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Preface to the Third Edition

Books are seldom finished. At best, they are abandoned. The second edition
of “Electronic Properties of Materials” has been in use now for about seven
years. During this time my publisher gave me ample opportunities to update
and improve the text whenever the book was reprinted. There were about
six of these reprinting cycles. Eventually, however, it became clear that
substantially more new material had to be added to account for the stormy
developments which occurred in the field of electrical, optical, and magnetic
materials. In particular, expanded sections on flat-panel displays (liquid
crystals, electroluminescence devices, field emission displays, and plasma dis-
plays) were added. Further, the recent developments in blue- and green-
emitting LED’s and in photonics are included. Magnetic storage devices also
underwent rapid development. Thus, magneto-optical memories, magneto-
resistance devices, and new magnetic materials needed to be covered. The
sections on dielectric properties, ferroelectricity, piezoelectricity, electrostric-
tion, and thermoelectric properties have been expanded. Of course, the entire
text was critically reviewed, updated, and improved. However, the most
extensive change I undertook was the conversion of all equations to SI-
units throughout. In most of the world and in virtually all of the interna-
tional scientific journals use of this system of units is required. If today’s
students do not learn to utilize it, another generation is “lost” on this matter,
In other words, it is important that students become comfortable with SI
units.

If plagiarism is the highest form of flattery, then I have indeed been flat-
tered. Substantial portions of the first edition have made up verbatim most
of another text by a professor in Madras without giving credit to where it
first appeared. In addition, pirated copies of the first and second editions
have surfaced in Asian countries. Further, a translation into Korean ap-
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peared. Of course, I feel that one should respect the rights of the owner of
intellectual property.

I am grateful for the many favorable comments and suggestions promul-
gated by professors and students from the University of Florida and other
schools who helped to improve the text. Dr. H. Riifer from Wacker Siltronic
AG has again appraised me of many recent developments in wafer fabrica-
tion. Professor John Reynolds (University of Florida) educated me on the
current trends in conducting polymers. Drs. Regina and Gerd Miiller (Agi-
lent Corporation) enlightened me on recent LED developments. Professor
Paul Holloway (University of Florida) shared with me some insights in
phosphors and flat-panel displays. Professor Volkmar Gerold (MPI Stutt-
gart) was always available when help was needed. My thanks go to all of
them.

Gainesville, Florida Rolf E. Hummel
October 2000



Preface to the Second Edition

It is quite satisfying for an author to learn that his brainchild has been
favorably accepted by students as well as by professors and thus seems
to serve some useful purpose. This horizontally integrated text on the elec-
tronic properties of metals, alloys, semiconductors, insulators, ceramics, and
polymeric materials has been adopted by many universities in the United
States as well as abroad, probably because of the relative ease with which
the material can be understood. The book has now gone through several
reprinting cycles (among them a few pirate prints in Asian countries). I am
grateful to all readers for their acceptance and for the many encouraging
comments which have been received.

I have thought very carefully about possible changes for the second
edition. There is, of course, always room for improvement. Thus, some
rewording, deletions, and additions have been made here and there. 1 with-
stood, however, the temptation to expand considerably the book by adding
completely new subjects. Nevertheless, a few pages on recent developments
needed to be inserted. Among them are, naturally, the discussion of ceramic
(high-temperature) superconductors, and certain elements of the rapidly ex-
panding field of optoelectronics. Further, I felt that the readers might be
interested in learning some more practical applications which result from the
physical concepts which have been treated here. Thus, the second edition
describes common types of field-effect transistors (such as JFET, MOSFET,
and MESFET), quantum semiconductor devices, electrical memories (such
as D-RAM, S-RAM, and electrically erasable-programmable read-only
memories), and logic circuits for computers. The reader will also find an ex-
pansion of the chapter on semiconductor device fabrication. The principal
mechanisms behind some consumer devices, such as xerography, compact
disc players, and optical computers, are also discussed.
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Part III (Magnetic Properties of Materials) has been expanded to include
more details on magnetic domains, as well as magnetostriction, amorphous
ferromagnetics, the newest developments in permanent magnets, new mag-
netic recording materials, and magneto-optical memories.

Whenever appropriate, some economic facts pertaining to the manufac-
turing processes or sales figures have been given. Responding to occasional
requests, the solutions for the numerical problems are now contained in the
Appendix.

I am grateful for valuable expert advice from a number of colleagues, such
as Professor Volkmar Gerold, Dr. Dieter Hagmann, Dr. H. Riifer, Mr. David
Malone, Professor Chris Batich, Professor Rolf Haase, Professor Robert
Park, Professor Rajiv Singh, and Professor Ken Watson. Mrs. Angelika
Hagmann and, to a lesser extent, my daughter, Sirka Hummel, have drawn
the new figures. I thank them for their patience.

Gainesville, Florida Rolf E. Hummel
1993



Preface to the First Edition

Die meisten Grundideen der
Wissenschaft sind an sich einfach
und lassen sich in der Regel

in einer fiir jedermann
verstdndlichen Sprache
wiedergeben.

—ALBERT EINSTEIN

The present book on electrical, optical, magnetic, and thermal properties of
materials is, in many aspects, different from other introductory texts in solid
state physics. First of all, this book is written for engineers, particularly
materials and electrical engineers who want to gain a fundamental under-
standing of semiconductor devices, magnetic materials, lasers, alloys, etc.
Second, it stresses concepts rather than mathematical formalism, which
should make the presentation relatively easy to understand. Thus, this book
provides a thorough preparation for advanced texts, monographs, or speci-
alized journal articles. Third, this book is not an encyclopedia. The selection
of topics is restricted to material which is considered to be essential and
which can be covered in a 15-week semester course. For those professors
who want to teach a two-semester course, supplemental topics can be found
which deepen the understanding. (These sections are marked by an asterisk
[#].) Fourth, the present text leaves the teaching of crystallography, X-ray
diffraction, diffusion, lattice defects, etc., to those courses which specialize in
these subjects. As a rule, engineering students learn this material at the be-
ginning of their upper division curriculum. The reader is, however, reminded
of some of these topics whenever the need arises. Fifth, this book is distinctly
divided into five self-contained parts which may be read independently. All
are based on the first part, entitled “Fundamentals of Electron Theory,”
because the electron theory of materials is a basic tool with which most ma-
terial properties can be understood. The modern electron theory of solids is
relatively involved. It is, however, not my intent to train a student to become
proficient in the entire field of quantum theory. This should be left to more
specialized texts. Instead, the essential quantum mechanical concepts are
introduced only to the extent to which they are needed for the understanding
of materials science. Sixth, plenty of practical applications are presented in
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the text, as well as in the problem sections, so that the students may gain an
understanding of many devices that are used every day. In other words, I
tried to bridge the gap between physics and engineering. Finally, I gave the
treatment of the optical properties of materials about equal coverage to that
of the electrical properties. This is partly due to my personal inclinations and
partly because it is felt that a more detailed description of the optical prop-
erties is needed since most other texts on solid state physics devote relatively
little space to this topic. It should be kept in mind that the optical properties
have gained an increasing amount of attention in recent years, because of
their potential application in communication devices as well as their contri-
butions to the understanding of the electronic structure of materials.

The philosophy and substance of the present text emerged from lecture
notes which I accumulated during more than twenty years of teaching. A
preliminary version of Parts I and II appeared several years ago in Journal of
Educational Modules for Materials Science and Engineering 4, 1 (1982) and
4, 781 (1982).

I sincerely hope that students who read and work with this book will enjoy,
as much as I, the journey through the fascinating field of the physical prop-
erties of materials.

Each work benefits greatly from the interaction between author and col-
leagues or students. I am grateful in particular to Professor R.T. DeHoff,
who read the entire manuscript and who helped with his inquisitive mind to
clarify many points in the presentation. Professor Ken Watson read the part
dealing with magnetism and made many helpful suggestions. Other col-
leagues to whom I am indebted are Professor Fred Lindholm, Professor
Terry Orlando, and Dr. Siegfried Hofmann. My daughter, Sirka Hummel,
contributed with her skills as an artist. Last, but not least, I am obliged to
my family, to faculty, and to the chairman of the Department of Materials
Science and Engineering at the University of Florida for providing the har-
monious atmosphere which is of the utmost necessity for being creative.

Gainesville, Florida Rolf E. Hummel
1985
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PART I

FUNDAMENTALS OF
ELECTRON THEORY



CHAPTER 1

Introduction

The understanding of the behavior of electrons in solids is one of the keys to
understanding materials. The electron theory of solids is capable of explain-
ing the optical, magnetic, thermal, as well as the electrical properties of ma-
terials. In other words, the electron theory provides important fundamentals
for a technology which is often considered to be the basis for modern civili-
zation. A few examples will illustrate this. Magnetic materials are used in
electric generators, motors, loudspeakers, transformers, tape recorders, and
tapes. Optical properties of materials are utilized in lasers, optical commu-
nication, windows, lenses, optical coatings, solar collectors, and reflectors.
Thermal properties play a role in refrigeration and heating devices and in
heat shields for spacecraft. Some materials are extremely good electrical
conductors, such as silver and copper; others are good insulators, such as
porcelain or quartz. Semiconductors are generally poor conductors at room
temperature. However, if traces of certain elements are added, the electrical
conductivity increases.

Since the invention of the transistor in the late 1940s, the electronics in-
dustry has grown to an annual sales level of about five trillion dollars. From
the very beginning, materials and materials research have been the lifeblood
of the electronics industry.

For the understanding of the electronic properties of materials, three
approaches have been developed during the past hundred years or so which
differ considerably in their philosophy and their level of sophistication. In
the last century, a phenomenological description of the experimental obser-
vation was widely used. The laws which were eventually discovered were
empirically derived. This “continaum theory” considered only macroscopic
quantities and interrelated experimental data. No assumptions were made
about the structure of matter when the equations were formulated. The
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conclusions that can be drawn from the empirical laws still have validity, at
least as long as no oversimplifications are made during their interpretation.
Ohm’s law, the Maxwell equations, Newton’s law, and the Hagen—Rubens
equation may serve as examples.

A refinement in understanding the properties of materials was accom-
plished at the turn to the twentieth century by introducing atomistic princi-
ples into the description of matter. The “classical electron theory” postulated
that free electrons in metals drift as a response to an external force and in-
teract with certain lattice atoms. Paul Drude was the principal proponent of
this approach. He developed several fundamental equations that are still
widely utilized today. We will make extensive use of the Drude equations in
subsequent parts of this book.

A further refinement was accomplished at the beginning of the twentieth
century by quantum theory. This approach was able to explain important
experimental observations which could not be readily interpreted by classical
means. It was realized that Newtonian mechanics become inaccurate when
they are applied to systems with atomic dimensions, i.e., when attempts are
made to explain the interactions of electrons with solids. Quantum theory,
however, lacks vivid visualization of the phenomena which it describes.
Thus, a considerable effort needs to be undertaken to comprehend its basic
concepts; but mastering its principles leads to a much deeper understanding
of the electronic properties of materials.

The first part of the present book introduces the reader to the funda-
mentals of quantum theory. Upon completion of this part the reader should
be comfortable with terms such as Fermi energy, density of states, Fermi
distribution function, band structure, Brillouin zones, effective mass of elec-
trons, uncertainty principle, and quantization of energy levels. These con-
cepts will be needed in the following parts of the book.

It is assumed that the reader has taken courses in freshman physics,
chemistry, and differential equations. From these courses the reader should
be familiar with the necessary mathematics and relevant equations and defi-
nitions, such as:

Newton’s law: force equals mass times acceleration (F = ma); (1.1)

Kinetic energy: Eiy, = 1muv? (v is the particle velocity); (1.2)
Momentum: p = mv; (1.3)
2

Combining (1.2) and (1.3) yields Ein = é’—m; (1.4)
Speed of light: ¢ = vA (v = frequency of the light wave, and

A its wavelength); (1.5)
Velocity of a wave: v = vi; (1.6)
Angular frequency: @ = 2nv; (1.7)

Einstein’s mass—energy equivalence: E = mc?. (1.8)
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It would be further helpful if the reader has taken an introductory course in
materials science or a course in crystallography in order to be familiar with
terms such as lattice constant, Miller’s indices, X-ray diffraction, Bragg’s
law, etc. Regardless, these concepts are briefly summarized in this text
whenever they are needed. In order to keep the book as self-contained as
possible, some fundamentals in mathematics and physics are summarized in
the Appendices.



CHAPTER 2
The Wave-Particle Duality

This book is mainly concerned with the interactions of electrons with matter.
Thus, the question “What is an electron?”’ is quite in order. Now, to our
knowledge, nobody has so far seen an electron, even by using the most
sophisticated equipment. We experience merely the actions of electrons, e.g.,
on a television screen or in an electron microscope. In each of these in-
stances, the electrons seem to manifest themselves in quite a different way,
i.e., in the first case as a particle and in the latter case as an electron wave.
Accordingly, we shall use, in this book, the terms “wave” and “particle” as
convenient means to describe the different aspects of the properties of elec-
trons. This “duality” of the manifestations of electrons should not overly
concern us. The reader has probably been exposed to a similar discussion
when the properties of light have been introduced.

We perceive light intuitively as a wave (specifically, an electromagnetic
wave) which travels in undulations from a given source to a point of ob-
servation. The color of the light is related to its wavelength, 4, or to its
frequency, v, i.e., its number of vibrations per second. Many crucial experi-
ments, such as diffraction, interference, and dispersion clearly confirm the
wavelike nature of light. Nevertheless, at least since the discovery of the
photoelectric effect in 1887 by Hertz, and its interpretation in 1905 by Ein-
stein, we do know that light also has a particle nature. (The photoelectric
effect describes the emission of electrons from a metallic surface that has
been illuminated by light of appropriately high energy, e.g., by blue light.)
Interestingly enough, Newton, about 300 years ago, was a strong proponent
of the particle concept of light. His original ideas, however, were in need of
some refinement, which was eventually provided in 1901 by quantum theory.
We know today (based on Planck’s famous hypothesis) that a certain mini-
mal energy of light, i.e., at least one light quantum, called a pheton, with the
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energy
E = vh = wh, (2.1

needs to impinge on a metal in order that a negatively charged electron may
overcome its binding energy to its positively charged nucleus and escape into
free space. (This is true regardless of the intensity of the light.) In (2.1) h is
the Planck constant whose numerical value is given in Appendix 4. Fre-
quently, the reduced Planck constant

_h
T 2n

is utilized in conjunction with the angular frequency, w = 2zv (1.7). In short,
the wave-particle duality of light (or more generally, of electromagnetic radi-
ation) had been firmly established at the beginning of the twentieth century.

On the other hand, the wave-particle duality of electrons needed more
time until it was fully recognized. The particle property of electrons, having a
rest mass myp and charge e, was discovered in 1897 by the British physicist
J.J. Thomson at the Cavendish Laboratory of Cambridge University in an
experiment in which he observed the deviation of a cathode ray by electric
and magnetic fields. These cathode rays were known to consist of an invisi-
ble radiation that emanated from a negative electrode (called a cathode)
which was sealed through the walls of an evacuated glass tube that also
contained at the opposite wall a second, positively charged electrode. It was
likewise known at the end of the nineteenth century that cathode rays travel
in straight lines and produce a glow when they strike glass or some other
materials. J.J. Thomson noticed that cathode rays travel slower than light
and transport negative electricity. In order to settle the lingering question of
whether cathode rays were “vibrations of the ether” or instead “streams of
particles,” he promulgated a bold hypothesis, suggesting that cathode rays
were “charged corpuscles which are miniscule constituents of the atom.”
This proposition—that an atom should consist of more than one particle—
was startling for most people at that time. Indeed, atoms were considered
since antiquity to be indivisible, that is, the most fundamental building
blocks of matter.

The charge of these “corpuscles” was found to be the same as that carried
by hydrogen ions during electrolysis (about 10~°C). Further, the mass of
these corpuscles turned out to be 1/2000th the mass of the hydrogen atom.

A second hypothesis brought forward by J.J. Thomson, suggesting that
the “corpuscles of cathode rays are the only constituents of atoms,” was
eventually proven to be incorrect. Specifically, E. Rutherford, one of
Thomson’s former students, by using a different kind of particle beam, con-
cluded in 1910 that the atom resembled a tiny solar system in which a few
electrons orbited around a “massive” positively charged center. Today, one
knows that the electron is the lightest stable elementary particle of matter
and that it carries the basic charge of electricity.

h (2.2)
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Eventually, it was also discovered that the electrons in metals can move
freely under certain circumstances. This critical experiment was performed
by Tolman who observed inertia effects of the electrons when rotating metals.

In 1924, de Broglie, who believed in a unified creation of the universe, in-
troduced the idea that electrons should also possess a wave-particle duality.
In other words, he suggested, based on the hypothesis of a general reciproc-
ity of physical laws, the wave nature of electrons. He connected the wave-
length, A, of an electron wave and the momentum, p, of the particle by the
relation

ip=h. (2.3)

This equation can be “derived” by combining equivalents to the photonic
equations E = vh (2.1), E = mc? (1.8), p = mc (1.3), and ¢ = v (1.5).

In 1926, Schrodinger gave this idea of de Broglie a mathematical form. In
1927, Davisson and Germer and, independently in 1928, G.P. Thomson (the
son of J.J. Thomson; see above) discovered electron diffraction by a crystal,
which finally proved the wave nature of electrons.

What is a wave? A wave is a “disturbance” which is periodic in position
and time. (In contrast to this, a vibration is a disturbance which is only peri-
odic in position or time.!) Waves are characterized by a velocity, v, a fre-
quency, v, and a wavelength, A, which are interrelated by

v ="V (2.4)

Quite often, however, the wavelength is replaced by its inverse quantity
(multiplied by 2r), i.e., 4 is replaced by the wave number

2n
k=—. 2.5
; (25)
Concomitantly, the frequency, v, is replaced by the angular frequency

= 27v (1.7). Equation (2.4) then becomes

b= (2.6)

One of the simplest waveforms is mathematically expressed by a sine (or a
cosine) function. This simple disturbance is called a “harmonic wave.” (We
restrict our discussion below to harmonic waves since a mathematical ma-
nipulation, called a Fourier transformation, can substitute any odd type of
waveform by a series of harmonic waves, each having a different frequency.)
The properties of electrons will be described in the following by a har-
monic wave, i.¢., by a wave function ¥ (which contains, as outlined above, a

! A summary of the equations which govern waves and vibrations is given in Appendix 1.
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time- and a space-dependent component):
¥ = sin(kx — wt). 2.7)

This wave function does not represent, as far as we know, any physical
waves or other physical quantities. It should be understood merely as a
mathematical description of a particle (the electron) which enables us to
calculate its actual behavior in a convenient way. This thought probably
sounds unfamiliar to a beginner in quantum physics. However, by repeated
exposure, one can become accustomed to this kind of thought.

The wave-particle duality may be better understood by realizing that the
electron can be represented by a combination of several wave trains having
slightly different frequencies, for example, w and w + Aw, and different wave
numbers, k and k + Ak. Let us study this, assuming at first only two waves,
which will be written as above:

¥, = sinfkx — wi] (2.7
and
¥, =sin[(k + Ak)x — (o0 + Aw)t]. (2.8)

Superposition of ¥; and ¥, yields a new wave . With sina +sinff =
2cosi(a— B) - sind (o + B) we obtain

Y +¥, =¥ = 2cos(~A2—wt—é2]£x) . sin[(k+A7k)x— (w—l—%@) t]. (2.9)

Modulated Sine wave
amplitude

Equation (2.9) describes a sine wave (having a frequency intermediate be-
tween @ and w + Aw) whose amplitude is slowly modulated by a cosine
function. (This familiar effect in acoustics can be heard in the form of
“beats” when two strings of a piano have a slightly different pitch. The beats
become less rapid the smaller the difference in frequency, Aw, between the
two strings until they finally cease once both strings have the same pitch,
(2.9).) Each of the “beats” represents a “wave packet” (Fig. 2.1). The wave

Modulated Amplitude ("beats")

1
1
|
i
1
1
'
|

- ax |
< wave packet —»!

Figure 2.1. Combination of two waves of slightly different frequencies. AX is the
distance over which the particle can be found.
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Figure 2.2. Monochromatic matter wave (Aw and Ak = 0). The wave has constant
amplitude. The matter wave travels with the phase velocity, v.

packet becomes “longer” the slower the beats, i.e., the smaller Aw. The
extreme conditions are as follows:

(a) No variation in w and k (i.e., Aw = 0 and Ak = 0). This yields an “infi-
nitely long” wave packet, i.e., a monochromatic wave, which corresponds
to the wave picture of an electron (see Fig. 2.2).

(b) Alternately, Aw and Ak could be assumed to be very large. This yields
short wave packets. Moreover, if a large number of different waves are
combined (rather than only two waves ¥; and W), having frequencies
@+ nAw (where n = 1,2,3,4 .. ), then the string of wave packets shown
in Fig. 2.1 reduces to one wave packet only. The electron is then repre-
sented as a particle. This is shown in Fig. 2.3, in which a number of
Y-waves have been superimposed on each other, as just outlined. It is
evident from Fig. 2.3 that a superposition of, say, 300 W¥-waves yields
essentially one wave packet only.

Different velocities need to be distinguished:

(a) The velocity of the matter wave is called the wave velocity or “‘phase
velocity,” v. As we saw above, the matter wave is a monochromatic wave
(or a stream of particles of equal velocity whose frequency, w, wave-
length, A, momentum, p, or energy, E, can be exactly determined (Fig.
2.2)). The location of the particles, however, is undetermined. From the
second part of (2.9) (marked “‘sine wave”’), we deduce

_f_w—kAw/Z_g’
ot k+AK)2 kK

which is a restatement of (2.6). We obtain the velocity of a matter wave
that has a frequency w + Aw/2 and a wave number k + Ak/2. The
phase velocity varies for different wavelengths (a phenomenon which is
called “dispersion,” and which the reader knows from the rainbow col-
ors that emerge from a prism when white light impinges on it).

(b) We mentioned above that a particle can be understood to be “composed
of” a group of waves or a “wave packet.” Each individual wave has a
slightly different frequency. Appropriately, the velocity of a particle is

(2.6a)
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Y(x) 0

—2H

]
0 50 100 150 200 250 0 20 40 60 80
X X
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° ® 1 200 |- 4
“ 100 | A
¥(x) 0 HWW W(x)

1 ) 1 ] -100 & ! 1 ] [
0 20 40 60 80 0 20 40 60 80
X X

Figure 2.3. Superposition of W-waves. The number of ‘¥-waves is given in the
graphs. (See also Fig. 2.1 and Problem 2.8.)

called “group velocity,” v,. The “envelope” in Fig. 2.1 propagates with
the group velocity, v,. From the left part of (2.9) (marked “modulated
amplitude™) we obtain this group velocity

x_Aw_dco

—=Sr = (2.10)

vy =
Equation (2.10) is the velocity of a “pulse wave,” i.e., of a moving particle.

The location X of a particle is known precisely, whereas the frequency is not.
This is due to the fact that a wave packet can be thought to “consist” of
several wave functions W), %¥s, ...,¥,, with slightly different frequencies.
Another way of looking at it is to perform a Fourier analysis of a pulse wave
(Fig. 2.4) which results in a series of sine and cosine functions (waves) which
have different wavelengths. The better the location, AX, of a particle can be
determined, the wider is the frequency range, Aw, of its waves. This is one
form of Heisenberg’s uncertainty principle,

Ap-AX = h, (2.11)
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Awlarge

f.
L

X

Figure 2.4. Particle (pulse wave) moving with a group velocity v, (Aw is large).

stating that the product of the distance over which there is a finite probabil-
ity of finding an electron, AX, and the range of momenta, Ap (or wave-
lengths (2.3)), of the electron wave is greater than or equal to a constant.
This means that both the location and frequency of an electron cannot be
accurately determined at the same time.

A word of encouragement should be added at this point for those readers
who (quite legitimately) might ask the question: What can I do with wave
functions which supposedly have no equivalent in real life? For the inter-
pretation of the wave functions, we will use in future chapters Born’s postu-
late, which states that the square of the wave function (or because ¥ is gen-
erally a complex function, the quantity W¥'¥*) is the probability of finding a
particle at a certain location. (W” is the complex conjugate quantity of ¥'.) In
other words,

YY* dxdydz = PV¥* dr (2.12)

is the probability of finding an electron in the volume element dz. This makes
it clear that in wave mechanics probability statements are often obtained,
whereas in classical mechanics the location of a particle can be determined
exactly. We will see in future chapters, however, that this does not affect the
usefulness of our results.

Finally, the reader may ask the question: Is an electron wave the same as
an electromagnetic wave? Most definitely not! Electromagnetic waves (radio
waves, infrared radiation (heat), visible light, ultraviolet (UV) light, X-rays,
or y-rays) propagate by an interaction of electrical and magnetic distur-
bances. Detection devices for electromagnetic waves include the human eye,
photomultiplier tubes, photographic films, heat-sensitive devices, such as the
skin, and antennas in conjunction with electrical circuits. For the detection
of electrons (e.g., in an electron microscope or on a television screen) certain
chemical compounds called “phosphors” are utilized. Materials which possess
“phosphorescence” (see Section 13.8) include zinc sulfide, zinc—cadmium
sulfide, tungstates, molybdates, salts of the rare earths, uranium compounds,
and organic compounds. They vary in color and strength and in the length in
time during which visible light is emitted.

At the end of this chapter, let us revisit the fundamental question that
stood at the outset of our discussion concerning the wave-particle duality:
Are particles and waves really two completely unrelated phenomena? Seen
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conceptually, they probably are. But consider (2.9) and its discussion. Both
waves and particles are mathematically described essentially by the same
equation, i.e., the former by setting Aw and Ak = 0 and the latter by making
Aw and Ak large. Thus, waves and particles appear to be interrelated in a
certain way. It is left to the reader to contemplate further on this idea.

Problems

. Calculate the wavelength of an electron which has a kinetic energy of 4 eV.

What should be the energy of an electron so that the associated electron waves
have a wavelength of 600 nm?

. Since the visible region spans between approximately 400 nm and 700 nm, why

can the electron wave mentioned in Problem 2 not be seen by the human eye?
What kind of device is necessary to detect electron waves?

. What is the energy of a light quantum (photon) which has a wavelength of

600 nm? Compare the energy with the electron wave energy calculated in Prob-
lem 2 and discuss the difference.

. A tennis ball, having a mass of 50 g, travels with a velocity of 200 km/h. What is

the equivalent wavelength of this “particle”? Compare your result with that
obtained in Problem 1 above and discuss the difference.

. Derive (2.9) by adding (2.7) and (2.8).
. “Derive” (2.3) by combining (1.3), (1.5), (1.8), and (2.1).
*8.

Computer problem.

(a) Insert numerical values of your choice into (2.9) and plot the result. For
example, set a constant time (e.g. ¢ = 0) and vary Ak.

(b) Add more than two equations of the type of (2.7) and (2.8) by using different
values of Aw and plot the result. Does this indeed reduce the number of wave
packets, as stated in the text? Compare to Fig. 2.3.



CHAPTER 3
The Schrédinger Equation

We shall now make use of the conceptual ideas which we introduced in the
previous chapter, i.e., we shall cast, in mathematical form, the description of
an electron as a wave, as suggested by Schrédinger in 1926. All “deriva-
tions” of the Schrodinger equation start in one way or another from certain
assumptions, which cause the uninitiated reader to ask the legitimate ques-
tion, “Why just in this way?” The answer to this question can naturally be
given, but these explanations are relatively involved. In addition, the “deri-
vations” of the Schrodinger equation do not further our understanding of
quantum mechanics. It is, therefore, not intended to “derive” here the
Schrédinger equation. We consider this relation as a fundamental equation
for the description of wave properties of electrons, just as the Newton equa-
tions describe the matter properties of large particles.

3.1. The Time-Independent Schrodinger Equation

The time-independent Schrédinger equation will always be applied when the
properties of atomic systems have to be calculated in stationary conditions,
i.e., when the property of the surroundings of the electron does not change
with time. This is the case for most of the applications which will be dis-
cussed in this text. Thus, we introduce, at first, this simpler form of the
Schrédinger equation in which the potential energy (or potential barrier), ¥,
depends only on the location (and not, in addition, on the time). Therefore,
the time-independent Schrédinger equation is an equation of a vibration. It
has the following form:

v+ E- V=0, (3.1)
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where
oty oty Y
V=224 7 32
v 6x2+6y2+622’ (3:2)
and m is the (rest) mass of the electron,? and
E=En+V (33)

is the total energy of the system. E provides values for allowed energies once
Y and V are given, as we shall see later on.

