + Be,(wt-ax) , 

or 

u( t, x) = Ae'W(t+(x/v)) + Be,w(t-(x/v)). 

(b) The damped wave 

can be solved with 

u(t, x,y, z) = Ae,(wt-k x) . e-Yx . 

AppendIces 

(A.23) 

(A.24) 

(A 25) 

(A.25a) 

(A.26) 

(A.27) 
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Euler Equations 

cos,p =! (e' tP + e-'tP ), 

sin,p = t,(e'tP - e-'tP ), 

sinh,p =! (e tP - e-tP ) = +. sin i,p, 

cosh,p = !(e tP + e-tP ) = cosi,p, 

e'tP = cos,p + i sin,p, 

e-'tP = cos,p - i sin,p. 

(A.28) 

(A.29) 

(A.30) 

(A.3l) 

(A.32) 

(A.33) 
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Summary of Quantum Number 
Characteristics 

The energy states of electrons are characterized by four quantum numbers. 
The main quantum number, n, determines the overall energy of the elec­
trons, i.e., essentially the radius of the electron distribution. It can have any 
integral value. For example, the electron of a hydrogen atom in its ground 
state has n = 1. 

The quantum number, I, is a measure of the angular momentum, L, of the 
electrons and is determined by ILl = v/(l + l)h, where I can assume any 
integral value between 0 and n - 1. 

It is common to specify a given energy state by a symbol that utilizes the 
n- and I-values. States with I = 0 are called s-states; with I = l, p-states; and 
with I = 2, d-states, etc. A 4d-state, for example, is one with n = 4 and I = 2. 

The possible orientations of the angular momentum vector with respect to 
an external magnetic field are again quantized and are given by the magnetic 
quantum number, m. Only m values between +1 and -I are permitted. 

The electrons of an atom fill the available states starting with the lowest 
state and obeying the Pauli principle, which requires that each state can be 
filled with only two electrons having opposite spin (lsi = ±!). Because of the 
just-mentioned multiplicity, the maximal number of electrons in the s-states 
is 2, in the p-states 6, in the d-states 10, and in the f-states 14. 

The electron bands in solids are named by using the same nomenclature as 
above, i.e., a 3d-level in the atomic state widens to a 3d-band in a solid. The 
electron configurations of some isolated atoms are listed on the next page. 

The designations s, p, d, and f are of an historical nature and are derived 
from certain early spectrographic observations. They stand for sharp,principal, 
diffuse, andfundamental. 
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K L M N 0 
Z Element Is 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 

I H 1 
2 He 2 

3 Li 2 I 
4 Be 2 2 
5 B 2 2 I 
6 C 2 2 2 
7 N 2 2 3 
8 0 2 2 4 
9 F 2 2 5 

10 Ne 2 2 6 

11 Na 2 2 6 1 
12 Mg 2 2 6 2 
13 AI 2 2 6 2 1 
14 Si 2 2 6 2 2 
15 P 2 2 6 2 3 
16 S 2 2 6 2 4 
17 CI 2 2 6 2 5 
18 Ar 2 2 6 2 6 

19 K 2 2 6 2 6 1 
20 Ca 2 2 6 2 6 2 
21 Sc 2 2 6 2 6 1 2 
22 Ti 2 2 6 2 6 2 2 
23 V 2 2 6 2 6 3 2 
24 Cr 2 2 6 2 6 5 1 
25 Mn 2 2 6 2 6 5 2 
26 Fe 2 2 6 2 6 6 2 
27 Co 2 2 6 2 6 7 2 
28 Ni 2 2 6 2 6 8 2 
29 Cu 2 2 6 2 6 10 1 
30 Zn 2 2 6 2 6 10 2 
31 Ga 2 2 6 2 6 10 2 1 
32 Ge 2 2 6 2 6 10 2 2 
33 As 2 2 6 2 6 10 2 3 
34 Se 2 2 6 2 6 10 2 4 
35 Br 2 2 6 2 6 10 2 5 
36 Kr 2 2 6 2 6 10 2 6 

37 Rb 2 2 6 2 6 10 2 6 I 
38 Sr 2 2 6 2 6 10 2 6 2 
39 Y 2 2 6 2 6 10 2 6 1 2 
40 Zr 2 2 6 2 6 10 2 6 2 2 
41 Nb 2 2 6 2 6 10 2 6 4 1 
42 Mo 2 2 6 2 6 10 2 6 5 I 
43 Tc 2 2 6 2 6 10 2 6 5 2 
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Tables 

The International System of Units (SI or mksA System) 

In the SI unit system, essentially four base units-the meter, the kilogram (for the 
mass), the second, and the ampere-are defined. Further base units are the Kelvin, 
the mole (for the amount of substance), and the candela (for the luminous intensity). 
All other units are derived units as shown in the table below. Even though the use of 
the SI unit system is highly recommended, other unit systems are still widely used. 

Expression in terms of 

Quantity Name Symbol Other SI units SI base units 

Force Newton N kg· m/s2 

Energy, work Joule J N·m=V·A·s kg. m 2/s2 
Pressure Pascal Pa N/m2 kg/m. S2 
El. charge Coulomb C JjV A·s 
Power Watt W J/s kg. m 2/s3 

El. potential Volt V W/A kg·m2/A·s3 

El. resistance Ohm n VIA kg. m 2/A2. S3 
El. conductance Siemens S AjV A2. s3/kg. m2 

Magn.flux Weber Wb V ·s kg·m2/A·s2 

Magn. induction Tesla T Wb/m 2 = V . s/m2 kg/A. S2 
Inductance Henry H Wb/A kg·m2/A2·s2 
Capacitance Farad F CjV A2 . s4/kg . m2 



Physical Constants (SI and cgs units) 

Mass of electron 
(free electron 
mass; rest mass) 

Charge of electron 

Velocity of light in 
vacuum 

Planck constant 

Avogadro constant 
Boltzmann constant 

Bohr magneton 

Gas constant 
Permittivity of emtpy 

space (vacuum) 
Permeability of empty 

space (vacuum) 

Useful Conversions 

mo = 9.11 x 10-31 (kg) = 9.11 x 10-28 (g) 
e = 1.602 x 10- 19 (C) (SI-unit) 

= 4.803 x 10-10 (statcoul) == (cm3/2 . gI/2/s) (el. static 
cgs units) 

= 1.602 x 10-20 (abcoul) == (gI /2. cm 1/2 ) (el. magnetic 
cgs units) 

c = 2.998 X 108 (m/s) = 2.998 x 1010 (cm/s) 

h = 6.626 X 10-34 (J. s) = 6.626 X 10-27 (g. cm2/s) 
= 4.136 X lO- IS (eV· s) 

h = 1.054 X 10-34 (J . s) = 1.054 X 10-27 (g. cm2/s) 
= 6.582 X 10-16 (eV· s) 