In (3.1) we wrote for the wave function a lowercase ¥/, which we will use
from now on when we want to state explicitly that the wave function is only
space dependent. Thus, we split from ¥ a time-dependent part:

W(x,p,2,t) = ¥(x, p,z) e (3.4)

*3.2. The Time-Dependent Schrédinger Equation

The time-dependent Schrédinger equation is a wave equation, because it
contains derivatives of ¥ with respect to space and time (see below, (3.8)).
One obtains this equation from (3.1) by eliminating the total energy,

E = vh = wh, (2.1)
where o is obtained by differentiating (3.4) with respect to time:
n_ Yiwe' = Yiw. (3.5)
ot
This yields
i 0¥
=—— . .6
@ ¥ ot (36)

Combining (2.1) with (3.6) provides
hi 0¥
E=———. 3.7
¥ ot 3.7
Finally, combining (3.1) with (3.7) yields

2mV 2mi 0¥ 0

Vg — =
h2 ¥ ho ot

(3.8)

It should be noted here that quantum mechanical equations can be obtained
from classical equations by applying differential operators to the wave func-

21n most cases we shall denote the rest mass by m instead of my.
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tion W (Hamiltonian operators). They are

N,
and
p= —hiV. (3.10)
When these operators are applied to
2
Eiotal = Exm + Epot = '2% +V (3.11)
we obtain
oY wit_,
—hi—=—VV+ VY 3.12
hi %= m VY + , (3.12)

which yields, after rearranging, the time-dependent Schrodinger equation
(3.8).

*3.3. Special Properties of Vibrational Problems

The solution to an equation for a vibration is determined, except for certain
constants. These constants are calculated by using boundary or starting
conditions

(e.g., y =0atx=0). (3.13)

As we will see in Section 4.2, only certain vibrational forms are possible
when boundary conditions are imposed. This is similar to the vibrational
forms of a vibrating string, where the fixed ends cannot undergo vibrations.
Vibrational problems that are determined by boundary conditions are called
boundary or eigenvalue problems. It is a peculiarity of vibrational problems
with boundary conditions that not all frequency values are possible and,
therefore, because of

E =vh, (3.14)

not all values for the energy are allowed (see next chapter). One calls the
allowed values eigenvalues. The functions i, which belong to the eigen-
values and which are a solution of the vibration equation and, in addition,
satisfy the boundary conditions, are called eigenfunctions of the differential
equation.

In Section 2 we related the product ™ (which is called the “norm’) to
the probability of finding a particle at a given location. The probability of
finding a particle somewhere in space is one, or

J.//.p*m:JWdT: L. (3.15)

Equation (3.15) is called the normalized eigenfunction.



3. The Schrodinger Equation 17

Problems

1. Write a mathematical expression for a vibration (vibrating string, for example)
and for a wave. (See Appendix 1.) Familiarize yourself with the way these dif-

ferential equations are solved. What is a “trial solution?”’ What is a boundary
condition?

2. Define the terms ‘““vibration” and “wave.”

3. What is the difference between a damped and an undamped vibration? Write the
appropriate equations.

4. What is the complex conjugate function of:
(@) X =a+ bi; and
(b) ¥ = 24isinax.



CHAPTER 4

Solution of the Schrédinger Equation
for Four Specific Problems

4.1. Free Electrons

At first we solve the Schrédinger equation for a simple but, nevertheless,
very important case. We consider electrons which propagate freely, i.e., in a
potential-free space in the positive x-direction. In other words, it is assumed
that no “wall,” i.e., no potential barrier (V'), restricts the propagation of the
electron wave. The potential energy V is then zero and the Schrédinger
equation (3.1) assumes the following form:

Ay 2m

gzt or By =0 (4.1)

This is a differential equation for an undamped vibration® with spatial peri-
odicity whose solution is known to be?

V(x) = Ae*™*, (4.2)

o= \lzh—r;IE. (4.3)

(For our special case we do not write the second term in (A.5)3,

where

u= Ae'™ + Be '™, (44)

3See Appendix 1.
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EA

Figure 4.1. Energy continuum of a free electron (compare with Fig. 4.3).

because we stipulated above that the electron wave?
W(x) = de"™* . ' (4.5)

propagates only in the positive x-direction and not, in addition, in the nega-
tive x-direction.)
From (4.3), it follows that

h o,

E=%o¢.

(4.6)

Since no boundary condition had to be considered for the calculation of the
free-flying electron, all values of the energy are “allowed,” i.e., one obtains
an energy continuum (Fig. 4.1). This statement seems to be trivial at this
point. The difference to the bound electron case will become, however, evi-
dent in the next section.

Before we move ahead, let us combine equations (4.3), (2.3), and (1.4), i.e.,

[2mE _p 2m
ox = 7—%—-1—]@ (47)

h2
E= 2—mk2. (4.8)

which yields

The term 27/A was defined in (2.5) to be the wave number, k. Thus, « is here
identical with k. We see from (4.7) that the quantity k is proportional to the
momentum p and, because of p = mv, also proportional to the velocity of the
electrons. Since both momentum and velocity are vectors, it follows that k is
a vector, too. Therefore, we actually should write k as a vector which has the
components ky, k,, and k;:

k| =

4
- (4.9)

Since k is inversely proportional to the wavelength, 1, it is also called the
“wave vector.” We shall use the wave vector in the following sections fre-
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quently. The k-vector describes the wave properties of an electron, just as
one describes in classical mechanics the particle property of an electron with
the momentum. As mentioned above, k and p are mutually proportional, as
one can see from (4.7). The proportionality factor is 1/A.

4.2. Electron in a Potential Well (Bound Electron)

We now consider an electron that is bound to its atomic nucleus. For sim-
plicity, we assume that the electron can move freely between two infinitely
high potential barriers (Fig. 4.2). The potential barriers do not allow the
electron to escape from this potential well, which means that iy =0 for x < 0
and x = a. We first treat the one-dimensional case just as in Section 4.1, i.e.,
we assume that the electron propagates only along the x-axis. However, be-
cause the electron is reflected on the walls of the well, it can now propagate
in the positive, as well as in the negative, x-direction. In this respect, the
present problem is different from the preceding one. The potential energy
inside the well is zero, as before, so that the Schrédinger equation for an
electron in this region can be written, as before,

Ay  2m
R

Because of the two propagation directions of the electron, the solution of
(4.10) is

Ey =0. (4.10)

Y = Ae"™ + Be ™ (4.11)
(see Appendix 1), where
o= 2;1—’;1 E. (4.12)

We now determine the constants 4 and B by means of boundary con-
ditions. We just mentioned that at x £ 0 and x = a the ¥ function is zero.

Vf"." |

o »
© . >
X

nucleus 9

o

Figure 4.2. One-dimensional potential well. The walls consist of infinitely high
potential barriers.
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This boundary condition is similar to that known for a vibrating string,
which does not vibrate at the two points where it is clamped down. (See also
Fig. 4.4(a).) Thus, for x = 0 we stipulate iy = 0. Then we obtain from (4.11)

B=—A. (4.13)

Similarly, we stipulate = 0 for x = a. Using this boundary condition and
(4.13), equation (4.11) becomes

0= Aeizxa +Be—iaa — A(eiaa _ e_i“"). (414)
With the Euler equation

sinp = %(e"” —e) (4.15)
(see Appendix 2), we rewrite Equation (4.14)
Ale™ — 7™ = 24i - sinaa = 0. (4.16)
Equation (4.16) is only valid if sinaa = 0, i.e., if
oa = nm, n=0,1,2,3,.... 4.17)

(because 2, A, and i cannot be zero).
Substituting the value of « from (4.12) into (4.17) provides

w , Wt

E = — = —
"= om® 2ma2n’

n=1273, ... (4.18)

(We exclude n = 0, which would yield ¢ = 0, that is, no electron wave.) We
notice immediately a striking difference from the case in Section 4.1. Because
of the boundary conditions, only certain solutions of the Schrédinger equa-
tion exist, namely those for which » is an integer. In the present case the
energy assumes only those values which are determined by (4.18). All other
energies are not allowed. The allowed values are called “energy levels.”” They

E
Es=25C A —_— n=5
E.,=16C 4 _ n=4
E;=9C A —_—— n=3
E,=4C S -— n=2
E:= 1C 4 —— n=1

Figure 4.3. Allowed energy values of an electron that is bound to its atomic nucleus.
E is the excitation energy in the present case. C = h%n2/2ma?, see (4.18). (E) is the
Zero-point energy.)
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are shown in Fig. 4.3 for a one-dimensional case. Because of the fact that an
electron of an isolated atom can assume only certain energy levels, it follows
that the energies which are excited or absorbed also possess only discrete
values. The result is called an “energy quantization.” The lowest energy that
an electron may assume is called the ‘““zero-point energy”. It can be calcu-
lated from (4.18) for n = 1. In other words, the lowest energy of the electron
is not that of the bottom of the potential well, but rather a slightly higher
value.

We discuss now the wave function, i, and the probability Yy * for finding
an electron within the potential well (see Chapter 2). According to (4.11),
(4.13), and the Euler equation (4.15), we obtain within the well

Y = 24i-sinax, (4.19)
and the complex conjugate of s
Y = —2disinax. (4.20)
The product Yy * is then
Yy = 442 sin® ax. (4.21)

Equations (4.19) and (4.21) are plotted for various n-values in Fig. 4.4. From
Fig. 4.4(a), we see that standing electron waves are created between the walls
of the potential well. Note that integer multiples of half a wavelength are
equal to the length, a, of the potential well. The present case, in its mathe-
matical treatment, as well as in its result, is analogous to that of a vibrating
string.

Of special interest is the behavior of the function ¥y*, i.e., the probability
of finding the electron at a certain place within the well (Fig. 4.4(b)). In the
classical case the electron would travel back and forth between the walls. Its
probability function would therefore be equally distributed along the whole
length of the well. In wave mechanics the deviation from the classical case is

.

0 - 0
(a) (b) ()

Figure 4.4. (a) ¢ function and (b) probability function yiy* for an electron in a
potential well for different n-values. (¢) Allowed electron orbit of an atom.
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most pronounced for n = 1. In this case, Yy * is largest in the middle of the
well and vanishes at the boundaries. For n = 2, the probability of finding an
electron at the center of the well (and at the boundaries) is zero, whereas the
largest Yy * is found at 1/4a and 3 /4a. For successively higher n-values, i.e.,
for higher energies, the wave mechanical values for Y™ are eventually
approaching the classical value.

In order to deepen the understanding of the behavior of bound electrons,
the reader is reminded of the Rutherford model (Chapter 2), in which the
electrons are described to move in distinct orbits about a positively charged
nucleus. Similarly, as shown in Fig. 4.4(a), the electron waves associated
with an orbiting electron have to be standing waves. If this were not the case,
the wave would be out of phase with itself after one orbit. After a large
number of orbits, all possible phases would be obtained and the wave would
be annihilated by destructive interference. This can only be avoided if a
radius is chosen so that the wave joins on itself (Fig. 4.4(c)). In this case the
circumference, 2zr, of the orbit is an integer multiple, n, of the wavelength,
A, or

2nr = n4, (4.22)
which yields
y)

=En.

This means that only certain distinct orbits are allowed, which brings us
back to the allowed energy levels which we discussed above. Actually, this
model was proposed in 1913 by Niels Bohr.

*For the above discussions, we did not need to evaluate the constant ‘4’
Those readers who are interested in this detail may simply rewrite (4.21) in
conjunction with (3.15):

r (4.23)

“ a 4427 1 “
J t{/t//*dx=4AZJ sinz(ocx)dxz————[——sinaxcosocx-}-g =1
0 0 o 2 2 0

(4.24)
Inserting the boundaries in (4.24) and using (4.17) provides

1
4= \/; (4.25)

*The results that are obtained by considering an electron in a square well
are similar to the ones which one receives when the wave mechanical prop-
erties of a hydrogen atom are calculated. As above, one considers an electron
with charge —e to be bound to its nuoﬁus. The potential, ¥, in which the
electron propagates is taken as the Coulombic potential ¥ = —e?/(dneor).
Since ¥ is a function of the radius, r, the Schrédinger equation is more con-
veniently expressed in polar coordinates. Of main interest are, again, the
conditions under which solutions to this Schrédinger equation exist. The
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E ‘omnmo
n=3
n=2

-13.6eV

e  n=!
(lonization energy)

Figure 4.5. Energy levels of atomic hydrogen. E is the binding energy.

treatment leads, similarly as above, to discrete energy levels:

4
E=—" 1 1361w, (4.182)
2(4megh)” 1 n

The main difference compared to the square well model is, however, that the
energy is now proportional to —1/n? (and not to n® as in (4.18)). This results
in a “crowding” of energy levels at higher energies. The energy at the lowest
level is called the ionization energy, which has to be supplied to remove an
electron from its nucleus. Energy diagrams, as in Fig. 4.5, are common in
spectroscopy. The origin of the energy scale is arbitrarily set at n = oo and
the ionization energies are counted negative. Since we are mainly concerned
with the solid state, the detailed calculation of the hydrogen atom is not
treated here.

*So far, we have considered the electron to be confined to a one-
dimensional well. A similar calculation for a three-dimensional potential
well (“electron in a box™) leads to an equation which is analogous to (4.18):

hin?

" 2ma?

' (ni + nﬁ + nf). (4.26)

The smallest allowed energy in a three-dimensional potential well is occu-
pied by an electron if n, = n, = n, = 1. For the next higher energy there are
three different possibilities for combining the n-values; namely, (ny, ny,n;) =
(1,1,2), (1,2,1), or (2,1, 1). One calls the states which have the same energy
but different quantum numbers ‘“degenerate” states. The example just given
describes a threefold degenerate energy state.

4.3. Finite Potential Barrier (Tunnel Effect)

Let us assume that a free electron, propagating in the positive x-direction,
encounters a potential barrier whose potential energy, Vp, (“height” of the
barrier) is larger than the total energy, E, of the electron, but is still finite
{Fig. 4.6). For this case we have to write two Schrédinger equations, which
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Figure 4.6. Finite potential barrier.

take into account the two different areas. In region I (x < 0) the electron is
assumed to be free, and we can write

d*y 2m
(I) W + ?Elﬂ =0. (427)
Inside the potential barrier (x > 0) the Schrédinger equation reads
d*y 2m
(IT) d—xz——l— W (E- Vo =0. (4.28)
The solutions to these equations are as before (see Appendix 1):
(I) ;= Ae™ + Be ™ (4.29)
where
2mE
o= 7 (4.30)
and
(I1) gy = Ce®* + De™#*, (4.31)
with

g = ‘/Zh—’f(E— Vo). (4.32)

A word of caution has to be inserted here. We stipulated above that ¥ is
larger than E. As a consequence of this (E — ¥}) is negative and §§ becomes
imaginary. To prevent this, we define a new parameter:

y = if. (4.33)
This yields, for (4.32),
2

The parameter y is now prevented under the stated conditions from becom-
ing imaginary. Rearranging (4.33) to obtain

p=1 (4.35)

i
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and inserting (4.35) into (4.31) yields
lﬁn = Ceyx + De_yx. (436)

Next, one of the constants C or D needs to be determined by means of a
boundary condition:
For x — o it follows from (4.36) that

The consequence of (4.37) could be that ¥y and therefore yyyy are
infinity.

Since the probability yy* can never be larger than one (certainty),
Y — o0 is no solution. To avoid this, C has to go to zero:

C—0. (4.38)
Then, (4.36) reduces to
Yy = De™™, (4.39)

which reveals that the y-function decreases in Region II exponentially, as
shown in Fig. 4.7 (solid line). The decrease is stronger the larger y is chosen,
i.e., for a large potential barrier, V5.

The electron wave W(x, ) is then given, using (A.27) and (4.39), by

Y — De 7. ei(wt—kx)

(damped wave) as shown by the dashed curve in Fig. 4.7. In other words,
(4.39) provides the envelope (or decreasing amplitude) for the electron wave
that propagates in the finite potential barrier. If the potential barrier is only
moderately high and relatively narrow, the electron wave may continue on
the opposite side of the barrier. This behavior is analogous to that for a light
wave, which likewise penetrates to a certain degree into a material and
whose amplitude also decreases exponentially, as we shall see in the optics
part of this book, specifically in Fig. 10.4. The penetration of a potential
barrier by an electron wave is called “tunneling” and has important appli-
cations in solid state physics (tunnel diode, tunnel electron microscope,
field ion microscope). Tunneling is a quantum mechanical effect. In classical

Figure 4.7. y-function (solid line) and electron wave (dashed line) meeting a finite
potential barrier.
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physics, the electron (particle) would be described to be entirely reflected
back from the barrier (at x = 0) if its kinetic energy is smaller than V5.

*For the complete solution of the behavior of an electron wave that
penetrates a finite potential barrier (Fig. 4.6), some additional boundary
conditions need to be taken into consideration:

(1) The functions y; and yy; are continuous at x = 0. As a consequence,
Y1 = Yy at x = 0. This yields, with (4.29), (4.36), and (4.38),

Ae™ + Be™™ = De™.
With x = 0, we obtain
A+ B=D. (4.40)

(2) The slopes of the wave functions in Regions I and II are continuous at
x =0, ie., (df/dx) = (dyy/dx). This yields

Aice™ — Bioe™™ = —yDe ™", (4.41)

With x = 0, one obtains

Aio — Bio = —yD. (4.42)
Inserting (4.40) into (4.42) yields
D 7
A= (1+ z&) (4.43)
and
_D .Y
B—EO—G) (4.43a)

From this, the y-functions can be expressed in terms of a constant D. Figure
4.8 illustrates the modification of Fig. 4.4(a) when tunneling is taken into
consideration. A penetration of the y-function into the potential barriers is
depicted.

Vo Vo

//\y/
a B
%

Y%\\W€§§

~_"
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[}

-

a X

Figure 4.8. Square well with finite potential barriers. (The zero points on the vertical
axis have been shifted for clarity.)
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4.4. Electron in a Periodic Field of a Crystal
(the Solid State)

In the preceding sections we became acquainted with some special cases,
namely, the completely free electron and the electron which is confined to a
potential well. The goal of this section is to study the behavior of an electron
in a crystal. We will see eventually that the extreme cases which we treated
previously can be derived from this general case.

Our first task is to find a potential distribution that is suitable for a solid.
From high resolution transmission electron microscopy and from X-ray dif-
fraction investigations, it is known that the atoms in a crystal are arranged
periodically. Thus, for the treatment of our problem a periodic repetition of
the potential well of Fig. 4.2, i.e., a periodic arrangement of potential wells
and potential barriers, is probably close to reality and is also best suited for
a calculation. Such a periodic potential is shown in Fig. 4.9 for the one-
dimensional case.*

The potential distribution shows potential wells of length a, which we call
Region I. These wells are separated by potential barriers of height V, and
width b (Region II), where V; is assumed to be larger than the energy E of
the electron.

This model is certainly a coarse simplification of the actual potential dis-
tribution in a crystal. It does not take into consideration that the inner elec-
trons are more strongly bound to the core, i.e., that the potential function of
a point charge varies as 1/r. It also does not consider that the individual
potentials from each lattice site overlap. A potential distribution which takes
these features into consideration is shown in Fig. 4.10. It is immediately evi-
dent, however, that the latter model is less suitable for a simple calculation
than the one which is shown in Fig. 4.9. Thus, we utilize the model shown in
Fig. 4.9.

-0 a —ed e x

Figure 4.9. One-dimensional periodic potential distribution (simplified) (Kronig-
Penney model ).

*R. De. L. Kronig and W.G. Penney, Proc. Roy. Soc. London, 130, 499 (1931).
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R o

nuclei

Surface potential

X

Figure 4.10. One-dimensional periodic potential distribution for a crystal (muffin tin
potential ).

We now write the Schrodinger equation for Regions I and II:

d*y 2m
— L+ —=Ey=0 4.44
1) 2 T BV =0 (4.44)
¥y 2m
(I1) e + re (E - Vo) =0. (4.45)
For abbreviation we write, as before,
2m
o = ?E, (4.46)
and
2m
y? = re (Vo — E). (4.47)

(y? is chosen in a way to keep it from becoming imaginary, see Section 4.3.)
Equations (4.44) and (4.45) need to be solved simultaneously, a task which
can be achieved only with considerable mathematical effort. Bloch® showed
that the solution of this type of equation has the following form:

Y(x) = u(x) - ™ (4.48)

(Bloch function), where u(x) is a periodic function which possesses the peri-
odicity of the lattice in the x-direction. Therefore, u(x) is no longer a con-
stant (amplitude A) as in (4.2), but changes periodically with increasing x
(modulated amplitude). Of course, u(x) is different for various directions in
the crystal lattice.

The reader who is basically interested in the results, and their implications
for the electronic structure of crystals, may skip the mathematical treatment
given below and refer directly to (4.67).

°F. Bloch, Z. Phys. 52, 555 (1928); 59, 208 (1930).
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Differentiating the Bloch function (4.48) twice with respect to x provides
d*y d’u  du )
2 (3—2 2 ik — k ) (4.49)

We insert (4.49) into (4.44) and (4.45) and take into account the abbrevia-
tions (4.46) and (4.47):

4 d

M d—x‘z‘ + 2ikd—z — (k? — o) =0, (4.50)
4 d

(1) d—x‘z‘ + 2ik‘—1£ — (k* +y)u=0. (4.51)

Equations (4.50) and (4.51) have the form of an equation of a damped
vibration. The solution® to (4.50) and (4.51) is

(D) u=e**(4e™ + Be ™), (4.55)
(I1) u = e **(Ce™™ + De’™). (4.56)

We have four constants 4, B, C, and D which we need to dispose of by
means of four boundary conditions: The functions ¥ and dy/dx pass over
continuously from Region I into Region II at the point x = 0. Equation I =
Equation II for x = 0 yields

A+B=C+D. (4.57)
(du/dx) for 1 = (du/dx) for II at x = 0 provides
A(ia — ik) + B(—ia — ik) = C(—y — ik) + D(y — ik). (4.58)

Further, ¢, and therefore u, is continuous at the distance (a + b). This
means that Equation I at x = 0 must be equal to Equation IT at x=a + b,
or, more simply, Equation I at x = a is equal to Equation IT at x = —b (see
Fig. 4.9). This yields

Ae(ia—ik)a + Be(—ia—ik)a — Ce(ik+y)b + De(ik-y)b. (459)

S Differential equation of a damped vibration for spatial periodicity (see Appendix 1)
d*u du

d2+Dd +Cu=0. (4.52)
Solution:
u = e PIAX( 4% 4 Be¥¥), (4.53)
where
2
d=4/C— D— (4.54)
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Finally, (du/dx) is periodic in a + b:
Ai(o — k)e k) _ Bi(o + k)eal*+H)
—C(y + ik)e™ % 4 D(y — ik)el*—)b (4.60)

The constants 4, B, C, and D can be determined by means of these four
equations which, when inserted in (4.55) and (4.56), provide values for u.
This also means that solutions for the function iy can be given by using
(4.48). However, as in the preceding sections, the knowledge of the y func-
tion is not of primary interest. We are searching instead for a condition
which tells us where solutions to the Schrodinger equations (4.44) and (4.45)
exist. We recall that these limiting conditions were leading to the energy
levels in Section 4.2. We proceed here in the same manner. We use the four
equations (4.57)—(4.60) and eliminate the four constants 4—D. (This can be
done by simple algebraic manipulation or by forming the determinant out of
the coefficients A—D and equating this determinant to zero). The lengthy
calculation provides, using some Euler equations,’

2 _ 2

20; sinh(yb) - sin{aa) + cosh(yb) cos(xa) = cosk(a + b). (4.61)

For simplification of the discussion of this equation we make the following
stipulation. The potential barriers in Fig. 4.9 will be of the kind such that b
is very small and V is very large. It is further assumed that the product Vb,
i.e., the area of this potential barrier, remains finite. In other words, if V)
grows, b diminishes accordingly. The product Vyb is called the potential
barrier strength.

If Vy is very large, then E in (4.47) can be considered to be small com-
pared to V, and can therefore be neglected so that

2m
re vV V. (4.62)

Muitiplication of (4.62) by b yields

yb = \/2;'” (Vob)b. (4.63)

Since Vyb has to remain finite (see above) and b — 0 it follows that yb be-

comes very small. For a small yb we obtain (see tables of the hyperbolic
functions)

cosh(yb) ~ 1 and sinh(yb) = yb. (4.64)

7See Appendix 2.
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Finally, one can neglect o> compared to y* and b compared to a (see
(4.46), (4.47), and Fig. 4.9) so that (4.61) reads as follows:

—;% Vobsin aa + cos aa = cos ka. (4.65)
a

With the abbreviation

ma Vob
P= 7 (4.66)
we finally get from (4.65)
PSIZZa + cosaa = coska. (4.67)

This is the desired relation which provides the allowed solutions to the
Schrédinger equations (4.44) and (4.45). We notice that the boundary con-
ditions lead to an equation with trigonometric function similarly as in Sec-
tion 4.2. Therefore, only certain values of « are possible. This in turn means,
because of (4.46), that only certain values for the energy E are defined. One
can assess the situation best if one plots the function P(sinaa/aa) + cosaa
versus aa, which is done in Fig. 4.11 for P = (3/2)x. It is of particular sig-
nificance that the right-hand side of (4.67) allows only certain values of this
function because coska is only defined between +1 and —1 (except for
imaginary k-values). This is shown in Fig. 4.11, in which the allowed values
of the function P(sinaa/xa)+ cosoa are marked by heavy lines on the
oa-axis.

We arrive herewith at the following very important result: Because aa is a
function of the energy, the above-mentioned limitation means that an elec-
tron that moves in a periodically varying potential field can only occupy

Ps‘g—‘t’]‘”wosaa

Figure 4.11. Function P(sinaa/aa) + cosaa versus aa. P was arbitrarily set to be

(3/2)n.
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Figure 4.12. Function P(sin oa/aa) + cosoa with P = n/10.

certain allowed energy zones. Energies outside of these allowed zones or
“bands” are prohibited. One sees from Fig. 4.11 that with increasing values
of aa (i.e., with increasing energy), the disallowed (or forbidden) bands be-
come narrower. The size of the allowed and forbidden energy bands varies
with the variation of P. Below, four special cases will be discussed.

(@)

(b)
()

If the “‘potential barrier strength” Vb (see Fig. 4.9) is large, then, ac-
cording to (4.66), P is also large and the curve in Fig. 4.11 proceeds
more steeply. The allowed bands are narrow.

If the potential barrier strength, and therefore P, is small, the allowed
bands become wider (see Fig. 4.12).

If the potential barrier strength becomes smaller and smaller and finally
disappears completely, P goes toward zero, and one obtains from (4.67)

cosaa = coska (4.68)

or ¢ = k. From this it follows, with (4.46), that
h’k?
E=——.
2m
This is the well-known equation (4.8) for free electrons which we derived
in Section 4.1.
If the potential barrier strength is very large, P approaches infinity.

However, because the left-hand side of (4.67) has to stay within the lim-
its +1, i.e., it has to remain finite, it follows that

sin aa

— U,

xa

i.e., sinaa — 0. This is only possible if aa = nx or

2.2
=27 for n=1,23, ... (4.69)
a
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(a) {b) (©)

Figure 4.13. Allowed energy levels for (a) bound electrons, (b) free electrons, and
(c) electrons 1n a solid.

Combining (4.46) with (4.69) yields

23,2
n°h )

n-,

" 2ma?

which is the result of Section 4.2, equation (4.18).

We summarize (Fig. 4.13): If the electrons are strongly bound, i.e., if the
potential barrier is very large, one obtains sharp energy levels (electron in the
potential field of one ion). If the electron is not bound, one obtains a con-
tinuous energy region (free electrons). If the electron moves in a periodic
potential field, one receives energy bands (solid).

The widening of the energy levels into energy bands and the transition into
a quasi-continuous energy region is shown in Fig. 4.14. This widening occurs
because the atoms increasingly interact as their separation distance de-
creases. The arrows a, b, and c refer to the three sketches of Fig. 4.13.

7
£ 4s
3p
3s
a
b T

Figure 4.14. Widening of the sharp energy levels into bands and finally into a quasi-
continuous energy region with decreasing interatomic distance, a, for a metal (after
calculations of Slater). The quantum numbers are explained in Appendix 3.
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Problems

*4.

. Describe the energy for:

(a) a free electron;

(b) a strongly bound electron; and

(c) an electron in a periodic potential.

Why do we get these different band schemes?

. Computer problem. Plot yny* for an electron in a potential well. Vary » from 1 to

~100. What conclusions can be drawn from these graphs? (Hint: If for large
values for n you see strange periodic structures, then you need to choose more
data points!)

. State the two Schrédinger equations for electrons in a periodic potential field

(Kronig—Penney model). Use for their solutions, instead of the Bloch function,
the trial solution

Y(x) = de™*.
Discuss the result. (Hint: For free electrons ¥y = 0.)

When treating the Kronig-Penney model, we arrived at four equations for the
constants 4, B, C, and D. Confirm (4.61).

. The differential equation for an undamped vibration is

du
aw +bu=0, (D)
whose solution is
u= Ae®™ 4 Be (2)

where

k= /ba. (3)

Prove that (2) is indeed a solution of (1).

. Calculate the “ionization energy” for atomic hydrogen.

. Derive (4.18a) in a semiclassical way by assuming that the centripetal force of

an electron, mv?/r, is counterbalanced by the Coulombic attraction force,
—e? /4neyr?, between the nucleus and the orbiting electron. Use Bohr’s postulate
which states that the angular momentum L = mor (v = linear electron velocity
and r = radius of the orbiting electron) is a multiple integer of Planck’s constant
(i.e., n- h). (Hint: The kinetic energy of the electron is E = imv?.)

. Computer problem. Plot equation (4.67) and vary values for P.

. Computer problem. Plot equation (4.39) for various values for D and y.
10.

The width of the potential well (Fig. 4.2) of an electron can be assumed to be
about 2 A. Calculate the energy of an electron (in Joules and in eV) from this
information for various values of n. Give the zero-point energy.



CHAPTER 5

Energy Bands in Crystals

5.1. One-Dimensional Zone Schemes

We are now in a position to make additional important statements which
contribute considerably to the understanding of the properties of crystals.
For this we plot the energy versus the momentum of the electrons, or, be-
cause of (4.8), versus the wave vector, k. As before, we first discuss the one-
dimensional case.

The relation between E and k. is particularly simple in the case of free
electrons, as can be seen from (4.8),

ky = const. E/2, (5.1)

The plot of E versus k, is a parabola (Fig. 5.1).

We return now to (4.68), which we obtained from (4.67) for P = 0 (free
electrons). Because the cosine function is periodic in 27, (4.68) should be
written in the more general form

cos aa = coskya = cos(kya+ n2n), (5.2)
where n = 0, +1, +2,.... This gives

aa = kea + n2xn. (5.3)
Combining (4.8),

with (5.3) yields

ky a2t [P (5.4)
a %2

36
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0 Ky

Figure 5.1. Electron energy F versus the wave vector k, for free electrons.

We see from (5.4) that in the general case the parabola, shown in Fig. 5.1, is
repeated periodically in intervals of n - 2r/a (Fig. 5.2). The energy is thus a
periodic function of k, with the periodicity 2z /a.

We noted, when discussing Fig. 4.11, that if an electron propagates in a
periodic potential we always observe discontinuities of the energies when
cos kya has a maximum or a minimum, i.e., when cos k,a = +1. This is only
the case when

kya=nn, n=+1,+2, +3,..., (5.5)
or

ki=n-

[N |

(5.6)

At these singularities a deviation from the parabolic £ versus k, curve

bx tx ix 0 I @ 6 &
a o @ a o ¢

Figure 5.2. Periodic repetition of Fig. 5.1 at the points k, = n - 2n/a. The figure
depicts a family of free electron parabolas having a periodicity of +2x/a.
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Figure 5.3. Periodic zone scheme.

occurs and the branches of the individual parabolas merge into the neigh-
boring ones.? This is shown in Fig. 5.3.

The aforementioned consideration leads to a very important result. The
electrons in a crystal behave, for most k, values, like free electrons, except
when k, approaches the value n - n/a.

Besides this “‘periodic zone scheme” (Fig. 5.3), two further zone schemes
are common. In the future we will use mostly the “reduced zone scheme”
(Fig. 5.4), which is a section of Fig. 5.3 between the limits +7/a. In the

81f two energy functions with equal symmetry cross, the quantum mechanical “noncrossing
rule” requires that the eigenfunctions be split, so that they do not cross.

\
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Figure 5.4. Reduced zone scheme. (This is a section of Fig. 5.3 between —n/a and
+n/a.)
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Figure 5.5. Extended zone scheme. The first and second Brillouin zones (BZ) are
shown, see Section 5.2.

“extended zone scheme” (Fig. 5.5), the deviations from the free electron
parabola at the critical points k, = n - n/a are particularly easy to identify.

Occasionally, it is useful to plot free electrons in a reduced zone scheme. In
doing so, one considers the width of the forbidden bands to be reduced until
the energy gap between the individual branches disappears completely. This
leads to the “free electron bands” which are shown in Fig. 5.6 for a special
case. The well-known band character disappears for free electrons, however,
and one obtains a continuous energy region as explained in Section 4.1. As
before, the shape of the individual branches in Fig. 5.6 is due to the 2n/a
periodicity, as a comparison with Fig. 5.2 shows. From (5.4), it follows
that

2 2

2

E:h—<kx+n—”), n=0,+1,+2,.... (5.7)
2m a

By inserting different n-values in (5.7), one can calculate the shape of the

branches of the free electron bands. A few examples might illustrate this:

2

n=90 yieldsE:h—
2m

2 2
n= —1yields £ = h— (kx - gg) (parabola with 375 as origin);
a

k? (parabola with 0 as origin);

2m

n2h?

specifically, for k. = 0 follows E =4 _—;
2ma?
242

and for k, = d follows E = ll—h—.
a 2ma?
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Figure 5.6. “Free electron bands’” plotted in the reduced zone scheme (cubic primi-
tive crystal structure). Compare this figure with the central portion of Fig. 5.2, that is,
with the region from zero to z/a. Note the sameness of the individual bands.

The calculated data are depicted in Fig. 5.6. (The calculation of the remain-
ing branches (bands) is left to the reader, see Problem 5.)

One important question has remained essentially unanswered: What do
these E versus |k| curves really mean? Simply stated, they relate the energy of
an electron to its k-vector, i.e., with its momentum. They provide in principle
quite similar information as, for example, a distance versus time diagram for
a moving car, or a “stress-strain diagram” in mechanical metallurgy, or a
“phase diagram” in materials science. All these diagrams relate in graphic
form one parameter with another variable in order to provide an easier inter-
pretation of data. We shall eventually learn to appreciate complete band
diagrams in later chapters, from which we will draw important conclusions
about the electronic properties of materials.

In Figs. 5.3, 5.4, and 5.5 the individual allowed energy regions and the
disallowed energy regions, called band gaps, are clearly seen. We call the
allowed bands, for the time being, the n-band, or the m-band, and so forth.
In later sections and particularly in semiconductor physics (see Chapter 8) we
will call one of these bands the valence band (because it contains the valence
electrons) and the next higher one the conduction band.

An additional item needs to be mentioned: It is quite common to use the
word “band” for both the allowed energy regions, such as the n-band or the
m-band, as well as for the individual branches within a band as seen, for
example, in Fig. 5.6. As a rule this does not cause any confusion.

Finally, we need to stress one more point: The wave vector k is inversely
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proportional to the wavelength of the electrons (see equation (4.9)). Thus, k
has the unit of a reciprocal length and is therefore defined in ‘“reciprocal
space.” The reader might recall from a course in crystallography that each
crystal structure has two lattices associated with it, one of them being the
crystal (or real) lattice and the other the reciprocal lattice. We will show in
Section 5.5 how these two lattices are related. The following may suffice for
the moment: each lattice plane in real space can be represented by a vector
which is normal to this plane and whose length is made proportional to the
reciprocal of the interplanar distance. The tips of all such vectors from sets
of parallel lattice planes form the points in a reciprocal lattice. An X-ray
diffraction pattern is a map of such a reciprocal lattice.

5.2. One- and Two-Dimensional Brillouin Zones

Let us again inspect Fig. 5.5. We noticed there that the energy versus k,
curve, between the boundaries —n/a and +=n/a, corresponds to the first
electron band, which we arbitrarily labeled as n-band. This region in k-space
between —n/a and +n/a is called the first Brillouin zone (BZ). Accordingly,
the area between 7n/a and 2xn/a, and also between —n/a and —2n/a, which
corresponds to the m-band, is called the second Brillouin zone. In other
words, the lowest band shown in Fig. 5.5 corresponds to the first Brillouin
zone, the next higher band corresponds to the second Brillouin zone, and so
on. Now, we learned above that the individual branches in an extended zone
scheme (Fig. 5.5) are 27/a periodic, i.e., they can be shifted by 2n/a to the
left or to the right. We make use of this concept and shift the branch of the
second Brillouin zone on the positive side of the £ — (k) diagram in Fig. 5.5
by 2n/a to the left, and likewise the left band of the second Brillouin zone
by 2n/a to the right. A reduced zone scheme as shown in Fig. 5.4 is the re-
sult. Actually, we projected the second Brillouin zone into the first Brillouin
zone. The same can be done with the third Brillouin zone, etc. This has
very important implications: we do not need to plot E versus k-curves for
all Brillouin zones; the relevant information is, because of the 2n/a period-
icity, already contained in the first Brillouin zone, i.e., in a reduced zone
scheme.

We now consider the behavior of an electron in the potential of a two-
dimensional lattice. The electron movement in two dimensions can be de-
scribed as before by the wave vector k that has the components k, and k,,
which are parallel to the x- and y-axes in reciprocal space. Points in the
ky — k, coordinate system form a two-dimensional reciprocal lattice (see Fig.
5.7). One obtains, in the two-dimensional case, a two-dimensional field of
allowed energy regions which corresponds to the allowed energy bands, i.e.,
one obtains two-dimensional Brillouin zones.

We shall illustrate the construction of the Brillouin zones for a two-
dimensional reciprocal lattice (Fig. 5.7). For the first zone one constructs the
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Figure 5.7. Four shortest lattice vectors in a k, — k, coordinate system and the
first Brillouin zone in a two-dimensional reciprocal lattice. (Cubic primitive crystal
structure.)

perpendicular bisectors on the shortest lattice vectors, Gi. The area that is
enclosed by these four “Bragg planes” is the first Brillouin zone. For the
following zones the bisectors of the next shortest lattice vectors are con-
structed. It is essential that for the zones of higher order the extended limit-
ing lines of the zones of lower order are used as additional limiting lines. The
first four Brillouin zones are shown in Fig. 5.8. Note that all the zones have

w/a 7

Figure 5.8. The first four Brillouin zones of a two-dimensional, cubic primitive
reciprocal lattice.
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the same area. The first four shortest lattice vectors G, through G, are drawn
in Fig. 5.7.

The significance of the Brillouin zones will become evident in later sec-
tions, when the energy bands of solids are discussed. A few words of expla-
nation will be given here, nevertheless. The Brillouin zones are useful if one
wants to calculate the behavior of an electron which may travel in a specific
direction in reciprocal space. For example, if in a two-dimensional lattice an
electron travels at 45° to the k,-axis, then the boundary of the Brillouin zone
is reached, according to Fig. 5.8, for

Kent = gﬁ. (5.8)

This yields with (4.8) a maximal attainable energy of

K, nPh?

Eyax = E ent — az_m (583)
On the other hand, the boundary of a Brillouin zone is reached at
n
kcm = Z (59)

when an electron moves parallel to the k.- or ky-axes. The largest energy that
electrons can assume in this second case is only

232
Emmax =% <ﬂ> (5.9a)

a’m

Once the maximal energy has been reached, the electron waves form stand-
ing waves (or equivalently, the electrons are reflected back into the Brillouin
zone).

The consequence of (5.8) and (5.9) is an overlapping of energy bands
which can be seen when the bands are drawn in different directions in k-
space (Fig. 5.9). We will learn later that these considerations can be utilized
to determine the difference between metals, semiconductors, and insulators.

*The occurrence of critical energies at which a reflection of the electron
wave takes place can also be illustrated in a completely different way. This
will be done briefly here because of its immediate intuitive power. We con-
sider an electron wave that propagates in a lattice at an angle 6 to a set of
parallel lattice planes (Fig. 5.10). The corresponding rays are diffracted on
the lattice atoms. At a certain angle of incidence, constructive interference
between rays 1’ and 2’ occurs. It has been shown by Bragg that each ray
which is diffracted in this way can be considered as being reflected by a
mirror parallel to the lattice planes. In other words, at a critical angle the
“reflected” rays will be enhanced considerably. This is always the case when
the path difference 2asin @ is an integer multiple of the electron wavelength
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Figure 5.9. Overlapping of allowed energy bands.

A, i.e., when

2asinf = nl, n=1,2,3,... (5.10)

(Bragg relation). With (4.9) one obtains, from (5.10),

2n
2asinf = n—
asinf =n T

and therefore

(5.11)

Figure 5.10. Bragg reflection of an electron wave in a lattice. The angle of incidence
is 6.



5. Energy Bands in Crystals 45

For perpendicular incidence (6 = 0°) equation (5.11) becomes (5.9). On the
other hand, if ¢ = 45°, one obtains (5.8).

Equation (5.11) leads to the result that for increasing electron energies a
critical k-value is finally reached for which “reflection” of the electron wave
at the lattice planes occurs. At this critical k-value the transmission of an
electron beam through the lattice is prevented. Then, the incident and the
Bragg-reflected electron wave form a standing wave.

*5.3. Three-Dimensional Brillouin Zones

In the previous section, the physical significance of the Brillouin zones was
discussed. It was shown that at the boundaries of these zones the electron
waves are Bragg-reflected by the crystal. The wave vector |k| = 27/4 was
seen to have the unit of a reciprocal length and is therefore defined in the
reciprocal lattice. We will now attempt to construct three-dimensional Bril-
louin zones for two important crystal structures, namely, the face-centered
cubic (fcc) and the body-centered cubic (bee) crystals. Since the Brillouin
zones for these structures have some important features in common with the
so-called Wigner—Seitz cells, it is appropriate to discuss, at first, the Wigner—
Seitz cells and also certain features of the reciprocal lattice before we return
to the Brillouin zones at the end of Section 5.5.

*5.4. Wigner—Seitz Cells

Crystals have symmetrical properties. Therefore, a crystal can be described
as an accumulation of “‘unit cells.” In general, the smaller such a unit cell,
1.e., the fewer atoms it contains, the simpler its description. The smallest
possible cell is called a “primitive unit cell.” Frequently, however, a larger,
nonprimitive unit cell is used, which might have the advantage that the
symmetry can be better recognized. Body-centered cubic and face-centered
cubic are characteristic representatives of such “conventional” unit cells.’
The Wigner—Seitz cell is a special type of primitive unit cell that shows
the cubic symmetry of the cubic cells. For its construction, one bisects the
vectors from a given atom to its nearest neighbors and places a plane per-

° A lattice is a regular periodic arrangement of points in space; it is, consequently, a mathemati-
cal abstraction. All crystal structures can be traced to one of the 14 types of Bravais lattices (see
textbooks on crystallography).
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Figure 5.12. Conventional unit cell of the foc structure. In the cell which is marked
black, the atoms are situated on the corners and faces of the cubes. In the white cell,

the atoms are at the centers of the edges and the center of the cell.
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Figure 5.13. Wigner—Seitz cell for the fcc structure. It is constructed from the white
cell which is marked in Fig. 5.12.

*5.5. Translation Vectors and the Reciprocal Lattice

In Fig. 5.14(a) the fundamental vectors t;, t;, t3 are inserted in a unit cell of a
cubic primitive lattice. By combination of these “primitive vectors” a trans-
lation vector,

R = mit) + naty + nats, (5.12)

can be defined. Using this translation vector it is possible to reach, from a
given lattice point, any other equivalent lattice point. For this, the factors
ny, na, n3 have to be integers. In Fig. 5.14(b) the fundamental vectors t;, ty, t3
are shown in a conventional unit cell of a bece lattice.

Similarly, as above, we now introduce for the reciprocal lattice three
vectors, by, by, b3, and a translation vector

G = 27r(h1b1 + hyby + h3b3), (5.13)

where hy, hy, and h; are, again, integers. (The factor 2z is introduced for
convenience. In X-ray crystallography, this factor is omitted.)

The real and reciprocal lattices are related by a definition which states that
the scalar product of the vectors t; and by should be unity, whereas the scalar
products of by and t; or by and t; are zero:

b -t =1, (5.14)
b -t =0, (5.15)
b, -t =0. (5.16)
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Figure 5.14. (a) Fundamental lattice vectors t,t,t; in a cubic primitive lattice. (b)
Fundamental lattice vectors in a conventional (white) and primitive, noncubic unit
cell (black) of a bee lattice. The axes of the primitive (noncubic) unit cell form angles
of 109° 28’

Equivalent equations are defined for b, and b;. These nine equations can be
combined by using the Kronecker-Delta symbol,

by -t = Onm, (5.17)

where oy = 1 for n = m and 6,,, = 0 for n # m. Equation (5.17) is from now
on our definition for the three vectors by, which are reciprocal to the vectors
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Figure 5.15. Plane formed by t, and t; with perpendicular vector b;.

t,,. From (5.15) and (5.16) it follows'? that b, is perpendicular to t; and to t;,
which means that t, and t; form a plane perpendicular to the vector b, (Fig.
5.15). We therefore write'’

b; = const. t; x t3. (5.18)

To evaluate the constant, we form the scalar product of t; and b; (5.18) and
make use of (5.14):

b, -ty =const.t; - t; x t3 = 1. (519)
This yields
1
const. = ————. (5.20)
ti -t Xty

Combining (5.18) with (5.20) gives

p = _2Xb (5.21)
t -t xXt3
Equivalent equations can be obtained for b, and bs:

t;3 Xty
=" 5.22
b2 t -ty x t3, ( )

t; Xt
=" 5.23
b; t -t Xty ( )

Equations (5.21)—(5.23) are the transformation equations which express
the fundamental vectors by, by, and bs of the reciprocal lattice in terms of
real lattice vectors.

19The scalar product of two vectors a and bis a-b = ab cos(ab). If i, j, and 1 are mutually per-
pendicular unit vectors, then we can writei-j=j-l=1-i=0andi-i=j-j=1-1=1.

1 The vector product of two vectors a and b is a vector which stands perpendicular to the plane
formedbyaandb. Itisixi=jxj=Ixl=0andixj=1landjxi= -k
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As an example of how these transformations are performed, we calculate
now the reciprocal lattice of a bee crystal. The real crystal may have the

lattice constant “a.” We express the lattice vectors t;,t;,t3 in terms of the
unit vectors, 1,§,1 in the x, y, z coordinate system (see Fig. 5.14(b)):

t =g(—i +i+1), (5.24)
or, abbreviated,
t =‘—2’(111) (5.25)
and
a . -
t= 5(111), (5.26)
a _
t; = 5(111). (5.27)
To calculate by, using (5.21), we form at first the vector product’?
i 1
a? a? a?
tbxty=—|1 -1 1lj=—(i+j+l1+1-i+j)=—(2§+2I)
4 4 4
1 1 ~1
a? .

and the scalar!?® product

3

3 a
O+1+1)=%. (529

a@ . a
t -t xts ‘—=—4—(—l+]+l) ~(0+§+1D) =7
Combining (5.21) with (5.28) and (5.29) yields

N

Z i+ 1
bi=2— = (j+) (5.30)

or

by =%(011). (5.31)

i
Zaxb= ax ay, a;
be b, b

Ba.b=asbs +ayb, + ab,.
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Figure 5.16. Lattice vectors in reciprocal space of a bce crystal. The primitive vectors
in the reciprocal lattice are (because of (5.13)) larger by a factor of 2x. The lattice
constant of the cube then becomes 2z - 2/a.

Similar calculations yield

b =£(101), (5.32)
b = ‘11(110). (5.33)

In Fig. 5.16, the vectors by, by, b; are inserted into a cube of length 2/a. We
note immediately an important result. The end points of the reciprocal lattice
vectors of a bee crystal are at the center of the edges of a cube. This means
that points of the reciprocal lattice of the bcc structure are identical to the
lattice points in a real lattice of the fcc structure, see Fig. 5.12. Conversely,
the reciprocal lattice points of the fcc structure and the real lattice points of
the bece structure are identical.

In Section 5.2, we constructed two-dimensional Brillouin zones by draw-
ing perpendicular bisectors on the shortest lattice vectors. Similarly, a three-
dimensional Brillouin zone can be obtained by bisecting all lattice vectors b
and placing planes perpendicular on these points. As has been shown in
Section 5.4, this construction is identical for a Wigner—Seitz cell. A com-
parison of the fundamental lattice vectors b and t gives the striking result
that the Wigner—Seitz cell for an fcc crystal (Fig. 5.13) and the first Brillouin
zone for a bec crystal (Fig. 5.17) are identical in shape. The same is true for
the Wigner—Seitz cell for bee and the first Brillouin zone for fce. Thus, a
Brillouin zone can be defined as a Wigner—Seitz cell in the reciprocal lattice.

From (5.31) it can again be seen that the reciprocal lattice vector has the
unit of a reciprocal length.
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Figure 5.17. First Brillouin zone of the bee crystal structure.

*5.6. Free Electron Bands

We mentioned in Section 5.1 that, because of the E(k) periodicity, all infor-
mation pertaining to the electronic properties of materials is contained in the
first Brillouin zone. In other words, the energy E,. for k' outside the first
zone is identical to the energy Ey within the first zone if a suitable translation
vector G can be found so that a wave vector k’ becomes

kK =k+G. (5.34)

We have already used this feature in Section 5.1, where we plotted one-

dimensional energy bands in the form of a reduced zone scheme. We proceed

now to three-dimensional zone pictures. We might correctly expect that the

energy bands are not alike in different directions in k-space. This can be

demonstrated by using the “free electron bands” which we introduced in

Fig. 5.6. We explain the details using the bcc crystal structure as an example.
In three dimensions the equation analogous to (5.7) reads

2

Ey = 2” (k+G)*. (5.35)

m
In Fig. 5.17 three important directions in k-space are inserted into the first
Brillouin zone of a bee lattice. They are the [100] direction from the origin
(T") to point H, the [110] direction from I' to N, and the [111] direction from
I' to P.'* These directions are commonly labeled by the symbols A, X, and
A, respectively. Figure 5.18 depicts the bands, calculated by using (5.35), for

4Directions in unit cells are identified by subtracting the coordinates of the tail from the coor-
dinates of the tip of a distance vector. The set of numbers thus gained is inserted into square
brackets; see textbooks on materials science.
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Figure 5.18. Energy bands of the free electrons for the bce structure. The numbers
given on the branches are the respective 4, values (see the calculation in the text).
Compare to Fig. 5.6. C = h*2n2/ma?, see (5.38).

these distinct directions in k-space. The sequence of the individual subgraphs
is established by convention and can be followed using Fig. 5.17.

We now show how some of these bands are calculated for a simple case.
We select the I' — H direction as an example. We vary the modulus of the
vector kry = k, between 0 and 27/q, the latter being the boundary of the
Brillouin zone (see Fig. 5.16).'* For this direction, (5.35) becomes

n2 [2n 2
= (ZZxi 5.36
E 2m(an+G)’ (5.36)

where x may take values between 0 and 1. To start with, let G be 0. Then
(5.36) reads

2
E= % (E’E) (xi)? = Cx2 (5.37)

a

!5 The attentive reader may have noticed that the boundary of the first Brillouin zone in the k,
direction for the bec lattice is 2z/a, and not n/a as for the cubic primitive unit cell (Fig. 5.6).
This can be convincingly seen by comparing Figures 5.13, 5.16, and 5.17.



54 1. Fundamentals of Electron Theory

(see footnote 10), where

2m\ a ma?

This yields the well-known parabolic E(k)-dependence. The curve which
represents (5.37) is labeled (000) in Fig. 5.18, because /;, A, and A3 in (5.13)
are all zero for G = 0.

Now we let Ay =0, h) = —1, and h3 = 0. Then we obtain, by using (5.13)
and (5.32),

2 2 2.2
c=t (ﬁ) _ 2 (5.38)

G= —%(H—l). (5.39)
Combining (5.36) with (5.38) and (5.39) provides
W 2nx, 2n,, 1 2
E——ﬁ I:Tl—;(l‘i-l)] = C[l(x— 1) —l]
=Cl(x=1)?+1] = C(x* - 2x +2) (5.40)

(see footnote 10), which yields for

x=0—E=2C
and for
x=1-FE=1C.

We obtain the band labeled (010) in Fig. 5.18. Similarly, all bands in
Fig. 5.18 can be calculated by variation of the 4 values and k-directions and
by using (5.35).

The free electron bands are very useful for the following reason: by com-
paring them with the band structures of actual materials, an assessment is
possible if and to what degree the electrons in that material can be consid-
ered to be free.

In Figs. 5.19 and 5.20 the first Brillouin zone and the free electron bands
of the fcc structure are shown.

Figure 5.19. First Brillouin zone of the fcc structure.
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Figure 5.20. Free electron bands of the fcc structure. The letters on the bottom of
the graphs correspond to letters in Fig. 5.19 and indicate specific symmetry points in
k-space.

5.7. Band Structures for Some Metals and
Semiconductors

Those readers who have skipped Sections 5.3 through 5.6 need to familiarize
themselves with the (three-dimensional) first Brillouin zone for the face cen-
tered cubic (fcc) crystal structure (Fig. 5.19). The [100], the [110], and the
[111] directions in k-space are indicated by the letters ' — X, I' — K, and
I' — L, respectively. Other directions in k-space are likewise seen. These
specific symmetry points and directions are selected by convention from a
much large number of possible directions. They sufficiently characterize the
properties of materials as, we will see below.

We inspect now some calculated energy-band structures. They should
resemble the one shown in Fig. 5.4. In the present case, however, they are
depicted for more than one direction in k-space. Additionally, they are dis-
played in the positive k-direction only, similarly as in Figs. 5.6 or 5.20.

We start with the band diagram for aluminum, Fig. 5.21. We recognize
immediately the characteristic parabola-shaped bands in the k(T — X) di-
rection as seen before in Fig. 5.4. Similar parabolic bands can be detected in
the I' — K and the I' — L directions. The band diagram for aluminum looks
quite similar to the free electron bands shown in Fig. 5.20. This suggests that
the electrons in aluminum behave essentially free-electronlike (which is
indeed the case).

We also detect in Fig. 5.21 some band gaps, for example, between the X,
and X; symmetry points, or between W3 and W,. Note, however, that the
individual energy bands overlap in different directions in k-space, so that as
a whole no band gap exists. (This is in marked difference to the band dia-
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Figure 5.21. Energy bands for aluminum. Adapted from B. Segal, Phys. Rev. 124,
1797 (1961). (The meaning of the Fermi energy will be explained in Section 6.1.)

gram of a semiconductor, as we shall see in a moment.) The lower, parabola-
shaped bands are associated with the aluminum 3s electrons (see Appendix
3). These bands are therefore called “3s bands”. The origin of the energy
scale is positioned for convenience in the lower end of this s-band.

Next, we discuss the band structure for copper, Fig. 5.22. We notice in the
lower half of this diagram closely spaced and flat running bands. Calcu-
lations show that these can be attributed to the 3d-bands of copper (see
Appendix 3). They superimpose the 4s-bands (which are heavily marked in
Fig. 5.22). The band which starts at I is, at first, s-electronlike, and becomes
d-electronlike while approaching point X. The first half of this band is
continued at higher energies. It is likewise heavily marked. It can be seen,
therefore, that the d-bands overlap the s-bands. Again, as for aluminum, no
band gap exists if one takes all directions in k-space into consideration.

As a third example, the band structure of silicon is shown (Fig. 5.23). Of
particular interest is the area between 0 and approximately 1 eV in which no
energy bands are shown. This “energy gap,” which is responsible for the
well-known semiconductor properties, will be the subject of detailed discus-
sion in a later chapter. For semiconductors, the zero point of the energy scale
is placed at the bottom of this energy gap, even though other conventions are
possible and in use.

Finally, the band structure of gallium arsenide is shown in Fig. 5.24. The
so-called III-V semiconductor compounds, such as GaAs, are of great
technical importance for optoelectronic devices, as we will discuss in later
sections. They have essentially the same crystal structure and the same total
number of valence electrons as the element silicon. Again, a band gap is
clearly seen.
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Figure 5.22. Band structure of copper (fcc). Adapted from B. Segal, Phys. Rev. 125,
109 (1962). The calculation was made using the /-dependent potential. (For the defi-
nition of the Fermi energy, see Section 6.1.)

| Band Gap

Figure 5.23. Calculated energy band structure of silicon (diamond-cubic crystal
structure). Adapted from M.L. Cohen and T.K. Bergstresser, Phys. Rev. 14, 789
(1966). See also J.R. Chelikowsky and M.L. Cohen, Phys. Rev. B14, 556 (1976).
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Figure 5.24. Calculated energy band structure of GaAs. Adapted from F. Herman
and W_.E. Spicer, Phys. Rev. 174, 906 (1968).

It should be mentioned, in closing, that the band structures of actual solids,
as shown in Figs. 5.21-5.24, are the result of extensive, computer-aided cal-
culations, and that various investigators using different starting potentials
arrive at slightly different band structures. Experimental investigations, such
as measurements of the frequency dependence of the optical properties, can

help determine which of the various calculated band structures are closest to
reality.

5.8. Curves and Planes of Equal Energy

We conclude this chapter by discussing another interesting aspect of the
energy versus wave vector relationship.