No = 6.022 X 1023 (atoms/mol) 
kB = 1.381 X 10-23 (J/K) = 1.381 x 10-16 (erg/K) 

= 8.616 x lO-S (eV/K) 
f1B = 9.274 X 10-24 (J/T) == (A· m2) 

= 9.274 x 10-21 ei) == (g1/2 cm S/2 /s) 

R = 8.314 (J/mol· K) = 1.986 (cal/mol· K) 
eo = 1/ f1oC 2 = 8.854 X 10-12 (F /m) == (A· s/V . m) 

flo = 4n x 10-7 = 1.257 X 10-6 (H/m) == (V· s/A· m) 
== (kg. m/A2 . s2) 

1 (eV) = 1.602 x 10-12 (g. cm2/s2) = 1.602 X 10-19 (kg· m2/s2) 
= 1.602 X 10-19 (J) = 3.829 x 10-20 (cal) 

1 (J) = I eg ~2m2) = 107 (erg) = 107 (g. :2m2) = 2.39 x 10-1 (cal) 

I (Rydberg) = 13.6 (eV) 
1 (1/0cm) = 9 x 10" (l/s) 
I (I/Om) = 9 x 109 (l/s) 
I (C) = 1 (A· s) = 1 (J/V) 
1 (A) = 10-10 (m) 
I (torr) == 1 (mm Hg) = 133.3 (N/m2) == 133.3 (Pa) 
1 (bar) = lOS (N /m2) == lOS (Pa) 
I (Pa) = 10 (dyn/cm2) 
I cal = 2.6118 x 10 19 (eV) 
1 (horsepower) = 746 (W) 
I (KWH) = 3.6 (MJ) 

1 (mm) (milli) = 10-3 (m) 
I (f1m) (micro) = 10-6 (m) 
1 (nm) (nano) = 10-9 (m) 
1 (pm) (pico) = 10-12 (m) 
1 (fm) (femto) = lO- IS (m) 
1 (am) (atto) = 10-18 (m) 

1 km (Kilo) = 103 m 
I Mm (Mega) = 106 m 
I Gm (Giga) = 109 m 
1 Tm (Tera) = 10 12 m 
1 Pm (Peta) = lOIS m 
I Em (Exa) = 10 18 m 
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Electronic Properties of Some Metals 

Effective mass Number of free 
Fermi electrons, Neff Work function Resistivity, 

(::)el (::tt energy, [ele:
3
0ns] (photoelectric) , P [JlQ cm] 

Material EF leV] ¢[eV] at 20°C 

Ag 0.95 5.5 6.1 x 1028 4.3 1.59 
AI 0.97 1.08 11.8 16.7 x 1028 4.1 2.65 
Au 1.04 5.5 5.65 x 1028 4.8 2.35 
Be 1.6 12.0 3.9 4.0 

Ca 1.4 3.0 2.7 3.91 
Cs 1.6 1.9 20.0 
Cu 1.0 1.42 7.0 6.3 x 1028 4.5 1.67 
Fe 1.2 4.7 9.71 

K 1.1 1.9 2.2 6.15 
Li 1.2 4.7 2.3 8.55 
Na 1.0 3.2 2.3 4.20 
Ni 2.8 5.0 6.84 

Zn 0.85 11.0 3 x 1028 4.3 5.91 

> '0 
11 
::l 
0-§. 
tI> 



Electronic Properties of Some Semiconductors 
> 

Effective mass '0 

Room-temp. Mobility of Mobility of ." 
Gap energy at4 K f> 

Eg leV] 
conductivity electrons holes Work function -l 

a[n~m] Pe [;.2S] Ph [;.2S] (photoelectric) m* m* '" ~ h g: - ... 
Material Transition OK 300 K <p leV] mo mo '" 

C (diamond) 5.48 5.47 10-12 0.18 0.12 4.8 0.2 0.25 

Ge 0.74 0.66 2.2 0.39 0.19 4.6 
1.64" O.04C 
0.08b 0.28d 

Element 

Si 1.17 1.12 9 x 10-4 0.15 0.045 3.6 
0.98" 0.16c 

0.19b 0.49d 

Sn (gray) D 0.09 0.08 106 0.14 0.12 4.4 0.3d 

GaAs D 1.52 1.42 10-6 0.85 0.04 0.067 0.082 
lnAs D 0.42 0.36 104 3.30 0.046 0.023 0.40 

III-V InSb D 0.23 0.17 8.00 0.125 0.014 0.40 
GaP I 2.34 2.26 0.01 0.007 0.82 0.60 
GaN D 3.50 3.36 0.04 0.01 0.19 0.60 

IV-IV ex-SiC 3.03 2.99 0.04 0.005 0.60 1.00 

II-VI ZnO D 3.42 3.35 0.02 0.018 0.27 
CdSe D 1.85 1.70 0.08 0.13 0.45 
ZnS D 3.84 3.68 0.02 0.0005 0.40 

IV-VI PbS 0.286 0.41 0.06 0.07 0.25 0.25 

• Longitudinal effective mass. Transitions: D = direct 
bTransverse effective mass. I = indirect .J>. 
'Light-hole effective mass. -!,;.) 
d Heavy-hole effective mass. 
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Ionization Energies for Various Dopants in Semiconductors (Experimental) 

Donor ionization energies are given from the donor levels to the bottom of the con­
ductIon band. Acceptor ionization energies are given from the top of the valence 
band to the acceptor levels. 

Dopant 

Semiconductor Type Element Ionization energy (eV) 

Sb 0.0096 
Donors P 0.012 

As 0.013 
Ge 

B 0.01 

Acceptors 
Al 0.01 
Ga 0.011 
In 0.011 

Sb 0.039 
Donors P 0.045 

As 0.054 
Si 

B 0.045 

Acceptors 
Al 0.067 
Ga 0.072 
In 0.16 

Si 0.0058 
Donors Ge 0.006 

Sn 0.006 
GaAs 

Be 0.028 
Acceptors Mg 0.028 

Zn 0.031 
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Physical Properties of Si and GaAs 

Si GaAs 

Lattice constant (A) 5.431 5.654 
Atoms (cm-3) 5.00 x 1022 4.43 X 1022 

Band gap (eV) at 25°C 1.11 1.43 
Temperature dependence of -2.4 x 10-4 -4.3 X 10-4 

band gap (eVOC-I) 
Specific gravity (g cm-3) 2.33 5.32 
Dielectnc constant 11.8 10.9 
Electron lattice mobility 1.5 x 103 8.5 X 103 