In one-dimensional k-“space” there is only one (positive) k-value which is
connected with a given energy (see Fig. 5.1). In the two-dimensional case,
i.e., when we plot the electron energy over a k. — k, plane, more than one k-
value can be assigned to a given energy. This leads to curves of equal energy,
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Figure 5.25. Electron energy E versus wave vector k (two-dimensional). This figure
demonstrates various curves of equal energy for free electrons.

as shown in Fig. 5.25. For a two-dimensional square lattice and for small
electron energies, the curves of equal energy are circles. However, if the
energy of the electrons is approaching the energy of the boundary of a Bril-
louin zone, then a deviation from the circular form is known to occur. This is
shown in Fig. 5.26, where curves of equal energy for a two-dimensional
square lattice are inserted into the first Brillouin zone. It is of particular
interest that the energy which belongs to point K in Fig. 5.26 is larger than
the energy which belongs to point X (see (5.8a) and (5.9a)). Consequently,
the curves of equal energy for the first Brillouin zone may extend into the
second zone. This leads to an overlapping of energy bands as schematically

(]

/. ﬁs\” )
G

Figure 5.26. Curves of equal energy inserted into the first Brillouin zone for a two-
dimensional square lattice.
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Figure 5.27. A particular surface of equal energy (Fermi surface, see Section 6.1) and
the first Brillouin zone for copper. Adapted from A.B. Pippard, Phil. Trans. Roy.
Soc. London, A 250, 325 (1957).

shown in Fig. 5.9, and in the band structures of Figs. 5.21-5.24. For copper
and aluminum the band overlapping leads to quasi-continuous allowed en-
ergies (in different directions of k-space). For semiconductors the band
overlapping is not complete, which results in the already-mentioned energy
gap (Figs. 5.23 and 5.24).

In three-dimensional k-space one obtains surfaces of equal energy. For the
free electron case and for a cubic lattice they are spheres. For a nonparabolic
E-(k) behavior these surfaces become more involved. This is demonstrated in
Fig. 5.27 for a special case.

Problems

1. What is the energy difference between the points L3 and L; (upper) in the band
diagram for copper?

2. How large is the “gap energy” for silicon? (Hint: Consult the band diagram for
silicon.)

3. Calculate how much the kinetic energy of a free electron at the corner of the first
Brillouin zone of a simple cubic lattice (three dimensions!) is larger than that of an
electron at the midpoint of the face.

4. Construct the first four Brillouin zones for a simple cubic lattice in two dimensions.

S. Calculate the shape of the free electron bands for the cubic primitive crystal
structure for n = 1 and n = -2 (see Fig. 5.6).
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. Calculate the free energy bands for a bece structure in the k,-direction having the
following values for A;/hy/h3: (a) 111; (b) 001; and (c) 010. Plot the bands in k-
space. Compare with Fig. 5.18.

. Calculate the main lattice vectors in reciprocal space of an fec crystal.

. Calculate the bands for the bee structure in the 110 [I” — N] direction for: (a) (000);
(b) (010); and (c) (111).

. If by - t; = 1 s given (see equation (5.14)), does this mean that b, is parallel to ;7



CHAPTER 6

Electrons in a Crystal

In the preceding chapters we considered essentially only one electron, which
was confined to the field of the atoms of a solid. This electron was in most
cases an outer, i.e., a valence, electron. However, in a solid of one cubic
centimeter at least 1022 valence electrons can be found. In this section we
shall describe how these electrons are distributed among the available energy
levels. It is impossible to calculate the exact place and the kinetic energy of
each individual electron. We will see, however, that probability statements
nevertheless give meaningful results.

6.1. Fermi Energy and Fermi Surface

The Fermi energy, Er, is an important part of an electron band diagram.
Many of the electronic properties of materials, such as optical, electrical, or
magnetic properties, are related to the location of Er within a band.

The Fermi energy is often defined as the “highest energy that the electrons
assume at 7 = 0 K.” This can be compared to a vessel, like a cup, (the
electron band) into which a certain amount of water (electrons) is poured.
The top surface of the water contained in this vessel can be compared to the
Fermi energy. The more electrons are “poured” into the vessel, the higher
the Fermi energy. The Fermi energies for aluminum and copper are shown
in Figs. 5.21 and 5.22. Numerical values for the Fermi energies for some
materials are given in Appendix 4. They range typically from 2 eV to 12 eV.

The above-stated definition, even though convenient, can occasionally be
misleading, particularly when dealing with semiconductors. Therefore, a
more accurate definition of the Fermi energy will be given in Section 6.2. We
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will see there that at the Fermi energy the Fermi function, F(E), equals 1. An
equation for the Fermi energy is given in (6.11).

In three-dimensional k-space the one-dimensional Fermi energy is replaced
by a Fermi surface. The energy surface shown in Fig. 5.27 is the Fermi sur-
face for copper.

6.2. Fermi Distribution Function

The distribution of the energies of a large number of particles and its change
with temperature can be calculated by means of statistical considerations.
The kinetic energy of an electron gas is governed by Fermi-Dirac statistics,
which states that the probability that a certain energy level is occupied by
electrons is given by the Fermi function, F(E),

1
E - Er '
exp( kol > +1
If an energy level E is completely occupied by electrons, the Fermi distri-
bution function F(E) equals 1 (certainty); for an empty energy level one
obtains F(E) = 0. Ef is the Fermi energy which we introduced in Section
6.1, ky is the Boltzmann constant, and T is the absolute temperature. In Fig.
6.1, the Fermi function is plotted versus the energy for 7 = 0 by using (6.1).
One sees from this figure that at 7' = 0 all levels that have an energy smaller
than Efg are completely filled with electrons, whereas higher energy states are
empty.
The Fermi distribution function for higher temperatures (7" # 0) is shown
in Fig. 6.2. It is noticed there that F(E) varies around Er in a gradual

manner and not by a step as for 7 = 0. To characterize this behavior, one
says that F(E) is “smeared out,” 1.e., it is extended to an energy interval

F(E) = (6.1)

£}

L. T=0

0 | F(E)

Figure 6.1. Fermi distribution function, F(E), versus energy, E, for T = 0.
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Figure 6.2. Fermi distribution function for 7 # 0.

2AE. This decrease in F(E) with increasing energy is heavily exaggerated in
Fig. 6.2. AE at room temperature is in reality only about 1% of Ef.

At high energies (E >» Eg) the upper end of the Fermi distribution func-
tion can be approximated by the classical (Boltzmann) distribution function.
This is best seen from (6.1) in which for large energies the exponential factor
becomes significantly larger than 1. Then, F(E) is approximately

F(E) ~ exp [— (E k; fp)] (6.1a)

Equation (6.1a) is known to be the Boltzmann factor, which gives, in classi-
cal thermodynamics, the probability that a given energy state is occupied.
The F(E) curve for high energies is thus referred to as the “Boltzmann tail”
of the Fermi distribution function.

Of particular interest is the value of the Fermi function F(E) at E = Eg
and T # 0. As can be seen from (6.1) and Fig. 6.2, F(E) is in this particular
case 1. This serves as a definition for the Fermi energy, as outlined in Section
6.1.

6.3. Density of States

We are now interested in the question of how energy levels are distributed
over a band. We restrict our discussion for the moment to the lower part of
the valence band (the 4s-band in copper, for example) because there the
electrons can be considered to be essentially free due to their weak binding
force to the nucleus. We assume that the free electrons (or the “electron
gas”) are confined in a square potential well from which they cannot escape.
The dimensions of this potential well are thought to be identical to the
dimensions of the crystal under consideration. Then our problem is similar
to the case of one electron in a potential well of size a, which we treated in



6 Electrons in a Crystal 65

Figure 6.3. Representation of an energy state in quantum number space.

Section 4.2. By using the appropriate boundary conditions, the solution of
the Schrodinger equation yields an equation that has the same form as
(4.26),

2k’

E, = I (n? + nﬁ + nzz), (6.2)
where n,,n,, and n; are the principal quantum numbers and a is now the
length, etc., of the crystal. Now we pick an arbitrary set of quantum numbers
ny,ny, 1. To each such set we can find a specific energy level E,, frequently
called “‘energy state.” An energy state can therefore be represented by a
point in quantum number space (Fig. 6.3). In this space, » is the radius from
the origin of the coordinate system to a point (ny,n,,n;) where

n’=n2+ nﬁ +n. (6.3)
Equal values of the energy E, lie on the surface of a sphere with radius n. All
points within the sphere therefore represent quantum states with energies
smaller than E,. The number of quantum states, #, with an energy equal to
or smaller than E, is proportional to the volume of the sphere. Since the
quantum numbers are positive integers, the n-values can only be defined in
the positive octant of the n-space. One-eighth of the volume of the sphere
with radius n therefore gives the number of energy states, #, the energy of
which is equal to or smaller than E,. Thus, with (6.2) and (6.3), we obtain

7 (2ma? 3/2
_1.4_,3_T 3/2
n=g 3 =g <n2h2) E>-. (6.4)

Differentiation of # with respect to the energy E provides the number of
energy states per unit energy in the energy interval dE, i.e., the density of the
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EA

Z(E)

Figure 6.4. Density of states Z(E) within a band. The electrons in this band are
considered to be free.

energy states, briefly called density of states, Z(E):

dn n (2ma*\" iV (2m 3/2 12
d—E_Z(E)—Z<n2h2) E ‘W(?) E (6.5)

(a® is the volume, ¥, that the electrons can occupy).

The density of states plotted versus the energy gives, according to (6.5), a
parabola. Figure 6.4 shows that at the lower end of the band considerably
fewer energy levels (per unit energy) are available than at higher energies.
One can compare the density of states concept with a high-rise apartment
building in which the number of apartments per unit height (e.g., 8 feet) is
counted. To stay within this analogy, only a very few apartments are thought
to be available on the ground level. However, with increasing height of the
building, the number of apartments per unit height becomes larger.

The area within the curve in Fig. 6.4 is, by definition, the number of states
that have an energy equal to or smaller than E,. Therefore, one obtains, for
an area element dy,

dn=Z(E)-dE, (6.6)
as can be seen from (6.5) and Fig. 6.4.

6.4. Population Density

The number of electrons per unit energy, N(E), within an energy interval dE
can be calculated by multiplying the number of possible energy levels, Z(E),
by the probability for the occupation of these energy levels. We have to note,
however, that because of the Pauli principle, cach energy state can be occu-
pied by one electron of positive spin and one of negative spin,'® i.e., each

16See Appendix 3
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energy state can be occupied by two electrons. Therefore,

N(E)=2-Z(E)-F(E) (6.7)
or, with (6.1) and (6.5),
vV [2m\/? 1
N(E) =3 (h—’;’> BV o . (6.8)
€Xp <—7(_BT) + 1

N(E) is called the (electron) population density. We see immediately that for
T — 0 and E < Ef, the function N(E) equals 2 - Z(E) because F(E) is unity
in this case. For T # 0 and E ~ Ef, the Fermi distribution function (6.1)
causes a smearing out of N(E) (Fig. 6.5).

The area within the curve in Fig. 6.5 represents the number of electrons,
N*, that have an energy equal to or smaller than the energy E,. For an energy
interval between FE and E + dE, one obtains

dN* = N(E) dE. (6.9)

We are now in a position to calculate the Fermi energy by making use of
(6.8) and (6.9). We consider the simple case T — 0 and E < Ef, which yields
F(E) = 1. Integration from the lower end of the band to the Fermi energy,
Eg, provides

Er Ey (amV* vV 2mV/?
- = () grae= () EXR (61
N L N(E)dE L an(h2> E?dE 3n2<h2) 22 (6.10)

Rearranging (6.10) yields

\2/3 hz
EF:<3n2A;> s (6.11)
EA\
T=0
& <7

dE} T#0

ME)

Figure 6.5. Population density N(E) within a band for free electrons. dN* is the
number of electrons in the energy interval dE.
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We define N’ = N*/V as the number of electrons per unit volume. Then we
obtain

_ 2a7132/3 hz
Er = (37°N") o (6.11a)
It should be noted that N* was calculated for simplicity for 7 — 0 and
E < Eg. This does not limit the applicability of (6.11), however, since the
number of electrons does not change when the temperature is increased. In
other words, integrating from zero to infinity and using T # 0 would yield
essentially the same result as above.

6.5. Complete Density of States Function Within a
Band

We have seen in Section 6.3 that for the free electron case the density of
states has a parabolic E versus Z(E) relationship. In actual crystals, how-
ever, the density of states is modified by the energy conditions within the
first Brillouin zone. Let us consider, for example, the curves of equal energy
depicted in Fig. 5.26. For low energies, the equal energy curves are circles.
Thus, the electrons behave free-electronlike for these low energies. The den-
sity of states curve is then, as before, a parabola. For larger energies, how-
ever, fewer energy states are available, as is seen in Fig. 5.26. Thus, Z(E)
decreases with increasing E, until eventually the corners of the Brillouin
zones are filled. At this point Z(F) has dropped to zero. The largest number
of energy states is thus found near the center of a band, as shown schemati-
cally in Fig. 6.6.

o Z(E)

Figure 6.6. Schematic representation of the complete density of states function
within a band.
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6.6. Consequences of the Band Model

We mentioned in Section 6.4 that, because of the Pauli principle, each s-band
of a crystal, consisting of N atoms, has space for 2N electrons, i.e., for two
electrons per atom. If the highest filled s-band of a crystal is occupied by two
electrons per atom, i.e., if the band is completely filled, we would expect that
the electrons cannot drift through the crystal when an external electric field is
applied (as it is similarly impossible to move a car in a completely occupied
parking lot). An electron has to absorb energy in order to move. Keep in mind
that for a completely occupied band higher energy states are not allowed.
(We exclude the possibility of electron jumps into higher bands.) Solids in
which the highest filled band is completely occupied by electrons are, there-
fore, insulators (Fig. 6.7(a)).

In solids with one valence electron per atom (e.g., alkali metals) the valence
band is essentially half-filled. An electron drift upon application of an external
field is possible; the crystal shows metallic behavior (Fig. 6.7(b)).

Bivalent metals should be insulators according to this consideration, which
is not the case. The reason for this lies in the fact that the upper bands par-
tially overlap, which occurs due to the weak binding forces of the valence
electrons on their atomic nuclei (see Fig. 5.9). If such an overlapping of
bands occurs, the valence electrons flow in the lower portion of the next
higher band, because the electrons tend to assume the lowest potential en-
ergy (Fig. 6.7(c)). As a result, bivalent solids may also possess partially filled
bands. Thus, they are also conductors.

We shall see in Chapter 8 that the valence as well as the conduction bands
of semiconductors can accommodate 4N electrons. Because germanium and
silicon possess four valence electrons, the valence band is completely filled
with electrons. Intrinsic semiconductors have a relatively narrow forbidden
energy zone (Fig. 6.7(d)). A sufficiently large energy can, therefore, excite

55eV

L

F ‘7
=Z Er= /
_ —__ 3’% %
0 b c d
Diamond Alkali Metal Magnesium Germanium

Figure 6.7. Simplified representation for energy bands for (a) insulators, (b) alkali
metals, (c) bivalent metals, and (d) intrinsic semiconductors.
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electrons from the completely filled valence band into the empty conduction
band and thus provide some electron conduction.

This preliminary and very qualitative discussion on electronic conduction
will be expanded substantially and the understanding will be deepened in
Part II of this book.

6.7. Effective Mass

We implied in the previous sections that the mass of an electron in a solid is
the same as the mass of a free electron. Experimentally determined physical
properties of solids, such as optical, thermal, or electrical properties, indi-
cate, however, that for some solids the mass is larger while for others it is
slightly smaller than the free electron mass. This experimentally determined
electron mass is usually called the effective mass, m*. The deviation of m*
from the free electron mass'’ myg can be easily appreciated by stating the
ratio m* /myg, which has values slightly above or below 1 (see Appendix 4).
The cause for the deviation of the effective mass from the free electron mass
is usually attributed to interactions between the drifting electrons and the
atoms in a crystal. For example, an electron which is accelerated in an elec-
tric field might be slowed down slightly because of “collisions” with some
atoms. The ratio m*/my is then larger than 1. On the other hand, the elec-
tron wave in another crystal might have just the right phase in order that the
response to an external electric field is enhanced. In this case, m*/my is
smaller than 1.

We shall now attempt to find an expression for the effective mass. For this,
we shall compare the acceleration of an electron in an electric field calculated
by classical as well as by quantum mechanical means. At first, we write an
expression for the velocity of an electron in an energy band. We introduced
in Chapter 2 the group velocity, i.e., the velocity with which a wave packet
moves. Let w be the angular frequency and |k| = 27/4 the wave number of
the electron wave. Then, the group velocity is, according to (2.10),

_dw d(Q2nv) d(2nE/h) 1dE
BTA T T T dk Rk (6.12)
From this we calculate the acceleration
dvg 1d’Edk
T dt  hdk? i (6.13)

The relation between the energy E and the wave number [k| is known from
the preceding sections. We now want to determine the factor dk/dt. Forming

'7We shall use the symbol m, only when we need to distinguish the free electron (rest) mass
from the effective mass.
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the first derivative of (4.7) (p = Ak) with respect to time yields

dp . dk
S =h (6.14)

Combining (6.14) with (6.13) yields
_1d’Edp 1 d*E d(mv) 1d%E

T Ad R Al a —Rael (6.15)

where F is the force on the electron. The classical acceleration can be calcu-
lated from Newton’s law (1.1)

F
Comparing (6.15) with (6.16) yields the effective mass
d*E\”'
x _ 32

We see from (6.17) that the effective mass is inversely proportional to the
curvature of an electron band. Specifically, if the curvature of E = f(k) at a
given point in k-space is large, then the effective mass is small (and vice
versa). When inspecting band structures (Fig. 5.4 or Figs. 5.21-5.24) we
notice some regions of high curvature. These regions might be found, par-
ticularly, near the center or near the boundary of a Brillouin zone. At these
places, the effective mass is substantially reduced and may be as low as 1% of
the free electron mass mg. At points in k-space for which more than one
electron band is found (I'-point in Fig. 5.23, for example) more than one
effective mass needs to be defined.

We shall demonstrate the k-dependence of the effective mass for a simple
case and defer discussions about actual cases to Section 8.4. In Fig. 6.8(a) an
ideal electron band within the first Brillouin zone is depicted. From this
curve, both the first derivative and the reciprocal function of the second de-
rivative, i.e., m*, have been calculated. These functions are shown in Fig.
6.8(b) and (c). We notice in Fig. 6.8(c) that the effective mass of the electrons
is small and positive near the center of the Brillouin zone and eventually in-
creases for larger values of k.. We likewise observe in Fig. 6.8(c) that elec-
trons in the upper part of the given band have a negative effective mass. A
negative mass means that the “particle” under consideration travels in the
opposite direction to an applied electric force (and opposite to an electron.)
An electron with a negative effective mass is called a ““defect electron™ or
an “electron hole.” (It is, however, common to ascribe to the hole a positive
effective mass and a positive charge instead of a negative mass and a negative
charge.) Electron holes play an important role in crystals whose valence
bands are almost filled, e.g., in semiconductors. Solids which possess differ-
ent properties in various directions (anisotropy) have a different m* in each
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Figure 6.8. (a) Simple band structure, as shown in Fig. 5.4. (b) First derivative and
(c) inverse function of the second derivative of the curve shown in (a).

direction. The effective mass is a tensor in this case. An electron/hole pair is
called an “exciton.”

6.8. Conclusion

The first part of this book is intended to provide the reader with the neces-
sary tools for a better understanding of the electronic properties of materials.
We started our discussion by solving the Schrédinger equation for the free
electron case, the bound electron case, and for electrons in a crystal. We
learned that the distinct energy levels which are characteristic for isolated
atoms widen into energy bands when the atoms are moved closer together
and eventually form a solid. We also learned that the electron bands have
“fine structure,” i.e., they consist of individual “branches” in an energy
versus momentum (actually k) diagram. We further learned that some of
these energy bands are filled by electrons, and that the degree of this filling
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depends upon whether we consider a metal, a semiconductor, or an insula-
tor. Finally, the degree to which electron energy levels are available within a
band was found to be nonuniform. We discovered that the density of states is
largest near the center of an electron band. All these relatively unfamiliar
concepts will become more transparent to the reader when we apply them in
the chapters to come.

Problems

10.

11.

. What velocity has an electron near the Fermi surface of silver? (Er = 5.5 eV).

. Are there more electrons on the bottom or in the middle of the valence band of a

metal? Explain.

. At what temperature can we expect a 10% probability that electrons in silver

have an energy which is 1% above the Fermi energy? (Er = 5.5 eV).

. Calculate the Fermi energy for silver assuming 6.1 x 10?2 free electrons per cubic

centimeter. (Assume the effective mass equals the free electron mass.)

. Calculate the density of states of 1 m? of copper at the Fermi level

(m* = my, Erp = 7 V). Note: Take 1 eV as energy interval. (Why?)

The density of states at the Fermi level (7 eV) was calculated for 1 em? of a cer-
tain metal to be about 102! energy states per electron volt. Someone is asked to
calculate the number of electrons for this metal using the Fermi energy as the
maximum kinetic energy which the electrons have. He argues that because of the
Pauli principle, each energy state is occupied by two electrons. Consequently,
there are 2 x 10%! electrons in that band.

(a) What is wrong with that argument?

(b} Why is the answer, after all, not too far from the correct numerical value?

. Assuming the electrons to be free, calculate the total number of states below

E =5e¢eVin a volume of 10~° m?,

. (a) Calculate the number of free electrons per cubic centimeter in copper, assum-

ing that the maximum energy of these electrons equals the Fermi energy
(m* = my).

(b) How does this result compare with that determined directly from the density
and the atomic mass of copper? Hint: Consider equation (7.5)

(c) How can we correct for the discrepancy?

(d) Does using the effective mass decrease the discrepancy?

What fraction of the 3s-electrons of sodium is found within an energy kg T below
the Fermi level? (Take room temperature, i.e., T = 300 K.)

Calculate the Fermi distribution function for a metal at the Fermi level for
T #0.

Explain why, in a simple model, a bivalent material could be considered to be an
insulator. Also explain why this simple argument is not true.
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12. We stated in the text that the Fermi distribution function can be approximated
by classical Boltzmann statistics if the exponential factor in the Fermi distribu-
tion function is significantly larger than one.

(a) Calculate E — Ep = nkgT for various values of # and state at which value

for n,
ex E— Ef
P\ haT

can be considered to be “significantly larger” than 1 (assume T = 300 K).
(Hint: Calculate the error in F(E) for neglecting “1” in the denominator.)

(b) For what energy can we use Boltzmann statistics? (Assume Er = 5 eV and
E — Erp = 4kgT.)
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PART II

ELECTRICAL PROPERTIES
OF MATERIALS



CHAPTER 7

Electrical Conduction in
Metals and Alloys

7.1. Introduction

The first observations involving electrical phenomena probably began with
the study of static electricity. Thales of Miletus, a Greek philosopher, dis-
covered around 600 BC that a piece of amber, having been rubbed with a
piece of cloth, attracted feathers and other light particles. Very appropri-
ately, the word electricity was later coined by incorporating the Greek word
elektron, which means amber.

It was apparently not before 2300 years later that man became again in-
terested in electrical phenomena. Stephen Gray found in the early 1700s that
some substances conduct electricity whereas others do not. In 1733 DuFay
postulated the existence of two types of electricity, which he termed glass
electricity and amber electricity dependent on which material was rubbed.
From then on a constant stream of well-known scientists contributed to our
knowledge of electrical phenomena. Names such as Coulomb, Galvani,
Volta, Oersted, Ampére, Ohm, Seebeck, Faraday, Henry, Maxwell, Thom-
son, and others, come to mind. What started 2600 years ago as a mysterious
effect has been applied quite recently in an impressive technology that cul-
minated in large-scale integration of electronic devices.

A satisfactory understanding of electrical phenomena on an atomistic basis
was achieved by Drude at the turn of the twentieth century. A few decades
later quantum mechanics refined our understanding. Both, the classical as
well as the quantum concepts of electrical phenomena will be covered in the
chapters to come. Special emphasis is placed on the description of important
applications.
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7.2. Survey

One of the principal characteristics of materials is their ability (or lack of
ability) to conduct electrical current. Indeed, materials are classified by this
property, that is, they are divided into conductors, semiconductors, and
nonconductors. (The latter are often called insulators or dielectrics.) The
conductivity, ¢, of different materials at room temperature spans more than
25 orders of magnitude, as depicted in Figure 7.1. Moreover, if one takes the
conductivity of superconductors, measured at low temperatures, into con-
sideration, this span extends to 40 orders of magnitude (using an estimated
conductivity for superconductors of about 102° 1/Q cm). This is the largest
known variation in a physical property and is only comparable to the ratio
between the diameter of the universe (about 102 m) and the radius of an
electron (10714 m).

It is generally accepted that in metals and alloys the electrons, particularly
the outer or valence electrons, play an important role in electrical conduc-
tion. Therefore, it seems most appropriate to make use of the electron theory
that has been developed in the foregoing chapters. Before doing so, the
reader is reminded of some fundamental equations of physics pertaining to
electrical conduction. These laws have been extracted from expertmental
observations. Ohm’s law,

V =RI, (7.1)

relates the potential difference, V' (in volts), with the electrical resistance, R
(in ohms i.e. Q), and the electrical current, I (in amps). Another form of
Ohm’s law,

j=0¢, (7.2)
links current density,
R |
J= Za (723)
$i0,
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Figure 7.1. Room-temperature conductivity of various materials. (Superconductors,
having conductivities many orders of magnitude larger than copper, near 0 K, are not
shown. The conductivity of semiconductors varies substantially with temperature and
purity.) It is customary in engineering to use the centimeter as unit of length rather
than the meter. We follow this practice.
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i.e., the current per unit area (4/cm?), with conductivity, ¢ (1/Q cm), and
electric field strength’,

|4
& =— 7.3
- (73)
(V/em). (In general, & and j are vectors. For our purpose, however, we need
only their moduli.) The current density is frequently expressed by

Jj = Nuve, (7.4)

where N is the number of electrons (per unit volume), v their velocity, and e
their charge. The resistance of a conductor can be calculated from its physi-
cal dimensions by

_L
==
where L is the length of the conductor, A is its cross-sectional area, and p is
the specific resistance, or resistivity (Q2 cm). We define

1

R (7.4a)

The reciprocal of the ohm () is defined to be 1 siemens (S); see Appendix 4.

We discussed in Chapter 2 the existence of two alternatives to describe an
electron. First, we may consider the electrons to have a particle nature. If
this model is utilized, one can explain the resistance by means of collisions
of the drifting electrons with certain lattice atoms. The more collisions are
encountered, the higher is the resistance. This concept qualitatively describes
the increase in resistance with an increasing amount of lattice imperfections.
It also explains the observed increase in resistance with increasing tempera-
ture: the thermal energy causes the lattice atoms to oscillate about their
equilibrium positions (see Part V), thus increasing the probability for colli-
sions with the drifting electrons.

Second, one may consider the electrons to have a wave nature. The matter
waves may be thought to be scattered by lattice atoms. Scattering is the dis-
sipation of radiation on small particles in all directions. The atoms absorb
the energy of an incoming wave and thus become oscillators. These oscilla-
tors in turn re-emit the energy in the form of spherical waves. If two or more
atoms are involved, the phase relationship between the individual re-emitted
waves has to be taken into consideration. A calculation? shows that for a
periodic crystal structure the individual waves in the forward direction are in
phase, and thus interfere constructively. As a result, a wave which prop-
agates through an ideal crystal (having periodically arranged atoms) does

!'We use for the electric field strength a script & to distinguish it from the energy.
2L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York (1953).
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not suffer any change in intensity or direction. In other words, the electron
wave passes without hindrance through an ideal crystal. (Only its velocity is
modified.) This mechanism is called coherent scattering.

If, however, the scattering centers are not periodically arranged (impurity
atoms, vacancies, grain boundaries, thermal vibration of atoms, etc.) the
scattered waves have no set phase relationship and the wave is said to be
incoherently scattered. The energy of incoherently scattered waves is smaller
in the forward direction, that is, the matter wave loses energy. This energy
loss qualitatively explains the resistance. The wave picture provides, there-
fore, a deeper understanding of the electrical resistance in metals and alloys.
In the following two sections we shall calculate the resistance or equiv-
alently, the electrical conduction, using, at first, the particle and then the
wave concept.

7.3. Conductivity—Classical Electron Theory

Our first approach towards an understanding of electrical conduction is to
postulate, as Drude did, a free “electron gas” or “plasma,” consisting of the
valence electrons of the individual atoms in a crystal. We assume that in a
monovalent metal, such as sodium, each atom contributes one electron to
this plasma. The number of atoms, N,, per cubic centimeter (and therefore
the number of free electrons in a monovalent metal) can be obtained by
applying

Noo
M b
where Ny is the Avogadro constant, § the density, and M the atomic mass of
the element. One calculates about 10%? to 102* atoms per cubic centimeter,
i.e., 1022 to 10? free electrons per cm? for a monovalent metal.