(cm2 V-I S-I) 

Hole lattIce mobility 4.8 x 102 4 X 102 

(cm2 V-I S-I) 
Number of mtrinsic electrons 1.5 x 1010 1.1 X 106 

(cm- 3) at 25°C 
CoefficIent of linear thermal 2.33 x 10-6 6.86 X 10-6 

expansion (OC- I) at 25°C 
Thermal conductivity 147 46 

(W °C- I m- I) 

Optical Constants of Si and GaAs (from Handbook of Optical Constants of 
Solids, Academic Press, 1985) 

Si GaAs 

E (eV) A. (nm) n k n k 

4.96 250 1.580 3.632 2.654 4.106 
3.54 350 5.442 2.989 3.513 1.992 
3.10 400 5.570 0.387 4.373 2.146 
2.48 500 4.298 0.073 4.305 0.426 
2.07 600 3.943 0.025 3.914 0.228 
1.55 800 3.688 0.006 3.679 0.085 
0.91 1370 3.5007 --+0 3.3965 --+0 
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Magnetic Units 

Name Symbol em-cgs units mks (SI) units Conversions 

Magnetic field gl/2 A A 4n 
strength H Oe == cm l/2 . s I m = 103 Oe m 

Magnetic 
B G== 

gl/2 
Wb = kg ==T IT = 104 G induction cm l/2 ·s m2 s·C 

Magnetization M 
Maxwell gl/2 A 1 ~ = ~ Maxwells 

cm2 = 
cm l/2 ·s m m 103 cm2 

Magnetic flux ell Maxwell == 
cm3/2 . gl/2 kg·m2 

I Wb = 108 Maxwells Wb=--=V·s 
s s·C 

Susceptibility X Unitless Unitless Xmks = 4nXcgs 

(Relative) f1 Unitless Unitless Same value 
permeability 

kJ kJ 4n 
Energy product BH MGOe 

m3 I m3 = T62 MGOe 

;l> 
'0 
~ ::s 
0-
n 
" C/O 



Conversions Between Various Unit Systems 

SI Electrostatic cgs (esu) units Electromagnetic cgs (emu) units 

em3/2 . g1/2) 1 
I (C) 3 X 109 (statcoul) == s _ (abcoul) == (gI /2. cm 1/2 ) 

10 

1 (V) 
1 em1/2. g1/2) 

300 (statvolts) == s 
em3/2 . g1/2) 

108 (abvolts) == S2 

1 (A) 
(cm3/2 . g1/2) 

3 x 109 (statamps) == S2 
1 (cmI/2.g1/2) 

10 (abamps) == s 

1 (0) 9 X 11011 (statohms) == (:) 109 (abohms) == (7) 
Note: The factor "f" in column four of this table has the value 3 x IOlO (s/cm). 

emu-esu conversion 

1 (abcoul) = f (statcoul) 

1 
1 (abvolt) = f (statvolts) 

1 (abamp) = f (statamps) 

1 
I (abohm) = 7: (statohms) 

f 

i 
f' 

p;l 

~ 

.j:>. ...... 
-I 
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Conversions from the Gaussian Unit System into the SI Unit System 

The equations given in this book can be converted from the cgs (Gaussian) unit sys­
tem into the SI (mks) system and vice versa by replacing the symbols in the respective 
equations with the symbols listed in the following table. Symbols which are not listed 
here remain unchanged. It is imperative that consistent sets of units are utilized. 

mks cgs 
Quantity (SI) (Gaussian) 

Magnetic induction B B/c 
Magnetic flux <DB <DB/C 
Magnetic field strength H cH/4n: 
Magnetization M cM 
Magnetic dipole moment Ilm cllm 
Permittivity constant eo 1/4n: 
Permeability constant Ilo 4n:/c2 

Electric displacement D D/4n: 

flo = 4n x 10-7 = 1.257 X 10-6 (V· sl A . m) '" (kg· mjC 2
) '" (Him). 

EO = 8.854 X 10- 12 (A· s/V . m) '" (F 1m). 

Color Codes of Bands (Rings) on Commercial Resistors 

First and second 
color band 

Black -0 
Brown -I 
Red -2 
Orange-3 
Yellow-4 
Green -5 
Blue -6 
Violet -7 
Gray -8 
White -9 

Third color band 

Black -x I 
Brown -x 10 
Red -x 100 
Orange-x 1,000 (IK) 
Yellow-x 10 K 
Green - x 100 K 
Blue -x 1,000 K (1M) 
Violet - x 10 M 
Gray -x 100 M 
Gold - .1 
Silver -x .01 

Fourth color band 
(Tolerances) 

Brown-I% 
Red -2% 
Orange-3% 
Yellow-4% 

Gold -5% 
Silver -10% 
None -20% 
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APPENDIX 5 

About Solving Problems 

There are two types of exercises contained at the end of each chapter of this 
book; both of them are provided for the students to deepen their under­
standing of the material covered in the text. About 25% of the problems are 
concerned with conceptual reviews. These usually do not seem to be any 
major stumbling block to the reader. In contrast to this, however, the nu­
merical problems are the ones which seem to provide some challenges. The 
goal of this section is to sketch a systematic approach for the solution of 
numerical problems and to give an actual example. 

The first task is, of course, to find one or several equations which can be 
applied to the problem at hand. As a rule, however, the equations to be used 
are not yet provided in a form which lists the unknown variable on the left 
side of the equation and all the known variables plus a handful of constants 
on the right side. Thus, algebraic manipulations need to be applied until this 
goal has been achieved. (Under no circumstances should one insert numeri­
cal values immediately into the starting equations, in particular, if these 
variables are given in different unit systems.) 

Once a final equation (containing the unknown quantity on the left side) 
has eventually been obtained, a unit check should be attempted by listing all 
known quantities in one unit system and inserting these units into the final 
equation. This provides a simple check on whether the algebraic manipula­
tion was done correctly and in what unit the numerical result will turn out. 
Only then is a numerical calculation in place. At the end of each calculation 
the student should ask, "Does the result make sense?". A comparison with 
tabulated values in one of the appendices or with information given in the 
text can, most of the time, quickly answer this question. If the result seems to 
be off by several orders of magnitude, a recalculation should definitely be 
performed. 
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Example (Problem 2/1) 

A. = _h _ ( kg m
2 

s s ) = (m) 
J2Em s2 kgl/2 m kgl/2 - , 

E = 4 (eV) = 4 x 1.602 X 10-19 (1) == (kgs~2), 

h = 6.626 X 10-34 (1 s), 

m = 9.11 x 10-31 (kg), 

A. = 0.613 X 10-9 (m) = 6.13 (A). 

Solutions to Numerical Problems 

Chapter 2 

I. A. = 6.13 (A). 
2. E = 4.18 X 10-6 (eV). 
4. E = 2.07 (eV). 
5. A. = 2.38 X 10-24 (A). 

Chapter 4 

6. E = 13.6 (eV). 
10. EI = 1.50 X 10- 18 (J) = 9.39 (eV) (zero-point energy) 

E2 = 4 x E I; E3 = 9 X EI etc. 