The electrons move randomly (in all possible directions) so that their in-
dividual velocities in the absence of an electric field cancel and no net ve-
locity results. This situation changes when an electric field is applied. The
electrons are then accelerated with a force e towards the anode and a net
drift of the electrons results, which can be expressed by a form of Newton’s
law (F = ma)

Na = (7.5)

dv

"

where e is the charge of the electrons and m is their mass. Equation (7.6)
implies that as long as an electric field persists, the electrons are constantly
accelerated. Equation (7.6) also suggests that after the field has been re-
moved, the electrons keep drifting with constant velocity through the crystal.
This is generally not observed, however, except for some materials at very

= eé, (7.6)
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Figure 7.2. (a) Schematic representation of an electron path through a conductor
(containing vacancies, impurity atoms, and a grain boundary) under the influence of
an electric field. This classical model does not completely describe-the resistance in
materials. (b) Velocity distribution of electrons due to an electrostatic force and a
counteracting friction force. The electron eventually reaches the final velocity vf.

low temperatures (superconductors). The free electron model needs, there-
fore, an adjustment to take into account the electrical resistance.

An electron, accelerated by an electric field, may be described to increase
its drift velocity until it encounters a collision. At this time, the electron has
acquired the drift velocity vmax which it may lose, all or in part, at the colli-
sion (Fig. 7.2(a)). Alternatively, and more appropriately, one may describe
an electron motion to be counteracted by a “friction” force yv which opposes
the electrostatic force e4. We postulate that the resistance in metals and
alloys is due to interactions of the drifting electrons with some lattice atoms,
i.e., essentially with the imperfections in the crystal lattice (such as impurity
atoms, vacancies, grain boundaries, dislocations, etc.). Thus, (7.6) is modi-
fied as follows:

m% + yv = eé, (71.7)
where y is a constant. The second term in (7.7) is a damping or friction force
which contains the drift velocity, », of the electrons. The electrons are
thought to be accelerated until a final drift velocity v is reached (see Fig.
7.2(b)). At that time the electric field force and the friction force are equal in
magnitude. In other words, the electrons are thought to move in a “‘viscous”
medium.

For the steady state case (v = vr) we obtain dv/dt = 0. Then (7.7) reduces
to

Yo = eé, (7.8)
which yields
_es

y = o (7.9)
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We insert (7.9) into (7.7) and obtain the complete equation for the drifting
electrons under the influence of an electric field force and a friction force:

m—+;—v=e<§’. (7.10)

The solution to this equation® is

v:vf[l—exp(—(%t>)j|. (7.11)

We note that the factor mus/e€ in (7.11) has the unit of a time. It is cus-
tomary to define this quantity
mug
=— 7.12
=2 (1.12)
as a relaxation time (which can be interpreted as the average time between
two consecutive collisions). Rearranging (7.12) yields

1ef
=—. 7.13
Uf " ( )
We make use of (7.4), which states that the current density, j, is proportional
to the velocity of the drifting electrons and proportional to the number of free
electrons, Ny (per cm?). This yields, with (7.2),

J = Nrvre = o6. (7.14)

Combining (7.13) with (7.14) finally provides the sought-for equation for the
conductivity,

Nrelt
m

. (7.15)

Equation (7.15) teaches us that the conductivity is large for a large number
of free electrons and for a large relaxation time. The latter is proportional to
the mean free path between two consecutive collisions. The mean free path is
defined to be

I =t (7.15a)

3The reader may convince himself of the correctness of this solution by inserting (7.11) and its
first derivative by time 1nto (7.10). Further, wnserting ¢ — oo into (7.11) yields correctly v = v¢
(Fig. 7.2(b)). See also Problem 8.
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7.4. Conductivity—Quantum Mechanical
Considerations

It was stated above that the valence electrons perform, when in equilibrium,
random motions with no preferential velocity in any direction. One can
visualize this fact conveniently by plotting the velocities of the electrons
in velocity space (Fig. 7.3(a)). The points inside a sphere (or inside a circle
when considering two dimensions) correspond to the endpoints of velocity
vectors. The maximum velocity that the electrons are able to assume is the
Fermi velocity, vr (i.e., the velocity of the electrons at the Fermi energy).
The sphere having vg as a radius represents, therefore, the Fermi surface. All
points inside the Fermi sphere are occupied. As a consequence the velocity
vectors cancel each other pairwise at equilibrium and no net velocity of the
electrons results.

If an electric field is applied, the Fermi sphere is displaced opposite to the
field direction, i.e., towards the positive end of the electric field, due to the
net velocity gain of the electrons (Fig. 7.3(b) dashed circle). The great ma-
jority of the electron velocities still cancel each other pairwise (shaded area).
However, some electrons remain uncompensated; their velocities are shown
cross hatched in Fig. 7.3(b). These electrons cause the observed current. The
Drude description of conduction thus needs a modification. In the classical
picture one would assume that a/l electrons drift, under the influence of an
electric field, with a modest velocity. Quantum mechanics, instead, teaches
us that only specific electrons participate in conduction and that these elec-
trons drift with a high velocity which is approximately the Fermi velocity vg.

An additional point needs to be discussed and leads to an even deeper
understanding. The largest energy which the electrons can assume in a metal
at T =0 is the Fermi energy Er (Chapter 6). A large number of electrons
actually possess this very energy since the density of states and thus the

v{k)yg

Figure 7.3. Velocity of electrons in two-dimensional velocity space. (a) Equilibrium
and (b) when an electric field is applied. The shaded areas to the left and right of the
v(k),-axis are of equal size. They cancel each other. The cross-hatched area remains
uncompensated.
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population density is highest around Eg (Fig. 7.4). Thus, only a little extra:
energy AE is needed to raise a substantial number of electrons from the
Fermi level into slightly higher states. As a consequence, the energy (or the
velocity) of electrons accelerated by the electric field & is only slightly larger
than the Fermi energy Er (or the Fermi velocity vr) so that for all practical
purposes the mean velocity can be approximated by the Fermi velocity, vg.
We implied this fact already in our previous discussions.

We now calculate the conductivity by quantum mechanical means and
apply, as before, Ohm’s law j = ¢4, (7.2). The current density j is, as stated
in (7.4), the product of the number of electrons, the electron velocity, and the
electron charge. In our present case, we know that the velocity of the elec-
trons which are responsible for the electron conduction is essentially the
Fermi velocity, vg. Further, the number of electrons which need to be con-
sidered here is N’, i.e., the number of displaced electrons per unit volume, as
shown in Fig. 7.4. Thus, (7.4) needs to be modified to read

j=vreN'. (7.16)
The number of electrons displaced by the electric field & is
N' = N(Er)AE (7.17)
{see Fig. 7.4), which yields for the current density

E
_] = vpeN(EF)AE = vpeN(Ep) ‘:;k Ak. (718)
The factor dE/dk is calculated by using the E versus [k| relationship known
for free electrons (4.8), i.e

W,
E =k (7.19)
E
! :' ‘
E. r=-aE
0
NE) N(E)

Figure 7.4. Population density N(E) versus energy for free electrons (see Fig. 6.5)
and displacement AE by an electric field (see Fig. 7.3(b)). N’ is the number of dis-
placed electrons per unit volume (see (6.11a)) in the energy interval AE. N(E) is
defined per unit energy and, in the present case, also per unit volume, see (6.8).
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Taking the first derivative of (7.19) yields, with k = p/h (4.7),
dE _ K Wp hmop

Inserting (7.20) into (7.18) yields
j = vieN(Ep)hAk. (7.21)

The displacement, Ak, of the Fermi sphere in k-space under the influence of
an electric field can be calculated by using (7.6) and p = hk (4.7):

dv _dmv) dp ,dk

which yields
e
dk = ry dt,
or
ef ed

where 7 is the time interval Ar between two ‘“collisions” or the relaxation
time (see Section 7.3). Inserting (7.23) into (7.21) yields

j = vEe’N(Eg)ér. (7.24)

One more consideration needs to be made. If the electric field vector points
in the negative v(k), direction, then only the components of those velocities
that are parallel to the positive v(k), direction contribute to the electric cur-
rent (Fig. 7.5). The v(k), components cancel each other pairwise. In other
words, only the projections of the velocities vp on the positive v(k) -axis
(vpx = vpcos @) contribute to the current. Thus, we have to sum up all con-
tributions of the velocities in the first and fourth quadrants in Fig. 7.5, which

Figure 7.5. Two-dimensional velocity space.
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yields

+7/2
j=e’N(Ep)ét J (vF cos 0)25@
-n/2 YA

02 +7r/2
= e2N(EF)é"r—FJ cos? 0d0
T J_ns2

vz l +7t/2
= e’N(Ep)é7-L [— sin20 + —] )
n |4 —2/2
j=15e*N(Ep)&to}.
A similar calculation for a spherical Fermi surface yields
j=1e’N(Ep)&rvt. (7.25)
Thus, the conductivity finally becomes, with o = j/& (7.2),

o =1e?v}tN(EF). (7.26)

This quantum mechanical equation reveals that the conductivity depends
on the Fermi velocity, the relaxation time, and the population density (per
unit volume). The latter is, as we know, proportional to the density of states.
Equation (7.26) is more meaningful than the expression derived from the
classical electron theory (7.15). Specifically, (7.26) contains the information
that not all free electrons Nr are responsible for conduction, i.e., the con-
ductivity in metals depends to a large extent on the population density of the
electrons near the Fermi surface. For example, monovalent metals (such as
copper, silver, or gold) have partially filled valence bands, as shown in Figs.
5.22 or 6.7. Their electron population densities near their Fermi energy are
high (Fig. 7.6), which results in a large conductivity according to (7.26). Bi-

E4f

valence
band

Z(E)

Figure 7.6. Schematic representation of the density of states (Fig. 6.6) and thus, with
minor modifications, also the population density (6.7). Examples for highest electron
energies for a monovalent metal (Ey), for a bivalent metal (Eg), and for an insulator
(Fy) are indicated.
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valent metals, on the other hand, are distinguished by an overlapping of the
upper bands and by a small electron concentration near the bottom of the
valence band, as shown in Fig. 6.7(c). As a consequence, the electron popu-
lation near the Fermi energy is small (Fig. 7.6), which leads to a compara-
tively low conductivity. Finally, insulators and semiconductors have, under
certain conditions, completely filled electron bands, which results in a virtu-
ally zero population density near the top of the valence band (Fig. 7.6).
Thus, the conductivity in these materials is extremely small.

7.5. Experimental Results and Their Interpretation

7.5.1. Pure Metals

The resistivity of a metal, such as copper, decreases linearly with decreasing
temperature until it reaches a finite value (Fig. 7.7) according to the empiri-
cal equation

pr=p(1 + (T2 — Th)), (7.27)

where o is the linear temperature coefficient of resistivity. We postulate that
thermal energy causes lattice atoms to oscillate about their equilibrium
positions, thus increasing the incoherent scattering of the electron waves (or
equivalently, increasing the number of electron-atom collisions). The resid-
ual resistivity, p,, is interpreted to be due to imperfections in the crystal,
such as impurities, vacancies, grain boundaries, or dislocations. The residual
resistivity is essentially not temperature-dependent. According to Matthies-
sen’s rule the resistivity arises from independent scattering processes which
are additive, i.e.,

P = Pin T Pimp + Paet = Pin + Pres- (7.28)

The thermally induced part of the resistivity, py,, is called the ideal resistivity,
whereas the resistivity that has its origin in impurities (p,,,) and defects
(Pger) is summed up in the residual resistivity. The number of impurity atoms
is generally constant in a given metal or alloy. The number of vacancies or
grain boundaries, however, can be changed by various heat treatments. For
example, if a metal is annealed at temperatures close to its melting point and
then rapidly quenched into water at room temperature, its room-temperature
resistivity increases noticeably due to quenched-in vacancies. Frequently, this
resistance increase diminishes during room-temperature aging or annealing
at slightly elevated temperatures due to the annihilation of some vacancies.
Likewise, recrystallization, grain growth, and many other metallurgical pro-
cesses change the resistivity of metals. As a consequence of this, and due to
its simple measurement, the resistivity is one of the most widely studied
properties in materials research.

It is interesting to compare the thermally induced change in conductivity
in light of the quantum mechanical and classical models. The number of free
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Figure 7.7. Schematic representation of the temperature dependence of the resistivity
of copper and various copper—nickel alloys. p,., is the residual resistivity.

electrons, Ny, essentially does not change with temperature. Likewise, N(E)
changes very little with 7. However, the mean free path, and thus the relax-
ation time, decreases with increasing temperature (due to a large rate of
collisions between the drifting electrons and the vibrating lattice atoms).
This, in turn, decreases o according to (7.15) and (7.26), in agreement with
the observations in Fig. 7.7. Thus, both models accurately describe the tem-
perature dependence of the resistivity.

7.5.2. Alloys

The resistivity of alloys increases with increasing amount of solute content
(Fig. 7.7). The slopes of the individual p versus T lines remain, however,
essentially constant. Small additions of solute cause a linear shift of the p
versus T curves to higher resistivity values in accordance with Matthiessen’s
rule. This resistivity increase has its origin in several mechanisms. First,
atoms of different size cause a variation in the lattice parameter and, thus, in
electron scattering. Second, atoms having different valences introduce a local
charge difference that also increases the scattering probability. Third, solutes
which have a different electron concentration compared to the host element
alter the position of the Fermi energy. This, in turn, changes the population
density N(E) according to (6.8) and thus the conductivity, see (7.26).

Various solute elements might alter the resistivity of the host material to
different degrees. This is demonstrated in Fig. 7.8. Experiments have shown
that the resistivity of dilute single-phase alloys increases with the square of
the valence difference between solute and solvent constituents (Linde’s rule,
Fig. 7.8(b)). Thus, the electron concentration of the solute element, i.e., the
number of additional electrons the solute contributes, clearly plays a vital
role in the resistance increase, as already mentioned above.
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Figure 7.8. Resistivity change of various dilute silver alloys (schematic). Solvent and
solute are all from the fifth period. (a) Resistivity change versus atomic % solute and
(b) resistivity change due to 1 atomic % of solute.

The isothermal resistivity of concentrated single-phase alloys often has
a maximum near 50% solute content, as shown in Fig. 7.9 (solid line). Spe-
cifically, the residual resistivity of these alloys depends, according to
Nordheim’s rule, on the fractional atomic compositions (X4 and X3) of the
constituents

pZXApA+XBpB+CXAXB, (729)

where C is a materials constant. Nordheim’s rule holds strictly only for a
few selected binary systems, because it does not take into consideration the
changes in the density of states with composition. This is particularly true for
alloys containing a transition metal.

The resistivity of two-phase alloys is, in many instances, the sum of the
resistivities of each of the components, taking the volume fractions of each
phase into consideration. However, additional factors, such as the crystal

Cu CuaAu CuAu Au

Figure 7.9. Schematic representation of the resistivity of ordered and disordered
copper—gold alloys.
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structure and the kind of distribution of the phases in each other, must also
be considered. The concentration dependence of the resistivity of two-phase
alloys does not exhibit a maximum, as in Fig. 7.9, but resembles instead a
linear interpolation between the resistivities of the individual phases.

Some alloys (copper with small amounts of iron, for example) show a
minimum in the resistivity at low temperatures. This anomaly is due to
additional scattering of electrons by the magnetic moments of the solutes
and is a deviation from the Matthiessen rule (Kondo effect).

The property of certain materials to conduct electricity, albeit with some
resistance, is utilized for resistors in electrical circuits (to limit the current
flow), or for generating heat (strip heaters, portable radiators, furnaces, etc.).
The “Joule heating”, or power, P, thus produced is proportional to the
resistance of the wire and the square of the current:

P=1IR. (7.30)

One common type of resistor is made from carbon-composites. Others are
wire-wound, for example, around a ceramic body. They employ alloys of
high resistivity (about 10~ Qcm), such as nichrome (nickel-chromium), and
need to withstand corrosion and be suitable for high temperatures. Other
resistors may consist of metal films on glass or ceramic substrates. Integrated
circuits use silicon technology for the same purpose. Resistors having a fixed
value are color-coded to indicate their nominal resistance, the tolerance of
this value, and the rated wattage (see table in Appendix 4). Variable resistors,
having a sliding contact, are either wire-wound or of the carbon-composite

type.

7.5.3. Ordering

Solute atoms are generally randomly distributed in the solvent. Thus, the
number of centers where incoherent scattering occurs increases proportion-
ally with the number of substitutional atoms. If, however, the solute atoms
are periodically arranged in the matrix, i.e., if, for example, in a 50/50 alloy
the A and B atoms alternately occupy successive lattice sites, then the elec-
tron waves are coherently scattered. This causes a decrease in resistivity (and
an increase in the mean free path) (Fig. 7.9). Only selected alloys, such as
Cu3Au, CuAu, AusMn, etc., show a tendency towards long-range ordering.

The ordered state can be achieved by annealing an alloy of appropriate
composition slightly below the order—disorder transition temperature (about
395°C in Cu3Au) followed by a moderate cooling rate, or by slowly cooling
from above the transition temperature. Long-range ordering causes super-
lattice lines in X-ray patterns.

The disordered state can be obtained at room temperature by quenching
the alloy rapidly in ice brine from slightly above the transition temperature.
Annealing above this transition temperature destroys the ordering effect. In
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some alloys, however, such as in CuAu, the tendency towards ordering is so
strong that even near the melting point some ordering remains.

Some alloys, such as a-copper—aluminum, exhibit a much smaller resis-
tance decrease by annealing below a certain ordering temperature. This
effect 1s called short-range ordering and has been found to be due to small
domains in which the atoms are arranged in an ordered fashion. In the short-
range ordered state the A—B interactions are slightly stronger than the A-A
or B-B interactions. (Short-range ordering can be identified by using small-
angle X-ray scattering. It causes small and broad intensity increases between
the regular diffraction lines.*)

7.6. Superconductivity

Superconductors are materials whose resistivities become immeasurably
small or actually become zero below a critical temperature, 7. The most
sensitive measurements have shown that the resistance of these materials in
the superconducting state is at least 10'® times smaller than their room tem-
perature values. (See, in this context, Fig. 7.1.) So far, 27 elements, numerous
alloys, ceramic materials (containing copper oxide), and organic compounds
(based, e.g., on selenium or sulfur) have been discovered to possess super-
conductivity (see Table 7.1). Their T¢ values range between 0.01 K and 130 K.

*H Warlimont, ed , Order—Disorder Transformations in Alloys, Springer-Verlag, Berlin (1974)

Table 7.1. Critical Temperatures of Some Superconducting Materials.

Materials T: [K] Remarks

Tungsten 0.01 —

Mercury 4.15 H.K. Onnes (1911)

Sulfur-based organic 8 S.S.P. Parkin et al. (1983)
superconductor

Nb;3Sn and Nb-Ti 9 Bell Labs (1961), Type 11

ViSi 17.1 J.K. Hulm (1953)

Nb3;Ge 23.2 (1973)

La-Ba-Cu-O 40 Bednorz and Miiller (1986)

YBa,Cu307_,* 92 Whu, Chu, and others (1987)

RBa,;Cu30,_,* ~92 R = Gd, Dy, Ho, Er, Tm, Yb, Lu

B1;Sr,Cay;CusOq045 113 Maeda et al. (1988)

T1,CaBa,Cuy 0046 125 Hermann et al. (1988)

HgBayCa;Cu30g, 5 134 R. Ott et al. (1995)

2The designation ““1-2-3 compound” refers to the molar ratios of rare earth to alkaline earth to
copper. (See chemical formula )
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Some metals such as cesium become superconducting only if a large pressure
is applied to them. The superconducting transition is reversible. The super-
conducting state has to be considered as a separate state, distinct from the
liquid, solid, or gaseous states. It has a higher degree of order—the entropy
is Zero.

75 years after the first discovery of superconductivity in mercury (H.K.
Onnes, Leiden/Holland, 1911) a new class of superconductors was found
by Bednorz and Miiller (Ziirich/Switzerland, 1986) which involved copper
oxide-based ceramics. These materials displayed a transition temperature
almost twice that of what has been known so far. This observation triggered
an immense research effort virtually everywhere in the world involving bil-
lions of dollars in research money and thousands of scientists who competed
for finding the most advantageous superconducting compound. As a result
of this endeavor, within a few years, new copper oxide—based compounds
were found that were named 1-2-3 superconductors because of the charac-
teristic molar ratios between rare earth to alkaline earth to copper (see Table
7.1). Eventually, ceramic materials having critical temperatures above 77 K
were synthesized, which were euphorically called “‘high-T, superconductors.”
Superconductors having a T, above 77 K (boiling point of liquid nitrogen)
are technologically interesting because they do not require liquid helium
(boiling point 4 K) or liquid hydrogen (boiling point 20 K) for cooling.

A zero resistance combined with high current densities makes super-
conductors useful for strong electromagnets, as needed, e.g., in magnetic
resonance imaging devices (used in medicine), high-energy particle accel-
erators, or electric power storage devices. (The latter can be appreciated by
knowing that once an electrical current has been induced in a loop consisting
of a superconducting wire, it continues to flow without significant decay for
several weeks.) Further potential applications are lossless power transmis-
sion lines, high-speed levitated trains, more compact and faster computers,
or switching devices called cryotrons. (The latter device is based on the de-
struction of the superconducting state in a strong magnetic field, see below).

Despite the above-mentioned discoveries and achievements, supercon-
ducting electromagnets for high magnetic fields are, as of this writing, still
manufactured from “old-fashioned” Nb-Ti or Nb3Sn alloys (and not from
ceramic superconductors) for reasons which will be discussed in the next
section. The wires for the electromagnets are composed of fine filaments of
a Nb-Ti alloy, each of which is only micrometers in diameter. They are
imbedded in a matrix of nearly pure copper (for flexibility). We shall cover
the basic concepts for these applications in the following sections.

7.6.1. Experimental Results

When the temperature of a superconducting material is lowered, the transi-
tion into the superconducting state is generally quite sharp for pure and
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Figure 7.10. Schematic representation of the resistivity of pure and impure super-
conducting elements. T is the transition or critical temperature.

structurally perfect elements (Fig. 7.10). A temperature range of less than
1073 K has been observed in pure gallium. In alloys, however, the transition
may be spread over a range of about 0.1 K. Ceramic superconductors gen-
erally display an even wider spread in transition temperatures.

The transition temperature, 7., often varies with the atomic mass, m,,
according to

m; - T = const., (7.31)

where o is a materials constant (Isotope effect). As an example, T, for mer-
cury varies from 4.185 K to 4.146 K when m, changes from 199.5 to 203.4
atomic mass units.

Elimination of the superconducting state does not only occur by raising
the temperature, but also by subjecting the material to a strong magnetic
field. The critical magnetic field strength, H,, above which superconductivity
is destroyed, depends upon the temperature at which the material is held. In
general, the lower the sample temperature, the higher the critical field H,
(Fig. 7.11(a)). One finds

T2
H, = H0<1 - T—c2>, (7.32)
where Hy is the critical magnetic field strength at 0 K. Ceramic super-
conductors usually have a smaller H, than metallic superconductors, i.e.,
they are more vulnerable to lose superconductivity by a moderate magnetic
field.

As already mentioned above, one of the main applications of super-
conductors is in wires for the windings of high-strength electromagnets. We
will learn in Chapter 14 that considerable currents are needed for these large
field strengths. Now, conventional wires, when passed by large currents,
generate substantial amounts of resistive heating, see (7.30), which needs to
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Figure 7.11. (a) Dependence of critical field strength, H., at which superconductivity
is destroyed, in relation to the temperature of the specimen. (b) The limits of super-
conductivity are defined in a critical T-H-I-diagram.

be removed somehow, for example, by water cooling. On the other hand,
superconducting wires that have a zero resistance below T. are free of the
resistive power loss. In this case, however, a cooling below T, is still needed.
In practice, it is a weighting between acquisition price and operation cost
which commands the decision whether a superconducting or a normal elec-
tromagnet is used.

One limiting factor for ultrahigh field strengths is that the magnetic field
thus produced can reach H,, so that the superconducting state is eventually
destroyed by its own magnetic field. Moreover, another limiting parameter
exists, namely, the critical current, I., above which superconductivity dis-
appears. All taken, an interrelationship between temperature, current, and
magnetic field strength is observed: an increase in one of these parameters
decreases the critical value of the remaining two. In other words, supercon-
ductivity is only present when temperature, magnetic field strength, and
current remain within a “critical space” in a T-H-I-diagram, as depicted in
Fig. 7.11(b).

Two classes of superconducting materials are distinguished. In type I
superconductors the destruction of the superconducting state by a magnetic
field, i.e., the transition between the superconducting and normal state,
occurs sharply (Fig. 7.12). The critical field strength H. is relatively low.
Thus, type I superconductors are generally not used for coils for supercon-
ducting magnets. In type II superconductors the elimination of the super-
conducting state by a magnetic field is gradual. The superconducting prop-
erties are extended to a field H,;, which might be 100 times higher than H
(Fig. 7.13(a)). Because of this stronger resistance against the magnetically
induced destruction of the superconducting state, type II superconductors
are mainly utilized for superconducting solenoids. Magnetic fields of several
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Figure 7.12. Schematic representation of the resistivity of a type I (or soft) super-
conductor when a magnetic field of field strength H is applied. These solids behave
like normal conductors above H..

tens of tesla (hundreds of kilogauss) have been achieved with these materials.
Among the type II superconductors are transition metals and alloys consist-
ing of niobium, aluminum, silicon, vanadium, lead, tin, titanium, and, in
particular, Nb3Sn or Nb-Ti. Ceramic superconductors also belong to this
group. (The terms “type I or type II superconductors” are often used like-
wise when the abrupt or gradual transition with respect to temperature is
described, see Fig. 7.10).

The interval between H; and H represents a state in which super-
conducting and normal conducting areas are mixed in the solid. Specifically,
one observes small circular regions, called vortices or fluxoids, which are in
the normal state and which carry the smallest possible unit of a magnetic
flux, called a flux quantum,

do = % =2.07 x 107 (T -m?). (7.33)
The vortices are surrounded by large, superconducting regions.

The fluxoids are parallel to the magnetic field lines and are regularly
arranged in space, thus forming essentially a two-dimensional superlattice
(Fig. 7.13(b)). (The regular arrangement of the fluxoids stems mainly from
the fact that they repel each other.) One would therefore expect that a
current which flows perpendicular to these fluxoids (as is the case for elec-
tromagnets) would always find an unobstructed path through the super-
conducting matrix and thus would exhibit unlimited superconductivity.
However, since the current in an electromagnet flows at a right angle to the
magnetic field, a so-called Lorentz force is created, which pushes the fluxoids
perpendicular to the current and the magnetic field directions see Fig. 8.11.
Thus, the moving fluxoids may become obstacles for the drifting electrons.
As a result, the current is reduced, or equivalently, the electrical resistance is
increased. The obstruction does not occur, however, when the fluxoids are
pinned to their positions, for example, by microstructural inhomogeneities in
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Figure 7.13 (a) Schematic representation of the resistivity of a type II (or hard)
superconductor. The region between H;; and H 1s called the vortex state. Above
H,, the solid behaves like a normal conductor. (b) Schematic representation of flux-
oids 1n a superconducting matrix.

the matrix, such as grain boundaries, dislocations, or fine particles of the
alloying components. This fluxeid pinning has been achieved by heat treat-
ment and by plastic deformation, for example, by wire drawing. It is the
basis for the presently used Nb;Sn superconducting magnets.

Fluxoid pinning and resultant large critical currents have not yet been
achieved in ceramic superconductors. The reason for this lies in the fact that
thermally induced lattice vibrations make fluxoid pinning at higher temper-
atures (100 K) considerably more difficult than at much lower temperatures.

It is noted in passing that superconducting materials have exceptional
magnetic properties. For example, a permanent magnet levitates in mid-air
above a piece of a superconducting material that is cooled below T,.. We
shall return to the magnetic properties of superconductors in Section 15.1.1.

Ceramic superconductors seem to be characterized by two-dimensional
sheets of atoms, a Cu-O nonstoichiometry (i.e., a limited amount of an oxygen
deficiency, see Fig. 7.14), a reduced lattice parameter between the copper
atoms, and a tetragonal (high temperature) to orthorhombic (below room
temperature) transition. Only the orthorhombic modification is supercon-
ducting. Further, ceramic superconductors appear to be antiferromagnetic
(see Section 15.1.4). Thus, the superconductivity is most likely connected to
the entire lattice structure.

Despite their considerably higher transition temperatures, ceramic super-
conductors have not yet revolutionized new technologies, mainly because of
their inherent brittleness, their incapability of carrying high current densities,
and their environmental instability. These obstacles may be overcome even-
tually, e.g., by using bismuth-based materials that are capable of carrying
high currents when cooled to about 20 K or by utilizing composite materials,
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thorhombic layered perovskite (BaT1O3) containing periodic oxygen vacancies Two
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Phys Rev B, 36, 850 (1987)

i.e., by inserting the ingredient oxide powders into silver tubes and sintering
them after plastic deformation (e.g., wire pulling). Other techniques employ
depositions of ceramic superconducting films on ductile substrates. Addi-
tions of silver into some ceramic superconductors improve their environ-
mental stability (by reducing the porosity of the material) without lowering
T.. In any event, the further development of superconducting materials
should be followed with great anticipation.

*7.6.2. Theory

Attempts to explain superconductivity have been made since its discovery in
1911. One of these theories makes use of the two-fluid model, which postu-
lates superelectrons that experience no scattering, have zero entropy (perfect
order), and have long coherence lengths, i.e., an area 1000 nm wide over
which the superelectrons are spread. The London theory is semiphenome-
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nological and dwells basically on the electrodynamic properties. The BCS
theory (which was developed in 1957 by Bardeen, Cooper, and Schrieffer) is
capable of explaining the properties of conventional superconductors rea-
sonably well. However, it does not seem to satisfactorily interpret high-
temperature (ceramic) superconductors. The BCS theory is quite involved.
Phenomenological descriptions of the concepts leading to this theory are
probably simplifications of the actual mechanisms which govern super-
conduction and may thus provide temptations for misleading conclusions.
(As is so often the case in quantum mechanics, the mathematics is right—it
is only our lack of imagination that holds us back from correctly interpreting
the equations.) Nevertheless, a conceptual description of the BCS theory and
its results is attempted.

One key to the understanding of the BCS theory is accepting the existence
of a pair of electrons (Cooper pair) that has a lower energy than two indi-
vidual electrons. Imagine an electron in a metal at T =0 K (no lattice
vibrations). This electron perturbs the lattice slightly in its neighborhood.
When such an electron drifts through a crystal the perturbation is only
momentary, and, after passing, a displaced ion reverts back into its original
position. One can consider this ion to be held by springs in its lattice posi-
tion, so that after the electron has passed by, the ion does not simply return
to its original site, but overshoots and eventually oscillates around its rest
position. A phonon is created.® This phonon in turn interacts quickly with a
second electron, which takes advantage of the deformation and lowers its

% A phonon is a lattice vibration quantum. We will describe the properties of phonons in Chapter
20.

Figure 7.16. Fermi sphere, Fermi surface, and Cooper pair in a metal.
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Figure 7.17. Density of states, Z(E), versus electron energy in the superconducting
state.

energy. Electron 2 finally emits a phonon by itself, which interacts with the
first electron and so on. It is this passing back and forth of phonons which
couples the two electrons together and brings them into a lower energy state
(Fig. 7.15). One can visualize that all electrons on the Fermi surface having
opposite momentum and opposite spin (i.e., kT and —k |) form those
Cooper pairs (Fig. 7.16), so that these electrons form a cloud of Cooper pairs
which drift cooperatively through the crystal. Thus, the superconducting
state is an ordered state of the conduction electrons. The scattering on the
lattice atoms is eliminated, thus causing a zero resistance, as described simi-
larly in Section 7.5.3 where we observed that ordering of the atoms in a
crystal lattice reduces the resistivity.

One further aspect has to be considered. We just mentioned that the elec-
trons of a Cooper pair have a lower energy than two unpaired electrons.
Thus, the Fermi energy in the superconducting state may be considered to be
lower than that for the nonsuperconducting state. This lower state is sepa-
rated from the normal state by an energy gap, E, (Fig. 7.17). The energy gap
stabilizes the Cooper pairs against small changes of net momentum, i.e.,
prevents them from breaking apart. Such an energy gap of about 107* eV
has indeed been observed by impinging IR radiation on a superconductor
at temperatures below T, and observing an onset of absorption of the IR
radiation.

An alternate method for measuring this gap energy is by utilizing the
Josephson effect. The experiment involves two pieces of metal, one in the
superconducting state and the other in the normal state. They are separated
by a thin insulating film of about 1 nm thickness (Fig. 7.18(a)). A small
voltage of proper polarity in the millivolt range applied to this device raises
the energy bands in the superconductor. Increasing this voltage eventually
leads to a configuration where some filled electron states in the supercon-
ductor are opposite to empty states in the normal conductor (Fig. 7.18(b)).
Then the Cooper pairs are capable of tunneling across the junction similarly
as described in Section 4.3. The gap energy is calculated from the threshold
voltage at which the tunneling current starts to flow.
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Figure 7.18. Josephson junction (a) in the unbiased state (b) with applied voltage
across the junction which facilitates tunneling in the indicated direction.

In closing, we would like to revisit the electron—phonon coupling mecha-
nism, which is believed to be the essential concept for the interpretation of
superconduction, at least for metals and alloys. It has been explained above
that in the normal state of conduction (above T.) strong interactions be-
tween electrons and phonons would lead to collisions (or scattering of the
electron waves), and thus to electrical resistance, whereas at low tempera-
tures the same interactions would cause Cooper pairs to form and thus
promote superconduction. This would explain why the noble metals (which
have small electron—phonon interactions) are not superconducting. In other
words, poor conductors in the normal state of conduction are potential can-
didates for high-T; superconductors (and vice versa). Ceramic and organic
superconductors fit into this scheme. Still, some scientists believe that pho-
nons are involved in the coupling process only at very low temperatures
(e.g., below 40 K). At somewhat higher temperatures, when phonons cause
substantial scattering of the electrons, excitons (i.e., electron-hole pairs) may
link electrons to form Cooper pairs, as suggested by A. Little for organic
superconductors. Still other scientists propose resonating valence bonds as a
coupling mechanism for high-T, superconductors.

7.7 Thermoelectric Phenomena

Assume that two different types of materials (e.g., a copper and an iron wire)
are connected at their ends to form a loop, as shown in Figure 7.19. One of
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Figure 7.19. Schematic representation of two thermocouples ‘made of copper and
iron which are brought in contact with each other (Seebeck effect).

the junctions is brought to a higher temperature than the other. Then a
potential difference, AV, between these two thermocouples is observed which
is essentially proportional to the temperature difference, AT, where
AV
AT = S (7.34)
is called the thermoelectric power, or the Seebeck coefficient (after its inven-
tor, T.J. Seebeck, a German physicist who discovered, in 1821, that a ther-
moelectric circuit like the one just described deflected a close-by compass
needle). A thermoelectric power of several microvolts per degree is commonly
observed. As an example, the frequently used copper/constantan (Cu—45%
Ni) combination yields about 43 4V/K. It has a useful range between —180
and +400°C. For higher temperatures, thermocouples of chromel (90%Ni—
10%Cr) and alumel (95%Ni-2%Mn-2%Al) or platinum/Pt-13%Rh (up to
1700°C) are available. Some semiconductors have Seebeck coefficients that
reach into the millivolt per degree range, that is, they are one or two orders
of magnitude higher than for metals and alloys. Among them are bismuth
telluride (Bi,Te3), lead telluride (PbTe), and silicon-30% germanium alloys.
Thermocouples made of metal wires are utilized as rigid, inexpensive, and
fast probes for measuring temperatures even at otherwise not easily accessi-
ble places. Thermoelectric power generators (utilizing the above-mentioned
semiconductors) are used particularly in remote locations of the earth (Siberia,
Alaska, etc.). They contain, for example, a ring of thermocouples, arranged
over the glass chimney of a kerosene lamp which is concomitantly used for
lighting. The temperature difference of 300°C thus achieved yields electric
power of a few watts or sometimes more, which can be used for radios or
communication purposes. Heat produced by the decay of radioisotopes or by
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Figure 7.20. Thermoelectric refrigeration devices which make use of the Peltier
effect. (a) Principle arrangement. (b) Efficient device utilizing p- and n-type semi-
conductors (see Section 8.3) in conjunction with metals.

small nuclear reactors yields thermoelectric power for scientific instruments
on the moon (e.g., to record moon quakes) and for relaying the information
back to earth. In solar thermoelectric generators sunlight is concentrated by
concave mirrors on thermocouples. Most of the above-described devices
have an efficiency between 5 and 10%.

A reversion of the Seebeck effect is the Peltier effect: A direct electric
current that flows through junctions made of different materials causes one
junction to be cooled and the other to heat up (depending on the direction of
the current); see Figure 7.20(a). Lead telluride or bismuth telluride in com-
bination with metals are frequently used. One particularly effective device
for which temperature differences up to 70°C have been achieved is shown in
Figure 7.20(b). It utilizes n- and p-type semiconductors (see Section 8.3) in
conjunction with metals. Cooling occurs on those junctions that are con-
nected to the upper metal plate (1 and 2), whereas heat develops on the lower
junctions 3 and 4. The heat on the lower plate is removed by water or air
cooling. The above-quoted temperature drop can even be enhanced by cas-
cading several devices, that is, by joining multiple thermoelectric refrigerators
for which each stage acts as the heat sink for the next.

The thermoelectric effects can be explained by applying elements of elec-
tron theory as described in the previous sections: When two different types of
conducting materials are brought into contact, electrons are transferred from
the material with higher Fermi energy (Er) “down” into the material having a
lower Ef until both Fermi energies are equal. As a consequence, the material
that had the smaller Er assumes a negative charge with respect to the other.
This results in the above-mentioned contact potential between the materials.
The contact potential is temperature-dependent. Specifically, when a mate-
rial 1s heated, a substantial number of electrons are excited across the Fermi
energy to higher energy levels. These extra electrons drift to the cold junc-
tion, which becomes negatively charged compared to the hot junction. The
equivalent is true for the Peltier effect: The electrons having a larger energy
(that is, those having a higher Er) are caused by the current to transfer their
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extra energy into the material having a lower Er, which in turn heats up.
Concomitantly, the material having a higher Er is caused to lose energy and
thus becomes colder.

Problems

1. Calculate the number of free electrons for gold using its density and its atomic
mass.

2. Does the conductivity of an alloy change when long-range ordering takes place?
Explain.

3. Calculate the time between two collisions and the mean free path for pure copper
at room temperature. Discuss whether or not this result makes sense. Hint: Take
the velocity to be the Fermi velocity, vg, which can be calculated from the Fermi
energy of copper Er = 7 eV. Use otherwise classical considerations.

4. Electron waves are “coherently scattered” in ideal crystals at T = 0. What does
this mean? Explain why in an ideal crystal at 7 = 0 the resistivity is small.

5. Calculate the number of free electrons per cubic centimeter (and per atom) for
sodium from resistance data (relaxation time 3.1 x 1074 s).

6. Give examples for coherent and incoherent scattering.

7. When calculating the population density of electrons for a metal by using (7.26), a
value much larger than immediately expected results. Why does the result, after
all, make sense? (Take 0 = 5 x 10° 1/Q cm; vp = 108 cm/s and 1 = 3 x 107 5))

8. Solve the differential equation

dv ef
—+—v=2ef .
m t o v=e (7.10}

and compare your result with (7.11).

9. Consider the conductivity equation obtained from the classical electron theory.
According to this equation, a bivalent metal, such as zinc, should have a larger
conductivity than a monovalent metal, such as copper, because zinc has about
twice as many free electrons as copper. Resolve this discrepancy by considering
the quantum mechanical equation for conductivity.



CHAPTER 8§

Semiconductors

8.1. Band Structure

We have seen in Chapter 7 that metals are characterized by partially filled
valence bands and that the electrons in these bands give rise to electrical
conduction. On the other hand, the valence bands of insulators are com-
pletely filled with electrons. Semiconductors, finally, represent in some re-
spect a position between metals and insulators. We mentioned in Chapter 6
that semiconductors have, at low temperatures, a completely filled valence
band and a narrow gap between this and the next higher, unfilled band. The
latter one is called the conduction band. We discuss this now in more detail.

Because of band overlapping, the valence as well as the conduction bands
of semiconductors consist of mixed (hybrid) s- and p-states. The eight highest
s+ p states (two s- and six p-states)® split into two separate (s + p) bands,®
each of which consists of one s- and three p-states (see Fig. 8.1). The lower
s-state can accommodate one electron per atom, whereas the three lower
p-states can accommodate three electrons per atom. The valence band can,
therefore, accommodate 4N, electrons. (The same is true for the conduction
band.) Because germanium and silicon possess four valence electrons per
atom (group IV of the Periodic Table), the valence band is completely filled
with electrons and the conduction band remains empty.

A deeper understanding of this can be gained from Fig. 8.2, which depicts
part of a calculated band structure for silicon. Consider at first that electrons
are “filled” into these bands like water being poured into a vessel. Then, of
course, the lowest s-state will be occupied first. Since no energy gap exists

¢See Appendix 3.
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Figure 8.1. Sharp energy levels, widening into bands, and band overlapping with
decreasing atomic distance for covalent elements. (Compare with Fig. 4.14.)

between the top of the s-state and the next higher p-state, additional elec-
trons will immediately start to occupy the p-states. This process proceeds
until all three lower p-states are filled. All of the 4N, electrons of the semi-
conductor are accommodated now. Note that no higher energy band touches
the p-states of the valence band. Thus, an energy gap exists between the filled
valence and the empty conduction band. (As was shown in Fig. 5.23, the
bands in different directions in k-space usually have different shapes so
that a complete assessment can only be made by inspecting the entire band
structure.)

All materials which have bonds characterized by electron sharing (co-

(o] BZk‘
r X

Figure 8.2. Schematic band structure of silicon in the k, (or X) direction (plotted in
the reduced zone scheme). The separation of the two highest p-states in the valence
band is strongly exaggerated. Compare with the complete band structure of Fig. 5.23.
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Table 8.1. Gap Energies for
Some Group IV Elements at
0 K (see also Appendix 4).

Element E; [eV]
C (diamond) 5.48
Si 1.17
Ge 0.74
Sn {gray) 0.08

valent bonds) have in common the above-mentioned hybrid bands (Fig. 8.1).
An important difference is the magnitude of the gap energy, E;, between the
conduction band and the valence band. As can be seen from Table 8.1, the
gap energies for group IV elements decrease with increasing atomic number,
Diamond, for example, has a gap energy of 5.48 eV and is, therefore, an in-
sulator (at least at and below room temperature) whereas the E, for silicon
and germanium is around 1 eV. Gray tin, finally, has an energy gap of only
0.08 eV. (It should be noted in passing that the utilization of diamond as an
extrinsic semiconductor has been recently contemplated.)

The gap energy is slightly temperature dependent according to the empir-
ical equation

2

E—, (8.1
T+ 0p

where Ey is the band gap energy at T =0 K, £~ 5 x 107 eV/K, and 8p is
the Debye temperature (see Table 19.2). It is noted that E, becomes smaller

with increasing temperature. For example, the temperature dependence of
E, for Siis —2.4 x 107* eV/K (see Appendix 4).

E;r = Eyp —

8.2. Intrinsic Semiconductors

Semiconductors become conducting at elevated temperatures. In an intrinsic
semiconductor, the conduction mechanism is predominated by the properties
of the pure crystal. In order for a semiconductor to become conducting,
electrons have to be excited from the valence band into the conduction band
where they can be accelerated by an external electric field. Likewise, the
electron holes which are left behind in the valence band contribute to the
conduction. They migrate in the opposite direction to the electrons. The
energy for the excitation of the electrons from the valence band into the
conduction band stems usually from thermal energy. The electrons are
transferred from one band into the next by interband transitions.

We turn now to a discussion of the Fermi energy in semiconductors. We
learned in Section 6.2 that the Fermi energy is that energy for which the
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Figure 8.3. Schematic Fermi distribution function and Fermi energy for an intrinsic
semiconductor for 7 > 0 K. The “smearing out” of the Fermi distribution function
at Ey and Ey is exaggerated. For reasons of convenience, the zero point of the energy
scale is placed at the bottom of the conduction band.

Fermi distribution function equals % (It is advisable to keep only this “defi-
nition” of the Fermi energy in mind. Any other definition which might give a
correct understanding for metals could cause confusion for semiconductors!)
The probability that any state in the valence band of an intrinsic semicon-
ductor at T =0 K is occupied by electrons is 100%, i.e., F(E)=1 for
E < E, (Fig. 8.3). At higher temperatures, however, some of the electrons
close to the top of the valence band have been excited into the conduction
band. As a consequence, the probability function F(E) is slightly reduced at
the top of the valence band for T > 0 K.

On the other hand, no electrons are found at T = 0 K in the conduction
band. Thus, the Fermi distribution function for E > E; must be zero. Again,
for higher temperatures, a small deviation from F(E) = 0 near the bottom of
the conduction band is expected (Fig. 8.3). The connection between the two
branches of the F(E) curve just discussed is marked with a dashed line in
Fig. 8.3. This connecting line does not imply that electrons can be found in
the forbidden band since F(E) is merely the probability of occupancy of an
available energy state. (A detailed calculation provides a slightly modified
F(E) curve whose vertical branches extend further into the forbidden band.)

Our discussion leads to the conclusion that the Fermi energy, Ef (i.e., that
energy where F(E) = 1), is located in the center of the forbidden band. In
other words, for intrinsic semiconductors we find Er = —Eg/2 when the zero
point of the Energy scale is placed at the bottom of the conduction band.

We may also argue somewhat differently: For T > 0 K the same amount
of current carriers can be found in the valence as well as in the conduction
band. Thus, the average Fermi energy has to be halfway between these
bands. A simple calculation confirms this statement. (Problem 3 in this
chapter should be worked at this point to deepen the understanding.) We
implied in our consideration that the effective masses of electrons and holes
are alike (which is not the case; see Appendix 4).
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Of special interest to us is the number of electrons in the conduction band.
From the discussion carried out above, we immediately suspect that a large
number of electrons can be found in the conduction band if E; is small and,
in addition, if the temperature is high. In other words, we suspect that the
number of electrons in the conduction band is a function of E; and 7. A
detailed calculation, which we will carry out now, verifies this suspicion.

In Section 6.4 we defined N* to be the number of electrons that have an
energy equal to or smaller than a given energy, E,. For an energy interval
between E and E + dE, we obtained (6.9),

dN™ = N(E)dE, (8.2)
where
N(EY=2-Z(E)-F(E) (8.3)

was called the population density (6.7) and
3/2
Z(E) = Y (2—’"> E'/? (8.4)
T
is the density of states (6.5). In our particular case, the Fermi distribution

function, F(E), can be approximated by

1

o e GE) w

because E — Er is about 0.5 eV and kg T at room temperature is of the order
of 1072 eV. Therefore, the exponential factor is large compared to 1 (Boltz-
mann tail). We integrate over all available electrons that have energies larger
than the energy at the bottom of the conduction band (E = 0), and obtain,
with (8.2), (8.4), and (8.5),”

Vo 2m\? [ E—-E
N*=___ . (" /2, — F
272 <h2> Jo E exp[ ( kgT E

v (2m\? Ee \ [© ., E
*_ {2 ot N /2, =
N 57 <h2> exp (kBT> Jo E exp[ <kBT>] dE. (8.6)

7The integration should actually be done over the states in the conduction band only. However,
since the probability factor F(E) is rapidly approaching zero for energies E > Ep, the substitu-
tion of infinity for the upper limit does not change the result appreciably. This substitution
brings the integral into a standard form, namely:

J © Ve dx = (1/2m) /.

0

or
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Integration” yields

.V 2m\? Er \ kgT 12

V (2mky T\ Er
=7 (_nhz ) exp <—kB T>' (8.7
Introducing Er = —Eg/2 (see above) and the effective mass ratio® m /mg we
then obtain, for the number of conduction-band electrons per unit volume,
Ne=N*/V,
1 2mkg\? (mz\? E,
Ne=-|—F —=) 7132 —[==-]. .
¢ 4( h? ) <mo xp 2kg T (8.8)
172 32
The constant factor 1 (mTIZB> has the value 4.84 x 1015 (cm™ K~%/2),
n
Thus, we can write for (8.8)

~3/2
Ne = 484 x 1015( ™€) 32 exp| - (L2 (8.9
=" o Pl \ et/ | 2)

3

We see from (8.9) that the number of electrons in the conduction band per cm
is a function of the energy gap and the temperature, as expected. We further
notice that the contribution of a temperature increase to N, resides mostly in
the exponential term and only to a lesser extent in the term T3/2. A numeri-
cal evaluation of (8.9) tells us that the number of electrons per cubic centi-
meter in silicon at room temperature is about 10° (see Problem 1). In other
words, at room temperature, only one in every 10!* atoms contributes an
electron to the conduction. This explains the poor conduction of Si, see Fig.
7.1. We shall see in the next section that in extrinsic semiconductors many
more electrons can be found in the conduction band.

The electron and hole density is shown in Fig. 8.4 for an intrinsic semi-
conductor. The number of electrons is given by the area enclosed by the
Z(E) curve and F(E) = exp[—(E — Er)/ksT] (8.6).

As implied before, the number of electrons in the conduction band must
equal the number of holes in the valence band. This means that an identical
equation to (8.8) can be written for the holes if we assume m} = mj;, which is
not strictly true.® (An additional term, which is usually neglected, modifies
Ek slightly.)

The conductivity’ of an intrinsic semiconductor is not determined by
the number of electrons and holes alone. The mobility®, u, of the current

8 Note that m = my, see Section 6.7 and Footnote 16 in this section.
° For numerical values, see the tables in Appendix 4.
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Figure 8.4. Density of electrons (N.) and holes (&},) for an intrinsic semiconductor.

carriers,

p= (8.10)

v
gz b
i.e., their (drift) velocity per unit electric field, also contributes its share to the
conductivity, 0. An expression for the conductivity is found by combining
(7.2),

j=0é, (8.11)
and (7.4),
J = Nuve, (8.12)
with (8.10), which yields
a:N%e:N,ue. (8.13)

Taking both electrons and holes into consideration we can write

o = Neep, + Npepy,

*\3/2 (8.14)
_ 15 ™M 3/2 (&
o=4.84x10 (mo) T e(pu, + ) exp{ <2kBT>]’

where the subscripts ¢ and h stand for electrons and holes, respectively. With
increasing temperatures, the mobility of the current carriers is reduced by
lattice vibrations (Fig. 8.5(a)). On the other hand, around room temperature,
an increasing number of electrons are excited from the valence band into the
conduction band, thus strongly increasing the number of current carriers, Ne
and Ny, (Fig. 8.5(b)). The conductivity is, according to (8.14), a function of
these two factors whereby N is dominating (Fig. 8.5(c)).

At low temperatures the electrons are incoherently scattered by impurity
atoms and lattice defects. It is therefore imperative that semiconductor
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Figure 8.5. Schematic representation of the temperature dependence of (a) electron
and hole mobilities, (b) number of carriers in an intrinsic semiconductor, and (c)
conductivity for an intrinsic semiconductor. (T is given in Kelvin.)

materials are of extreme purity. Methods to achieve this high purity will be
discussed in Section 8.7.11.

8.3. Extrinsic Semiconductors
8.3.1. Donors and Acceptors

We learned in the previous section that in intrinsic semiconductors only a
very small number of electrons (about 10° electrons per cubic centimeter)
contribute to the conduction of the electric current. In most semiconductor
devices, a considerably higher number of charge carriers are, however, pres-
ent. They are introduced by doping, i.e., by adding small amounts of im-
purities to the semiconductor material. In most cases, elements of group III
or V of the periodic table are used as dopants. They replace some regular
lattice atoms in a substitutional manner. Let us start our discussion by con-
sidering the case where a small amount of phosphorus (e.g., 0.0001%) is
added to silicon. Phosphorus has five valence electrons, i.e., one valence
electron more than silicon. Four of these valence electrons form regular
electron-pair bonds with their neighboring silicon atoms (Fig. 8.6). The fifth
electron, however, is only loosely bound to silicon, i.e., the binding energy is
about 0.045 eV (see Appendix 4 and Problem 10.) At slightly elevated tem-
peratures this extra electron becomes disassociated from its atom and drifts
through the crystal as a conduction electron when a voltage is applied to the
crystal. Extra electrons of this type are called ““donor electrons.” They pop-
ulate the conduction band of a semiconductor, thus providing a contribution
to the conduction process.

It has to be noted that at sufficiently high temperatures, in addition to
these donor electrons, some electrons from the valence band are also excited
into the conduction band in an intrinsic manner. The conduction band con-
tains, therefore, electrons from two sources, the amount of which depends on
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Figure 8.6. Two-dimensional representation of the silicon lattice. An impurity atom
of group V of the periodic table (P) is shown to replace a silicon atom. The charge
cloud around the phosphorus atom stems from the extra phosphorus electron. Each
electron pair between two silicon atoms constitutes a covalent bond (electron shar-
ing). The two electrons of such a pair are indistinguishable, but must have opposite
spin to satisfy the Pauli principle.

the device temperature (see Section 8.3.3). Since the conduction mechanism
in semiconductors with donor impurities (P, As, Sb) is predominated by
negative charge carriers {electrons) these materials are called n-type semi-
conductors. The electrons are the majority carriers.

A similar consideration may be done with impurities from the third group
of the Periodic Chart (B, Al, Ga, In). They possess one electron less than
silicon and, therefore, introduce a positive charge cloud into the crystal
around the impurity atom. The conduction mechanism in these semi-
conductors with acceptor impurities is predominated by positive carriers
(holes) which are introduced into the valence band. They are therefore called
p-type semiconductors.

8.3.2. Band Structure

The band structure of impurity or extrinsic semiconductors is essentially the
same as for intrinsic semiconductors. It is desirable, however, to represent in
some way the presence of the impurity atoms by impurity states. 1t is com-
mon to introduce into the forbidden band so-called donor or acceptor levels
(Fig. 8.7). The distance between the donor level and the conduction band
represents the energy that is needed to transfer the extra electrons into the
conduction band. (The same is true for the acceptor level and valence band.)
It has to be emphasized, however, that the introduction of these impurity
levels does not mean that mobile electrons or holes are found in the forbid-
den band of, say, silicon. The impurity states are only used as a convenient
means to remind the reader of the presence of extra electrons or holes in the
crystal.
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Figure 8.7. (a) Donor and (b) acceptor levels in extrinsic semiconductors.

8.3.3. Temperature Dependence of the Number of Carriers

At 0 K the excess electrons of the donor impurities remain in close proximity
to the impurity atom and do not contribute to the electric conduction. We
express this fact by stating that all donor levels are filled. With increasing
temperature, the donor electrons overcome the small potential barrier (Fig.
8.7(a)) and are excited into the conduction band. Thus, the donor levels are
increasingly emptied and the number of negative charge carriers in the con-
duction band increases exponentially, obeying an equation similar to (8.9).
Once all electrons have been excited from the donor levels into the conduc-
tion band, any further temperature increase does not create additional elec-
trons and the N, versus T curve levels off (Fig. 8.8). As mentioned before, at
still higher temperatures intrinsic effects create additional electrons which,
depending on the amount of doping, can outnumber the electrons supplied
by the impurity atoms.

Similarly, the acceptor levels do not contain any electrons at 0 K. At in-
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Figure 8.8. Schematic representation of the number of electrons per cubic centimeter
in the conduction band versus temperature for an extrinsic semiconductor with low
doping.
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creasing temperatures, electrons are excited from the valence band into the
acceptor levels, leaving behind positive charge carriers. Once all acceptor
levels are filled, the number of holes in the valence band is not increased
further until intrinsic effects set in.

8.3.4. Conductivity

The conductivity of extrinsic semiconductors can be calculated, similarly as
in the previous section (8.13), by multiplying the number of carriers by the
mobility, x4, and electron charge, e. Around room temperature, however,
only the majority carriers need to be considered. For electron conduction,
for example, one obtains

o = Ngeep,, {8.15)

where Ng. is the number of donor electrons and ., is the mobility of the
donor electrons in the conduction band. As mentioned above, it is reason-
able to assume that, at room temperature, essentially all donor electrons
have been excited from the donor levels into the conduction band (Fig. 8.8).
Thus, for pure n-type semiconductors, Ng. is essentially identical to the
number of impurities (i.e., donor atoms), N4. At substantially lower tem-
peratures, 1.e., at around 100 K, the number of conduction electrons needs to
be calculated using an equation similar to (8.8).

Figure 8.9 shows the temperature dependence of the conductivity. We
notice that the magnitude of the conductivity, as well as the temperature
dependence of g, is different for various doping levels. For low doping rates
and low temperatures, for example, the conductivity decreases with increas-
ing temperature (Fig. 8.9(b)). This is similar to the case of metals, where the
lattice vibrations present an obstacle to the drifting electrons (or, expressed
differently, where the mobility of the carriers is decreased by incoherent
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Figure 8.9. Conductivity of two extrinsic semiconductors, (a) high doping and
(b) low doping. Ny = number of donor atoms per cubic centimeter.



8. Semiconductors 115

scattering of the electrons). However, at room temperature intrinsic effects
set in, which increase the number of carriers and therefore enhance the con-
ductivity. As a consequence, two competing effects determine the conduc-
tivity above room temperature: an increase of o due to an increase in the
number of electrons, and a decrease of ¢ due to a decrease in mobility. (It
should be mentioned that the mobility of electrons or holes also decreases
slightly when impurity atoms are added to a semiconductor.) For high dop-
ing levels, the temperature dependence of o is less pronounced due to the
already higher number of carriers (Fig. 8.9(a)).