Chapter 5 

1. LI ~ 14 (eV); L~ ~ 8 (eV); L~ - LI ~ 6 (eV). 
2. E = l.l (eV). 
3. I1E = h2n2/ma2

; or EIII / E100 = 3. 
5. (a) X = O"""E = 4C; X =. n/a"""E = 9C (C = n2h2/2ma2); 

(b) X = 0 """E = 16C; X = n/a """E = 9C. 
6. (a) X=0"""E=4C;X=I"""E=IC(C=2h2n2/ma2); 

(b) X=0"""E=2C;X=I"""E=5C; 
(c) X = 0 """E = 2C; X = I """E = 5C. 

7. hI = (l/a)(III); h2 = (l/a)(III); h3 = (l/a)(lII). 
8. (a) X=0"""E=0;X=I"""E=!C(C=2h2n2/ma2); 

(b) X=0"""E=2C;X=I"""E=!1C; 
(c) X=0"""E=4C;X=I"""E=2!C. 

Chapter 6 

I. VF = 1.38 X 106 (m/s). 
3. T = 290.5 (K). 
4. EF = 5.64 (eV). 

421 
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5. Z(E) = 5.63 x 1046 (electron states/J). 
= 9.03 x 1027 (electron states/eV). 

6. For entire band: N* / V = 8.42 X 1022 (l/cm 3
). 

7. YJ = 2.5 X 1023 (energy states). 
8. (a) N* = 8.42 X 1022 (electrons/cm 3

); 

(b) Na = 8.49 X 1022 (atoms/cm3
); 

(c) Not exactly one free electron per atom. 
9. 0.88%. 

10. F(E) =!. 
12. (a) n I 2 3 4 5 6 

error (%) 27 12 5 2 0.7 0.2 

(b) E = 5.103 (eV). 

Chapter 7 

1. Nr = 5.9 x 1022 (electrons/cm 3). 

2. See Fig. 7.9. 
3. r = 2.5 x 10-[4 (s); I = 393 (A). 
5. Nr = 2.73 x 1022 (electrons/cm 3

) or 1.07 (electrons/atom). 

AppendIces 

7. N(E) = 1.95 x 1047 (electrons/J m 3
) == 3.12 x 1022 (electrons/eV cm3

). The joule 
is a relatively large energy unit for the present purpose. 

Chapter 8 

1. N' = 9.77 X 109 (electrons/cm3
). 

2. T(K) 300 400 500 600 700 

Ne 6.2 X 10-[5 2.4 X 10-6 3.7 X 10-[ 1.l X 103 3.5 X 105 

(electrons/cm 3
) 

3. EF = -Eg /2 (using the bottom of the conduction band as the origin of the energy 
scale). 

4. T = 19,781 (K) (!). 
6. Eg = 0.396 (eV). 
7. EF = -0.16 eV; (j = 31.2 (I/Q cm). 
8. (Ne)3000C = 7.88 x 10[4 (electrons/cm 3); 

(Nehsooc = 2.22 x 10[5 (electrons/cm 3
). 

See also Fig. 8.9 (watch scale!). 
9. (a) extrinsic Ne = 1 X 1Ol3 (electrons/cm3 ); 

(b) intrinsic Ne = 9.95 X 1010 (electrons/cm3 ). 

10. E = 0.043 (eV). 

12. Metal Ag Al Au Cu rpM> rps, 

rPM (eV) 4.7 4.1 4.8 4.5 rPSI = 3.6 (eV). 

15. (a) Ehght>Egap ; 

(b) N = 1.6 X 10 14 (pairs/s). 
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16. Is = 2.97 X 10-3 (A); 
I net = 3.2 X 102 (A). 

20. E = 2.58 X 10-2 (eV). 
22. 24 (nm). 
23. 'I = 0.97. 

Chapter 9 

I. filOn = 3.32 X 10-16 (m2jVs) (2 unit charges); 
fisc = 0.1 (m2/Vs). 

2. N lOn = 6.2 X 10 14 (sites/em 3). 
3. Q = 0.83 (eV). 
4. O"lon = 1.35 X 10- 15 (I/O em). 

Chapter 10 

2. el. (DC) opt. (AC) 

p 1.67 x 10-6 (0 em) 
0" 5.99 x 105 (0- 1 em-I) 

3.85 x 10-3 (0 em) 
2.6 x 102 (0- 1 em-I) 

4. Z = 27.8 (nm). 
5. RAg = 98.88%; R g1ass = 5.19%. 
6. Z = 7.81 (nm). 
8. T2 = 94.3%. 

Chapter 11 

I. V (s-l) n 

1.43 x 1015 0 
1.44 X 1015 0.1176 
1.53 x 1015 0.3556 
2.0 x 1015 0.6991 
3.0 x 1015 0.8791 

R (%) 

100 
62 
23 

3.1 
0.4 

2. (vdK = 1.03 X 1015 (S-I); 
(vdLI = 1.92 X 1015 (S-I). 

3. (Neff)Na = I; (Neff)K = 0.85. 
5. R = 99.03%. 
6. VI = 2 X 1015 (S-I); v2 = 3.56 X 10 12 (s-I). 

7. A (fim) 0.3 0.4 0.5 

ncalc 1.599 1.460 1.416 
V (in 1014 s-l) 9.99 7.49 5.99 

12. Neff = 5.49 X 1022 (eleetrons/em 3); 

Na = 5.86 X 1022 (atoms/em3); 

Neff/Na = 0.94 (electrons/atom). 

0.7 I 

1.384 1.369 
4.28 2.99 

423 

2 5 

1.359 1.356 
1.5 0.51 

600 nm is in the red part of the spectrum where the free-electron theory may be 
valid, see Fig. ll.l(a). 
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Chapter 12 

3. (a) (b) 

A Metal (Ni) None 
High R in IR 
(intraband tr.) 

B Semiconductor IR 
(GaAs) 
Low R in IR 
(no intraband 
transitions) 

4. 1.S (~3 -> ~I and Wi -> WI). 