8.3.5. Fermi Energy

In an n-type semiconductor, more electrons can be found in the conduction
band than holes in the valence band. This is particularly true at low tem-
peratures. The Fermi energy must therefore be between the donor level and
the conduction band {Fig. 8.10). With increasing temperatures, an extrinsic
semiconductor becomes progressively intrinsic and the Fermi energy ap-
proaches the value for an intrinsic semiconductor, i.e., —(Eg/2). [Similarly,
the Fermi energy for a p-type semiconductor rises with increasing tempera-
ture from below the acceptor level to —(E,/2).]

0 200 400 600 1rx1

Figure 8.10. Fermi level of an n-type semiconductor as a function of temperature.
Ny =~ 108 (atoms per cubic centimeter).

*R.4. Effective Mass

Some semiconductor properties can be better understood and calculated by
evaluating the effective mass of the charge carriers. We mentioned in Section
6.7 that m* is inversely proportional to the curvature of an electron band.
We now make use of this finding.
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Let us first inspect the upper portion of the valence bands for silicon near
I" (Fig. 8.2). We notice that the curvatures of these bands are convex down-
ward. It is known from Fig. 6.8 that in this case the charge carriers have a
negative effective mass, i.e., these bands can be considered to be populated
by electron holes. Further, we observe that the curvatures of the individual
bands are slightly different. Thus, the effective masses of the holes in these
bands must likewise be different. One distinguishes appropriately between
light holes and heavy holes. Since two of the bands, namely, those having the
smaller curvature, are almost identical, we conclude that two out of the three
types of holes are heavy holes.

We turn now to the conduction band of silicon and focus our attention on
the lowest band (Fig. 8.2). We notice a minimum (or valley) at about 85%
between the I' and X points. Since the curvature at that location is convex
upward, we expect this band to be populated by electrons. (The epergy sur-
face near the minimum is actually a spheroid. This leads to longitudinal and
transverse masses m; and m;.) Values for the effective masses are given in
Appendix 4. Occasionally, average effective masses are listed in the literature.
They may be utilized for estimates.

8.5. Hall Effect

The number and type of charge carriers (electrons or holes) that were calcu-
lated in the preceding sections can be elegantly measured by making use of
the Hall effect. Actually, it is quite possible to measure concentrations of less
than 10'? electrons per cubic centimeter in doped silicon, i.e., one can mea-
sure one donor electron (and therefore one donor atom) per 10! silicon
atoms. This sensitivity is several orders of magnitude better than in any
chemical analysis.

We assume for our discussion an n-type semiconductor in which the con-
duction is predominated by electrons. Suppose an electric current having a
current density j flows in the positive x-direction and a magnetic field (of
magnetic induction B) is applied normal to this electric field in the z-direction
(Fig. 8.11). Each electron is then subjected to a force, called the Lorentz force,
which causes the electron paths to bend, as shown in Fig. 8.11. As a conse-
quence, the electrons accumulate on one side of the slab (in Fig. 8.11 on the
right side) and are deficient on the other side. Thus, an electric field is created
in the (negative) y-direction which is called the Hall field. In equilibrium, the
Hall force

Fy = —eé, (8.16)
balances the above-mentioned Lorentz force

FL = vxB.e, (8.17)
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Figure 8.11. Schematic representation of the Hall effect in an n-type semiconductor
{or a metal in which electrons are the predominant current carriers).

where v, is the velocity of the electrons, and e is the electron charge.
Fy + Fi, = 0 yields, for the Hall field,

&y = v:B.. (8.18)

Combining (8.18) with (7.4) (and knowing that the current is defined to be
directed in the opposite direction to the electron flow)

Jx = —Nov,e (8.19)
yields for the number of conduction electrons {per unit volume)
B
=z 8.20
o (8.20)

The variables on the right side of (8.20) can all be easily measured and the
number of conduction electrons can then be calculated. Quite often, a Hall
constant

1
Ry = o (8.21)
is defined which is inversely proportional to the density of charge carriers, N.
The sign of the Hall constant indicates whether electrons or holes predomi-
nate in the conduction process. Ry is negative when electrons are the pre-
dominant charge carriers. (The electron holes are deflected in the same di-
rection as the electrons but travel in the opposite direction.)
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8.6. Compound Semiconductors

Gallium arsenide (a compound of group III and group V elements of the
Periodic Table) is of great technical interest, partially because of its large
band gap,'® which essentially prevents intrinsic contributions in impurity
semiconductors even at elevated temperatures, partially because of its larger
electron mobility,*® which aids in high-speed applications, and particularly
because of its optical properties, which result from the fact that GaAs is a
“direct-band gap” material (see Chapter 12). The large electron mobility in
GaAs is caused by a small value for the electron effective mass, which in turn
results from a comparatively large convex upward curvature of the conduc-
tion electron band near I'. (See in this context the band structure of GaAs in
Fig. 5.24.) The electrons which have been excited into the conduction band
(mostly from donor levels) most likely populate this high curvature region
near I'.

The atomic bonding in III-V and II-VI semiconductors resembles that of
the group IV elements (covalent) with the additional feature that the bond-
ing is partially ionic because of the different valences of the participating ele-
ments. The ionization energies!® of donor and acceptor impurities in GaAs
are as a rule one order of magnitude smaller than in germanium or silicon,
which ensures complete ionization even at relatively low temperatures. The
crystal structure of GaAs is similar to that of silicon. The gallium atoms
substitute for the corner and face atoms, whereas arsenic takes the places of
the four interior sites (zinc-blende structure).

The high expectations that have been set for GaAs as the semiconductor
material of the future have not yet materialized to date. It is true that GaAs
devices are two and a half times faster than silicon-based devices, and that
the “noise” and the vulnerability to cosmic radiation is considerably reduced
in GaAs because of its larger band gap. On the other hand, its ten-times
higher price and its much greater weight (Js, = 2.3 g/cm? compared to
dGaas = 5.3 g/cm?) are serious obstacles to broad computer-chip usage or for
solar panels. Thus, GaAs is predominantly utilized for special applications,
such as high-frequency devices (e.g., 10 GHz), certain military projects, or
satellite preamplifiers. One of the few places, however, where GaAs seems
to be, so far, without serious competition is in optoelectronics {though even
this domain appears to be challenged according to the most recent research
results).

We will learn in Part III that only direct band-gap materials such as
GaAs are useful for lasers and light-emitting diodes (LED). Indirect-band
gap materials, such as silicon, possess instead the property that part of the
energy of an excited electron is removed by lattice vibrations (phonons).
Thus, this energy is not available for light emission. We shall return to GaAs
devices in Section 8.7.9.

10See the tables in Appendix 4
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GaAs is, of course, not the only compound semiconductor material which
has been heavily researched or is being used. Indeed, most compounds con-
sisting of elements of groups IIl and V of the periodic table are of some
interest. Among them are GaP, GaN, InP, InAs, InSb, and AlSb, to mention
a few.!° But also, group II-VI compounds, such as ZnO, ZnS, ZnSe, CdS,
CdTe, or HgS are considered for applications. These compounds have in
common that the combination of the individual elements possesses an aver-
age of four valence electrons per atom because they are located at equal
distances from either side of the fourth column. Another class of compound
semiconductors is the group IV—VI materials,’® which include PbS, PbSe,
and PbTe. Finally, ternary alloys, such as Al,Ga;_,As, or quaternary alloys,
such as Al,Ga;_,As,Sb;_,, are used. Most of the compounds and alloys
are utilized in optoelectronic devices, e.g., GaAs;_xP, for LEDs, which
emit light in the visible spectrum (see Part III). Al,Ga;_As is also used in
modulation-doped field-effect transistors (MODFET).

Finally, silicon carbide is the most important representative of the group
IV-IV compounds. Since its band gap is around 3 eV, ¢-SiC can be used for
very-high-temperature (700°C) device applications and for LEDs that emit
light in the blue end of the visible spectrum. SiC is, however, expensive and
cannot yet be manufactured with reproducible properties.

Doping of GaAs is accomplished, for example, by an excess of Ga atoms
(p-type) or an excess of As (n-type). Si acts as a donor if it replaces Ga atoms
and as an acceptor by substituting for As atoms. The recently refined tech-
nique of molecular beam epitaxy (MBE) allows the production of the
wanted compounds and dopings.

8.7. Semiconductor Devices
8.7.1. Metal-Semiconductor Contacts

If a semiconductor is coated on one side with a metal, a rectifying contact or
an ohmic contact is formed, depending on the type of metal used. Both cases
are equally important. Rectifiers are widely utilized in electronic devices,
e.g., to convert alternating current into direct current. However, the type
discussed here has been mostly replaced by p — n rectifiers. On the other
hand, all semiconductor devices need contacts in which the electrons can
easily flow in both directions. They are called ohmic contacts because their
current—voltage characteristic obeys Ohm’s law (7.1).

At the beginning of our discussion let us assume that the surface of an
n-type semiconductor has somehow been negatively charged. The negative
charge repels the free electrons that had been near the surface and leaves
positively charged donor ions behind {(e.g., As*). Any electron that drifts
toward the surface (negative x-direction in Fig. 8.12{a)) “feels” this repelling
force. As a consequence, the region near the surface has fewer free electrons
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Figure 8.12. (a) Band diagram for an n-type semiconductor whose surface has been
negatively charged. (b) Band diagram for a p-type semiconductor, the surface of
which is positively charged. X is the distance from the surface.

than the interior of the solid. This region is called the depletion layer (or
sometimes space-charge region).

In order to illustrate the repelling force of an external negative charge, it is
customary to curve the electron bands upward near the surface. The deple-
tion can then be understood by stating that the electrons assume the lowest
possible energy state (or colloquially expressed: ‘“The electrons like to roll
downhill”). The depletion layer is a potential barrier for electrons.

Similarly, if a p-type semiconductor is positively charged at the surface,
the positive carriers (holes) are repelled toward the inner part of the crystal
and the band edges are bent downward (Fig. 8.12(b)). This represents a
potential barrier for holes (because holes “want to drift upward” like a
hydrogen-filled balloon).

8.7.2. Rectifying Contacts (Schottky Barrier Contacts)

It is essential for further discussion to introduce the work function, ¢, which
is the energy difference between the Fermi energy and the ionization energy.
In other words, ¢ is the energy which is necessary to transport an electron
from Er to infinity. (Values for ¢ are given in Appendix 4.)

Let us consider a metal and an n-type semiconductor before they are
brought into contact. In Fig. 8.13(a) the Fermi energy of a metal is shown to
be lower than the Fermi energy of the semiconductor, i.e., ¢y > ¢g. Imme-
diately after the metal and semiconductor have been brought into contact,
electrons start to flow from the semiconductor “down” into the metal until
the Fermi energies of both solids are equal (Fig. 8.13(b)). As a consequence,
the metal will be charged negatively and a potential barrier is formed just as
shown in Fig. 8.12. This means that the energy bands in the bulk semicon-
ductor are lowered by the amount ¢y, — ¢ with respect to a point A.
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Figure 8.13. Energy bands for a metal and an n-type semiconductor (a) before and
(b) after contact. ¢y > @s. The potential barrier 1s marked with heavy lmes. y 1s the
electron affinity.

In the equilibrium state, electrons from both sides cross the potential bar-
rier. This electron flow constitutes the so-called diffusion current. The number
of electrons diffusing in both directions must be identical for the following
reason: the metal contains more free electrons, but these electrons have to
climb a higher potential barrier than the electrons in the semiconductor,
whose conduction band contains fewer free electrons.

Similarly, if a p-type semiconductor is brought into contact with a metal
and ¢y < ¢, then electrons diffuse from the metal into the semiconductor,
thus charging the metal and, therefore, the surface of the semiconductor
positively. Consequently, a “downward” potential barrier (for the holes) is
formed (Fig. 8.14).

In addition to the diffusion current just mentioned, a *“‘drift current’ needs
to be taken into consideration. Let us assume that an electron—hole pair was
thermally created in or near the depletion layer. Then, the thermally created
electron in the conduction band is immediately swept down the barrier, and
the hole in the valence band is swept up the barrier. This drift current is
usually very small (particularly if the band gap is large, such as in GaAs)
and is relatively insensitive to the height of the potential barrier. The total
current across a junction is the sum of drift and diffusion components.

The potential barrier height for an electron diffusing from the semicon-
ductor into the metal is ¢y — @g (see Fig. 8.13(b)). This potential difference
is called the contact potential. The height of the potential barrier from the
metal side is ¢y — x, where y is the electron affinity, measured from the
bottom of the conduction band to the ionization energy (vacuum level) (Fig.
8.13(a)).

We shall now estimate the net current that flows across the potential
barrier when a metal and an n-type semiconductor are connected to a d.c.
source (biasing). At first, the metal is assumed to be connected to the negative
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Figure 8.14. Energy bands for a metal and a p-type semiconductor (a) before and
(b) after contact. gy < ¢g.

terminal of a battery. As a result, the metal is charged even more negatively
than without bias. Thus, the electrons in the semiconductor are repelled even
more, and the potential barrier is increased (Fig. 8.15(a)). Further, the de-
pletion layer becomes wider. Because both barriers are now relatively high,
the diffusion currents in both directions are negligible. However, the small
and essentially voltage-independent drift current still exists, which results in
a very small and constant net electron current from the metal into the semi-
conductor {reverse bias, Fig. 8.15(a)).
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Figure 8.15. Metal-semiconductor contact with two polarities: (a) reverse bias and
(b) forward bias. The number of electrons that flow in both directions and the net
current is indicated by the length of the arrows. The potential barriers are marked by
heavy lines.
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Figure 8.16. (a) Characteristic of a rectifier. The reverse current is grossly ex-
aggerated! (b) Voltage versus time curves to demonstrate the behavior of an alter-
nating current and a current for which the negative voltage has been eliminated.

If the polarity of the battery is reversed, the potential barrier in the semi-
conductor is reduced, i.e., the electrons are “driven” across the barrier so
that a large net current from the semiconductor into the metal results (for-
ward bias). The depletion layer is narrow (Fig. 8.15(b)). The voltage—current
characteristic of a rectifier is shown in Fig. 8.16(a). Rectifiers of this type are
used to convert alternating current into direct current, Fig. 8.16(b).

The current that flows from the metal into the semiconductor is

Ivs = ACT? exp [- (¢’;:B—T")], (8.22)

(see Fig. 8.13b) where A is the area of the contact and C is a constant. The
current flowing from the semiconductor into the metal is

Isv = ACT? exp [— (@—T?T;{ZH , (8.23)

where V is the bias voltage (which has the sign of the polarity of the metal)
and e is the electronic charge. The net current L = Isy — Ivs consists of
two parts, namely, the saturation current (occasionally called the generation
current)'?

Is = ACT? exp [— (‘ﬁlk;],ﬁ)] (8.24)

and a voltage-dependent term. The net current is then obtained by combin-

11 For low enough temperatures, one can assume ¢g % x; see Figs. 8.10 and 8.13.
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g (8.23), and (8.24),

L = Is {exp (EZLT) - 1}. (8.25)

We see from (8.25) that for forward bias (positive V') the net current in-
creases exponentially with voltage. Figure 8.16 reflects this behavior. On the
other hand, for reverse bias (negative V') the current is essentially constant
and equal to —Is. The saturation current is about three orders of magnitude
smaller than the forward current. (It is shown exaggerated in Fig. 8.16.)

We shall learn in Section 8.7.4 that the same rectifying effect as discussed
above can also be achieved by using a p—n diode. There are, however, a few
advantages in using the metal/semiconductor rectifier. First, the conduction
in a metal/semiconductor device involves, naturally, one type of conduction
carrier (e.g., electrons) only. Thus, no mutual annihilation of electrons and
holes can occur. As a consequence of this lack of “carrier recombination,”
the device may be switched more quickly from forward to reverse bias and is
therefore better suited for microwave-frequency detectors. Second, the metal
base provides better heat removal than a mere semiconductor chip, which is
helpful in high-power devices.

8.7.3. Ohmic Contacts (Metallizations)

In Fig. 8.17(a) and (b), band diagrams are shown for the case where a
metal is brought into contact with an r-type semiconductor. It is assumed
that ¢y < ¢g. Thus, electrons flow from the metal into the semiconduc-
tor, charging the metal positively. The bands of the semiconductor bend
“downward” and no barrier exists for the flow of electrons in either direc-
tion. In other words, this configuration allows the injection of a current into
and out of the semiconductor without suffering a sizable power loss. The
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Figure 8.17. Ohmic contact between metal and a-type semiconductor (gy < dg).
(a) Metal and semuconductor are separate. (b) Metal and semiconductor are mn con-
tact. (c) Current-voltage characteristic.
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current increases, in essence, linearly with increasing voltage and is sym-
metric about the origin as Ohm’s law requires (Fig. 8.17(c)). Accordingly,
this junction is called an ohmic contact. A similar situation exists for a p-type
semiconductor and ¢y > ds.

Aluminum is frequently used for making the contact between a device
(e.g., the p-region of a rectifier) and the external leads. Aluminum bonds
readily to Si or SiO; if the device is briefly heated to about 550°C after Al
deposition. Since aluminum has a larger work function than silicon (see
Appendix 4) the contact to a p-region is ohmic. Additionally, the diffusion of
aluminum into silicon yields a shallow and highly conductive p*-region.!?

Now, aluminum is likewise used as a contact material for n-type silicon.
To prevent a rectifying contact in this case, one usually lays down a heavily
doped and shallow n*-layer'? on top of the n-region. Since this n*-layer is
highly conductive and is made to be very thin, tunneling through the barrier
accomplishes the unhindered electron flow (see Sections 4.3 and 8.7.8).

8.7.4. p—n Rectifier (Diode)

We learned in Section 8.7.2 that when a metal is brought into contact with
an extrinsic semiconductor, a potential barrier may be formed which gives
rise to the rectifier action. A similar potential barrier is created when a p-type
and an n-type semiconductor are joined.

As before, electrons flow from the higher level (n-type) “down” into the
p-type semiconductor so that the p-side is negatively charged. This proceeds
until equilibrium is reached and both Fermi energies are at the same level.
The resulting band diagram is shown in Fig. 8.18.

12 The superscript plus means Aeavily doped region
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Figure 8.18. Schematic band diagram for a p—n junction (diode) in equilibrium.
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Consider first the conduction band only. The electrons that want to diffuse
from the n-region into the p-region encounter a potential barrier near the
junction. For statistical reasons, only a few of them have enough energy to
climb the barrier and diffuse into the p-region. The electrons in the p-region,
on the other hand, can easily diffuse “down” the potential barrier into the »-
region. Note that only a few electrons exist in the conduction band of the p-
region. (They have been thermally excited into this band by intrinsic effects.)
In the equilibrium state the number of electrons crossing the junction in both
directions is therefore identical. (The same is true for the holes in the valence
band.)

When an external potential is applied to this device, effects similar to the
ones described in Section 8.7.2 occur: connecting the positive terminal of a
d.c. source to the n-side withdraws electrons and holes from the depletion
area which becomes wider and the potential barrier grows higher (Fig. 8.19(a
and b)). As a consequence, only a small drift current (from intrinsic effects)
exists (reverse bias). On the other hand, if the n-side is charged negatively,
the barrier decreases in height and the space charge region narrows. A large
net electron flow occurs from the n-type region to the p-type region (forward
bias, Fig. 8.19(c) and (d)).

In Fig. 8.19(a) and (c) “quasi-Fermi levels” for electrons and holes are
shown. They are caused by the fact that the electron density varies in the
junction from the n-side to the p-side by many orders of magnitude, while
the electron current is almost constant. Consequently, the Fermi level must
also be almost constant over the depletion layer.

It has to be emphasized that the current in a p-n rectifier is the sum of
both electron and hole currents. The net current may be calculated by using
an equation similar to (8.25) whereby the saturation current, Is, in the pres-
ent case is a function of the equilibrium concentration of the holes in the n-
region (Ch,), the concentration of electrons in the p-region (C,), and other
device parameters. The saturation current in the case of reverse bias is given
by the Shockley equation, which is also called the ideal diode law:

D, D
Is = Ae(gcﬂ_e + Eh"_hﬁ) ) (8.26)
ep Lhn

where the D’s and L’s are diffusion constants and diffusion lengths, respec-
tively (e.g., D,, = diffusion constant for electrons in the p-region, etc.). The
diffusion constant is connected with the mobility, g, through the Einstein
relation:

ksT

D, = H B (8.27)

e
(see textbooks on thermodynamics). The minority carrier diffusion length is
given by a reinterpretation of a well-known equation of thermodynamics,

Lep = /Dep - Tep, (8.28)
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Figure 8.19. {a) + (b) Reverse and (c) + (d) forward biasing of a p-n junction
{diode). (e) Symbol of a p-n rectifier in a circuit and designation of polarity in an
actual rectifier.

where 7., is the lifetime of the electrons in the p-type region before these
electrons are annihilated by recombination with holes. In order to keep the
reverse current small, both Cy, and C, (minority carriers) have to be kept at
low levels (compared to electrons and holes introduced by doping). This can
be accomplished by selecting semiconductors having a large energy gap (see
tables in Appendix 4) and by high doping.

8.7.5. Zener Diode

When the reverse voltage of a p—n diode is increased above a critical value,
the high electric field strength causes some electrons to become accelerated to
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Figure 8.20. (a) Electron avalanche created at breakdown voltage. (b) Tunneling
(Zener breakdown). (c) Voltage—current characteristic of a p—n diode exhibiting a
breakdown voltage at a large reverse voltage. As in Fig. 8.16(a), I is shown grossly
exaggerated. (d) Zener diode in a circuit for voltage regulation.

a velocity at which impact ionization occurs [Fig. 8.20(a)]. In other words,
some electrons are excited by the electric field from the valence band into the
conduction band, leaving behind an equal number of holes. The free elec-
trons (and holes) thus created are likewise accelerated and create new elec-
tron-hole pairs, etc., until eventually a breakdown occurs, i.c., the reverse
current increases quite rapidly (Fig. 8.20(c)). The breakdown voltage, which
is the result of this avalanching process, depends on the degree of doping: the
higher the doping, the lower the breakdown voltage. Alternatively to this
avalanche mechanism, a different breakdown process may take place under
certain conditions. It occurs when the doping is heavy and thus the barrier
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width becomes very thin (i.e., <10 nm). Applying a high enough reverse
voltage causes the bands to shift to the degree that some electrons in the
valence band of the p-side are opposite to empty states in the conduction
band of the n-material. These electrons can then tunnel through the deple-
tion layer, as described in Sections 4.3 and 8.7.8 and depicted in Fig. 8.20(b).
Tunneling (or Zener breakdown) takes place usually at low reverse voltages
{e.g., below about 4 volts for silicon-based diodes), whereas avalanching is
the mechanism that occurs when the reverse voltage is large.

The breakdown effect just described is used in a circuit to hold a given
voltage constant at a desired level (Fig. 8.20(d)). The Zener diode is therefore
utilized as a circuit protection device. The Zener diode is generally not de-
stroyed by the breakdown, unless excessive heat generation causes it to melt.

8.7.6. Solar Cell (Photodiode)

A photodiode consists of a p—n junction {Fig. 8.21). If light of sufficiently
high energy falls on or near the depleted area, electrons are lifted from the
valence band into the conduction band, leaving holes in the valence band.
The electrons in the depleted area immediately “roll down” into the n-region,
whereas the holes are swept into the p-region. These additional carriers can
be measured in an external circuit (photographic exposure meter) or used to
generate electrical energy. In order to increase the effective area of the junc-
tion, the p-type region is made extremely thin (1 um) and light is radiated
through the p-layer (Fig. 8.21(a)). Since the p-layer is thin, the electric energy
must be collected on the front surface, utilizing narrow metal electrodes (e.g.,
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Figure 8.21. Solar cell; the p-region is only about 1 um thick. (a) side view; (b) Front
view.
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Figure 8.22. Schematic representation of the contribution of electrons and holes to
the photocurrent (I) with respect to the distance x from the p—n junction.

Al) which are arranged in the form of stripes, see Fig. 8.21(b). A silicon
photovoltaic device yields an inherent voltage of 0.6 V.

The electron-hole pairs that are created some distance away from the
depleted region are generally not separated by the junction field and even-
tually recombine; they do not contribute to the electric current. However,
some electrons or holes which are within a diffusion length from the depleted
region drift into this area and thus contribute to the current. In semi-
conducting materials that contain only a few defects (such as grain bound-
aries, dislocations, and impurities) the electrons or holes may diffuse up to
200 um before they get trapped, whereas in semiconducting materials con-
taining a large number of defects the diffusion length decreases to 10 um.
The closer a carrier was created to the p—n boundary, the larger is its chance
of contributing to the current (Fig. 8.22).

The thin p-type layer introduces an internal resistance to the collection
current, which reduces the efficiency of the energy conversion. At present,
the maximal efficiency of a photovoltaic device, made of crystalline silicon
and involving a three-layer technology (see Part III), is about 20-28%. The
energy needed to produce such a device (including mounting and installa-
tion) is recovered in about 6 years when the collector is located in North
Africa or Central America. {Installation in central Europe or the northern
states of the USA and Canada may double the energy recovery time.) The
cost of photovoltaic devices (presently $8-3$10 per installed watt) can be re-
duced by utilizing polycrystalline, less purified, or amorphous silicon, but at
the expense of efficiency. As an example, photovoltaics made of commerical,
hydrogen-doped amorphous silicon (see Section 9.4) have an efficiency of
only 6-8%, but its invested energy for production and mounting is recovered
in just 1 year. The efficiency of this device has been enhanced to 12% in
laboratory experiments. The goal is to produce for terrestrial applications
inexpensive solar cells having 20% efficiency or better and a lifetime of about
20 years. The lifetime is reduced when the metal contacts (grids) to the
semiconductor corrode. Despite the fact that photovoltaics are still relatively
inefficient, their worldwide sale has grown for the past 10 years by more
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Figure 8.23. Schematic of a transverse-type photodiode that is connected to a light-
carrying medium such as an optical fiber or a waveguide (L &~ 100 nm).

than 15% per year and has reached now the $2 billion mark, while the cost
has steadily decreased. The most recent development employs dye-coated
titanium dioxide and an electrochemical cell which mimics the role of chlo-
rophyll in photosynthesis.

The photovoltaic cell depicted in Fig. 8.21 has one inherent disadvantage:
the impinging light has to travel first through the p-type layer (however thin
it may be) before it eventually reaches the depleted (active) area. This atten-
uates its intensity to a certain degree. In addition, the incoming light is
somewhat blocked by the metal electrodes, which cover part of the face of
the cell. The resulting loss in efficiency is a trade-off for a large surface area
(which is often desirable to increase power). For telecommunication appli-
cations however, for which high efficiency is more important, a rather inge-
nious alternative design can be used. Imagine that the light impinges trans-
versely on (or better, along) the depletion layer. For this the beam is
channeled-in from the side by a light-conducting device such as an optical
fiber or a wave guide (Fig. 8.23). In order to increase the effective area, i.e.,
the width, W, of the depletion region, the photodiode is strongly reverse-
biased and the doping of one of the semiconductors is comparatively light.
(For details refer to Fig. 8.19(a).) The efficiency is further maximized by
increasing the length of the depletion layer, L. This device yields almost
100% quantum efficiency.

The quantum efficiency can be calculated by the equation

_exp(—al¥)

=1
1+ al

, (8.29)
where a is a parameter that determines the degree of photon absorption by
the electrons (« is defined in (10.21a)). As an example, for a GaAs photo-
diode the n-region is lightly doped because the electron mobility in GaAs is
much larger than the hole mobility, see Appendix 4. This shifts the depleted
region towards the n-side. On the other hand, the p-region is heavily doped
(and thin) in order to minimize its resistance.

The incoming light that is modulated by information (such as the spoken
word in telecommunications) modulates, in turn, the electrical current in the
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photodiode. This transforms a signal which is transmitted by light into an
electrical signal. We shall return to this topic and to other optoelectronic
devices in Part I11.

*8 7.7. Avalanche Photodiode

This device is a p—n photodiode that 1s operated in a high reverse bias mode,
i.c., at near-breakdown voltage. The electrons and holes that were created by
transitions from the valence band into the conduction band by the incident
light are accelerated through the depleted area with a high velocity. As a
consequence, they ionize the lattice atoms and generate secondary hole—
electron pairs, which, in turn, are accelerated, thus generating even more
hole—electron pairs. The result is a photocurrent gain, which may be between
10 and 1000. The avalanche photodiode is ideally suited for low-light-level
applications, because of its high signal-to-noise ratio, and for very high fre-
quencies (GHz). It is particularly used for detectors in long-distance, fiber-
optics telecommunication systems. See in this context Fig. 8.23.

*8.7.8. Tunnel Diode

So far, we have restricted our discussion mostly to the case for which the
electrons drift from the n-type to the p-type semiconductor by way of
“climbing” a potential barrier. Another electron transfer mechanism is pos-
sible, however. If the depleted area is very narrow (approximately 10 nm)
and if certain other requirements (see below) are fulfilled, electrons may
tunnel through the potential barrier. (See in this context Fig. 4.7, Fig.
8.20(b), and equation (4.39).) Heavy doping (e.g., 10% impurity atoms per
cubic centimeter) yields this condition.

The situation can best be understood by inspecting Fig. 8.24(a), in which a
schematic band diagram of a tunnel diode is shown. Because of the high
doping level, the Fermi energy extends into the valence band of the p-type
semiconductor and into the conduction band of the n-type semiconductor. In
the equilibrium state, the same amount of electrons is tunneling through the
potential barrier in both directions, i.e., no net current flows.

If a small reverse bias is applied to this device (Fig. 8.24(b)), the potential
barrier is increased as usual and the Fermi energy, along with the top and
bottom of the bands in the p-area, is raised. This creates empty electron
states in the conduction band of the n-type semiconductor opposite from
filled states in the valence band of the p-type semiconductor. As a conse-
quence, some electrons tunnel from the p-type to the n-type semiconductor,
as indicated by an arrow. An increase in the reverse voltage yields an in-
crease in the electron current through the device (see Fig. 8.24(f)).

Let us now consider several forward voltages. A small forward bias (Fig.
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Figure 8.24. (a)-(e) Schematic energy band diagrams for highly doped »- and p-type
semiconductors {tunnel diode). (a) No bias. (b) Reverse bias. (c) Small forward bias.
(d) Medium forward bias. (¢} “Normal” forward bias. (f) Voltage—current charac-
teristic for a tunnel diode.

8.24(c)) creates just the opposite of that seen in Fig. 8.24(b). Electrons are
tunneling through the potential barrier from the conduction band of the n-
type semiconductor into empty states of the valence band of the p-type
semiconductor. The applied voltage needs to be only several millivolts and it
produces a forward current of about one milliamp.

If, however, the voltage is increased to, say, 100 mV, the potential barrier
might be decreased so much that, opposite to the filled n-conduction states,
no allowed empty states in the p-area are present [Fig. 8.24(d)]. (The area
opposite to the filled n-conduction states may be the forbidden band.) In this
case, no tunneling takes place. As a consequence of this, the current decreases
with increasing forward voltage, as shown in Fig. 8.24(f). We experience a
negative current—voltage characteristic.

Finally, if the forward voltage is increased even more, the electrons in the
conduction band of the n-type semiconductor obtain enough energy to climb
the potential barrier to the p-side just as in a regular p—# junction. As a
consequence, the current increases with voltage, just as in Fig. 8.16(a).
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Of particular interest is the range in which a negative voltage—current
characteristic is experienced. One has to bear in mind that all other electrical
devices have a positive voltage—current characteristic, 1.e., they dissipate
energy. Therefore, if a tunnel diode is connected to properly dimensioned
resistors and capacitors, a simple oscillator can be built which does not lose
energy because the net resistance is zero. Those devices can oscillate at fre-
quencies up to 10" cycles per second.

8.7.9. Transistors

Bipolar Junction Transistor. An n—p-n transistor may be considered to be
an n—p diode back-to-back with a p—n diode. A schematic band diagram for
an unbiased n—p—n transistor is shown in Fig. 8.25. The three connections of
the transistor are called emitter (E), base (B), and collector (C).

If the transistor is used for the amplification of a signal, the “diode” con-
sisting of emitter and base is forward biased, whereas the base—collector
“diode” is strongly reverse biased (Fig. 8.26(a)). The electrons injected into
the emitter, therefore, need to have enough energy to be able to “climb” the
potential barrier into the base region. Once there, the electrons diffuse
through the base area until they have reached the depletion region between
base and collector. Here, the electrons are accelerated in the strong electric
field produced by the collector voltage (Fig. 8.26(b)). This acceleration
causes amplification of the input a.c. signal.

One may consider this amplification from a more quantitative point of
view. The forward biased emitter—base diode is made to have a small resis-
tivity (approximately 10-* Q cm), whereas the reverse biased base—collector
diode has a much larger resistivity (about 10 Q cm). Since the current flow-
ing through the device is practically identical in both parts, the power
(P = I’R) is larger in the collector circuit. This results in a power gain.

Emitter Base Collector

Figure 8.25. Schematic band diagram of an unbiased n—p-n bipolar junction
transistor.
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Figure 8.26. (a) Biasing of an n—p-n bipolar transistor. (b) Schematic band diagram
(partial) of a biased n-p-n bipolar transistor. (¢) Symbol used for a bipolar n—p—n
transistor.

The electron flow from emitter to collector can be controlled by the bias
voltage on the base: a large positive (forward) bias decreases the potential
barrier and the width of the depleted region between emitter and base (Fig.
8.19). As a consequence, the electron injection into the p-area is relatively
high. In contrast, a small, but still positive base voltage results in a compar-
atively larger barrier height and in a wider depletion area, which causes a
smaller electron injection from the emitter into the base area. In short, the
voltage applied between emitter and base modulates the transfer of the elec-
trons from the emitter into the base area. As a consequence, the strong col-
lector signal mimics the waveform of the input signal. This feature is utilized
for the amplification of music or voice, etc.

In another application, a transistor may be used as an electronic switch.
The electron flow from emitter to collector can be stopped completely (or
turned on) by an appropriate base voltage. This virtue is used for logic and
memory functions in computers (see Section 8.7.12).

The device shown in Fig. 8.26 is called a “bipolar transistor”; the current
passes in series through n-type as well as through p-type semiconductor
materials.

Some details need to be added about technical features of the bipolar
transistor. In order to obtain a large electron density in the emitter, this area
is heavily doped. In the p-doped base area, the drifting electrons are subject
to possible recombination with holes. Therefore, the number of holes there
has to be kept to a minimum, which is accomplished by light doping. {Light
doping also reduces the unwanted injection of hole current into the base.)
Recombination is further decreased by making the base region extremely
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Figure 8.27. Schematic collector voltage-current characteristics of a transistor
for various emitter currents. I, = collector current, I, = emitter current, and V, =
collector voltage.

thin, i.e., 107°-10~7 m. A narrow base region has a beneficial side effect: it
increases the frequency response. (The reciprocal of the electron transit time
equals the highest possible frequency at which amplification can be achieved.)
The doping rate of the collector area is in general not critical. Usually, the
doping is light for high gain and low capacitance of the device. The voltage—
current characteristics for a transistor are shown in Fig. 8.27.

In p—n-p transistors, the majority carriers are holes. The function and
features of a p—n—p transistor are similar to an n—p-# transistor.

Metal-Oxide—Semiconductor Field-Effect Transistor (MOSFET). A field-
effect transistor consists of a channel through which the charge carriers (e.g.,
electrons in Fig. 8.28) need to pass on their way from a source (S) to the
drain (D). The conducting path (source, channel, and drain) is made of the
same kind of semiconducting material only, e.g., n-type. (This is in contrast
to the bipolar transistor shown in Fig. 8.26, in which the current passes in
series through n-type as well as through p-type semiconductor materials.)
Field-effect transistors are therefore designated as unipolar. The electrons
that flow from the source to the drain can be controlled by an electric field
which is established by applying a voltage to the so-called gate (G).

A periodic variation of the gate voltage varies the source to drain current
in the same manner (quite similar to the way the electron flow between
emitter and collector in a bipolar transistor is modulated by the base volt-
age). The gate electrode is electrically insulated from the channel by a thin
oxide layer which prevents a d.c. current to flow from gate to channel.

Two types of MOSFETSs are common: The depletion-type MOSFET de-
picted in Fig. 8.28(a) consists of high-doped source and drain regions and a
low-doped channel, all of the same polarity (e.g. n-type). (The high doping
facilitates low-resistance connections.) The n-channel MOSFET is laid down
on a p-type substrate called the body.
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Figure 8.28. (a) Schematic representation of an n-channel depletion- (normally on)
type MOSFET. The dark areas symbolize the (aluminum) metallizations. The “oxide”
layer may consist of SiO,, nitrides (Si3Ny), oxinitrides (Si3N4—SiO;), or multilayers of
these substances. This layer is about 10 nm thick. The gate voltage is applied between
terminals G and B. Quite often the B and S terminals are interconnected. (b) Circuit
symbol for n-channel depletion-type MOSFET. (c) Gate voltage/Drain current
characteristic (“Transfer” characteristic). For positive gate voltages (dashed portion
of the curve) the device can operate in the “enhancement mode” (see Fig. 8.29(c)).

The channel width is controlled by the voltage between gate and body.
Specifically, a negative charge on the gate drives the channel electrons away
from the gate and towards the substrate, similarly as is illustrated in Fig.
8.12. In short, the channel can be made to be partially depleted of electrons,
i.e., the conductive region of the channel becomes narrowed by a negative
gate voltage. The more negative the gate voltage (Vg), the smaller the cur-
rent through the channel from source to drain until eventually the current is
pinched off (see Fig. 8.28(c).) For the above reasons, this device is called a
depletion-type metal-oxide semiconductor field-effect transistor or “normally
on” MOSFET.

An alternative to the depletion-type MOSFET that we just discussed is the
enhancement-type MOSFET. Figure 8.29 shows that this device does not
possess a built-in channel for electron conduction, i.e., at least as long as no
gate voltage is applied. In essence, there is no electron flow from source to
drain for a zero gate voltage. The device is therefore called a “normally-off”
MOSFET. If, however, a large enough positive voltage is applied to the gate,
most of the holes immediately below the gate oxide are repelled, i.e., they are
driven into the substrate, thus removing possible recombination sites. Con-
comitantly, negative charge carriers are attracted into this channel (called
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Figure 8.29. (a) Enhancement (normally-off }-type n-channel MOSFET. For details,
see the caption of Fig. 8.28. (b) Circuit symbol. (The broken line indicates that the
path between S and D is normally interrupted.) (c) Gate voltage (¥g)/drain current
{(Ip) characteristic. Vr is the threshold gate voltage above which a drain current
sets in.

the inversion layer). In short, a path (or a bridge) for the electrons between
source and drain can be created by a positive gate voltage. The metal-oxide
semiconductor technology, particularly, the enhancement-type MOSFETs,
dominate the integrated circuit industry at present. They are utilized in
memories, microcomputers, logic circuits, amplifiers, analog switches, and
operational amplifiers. They possess very high input impedances,'® thus
minimizing Joule heating.

Depletion-type and enhancement-type MOSFET technologies that utilize
n-channels (as depicted in Figs. 8.28 and 8.29 are summarized by the name
“NMOSFET” (in contrast to “PMOSFET”, which employs devices with p-
channels). If both an n-channel and a p-channel device are integrated on one
chip and wired in series, the technology is labeled “CMOSFET ” which
stands for complementary MOSFET. This tandem device has become the

13The term impedance is used to describe the a.c. resistance, which may consist of ohmic,
capacitive, and inductive parts.
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dominant technology for information processing, because of its low operating
voltage (0.1 V), low power consumption (heat!), and short channel length
with accompanying high speed. Alternative names for MOSFET are MOST
(metal-oxide-semiconductor transistor) or MISFET (metal-insulator—
semiconductor field-effect transistor).

A few words on device geometry, etc., of a MOSFET, as shown in Fig.
8.28, may be useful. In order to obtain a short switching time and a high-
frequency response, the channel length has to be short. The highest possible
frequency at which amplification can be achieved equals the inverse of the
electron source-to-drain transit time. The width of the device has to be kept
small in order to reduce the cross-sectional area and, thus, the power density.
{This reduces the heat which needs to be removed.) As an example, the
channel length may be about 1 um, the device width may be a few micro-
meters, and the field oxide thickness may be near 0.05 um. The doping of the
p-area needs to be small to sustain a high resistance and thus, a high electric
field (~10® V/cm) across the junction without current breakdown. The metal
layer is generally made of aluminum. Alternate materials are highly doped
silicon, refractory metals such as tungsten, or silicides of refractory metals
such as TiSt or MoSi.

*Junction Field-Effect Transistor (JFET). The JFET consists again of a
channel through which the carriers {electrons in Fig. 8.30) pass from source
to drain. This electron flow is controlled by an electric field which is estab-

lished by applying a negative voltage to the p-doped gate, to stay within the
example of Fig. 8.30. In other words, the p—n gate-to-channel diode is
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Figure 8.30. (a) Schematic representation of an n-channel junction field-effect tran-
sistor. The dark areas symbolize the metal contacts (e.g., aluminum). (b) Circuit
symbol for an n-channel JFET. Note: In a p-channel JFET the arrow points away
from the channel.
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reverse biased. This reverse biasing increases the width of the depletion layer
(see Fig. 8.19) thus causing the conducting channel to become narrower.
(Close to the drain terminal, the p—n junction is more reverse biased which
results in a wider depletion layer near the drain.) A zero bias voltage on the
gate results in a maximal source-to-drain current. A reverse voltage on the
gate depletes the source-to-drain electron flow. A very large reverse current
eventually pinches the current off. Junction field-effect transistors are there-
fore said to be of the depletion or “normally-on” type.

Junction field-effect transistors can be used as amplifiers, exploiting the
effect that a small change in the gate voltage causes a large change in the
channel current. Since the gate-to-channel p—n junction is reverse biased,
only a minute current flows in the gate/source circuit (Fig. 8.16). The input
impedance’? is therefore high (but not as high as in a MOSFET).

JFETs which use n-type semiconductors for the channel material, as de-
picted in Fig. 8.30, are appropriately called n-channel field-effect transistors.
The reader may correctly suspect that a p-channel field-effect transistor uses
holes as charge carriers, n-type semiconductors as gate materials, and a re-
versal of the polarities of all voltages for its operation. The arrow in the cir-
cuit symbol (Fig. 8.30(b)) for p-channel transistors points away from the
gate.

Bipolar transistors in combination with JFETs are called “BIFETs.” They
are used in high-performance linear circuits. If a JFET structure employs a
metal-semiconductor junction, often in combination with n-type GaAs, a
“MESFET” device is created, which is used for amplifiers and logic circuits
in the gigahertz range (see next section).

A MODFET (modulation-doped field-effect transistor) consists of a thin
layer of aluminum-gallium—arsenide deposited on an undoped GaAs sub-
strate. This device i1s even faster than a MESFET, because the absence of
impurity atoms increases the distance that an electron or a hole can travel
before a collision with a foreign atom occurs.

*Gallium Arsenide Metal-Semiconductor Field-Effect Transistor (MESFET).
Users of computers demand still higher switching speeds than the present
10~° s cut-off or cut-on times achieved with silicon technology. Gallium ar-
senide, with its almost sixfold larger electron mobility compared to silicon
{see Appendix 4), seems to be the answer. A quick inspection of the relevant
band diagrams (Figs. 5.23 and 5.24) indeed confirms that the curvature of
the conduction band near T is larger for GaAs than the comparable band
for silicon (close to the X symmetry point) which translates into a smaller
effective mass and, thus, into the just-mentioned larger electron mobility
for GaAs. However, the upper valence bands for both materials are almost
identical and fairly flat. Thus, the effective masses of the Aoles for GaAs and
silicon are rather large and their hole mobilities are consequently small (see
also Appendix 4). A transistor that aims to exploit the higher electron mo-
bility in GaAs should therefore utilize n-type GaAs only.
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Figure 8.31. Schematic representation of a GaAs MESFET (Metal-semiconductor
field-effect transistor). Source and drain metallizations (dark areas) are selected to
form ohmic contacts with the n-doped GaAs. The gate metal forms, with the »n-doped
GaAs, a Schottky-barrier contact.

Figure 8.31 depicts a metal-semiconductor field-effect transistor (MES-
FET), which consists of an n-doped, thin GaAs active layer situated over a
semi-insulating (Cr-doped) GaAs slab. Three metal contacts provide the
source, the gate, and the drain areas. The gate metal forms, together with the
underlying semiconductor, a Schottky barrier (see Section 8.7.2). If ¢y is
larger than ¢g and the gate metal is negatively charged, a reverse bias results
(Fig. 8.15(a)). The larger the reverse bias, the wider the depletion region. If
the depletion region 1s caused to fill essentially the entire active layer, any
attempted electron flow from source to drain is stopped (or pinched off' ). A
small negative gate voltage (or no gate voltage at all) allows an almost
unhindered source-to-drain electron flow. The device shown in Fig. 8.31 is
therefore a depletion- (or normally-on) type FET (see also Fig. 8.28(c)).

For high-speed, low-power applications, however, the normally-off GaAs
MESFET is even better suited. For this device, the active layer is made so
thin that the depletion area between the metal and the GaAs (Fig. 8.15) fills
the entire active layer.!* As a consequence, the active layer below the gate
metal electrode is depleted of electrons without necessitating an applied
voltage. A positive gate voltage is then required to attract electrons into the
depletion area, thus making it conductive. Given the above-described GaAs
device, the speed, i.e., the response time of the source-to-drain current to a
change in the gate voltage, can be further increased by decreasing the length
of the gate, which is presently about 1 um.

Several effects may, however, offset the superior electron mobility in
GaAs. First, the time required to reach the breakdown voltage under the
influence of a reverse voltage (see Fig. 8.20(c)) is only two and a half times
faster than in silicon. As we know from Fig. 8.20(a), this breakdown electric
field triggers a helpful self-ionizing avalanche that multiplies the number of

14The depletion layer width in GaAs varies with impurity concentration between 3 um for
10 cm~3 and 0.05 um for 10'8 impurity atoms per cubic centimeter.
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Figure 8.32. Average electron drift velocity as a function of electric field strength for
GaAs and silicon.

electrons. Second, a transistor of any type can be made to switch faster by
applying more power to it. This, in turn, increases the heat which needs to be
dissipated. Now, silicon has a three-times larger thermal conductivity than
GaAs (see Appendix 4). Thus, silicon switches can be made much smaller
than those made of GaAs. Since the speed of a device also depends on the
length the electrons have to travel, a very small silicon device may well
switch as fast as a large device made of GaAs. Third, the electron drift
velocity depends upon the electric field strength. At low field strengths, the
GaAs drift velocity is indeed substantially larger than for silicon (Fig. 8.32).
However, as the field strength increases, the drift velocity for silicon and
GaAs becomes nearly identical. This has its reason in the extra and slightly
higher energy states that silicon possesses near the X-symmetry point (Fig.
5.23), in which electrons can be scattered after they have collided with
structural imperfections of the crystal lattice.

Knowing the facts presented above, it seems understandable why some
leading semiconductor manufacturers have left the GaAs field. However, the
pendulum may soon swing in the other direction, as suggested in the next
section.

*8.7.10. Quantum Semiconductor Devices

It is the ultimate goal of industry to make semiconductor switches for com-
puter applications as small, as fast, as inexpensive, and as efficient as possible.
Conventional field-effect transistors pose, ultimately, certain limitations to-
wards progressive miniaturization: the smaller they become, the less effective
they switch, owing to current leakage, and particularly because of impurities
or lattice defects that scatter the moving electrons in ultrasmall devices to an
intolerable degree. There are also processing limitations caused by the pres-
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Figure 8.33. (a) Schematic representation of a quantum dot structure. (b) Energy
levels for GaAs for the quantum dot structure depicted in (a). (Note: The gap energy
difference between GaAs (E; = 1.42 eV) and AlGaAs is greatly exaggerated. This
difference may be as small as 0.2 eV.) (¢) Discontinuous density of energy states for a
quantum dot structure. The dashed parabola indicates the density of states for a bulk
crystal, as is known from Fig. 6.4.

ently used photolithography techniques. Quantum structures are said to be
the devices of the future that may overcome these shortcomings.

In order to explain the nature of a quantum device, we need first to recall
that the electron states for bulk crystalline solids consist of continuous energy
bands, such as the valence band or the conduction band (Fig. 8.2). We also
recall that the density-of-states curve has a parabolic shape in this case (Fig.
6.4). If, however, the dimensions of a crystalline solid are reduced to the size
of the wavelength of electrons (e.g., 20 nm for GaAs), the formerly con-
tinuous energy bands split into discrete energy levels, similarly as is known
from Section 4.2, where we treated the behavior of one electron in a potential
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Figure 8.34. Parts of two energy band structures for the quantum device shown in
Fig. 8.33. For simplicity, only the conduction bands are shown. (a) No applied volt-
age. (b) With applied voltage, which facilitates electron tunneling from the conduc-
tion band of the n-doped GaAs into an empty energy level of the center GaAs region.

well. In essence, the same type of calculation presented in Section 4.2 is car-
ried out for quantum devices. Thus, results equivalent to (4.18) are obtained.
Further, when the dimensions are reduced to the degree as outlined above,
and under certain other conditions (see below), the density of states becomes
discontinuous, i.e., Z(E) also becomes quantized (see Fig. 8.33(c)). The
mechanism associated with these effects is, therefore, quite appropriately
called size quantization.

Let us demonstrate size quantization for a particular case in which a
small-band gap material is sandwiched between two layers of a “wide”’—
band gap material. Specifically, a cube-shaped piece of GaAs whose lateral
dimensions are made to be about 20 nm is layered between two similarly
shaped cubes made of aluminum-gallium-arsenide, which in turn are sand-
wiched between two longer slabs consisting of n-doped GaAs (Fig. 8.33(a)).
This configuration, for which all three dimensions of the center materials
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have values near the electron wavelength, is called a quantum dot (in contrast
to a two-dimensional “confinement,” which is termed quantum wire, or a
one-dimensional confinement, named quantum well ).

Figure 8.33(b) depicts simplified electron bands for the quantum dot
structure shown in Fig. 8.33(a). AlGaAs is a “wide”-band gap material
whose electron affinity (Fig. 8.13) is smaller than that of GaAs. Thus, its
conduction band is at a higher energy compared to the conduction band of
GaAs. This results in a potential barrier between the two GaAs regions. In
general, an electron in the n-doped GaAs area does not possess enough en-
ergy for climbing this potential barrier or otherwise diffusing into the adja-
cent regions (Fig. 8.34(a)). If, however, a sufficiently large voltage is applied
to this device, the conduction band of the n-doped GaAs is raised to a level
at which its conduction electrons are at the same height as an empty energy
state of the center GaAs region (Fig. 8.34(b)). At this point the electrons are
capable of tunneling through the potential barrier formed by the AlGaAs
region and thus reach one of these discrete energy levels. The tunneling is
quite effective because of the large density of states that is associated with
these quantum states (Fig. 8.33(c)).

If a slightly higher (or somewhat smaller) voltage is applied, the electrons
of the n-doped GaAs are no longer at par with an empty energy level and the
tunneling comes to a near standstill. This causes a current-voltage charac-
teristic with negative differential resistance, i.e., a region in which the current
decreases as the applied voltage increases (see Fig. 8.35).

An interrelated effect to size quantization is resonance, which enhances the
tunneling current. Once a specific voltage, the resonating voltage, has been
reached, the electron waves inside the center region are reflected back and
forth between the walls. In essence, constructive interference occurs between
the waves traveling in opposite directions.

A further advancement of the quantum device introduced so far consists
of an array of a multitude of quantum wells stacked on top of each other.
This periodic arrangement of wide—band gap and narrow—band gap mate-
rials is called a superlattice. 1t introduces an artificial periodicity into the
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Figure 8.35. Current-voltage characteristic of a quantum dot device as depicted in
Figs. 8.33 and 8.34.



146 II. Electrical Properties of Materials

solid, caused by the multiple atomic layers of one type of material in
sequence with multiple atomic fayers of another type. By this mode of vary-
ing the structural parameters of a solid, new electronic properties can be
engineered.

Quantum devices are about one-hundredth of the size of presently known
FETs. Thus, major problems have still to be overcome concerning inter-
connections, device architecture, and fabrication of three-terminal devices. It
has been speculated, however, that once these problems have been solved the
reduction in cost per function might be as large as ten-thousand-fold.

8.7.11. Semiconductor Device Fabrication

The evolution of solid-state microelectronic technology started in 1947 with
the invention of the germanium point contact transistor by Bardeen, Brattain,
and Shockley at Bell Laboratories. Until then, electronic devices used vacuum
tubes invented in 1906 by Lee deForest, as well as silicon, copper oxide, or
germanium rectifiers. (The latter was discovered in 1915 by M. Benedicks).
The development went via the germanium junction transistor (Shockley, 1950),
the silicon transistor (Shockley, 1954), the first integrated circuit (Kilby,
Texas Instruments, 1959), the planar transistor (Noyce and Fairchild, 1962),
and the planar epitaxial transistor (Texas Instruments, 1963) to the wuitra-
large-scale integration (ULSI) of today with several millions of transistors on
one chip. Attempts are now made to reach one billion transistors per chip,
called gigascale integration (GSI). We have discussed in the previous sections
some obstacles to this goal, which are imposed to a large degree by the
“materials barrier.” (However, device limits, circuit limits, and system limits
likewise play a role.) Silicon has been the principal semiconductor material
used in the past 50 years even though solid-state electronics technology
actually started with germanium, which could be manufactured in these early
days in comparatively ultrapure form. No other electronic material has a
combination of so many favorable properties. Most of all, silicon is abundant;
28% of the earth’s crust consists of silicon in one way or another. (Silicon is
behind oxygen, the second most abundant chemical element.) The raw ma-
terial (sand, i.e., quartzite) is inexpensive. The native oxide, silicon dioxide
(S10y), is an excellent insulator. The band gap is large enough to guarantee
stable electrical properties at moderate temperatures. The heat conductivity
is relatively large. Further, silicon forms almost perfect (dislocation-free)
single crystals. And finally, silicon is nontoxic, i.e., environmentally safe.
Still, for special applications and possibly gigascale integration, compound
semiconductors need to be considered, as discussed in the previous chapters.

The starting material for silicon wafer fabrication is sand (SiO,), which is
electromet reduced (in an arc furnace) with coal, etc., to 98% silicon. This
powdered raw silicon is reacted with hydrogen chloride to form trichloro-
silane gas (Si+ 3HCI — SiHCI; + H;), which is fractionally distilled for
purification and subsequently reduced with hydrogen to polycrystalline silicon
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Figure 8.36. Techniques for single-crystal growth. (a) Czochralski method. Heating
is performed by radio frequency coils or (for big crucibles) by resistance heating.
(b) Float zone method. (¢) Bridgman method (demonstrated for GaAs). (d) A 300
mm (12 inch) silicon single crystal is removed from the crucible. (Courtesy Wacker
Siltronic AG)

(SiHCl; + H; — Si+ 3HCI). From here on, several methods for single
crystal growth are used. In the predominantly utilized crystal pulling pro-
cess, invented in 1918 by J. Czochralski, the high-purity silicon is melted in a
fused-silica (SiO,) crucible, which is, in turn, supported by a carbon crucible
(Fig. 8.36(a)). A seed crystal (mainly (100) or (111) orientation), held on a
rod, initially touches the melt and is then slowly lifted, employing a with-
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(d
Figure 8 36. (Continued)

drawal speed of about 1 mm per minute. Concomitantly, the crucible as well
as the pulling rod are rotated i opposite directions at about 50 revolutions
per minute. The entire system is enclosed in a chamber that is erther slightly
evacuated (a few Torrs) or backfilled with argon or helium. The starting
crystal must initially have a thin neck to produce a dislocation-free crystal
(invented in 1959 by W. Dash). Proper cooling and pulling speeds allow one
to control the diameter of the evolving single crystal rod. Specifically, the
intial pulling speed needs to be large so that the dislocations are frozen-in
and thus cannot propagate further into the single-crystal rod.

Since the crucible consists of SiO, and of carbon, some oxygen and carbon
are introduced into the silicon during melting (about 5 x 10'7 oxygen atoms
and about 2 x 10'® carbon atoms per cubic centimeter). Other foreign ele-
ments of high-purity silicon are generally in the 101°~10'3 per cubic centi-
meter range. Oxygen and carbon impurities are electrically inactive because
they form inert compounds with silicon {e.g., SiO, or SiC). However, their
presence in high concentrations leads to the premature breakdown of p—n
junctions. Harmful impurities and tiny defects can be trapped (gettered)
either at a specially prepared back side of the wafer (e.g., by mechanically
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introduced dislocations) or inside the crystal on very small SiO, precipitates.
All taken, the surface layer (several um thick) on which the transistor is
manufactured (Fig. 8.29) needs to be free of oxygen atoms, whereas inside
the wafer a high defect density is beneficial for gettering. This configuration
is achieved by heating a wafer near 1000°C, which causes the migration of
the mobile oxygen atoms to the surface where a large number of them are
removed through evaporation.

A lower oxygen concentration (10'¢ atoms/cm?) can be achieved involving
the crucibleless float-zone technique (Fig. 8.36(b)). At first, a pure, poly-
crystalline silicon rod 