Chapter 13 

1. n2-n3~1O-2. 
2. t = 2 (pm). 
3. (a) PT = 16.1°; 

(b) PT = 41.8°. 
4. NJi - Nj, = l.lS X 1018 (cm-3

). 

S. IX = 1.6 (em-I) = 6.9 (dB/em). 

(c) 

1.S eV (weak) 
3 eV (strong) 

1.SeV 
(Band gap) 

7. Adlsk = S03.2 (nm); ,1,/4 = 126 nm. 
8. E = 1.4 (eV); A = 886 (nm) 

Chapter 14 

2. H = 2.S1 X 102 (Oe); 
H = 2 X 104 (A/m). 

4. Answers are in Table 14.1. 

Chapter 15 

1. X = - 70.9 X 10-6
• Note: XSI = 4nXcgs 

6. (= 6.71 X 10-3. 

(d) (e) 

yes partially 
filled bands 

no filled bands 

7. X = 6.91 X 10-5 (about one magnetic moment per atom). 
8. FeO· Fe203, 11m = 4 !lB; 

CoO· Fe203, 11m = 3 !lB. 

10. HM = 1.67 X 109 (~). 
I!. Surel (No tricks please.) 

Chapter 16 

1. Xpara = S.41 X 10-5 (AI?). 
(Diamagnetism not taken into consideration). 

3. Fe: 7.8 out of 10; Co: 8.2 out of 10. 
4. Ferro Fe: 11m = 2.2 !lB; Co: 11m = 1.8 !lB; 

Ferri Fe: 11m = 4 !lB; Co: 11m = 3 !lB; 

Appendices 

The number of Bohr magnetons for a single iron atom is zero. Ferromagnetism 
needs interaction with other atoms. 
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Chapter 17 

1. E = 10-3 (J). 
2. For a synchrotron a steady magnetic field is used. No eddy current! High flux 

multiplication needed. Consult Table 17.1. 
6. Joule heating in wires. 

Chapter 19 

1. Na = 2.4 X 1011 (atoms/m3). 

2. -JQ: Glass 3.8 x 103 (J/s m 2); 

Al 4.74 x 105 (J/s m2); 
Wood 3.2 x 102 (J/s m2

). 

3. T = 1,142 (K) = 869 (Qe). 
5. Proper heat dissipation is essential in semiconductor devices. 
7. 1 BTU is the heat required to raise the temperature of one pound of water by one 

degree fahrenheit (!) (1 BTU = 1055 J) 

Chapter 20 

I. I1N/Nto1 =0.566%. 
2. Cv = 24.4 (J/K mol) = 5.84 (cal/K mol). 
3. C~l = 0.212 (J/K mol). 
4. N(EF) = 3.66 X 1042 (energy states/mol J) = 5.86 X 1023 (energy states/mol eV); 

N (EF ) per cubic centimeter is about one order of magnitude smaller. 
6. T = 2.1 X 105 (K). 

Chapter 21 

1. K = 1.55 X 102 (J/s m K). 
2. L = 2.44 X 10-8 (J Q/K2 s). 
3. 1= 411 (A). 

Chapter 22 

1. F = 2,600 (N) (!). 
2. I1L = 4.9 (mm). 
4. Compare expansion coefficients (Table 22.1). 
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Abcoulomb (unit), 310 
Absorbance, 203, 204, 292 
Absorption, 202, 216, 217, 222, 223, 

227-231, 242 
Absorption band, 210, 222 
Absorption loss, 292 
Absorption product, 202, 222 
Absorption spectra, 231 
Acceptor atoms, 111-112 
Acceptor impurities, 112 
Acceptor levels, 112 
Acoustic bands, 381 
Activation energy, 175 
Activator, 284 
Afterglow, 263 
Alkali metals, 69 
Alnico 2, 356 
Alnico 5 DG, 356 
Alnico alloys, 357 
Alumel,101 
Amber,77 
Amber electricity, 77 
Amorphous ferromagnets, 354 
Amorphous materials, 179-185 
Amorphous semiconductors, 180 
Ampere, A., 312 
Amplification, 135 
Amplitude, 403 
Amplitude modulation of lasers, 276 
Analyzer, 241 
AND device, 155 
AND gate, 155 

Angle of incidence, 199 
Angular frequency, 4, 7, 201, 403 
Angular momentum quantum number, 

408 
Antiferromagnetism, 323-324 
Antiferromagnetism (quantum 

mechanical), 343-347 
Argon laser, 268 
Arrhenius equation, 175 
ATO,283 
Atomistic theory of the optical 

properties, 208-225 
Attenuation, 204, 291 
Avalanche photodiode, 132 
Avalanching, 128 
Average effective mass, 116 
Avogadro constant, 80, 213, 373,411 
Azimuth, 239 

Ba-ferrite, 356 
Band, overlapping, 43 
Band diagram, 381 

for aluminum, 55, 56 
Band gap, 40 
Band structure 

for copper, 56, 57 
for extrinsic semiconductors, 112 
for gallium arsenide, 56, 58 
for intrinsic semiconductors, 105 
for silicon, 56, 57 

Band tail, 182 
Bardeen,John,146 
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Barium titanate, 188, 189 
Barium titanate crystal structure, 191 
Barkhausen effect, 322 
Base, 134 
BCS theory, 98 
Beats, 9 
Beer equation, 205 
Benedicks, M., 146 
Bernal model, 180 
Bernal-Polk model, 180 
Bethe, Hans, 345 
Bethe-Slater curve, 345 
Biasing, 121 
BIFET, 140 
Binding strength, 261 
Bipolar junction transistor, 134-136 
Bipolar transistor, 135 
Birefringent, 240 
Bit, 155 
Bitter lines, 322 
Bivalent metals, 69 
Bloch function, 29 
Bloch wall, 322 
Bohr, Niels, 23 
Bohrmagneton, 317, 343, 411 
Boltzmann constant, 376, 379,411 
Boltzmann distribution function, 64 
Boltzmann factor, 64 
Boltzmann statistics, 382 
Boltzmann tail, 64 
Bonding, 153 
Born's postulate, 12 
Borosilicatejphosphosilicate glass, 262 
Bose-Einstein statistics, 382 
Bound electron, 20-24, 219-222, 231 
Boundary condition, 16,20 
Boundary problems, 16 
Boyle-Mariotte equation, 376 
Bragg, William, 43 
Bragg plane, 42 
Bragg relation, 44 
Bragg ring, 179 
Branched polymer, 167 
Brattain, Walter, 146 
Bravais lattice, 45 
Breakdown, 128 
Breakdown voltage, 128 
Bridgman technique, 147, 149 
Brillouin function, 333 
Brillouin zone, 39,41-42,51,381 

of the bec structure, 52 
for copper, 60 
of the fcc structure, 54 
three-dimensional, 45 

Bubble domain memory, 361 
Buckyball, 173 
Butting, 290 
Byte, 155 

Calcia-stabilized zirconia, 176 
Calorie, 367, 370 
Capacitance, 185 
Carbon dioxide laser, 270 
Cathode rays, 7 
Cathodoluminescence, 264 
CD Player, 294 
Ceramic ferrite magnets, 358 
Ceramic superconductors, 96 
Channel, 136 
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Characteristic penetration depth, 203 
Characteristic X-rays, 299 
Charge of electron, 79, 411 
Charge-transfer salt, 173 
Chip, 153 
Chromaticity diagram, 279, 280 
Chromel, 101 
Classical electron theory, 4, 80-82 

of dielectric materials, 219-222 
Classical (free electron) theory of 

metals, 214-217 
Classical infrared absorption, 230, 257 
Closure domains, 322 
Cluster, 180 
CMOSFET,138 
Co steel, 356 
Cobalt-samarium, 356 
Coercive field, 189, 318 
Coercivity, 318, 351 
Coherent scattering, 80 
Collector, 134 
Collimation, 265 
Color, 197 
Color codes of resistors, 418 
Color coordinates, 280 
Colossal magneto resistive materials, 

360 
Compact disc, 294 
Compass, 306 
Compensator, 240, 241 
Complementary MOSFET (CMOS), 

138 
Complex dielectric constant, 202 
Complex index of refraction, 201 
Composition of core materials, 354 
Compositional disorder, 179 
Compound semiconductor fabrication, 

273 
Compound semiconductors, 118-119 
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Conducting polymers, 166-174 
Conduction, in metal oxides, 177-179 
Conduction band, 40, 104 
Conductivity, 78, 79,413 

in amorphous semiconductors, 183 
classical electron theory, 80-82 
of extrinsic semiconductors, 114 
quantum mechanical considerations, 

83-87 
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Conductors, 78 
Conjugated organic polymer, 169 
Constantan, 101 
Contact potential, 102, 121 
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Continuum theory, 3, 208 
Conventional unit cell, 45 
Conversions between unit systems, 417 
Cooper pair, 98 
Copper oxide rectifier, 146 
Core loss, 350-352 
Corona wire, 184 
Corrosion, optics, 256-257 
Coulomb (unit), 185 
Credit card, 360 
Critical current, 94 
Critical magnetic field strength, 93 
Critical point in a band structure, 243 
Crosstalk, 285 
Cryotron, 92 
CU/CU20 rectifier, 178 
Cubic primitive lattice, 47 
Curie, Pierre, 315, 329 
Curie constant, 315, 332 
Curie law, 315, 316, 332 
Curie temperature, 190, 320, 345 
Curie-Weiss law, 315, 316, 334, 342 
Current, 78 
Current density, 78 
Curves of equal energy, 59 
CW laser, 268 
Czochralski method, 147 

d-states, 408 
Damascene process, 152 
Damped vibration, 404 
Damped wave, 406 
Damping constant, 200-203 
Damping frequency, 215 
Damping parameter, 220 
Damping term, 214 
Dangling bond, 180 
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de Broglie, Louis, 8 
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de Broglie relation, 381 
Debye model, 384-385 
Debye temperature, 373, 385 
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Decibel, 204 
Defect electron, 71 
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Degenerate states, 24 
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Demagnetizing field, 355 
Dense random packing of hard spheres 

model, 180 
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of states, 64-66, 381 
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of states function within a band, 68 
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Depletion layer, 120 
Depletion type MOSFET, 136 
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Diamagnetics, 308, 309 
Diamagnetism, 312-314, 327, 338-343 
Diameter of the universe, 78 
Dielectric constant, 186, 200 
Dielectric displacement, 187 
Dielectric loss, 188 
Dielectric material, 185 
Dielectric polarization, 187 
Dielectric properties, 185-189 
Dielectrics, 78 
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Differential reflectometer, 242 
Differential reflectometry, 242-244 
Diffusion, 175 
Diffusion current, 121 
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Diode, 125-127 
DIP, 153 
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Dipole moment, 211 
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Direct inter band transitions, 228 
Dispersion, 10, 199,222,223,231-236 
Domain wall, 322 
Domains, 190, 321 
Donor atoms, 111-112 
Donor electrons, III 
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by ion implantation, 152 
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Eddy current loss, 350 
EEPROM, 161 
Effective mass, 70-72, 140,413 

polymers, 170 
of semiconductors, 115-116 
thermal, 388 

Effective number of free electrons, 
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Efficiency 
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of photodiode, 130 

Eigenfunction, 16, 234 
Eigenvalue problems, 16 
Einstein, Albert, 6, 381 
Einstein frequency, 383 
Einstein relation, 126, 175 
Einstein temperature, 384 
Electric dipole moment, 187,211 
Electric field strength, 79, 187, 200 
Electric power storage devices, 92 
Electrical conduction, 77-103 
Electrical conductivity for amorphous 

semiconductors, 182 
Electrical properties of 

amorphous materials, 179-185 
ceramics, 166 
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organic metals, 166-174 
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Electrical steel, 349-355 
Electrical work, 370 
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Electroluminescence device, 284 
Electroluminescent device, 283 
Electromagnet, 307 
Electromagnetic spectrum, 198 
Electromagnetic wave equation, 200 
Electromagnetic waves, 12 
Electromet reduction, 146 
Electromigration, 152 
Electron(s), 6 

in a box, 24 
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free, see Free electrons 
in a periodic field, 28-34 
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Electron affinity, 121 
Electron diffraction, 8 
Electron gas, 64, 80 
Electron hole, 71 
Electron-orbit paramagnetism, 314, 
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Electron scattering, 79 
Electron spin, 315 
Electron-spin paramagnetism, 314 
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Electron wave, 6, 12 
Electronic charge, 79 
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Elliptically polarized light, 239, 240 
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Energy, 370 
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per atom, 379 

Energy bands, 36-60 
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Energy loss function, 249, 250 
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Energy state, 65 
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EOW, 289 
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Extended zone scheme, 39 
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Faraday effect, 362 
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Fermi energy, 62, 64, 67 
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Ferroelectric materials, 189 
Ferroelectricity, 189 
Ferroelectrics, 189 
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First law of thermodynamics, 370 
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Flash memory device, 162 
Flip-flop, 159 
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Floating gate, 161 
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Fluorescence light bulb, 284 
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Flux meter, 317 
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Flux quantum, 95 
Fluxoid pinning, 96 
Fluxoids, 95 
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Fourier Law, 374 
Fourier transformation, 8 
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Free electron bands, 39, 40, 52-55 
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Free electron mass, 411 
Free electron model, 81 
Free electron theory, 249 
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Gallium nitride, 119 
Gallium phosphide, 119 
y rays, 198 
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Grain-oriented electrical steel, 353 
Grain-oriented silicon iron, 351 
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Gulf Stream, 371 

Hagen-Rubens equation, 206-207 
Hall constant, 117 
Hall effect, 116-117 
Hall field, 116 
Hamiltonian operators, 16 
Hard magnetic materials, 318, 355-

358 
Harmonic oscillator, 210 
Harmonic vibration, 403 
Harmonic wave, 8, 405 
He-Cd laser, 268, 269 
Header, 153 
Heat, 367, 370 
Heat capacity, 371 

classical theory, 379-389 
at constant pressure, 371 
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electron contribution, 385-389 
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quantum mechanical considerations, 

381-385 
Heat conduction, 367, 374 
Heat conductivity, 393 
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Heat flux, 374, 391 
Heavy holes, 116 
Heisenberg's uncertainty principle, 11, 
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Hertz, Heinrich, 6 
Heterojunction laser, 274-276 
Heusler alloys, 345 
High carbon steel magnets, 358 
High-Tc superconductors, 92 
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Hot electron, 271 
Hund's rule, 317 
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Hysteresis loop, 189, 318 
Hysteresis loss, 350, 352 

Ideal diode law, 126 
Ideal gas equation, 375-376 
Ideal resistivity, 87 
Impact ionization, 128 
Impedance, 138 
Impurity states, 112 
Incandescent light bulb, 264, 281 
Incoherent scattering, 80 
Index of refraction, 197, 199, 222 

complex, 201 
Indirect-band gap material, 257 
Indirect-band gap semiconductor, 272 
Indirect interband transition, 228, 258 
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laser, 272 
Indium-gallium nitride LED, 281 
Indium phosphide, 119 
Indium-tin-oxide (ITO), 178 
Infrared, 198 
InGaN laser, 273 
Insulators, 69, 78, 166, 185, 368 
Integrated circuit, 146 
Integrated optoelectronics, 285 
Intensity of light, 203 
Interband transition, 106,227-231 
Interband transition energy, 251 
Internal energy, 371 
Intraband transition, 227-231, 257 
Intrinsic semiconductor, 106-111 
Inverse spinel structure, 327 
Inversion layer, 138 
Inverter circuit, 155 
Ion etching, 151 
Ion implantation, 152 
Ion mobility, 174 
Ionic conduction, 174-177 
Ionic polarization, 188 
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Iron-neodymium-boron, 356 
Iron-silicon alloy, 354 
ITO, 178, 283 

JFET,139-140 
Josephson effect, 99 
Joule (unit), 370 
Joule, James Prescott, 367, 371 
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Junction field-effect transistor (JFET), 
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Kerr effect, 322, 362 
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Kondo effect, 90 
Kramers-Kronig analysis, 239, 245 
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Langevin function, 333, 335 
Langevin theory 
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Larmor precession, 313 
Laser, 118 
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Laser materials, 269 
Laser modulation, 276 
Laser wavelength, 272-274 
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LCD, 281-283 
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Leakage, 357 
LED, 279-281 
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Lifetime of LED, 281 
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Light-emitting diode (LED), 264, 279-
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Magnetic constants, 308 
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Magnetic field, 306 
Magnetic field lines, 309 
Magnetic field strength, 307 
Magnetic films, 362 
Magnetic flux, 309 
Magnetic flux density, 308 
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Magnetic memories, 358-364 
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Magnetic printing, 359 
Magnetic properties of alloys, 346 
Magnetic quantum number, 408 
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Magnetic recording head, 359 
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Magnetic short-range order, 321 
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Magnetism 

foundations, 305-310 
quantum mechanical theory, 338-347 

Magnetite, 306 
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Magnetization curve, 317 
Magneto-optical disk, 362 
Magneto-optical memories, 362 
Magneto-optical storage, 295-296 
Magnetoresistance, 360 
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Materials barrier, 146 
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Maximum energy product, 355 
Maxwell equations, 200 
Maxwell relation, 202 
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Meissner effect, 314 
Memory devices, 155-162 
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deposition, 281 
Metal-oxide-semiconductor field-effect 

transistor (MOSFET), 136-139 
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Metal-semiconductor contacts, 119-
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Metal/semiconductor rectifier, 124 
Metallic glass, 179-185 
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Metallizations, 124-125 
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Metglas, 351 
Microelectronic technology, 146 
Microphone, 191 
Microwaves, 198 
Minority carrier diffusion length, 126 
Minority carriers, 127 
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Mobility, 413 
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of ions, 174 

Mode, 286 
MODFET,140 
Modulation spectroscopy, 243 
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383, 384 
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Molecular field constant, 334 
Molecular field theory, 333-336 
Molecular polarization, 188 
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Monochromatic light, 265 

Monochromatic wave, 10 
Monochromator, 242 
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components, 290 
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MOSFET,136-139 
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Nylon, 170 
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Optical constants, 197-207 
Optical coupling, 289-291 
Optical device integration, 289-291 
Optical disk, 294 
Optical fibers, 262 
Optical integrated circuit (Ole), 285 
Optical loss, 291 
Optical modulator, 288-289 
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Optical properties 
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of dielectric materials, 260-263 
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quantum mechanical treatment, 227-
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of short-range ordered alloys, 255 

Optical pumping, 266 
Optical spectra 

of alloys, 250-254 
of materials, 231 
of pure metals, 244-250 

Optical spectrum of silicon, 258 
Optical storage, 293-296 
Optical switch, 288-289, 298 
Optical transistor, 296 
Optical tunnel effect, 286, 290 
Optical tunneling, 290 
Optical waveguide, 276 
Optoelectronics, 285 
OR gate, 158 
Orbital paramagnetism, 316 
Ordering, 254-256 
Organic metals, 166-174 
Organic polymer, 167 
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Overlapping of energy bands, 43 
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p-n rectifier, 125-127 
p-states, 408 
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338-343 
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Particle concept of light, 6 
Particle property of electrons, 7 
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Passive waveguide, 285-287 
Pauli principle, 66, 69, 315,408 
PEDT, 166, 173 
Peltier effect, 102 
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Periodic zone scheme, 38 
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Perturbation theory, 234 
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Phase difference, 220, 239, 240, 404, 405 
Phase velocity, 10 
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Phonon wave, 381 
Phosphorescence, 12,263 
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cost, 130 
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Photoelastic effect, 289 
Photoelectric effect, 6 
Photolithography, 151 
Photoluminescence, 264 
Photon, 6 
Photonic band structure, 293 
Photonic computer, 299 
Photonics, 293 
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Piezoelectricity, 189, 191 
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Plane-polarized wave, 200 
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Plasma, 80 
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Plasma frequency, 212, 249 
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Polyaniline, 173 
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Potential difference, 78 
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Principal quantum number, 65 
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Pulse modulation of lasers, 276 
Pulse wave, 11 
Pulsed laser, 268 
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optical, 266 
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Quantum number space, 65 
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Reactive plasma etching, 151 
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Relative permittivity, 186 
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Semiconductor device fabrication, 146-
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Sensor, 174 
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Shockley equation, 126 
Short-range order, 91,179,255 
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Siemens (unit), 79 
Silicon, 146 
Silicon ( physical properties), 415 
Silicon carbide, 119 
Silicon dioxide, 146 
Silicon nitride, 151 
Single-crystal growth, 147 
Size quantization, 144 
Skin effect, 203, 350 
Slater, John, 345 
Slater-Bethe curve, 345 
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355 
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Solar cell, 129-132 
Solenoid, 307, 317 
Solid state, 28-34 
Soliton, 171 
Source, 136 
Space-charge region, 120 
Space-dependent periodicity, 403, 

404 
Space quantization, 333 
Spark-processing, 179 
Specific heat capacity, 368, 372 
Specific resistance, 79 
Spin, 338, 408 
Spin paramagnetism, 315, 316 
Spinel, 327 
Spontaneous emission, 263-264 
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Standing wave, 405 
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Superconducting materials, 314 
Superconductivity, 78, 91-100, 173, 

308-309 
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Superconductor transition temperature, 
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Superiattice, 145 
Supermalloy, 351, 354 
Supermendur, 351 
Surface charge density, 187 
Surface emitter, 281 
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Surface of equal energy, 60 
Susceptibility, 306-307, 334 
Susceptibility (paramagnetic), 332 
Susceptibility (quantum mechanical), 340 
Synthetic metals, 166 
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Technical saturation magnetization, 321 
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Telecommunication, 272, 276 
Temperature coefficient of resistivity, 87 
Tesla (unit), 308 
Texture, 353 
Thales of Miletus, 77 
Thermal conduction, 374 

classical theory, 390-395 
dielectric materials, 393-395 
metals, 390-393 
quantum mechanical considerations, 

392-393 
Thermal conductivities, 367, 374 

for materials, 368 
Thermal effective mass, 388 
Thermal energy, 367 
Thermal expansion, 397-399 
Thermal properties, 365-399 

fundamentals of, 370-377 
Thermal-sonic bonding, 153 
Thermocouple, 101 
Thermoelectric phenomena, 100-103 
Thermoelectric power, 101 
Thermoelectric power generator, 101 
Thermoelectric refrigeration, 102 
Thermoluminescence, 264 
Thermoreflectance, 243 
Thompson, Count, 367 
Thomson, G.P., 8 
Thomson, 1.1., 7 
Three-layer laser, 267 
Threshold current density for lasing, 274 
Threshold energies for interband 

transitions (copper alloys), 252 
Threshold energy, 247 

for interband transition, 229, 251 

437 

T!me-dependent periodicity, 403, 404 
Time-dependent Schr6dinger equation 

15-16,232 ' 
Time-independent Schr6dinger 

equation, 14-15 
Titanium oxide, 177 
Tolman, Richard, 8 
Toner, 184 
Total reflection, 286 
Trans-polyacetylene, 169 
Transducer, 191 
Transformation equations from real 

lattice to reciprocal lattice, 49 
Transformer, 350 
Transistors, 134-142 
Translation vector, 47 
Transmissivity, 205 
Transmissivity of 

borosilicate glass, 262 
fused quartz, 262 
optical fibers, 262 
sodium chloride, 262 
sol-gel silica glass, 262 
window glass, 262 

Transmittance, 204-206 
Transphasor, 296, 297 
Transversal electric (TE) mode, 293 
Transversal magnetic (TM) mode, 

293 
Transverse hole mass, 116 
Traveling wave, 405-406 
Traveling-wave laser, 276 
Trichlorosilane gas, 146 
Tunnel diode, 26, 132-134 
Tunnel effect, 24-27 
Tunnel electron microscope, 26 
Tunneling, 26, 129, 145 
Twisted nematic LCD, 282 
Type I superconductors, 94 
Type II superconductors, 94 

Ultra-large-scale integration (ULSI), 
146, 160 

Ultraviolet, 198 
Umklapp process, 395 
Undamped vibration, 403-404 
Undamped wave, 405 
Undercutting, 151 
Unipolar transistor, 136 
Unit cell, 45 
Universal gas constant, 375-376 

Vacuum tube, 146 
Valence band, 40, 104 
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Van der Waals binding forces, 168 
Variable-range hopping, 183 
Vector product, 49 
Vegetable diode, 281 
Velocities of light, 199 
Velocity 

of light, 411 
ofa wave, 4 

Velocity space, 83 
Vibration, 8, 403 

damped,404 
forced,404-405 
undamped, 403-404 

Vibration modes of atoms, 261 
Vibrations of lattice atoms, 260 
Vicalloy, 356 
Viewing angle, 283, 284 
Virgin iron, 317 
Voids, 152 
Volatile memory, 161 
Voltage-current characteristic of a 

rectifier, 123 
Vortex state, 96 
Vortices, 95 

Wave, 8 
damped,406 
harmonic, 405 
plane, 406 
standing, 405 
traveling, 405-406 
undamped, 405 

Wave equation, electromagnetic, 200 
Wave function, 8 
Wave length of light, 199 

Wave number, 8 
Wave number vector, 405 
Wave packet, 9 
Wave-particle duality, 6-13 
Wave vector, 19 
Wave velocity, 10 
Waveguide, 285 
Wavelength,6 
Wavelength modulation, 243 
Wear, 362 
Weiss, Pierre-Ernest, 315, 329 
Wet chemical etching, 151 
White X-radiation, 299 
Wiedemann-Franz law, 367, 393 
Wigner-Seitz cell, 45-47, 51 

for the body-centered cubic (bec) 
structure, 46 

for the face-centered cubic (fcc) 
structure, 47 

Work,370 
Work function, 120,413 
WORM,294 

X-ray emission, 299-301 
X-ray lithography, 154 
X-rays, 198,222-223 
Xerography, 184-185 

Zener breakdown, 128, 129 
Zener diode, 127-129 
Zero-point energy, 22 
Zinc oxide, 119, 178 
Zinc sulfide, 119 
Zone refining, 149 
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